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PREFACE 

The prerequisites for this book are the “standard” first-semester course 
in number theory (with incidental elementary algebra) and elementary 
calculus. There is no lack of suitable texts for these prerequisites (for 
example, An Introduction to the Theory of Numbers, by 1. Niven and H. S. 
Zuckerman, John Wiley and Sons, 1960, cari be cited as a book that intro- 
duces the necessary algebra as part of number theory). Usually, very little 
else cari be managed in that first semester beyond the transition from 
improvised combinatorial amusements of antiquity to the coherently 
organized background for quadratic reciprocity, which was achieved in 
the eighteenth Century. 

The present text constitutes slightly more than enough for a second- 
semester course, carrying the student on to the twentieth Century by 
motivating some heroic nineteenth-Century developments in algebra and 
analysis. The relation of this textbook to the great treatises Will necessarily 
be like that of a hisforical novel to chronicles. We hope that once the 
student knows what to seek he Will find “chronicles” to be as exciting as a 
“historical novel.” 

The problems in the text play a significant role and are intended to 
stimulate the spirit of experimentation ivhich has traditionally ruled 
number theory and which has indeed become resurgent with the realization 
of the modern computer. A student completing this course should acquire 
an appreciation for the historical origins of linear algebra, for the zeta- 
function tradition, for ideal class structure, and for genus theory. These 
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vi PREFACE 

ideas, although relatively old, still make their influence felt on the frontiers 
of modern mathematics. Fermat’s last theorem and complex multiplication 
are unfortunate omissions, but the motive was not to depress the degree 
of difficulty SO much as it was to make the most efficient usage of one 
semester. 

My acknowledgments are many and are difficult to list. 1 enjoyed the . 
benefits of courses under Bennington P. Gill at City College and Saunders 
MacLane at Harvard. The book profited directly from suggestions by my 
students and from the incidental advice of many readers, particularly 
Burton W. Jones and Louis J. Mordell. 1 owe a special debt to Herbert S. 
Zuckerman for a careful reading, to Gordon Pal1 for major improvements, 
and to the staff of John Wiley and Sons for their cooperation. 

HARVEY COHN 
Tucson, Arizona 
October 1961 
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INTRODUCTORY 
SURVEY 

DIOPHANTINE EQUATIONS 

The most generally enduring problem of number theory is probably that 
of diophantine equations. Greek mathematicians were quite adept at 
solving in integers x and y the equation 

ux + by = c, 

where a, b, and c are any given integers. The close relation with the greatest 
common divisor algorithm indicated the necessity of treating unique 

factorization as a primary tool in the solution of diophantine equations. 
The Greek mathematicians gave some sporadic attention to forms of the 

more general equation 

(1) f(x,y)=Ax2+Bzy+Cy2+Dx+Ey+F=O, 

but achieved no sweeping results. They probably did not know that every 
equation of this kind cari be solved “completely” by characterizing a11 
solutions in a finite number of steps, although they had success with special 
cases such as x2 - 3y2 = 1. In fact, they used continued fraction tech- 
niques in both linear and quadratic problems, indicating at least esthetically 
a sense of unity. About 1750 Euler and his contemporaries became aware 

This section presupposes some familiarity with elementary concepts of group, 
congruence, Euclidean algorithm, and quadratic reciprocity (which are reviewed in 
Chapter 1). 

1 



2 INTRODUCTORY SURVEY 

of the systematic solvability in a finite number of steps. Yet it was not 
until 1800 that Gauss gave in his famous Disquisitiones Arithmeticae the 
solution that still remains a mode1 of perfection. 

Now a very intimate connection developed between Gauss’s solution and 
quadratic reciprocity, making unique factorization (in the linear case) and 
quadratic reciprocity (in the quadratic case) parallel tools. Finally, about 
1896, Hilbert achieved the reorganization of the quadratic theory, making 
full use of this coincidence and thus completing the picture. 

MOTIVATING PROBLEM IN QUADRATIC FORMS 

The first step in a general theory of quadratic diophantine equations was 
probably the famous theorem of Fermat (1640) relating to a (homogeneous) 
quadratic form in x, y. 

A prime number p is representable in an essentially unique manner by the 
form x2 + y2 for integral x and y  ifand only ifp = 1 modula 4 (orp = 2). 

It is easily verified that 2 = l2 + 12, 5 = 22 + 12, 13 = 32 + 22, 17 = 
42 + 12, 29 = 5~~ + 22, etc., whereas the primes 3, 7, 11, 19, etc., have no 
such representation. The proof of Fermat’s theorem is far from simple and 
is achieved later on as part of a larger result. 

At the same time, Fermat used an identity from antiquity: 

(x2 + y2)(2’2 + y’2) = (xx’ - yy’) + (xy’ + x’y)2, 

easily verifiable, since both sides equal x2x/2 + Y~‘~ + x12y2 + z%‘~. He 
used this formula to build up solutions to the equation 

(2) x2 + y2 = m 

for values of M which are not necessarily prime. For example, from the 
results 

3s + 2s = 13, (x = 3, y = 2), 

2s + 1s = 5, (5’ = 2, y’ = l), 
we obtain 

72 + 42 = 65, (xx’ - yy’ = 4, xy’ + x’y = 7). 

If we interpret the representation for 13 as 

(-3)s + 2s = 13 (x = -3, y = 2) 
whereas 

2s + 1s = 5, (2’ = 2, y’ = l), 
then we obtain 

(-8)2 + l2 = 65, (xx’ - yy’ = -8, xy’ + x’y = 1); 
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but the reader cari verify that 65 = 72 + 42 = 82 + l2 are the only repre- 
sentations obtainable for 65 in the form x2 + y2, to within rearrangements 
of summands or changes of sign. If we allow the trivial additional oper- 
ation of using (x, y), which are not relatively prime ((k~)~ + @Y)~ = k2m), 
we cari build up a11 solutions to (2), from those for prime m. 

Thus Fermat’s result, stated more compactly, is the following: 

Let Q(x, y> = x2 + Y2. 

Then a11 relatively prime solutions (x, y) to the problem of representing 

Qk Y> = m 

for m any integer are achieved by means of the successive application of two 
results called genus and composition theorems. 

GENUS THEOREM 

(3) Q@, Y) = P 

cari be solved in integral x, y  for p a prime of and only ~fp G 1 (mod 4), or 
p = 2. The representation is unique, except for obvious changes of sign or 
rearrangements of x and y. 

COMPOSITION THEOREM 

(4) Q(x, Y> QC%‘, Y’> = Q@x - YY’, S’Y + ~y’>. 

In the intervening years until about 1800, Euler, Lagrange, Legendre, 
and others invented analogous results for a variety of quadratic forms. 
Gauss (1800) was the first one to see the larger problem and to achieve a 
complete generalization of the genus and composition theorems. The 
main result is too involved even to state here, but a slightly more difficult 
special result Will give the reader an idea of what to expect. (See Chapter 
XIII.) 

Let Q,(x, Y> = x2 + 5y2, 

Q&, Y) = 2x2 + 2s~ + 3y2. 

Then a11 relaticely prime solutions (x, y) to the problem of representing 

or 
Q,<x, Y) = m 

Q2(x, Y) = m 
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for m any integer are achieved by means of the successive application of the 
following two results. 

GENUS THEOREM 

(5) = p, a prime, if and only ifp s 

in an essentially uniquefashion. (The only special exceptions are, Q,(O, 1) = 
5, Q,<L 0) = 2.) 

COMPOSITION THEOREM 

i 

Q,(x, Y) Q,<x’, Y’) = Qdxx' - ~YY’, “‘Y + XY’) 

(64 Qdx, Y> Q2W, Y’) = Q2(xx’ - “‘Y - ~YY’, XY’ + &‘Y + YY’) 

Qdx, Y> Qdx’, Y’) = Q1Px’ + “Y’ + “‘Y - ~YY’, XY + “‘y + YY’). 

One may protest (in vain) that he is interested only in Qi(x, y), but it is 
impossible to separate Q,(x, y) and Q,(x, y) in the composition process 
For instance, 

Qdl, 1) = 7, (x = 1, y = l), 

Q,<O, 1) = 3, (2’ = 0, y’ = 1), 

and, from the last of the composition formulas, 

Q,(- 1, 2) = 21, (~XX’ + ~y’ + “‘y - 2yy’ = - 1, xy’ + x’y + yy’ = 2). 

Thus, to represent 21 by Q,, we are forced to consider possible repre- 
sentations of factors of 21 by Q,. The reader may find the following 
exercise instructive along these lines : 

Find a solution to Q,(x, y) = 29 by tria1 and error and build from the 
preceding results solutions to Qi(x, y) = 841 and Q,(x, y) = 203. 

Those readers who are familiar with the concept of a group Will recognize 
system (6a) symbolically as 

(6b) 

QI2 = Q1 (identity), 

QlQ2 = QS, 
Qz2 = Qv 

In this manner we are led from quadratic forms into algebra ! 
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USE OF ALGEBRAIC NUMBERS 

The reader Will probably note that the decomposition theorem resembles 
the method of multiplication of complex numbers: 

(?a) (x + iy)(x’ + !y’) = (xx’ - yy’) + i(xy’ + yx’), 

where, of course, i = 2/- 1. The composition theorems for Q,(z, y) and 
Q,(zz, y) cari be similarly explained by use of 65 if we solve for 2” and y” 
in each of the following equations : 

I 

- 
(x + Y3y)(x’ + 1/-5y’) = (2” + d-5y”), 

(76) (x + d-Jy)(22’ + y’ + d-5y’) = (22” + y” + d-5y”) 

(2s + y  + d-55/)(22’ + y’ + d-5y’) = 2(x” + vcy”), 

but we shall defer a11 details to Chapter XIII. 
The important point, historically, is that before the time of Gauss 

mathematicians strongly feared the possibility of developing a contradic- 
tion if reliance was placed on such numbers as dz, d-5, and they 
would use these numbers “experimentally,” although their final proofs 
were couched in the immaculate language of traditional integral arithmetic; 
yet eventually they had to accept radicals as a necessary simplifying device. 

A second guiding influence in the introduction of radicals was the famous 
conjecture known as Fermat’s last theorem : 

If n is an integer 23, the equation 

5” + y” = zn 

has no solution in integers (z, y, z), except for the trivial case in which 
xyz=o. The result is still not proved for a11 n, nor is it contradicted. 
Here Cauchy, Kummer, and others achieved, for special n, remarkable 
results by factoring the left-hand side. We shall ignore this very important 
development in order to unify the material, but we cannot fail to see its 
relevance (say) for n = 3, if we Write 

x3 + y” = (x + Y>(Y + PY)(X + $Y), 

p = (-1 + d-3)/2, p2 = (-1 - d=3)/2. 

The introduction of such numbers as p, dz, d-- 5 resulted in a further 
development by Dedekind (1870) of a systematic theory of algebraic 
numbers. These are quantities tc defined by equations, for instance, of 
degree k, 

Aoak + A,aL-l + * * * + A, = 0 
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with integral coefficients. It turned out that quadratic surds (k = 2) were 
an extremely significant special case whose properties to this very day are 
not fully generalized to k > 2. Thus the importance of this special 
(quadratic) case cannot be overestimated in the theory of algebraic numbers 
of arbitrary degree k. 

In this book we try to get the best of both worlds: we use quadratic 
forms with integrai coefficients or factor the forms (using algebraic number 
theory), depending on which is more convenient. 

PRIMES IN ARITHMETIC PROGRESSION 

If we examine Q,(z, y) and Qz(x, y) more carefully, we find that in both 
cases the discriminant is -20, (the discriminant is the usual value, d = 
B2 - 4AC for tbe form As2 + Bq + Cy2). Actually, the number of 
forms required for a complete composition theorem associated with a 
discriminant is (essentially) a very important integer called the class 
number, written h(d). Thus, referring to Q(x, y), we find h( -4) = 1; and 
referring to Q,(z, y), Q,(z, y), we find h( - 20) = 2. The value of the class 
number is one of the most irregulur functions in number theory. Gauss 
(1800) and Dirichlet (1840), however, did obtain “exact” formulas for the 
class number. They used continuous variables andthelimiting processes of 
calculus, or the tools of analysis. 

One of the most startling results in number theory developed when 
Dirichlet used this class-number formula to show the following result: 

There is an inznitude of primes in any arithmetic progression 

a,..a + d, a + 2d, a + 3d, * - * , 
provided (a, d) = 1, and d > 0. 

The fact that quadratic forms had originally provided the clue to a 
problem involving the Iinear form a + sd has not been completely assimi- 
lated even today. Despite the occurrence of “direct” demonstrations of 
the result of Dirichlet, the importance of the original ideas is manifest in 
the wealth of unsolved related problems in algebraic number theory. 

We are thus concerned with the remarkable interrelation between the 
theory of integers and analysis. The role of number theory as a fountain- 
head of algebra and analysis is the central idea of this book. 
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chapter 1 
Review of elementary number 
theory and group theory 

NUMEtER THEORETIC CONCEPTS 

1. Congruence 

We begin with the concept of divisibility. We sayi a divides b if there is 
an integer c such that b = ac. If a divides b, we Write a 1 6, and if a does 
not divide b we Write a f b. If k 2 0 is an integer for which a’ ) b but 
ak+l { b, we Write ak 11 b, which we read as “ak divides b exactly.” 

If 112 1 (z - y), we Write 

(1) x E y(modm) 

and say that x is congruent to y  modulo m. The quantity m is called the 
modulus, and a11 numbers congruent (or equivalent) to x (mod m) are said 
to constitute a congruence (or equivalence) class. Congruence classes are 
preserved under the rational integral operations, addition, subtraction, and 
multiplication; or, more generally, from the congruence (1) we have 

(2) fC4 = f(y) (mod 4 

wheref(z) is any polynomial with integral coefficients. 

1 Lower case italic letters denote integers (positive, negative, or zero), unless otherwise 
stated. 

9 



10 ELEMENTARY NUMBER AND GROUP THEORY [Ch. I] 

2. Unique Factorization 

It cari be shown that any two integers a and b not both 0 have a greatest 
common divisor d(>O) such that if t ) a and t 1 b then t 1 d, and conversely, 
if t is any integer (including d) that divides d, then t 1 a and t ( b. We Write 
d = gcd (a, b) or d = (a, b). It is more important that for any a and b there 
exist two integers x and y such that 

(1) ax + by = d. 

If d = (a, b) = 1, we say a and b are relatively prime. 
One procedure for finding such integers x, y is known as the Euclidean 

algorithm. (This algorithm is referred to in Chapter VI in another con- 
nection, but it is not used directly in this book.) 

We make more frequent use of the division algorithm, on which the 
Euclidean algorithm is based: if a and b are two integers (b # 0), there 
exists a quotient q and a remainder r such that 

(2) a=qb+r 

and, most important, a = r(mod b) where 

(3) 0 I r < 161. 

The congruence classes are accordingly called residue (remainder) classes. 
From the foregoing procedure it follows that if (a, m) = 1 then an 

integer x exists such that (x, m) = 1 and ax = b (mod m). From this it 
also follows that the symbol b/a (mod m) has integral meaning and may be 
written as 2 if (a, m) = 1. 

An integer p greater than 1 is said to be a prime if it has no positive 
divisors except p and 1. The most important result of the Euclidean 
algorithm is the theorem that if the primep is such that p 1 ab thenp 1 a or 
p 1 b. Thus, by an elementary proof, any nonzero integer m is representable 
in the form 

where the pi are distinct primes. The representation is unique within 
rearrangement of factors. Each factor pi”’ is called primary. 

EXERCISE 1. Observe that 
++$=g 

g = 4, g 5s 5. Q = 2 (mod 7), 
4 $5 = 2 (mod 7). 

Write down and prove a general theorem enabling us to use ordinary arithmetic 
to work with fractions modulo m (if the denominators are prime to m). 
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p-1 

11 

EXERCISE 2. Prove 2 l/i: = 0 (modp), @ odd). 
x=1 

EXERCISE 3. From the remarkable coincidence 24 + 54 = 2’ .5 + 1 = 641 
show 23e + 1 = 0 (mod 641). Hint. Eliminate y  between the pair of equations 
x4 + y4 = 7 x y + 1 = 0 and carry the operations over to integers (mod 641). 
EXERCISE 4. Write down and prove the theorem for the solvability or non- 
solvability of uz 5 b (mod m) when (a, m) > 1. 

3. The Chinese Remainder Theorem 

If m = rs where r > 0, s > 0, then every congruence class modulo m 
corresponds to a unique pair of classes in a simple way, i.e., if x z y 
(mod m), then z E y (mod r) and x = y (mod s). If (r, s) = 1, the converse 
is also true; every pair of residue (congruence) classes modulo r and 
modulo s corresponds to a single residue class modulo rs. This is called 
the Chinese remainder theorem .l One procedure for defining an x such 
that x E a (mod r) and z = b (mod s) uses the Euclidean algorithm, since 
(5 =)a + rt = b + SU constitutes an equation in the unknowns t and u, 
as in (1) of $2. 

As a result of this theorem, if we want to solve the equation 

(1) f(x) E 0 (mod m), 

a11 we need do is factor m = p1"lp2"î * * -psas and then solve each of the 
equations 

(2) f(x) = 0 (modp?) 

for as many roots as occur (possibly none). I f  xi is a solution to (2), we 
apply the Chinese remainder theorem step-by-step to solve simultaneously 
the equations 

(3) x = xi (modp,“*), (i = 1, 2, . . * > s), 

to obtain a solution to (1). I f  ri is the number of incongruent solutions to 

(2), there Will be n ri incongruent solutions. (The result is true even if 
i=l 

one or more ri = 0.) 

EXERCISE 5. In a game for guessing a person’s age z, one discreetly requests 
three remainders : rl when z is divided by 3, r2 when z is divided by 4, and r3 when 
x is divided by 5. Then 

x = 40r, + 45r, + 36r, (mod 60). 

Discuss the process for the determination of the integers 40, 45, 36. 

1 The theorem was not handed down from China but was found to have also been 
known there since antiquity. 
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4. Structure of Reduced Residue Classes 

A residue class modulo m Will be called a reduced residue class (mod m) if 
each of its members is relatively prime to m. If m = plalpZa~ * * .ps”s 
(prime factorization), then any number x relatively prime to m may be 
determined modulo m by equations of the form 

(1) x 3 xi (modp,“‘), (Xi, Pi> = 1, (i = 1,2, * * * , s). 

The number of reduced residue classes modulo p” is given by the Euler $ 
function: 

(2) HP”) = P( 1 - ;). 

By the Chinese remainder theorem the number of reduced residue classes 
modulo m is $(m), where 

(3) 5%) =ljl$(~P’) = 41 - WPJIC~ - WPJI . f . El - WPJ. 

By the Fermat-Euler theorem, if (b, m) = 1, then 

(4) b4(“’ G 1 (mod m). 

A number g is a primitive root of m if 

(5) gk $ 1 (mod m) for 0 < k < d(m). 

Only the numbers m = p”, 2p”, 2, and 4 have primitive roots (where p is 
an odd prime). But then, for such a value of m, a11 y relatively prime to p 
are representable as 

(6) y G gt (mod m), 

where t takes on a11 $(m) values; t = 0, 1, 2, * * * , y%(m) - 1. 
The accompanying tables (see appendix) give the minimum primitive 

root g for such primep < 100 and represent y in terms of t and t in terms 
of y modulop. Generally, t is called the index (abbr. 1 in the tables) and y is 
the number (abbr. N). Of course, the index is a value modulo $(m), and 
the operation of the index recalls to mind elementary logarithms. 

EXERCISE 6. Verify the index table modulo 19 and salve 

210y60 = 1470 (mod 19) 
by writing 

lOind2 + 60indy = 7Oind 14(mod18) 

(and using Exercise 4, etc.). 
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5. Residue Classes for Prime Powersl 

In the case of an odd prime power p”, for a fixed base p, a single value g 
cari be found that Will serve as a primitive root for a11 exponents a > 1. 
In fact, g need be selected to serve only as the primitive root ofp2, or, even 
more simply, as shown in elementary texts, g cari be any primitive root ofp 
with just the further property g*-’ + 1 (mod p”). We then take (6) of $4 to 
represent an arbitrary reduced residue class y (mod p”), using the minimum 
positive g for definiteness. 

In the case of powers of 2, the situation is much more complicated. The 
easy results are (taking odd y) for different powers of 2 

(1) y = 1 (mod 2), trivially, 

(2) y s (- l)to (mod 4), t, = 0, 1; 

but for odd y, modulo 8, we find there is no primitive root. Thus there is 
no way of writing all odd y = gt (mod 8) for t = 0, 1, 2, 3. We must Write 

(3) y E (- l)% (mod 8), t, = 0, 1, f, = 0, 1, 

yielding the following table of a11 odd y modulo 8. 

TABLE 1 

Y 1 3 5 7 

t0 0 1 0 1 

h 0 1 1 0 

More generally, if we consider residues modulo 2”, a 2 3, we find the 
odd y are accounted for by 

(4) y E (- l)to511 (mod 29; to = 0, 1; t, = 0, 1, . . a > (2”/4) - 1. 

This result makes 5 a kind of “half-way” primitive root modulo 2” for 
each a 2 3. For instance 5l1 s 1 (mod 2”) when t, = $(2”)/2 = 2*/4 but 
for no smaller positive value of I,. Let us collect these remarks: 

I f  we factor m = plalpSaz ’ . * p?, and if (y, m) = 1, then y  is uniquely 
determined by a set of exponents asfollows: for oddprimesp, with primitive 
root gi (modpi2). 

(5a) y E g,t’ (modp,“s), 0 I ti < $(p,“t>. 

1 In this section and those that follow the proofs are less elementary than before. 
The reader should not hesitate to consult some elementary text in the bibliography if the 
desired conclusion does not sound familiar. 
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If there is an ecen prime present cal1 it pl(= 2). Then if a, = 1 a11 y  are 
congruent to one another (mod 2), if a, = 2, 

(5b) y E (- l)to (mod 4), 0rt,<$(4)=2; 

andzfa, >3 

(5~) y E (-1)r05tl (mod 2al), o<t,<2; 0 I t, < 4(2a1)/2. 

The index of y in general is not an exponent but an ordered n-tuplel of 
exponents or a vector.2 If we assume the primitive roots in (5~) are fixed 
for each odd pi as the minimum positive value, we cari Write 

(6) ind (Y) = [b, t,, t2, . . . , t,l, 
where each ti is taken modula the value #(ppi), or 2, or ?&(2”1), as required 
by (5u), (5b), and (5~). 

Thus, if m = 17, we represent y G 311 (mod 17), and 

(7a) ind (Y) = [tIl, (tl determined modula 16). 

Here the vector is merely the index. On the other hand, if m = 24 = 23 - 3, 
we Write 

U’b) y s 2/2 (mod 3), y E (- 1)10511 (mod 8), 

(7c) ind (Y> = [b, tl, bl, (to, t,, t, determined modula 2). 

We cari easily see the vectors corresponding to 5, 7, and 11 (G 35 modulo 
24) ; 

ind (5) = [0, 1, 11, ind (7) = [l, O,O], ind (11) = [1, 1, 11. 

In accordance with the usual vector laws, we define addition [with each ti 
determined modulo #pi”*), 2, or $(2”1)/2, according to (Su), (5b), or (SC)]. 
Let 

(8) ind (Y> = h, t,, * * * , t,l, ind (y’) = [tO’, tl’, * * - t,‘]. 

Then 

(9) ind (y) + ind (y’) = [t. + tO’, t, + tl’, * . . , t, + t,‘]. 

We then have an obvious theorem 

(10) ind (yy’) = ind (y) + ind (y’). 

1 The statements such as (6) must be suitably modified in case an entry such as tO is 
absent (when m is odd) as well as when tl is absent (or 2% 11 m). (Effectively, n = s or 
s* 1.) 

* We use the term “vector” intuitively as an “ordered n-tuple of components with 
addition and subtraction defined for two vectors by a component-by-component 
operation.” 
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EXERCISE 7. From representations (7b) and (7~) draw the conclusion that 
ind ($) = [0, 0, 0] for a11 y, for which (y, 24) = 1. (In other words a11 such y are 
solutions to y2 = 1, modulo 24). 
EXERCISE 8. Find a11 m for which, whenever (y, m) = 1, then y4 3 1 (mod m), 
using the index vector notation as in Exercise 7. 

GROUP THEORETIC CONCEPTS 

6. Abtlian Croups and Subgroups 

In the development of number theory, structurally similar proofs had 
been repeated for centuries before it was realized that a great convenience 
could be achieved by the use of groups. 

We shall ultimately repeat the earlier results ($5) in group theoretic 
laquage. We need consider only finite commutative groups in this book. 

A finite commutative (or abelian) group G is a set of abjects: 

(14 G: {a,, as, * * - , a,), 

with a well-defined binary operation (symbolized by 0) and subject to the 
following rules : 

(lb) a, @ ai = ai 0 a, (Commutative law) 

UC) a, @ (aj 0 aJ = (ai o a5) o ak, (Associative law) 
for every ai and ai an a, exists such that 

(14 ai 0 ak = a,. (Division law) 

From these axioms it follows that a unique element, called the identity and 
written e, exists for which a, @ e = a,. The number of elements h of the 
group is called the order of the group. The powers of a are written with 
exponents a o a = a2, etc. The axiom (d) cari be interpreted as meaning 
that the set 

constitutes a rearrangement of the group elements (1) for any choice of ai. 
A subgroup is a subset of elements of the group which under the opera- 

tion 0, themselves form a group. It cari be verified that the subgroup 
contains the same identity e as G. A well-known result, that of Lagrange, is 
that the order of a subgroup divides the order of the gr0up.l 

The groups that are involved modulo m are of two types, additive and 
multiplicative. 

1 Gauss in his Disquisiriones was particularly blind to groups and repeated the proof 
everytime he used this result (implicitly). Modern books on number theory, at long last, 
take greater cognizance of groups than did Gauss. Despite this fact, his results on 
quadratic forms were a stimulus to the group concept. 
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The udditive group modulo m has as elements a11 m residue classes (both 
those relatively prime to m and those not relatively prime to m). In 
accordance with our earlier notation, we would Write the residue class 
merely as x. The group operation @ is addition modulo m, and for con- 
venience we represent it by +, or x + y = x + y. This statement is 
exceedingly transparent and we see that (Id) calls for subtraction, i.e., 

(2) xi + xk = xi means xk = xi - xj 

and e = 0 in the usual way. 
The multiplicative group modulo m, M(m) has as elements those $(m) 

residue classes relatively prime to m. The operation @ is multiplication 
modulo m and (Id) is less trivial; indeed, it is equivalent to the fact that 
ai/aj represents an integer (mod m) relatively prime to m if (ai, m) = 
(aj, m) = 1. We again represent residue classes by x. 

EXERCISE 9. With a convenient numbering of elements, let a, = e and let 
K = {a,, a2, . . . , at} be a subgroup of order t in G [given by (lu)]. Let Ki denote 
the so-called case? {ai @ a,, ai 0 a2, . , ai 0 at} for i = 1, 2, . , h. Show 
that either Ki and Kj have no element in common or that they agree completely 
(permitting rearrangement of elements in each coset). From this result show t 1 h 
(Lagrange’s lemma) and that there are h/t different cosets. 
EXERCISE 10. Show that the Fermat-Euler theorem [(4), $41 is a consequence 
of Lagrange’s lemma by establishing the subgroup of M(m) generated by powers 
of b modula m where (b, m) = 1. 

7. Decomposition into Cyclic Groups 

A cyclic group is one that consists of powers of a single element called 
the generutor. Two simple examples immediately corne to mind. 

The additive group modulo m is generated by “powers” of 1. Here, of 
course, the operation @ is addition, SO the powers are 1, 1 + 1 = 2, 
1 + 1 + 1 = 3, etc., and, of course, m cari be written as 0. 

If m has a primitive root g, the multiplicative group modulo m has 4(m) 
elements and is generated by powers of g (under multiplication) namely 
g’,g2,“. , g”“)(= 1) (mod m). 

The order of a group element is defined accordingly as the order of the 
cyclic group which it generates. By Lagrange’s lemma, the order of a group 
element divides the order of the group. 

We use the notation Z or Z(m) to denote a cyclic group of order m, 
whether it is multiplicative or additive. Thus the multiplicative group 
modulo m is cyclic, or, symbolically, 

(1) M(m) = W(m)> 

if and only if a primitive root exists modulo m. 



[SeC. 71 DECOMPOSITION INTO CYCLIC GROUPS 17 

Not every abelian group is cyclic, as we shah see, but for every abelian 
group G we cari find a set of generators g,, g,, * * * , gS such that gi is of 
order hi and an arbitrary group element of G is representable uniquely as 

(4 g = goco @ glcl @ * - * @ gg* 

(meaning that the fi are determined modulo hi by the element g). This 
result is called the Kronecker decomposition theorem (1877). We shah 
prove it under lattice point theory in Chapter V, but no harm cari be done 
by using it in the meantime. We Write this decomposition, purely symboli- 
cally, as 

(3) G = Z(h,) x Z(h,) x - * * x Z(h& 

The order of G must be h,hl * * . h, (by the uniqueness of the representation 
(2) of g through exponents modulo h,). 

For the time being we note that Kronecker’s result holds easily for M(m), 
the multiplicative group modulo m for each m. This is a simple reinter- 
pretation of the representation for the reduced residue class modulo m 
given in (6), $5. We represented the multiplicative M(m) by the additive 
group on 

(4) id (Y) = h, h, - - * , d, 

where ri is represented modulo hi, as in $5. Then, for instance, the 
generatorsareg,= [l,O,-~~,O]gl=[O,l;~~,O];~~,g,=[O,O;~~,l] 
and 

(5) M(m) = Z(h,) X Z(hj) X * * * X Z(hJ. 

Here h, = $(p;t), with the usual provisions that when 8 1 m, h, = 2, 
h, = #(2”1)/2; when 22 1) m, h, = 2 and the h, term is missing, as provided 
in (5a), (5b), (5~) of $5. 

We note, in conclusion, that the group G given in (3) is cyclic ifand only if 
(h,, h,) = (h,, h,) = (h,, hz) = * * * = 1. (We recall that in the group 
M(m), 2 1 hi SO that M(m) is seen to be generally noncyclic and thus no 
primitive root exists modulo m generally). TO review the method of proof, 
let us take G = Z(h,,) x Z(h,) of order h,h,. First, we verify that g, 0 g, 
is of order h,h, if (ho, h,) = 1; hence it generates G. For if 

(go 0 0 = e, 
then 

go2 0 glz = e. 

By the uniqueness of representation of element e, z z 0 (mod h,) and 
z E 0 (mod h,), whence h,h, 1 z. Second, we note that if (ho, h,) = d > 1 
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no element g of G cari be of order h,h,. Indeed, the order of g,,lo o gril 
cannot exceed h,h,/d. For 

Q.E.D. 

EXERCISE 11. If  M = pips, where p1 and pz are different odd primes, does the 
statement M(m) = Z(p, - 1) x Z(p, - 1) mean that every reduced residue 
class z (mod m) has a unique representation as z = g,tlg,lz (mod m) where 
0 I rj <pi - 1, (j = 1,2)? HM. Take m = 15. 
EXERCISE 12. Show that in a cyclic group of even order half the elements are 
perfect squares and in a cyclic group of odd order a11 the elements are Perfect 
squares. Square a11 elements of Z(6) and Z(5) as illustrations. 
EXERCISE 13. Do the statements of Exercise 12 apply to noncyclic groups? 

QUADRATIC CONGRUENCES 

8. Quadratic Residues 

The values of a for which the congruence in x, 

x2 s a (modp) 

is solvable are called quadratic residues of the odd prime p. The quadratic 

residue character is denotedr by the Legendre symbol 

where 
0 
% [also written (a/p)], 

a 

V-J 
= 1 if x2 3 a (mod p) solvable and (a, p) = 1, 

P 

(1) ;=0 
l() 

if@, P) = P, 

a li-) = -1 if x2 = a (mod p) unsolvable. 
P 

Thus [l + (a/p)] is the number of solutions modulo p to the equation 
z2 = a modula p for any a. Easily 

and 

if a, = a2 (mod p), 

(fi). (pj = (!y. 

1 We refer to a and p as “numerator” and “denominator” (for want of more suit- 
able universally established terms). 
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Thus the evaluation of the symbol (a@> reduces to the evaluation of the 
symbols (- IlpI, GW, and (q/P), where q is any odd prime. 

The famous quadratic reciprocity relations are 

@cl 

-1 
( i 

- = (- l)k1)/2 
> 

P 
2 

t-1 
= (_i)(n2-l)!a 

P 

0 0 
4 = 
P 

f  (-1j(~-1)/2~(0-1)/2, 

where p and q are odd positive primes. These relations enable us to 
evaluate (q/p) by continued inversion and division in a manner described 
in elementary texts. TO avoid,the factor (- l)(P-1)12~(rl-1)‘2, we could Write 
(q/p) = (p*/q) where p* =p(-l/p). For example, 3* = -3, 5* = 5; 
thus (q/3) = (-3/q), whereas (q/5) = (5/q). 

A very useful relation due to Euler is 

(3) 
a 

0 
- z u(p-l)iz (mod p) 
P 

for p an odd prime and (a, p) = 1. 
The equation 

(4) x2 = a (modp”) 

cari also be shown to present no greater difficulty for s > 1 than for s = 1. 
The fundamental case is where (a, p) = 1. There we cari show, ifp is odd, 
that the solvability of 

(5a) z2 = a (modp), (a,p> = 1, 

leads to the solvability of 

(56) x2 = a (modp”), s 2 1. 

Correspondingly, if 

(64 a = 1 (mod S), 

then we cari solve 

(6b) x2 = a (mod 27, s 2 3. 

The details are illustrated in Exercises 14 and 15. 

EXERCISE 14. Show that if 

x,’ = a (modps), (p odd), (a, p) = 1, 
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we cari find a value k (modp) for which 

x s+1 
and 

= x, + kps = z, (modp”) 

2 x,+~ = a (modp”+l). 

Construct the sequence x1, z2, z3, x4, starting with xl = 2, a = -1, p = 5, 
xl2 = -1 (mod 5). 
EXERCISE 15. Show that if 

XS 2 = a (mod 29, 

we cari find a value k such that 

s 2 3, a = 1 (mod 8), 

X s+l = x8 + k28-1 = x, (mod 25-1), (k = 0 or l), 
and 

xf,, 3 a (mod 29. 

Construct the sequence (1 =)x3, x4, x5, z6 for 

xs2 3 17 (mod 2s). 

9. Jacobi Symbol 

As an aid in evaluating the symbol (a/~) numerically, we introduce a 
(0 

generalized symbol for greater flexibility, namely (a/6). For b = f npi”i 
we define 

(1) (;) =fi($ (; M~;;n;23$ve, or zero, 

For b = f 1 we define the symbol as 1, 
Then it cari be shown that for a, b, positive and odd; 

@a) 

(26) 

i 0 0 ( b a b=a b 2 -1 = 1 = (-l)w*-l)/E, 0 b (-l)‘b-1)/2, (-l)‘b-1)/2.(a-1)/2. 

A necessary and sufficient condition that 

(3) X2 aa a (modpq) 

be solvable for p, q distinct primes not dividing a is that the individual 
Legendre symbols (ah), (u/q) a11 be + 1. If the Jacobi symbol (a/pq) is - 1, 
(3) is unsolvable. 

There are many cases in which the evaluation of (a/~) (Legendre symbol) 
cari be facilitated by treating it as a Jacobi symbol in order to invert. The 
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answer is the same, as both symbols must agree for (a/~). We shall ulti- 
mately see that the introduction of the Jacobi symbol is more than a 
convenience; it is a critical step in the theory of quadratic forms. 

Thus we conclude the review of elementary number theory. The deepest 
result is, of course, quadratic reciprocity, which we shall prove anew in 
Chapter XI from an advanced standpoint. 

EXEKCISE 16 (Dirichiet). hvaluate (365/1847) as a strict Legendre symbol and 
(inverti@ as a Jacobi symbol. (1847 is a prime.) 
EXERCISE 17. Show that even when a is negative, if la1 > 1, b > 1 and a and b 
are odd, then 

a 0 0 b (-l)(b-1>/2. k-1)/2. 

;=a 

EXERCISE 18. If la1 > 1, Ibl > 1, with a and b both negative and odd, show 
that 

(9) = -($i,,,,b-~,,,,,-,,;t 

EXERCISE 19. Find an expression for ( - 1 lb) for b odd and negative and show 
Exercises 17 and 18 to be valid when la1 or lb1 = 1. 



“chapter II 
Characters 

1. Definitions 

An important question which we develop here is the manner of distin- 
guishing by analytic means a residue class modulo m, which is really an 
abstract concept. In our case this means we are trying to represent a whole 
residue class, 

(1) y = a (mod m), 

by a set of ordinary (real or complex) numbers x(a), called characters. 
We start more generally by defining characters for a finite abelian group’ 

G of order h with elements a,, a2, * . . , ah (where a, = e, the unit element). 
We cal1 the character x a function over a11 group elements, or 

(4 x64, x(a,>, . . * , x(a,), 

with the properties 

(3) Aa,) # 0, 

(4) x(aJxW = x(w). 

It is easily seen that x(e) = 1, using a,e = a, in (4). Furthermore, if h is 
the order of the group, then ah = e, for any element a of the group. Thus 
[x(a)]” = x(a”) = 1 and x(a) is an h-root of unity, i.e., 

(5) x(a) = exp (2&/h) = COS 2nt/h + i sin 2d/h 

1 Henceforth the group operation Will be writ!en ab instead of a ~3 b. 

22 
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for an appropriate t. There are h such roots of unity for the h values 
t=0,1,2;.., h - 1. Thus the number of possible characters x deter- 
mined by the values (2) is at most hh. Actually, there are precisely h 
characters, as we shall soon see. (Naturally, two characters are different if 
and only if they differ for one or more group elements.) 

Theproduct of two different characters, denoted by {x1x2}, is a character 
if we deiîne for an arbitrary group eiement a, 

(6) bhx21@) = xl(4x2W 

using ordinary multiplication. Then easily (X1X2}(a) is neverzero. Further- 
more, for group elements a, and aj 

{xd21(w,> = xl(w)x2(v4 = xl(ai)xl(aj)x2(ai)x2(aj) 

= {XIX2}(ai){XIX2}(aj). 

Hence x1x2 has the properties of a character in (3) and (4). We define xin 
in like fashion. We cari now have a group of characters X. We cal1 
{X~/X~} the (obvious) quotient character using ordinary division: 

(7) Wx2bi) = xlWx2(aJ 

In the same spirit we define the unit character by 

(8) Xo(ai) = 1 for a11 a,. 

In the case of residue classes under multiplication, we cari identify a, 
the group element, with y = a, the residue class, and use x(a) and x(a) 
interchangeably, with “modula m” and (a, m) = 1 understood. We cari 
also Write x(a) = 0 if (a, m) f 1 without contradicting the multiplication 
law (5). 

As an example, consider first the reduced residues modulo 5. Clearly 
y4 = 1 (mod 5) SO that from (5) x(a) have only one of the four values 
i, - 1, -I, + 1. The reader cari verify the following characters (four in 
number) : 

TABLE 1 

Reduced Residues Modula 5 

a=e a2 a3 a4 
yrl 2 3 4 

x0(a) = 1 1 1 1 
xl(a) = 1 i -i -1 
x3(a) = 1 -i i -1 
x2(a) = 1 -1 -1 1 
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TO illustrate the group property for residue classes, we note the relations 

(94 2 * 3 z 1 (mod 5), 

(104 xj(2)xj(3) = ~~(1)~ 

(114 (-i)(i) = 1, (e.g., takingj = 3). 

TO illustrate the group property for characters, we note the relations 

W) x3(a) = xlW2, x3(4 = xlW3, x0@> = xl(44y 

(lob) x3(a3 = xlW3, 

(1 lb) i = (-i)3, (e.g., takingj = 3). 

We observe that the cyclic structure of M(5) somehow carries over to the 
characters. 

The reader cari verify the following scheme modulo 8: 

TABLE 2 

Reduced Residues Modulo 8 

a =e a2 a3 a4 

y=1 3 5 7 

x0(a) = 1 1 1 1 
xl(a) = 1 -1 -1 1 
x3(a) = 1 1 -1 -1 
x3(a) = 1 -1 1 -1 

and the properties 

(94 
i 

Xl2 = xz2 = x33 = x0, 

x1x2 = x39 x3x3 = Xl? x3x1 = x2. 

These properties are capable of generalization, as we shall now see. 

2. Total Number of Characters 

The main resultr is that an abelian group of order h has precisely h 
different characters. 

TO see this result, first consider a single cycle of order h. 

G = Z(h). 

1 For this chapter we assume Kronecker’s theorem on cyclic structure, proved in 
Chapter V. 
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The elements of G are expressed in terms of a generator a as 

a, a2, - * * , ah(= e). 

Then, clearly, the values of x(a) are of the form exp 2niu/h, and 

(1) x(a”) = exp 2vitu/h, for 0 I t < h. 

Thus we obtain h ditfcrcnt charactcrs as 2 varies: 

(2) x,(a”) = exp 2nitu/h, 0 I ui h. 

For each character (or for each fixed u) the h group elements are generated 
at t varies to 0 to h - 1. The properties (3), (4) of $1 are easily verified for 
the characters in (1) and (2). 

The comparison with Table 1 in $1 (above) for reduced residues modulo 
5 should be altogether clear if we note that a = 2 and that at has the 
successive values 2l E 2, 22 E 4, 23 E 3, 2O = 1 (a11 statements holding 
modulo 5, of course). 

Next, let G = Z(h,) x Z(h,), an abelian group of order h,h, which is 
decomposed into two cyclic groups of order h, and h,: 

al, a12, * * - , alhl (= e), 

a2, a22, * * - , a2 ha (= e). 

Thus the general element of G is 

(3) g = a,lla,tz, 0 I t, < h,, 0 I t, < h,. 

Then we Write 

(4) x,,,,(g) = exp 24tlullhl + t2u21h2). 

As ur and u2 vary, they are reduced modulo h, and h,, respectively, SO that 

(5) 0 I u1 < h,, 0 I u2 < h,. 

We generate a11 h,h, (different) characters, as we verify below. The reader 
cari refer to residue classes modulo 8 in Table 2, $1 (above), Here 
h, = h, = 2, x0, x1, x2, x3 cari easily be identified with the 4 characters xïu, 
in (4), where u1 = 0, 1 and u2 = 0, 1. 

Thus, when we have an abelian group of order h (using cyclic structure), 
we cari show that there are h characters. We cari even see that the character 
group has the same cyclic structure. (These proofs occupy the rest of the 
section.) Specifically, let 

(6) G = Z(h,) x Z(h,) x . * . x Z(h,) 

SO that an arbitrary. element of G is 

(7) a = aolOaltl . . . asta, (ti mod hi), 
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Then, as we have shown for s = 1, here are h = h,, * . . h, possible 
characters : 

(8~) xuoul...u,(a) = exp27fi 
( 
p + ... + F), 0 I ui < hi. 

0 s 
A convenient notation is 

WI x uoul.. .&) = 4toih0P * * * e(t,lhJ”~, 
0 I ui < h,, 0 I ti < h,, 

using the function 

(9) e(l) = exp 2rif. 

This function has the obvious period 1, e.g., e(E + 1) = e(f), as well as the 
exponential property e(E + 7) = e(@e(q). Also;e(Q = 1 if and only if t 
is an integer. 

It is not obvious that the h characters listed in (8~) are different. For 
instance, if u. $ u,(mod ho), we must verify that for some a 

(104 xuo...&) f xv,...&4 

But we need only take a = a, in (7), then the relation (~OU) follows from 
the obvious result that (with t, = 1, t, = t, = . . . t, = 0), 

(lob) exp 2n-iu,/h, # exp 2n+v,/h,. 

In similar fashion if a # e we cari find some x in the set (sa) for which 
x(a) # 1. For example, if a f e, then in the decomposition, 

(11) a = aoto . . . asts, 0 I ti < b,, 

we note one exponent (say) t, $ 0 (mod ho). Thus, 

(12) ~~~~...~(a) = exp 2nito/ho # 1. 

Now let us assume there are c characters in the character group X; we 
know c 2 h. We shall show c = h. First note the results: 

First take (13). For x = x0 the conclusion is obvious. For x # x0 
Write 2 x(a) = S. We have for each fixed x an element a* such that 

ain G 
x(a*) # 1 (by definition, since x # x0); whence 

S = J&x<a a*> =a l$Gx(a)xW) = sxia*>, 
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since as a varies a*a is a rearrangement of the group elements denoted by a. 
The conclusion follows from the fact that x(a*) # 1; hence S = 0. 

Likewise in (14), for a = e the conclusion is obvious. For a # e Write 
x~xx@) = S. B u we have a special character x* for which x*(a) # 1, t 

by (12). Therefore, 

s = 2 {X*x)(u) = 
x in X 

x zx**(a) : x(a) = S,*(a), 

since, once more, with x* lixed, {x*x> is a rearrangement of the characters 
x of X. Thus, since x*(a) # 1, S = 0. 

The final result now follows: 

(15) h = c. 

For proof, set 

22: x(a) =2X x(a), 

using relation (13) on the left and relation (14) on the right! 
From (13) we find that, since x1/x2 = xa exactly when x1 = xs, 

(16) 

Such results would be more laborious to prove by using the cyclic structure. 
The “dual” result is 

(17) 

Again we note x(a,/aJ = x(a,)/x(a,), and a,/a, = e exactly when a, = a2. 
The relations (16) and (17) are called “orthogonality” conditions, by 

analogy with the perpendicularity of two (ordinary) geometric vectors 
1n. 

[Al, * * * ,4?J, LB,, . . . , BJ, namely 2 A$?, = 0. 
i=l 

EXERCISE 1. Show that there are no other characters than those listed in (8~) 
directly by considering value of x(ao), x(aJ, , x(a,) for the generating group 
elements in (7). 

In this exercise and the next take s = 2 for convenience. 

EXERCISE 2. Show (16) and (17) directly from the explicit form of the 
characters in (8~). 

~ 3. Residue Classes 

We noticed in Chapter 1, $5, that the residue classes y = a modula m, 
relatively prime to m, cari be represented additively by the vector index. 

(1) ind y  = [to, t,, . . . , t,], 



28 CHARACTERS [Ch. II] 

where ti are the exponents used in (5a, b, c) of Chapter 1, $5, with 

m = p1a1p2a2 ’ * *PS”*. 

The congruence classes of fi are somewhat varied but cari be represented 
symbolically by 

(2) 0 I ti < h,, 

where hi = #p,“s), 2, or +I$(~~I), as the case may require (for i > 1, i = 0, 
i = 1). Of course, 4(m) = h,h, * * . h,, the order of the group of reduced 
residue classes M(m), making the usual allowances for missing components 
if8 fm. 

The additive group of indices may be represented symbolically in the 
usual form of (6) in $2 (above) or of (5) in $7, Chapter 1; 

(3) M(m) = Z(h,J X Z(h,) X . * * X Z(hJ, 

with hi defined as the moduli of (Sa, b, c) in Chapter 1, $5. 
Its characters are seen to be in the form of (8b) and (9) in $2 (above). 

We think of the arguments as integers y rather than group elements, 
written as 

(4) XU& . u,(yl = 4fo/~o)“~ &lV~ . * * &,P,)“d. 

For more convenient symbolism, we use the new symbol with a single 
subscript : 

(5) ~,,~,(y) = 4,lM = x0. ..olo...o(~) 

where the subscript 0 * . . 010 * . . 0 symbolically denotes ui = 1 and uj = 0 
for a11 other uj, (j # i). 

When plu1 = 2’1, a, 2 3), there are two symbols corresponding to 
e(t,/h,) and e(tJh,), which we denote by x4(y) and ~~a@). We recognize, 
of course, x4(y) = (- I/y) = (- 1) - (V i)/s if y > 0 and odd and xs(y) = 
(2/Y) = (- 1) (Yz-1)18, for example, when a, = 3. 

From now on, xi(y) (not x,,(y)) Will denote the unit character. 
The illustrations we now give are self-explanatory, except for the right- 

hand marginal notationsof typeP~(~jYGrd “M = . . a” which are 
explained in $4 and $7 (below). The reader should identify the characters 
of (4) with those on pages 29 and 30. 

EXERCISE 3. Construct a similar table modulo 9, 15, 16, and 24. (See m = 12 
in $6, below.) 

4. Resolution Modulus 

We next consider extending the domain of values over which x is detîned. 
TO begin with, we might set x = 0 where it has been previously undefined, 
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TABLE 3 

m = 3, $(3) = 2. 

y’ 

x3(y) = ~~(2~1) = exp 2rrit,/2 = 

Xl = x32 = 

TABLE 4 
m=4=22 #(4) = 2 

Y’ 
1 

t, = 

X4(Y) = (-le = 
Xl = Xa2 = 

1, = 

%5(Y) = XSW) = 

exp 2nit,/4 = xs = 

x 52 = 

x5 
3= 

x5 
4- 

- Xl = 

29 

w = 3), (-3/Y) 

CM = 11, (9/Y) 

i 0 1 1 1 -1 3 1 1 

i 

E (-1)to 
(-1)O C-1)’ 

of w.f = = 4), 0, (4lY) (-4lY) 

TABLE 5 

M = 5, $(5) = 4 

1 2 3 4 

20 21 23 22 
---- 

0 1 3 2 
---- 
---- 

1 i -i -1 

1 -1 -1 1 

1 -i i -1 

1 1 1 1 

i 

= 211 

(M = 5) 

CM = 5), (S/u) 

(M = 5) 

CM = l), (25/~) 
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x,(y) = exp 2nifJ6 = x, = 

x7= = 

x7= = 

x,4 = 

x,5 = 

x, = x,= = 

y’ 1 
t, = 

t, = 

X*(Y) = (-le = 

x3(y) = ( -1p = 

X4X8 = 

x42 = X82 = x1 = 

- 
1 
30 

- 
0 

- 

1 

1 

1 

1 

1 

1 
- 

-  

ZZZ 

TABLE 6 
m = 7. $(7) = 6 

2 3 4 
32 31 34 

-~- 
2 1 4 

-~- 

-1+1& l+iYj -i-id? 
2 2 2 

-l-id3 
2 

-I+i& 
2 

-1-iYT 
2 

1 

-l+idj -l+iA 
2 2 

-1 1 

-i-iYJ -l-i& 1 2 2 

1 -id? -I+i& 
2 2 

1 1 

TABLE 1 

m=8=23 , d(8) = 4 

1, 

1, 

0, 

0, 

1, 

1, 

1, 

1, 

3, 

-5, 

1, 

1, 

-1, 

-1, 

1, 

1, 

5, 

5, 

0, 

1, 

1, 

-1, 

-1, 

1, 

7 -7 
-1, .J 

1 

0 

-1 

1 

-1 

1 

5 

35 

5 

l-idS 
2 

-l-i& 
----i-- 

-1 

-l+iYS 
2 

r+idJ 
-T-- 

1 

- 
3 

- 

-1 

1 uvf=7> 

-1 (M= 7). (-7lY) 

1 W=7) 

-1 (h4=7) 

1 <M = l>, (49/Y> 

i c ( -l)kl5b 

CM = 4), (-4lY) 

W = 81, WY) 

CM = 8), (-UV) 

CM = 11, (4/Y) 

knowing that the multiplication rules of $1 (above) still apply, although 
division is restricted to the original range. We, of course, want less 
trivial extensions. 

When a character x(y) is defined for y modulo m, with (y, m) = 1, it 
might still happen that 

(1) 

whenever 

X(Y3 = X(Y2) 

(Y17 m) = (Y23 m> = 1 



[fkC. 41 RESOLUTION MODULUS 31 

and 

(2) y1 - y2 tmod M’), 

for some other M’ in addition to m. The smallest M’ (>0) for which the 
property holds is called the resolution modulus M. 

For example, the unit character modulo m is defined by 

(3) 
i 

Xl(Y) = 1. (y, m> = 1, 

Xl(Y) = 03 (Y, m) > 1, 

but it might just as well have been defined modulo 1 by x*(y) = 1 and then 
x1 = x*(y) specialized to only those y where (y, m) = 1. 

A less trivial example is x4(y) modula 8 (see Table 7 above), for which 
M = 4, e.g., 

(4) 
( 

X4(Y) = 1, if y = 1 (mod 4) 

x4(y) = - 1, if y s - 1 (mod 4). 

The resolution modulus is indicated in the margin of the table by 
(M = * . *). 

LEMMA 1. An equivalent definition of the resolution modulus M is the 

least value of the positive integer M* with the property that 

(5) X(Y) = 1 

whenever y = I (mod M*) and (y, m) = 1. For proof see Exercise 4 (below). 

We next define the natural extension of a character x(y) modulo m to a 

character modulo M where M is the resolution modulus of ~(y). The 
process i-s trivial, of course, unless the values of y for which (y, M) = 1 
include more values than those for which (y, m) = 1. As a nontrivial case, 
for example, if m = 15 and M = 3, we might have a character ~+(y) 
modulo 15 which is none other than x3(y) but limited in domain of 
definition to (y, 15) = 1 and trivially extended to 0 when (y, 15) > 1. 
(Compare the following table with Table 3.) 

TABLE 8 

y(mod15) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
x+(Y) 0 1 -1 0 1 0 0 1 *-1 0 0 -1 0 1 -1 
X3(Y) 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 

We would like to know how to retrieve x3(y) from ~+(y) by the “natural” 
process of noticing that x+(y) is determined modulo 3 as long as (y, 5) = 1. 
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The basic method is contained in the following lemma: 

LEMMA 2. If (y, M) = 1, then for given y, M, and m we cari find an x 

such that 

(6) (y + Mx, m) = 1. 

Proof. Let piai be a general primary divisor of m. Then an xi exists such 
that (y + Mxi,p,“~) = 1. For, if pi 1 M, then pi f y and xi = 0 suffices. 
If pi f M, any choice of xi with xi $ -y/M (modpi) Will suffice. By 
the Chinese remainder theorem, an z exists which satisfies x = xi (modp,) 
and (y + Mz, m) = 1. Q.E.D. 

Thus, if x(y) modulo m has resolution modulus M, we define x*(y), the 
natural extension of x modulo M, by using Y = y + Mx of the lemma. 

(7) 
1 

x*(y) = x(Y) for (y, M) = 1 (even if (y, m) > 1) and 

X*(Y) = 0 for (Y, Ml # 1 

We cari see that the value x(y) is unique, despite the latitude in the 
choice of x by definition of the resolution modulus (since a11 Y are con- 
gruent to one another modulo M). Furthermore, we cari see that x*(y) has 
resolution modulus A4 (by showing that if x*(y) = 1 whenever y = 1 
(mod M’), and (y, m) = 1, then x(y) = 1). 

EXERCISE 4. Prove Lemma 1. (Hint. Cal1 M” the resolution modulus as 
defined in the lemma. Show trivially that A4 2 M”, and, using the residue class 
Y~/YZ, show M” 2 M.) 
EXERCISE 5. Show that the resolution modulus is given by the subscript in 
x4(y) and xza4y). 
EXERCISE 6. Show that the resolution modulus of a character modulo m is a 
divisor of every M’ for which (2) leads to (1). 
EXERCISE 7. The reduced residue class group modulo m has a character whose 
resolution modulus is m unless 2 jl m. (Show that one such character is x~~...~(?~) by 
using each primary factor of m, giving particular tare to 2”1.) 

5. Quadratic Residue Characters 

We recall that Jacobi’s symbol (a/b) had the property that the denomina- 
tor could vary over odd positive or negative integers. The reciprocity law 
is slightly encumbered if we permit negative signs (see Exercises 17 and 18 
of Chapter 1, $9) yet even restricting ourselves to odd b we cari consider 
the denominator “more arbitrary” than when b is prime. 

We pursue the opposite of the original viewpoint of Legendre’s symbol 
by writing 

(1) X(Y) = (a/v>, 
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as a function of the denominator for odd y. Clearly, 

(2) 

and 

X(YlY2) = X(YlMYc3 

33 

(3) X(Y) f  0 

for y odd and relatively prime to a. TO see that x(y) is a character in the 
sense of this chapter, we must find a modulus m to whichit belongs in the 
sense that 

(4) x(y) = 1, if y  = 1 (mod m), (y, m) = 1. 

It is easily seen that we cari take m = 4a if we take y > 0 only, for then the 
reciprocity law yields for a odd (by Exercise 17, Chapter 1) 

(5) x(y) = (y/a)(- l)k-1)/2.(U-W 

and easily 

(6) X(Y + 44 = X(Y). 

We now ask the vital question: what is the resolution modulus of &) 
as a character? TO answer this, first we dehne a square-free integer as one 
which has no Perfect square divisor greater than 1. Then we define k(a), 
the square-free kernel of a, as follows: if a = AB2 and A is square-free, 
then k(a) = A. 

THEOREM. The character x(y) = (a/y), restricted to y > 0 and y odd, is 

a character with resolution modulus [k(a)1 if k(a) E I modulo 4 and 4 Ik(a)l 
otherwise. 

ProoJ If (y, a) = 1, (a/y) = (k(a)/y) directly from definition. Suppose 
2 f k(a); then, since y > 0 and y odd, 

(54 (k(a)/y) = (y/k(a))( - l)(Y-1)/2 (k(a)-l)~ 

If k(a) = 1 (mod 4), (k(a)/y) = (y/k(a)). Thus the Jacobi symbol (with y 

odd), (a/y), is determined by y modulo k(a). If k(a) $ 1 (mod 4) (k(a)/y) is 
determined by y modulo 4k(a), i.e., 

(ha) 

as is easily seen. 
Next suppose 2 1 k(a). Then k(a) = 2a*, a* odd. 

(W/v> = GM(a*/v>. 

But (a*/y) is determined by y modulo a* or 4a*, hence modulo 4a* (easily), 
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whereas (2/y) is determined by y modula 8, hence (k(u)/y) is determined by 
y modula 8a* = 4k(u). 

TO prove that the quantities stated in the theorem are resolution moduli 
in the respective cases, we must show a prime factorp cunnot be removed 
from k(u) or 4k(u), as the case may be. Thus the integer k(u)/p or 4k(u)/p 
would not be suitable as resolution modulus in the respective cases k(u) s 1 
or k(u) q& 1 (mod 4). 

First of ail let p be odd; we wish to show that if y = 1 (mod k(u)/p) 
[or even (mod 4k(u)/p)] th’ 1s would be insujîcient to imply that x(y) = (a/~) 
= 1. For proof take y* such that (~/y*) = -1. [TO do this, note that 
if y* = 1 (mod 4) from reciprocity (y*/~) = (~/y*) and Y* cari be chosen 
simply congruent to a nonresidue modulo p.] Then, if 

(7u) y = 1 (mod 2), 
with 

(74 Y = 1 (mod Wlp), 
and 

(7c) Y = Y* (modp), 

we cari still have x(y) = 0 if (y, a) > 1, whereas, otherwise 

(8) X(Y) = (4Wly) = W>/v) = (W)/plly)(pld = - 1. 
The more difficult case isp = 2. For this case k(u) $ 1 (mod 4). 
Then there are two alternatives. If 2 f k(u), then k(u) E - 1 (mod 4). 

We choose y = 1 (mod k(u)), y = 3 (mod 4), and y G 1 mod (4k(u)/2). 
Thus x(y) = 0, if (a, y) # 1, otherwise 

(9) x(y) = (~/y) = (k(u)/y) = (y/k(u))(- 1)(2/-l)” ‘M=)-~)‘* = - 1, 

completing the proof for the alternative 2 T k(u). 
Now, if 2 1 k(u), then 4 +’ k(u), and we cari take y = 1 (mod k(u)/2) at 

the same time as y = 5 (mod 8). Thus y = 1 (mod4) and y - 1 (mod 
k(u)/2), which yields 

(10) y I 1 (mod 4k(u)/2); 

but, using reciprocity [formulas (4) and (2b) of Chapter 1, $91, we see 

(11) (4Wly) = GWM2/y) = W3WXXd = - 1. Q.E.D. 

The reader may wonder why the symbol (a/~) was not treated as a 
function of a, which seems to lead to a simpler theory (see Exercise 8 below). 
The reason Will be clear as we find that the symbol (~/y) as a function of y 
is just right for an important application (Dirichlet’s lemma, $7). 

EXERCISE 8. Show that x*(a) = (a/b) has resolution modulus k(b) with no 
restriction that a be positive. 
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6. Kronecker’s Symbol and Hasse’s Congruence 

The theorem of the preceding section makes the introduction of further 
concepts mandatory, first as a matter of convenience and then as an 
essential part of the theory ! 

Note first of a11 that if a z 1 (mod 4) then the character y@) = (a!-) 
must have resolution modulus Ik(a)j, which is odd and for which k(u) E 
1 (mod 4), a11 odd squares being E 1 (mod 4). Since k(a)-1 a, we cari define 
the residue symbol (u/2) as follows: 

(1) (4) = (-Al = (y) = (f;). 

Thus we have Kronecker’s extension of Jucobi’s symbol: 

0 if 4 divides a, 

(2) 0 1 
a 1 if a E 1 (mod 8), 
2= 

I 
-1ifu=5(mod8), 
undefined for a11 other a. 

The general symbol (u/b) cari be defined by prime decomposition as in 
Chapter 1, $9, to accommodate any resolution modulus of the element a, 
since any resolution modulus is in one of the “definable” categories for a. 
Of course, a may have square factors other than 4. 

Second, we note that in the theorem in $5 (above) on the resolution 
modulus of (~/y) the condition that y > 0 is required only to ensure the 
validity of the reciprocity law (5a) when a < 0. (When a > 0, the condi- 
tion on y may be removed.) It is therefore clear that the sign should be a 
part of the resolution modulus. We define 

(3) 
k(u) if k(u) s 1 (mod 4), 

‘(‘) = (4k(à), otherwise, 

the so-called conductor (or Führer in German). Then Hasse, for instance, 
restricts the meaning of a congruence modulo f(u) by saying y1 z yz 
modula+ f  (a) when y1 - yz is divisible by f  (a) and when y1 und y2 ugree in 
sign iff (a) < 0 (or with no further restriction iff (a) > 0). Thus, embody- 
ing the earlier remark on Kronecker’s extension, we cari prove the follow- 
ing more final improvement of the theorem in $5. 

HASSE'S RESOLUTION MODULUS THEOREM 

The Jucobi symbol (a/y) = x(y), us a charucter, cari be extended lo 
the Kronecker symbol (f(u)/y) = x*(y), SO thut x*(y) = x(y) whenever 
x(y) # 0. For this new charucter, x*(y) # 0 when y  is relutively prime to 
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f(u); andfor nonzero values ~*(y~) = ~*(y~) ifand only zfyl - ys modulof 
f(u). Also 1 f  (a)[ is the minimum value for which the latter congruence 
property holds in any extension symbol for ~(y). 

In the rest of the book we consider x(y) mainly for y > 0, obviating the 
need for the new congruence symbol. [The symbol x*(y) for negative y is 
the subject of Exercise 9 (below).] 

Consider the further example : 
The real characters modulo 12 cari be listed in terms of their generators 

x4,x3. We note the resolution moduli: 

TABLE 9 

m = 12 =4.3, $(12) = 4 

Y 

X4(Y) 

%3(Y) 

XdYMY) 

Xl(Y) 

1 5 7 11 

1 1 -1 -1 

1 -1 1 -1 

1 -1 -1 1 

1 1 1 1 

w = 4), (-36/~) 

w = 3), (-12/Y) 

(M = 12), (12/Y) 

Pf = 11, (36/~). 

The characters xl(y) and x3(y) alone are definable for y even. For &a), 
since f  = -3, we must restrict y to be positive. 

EXERCISE 9. Show for x(b) = (f(a)/b), x(-b)= x(b) but 

x(b) = X(~(U) - b) iff(a) > 0 and 0 < b <f(a) 
= -z(lf(a)l -b) iff(a) < 0 and 0 <b < I~(CI)~. 

EXERCISE 10. Show that it is impossible to extend (a/?/) to y  = 2, when 
a = - 1 (mod 4). Hint. Note (3/2) = (3/(2 + 12)) and (3/2)2 = (9/4) lead to a 
contradiction with earlier rules for (~/y). 

7. Dirichlet’s Lemma on Real Characters 

We now turn our attention to the real characters, i.e., those characters 
modulo m which take on only real values. If we inspect the tables in $3 
(above), we find that except for a few cases in which m = 7 and m =5 the 
imaginary element i = d-1 is absent. We then observe that the real 
characters cari be characterized by a Kronecker symbol @/y) for some 
suitable g, not always square-free. (This accounts for the notation @/y) on 
the right-hand side of the tables.) 
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DIRICHLET’S LEMMA 

Any real character x(y) modula m cari be expressed in the form 

(1) X(Y) = WY), Y > 0, 

using Kronecker’s extension of the Jacobi symbol. The value of g Will be ~0 
or 1 (mod 4) and Will depend on the character x as well as m. 

The proof of this theorem is tedious but trot difficult. We shah illustrate 
the proof in the case 

(2) m = 2a1pZa3p3?3, a, 2 3, a2 2 1, a3 2 1, 

where p2 and p3 are distinct odd primes. The most general character 
modulo m in the notation of $3 is 

(3) xuouluzuQ(~) = e~t~lh3Uoe~tl/hl~U1e~t21h3U2e~t,/h~>”3~ 

where, of course, the ti are given by (sa, 6, c) in Chapter 1, $5, and ui and ti 
are determined modula hi, where 

(4) h, = 2, h, = ~JP>P, h, = $(pz”% h, = +(psa3> 

and 

(5) 4(m) = W&& 

First of ak xuouIupu3(~) is a real character if and only if each ui is a 
multiple of h,/2. This is fairly elementary, since we cari, for instance, 
choose Y* SO that (say) t, = 1 but the other ti = 0, (i = 0, 2, 3). Then 
x~,~~~~~,(Y*) = 4UW‘1 = exp 2 7riu,/h, = COS 2z-u,/h, + i sin 2nu,/h,. 
Naturally the imaginary term is absent only if sin 27m,/h, = 0 or u,/(&h,) 
is an integer. Likewise, u&h,) would have to be an integer. 

Second, we verify (for Y > 0) 

@a) 4to/ho) = x4(y) = (-I/Y), 

(6b) e(t,/h,)‘l’z = X2%(YF2 = (2/Y)> 

(64 e(t2/h2)h2’z = x~,.~(Y)~~‘~ = (y/p2), etc. 

This is, of course, the most important and least trivial step. Equation 6a 
follows directly from the fact that e(tO/hO) = (- l)!o and(- I/Y) = y  (mod4), 
whereas in (5c), Chapter 1, $5, 

(7) y E (-1)%X11 (mod 2”1). 

Hence Y = (- l)‘o (mod 4). Similarly e(t,/h$l” = (- 1)11 = 1 if and only 
if t, is even, or, easily, if1 and only if y  = f(25)l~‘~ = fl (mod 8). If we 

1 See Exercise 12 below, 
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recognize this as the condition that (2/y) = 1, we see (6b). TO see (6c), we 
consider the representation (sa), Chapter 1, $5, 

63) y E g,‘4 (modp2’z), (Y>PZ) = 1. 

We observe that t, is ecen if and only if (y/& = + 1, for in elementary 
number theory (Chapter 1, $8) we recall (y/pa) = 1 if and only if the 
congruence 

y E x2 (modp,“~), eAP2) = 1 

is solvable for each a2. Such values of y occur if1 and only if t, is even in 
(8), always assuming (y, p2) = 1. Now 

e(t2/h2yJ2 = (- 1)“2 = (y/p2). 

Thus, finally, any real character has the form 

(9) X(Y) = (- llY)w~(2/Y)w~(Y/P2)“~(Y/P,)w3~ 

where wi = 1 or 2. We use the notation p* = p if p E 1 (mod 4) and 
p* = -p if p = - 1 (mod 4) and find by reciprocity (y/~) = (~*/y) for 
y > 0; hence we may satisfy (9) by 

(10) X(Y) = WY), g =(-1)w-qp2*)w~ (p3*)T 

Note that when the factors 2”1, p2Q, or psWe become squares they con- 
veniently make x(y) = 0 when y is divisible by 2, p2, or p3, respectively. 
Of course, (10) is Dirichlet’s lemma for m in the convenient form (2). 

EXERCISE 11. Show that the only m for which aIl characters are real are 1, 2 
(trivial), and 3, 4, 6, 8, 12, 24. In fact, this is equivalent to the statement that aII 
hi = 2 in (2) of 03 (above). (Compare Exercise 7, Chapter 1.) 
EXERCISE 12. Justify the “if and only if” statements in the proof of (66) and 
(6~). (The “only if” is easy but not the “if.“) 
EXERCISE 13. Justify the factor 2(4-z”1’ in (10) and Write out the similar 
equation if m is odd or if 2 11 m and 22 11 m. 

1 See Exercise 12 below. 



chapter III 
Some algebraic concepts 

1. Representation by Quadratic Forms 

The basic problem is the representation of an integer m.by the quadratic 
form in the integral variables z and y 

Q(x, y) = Ax2 + Bxy + Cy2 = m. 

The problem is twofold. First of ah, we must decide if such a representa- 
tion is possible or if the Diophantine equation in two unknowns 

(1) Q(x, Y) = m 

is solvable, and then we must find out how to characterize a11 solutions, 
i.e., how to Write the general (z, y) satisfying (1). 

In this chapter we shah indicate how the problem, in principle, leads to 
the study of special algebraic systems. A satisfactory solution is not 
achieved until Chapter XII, and indeed not until we use algebraic numbers, 
in this case, quadratic surds (a + bdD)/c, that would arise if we were to 
solve the equation Q(z, y) = 0 by “completing the square.” 

Specifically, we Write 

(2) 4AQ(x, y) = (2As + BY)~ - Dy2, 

where D = B2 - 4AC is the discriminant. We assume D is not a Perfect 
square (hence A # 0), although D may have square divisors. 

In the case in which D < 0, it follows that 4AQ(z, y) 2 0 from (2); 
hence Q(x, y) is either zero or it agrees in sign with A. (In fact Q(x, y) = 0 
only when the integers x, y are both zero, as is easily verified.) For D < 0 

39 
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the form is therefore called positive (or negative) deJNtite, according to 
whether the sign of A is positive (or negative). We note that A cannot be 
zero, for then D = B2 would be a Perfect square. 

In the case in which D > 0 the form is called indejnite since the values of 
Q have no definite sign. Thus, if A # 0, values of x and y  exist that make 
AQ > 0 (e.g., y = 0, x = 1) or which make AQ < 0 (e.g., x = -B, 
y =,2A). If A = 0, it cari be seen that Q cari also be made positive or 
negative. 

The distinction between indefinite and definite forms carries over to the 
factors as the question whether V% is real or imaginary. 

EXERCISE 1. Show that if D is a perfect square the equation Q(z, y) = m has 
only a finite number of solutions and indicate how they would be formed. 

2. Use of Surds 

We excluded the simple case in which D is a Perfect square, and in the 
other case we shall introduce the symbol%6 to accomplish the factoriza- 
tion of (2) in the last section. 

We introduce N, the nom symbol for aJixed D, not a Perfect square: 
if a, b, c are integers, positive, negative, or zero (but c # 0), then we define’ 
the conjugate surds 

n-a+bJD - 
c ’ 

Ât = a - bJz 
c 

Thus A = ii’ if and only if il is rational (b = 0). We cari see (Â’)’ = Â. The 
norm is defined as 

a2 - w = c2 b2D 
= Âil’. 

Thus N(A’) = N(Â), N(a/c) = (a”/?), N(A,&) = N(&) N(A,). (The latter 
follows from the identity (Â1A2)’ = &‘A2 if A1 and 2, are two surds.) 
Although we may use several surds in a problem, they Will a11 have the same 
square-free kernel as D (or the same “reduced” radical) SO that the norm 
symbol N Will always have a clear reference. When D < 0, the norm, 
N(l) = [El2 (the usual absolute value squared). In this new symbol the 
factorization (2) of $1 (above) becomes 

(1) 4AQ@, y) = N(2Az + By + 40 y). 

We now assume A # 0 for convenience. 

1 Unless otherwise specified, Greek letters denote variables which cari become 
irrational. 
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The set of numbers 6 = 2Ax + (B + z/@y is generated by giving 
integral values to the integers 5, y. This set really leads to a set of couples 
(5, 6’) like the cartesian coordinates of analytic geometry: 

(24 
i 

6 = 2Ax + (B + %%)y, 

E’ = 2Ax + (B - %%)y. 

Then the vector V = (5, 6’) is generated by the two vectors V, = (2A, 2A) 
and Vz = (B + X6, B - X6) by use of integral coefficients 

t2b) v = xv, + yv,. 

The problem of (1) is to find a vector V = (5, 6’) of this type, for which 

(3) N(t) = 4Am. 

3. Modules 

We define a module as a set of quantities closed under addition and 
subtraction. Thus, when a module contains an element 5, it contains 
0(= 5 - l) as well as negatives -&= 0 - l) and integral multiples 
(t + 5 written 2E, 5 + l + E written 35, etc.) We shall use gothic capital 
letters %R, LX, D, etc., to denote modules. 

The various vector sets used earlier [such as ind y in Chapter 1 and (E, E’) 
of $2 above] clearly satisfy the definition of module. For the most 
important applications we generalize (2b) of the preceding section : 

We consider combinations of a finite set of vectors’ Vi, 

(1) u = xlvl + xzv, + * * - + xsvs, 

where the xi range over a11 integers. The set of these II forms a module 9JI 
and the vectors Vi, V,, * * . , V, are called a basis of the module, written 

m = [V,, v,, . . * > V,]. 

If the further condition is satisfied that no element II has two distinct 
representations of type (l), or in other words, the s-tuple (x1, . * * , x8) is 
uniquely determined by u, we cal1 the basis minimal.2 

A module 172 consisting of elements from a module ‘9X is called a sub- 
module of 9X. 

1 From now on we cari consider that vector means “element of module” without 
contradicting its previous intuitive meaning of “ordered n-tuple.” 

* Beginning with Chapter V, we shall take “basis” to mean “minimal basis” in 
reference to modules, to simplify terminology. (But compare the ideal basis defined in 
Chapter VII, $4.) 
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LEMMA 1. Any submodule ‘3 of the module !Dl = [VI is precisely [nV] 
for a properly chosen integer n. 

Proof. Assume ‘3 does not consist only of 0. The submodule consists of 
some of the integral multiples of V. We consider the smallest In1 > 0 for 
which nV lies in the submodule SI. For any element mV of 3, n 1 m. 
Otherwise by the division algorithm m/n = q + r/n where 0 < r < In/ and 
the vector 

rV = (mV) - q(nV) 

belongs to ‘3, since both nV and mV belong to ‘3. This contradicts the 
definition of n as the smallest element of its kind. Q.E.D. 

Note that we have used the symbol E both as the vector V and the 
component of V = (5, l’), depending on which is more convenient. 

4. Quadratic Integers 

It is clear in some sense that a surd with integral coefficients is a generali- 
zation of an integer. Gauss, in fact, defined as “integers” the numbers 
a + bd-l, where a, b are ordinary integers positive, negative, or zero. 
More generally, one cari see that if E = a + bd5 then Es - 2al+ 
(a2 - b2D) = 0, which corresponds to the quadratic form z2 - 2azy + 
(a2 - b2D)y2. Gauss did insist, however, that the standard form must have 
an even middle coejîcient, SO that he did not regard x2 + xy + y2 as 
“integral” but rather worked with 2x2 + 2xy + 2y2 as the basic form. 
The relevance to surds becomes apparent if we note that -- 

x2 + xy + y2 = N x + l+J-sy, 

2 1 

and Gauss in essence rejectedi (1 + Y-3)/2 as an integer because it “had 
a denominator” or it did not arise from a form x2 + Bxy + Cy2 with B 
even. Yet at a later point we shah see that the whole development of 
algebraic number theory hinges on the use of certain numbers of type 
(a + b%6)/2 as integers, as perceived by Dedekind (1871). This new type 
of integer enabled unique factorization to be extended to quadratic fields 
in a manner analogous to composition of forms (as in the introductory 
survey). 

If we proceed by generalization of rational numbers, we cari say that 
the rational number E = p/q is a root of the equation 

q5-p=O 

1 This surd was in fact treated as an integer by Eisenstein (1844), a pupil of Gauss, but 
the significance of the proper definition of algebraic integer was not then appreciated. 
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and the integer is a root of an equation with first coefficient q equal to 1. 
An equation with coefficient of term of highest degree equal to 1 is called 
a monic equation; more generally it has the form 

(14 p + up1 + * * * + a, = 0, (ai integral). 

Now it is clear that a general quadratic surd 5 = (a + bV%)/c is a root 
of the equation 

(2) ,252 - 2acE + (a2 - b2D) = 0. 

Without any regard for the middle coefficient, we now define a quadratic 
integer as a solution to any monic quadratic’ equation: 

(lb) E2 + BE + C = 0, 

where B and C are integers. Hence for B = C = 1, E = (1 f d-3)/2 
becomes an integer. 

From now on, for the sake of clarity, an ordinary integer Will often be 
called a rational integer. 

5. Hilbert’s Example 

Hilbert gave a very famous example of an associative andmultiplicatively 
closed set (called a semigroup), which fails to display unique factorization 
because of the “scarcity” of integers. Consider a11 positive integers 
congruent to 1 modulo 4: 

!ij: 1, $9, 13, 17, 21,25,29, - . . ,441, . * + . 

If we define a “prime” number as a number indecomposable into factors 
lying in 8, we find that numbers like 

5,9,13,17,21,29;..,49.-. 

are “prime” but 25 = 5 * 5, 45 = 5 * 9, * * . , and 441 = 21 .21 = 9 - 49 
are not. We observe that these last two factorizations are irreconcilable. 
The most convenient way to resolve the difficulty is to introduce new 
integers, i.e., to “discover” 3,7, 11, etc., SO that we may Write 441 = 32 * 72. 

Actually, 3 cari be “discovered” as the “greatest common divisor” of 9 
and 21. Likewise, in algebraic number theory we shall discover that 
the “greatest common divisor” cari even serve as a factor. This is a result 
which requires a greater development of modules, even leading to a 
composition theory for forms. 

1 It cari be shown that a quadratic surd which fails to be a solution to a monic 
quadratic equation cannot be the solution to a monic equation of higher degree (Gauss’s 
lemma). 
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EXERCISE 2. Consider the set 5’ of positive integers which are quadratic 
residues modulo some fixed m. Show that it has properties like those of $5. Do 
the same for the set $Y of positive integers = 1 (mod m) for m a fixed integer. 
EXERCISE 3. Generalize Hilbert’s set to caver a11 of the foregoing illustrations. 

6. Fields 

The role of algebraic integers cari be seen best by starting with the 
concept ofJield. A field is a set of quantities taken from the complex 
numbers closed under the rational operations, namely addition, sub- 
traction, multiplication, and division (excluding division by zero). In 
elementary number theory the field of rational numbers was introduced. 

It is often convenient to extend the definition to quantities consisting 
of sets of real or complex numbers. Thus another type of field, introduced 
in Chapter 1 $2, is exemplified by a11 residue classes modulop forp, a prime. 
This is a set ofp sets written 0, 1,2, * * * , (p - 1). They are clearly seen to 
be closed under the operations of addition, subtraction, and multiplication, 
whereas the existence of bla modulo p for a $ 0 takes tare of division. 
These sets form a$nite field. The residue classes modulo m are not a field 
if m is # 0 and composite. For ifm = ab, (la1 # 1, lb1 # l), then x z l/a 
(mod m) cannot exist (as 1 E ax leads to b E abx E 0, which is false.) 

In quadratic number theory the field we consider is taken to be the set of 
surds (a + bY@/c for a, b, c integral, D fixed and not a Perfect square, 
and c # 0. It cari be seen that addition, subtraction, multiplication, and 
division of such quantities lead to quantities of the same form. (This is 
done in elementary algebra.) This field cari be written symbolically as 
R(V’%), meaning that the set of.surds is generated by adjoining d% to the 
rationals. The field R(6) is called a field over the rationals. 

We cari state that our problem on “integers” is to characterize a11 ele- 
ments of the field R(%“D) which are also quadratic integers. 

The concept behind “field” is due to Riemann (1857), who noted, in 
regard to function theory, that the difficulties involved in defining w = 6 
(such as the usual difficulty in sign in the radical) are no worse for wthan 
for any rational function of z and w such as zw3 = ~~6. This is a gross 
simplification of Riemann’s contribution, but we merely emphasize the 
peculiar closeness to algebraic number theory where, say, the field R(d?) 

has the same problem. There the important choice (sign of +v?? versus 
sign of -Y?) is made only once, and this choice of sign distinguishes a11 
elements from conjugates henceforth. Riemann introduced no term, but 
Dedekind introduced “Korper” (1871) in the sense of “body” or “embodi- 
ment” of elements arising from rational operations, which for awhile 
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was rendered in Latin “corpus” by British mathematicians, whereas French 
mathematicians used the cognate “corps,” meaning body. 

The word “field” seems to have been introduced by American algebraists 
who also used “realm” in the interim. Strangely enough, now, in both 
English and Russian, l field and the cognate polye mean field in two senses, 
the algebraic sense discussed here and also the sense of vector field from 
physics. 

EXERCISE 4. Show that any field over the rationals containing (a + bdz)/c 
contains ~~ (if b # 0). 

EXERCISE 5. Show that if D, is square-free then the field generated by do0 
cari contain no other reduced radical than q&. Hint. Show first that the field 
generated by d? Will not contain 43. 

7. Basis of Quadratic Integers 

Consider next the problem of deciding when the arbitrary surd E of the 
field generated by v%, 

(1) E = (a + bl/D)/c, 

is a quadratic integer. First of a11 we extract from D its (positive or 
negative) square-free kernel D,, SO that D = m2D,. Then we cari cancel 
any factor of c which divides both a and b and make c > 0 for convenience. 
Replacing b by b/m, we Write 

E= 
Q + bJ% 

> E’ = a - bJDo 

c c 

Thus v’% and V$ generate the same field. We see that for 5 to be an 
integer the coefficients in (lb) of $4 for 5, namely, 

5 + E’ = -B and EF = C 

must be integers. Thus we must restrict a, b, c (relatively prime) SO that 

are integers. 

2a -= -B and 
a2 - b’D, = c 

C c2 

First we observe (a, c) = 1; otherwise, if for some prime p, p ) a and 
p ) c, then for C to be an integerp2 (which divides the denominator) must 

1 The agreement of English and Russian on the same stem for two uses of field is 
remarkable, since there is a separate word in almost every other laquage for the 
physicists’ vector field (Feld, champs, campo, etc.). 
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divide a2 - b2D,. From a2 - b2D, G 0 (mod p2) and a2 3 0 (modpq it 
follows that b2D, 3 0 (modP2); but since D, had no square factor p 1 b 

andthuspIa,pIb,pI c, contradicting our assumption that the fraction (1) 
was reduced. 

Thus since B is integral, if c f 1, c = 2 necessarily, and 

(4 a2 - b2D, = c2C E 0 (mod 4). 

We now consider in detail a11 possibilities concerning the parity of a and b 
if c = 2. We cari see that unless a and b are both odd then either a, b, and c 
are ah even or 4 1 D,, leading (either way) to a contradiction. Then 
a2 G b2 G 1 (mod 4) and, from congruence (2), D, s 1 (mod 4). Hence, 
easily, if D, qzk 1 (mod 4), c = 1. 

Conversely, if D, E 1 (mod 4), and if a and b are both odd, we cari take 
c = 2, since a2 - b2D, 3 0 (mod 4), making B and C integral and making 
5 = (a + bd&)/2 a quadratic integer. Likewise, trivially, if D, z 1 
(mod 4), 5 is an integer if c = 2 and both a and b are even (although the 
fraction (1) Will not be reduced). We cannot make c = 2, however, if 
a and b are of mixed parity, (i.e., one odd and one even). Thus the most 
general quadratic integer is 

(3) 

[a+b,h, a s b (mod 2) if D, E 1 (mod 4), 
E= 2 

1 a + bjDo, a11 a, b if D, $ 1 (mod 4). 

There is nothing in the discussion to exclude b = 0. Here c = 2 only if 
D, G 1 (mod 4), and a is then also even, SO that the only rational numbers 
that are quadratic integers are ordinary integers. 

Note that we have another way of stating the result in (3) if we observe 
(a + bYEo)/ = (a - b)/2 + b(l + Y&)/2. Thus we let (a - b)/2 = a’ 
b = b’ and under the condition a e b (mod 2) we cari set 

(a + bdFo)/2 = a’ + b’(1 + %‘592), 

where a’ and b’ are arbitrary rational integers. Thus we define 

i 

’ + JGifD z l(mod4), 
(4) 

0 

wo = ,/k if Do $ 1 (mod 4). 

Then in both cases a basis of quadratic integers in I?(V%) is [1, w,]. This 
module is designated by the symbol 

(5) D = [l, oo]. 
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Hence the most general integer in 

R(d?) is 5 + yV’-l, 

R(d?) is 5 + yV5, 

R(G) is x + ya, 

R(h) is x + 2/d-, 
- 

(basis = [l, v’Z]), 

(basis = [l, 2/?]), 

(basis = [l, Y=]), 

(basis = [1, &]), 

R(d-3) is x + y(1 + -)/2, (basis = [l, (1 + d-3)/2]), 

R(6) is 2 + y(1 + X32, (basis = [l, (1 + &)/2]), 

R(h) is the same as for R(&) (same basis), 

R(m) is the same as for R(Y-3) (same basis), 

R(%‘%) is the same as for R(d?) (same basis). 

The field R(dm2D,) is independent of m, and SO is Q and its basis. 

8. Integral Domainsl 

A set of quantities taken from the complex numbers which is closed 
under addition, subtraction, and multiplication (ignoring division) is 
called a ring. If a ring contains the rational integers, it is called an integrul 

domain. The quadratic integers of a fixed field R(l6J form an integral 
domain which we cal1 Do. For addition and subtraction closure is obvious, 
and for multiplication it suffices to work with the basis elements: to take 
the hard case, let D, E l(mod 4). TO establish the closure under multi- 
plication, we note in this case CO,, = (1 + ~6,,)/2 and oO = w,, + 
(D, - 1)/4. Thus (a + bw,,)(a’ + b’o+,) = L~U’ + (ab’ + a’&~,, + bb’oe2 
= (ua’ + bb’(D, - 1)/4) + (ub’ + u’t, + bb’)w,, clearly a member of the 
module [l, oO] = D. 

The closure of D makes it possible for us to discuss congruences within 
Q i.e., Ei z t2 (mod 7) if (5i - L$~)/T is in D. The congruences then are 
clearly additive and multiplicative as in rational number theory. Thus, 
iff(Q is a polynomial, with quadratic integers (elements of E)) as coeffi- 
cients, 5i s E2 (mod 11) implies f(Ei) =f(12) (mod r). The properties 
extend to a11 rings. 

Note that d3 E 1 (mod 2) and that %‘? + 1 (mod 2) on the basis of 
the fact that (a - 1)/2 is an integer but (d3 - 1)/2 is not an integer in 
each respective field. 

1 The definitions of ring and integrul domain are restricted to the context of subsets of 
the complex numbers. Definitions of integral domain vary widely in the literature, but 
we follow the spirit of the original efforts to generalize rational integers. 
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THEOREM 1. If the integral domain D of all quadratic integers of R(d@ 

contains an integral domain D* which does not consist wholly of rationals, 

then DO* is characterized by some fixed positive rational integer n as the set 

of integers of D which are congruent to a (variable) rational integer 

modulo n. 

Proof. Clearly the aggregate of quadratic integers D, which are in D and 
congruent to a rational integer modulo n, is closed under addition, 
subtraction, and multiplication by means of the ring property of rational 
integers. 

The converse is less immediate. Consider the terms z + yw, of the 
arbitrary integral domain DO*. TO avoid a triviality (the case in which no 
irrationals occur), we note y # 0 for some terms. For every element 
z + yw, which occurs in D*, yo, must occur in D*, since D* contains a11 
integers z. We consider the smallest such ]y] ; call it IZ. Then, for n*, a11 
terms yw, (in z + yo,,) must be multiples of nw, by the lemma 1 in $3 
(above). Hence the general term of D* is E = z + ync~, for 2 and y 
arbitrary; 5 E z(mod n) for a11 6 in D*, and, conversely, all such 6 have 
the form z + ynw,. Q.E.D. 

The integral domain D* corresponding to n is written Do,. Thus Dr = D. 
- 

EXERCISE 6. In the field R( v’ - 1) show that the residue classes of integers of - 
L),, z + y% -1, taken modulo 3, form a finite field (see 36 above) of nine 
elements. Show that the residue classes modulo 5 do not form a field. Hinf. 
5 = 22 + 12. 

EXERCISE 7. Write down the five residue classes of integers z + yd-1 of 0, - 
in R(d -1) modulo 2 + 43. Show that they form a field by showing a 
residue class containing each of the integers 0, 1, 2, 3, 4. 

9. Basis of D, 

The integers in Do, were seen to have the form z + yno,. This observa- 
tion leads to several cases, depending on the residues of D, and of D,n2 = 
D. We dehne 

(la> 
1+JD oJ=-= 

2 
‘+nJDu ifD =D=l(mod4), 

2 ’ O 
(n oddh 

(note w = nw, - (n - 1)/2); 

(10) J D w=-= nJD, 
2 

- , if D = 0, Do = 1 (mod 4), 
2 

(n even), 

(note w = nw, - n/2); and 

(2) w = v’% = rd&,, if Do $ 1 (mod 4), (any n). 
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In any case, f), = [l, o] = [l, nw,,]. The details are left to the reader. 
Note, again, that 0, in R(\im2DO) is the same as C, in R(%‘??J. 

The designation of the letter n for the integral domain has some histori- 
cal importance going back to Gauss’s work on quadratic forms. Gauss 
(1800) noted that for certain quadratic forms ,4x2 + Bxy + Cy2 the 
discriminant need not be square-free, although A, B, and C are relatively 
prime. For example, x2 - 45~~ has D = 4 .45. The 4 was ignored for the 
reason that 4 1 D necessarily by virtue of Gauss’s requirement that B be 
even, but the factor of 32 in D caused Gauss to refer to the form as one 
of “order 3.” Eventually, the forms corresponding to a value of D were 
called an “order” (Ordnung). Dedekind retained this word for what is here 
called an “integral domain.” 

The term “ring” is a contraction of “Zahlring” introduced by Hilbert 
(1892) to denote (in our present context) the ring generated by the rational 
integers and a quadratic integer 7 defined by 

?q + By + c = 0. 

It would seem that the module [l, 771 is called a Zuh/ring because q2 equals 
-BT - C “circling directly back” to an element of [1, 71. This word has 
been maintained today. Incidentally, every Zahlring is an integral domain 
and the converse is true for quadraticjields. 

EXERCISE 8. Show that the set of integers 11 in 0, for which $’ = 7 (modp), 
(p prime) forms an integral domain directly from the definition. 
EXERCISE 9. Specify this integral domain for different cases of D, (mod 4) 
[noting that (O,,/p) 3 Dpv1)j2 (modp) according to Euler’s lemma]. 
EXERCISE 10. Give an example of a ring contained in Q and not forming an 
integral domain. Can Theorem 1 (above) be generalized? 

**lO. Fields of Arbitrary Degree 

The present course is devoted almost exclusively to quadratic fields, in 
which the basic ingredients of algebraic number theory are amply evident. 
Yet we should take a quick glance at fields generated by (say) the irreducible 
equation of arbitrary degree 

(1) aoxn + u1x-l + * * . + a, = 0, 

if only to see what lies beyond this course. This section, therefore, is 
wholly descriptive and the major results are unproved; they are of course, 
unnecessary for the later text. 

For simplicity, start with the irreducible cubic equation 

(2) a,ti + u1x2 + a2x + a3 = 0, 
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where a,, ui, a2, a3 are integers. This equation has three roots, which we 
cal1 0i, 8,, 8, There are several possible fields we could consider; for 
example, R(oi), the field formed by performing rational operations of 8,, 
with rational coefficients. 

The field R(oi) consists entirely of elements of the form 

(3) 51 = rl + r2e1 + r3e,2, 

where ri, r2 and r3 are rational. This is not obvious (see Exercise 14). 
Furthermore, the field R(oi) may or may not contain f& (see Exercises 15, 
16, and 20). This is an alternative we tend to overlook in the quadratic 
case in which both roots of a quadratic must, of course, generate the same 
field, since they “share” the use of do. At any rate, if R(B,) does not 
contain e2, a new field which cari be called R(oi, 0,) is formed by rational 
operations on both e1 and &. Then R(oi, 6,) is lurger than R(8,) (in the 
sense that R(oi, 0,) has a11 elements of R(B,) and more elements in addi- 
tion). Otherwise R(0,, 0,) is merely R(8,). 

Generally, we cari speak of f3 and 4 (instead of 8, and 0,) as any two 
algebraic numbers with no specific relation between them, e.g., 8 might 
satisfy (l), whereas 4 satisfies an equation of degree m. Then there exists 
a number y of degree no greater than nm such that R(v) = R($, 0) (see 
Exercise 17). If the degree of y is actually nm, we say one of two things: 
either R(y) is a field of degree m relative to R(0) or R(y) is a field of degree n 
relative to R(4). The fact that there are two such characterizations is 
extremely important’ later on. 

Here we mention another point, also easily taken for granted in the 
quadratic case, where any surd (a + b2/@/c generates the same field as 
%%, as long as b # 0. We must think, in general, of a field as an aggre- 
gate of elements, independently of generators, since in the cubic case there 
may be no special number like ~‘5 which would seem to be the “logical” 
generator. In fact, in the preceding paragraph it may sometimes be more 
convenient to think of R(y) as R(& 6) or to think of two simultaneous 
generators instead of one, altogether. 

Returning to the cubic field R(OI), every element E1 satisfies a cubic 
equation of type (2), whose coefficients may be quite difficult to calculate 
(see Exercise 12). If the equation has a, = 1 or is monic, and a11 other 
coefficients are integral, then t1 is called an algebraic integer, as in the 
quadratic case. We should like to be able to think of our field as an 
abstract collection of numbers having many possible generators; yet if 8, 
were chosen correctly formula (3) might include a11 algebraic integers in 

1 See the Concluding Survey. 
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the field if we restrict ri, r2, r3 to a11 rational integers. This cannot always be 
done. The best we cari do is to say that for Lr, an integer, the fractions 
rl, r2, and r, are integers or at worst have a denominator that must divide 
some constant integer Q. 

This result need not be wholly mysterious. For instance, we Write (3) for 
a11 three conjugates assuming that ti, 12, 6s and Oi, 8e, O3 are algebraic 
integers. We also note the determinant: 

El = rl + r201 + r3e1 i el 8, 
(4) E2 = rI + r,8, + r2r322 A = 1 0, Oe2 . 

l3 = rl + r2e3 + r,e, 1 8, e,2 

If we eliminate r2 and r,, for instance, we find an expansion 

(5) rl = tf1(e2e32 - e,e,2) + t,(e,v - e,e,2) + t3(e1e22 - e,wip. 

Now A cari be expanded incidentally as 

(6) A = (0, - e,)(e, - e3xe3 - w. 

There are similar expressions of r2 and r3, always with denominator A. 
We then use several results that are not proved here: 

(a) The so-called discriminant of Oi, A2 = D, is a rational integer 
(see Exercise 21). 

(b) The algebraic integers form an integral domain. 
(c) A rational fraction cannot be an algebraic integer unless it is a 

rational integer. 

Thus each ri cari now be written in the form yi/A = &ID, where 
& (= AyJ and yi are algebraic integers. Hence Dri = & is an ordinary 
(rational) integer zi and ri = zJD, which has the desired form, since Q = 
D, for example, serves as denominator. The numerators zi are, of course, 
not arbitrary, any more than in the quadratic case [see (3) in $7 (above)]. 

It might suffice to say that the integral domain has a basis of n algebraic 
integers (which cari be selected generally with much more difficulty than 
in the quadratic case). We have no occasion to do this here for n > 2. 

The following exercises might clarify some of the difficulties to which we 
allude. 

EXERCISE 11. Show that a11 powers of 6$ are type (3) by induction. Assume 
6$” = rf) + r~$ + r&‘@,2 and multiply both sides by 01, using (2). 
EXERCISE 12. Show that El satisfies a cubic equation by showing 1, Ft, t12, Cl3 
to be numbers of type (3) and by subsequent elimination of the powers of OI, 
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EXERCISE 13. Show that if Ei = r1 + rzOi + r30i2 expresses the three con- 
jugates (i = 1, 2, 3), for El of type (3), then show that E&a has an expansion of 
type (3). Hinf. 

E2E3 = (rl + r$, + r3fh2)(r1 + rz% + r&G2), 

and note that from the root properties of (2) 

9, + 03 = -q/ao - 81; B,B, = -u,/u,e,; 
0,2 + 832 = (0, + 0,)2 - 20,ea; 1/8, = -(n,8,2 + a,& + Us)/a,; 

82283 + 8,20, = (022 + e32)(82 + e,) - (e, + 8J3 + 38,8& + 03). 

EXERCISE 14. Show that a11 elements in R(0,) are type (3). (Note carefully if 
you are dividing by zero at any time!) 

EXERCISE 15. Consider the pure cubic equation 

z3 = ub2, (a 2 1, b 2 1, ub > l), 

where (a, b) = 1 and a and b have no square divisors. Show that R(ub2)‘k does - 
not contain R(p(ub2)‘A) where p = (- 1 + 2/ -3)/2, an imaginary cube root of 
unity. 

EXERCISE 16. Show R(p(ub2)“) does not contain p2(ub2)x. 

EXERCISE 17. Show that if y  = p + (ab2)!J then R(y) contains p and (ab’)% 
Also Write the rational equation defining y. 

Hint. Solve for p by combining (y - P)~ = ab2 with p2 = -p - 1 in the 
expression for p. (Do not “rationalize” the denominator.) The conjugates of y  
are, incidentally, p + (ab2)x, p + p(ab2)!$ p + p2(ub2)% p2 + (ab2)Y p2 + 
,o(ub2)‘k p2 + p2(ab2)‘% 

EXERC%E 18. Show that the field generated by & + db = L contains dab 
and 4; and 4% Show that E satisfies an equation of fourth degree. 

EXERCISE 19. Show that the (cyclotomic) equation 

(A’ - I)/(n - 1) = Aa + A5 + 14 + R + Aa + L + 1 = 0 

has as its six roots ik = exp 2nik/7 (= COS 2xk/7 + i sin 2ak/7), 1 5 k 5 6. 

EXERCISE 20. Show that ,ut = A” + l/Ak = 2 COS 2nk/7 satisfies the equation 

p3 + ,/A2 - 2/l - 1 = 0. 

From this show that the three roots satisfy 

P2 = ru,2 - 2, fi3 = P22 - 2, ,ul = /.L? - 2. 

(Thus R(PJ = Rb2) = R(~31.) 

EXERCISE 21. Multiply the determinant A by its transpose (rows and columns 
interchanged) and verify that for rational Si 

si = $y. 
t=1 
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EXERCISE 22 (Dedekind). Show that the number 

El = [l + bu + a(aPyq3 

53 

is an algebraic integer in R(ab2)td if a2 = b2 (mod 9). Hint. Show that the 
numbers 

E2 = [l + b(a26)‘q3 + a(ab2)~p2]/3 

E3 = [l + b(a%)‘~p2 + u(u%)~p]/3 

are conjugates or that (z - 5&z - E,)(z - EJ has rational integral coefficients. 



chapter IV 
Basis theorems 

1. Introduction of n Dimensions 

The main result of Chapter III, after the introduction of new terms, was 
a very simple one, namely the expressibility of a certain module D, by 
means of a basis [l, wO] and similarly for DC),, the integral domains associ- 
ated with D, (in $7 and 99 of Chapter III). 

Two questions are natural: 
1s the situation as simple for the basis for an arbitrary module? 1s there 

an easy relationship connecting’different bases that cari be used for an 
arbitrary module? 

The answers are “generally” affirmative and lead to an interesting 
theory. For simplicity it is actually equally convenient to act in somewhat 
greater generality (taking more than two dimensions). The degree of gener- 
ality achieved Will also be useful in Chapter V when we make further 
applications. 

2. Dirichlet’s Boxing-in Principle 

The general techniques for constructing a basis, however intimately 
connected with algebraic number theory, were not fully appreciated until 
very late (about 1896) when Minkowski, in his famous work Gvometry of 

Numbers, showed in detail that considerable significance cari be attached 
to the seemingly simple procedure of visualizing a module coordinatewise. 
Although the usefulness of Minkowski’s techniques is not appreciated fully 
when restricted to the quadratic case, these techniques have a starkness and 

54 
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an appeal to fundamentals, which command recognition in their own right, 
as they bring out the importance of geometry as a tool of number theory. 

A well-known earlier example of geometrical intuition is the following: 

DIRICHLET’S BOXING-IN PRINCIPLE (1834) 

Jfwe have g + 1 abjects distributed among g boxes so that each box may 
have any number of these abjects (or none ut aIl), then ut least one box Will 
contain two abjects. 

The principle is obvious. TO apply it, let us consider the following 
version: if we have more than M” points in an n-dimensional unit cube, 
where M is a positive integer, then two points exist each of whose n 
projections (coordinates) differ respectively by no more than l/M. 

(Of course, a one-dimensional “cube” is a line segment, a two- dimen- 
sional “cube” is a square, etc.) For proof we simply divide each side into 
M parts yielding a total of Mn cubes. Then, if more than M” points are 
present, two must lie in one cube. 

3. Lattices 

For an arbitrary module YJI a basis was defined (Chapter III, $3) as a 
finite set of elements of YJI (or vectors) ui, ua, * * * , II, for which the com- 
binations denoted by 

(1) u = XlUl + X$l2 + * * * + x,u,, 

for integral n-tuples (xi, x2, * * * , XJ account for a11 elements of !JJL We 
also express (1) by saying u lies in the space spanned by ul, u2, 9 + . , II, 
(implying integral coefficients xi). 

An arbitrary module need not have a basis. For example, the set of a11 
rational numbers (positive, negative, and zero) has no basis. [For, if 
ul,‘;‘, u, corresponded to fractions pl/ql, . . . , pn/qn, then we could not 
obtain a11 fractions in (1) since the denominators are limited, as the reader 
cari easily see.] Thus the elements of a module cannot be expected to be 
“too close” if the module has a basis. The matter of “not being too close” 
is expressed by means of two’ terms : jïnite dimensionality and discreteness. 
This requires a series of definitions. 

We first introduce linear independence: a finite set of vectors in YJI 
VI> v2, * * * > v, is linearly dependent over the integers if rational integers 

0 a2’ 

. . . , a,, not a11 zero, exist for which 

alvl + Q2v2 + * * ' + Q,V, = 0; 

1 The “discreteness” implies separation in the usual sense, whereas “finite dimen- 
sionality” implies “noncrowding at CO.” 
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otherwise they are called Iinearly independent. The dirnensionality of a 
vector space is then defined as the maximum number of linearly indepen- 
dent vectors. 

A nom is a function of the vector v  denoted by ~~VII with the properties 
(reminiscent of distance from the origin): 

(24 jlavlj = [a/ * IlvIl for a rational’, (linearity), 

W) lb1 -t VZII 5 IIVlll + IIVZII~ (triangular inequality), 

Gw 0 < \\Y(( with equality only for v  = 0, (definiteness). 

A discrete module is one in which a norm exists such that 

(24 /~VII 2 k when v  # 0 

for k, a fixed, positive constant. There may be several norms satisfying 
this property (but a11 norms need not do SO). 

A lattice2 is finally defined as a discrete, finite dimensional module. We 
shall use gothic symbols J.Z,!T,J& !II, XI to denote lattices as well as modules, 

We cari easily check that the module of a11 integers 5 in D has both 
properties and is therefore a lattice. We see that the dimensionality is two, 
since for every 6 = 5 + yw, the three quantities [, 1, w,, are linearly 
dependent (i.e., 1 * & - z. 1 - y  * 01~ = 0), whereas 1 and w0 are linearly 

independent by the irrationality of fi. The discreteness follows from 
(many) choices of ~~5~~, including 

II511 = [ 
lE12 + lEfI % 

2 ] 

Here the properties (2a, b, c) are not wholly trivial. Property (2a) is easy; 
property (2b) is left to $4 below. TO show property (2d), note that since 
(I[l - 1[‘1)2 2 0, on expanding, we find 

I[l2 + 1L4y2 2 2 IEE’I = 2 lN@I. 

Thus, unless 6 = 0, from the fact that IN(l)1 2 1 it follows that for each 
5, IIE/[ 2 1. Furthermore, /I[l/ = II<‘11 and IlaIl = ]a[, with rational a. 

1 As a matter of convenience, we define fractional combinations of vectors by saying 
w1 = p/qw% means qwl = pwz. The fact that this use of fractions is consistent is similar 
to the fact that the use of fractions in ordinary or modular arithmetic is consistent (sec 
Chapter 1, $1). Thus (2~) gives an extension of the norm symbol when a is rational. 

* The geometrical idea of Patrice was used by Gauss (1800) and is cdlkd Cher 
(German), treillis (French), reshemk (Russian). An independent concept in algebra 
was introduced by Dedekind (1894) under the name Dualgruppe, more recently Verband 
(German). The English word lattice was unfortunately also used by algebraists for the 
other concept (adding to the confusion because Dedekind had been motivated by 
module theory !). In Russian the word struktur is widely used but not in French or 
English. 
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A submodule of a lattice is clearly a lattice, since the properties a11 carry 
over. It is called a sublattice. Thus any quadratic module is a lattice of 
dimension 2 or less and a sublattice of D. 

4. Graphie Representation 

Tn illllctr2t.n the irl.nlr nnte thcat tho lcattiom CI nf ;ntennto ;n ca n~vnrlrot;o 1 v . . . ..“CI~.~ .-Iv ‘Yru”, 1IV.1 CL...& CII” IUCLIW” -1 “1 ““‘b”” ‘11 u y”u”‘u~‘” 

field cari be represented in the real and imaginary cases by a suitable 
choice of coordinates. We cari represent 5 by (5, p) in a real field (Figure 
4.1) and by (Re 6, Im 5) in a complex field (Figure 4.2). 

5’ 

FIGURE 4.1. Representation of (I + bw, in the plane: D, = 5, 1 becomes (1, l), o,, 

becomes [(l + &)/2, (1 - d5)/2]. 

We cari easily verify in both the real and the imaginary quadratic cases 
that I[Ell = [(Ill2 + ]E’12)/2]N is the distance from the point representing E 
to the origin divided by a constant factor to ensure that E = E’ = 1 Will be 
at unit distance. Thus property (2b) of $3 for the norm (3) of $3 is a 
consequence of this general result (expressed in n dimensions): 

The triangular inequality. If ([i, * * * , 5,) (ri, . * * , qn) are real n-tuples, 

(1) 
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Im f 

FIGURE 4.2. Representation of a + bo, in the plane: D, = -2, 1 becomes (1, 0), 
d-2 becomes (0, 6). 

TO prove’ this inequality, we might square both sides to obtain 

;rEi2 + 2(~‘$4(C17$4 + z:77: 22:t; + 2Z:E& + L:%? 

On canceling squares, we obtain 

2(2 5i2)TC %y 2 22 hi. 

This is a consequence of the so-called Cauchy-Schwarz inequality, 

(2) (2 m(z vi3 2 (2 hJ2. 

The last result cornes from the identity of Lagrange, 

(3) (2 &Y(2 %Y = (2 Eip7J2 +*&Gh - tjrJ2. 

Thus working backward from (3) we prove (1). (We are interested currently 
in n = 2, although the arbitrary n is required later on.) Q.E.D. 

Thus the integral n-tuples x = (z,, * * . , ~3 form a lattice !&, with norm 
IIXII = (Xl2 + ‘. * + xn2)%. Note for x # 0, IIxII 2 1. 

EXERCISE 1. Sketch the lattices for D1 in the cases D, = -5 and D, = 2. 

EXERCISE 2. Write out identity (3) for n = 2 and n = 3 and state when the 
equality cari prevail in (2) and (1). 

5. Theorem on Existence of Basis 

THEOREM I. Every lattice has a minimal basis. 

We begin with some incidental remarks. First of ah, the converse of the 
main theorem is a simple matter. 

1 Al1 summations henceforth are from 1 to n on the indices. 
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THEOREM 2. A module with a basis (minimal or not) constitutes a 

lattice. 

Proof. We consider the element u of ‘9JI represented by the basis as 
u = XlUl + * * . + x,u, as in (1) of $3 (above). In general, many repre- 
sentations are possible, but we define 

(1) IIUII = (x12 + * * * + x2)% 

for the representation which yields the smallest possible value. TO use 
the triangular inequality, note that if another v is represented by v = 
YlU, + * * * + ynun for purposes of norm the vector u + v would have the 
representation (x1 + y&~, + * * f + (xn + Y,&, among others (possibly). 
Thus 

/lu + VII c [2@i + YJ21” g (~“3~ + (zYi2)x = IIUII + IlvIl, 
and the rest of the norm properties are verified quickly. The finite 
dimensionality is a form of Cramer’s rule for systems of linear equations. 
Any n + 1 vectors of !M must have a linear relation with integral coeffi- 
cients not a11 zero. (See Exercise 3 below.) Q.E.D. 

As a major consequence of Theorem 1, using the minimal basis, we cari 
replace the element of ‘9J& u = xlul + * * * + X%II,, by the vector of lattice 
B,, x = (Xl, 22, * * * , z,), whose components xi are rational integers. The 
addition and subtraction of two vectors in ‘9+X by uniqueness, becomes an 
operation on the vectors in 2,. Thus, it follows that every lattice is 
equivalenti to a lattice Qii, of integral n-tuples. 

TO get right to the main result, Theorem 1, the central difficulty of the 
proof is that a lattice cari be of dimension n, yet might not clearly have a 
basis of n elements. For example, the quadratic module 

(2) ‘iJJl = [35&, 8 - 28d,6 - 21d3] 

is generated by a set of 3 elements. It actually has a nonobvious, two- 
element basis, as we shah see as an exercise: 

(3) !JJl = [lO, 8 + 7Y3]. 

With this in mind, we proceed with the proof: let our lattice 2 of 
dimension n have n linearly independent vectors wr, we, * . * , w, (which 
still are not necessarily a basis). Any other vector w of the lattice 2 need 
not be a linear integrul combination of these wi, yet w satisfies a relation by 
virtue of linear dependence, 

(4d gw = g,w, + g,w, + * * * + g7Lwm 

1 Yet in algebraic number theory the seemingly difficult norm (3) of 53 (above) cari 
still be more useful than the simpler norm (1) for later purposes. (See Chapter VIII.) 
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where g, g,, g,, * - * , g, are integers (which vary with w). By changing 
signs, if necessary we cari make g > 0. Such a representation is also 
unique to within constant factors, for, if 

(4b) g’w = g,‘w, + . * * + g,‘wn, 

we could obtain two representations of gg’w in integral coefficients from 
(4~) and (4b) by using a multiplier of g’ and g on (4~) and (4b). By linear 
independence, the w, must have the same coefficients each way, and 
g’g, = ai’ or sJg = gi’lg’. 

We cari show now that as w ranges ocer 2, g has only ajînite number of 
(integral) values. We are assuming, of course, that common divisors of 
g>g1>***> g, have been canceled out of (4a). 

TO determine this result, let us assume g takes on an infinite number of 
different values. We cari first of a11 restrict values of gi such that 0 I gi < 
g. Otherwise, we cari use the division algorithm to Write in each case 
gi = q,g + gj’, where 0 I g,’ < g, Then. if we Write 

w* = w  - &&wi, 
i=1 

we find for our new vector w* 

(5) gw* =t~lgirwi7 0 I g,’ < g. 

The fractional coefficients for w*, withg the least common denominator, 

(g1’k gz’lg7 . * * > gn’k) 

are points of a unit n-dimensional cube. Let m be some integer. If there 
are more than mn such points, by the Dirichlet boxing-in principle, these are 
distinct points w*, wt of a cube, each of whose fractional coordinates is 
closer than I/m. Thus, writing the difference, we see 

(6~) w* - wt = rlwl + r2w2 + . * . + r,w,, IrJ < l/m, 

and by the triangular inequality, extended to n summands, 

IIW* 

(6b) IIw* - wtll -ii Ir,l Ilwill ci IlwJm. 
i=l 2=1 

But since m cari be arbitrarily large, we shah have a vector w* - wt = 
w,, # 0, whose norm cari be made arbitrarily small, causingacontradiction. 

Q.E.D. 
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Hence we cari Write an arbitrary w in f? in the form 

(7) gw =iilgi% 

and, using the value G = max g with G! = H, we cari Write for any w in 2 

(8) Hw = i Giwi 
*=1 

(If fixed), Gi = giHlg, 

although none of the fractions G,/H need be reduced. 
As a jrst step, in our lattice 2 of dimension n, for an-y set of n linearly 

independent vectors (w,, - . . , w,), an arbitrary vector of 8, namely w, is 
expressible by (4) with ajxed value of g, namely H. 

We next define a set of sublattices 2(l), 2@), * * . , 2(“), as follows: 5-Y) 
is the set of vectors v off? which are linearly dependent on w,; let 2@) be 
the set of vectors v of 2 which are linearly dependent on wr and w2. 
Clearly, C(2) contains 2.(l). More generally, let 2tk) be the set of vectors v 
of f! which are linearly dependent on wr, * * . , w,, or those v satisfying 

(94 Hv = zlwl + z2w2 + . - * + zrcwk, (xi integers). 

l Of course, xlc (in fact afl zi) could vanish. Ultimately, !Zn) = 2. 
We now define vk as some vector v of form (9a) in 2@) for which xk takes 

on the minimum positive value (say) g, for any k. 
We assert that [v,, v2, * * * , v,] constitutes a minimal basis of 2. This 

involves showing that any v belonging to 2 cari be represented uniquely as 

(10) v = YlV, + y2v2 + . . * + ynvn, 

where the yi are integers. We leave uniqueness as an exercise and prove the 
representability as follows: 

LEMMA 1. For all v in W) represented by (94, the values of xk are all 

multiples of g,, the minimum positive value of xk. 

Proof. TO see this, we note that the values of xk determined by (9a) are a 
module by the module property of 2 tk). The xk are not all zero; e.g., with 
v = wk, (9a) becomes 

(9b) Hw, = 0 + 0 + * * * + Hwk, 

and we see xlc = H. Thus by Lemma 1 in Chapter III, $3, the integers X~ 
are multiples of their minimum positive value g, (which incidentally 
divides H). Q.E.D. 

We prove the main result by induction. First, let k = 1. We then 
consider a11 v for which Hv is of the form zlwl. Here the xi are the multiples 
of a minimal gi, whence Hv, = g,w,. Then for the variable v of 2(r), 
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v = (~i/gi)v~, in accordance with (lO), (with n = 1). We next assume the 
representation to be valid if v lies in L?+l) and we extend it to v in Q(k) 
given by (9~). Here, too, the X~ are the multiples of some gk for which 
Hv, = - . . + g,w,. Thus, if v satisfies (9a), Y - (~~/gJv~ lies in f!ck-l), 
and step by step an expansion of Y of type (10) is obtained (with >z = k). 

Q.E.D. 

As an illustration, we consider the module, !TU, of a11 pairs (5, y) of 
integers of the same parity, both odd or both even, i.e., z = y (mod 2). It 
is easily seen that wi = (2,O) and w2 = (0,2) are linearly independent but 
no integral combinati?n Will yield (1, l), which is also in ‘!JJL We note, 
however, H = 2, i.e., for any (x, y) in ‘!J& 

2(? Y) = x(2,0> + y@, 2) = XWl + yw,. 

The minimal basis consists first of (2,O) = vi, which is the shortest vector 
parallel to wi. TO find v2, we ask for the smallest 1~1 # 0 for which 2(x, y) 
lies in !JJL This is given by (2, y) = (1, 1) = v2. Hence m = [v,, vZ]. We 
could also take for v2 any (2, 1) at all (for odd x). A systematic con- 
struction method (for n = 2) is deferred to $9 (below). 

EXERCISE 3. Complete Theorem 2 (for n = 2) by show@ that for any three 
vectors of m 

I 

u = Ullll + C?$l~ 
v = b,u, + bzuz a,, bi, ci = integers 
w = Cl& + cg2 

there exists a linear relation Au + Bv + Cw = 0 with integral coefficients not a11 
zero. (Allo~ for some or all of the ai, b,, ci to be zero.) 
EXERCISE 4. Verify by inspection that every element shown in (2) is generated 
by some integral combination of elements in (3) nnd conoersely. (Hint. 30 = 

5(6 - 21 6) + 3(35v’3); 40 = 5(8 - 28d3) + 4(3545), etc.) 
EXERCISE 5~. Show that the inequality (6~) cari be proved without using 

fractional coefficients: use Gwt = i Gi’wi, 0 I Ci’ < G; and Write out 
gGw* - gGwt. i=l 
EXERCISE 56. Show that the representation (10) is unique or that if v  = 0 a11 
yi = 0. [Hint. For some representation of v  = 0 by (10) let k be the largest 
integer for which yk # 0 and work back to the representation of Hv = 0 by (9a).] 
EXERCISE 6~. Find the minimal basis of the module generated by the (redun- 
dant) integral vectors in each of the following two examples by inspection: 

(il w1 = (1,0, Oh w2 = (0, 3, Oh w3 = (0, 1, l), WP = (0, 0,3), 
(ii) w1 = (1, 0, 0, 0), w2 =(0,2,~,0), w3 = a 0,0,4), w4=(0,0,1,2), 

W6 = (0, 1, 0, 11, W8 = a (42, Oh w, = (0,4,0, 0). 

Here a minimal basis cari oe selected from among the generating elements 
listed, which is not always the case. Proceeding more generally with (ii), note 
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wr, wa, wa, w4 are four linearly independent vectors; hence we may Write an 
arbitrary w in the module as 

w = X,Wl + + x,w,, (.zi integral), 

= YlW, + . + ?/*w4> (yi not necessarily integral). 

On expanding we find relations between zi and yi reducing to 

y2 = x2 + x5/2 + 2x, 

y3 = 23 + “5/2 - xg + x, 

y4.=x4 -x5/2 +2x, -2x, 

Then L! tl) is defined by yz = y3 = y4 = 0, and a minimal y1 = 1 occurs when 
zr = 1, other xi = 0, hence vi = w,; Q t2) is defined by y3 = y4 = 0 (whence x5 is 
even), and a minimal y2 = 1 occurs when za = 1, other xi = 0, hence va = w,; 
L! @) is defined by y4 = 0 (whence again x5 is even), and.a minimal ya = 1 occurs 
when x3 = 1, other zi = 0, hence va = wa; f? t4) is defined with no restriction on 
yi, and a minimal y, = $( = -y3 = -ya) occurs when z5 = - 1, other xi = 0, 
hence v4 = (-wa - wa + w4)/2. The vr, . , v4 are another basis, expressed in 
terms of the independent set wr, . , w4. 
EXERCISE 66. Show, by the above method, that a basis for the module 
generated by wi = (6, 8), w2 = (8,6), w3 = (4,4) is wl, (wr + w,)/7. 
EXERCISE 6c. Do likewise when wi = (a, b), w2 = (b, a), wa = (c, c). 

6. Other Interpretations of the Basis Construction 

We preserve the usual notation with L!, a given lattice of dimension n. 
It is convenient at times to use fractional notation; thus (8) of $5 (above) 
cari be written as 

(1) w = i (g,/H)w,. 
*=1 

There are several equivalent forms of our basis construction 

THEOREM 3. A set of vectors ul, u2, * - . , u, constitutes a minimal basis 

of a given lattice 2 of dimension n if and only if the relation 

w = $ (xJG)q 
i=l 

for w in 2, implies each one of the fractions xk/G is reducible to an integer. 

Proof. Assume relation (2) to hold for some w with an xr/G irreducible 
andG> 1. Ifu,;.., II, were a minimal basis, then we could Write 

w = i yiu*, (yi integral), 
i=1 
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with some y, # X~/C. We have two representations, from (2) and (3), for 
Gw, contradicting the minimal basis property. 

Conversely assume ul, f . . , u, is not a minimal basis by failure of linear 
independence. Then, if the set of ui is linearly dependent for some integers 
a, not a11 zero and 

(4) 0 = &c, 

then trivially the vector w = 0 cari be written 

(5) w = 2 (a,/G)u, 
i=1 

for any integer G at a11 (not zero) ! 
If the set ui is linearly independent, but is n6t a minimal basis, by the 

method of proof of Theorem 1, for some fixed integer G, a11 w of X! cari be 
written in the form (2). But if a11 xJG are integers, the set of ui constitute 
a basis which must be minimal by uniqueness of coefficients (linear 
independence). Q.E.D. 

We finally achieve a geometric construction if we return to the termin- 
ology of $5 where wl, . * . , w, represents a set of iz independent vectors 
and f?(“) represents the sublattice of vectors of 5?. linearly dependent on 
WI, * - * ) Wk. An arbitrary vector of Pk) accordingly is 

(6) v = i (xJH)w, 
i=1 

with rational (not necessarily integral) components xJH along wi. 

THEOREM 4. A minimal basis cari be constructed by induction as follows: 

a minimal basis of Q(1) is a vector v1 linearly dependent on w1 and witt. 

minimum positive component along wl. Generally, a minimal basis of PJ 

consists of the. minimal basis of !2tk-l) together with a vector vk of minimum 

positive component along wk. Finally Qc”) = 2. 

Conversely, ifthe minimal basis of f?tk) is formed by adjoining a vector vk 

to the basis of p+l), then vk must have minimal component along wk. 

The proof of the converse is all that is really required. It follows from 
the fact that if the component of v* along wk is nonminimal, then the 
component is a multiple, S, of the minimum by the Lemma 1, $5. Then 
v* = svk belongs to f?fkP1) and 

(7) v* = svk + (alvl + * ’ . + a,-Iv,-l), 1.71 > 1. 

Then vk is expressible in terms of vl, . . . , v,-,, v*, etc., in terms of a 
relationship of type (2) with an irreducible denominator S. Q.E.D. 
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GEOMETRICAL CONSTRUCTION 

A minimal basis of !@ consists of a vector [vJ collinear with w1 and 

containing no point off? except the two extremities of vl. If a minimal 

basis of Qt2) is desired in the form [vl, v2], then the parallelogram deter- 

mined by v1 and v2 must contain no point of 2 internally or on its boundary 

except the four vertices of the parallelogram. If a minimal basis of 5,Y3) is 

desired in the form [vl, v2, v3], then the parallelepiped determined by vl, 

v,, and v, must contain no point off? internally or on its boundary except 

the eight vertices of the parallelepiped, etc. 

FIGURE 4.3. v1 and va are a basis of Y2; w1 and w2 are not a basis of 9, (sec A); 
q, and q2 are not a basis of 9, (see B). 

Note that the line is of minimum length, whereas the parallelogram and 
parallelepiped are of minimum “height,” etc., for the minimal basis (see 
Figure 4.3). 

7. Lattices of Rational Integers, Canonical Basis 

We consider in more detail lattices 9Jt, which are sublattices of a lattice 
!2,, where 2, is defined as the set of points x whose cartesian coordinates 
are arbitrary integers, with “distance” norm (see §4), Thus 

2, : x = (Xl, 52, * * * ) x,), -a3<xi<+co. 

Any submodule off?,, “inherits” the lattice property because it inherits a 
norm as well as a finite dimensionality. (Clearly, any vectors of 9Jl that are 
linearly dependent in 2, are linearly dependent in YJI by the same equation 

l of type (4) in $5 and vice versa). We cari regard &, as a lattice with special 
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SO that 

(lb) x = UlX1 + lIzx.2 + * - * + u,x,. 

We assume the sublattice !IR is of dimension n, Le., that it has n indepen- 
dent vectors ql, qz, * * * , qn. We define the components 

(2) qi = @il, qc?, - - * 9 4inh i = 1, 2, . * - , n, 

and the determinant D = lqijl # 0. We recall from algebra the result that 
the qi are linearly independent if and only if D # 0, since the relation 

i&xi = 0 constitutes a set of n linear homogeneous equations in n 

unknowns xi. 

LEMMA 2. If D is an integer #O, the vectors w, = (D, 0, 0, * * -), w2 = 

(0, D, 0, - * a), wQ = (0, 0, D, - . a), . . . , are linearly independent and lie 

in !JJl. 

Proof. The linear independence of the wi follows from 

(3) $tiW< = (a,D, a$, a$, * * .). 

Trivially, i a,wi = 0 implies ail a, = 0. The fact that the wi lie in ‘9.R 
i=l 

follows from the result that for each k we cari solve the system 

(40) i$qi = Wk 

for integral bi. TO do this, we Write the j-component of system (4~) 

(db) 

where dki = 1 if k = j and 0 if k #j. If Qij is the cofactor of qij, it is clear 
that bi = Qik satisfies the system (4~) or (4b) from elementary determinant 
theory, e.g., 

(4c) Q.E.D. 
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LEMMA 3. A minimal basis for 92 is provided by the so-called canonical 

basis: 

Vl = (Vil, 0, 0, * * * > 0) 

vg = ($1, v‘&.> 0, . . * , 0) 

(5) 
/ 

1 VQ = (v31, v32, vgj9 * . * > 0) 

\ ;y i;,; ;,;;;,, :‘.‘.‘,‘y;;). 

where v1 is defined as the vector in the space spanned by u1 which lies in 

1111 and has the smallest possible value of vI1; Iikewise v2 is defined as the 

vector in the space spanned by u1 and u2 which lies in %JI and has the 

smallest positive value of vz2; vais defîned as the vector in thespacespanned 

by ul, u2, ua, which lies in !VI and has smallest positive value of vaa, etc. 

Furthermore, we cari choose 

1 

0 I y21 < Vil> 

(6) 0 I vx1 < v11, 0 I y32 < v2.p 

IO I vji < vii* (j > i). 

These conditions determine a minimal basis uniquely. 

Proof. The first part is obvious under the interpretation of the construc- 
tion in terms of the wi given in Lemma 2. (Making uii > 0 is a trivial 
matter, since any vector Y cari be replaced by -v for the purpose of defining 
vi.) The inequalities (6) cari be proved by the divisor-quotient method. 
For instance, take n = 3. The inequality 0 < va2 < v22 cari be ensured by 
starting with a oS2 not necessarily satisfying this inequality and writing 
u321u22 = 4 + +22 where r, the remainder, satisfies 0 I r < v22. Hence 
va - qv2 lies in YJI has the same (third) component zj3a as vg but has r 
instead of vS2, satisfying the inequality. Likewise, some combination 
vJ - qv1 (or v2 - qvJ cari take tare of va1 (or val). 

The uniqueness.of this minimal basis is proved by the fact that a11 vCi are 
minimal, hence unique (see the geometric construction of $6). Thus, if 
%I had two canonical bases with unequal Y, the difference Y of the vi would 
have the ith component and succeeding ones 0. Hence the vector Y is 
eligible for consideration as a vj for somej < i. But thejth component of 
Y is the difference of two values of vji and is therefore less than the 
corresponding vii, contradicting the minimum property of vii. Thus a11 vii 
are also equal, making vi the same. Q.E.D. 

We introduce the integral matrix (a& which is called unimodular if 
its determinant is f 1 and strictly unimodular if the determinant is + 1. We 
then consider a more general basis relation. 
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LEMMA 4. Two lattices of minimal bases [vl, v2, . * . , v,J and [vl’, 

vz’, * * . > v,‘] in Q3, are equivalent if and only if the bases are connected by 

a unimodulor relationship: 
n 

(7) vi = 2 OijVj’, I<i<n, 
j=l 

with integral coeficients. 

Proof. Assume the lattices to be equivalent. The basis elements vi are 
individually in [vr’, vz’, + * . , Y~‘], and (7) are valid, likewise (8). Hence 
(a,,), (b,,), the matrices of two transformations, combine to produce the 
identical transformation of [v,, . . . , v,] onto itself. Thus 

hjl * I&l = +1, 
and ]a,J = ]bijl = f 1, since a11 coefficients and determinants are integers. 

Conversely, the system (7) cari be reversed. If qtj is the cofactor of u,~, 
the substitution easily yields 

to form (8) for the unimodular case. Thus each set of n vectors spans the 
others from the unimodular property. Q.E.D. 

LEMMA 5. Two different minimal bases of YJI, a sublattice of Pi,, have 

the same determinant except possibly for sign, i.e., if v, = [vil,. . . , v,,], 

Vi’ = [vtl’, * * . , vin’] for I < i < n, then (vi31 = & Ivzj’l . 

Proof. By the product theorem for determinants, if 
12 

vik = zaijvik’, 
i=l 

then 
bikl = I%l bik’l. Q.E.D. 

We shall cal1 this common absolute value D. Two canonical bases with 
the same D are not necessarily equivalent, since a11 we have done is to 
specify the product vrr~‘~~ . . . v,,. (In fact, in SO doing, we completely 
ignore the nondiagonal integers vzj.) 

8. Sublattices and Index Concept 

The preceding theory of submodules (or sublattices) of 2, cari be carried 
over to submodules (or sublattices) of any given lattice 2. Al1 we need do 
is Write the minimal basis of the lattice as n vectors 
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and identify the element x = zlul + . . * + x,u, with x = [xi, x2, * * . , XJ 
the element of 2,. Thus operations on elements of x in 9R correspond in a 
one-to-one fashion with operations on elements of x in 2,. (We continue 
our restriction to sublattices of dimension n.) 

From this it follows that if the modules 2, YIl, 9I have the property that 
2 includes m and %R includes R then a set of minimal bases cari be found 

r 2 = [Il,, * * * ) Un], 

(1) 
r 

YJI = Iv,, . * * , VA, 
( tn = b,, * * . > w,l, 

such that 
( 

v, = 2 aijuj, 

(2) 1 
j=l 

[ wi ‘&m~ 

or, if (cij) represents the product of the matrices (bJ and (a,J, then 

(3) 
n 

w, = 1 cijuj. 
j=1 

Thus we have the following lemma: 

LEMMA 6. If 2 includes YJI and ‘9JI includes 92, then if the minimal basis 

of 2 in m has determinant A and the basis of YJI in ‘3 has determinant 6, 

the basis of 2 in % has determinant AB. 

We next consider any two modules in 2, namely 9JI and 2, where !IN is 
contained in 2. Then, if vectors x and y belong to B, we say 

(4) x E y(mod!JR) 

if x - y belongs to SYJl. By the module property, this definition permits 
addition and subtraction, hence multiplication by a rational integer (but 
not necessarily by an algebraic integer). This definition is also consistent 
with the ordinary congruence modulo !IX if f? is the (one-dimensional) 
module of rational integers. Congruent vectors constitute an equivalence 
class in the same sense as congruent integers. 

The number of different classes Will be seen to be finite. It is called the 
index and is writtenj = [f?/‘%lI]. Thus the classes form a finite module of j 
elements which is denoted by the quotient symbol e/m. 

LEMMA 7. If 2 contains %R, the indexj of C/IIJI is the absolute value of 

determinant of the basis expression for YJI in terms of the basis of 2. 

Proof. It suffices to take L! = 2, by the opening remarks of $7 (above). 
We suppose 9JI to have a canonical basis as described in Lemma 2, $7. We 
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show every vector of 2% is congruent modula ‘9Jl to one of the following 
1 Dl = u11u22 . . . P,, incongruent vectors: 

(5) t = (t1, t,, * * * ) t,), 0 I t, < Vii. 

We begin by taking an arbitrary vector in C,, namely, w = (w,, . . * , wJ. 
We then subtract a sufficiently large multiple of v, (see Lemma 3 of $7); 
according to the familiar division algorithm: letting w, = v,,q + t,, we 
see that w - qv% has the nth component t, satisfying (5). Then working 
with just (n - 1) first components of w - qvn, we produce the (n - 1)th 
component tnel in an expression of the form w = qv% - q’vnel. Thus, by 
induction, w is congruent modulo !JJI to a vector of type (5). No two vectors 
of type (5) are congruent modula YlI (see Exerc&e 8 below). Q.E.D. 

Lemma 8 is a corollary. 

LEMMA 8. If j = I in Lemma 7, !JJI = 2. 

The index, by definition, is independent of basis. It constitutes an 

invariant concept to replace the determinant (which is seemingly dependent 

on the particular basis). 

EXERCISE 7. Prove that the indexj has the property that, for any element v  of 
2, jv belongs to !Ut. Show this two ways, first by using the determinant property 
and second by using the subgroup definition (i.e., that \VJI is an additive subgroup 
of 2). 

Thus if VJI is a module in D,, by taking v  = 1, show that any modula contains 
the integerj, equal to its index. 

EXERCISE 8. Show that no two vectors of type (5) are congruent modulo YJl 
(by showing the difference between any two such vectors is either 0 or inexpressible 
by the canonical basis of Lemma 3, 07). 

9. Application to Modules of Quadratic Integers 

A module YJI of quadratic integers in n, an integral domain, now presents 
three alternatives: 

(a) The module may consist wholly of zero. 
(b) The module may be of dimension one. 

In these cases ‘%Il consists of multiples of a quadratic or rational integer 
(possibly 0) and is relatively uninteresting. 

(c) In the nontrivial case the canonical basis, by Lemma 3, is 

(1) m = [a, b + ao], a>b>O, c > 0. 

Here a is the smallest absolute value of a rational integer in ‘2R (not 0), and 
b + cw is a term of !IR with the smallest positive coefficient of 0). 
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In practice, a module might be written with an excessive number of 
elements, and our abject is to choose clever combinations of these elements 
to form a minimal bais of the original module, as illustrated in (2) and (3) 
of $5 (above). Thus we may be confronted with a module having the 
(nonminimal) basis shown: 

m = [El, 12, . * * , E,l, 
We cari augment the set by any 

(2) 5 t+1 =$d 

for integral ai, and we cari remove any Ej which happens to be noticed as a 
linear combination of others. These operations are sufficient for the 
construction of a basis. Indeed, the desired minimal basis vectors, belong- 
ing to the module, have the form (2); moreover, once they are put in, the 
original vectors may be dropped, since they are necessarily linear com- 
binations of the minimal basis vectors ! 

We want to obtain the basis in canonical form, SO we set 

(3) m, = [a, + b,w, u2 + b,o, . . * , a, + bp] 

and proceed by induction. Thus 

(4a) YJI, = [a, + b,w 02 + b,wl. 

The most general element of ‘!lJ& is 

q(u1 + bp) + xz(az + b,m) = (XlQl + xzaz) + (x,b, + x,bJw; 

hence the most general rational integer of sn, is a multiple of xl’ul + 
x2’% = a, where xi’ and x2’ are the smallest integers not both zero which 
permit x,‘bi + x2’b, to equal zero, or x1’/x2’ = -bJb, reduced to lowest 
terms. Futhermore, the term with the smallest nonzero coefficient of w 
has form b + cw where c = gcd (b,, bJ, since c divides a11 x,b, + xpbZ 
and cari be expressed as such a combination. Finally 

(db) Dl, = [a, b + cw]. 

Now if we consider m, = [ai + b,q us + b,w, us + bp], then 1132, = 
]a, b + CO, u3 + b,w], and we cari reduce [b + cw, u3 + b,w] by the same 
procedure to the form [a’, b’ + c’w]; thus 

(4c) 9Jlm3 = [a, CI’, b’ + c’w]. 

Then we note [a, a’] = [gcd(u, a’)] = [a”]. This, in fact, is the Euclidean 
algorithm. Hence, Y.J& = [a”, b’ + c’u]. Likewise ‘$II, cari be reduced to 
canonical form step by step. 
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EXERCISE 9. Reduce to canonical form, the following bases: 

‘m, = 135 G, 8 - 28 41, 

%II, = [354, 8 - 28V’j, 6 - 21 dj], 

%n4 = [35 dj, 8 - 28 d?, 6 - 2143, 851. 

EXERCISE 10. Show that for every linear transformation 

i 

2’ = ax + by ad - bc = n( # 0) 

y’ = cx + dy 

a unique set of integers A, B, C, P, Q, R, S exists such that the transformation cari 
be expressed as a result of the transformation 

i 

x’ = Ax” + By” AC = In1 

y’ = cy- O<B<A 

together with the transformation 

1 

x” = Px + Qy PS - QR = hl. 

?l II = Rx + Sy 

Hint. Make use of a canonical basis (A, 0), (B, C) for the module in f!, 
generated by the vectors w1 = (a, c), w2 = (b, d). 

10. Discriminant of a Quadratic Field 

Let a module !JJI in il for R(d@ be expressed with a two-element basis 

(1) 

where E1 and Ez belong to Z)l. We define 

(2) 

as the @$eerenf of the module. We next see that the different A # 0 if and 
only if 51 and Ez are linearly independent (equivalently if and only if the 
dimension of YJI is two). For we see that A = F2E2’[(E1/62) - (E,/iJ’]; 
hence A = 0 if and only if (EJEJ is equal to its conjugate and consequently 
to a rational fraction (say) r/s. This violates linear independence (with 
integral coefficients) for E1 and Ez (e.g., r12 - sE1 = 0). 

The module of all integers of an integral domain D, (in the terminology 
of Chapter III, $9) is 

(3a) D, = [l, mao]. 
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Tt has a different 

73 

i7&, if D, E 1 (mod 4), 
(3b) A = A(D,) = n(w, - 00) = 

2n JDO, if D, $ 1 (mod 4). 
A more important quantity is 

(4) d(S) = d = A2, 

the discriminant of the module !Dl, which we see is always an integer: 

(5) d(ni>,) = 
n2D, if D, E 1 (mod 4), 

4n2D, if D, $ 1 (mod 4). 

In general, if %R is a module of integers in D,, 

(6) A(m) = iA(D,), and d(YJl) =j2d(Dc>,), 

where j = [D,/S.lI], the index of ‘9JI in D,. Thi’s follows from the determin- 
ant multiplication property. Very often, for convenience, we refer to the 
discriminant d of D, as the “discriminant of the field R(Z/D,)” or as the 
“fundamental discriminant” (of this field). 

Thus, starting with d(C),) = d, we note either 

D,=d=l(mod4) or D,=d/4$ l(mod4), 

and D,(# 1) is square-free. We cari now unify past notation by writing 

(7) D?l = il, %l, n 2 1, 

where 

(8) 

and 

m,=n ~, 
( 1 

d - \t’d 

2 

A(D,) = n& whereas d(DJ = n2d. 

EXERCISE 11. By a direct comparison with Chapter III, $9, verify (7). 

EXERC%E 12. Verifj (6) directly by calculating A(YJI) for ‘3JI = [a, b + CO,]. 

**ll. Fields of Higher Degree 

The problem of constructing a minimal basis of the algebraic integers in 
fields of degree n is one that in general is subject to the “existence” type 
of argument and amply illustrates the power of the abstract methods of 
this chapter. Suppose we start with (say) the field R(B) where 0 is of degree 
n; then, as we noted in Chapter III, $10, the quantities 
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are linearly independent, using integral coefficients, and the general integer 
of R(8) must be of the type 

(2) l = r. + r,B + - * * + rnplP’ 

where r, are rational numbers of denominator < Q by $5 (above). Then a 
perfectly good norm is 

(3) 11~11 = If-02 + * f * r,-,lsi, 
and if 5 # 0 some rk # 0 and, necessarily, 

(4) II511 2 Irkl 2 l/Q(> 0). 
satisfying the discreteness condition. From this, the existence of the mini- 
mal basis follows. 

We observe that this proof is not based on an explicit construction; in 
fact, there is almost no theory to help us! In a general way we know, from 
Theorem 3 of $6 (above), that a set of integers oO, wr, 1 * * , 0),-r of R(6) 
Will fui1 to be a minimal basis if and only if another integer CU of R(8) 
exists for which 

(5) Gw = xgwo + * * * + x,-lcun-l, 

where xi, G > 1, are integers and G cannot be “divided out.” This 
statement is of great practical value in establishing the basis of higher fields, 
where illustrations are deferred to the bibliography. It might suffice to 
note in the quadratic case the fact that LO is an integer in the familiar 
example 2w = 1 + G. This indicates again that [l, d-31 does not 
form a minimal basis of the algebraic integers of R(d-3). 

- 
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Further applications of 
basis theorems 

STRUCTURE OF FINITE ABELIAN CROUPS 

1. Lattice of Group Relations 

In earlier work we restricted ourselves, as a matter of convenience, to 
abelian groups which are representable as the product of cyclic groups. 
This representability was easily achieved in Chapter 1, $5, for the reduced- 
residue class group. 

According to the famous theorem of Kronecker (1877), cited in Chapter 
1, $7, eaery jînite abelian group is decomposable into the product of cyclic 
groups. We shall give proof by using a type of lattice basis. 

Let the elements of a commutative group of order h be written as 

Then we consider a11 h-tuples of integers (positive, negative, or zero) in Qh 

(1) (% % * ’ ’ > %h 

and we fix our attention on 2*, the set of a11 h-tuples for which a group 
relation is determined (using the multiplicative operation) 

(2) 
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First of ah, we note that & is a lattice. Let us suppose that 

Then 

Thus the sum or difference of two h-tuples in !& is also in !&. 
Now Q* wiii obviousiy contain certain simpie eiements. For exampie, if 

gi is the order of a*, aiO1 = e, and & contains the h vectors 

i 

(0, 
(3) 

* * * 3 0, gi, 0, * * * > o>, 

(gi at the ith position, 1 I i I h). 

Thus, g, = 1 (for a, = e), yielding (1, 0, * . . , 0). Since we have h linearly 
independent vectors (3) we cari conclude 9* has a finite index in 2,. (It 
Will later turn out that this index is h.) 

Starting from the h vectors (3), we have a set that is very easy to augment 
to a finite set of vectors completely determining f!*, at least in theory, for 
the components of any vector of I!* are each determined modulo gi. We 
cari then examine every single (zr, za, * * * , z,) off!,, where 0 I zi < gi by 
the group properties to see if (2) holds. 

EXERCISE 1. For the cyclic group Z(3) the elements are a, = e = aS3, at2 = 
a3, as2 = a2. Then show that the elements of P.+ are generated by the set of 
vectors 

Cl,% Oh (0, 3,0), ao, 3), (0, 1, 1). 

EXERCISE 2. For the “four-group” Z(2) x Z(2) the elements are (a1 =)e, 
a2, a3, (a4 =)a2a3, where az2 = a32 = e. Then show that the corresponding 
relations are, similarly, given by 

(1,0,0, Oh (0,2,0, O), (0, 0, 2, 01, (0, 0, 0, 3, (0, 1, 1, 1). 

EXERCISE 3. Do likewise for the group Z(4). 
EXERCISE 4. Do likewise for the group Z(5). 

2. Need for Diagonal Basis 

Thus we cari then find a basis of f?* in triangular (canonical) form: 

i 
01 = (a,,, 0, 0, . . . 9 (9, 

i 

u2 = (a,,, u22, 0, . * . 3 01, 

(1) 
u3 = (a,,, a329 Q33> ’ . . 3 0), 0 S azi 2 ajj 

h 
1 ;a;, ; ; u;3 *. . . . > a,,,, * - * * * 

f h? L> 

q1u22 - * * U/&h = H. 
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This means that ah the interrelations between elements corne as combina- 
tions (powers, products, and quotients) of 

(2) 

ay11 =e > 
alzlaF2 = e, 

( . . . . . . . . . 

[a~a$hZayh3...ajfhh=ee 

If we had achieved the “diagonalized” stage in which aij = 0, for j # i, 
then we could say a11 interrelations corne from cyclic groups of order aii 
generated by ay = e. This is exactly the same as saying that the group 
decomposes into a product of cyclic groups (even though we find many 
aij = 1). But for this purpose, the canonical basis is not good enough. 

We must use a type of “double” reduction. We must reduce the basis 
of both P* and L$, simultaneously in order to obtain a diagonal array in 
relations (1) and (2) instead of the triangular array. 

3. Elementary Diviser Theory 

We consider, in a general context, a lattice %JI which is a sublattice off?,, 
of finite index. Then a basis of VI, namely, [v,, . . . , v,] cari be written in 
terms of the basis [II,, . * . , II,] of g3, by making use of a matrix (aij) = A. 
Thus 

where 

(4 

v2 = azlul + az2u2 + * * . + a,,u,, 
. . . . . . . . . . . . . . . . . 
vs= **- + askuk + . * ’ + a,&,, + ’ ’ . + aann,, 
. . . . . . . . . . . . . . . . . 

vt= *** + atkUk + . ’ * + a,#, + * * . + a,$,, 
. . . . . . . . . . . . . . . . . 

v, = a,,u, + an2u2 + . . * + a,#,. 

Now the matrix A = (a,J is a representative of the relation between the 
basis ui of 2, and the basis vi of !JJI. Yet (a,J still depends on the two bases, 
which cari be chosen with some degree of arbitrariness. For instance, we 
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could replace the set of vectors (u,, * * * , u,) by a unimodular transform of 
the set; likewise for (v,, * * * , v,). 

Let us consider special unimodular transformations of the bases of f!,, 
or 9Jl. Here q is an integer and s, t, k, m denote special indices (s # t, 
k # m): 

r 

(3) 

(4 vr f qv! - vs, (Y< unchanged for i # s), 

(b) uk f q”m - uk> (u, unchanged for i # k), 

(cl v, - -vs, (v, unchanged for i # s), 

(4 uk- -"k> (ui unchanged for i # k), 

Ce> v, f-f Vf> (vi unchanged for i # s, t), 

(0 uk - %,,, (uj unchanged for i # k, m). 

Here the symbol + should be read “replaces” and U,H u, denotes an 
interchange. The transformations are generally reminiscent of admissible 
operations in evaluating a determinant, but here the important thing is 
that the operations are a11 reuersibfe in integral coefficients. For example, 
the inverse of (a) is the operation v, F qvt -t v, (opposite sign) and like- 
wise for (b). Al1 the other operations are their own inverses. Thus the 
elementary operations described are unimodular and in any combination 
constitute a unimodular transformation on ui and vi. The value of the 
determinant lajjl is preserved except possibly for sign. 

Let us observe the effect of these six rules on the matrix A : 

I 

(a) ask f qa,, + aSk, ajk unchanged for i # s; k = 1,2;.-n; 

(b) asm f qask-+ asm7 a,? unchanged for j # m; s = I,2, . . * n; 

(4) I 
cc> ask + -ask> azk unchanged for i # s; k= 1,2;..n; 

) (4 ask + -a,k, aSj unchanged for j # k; s = 1,2;-.n; 

te> ask - alk, a,,unchangedfori#s,t; k= 1,2;.-n; 

l(f) Oak t-$ asm, aSj unchanged for j # k, m; s = 1, 2, . * . n. 

We cari easily recognize (a): the addition (subiraction) of q times the 
f-row to (from) the s-row (t # s); (b): the addition (subtraction) of 
q times the k-column to (from) the m-column (k # m); (c) and (d): the 
change in sign of a row or column; (e) and (f): the interchange of two 
rows and columns. 

THEOREM ON ELEMENTARY DIVISORS 

The exercise of rules (a) through (f) cari reduce the matrix A to purely 
diagonal form. 
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Proof. We consider the smallest positive matrix element, other than 
zero, which cari be created by the exercise of these rules. Cal1 it z,; then 
by the exercise of rules (e) and (f) we cari bring z1 into the Upper left-hand 
corner to replace arr. Now, ah elements of the first row (or column) must 
be divisible by zr. TO see this, we shall show zr ) an,, for, by the exercise 
of rule (b) (with s = k = 1, m = 2), we cari form a matrix in which 
a,, - qa,, + ar2 for any q positive or ncgative, whereas the other elements 
of the first row and column are unchanged. Clearly, ifq is the quotient and 
r the remainder in the division of un, by a,, (= zr), then u12 = qa,, + r. 
Thus r -+ ur2, but 0 I r < aI, (= zr) and r = 0. This proof, incidentally, 
shows how to make the first row and first column equal to zero, except for 
the corner element zt. 

Thus the new matrix has the following form: 

It transforms a new basis of 2, = [ur’, . * . , un’] into a new basis of 
%Il = [v,‘, * * . ) v,‘]. We repeat the operations, using [II~‘, . * * , II,‘] and 
kJ’> . . . > vn’], leaving u1 , ’ vt’ alone. We cari then achieve a value za in the 
Upper left-hand corner of the (n - 1) by (n - 1) matrix with zeros in the 
second row and column. Ultimately, we obtain a diagonal matrix with 
values zt, z2, * . . , Z, along the diagonal. This tells us that a new basis 
of $%I is expressible as “diagonal-term” multiples of a new basis of 2,. 

Q.E.D. 
Thus bases of 2, and !JJI cari always be chosen as 

(5) fL = [WI, * . * > W,l> m = [z,w,, . * - , z1w,]. 

The more complete theory of elementary diuisors tells us that zr ) za, 
z2 ) ~a, etc., hence the term. It is nevertheless clear that the value of the 
determinant or index of 9JI in 2, is z1z2 . . * zn. 

As a method of keeping track of the operations, note that we might Write 
down a new basis for L?n and 1131 in set (3) every time we use one of the 
rules in set (4). 
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~ ILLUSTRATIVE EXAMPLE 

Problem. TO reduce to elementary divisors, the transformation 

(6) i 

Vl = 2ll, + 2u, 2 2 

\V2 = ui + 40, c i ,l 4; 

Solution. Clearly 1 is the value of zr. The rest is straightforward. 
(Recall that the + means “replaces” not “becornes.“) Use operation (e), 
or interchange of rows, on the original system: 

1 
Y1 = 25 + 2u, 

1 

v2 - VI 

1 

v1 = v2’ 
Let 

v2 = Il1 + 4u,. 
e.g., 

VI--f v2> v2 = VI’. 
Use operation (b), or subtraction of 4 x Row 2 from Row 1, on the 
resulting system : 

i 

Vl ’ = u1 + 4u, 

i 

Ul - 4u2-•q 

i 

u1 = ul’ - 4u2’ 
Let 

v2’ = 2u, + 2u,. 
e.g., 

5 - 5, u2 = u2’. 

Use operation (a), or subtraction of 2 x Row 1 from Row 2, on the 
resulting system : 

Vl ‘=u’ 1 VI’ --+ VI’ Vl 
’ = v ft 

1 
Let 

v2 ’ = 2u,’ - 6u,‘. v2’ - 2v,’ + V2’> 
e.g., 

v2’ - 2v; = V2”. 

Use operation (d), or column sign-change, on the resulting system: 

Vl ” = ” 1’ Ul’ -f q’ Ul 
‘=Un 

Let 
1 

v2” = -6~~‘. u2’ --t UZ’> 
e.g.3 

u2 
, _ 

- -U2”. 

Finally 
Vl 

” = u ” 

(7) 
1 

v2 ” = 6~~” 

in terms of the transformations in the right-hand column above: 

@a> 

(86) 

i 
Ul o = Ul + 4u,, 

u2 
” = 

- u2> 

l 
vl” = v2> 

v2 lt = Vl - 2v,. 
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Thus, for our illustrative example, (5) becomes 

81 

(9) 22 = b,, uzl = bl”, $7, im = [v,, vJ = [vl”, v,“] = [ul”, ~II,“]. 

Matrices cari be used more formallyl but in the few practical problems 
here they are unwieldy. 

EXERCISE 5. Prove the divisor property z1 1 zp, zp 1 z3? etc.; by noticing from 
(5) that z1 must divide the remaining matrix of order (n - l), etc. 
EXERCISE 6. Verify that the following matrices provide a canonical basis for 
the lattices 2* of Exercises 1 to 4 above. (See Exercise 6a, Chapter IV.) 

1000 100 
0 2 0 0 

(i) 0 3 0 

(ii i 
(ii) 

0 0 2 0 
0 1 1 

0 1 1 1 

1000 
0 4 0 0 

(iii) i 1 0210 

0 1 0 1 

10000 
0 5 0 0 0 

(iv) i 0 3 1 0 0 I 
0 2 0 1 0 

0 1001 

EXERCISE 7. Perform the reduction for the foregoing matrices, obtaining the 
new bases as in the illustrative problem. 

4. Basis Theorem for Abelian Groups 

KRONECKER’S THEOREM 

Every jînite abelian group cari be decotnposed into the product of cyclic 
groups. 

Proof Let 

(1) al(= e>t a2j ’ ’ ’ , ah 

denote the elements of the group G. Let us construct a canonical basis for 
f?*, the lattice of group relations determined by equating to e the elements 

(2) a1’, a2’, . . . , ah’, 

with the triangular form manifest as 

(3) ai’ = a;aaga . . . ait*, (1 i i i h). 

Now we apply elementary divisor theory to matrix (zij). This means that 
we cari find bases of f?* and Qh (written for group elements, rather than 
exponents) : 

(4) Aif = (al’)rtl(a2’)rtZ . . . (ah’)rrhr 1 i i I h, Irijl = fl, 

(5) Ai = rTtla;zz . . . axth 
h 9 1 I i I h, (sijl = fl. 

‘The forma1 reduction theory is due to C. Hermite (1851) and H. J. S. Smith (1861) 
(sec treatises on algebra in the bibliography). 
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in terms of which the system (3) becomes A,’ = A,‘; by (5). Hence 

(6) A121 = A2G = . . . = Ah% = e 

for zl, . . . , zh the set of elementary divisors of (zJ. Now system (6) 
represents a set of generators of a11 relations among the elements of the 
abelian group. By the basis property, Isijl = fl, SO that the ai are a11 
expressible in terms of Ai, e.g., 

(7) a. = AtloA z 2* . . . AP, 1 iilh. 

The group G is generated by h cyclic groups (6) in the generating 
elements Ai. Q.E.D. 

Actually, many of the z, are 1, as an easy illustration Will show. For 
instance, in the case of the four-group Z(2) x Z(2), a basis of & is reduced 

The left-hand matrix indicates that the group Z(2) x Z(2) is generated by 
the relations 

I 

a, = e, 

a2 3 2=e 
(8) 

i 

a3 7 
2=e 

1 a2a3a4 = e. 

The right-hand matrix indicates the generators : 

f 

A, = e, 

A, = e, i 

A, = a,, 

A, = a2a3a4, 1 

a, = 4, 

(9a) (96) 

: 

(94 
1 

a2 = A,, 
A32 = e, A3 = a2, a3 = A,, 
A42 = e, A, = a3. 

I 
a4 = A,A,A,. 

EXERCISE 8. Write out the results (9a), (96) in the other groups of Exercises 
1 to 4 and 6. 
EXERCISE 9. Prove z1z2 . . zh = h from (6). 

5. Simplification of Result 

A fairly elaborate but elementary equivalence theory of cyclic decompo- 
sition enables us to find several different forms of the basis. For instance, 
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in Chapter 1, $7, we saw Z(6) = Z(2) x Z(3), but an abelian group of 
order 4 might be equivalent to Z(4) or Z(2) x Z(2) (not both). 

By the discussion in that section, once the cyclic structure is achieved we 
cari assure ourselves that each cyclic group Will be of order pk for p prime 
by breaking up each cyclic group into factors whose order is p”. Then we 
could achieve the following structure for an arbitrary abelian group G of 
order h : 

(1) G = Z(plkl) % Z(pzkz) % . * * , 

where pi are primes, not necessarily distinct, and k, > 0; h = Ilpik*. A 
further theory, too lengthy to repeat here, shows in effect that the decom- 
position (1) is unique except for order of factors. 

The uniqueness is not needed directly for applications in this book, 
but it enables us to know the values of the elementary divisors zi ahead of 
time from the divisibility properties in Exercise 5, $3 (above), for a given 
group structure. For example, let 

(2) G = Z(p=> x Z(p”> X Z<p”> X Z(qd) 

wherep and q are different primes and 0 < a I b I c, 0 < d. This leads 
to a matrix of (arbitrarily large) order h = pa+b+cqd with h elementary 
divisors. They are, however, known as follows: 

(3) 1 = zi = . . * = Z&.$ p” = +-2, pb = +-1, pcqd = %, 

since only then Will $4 lead to a structure (where zi ( zi+J 

(4) G = Z(pa) % Z(p”> % Z(pcqd) 

consistent with the definition (2) of G. 
In our applications the groups which arise Will be even sufficiently 

simple that the cyclic decomposition may be deduced “by inspection.” 

GEOMETRIC REMARKS ON QUADRATIC FORMS 

6. Successive Minima 

In our previous definition of a lattice YJI we introduced at least one norm 
IIvII defined for the vectors of %lI to serve as evidence of discreteness. 

We shah carry these ideas a bit further. We shah talk only of the lattice 
!i?, of a11 integral n-tuples 

(1) v = e,, * * * > 4, 

and we shall specify (/v(( as a very important type of function, which we now 
define. 
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Cal1 a quadratic form in integral coefficients 

(2) Q<% 523 * . . 9 xn) = a11q2 + Qy$lX‘J + u22x*2 + . . * 

f aipi + u*jx,xj + * * . + u,,xn2, 

positive de@zite if for a11 integral values except Y = 0 

Ci < j), 

(3) Qh * * . > 4 > 0. 

The definition of positive definiteness is seen to be equivalent to one we 
would obtain if we considered real values of 2, instead ofjust integral ones, 
and there are well-known techniques of algebra for determining positive 
definiteness. A sufficient condition is that a real transformation matrix 
exists, (ail), such that 

(4) 

and 

x, = i a&,, Iaijl f 0 
j=l 

(This condition is also necessary, but we refer the student to the bibli- 
ography for further references in algebra.) 

We take 

(6) IlvIl = Q<q, . * * > x,>“. 

Then we cari show, among other things, that ~IV]] has the properties of the 
norm of Chapter IV, $3, and also that for any T the inequality 

holds only for a finite number of v. The latter statement follows from the 
fact that by (5) ]E,] I T){ and by (4) the coordinates xi are bounded once T 
is assigned: 

We now define successive minima as follows: consider a11 v in 2,. For 
these vectors v, the norm I\v// has a positive minimum mi, which it achieves 
for at most a finite number of v by the property just established. Trivially, 
if IIvill = llîl SO does II -V~I( = mi. We ask, less trivially, how many linearly 
independent v have the same minimum m,. Let there be k of them, 
VI> v2, . . . 7 Vk. For instance, if Q = ri2 + z22 + 3xa2, then mi = 1 (say) 
at v = (1, 0,O) and v2 = (0, 1, 0). 



Let k < n; then consider the set of vectors Y linearly independent of 
v1r . * * > v,, and let mk+l be the minimum of ~/VII for this set. The minimum 
may be established at vkrl, * * * , vr (additional linearly independent vectors). 

Then if 1 < n we continue to ask for vectors v linearly independent of 
Vl, * . . 2 v,, for which ~~VII takes its next minimum m2+1, etc. 

. . . T . . . 

l 

FIGURE 5.1. .#(z, y) = z2 + “y + y*. Minimal sets for +(z, y) are [vl, Y~], [vl, vJ, 
rvtr VII. 

We Write for simplicity m, = IIvtll for a11 t; thus always 

(9) m, = m2 = . . f = mk I m,,, = . * - = m, I. * - 5 m,. 

Figure 5.1, in two dimensions, shows the several minima for 

(10) 4(x, Y) = x2 + XY + y2 = (x + yPI f (3%~/2)~, 

whete m, = m2 and Figure 5.2 shows a case in which m, < m2. 
The natural question that arises is this: does the set vl, v2, * . . , v, have 

to be a basis ofI?, ? The answer is afirmative when n = 1, 2, 3. This serves 
as a great convenience in a manner we shah soon describe. The answer 
is negative when n 2 4, as we shall see below. This startling result some- 
how tells us that four-dimensional space is more “pliable” than lower 
dimensional space, and it was probably the first indication that out of the 
theory of lattice points would grow a special branch of number theory 
called the “geometry of numbers.“l 

‘This name was introduced by Minkowski (1893). There is a confusing cognate, 
“geometric number theory,” which Landau used (1929) to denote the process of count- 
ing large numbers of lattice points in a region, as we do in Chapter X. 
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EXERCISE 10. Show IIvII satisfies the definitions of norm in Chapter IV, $3. 
EXERCISE 11. Show the following form is positive definite: 

Q(.c, y, z) = x2 + y* + z* + xy + yt + xz. 

Hint. 

“0 

FIGURE 5.2. For proof of theorem in 97. 

EXERCISE 12. Do likewise for 

Q(x, y, z, t) = x2 + y2 + z* + t* + “y + yz + J-7 + :LT + ?/t + zt 

= x+ 
( 

y+z+t2 
2 1 

+ etc. 

(In each case the number of variables is decreased one at a time, each time a 
square is completed, and removed). 

7. Binary Forms 

Let us consider how the earlier remarks apply to 

(1) Q(x, Y) = AZ* + BXY + Cy’, 

a positive definite quadratic form satisfying the conditions in Chapter III, 
91; 

(2) A > 0, D = B* - 4AC < 0. 
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We find the successive minima m, and m2 belonging to [Q(z, y)]% and 
corresponding to 

v1 = (x1, YJ and v2 = (x2, Y~). 

These points lie on ellipses Q(E, 7) = ml2 and mz2. (See Figure 5.2.) We 
wish to prove the earlier assertion that vi, v2 is a busis of Pa. 

If we regard vi and va as the w1 and wa of the geometrical construction in 
Chapter IV, $5, we see that the basis property of [v,, vz] amounts to the 
fact that the parallelogram bounded by the corners 0, vr, ve, v1 + v2 has 
no other lattice points in its interior or boundary than the four vertices. 
Otherwise, the parallelogram would contain a lattice point of & other than 
the vertices. It cari be seen next in Figure 5.2 that triangle 1 (shaded) would 
contain a lattice point Y’ other than its vertices, (for, if such a lattice point v, 
were in triangle II then v’ = vt + v2 - v0 would be in triangle 1). By the 
convexity of the ellipse (see Exercise 13 below), triangle 1 lies interior to the 
locus Q(E, 7) = mz2 and thus Q(V’)” < m22, which contradicts the definition 
of m2 (as v’ is clearly not collinear with vi). Q.E.D. 

In Chapter XII we treat in greater detail the problem of expressing the 
form Q(z, y) under a different basis. For the time being, it might suffice to 
notice that we are in effect writing 

(3) (? Y> = 41,O) + YCA l), 

or we are using ur = (1,0) and u2 = (0, 1) as a basis of 2,. 
Suppose we wanted to use vi, va as a basis of f?,: 

(4) 1 v1 = (Xl, yJ = qu1 + !Il",> 

v2 = (z2,y2) = Z2Ul + Y2"P 

Then by Lemma 4 in Chapter IV, $7, vi, v2 constitutes a basis exactly when 

(5) 51y2-x2y1= ztl. 

In terms of a new basis, the variables become 

(6) xv, + Yv, = ml + Y",; 

or as (X, Y) varies over a11 Q2, the integral couple (5, y), given by 

(7) 
i 

x = xx, + Yx,, 

Y = XYl + YY,. 
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also varies over a11 Q2. Note that we cari solve back for integral (X, Y) by 
virtue of the determinant condition (5). Now, using (7) we see 

(8) Qc% Y) = 4Xx, + Yx,Y + B(Xx, + Yq!)(XY, + YYJ 

+ C(XYl + yY2>2> 
In\ 
(Y) Q(x, y) = A,P + BJY + C,Y2. 

Here the substitution (X, Y) = (1,O) and (X, Y) = (0, 1) in (7) and (9) 
yields 

(104 4, = Q@v ~1) = ml22 

(lob) Cc, = Q<z,, YA = ~2~. 

Thus, since the successive minima correspond to v1 and v2, which form 
a basis, we cari Write a quadratic form in new variables in such a way that 
the minima m, and m2 are manifest’ as the coefficients A, and C,. This is 
essentially Lagrange’s (1773) type of reduction procedure. 
EXERCISE 13. Show that the interior of triangle 1 is given by the points 
Iv, + PV,, where these inequalities hold: 0 < IL, 0 < ,u, A + ,U < 1. Hence, 
using the distance property for the norm, show Q(v’) < mz2. (We cari restrict 
ourselves to rational values of L and ,u.) 
EXERCISE 14. Show that if vr, v2, and va are vectors of 2a for which [v,, v,], 
[v,. vJ, [va, vr] are bases of 52, then for some choice of signs fv,  f  va f  v3 = 0. 
EXERCISE 15. Show that if Q(v,) = Q(v& = Q(V,) = m, for three vectors 
independent in pairs, Q(v) = 3 f  zy + y2, except for a constant factor. 
EXERCISE 16. If  Q(z, 1~) = A+z2 + Bxy + Cy2, (D < 0), and 0 < A 5 C, 
show ml2 $ A and m22 5 C. How cari the values of m, and m2 be determined 
by graphing Q(z, y) = C? 
EXERCISE 17. Reduce by Lagrange’s procedure the forms 

5z2 - 16zy + 13y2, 39 + 5x2, + 3y2. 

8. Korkine and Zolatareff’s Example 

The Lagrange type of reduction theory was extended to positive definite 
quadratic forms in three variables without any extraordinary occurrence, 
by Gauss and Seeber (1831). For example, the form z2 + y2 + z2 + xy + 
yz + xz has three equal minima ml = m2 = m3 = 1 for (x, y, 2) = 
(1, O,O), (0, l,O), (0, 1,O); (1, -l,O), (0, 1, -1) (1, 0, -1) and their 
negatives. Any three of these, indeed, are dependent or form a basis of 2s. 

1 As we shall note in Chapter XII, &4, B, 2 - 4A,C, = D, SO that B, is also determined, 
except for sign, by the successive minima. 
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In (1872), however, Korkine and Zolatareff showed that the positive 
definite form in four variables 

(1) Q(x, y, z, t) = x2 + y2 + zz2 + t2 + xt + yt + zt 

has minima m, = m2 = m3 = m4 = 1 at the obvious pointsv = (1, 0, O,O), 
v2 = (0, 1, 0,O) and va = (0, 0, 1, 0), as well as at v, = (- 1, - 1, - 1,2), 
which do not form a basis of 24 when taken together. This was the first 
indication that the lattices in n dimensional space would have interesting 
properties for each n that would depend on n with number-theoretic 
irregularity. 

Minkowski continued the study of quadratic forms and ultimately 
generalized his results to the study of forms for which the “unit sphere” 
lQ<x> Y, . . .)] < 1 is a “convex”’ solid. The work was undertaken for 
purposes of studying quadratic forms and algebraic numbers but was 
later taken over by the British school more or less as a fascinating end in 
itself. Mordell, Davenport, and Mahler considered the use of nonconvex 
bodies (or norms that do not satisfy the distance inequality). The 
important point historically is the parting of the ways between algebraic 
number theory and quadratic forms (whose erstwhile synthesis is our main 
objective here). 

EXERCISE 18. Verify that the form (1) is a positive definite. 
Hint. 3 Q(x, y, z, t) = F(x) + F(y) + F(z), where F(r) = 3x2 + 3xt + t2. For 

which quadruples does it achieve its minima? 





PART 2 
IDEAL THEORY 
IN Q-UADRATIC 
FIELDS 





chapter VI 
Unique factorization 

and units 

1. The “Missing” Factors 

From our introductory survey it is clear that the representation 
Q(z, y) = m is closely related to the representation of factors of m and 
that these factorizations are reflected in those of algebraic numbers. It is 
therefore natural to ask when an integral domain D, for a quadratic field 
R(d&) Will display unique factorization into unfactorable elements which 
could then be called “primes.” 

The answer is usually negative; the unfactorable elements do not suffice. 
Yet unique factorization cari be accomplished by the introduction of 

“ideal” elements. For instance, in Hilbert’s example (see Chapter III, $5), 
we saw that the set of positive integers g, where g = 1 (mod 4), displays no 
unique factorization until one discovers additional “ideal” primes q, where 
q E -1 (mod4). 

The “ideal” elements in algebraic number theory were introduced by 
Kummer (1857), who found that he needed unique factorization in order 
to help prove certain cases of Fermat’s last theorem. Kummer’s ideal 
elements were actual numbers (like the primes congruent to - 1 modula 4), 
which belonged to a more inclusive field’ than the one in which the factori- 
zation was attempted. 

1 Some details occur in the section on class-fields in the concluding survey. 
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94 UNIQUE FACTORIZATION AND UNITS [Ch. VI] 

Dedekind soon discovered (1871) that the objective of unique factoriza- 
tion could be achieved by constructing (in the same quadratic field) a 
special type of module for the “ideal” element. 

We shall first see to what extent unique factorization fails in quadratic 
fields. 

2. Indecomposable Integers, Units, and Primes 

We begin by considering divisibility in an integral domain z) (as defined 
in Chapter III, $8): we say that an element El of D divides an element [ 
of C in z) if an element Ez of D exists such that 

We next define a unit in XJ as an element which divides 1 in X). (Note 1 is 
necessarily in D.) Then a unit trivially divides in X) any element of 0. We 
finally designate as indecomposable in n any nonunit element E for which a 
factorization (1) is possible in D qnly when ~5~ or t2 is a unit in 0. If Ez is a 
unit in D we say E and El are associates in r). 

We cari now prove the following lemmas (as exercises): 

LEMMA 1. An element of D is a unit in D if and only if its reciprocal 

lies in D. 

LEMMA 2. The units of D are closed under multiplication and division. 

We define a prime in D as a nonunit element 7r in z) with the property 

that if Z= divides the product of two elements ,X and /j’ in D, then r divides 

0: or p in D. For a prime this property would hold inductively for any 

number of factors in the product. 

LEMMA 3. ‘AIl primes in 0 are indecomposable in 0. 

THEOREM 1. If an element of 0 is expressible as the product of a finite 

number of primes in Do, it is uniquely expressible as such by rearranging 

factors and identifying associates of primes. 

Proof. If a is an element with two such decompositions, 

a = 7r17r2. . . 7rS = 7r1 *nz* * . . iTt*, 

we cari cancel r1 into some nTTi* by noticing that n1 1 a. (The primes x1 and 
7ri* are then associates in 0.) The proof proceeds by induction as in 
elementary number theory, and, incidentally, s = t. Q.E.D. 

If n is the ring of rational integers, 1 and - 1 are clearly the only units 
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in D and the definition of prime is seen to be precisely that of an indecom- 
posable element, taken with positive sign by convention. 

From now on we shall take D as some integral domain XJn belonging to 
the field of R(d?$ (as defined in Chapter III, §9), and we shall usually be 
able to omit reference to 0. Unfortunately, the indecomposables are not 
necessarily primes, as is evidenced from the nonunique factorization into 
indecomposables in $6 (below). 

EXERCISE 1. Prove Lemmas 1, 2, and 3. 

3. Existence of Units in a Quadratic Field 

Before discussing indecomposable integers, we must obtain more 
information about units. We shall be aided by further specialized know- 
ledge about 0,. 

LEMMA 4. The units of Dn are precisely those integers of XI, whose 

norm is +I or -1. 

Proof. If 7 is a unit, then an integer w exists for which vw = 1. There- 
fore N(r) N(w) = 1 and by the result for rational units N(v) = fl (and, 
incidentally, CU = q’N($). The converse is likewise easy. Q.E.D. 

Thus associates have the same norm in absolute value. The converse is 
net necessarily truc, as we shall see. 

Another way of stating Lemma 4 is that 7 (in Z)J satisfies an equation 
q2 - Ay f 1 = 0 (A is a rational integer) precisely when 7 is a unit in D,. 
Still another way is to say that 7 is a unit in Dfi precisely when 7 and l/v 
are algebraic integers (and units) in z),. (Note that if q belongs to 13, SO 
does fl/v = A - q.) 

THEOREM 2. Any given nonzero integer in D, cari be expressed as a 

product of a finite number of indecomposables ofD, in at least one manner. 

Proof. Any a of 0, which is decomposable cari be factored in D,, as 
a = alaz with a1 and a2 nonunits. Hence INa)I = INad lW4l > 
IN(aJj and IN(a.&, yielding factors in -0, of decreasing norm, to which the 
factorization process is extended. Clearly, decreasing norms make this 
process finite. Q.E.D. 

IMAGINARY FIELDS 

The study of units immediately distinguishes real and imaginary 
quadratic fields. The imaginary case is easier. 
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THEOREM 3. For an imaginary quadratic field the only units for D, are 

as follows: - 
7j = *d- I, f I for R(Y- 1) (four units), 

*I *2/-3 - 

rl= 2 ’ 
*I for R(d-3) (six units), 

7 = f I for other cases (two units). 

For any D, (n > 1) the only units are 7 = f I (two units). 

Proof. The most general integer of & cari be written for a square-free 
D, < 0 as o = (a + bdD,)/2 where a and b agree in parity if D, = 
1 (mod 4) or are both even if D, $ 1 (mod 4). Then we must salve 

4N(o) = a2 + bz(-Do) = f4. 

Since D, < 0, a solution with b # 0 is possible only for D, = -3, - 1; 
these cases are enumerated. 

In the expression for D, for n > 1 the value ID,1 is multiplied by n2 
(see Chapter III, $9); hence the conclusion. Q.E.D. 

REAL FIELDS 

In a real quadratic field, however, units other than f 1 always exist. In 
fact, this is true in any quadratic integral domain 53,, as we shall see. 

LEMMA 5. If t1 and E2 are two real nonzero quantities and if the ratio 

t,/12 is irrational, then for any positive integer T we cari find integers A 

and 6 (not both zero) for which 

(1) 
1 

VE1 + 6621 c (I&I + 152Wt 

IA1 I T, 161 I T. 

Proof. This is one of Dirichlet’s earliest applications of his boxing-in 
principle. We begin by assuming E1 > 0, l2 > 0, and we define the form 

(2) J-ta, b) = ~5‘1 + M,, O<a<T, O<b<T. 

We note 

(3) f(~, b) f f(a’, b’) if (a, b) # (a’, b’), 

since otherwise (a - a’)tl + (b - b’)t, = 0, contradicting the irration- 
ality of EI/E2. Now f(a, b) takes on (T + 1)” different values as a and b 
vary from 0 to T. These values lie in the interval between 0 and 



[Sec. 31 EXISTENCE OF UNIT.5 IN A QUADRATIC FIELD 97 

(IEJ + I[,l)T. Next, we divide that interval into T2 segments/,, I,, * * * , I~B 
with 

(4) Ij:(j- 1)A 5 x < jA, 1 = NM + l~,l)/~“~ 
We find that since (T + 1)2 > T2 there must be two values off(a, b) in the 
same interval (say) ZS, or If(s, b) -f(a’, b’)l < A. Thus, if A = a - a’, 
B = b - b’, we find integers A, B that are not both 0 for which 

(5) If64 BN I 2, IA] < T, IBI < T. 

If E1 and E2 are not positive, a minor modification of signs is made. 
Q.E.D. 

COROLLARY. If D is a positive integer, not a Perfect square, then a 

fixed integer m exists for which the equation 

(6) A2 - B2D = m 

has infinitely many solutions in integers (A, 6). 

Proof. By the preceding lemma, we cari find integers A and B (not both 
zero), for which 

(7) 
1 

IA - BdDI I (1 + d@/T 

Ml I T, IBI I T. 

for any positive integer T. Furthermore, 

(8) IA + Bd51 I (Al + IB\‘zj I T(l + z/?$ 

and, multiplying inequalities (7) and (8), 

(9) IA2 - B2DI I (1 + 2/$2. 

Now, if only a finite number of pairs of integers (A, B) occur as T+ m, 
it could not be true that IA - Bd%/ cari be made arbitrarily small without 
equaling zero. Therefore, there must be infinitely many different pairs of 
integers (A, B) occurring as T+ 00 for which A2 - B”D is bounded, and 
there must be at least one m for which (6) has infinitely many solutions. 

Q.E.D. 

LEMMA 6. Under the condition that D is not a Perfect square, there 

must exist at least one pair of integers (a, b) for which 

(10) a2 - b2D = 1, (0 # f 1). 

Proof. It is easy to insist that A > 0 in the preceding corollary for the 
infinitude of (A, B); otherwise there would also be only a finite number of 
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solutions for which A < 0, and, of course, there is only a finite number for 
A = 0. 

We take (m2 + 1) of the solutions, (A > 0), and we separate them into 
m2 classes according to the residues of (A, B) modulo m. There must then 
be at least two in one class, by Dirichlet’s boxing-in principle, 

(11) A, = A,, B, 3 B, (mod m). 

We set up qr = A, + B,v%; qZ = A, + B,dD and find 

w WrlJ = W2) = 4 ri = q2 (mod m). 

Of course, N(~,/~Z) = 1, but we must still show that qr/~a = Eisan integer. 
Since r],rj,’ = m, we Write 

(13) 6 = 1 + h - ~2>/~2 = 1 + h - v2h2’lm 

and qI - q2 is actually divisible by m. Explicitly, 

on expanding. We easily see that qI # q2, since (A,, B,) # (A,, B,) and 
q1 # -qZ, for A, and A, are both positive. Thus (10) holds. Q.E.D. 

4. Fundamental Units 

We now consider the set of a11 units of any real quadratic D,. The set 
contains at least one nontrivial unit (# f 1) by Lemma 6, (above), since, 
with D = n2D,, D, clearly contains a11 integers a + bd% (see Chapter III, 
$9). Consider the set of a11 units of D, (of norm + 1 and - 1). This set of 
units symbolized by {p} is a multiplicative group. We next consider the 
set of values II = {log [pi} which becomes an additiue group. For example, 
the inverse is -1og Ip] = log ]p’], since ]N(p’)] = IN(p)] = 1. Likewise, 
since ~~&VP~) = WwJ~ then 1% hl + log Ip21 = 1% IpIp21. We 
shall see that the set of values U constitutes a lattice. Then we use its basis. 

LEMMA 7. For any algebraic integer CO, of .O, (not necessarily a unit), 

both values log 10~1, log 1~0’1 cannot be arbitrarily close to zero unless they 

both equal zero. 

Proof. Referring to Figure 4.1, we see [WI - 1 and Iw’] - 1 cannot both 
be made arbitrarily small without being zero ; for the points (1, l), (1, - l), 
(- 1, l), (- 1, - 1) must a11 be separated by at least a finite constant 
distance from the point (0, w’), according to the lattice property of D,. 

Q.E.D. 
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THEOREM 4. The set Il = {log [pi} for p a unit of Do, constitutes a one- 

dimensional lattice. 

Proof. Since log lp’l = -1og Jpj, we conclude from Lemma 7 that for 
some constant k > 0 

(1) [logIpI( 2k if pffl. 

Furthermore, the quantities log IpI are a11 linearly dependent (with 
integral coefficients) on any nonvanishing element value (say) log JpOl. 
For otherwise some log (pll would exist for which E = log Jp,(/log Ip,,l is 
irrational, and, by Lemma 5, we could make the absolute value of the 
function f(a, b) = (a log IprI + b log 1~~1) arbitrarily small in absolute 
value, indeed < k. Then the unit p = plapob(# *l) would violate in- 
equality (1). Thus it must be possible forf(a, 6) to vanish for integral a and 
b not both zero. 

We therefore have the discreteness conditions for a lattice. (See Chapter 
IV, §3.) Q.E.D. 

The (minimal) basis of U is a one-dimensional vector written as log qn. 
We put this result in “antilog” form. 

COROLLARY. There exists a special unit q, in any D, such that all 

units p in D, are given by 

p = frlnrnt m = 0, &I, &2, i-3;**. 

This unit vn is called thefundamental unit if (for standardization) v,, > 1 
also. According to this definition; qn’ might be positive or negative, 
depending on N(qJ. Note this qn is precisely the unit which minimizes 
log p for p’an arbitrary unit > 0. 

As an illustration in R(d?), we cari prove ~7~ = (1 + V?)/2, q12 = 
(3 + &)/2, 11r3 = 2 + d?. Note that qr3 is the fundamental unit of D2, 
since, by the inclusion of Dn in &, the units of XI, are a11 to be found among 
the units of n,. Note also that IV(& = - 1. ZV(r12) = -t 1. The set of 
integers where N(w) = 1 is w = fr12”, in Dr whenever Ar(~r) = - 1. 

The answer to the question whether N(q,J = +l or N(q,) = -1 for 
the fundamental unit in an arbitrary Z), is not known completely. One 
cari prove with ease that in III1 (hence in 0,) N(r)3 = + 1 if D, has any 
prime divisor q = - 1 (mod 4); For, if q1 = (T + V16,,)/2, then the 
equation T2 - D,V2 = -4 leads to 

T2 G -4 (mod q) 

as q 1 D,, causing a contradiction. Furthermore, N(qJ = - 1, if D = D, 
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is aprime = 1 (mod 4), but this is a much deeper result, which we prove in 
Chapter XI, $2. If D, has no prime divisor 3 - 1 (mod 4) the value of 
N(q) is generally unknown, and becomes a matter of vital concern in 
Chapter XI, $2 (below). 

The table of fundamental units in the appendix is evidence of the irregu- 
larity of the size of the fundamental unit, which is governed by even weaker 
rules than the sign of the norm. 

EXERCISE 2. Give a separate proof of Lemma 6 based on the idea that o 
must satisfy an equation with discrete coefficients (integral values of o + o’ 
and MB’). 
EXERCISE 3. Show 7 = (1 + 45)/2 is the smallest unit vi (>l) for a11 real 
quadratic fields whatever. Hint. Consider a11 equations 9 - Ax - 1 = 0. 
Solve for r) > 1 and consider dq/dA. Likewise take ~9 - Ax + 1 = 0 and 
between these two equations choose the smallest q. Find the next six smallest 
units vi ( > 1) for quadratic fields (of whatever discriminant). 
EXERCISE 4. Construct the first 8 powers of vi = (1 + 45)/2 and tel1 which 
are fundamental units of some D,. Note that qu and qv cari be equal even if 
u # v. 

5. Construction of a Fundamental Unit 

As a practical matter, one could not use the Dirichlet boxing-in principle 
to construct a unit or even to construct numbers of equal norm. One 
normally would use the method of continued fractions, but this method has 
the disadvantage of being incapable of generalization to fields of higher 
degree. We shah find an “irregular” but pragmatic method in Chapter IX, 
using factorizations. In the meantime, we shah show how to verify units 
once they are found (say) in Table III (appendix). 

LEMMA 8. Of all the units p in Do,, the fundamental unit minimizes 

IP + P’I * 
Proof: Let p satisfy the equation, with A written for p + p’, 

p2 - Ap + N(p) = 0, N(p) = fl. 

Then we cari take A > 0 by a choice of sign on p. We find that, whether 
N(p) is + 1 or - 1, the root p that satisfies p > 1 is 

p = [A + YA - 4N(p)]/2. 

Thus p obviously increases monotonically with A once N(p) is chosen as 
+ 1 or - 1. We just have to show that the minimum value of p + p’ for 
which N(p) = + 1 exceeds the minimum value of p + p’ for which 
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N(p) = - 1. Clearly, if N(r]) = - 1, we need note only 7’ = -I/v, 
whereas (v’)~ = I/V~. Thus 

(2) qz + (qy = q2 + 1/+ > q2 > q > 17 - l/q = q + 7’. 

Hence the 7 of norm - 1 has the smaller value of 17 + 7’. Q.E.D. 

In practice, then, if some unit p0 is known to satisfy 

(3) p2 - Ap f 1 = 0, for A = A,, 

we need only ask which of the equations for 0 I A < (A,( has the smallest 
A and also produces a unit of D,,. The work cari be lightened considerably, 
since A is restricted by 

(4) A2 F 4 E 0 (mod DJ. 

THEOREM 5. The fundamental unit of I)n cari be found by considering 

the smallest integer T for which 

(5) J2- DU2= f4 J > 0, u > 0, 

where D = n2D,, and U is taken even when n is even and D, $ I (mod 4). 

Then the fundamental unit of I), is (J + &D)/Z and the most general 

unit is h[(J + UV@/~]~. Here D = n2D, in the usual notation. 

Proof. Note p = (T + U1/5)/2satisfies theequationp2 - Tp f 1 = 0, 
of type (3) (above). (See Chapter III, 99.) Q.E.D. 

TO construct a fundamental unit of n, from a fundamental unit of Dr, 
we require a special result, which Will be approached in a mode of greater 
generality. 

LEMMA 9. If qI is a unit of Q, then for some exponent t, 0 < t 2 n2, 

rlIt belongs to CI~. 

Pr?o$ Note that the most general integer of D, is a + bw,, where a and 
b are integers; hence we consider n2 residue classes based on the residue 
of a and b modula n. If we list ris, where s = 0, 1, 1 * * , n2, we have n2 + 1 
units of which two must belong to one class. Thus ~jli’l = ri’” (mod n), 
for 0 I si < s2 2 n2. Now we let s2 - s1 = t, and we find for some 
integer A in .Oi 

(6) qlse = qlsl + hz; 

hence, transposing qr81 and multiplying by the integer q;Q, we see 

(7) Qt = 1 -l- nAq;s2 = rational modula n. 

Thus qlt belongs to D,, by the basic definition of XJ, in Chapter III, $8. 
Q.E.D. 
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EXERCISE 5a. Find the fundamental unit of D, for R(dfi), starting with 
p = 18 - 5 dfi and considering equations of type (4). 1s this p the fundamental 
unit of D,? 
EXERCISE 56. Find the fundamental unit of D1, Dz, D3, D,, and D, for R( 42) 
starting with Q = 1 + 42. 
EXERCISE 6. Prove that every unit t of D, cari be written as I = r + np, 
where ,U belongs to 0, and rZ = &l(mod n). 
EXERCISE 7. Show that a unit of R(d&,), (D, square-free), cari have the 
form (a + bd&)/2 for a and b odd only when D, = 5 (mod 8). Show that the 
congruence is not sufficient by consulting the units in Table III (appendix). 

6. Failure of Unique Factorization into Indecoruposable Integers 

In order to appreciate the complexities of the theory of quadratic fields, 
we must accept the fact that unique factorization is not generally valid. 

A typical case is presented by the field R(d=). Here we observe as an 
illustration 

(1) 21 = 3 . 7 = (1 + 24-5)(1 - 2Y-5). 

The factors shown are a11 indecomposable. Otherwise, if we Write 
- 

< = E1E2 = 3,7, or (1 f 22/-5), 

taking norms, N(t) = N([,) N(E,) = 9,49, or 21. With the most general - 
ti = a + bd-5, we find that we must solve 

(2) a2 + 5b2 = 3 or 7. 

Thus 6 is not decomposable into two factors (each with N(<J > l), since 
(2) is an impossible equation (by tria1 and error). 

Now, 1 + 2Y-5 divides the product of two indecomposables, 3 and 7, - 
but does not divide either one, since N(l + 22/-5) = 21, which does not 
divide N(3)(= 9) or N(7)(= 49). There is no unique fuctorization into 

indecomposable algebraic integers in R(d=). 
Our current state of knowledge of modules holds some hope that they 

cari provide the answer. We say in the introductory survey that in contrast 
to the impossible (2) 

(3) 2a2 + 2ab + 3b2 = +N[~U + (1 + v%)b] 

does represent 3 and 7 for an obvious choice (a, b) = (0, 1) and (1, 1). 
A multiplicative theory of modules Will accordingly be developed. 

Lest the reader jump at conclusions, we should note that the factoriza- 
tions involved in “indecomposability” are not always trivial. For instance, 
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it Will be seen later on that R(2/6) has unique factorization. Note by way 
of verification that no difficulty arises here with regard to the statement 

(4) 6 = (di$ = 3 . 2. 

Actually, we cari show &, 3, and 2 are a11 consistently decomposable. 
For instance, 6 = -(3 + &)(3 - &)(2 + 1/6)(2 - v%), whereas 

1 

(3 + V?i)(3 - d6) = 3, N(3 f dz) = 3, 

(5) (2 + YS)(2 - 46) = -2, N(2 f vs) = -2, 

(3 - &)(2 + dii) = -(3 + d6)(2 - d6) = dz. 

It is then an easy result to see that 6 now has the samefour factors in (4) 
either way! 

The matter is still not settled because the statement “6 = (&@’ in (4) 
should not be acceptable unless we cari show 2 and 3 to be associates of 
Perfect squares in R(&i), (2/2 and d3 are excluded from the field). 

We note 

(6) 
i 

(3 + Y6)/(3 - A) = 5 + 2Y6, = p1, 

-(2 + Y$)/(2 - Y6) = 5 + 246 = p1, 

where pi is a unit. Thus the factors of 2 and 3 are associates. Hence, 
finally, making use of the unit in (6) we Write (5) as 

1 

3 = (3 - di)2p1, 

(7) 2 = (2 - &)2p1, 

d6 = -(3 - d6>(2 - d6)p1, 

which is a wholly satisfactory explanation of how statement (4) really leads 
to a unique factorization. 

With these remarks in mind, we turn our attention to some cases in 
which unique factorization succeeds and is easily demonstrated. 

EXERCISE 8. Show that, if p and y are primes, then, in R(d -~y), -py = 
- 

4% d-py = -@)(y) p re resents a factorization in two irreconcilable ways 
into indecomposable algebraic integers. 
EXERCISE 9. Assume for odd primes p and y that (q/p) = (~/y) = -1 (in 
Legendre symbols). Then show that for neither sign ispx2 - qy2 = ht4 solvable. 
From this show thatpq = ‘/p4 dp> = (p)(q) is a “nonunique” pair of factoriza- 
tions into indecomposables in R( 4~7). 

EXERCISE 10. Show that in R(6) the relation 14 = (v%)2 = 7 .2 does 
net violate unique factorization by finding integers of norms equal in absolute 
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value to 7 and 2 by tria1 and error and by showing that 1 and 2 are associates of 
squares. 
EXERCISE 11. Show 10 = (dTo>” = 2 5 leads to nonunique factorization. 
Hint. Show the unsolvability of x2 - 10y2 = f2, f5. 

*7. Euclidean Algorithm 

The basis of unique factorization in rational number theory is the 
Euclidean algorithm, which we now reformulate for an integral domain D,. 

An integral domain Dn is Euclidean if given any two elements u and @ 
(f 0) of D,; an element y of D, cari be used as “quotient” SO that the 
“remainder” on dividing E/B is of smaller norm than /3. Symbolically, 

THEOREM 6. IfDn is Euclidean, then any element ofD, cari be expressed 

uniquely as a finite product of indecomposable elements, ignoring units and 

the order of the factors. 

Proof. We first factor any element of Dn into indecomposables (by 
Theorem 2, $3 above). We then show that the indecomposables are primes 
(by Lemma 11 below), SO that Theorem 1 applies. Here the proof goes in 
stages that the reader cari easily recognize by recalling elementary number 
theory. 

LEMMA 10. If a and /I are two elements of DC),, a Euclideon integrol domoin, 

then they have a greatest common divisor, gcd (a, /?) = y in the sense that 

any p which divides cc and p divides y, and conversely. We cari Write 

(2) y = ME + prv 
where 5 and .q belong to D,. 

Proof. Consider the set of elements aE + /?q = f(t, $. Let the element 
of smallest norm (in absolute value) be 

(3) Y =.f(Eo9 vo) = 4 + I%W 

Then we assert that anyf(E, 7) where 5 and 7 belong to D, is a multiple 
of y. Otherwise, let y1 = f(t,, ql) where y1 is not a multiple of y. Clearly, 
then, by the Euclidean algorithm, for some p, IN(y, - py)l < IN(y)1 and 
thus 0 # y1 - py =f(El - p[,,, q1 - pu,) has smaller (absolute) norm 
than y, contradicting the definition of y. 

It therefore follows that y satisfies the property of the theorem for 
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y 1 a = f(1, 0), y ) p = f(0, 1) whereas any p that divides a and p 
necessarily divides y = [(a/p)E,, + (~/p)q,]p. Q.E.D. 

LEMMA I I. If T is an indecomposable element of r), and TT 1 c@, then 

77laor57Ip. 

Proof. If r +’ a, then, since 7r is indecomposable, gcd (r, a) = 1. By 
Lemma 10, we have 

(4) 1 = tln + tza 

for integers Er, lZ of -0,. Then p = 6inB + Ezaa = g(t,@ + &(a~/n)) and 
= 1 BO Q.E.D. 

*8. Occurrence of the Euclidean Algorithm 

If we divide (1) of $7 (above) by N(b), we see that the Euclidean algorithm 
for DT), states the following: for any fraction a/b formed by elements of D, 
an integer y of -0, exists for which 

(1) Ma/8 - r>l < 1. 

We note that the denominator of a//3 cari always be rationalized SO that 
a/@ = aj3’/B, where B = A$‘$ Thus the most general fraction in D, = 
11% 4 1s 

(2) ;= 
A, + A,ro 

B > 

whereas y = a + bw. Thus, when A,, A,, B(> 0) are given integers, we 
are trying to find integers (a, b) such that 

(3) 

COMPLEX CASE (D < 0) 

In order to caver a11 cases of D, (for n 2 l), we cari take for D any 
negative integer; then we cari always take w = %6, while we cari also take 
w = (V6 + 1)/2 when D = 1 (mod 4). This includes a11 cases of n, 
in Chapter III, $9. 

Either way, we take the plane with the complex integers as represented in 
Chapter IV and for each lattice point E we lay out the region consisting of 
points closer, in the ordinary Euclidean sense, to 6 than to any other lattice 
point. This region is called a zone. When w = %6, the zones are simply 
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Im E 

FIGURE 6.1 

FIGURE 6.2 

small rectangles, as shown in Figure 6.1. The farthest point from the 
origin in the zone around the origin has distance 

(4) 

In the case in which w = (1 + do)/2 the zones are formed by taking 
the perpendicular bisectors in the parallelograms, as shown in Figure 6.2. 
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The farthest point from the origin in the zone about the origin is easily 
seen to be Qi the point of the imaginary axis equidistant from 0 and w. 
Thus - 

IQil = IQi - ~1 = Qj - 1 - !Id!!! . 
2 2 

Q” = (Q - 4@/2)2 + 4. 

(sa) Q = (I~l + 1)/4d(DJ, D E 1 (mod 4), D < 0. 

(5b) -Qi = (1 - D)/4JB. 

Now, since the norm of 5 in R(d;) is precisely the Euclidean distance 
((Re E)2 + (Im t)3”, it follows from inequality (1) that a necessary and 
sufficient condition for the existence of a Euclidean algorithm is that we be 
able to put the zone about the origin wholly inside a unit circle (SO that not 
even the extremities of the zone lie on the circle). We note, for example, 
that the extreme point of the zone corresponds by (5b) to a fraction in the 
field. Thus it is required that the expression (4) or (5~) be less than 1. By a 
simple exercise in inequalities we now discover: 

THEOREM 7. The only imaginary Euclidean integral domains are &, 

the ring of all integers in R(d%) for D, = - 1, -2, -3, -7, -II. 

THE REAL CASE (D > 0) 

We caver the cases of D,, as we did for the complex case, except D is no 

Perfect square. But here, we have a much more difficult problem, for the 
zones are very complicated. For example, if o = %%, inequality (3) 
becomes 

(6a) 

which could be satisfied by an infinite number of integers (a, b) for a given 
pair of fractions A,/B and A,/B. We therefore have trouble in saying (6~) 
is impossible, although we cari check that it is possible “often enough” to 
establish the Euclidean algorithm in many cases. 

THEOREM 8. The sets of& of all integers in R(&), R(6) are Euclidean. 

Proof. Let A,/B, A,/B be given; then we need only choose a and b as the 
closest integers to these fractions: 

(7) IA,/B - a[ < 4, IA@ - bl < $, thus, with D = 2, 3, 

(8) -014 < (A,/B - a)” - D(A,/B - b)2 I 114. Q.E.D. 
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In a few cases we cari show the nonexistence of the Euclidean algorithm 
directly: for instance, for D, in R(Ys); then the integers of Dz are of the 
form a + 6&. If we let a/B = (1 + Y5)/2, we see that for any y in D,, 
IN(a/B - y)] 2 1. by virtue of the fact that a/B happens to be an integer in 
Dl, and the norm is therefore a ration& integer. Hence the Euclidean 
algorithm is seen to be inoperative for that particular value of a/B. 

It happens to be true (although we omit proof) that D1 for R(d;) has 
the Euclidean algorithm, TO illustrate one case, take tc = 1 + 46, B = 2. 
We wish to choose y = a + bY6, SO that in accordance with (1) and (6~) 

(6b) I(+ - u)~ - 6($ - b)21 < 1. 

Now if we looked for (a, b) “close to” (t, +) we would hardly think of 
choosing a = 2, b = 0, which actually satisfies (66). Yet, we could have 
even chosen a + bd6 = 14 + 6&, which looks much farther away in the 
lattice Figure 4.1 in the Euclidean sense but not in the sense of the norm 
(64. 

We next consider cases in which w = (1 + d5)/2 and D E 1 (mod 4), 
hence D 2 5; and we Write cr/B = A,/B + wA,/B. We search for the 
integer y = a + bw satisfying (1). Now 

(9) ~(i _ ï) = ($A - u)2+ (2 - a)($ - b) - 7 (2 - b)l. 

Thus, if we take a and b as the closest integers to A,lB and A,/B, we find 
we are dealing with new variables 

(10) P = A,lB - a, Q = A,IB - b, 

which satisfy 

(11) -*<PI+, -$<Q<$ 

LEMMA 12. Consider the function 

(12) f(P, Q) = P2 + PQ - sQ2, 

where s is a real constant >I and P and Q are restricted by condition (1 1). 

Then 

(‘3) max If(P, Q)l = If(-& +~I)I = (4s + 1)/16. 

Proof. The maximum of If(P, Q)l . 1s achieved on the boundary of the 
square defined by condition (11) because of the homogeniety. Thus, since 
f(tP, tQ) = t2f(P, Q), the larger ltl becomes, the larger If/ becomes. For 
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the boundary we use the symmetry involved in the conditionf(P, Q) = 
J-(-P, -Q); hence we cari considerf(P, +) andf($, Q), for -2 < P < Q 
and -+ < Q < $. We cari differentiate and we find 

i?f(P, +)/aP = 0 at (P, Q> = t-i, +il, 

W3, Q>/aQ = 0 at (f’, Q> = (ik 1/(4~N. 

Then comparing with “end points”, 1.0-4, tl = (4s + W’Xh V(~S)) 
= (4s + 1)/(16s), If(-+, S)I = s/4, and If($, $)I = 1(2 - S)/~I, we see the 
maximum is as indicated in (13). Q.E.D. 

THEOREM 9. The set of all integersQ in R(6) or R(I~) are Euclidean. 

Proof. We just verify that with s = (D - 1)/4 these values of D make 
(4s + I)/l6 < 1 and are = 1 (mod 4); thus Lemma 12 applies. Q.E.D. 

The Euclidean algorithm is, however, not excluded when D > 16, for 
the “closest” (a, b) to (A,/& A,/&) need not be the ones given by (10) and 
(11) for Lemma 12. 

It has been proved that the Euclidean algorithm is valid for a variety of 
cases including the integral domain of a11 integers (OI) of the fields of 
R(YD,) for’ 

D, = 2,3, 5, 6, 7, 11, 13, 17, 19,21,29, 33,37,41, 57,73. 

Recently Davenport (1946) proved that these are the only such fields. 
There are unique factorization fields that are not Euclidean in the real 

and in the complex case. The first is D, = 14 and D, = -19. Further 
information cari be found in Table 3 in the appendix. 

EXERCISE 12. Verify that 8, in R(d=) is not Euclidean directly by taking - 
a ratio a/B of two numbers of type a + b %’ - 5 and showing no suitable y exists 
for (1). 
EXERCISE 13. Do the same for D, in R(d-3) (where the integers are a + 
bd-3). 
EXERCISE 14. For which complex non-Euclidean integral domains f& Will 
the crucial a/B [for which no y satisfies equation (l)] necessarily be the extremities 
of a zone ? 
EXERCISE 15. Verify that r2 - 6s2 = R2 - 6S2 if R + Sd6 = (r + d6)(5 f 

2d6)“. From this find an additional value of (n, b) for which (6b) holds that is 
further from (0, 0) than (14, 6) when D = 6. 

1 Attention is called to the fact that D, = 97 had been incorrectly listed in the litera- 
tue for severai years. (See bibliography.) 
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EXERCISE 16. Show that the equations A 2 - 14B2 = fl, &2, f3 cannot 
bave solutions in which both A and B are odd by considering both sides modulo 
8 and modulo 3. From this show that with a/B = (1 + di4)/2 no y  exists to 
satisfy (1) and thus D, for R(dz) is not Euclidean. 

*9. Pell’s Equation 

The study of units goes back to antiquity and precedes a11 other results 
in algebraic number theory. Euclid, in one way or another, knew formulas 
like 

1 = (%5 - 1)(X4 + 1) 

by properties of circles. Given a circle of unit radius, at an exterior point 
of distance 16 from the tenter tangents of length 1 cari be drawn. (One 
need only visualize a circumscribing square with diagonal.) The next step - 
was taken by Archimedes (who worked with d3), but who, in essence, 
built up recursion formulas. For instance, let 

(1) II, + v,dZ = (1 + Y2)“, 

then 

(2) un2 - 2u,a = (- l)“, 

as we see by taking norms. Actually, the binomial expansion was not 
present in those times but this type of formula was discovered: 

tu, + v,Yi)(l + dz) = tu, + 2uJ + dZ(u, + vn) = un+, + v,+1dZ, 

1 
u?l+1 = u, + 2v,, 
un+1 = u, + v,, 

(ul = v1 = 1). 

From the last two equations we learn that by substitution 

2 
%+1 - 24+, = -(un2 - 2v,2) 

directly, without even the intervention of radicals. 
Historically, the equation 

(4) x2-my2= fl 

attracted a great deal of interest. Eventually Euler named it after Pell 
(a seventeenth Century mathematician). There is a straightforward compu- 
tational procedure for determining a11 solutions by continued fractions, 
which we do not consider here. The important feature for us to recognize, 
assuming m > 0 but not a Perfect square, is that a11 such solutions corne 
from units in 9, the integral domain associated with R(6). 
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EXERCISE 17. Write out a general rule for determining exactly to which 
integral domains Dn the unit x + ~4; belongs if z and y satisfy (4). 
EXERCISE 18. Find the general solution of the six equations 

x2 - 2oy2 = 4, -4, *4, 1, -1, il 
in terms of powers of SO~T$ fundamental unit. Hin?. Start with (1 + d5)/2. 

EXERCISE 19. Show that if n = (a + bd@/2 is a unit of norm k 1, q3 has 
the form a’ + 6’45 (with “no denominator”). Hirrt. Show q3 = &r2 r 1) F a. 

**lO. Fields of Higher Degree 

Although we devote most of our attention to quadratic fields, in the 
process we would do well to note briefly to what extent the material 
becomes unified under the study of fields of arbitrary degree. In fact, the 
theory of units illustrates this unification. Indeed, the persistent dichotomy 
between indefinite and definite quadratic forms seems less severe when 
referred to fields of arbitrary degree. We shah merely make some relevant 
statements (without proof). 

A unit is, in general, an algebraic integer which divides 1. 

THEOREM 10 (Dirichlet). Let a field R(8) be generated over the rationals 

by means of an algebraic number 0 which has r real and 2s complex con- 

jugates (SO that r + 2s = n, the degree of the equation for 13). Then in the 

integral domain 0 corresponding to R(B), for some definite root, the most 

general unit is given by assigning integral exponents ti in 

(1) w = phrl;’ . . . qmL%, (m = r + s - 1). 

Here p is an imaginary root of unity of finite degree. Thus pg = 1, whereas 

71, * * . > 7, are a set of-so-called fundamental units in R(0) (which cannot 

be replaced by fewer units). In effect t, is determined modulo g, but the 

other ti take on all integral values and all the units are uniquely given by 

formula (1). 

We observe the quadratic case: 
If D < 0, m = 0 (there is no fundamental unit), but when D = - 1, 

p = i and p* = 1; when D - - 3, p = Q + c$ and p6 = 1; other- 
wise,p= -1andp2= 1. 

If D > 0, m = 1 (or there is always a fundamental unit), and p = -1, 
(p2 = 1). 

Despite superficially promising appearances, it takes much more than 
this formula to unify indefinite and definite quadratic forms. Indeed, it is 
necessary to re-examine the foundations in a manner well advanced’ 
beyond the present work. 

1 Sec the Concluding Survey. 
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TO conclude this section, we note that the problem of finding units is in 
general extremely important and also extremeiy difficult. The key to 
Fermat’s last theorem, indeed, is buried in the problem of finding “cyclo- 
tomic” units in R(p) where p = exp 2ni/p, a primitivepth root of unity for 
p prime 2 5. It is seen that the field R(p) is of degree p - 1, since the 
equation 

(2) f(P) = (P” - l)/(p - 1) = /P-r + pp-2 + * . * -l- p + 1 = 0 

happens to be irreducible. lt is easily shown that the imaginary roots of 
unity are ~‘0, and we further observe that r = 0, s = (p - 1)/2 as a11 

(P - 1) conjugates of p are imaginary (namely exp 2nki/p = p’, k = 
1,2,*** ,p - 1). There are many real units that one cari construct, such 
as lt = pt + l/pt = 2 COS 2d/p. Yet a complete set of fundamental 
units is generally unknown. As an example of irregular behavior, the set 
El, t2, . . * 5,-i does serve as a fundamental system for p = 5, 7, 11, but 
not for Iargerp such as 17. (Compare Exercise 19, Chapter III, $10, and 
Exercise 22, below). 

EXERCISE 20. Verify that each of the following are units for the appropriate 
field: 1 + 2% + 2%, 4 + 3 ‘3% + 2 .3x. Note that the conjugates are formed 
as in Chapter III, $10, Exercise 22. 
EXERCISE 21. Show that in (2), the quantities pic are a11 roots unless p 1 k. 
Show that pt + l/pt = (pt + i)($ - i)/pt is a unit by using 

P--l 

k@Jk - 4 =fW 

EXERCISE 22. Show that whenp = 17 the roots tt = 2 COS 2d/17, (1 < t 2 7) 
are not fundamental by showing L$$T& = - 1. 



chapter VII 
Unique factorization 

into ideals 

1. Set Theoretic Notation 

The failure of unique factorization led Dedekind (1871) to the introduc- 
tion of “ideal” factors which consist of special types of modules rather 
than individual “idealized” numbers. Before going into detail, it is 
necessary to review the basic terminology of sets now commonly accepted, 
which was introduced primarily for this purp0se.l 

For convenience, we use module notation %R, ‘3, * * * to denote the sets 
(restricted to sets of algebraic integers with the notation a, p, * * . for the 
elements). 

We say one set of elements ‘!VI contains another set %, i.e., 

YJl2Yl or %nsYJJ 

if every element of 92 belongs to !IX. The converse relation may or may not 
hold. If m includes % but 92 does not include ‘Y.& we Write 9X 1 ‘3 or 
‘3 c m, and we cal1 this strict inclusion. If YJI 2 ‘% and ‘3 2 9JJ, we say 
YJI = % or the sets are the same. 

If an element a belongs to %R, we Write 

aE9J or 9ll3a. 

Actually the E and 3 behave very much like the c and 3 and only the fear 
1 The set-theoretic concept, indeed, proved SO satisfactory that Dedekind later (1872) 

introduced a set-theoretic definition of irrationals, known as the “Dedekind tut.” 

113 
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of esoteric logical paradoxes causes us to denote “membership” by a 
different symbol than “inclusion.” 

The set consisting of a finite or infinite set of elements would be denoted 
by {a, ,9}, {IX, p, y, * * e}. Thus {a} c ‘9Jl means precisely the same as 
a E !DL For instance, !JJl c !Jt Will mean that a E CYJI implies a E ‘8. 

Actually, the set terminology has been subsequently enlarged to become 
a calculus of propositions with symbols for implication, conjunction (andj, 
disjunction (or), etc. We shall refrain from overindulgence in symbolic 
language. We shall, however, use the negations Q , $, 4, $, as well as f. 

The union of two sets SYJI and ‘% is the set consisting of a11 elements in fm, 
!Jt or both. The union is denoted by 9JI U ‘3. 

The intersection of two sets 1132 and ‘% is the set of elements common to 
both. The intersection is denoted by !IN n ‘%. 

We define the product aY.lt as the aggregate {a(} where E E ‘?JJL Thus 
a(m) = (aj3)YJl, etc. 

We define the conjugate of a set m as the set of conjugates denoted by 
m’. Thus (arnZ>’ = a’(Jn’, etc. 

There is a vast literature on Boolean algebra dedicated to the manipula- 
tions of the symbols U, n, 3, 3, 2, C, =, E, 3, and negations. We 
shah carry this out only for a special type of module where the operations 
are quite rewarding in their consequences. 

EXERCISE 1. Show that the intersection of two modules is also a module as 
well as the product of a module by an algebraic integer using the set-theoretic 
notation whenever possible. 

2. Definition of Ideals 

We start with z>,, a quadratic integral domain. We define an ideal a 
in D, (denoted by lower-case gothic letters) as a module in D, with the 
special property that if 5 E 0, then la E a. In symbols, if 

(2) a f /I E a (property valid for modules), 

(3) a5 E a (property distinguishing ideals). 

There are two ways to look at ideals. One way is to regard the ideal as a 
module with a definite module basis and to treat each element in terms of 
coordinates. The other is to define ideals set theoretically by (1 to 3) with 
greater freedom from details of notation. 

In favor of the second method it must be noted that even at the start the 
definition (1 to 3) would prove burdensome if it had to be related to the 
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module basis a = [a, b + ccc),], where w, is defined in Chapter IV, $10. 
Specifically, with 

a = a5 + (b + ccc),)y, 

E = r + sw,, at= X+w,Y, 

we would have to Write: For a11 integers r, s, x, y there exist integers X, Y 
such that 

(4) (r -l- sw,)[uz + (b + cw,M = aX + (b + con) Y. 

Yet the value of the module concept is not wholly computational. For 
example, an ideal, regarded as a module, contains rational integers such 
as j, the index of the module. (See Chapter IV, Exercise 7.) Actually, 
the module basis approach is required for calculations with quadratic 
forms but not for factorization calculations, as we shah see later on. 

The reader might verify that the definition cari be concisely expressed 
analogously to (4) as follows : 

(5) If a, ,19 E a and E, q ED~, then a5 + & E a. 

We consider the set formed by the conjugates of the elements of an ideal 
a in D,. They are seen (in Exercise 3, below) to form an ideal in D,, called 
the conjugate ideal and denoted by a’, like conjugate elements. 

The ideal has the motivating property that a congruence is a more useful 
concept than for a module, For example, if 9-R is a module then a 
congruence cari be subjected only to module operations: 
If 

a = /? (mod SJI), %BEL3, 
and 

y s 6 (mod %II), Y, 6 E Dn, 
then 

afy=/3&6(mod!JJI). 

For an ideal a, however, we also have the multiplication: 
If 

a E p (mod a), a, B E on, 
then 

wa E CI$ (mod a), for any w E 0,. 

Thus (with /? = 0) we see that “members of an ideal” serves as a generali- 
zation of “multiples of an integer” from rational to algebraic numbers. 

EXERCISE 2. Verify in detail the equivalence of (1 to 3) and (5). Show that 
the set Fi& for E E 0, forms an ideal. Show that the intersection of two ideals 
forms an ideal. 
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EXERCISE 3. Show that the set of conjugates of elements of an ideal form an 
ideal. 
EXERCISE 4. If an ideal in 0, contains two relatively prime rational integers, 
it consists of L),. 

3. Principal Ideals 

Starting with a, a fixed element of D,, we define theprincipal ideal in Il,, 

(1) a = (a) 

as the set of a5 where E E D,. 

THEOREM 1. The ideal equality 

is valid if and only if a/,8 is a unit or a = @ = 0. 

Proof. The proof is simple since (a) 3 ,!?; hence 

(2) @=a( forsome LED,; 

likewise (/I) 3 a; hence 

(3) a = P~I for some q E D,, whence, unless a = /3 = 0, 

the substitution of (2) into (3) gives Er = 1. Q.E.D. 

Otherwise expressed, the principal ideals generated by elements of an 
integral domain identify a11 associates of a given element with one another. 

An integral domain in which a11 ideals are principal is called a principal 
ideal integral domain. 

THEOREM 2. An integral domain with the Euclidean algorithm is a 

principal ideal integral domain. 

Proof. We simply note that for any ideal a, we cari define a as the 
element of a with minimal positive norm. By the argument in Chapter VI, 
$10, a = (a). Q.E.D. 

Thus for the fields listed in Chapter VI $8 X), has ideal factorization 
corresponding exactly to the ordinary factorizations. We shall see later 
that ideal factorizations are unique; hence we have another proof that 
ordinary factorizations into indecomposables’ are unique when the 
Euclidean algorithm holds. 

1 In some elementary texts ideals are defined in the integral domain of rational integers 
for this purpose. For simplicity, we consider only ideals in Do,; thus (m) means mn,. 
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As special cases D, = (1) = (q), where 7 is any unit of D, This is often 
called the unit ideal. Also the ideal (0) contains only 0, common to a11 
ideals. Then (0) G a c (1) for any ideal. The zero ideal is excluded from 
a11 consideration to simplify the discussion of factorization. 

As a matter of practice, the symbols cc and (a) might be confused and it 

may be necessary to distinguish the ideal ((7 - 2/5)3(7 - v?)) from the 
product (7 + d3>3(7 - di) by the use of additional parentheses (when 
the product is inconvenient to “Write out”). 

As a further convenience, we shall speak of “ideal” rather than “ideal in 
0,” when the context is clear. 

4. Sum of Ideals, Basis 

We define the sum of ideals as the set 

(1) a + b = {CX + p} where cc E a, /j’ E b. 

We must note first that the sum of two ideals is an ideal. TO see this we use 
the definition (5) of 92 directly: let ai + Pr and cc2 + PS be formed with 
cc1 E a, pi E b; then (for the definition) form the quantity 

p = E(al + PJ + T(a2 + PJ where E, y E D,. 

But now p = a3 + &, where 

\a3 = &q + va2 E a, 
\B, = ~PI + r/% E b. 

Thus p E a + b. 
It is trivial to verify 

a a+b=b+a, (Commutative law) 

(3) a + (b + c) = (a + h) + c, (Associative law) 

(4) a+b?a. 

We next introduce the notations 

a + b = (a, b), 

or, in particular, if a = (a), b = (/Y), we Write 

(5) 
i 

a + b = (a) + b = (2, p), 
a + b = (a) + (P) = (a, Pl. 

The variations of the notation for three or more addends are easily 
imagined and clearly consistent. 

Thus the ideal 

a = (a,, az, * . . , a,) = alDn + a2Dn + * * . + a$, 
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consists of the aggregate 

glu1 + Ep2 + * * * + &Us}, li fz D,. 

We say that the algebraic integers ui, az, . * . , a, form an ideal basis 
for a. This should not be confused with the module basis in Chapter IV, 
since ti are algebraic (and not necessarily rational) integers, nor does the 
set of ai need to be “minimal” (in the sense of unique representation of 
ideal elements through the Ei). 

We should compare the notation in rational number theory, (a, b) = g 
for g the gcd of a and b. It is consistent with the present ideal basis nota- 
tion in that the basis (a, b, a, . * * , A), representing an ideal a in D,, cari 
be replaced by (g, K, * * . , A). TO see this result, consider the relations: 
aDC>, + bDC>, 3 g, and gD, 3 a and b, hence aDn + bD, = gD,. In 
particular if g = 1, then a = (1). 

THEOREM 3. Every ideal in a quadratic integral domain has a finite 

basis. 

Proof. Select any element ai E a, a given ideal. Then, if a = (a,), the 
theorem is proved. If a # (a&, Select an a2 E a, CQ $6 (cQ). 

If a = (a,, a,), the theorem is proved, otherwise let a3 E a, as 4 (a,, a& 
etc. 

We achieve what is called an ascending chain of ideals: 

(6> (4 c (a,, 4 C (aIy a2, 4 C * . * c a. 

No two consecutive elements of the chain are equal, since, generally, 
a, tf (a,, a2, . * * , a +J. We need only show the so-called ascending chain 
condition, namely, every ascending chain of ideals under inclusion isjnite; 
hence at some point a = (a,, x2, * * *, ~3. In our context the condition is 
satisfied very cheaply by recalling that ideals are a special kind of module. 

THEOREM 4. If9Jl is a given module in D,, there is only a finite number 

of modules X between ‘9Jl and DC),: 

Proof. The index [D,/X] < index [~,/‘zJJI]], since in D, two elements 
a, /I where a $ p (mod X) satisfy a +z6 B (mod ‘m). The index fixes the 
value ac in the canonical basis, thereby restricting a, b, and c. Specifically, 

X = [a, b + cw] O<b<a, 0 < c, 

whence only a finite number of X is possible. Q.E.D. 
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COROLLARY. There is only a finite number of modules with a fixed 

bound on the index. 

TO relate the ideal basis with the more general module basis, we note 
the following: 

THEOREM 5. If the module [a, /?] forms an ideal, then [a, /3] = (a, ,8), 
SO that the module basis serves as an ideal basis. 

Proof: We first note trivially that (a, @) 2 [a, /?], whether or not [a, fi] 
is an ideal; but if [a, p] is an ideal, from the fact that [a, /3] 3 a and [a, 813 @ 
it necessarily follows that [a, ,B] 2 (a) + (/?) = (a, p). Q.E.D. 

EXERCISE 5. Show that the module [l + dz, 1 - d2] is no ideal by (a) 
working directly from the definition of an ideal and by (b) showing that this 
module represents only those rational integers that are even, whereas the ideal 
(1 + t’2, 1 - dZ> is (1). 
EXERCISE 6. Show that the elements of the ideals (al, c(~, . . , a,) and 
cal’, %‘> * . . > a,‘) are conjugates. 

5. Rules for Transforming the Ideal Basis 

It is easily seen that the number of elements in the ideal basis cannot be 
determined from the single fact that a quadratic module has two elements 
in the module basis. The greater flexibility of the ideal basis is emphasized 
by these simpler rules of transformation: 

(a) The elements of an ideal basis may be rearranged. 
(b) Repeated elements cari be omitted. 
(c) Any ideal element cari be inserted in the basis as an additional 

element. 
(d) Any basis element cari be omitted if it is a member of the ideal 

determined by the other basis elements. 
(e) In particular, a zero basis element cari be omitted. 
(f) A basis element cari be replaced by its product with a unit. 

We cari verify that each law follows from definition in a manner very 
much like that of module theory (Chapter IV, $9). Rules (a), (c), and (d) 
easily are a minimal set of rules. 

Indeed we cari always reduce a quadratic ideal to two-element form by 
using basis operations for an ideal, since they include (among others) 
basis operations for a module. Yet it Will not always be clear (as in the case 
of modules) when two ideal bases determine equal ideals unless each ideal is 
written as a module and reduced to canonical form by the method of 
Chapter IV, $9. For example, if Z), = [1, wn], then for any ideal: 
(a, j3, * f .) = aD, $ PO, + . * * = [a, aw,, 8, /hn, . * * 1. 
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Yet, as the examples below Will show, the ideal basis is generally more 
flexible than the module basis and is preferred for factorization problems. 

EXERCISE 7. Let Dn = D1 = [1, dj]. Verify step by step from the above 
laws : 

Statement. (33, 7 - 3 6) = (4 + 3 d?). 
Proof. (33, 7 - 3 G) = (33, 7 - 3d3, (7 - 343)(7 + 3G)) = (33, 

7 - 3t’3, 22) = (33, 22, 7 - 3+, 11) = (7 - 343, 11) = (4 + 345, 11) = 
((4 + 3 d3), (4 + 3 d3)(4 - 3 d?)) = (4 + 3 d3). 

EXERCISE 8. Verify (13,7 + 5 dj) = (4 + d3). Hint. Salve (7 + 5 ‘h)(x + 
?,d?) = z + d3, and verify 4 + d3 1 7 + 54% 
EXERCISE 9. Verify (1 + 43) = (1 - 4s). 

EXERCISE 10. Verify (4 + dg # (4 - 43). HA. Show (4 + 43,4 - dj> 
= (1). 

6. Product of Ideals, the Critical Theorem, Cancellation 

We next define the product ab of two ideals a and b as the ideal c 
“generated by a11 products” a/l where a E a, @ E b, or, more precisely, the 
aggregate of finite linear combinations p: 

(1) 

It is clear that the set {p} forms an ideal from the very definition of ideal. 
This definition of product is in no way dependent on any basis. We cari 
Write {p} = ab. 

For convenience, we note that if 

are bases then 

a = (a,, . . . , Es> 

b = (A, * . . > PJ 

If we cal1 the right-hand ideal c, we find, easily, ab 2 c. On the other hand, 

any a@) =kic&), ,3(j) = i ,!$dj), where Ak), ,L$)E D,. Thus any p of (1) 
1=1 

satisfies 

or ab 5 c, and ab = c. Q.E.D. 
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As a special case, (a)(b) = (ap), and the product of principal ideals is 
principal. The reader should show carefully (Exercise 11, below) that 

(2) aa = (a)a. 

The parentheses on a could be omitted if desired, but we often leave the 
parentheses for emphasis. In particular, (1) a = a. 

The existence of a quotient is more difficult to establish, and we shall 
first make some easier remarks. 

LEMMA 1. If every element a of a is divisible by a fixed nonzero element 

y in D,,, then an ideal b exists such that b = the set {a/?) and a = (y)b. 

LEMMA 2. If ya = yb and y # 0, then a = b. 

It is further verified by proofs that we leave to the reader: 

(3) ab = ab, (Commutative law) 

(4) a(bc) = (ab)c, (Associative law) 

(5) a(b + c) = ab + ac. (Distributive law) 

We now say ideal a divides ideal c in 0, (or a 1 c) if and only if an ideal 
b exists in D, for which c = ab. Symbolically, we cari Write b = C/a. 

From (l), if p E ab, then p E a. Thus ab c a, or every divisor of an ideal 
contains the ideal. This is like stating, in rational number theory, that a11 
multiples of 6 are even (are contained among the multiples of 2) because 
2 ( 6. 

Analogously with Chapter VI, $2, we extend the definitions of indecom- 
posable element in 0, and prime element in Dn. 

An indecomposable ideal in Z)n is an ideal q in D, other than the (unit) 
ideal D,, which has no ideal in Z)% as divisor other than q and D,. 

A prime ideal in n% is an ideal p in Dn other than the (unit) ideal r),, 
with the property that for any two ideals in D,, a and b, if p 1 ab, then p 1 a, 
or p 1 b. 

Analogues of Lemma 3 and Theorems 1 and 2 of Chapter VI, 332 and 3 
hold (see Exercise 13 below). The situation is further simplified by the fact 
that under broad circumstances the indecomposable ideals become precisely 
the prime ideals. The following two theorems are critical: 

THEOREM 6. If a is an ideal (not zero) in Do,, the set of all integers of a 

quadratic field, then an ideal a* and a (# 0) in D, exist such that 

aa* = (a). 
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THEOREM 7. If a is an ideal (not zero) in the integral domain D, and if 

a contains at least one element y for which N(y) and n are relatively prime, 

then an ideal a* and an tc # 0 in Dn exist such that 

aa* = (a). 

We shall assume these results for the present because of their critical 
nature, and from them we shall prove unique factorization of ideals. For 
ease of treatment (in $ $7 to 10 below) we restrict ourselves to XII, (n = l), SO 
that only Theorem 6 is relevant. 

An easy consequence of Theorem 6 is cancellation. 

THEOREM 8. If ab = ac, then b = c (if a # 0). 

Proof. Multiply by a*. Then aa*b = aa*c; (a)b = (a)c. Lemma 2 
gives the cancellation of a. Q.E.D. 

EXERCISE 11. Prove (2) above. 
EXERCISE 12. Prove Lemmas 1 and 2 and the distributive law (5) above. 
EXERCISE 13. State and prove the analogues of Lemma 3 and Theorem 1 of 
Chapter VI, $2. 
EXERCISE 14. Show that a module basis for the product of ideals a and b cari 
be formed as follows: If  a = [q, . . . , as] and b = [Pr, . , Bt], then ab = 
[c&, , cQj, . , a,&]. Hint. Show ab = arb + . + a,b (and point out 
where ideal properties are needed). 

EXERCISE 15. In D, for R( 4-3) show that if a = (2,l + d-3) then a # (2), 
whereas a2 = 2a (which contradicts cancellation). Obtain another such contra- 
diction in 0, for n > 2 by using a = (n, ndz) f  (n). 

7 l “TO Contain 1s to Divide” . 

THEOREM 9. If a 1 c (i.e., if a b exists such that c = ab), then a 2 c. 

Conversely, if a 1 c, then a 1 c (i.e., a b exists such that c = ab). 
Proof. The first part has been established. For the second part note 

that if a 1 c then aa* 1 ca* (using the terminology of Theorem 6) and 
(a) 1 ca* ; it follows that every element of ca* is divisible by GC. Thus 
ca* = (a)b, by Lemma 1. Then 

and by Lemma 2 

ca* = (ah 
ca*a = (a)ab, 

c(a) = (a)ab, 

c = ab. 

1 For simplicity in $7-10 the ideals are restricted to ideals of an L), type integral 
domain. 
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The last step consisted of dividing a11 elements of cx and uab by oc in 
obvious fashion. Q.E.D. 

Hence the greatest common divisor of a and b becomes the smallest 
containing ideal, or a + b by Exercise 16 (below). Theorem 4 cari be 
rewritten as follows : 

There is only afinite number of ideals dividing (or containing) a given ideal. 
We say two ideals a, b are relative& prime if there exists no ideal c # (1) 

which divides (or contains) a and b. 

THEOREM 10. If two ideals a and b are relatively prime, then a + b = 
(a, b) = (1). 

Proof. Suppose a + b = c # (1). Then c 2 a, c 2 b; hence c 1 a and 
c 1 b, giving a contradiction. Q.E.D. 

COROLLARY. If two ideals a, b are relatively prime, there exist 

elements M E a and /3 E b for which 

a+j= 1. 

Proof. a + b contains the element 1. Q.E.D. 

This corollary cari be regarded as a subtle version of the rational gcd 
algorithm: if there exists no t (except f 1) which divides both the rational 
integers a and b, then we cari solve ax + by = 1. 

8. Unique Factorization 

Unique factorization has two familiar steps: first we factor into 
indecomposables and then we show that the indecomposables are prime. 
Note that an ideal a in D1 which is not the zero ideal cari have only a finite 
number of ideal divisors by Theorem 4, $4. Thus by continued decomposi- 
tion of the ideal a into factors and by the decomposition of these factors in 
turn, we find the following: 

THEOREM II. Any nonzero ideal in -0, cari be expressed as the product 

of a finite number of indecomposable ideals. 

THEOREM 12. All indecomposable ideals in Dl are prime ideals. 

Proof. Let q denote an indecomposable ideal, then show that if q ( ab 
and q f a then q ( b. If q f a, then (a, q) = (l), or an a E a, v E q exist such 
that 

a+n=l. 
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Then, if p is any element of b, 

but if q 1 ab, q 2 ab, q 3 a/l, q 3 rr, q 3 TP, then q 3 a/l + Z-B = /I, and 
fi E q for a11 p E b. Thus q 2 h. Hence, necessarily, q 1 6. Q.E.D. 

THEOREM 13. Unique factorization. Any nonzero ideal a in Q has a 

unique decomposition into prime ideals. 

We proceed as in elementary number theory (see Exercise 13 above). 
If a11 ideals are principal, the set of nonzero algebraic integers has unique 

factorization into prime algebraic integers if we identify associates and 
ignore the order of the factors. It is not immediate that the occurrence of 
nonprincipal ideals does mdeed ruin the unique factorization into indecom- 
posable algebraic integers, but we shah see this later on. The nature of 
prime ideals is also discussed in $10 below. 

9. Sum and Product of Factored Ideals 

We now know that any arbitrary nonzero ideal a cari be factored 
uniquely, 

a = plelpze2 . * * ptPt, q 20, 

where the prime ideals are written pi, ns, . * * , ut. If we consider another 
nonzero ideal b, for convenience we cari consider pi, * . . pt to include a11 
prime ideal factors of a and 6: 

b = plf'p2fz . . . ptft, fi 20, 

although some e, andfi may be zero. 

THEOREM 14. ab = p~+f'&z+fz... p;'+f'. 

THEOREM 15. a + b = pln’lpsnL** . . ptmt, 

m, = min (ei, fi). 

THEOREM 16. a A b = pl“‘r~pZM~- . . ptMt, 

Mi = max (e,, fi). 

THEOREM 17. (a + b)(a r\ b) = ab. 
Proof Theorem 14 is a result of unique factorization. For Theorem 15 

let c = pln1~p2%. f . ptqnt, where mi is the smaller of e,,f, (or the common 
value if they are equal). Then a = ca*, b = cb*, and a* and b* are 
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divisible only by primes pi; but, if p, 1 a*, then ni 7 b*, and vice versa. 
Thus a* f b* = (1) and 

a + b = ca* + cb* = c(a* + b*) = c. 

For Theorem 16 note that if a 3 a, b 3 r. then a ( (a), b ( (CC) and conversely. 
This is equivalent to q 1 a, where 

q = pîy-J~~2. . . p;+ft 

or “a 3 CC, b 3 cc” is equivalent to “q 3 a,” which means a n b = q. 

Theorem 17 Will be recognized as the analogue1 of “gcd (a, b) * lcm (a, b) = 
ab,” and is proved from “ei +fi = mi + M,.” Q.E.D. 

A remarkable fact is that these theorems, true for ideals, are not a11 true 
for integers, even in a principal ideal domain. Trivially, if a = 2l . (odd 
number) and b = 2l * (odd number), a + b is not necessarily 2l . (odd 
number). For instance, if a = 6, b = -14, a + b = -23. Yet in ideal 
theory a11 is simpler: 

2(3) + Z-7) = (6) + (-14) (6, - 14) = (2) = 2(l). 

Theorem 15 also holds for any number of addends. If we define 
ord,a = e, (the “order of p in a”) as the integer e 1 0 for which pe I/ a 
(or pe 1 a, pe+’ f a), we have the following by induction on the number of 
addends. 

THEOREM 18. Ifa,, . . . , a, are divisible only by pl, * * * , pt and no other 

prime ideals, then 

a, + * * . + a, = h pimi, where 
m, = min ord, a,, 

i=l IIjSs. ’ 

EXERCISE 16. Show that a u b is not always an ideal but the smallest ideal 
containing it is a + b by setting up the prime factors of each. 
EXERCISE 17. Show that for any a and any b ( # (1)) there exists an d( such that 
a E a but a # ab. Hint. ab + a. - 
EXERCISE 18. Show that if a ) c and b ) c and (a, b) = (l), then ab ) c. Give 
two proofs: (a) using unique factorization and (b) using Theorem 17 directly. 

10. Two-Element Basis, Prime Ideals 

We now wish to consider bases and prime ideals further. 

THEOREM 19. If a 2 b and neither ideal is zero, then an element a of 

a exists such that a = (h, E). 

1 Here “km” means “least common multiple” (and we assume a > 0, b > 0 for 

l simplicity). 
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Proof. Let 
a = p1e1p2ez * * * ptQ, e, 2 0, 

b = plf’pzfz . . . ptf”> fi 20, 

using a11 pi which divide a or b. Now since a 2 b, it follows that a 1 b 
and f, 2 e,. 

We Write 
a, = p1e1pg2+1.. . p1”“+1 

a2 = p1'+lp2% . . . p;:+l, 

. . . . . . . . . 

a, = p1'+1pgz+1 . . . ptet* 

Let a1 be SO chosen that a1 E a, but cc1 $ a,p,. Then 

(4 = wh Plfql, 

and likewise there exist ai E ai such that 

(4 = wzy P2 -r q2, 
. . . . . . . . 

(4 = a,q,, Pt fg,. 
Now, by Theorem 18, 

j = (aJ + (aJ + . . . + (a,) = pleT2ez * * * ptetq, 

where pi { q for any i. Thus, if we cal1 

a = a1 + a2 + . . . + at E j, 

then j 1 (a) or (a) = ptlpzQ2 . * * nt%n, whereg, 2 ei and pi f m for any i. 
Actually, each gi = e,. For example, if g, > e,, then by writing 

-a1 = a2 + . . . + at - a 

we find py+’ Ia2, . . . , py+‘I at, pyfl Iplgll a. Thus pp+’ 1 a1 although 
. Pl -r q1, this is a contradiction. Hence 

(a) = palpez . . . ptPLIZ1, (pi f u.3 for any i). 

Finally b + (a) = a. Q.E.D. 

THEOREM 20. For any arbitrary nonzero a1 E a, a given ideal, there 

exists some specially selected a2 for which 

a = (al, a2). 

Proof. a 2 (a), hence Theorem 19 applies. (Note that if a = (aJ then 
a2 might equal al.) Q.E.D. 
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THEOREM 21. For any ideal a we cari find an integer CI E a such that 

(cc) = oc, 

where c is relatively prime to any preassigned ideal q. 

Proof. Let b = aq in Theorem 19 and find a SO that a E a (whence 
a = ac) and 

a = (aq, a). 

Using the distributive law, we see 

a = (aq, ac) = a(q, c). 
Hence (q, c) = 1. Q.E.D. 

THEOREM 22. Every prime ideal P belongs to a rational prime p deter- 

mined uniquely by P 1 (p). 

Proof. Every ideal p contains a rational integer a # 0 (see $2 above), 
or p I&i. Thus, ifa = fp:l* - -ptei by the rational unique factorization, 
then, multiplying both sides by (1) the unit ideal in &, we see 

and p divides some prime (say p,) by unique factorization. In fact, it 
divides only onep, as we easily see; for, otherwise, if p ) pi and p ) q (# pi) 
for some prime q, then 

P 1 (PA P I (4X 

P - (p0q) = (1). 

This contradicts the definition of prime. Q.E.D. 

TMEOREM 23. Every prime ideal p cari be written as 

P = (PI 4 where N(V) z 0 (mod p). 

ProoJ. Use Theorem 19 knowing p ) (p), hence p 3 p. Therefore, p = 
(p, 7r) for some n. Now p 3 n and consequently p 3 nn’ = N(n). Hence 
ifp +’ N(r), (1) = (p, N(n)) C: p, leading to a contradiction. Q.E.D. 

COROLLARY. We cari even Select r SO that the module basis is 

p = [p, 7r] = (p, l-r), where p 1 N(V). 

Proof. The rational integers CI in p are multiples ofp (lest p 2 (a,~) = 
(1)). Therefore, when we construct the module basis of p [as in Chapter 
IV, $9, (I)l, the rational element is p and the other is (say) z-. But by 
Theorem 5, $4 (above), p = [p, VT] = (p, n) 3 N(n). Hencep ( N(n). 

Q.E.D. 
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The rational prime (p) has only a finite number of ideal divisors n by 
unique factorization. (See Exercise 13 above.) Actually, in some cases 
p 1 n. Then p = (p), and the prime ideal is the same as the rational prime 
as far as factorizations are concerned. In other cases 7~ 1 p; then p = (n). 

It could still happen that the various possible values n in p = (p, 7r) 
would not satisfy the condition rr 1 p. For instance, in R(Y-5) in Chapter - 
VI, $6, ifp = 3, there is no r = a + bd-5 for which n ( 3 (as we saw). 
Thus a prime divisor of 3, namely p, is merely nonprincipal, e.g., p = - 
(3, 1 + 24-S). It Will be seen that 3 = pp’ where p’ = (3, 1 - 24-5) 
by very general results in Chapter VIII. 

The integral domain D is a principal ideal domain if and only if allprime 
ideals are principal. This is easily seen if we use unique factorization as 
well as the fact that the product of two principal ideals is principal. The 
following is less obvious. 

THEOREM 24. The integral domain Dl has unique factorization into 

indecomposabies if and only if ail ideals are principal. 

Proof. If a11 ideals are principal, then the ideal factors cari be identified 
with algebraic integers by ignoring units. 

If some ideal is nonprincipal, then a prime ideal p is nonprincipal. 
Write p = (p, n), where p 1 N(n). But then from 7~7~’ = pq (say) it follows 
that if there is a unique decomposition there must be an indecomposable 
r1 1 p such that r1 1 n or 7r1 1 r’. In the first case (7rJ 1 (p, T). Hence, 
since p = (p, m) is prime, (rrTTI) = (p, n) = p. In the second case, by taking 
conjugates, .TT~’ 1 p (since p is its own conjugate) and rr 1 rr, where (‘rr,‘) = 
p, as before. Thus a11 prime ideals are principal from unique factorization. 

Q.E.D. 

11. The Critical Theorem and Hurwitz’s Lemma 

We are now prepared to prove the critical theorems (6 and 7) on which 
everything else depends. We start with X), = Dr the integral domain of a11 
algebraic integers in the field R(d?$, (D not a Perfect square). 

HURWITZ’S LEMMAl 

If a and /3 are two algebraic integers in D1 and if the rational integer g 
divides aa’, P/I’ and the sum a/3’ + pa’, then g also divides the individual 
numbers ap’ and /3a’. 

1 This lemma is a weak form of a result applicable to fields of arbitrary degree. The 
stronger result really bears the name Hurwitz’s Lemma. 
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Proof. If 6 = UP’, t’ = ~‘6, then E satisfies the quadratic equation 

E2 - AE + B = 0, 

where the rational integers are defined as 

(1) A = a/? + /3a’ (= 5 + 5’1, 

(2) B = @‘fia’ (= EE’). 

Now g 1 A, g2 1 B. Hence [/g satisfies 

(3) (j2-gA (j ++o 
with integral coefficients, whence t/g, E’/g are algebraic integers. Q.E.D. 

We are now at the stage at which Dedekind’s definition of integer 
becomes crucial. We need only observe (3). The reason that l/g belongs 
to Dr is simply that it satisfies Dedekind’s definition! For example, let 

D, = [l, d-31, a = 2, p = 1 + d=3, a@’ + @a’ = 4, 

aa’ = /3/-Y = 4 

yet 4 does not divide a/3’ or pcc’ within D,. 

For instance, a/I’/4 = (1 + d-3)/2, which is aninteger under Dedekind’s 
definition (as a root of q2 - 11 + 1 = 0) but not an element of D2. Thus 
unique factorization succeeds in Dr = [l, (1 + d-3)/2], although it fails 

in D2 = [l, d-31 one counter example being provided by BP’ = u2. 
We cari prove Theorem 6 by showing for any ideal a the ideal aa’ = (g) 

where a’ is the conjugate ideal and g is a rational integer. TO prove this, 
recall by Exercise 6 that we cari Write the conjugates 

(4) a = (a,, x2, . . * , 4, 

a’ = (aIf, a2’, . * * , a,‘). 

Then aa’ = (alal’, a1a2’, a2al’, a2a2’, * * * , a,a,‘). But we define 

c = (alaI’, ala + a2a1’, a2a2’, . . * 2 asut ’ + utas’, w,‘). 

Now c is an ideal whose basis consists wholly of rational integers [see (I)l. 
Hence c = (g) for some rational integer g # 0, but aa’ 2 c = (g). On the 
other hand, by Hurwitz’s lemma, g divides each basis element of aa’. Thus 
(g) contains a11 elements of aa’, and 

Cg> 2 aa’ 2 Cg) 

or (g) = aa’, proving Theorem 6. The reader should check carefully to see 
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that the theorems of $7 to $10 have not been used in the proof (which 
we deferred to the end only for emphasis). 

TO prove Theorem 7, we prove the following lemma. 

LEMMA 3. If CI ED, and g and n are relatively prime and if a/g is an 

algebraic integer, (cr/g E Dl), then it follows that a/g E D,. 
Proof. The module DC), is the set of elements a of & such that 

aEDO, and a E r (mod n), (r rational). 

But if g and IZ are relatively prime, l/g = s (mod n) and a/g G rs (mod n) 
a rational integer, whence a/g E Di),. Q.E.D. 

We cari prove Theorem 7 by choosing a basis (4) of a in which (say) 
N(a11 = ala1 ’ is prime to n. In the proof of Theorem 6, c = (g), where 
g and n are relatively prime. Then Hurwitz’s lemma is applicable, for t/g, 
l’/g belong to D, as well as to D1. 

Thus we could develop a unique factorization theory for D, by considering 
only a for which a 3 a, where N(a) isprime to n. Since every divisor of a 
contains a and a, the theory Will carry over. A more convenient procedure, 
however, is to restrict the ideal theory to D,, the set of a11 integers of 
R(Yz), and to find the ideals of D, by a “projection” procedure after- 
wards. This procedure, in principle going back to Gauss’s theory of 
quadratic forms, is outlined in Chapter XIII, $2. 

For the present, we consider the ideal theory only in a quadratic integral 
domain Z)i of a11 integers, reserving only a small portion of Chapter XIII 
for the factorization theory in Dn. 

For convenience, we speak of “ideals in R(Z/>)” to mean “ideals in D1 
for R(d%)” when the context is clear. 

EXERCISE 19. A maximal ideal m in Z), is defined as an ideal ( # Do,) for which 
no ideal a in z), satisfies m c a c D3,. Show that a11 maximal ideals are in- 
decomposable in Dn and state a sufficient condition for the converse. Hint. In - 
0, for R(d -3), (1 + d-3) c (1 + d-3, 1 - d-3) c DZ. 



chapter VIII 
Norms and ideal classes’ 

1. Multiplicative Property of Norms 

The definition of index was given for modules in Chapter IV, $8: and 
naturally extends to ideals (as submodules of DC) in which the index is 
called the norm. Thus we Write for the norm of an ideal a, N[a] = index 
[DJa]. For a = (0) we define N[(O)] = 0, but the zero ideal never really 
enters into the theory. Otherwise, the norm is always positive. Moreover, 
N[a] = 1 exactly when a = (l), or D1. 

THEOREM 1. For any two ideals a, b 

(1) N[a] N[b] = N[ab]. 

ProoJ TO see this result, we Count residue classes. We let pl. p2, * * * , pi 
be 1 = N[a] different residue classes mod a and we let rTT1, n2, . * * , n-, be 
m = N[b] different residue classes mod b. Then consider the Im = N[a] 
N[b] quantities 

(24 wij = pi + a7rj, 1 <i<Z, 1 Ijlm, 

where a is selected SO that (a) = ac, (c, b) = (l), by Theorem 21 in 
Chapter VII, $10. 

1 We recall the restriction to ideals in the integral domain D1 for R(h) in Chapters 
VIII to XIII except for Chapter XIII, $2. 
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Equation 2a is chosen by analogy with rational arithmetic. For example, 
if r is a variable residue class modulo a, i.e., 0 < r < a, and if q is a variable 
residue class modulo b, i.e., 0 I q < b, then, regardless of whether (a, b) = 
1, the ab quantities 

(2b) w=r+aq 

represent each residue classes modulo ab exactly once [for the two values 
w’ = r’ + aq’ and w in (2b) are congruent modulo ab exactly when r = r’ 
and q = q’]. We find the present proof harder only because the presence 
of nonprincipal ideals makes the selection of tc become the crucial step. 

First of all, the various numbers wi, are incongruent modulo ab. Let 
coi3 s wIJ (mod ab) or 

(3) (pi + avj;) - (pI + arJ) E ab. 

Since a 1 ab, 
(pi + ar,> - h + an.A E a, 

but, since a E a, then pi - pI E a; hence pi = pI, otherwise different 
residue classes would be involved. Next we reduce (3) to 

(4). arJ - anJEab; 

thus ab 1 (a)(nj - rrJ), ab 1 ac(.rrj - xJ), and b 1 c(nrj - rrJ); but, since 
(c, b) = 1, b 1 (ni - nJ), and then rj - rJ E b, whence ni = nJ; showing 
that a11 Im numbers mii are incongruent mod ab. 

We show that every lin ZI is congruent to some wi, mod ab. First of all, 
l = pi (mod a) for some i (by definition of the set pi). We Write E - pi = 
a*, a* E a, but (a, ab) = (ac, ab) = a(c, b) = a. Thus a* (E a) is com- 
posed of an element of (a) plus an element of ab. Hence, for some integer 8 

a* = aO + a(O) where a(O) E ab. 

But 0 G nTTj (mod 6) for somej, i.e., 8 = ri + n(O) where n(O) E b. Finally, 
t = pi + a* = pi + a(vj + n-(O)) + a(O) = pi + ani + Â, where 1 = 
an(O) + a(O) E ch. Q.E.D. 

We cari now relate the norm to more familiar concepts by showing no 
conflict in terminology. 

THEOREM 2. If a is an algebraic or rational integer generating the 

principal ideal (a), 

YWI = I N(4I - 
Proof. First of all, if a is rational, then we shah see 

(5) NWI = a23 
TO see this, note (a) = a. [l, w] = [a, aw]. The index is therefore a2 = 
IV[(a)]. Next note that (a) and (a’) have the same norm as ideals, since any 
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two integers of D congruent modulo (R) have conjugates congruent 
modulo (a’) and vice versa, leading to a one-to-one correspondence of 
residue classes via conjugates. By Theorem 1 and Theorem 2 for rational 
ideals, 

N[t412 = N[(a)l NKdl = N[(4(a’)l = NKNCcO)l = N(c02. 

Since N[a] 2 0, necessarily, Theorem 2 follows. 
We cari further identify N[a] by referring to the critical theorem in 

Chapter VII, $11; aa’ = (g). Here, by taking norms we find N[aa’] = 
N[a] N[a’] = N[a12 = g2; hence N[a] = ]g]. Thus 

(6) aa’ = (N[a]). 
Note that since a 2 aa’ = (g) the ideal of rational integers in a is a 

divisor of the ideal (N[a]) (which it contains). 

THEOREM 3. If the ideal a is not divisible by any rational integral ideal 

in D except (1), then the rational integers in a are all the multiples of N[a]. 

ProojI Since a divides (N[a]) by (6), then a contains N[a]. Let the 
rational integers in a be given by the ideal (g) SO that N[a] = gk. We show 
k = 1 and N[a] = g as follows: 

aa’ = (gk), 

and, since a 2 (g), a 1 (g) or ab = (g) for an ideal b. Thus 

aa’ = abk, 

a’ = bk, 

a = b’k, 
by taking conjugates; k 1 a and k = 1. Q.E.D. 

In particular, if we factor a rational prime (p) = IIniei, taking norms 
we findp2 = N[p,Yl N[p2]“z . . . . Thus N[pJ is a power ofp. This leads 
to several cases, namely 

NIPI] = p2, e,= 1; N[P,I=N[P,I=P, e, = e2 = 1; 

N[P,I = P e, = 2. 

THEOREM 4. The quadratic-prime ideals p are related to integers in 

the rational field in the following possible ways: 

(PJ = (P)I or (p) “does not factor”, WP)l = P2; 
(p) = p1p2, or (p) “splits” into two different factors, 

YP,l = VP21 = Pj 

(PI = P12V or (p) “ramifies”, YP,l = P* 
Thus the norms provide the measure of the “size” of the ideal as a factor. 
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EXERCISE 1. Let a be in ~, and n > 1; show, if (N[a], n) = 1, that a contains 
an element OL for which (N[a], n) = 1. 1s a converse valid? 
EXERCISE 2 (Chinese Remainder Theorem). Let pi (1 5 i ( N[a]) and ui 
(1 <j < N[b]) represent the residue classes moduli a and b, respectively, and let 
(a, b) = (1). Show that the residue classes modulo ab are determined by the 
pairs of residue classes (pi, uj) in one-to-one manner. Hint. Use Exercise 18 of 
Chapter VII, $9. 
EXERCISE 3. Consider the ideal (a, b - o,,) = a, where o,, is defined as usual 
(Chapter III, $7). Then, if g = gcd (a, N(b - wO)), show that the rational 
integers in a are exactly the rational integral multiples of R. H~I. Set UG( + 
(b - wO)p = t and multiply by b - wO’. Show N[a] = g by noting that z + 
yw,, = x + yb (mod a). Verify by actually calculating aa’. 
EXERCISE 4. In Exercise 3, if u 1 N(b - w,,), show the module 2I = [a, b - o,,] 
equals the ideal a by shwing !B < a, whereas index [D/%l = index [D/al. Verify 
2I = a by actually calculating the general term of each. 

2. Glas Structure 

Once we see the failure of unique factorization of integers (without using 
ideals) we are led to measure the extent to which this “failure” prevails. 
For this purpose we say two ideals a, b (not zero) fa11 into the same class, 
written a - b if 

(1) a(B) = b(a) 

for integers CI, B not zero. It is easily seen that equivalent ideals “form a 
class” in the logical sense. This means, if a -b, then b - a and, if 
a -b, b - c, then a - c and, finally, a - a. TO see the second result, 
which is the least trivial, note that (1) and 

(2) b(y) = 4%) 
imply together 

(3) a@+) = 4%4- 

Now a11 principal ideals ( a - (1); hence, if there is but one class (the ) 
principal class), unique factorization prevails and conversely. The principal 
ideals are the identity class, since (a)a - a. There is an inverse to the 
class of a, namely the class of a* where, by Theorem 6 in Chapter VII, 
aa* = (u) - (1). Note that if a -b and bb* = (p) - (1) then b* - a*. 
(For if (p)a = (a)b ‘then (p)aa*b* = (u)ba*b* and (Pu)b* = (@)a*). In 
the quadratic case, of course, we cari let a* = a’. 

We denote an ideal class of nonzero ideals by a capital roman letter, e.g., 

(1) : (1) - (a) - (/3) - . . . 

(A) : a, - a2 - as - * * * 

09: b, -b2-b3-*.*. 
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We define the product of two ideal classes C = AB as the class belonging to 
any ideal c = a,b, formed by multiplying representatives of each class. 
TO make the definition valid, it must be verified that with symbols defined 
as above 

a,bl - a,b,, 

but this is an easy consequence of definition. We need hardly add 
that commutativity and associativity, etc., follow from the ideals; e.g., 
we denote the class of a* by A-l if A is the class of a and aa* is 
principal. 

(4) 
AB = BA, (Commutative law) 

A(BC) = B(AC), (Associative law). 

The sum A + B, however, is meaningless; e.g., if a, - a2, bl -b,, then 
(a,, b,) is not necessarily equivalent to (a,, b,). For instance, let a = (a, p) 
be nonprincipal. Then (N)a - a and @)a - a, but (a)a + (p)a is not 
equivalent to a + a, for a + a obviously = a, whereas (a)a + (/?)a = 
((a) + @))a = a. a. Hence we ask if aa - a. If aa* = (a), aaa* - aa*, 
a(a) - (a), and a N (l), contrary to assumption. 

Now we shall see why the class structure provides a “measure” of the 
remoteness of unique factorization once we show that the ideal classes 
form ajinite (commutative) group. 

THEOREM 5 (Minkowski). Every ideal a contains an element t( such that 

0 < IN(a)1 I N[aldIdl g 

where d is the discriminant of the field. 

This theorem, which is geometric in nature, is proved in the next two 
sections. We shah draw a few conclusions now. 

COROLLARY 1. Every ideal class A contains an ideal a such that 

N[a] < I/M . 
Proof. Let b belong to A-l and let b contain an element p with the 

property that 

Since /II E b, then b I(/I) and b satisfies 

(5) ba = (j3) for some a. 
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But a belongs to class A, since (5) indicates that it is inverse to A-‘, the class 
of b. Hence taking norms of (5), 

N[b] N[a] < N[b]%$?l, 

whence follows the conclusion. (The 5 becomes a <, when z/(d is not 
rational.) Q.E.D. 

COROLLARY 2. The number of classes is finite. 

Proof. Only a finite number of modules cari have a norm (or index) less 
than dB. (See Theorem 4, Chapter VII, $4.) This is a11 the more true for 
ideals (since they are a special type of module). Q.E.D. 

THEOREM 6. The ideal classes form a finite commutative group. 

Proof. The finiteness was just shown. The group properties are (4) 
together with the inverse. Q.E.D. 

COROLLARY. If h is the number of classes, then for any ideal a, ah is 

principal. 

This follows from Lagrange’s lemma (whereby the order of an element 
divides the order of the group). 

THEOREM 7. Every ideal class A contains an ideal a relatively prime to 

any preassigned ideal q. 

Proof. Let b E A-‘. Then b 2 bq. Thus we cari Write b = (bq, (p)). 
Hence (/3) = ba, where, by the definition of inverse class, a E A. But, since 

b = (bq, bd = b(q, a>, 
(4, 4 = (1). Q.E.D. 

Thus it is never the case that a11 principal ideals have a common divisor 
with some fixed integer m > 1, for example. 

The preceding theorems made no use of special properties of quadratic 
fields. For an elementary result, strictly true of the quadratic case, we 
note the following in retrospect : 

THEOREM 8. In the quadratic case the conjugate of an ideal determines 

the reciprocal of its class. 

3 . Minkowski’s Theorem 

The proof of Minkowski’s theorem requires a good deal of visualization. 
First of all, we consider a lattice parametrized by rational integral variables 
x and y. 

(1) 
1 
E = ax + @y, 
rl = Y” + 6Y, 
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or, in vector form, 
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(2) (E, ?jJ) = 4% Y) + ?/(A 4. 

Here a, ,5, y, 6 are real numbers (rational or irrational, quadratic or 
otherwise). The lattice then consists of integral combinations of the basis 
vectors (a, y) and (B, 6). In order that the basis vectors not be parallel, we 
say they form a basisparallelogram ofnonzero area A. In analyticgeometry 

FIGURE 8.1 

the area determined by the vectors (a,y) and (/3, 6) is given as the following 
absolute value of a determinant: 

(3) A = laa - pyl > 0. 

The parallelograms of area A caver the plane by translations (see Figure 
8.1). 

The vector closest to the origin need not be (a, ,9) nor (p, y) but could be 
more difficult to obtain. For instance, if (a, y) = (1, 1) and (p, S) = (2 ,l), 
it is clear that f(l,O) = F(a, y) f (b, 6) and f(0, 1) = f2(a, y) F 
(p, 6) are the closest possible points (since a11 coordinates are integers). 

We are ready to use this basic result of Minkowski. 

THEOREM 9. In the foregoing lattice notation of (1) and (2), there is at 
least one (l, r) # (0, 0) (for an integral (x, y) # (0, 0)) which satisfies 

I dz 
(4) 

i 

161 

1171 I dh: 

Proof. We construct, centered about each point of the lattice, a square 
of side CV’% where c is a real constant c > 1 (and, for convenience, c I 2). 
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Thus we have squares of area C~A(> A) surrounding each point of the 
lattice. The basis parallelograms of area A completely caver the plane. 
It is now intuitively clear that some of the squares must overlup, since each 
has a larger area than the parallelogram. 

TO accomplish a rigorous proof, we must argue the following : 
(a) In a large circle of radius R there are (approximatelyl) N - nR2/A 

points (or parallelograms) if we associate each basis parallelogram with the 
lower right-hand corner. 

FIGURE 8.2. When overlapping occurs, distance is <&c& + &a. 

(b) The area of this circle would have to exceed Nc2A - nR2c2 if the 
squares failed to overlap. This is impossible if c > 1. 

Once we achieve overlapping, we cari say for some two distinct lattice 
points 

GO? 70) = xo(a9 Y) + Yo(B, 49 
(x0, Yo) # (% YA 

(L rll) = da, y) + Yl(A 4, 
that (as in Figure 8.2), 

1 In calculus A NB means A/B + 1 as R + cc, not to be confused with “similar 
ideals.” The rigorous argument is left to the student to complete. We merely wish to 
make clear the power of geometrical “existence” proofs scarcely like the constructional 
proofs of Euclid! A more rigorous argument is given on a related matter in Chapter X, 
82. 
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Then, writing (z,, - xi) = X, (y0 - yi) = Y and 

CE, r> =,Jf(a, r> + Y(6 4, (X Y) # (0, O), 

we find that (5) becomes 

139 

We have not quite achieved formula (4). We let c = c, = 1 + l/m, 
where the integer m -+ CO. For each m a solution exists for which 

(7) 

But, since 1 < c, 2 2, it is clear that only a jïnite number (say Q) of 
(t’“), 11’“)) is considered (namely, the number that lies in a square of side 
42/x centered at the origin). 

By an adaptation of Dirichlet’s boxing-in principle, if at most Q points 
are used in an infinitude of (7), as m = 1,2, 3,4, * * * , at least one of these 
points ([*, q*) must be used in an infinite number for a special sequence of 
m. For this point 

as m-i 00 through a special set of values. Regardless of how m + CO, 
c, + 1. Hence (8) yields the desired result (4) on the limiting operation. 
[In retrospect, we cari see (&*, q*) was valid in (8) for alf m.] Q.E.D. 

EXERCISE 5. In the lattice determined by (a, y) = (1,O) and (p, S) = (m/n, 
I/(n - 1)2) show that Theorem 9 leads to the solution of mx + ny = 1 if 
(m, n) = 1. 
EXERCISE 6. In the lattice determined by (c(, y) = (1,0) and (B, 6) = (t2/it1, 
1/T2) show that Theorem 9 leads to a variant of Lemma 5 of Chapter VI, 03. 
EXERCISE 7. Show that the inequalities (4) of Theorem 9 cari be replaced by 
the single inequality 161 + 1~1 I v’% by noting the area of the square determined 
thereby. 

4. Norm Estimate 

We shall actually prove the following theorem: 

THEOREM 10. Every module !JJI in D1 with different A(!IJI) contains an 

element a for which 0 < IN(a)\ < IA(!JJl)l . 
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Recalling the terminology of Chapter IV, $10, AZ(m) =j2d where 
j = [O,pJl]. If %X is the ideal a, then j = N[a], and Theorem 5 (above) 
follows. (The different is not necessarily positive). 

TO prove Theorem 10, we first separate cases according to whether d > 0 
or d < 0. 

Let d > 0. The module !JJI = [CI~, ~~1 in basis form. A general element 
for rational integral z and y is 

i 

a = alz + a,y, 
(1) aE9Jl, 

a’ = al’z + a2’y, 

where /A(m)i = Ia1cc2’ - aI’cL21, which is precisely the parallelogram area 
A. Thus the desired result cornes from Theorem 9. Q.E.D. 

Let d < 0. The ideal9X = [a,, IX~] is written as before. 

(2) 
1 

a = ap + a,y, 
aE!JJl, 

a’ = al’z + a2’y, 

( 
a1 = A + h, ml’ = B1 - iyl, 
a2 = B2 + iy,, a2’ = B2 - iy2, 

where pl, yl, /12, y2 are real. For example, if a1 = a + bd?, then pi = a, - 
y1 = bYld(. As b f e ore, by multiplying the determinant and taking 
absolute values, we cari verify that 

Now, separating the real and imaginary parts in (2) and by substituting (3), 
we obtain components which form a lattice like that in Figure 4.2: 

1 

a = p + ia, 
a’ = p - io, 

where 

1 
P = BP + B2Y9 

c = Yl” + Y2Y9 

and 
A* = Ii31~2 - 142l = lW9JW2 

is the parallelogram area. Hence, by Theorem 9, $3 (above), we determine 
a couple (2, y) or (p, o) for which 

- 
IPI 5 dA*, 

- 
lu/ I \/A*. 

Thus 
aa’ = p2 + o2 < 2A* = [A(m)i. Q.E.D. 
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It would be appropriate to remark that the depths of the norm estimation 
problem cari be appreciated only in terms of further results which are not 
proved (or used) here. 

THEOREM II. Every ideal a contains an element a of nonzero norm 

5 N[a]Yd/5 if d is positive or < N[a]d-d/3 if d is negative. 

The extreme cases occur when n = 5 and d = -3, respectively, with 
a = (l), a = 1. Thus it is only a coincidence that in the weaker versions 
proved here the real and imaginary results seem to be the same. Geo- 
metrically, they are vastly different ! 

Minkowski’s theorem cari be slightly strengthened SO that (4), $3, 
becomes 

(4) 
Thus one specified inequality cari be made strict. (See Exercise 9, below.) 
The “extreme” case is (a, y) = (1,0) and (p, S) = (0, 1). Here A = 1 and, 
when z = 0, y = 1, by (1) in 53, E = 0, q = 1. Thus beyond the use of 
one strict inequality no improvement cari be made on Theorem 9. Other 
techniques are needed for a result like Theorem Il. 

EXERCISE 8. Show that, starting with Exercise 7 and using the inequality 
4 ltql I (I[I + 1~1)2, we cari improve Theorem 5 (slightly) to attain the inequality 
0 < N(a) 5 N[a]&@ for real fields. 
EXERCISE 9. Improve Minkowski’s theorem to (4) by first solving I[l < 

Ai ml(m + l), 171 5 G (m + l)/m. 



chapter IX 
Class structure in 
quadratic fields 

1. The Residue Character Theorem 

As mentioned in Chapters VII and VIII, the prime ideals n, first of all, 
cari arise only from rational primes (Chapter VII, Theorem 22) and, 
second, completely determine the class structure in that every equivalence 
class, say that of a = llpiei, is determined by the equivalence classes of 
the pi. 

As a matter of fact, in 1882, Weber showed that a prime ideal exists in 
each equivalence class, but the result is deferred until Chapter X, §12. Al1 
we say is that we cari build the class structure by using pi as generators. 
We therefore must know how to construct the pi. 

THEOREM 1. The rational prime p factors in the quadratic field R(I~) 

according to the following rules based on d, the discriminant of the field, 

and (d/p), the Kronecker symbol: 

i 

(p) = (p) or p does not factor if and only if (d/p) = - 1; 

(1) (p) = pp’ or p splits into two different factors if and only if (d/p) = + I ; 

(p) = p2 (and p = p’) or p ramifies if and only if (d/p) = 0. 

Here the rule is independent of whether d > 0 or d < 0 or whether 

d=D= I (mod4)ord/4=D+ l(mod4)( w h ere D is a square-free integer). 

Proof. The proof is wholly constructional, and we shall derive specific 
formulas for p and p’. 

142 
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We first show that if factors exist, hence (p) = pp’ or p2, then (d/p) = 1 
or 0. According to Theorem 23, Chapter VII, if p 1 p, then for some ZT, 
p = (p, n) and p 1 N(n). If p 1 n, then p = ~(1, n/p) = p and p does not 
factor. Therefore, we assume 

(2) P = (p, n>, p 1 wn>, p f  7r* 

First we takep odd. Then we Write rr = a + b6or 7r = (a + bh)/2, 
depending on whether 40 = d or D = d. In either case 

2 2 

N(n) = yu21bb&)/4 = 0 (mod Ph 

whereas p 7 b (for if p ) b then p 1 a and p 1 n). Then 

u2 - b2D E 0 (modp) 

and, if B E b-l (modp), i.e., bB E 1 (modp), 

(czB)~ E D (modp); 

thus (D/p) = 1 or 0, as a result of the assumption in (2). 
Next we take p = 2; then (d/p) = -l,justwhend= D~5(mod8), 

according to Kronecker’s symbol. If n = (a + b6)/2, 

2 1 N(n) = u2 -4b2D s 0 (mod 2), (a G b (mod 2)), 

whereas 2 7 a and 2 { b, lest n be divisible .by 2. Thus we cari say 
that u2 - b2D 3 0 (mod 8). This contradicts the possibility that D E 5 
(mod S), since, for odd a and b, u2 E b2 = 1 (mod 8). Again (d/p) = 1 or 0. 

Now a11 we need show is the existence of prime divisors p, p’ to answer 
the requirements of the theorem when (d/p) = 1 or 0. 

First let p be odd and (d/p) = 0. We cari actually Write out 

(3) P = Q-J, n) 7T=dD. 

Note p’ = p, since (p, ~6,) = (p, -do>. Then p2 = (p, n)” = (p2,pn, 
nz) = p(p, n, D/p). But since D is square-free, (p, D/p) = 1; hence 
P2 = (pl. 

Next let p be odd and (d/p) = 1. There exists an a such that (since 
d = D or d = 22D) 

u2 I D(modp) and (a,~) = 1. 
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Set rr = a + fi and define the ideals (not yet known to be prime): 

(4) p = (p, a + do>, p’ = (p, a - do>. 

Now p # p’. For otherwise we could reason 

p = p’ = p + p’ = (p, a + do, a - do>, 

= (p, a + 6, a - do, 2u) = (l), 

since p is odd and (p, a) = 1. This is a contradiction by virtue of our next 
step that (p) = pp’ # (1). Observe 

pp’ = (p2, pu + ~6, pu - pd5, u2 - D), 

= p(p, a + dD, a - do, (a” - D)/p), 

= p(p, 24 * * *) = (pl. 

Thus Theorem 4 of Chapter VIII, $1, applies and p is prime. 
We finally take tare of p even. If (d/2) = 1, d E 1 (mod S), and we 

Write 2 = pu’, where, again, we explicitly Write out 

(5) P = GA (1 + am p’ = (2, (1 - Yd)/2). 

Once more p # p’, for otherwise 

p = p’ = p + p’ = [2, (1 + Yd)/2, (1 - Y?)/21 

= [2, (1 + X6)/2 + (1 - %G)/2, * . * ] = (2, 1) = (1). 

This is false, since 

pp’ = (4, 1 + 42, 1 - &, 1 - d) = (4,2, * * .) 

= 2(2, 1, * * *) = (2). 

The final case is (d/2) = 0, which means D E - 1 or 2 (mod 4). Here, 

(6) n=l+dD or 7~=%5. 

with further details left as an exercise (below). Q.E.D. 

For simplicity of application, we Write the factorizations concisely 
according to the value of p: 

(2) = 

(2) if d = D E 5 (mod 8), 

(2, (1 + %G)/2)(2, (1 - YD)/2) if d = D E 1 (mod 8), 

(2, 1 + 1/D)” if d/4 = D E - 1 (mod 4), 

(2, dD)2 if d/4 = D E 2 (mod4); 
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and for p > 2, 

Y 

(P) if p f D and x2 c D (mod p) is 
unsolvable, 

(p) = (p, z + fi)(p, 5 - x6) ifp f  D and x2 = D (modp), 

cp, 4%” ifp 1 D. 

Another form of Theorem 1 is the following: 

THEOREM 2. If p is any prime ideal factor of(p), then for w = 4% if 

D $ I (mod 4) or w = (1 + V5)/2 if D = I (mod 4) (D square-free), it 

follows that the equation (or equations) 

(7) w E x (mod p), p = any prime divisor of(p), 

has I + (d/p) roots x (mod p). 

COROLLARY. Under the conditions of the foregoing theorem, the 

equation 

N(x - w) E 0 (mod p) 

has I + (d/p) distinct roots x (mod p). 

EXERCISE 1. Verify that when (d/2) = 0 in (6), (2) = p2 where p = (2, TT) = p’. 
EXERCISE 2. Verify Theorem 2 and corollary when p is odd. Do p = 2 
separately. 
EXERCISE 3 (Generalized Euler @-Function). Let @[a] denote the number of 
residue classes modulo a which are relatively prime to a. Verify (a) @[CI]@[~] = 
<P[ab] if (a, b) = (1) from Exercise 2 of Chapter VIII, 51; (b) if the prime n ] a, 
then @[an] = N[n]@[a] from (2~) of Chapter VIII, $1; and (c) D(n) = N[n] - 1. 
Next show @[a] = N[a]II[l - l/N[n]] with the product extended over the primes 
+I 1 a. Finally, show for a rational prime p, @r(p)] = [p - id/p)][p - l] and 
@[(a)] = #~(u)uII[l - (d/p)/p], where the product extends over rational p 1 a and 
+(a) is the (ordinary) Euler +Function. 

2. Primary Numbers 

TO every principal ideal (a) there corresponds an aggregate of generating 
associates /3 where /I = a7 and 11 is a unit. These ideals are indistinguish- 
able, e.g., (a) = (8). 

If d < 0 or the field is imaginary, then there are two units + 1 and - 1, 
except when d = - 3, when there are six units [f 1 and (f 1 f d -3)/2], or 
when d = -4, when there are four units (f 1 and &i). In a11 these cases 
there is only a finite number of associates, and there is little purpose in 
distinguishing them one from another at the present stage in the theory 
(although Exercises 4 and 5 (below) are instructive in this fashion). 
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If d > 0, then a real fundamental unit ri exists such that N(& = fl 
and any unit q is given by q = fqlt, t = 0, f 1, &2, * . * . There is now 
an inJinite number of associates, and we are faced with a more acute 
problem of identifying some standard value. 

We cal1 the integer 0: of a real quadratic fieldprimary when 

(1) 1 2 Ia/a’l < q12; a > 0, 

for ri (> 1) the fundamental unit of the field. 

THEOREM 3. Every real quadratic integer (except 0) has precisely one 

associate which is primary. 

Proof. The most general associate of tu,, is fcr,~,~ = Q. If we Write 

then 
1% 14 = log 14 + t log ql, 

1% WI = log IQ’I + t 10g l~‘l. 

But log ri + log 1~~~1 = 0, and, therefore, letting log IGC,,/Q,,‘~ = [, we have, 
by subtraction, 

log Icr/a’l = E + 2t log 771 = f (t). 

Now f (t) has only one value for which 

0 <f(t) < 2 log 71, 

namely for t the largest integer in E/(2 log ri). For this t we choose the f 
sign SO that &a,~,~ > 0. Q.E.D. 

The term “primary” unfortunately tends to create confusion in view of 
the other meaning (power of a prime). The term is used because the 
uniquely chosen associate is of “primary” importance for ideal theory. 

EXERCISE 4. Show that if a is in R( d-1) and 2 + N(a) then there is precisely - 
one of the four associates p of CL for which B = 1 [mod 2(1 + 4 -l)]. 

- 
EXERCISE 5. Show that if a is in R( V’ -3) and 3 { N(m) then there is precisely 
one of the six associates B of o( for which B z 1 (mod 3). 
EXERCISE 6. Show that the conditions for An algebraic integer c( to be primary 
cari be put into rational form by writing c( = (x + TJV%)/~, Q = (a + bd>)/2. 
Then the condition for 1 2 Id~/a’( < lql/ql’l is that z and y vanish or are positive 
and 

X/Y > alb, if N(a) > 0, fV(qJ > 0; x/y > bD/a, if N(a) > 0, N(ql) < 0; 
x/y < bD/a, if N(a) < 0, N(r),) > 0; x/y < a/b, if N(a) < 0, N(qJ < 0. 
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3. Determination of Principal Ideals with Given Norms 

We next show that the equation 

(1) N(a) = n 

cari be solved for CI in a finite number of steps. 

THEOREM 4. The primary integers of norm n in a real quadratic fîeld 

satisfy an equation of the type 

(2) cc2 - Acr + n = 0, 

where 

(3) 14 < 6lh + 1). 

Proof. By multiplying (1) in $2 with laa’ F InJ, we find 

14 I 2 < 14 r112, 
djq I M < djq * 71. 

Thus 

Ix + c-4 = la + 44 I lai + lnl/lcrl I Gl q1 + lnl/AGï 
= 44 @Il + 1). Q.E.D. 

THEOREM 5. The integers of norm n (>O) in a complex quadratic field 

satisfy an equation of the type 

(4) a2 - Aa + n = 0, 

(5) [Al I 2ns. 

Proof. Here we note that a = r + si, u’ = r - si, 

A=a+a’ = 2r < 2(r2 + s2)% = 2(aa’)lA = 2G. Q.E.D. 

LEMMA 1. If d < 0 then no number a of norm g exists in R(d@ if 

(6) g < IW 

except if g is a Perfect square and a = &dg, a rational integer. 

Proof. Observe that the relations (with y # 0) 

IDIy21x2- Dy2=g, D fI 1 (mod 4), 40 = d < 0, 

/ I 
; y2< 

X2 - Dy2= 
4 

g, D G 1 (mod 4), D=d<O, 

clearly contradict inequality (6). Q.E.D. 
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For these numbers y we seek to determine if 

149 

(3) Y  1 Y19 Y  1 72, * * * 9 Y  1 Yo 

for then (y) 1 c, or (y)q = c for same ideal q. But (2) then tells us N[q] = 1, 
q = (1). Thus (y) = ‘f d 1 ‘f c 1 an on y 1 conditions (2) and (3) hold. 

The procedure in determining class structure is clearly to factor each 
rational prime p I Ym and to see how many different equivalence 
classes cari be built on the resulting prime ideals n (in fact, the nonprincipal 
ones) by taking powers and products. fhe class number (or the number of 
elements in the equivalence class group) Will be denoted by h(d) for a field 
of discriminant d. 

We shall denote factors of(p) by the use of numerical symbols, 

p = p ifp does not factor 
(4) 

1 

p = p1p2 ifp splits 
y  = P’h 

p = p12 ifp ramifies 
@;=/$2 =PI’), 

i i . 

Thus we might Write 3 = 3,3 = 3,3,, or 3 = 3i2, as the case may be. This 
eliminates the parentheses and results in fewer symbols. The notation is 
due to Hasse. With it, (a) and a are used interchangeably. 

Table III in the appendix, which shows the fantastic irregularity of h(d), 
provides much additional useful information. 

5. Some Imaginary Fiel& 
- 

First take R(d-1). Here d = -4 and only the primep = 2 < Y(d(. - - 
But2 = 2,2,where2, = (1 + d-1). Infact(l + 4-l) = (1 - 2/-l) 
since 1 + d- 1 and 1 - d- 1 differ by a factor of d-1. Hence a11 
classes are principal, h = 1, and Theorem 1 shows 

(p) = 7~7~’ if (-4/p) = 1, 

(p) # 577~’ if (-4/p) = -1. 
- 

More precisely, by writing 7r = x + d- ly we see, for p odd, that 

(1) p = x2 + y2 

if and on& if (-4/p) = (-l/p) = 1, which means that p E 1 (mod4) 
(by an elementary result in Chapter 1). This is the famous Theorem of 
Fermat in the Introductory Survey. 

More significantly, if n = x2 + y2, then if (x, y) = 1, a11 odd prime 
divisors of n are primes E 1 (mod 4) by the ideal factorization of z + 
47~ into primes v (which necessarily divide onlyp E 1 (mod 4)). 
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As a matter of practice, the number of equations (2) or (4) cari be very 
large. We would do well to make a first restriction to those A for which 
A2 - 4n is divisible by D, since a must belong to the field R(6). As a 
further remark in the real case, note that since [ri1 is smaller than any other 
(nonfundamental) unit (bigger than 1) we could not do any harm by using 
any unit 7 2 hi > 1 instead of vi in (3) as long as we were merely 
interested in showing that (2j and (3j have no soiution. 

EXERCLSE 7. Determine primary solutions, if any, of 

N(a) = 5 in R(GF), 71 = (9 + mj/2, 

N(a) = 2 in R(d?), 7]1=8 +3d7, 

N(a) = -2 in R(d7), q1=8+3d7. 

EXERCISE 8. Show that if d = g,g, < 0 and (gJp) = (gs/p) = - 1 then the 
divisors of p are nonprincipal. (Treat even p separately.) 
EXERCISE 9. Show that if d = gIgs > 0 and (gJp) = (gz/p) = - 1 and if a11 
prime factors of d are = 1 (mod 4) then the divisors of p are nonprincipal. 

4. Determination of Equivalence Classes 

The most important problem in setting up ciass structuresi consists of 
recognizing when two ideals a and b belong to the same class. Equivalently, 
since a’ lies in the reciprocal class, when we ask if a -b, we are asking if 

c = a’b-1. 

Now the problem consists of taking an arbitrary ideal 

in its basis form and asking if c is principal (say) = (y). The norm N[c] is 
either known from N[a’]N[b] or cari be easily ascertained from the module 

c = !JJl = y,(l) + 741) + * . . = yJ, WI + yz[l, 4 + * * . 3 

where [l, w] is the basis of the field. (The determination of a canonical 
basis, hence the norm or index of a module, was covered in Chapter IV, 
$7.) We then ask, by Theorems 4 and 5 (above), which primary numbers 
(y), if any, have 

(2) INYI = NC17 (the known value). 

1 The theory of quadratic forms provides a faster algorithm for determining quadratic 
class structure (see Chapter XIII, pi), but the present methods are more easiiy general- 
ized to fields of higher degree. 
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6. Glass Number Unity 

It was conjectured by Gauss that the only fields of class number 1 for 
D < 0 are 

D = -1, -2, -3, -7, -11, -19, -43, -67, -163. 

Ii is seen that conditions for an imaginary field of class number 1 are in- 
creasingly complicated as (D( increases. For example, if p < (d/4(, then 
p cannot have a nontrivial ideal factor that is principal (by Lemma 1, $3). 
Since Id/41 > fl for Id( > 16, we see that for h(d) = 1 and Id1 > 16 it is 
necessary and (easily) sufficient that 

(d/p) = - 1 for p < X42. 

First of ah, d is prime and therefore d = - 1 (mod 4); otherwise, d has a 
prime divisor, p1 < & for which (d/pl) = 0. Thus 

(d/2) = -1, sodz5 (mod S), if [dl > 16, 

(d/3) = -1, sodr -1 (mod 3) if (dl > 16, 

(d/5) = - 1, SO d E f2 (mod 5), if [dl > 25 

(d/7) = -1, SO d E 3, 5, 6 (mod 7), if Id/ > 49 

Thus we see that d becomes subjected to an increasing number of 
restrictions if h(d) = 1. Eventually, a conclusive proof that there is only 
a finite number of d < 0 for which h(d) = 1 was given in 1934 by Heilbronn 
and Linfoot. It seems “very certain” that the last one is d = - 163 (as 
Gauss conjectured), on the basis of numerical evidence of Lehmer showing 
(dl > +lOQ, if d < -163 and h(d) = 1. 

In the case of real fields, incidentally, Gauss conjectured that h(d) = 1 
infinitely often (and has not been contradicted or justified). 

7. Units and Class Calculation of Real Quadratic Fields 

The same procedures are valid in the case of real quadratic fields. The 
difficulty is always that there is no easy way to tel1 if an algebraic integer 
exists with given norm, even if the unit is known, except by labored tria1 
and error. 

We shah discuss another procedure readily applicable to the real and 
complex case for obtaining both class structure and the fundamental unit 
(when required). 
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We note in similar fashion when D = -2, -3, -7, - 11, h(d) = 1. 
When D = -5, d = -20, p I 2/%; thus we must test p = 2,3. 

Here a11 we need consider is iV( 1 + d-5) = 6 = 2 . 3 ; hence (1 + 

a) = 2,3,, whereas 2 = 2 r2. Hence a11 ideals are equivalent to 1 or 2,, 
3, - 2,-l - 2, -3,-l. Once we know that 2, is nonprincipal (by 

L:ima 1, $3), we know h(-20) = 2. 
A more challenging case is D = - 14, d = -56, where h = 4. We 

outline the essential steps for the reader to verify: 

p<dmforp=2,3,5,7, 

(d/p) = +1 forp = 3, 5, 

(d/p) = 0 forp = 2, 7, 

(4 2 = 2,2, 2, = (2, d-14), 

7 = 7,a, 7, = (7, d-14), 
- - 

(b) 2, * 7, = (14,2+14,7+14, 14) 

= d-14(* * * ) 2, 7, * . *) = V=i% 

cc> 3 = 3, * 3,; 3, = (3, 1 + Y-14), 3, = (3, 1 - d-14), 

15 = N(a), cr=lf2/-14 

5 = 515,; 5, = (5, 1 + 1/‘14), 5, = (5, 1 - d-- 14). 

(4 3, * 5, = (15,3 + 3+14,5 + 52/--14, (1 + Y-14)2) 

= (15,3 + 3+14,5 + 52/--14, 

6 + 6Y-14, (1 + +14)2) 

= (15, 1 + Y-14, (1 + d--14)2) = (1 + d-14) = M’. 

312 = (9,3 + 34-14, -13 + 2+14) 

= (9,3 + 3+14, -13 + 24-14, 16 + y-14) 

= (9, -2 + Y-14). 

(e) 3,22, = (18, -14 - 2Y-14,9Y-14, -4 + 2d-14) 
- - 

= (18, 16 + ~‘-14) = (18, -2 + d-14) 

= (-2 + d-14). 

Hence, if 3, - J, then J* = 1 and 2, - J2 by (a), (e). Furthermore, 
3, - J3 by (c); likewise 7, - 2,, 5, - 3,, 5, - 3,, and 3,2 is nonprincipal 
by Lemma 1, 93, since N(3r2) = 9 and 3,2 =# (3). 

EXERCISE 10. Work out the class structure for D = -21, D = -31. 
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We should really test a11 m up to 16 to be sure ofp I 17, but let us stop 
right here for a moment at m = 10, In the range 0 < m I 10 we have a11 
residues modulo 2, 3, 5, 7, or 11. Hence the factors prove 

(d/p) = 0 for p = 2 and (d/p) = 1 for p = 3,5, 7 
(which are present as factors), 

(d/fp) = -1 forp = 11 (.whicli is absent aj a factoi). 

We have yet to testp = 13 andp = 17, but (p =) 13, by a stroke ofgood 
Iztck, occurs in that 13 1 N(1 - CU). We might suspect, however, (4 * 79/17) 
= -1, and rather than calculate f(l1) , . * * , f(16) we note (79/17) = 
(-6/17) = (6/17) = (2/17)(3/17) = 1 * (17/3) = (-1/3) = -1 byrecipro- 
City. 

We next look for generators of the ideal classes. Again we are lucky: 
2 = 2r2 where 2, = 2, = (9 - w) is principal, or 2, N 1. Next we cari 
Write, in ideal factors, 

1- (1 - CU) = 2,3,13, - 3,13,. 

Hence 13, is in the cycle generated by 3, (in fact, the inverse). From now 
on 3, and 3, are labeled by the residue classes. For instance, if q E 1 
(mod 3), then q - w = 3[(q - 1)/3] + (1 - CU) and 

3, ( (q - o) whereas 3, f (q - w), 

since 3, # 3, and 3,3, = (3) {(q - w). Likewise 3 1 iV(2 - w); thus, 
if q E 2 (mod 3), 

3,1(9-- w) whereas 3, f (q - w). 
We therefore Write 

I-(8 - CU) = 3,5, 

(which henceforth labels 5, and 5, according to residues of m mod 5). It 
is clear that 5, is in the cycle generated by 3,. Likewise from (4 - o) = 
3r27, it is clear that 7, also lies in the cycle generated by 3,. Thus, using 
conjugates as inverses, it is clear that powers of 3, generate a11 ideal classes. 
Finally, 

1~ (5 - o) = 213,3 - 3,3. 

Thus 3, is of order 3 or principal. 
We now digress: to find a unit, note that since 2, = 2, 

(9 - w) = 2, = 2, = (9 - w’). 

Thus (9 - w)/(9 - 0’) is a unit = q. 

(9 - w)2 81 - 180~ + 79 
q = N(9 - 0) = 2 

= 80 - 9,/‘79. 
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Then cal1 f(m) = N(m - 0). Let the field R(2/s) have basis [i, CU]. 
Thus, with D square-free, 

(1) 
1 (mod 4), w = (1 + JDy2, 

1 (mod 4), VJ = Jo. 
f(m) = 

1 

m(m - 1) - (D - 1)/4, D s 

m2 - D, D$ 

We take a range of m, 

(2) Qlm<dpj. 
Next we calculate the values f(m) in the range and factor each answer. 
Thosep for which (dlp) = 1 or 0 Will appear as factors off(m) for each zi 
such that (see Theorem 2, $1) 

xi z w (mod PJ, pi Ip, if p < dm. 

No other p (i.e., for which (d/p) = -1) appears as a factor of any 
N(o - m) = f(m), for then p 1 ( UJ - m)(w’ - m), and since (p) is prime, 
p divides one factor (say) w - m, which contradicts the basis z), = [l, 01 
by Theorem 3, Chapter IV, $6. 

We therefore have taken into account a11 p of norm < %@. The class 
structure and units cari be deduced from the fact that each (w - m) is a 
principal ideal not divisible by any rational prime. Hence m - w is never 
divisible by both p and p’. Perhaps a somewhat difficult example cari 
indicate how to “play by car.” Let 

D = 79, d = 79 ’ 4, w = d79, p <Y316= 17,-e*, 

f(m) = m2 - 79. 

Function Values Factors Norms 

= N(O -CO) 
-2.3.13 = ~(1 -o,> 

= N(8 -03) 
f(9) = 
f(l0) = 2: z : .7 

= N(9 - CO) 
= N(10 - CO) 
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EXERCISE 13. From the following data alone deduce the class number of 
R( v’ -79) by justifying the factorizations on the right : 

f(x) = x2 + x + 20 = N(J: + w) 
w = (+l + d-79)/2 

f(0) = 20 (w) = 2,25, 
f(1) = 22 (1 + w) = 2,111 
f(2) = 26 (2 + o) = 2,13, 
f(3) = 32 (3 + w) = 2,5 

f(4) = 40 (4 + 0) = 2,352 
f(5) = 50 (5 + o) = 2,5,’ 
f(6) = 62 (6 + w) = 2,31, 

EXERCISE 14. Find the class structure of R(d -31) and R(d%) by the 
method of this section. 
EXERCISE 15. Find a nontrivial unit of R( v%> from the table for Exercise 14. 
Hinr. Factor 6 - 431 and 9 - 4% and recall 22 = 2. 
EXERCISE 16. Show that ifg andp are primes and r > 0 is an odd integer then 
the field generated by a square free (negative) number 

r2 - 4gp = d < 0. 

has a class number divisible by p if Id( > 4g. (Note in Exercise 13, r = 7, g = 2, 
p = 5, d = -79.) 

~ EXERCISE 17. Invent some fields of class number divisible by 2, 3, 5, 7, 11 by 
experimenting with the preceding problem. Tryg = 2 and see which suitable r 

l exists. Also try g = 3, etc. 

*8. The Famous Polynomials x2 + 2 + q 

Euler discovered that the polynomials for certain positive values of q 

(1) f,(x) = x2 + x + q 

take on only prime values when 0 < x < q - 2. The values of q and the 
polynomials are listed as follows : 

x2 + 2 + 3; q=3, 1 -4q= -11; 
x2+x+5; q=5, l-4q= -19; 

(2) x2+2+ 11; q= 11, 1 -4q= -43; 
x2 + x + 17; q= 17, 1 - 4q = -67; 
x2 + x + 41; q = 41, 1 - 4q = -i63. 

The values of 1 - 4q = d, coincidentally, are precisely those for which the 
field R(Z//d) has class number 1. In fact, for 1 - 4q = -7, -3 or q = 2, 1, 
which are not listed, the polynomialsf,(x) still do assume only prime values 
for 0 I x I q - 2, aithough in a trivial sense. 
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Another unit cari be found by setting 

7 - w = 2,3,5, 

8 - w = 3,5, 

(7 - ,/79)(9 + @)(8 - 43) 

‘* = (9 - J59)(9 + ,/%)(S - J79)(8 + ,/B) = -l’ 

This unit is not necessary for the problem, but it is inserted to remind the 
reader to not alwuys expect a lucky result. We cari actually prove from 
the procedures of Chapter VI that 80 + 9479 is the fundamental unit. 

Now to prove 3,is nonprincipal or N(a + bw) # f3 for integral a, b 
we refer to Theorem 5. We must simply show the root of equation 

u2-Aaf3=0 

never belongs to R(d%) when ]AI < &(l + Q,) = d3(80 + 9%‘??) = 
278 . . . . But A2 f 4n = A2 f 12 = 79g2 for some integer g, in order 
that CL belong to R(d%). By the power residue tables, we note the solva- 
bility of 

A2 E - 12 E 348 (mod 79). 

(Since 79 = - 1 (mod 4), + 12 is consequently a nonresidue.) Thus 

A 3 &324 E f15 (mod 79). 

We now try A = 79k f 15, for k = 0, 1,2, : . * . 

A= 15 A2 + 12 = 237 = 3.79 
= 64 = 4108 = 22’13.79 
= 94 = 8848 = 24. 7 a79 
= 143 = 20461 = 7 * 37 -79 
= 173 = 29941 = 379 * 79 
= 222 =49296 = 24. 3.13.79 
= 252 =63516 = 22. 3~67.79 

In no case where A < 279 is A2 f 12 = 79g2 for an integer g. Thus 3, is 
nonprincipal and h(316) = 3. 

EXERCISE 11. Complete the table with f( 11) through f( 16) and list the ideal 
factors of each q - o, 0 5 q 2 16. 
EXERCISE 12. Find another unit (not &l) from the information in the 
extended table. Compare with qi. 



PART 3 
APPLICATIONS 
OF IDEAL 
THEORY 



156 CLASS STRUCTURE IN QUADRATIC FIELDS [Ch. Lx] 

THEOREM 6. The polynomial f,( ) x Will assume prime values for 0 < 

x < q - 2 if and only if for d = I - 49, R(&) has class number 1. 

Proof. Let us assumef,(a) is composite for some a in the range 0 < a < 
q - 2: 

f,(a) I (q - 2j2 + (q - 2) + q = q2 - 2q + 2 < 42. 

Now we cari conclude that at least one prime factor of&(u), namely p, is 
<(q - 1). Thus 

p I q - 1 = (1 - d)/4 - 1 = ([dl - 3)/4 < ]d//4, 

whereas, if we define 

&+G, 
2 

then 
f,(u) = N(a + w) 3 0 (modp). 

Now, easily, (p, a + o) = n 1 (p), yet p is not principal, since no prime 
exists of normp (by Lemma 1, $3). Thus the class number is unequal to 1. 

Let us assume, conversely, thatf,( z is always prime for 0 I 5 < q - 2. ) 
We shall prove that for a11 p in the range 2 I p I Ym we would have the 
relation (d/p) = - 1. (Hence the class number is 1 for want of primes to 
split or ramify!) First we note that q - 2 2 dm, since (q - 2)2 2 4q - 1 
when q 2 11. (This means that the theorem must be verified separately 
for q = 3, 5, 7.) If any primep < V$?/ exists for which (d/p) = + 1 or 0, 
then some integer a exists for which (by Theorem 2) 

f,(a) = N(a + w) = 0 (modp). 

Since each such a is determined only modulo p, we Write 

(3) o<a<pIdjzjIq-2. 

Thus, iff*(u) is always prime&(u) =p, which is a contradiction, sincep = 
f,(a) 2&(O) = q, contrary to (3). Q.E.D. 



“chapter 

Class number formulas and 
primes in arithmetic progression 

1. Introduction of Analysis into Number Theory 

In this chapter we derive a formula for h(d), the class number of a 
quadratic field of discriminant d, which makes use of infinite processes 
such as series and limits. The purpose of the formula is to enable us to 
calculate h(d) directly from d but without gaining any group-theoretic 
knowledge of the class structure. 

The real value of this formula historically is that it enabled Dirichlet to 
prove the following famous result (1837): 

THEOREM 1. If CI and m are relatively prime positive integers, then 

there exists an infînitude of primes in the arithmetic progression 

a, a + m, a + 2m, a + 3m, a f  4m, . * * . 

The result was monumental for many reasons. First, as we shah see, it 
required infinite series, convergence, limits, logarithms, etc., and any 
number of concepts seemingly alien to the theory of integers. From this 
point forward it became an increasingly acceptable procedure to use 
limiting processes in number theory. Second, the fact that class structure 
should be relevant to arithmetic progressions is still largely unexplored, 
and results, as good as they are, lie in an esoteric synthesis of number 
theory, analysis, and algebra called “class-field theory.” 

159 
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FIGURE 10.1 

which intersect the boundary of the curve, we find that the difference 
between the number of squares in 6 (or the number of latticepointsinterior 
to the curve) and the area of the curve is less in value than the number of 
shaded squares in Figure 10.1. It cari then be shown (see Exercise 1, below) 
that the number of shaded squares is less than 8 + 8M. 

If T > 1, then 8 + 8k%6 < (8 + 8k)%@, leading to the following 
result (in terms of constants k and k’ determined by the shape of the 
ellipse) : 

THEOREM 2 (Gauss). The number of lattice points inside ellipse (1) is 

given by 

(5) N = 2~rTj& + error, 

where the error is bounded by k’2/?as T-+ oc). (We say that the error has 

“order of magnitude” v%) 

EXERCISE 1. Prove that the number of shaded squares in Figure 10.1 ,is less 
than 8 + 8M by selecting four points A, B, C, Don the curve for which the slope 
is & 1. Show, for example, that if on the arc DA the slope lies between -1 and 
+ 1 then the shaded squares covering that portion DA of the arc are fewer than 
2 plus twice the z-prolection of the curve. 

3. Ideal Density in Complex Fields 

In order to obtain an ideal-theoretic interpretation of Gauss’s lattice- 
point result, we consider a complex quadratic field of discriminant d < 0. 
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The present chapter is therefore the one of greatest mathematical scope 
in the book, but it cari scarcely do justice to the subject matter because of 
its brevity. 

2. Lattice Points in Ellipse 

We begin with the problem, due to Gauss, of finding the number of 
lattice points with integral coordinates in a family of ellipses. We consider 
the set of ellipses 

(1) Ax2 + Bxy + Cy2 = T 

in the (x, y) plane, where A, B, C are fixed integers with 

(2) -B2+4AC=A>0 

and T is a positive integer which is to approach infinity. It would seem 
intuitively clear that the number of integral lattice points inside the ellipse 
is approximately the area. 

Before considering this more closely, we show that the exact value of the 
area is 2rrTldh. A rotation of axis is known which enables us to Write 

(3) A’x’~ + C’Y’~ = T, (or B’ = 0), 

where x’, y’ is a new coordinate system at angle arctan B/(A - C) with the 
old one. The area inside the ellipse (3), by an elementary calculation, is 
nT/dA’C’, but by the rotational invariance property of a conicB2-4AC = 

B’2 - 4A’C’; thus the area is 2rrTjd4A’C’ - O2 = 2xT/&. The major 
axis of the ellipse is by similarity exactly &* k, where k is a constant, 
namely, the major axis of the ellipse, 

(4) Ax2 + Bxy + Cy2 = 1, 

which we need not find explicitly. 
We now consider lattice points inside any smooth convex curve of 

width M. 
There is little difficulty in showing the geometric relationship between 

area and the number of lattice points. Ail we need do is to surround each 
integral’ lattice point (x, y) by a square of side 1, centered at this point, e.g., 
bounded by the lines of ordinates y f 4 and abscissas x f $. The (z, y) 
interior to the curve determine a set of squares 6. These are shown in 
Figure 10.1. (Note vertical shading in those squares of 6 which intersect 
the boundary of the curve. If we shade horizontally a11 squares outside G 

1 TO avoid a burdensome notation, we shall use the same symbols (z, y) for lattice 
points as for the “general” point of the plane. 
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w as the number of units of the field of fi, then by the result in Chapter VI 

1 

w=6ford= -3, 

w=4ford= -4, 

w = 2 for other d. 

Hence each ideai (uj satisîying (4aj corresponds to wpoints u in the ellipse. 
Therefore, from the number of lattice points in ellipse (4a) 

F(A, T) = C(a, TN[a]) 

= 1. 2rrTNCa1 + errer 
w d Idl~[a12 ’ 

(7) 

F(A, T) = TK + error 

K=--&. 

Here K is the (complex) Dirichlet structure constant. The error has the 
order of magnitude of z/T. 

If we go further and detîne 

(8) F(ZJ = number of ideals of any class with 
0 < N[a] I T, 

we see that 

(9) KO = F F(A, T), 

where the summation is over h different classes A. But for each class (7) is 
valid; thus 

(10) F(T) = hKT + error, 

where the error still has the order of magnitude of z/T. A quicker way of 
stating the essenfial result is that the ideals have norm density given by 

(11) lim F(T)/T = hK. 

T-W 

4. Ideal Density in Real Fields 

TO extend the result of $3 to real quadratic fields, we start with the 
function C(a, T) defined precisely as in (2), $3. The difference is that the 
locus [corresponding to (4b), $31 is derived from 

(1) ~N(U)I I TN[a]. 
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We define for each ideal class A and parameter T 

number of ideals a belonging to 
(1) F(A, T) = i 

I 

the class A-l for which 
0 < N[a] I T. 

It is evident from the Corollary to Theorem 4 in Chapter VII, $4 that 
F(A, T) is always finite. We now define a closely related 

number of ideals (u) formed by 
(2) C(a, T) = 

i 

taking M in a for which 
0 < IV[(a)] I T. 

It then follows that if a belongs to class A then 

(3) F(A, T) = C(a, TA$]) 

TO see this, note that the (a) just described cari be factored (a) = ab, where 
b belongs to A-‘, and, conversely, every b in A-l defines a principal ideal 
(a) = ab. Thus every b in A-l with N[b] I T corresponds uniquely to an 
ideal (a) in a with N[(a)] I TN[a]. 

The function C(a, TN[a]) is found from the inequality 

(4a) 0 < N[(E)~ L TN[a]. 

Specifically, if a = [a,, c(.J then, in coordinate form, for a in a 

i 

a = a15 + a2y 

(54 M’ = al’x + az’y 

‘ NC41 = aa’ = (ala1’)z2 + (a1a2’ + a,a,‘)zy + a2a2’y2. 

We are therefore concerned with lattice points inside the ellipse, 

(db) Ax2 + Bxy + Cy2 = TN[a], 

where 

(58 A = alaI’, B = a1a2’ + a2a1’, c = u2u2’, 

and 

(6) 

A = 4(a1al’)(a2a2’) - (a,a,’ + a2a1’)2, 

0 < A = -(a,a,l - a2a1’)2 = -(d7N[a])2, 

14 = 14 WI2 

by the index formula (6) of Chapter IV, $10. 
We must, however, ask if each a inside the ellipse (4b) corresponds to a 

different ideal. Generally tl and -a represent the same ideal. If we define 
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FIGURE 10.2 

where K is the (real) Dirichlet structure constant. Finally, with F(T) defined 
[asin@), §3lby~F&T), 

A 

(9) F(T) = hKT + error, 

where the errors are a11 of “order of magnitude” 16. The nom density 
again is hK. 

EXERCISE 2. Verify that the required sectors of the hyperbola (containing 
primary solutions) for 19 - 2~~1 I 7 are limited by x > 2~ > 0 and y  > x > 0 
by applying Exercise 6 of Chapter IX, $2. (Here a1 = 1, a2 = v’z, Q = 
1 + dz.) Plot the primary solutions in the (x, y) plane. 
EXERCISE 3. Extend the argument in 52 to show that the error term in 
approximating lattice points by area of a hyperbolic sector is still of the order %‘T. 
EXERCISE 4. Tabulate F(T) for d = -4 and d = 8 for T I 25 by considering 
the factorizations of a11 algebraic integers of the respective fields of norm 5 25. 
(Here the ideals are, of course, a11 principal.) Observe the ratio F(T)/T. 
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Using substitutions analogous with (5b), $3, we Write 

a = alx + a2y, a’ = a1’5 + az’y 
and 

(2) /(a1a1’)22 + (ala,’ + a2a1’)zy + a2a,‘y21 I TïV[a]. 

As we shall see, the inequality (2) is satisfied by an infinite number of 
pairs of integers, as,T becomes large enough. 

We therefore Select from the lattice points satisfying (2) only those which 
correspond to primary numbers (Chapter IX, $2). For these numbers a the 
conjugates a and a’ are related by 

(3) 1 I Ia/a’l < qi2, a > 0, 

where q1 is the fundamental unit. Thus, if we supplement inequality (2) by 

(4) 

We then obtain fwo sectors of a hyperbola. In finding the number of 
lattice points, once more we use the area as an approximation. This time 
it is convenient to change coordinates: 

(5) 
i 

E = a9 + a2y, 

E’ = a1’2 + a,‘y; 

then it cari be shown that the Upper one of the sectors, defined by the 
inequalities analogous to (1) and (4), is 

(6) 

Its area is precisely the following combination of an integral and equal 
triangles : 

s 

-Il 

dù 
ud[jE + AOAC - AOBD = u 10g ql, 

as seen in Figure 10.2. The ratio of areas from the 65’ to the xy plane is the 
determinant Iqa2’ - a2a1’l = d N[a]. Hence, using two sectors of the 
hyperbola, 

(7) C(a, TN[a]) = 27Nal log rl + errer. 
@N[a] ’ 

and we define F(A, T), as in (l), $3, by 

(8) F(A, T) = TK + error 

2 1% 71 

K=J;i’ 
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Ifn+ co,wefind 

5cs> - & < 1, 

or multiplying 
16 - 1m> - 11 < (3 - 11, 

167 

and as s --i 1 the conciusion (3j hoids. IIence ((sj - CO as s - 1. Actually, 
the only interesting values of s in the whole chapter are those s that are 
near 1. 

6. Euler Factorization 

We now note a form of the unique factorization theorem. Consider the 
infinite product of series, multiplied over a11 primes, namely, 

(1) ( 1 + ;$ + $ + + + . * . )( 1+&+$+$+.** * 
1 

( 
1 + f + f + . . * . . . 

) ( 
1+l +L+L+... 

PS PZS P3” ) 
. ..- 

The forma1 multiplication must yield a11 products of 

- 
p1’8 

for primes pi and exponents ai. The unique factorization theorem tells us 
that every positive integer n occurs once to make up 

(2) 

But 

1+$+ (J$+ (jr+-*+ = 1 -:l,ps). 
Thus 

(3) $$ = 5(s) = rp - PTl, 

where the product is extended over a11 primes. 
Actually, Euler attached a great significance to the representation (3). 

He noted, on the left, that as s-f 1, &s) -+ CO, whereas on the right a 
product over primes occurred. Hence there must be an infinite number of 
primes; otherwise C(S) --f II(1 - p-l) (over a finite set) or t(s) ++ CO. 
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5. Infinite Series, the Zeta-Function 

In order not to become completely distracted by issues of real analysis, 
we shah use infinite series in a forma1 way, leaving to the more energetic 
reader the problem of verifying that the conditions for convergence are 
taken into account. 

n n+l 1 

s 

n+l n 
FIGURE 10.3. = area under curve from z = 1 to z = n + 1; 2 = area under 

1 1 

step-function; shaded area = difference; n = 3. 

The main type of infinite series that we shall use is the so-called zeta 
series : 

(1) 5(s) = 1 + k + $ + ; + * * * . 

Here s is a real continuous variable, s 2 1. By the experience of elementary 
calculus, we know that the series converges for s > 1 by comparison with 
the area 

(2) 
s 

* dz x1-s u2 
- = - 

XS l-s 1 = “finite integral.” 

More important is the result that 

(3) 5m - 1) - 1, 

as s -+ 1. TO see this, note by comparison of areas in Figure 10.3 that 
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Thus, taking logarithms of relation (3), we find 

(7) 

[log5(s) =Zlog (1 -+y 

1 
1 

=; i + error. 

The error is less than C (l/p2”) < ZZ (l/p2) < t(2), for s > 1. Hence 
since [(s)(s - 1) - 1, 

1 

and 

log 5(s) = log [S(s>(s - 1)-j + 1% - 
s-l 

(8) ;S i = log &) + bounded error, 

as s -+ 1, providing additional evidence that thére is an infinite number of 
primes, according to Euler’s technique. 

EXERCISE 5. Using Hilbert’s example of “nonunique factorization,” consider 

where the sum is over positive n = 1 (mod 4) and the product over “indecom- 
posible” p = 1 (mod 4), with no factor < p of the same type. (See Chapter III, 
$5.) Sin@e out the first term g/n” for which both sides Will fail to check. 

7. The Zeta-Function and L-Series for a Field 

We next consider the series called the zeta-function for a field 

(1) 

summed over the norms of a11 ideals (excluding zero) in the field of 
discriminant d. Rather than concern ourselves with convergence immedi- 
ately, we note “formally,” i.e., assuming convergence, 

(2) 56; 4 =l-I (1 - -&-’ 
over a11 prime ideals by virtue of unique factorization, according to the 
method of Euler. 

The methods of Chapter IX tel1 us how to decompose further the product 

Here j-J1 is the product over a11 primes p (= q) for which (d/q) = - 1; for 
these iV[(q)] = q2. Furthermore, n2 is the product over a11 primes p for 
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A related statement is the following: 

THEOREM 3. If f(a) is a completelyl multiplicative function of positive 

integers a, b, 

then 
f@)f(b) = f(4 

provided the sum on the left is absolutely convergent. 

A word of explanation is in order concerning the use of infinite series. 
It is ordinarily assumed that tare concerning the use of series is reserved for 
the “ultrafastidious” personalities in mathematics. This was generally 
believed until Riemann (1859) attempted to find a distribution formula 
for the nth prime, using the c(s) function. He made many “plausible” 
statements (and some incorrect ones), believing that the analysis was only a 
matter of detail, but it took almost 50 years before enough details could 
be supplied by his successors to prove the most basic result, that pn, the 
nth prime, satisfies the limit 

p,/(n log n) + 1 as II + co. 

As is well known, a11 of Riemann’s statements have net been settled, and, 
as a result, analysis, as applied to number theory, is treated with caution 
bordering on suspicion. The use of infinite series, here, gives no cause for 
suspicion, and the reader cari supply any missing details. 

As an example of what is involved in the analysis, let us introduce 
logarithms. We Write in accordance with calculus 

(5) log (1 + t) = t - ; + 5 - . . 

(6) log 1 - -? -l 
( i PS 

=‘+‘+L+...+ 
ps 2p2” 3p3” 

= J- + error 
P” 

where the error is less than 

sincep” > 2 and [l - (l/~?)]-~ < [l - (1/2)1-l = 2. 
1 An (ordinary) multiplicative function is one for which the indicated relationship is 

imposed only when (a, b) = 1, such as f(a) = +(a), the Euler function of elementary 
number theory. 
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terms with equal values of N(a) we find 

171 

(1) KS; 4 =z& = ‘r” 1 F(2) ; F(l) + F(3) ; F(2) + . . . > 

since F(T) - F(T - 1) is the precise number of ideals a for which T = 
N[a]. If we rearrange the series, we find 

[(s; d) = F(l)(i - &)+ F(2)($ - f) 

+F(3)(3;-$)+*..+, 

(2) 

It is easily seen that 

(3) 

= -L + error. TS+l 

It cari therefore be seen that for a11 s > 1 the error is < C,/T*+2 for C, 
constant. Thus, substituting into (2) and summing, we see 

(4) &; d) = s 2 + . $ + finite error.’ 
1 

But F(T)/T-t IZK for the various values of K and h(d) in $83 and 4 (above). 
The error in the limit is less than c,/z/T for c2, a constant. Thus 

(5) 

or 

(Cl (S - l)[(S; d) = S(S - l)c(S)hK + (finite error)(S - l), 

as s -+ 1. If we refer to (6~) in 97 and (3) in $5; 

(7) L(S; d) 3 hK, 

as s + 1. We cari go further and set s = 1, from (8) in $7. Then 

(8) hK=L(l;d)=f(dln). 
1 n 

1 We shall use the expression “finite errer” to mean a variable that remains finite as 
s -+ 1. 



170 CLASS NUMBER FORMULAS [Ch. X] 

which n 1 p and (d/p) = + 1. There are two factors for ni and pZ and 
N[p,] = N[p,] = p. Finally, na is the product over a11 primes r 1 r 1 d, for 
which (d/r) = 0, N[r] = r. Hence 

(4) as; 4 =IL (1 - +J1rL (1 - $)+I& (1 - j-l, 

or 

(5) 56; 4 =IL (1 - j-‘(1 + $-’ 

. nz (1 - -$y 1 - -y 

q-q1 -$Y 

We cari easily recognize t(s) in the product, since categories p, q, r exhaust 
a11 primes. Thus 

(64 5(s; 4 = swts; 4, 

where we define 

(6b) Us; 4 = IL (1 + -$$ (1 - $)-‘n (1). * 
Now, combining a11 cases (p, q, and the “missing” r) into one symbol p, 
we find 

(7) L(s; d) = j-J( 1 - @y-l, 
B 

taken over a11 primes p. By Theorem 2, since f(x) = (d/~) is completely 
multiplicative for z > 0 (by properties of the Kronecker symbol), 

This function L(s; d) is known as Dirichlet’s L-series. In a11 cases the 
convergence is no problem when s > 1. 

EXERCISE 6. Write out the first 25 terms of {(s; d) for d = -4 and d = 8, 
noting that some values of N(a) occur more than once, some not at ah. (Use 
Exercise 4, $4 above.) 

8. Connection with Ideal Classes 

TO tie the zeta-function for a field with a class number we return to the 
function F(T) defined in (S), $3. We note that if in the series we collect a11 
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9. Some Simple Glass Numbers 

As our first example, take d = -4. Here 

L(l;-4)= l-&++-$+;+..*, 

since (-4/x) = f 1 according as z E f 1 (mod 4) (z odd). It is easy to see 
thrt L(! ; -4) = n/4. In fact, 

integrating term by term. But K = 2~/4Yl-41 = n/4. Thus h = 1. 
As a second example, take d = 5. Here 

L(1; 5) = (1 - 4 - 6 + 2) + (8 - 7 - Q + 4) + * *. ) 

the plus sign going with residue and the minus sign with nonresidues 
modulo 5. 

L(1; 5) = 
s 

;5[(1 - x - x2 + x3) + (x5 - x6 - x’ + x8) + . . *] 
0 

= 
s 

ldx(l - x - x2 + “3)[1 + x5 + xi0 + 215 + . . .] 
0 

s 

‘dz 
(1 - x - x2 + x3) = 

s 
i = (1 - z2) dz 

0 1 - x5 o(1 + x + x2+ x3+ x4). 

It is well-known that any rational function may be integrated by the method 
of (complex) partial fractions. We cari avail ourselves, however, of the 
following trick. Let cz + 1/x = y, (1 - 1/x2) dx = dy; 

s 

1 
L(1; 5) = - (1 - 1/x2)dx = m 

0 1/x2 + 1/x + 1 + x + x2 s 
dy = m dz 

2 y2+y--1 s 54 z2 - 514 

1 
= - log - 

2&/4 
512 + J512 = 2_- log Js + i 
512 - $/2 JS 2 

by well-known formulas. But for d = 5, ri = (45 + 1)/2; hence 
K = L(1; 5) and h = 1. 

The evaluation of other integrals is a more complicated matter. It is not 
hard to see that in general we shall obtain 

L(1; d) = 
s 

l fi(x) dx 
oD’ 

Idi 
where fd(x) = 1 xt-l(d/t). By the theory of partial fractions, we cari 
decompose I=l 

A + Bx 

1 

h(x) _ z: 

- xldl x2-ax+ b 
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We have thus asserted that the limit of L(x; d) as s-t 1 is merely 
L(1; d), found by substituting s = 1. This proposition of continuity of the 
series in the parameter s is not trivial, although it involves well-known 
procedures of analysis .i We shall merely rewrite L(s; d), 

(9) 

in a form that Will make convergence manifest for s 2 1. 
We first define 

(10) E(n) = (dl11 + (44 + * * * + (qn) ; E(0) = 0, 

SO that, analogous with the rearrangement performed earlier, 

(11) (d/n) = E(n) - E(n - l), (n 2 1). 

But if n = kd + r, e.g., nid, has quotient k and remainder r, 

(121 E(n1 = z~lW4 + s~~~(44. 

Now (d/kd + r) = (d/r) by the conductor properties of the discriminant d 
(see Chapter II, $6). Furthermore, 

since the orthogonality relation (16) of Chapter II, $2, now applies with 
x(x) = (d/x) and x0(x), the two different characters modulo d. Thus the 
first sum in (12) is 0 and 

kd+r 

(13) IE(n>l I 2 l(d/x>l I i 1 = r < d. 
X=kdtl x=1 

Using the rearrangement of (2), 

(14) 
L(s; d) = 2 E(n) - E(n - 1) 

n=l ns 
= 5 E(n)($ - hs) ; 

n=1 

and inequality (13) yields on a term-by-term comparison [see (3)J 

(15) IL(S; 41 SRzl(g + error), 

where the error is < C,lnS+2. This shows convergence for s 2 1. 

1 The reader, familiar with the sufficiency of uniform convergence for continuity, Will 
recognize the series (14), below, to be uniformly convergent for s 2 1, whence the same 
Will hold for the rearranged series (9). 
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We must interpret the logarithm as the complex logarithm, in general, 
using the MacLaurin series 

(4) log (1 + 2) = 2 - 22/2 + 23/3 + * * * + (- l)“fi(z”/n) + * * . 

valid for real or complex z if 1.~1 < 1. 
The connection with primes in arithmetic progressions is brought out if 

we take some dehmte relatively prime residue class a modulo m. If we 
multiply (3) by x-‘(u) and sum over x in X which denotes the finite set of 
4(m) characters, 

(5) x5&-1(a) log L(s, x) =zz ‘-“: ‘(‘) + error 
XP 

=T j I$ x-‘(a) x(p) + errer. 

Hence, by (17) in $2, Chapter II, the inner sum 

7 x-‘(Q) X(P) 

equals 4(m) ifp = a (mod m) and 0 otherwise. Thus 

(6) ;S x-l(a) le Us, x> = dhlp $iI, nl) -j + errer, 

where the “errer” remains finite as s -+ 1. We shah show that the left-hand 
term approaches co as s + 1. This Will prove Dirichlet’s theorem (for the 
sum on the right would have to contain an infinite number of primes). 

TO see a simple case, let us take m = 4, where our purpose is to show 
that there is an infinitude of primes of type p = 1 (mod 4) and of type 
q z 3 (mod 4). Analogously, with Euler’s proof in $3, we would wish to 
show that the following two quantities approach CO as s + 1: 

i 

rrl =I-r<l - l/qS)-‘, (s > l>, 
(7) 

rr2 =ij (1 - llP”)-l, (s > 1). 

Here we note (for m = 4) that x cari be two functions: 

Xl(Y) = (4h) = 1, 
x*(y) = (-4/y) = (- l)(v-i)‘2 2 (Y > O), 

for y odd, whereas each x(y) = 0 when y is even. Symbolically, 

Xl(P) = x,(p) = 1; Xl(S) = -X4(4) = 1. 

We also introdke, in accordance with x4(q), 

ITl’ =y + llq”)-‘3 (s > 11, 
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byjrst reducing the left-hand fraction to lowest terms and then factoring 
the new reduced denominator into quadratic factors. For example, when 
d = 8, using the indicated partial fractions 

id4 _ (1 - 2)(1 - x4) 1 - x2 
1 - $1 1 - x8 =1+1’ 

1 - x2 A + D”z A’ - “l.. D% 
- = x2 - JZX + 1 1 + x4 

+ 
x2+JZx+1’ 

we find, comparing coefficients, that A = A’ = 4, B = B’ = -$X6. 
It Will be no surprise that the class number cari be explicitly evaluated 

for a11 quadratic fields by evaluating the integral for L(1; d). The manipu- 
lations involved are of no further interest,l at present. 

We shall make a more startling use of the formula for L(1; d) even 
without being able to evaluate it explicitly. 

EXERCISE 7. Carry out the calculation of h when d = -3. 
EXERCISE 8. Do the same when d = 8. 
EXERCISE 9. If  z@) = g(z), show g(l/z) = g(o) or -g(z) according to the sign 
of d, by Exercise 9, Chapter II, $6. 

10. Dirichlet L-Series and Primes in Arithmetic Progression 

The historical consummation of the class-number formula has not been 
the numerical usage of the formula but the application to primes in arith- 
metic progression. We must first digress to define the Dirichlet L-series for 
a character x(x) modulo m as 

(1) L(s, x) =f x(n). 
1 ns 

The product formula (4) of $6 yields 

L(s,x) =-J-J 1 -X(p) -l 
9 ( ) PS ’ 

and the logarithm formula (5) of $6 yields similarly for s > 1 

(3) log J.4, x) =Z: x(P)/P’ + euor ; 
P 

where the “errer” again remains bounded as s -+ 1, similarly to (7) of $6. 
In a11 that precedes, of course, we note Ix(p)1 = 1 if p f m or 0 if p 1 m, 
hence a11 estimates on the error in $8 (above) are certainly still valid here. 

1 See formula (17) in the Concluding Survey. There may interest in the fact that a 
logarithm occurs in L(1; d) only if d > 0 which is partially explained by Exercise 9 
(below). 
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ass-t 1. But log i(s) = -1og (s - 1) + finite error; thus 
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(1) 

as s-t 1. 

log L(s, x1) = -1og (s - 1) + finite error 

TYPE II SERIES 

Here x 1s real and x f xi. We use the theorem that every real character 
modulo m satisfies, by Dirichlet’s Lemma, 

(2) x(4 = tw4 

where M is a suitably chosen positive integer, not a Perfect square (see 
Chapter II, $7). Thus we cari Write M = gVwhere dis the discriminant of 
some quadratic field. It is easily shown that M, m, d have (ignoring sign) 
the same square-free kernel, but the exact relationship is irrelevant. Thus 
for a Type II series 

It is clear that ifp fg, then (g2d/p) = (d/p); otherwise, ifp 1 g, (g2d/p) = 0. 
Hence n t2) = 1, and if we compare 

(4) L(s; d) =,,Q(l - yy, 

then, supplying the factors for no) in L(s, x), we see 

L(s; d) = L(s, x) .=lJ (1 - y]-‘. 

Now, since only a finite number of primes divides g, the factor n 
approaches the finite limit (f 0) Plg 

,(l - yi’ 
as s + 1. We have only to observe that the class number h(d) 2 1; hence 
L(s; d) and L(s, x) upproach nonzero limits as s -f 1 by formula (8) of $8 
(above) for x of Type Il. 
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SO that if we define na = n1 T]Tr’ we obtain the bounds 

(8) 1 I J& =JJ(l - l/$“)-l <5(2s). 
Q 

Now the L-series gives us essentially two expressions of “unknown 
behavior,” EL l-I2 and ~~~~~~ 

(84 us, Xl) = aIl l-L> = 5(s)(l - 4”) 

WI us, x4) = l-r2 rrl’ = <rMr1> . IL. 

By multiplying and dividing these equations, we obtain 

(94 IT2” = 5wt1 - P)[-%, x4m-31 

Pb) l-l-1” = mt1 - ~snr3/w~ x4)1. 

But as s + 1, c(s) - CO, L(s, Xa) + ~r/4 (by $9), whereas 1 < na 5 c(2). 
Hence n1 -f oc) and nz -f CO. Q.E.D. 

The reader Will note that adding logarithms is simpler, as a matter of 
notation, than handling products, but log [L(s, X1) L(s, X4)] and log 
[L(s, XJ/L(s, X4)] correspond to 2 X-l (1) log L(s. X) and 1 X-l(3) log 

L(s, X) required in (5). The replacement of nr’ by l/nl is e&ily justitîed 
by the use of logarithms and the neglect of higher order terms in (3). 

11. Behavior of the L-Series, Conclusion of Proof 

We first distinguish three types of L-series; taken modulo m: 

TYPE 1 SERIES 

Here X = X1, the unit character only. Then 

Xl(x) = 1 if (? m) = 1 and Xl(z) = 0 if (2, m) > 1, 
Thus 

us, Xl) = n 
hm)=l 

The second product n . * * has a finite number of factors and approaches 
Plm 
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Thus, as s -f 1 
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(12) log L(S, x) = ( -1og (S - 1) f finite terms if x = x1 

merely finite terms if x # x1. 

Returning to (6) in $10, we see from the result (12) in $11 that as s -+ 1 
only x1 matters in the sum, or 

2 I + finite error. 
p-a mod m p8 

Thus there is an infinite number of primes in the arithmetic progression as 
required. 

As an outgrowth of the comparison, we note by (8) in $6 

2 L 
(14) 

p-a(nlod m) PS 

z:’ 
-$Fg> 

(as s -i 1). 

all P p8 

Thus “in some sense” each of the various $(m) relatively prime residue 
classes modulo m contains an “equal density” of primes if we measure 
density by the ratio on the left. This mode of measurement has been 
subsequently termed “Dirichlet density.” TO conclude the same linear 
density in the sense of a court is not at a11 easy; e.g., if n (5; a, m) is the 
number of primes I 5 in the given arithmetic progression (and if n (x) is 
the total number of primes I z), it is by no means immediate that 

(1% TI (2; a, m) 
l-I (4 -&f 

(as 5 + co), 

although this difficult result is true. 

EXERCISE 10. In a grouping analogous to QS, (9) to (15), show the convergence 
of the series in (6) for s 2 1. 

**12. Weber’s Theorem on Primes in Ideal Classes 

On looking back, we note that quadratic field theory entered the theorem 
on primes in arithmetic progression at on/y one spot, in showing L( 1, x) # 0 
if x is a character of Type If. TO see this curious fact in greater perspective, 
let us consider a very closely related theorem of Weber (1882). 

THEOREM 4. Every ideal class of a quadratic field contains an infinite 

number of primes. 

Proof. Let d be the field discriminant as usual. First of ah, the primesp, 
for which (d/p) = - 1, do not split and therefore are in the principal class. 
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TYPE III SERIES 

Here x is complex. We show, likewise, that L(s, x) -+ L(1, x) # 0 as 
s -f 1. TO see this, let us first note that a continuous derivative 

(6) E(s, x) = -f x(n) log n/ns 
1 

exists fors 2 1. The expression given here is a “term-by-term” derivative.r 
Hence, if, to the contrary of the assumption of the non-vanishing of the 

L-series, 

(7) m, X*l = 0, (x* of Type III). 

then we could conclude by the mean value theorem of calculus 

(8) a x*) = us, x*> - Jw, x*) = ~Y%, x*)6 - 1) 

for 1 < s0 < s. (We henceforth keep s real.) This would a11 be true even 
if x* were real, but the complex character x* has the property that for 
its complex conjugate X* it necessarily follows that 

(9) LU, X*l = 0 

by taking a term-by-term conjugate of (7). Then 

(10) w, X*l = L’(so, j*>(s - 1). 

Now if we sum (3) of $10 over a11 characters (or take (6) of $10 with a = l), 
we find 

(11) Z: log Us, xl = $tm> sliZd ni) + + finite errer. 
x 

The sum on the right is 2 0, as s --f 1. It may (and actually does) approach 
CO, but it certainly Will not approach - CO. If we examine the sum on the 
left in (1 l), we Will find, by (8) and (10) ut Zeast two different x, (x* and X*) 
for which a term of order log (s - 1) is contributed by a vanishing L(1, x) 
but only one x = xi for which -1og (s - 1) is contributed to this left- 
hand sum. The net result is that the leftdhand side of (11) still approaches 
- CO, (even more SO, if some other L(s, x) -+ 0 or even if, in (S),L’(s,, x*) - 
0 as s + 1). This makes the left-hand side of (11) approach - CO, contra- 
dicting the assumption (7). 

‘The derivative is valid when series (6) is shown to be uniformly convergent for 
s 2 1. In Exercise 10 we perform a rearrangement analogous to $8 to show convergence. 
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where d, represents ajxed integer (actually some divisor of 4d) and a is any 
ideal in A selected to have a norm relatively prime to 2d. (The dejinition of 
y(A) is independent of a in A for these values of d,.) 

Then, for <(s, d; y), a Type II function, we remove the factors n for 
which (N[p], 2d) # 1 and obtain 

as we next separate the product into two of the three types of $7 above. 
For those p satisfying (d/p) = - 1, IV[(p)] = p2, 

Va) 

and for those p satisfying np’ = (p), (d/p) = 1, N[p] = N[p’] = p, 

G’b) -J-J2 =a(1 - @y)‘. 
We then see that the seemingly different types of factors cari be unified as 

according to the values (d/p) = -1 and +l. But this expression is 
essentially the product of two L-series, the L-series for X(l)(n) = (d,/n) and 
the L-series for xt2)(n) = (dd,/n), each with the restriction (n, 2d) = 1. 
Each are Type II, whence from (6) the ratio 

(9) 5ts, d; ~)/[US, x9W, ~‘~91 

consists of only ajnite product over p 1 2d, with nonzero limit as s + 1. 
Thus, finally, for Type II, 

(10) [(s, d; y) --+ (nonzero limit). 

(The reader cari supply the details as Exercise 11 below.) Q.E.D. 

Although Weber’s theorem confirmed the significance of Type II series, 
after Dirichlet’s original proof various shorter proofs of Theorem 1 were 
developed to circumvent quadratic field theory. In fact, in retrospect, the 
use of quadratic fields seemed to be like “burning down a house to roast a 
pig.” More recently, however, mathematicians have corne to regard the 
general connection between prime decomposition in fields and primes in 
arithmetic progression as very deep and certainly still not completely 
explored. It might suffice to note only that for d a discriminant the primes 
in a single arithmetic progression modulo d [e.g.,p E a (mod d)(a, d) = 11, 
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There is an infinite number of such p, for instance, taken from each arith- 
metic progression dx + a where a is chosen SO that (d/u) = - 1. We shah 
show an infinitude of primes p to exist in each class such that p Ip and 
(d/p) = 1. (This even strengthens the result for the principal class.) 

In the earlier proofs we considered (in effect) a set of 4(d) characters x(n) 
defined for the $(d) residue classes IZ for which (n, d) = 1. For this proof 
we introduce the characters y(Aj defined on rhe ciass group with /r eiements 
symbolized by A. There are h such characters, and the unit character yr(A) 
is 1 for each A. If a E A, we extend the definition y(a) = y(A). The 
multiplicative property of characters, of course, is p(a)y(b) = y(ab). 

Then, analogously with (1) and (2), $10, we define the mod$ed zeta 
function: 

(1) ih d; Y) =Z$y(4/N[als =‘II[ (1 - Y(PYN[PI~)-~, 

where the sum is over a11 nonzero ideals a and the product is over a11 prime 
ideals p. Then, analogous with (3) and (6), $10, 

(2) log [(s, d; y) =z y(p)/N[p]’ + finite error, 
P 

where “finite errer” refers again to the limit s 4 1. Then, for A, a fixed 
ideal-class, we take sums over a11 h characters y, using orthogonality: 

(3) :y-‘(A) log [(s, d; y) = hPzAl/N[plS + finite error. 

As before, we define the modified zeta-functions ((s, d; y) of three types: 
Type 1, for which y = yr(A) is the unit character, Type II, for which 
y = y(A) is real for a11 A, and Type III, for which y has complex values for 
some A. The proof of the theorem then consists in showing that as s + 1 

(4) 
i 

(S - 1) ((.Y, d; yr) --f (nonzero limit ), for Type 1, 

l(s, d; y) -+ (nonzero limit), for Type II or III. 

We shall focus our attention on Type II, using an analogue of Dirichlet’s 
Lemma of Chapter II, $7, whose proof is deferred until Exercise 20 in $3, 
Chapter XIII. 

DIRICHLET-WEBER LEMMA 

The only real characters on the class structure group bave the form given 
by the so-called generic (Jacobi) character 



chapter XI 
Quadratic reciprocity 

1. Rational Use of Class Numbers 

Quadratic reciprocity Will be familiar to the reader as probably one of 
the culminating theorems of elementary texts in number theory. The 
theorem was conjectured experimentally by Euler (1760) and “almost” 
proved several times. The first actual proof was given by Gauss about 
1796. Gauss indeed gave seven proofs, and by 1915 there were 56 proofs! 
Subsequently, at least a dozen more proofs were discovered. Obviously, 
there is something intrinsically appealing in such proofs to bring out new 
viewpoints so 0ften.l 

We shah give an ideal-theoretic proof, which is a variant of one due to 
Kummer (1861) using quadratic forms. 

It is desirable to ask to what extent reciprocity has been invoked in 
ideal theory. First of all, we used reciprocity to show that x(n) = (a/n) is 
determined by n modulof(a), the conductor. We also used reciprocity to 
evaluate some otherwise tiresome symbols (a/b). We did net use recipro- 
City, however, to prove Theorem 1 in Chapter IX on the factorization ofp 
in the field of v%, (whereD, as usual, is square-free). From this theorem 
we shall prove reciprocity now. 

Let us first note a result concerning forms and ideals, which indicates 
the role of class number in rational number theory, typified in this 
chapter. 

1 We follow the Count made by Bachmann (see Special References by Chapter 
below). Included in his list is a proof by Cauchy related to heat conduction theory ! 
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a11 factor or stay unfactored alike, as (d/a) = 1 or (d/u) = - 1. It is this 
circumstance that ultimately guaranteed the occurrence of an infinitude of 
primes in arithmetic progression! 

EXERCISE 11. Complete the proof of Theorem 4 by showing (a) the “finite 
error” statement is valid in (3), (b) the factors n1 and l-J2 are unified by (8), and 
(c) the ratio (9) has a nonzero limit as s -) 1. Supply other details needed. 
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and conversely. The usual laws of cancellation are consistent, e.g., 

if 6 # 0, as cross multiplication easily justifies. 

THEOREM 2. If N(E) = I for some unit E, then for some algebraic 

integer y, with conjugate y’, 

(4) 
Y E=y. 
Y 

Proof. We have only to let 

1 y=l+rif~#-1, 

y=YD ifE= -1. Q.E.D. 

COROLLARY. If GC and ,5 are algebraic integers such that N(a) = N(p), 

then for some algebraic integer y 

(6) 

The theorem (and corollary) are referred to as Hilberts’s Theorem 90 (of 
the famous Zahlbericht). They have an exalted place in the advanced 
theory, since condition (4) is trivially sufficient and very profoundly 
necessary for N(E) = 1. The proof of the corollary is left as Exercise 4. 

THEOREM 3. If the discriminant d of a field is positive and has only one 

prime divisor, then the fundamental unit Q satisfies 

(7) N(qJ = - 1. 

Proof. First of all, d = 8, for R(d?), and prime values d = p s 1 

(mod 4) for R(di), are the only cases in the hypothesis. If N(q,) = + 1, 
we could Write (for integral y), 

by Theorem 2. We could also remove any rational common factor from 
either y or y’, which we consider henceforth to have been done. Then, in 
ideal terminology, 

(9) (Y) = (Y’>. 

This means that if q is a prime ideal dividing y then 

(10) q I (Y’)* 
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- 

THEOREM 1. If the field of 40 has class number h, then, whenever 

(d/p) = I for d the discriminant and p, an odd prime, 

(1) fPh = ;;: 1 ;:;j+ 
i 

d/4 = D $ I (mod 4) 

d = D E I (mod 4) 

has a solution in x and y relatively prime to p. 

Proof. If (d/p) = 1, p = pp’ and N[p] = p. But (by the corollary to 
Theorem 6, Chapter VIII, $2) ph = (.rr,), a principal ideal not divisible by 
p’, hence not divisible by p. Thus no = x + \/G or (x + 2/Dy)/2 and 
we obtain (1) by taking norms : 

NPlh = N(~o)1 = IW~Jl. 

Furthermore, (z,p) = (y, p) = 1; otherwise, from (l), (z, y, p) = p and 
P ( (no). Q.E.D. 

Note that if D < 0 then only the + sign (in the f symbol) applies as 
NhJl = Wd > 0. 

EXERCISE 1. Whend = -20, D = -5, h = 2. For (-2O/p) = 1 andp < 30, 
verify, by numerical work, 

p = l2 + 5v2 hp) = (4p) = 1 

in some cases; but, regardless of this, 

in a11 cases. 
p2 = x2 + 5tJ2 kp) = QAp) = 1 

EXERCISE 2. Under what circumstances Will a fixed k exist, 1 < k < h, such 
that whenever (a’/~) = 1 we cari use pk instead of ph in (l)? For example, if the 
class group is Z(p”) x Z(p”) and a 2 b > 0, then h = pa+O. What would be a 
suitable k( ch)? 

EXERCISE 3. Show that if h is odd and q 1 D then (&~/y) = 1, according to 
the sign in (1). 

2. Results on Units 

We have in the past used only algebraic integers in the field, R(d%), and 
never fractions. In this chapter only, we use fractions a/@ symbolically 
where a and b are algebraic integers such that p # 0. Then 

(1) a y 
rB=s 

with 6 # 0, means precisely the result of “cross multiplication” 

(2) aa = Pr, 
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Incidentally, it is easy to recall the following [by reference to Chapter VI, 
§41: 

THEOREM 5. The Pell equation, 

(‘7) x2-my2=-1, or -4, 

La- _  ̂ --,..*:-- :- :_A^ --- :i.- L-- - --2-_ I--&-- - 1105 IIU DUIULIVII III IIIL~&IS II 1,~ hi5 a priiiir I~C~I <I E -1 (iïïod 4j. 

If m has only prime factors which are E I modulo 4 (or equal to 2) there 

is no decisive result. For example, from the fundamental units, 

1 

x2 - IOy2 = -1 is solvable (3, 1), (10 = 2. 5), 

x2 - 34y2 = - I is unsolvable, (34 =2. 17) 

( 

x2 - 65y2 = -1 is solvable (8, 1), (65 = 5 - 13) 

x2 - 221~~ = -1 is unsolvable, (221 = 17. 13). 

Once more we cari admire the unpredictability of algebraic number theory! 

EXERCISE 4. Prove the corollary to Theorem 2 (above). Hinr. First try 
y = 1 + u/B. 
EXERCISE 5. Verify the unsolvability of x2 - 34y2 = -1 and 9 - 221~~ = 

- 1 by making use of the units in Table III (appendix) and (15 + d221)/2. 

3. Results on Class Structure 

THEOREM 6. If the discriminant of a field is positive or negative and 

contains only one prime factor, then the class number of the field is odd. 

Proof. Wefirst note that if a group G is of even order it has an element 
A(# I) such that A2 = 1. Otherwise, let us remove the identity 1 and pair 
off different elements of the group A, A-‘; B, B-l ; . * * until the group is 
exhausted. But this process yields an odd number of elements in G (hence 
a contradiction) unless for some A, A = A-l. 

If the class number of the field of dz is even, there exists a class K for 
which 

(1) K # 1, 

K2 = 1. 

Now multiplying by K-l = K’, the conjugate 

(2) K = K’ # 1. 

An ideal j (in K) exists such that 

(3) i - j’. 
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Talcing conjugates, 

(11) 4 1 (Y)* 

Thus both q and q’ divide (y). If q # q’, then, by ideal factorization, qq’ = 
(q) divides (y), leading to a contradiction, and q = q’. But the only self- 
conjugate prime ideals are divisors of q for which (d/q) = 0. Now, d = p 
or d = 8, hence p = q or 2 = q = p and, since p = (G),, clearly 

(12) 9 = <GI 

for any q that divide y. Thus either 

(13) y=’ 

(which means no prime divides y) or 

(14) y = éd;, 

where E is a unit, In these two cases, if N(c) = &l, 

(134 71 = rlr’ = E/L = +Et = fc2, 

(13b) Tll = y/y’ = &&M;) = -+E’ = FG. 

In neither case is ri a fundamental unit. Hence by contradiction, 

ïv(q,) = -1. Q.E.D. 

TO see a corresponding result stated independently of algebraic number 
theory, consider the following : 

THEOREM 4. If  p z I (mod 4) is a positive prime, then the equation 

(‘4) x2 - py2 = - I 

has a solution in integers x, y. 
Proof. As a direct consequence of Theorem 3, equation 

(15) 
2 - PV2 -1 - = 

4 

has a solution in integers U, U, where u = v (mod 2). In fact, r],= 
(U + VX$)/~. We next recall that by Exercise 19, Chapter VI, $9, vi3 = 1 
(mod 2) and, consequently, 

(16) % 3 = x + y& 

where z and y are necessarily integers but N(rr3) = - 1. Q.E.D. 
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Reducing by rational factors, we see the ideal factors of a or a’ divide the 
discriminant pq (= 1 mod 4). Therefore (a) cari be only 

w4 (4 = (11, hence a = 9. 

WI (4 = P, 

uw (4 = q, 

(124 (4 = Pq, hence a = qdp>. 

where 17 is a unit (and, incidentally, pq = (z/p4>, regardless of whether 
p and q are principal). Now, under hypothesis (12a), 

and, under hypothesis (12d), similarly, 

whence ri is not fundamental. This leaves hypothesis (12b) or (12c), 
where p or q appears as principal. Since pq - 1 both p and q are principal. 

Q.E.D. 
In terms of forms, if - 

p =(x+;Jpq), 
by taking norms we see 

p = *(x2 -y2q 

Clearly, z = pX; hence, in new notation, we obtain the following 
result : 

COROLLARY. If p E q E - I (mod 4) for distinct positive primes p, q, 
equation 

(‘3) f4 = px2 - qv 

is solvable in X and Y for some choice of sign. (We shall later see that both 

the + and - signs cannot be admissible for a given p and q.) 

EXERCISE 6. An ambiguous ideal is defined as an ideal a for which a = a’, 
whereas no rational integer (except f  1) divides a. An ambiguous ideal-class is 
defined as a class K for which K = K’. Re-examining Theorem 6, show that a 
real field R( 40) cari have an ambiguous ideal-class containing no ambiguous 
ideal only if the fundamental unit of the field has positive norm. (Observe that, 
equivalently a2 - (l), K2 = 1.) 
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We cannot conclude 1 = j’, as examples Will indicate later on. At best, 
we see 

(4) ai = pi’. 

Thus N[(a)] = N[(&I, since N[i] = N[i’] and 

I_~ __, ~ __,^. 
(3) N(a) = *N(p). 

If N(a) = N(,5), it follows from the Corollary to Theorem 2, for some 
integer y, 

Multiplying (4) by y’ on both sides and using ay’ = @y’, we see that b 
cancels and 

(7) ri = fi’, 

or, if ri = f, 

03) f = f’. 

If, however, N(a) = -N(p), we rewrite (4) as 

(9) ai = hi’, 

where N(q) = - 1 by Theorem 2, and the same result (8) follows. 
We now consider the ideal factors of f and f’. As before, we eliminate 

rational factors and find that only ramified primes remain. Thus 

(10) t = (1) or (P$), 

and I E 1, contradicting condition (1). Q.E.D. 

THEOREM 7. For two different positive primes p - q - -1 (mod 4) 

the field R(v$$ has the property that the factors p, q of(p) = p2, (q) = q2 

are principal. 

Proof. By Theorem 5 the fundamental unit of R(z/pq) or ri has N(q,) = 
+l. Thus 

(11) 

by Theorem 2 and 

VI = - 
a’ 

(12) (a) = (a’). 
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THEOREM 8. If p is an odd prime, 

(4) x2 E -1 (mod p) 

is solvable in x precisely when 

(5) p E +I (mod 4). 

191 

[This constitutes (I).] 

Proof. If we review Theorem 1 in Chapter IX, we find, without help of 
any reciprocity theorem, that (4) is solvable precisely when we have 

(6) (p) = pp’ in R(Z/- 1). 

Thus the solvability of (4) is interchangeable with that of (6). 
We now assume p rz 1 (mod 4). Then, since R(%$) has a unit ri = 

(x + d3/2 f o norm - 1 (by Theorem 3, 92), it follows that 

and easily z2 G -4 (modp), whence x/2 (if z is even) or (z + p)/2 (if z is 
odd) satisfies condition (4). 

Conversely, if x 2 = - 1 (modp) or, equivalently, p = pp’, then, since 
the class number is unity, in R(d- 1) 

(8) p = N(p) = Lx2 f Y2, 

whence it is clear, taking cases modulo 4, that p E 1. Q.E.D. 

THEOREM 9. If p is an odd prime, 

(9) x2 s 2 (mod p) 

is solvable in x if and only if 

(10) 

[This constitutes (2).] 

p E f I (mod 8). 

Proof. This theorem is somewhat more involved. First of all, by 
reviewing Theorem 1 of Chapter IX, $1, we see that this time (10) is 
precisely the condition that 

2 = tt’ in R(@), 

where p* = p if p = 1 (mod 4) and p* = -p if p = - 1 (mod 4). Note 
(10) is equivalent to p* E 1 (mod 8). 
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EXERCISE 7. Observe that for R(d%) the ideals 3, = (3, 1 + v%), 3, = 
(3, 1 - v%) satisfy the relation 3, 2 - (5 - v%), whereas for no integer GL cari - 
one have 3ru = 3,a’; since then (a(5 - v%)) = (~CL’) leading to a contradiction 
when we recall N(Q) = + 1 for R( dr;i>. 
EXERCISE 8. Generalizing the preceding exercise, show that if D = a2 + b2 
and N(qi) = + 1 in R( v%) then an ambiguous ideal-class exists which contains 
no ambiguous ideals. Hint. I f  a = (a, b + do) for odd a, show that aa’ = (a), 
whereas a2 = (b + 6). 
EXERCISE 9. Show that only at most one ideal-class cari be ambiguous 
without possessing an ambiguous ideal. Hint. I f  a - a’ and b - b’, then either 
a or b or ab is an ambiguous ideal ignoring rational factors (see Theorem 6). 
EXERCISE 10. Show if a field of discriminant d > 0 possesses an ideal-class 
without ambiguous ideal then no prime divisor of dis = -1 (mod 4), whence 
d = a2 + b2 (by Chapter IX, $5). Hint. From the relation N(a) = -N(B) in the 
proof of Theorem 6, deduce the solvability in L! of N(E) = -m2. 
EXERCISE 11. Show that the only ambiguous ideals are the unit ideal and those 
whose prime ideal factors divide the discriminant. Hint. Compare Theorem 7. 

EXERCISE 12. Find the y, for which vi = y/y’ in accordance with Theorem 2, 
for the fundamental units of R(du) and R(d%). Note the relationship with 
Theorem 7 and with Exercise 7 (above). 
EXERCISE 13. Show that the only ambiguous principal ideals cari be (l), 
(v%), (y), and (y v%) (possibly divided by a rational number), where D is the 
square-free generator of the field and y  refers to Exercise 12 when D > 0 and 
N(qJ = +l. Hint. First show that when D < -3, (a) = (a’) only when 
OL = fa’, whence c( or u/ 45 is rational (the cases D = -1 and -3 being 
trivial). Next take the case D > 0 and N(Q) = + 1. If  a = ~~a’, set p = a/yt, 
whereas if a = -vita’ set p = CL/(~~ do), and note p = p’. Finally, if D > 0 and 
N(Q) = - 1, then on the assumption that a = fa’qtt show that t is even and 
specify under which conditions cz/~~/~ or u/($j2 v%) is rational. 

4. Quadratic Reciprocity Preliminaries 

The quadratic reciprocity theorem consists of three statements: 

(1) (-l/p) = (-1)(P-1)/2 

(2) (Q) =’ (- 1p-1)/8 

(3) (q/p) = (p/q)(-l)(P-1)/2'(4-1)/2 

where p, q are different odd positive primes. The third statement is, 
understandably, called the “main” result, whereas the first two are called 
“completion” theorems. 

It would be wise to dispose of the completion theorems first, particularly 
since (1) is needed as a tool in the proof of the main theorem. 



[Sec. 61 KRONECKER'S SYMBOL REAPPRAISED 193 

THEOREM 10. If (r*/rJ = 1, then (rI/r) = 1. 

Proof. From the hypothesis we cari factor rl in R(dr*), setting rr = 
riri’. Now, R(A@) has odd class number h (and the fundamental unit ri 
of norm - 1 if r* > 0). Hence, by the method of Theorem 1, (above), 

(3) fl h = (w) for w = (Z + y2G)/2 ; 

and taking norms, we find 

(4) rlh = +Nu), 

the sign of the norm being taken into account byusing (vw) instead of(w). 
Then 

(5) 4rlh = x2 - y%* E x2 (mod r), 

and, since h is odd, then (rJr) = 1. Q.E.D. 

COROLLARY 1. If (p/rJ = 1, then (r,/p) = 1. 

Proof. Let r = p = r* in Theorem 10. Q.E.D. 

COROLLARY 2. If (r/p) = 1, then (p/r) = 1. 

Proof. Lettingp = ri, we see (r/p) = (r*/p) = 1, as (- l/p) = 1. Thus 
by Theorem 10, (p/r) = 1. Q.E.D. 

Thus statement (1) follows, as the Legendre symbols here have only two 
values + 1 and - 1 (not zero). 

THEOREM I 1. If (q/ql) = 1, then (qJq) = - 1, and conversely. 

Proof. From Theorem 7 at least one of the two equations 

(6) f4=qX2-q,Y2 

is solvable. If the sign is +, then 4 = qX2 (mod qJ and (q/qJ = + 1, 
whereas 4 3 -q1Y2(modq) and (-ql/q) = -(qJq) = +1. Likewise if 
the sign is -, then (qJq) = + 1, whereas (q/ql) = - 1. Q.E.D. 

Thus, among other things, only one sign permits a solution of (6). 

6. Kronecker’s Symbol Reappraised 

The intimate connection between reciprocity and ideal factorization 
theorems had led Kronecker to define quadratic character in accord with 
the ideal-theoretic versions of the completion theorems. In Chapter II 
we saw Kronecker’s symbol grow as a “step-by-step” expediency. Now, we 
start anew by letting d be a discriminant (i.e., d square-free and d = 1 
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Now assume (10) or, equivalently,p* = 1 (mod 8). Then, since R(%$?) 
has an odd class number h, th = w is principal, or, as in Theorem 1 (above), 
since N[t] = 2, 

(11) 2h = fN(w), cc) in R(d?), 

the sign cari be taken as +, for the fundamental unit ri having norm - 1 
cari multiply o, yielding +2h = N(qlw) otherwise. At any rate, 

(12) 2h = x2 - p*y2 

4 ’ 
h odd, 

whence, eventually, we see (9) is solvable modulo p* or modulo p. 
Conversely, assume that (9) is solvable modulo p. Then 

(13) (p) = pp’ in R(d?), 

where n = (p, x + dz) = (u + dz), since R(d$ has only the principal 
class, or 

(14) fp = N(u + di) = u2 - 2v2. 

Once more we check cases modulo 8 and find that p G f 1. Q.E.D. 

On considering the last two proofs carefully, we note that the field - 
R(d-l) or R(d?) was used to prove the result “in one direction” and 
R(d;) or R(dp*) “in the other.” Although Euler’s criterion and Gauss’s 
criterion in elementary number theory may seem easier, these proofs are 
much more meaningful. 

5. The Main Theorem 

For this section we specify our notation with the following positive 
integers : 

r, rl = any odd primes, 

p = any odd prime - 1 (mod 4), 

q, q1 = any odd primes - - 1 (mod 4). 

Once more we let r* = fr = 1 (mod 4). Thus p* = p; q* = -4. We 
must show 

(1) Wp> = (plr), 

(2) (4/41) = -h/q). 

This includes a11 cases in (3) in $4. 



chapter XII 
Quadratic forms and ideals 

1. The Probiem of Distinguishing between Conjugates 

We note that at many vital junctures in ideal theory we had to return to 
the corresponding forms to obtain quantitative results. For instance, we 
did SO in the theory of units (Chapter VI), Minkowski’s theorem (Chapter 
VIII), the class number formula (Chapter X), and reciprocity (Chapter Xl). 

Actually, we were presenting to the reader a truly historical view of the 
subject, for many of these impressive results were deduced from the theory 
of forms (and they preceded ideal theory by at least 50 years). Yet ideal 
theory is conceptually simpler. 

Our first problem is to return to the naïve approach of Chapter III, 
$01 and 2, and derive an exact correspondence between ideals of D1 and 
certain forms. This is not SO easy as these portions of Chapter III may lead 
us to believe. We must engage in a seemingly lengthy preparation, because, 
acting in haste we might think that an ideal and its conjugate correspond 
to the same form. For example, using module bases for theideals j = [a, ,Ll] 
and j’ = [n’, ,B’] we obtain the same form each time 

Wax + BY) = Wa’x + /3’y) = (ax + IBy)(a’x + D’Y) 
= ,4x2 + Bxy + Cy2. 

If we could not distinguish j from j’ then, since jj’ - (1), it would follow 
that J2 = 1 for J the class of j, contradicting class structure, generally. 

The precautions needed are quite deep and lead to a re-examination of 
the notion of equivalence. 

195 
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modulo 4 or d/4 $ 1 modulo 4, whereas d/4 is square free.) For any prime 
p, odd or even, we define (by Theorem 1 of Chapter IX) 

1 1 if (p> = plp2, in W%, 
(44 = 

1 

- 1 if (p> does not factor, 
0 if(p) = p:. 

We cari then define (d/n) by the multiplicative law (d/a)(d/b) = (dl&), 
using the unique factorization of n. We cal1 (dl-n) = (d/n). This symbol 
is consistent with that of Chapter II. 

Indeed in some fields of higher degree than 2, the (seemingly forbidding) 
analogue of Theorem 1 of Chapter IX is easier than the analogue of 
the reciprocity theorems. 

For later purposes in Chapter XIII, $3 Exercises 6 to 13 on ambiguous 
ideals and classes Will indicate an even deeper role of concepts introduced 
here for quadratic reciprocity. 
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and the operation of taking conjugates has the (rational) counterpart of 
changing order of elements. 

3. Strictly Equivalent Ideals 

Once we consider an ordered basis, we must revise our whole notion of 
equivalence. For instance, if p is an integer in Dr, not zero, 

(1) 
1 

fi = f [a, PI = [pa, dl if N(P) > 0 

= [PA pal if N(P) < 0, 

since we find by direct substitution into determinants, as in $2, (2), 

(fa)(fB)’ - (fB)(fa)’ = Nf)(aB - Ba’). 

We therefore find it wise to use the following definitions: Two ideals j 
and f are said to be strictly equivalent if they are equivalent in such a 
manner that 

(2) pj = of, 

where @a) > 0. We Write this j = f. 
Now, there could be, at the same time, other equivalence relations for 

which N(~*O*) < 0, which we ignore in favor of (2). (Incidentally the 
transitivity, symmetry, and reflexivity a11 carry over very easily from 
equivalence, as defined in Chapter VIII, $2). 

THEOREM 2. Two ideals are strictly equivalent if they are equivalent, 

in the ordinary sense, in a field for which 

(a) D < 0 or 

(b) D > 0 while the fundamental unit has negative norm. 

In the remaining case in which 

(c) D > 0 while the fundamental unit has positive norm, if j - f(ordinary 

equivalence), either j M f or 46j = f, not both (in the sense of strict 

equivalence). 

Proof. The statements in case (a) are obvious, since the norms are 
always positive. 

In case D > 0 let ri be the fundamental unit. If N(qJ = - 1, it is easy 
to guarantee j NN f in statement (2) by using pqij = aE instead of (2), when 
N(po) < 0 (since N(py,o) > 0). This takes tare of statement (b). 

TO take tare of statement (c), we note that if i - f, whereas j + f, it 
must follow that pj = of and N@a) < 0. We then set %% = E*, and it 
follows that 6pj = of*, whereas N(poYz) = N@o) N(%6) = 
- DN(pu) > 0. Thus, if j - f and j + f then j = %%I. 
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2. The Ordered Bases of an Ideal 

We first consider the ideal j in 53, for R(&) with a module basis 

(1) i = [a, PI = (,a + yP>, 

Le., the set of all LXX + py, where M, p are fixed elements in D1 and 5 and y 
are variable rational integers. We have in the past drawn no essential 
distinction between [a, p] and [p, ~1. We must now consider each two- 
element basis to be ordered by the condition that the ratio of A/& be 
positive, or, 

(2) --- 

We saw in Chapter IV, $10, that f A/v’~ = N[j] > 0. If (cq?’ - /LX’)/& 
< 0, then the ordering [p, a] instead (with the substitution of M for /3, and 
conversely) Will produce a positive ratio in (2). Thus, instead of saying 

Iap’ - /MI = N[j] Iz/dl 

for N(j), the norm, we say, more strongly, 

(3) ap’ - /~CC’ = N[j]Yd. 

Thus we consider a change of basis. If the bases are ordered, then 

(4) 
if and only if 

(5) 

[a, 81 = [Y, 4 

1 

a = Py + Qc$ 

P = Ry + Sa, 

where P, Q, R, S determine a strictly unimodular transformation, i.e., 

(6) PS- QR= +l. 

Comparing the result with that of Chapter IV, $7, we see that (6) has 
+ 1 (not f 1). We need note only for proof that 

(7) 

THEOREM 1. Two ordered bases of an ideal are equivalent under a 

strictly unimodular transformation, and conversely. 

From now on a11 bases are imagined to be ordered. Thus, from (l), 

@) j’ = [@‘, a’] = {ya’ + z@‘} 
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If forms Q(z, y) and Q*(x*, y*) are related by (2) and (3) for some 
transformation with determinant ps - qr = 1, the forms are said to be 
properly equivalent and written Q w Q*. If the forms have a relationship 
inwhichps-qr=-1, the n w et ( h h er or not they have a relationship 
where ps - qr = + 1) they are called improperly equivalent and written 
Q-Q*. 

Unless otherwise stated, equivalence (of forms) meansproper equivalence. 
An equivalence class of forms is denoted by symbols Q, Qi, etc., analo- 
gously with ideal classes. 

Now the transformations of type (2), for which ps - qr = 1, are 
transitive, symmetric, and reflexive from elementary properties of deter- 
minants. Thus properly equivalent forms form an “equivalence class” in 
the usual sense. SO do the improperly equivalent forms, (although this 
latter class is of no direct use in the text). 

Therefore, trivially, 

Q(x, Y) - Q(Y, 4 - Qc-x, Y) - Q(Y, -4 - Qc-x, -Y> 

- Qk -Y> - QC-Y, xl - Qt-Y, -4, 

Qtx, Y> - Q(Y, -4 w Q(-Y, 4 - Q<-x, -Y), 

whereas a relationship of the type 

Q<x, Y> - Q(Y, 4, or Q(x, Y) = Qh -Y> etc., 

Qk Y) = - QG, Y>, or even Qk Y> - - Q(x, Y), etc., 

cari easily to be nontrivial, if it occurs. 
We define the conjugate of Q(z, y) as 

I-(x, -Y) = Q’k Y> 

and the negatit’e as - Q(x, y). 
One should note also that in (4) 

(6) L* = Q(p, 4. 

Such an expression as (6), in which (p, r) = 1, is called aproper representa- 
tion of L* by the form Q(x, y). Gauss first noted the following theorem in 
1796. 

THEOREM 4. Every proper representation of an integer L* by a form 

leads to a properly equivalent form with leading coefficient equal to the 

i nteger L*. 

Proof. In (6) we need only find q and s such thatps - qr = 1 (which is 
possible if and only if (p, r) = 1). Q.E.D. 
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We need now verify only that (1) + (%‘o), when N(vi) > 0, to see 
f* + f. For, if (1) = (do), then p(l) = o(x~), which means, for some 
unit rj*, prj* = 66, whereas N(~U) > 0. But N(py*) = N(a%6), 

whence, N(q*)N(p) = - DN(a). Hence N(q*) < 0 if (1) = (V/E). Q.E.D. 

We defined h+(d) as the number of strict equivalence classes of R(1/5) 
with discriminant d. We find on comparison with h(d) the number of 
ordinary equivalence classes: 

THEOREM 3 

h(d) = h+(d), if D < 0, or if D > 0 and N(q,) < 0, 

2h(d) = h+(d), if D > 0 and N(Q) > 0. 

4. Equivalence Classes of Quadratic Forms 

We now shift our attention to changes of basis in quadratic forms. Let 
us denote a quadratic form as follows: 

(1) Qtx, Y> = Lx2 + Mxy + Ny2, 

where L, M, N are called the first (or leading), second (or middle), and 
third (or last) coefficient, respectively. Here we assume that D = M2 - 
4LN (the discriminant) is not a Perfect square. It need not yet be square- 
free. We consider the change of variables with integral coefficients 
p, 4, r, s: 

(2) 
l 

x = px* + qy*, 

y  = rx* + sy*. 

(determinant ps - qr # 0). We find 

(3) Qtx, Y) = L(px* + qy*j2 + Mpx* + qy*)b* + SY*) 
+ N(rx* + ~y*)~ 

= L*x*2 + M*x*y* + NOYAU = Q*(x*, y*), 
where 

i 
L* = Lp2 + Mpr + Nr2, 

(4) 
1 

M* = 2Lpq + M(ps + qr) + Nrs, 

I N* = Lq2 + Mqs + Ns2. 

It is easy to see, by dint of a lengthy calculation, that 

(54 D* = M*2 - 4L*N* = (ps - qr)2(M2 - 4LN) 

(5b) D* = (ps - qr)2D. 

Thus the discriminant remains unaltered exactly when ps - qr = f  1. 
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has integral coefficients and is a primitive form of discriminant d. (Note. 

N[i], as an ideal norm, is always positive, while N(ax + /Iv), as the product 

of conjugates, could be negative.) 

Proof. We expand 

(2) N(az + /3y) = (az + Py>(a’x + P’y) = A9 + BXY + Cy2, 

where the coefficients belong to jj’. We Write 

i 

A = aa’ = Nil, 

(3) 
1: I $1 + “B 1 !J;;;; 

since (N[i]) = jj’ contains (hence divides) A, B, and C, the coefficients of 
Q(z, y) are integers. Furthermore, 

(4) b2 - 4ac = (B2 - 4AC)/N2[j] 

= (a/? - @a’)“/N2[j] = d, 

where dis the field discriminant (see Chapter IV, $10). 
Now the field discriminant has no square divisor except possibly 4, 

hence the only possible common divisor of a, b, c is 2, when d = 40 and 
D $ 1 (mod 4). TO exclude this, note that [a, p] = (a, /3) by Chapter VII 
Theorem 5, $4. If we Write (2) = t2 (as must happen when 4 ( d and the 
Kronecker symbol (d/2) = 0, then 

~ 
(a) = tua, A = N(a) = 2” . odd number, 

(18 = t”b, C = N(p) = 2” . odd number, 

j = Pjr, N(j) = 2” * odd number, 

where w = min (u, v) and ideals a, 6, ji are prime to t by Theorem 15 of 
Chapter VII, $9. Thus by (3) a or c is odd. Q.E.D. 

The form defined by (1) is said to belong to the ideal j with basis [a, /fi], 
written 

(5) 
( 

Q = Q[a, 81 = Q(i), 
i = [a, PI - Q “j leads to Q.” 

LEMMA 2. Suppose we are given a quadratic form, not necessarily 

primitive, which we Write as 

(6) 
i 

Q(x, y) = Ax2 + Bxy + Cy2 
= +x2 + bxy + cy2), 

where ft is the greatest common divisor of A, 6, C. We let t > 0 if B2 - 

4AC > 0, but if B2 - 4AC < 0 we choose t SO that a > 0. We call d = 

b2 - 4ac, and we suppose that d is the field discriminant for R(z/d), i.e., 
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Thus the study of proper representations somehow leads to the study of 
equivalent forms. 

THEOREM 5. If two forms Ql(x, y) and Q2(x, y) have the same discrimin- 

ant D and represent the same prime p, then either Q,(x, y) w Q2(x, y) 

or [Ql’(xp Y) =1 QI@, -Y) = Q& Tu). 
Proof. By Theorem 4, we cari find forms Q,* and Q,* such that 

.-. 
(7) 

Then 

Qi = &*(x, yj = PX” + b,xy + c$, (i = i, 2j. 

(8) D = b12 - 4pc1 = bz2 - ~PC,. 

Takingp to be odd, b12 = b22 (modp); thus b, = fb, (modp) and b, and 
b, are both odd or both even. Therefore, b, = fb, + 2hp. If we Write 
Q,*<x + hy, &Y> = QS*@, Y), then Q3*(x, y) = Q2*k Y) identically. 

(The first and second coefficients match, whereas the third coefficients 
are determined by the discriminant.) 

Exercise 3 (below) covers p = 2. Q.E.D. 

EXERCISE 1. Prove (56) by writing 4LQ(a, y) = N([x + cy), where t = 2L, 
5 = M + 45, and using transformation (2). Note 42DL2 = (65’ - ~55’)~. 
EXERCISE 2. Using (3) in Chapter VI, $9, show that the forms x2 - 2y2, 
-x2 + 2# are properly equivalent. Show that they are also properly equivalent 
to y2 - 2x2 -y2 + 2x2. 
EXERCISÉ 3. Withp = 2 in (S), show how to choose the sign SO that 6, 2 fb, 
(mod 4). 
EXERCISE 4. Show that Q(z, y) = x2 - 3y2 is not properly or improperly 
equivalent to -Q(z, y). Note (6). 
EXERCISE 5. Show that equivalent forms provide representations of the same 
integers. Show that this statement also holds for proper representations. 

5. The Correspondence Procedure 

We now set up a precise correspondence between forms and ideals. We 
first introduce two definitions : 

The ideal j is called primitive when it is not divisible by any rational 
ideal except (1). 

The quadratic form Q is calledprimitive when its coefficients are not a11 
divisible by any rational integer except f 1. 

LEMMA 1. If j = [a, ,Fl] is an (ordered) ideal in the field R(d;)’ of dis- 

criminant d, the form 

(1) Q(x, y) = N(ax + By)/N[j] = ax2 + bxy + cy2 
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Starting with the form Q[C~, p], we obtain the (generally different) ideal j* 

with ordered basis by Lemma 2: 

N(a) aB’ + Ba’ dd ifd<Oor 
-> 

(9) j* = [a*, /3*] = WI Wil 2 1 -- > d > 0, N(a) > 0, 

N(a) d + b’ dd 

Nu1’ 
-- . ‘WI1 2J’ ’ 1 2 if d > 0 ~(~1 < 0 

Recall, of course, that N[j] > 0, whereas N(a) cari be < O(when d > 0). 
We cari easily verify that 

(10) 

where 

Njlb*, P*I = [a, Blv, 
a’ if N(a) > 0 and d > 0, or if d < 0 

Y = 
a’& if N(a) < 0 and d > 0. 

Thus N(y) > 0 always. Actually, (10) is correct, basis element by basis 
element. It is easy to see N[i]a* = ay, whereas the statement about the 
second basis element follows from the ordering of the basis of j, namely, 

ap’ - fia’ = &N[j]. 

We see by transposition that 

43’ + Ba’ 42 N[i] 
2 

- ~ = /ja’; 
2 

whence follows N[j]fi* = ,&J. 
Thus, if we have 

(11) Q-i-Q*, 

then Q = Q* (the same form) (if we exclude d < 0, a < 0). If we set up 

(12) i - Q-i*, 

the best we cari expect is an equiualence (rather than an equality): 

(13) ‘* ‘v . 1 - 1. 

EXERCISE 6. Show that if a quadratic form is primitive a11 forms in their 
proper (or improper) equivalence classes are primitive. 
EXERCISE 7. Start with Q = -3 + 2.y - 7y2 and construct the corre- 
sponding j; from it construct Q*( = -Q) [see (1 l)]. 

- 
EXERCISE 8. Start with j = [d-6, 21 and construct the corresponding Q; 
from it construct j*. How does j* compare with j ? 
EXERCISE 9. Follow Exercise 7 using Q = -262 + 2xy + 3y2 to form 
Q*c= Q>. 
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d e I (mod 4) for d square-free or d E 0 (mod 4) for d/4, a square-free 

integer $1 (mod 4). Then the ideal 

(‘1 i = La,@] = [a, (b - 4m9 a > 0, any d, 

[a, (b - dd)/2]dd, a < 0, d > 0, 

is integrai and has an ordered basis; j is primitive when 0 > 0, vvhereas 

j/& is primitive when a < 0. (Note that the lemma excludes the case in 

which o < 0, d < 0.) 

Proof. First we notice that if d = 1 (mod 4) the basis elements of j are 
integers, since b is odd, and if d E 0 (mod 4) the same is true, since b is 
even. Next, using (2) in $2, we see that A/& > 0. In fact, assuming 
d > 0 (which is the difficult case), we find that A = a&, if a > 0, and 
A = a(-d)&i, if a < 0; hence the basis is ordered. 

TO see that j (or j/&) is primitive, we note that otherwise a rational 
integer u > 1 exists which divides a and @ = (b - &)/2. This integer 
then divides p’ SO that u divides /I - B’ = -& or u2 divides d, which, 
by assumption, limits u to the value 2, when d G 0 (mod 4). But, even 
then, if d = 0 (mod 4) b as well as a must be even. Thus, in order that 
2 divide /3, ~612 must be divisible by 2 (see Chapter III, $7) but 4 does 
not divide z/d, by nature of the field discriminant; (d/4 is square-free). 

Q.E.D. 

If Q is a quadratic form with coefficients A, B, C satisfying the dis- 
criminant properties of Lemma 2, we Write 

(8) 
( 

[a, PI = i = iV, B, CI = i(Q), 
Q + j “Q leads to j,” 

where j is the ideal determined by the form Q, with basis as shown in (7). 
TO summarize, let us first start with aprimitiveform Q = ax2 + bxy + cy2 

whose discriminant d - b2 - 4ac is a field discriminant and for which 
a > 0. We construct the ideal j(a, b, c) with ordered basis according to 
Lemma 2 (above). Starting with this ideal j, with its ordered basis, we 
reconstruct a quadratic form Q*(a, /3) according to Lemma 1. Then, 
merely rcvcrs;ng the steps, we see Q* = Q. This is the easy part. 

Let us next start with aprimitive ideal with ordered basis i = [a, PI- We 
construct from it the quadratic form Q[a, p] according to Lemma 1, 

Q [a, 81 = 
N(a)x2 + (ap + @a’)xy + N@)y2 

Nil 
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But Q1(z, y) = Q,(X, Y) “numerically” and identically under transforma- 
tion (4). The locus of points where Q,(z, y) = 0 must transform into the 
locus where Q,(X, Y) = 0. Thus either 

(5) 
2 161 -=-- x B2 and - = - - 

Y a1 Y a2 

must coincide under (4) or 

(6) 
X Bl’ x B2 -=-- and - = - - 

Y ml’ Y a2 

must coincide under (4). 
First try (5). Then 

(7) -L f----= 
P(4Y) + 4 = Pt-BM + 4 

rx + sy r(xly) + s r(--AI4 + s 
B2 = 5 _ Px + 4Y 

= --PA + qal 
-rA + sa1 

Hence, from the two “outside” terms, 

a2 = B2 

sa1 - 4 
= - (say) 

-4a1 + PI% P 

(8) 
i 

pu2 = t-q% + sa&4 

M2 = @A - 4adA. 

We cari assume, as we have often done before, that A@) > 0. When 
N(U) < 0 (necessarily), d > 0, whence p cari be replaced by ,LLA& of norm 
-~A$L). Next 

(9) pi2 = [~a,, puB21 = MW - rtV4>, - q(h) +pGVU. 
But, since ps - qr = + 1, 

(10) pi2 = [ht 4%1, 

and since both jr = [CC,, PJ and j2 = [a2, /3,] are ordered, as well as pjs, 
then N(I) > 0 by (l), $3, and, 

(11) pi2 = Ail or jr w j2. 

Next we see alternative (6) is intrinsically impossible. Retracing OUI: 
steps from (6) we obtain, instead of (8) the following: 

(12) 
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EXERCISE 10. Follow Exercise 8, using j = [l + 479, 31 and once more 
compare ]* with i. 

(In these closely related exercises, observe the sign of the xy term and the 
radical very carefully.) 
EXERCISE 11. Let ]’ be the conjugate of i. Then show that if j = [Q, 81 then 
i’ = [B’, ~‘1, keeping an ordered basis, and, if Q(j) = uz2 + bzy + cy2, then 
show Q(j’) = cx2 + bzy + ay = Q’(j) = u.z2 - bxy + cy2. 
EXERCISE 12. If  jr = ii2 for N(Â) > 0, show that Q(h) = Q(j,) for some set of 
variables z, y; whereas, if jr = Âj2 for N(1) < 0, then Q(h) w -Q’(i,). 
EXERCISE 13. Show that Q, = x2 + zy + ty2 w Q2 = x2 - zy + ty2 = Q,’ 
by a change of variables. Show directly that they lead to the same ideal. (Assume 
1 - 4f = d, a field discriminant.) 

6. The Correspondence Theorem 

We see that the relation (12) of $5 forces us to construct a correspon- 
dence on a broader level. 

THEOREM 6. If two forms with discriminant equal to afield discriminant, 

QI and Q2, satisfy 

(‘1 QI = Q2 

and QI+ il, Q2- j2 (by Lemma 2, §5), then 

(2) il * = 12. 

Conversely, if two ideals satisfy (2), then the forms QI and Q, found by 

Lemma 1, 85, designated by jI - QI and j2 + Q2, have discriminants equal 

to a field discriminant and satisfy relation (1). 

Proof. First of all, when d < 0, we cari limit ourselves to forms 
Q,(z, y) = uiz2 + b,xy + czy2, a, > 0, without weakening the theorem 
(for any of its applications). 

TO prove the first part, let the properly equivalent forms Qr(z, y) and 
Q,(X, Y) be regenerated in turn by j(Q,) and j(Q,), according to the chain 
in (1 l), $5. We wish to show j(Q,) = j(Q,). 

Let i<Ql> = il = [a,, Al, itQ,> = i2 = [a2, BzL 

(3) 
i 

QIG, Y> = (w + rR1y>(al’x + B~‘Y)/WA 

Q,(X Y> = (a,X + B2 Y>(a2’Jf + A’ Y)/NiJ, 

where for an integral transformation 

(4) x = p” + qy, 

Y = rx + sy, 
ps-qr= 1. 
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by Lemma I or 2 of $5 (not necessarily the same each time), these two 

equivalences imply one another; 

(‘8) il M h1 

(19) QI= Qz 
(as long as j(Q) is constructed only for forms Q which have discriminant d 

equal to a field discriminant and which have a positive leading coefficient 

if d < 0). 

THEOREM 8. If Q is a form with discriminant d equal to a positive field 

discriminant d, then 

Qb Y) w -Q’(x, y) if and only if N(vl) = - I 

for ql the fundamental unit in ~I(V’?). 

Proof. Suppose N(q,) = - 1. Let j = [a, /?] lead to Q: 

i - Qb Y> = Max + ByYWl. 

Now j = qlj = [Tla, -ri/?], remembering the order, and, since N(j) = 
Nhih 

Ntcwx - rl,P~YNr,il = -QC%, -Y>. 
Conversely, suppose Q w -Q’. Then, if j + Q, as before, 

jdd = [V%x, -ddfl], N(%Gax - d&y)/N[ddj] = - Q(x, - y). 

Then &j w j or (42) m (l), whence N(r,) = -1 (compare the proof of 
Theorem 2). Q.E.D. 

7. Complete Set of Classes of Quadratic Forms 

TO see how classes of quadratic forms corne from ideal classes, let us 
take three typical cases, using the ideal classes’ in Table III (appendix): 

Case 1. d = -23. 

jl = (1) = [l, (1 - d-23)/2]; Q, = 9 + ~y + 6yz 
j2 = 2, = 12, (1 - q-23)/2]; Q, = 29 + xy + 3y2 

i2’ m j3 = 2, = [-2, (1 + d-23)/2]; Q2 = 2x2 - xy + 3y2 m Q,’ 

Case II. d = 4 . 58, 99 + 132/58, 

jl = (1) = [lTl-Y&]; 
N(q,) = - 1. 

Q, = x2 - 58y2 

j2 = 2, = [2, -V%I; Q, = 2x2 - 29y2 

IThe ideals in Table III (appendix) are written as modules in accordance with 
Exercise 4 of Chapter VIII, $1. The reader must sometimes order the basis, by adjusting 
the sign of the radical (for example). 
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Again, restricting N(U) > 0 and going to the analogue of (lO), 

(13) pi2 = b2, &4,1 = k’, V1’l. 

Now [ar’, @r’] is not correctly ordered, but [;lar’, A/31’] is SO ordered by the 
unimodular property (4). Thus, N(1) < 0. Now from (4) 

or 

(14) 

Since N[jJ > 0 (intrinsically), N(a,) and N(-r&’ + sa,‘) agree in sign and, 
from (12) SO do N(U) and N(Â), yielding a contradiction to alternative (6). 

TO prove that the “converse” portion of Theorem 6 is easier. First let us 
verify that if j = [al, Pr] = [az, /3-J for two ordered bases, Q[a,, Pr] - 
Q[a,, ,8J (formed under Lemma 1, $5). For then 

(15) 
i 

a2 = pal + qP1, ps-qr= 1, 

P2 = ml + sB1. 

Thus a22 + B2v = al(px + ry) + pl(qz + sy) and from $5 (1) 

Q2k Y) = Q&x + 7s qx + w> or Qlh BJ w Q2bz, B21. 

Finally, let jr = j2 or pjr = aj2, where N(~O) > 0. As usual, make 
N(p) > 0, N(a) > 0 (by the Ydfactor, if necessary). Then, since the basis 
of j affects Q only within an equivalence class, we verify that 

(16) dal7 PJ = 4a2, B2k 

(17) Qh A1 = Q[N,, 1921, 

operating on both sides of relation (16) according to Lemma 1, $5. 
Q.E.D. 

One remark might be in order here: the proof best indicates, in the 
rejection of alternative (6) how the ordered basis distinguishes the factors 
of Q(z, y). An ordered basis therefore distinguishes an ideal from its 
conjugate. TO maintain an ordered basis, we must use only strict or 
proper equivalence classes; hence the severity of this chapter! 

An equivalent form of Theorem 6 is the following: 

THEOREM 7. Under correspondence between Q, and jl, either by 

Lemma I or 2 of $5, and under correspondence between Q, and j2, either 
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COROLLARY. Let d be a fîeld-discriminant and p be an odd prime for 

which (d/p) = I or 0. Then a quadratic form Q of discriminant d exists for 

which Q(x, y) = p is solvable, and, if d > 0, a form of discriminant d exists 

for which Q(x, y) = -p. 

Proof. Let p 1 p where N[p] = p. Then, writing p = [p, n] by the 
corollary to Theorem 23, Chapter VII, $10, we have 

hence p = Q(1, 0). TO complete the proof, note that - Q(z, y) is also a 
form of discriminant d. Regardless of whether - Q w Q, it follows that 
- Q( 1,O) = p, trivially. Q.E.D. 

EXERCISE 14. Find the complete set of forms for D = -15, 15, 26, 34, using 
Table III (appendix). 
EXERCISE 15. Find the proper transformation of basis 2 = aX + bY, y  = 
CX + d Y for which Q(z, y) = -Q(x, - Y) where Q(z, y) = x2 - lo?J2, vl = 
3 + v%, by justifying 

(x - eiy) = (3 + m)x + (10 + 3t/lo)Y, 

x=3X+lOY, y= -x-3Y. 

EXERCISE 16. Assuming N(qi) = -1, find explicitly the transformation for 
which Q w -Q’ for Q the principal form for a given d: 

x2 + xy - [(d - 1)/4]y2, d E 1 (mod 4), 
(x, Y) = 

i 

111 = (a + 6 dd)/2, 

x2 - (d/4)y2, d = 0 (mod 4), 71 = a + 6(dï/2). 

EXERCISE 17. Find the smallest field discriminant (positive and negative) and 
the forms for which some Q(z, y) + Q’(x, y). Hint. j + j’ means j2 + jj’ = (1). 
EXERCISE 18. If  a + Q. then, for some (2, y), Q(q y) = N[a]. Hint. Note Q 
takes the values N(a)/N[a], where a E a. 

8. Some Typical Representation Problems 

These three sketchy examples Will illustrate many possible situations. 
The reader Will have many details to provide in any case. 

Problem I. Solve 2x2 + xy + 3y2 = 78. 
If CI = 2x + [(1 - d-23)/2]y, then a E 2,, and by Lemma 1, $5 

N(a) = N[2,]. 78 = 22 - 3 - 13, 

2, I(a). 
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Case ZZZ. d = 4 * 79, qI = 80 + 9%6, N(q,) = +1. 
ii = (1) = [l, -2/79]; 

Q, = x2 - 79y2 
j2 = 3, = [3, 1 - #GI; 

Q, = 3x2 + 2xy - 26y2 
. I *2 w j3 = j2 = i-3, i + -v’%j; 

Q3 = 3x2 - 2xy - 26y2 m Q,’ 

ji* = d% jl = [79, --x6]; 
QI* = 79x2 - y2 

j2* = 4% j2 = [79 - Y%, -3Y793; 
Q,* = 26x” - 2xy - 3y2 

ti2*>’ w j3* = V5 j3 = [79 + V’5, -3Y793; 
Q3* = 26x2 + 2xy - 3y2 NN (Q2*)’ 

(Note. Since Q(x, y) = Q(y, -z), we cari Write Qr* w -Q,, Q,* = - Qa, 
Qa* - -Q2 in the last case.) 

In any case, Q,, the form belonging to ji = (1) is calledprincipal. It 
takes the form x2 - Dy2 or x2 + zy - (D - l)y2/4. 

THEOREM 9. Let Q(x, y) be a quadratic form whose discriminant is a 

field discriminant d. Let Q(x, y) properly represent m. Then if a prime p 

divides m, (d/p) = 0 or 1. 

Proof. TO simplify matters, note that Q must be primitive and, for 
convenience, if d < 0, the leading coefficient cari be made positive (by 
changing a11 signs if necessary). Now consider j(Q), the ideal belonging to 
Q. It is equivalent to an ideal a for which (a,~) = (1) (by Theorem 7, 
Chapter VIII, $2), whencep f N[a]. We cari assume that the equivalence 
is strict (replacing a by a& if necessary). Then a + Q*, a form equi- 
valent to Q (by Theorem 6 above). 

Now Q* Will also represent m properly (by Exercise 5, $4), or Q*(xi, yr) 
= m, where (x1, yi) = 1. Then, writing a in basis form as [a, p], we see by 
(1) in $5 

m = Q*h ~3 = Wax, + kGWd. 
Thus, writing Â = axi + /3yi, we see p 1 m 1 N(A). 

Ifp f A, then, by Theorem 23, Chapter VII, $10, (p, A) is a prime ideal 
divisor ofp distinct from p, completing the proof (see Theorem 1, Chapter 
IX, $1). If, however, p 1 Â, then p ( A’ = a’xl + /?‘yl, p 1 @‘A - /~II’) = 
x,A where A = (a/3’ - $a’),p 1 (-aA + a’Â’) = yiA, and (p) ( (xiA, 
yiA) = (A). But, taking norms, p2 ( A2 = N[a]d, by Chapter IV, $10. In 
this case, p 1 d and (d/p) = 0. Q.E.D. 
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then we must solve 

(4) 

Now 2, = 2, = [2, - Y%], 5, = 5, = [5, - .t/E]; (h = 2). Hence 

(a) = 2,5, = (dl0 Q, where N(E) = f 1. We easily see that if a = d%J 
then only ?V(E) = -1 is acceptable; thus, since ri = 3 + Y’6 is the 
fundamental unit, we set E = #+’ 

a = &Y%(3 + V%)(I~ + 6d@, k = 0, fl, f2 

(where (3 + ~/ro>~ = 19 + 6410 is the generator of a11 units of norm 
+ 1). If we set 

a = f(xk + dEyJ, 

we obtain x0 = 10, y,, = 3. We cari form all’other solutions by the recur- 
sion formula 

or if 
&C+l + dïtiy,,,) = (x2 + %&yJ( 19 + 6d10) 

i 
X k+l = 19x, + 6Oy,, k =0, fl, k-2;.., 

(5) 1 ?/k+l = 6~ + 19~,, 

[ 6% Yo) = (10,3), 

then &(xk, y*) generates the most general solution to the equation 

(6) Xk” - lOy,2 = 10. 

EXERCISE 19. Salve 2~~ + 2sy + 3y2 = 21 and = 42 by ideal factorization. 
EXERCISE 20. Show that for a properly chosen unit in Problem II we cari have 
y  = 0 (mod 3) SO that 

p = Q*/4 = (X2 + 27Yz)/4 ifp = 1 (mod 3) 

in precisely one way, ignoring changes of sign. Verify this by finding thvee 
different representations of p = 13 and p = 31 by Q(z, y/)/4 and one by 
Q*(X, Y)/4 (ignoring changes of sign). 
EXERCISE 21. Referring to Exercise 20, cari we always represent p = 1 (mod 3) 
by Q(z, y) (instead of Q(z, y)/4)? What about Q*(A’, Y)? 
EXERCISE 22. Repeat the process for p = z2 + $ and show how the multi- 
plicity of solutions is due to signs. If  we set 5p = z2 + ?j2, are the solutions 
trivially equivalent? 
EXERCISE 23. Solve z2 - 82~~ = 18. (Note that the paucity of solutions is 
related to the high class number 4.) Compare z2 - 7y2 = 18. 
EXERCISE 24. For fixed positive square-free D, under what conditions is the 
representation 8p = x2 + Dy2 unique for p prime, assuming that such a repre- 
sentation is possible? (Consider whether D is = -1 or $ -1 (mod 8).) 
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According to the class structure, h = 3 and 2, = 3,-l = 13,-l % 2,-r w 
3, m 132, 

2, = [2, (1 - d-23)/2], 

3, = [3, (1 - t’-23)/2], 

13, = [13, (9 - d--23)/2]. 

(We just verify 2,3, = ((1 - d-23)/2),2,13, = ((9 - -)/2).) Hence 
the norm in (1) is satisfied by 

i 

(a) = 2,2,3,13, = (8 - 2Y-23), 

(2) (a) = 2r213,3, = ((7 + Sd-23)/2), 

1 (a) = 2,2,3a13, = (8 + 22/-23). 

What we did was to consider a11 ideal factorizations of a E 2, whose 
norm is consistent with (1) knowing that the ideal structure serves as a 
limiting factor on the number of possible combinations producing a 
principal ideal. Note that with smalfer class numbers like 1 there are 
more plausible combinations (2) yielding the norm. (This remark was 
essentially the basis of our computation of class number in Chapter X.) 

By comparison with a = 2x + [(l - 2/-23)/2]y, system (2) yields these 
solutions of Problem 1: 

I 
(x, Y) = f(3,4), 

(3) 

i 

(x, Y) = f(3, -9, 

6% Y) = f(5, -4). 

The f sign factor arises from the unit, i.e., (&a) = (a). 

Problem II. Let us discuss primes: p = (x2 + 3~714 = Q(x, y)/4. 

We Write p = N(V) in R(d-3) a field of class number 1. Thus either 
p=3,or(-3/p)= landp=l( mod 3). But the associates of rr are also - 
solutions; e.g.; there are six units &l and f(1 & d-3)/2 yielding the 
associates 

x + Y J-3 1 f J-3 = [tx F 3~)/23 f [(x f ~)/21J-3 
2 2 2 

Therefore, there are at least three representations of p by Q(x, y)/4, 
ignoring trivial changes in sign, such as Q(x, y) = Q(x, -y) = 
QC-59 -Y) = QC-x, Y>- 

Problem III. Solve x2 - 10y2 = +lO. 
We note that if 

a = x - YEy E [l, - %GG] = (1). 
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the general theorem by a manipulative tour de force that probably has few 
equals in any branch of mathematics. He actually substituted and worked 
with coefficients (whereas now we cari benefit by ideal theory). For 
convenience, we make a restriction which Gauss did not make, limiting our 
attention to forms arising from ideals in Or, or equivalently, to forms with 
discriminant equal to the discriminant of a quadratic fie1d.l 

We note first that the Theorem 1 permits us to use any convenient 
representative for the proper form-class and (strict) ideal-class in question. 
Then we make use of these four lemmas: 

LEMMA 1. Numbers exist properly represented by an arbitrary quad- 

ratic form arising from an ideal in D,, which are relatively prime to any 

preassigned integer. (For proof see Exercise 1, below.) 

LEMMA 2. Every proper equivalence class of quadratic forms arising 

from ideals in r3, contains a form Q(x, y) whose first coefficient a is positive 

and relatively prime to some preassigned integer N. 

Proof. The relative primeness follows from Lemma 1, using Theorem 4 
in Chapter XII, $4. Our only concern is that a be positive in Q(x, y) = 
ux2 + bxy + cy2. But, if d < 0, there is no difficulty, since then each Q(j) 
necessarily has a > 0. If d > 0, however, we cari note that if x0 = bNt + 1 
and yo = -2aNt then Q(xa, y0) = a(1 - dt2N2), which is positive if 
a < 0. Furthermore, since (u, N) = 1, likewise (Q(xO, yo), N) = 1, and 
x,, and y,, cari be assumed relatively prime, (for example, if t = 2ub). 
We finally reapply Theorem 4 of Chapter XII, $4. Q.E.D. 

LEMMA 3. Every two classes of primitive quadratic forms arising from 

ideals in QI in a given field have forms with the same middle coefficient: 

(4) 
i 

Q,(x, y) = 01x2 + bxy + c1y2, 
Q&v y) = a2x2 + bxy + c2y2, 

and the further conditions that (al, a2) = 1, a, > 0, a2 > 0. 

Proof. We start with representatives of two classes: 

(5) 
i 

Q,k Y> = A,x2 + @Y + C,y2, 

Q2k Y> = A2x2 + B,XY + C,Y’, 

Now we cari imagine Q,(x, y) given first with A, > 0, SO that A, could be 
chosen positive and prime to A, by Lemma 2. Then we use two strictly 

1 We continue to exclude from consideration the negative delinite quadratic forms 

(which cannot be generated by ideals). 



chapter XIII 
**Compositions, orders, 

and genera 

1. Composition of Forms 

Nowadays, we cari recognize that ideal theory is a natural tool for the 
solution of diophantic quadratic equations, as in Chapter XII, $8. Yet 
the intricate factorizations used here were accomplished by Gauss in the 
following fashion (1796), seventy-five years before ideal theory. 

THEOREM 1. Let two ideals jI and jz in DI correspond to quadratic 

forms QI(x, y) and Q2(x, y) (with discriminant equal to a field discriminant) 
by Lemmas I or 2 in Chapter XII. Let us define 

(1) ja = jI - jz (ideal multiplication). 

Then, for a form Qa with the same discriminant, 

(2) Q3(x3, yJ = Q,(x,, yJ Q2(x2, yz) (ordinary multiplication), 

where Qa = Q(jJ and the new variables are defined by special bilinear 

expressions in integral coefficients Ai and ii: 

(3) 
i 

X3 = 4x,x, + A,x,Y, + A,x,Y, + A,X,YP 

Y3 = bv, + 4X,Y, + ~,X,Y, + 4X,Y,* 

As we saw in the Introductory Survey, this theorem originated in the 
special case of Fermat which involved Q(z, y) = x2 + y2. Gauss proved 

212 
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Now we note that ji and jz are the aggregate of 

(14) 

respectively, where xi, yi are arbitrary rational integers. Thus 

(1% 
i 

ala2 = v23?2 + 4XlY2 + Q,ÂX,Yl + Y1Y2A2, 

ala = u1u2(x1x2 - C,YlY,) + 4WlY2 + a,x,y, + bY,Y,). 

Otherwise expressed, 

(16) ala = u1u2x3 + lY3, 

where, in the manner of (3) 

(17) 
1 

x3 = 21x2 - %YlY,~ 

Y3 = %XlY2 + a2x2Yl + bYlY2. 

Finally we infer from (16) that 

(18) hi2 = Lw,~ 4. 
First we see that by the property of products jij2 contains u1u2 and aiA, 
+A, hence A (since (a,, a,) = 1). Thus j1j2 2 [a,~,, A]. But the index 
of the module [a,~,, Â] in n, = [l, Â] is clearly u1u2 (= N[i,] N[i,] which is 
the index of jljz in D,) by the index definition of norm in Chapter IV, $08, 
10. Thus, since j1j2 and its subset [a,~,, A] have the same index in n,, they 
must be the same by Lemma 8 of Chapter IV, $8. This completes the 
proof of Theorem 1. Incidentally, if Q(j,j,) = Q3, then 

(19) Q3@, Y) = ~225~ + bw + coy2. 

Indeed, in the terminology of (10) and (17) 

(20) Qks YI)QZ(XZ, ~2) = Q3(53, ~317 

and we define the symbolic product for composition of classes 

Q.E.D 

(21) QlQ2 = Q3> 

using the same laws of multiplication as those for the corresponding ideal 
product (1). We therefore cari state that if some form in Qr represents m, 
and some form in Q2 represents m2 then a form in Q1Q2 exists which 
represents m1m2. 

We note that the general element of ideal jtj2 is not the right-hand 
member of (16) but the sum of a finite set of such terms in keeping with 
the definition of ideal product. 
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unimodular transformations from (z, y) to (A’,, Y,), 

(6) 

substituting the first in Qr(z, y) and the second in Qz(z, y). 

(7) 
‘Ql*(X,, YJ = Ql(q yj = AlX12 + (Bl + 2AlhljXl Y1 + - - * , 

i Q2*(X2, Y,) = Q&, Y> = A&,2 + (B, + 2A,h,)X,Y, + * * * . 

Now since 

(8) d = B12 - 4A,C, = B22 - 4A,C,, 

B, = B, (mod 2), and we have only to choose h, and h, such that 

(9) AA - A,h, = (B, - BJ2 

in order to make the XiYi coefficients equal in (7). This is easy, since 
(A,, A& = 1. In new notation we have (4). Q.E.D. 

LEMMA 4. Every two classes of primitive quadratic forms arising from 

ideals in Q in a given field have representatives of this type: 

(‘O) 

Q&, y) = y2 + bxy + azq,y2> 
(e,cx. y) = 

a1 > 0, 
a2x2 + bxy + a1coy2, 02 > 0, (a,, a2) = I 

Proof. Since the discriminants are equal, then, [keeping the notation of 
(4)], we see 

b2 - 4a,c, = b2 - 4a,c, = d 

and a,c, = a2c2. Since (a,, a2) = 1, a, divides c2 and a2 divides cr. This 
is shown in new notation in (lO), and incidentally d = b2 - 4a, a2c,,. 

Q.E.D. 

Proof of Theorem 1. We cari now display a suitable system of type (3). 
We note that the forms in (10) are generated by 

(11) 
i 

ii = [a,, 4, 

i2 = [a,, 4, 
where, (restricting ourselves to the case a > 0 in (7) Chapter XII, $5) 

(12) 3, = (b - &)/2. 

Here 1 satisfies the equation 

(13) A2 = bl - ala2c,,. 
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In the cases in which f > 1 no complex roots of unity except f 1 occur, 
as we cari see by recalling the only two cases, d = -3 and d = -4, in 
which there are complex roots of unity (6 and 4, respectively) when f = 1. 

THEOREM 2. The class number of the order 81, for f> 1, is given by 

l 

h(f24 = @h,(f~l~~ 
(5) P%(f) = fg (1 - w7)ld. 

Here f= llqiaz, and u is the “unit index,” i.e., when d > 0, u = log qf/ 

logql, whereas, when d < 0, IJ = 1. except for d = -4, u = 2; and for 

d=-3,u=3. 

Proof. The proof of this theorem might be regarded as an opportunity 
for the reader to review Chapter X with greater maturity. The details of 
the proof are the same, step by step. First note I[(a)] = IN(g)I. 

We let Er, Z2, * * * be h(f2d) ideals in D, belonging to the different classes, 
with (i%&), f) = 1, of course. Then, as in Chapter X, $3, we let 

1 
number of ideals a in D,, for which 

(6) Ff(T) = 
1 

0 < N(a) I T, 

I ow),f> = 1. 

(7) 

number of principal ideals (a) I a, where 

C(E, T) = 
1 

0 < /N(a)[ < T, 

I (Na),f> = 1. 

Then, combining several steps of $93 and 4 in Chapter X, we see that 

F,(T) -= h(f2d) G ii&, T) &,)l) 
T 2 ( 

C=l T ’ 

F,(T) (8) - 
T 

= h(f2+, + (error which + 0 as T-i oo), 

where, analogous with Chapter X, 

@a) 
257 

K~ = - If, if d < 0, 
dlf 24 

(96) 2 I’Og rlrl 1 
Kf = Jf2d j’ 

if d > 0 
’ 

but with a new factor 

(10) 1, = -.y, (1 - lld. 
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EXERCISE 1. Prove Lemma 1 from Theorem 7 of Chapter VIII, $2. (Compare 
Theorem 9, Chapter XII, $7.) 
EXERCISE 2. Work out the composition theorem for R( 4-5) as done in the 
Introductory Survey. Do likewise for R( dz). 

2. Orders, Ideals, and Forms 

For this section we abandon a restriction which was accepted beginning 
with Chapter VIII, namely, that the ideals are those in the ring of all 
integers of R(Z/d) denoted by D1. Using the old notation R(d) for d, the 
field discriminant, we take the ring of integers congruent to a rational 
integer (modf) called an order (compare Chapter IV, $10): 

(10) Df = [l,f(d - 4h 
where f 2 1 is now a fixed positive integer. For convenience we abbreviate 

(lb) q =f(d - A)/2 =fw,. 

Our purpose is to consider ideals in Dr. Considering ] the ideal as a 
module in D,, we cari reduce it to the canonical form by using the tech- 
niques in $7, Chapter IV: 

(4 i = [a, b + CC+~, c > 0, a>b>O. 

The norm N[i] is UC, the index of i in D,, as before. The discriminant of 
D, is seen to be 

(3) Af2 = =f2d = d,. 

The basis, as written in (2) incidentally, is ordered. 
We next examine Chapter VlI, $86 to 8, and learn (to our delight) that 

the ideals 1 for which 

(4) cfm”f> = 1 

have a unique factorization. It is not hard to see, obeying the last restric- 
tion above, that we cari reconstruct the finiteness of ideal classes, the basic 
factorization law, and relevant techniques such as equivalence classes and 
strict classes. Note that in D, the equivalence relation ïïA = 6~ requires 
that a, b, A, p a// be in D,. For strict equivalence we require N(Ap) > 0. 

We shah dwell in some detail on the class number-formula. We cal1 
h(f2d) the class number of the ideal classes in the order D, and qr the 
fundamental unit, chosen as before, > 1. Clearly vr = qr” for some integer 
u(> 0), since ~7~ is also a unit of 0,. (See Lemma 9, Chapter VI, $5). 

We likewise define h+(f2d) as the number of strict ideal classes. 
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do is to avoid factoring the p in D, that divide A in using unique factoriza- 
tion. Thus &(s; d) is compared with &s) (see Chapter X, $7): 

(16) &(S;d)=%(1 -A&r(l -(y)-li(+ 
Since only a finite number of factors is involved, we cari see that as s -+ 1 
(using [(s; d), as factored in §$6 and 7, Chapter X), 

(17) &&L”Bj’-y). 
Finally, as in Chapter X, $8, designating h(d) by h, and the K of Chapter 
X, 033 and 4, by ‘9, 

(18) hi [,(S; d)(S - 1) = h,K,Âf qq (1 - ‘y). 

We now obtain the final result by canceling common factors from (18) 
compared with (15a). Q.E.D. 

We cari supplement Theorem 2 with the information that h(j%) 2 h(d), 
but a proof is far from obvious (see Exercise 7, below). There is more to 
be seen, however. First of ah, by Exercise 4 (below), in the case in which 
d < 0, J = h(j%)/h(d) is an integer, and this integer is >l, generally. 
The real case is more difficult, but a method of matching ideals in D and D, 
(as is performed in Exercise 7) Will show that J, again, is an integer 21. 
This implies that the minimum u > 0 for which vU ED, (or ru = Tu) 
divides ~Jf), which is by no means obvious. Less obvious indeed is the 
unsettled question when h(df2) = h(d). For instance, when d = 28, 
-ql = 8 + 3%6, we cari calculate: h(28f2) = h(28) = 1 when f = 2, 7, 

14,*.-. The last result means that (8 + 347)” $ m (mod 14) when 
0 < v < ysa(l4) = 14 for any rational integer m. (It cari be checked that 
(8 + 3%‘?)14 = 1 modulo 14.) 

Dirichlet showed in 1856 that for certain d there exists an infinite 
number off for which h(j%) = h(d). It is not known if such an f exists 
for each d. (Compare Exercise 6, below.) 

There is no difficulty setting up a correspondence between the h+(@) 
ideals and forms in O,, the primitive forms having the form Q(z, y) = 
ax2 + bxy + cy2, where (a, b, c) = 1 and b2 - 4ac = f2d. The problem 
Q(x, y) = m cari be solved by ideal factorization or composition when 
(m, f) = 1. It is not our purpose to give the details here. 

The study of orders does not, by itself, lead to particularly vital problems. 
The role of orders is still deeply entrenched in the theory by the old 
problem of finding solutions to Q(xï y) = m for an arbitrary form. The 
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Now our attention must focus on (lO), the other components of (8) being 
fairly straightforward. The factor Âf (< 1) arises because for (7) we have 
to Write a somewhat more restrictive set of conditions (for a equal to each 
representative a,), as compared with Chapter X, $3: 

i 
ü = [air a,l, 

,* -\ 
(1’) 

I 
a = alx + azy, 

I N(a) = ux2 + bxy + cyz, (b2 - 4ac = &@f2d), 

excluding cases in which (N(a),f) # 1. Since (n($,f) = 1, we cari choose 
N(a,) = a as relatively prime to f (for each 2 = a,). The problem is to 
consider the effect on the density of algebraic integers in Dj when we make 
the specific restriction imposed in (7) 

W(a),fl # 1. 

We note first that if q 1 f and if N(a) = 0 (mod q) for q odd, (q { a), 

(12) 2uN(a) = (2ux + by)2 - df2N(à)“y2 

exactly when 2ux + by G 0 (mod q). We therefore see that for any 
residue class of y modulo q, there are q - 1 admissible classes of 2. 
Even when q = 2 (and 2 1 f) a is odd and b is even, since b2 - 4uc = 
df “P(ü). Thus 

UW ux2 + bxy + cy2 = x2 (mod 2), 

or 

Wb) ux2 + bxy + cy2 E x2 + y2 (mod 2). 

Thus it is stili true for q = 2 that for every y there is only one (= q - 1) 
admissible class for z for which x2 or x2 + y2 is odd. By the Chinese 
remainder theorem, there are only IIq(q - 1) admissible congruence 
classes modula IIq in a total of (IIq)2, providing a ratio of 

(14) 4 =,rs M9 - l))/ri, (q2>. 

0n the other hand, analogous with Chapter X, $7, 

(15u) lim Ffl = lim <,(s; d)(s - 1) = h(f2d)K, 
~--a, T s-1 

(15b) 

for a an ideal in D, and (N[a], f) = 1. Here, very easily, ah we need to 
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EXERCISE 3. Show h( -52 3) = 2. Find the t~o representative ideal classes 
and forms for D, by starting with these modules and using Theorem 3 to 
construct ideals: 

[1, 5P1, [5, PI? [5, 1 + PI> [5, 2 + PI, [5, 3 + PI, [5,4 + PI, 

where p = ( - 1 + v’ -3/2). (Note the three-to-one correspondence of modules 
and ideals.) 
EXERCISE 4. Verify the earlier statement that when d -c 0, h(f2d)/h(d) is an 
integer. Itislonlywhend=-4,f=2;d=-3,f=2or3,andd~-l 
(mod S), , f  = 2. 
EXERCISE 5. Verify that h(4 ‘28) = h(28). Find h(9 28). 

EXERCISE 6. Verify that if (1 + &$‘n = A, + B,dj and if m = 2”n for n 
odd, then 2” (( B,,. (Use induction on s.) Hence show Iz(~“~ 8) = 1. Likewise, 
show h(52t 5) = 1 and II(~~‘“. 5) = 2 for k :< 3. 
EXERCISE 7. Show that if a = [a, b + cor] and (ac, f) = 1 then Z = [a, 
bf + efw,] = [a, B + CO~I, where B = bf(moda). Show that if a = b then 
a = b, and that if a -b in Df then a -b (in DJ. Show that cri = zz, using -- 
(11) of 01 (above), and that if c = ab then aa pb = & for some c( and p in D, 
relatively prime to f. 
EXERCISE 8. Show that for G( E z),, (N(cc),f) = 1 then (a) - (1) in 0, if and 
only if(m) - (1) (modf). From this show the two definitions of equivalence cari 
be identified. 
EXERCISE 9. Referring to Exercise 3, Chapter IX, $1, show that <D[(f)] = 
+(f)vJf). Also show that as U and Y vary, rr,r rT takes on r.+(f) values modulo f. 
Thus show that (5) also gives the correct class number for definition (21). 
EXERCISE 10. Derive a formula for h+(f2d)/h(f2d) analogous with Theorem 3, 
Chapter XII, $3. 

3. Genus Theory of Forms 

As a final topicr we consider the basic problem of whether congruence 
classes for a primep determine its representability by a quadratic form in 
the manner of Fermat’s famous result that for odd p 

(1) p = x2 + y2 exactly when p s 1 (mod 4). 

Ideal theory would be enormously helpful. For instance, if hi(d) = 1, 
only one form enters, and we easily see for (p, 2d) = 1, 

1 
x2 + xy - dA y2 

4 
(if d z 1 (mod 4)) 

(2) P = Q(x, Y) = { or 

i x2 - (d/4)y2 (if d E 0 (mod 4)) 

1 In the remainder of this chapter we return to the usual convention that d is a field 
discriminant (or f  = 1). Thus 82, where f  > 1, is not necessary for any other part of 
the book. 
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following theorem even strengthens the importance of ideals in orders by 
making ideals “as general” as modules in the quadratic case. 

THEOREM 3. Any module [CQ, a21 in Dl corresponds to at least one 

ideal i = [PI, /3J in some order D, in the sense that [ccl, a$, = ,k&, p.J 
for some integers 1, and A2 in Dl. 

Proof: We cari appeai to the method of lheorem 6 in Chapter XII. 
We assume that the module [ar, ap] is ordered. We Write a quadratic form : 

(19) N(a,x + azy) = t(m2 + bxy + cy2), a > 0 

where t is chosen SO that (a, b, c) = 1. (From $5 of Chapter XII, e.g., if 
a = [a,, a21 is actually an ideal of r)i, then t would be N[a].) But, by the 
same process, extended to the case of an order, we cari regard ux2 + bzy + 
cy2 as the form generated by the ideal in D,: 

[a, @ - 4)/21, 

where df = b2 - 4uc = f2d(d is the field discriminant). This ideal is our j, 
by a comparison with the method in $6 of Chapter XII, (the details are 
left to the reader). Q.E.D. 

The construction of the ideal classes in Dr is not necessarily dull. We 
could, of course, factor a11 p I fdd required by Minkowski’s theorem 
(Chapter VIII) and form the classes. 

Relatively recently, however, Weber (1897) and Fueter (1903) showed 
how to obtain ideal classes in Dr from a new type of modified equivalence 
class in Dr, designated by “N (mod f)." For two ideals a, b in Dr, 
which are relatively prime to f, we Write 

(20) 

when 

a-b (mod f), 

(21) ila = pb and il = ,LU (mod f) 

for a rational integer r and integers il, ,U of Dr, which are a11 relatively 
prime tof. Thus far the definition remains entirely in Dr. 

We then take, a,, the representatives of the different equivalence classes 
(mod f), and cal1 Et the aggregate ,of elements common to a, and f),, 
e.g., Zf = a, n Dr. The àt cari be shown to be ideals in n,, representing 
a11 its ideal classes. The strict equivalence a = b in Di fits in, semantically 
at least, by the designation “a N b (mod CO),” and, if N(@) > 0 in (2l), 
we would say “a N b (modf co),” like Hasse’s congruence in Chapter Il, $6. 
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of similar properties of (d/m) = (d/lml) and xl(m), i 2 2. In fact we verify 
by substitution (see Exercise 11, below) : 

LEMMA 5. The remaining character in (7) is given by 

1 

(- I/lml) sgn m in cases (3b) and (46), 

(8) x,(m) = P/m) in cases (3~) and (4c), 

(-2/(mj) sgn m in cases (3d) and (4d). 

Here, sgn m means “the sign of m” (+ I when m > 0 and - I when m < 0). 
When d < 0, it is understood that m > 0 only. 

We now begin the process of classifying quadratic forms. 

LEMMA 6. All integers m represented by a quadratic form of field 

discriminant d and relatively prime to 2d have the same-value of x,(m) for 

each i and satisfy (d/m) = 1. 

Proof. Let ml and m2 be represented by the form 

(9) Q(q, yJ = uxj2 + bx,yj + cyj2 = mj, <j = 1,2), 

and suppose that (a, 24 = 1, by choice of the form keeping the same 
proper equivalence class. Then, with d = b2 - 4ac, we easily have 

(10) 4am, = (2ax, + byJ2 - dyj 

Then if xi is of the form (m/q) where q 1 d and q is odd, 

4um, E Perfect square (mod q) 

and Xi(amj) = 1; thus 

(11) x&h) = xitm2) = xi@) 

Furthermore, if x1 is not of the form (m/q,), then (11) holds for i = 1 by the 
product formula (7), once we verify that (d/mJ = 1. 

TO see this last statement, let Q(z, y) = m be a representation in which 
(2, Y) = 1. Then a11 prime factors, p, of m, by Theorem 9 of Chapter XII, 
satisfy (d/p) = 1 (as p +’ d>. If (x, y) becomes (gx, gy), then a factor g2 is 
contributed to m, not affecting the residue symbols. Q.E.D. 

We therefore define for every form the generic characters xi(Q) of the 

form to be these values of X,(m) where (m, 2d) = 1 and Q represents m: 

(12) x,(Q)> x,(Q), - * . 9 c(Q) 
The characters of course apply to the class of properly equivalent forms as 

they represent the same numbers. For the same reason the conjugates 
Q(x, y) and Q(x, -y) have the same generic character even if they are not 
properly equivalent. 
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if and only if (dlp) = 1. If d > 0 and N(q,) = + 1, then h+(d) = 2h(d) = 
2, and there is some question whether Q(z, y) or - Q(z, y) should represent 
p. A fairly simple result still holds (see Exercise 17 below). When h(d) > 1, 
the matter is not SO trivial; we find that we must first divide the forms into 
genera (plural of genus) in considering which forms represent a prime. 
The composition and ideal multiplication theorems make it suffice to 
build on prime factors p, except for sign considerations. 

As a preliminary step let us consider a field discriminant d. There are 
several cases according to whether the square-free kernel D is odd and 
D sz f 1 (mod 4) or even and D/2 = f 1 (mod 4) : 

(34 
(3b) 

(3c) 

(34 

d = qlqz * - - q7 E 1 (mod 4), 

d = 4q,q, . . . qT E 12 (mod 16), 

d = Sq,q, . . * qr = 8 (mod 32), 
d > 0. 

d = 8q,q, . . - qr = 24 (mod 32), 

and 

(44 
(46) 

(4c) 

(44 

d = -q1q2. . . qT z 1 (mod 4), 
d = -4q,q, . . *qr = 12 (mod 16), 

d = -8q,q,** * qr = 8 (mod 32), 
d< 0. 

d = -8q,q,*. . qv G 24 (mod 32). 

Here qi are different positive odd primes and r is the total number of 
different prime divisors of d. 

For each d we consider certain Jacobi characters as functions of m 
(relatively prime to 2d), noting that when d < 0 we choose only positive 
forms, (m > 0): 

(5) 
X,(m) = 2 

i )i 4i 

d s 1 (mod 4) 
d $ 1 (mod 4). 

Now the law of quadratic reciprocity tells us, easily, that in cases (3a) 
and (4a) 

(6) fixi(m) = IlfI (F) = $ (m> = (f), 
z 

using qi* = qi(- l/q,) = 1 (mod 4) and recalling that d must have the 
sign of nqi*. In the remaining cases the matter is more detailed, but we 
define xl(m) by the relation 

(7) xl(m) ig xi(m) = (dlm), (m > 0 for d < 0). 

We thus have defined xl(m) as a multiplicative function of m on the basis 
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THEOREM 5. The principal genus contains precisely those forms that 

are squares of some form under composition. 

Proof. We shall sketch a proof of this very important result. First we 
make a transition to ideal theory and nonstrict equicalence classes. We 
consider four different types of field of discriminant d with r distinct prime 
factors and fundamental unit qI. (We let A, B, M be general symbols for 
rational integers.) 

Type 1: d (0. 

Type2: d>O,N(r,)= -1. Hered=a2+b2and(4M- I){d. 

Type 3 : d > 0, N(r,) = + 1 and d = a2 -t- b2. Here (4M - 1) +’ d. 

Type4: d>O,N(~J= +1andd#A2fB2. Hereq,=(4s- l)\d 

(by convention the last prime factor of d is taken G -1 mod 4). 

Now consider the following table which summarizes past results on 
ambiguous ideals : 

TABLE 1 
1 II III IV V VI VII VIII 

Principal Independent Relation Form Genera 
Field Ambiguous Ambiguous Ambiguous of Form Q 10 Form wirhour 
Type Ideals Ideals Cl.SS.5 Negarives (conj.) Genera Negatives I 

: 2 2’-1 27-t 2r-’ 2T-1 r-l 
2 2’-1 2r-1 

No negatives 
Equivalent, hence 2r-1 2r-’ r-l 
same plus 

3 4 2r-2 2’-l Inequivalent but 2’-t 2r-l r-1 
same genus 

4 4 2’-.” 2’-” Inequvalenr and 27-I 2r-” r-2 
X,(Q) = -x,(- 0) 

The first four columns embody Exercises 8 to 11 and 13 of Chapter XI, 
$3, if we note that the r different prime factors of d produce r ramified 
(ambiguous) prime ideals and 2’ possible ambiguous ideals by selection of 
subsets. Column II expresses Exercise 13, whereas Column III expresses 
the number of ambiguous ideals independent to w’ithin principal nonunit 
idealfactors (Column 11 divided into 2’). Column 1V reflects the presence 
of the special class for Type 3 (see Exercise 8). As in Chapter XI, our 
ideal classes here are nonstrict. 

Looking at Column V we see an application of Theorem 8, Chapter XII, 
$6, together with the fact that the generic characters of fields of Type 3 
satisfy x,(-m) = xL(m) for all i (whereas “taking the conjugate” preserves 
genus). TO tope with the sign relation involved in fields of Type 4, we tut 
down the number of proper equivalence classes Q of forms to onehalf by 
considering only the forms Q E Q with a definite choice of sign e: 

(15) eQk Y) 
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We next consider the forms Q for which the x,(Q) are equal to some 
preassigned array of signs ei = + 1 or - 1, 

(13) e,, e2, . . , e,, subject to n e, = 1. 
i=1 

There are 2’-l possible arrays, and the set of forms corresponding to each 
array is called a genus of forms. The forms for which a11 e, = +1 are 
naturally called theprincipalgenus offorms. Each genus is also a collection 
of proper equicalence classes. The genera are multiplied by composition of 
classes, in the notation of (20) and (21) of $1. Thus, if QI E QI, Q, t Q2, 
and Q, E Q1Q2, 

(14) x~(Q~>xAQz) = Xi(Qd> 1 lilr, 

since ordinary multiplication is involved in composition. The classes Q 
belonging to the principal genus accordingly form a subgroup of the class 
group. Each genus constitutes a coset of the principal genus (see Exercise 
9, Chapter 1, $6). 

LEMMA 7. There is an odd prime p (indeed infînitely many) for which the 

generic characters X~(P) = ei for a preassigned array of signs e, whose 

product is 1. 

Proof. Consider xi(p) = (p/qJ = ei for i = 2, . * . , r. Since the qi are 
odd primes, we choose p congruent to a residue or nonresidue modulo qi, 
as the case may require, whereas xl(p) = e, is a condition on p modulo an 
odd q1 or modulo 4 or 8. The Chinese remainder theorem determines p 
from several independent arithmetic progressions, whereas (d/p) = 1 
automatically from (7). Dirichlet’s theorem (see Chapter X, §l), yields the 
result. Q.E.D. 

There is therefore at least one class of forms in each genus by the 
corollary to Theorem 9, Chapter XII, $7. We then use the coset property 
to see that there is an equal number of classes in each genus, and we have 
proved the following result : 

THEOREM 4. If we consider h+(d) proper equivalence classes of forms 

with discriminant d equal to afield discriminant, then they cari be subdivided 

equally into 27-1 genera of h+(d)/2’-l forms which form a subgroup of the 

proper equivalence class group under composition. 

This theorem was proved by Gauss in 1801. Since Dirichlet’s theorem 
was not available then, another proof had to be given (in fact with no aid 
from infinitesimal analysis). Gauss further showed the famous duplication 
(meaning “squaring”) theorem : 



[SIX. 31 GENUS THEORY OF FORMS 227 

not restricted modulo ri (odd). On the other hand, a11 Perfect squares are 
in the principal genus by composition formula (14), but the principal genus 
numbers as many classes as squares, by Theorem 4 (modified to accommo- 
date ideal genera for Type 4). Hence Theorem 5 follows. Q.E.D. 

We cari pursue Theorem 5 one step further: the square of a form 
necessarily represents a Perfect square (prime to 2d), since composition 
simulates ordinary multiplication. A form representing a Perfect square 
(prime to 2d) is necessarily in the principal genus, which is determined by 
the odd primes in d. Hence Gauss noted the following: 

THEOREM 6. A quadratic form whose discriminant d equals the dis- 

criminant of a field represents a square prime to 2d if and only if the form is 

in the principal genus. 

COROLLARY. The quadratic form in the foregoing theorem represents 

a Perfect square (relatively prime to 2d) if and only if it represents a 

quadratic residue (relatively prime to 2d) modulo every odd prime divisor 

of d. Negative definite forms remain excluded. 

The corollary is due in one form to Legendre (1785) and it cari be proved 
in a fairly elementary manner. Its proof is still of sufficient depth to deserve 
a special analysis in the Concluding Survey. Gauss reversed the procedure 
to prove Theorem 4 from Theorem 6. (Legendre and Gauss, in fact, 
considered forms with no restriction on discriminant.) 

We cari now return to the motivating question of this section, namely, 
when do congruence properties of a prime p determine its representability 
by a quadratic form? Now we see a partial answer in that this is always 
the case when h(d) = 2t or when there is exactly one ideal class in each 
genus. For this reason ideal genera were used (although a corresponding 
theory of ambiguous forms was thereby ignored). Gauss, indeed, felt that 
the search for fields of class number unity was less meaningful than the 
search for fields of one class per (ideal) genus. 

The easy result that 2t divides h(d) helps us to understand to some extent 
why certain fields with very composite d must have large class numbers, 
but an adequate understanding of the reason for odd cyclic groups in the 
structure of the class group is still, generally speaking, on the outer 
frontiers’ of number theory. 

‘The nature of the odd cyclic structures is even more mysterious in regard to the 
occurrence of repeated prime powers in the class group. The smallest known instance 
in complex fields is d = -3299 where Z(3) x Z(3) occurs in the class group (Gauss). 
For real fields the smallest known instance is d = 62,501 where the same factors occur 
(Pall). 
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where e = x7(Q(z, y)) = x,(Q) = x,(m). Here m is, as before, any integer 
represented by Q(z, y) and such that (m, 2d) = 1. Of course xr(eQ(z, y)) 
= 1, thus the product of the remaining x,(eQ) * - * xTdl(eQ) is always 1. 

We then obtain 2t genera for the forms (see Columns VII and VIII) 
that are determined by the independent characters 

(lha) x,(eQ), yz(eQ): - . . : x,(eQ) 

for h+(d) classes of forms in fields of Types 1 to 3 and h+(d)/2 classes in 
fields of Type 4 according to (15). Note that - Q and Q lead to the same 
eQ, since x7( - 1) = - 1. 

We cari now make the transition to ideals by considering only nonstrict 
equivalence classes. In fields of Type 3 (or 4) this amounts to using only one 
of the equivalence classes of a and a%$ since they both lead to the same 
genus (or the same eQ). We cal1 the 2t genera thus determined the ideal 
genera as distinguished from the 2T-1 form genera originally introduced. 

Table III (appendix) lists the values of a11 (t + 1) character symbols for 
the ideal genera in order of the indicated prime factors of d (except that 
for Type 4, qr = - 1 (mod 4) is listed first in the factors of d, then omitted 
in the list of character symbols). 

We use Exercise 18, Chapter XII, $7, to Write the generic character of 
an ideal class directly in terms of an ideal a it contains: 

(16b) xIWM>2 . . . , x,WWI>, Wbl, 2d)= 1, 
where e = 1 except for fields of Type 4 where e = X,(N[a]). These t 
characters are independent in value. 

Let us now visualize the (nonstrict) equivalence class group for ideals. 
Using Kronecker’s decomposition theorem, we set 

(174 
G = Z(281) x - - . % Z(29 % Z(r,) x f * * X Z(r,), 

h(d) = z81+ “. +8tr1 * . . rt 2 2t, 

where the indicated groups are cyclic with generators (say) g,, . . . , g,, 
I!l’, * - * 7 g,’ and the values of si > 0, whereas ri > 1 are odd. Here the 
value of t must agree with Column VIII of the table, since the ambiguous 
classes (whose square is the identity) are 2t in number: 

(17b) g = glml . . . g,?, m, = 0 or 2”~/2. 

We cari verify that precisely h(d)/2t elements are Perfect squares. Let 

(17c) g = g,% . . . gtgtgy1 . . . gy% 

where we cari salve for xi and xi’ in 

(174 vi z 2x, (mod 2”~) and wi s 2xi’ (mod ri). 

Then the vi are each restricted to half the values modulo 2”~, but the wi are 
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Let n and m be rational integers, m # Perfect square, n # 0; let q be 
any prime. Hilbert defined 

n, m 
t-1 

= +l or -1, 
4 

depending on whether or not it is true that for each power q” (s an integer 
21) we cari solve 

(2) n = N(ES) modulo q” 

for some integer E, in R(d;). (When m is a nonzero Perfect square, the 
symbol is taken as 1 for completeness.) There are many rules of calculation 
for which we refer to more advanced treatises. We state only three and 
without proof: 

(3) (y)(y) = (y), 

q odd, 

These rules state (respectively) that the symbol is multiplicative in n, that it 
is “interesting” for only a finite set of primes (divisors of 2mn), and that it is 
really a quadratic residue symbol. (The last equation (5) is essentially the 
matter discussed in Exercises 14 and 15 in Chapter 1). 

In this terminology we cari finally identify the genera. We let ql, q2, . * . , 
qî be the prime divisors of d, as before. Then the array of signs [corre- 
sponding to (12), $31 identifying a genus of forms, one of which represents 
the value m (prime to 2A), is 

(6) (y),...,(y). 

If we consider the genus of an ideal a we cari take m = N[a], if (N[a], 2d) = 1 
(by Exercise 18, Chapter XII, $7). The independent characters [corre- 
sponding to (16b), $31 are 

(7) 

where e = 1, except for fields of Type 4 in which qr = - 1 (mod 4) and 

Here q1 cari be taken as 2 for some of the cases in 

Lemma 5, $3. 
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EXERCISE Il. Complete Lemma 5 by verifying (7) in each case for positive and 
negative M. 
EXERCISE 12. Write out the characters for D = -3, -5, -62, -78; D = 3, 
5, 6, 34, 65, 82. 
EXERCISE 13. Verify the genera in Table III (appendix) for D = -62 (taking 
the class structure for granted). Show that exactly one of the forms Med satisfies 
the representation : 

J? + 62~~ 
7.x2 + 2xy + 9,//2 = p if (2/p) = (p/31) = 1 

2x2 + 31ya 

3.ça + 22y + 21?/2 

11~~ + 42~ + 6?/2 1 
=p if (2/p) = (p/31) = -1, 

where (p, 62) = 1. Verify this numerically for two values of p( > II) in each 
genus. (Note that there is no need to put a f  sign on the middle term and that 
the uniqueness of the form representing p cornes from Theorem 5, Chapter XII, 
04). 
EXERCISE 14. Construct the genus classifications analogous to Exercise 13, 
when D = 10, D = 65, and verify each genus for at least one prime. 
EXERCISE 15. Construct the genus classifications for D = 14, D = 42, and 
determine which sign z,(Q) has to be selected for each form. 
EXERCISE 16. Do likewise for D = 34. Are both +p and -p representable are 
by each form? 
EXERCISE 17. Referring to fields of Type 4, explain the choice of sign in (2) if 
h+(d) = 2, h(d) = 1. 
EXERCISE 18. Using techniques analogous to Chapter II, 57, show that there 
are exactly 2t real characters in the (nonstrict) ideal class group [see (17a)] and 

show that these characters must be those formed by takingproductsz,(Q)zb(Q) 
z,(Q) where a, b, , m is a subset of the indices 1, 2, , f .  
EXERCISE 19. Define the real characters for Exercise 18 when D = -65, 
D = 34. 
EXERCISE 20. Prove the lemma in Chapter X, 912. 
EXERCISE 21. Show that the corollary to Theorem 6 would not hold true if 
negative definite forms were permitted. by considering a form that represents - 1, 
in connection with (4b, d). 
EXERCISE 22. Consider G, the (proper) equivalence class group for forms. 
Show that, for fields of Type 1 or 2, G and G, have the same decomposition, 
whereas, for Type 3, one factor (say) Z(2”1) is replaced by Z(2+ + r) in G,, and, for 
Type 4, G, has an extra factor Z(2) as compared with G. 

4. Hilbert’s Description of Genera 

Hilbert devised a remarkably general quadratic character symbol to 
avoid the inelegant specialization of cases required in the last section (for 
example, in Lemma 5, $3). The symbol proved to be more easily genetalized 
to fields of higher degree. 
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The reader may very well ask were this subject leads, and he should be 
prepared to receive a variety of answers. 

Some of the new directions are SO strongly algebraic, combinatorial, 
or analytic as to be lacking in direct appeal to the main tradition. We shall 
Select three topics, which we believe have such appeal and which are 
closely related although seemingly different in origin. 

We shall combine legitimate deductions and rash conclusions, freely 
intermingled for quick reading. The more serious student, of course, Will 
refer to advanced treatises for details. 

The new directions, inevitably, involve algebraic numbers of degree n. 
An algebraic (rational) number of degree n is defined as a root of the 
irreducible equation with rational coefficients a,: 

(1) 8” + alP1 + . * - + a,-,0 + a, = 0. 

An algebraic integer is one whose defining equation has only rational 
integers, as coefficients a,. A field R(B) is defined as the set of values 
resulting from rational operations with 0, as in Chapter III. Sometimes it 
is convenient to consider some R(d,, O,), a field generated by two elements, 
but, indeed, any field cari be generated in a variety of ways. Algebraic 
integers again form a ring. We speak of fields including one another, 
R(0,) 2 R(f),), in the usual way for sets. 

The ideal theory is no harder than in the quadratic case, in principle. 
There is unique factorization into ideals but a finite class number which 
generally exceeds 1 (producing nonunique factorization into principal 

231 
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Moreover, it would follow that the product of the indicated signs in (6) is 
1. Hilbert found, however, that to achieve the height of perfection a new 
symbol must be introduced 

(8) 
4 m 

C-1 
= fl, 

CO 
depending on wheth.er or not n cari agree with Iv(u) in sisw Imod m) for an ,-., -.. --Dan \~~. 

a in R(d&). (The only case in which the value is - 1 is easily n < 0 and 
m < 0.) We now have the unconditional statement 

(9) n(y) = (y); 

or, still more elegantly, 

(10) = 1, 4 = a11 primes and CO. 

The reader Will notice that in some way (10) provides a connection 
between quadratic reciprocity and unique factorization. The fact that the 
product equals 1 is a manifestation of quadratic reciprocity, and the fact 
that the only interesting q are divisors of 2mn is a manifestation of unique 
factorization, if we compare Lemma 5, $3. 
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and, by (5) and (6), 

233 

(8) R-N=T=S. 

The expression (6) gives us some insight into S physically, since it 
suggests a superposition of n units with directions determined by 3. If the 
superposition is “random,” well-established laws for estimating “probable 
error” would suggest a total length [SI equal to z/i. 

In fact, we cari rigorously establish (SI = t’i, for, taking complex 
conjugates, we see that 

(9) 

(10) 

n-1 

3 = 2 e-s’, 
S=O n=l 

Iq2, SS =r;of+~* = n51 fpfw-3) 
.- 7,s =o 

If we let r - s = q, r + s = 2s + q, we find that q and s take on independ- 
ently a11 values modulo 12. SO do q and u = 2s + q. Thus 

(11) 
n-l n-1 n-1 n-l 

PI~ =,;oeqv =gzol + 1 2 vv = Il + 0, 
q=o v=l 

since the powers (Py take on a11 exponents from 0 to (n - 1) when q varies 
(for u = 1, 2, * . . , n - 1). Finally 

(12) /SI = di. 

Gauss showed also (with more delicacy) that 

(13) 
( 

S=&i, n prime E 1 (mod 4), 

S = ix’;, n prime E - 1 (mod 4). 

The transition from (12) to (13) involved an entire world of mathematics 
equivalent in depth to quadratic reciprocity. The result we need is only 
slightly stronger. 

Letting d be the positive or negative discriminant of a quadratic field, we 
redefme 0 and T by using the Kronecker symbol: 

r 0 = exp 2mi/d, 

(14) 

The startlingly simple result is 

(15) T=v% 
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ideals). The laws of decomposition of Chapter IX are more complicated, 
but a rational prime breaks up into no more than n ideals (in a generally 
irregular fashion). The theory of quadraticforms is replaced by a much 
less attractive theory that makes us willingly confine a11 our attention to 
ideals in the ring of a11 algebraic integers of a given field. 

CYCLOTOMIC FIELDS AND GAUSSIAN SUMS 

Aside from the quadratic field, the most important is the one generated 
by a root of unity of index n, or the cyclotomic (“circle-cutting”) field, 
generated by powers of 

(2) 8 = exp 2niln = cas 2nln + i sin 2nln. 

This root and its powers et = exp 2rritln = COS 2rt/n + i sin 2rrtln are 
represented as the vectors from the origin to points of a regular polygon of 
n sides with tenter at origin and one vertex at 1 = 0”. This follows from 
de Moivre’s theorem in elementary fashion. The important feature is that 
the powers 19~ are determined by the exponent t (mod n). 

When n is prime, the reduced equation defining 13 is 

(3) 
en - i -=e”-l+e”-‘+...+e+l=o. 
e-1 

(The irreducibility of (3) is not obvious, but we always omit details for the 
sake of the survey.) This cyclotomic field first was seeen to be more basic 
when Gauss (1800) separated the exponents as residues or nonresidues 
(mod n), excluding 0, and wrote 

(4) 
Rqet t residue, 

N=Z8” u nonresidue. 

Thus, when n = 5, R = 8 + e4, N = P + e3, and, when n = 7, R = 
8 + 82 + 84, N = 83 + 85 + 86, etc. By (3), however, 

(5) R+N+l=O. 

Gauss next introduced the so-called Gaussian sum 

(6) 
n-1 

s = 2 eTe = 1 + 2R 
r=0 

(as we cari see by noticing that the squares, r2, equal each residue twice). 
Another closely related expression, using Legendre’s symbol (r/n) is 

(7) 
n-1 

T=ze’ I ; 
0 ?=o n 
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TO illustrate, take the field R(Z/z) where h = 2. We recall from the 
genus theory that for a given rational prime p 

(a) if (-2O/p) = -1, 
- 

p does not factor in R(d-5); 
(b) if (51~) = (- 1 /p) = 1 (orp = S), p factors into two principal ideals 

andp = x2 + 5y2; 
(C) if (5/p) = (- l/p) = - 1 (orp = 2),p factors into two nonprincipal 

ideals andp = 2x2 + 2xy + 3y2. 

Let us consider the nonprincipal factors of 2. Since (2, 1 + dz)2 = 
(2), then by introducing dj into R(d-5) we have an ideal number for 

- 

(2, 1 + d-5). The ideal (2, 1 + 65) cari be described as precisely 
those numbers in R(Z/x) that are divisible by v’? in the sense that the 
quotient is an algebraic integer, as in (1). For example, 

/$=f=/?, /P-2=0, 

W) Il++5 
[ J2 = y> (y” + 2)2 + 5 = 0. 

We are now in possession of a field R(YZ, %‘=5) generated by adjoining 

d!i to R(d-). It could also be regarded as a relative-quadratic field or a - 
quadratic field over R(d-5). For instance, the algebraic integer y in (18a) 
could be regarded as a root of the quadratic equation with coefficients in - 
R(d-5): 

tl8b) y2 = (1 + X/-5)2/2. 
- 

Not only 2, = (2, 1 + ~1-5) but a/1 nonprincipal prime ideals r become - 
principal in R(d-5, X/2). This is true because there is only one non- 
principal class, 2,. Thus 2,r is principal. For example, 

2,3, = 2,(3, 1 + 265) = (1 - G), 

2,7, = 2,(7, 1 + 22/-5) = (3 - d-5). 

If 2, = (dz) in R(Y-5, 2/2), it is clear that 2, - 3, - 7, - 1. Yet 
trouble lies ahead, since R(d-5, d2) h as some nonprincipal ideals, in 
fact, its class number is 2. 

Now, have we really simplified factorization theory by making non- 
principal prime ideals become principal? On one hand, 3, and 2, are 
happily both prime and principal in R(I’-, 2/?!), as cari be shown, but, 
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Dirichlet (1837) used the result (15) for an elegant computational 
purpose: in deriving the class number formula in Chapter X, $9, we were 
confronted with a decomposition into partial fractions. It generally takes 
the form 

(16) 
fd(4 -= 

1 _ xl4 
'y' h(e-7 1 . 
r=1 1 - '9'2 [dl 

Here&(@) cari be shown as, essentially, a Gaussian sum of type (14). Then, 
following out the calculations of Chapter X generally, we obtain the class 
numbers 

[ -r<(f) loglsin~~, if.d > 0, 
I 

(17) h= 

if d < 0, 

in the terminology of Chapter X. The reader cari convince himself, 
somewhat, by testing with small d. 

As elegant as an “actual class-number formula” may be, Dirichlet’s 
successors have read an even more significant meaning into formula (15). 
The formula shows an imbeddability result for the quadratic field of 
discriminant d: the cyclotomicJeld generated by 8, of index JdJ, contains 
R(&). Incidenta& , no lower index willsufice. Now we recall that dis the 
modulus that determines whether a primep splits (by the residue class ofp 
modulo Id]). This is more than coincidence; it is the basis of a completely 
independent proof of the imbeddability theorem! 

Can such properties be established for other fields (which need not be 
contained in any cyclotomic field)? The answer is still incomplete. 

CLASS FIELDS 

We digress to make the historical observation that Dedekind’s ideal 
theory was the third major attempt to tope with nonunique factorization. 
The first was, of course, Gauss’s composition of forms (1800), and the 
second was a relatively neglected explanation of Kummer (1854) that 
unique factorization cari be achieved by “actual” ideal numbers. Looking 
back at Kummer’s work (with the wisdom acquired from Dedekind), we 
would say that if the class group has order (class number) h then for any 
ideal 1, 1” = (R), a principal ideal. Thus 1 cari be replaced by hz/a, the 
“actual” value of the ideal 1. 
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- - 

(b) The principal prime ideals in R(d-5) split in R(d-, d- 1) into 
prime ideals. 

- 
We note that the principal prime ideals in R(d-S) are either unfactor- 

able rationals, p, such that (-2O/p) = - 1, or divisors ofp in the principal 
genus for which (51~) = (- I/p) = 1. In either case, (51~) or (- l/p) is + 1. - 
Thus the prime p splits in R(v?) or R(d- 1). TO reconcile this factoriza- 
tion with the behavior in R(a), we must assume a further split in 
R(&, 6-l). For example, take 29 = (3 + 22/2)(3 - 24-5) = 
(5 + 24-)(5 - 2Y-1). We could show the four ideals generated by - 
the pair of elements: ((3 f 22/-5), (5 f 2d-1)) are the four factors of 
29 in R(d-5,2/-1). In fact, they happen to beprincipal. 

29 =(2 + d=l( !y))(2 - =‘i(!$)) 

x(* + ;++3))(2 - 4+5)) 

Now this formulation is based on R(d-), a quadratic field of class 
number 2. The definition cari be extended to other quadratic fields and to 
nonquadratic fields. We find a peculiar occurrence in that the value of the 
theory depends on selecting definitions that make possible interesting 
theorems! 

TO give an example of the power of semantics, consider one further 
interpretation. We start this time with the rational field R and consider a11 
“principal” ideals to be only those (x) for which (d/z) = 1 where d is the 
discriminant of a fixed quadratic field. The ideals for which (d/z) = - 1 are 
called “nonprincipal,” whereas the ideals for which (d/z) = 0 are ignored 
in the designation. We cari say that every ideal (CE) has a “principal” 
square since (d/z)2 = (d/z2) = 1. Thus the “class number” is 2. The 
quadratic field R(&) then provides a “class field” for R, for we note the 
analogous properties of primes p : 

(a) If (d/p) = - 1, (p) does not split in R(I&). 

(b) If (d/p) = 1, (p) splits in R(d& 

This interpretation is more than a trick. It was developed in detail by 
Takagi (1920). We must, however, abandon this line of speculation with 
the remark that determining the extent to which these interpretations of 
classfields cari be stretched is theprincipal unsohedproblem (rather than a 
lack of proofs to well-defined conjectures). 
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on the other hand, although 7, becomes principal, it is unhappily capable 
of further factorization, indeed into two nonprincipal ideals. (We recall 
that since R(2/‘3, ~‘2) has algebraic numbers of degree 4, the rational 
primes could have four ideal factors.) The easiest way of explaining this 
fact is to note that, since (8/7) = + 1, 7 factors, (indeed as (3 + z/j) 
(3 - 2/?)): in R(&). These are “irreconcilable” with the two factors of 
7 in R(a), since 3 f 1/2 does not divide a11 elements of 7, (for instance, 
1 + 2d-5) in the sense that the quotient does not satisfy an algebraic 
equation (1) in rational integral coefficients. 

We must note, incidentally, that since (-2) = (+2), as ideals, R(Z/-2, 

4-5) would illustrate the same thing as R(%&, d-5). Dirichlet, some - - 
time earlier, had noticed that R(d-5, 2/- 1) has class-number unity. 
This field contains V? = -Y-5 d- 1. Thus, to factor a prime in 

-- 
-- 

R(Z/-5, d-l), we cari begin with any of the three fields R(Z/--5), 

R(Z/T), or R(&) and consider the effect of adjoining one other radical 
to it. 

Hilbert later noticed certain further remarkable properties that created - 
the designation that R(%‘z, d- 1) is the classjeld of R(d-5). 

- 
(a) The nonprincipal prime ideals in R(Z/-5) become principal prime -- 

ideals in R(d - 5, 2/ - 1) (wirhout splitting). 

For example, let q be a rational prime in the second genus: 

(19) q = 2a2 + 2ab + 3b2 

( 

2q = (2~ + b)2 + 5b2 
(20) 

4q = (2~ + b + &b)” + (2~2 + b - &b)2. 

Thus, finally, 

l 
2a + b + JJb + ,z 2a + b - JSb 

9= 
2 t 2 1 

(21) x 2a + b + JSb - 2a + b - ,/Tb 
l 2 4-l 2 1 

and q has the two indicated principal ideals in R(z/-5, 2/7), although 
not in R(Z/-5). The reader may wonder if q has further factors, but the 
answer is negative, since the genus {(5/q) = (-l/q) = -l} makes q 

unfactorable in R(6), hence factorable into at most two factors (as shown) - - 
when d- 1 is adjoined to make R(I’?, d- 1) = R(d-5,2/-- 1). 
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The proof is basically a transformation to an equation of lower index. 
Let Z,, (2 3) be the index of (22) and let 

(27) 14 5 14 < ICI 

(the equality holding only if (a1 = lb1 = 1). Then 

(28) z, = lac( > Jabl. 

We salve (24b) by reducing ri modulo c SO that it is < c/2 in absolute value. 
Then the new integer q cari be defined: 

(29) q = (ar12 + Q/c, 

(30) lql < (14 c2/4 + Icl>/l4 = lucI/4 + 1 < la4 = 1,. 

Now the transformation 

(31) 

changes (22) to 
1 

z=bX+r,Y, 

y  = r,uX - Y, 

2 = qz 

(32) ubX2 + Y2 + qz2 = 0. 

If Z’ is the index of (32), 

(33) Z’ = max WI, 191) < h. 
If the coefficients ub and q have a common factor (> l), (32) bears further 
reduction but Z’ cari be shown to decrease or remain unchanged. This 
completes the descent. 

Now our problem is to prove that if the conditions (24u, b, c, d) are 
valid for (23), they must also be valid for (32) (or whatever its reduced form 
might become if (ub, q) > 1). This is not easy and is indeed rather 
manipulative. 

Condition (24~) on the sign of a, b, and c is easy, however, if we rephrase 
it as 

(34) 4” + bv2 + d2 = 0 

solvable for real (E, r], 5) 
net a,, zero 

Then it is clear that the linear transformation (31) transfers the real solution 
from (22) to (32). [The reader Will find it easy but more annoying to prove 
the transfer of (24u) directly, i.e., to show from (29) that ub and q, in (32), are 
not both positive!] 

Can we similarly transfer conditions (24 6, c, d) from (22) to (32)? 
The transfer was originally made by brute force! 
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GLOBAL AND LOCAL VIEWPOINTS 

We begin with a conventional problem of deciding whether or not the 
equation 

(22) ux2 + by2 + c22 = 0 

in rational integral (nonzero) coefficients a, b, c has a rational integral 
solution 2, y, 2 not a11 zero. 

As a preliminary matter, we cari make changes of variables SO that a, b, 
and c are square-free (by absorbing a square factor in x2, y2, or z2), and we 
cari easily arrange that a, b, c be relatively prime in pairs (by a similar 
change of variables). Now Legendre’s theorem (1785) states that (22), 
subject to 

(23) 
i 

a, b, c square-free, 

(a, 6) = (6, c) = (c, a) = 1, 

has a solution if and only if 

(24~) a, b, c are not a11 of the same sign, 

(24b) uri2 + b = 0 (mod c) solvable for rr, 

(24~) br22 + c = 0 (mod u) solvable for r2, 

(244 crz2 + a = 0 (mod b) solvable for r3. 

The conditions are clearly necessary for solvability of (22) indeed, 
rI = X/V (mod c), etc. (once the solution triple has been relieved of trivial 
common factors). 

The sufficiency is not easy. It is accomplished by the method of descent. 
We define the index of (22) as 

(25) 1 = max (14, PI, ICI) x min (bl, PI, ICI). 
We shah show that if the theorem is true for a11 indices Z < 1, it is true for 
an equation of index I,,. We see by inspection that the theorem is true when 
Z = 2. Listing the equations (and avoiding trivial repetitions), we find 

(26) 1 
z= 1, x2 + y2 + 22 = 0; unsolvable, 

z= 1, x2 + y2 - 22 = 0; (5 Y, 2) = (1, 0, 11, 

1= 2, x2 + y2 + 222 = 0; unsolvable, 

z = 2, x2 + y2 - 222 = 0; (x2 Y, 2) = (1, 1, 11, 

z= 2, x2 - y2 + 222 = 0; (XI Y, 21 = (1, 1,0>. 

Here the conditions (24b, c, d).are trivial, but condition (24~) does the job. 
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In the case of systetn (26) the reader cari verify that condition (40~7) picks out 
the unsolvable cases as surely as does (24~). (We recall that if z is odd, 
~9 = 1 mod 8). More generally, if we dropped conditions (23), we should 
have to replace (~OU) by 

(bob) 

solvable for p-adic integers (p = 2 incl.), 
4’ + hz + ~5” = 0 E 

i 

r < net a,, zero, 

> > 

In modern parlance, the p-adic conditions for p = 2, p odd, and p = CO 
are “local” solutions to (22) in the “neighborhood” of a prime p. The 
solution in rational integers is a “global” solution. The global solution is 
(easily) a local solution for each prime, but these solutions also lead to a 
global solution (nontrivially) by Legendre’s method of descent. 

At this juncture number theory was strongly influenced by Riemann’s 
theory of complex functions (1852) [through a famous sequel of Dedekind 
and Weber (1 SSO)]. According to Riemann’s approach, a complex function 
is completely determined by knowing the power series around the singu- 
larities. For instance, consider the equation in which the unknown x is a 
polynomial (not an integer), 

(41) x2 = (t - a$Q(t - a2>lnz . * . (t - aJQ, (m, 2 0). 

Here the a, are (different) real or complex numbers and m, are integers. 
We ask if a polynomial 2 = 4(t) exists to satisfy (41). The answer is 
trivial, since (41) is solvable if and only if a11 m, are even integers. The 
“evenness of m,” cari be interpreted as saying that in the neighborhood of 
any a, a Taylor series exists for x such that 

(42~) x = fio + &(t - ai) + lz(t - aJ2 + * . . . 

If m, is odd, we should have, on the contrary, 

(42b) x = (t - ai)‘A[/?O + &(t - xi) + /12(t - ai)” + * * .]. 

The t = a, are similar to thep which divide abc (andp = 2) of (22). In the 
neighborhood of the other values of t it is easy to show that a power series 
always exists as for the odd p f abc. 

The “p = CO” case is taken tare of by the “order of magnitude”: 

(42~) x - p’+q+ “.7n1.)/2 astjoo. 

Thus we say x has a Taylor series at t = CO when Xrni is even. It is now 
clear that if we know about t = CO we cari afford to be “ignorant” about, 
say, t = a1 (in the knowledge that m, is even if the same is true about each 
mi (i > l), and Cm,). This is like ignoringp = 2 when we know aboutp = 
CO and odd primes. 



240 CONCLUDING SURVEY 

A more elegant procedure emerged in the work of Hensel (1884) on 
p-adic integers. A p-adic integer is defined for a given prime p as the 
infinite forma1 power series with integral coefficients: 

(35) E=2,+ps,+p22,+...+pnZ,+... 

The series may terminate, representing an ordinary integer, or it may be 
infinite. For example, in Chapter 1, $8, we saw how to construct a series 
which formally satisfies (for odd p) 

(36) X2 E A (modp”) if (A/p) = 1 

by taking the terms of (35) up top%,. The whole series would be a p-adic 
representation of z/A. 

By the Chinese remainder theorem, condition (24b), for instance, states 
that for a11 odd p that divide c 

(37) ar2 + b E 0 (modp) is solvable. 

(Here p = 2 is trivial.) Now an equivalent form of (37) is 

(38) aE2 + b = 0, solvable for E a p-adic integer. 

Finally it is fully equivalent to Write (when p 1 c) 

(39) a12 + bq2 + ~5” = 0 
solvable for E, r, 5 
p-adic integers not a11 0. 

Here condition (39) has the advantage that a, b, c need not be square-free 
or relatively prime in pairs (for the elimination of square-divisors and 
common factors would leave a y-adic solution alone). Furthermore, a 
solution in p-adic integers is completely transferable by transformations 
(31) (using elementary manipulation of power series). The only “catch” is 
that the primesp that divide abc in (22) are not necessarily those that divide 
abq in (32). Thus we must have one additional minor proof to show that 
(22) is readily solvable in p-adic integers when p +’ abc, in other words, for 
a11 p. 

Now Legendre’s theorem states: 

The equation (22) is solvable in rational integers x, y, 5 if it is solvable in 
p-adic integers for a11 oddp and at the same time for real x, y, z. 

We note that the sign condition (24) cari be interpreted as the existence of 
a p-adic solution for p = w. 

We also note that there is an absence of concern for p = 2. Actually, 
this is an alternate (traditional) form of Legendre’s theorem, under 
conditions (23), in which the sign condition (24) is replaced by 

(4Oa) ax2 + by2 + c.z2 = 0 (mod 8) 
solvable for x, y, z, 
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At any rate, the “local” solutions (42a), (42~) determine a so-called 
“global” solution: x = (t - cQ@ . * * (t - Qmd2, which in effect looks 
very different ! The reader should ponder the analogy carefully. 

Returning to number theory, the connection involvingp = 2,p odd, and 
p = cc happens to be very much like the Hilbert condition 

(43) 

The connection with the genus theory and quadratic reciprocity, however, 
is too involved to pursue at this juncture. 

There are other equations like (22) for which local solvability determine 
global solvabihty, but, unfortunately, they are both few in number and also 
esthetically unattractive. Generally, one might well wonder if ideal theory 
creates a sufficiently large number of primes to give “enough” local 
solvability conditions for global solvability. 

Just as the properties of the solution to a diophantine equation cari be 
discussed locally, SO cari the properties (a) and (b) of the class field be 
discussed locally by working “modulo p" with p-adic series. The harder 
part consists in showing when the local properties cari be “built into” a 
global solution or class field, as the case may be. This new development 
involved the complete rewriting of the foundations of algebraic number 
theory mostly by Artin, Chevalley, and Hasse. 

‘T’hus the axiomatic formulation of number theory is still fluid after some 
2500 years. 
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appendix 

Table 1 Minimum prime 
divisors of numbers not divisible 
by 2,3, or 5 from 1 to 18,000 

The material in this table has been extracted from Table de diviseurs 
pour tous les nombres des le, 2e, et 3e million, ouplus exactement, depuis la 
3,036,000, avec les nombres premiers qui s’y trouvent, by J. C. Burckhardt, 
Paris, 1817. 

The reader might accustom himself to usage of the table by these 
observations: in Table I-A the extreme lower right-hand entry (*) states 
that 19 is the minimum prime divisor of 8797; and in Table I-B the extreme 
Upper left-hand entry (7) states that 9001 is prime. 
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TABLE 1 (continued) 

B: 9001-17999 

99 ! 0: ! 05 / 08 I 111 ‘III 14 17 20 23 I 26 III 29 32 35 38 41 44 47 

23 31 59 
13 - - 
59 7103 
- 19 11 

7 41 19 

11 13 7 
- 23 29 
a3 - 71 

- 7G s7 

11 - 79 
29109 - 
19 61 7 
17 II - 
- 7- 

1 1 1 -1 ..I l.i ._I t l I -1 i i I-i I __i -7 -i -.i 

29 - - II 43 7 73 - 23 - 13 - 7 19 11 - - - 31 7 -- - 61 13 41 
7 83 - 17 19 71 11 7 13 - 47 - 31 - 7 37 - 11 - - 17 7 - 19 73 

31 11 23 67 7 19 - 53 - - 43 7 11 - 37 17 - 13 7 - - - - Il 19 
61 41 - 7 - - -- 67 - - 7 13 - 31 97107 17 7 - 23 79 11 29 59 7 
- - 11 97 41 7 - 19 - 13 107 - 7 11 - - 29 23 43 7 - - 13 - 11 
11 - - 13 7 - 17 - - 41 - 7 - 41 - - 13 - 7 - 31 89 Il 17 43 



TABLE 1 

A: l-8999 



= 

01 
03 

" 
13 - 

19 

;: 
31 
33 - 

$9 
43 

;: 
57 - 

83 

8 
73 
79 - 

81 

FI: 

:7 
99 

TABLE 1 (continued) 
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c: l-8999 



TABLE 1 (contimed) 

= 

03 
09 
II 

:: - 

23 

i9 
33 
39 - 

4: 

53 
57 - 

59 

5: 

:: - 

S”i 

87 
93 
99 



TABLE 1 (continued) 

E: 1-8999 

/jO2\ 05108jllI 68 1 711 74 1 77 1 80 83 1 SS] 89 
Il I 1 I I I IIIIIIIIIIIIIIIII I l I I I l l I 

l---,3-- 7 - - 
- 17 - - 71 19 7 23 11 - 
11 7 - 47 31 23 - 17 7 13 

7 53 29 13 41 61 - 7 17 11 
- - - 17 7 31 - - 19 - 

----__----_ 

i1 13 
- 11 

417 

53 19 7 
- 7- 
- - 79 

13 53 37 
---- 

7 23 43 37 11 13 - 7 - - - - - - 7 11 - 17 13 - 71 
- 13 37 - 7 - 43 - 19 29 11 7 17 - 13 61 - - 7 - 23 11 - 79 
- 17 11 2C - - 7 - 43 - 47 73 13 7 - - - - 17 59 
19 - - 7 53 - - - lk - 7 - 43 17 2 47 - 7 - 11 29 13 89 - 
- - 7 - 41 - 11 - 23 7 - 19 - - 17 13 7 11 43 71 -’ 31 53 7 

___---_-__-- -------_ -- __-- ‘_-- 

29 7 II - 13 - 19 17 7 - 23 41 - II 71 7 - 13 7 31 
-23-- 717- .- 11 - 47 7- - 19-- ‘i 

37 7 - 11’ 19 - 
7 11 61 13 17 - 23 

17 7-1113-53- 7-----Il 7- 13 - 23 83 7 41 - 
- - 61 7 31 53 - - 13 - 7 ;; - - -, - 

11 - - - - - 7 - - 67 13 11 - 7 - 79 - 7 61 :: 1; 
__-------------------.--- __---_ 

2: - 7 - 13 - - 19 - - 7 41 - 29 - 17 7 1 11 - - 13 - 7 - 17 23 - - 7 - 11 61 - 23 31 - 7 
69 - - 11 7 13 29 - 23 17 - 7 43 53 11 41 19 37 7 - 
71 - - 13 - - 7 19 - - - - - 7 43 17 13 11 41 53 
77 - - - 11 7 - 31 - - 13 29 7 - - 11 17 - 19 7 

1t 
-. 

81 - 7 
83 - 11 
87 7- 
89 17 19 
93 - - 
99 13- 

- - - 
7 
:9 

-_ 
- 
- 
- 
- 
- 
- 

-< 
13 
- 
- 

ÏÏ 
7 

-. 
- - 
- 
-7 - 

-. 
- 
7 - - 
- 

-. 
7 

- 
- 

-. 
17 

17 

i: 

- 
- 
17 
37 

59 

--. 
- 37 
11 47 
13 53 
- 59 
17 7 

7 13 

- 
- 
7 
67 

z 

-. 
7 

- 
- 
- 
- 
- 

- 
13 
7 
11 
- 

-. 
7 
17 - - 

-- 
13 

ÏÏ 
- 

41 

-. 
31 

53 
13 

7 

-- 
El 
1: 
19 
- 

43 
11 
- l 

71 
23 I 



Table II Power residues for 

prirnes less than 100 

The following table has been taken from Canon Arithmeticus, by C. G. J. 
Jacobi, 1839 (reprinted Berlin 1956). Here the base g is the least primitive 
root modula p and g’ E N (mod p). The reader might check his reading 
of the tables by noting that for p = 37 the entry marked (*) means 
232 z 7 (mod. 37), whereas the entry marked (t) means 23 - 8 (mod 37). 
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TABLE II. POWER RESIDUES 

TABLE II (continued) 

p= 23, g=5 

257 

p= 29, g= 2 

N 1 
0123~56789 0=23456789 

0 = 4 a 16 3 6 1s 24 19 o =a I 5 = == 6 12 3 10 
1 9 03 7 I) =a 17 15 as 13 a6 1 =3 15 7 la =3 =7 4 11 II g 
2 =3 ‘7 5 10 ao II aa 15 I 2 14 ‘7 a6 m a 16 19 15 r4 

p= 31, g=3 
N II 1 I 

01~3~56~8~ o~= 3456789 
0 3 g 17 zg 26 16 17 ao zg o 30 =4 I Ia =O 15 =a l= = 
= =5 =3 a 24 ~0 30 =a == 4 12 I x4 13 xg 11 aa ar 6 7 26 4 
a 5 15 14 II a 6 19 23 7 21 2 a =9 17 17 13 10 5 3 16 9 
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TABLE II 

APPENDIX 

P=5,g=2 
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TABLE II (continued) 

p=61,g=2, p- 1=2*.3.5 

T- 
11 
27 
15 
49 
34 

46 

- 
I 

60 
‘5 
55 
59 
54 

53 

- 

- 
7 

49 

t8 

39 
20 

32 

- 

7 
;6 
36 
20 
45 
25 

p=67,g=2, p- 1~2.3.11 

N Ii 1 
- 

3 - 
39 
19 
28 

32 
9 

- 
4 

2 

24 

s; 
61 

57 52 
35 6 
- - 

- 
7 - 

s: 
51 
22 
50 

49 

- 

5 6 

15 40 
54 4 
30 20 I 38 14 
27 29 

8 26 

34 33 

0 I  2 I  4 - 
* 4 8 16 T-l-T-r 19 38 9 18 36 

26 52 37 7 ‘4 
25 50 33 66 65 

p=71, g=7, p- 1=2.5*7 

1I 1 

i 

- 
9 

z 
56 
35 
‘3 
17 

55 
61 

2 3 

t 

4 5 

6 26 

t 

Iz 2a 
38 39 7 54 
37 15 44 56 

p = 73, g = 5 

56 
60 
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TABLE II (continued) 

5 6 7 8 9 

25 28 35 39 2 

-titt 

26 24 38 29 rg 
8 ‘7 3 5 41 

18 14 7 4 33 
4 122 1 6 121 1 1 

I , , 1 

P =!i3,g=2 

L- 
18 

4 

js 

40 

- 
5 - 

47 
II 

42 
9 

19 

- - - 

p=59, g=z, p-1=2*29 

1 

2 

4= 

56 
55 

34 

6 
- 

2 

4 

25 

53 
5’ 

9 

12 
- 

- 
3 

8 
50 
47 
43 
18 

=4 - 

N 
- 

4 

16 
4’ 
35 

;s 

48 - 

Y-m-TF 
- 

4 

2 

19 
53 
41 
27 
35 - 

5 

7 
56 
I2 
24 
48 

31 

6 
5; 

4 
46 
44 
16 

21 
- 

7 

18 
40 
34 
55 
23 

30 

8 
3 
43 
20 
39 
54 

29 - 

9 

42 
38 
28 

37 
36 

- 

32 5 10 20 

23 46 33 ? 
II 22 44 29 

54 49 39 19 
‘3 26 52 45 

37 15 30 1 

40 

1: 
38 

l 3’ 



~ Table III Class structures of 
quadratic fields of JFz for m less 
than 100 

This two-part table has been taken from Introduction à la théorie des 
nombres algébriques, by J. Sommer, Paris, 1911. In the following tables 
d stands for the discriminant and the basis is [l, 01. (Here w’ denotes the 
conjugate.) The factors of the discriminant are listed in the order of the 
corresponding character symbols; except that when a real field has 
discriminant divisible by a prime q z -1 (mod 4) such a prime is listed 
first in d but omitted in the list of character symbols (see Chapter XIII, 
93). 
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TABLE II (continued) 

p=79. g=3 

N 1 

0'=3456789 0'23456789 

0 3 9 '7 = 6 18 54 4 12 0 78 4 1 8 62 5 53 12 = 
I 36 '9 8 '4 7' 58 16 48 05 37 I 66 68 9 34 57 6: '6 'I 6 
= 32 17 51 74 64 

32 
34 '3 69 49 68 = 70 54 72 26 13 46 38 3 61 II 

3 46 59 19 57 '3 39 38 35 =6 78 3 67 56 =o 69 
76 

25 37 '0 19 36 35 
4 70 52 77 73 61 25 75 67 43 4 74 75 58 49 76 64 30 59 17 '8 

; 5; 1; 55 7 21 63 31 10 14 4= 11 47 6 5 50 == 4= 77 7 52 65 33 '5 31 
5 15 45 56 30 33 71 45 60 55 24 18 

60 66 
73 48 =Q =7 

7 20 22 40 4' 44 53 I 7 41 51 '4 44 13 47 40 43 39 

p=83, g=2 

N If 1 
6 - 
64 
49 
44 

:; 

p=89, g=3 

8 
- 

6: 
IO 

48 
76 

1 - 
0 
62 
47 

:; 
16 

- 
1 

3 
37 
41 
31 
56 
38 
83 
15 
7 

67 

- 
7 

5; 
6 

8: 
61 
23 
76 

:: 

Ë- 
6; 
:a 

2 
a 

fJ9 
50 
53 

1 
- 

=4 0 aa 
54 I 86 84 
43 2 14 a2 
26 3 87 31 m-r =4 4 30 2' 
=Q 568 7 
61 6 15 69 
70 7 79 6= 

846 4 

p=97. g=5 



TABLE III, Part 1 (continue@ 

II 
- 
II Ideal Structure Genus Structure 

0 

Ideal $ Glass 

(1) 
(3, 1 - d-17) 

(2, 1 + d-17) 

(3, 1 + d-17) 

J4 
J3 
JZ 
J 

0) 1 

(1) 
(5, 3 + d-21) 

(3, d-21) 

(2, 1 + d-21) 

AZA, 

AAI 
A, 
A 

(1) 
(2, d-22) 

A2 
A 

(1) 
CL4 
(2, w> 

33 
JZ 
J 

(1) Jb 
(5,2 - d-26) J5 
:3, 1 -t d-26) J” 

(2, d-26) 53 
:3, 1 - d-26) 52 
:5,2 + d-26) J 

:3,1-j-29) 

:5, 1 - d-29) 
:2, 1 + d-29) 

3, 1 + d-29) 

3, 1 + d-29) 

Je 
JS 
J4 
53 
J2 
J 

(1) 
(2, d-30) 

(3, d -30) -. 
(5, d-30) 

A2A12 

A4 
A, 
A 

Glass 

J4 
J2 1 
J3 
J 1 

d 

-22. 17 

-19 

-22 .3 ’ 7 

-25.11 

Character 

+ + 

- - 

+ 

+++ 

+-- 

-+- 
-- + 

+ + 
- - 

+ 

-17 d-17 

-19 

-21 

- 
l-l-4-1 

I 
2 

A= 
A 

4-21 

-22 d-22 

-23 -23 
.+d-2: 

2 

-26 d-26 -25. 13 

+ + 

- - 

-29 d-29 -2e. 29 

+ + 

- - 

-30 d-30 -25.3.5 t++ 
t-- 
-+- 
- - + 
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TABLE III 

Part 1. Imaginary Fields 

Genus Structure 

Class Character 

I + 

I + 

I t 

A2 + + 
A - - 

AZ + + 
A - - 

I t 

A2 + + 
A - - 

I + 

A2 + + 
A - - 

54 

5% 1 
+ + 

J3 

1 
- - 

J 

AZ + + 
A - - 

Ideal Structure 
d 

-22 

-23 

-3 

-22.5 

_- 1 _- _- _- _- _- _- _- .- -- 
_- 

Ideal $ Glass 

I 

I 

I 

AZ 

A 

A2 

A 

I 

A2 

A 

I 

A2 

A 

54 

J3 

J2 

J 

A2 

A 

-1* (1)E 

U)E 

(1W 

-5 d-5 (1) 
(2, 1 + d-5> 

-6 

-7 

-23.3 (1) 
(2, d-6) 

1+d=7 
-7 (1)E 

2 

-10 d-10 (1) 
(2, d-10) 

OlE 

-25.5 

-11 

-21. 13 

-23.7 

-3 5 

1 + d-11 
-11 

2 

-13 d-13 (1) 
(2,l + d-13) 

-14 d-14 (1) - 
(3, 1 - d-14) 

(2, d-14) 

(3,l + d-14) 

(1) 
(2, 1 + w) 

* This field contains the units f d-1 in addition to f 1. 
t This field contains the units +oJ,, +o’ in addition to f 1. 
t The Euclidean fields are designated by E; there is no other quadratic field 

beyond this table. 
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TABLE III, Part 1 (contimed) 

Ïï- Ideal Structure Genus Structure 

Glass Character 
d w - 

- 

-. 

-. 

l 

1 
-- 

-- 

-- 

-- 

-- 

- 

Ideal $ Glass 

AZA,= 

A4 

4 
A 

A2A12 +++ 
AA, + -- 

A, -+- 
A -- + 

z Z 

J’ 

P 

52 

J 

J” 

J2 1 
J3 

J 1 

56 

J’ 

JB 

J’ 

J 

AZ A2 

A A 

Je 

JS 

J4 

J3 

J2 

J 

J4 

J3 

JZ 

J 

A2A,% 

AA, 

A, 
A 

-42 d-42 -25.3 .7 (1) 
(7, d-42) 

(3, d-42) 

(2, Lii) 
- 

- 

-. 

-- 

- - 

_ - 

-- 

- 

-43 -43 (1) 
1+4-43 

2 
+ 

-46 d-46 -23 .23 (1) 
(5, 2 - d-46) 

(2, d-46) 

(5,2 + LZÏ) 

+ + 

- - 

-47 

-51 

(1) 
(2, 1 + 4 

(3,w’) 

(3, w) 

C%l + QJ) 

1 + d-47 

2 

14-d-51 

-47 

-3.17 

-t- 

+ + 
- - 

(1) 
(391 + w) 

2 

-53 

-55 

-57 

d-53 -22. 53 (1) 
:3, 1 - d-53) 

9,1 - d-53) 

2, 1 + d-53) 

9, 1 + d-53) 

3, 1 + d-53) 

+ + 

- - 

-5.11 (1) 
CT4 

(%7. + w) 
(2, WI 

1+d-ss 
2 

d-57 

+ + 

- - 

t+t 
t-- 
-+- 
- - + 

-22.3 19 (1) 
2,1 + d-57) 

(3, d-57) 

6,3+4-57) 
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TABLE III, Part 1 (continued) 

-Tr Ideal Structure lr Genus Structure 
d 0 

Glass 

JI 

J: 

? 

J4 

53 

J1 

J 

A2 

A 

A= 

A 

J6 

J5 

54 

J3 

JZ 

J 

J4 

J3 

JZ 

J 

38 

J’ 

J6 

J5 

J’ 

53 

J2 

J 

Glass 

A2A,2 

A4 

A, 
A 

- 

-. 

-_ 

-. 

-- 

-- 

__ 

-- 

_- 

- 

Ideal $ Character 

+ 

-31 (1) 
(2, 1 + w’) 
(2, 1 $ w) 

1+d-3 
2 

-33 d-33 -2*.3.11 (1) 
(2, 1 + d-33) 

(3, d-33) 

(6, 3 + d-33) 

+++ 
+-- 
-+- 
- - + 

-34 -23. 17 (1) 
(5, 1 - d-34) 

(2, d-34) 

(5,1 + d-34) 

d-34 
+ + 

- - 

(1) 
(532 + w) 

0) 
(2,l + d-37) 

(1) 
(3, 1 - d-38) 

(7,2 + d-38) 

(2, d-38) 

(7, 2 - d-38) 

(3, 1 + d-38) 

(1) 

(294 
(3, 1 + w) 

(2> w) 

(0 
(3, 1 - d-41) 

(5,2 - d-41) 

(7, 1 - d-41) 

(2, 1 + d-41) 

(7, 1 + d-41) 

!5,2 + d-41) 

(3, 1 + d-41) 

-5.7 

-2a. 37 

-25. 19 

-3.13 

-22 41 

+ + 
- - 

+ + 
- - 

+ + 

- - 

+ + 

- - 

+ + 

- - 

-37 

-38 

-39 

-41 
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TABLE III, Part 1 (continu@ - 
II Il Ideal Structure Genus Structure 

Class 

I 

J’ 
JS 
J2 
J 

AJ3 
AJ2 
AJ 
A 

AzA,= 

AAI 
Al 
A 

J’ 
J@ 
J5 
J4 
J3 
J2 
J 

J4 
J3 
J= 
J 

J5 
J4 
53 
JZ 
J 

AJ4 
AJ3 
AJ2 
AJ 
A 

d 

-67 

Class 

I 

J4 
J2 1 

AJ3 
AJ 1 

J3 
J 1 

AJ2 
A 

Character Ideall 

(1) 

(1) 
(7, 1 - d-69) 

(6, 3 + d-69) 

(7, 1 + d-69) 

(5, 1 + d-69) 

(3,2/-69) 

(5, 1 - d-69) 

(2, 1 + d-69) 

(1) 
(7, d-70) 

(5, d-70) 

(2, d-70) 

(1) 

(2,w’) 
(5, 1 + w’) 

(3,2 + 0) 

(3,2 + w’) 

(5, 1 + 0) 

c?w) 

(1) 
7,2 - d-73) 

(2, 1 + d-73) 

(7,2 + d-73) 

(1) 
11,5 - d-74) 

(3, 1 - d-74) 

(3, 1 + d-74) 
:11,5 + LZI) 

(5, 1 - d-74) 

(6,2 + d-74) 
(6, 2 - d-74) 

(5,1 + d-74) 

(2, d-74) 
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-67 + 

-69 
- 

-22 3 .23 

-25.5.7 

-71 

-2=. 13 

-23. 37 

- 

+++ 

+-- 

-+- 

-- + 

+++ 
+-- 
-+- 
- - + 

A2Al2 

AA, 
-4, 
A 

J’ 
Je 
J5 
J4 - 
JS 
J2 
J 

J’ 
J2 1 
JS 

1 J 

J5 ’ 
J4 
J3 , 
12 
J 

AJ4 
AJ3 
AJ2 ) 
AJ 
A J 

+ 

+ + 

- - 

+ + 

- - 



TABLE III, Part 1 (continued) 

-58 

-59 

-61 4-61 -2=. 61 

-62 d-62 -25 * 31 

-65 d-65 

-66 

0 

d-SS 

1+ d-59 

2 

d-66 

d 

-23. 29 

-59 

II Ideal Structure 

-22.5.13 

-23.3.11 

Ideal$ Glass 

(1) 
(2, d -58) 

(!) 

(3,4 

(3, QJ) 

A2 

A 

J= 

32 

J 

(1) J3 

(5,2 - d-61) JZ 

(5, 2 + d-61) J 

(7, 3 - d-61) AJ2 

(7, 3 + d-61) AJ 

(2, 1 + d-61) A 

(1) 
(3, 1 - d-62) 

(7, 1 + d-62) 

(11,2 + d-62) 

(2, d -62) 

(11,2 - d-62) 

(7, 1 - d-62) 

(3, 1 + 4-62) 

J8 

J’ 

J6 

J5 

J4 

J3 

J2 

J 

(1) - 
(3, 1 - d-65) 

(9, 5 - d-65) 
- 

(3, 1 + d-65) 

(11, 1 - d-65) 

(2, 1 + d-65) 

(11, 1 + d-65) 

(5, d-65) 

54 

J3 

J2 

J 

AJS 

AJ2 

AJ’ 

A 

(1) 
(5, 2 - d-66) 

(3, d-66) 

(5,2 + d-66) 

(7,2 + d-66) 

(11, d-66) 

(7,2 - d-66) 

(2, d-66) 

J” 

J3 

52 

J 

AJ3 

AJZ 

AJ 

A 

266 

Genus Structure 

Glass 

A2 

A 

JS \ 

52 

J i 

JS 

52 

J 1 
AJ2 

AJ 

A 1 

J8’ 

Je 
i 

J4 ’ 

J2 

J’ 1 

J5 

J3 t 

J J 

J’ 

52 1 
AJ= 

A J 
AJ3 

AJ 1 
J3 

J 1 

54 

52 1 
AJ2 

A 1 
AJ3 

AJ 1 
J3 

J 1 

- 

_ 

_. 

_. 

_ 

__ 

_ 

- 

Zharacter 

+ + 
- - 

+ 

+ + 

- - 

+ + 

- - 

t++ 

t-- 

-+- 

- - + 

t++ 

t-- 

-+- 

--+ 



TABLE III, Part 1 (continued) 

-87 

-89 

-93 

-94 

w 

2 

d-SS 

- 
+ d-91 

2 

d-93 

d-94 

d 

-3.29 

-22. 89 

-7 13 

-22.3 .31 

-23.47 

Ideal Structure 

IdealS Glass 

(1) J6 

(2, w’) JS 

(7,2 + w) 54 

(3, 1 + w) J3 

(7, 2 + 4 J2 

(2, w) J 

(1) J’2 
(3, 1 - d-89) J” 
(17, 8 - d-s9) J’O 
(7,4 - V%i$ J9 

(5, 1 - d-89) Je 

(6, 1 + d-89) J’ 

(2, 1 + d-89) J6 

(6, 1 - d-89) J5 

(5, 1 + d-89) J4 

(7,4 + d-89) J3 

(17, 8 + d-89) 

(3, 1 + LF9) J 

(1) A2 

(793 + 0) A 

(1) AzAIZ 

(6,3 + d-93) AAI 

(3, d -93) A, 

(2, 1 + d-93) A 

(1) J8 

(5, 1 - d-94) J’ 

(7,2 - V=!ii) J6 

:11,4 + d-94) J5 

(2, d-94) J4 

:Il, 4 - d-94) J3 

(7,2 + d-94) J2 

(5, 1 + d-94) J 

269 

Genus Structure 

Glass Character 

J6 

J4 + + 
JZ 1 
J5 
J3 -- 

J 1 

J’2 

J’O 

Je 1 
t 

+ + 
JE 

J’ 

J2 

J” 

JO 

J’ 
J5> -- 

JS 

J , 

A* + + 
A -- 

A2A12 +++ 

AAI +-- 

A, -+- 

A - - + 

J8 

J6 

J4 
. ++ 

J2 

J’ 

J’, -- 
J3 

J 



TABLE III, Part 1 (continued) 

-77 

-78 

-79 

-82 

-83 

-85 

-86 

d 

-22.7.11 

-Tr Ideal Structure 

-23 3 . 13 

-79 

-23 41 

-83 

-22. 5 Ii 

-23.43 

IdealS 

(1) - 
(3, 1 - d-77) 

- 
(14,7 + d-77) 

(3, 1 + d-77) 

(6, 1 - d-77) 

(7, d-77) 

(6, 1 + q-77) 

(2, 1 + 4-77) 

(1) 

(2, d-78) 

(13, d-78) 

(3, d -78) 

(1) 

(2, 1 + 0’) 

(5,w’) 

(5, a) 

(2, 1 + w) 

(1) 
(7, 3 - CE) 

(2, d-82) 

(7, 3 + d-82) 

(1) 

(3,o’) 

(3,a) 

(1) 

(5, d-85) 

(10, 5 + d-SS) 

(2, 1 + d-SS) 

(1) 

(3, 1 - d-86) 

(9, 2 + d-86) 

(5, 2 + d-86) 

:17,4 - d-86) 

(2, d-86) 

:17, 4 + d-86) 

(5,2 - d-86) 

(9,2 - d-86) 

(3, 1 + d-86) 

268 

Glass 

J” 

J3 

52 

J 

AJ3 

AJ2 

AJ 

A 

A2A,’ 

AAI 

A, 
A 

JJ 

J4 

53 

J2 

J 

J’ 

J3 

52 

J 

53 

JZ 

J 

AaA,2 

AA, 

A, 
A 

J’O 

J9 

J8 

J’ 

Je 

J5 

J’ 

53 

J2 

J 

-Lr Genus Structure 

Glass 

54 

J2 1 
AJ3 

AJ 1 
AJ2 

A 1 
J3 

J 1 

A2A12 

AAI 

Al 
A -. 

J5 

J’ 

53 

J2 

J : 

J’ 

J2 1 
JS 

J 1 

J3 

52 

J i 

A2A12 

AAI 

Al 
A 

-yi 

Je 

J6 

JP 

JP 

JO 

J’ 

J’ 

J3 

J 
- 

1 

* 

i - 

Character 

+++ 

+-- 

-+- 

-- + 

+++ 
+-- 
-+- 
-- + 

+ 

+ + 

- - 

+ 

+++ 
-t-- 
-+- 
--+ 

+ + 

- - 



TABLE III 

Part 2. Real Fields* 

Ideal Structure 

- 
2 

- 
3 

- 

5 

- 

6 
- 

7 
- 
10 

- 
11 
- 

13 

Genus 
Structure 

d 71 - 

Idealt Glas! 3lass Char- 
acier 

-- - -- 
23 1 + 42 (1) E Z z + 

-- - -- 

3 .22 2 + 45 (1) E Z z + 
-- - -- 

5 w (1) E Z z + 

-- -- 
3 23 5 + 246 (1) E Z z + 

-- - -- 
1 22 8 + 3dï 0) E Z z + 

-- - -- 
23 5 3+%G (1) A2 AZ ++ 

(2, v%) A A -- 
- -- 

II.22 10 + 3dïï (1) E Z z + 
-- - -- 

1 13 1+w (1) E Z z + 

-- ~ -~ 

7 . 23 15 + 4Gl (1) Z z + 
-- ~ -- 

3.22’5 4+G (1) AI AZ ++ 

(2, 1 + dF5) A A -- 
-- - -- 

1 
17 3 + 20 (1) E Z z + 

-- - -- 

19.22 170 + 39G (1) E Z z + 
-- - -- 

1 
3.1 2+w (1) E Z z + 

-- - -- 

II.25 197 + 424% (1) Z z + 
-- - -- 

23 . 22 24 + 5d% (1) Z z + 
-- - -- 

23‘ 13 5+& (1) AZ A2 ++ 

(2, 6) A A -- 
- 

* The fundamental units are designated by 7. 
t The Euclidean fields are designated by E; there is no other quadratic field 

beyond this table. 
271 

- 
14 
- 
15 

- 

17 

- 
19 
- 

21 

- 

22 
- 

23 
- 
26 

- 

- 

V(rl 

- 
-1 
- 

+1 
- 

-1 

- 

+1 
- 

+1 
- 
-1 

- 

+1 
- 

-1 

- 

+1 
- 
+1 

- 

-1 

- 

+1 
- 

+1 

- 

+1 
- 

+1 
- 
-1 

- 



i 

I 
w 

-95 
1+%GG 

2 

-97 d-97 

: 

TABLE III, Part 1 (continued) 

d 
il 

-5 19 

-22.97 

Ideal Structure 

Idealj 

(1) 

(2, 1 + w’) 
(4, 1 - W’) 

(3,w’) 

(592 + w> 

(3, QJ) 

(491 - w) 

V,l + 0) 

(1) 
(7, 1 - d-97) 

(2, 1 + d-97) 

(7, 1 + d-97) 

Glass 

58 

JT 

J” 

J5 

J4 

Ja 

JZ 

J 

54 

J3 

J2 

J 

Genus Structure 

Class 

J8 

JE 
14 1 ,J 

J2 

5’ 

1 

J5 

J3 

J 

JP 

J2 1 
JS 

) J 

Character 

+ + 

- - 

+ + 

- - 

270 



TABLE III, Part 2 (continued) 

r ‘NC 
- + 
- 
+ - - 
- +. - -_ - 
+1 
- 

-1 

- 

+1 

- 

+1 
- 

+1 

- 

+1 

- 

t1 
- 

-1 

- 

-1 

- 

- 
5’ 

- 

57 

58 

- 

59 
- 

61 

- 

62 
- 

65 

- 

66 

- 

67 
- 

69 

- 

70 

- 

71 
- 

73 

- 

74 

- 

Ideal Structure 
Genus 

Structure 
- 
Cla 

- 

AZ 
A 

- 

I 

- 
Aa 
A 

- 

1 
- 

1 

- 

I 
- 

AP 
A 
- 
Aa 
A 
- 
I 
- 

Z 

- 

A2 
A 
- 

I 
- 

Z 

- 

A2 
A 
- 

d 

11 .22.. 

3 19 

28 .29 

59 .22 

61 

31 .25 

5.13 

3.23.11 

67 22 

3 .23 

7.25.5 

71 .22 

73 

25 .37 

rl 

89 + 124% 

131 + 4ow 

99 + 13&i 

530 + 69V?? 

17 + 50 

63 + 8%‘62 

7 + 2w 

65 + 8d66 

8842 + 5967467 

11+3w 

251 + 3o%?ïI 

3480 +413d71 

943 + 2500 

43 + sd74 

Lias 

A2 
A 

s 
-_ 

-_ 

-- 

-- 

_- 

-- 

.- 

.- 

.- 

- 

- 

Char- 
acter 

++ 
-- 

I 

Aa 
A 

Z 
- 

I 

- 

I 
- 

AZ 
A 

Aa 
A 

I 

I 

AZ 

A 

1 

1 

- 

42 

+ 

++ 
-- 

+ 

+ 

+ 

t+ 
-- 

t+ 
-- 

+ 

+ 

t+ 
-- 

+ 

+ 

t+ 
l- 

4 II- 

Ideal t SS t 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

L 

-. 

) 
-- 

-. 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

_- 

- 

-- 

5 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

_- 

4 
_- 

_- 

_- 

_- 

.- 

(1) E 

(1) 
(2,hi) 

(1) 

(1) 

(1) 

(1) 
(592 + 0) 

(1) 
(3, %G) 

(1) 

(1) 

(1) 
(2, dîi) 

(1) 

(1) E 

(1) 
(2, dïi) 
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TABLE III, Part 2 (continued) 

- 

29 

- 
30 

- 

31 
- 

33 

- 
34 

- 
35 

- 

31 

- 

38 
- 
39 

- 

41 

- 
42 

- 

43 
- 

46 
- 

47 
- 
51 

l -- -- -- -- - -- -- _- _- _- 
_- _- .- _- 

n rl 

29 2+w 

3.23.5 11 + 24% 

31 .22 1520 + 273dg 

3.11 19 + 80 

23 17 35 + 64; 

1 .2a .5 6+435 

31 5 + 2w 

19.23 37 + 6& 

1.22.13 25 + 4&I 

41 27 + 100 

3 .23 7 13 + 2442 

43 22 3482 + 531443 

23 23 24335 + 35884% 

47 22 48 + 7447 

3 22 17 50 + Iv5 

53 3+w 

E 
l _ _ 
_ _ 
_ _ _ . 
_ - 
_- 
_- 
_ - _- 
. - 
- 
_- _ _ 1 -_ - _ 
_ 

- 

WI: 

- 

-1 

- 

+1 

- 

+1 
- 

+1 

- 

+1 

- 
+1 

- 

-1 

- 

+1 
- 

+1 

- 

-1 

- 

+1 

- 

+1 
- 

+1 
- 

+1 
- 

+1 

- 

-1 

- 

Ideal Structure 

Idealt CIas: 

U)E z 

---A- 

(1) A= 

(2, hi) A 
-- 

(1) Z 

(IIE z 

(1) A2 

(3,l + hi) A 

(1) A2 

(2,l + h) A 

U)E z 

(1) 1 

(1) A2 

(2,1 + us) A 

U)E z 

(1) A2 

(2, 6) A 

(1) Z 

(1) Z 

(1) Z 

(1) A2 

(3, 4:) A 

(1) Z 

Genus 
Structure 
- 

:las: 5 _- 
Z 1 

- _- 
A2 

A _- 
Z 

- _- 
Z 

- -- 
A= 

A 
- -- 
A2 

A 
- _- 
Z 

Z 
- _- 
A= 

A 
- _- 
Z _- 
A2 

A 
- _- 
Z _- 
Z 

- _- 
Z 

- _- 
A= 

A 
- _- 
Z 

- 

Char- 
acter 

+ 

++ 
-- 

+ 

+ 

++ 
-- 
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