
Applied Maple for
Engineers and Scientists

Applied Maple for
Engineers and Scientists

Chris Tocci • Steve Adams

Artech House
Boston • London

Library of Congress Cataloging-in-Publication Data
Tocci, Christopher.

Applied Maple for engineers and scientists / Chris Tocci and Steve Adams.
p. cm.

Includes bibliographical references and index.
ISBN 0-89006-853-4 (alk. paper)
1. Engineering mathematics—Data processing. 2. Science—

Mathematics—Data processing. 3. Maple (Computer file) I. Adams, Stephen,
1959– . II. Title.
TA345.T63 1996
620’.00285’53—dc20 96-19492

CIP

British Library Cataloguing in Publication Data
Tocci, Chris

Appled Maple for engineers and scientists
1. Maple (Computer program) 2. Algebra—Computer programs
3. Engineering mathematics—Computer programs
I. Title II. Adams, Steve, 1959–
620’.00285’5369

ISBN 0-89006-853-4

Cover and text design by Darrell Judd

© 1996 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062
All rights reserved. Printed and bound in the United States of America. No part of this
book may be reproduced or utilized in any form or by any means, electronic or me-
chanical, including photocopying, recording, or by any information storage and re-
trieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Artech House cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

International Standard Book Number: 0-89006-853-4
Library of Congress Catalog Card Number: 96-19492

10 9 8 7 6 5 4 3 2 1

To my wife, Mercedes, my dad, Anthony, and the ‘leggy’ Woolfie

C.T.

To my long suffering wife, Fiona, and my daughter, Sophie, who will have to
leer at this stuff

S.A.

Applied Maple for Engineers andScientists

Contents

Foreword 1

Preface 1
Motive for using this book 1

Who needs to use this book 2
Purpose of the book 2
Philosophy of the book 2
Chapter structure and order 2

Chapter 1

Introduction 1

What is a CAS ? 2
Numbers 2
Symbols 3

More about Maple 5

Maple: a tutorial 5
Help 6
Maple as a calculator 9
Maple as a programmable calculator 27

Chapter 2

Active filter design and analysis 39

Case I: analog low-pass filter design
and analysis 40

Use of Laplace transform explained 41
Constituent relationships derived 41
Designing a 1-kHz Butterworth LPF 47
Bode magnitude and phase plots 49
Improvement on the 1-kHz Butterworth LPF 53

vii

Butterworth LPF component
sensitivity analysis 55

Unequal resistance values in the Butterworth
LPF topology 57

Butterworth LPF test setup 60
Design iteration of LPFs for newer filtering

requirements 64
Unit step response 68
Conclusion 70

Case II: comb filter analysis and design 71
Filter derivation and analysis 72
Separating a known signal from an interfering

neighboring background design 81
Cascading comb filters 87
Conclusion 91

Chapter 3

Curve fitting 93

Introduction 93

Case study: Gaussian peak estimator filter
example with regressive curve fitting 95

Starting the Maple regression session 96
Linear regression using a logarithmic
representation of the Gaussian model 96
Problem data set for linear regression 111
Nonlinear regression:

the Levenberg-Marquardt algorithm 115
General polynomial regression 121
High-order polynomial regression fit

problems 126
Quick moral about curve fitting 131
Conclusion 132

Chapter 4

Mathematical models: working with
differential equations 133

ODE tools: a tour 134
The dsolve function 134
The DEtools package 137
The difforms package 143

Series methods 144

Modeling dynamic systems 152
A simple shock absorber 152
A twin mass shock absorber 158
A nonlinear system 166

Chapter 5

Continuous control application
theory 173

Linear control system analysis 173

Frequency-domain approach 175
Partial fraction expansion 179

Time-domain approach 194
Time-invariant versus time-variant systems 194
Analysis of a time-invariant system:
fundamentals 195
The state transition matrix 200

Conclusion 210

Chapter 6

Discrete control applications 213

The pulse transfer function 215
Transforming continuous signals 216
Calculating the time response 234

State space equations and their canonical
forms 242

Applied Maple for Engineers and Scientists

viii

Transfer function to state space (the controllable
canonical form) 242
Observable canonical form 247

Chapter 7

Discrete data processing 249

Maple plots 249

The plot structure 250

Image conversion 252
Togreyscale 260
Normalize 263
Tofalsecolor 269
Conclusion 272

Linear filters 273
Differencing 273
Moving average 276
Moving median 282
Exponential filtering 288

Conclusion 296

Chapter 8

Switching topologies 301

Steady-state method 302
Pulse width modulator driver 302
Switching power supply 316

Fourier method 330

Appendix A 345

Appendix B 351

Glossary 357

About the authors 391

Index 393

Contents

ix

Applied Maple for Engineers and Scientists

Foreword

About 7 years ago, after some 35 years as a computational physi-
cist, I opened up my first version of the computer algebra system
(CAS), Maple IV. Maple seemed to be an answer to my need for an

error-free and fast system to derive long involved algebra and calculus solu-
tions. My delight turned to a somber realization that Maple did not replace
all the mathematical and applied mathematical skills that I had developed. I
still had to think like a computational physicist and to learn how to use
Maple as a tool to extend my capabilities to achieve solutions more quickly
and with greater accuracy. Maple is not a mathematician in a box!

My usual approach to solving, numerically, physics (and electrical en-
gineering) problems using computers involved developing a sequence of
models:

Physics → Mathematical → Numerical Analytical → Software → Computer

xi

Each of these models represents an approximation to the actual physi-
cal process. In fact, the above chain represented the setting up of the prob-
lem for a solution. The actual running of the solution on a computer was
the trivial part. When I started to use Maple IV to develop first the mathe-
matical and then the software model, I realized I would have to learn a new
language to effectively use this tool. I had to rethink the way I solved the
problem of a mathematical representation of the physics or engineering
process I was trying to solve. However, I had no guide, no handbook, no
Morse and Feshbach (Methods of Theoretical Physics), the bible for mathe-
matical physicists of my generation! So, I had to learn by trying, by experi-
menting. It was a long and difficult process, especially since Maple was
continuously being improved and its capabilities extended. After several
years, I am still not finished with this process.

However, Steve Adams and Chris Tocci have made the road much
smoother and more level with this book, Applied Maple for Engineers
and Scientists. Set around Maple V, Release 4—the latest version of this
software—they show how to solve a variety of problems using Maple as
the principal tool. Ranging from linear active filters through curve fitting
to ODEs, they show how to set up the problem using Maple. Most impor-
tantly, even if none of the applications covered in the book is germane to
the reader’s specific problems, Adams and Tocci demonstrate how an engi-
neer or scientist should to think about a problem when using Maple as a
tool.

The authors do not leave the reader hanging if they are not already
proficient in Maple—they include a tutorial on Maple V, Release 4, which
contains the principal features of this system. Of equal importance is the
discussion of the physics or engineering processes and of the important
mathematical functions used in each example. These discussions, plus the
plotting of the solutions using the Maple graphic engine, are critical ele-
ments in making this book an almost-self-contained reference and teaching
text.

Thomas N. Casselman
Casselman Computational Consultants (C3)

Dublin, CA
July 1996

Applied Maple for Engineers and Scientists

xii

Applied Maple for Engineers and Scientists

Preface

Motive for using this book

Maple is one of the most powerful mathematics computer alge-
bra systems or computer algebra system (CAS) packages on the
market today. Considering today’s economic realities, it makes

perfect sense that an initial indepth computer analysis of a quantitative
problem could save many person-hours and material resource costs, hence
making you and your organization more competitive. Applied Maple for
Engineers and Scientists will get readers thinking about their specific prob-
lems by using what the authors call “template” application case studies.

xiii

Who needs to use this book
The more timely and accurate a professional needs to be about his or
her decisions, the more proficient that professional needs to be with a Ma-
ple-type software package. Maple affords modern professionals the ability
to visualize the dynamics via Maple’s graphics. For students, Maple pro-
vides valuable insight into the underlying dynamics, which, in turn, im-
parts an important understanding of the process under study not evident
before the advent of CAS tools. In previous years, both students and pro-
fessionals had to wait hours for batch loading and, later, dumb terminal-
type centralized computers to perform what Maple can do very quickly
today on the omnipresent PC, PowerPC, or UNIX workstation platforms.

Purpose of the book
Applied Maple for Engineers and Scientists was written with the purpose
of creating template applications for student and practicing technical/ busi-
ness professionals. Templating serves the reader and authors by showing
different examples on how the Maple symbolic and numerical mathematics
system can be generally used in solving a very wide range of everyday quan-
titative problems. Even though the reader may never need a single one of
the specific examples discussed, the concepts, syntax, and approaches
shown to problem solving with Maple can be extremely helpful in getting
the user up and running quickly in his or her particular problem area.

Philosophy of the book
The text is geared toward technical professionals and students who have
an understanding of the technical principles of their respective fields, but
are not cognizant of how a CAS software package such as Maple can be
used to facilitate timely and understandable solutions. In no way do the
authors pretend that this is a text on any of the engineering, scientific, or
quantitative business disciplines described during any template session.
There are references given, as needed, in the individual chapters if the
reader is interested in more advanced aspects of the particular application.

Chapter structure and order
The chapters have no particular order and this was done by choice. Each
chapter is fairly “stand alone” in its content and offers the reader a rein-
forcement of software approaches that should become apparent as one wan-
ders among the different applications. This reinforcement is both within
each application and throughout all of them in the form of reiteration of
command lines and trying to stay to the more common syntax approaches

Applied Maple for Engineers and Scientists

xiv

(though at times not the most elegant) used by the Maple engine. Efforts to
minimize “exotic” or “highly efficient” hard-to-comprehend coding will
keep the reader on-track with the fundamental usage of the Maple lan-
guage. This thinking, we believe, will give the new Maple user a more ro-
bust ability to develop work sessions more quickly and accurately.
Obviously, in time, the user will develop his or her own personal syntax
forms and approaches to problem solving with the Maple engine. For this
reason also, the authors wanted to minimize their syntax coding “finger-
print” among the applications by keeping the syntax methods very general.

The text contains the following chapters:

Chapter 1: Introduction (Adams)
An explanation is given of what a computer algebra system is and how Ma-
ple fulfills the requirements of a CAS. A brief tutorial is given to get the nov-
ice Maple user up and running along with a description of Maple’s online
help file system.

Chapter 2: Active filter design and analysis (Tocci)
A detailed analysis and design approach is discussed that deals with com-
mon active filter circuits. In particular, two separate types of filters are dealt
with in this chapter. The first part describes the continuous Butterworth
low-pass filter, and the second deals with a switching or sampled data
approach to bandpass filtering using charge-coupled device (CCD)
technology.

Chapter 3: Curve fitting (Tocci)
One of the most common functions performed by statistical packages is
curve fitting of raw experimental data. Maple has a very strong curve-fitting
capability and the first example used is derived from a real-world situation
of peak detection associated with a spectrophotometer. The chapter also
gives data sets that can cause severe problems for conventional curve-fitting
programs and shows how a Maple nonlinear regression program can ob-
tain a reasonable result. Finally, the chapter gives a vivid example of how
badly “blind” curve fitting can “lie” if the user is not aware of what he or
she is doing when arbitrarily assigning a high-order polynomial to the vari-
able set.

Chapter 4: Mathematical models: working with
differential equations (Adams)
Chapter 4 gets into one of the fundamental aspects of the Maple program,
namely, ordinary differential equations. The chapter gives several basic

Preface

xv

template applications on Maple’s capability to analyze the dynamic behav-
ior of real rotational and translational mechanical systems.

Chapter 5: Continuous control application and theory
(Tocci)
Chapter 5 describes the basic applied principles of how Maple is applied
in continuous control systems. Two approaches are examined, namely, fre-
quency (Laplace) and time (state space) domains. For purposes of compari-
son, a real-world third-order template controller problem is solved using
both approaches.

Chapter 6: Discrete control applications (Adams)
Chapter 6 delves into template applications associated with both the pulse
and Z-transform methods and comparatively with the discrete time state
space techniques for discrete control design and analysis.

Chapter 7: Discrete data processing (Adams)
Chapter 7 describes some basic digital signal processing associated with
1-D and 2-D information. The concept of image conversion is described
and exemplified as are several approaches using classical linear digital FIR
and IIR filters.

Chapter 8: Switching topologies (Tocci)
Chapter 8 shows the reader how Maple can solve rather complex boundary
problems associated with periodic signals. One of the most common appli-
cations of this analysis is used on a buck-type switching power supply. An
associated template application depicts how Maple is used in solving and
describing the dynamics involved with a pulse-width modulator (PWM)
used for signal acquisition.

As the reader can see, the applications areas are very diverse (filter,
control, data manipulation, and signal and systems applications) and basic
(both continuous and discrete systems) in their importance to most engi-
neering and applied science disciplines. Consequently, the reader can
jump into any chapter to abstract whatever information is needed to solve
their particular problem with Maple. Chapter 1 is for those who are unfa-
miliar with Maple and should be looked over and studied. However,
if you are an experienced Maple user, you should find the application tem-
plates useful for any unfamiliar engineering-type problem you encounter.

The authors would like to acknowledge the following individuals for
assistance during the development of this manuscript: The technical staff at
Waterloo Maple Software, specifically, Drs. Stan Devitt, Jerome Lang,

Applied Maple for Engineers and Scientists

xvi

Tom Lee, and David Pintur for their help during the developmental phases
of release 4 and the preparation of the manuscript. The editorial staff at
Artech House and particularly Theron Shreve and Kimberly Collignon for
their “polite” approach to helping the authors stay fairly timely in the differ-
ent stages of manuscript production and delivery.

Preface

xvii

Applied Maple for Engineers and Scientists

Chapter1
Introduction

In 1969 the Laboratory of Computer Science at the Massachusetts
Institute of Technology released what is regarded as the first commer-
cial computer algebra system (CAS), Macsyma. Since then the number

of computer algebra systems available has grown to include Derive, Re-
duce, Theorist, Mathematica, Maple, and others. In this book we will be
looking at Maple and how it can be used to help engineers and scientists
investigate a diverse set of problems numerically, symbolically, and graphi-
cally. The major emphasis of this book is applications and how to effec-
tively use Maple as an analysis tool.

The first chapter is both a demonstration and a tutorial that shows how
Maple functions as a numerical and symbolic calculator, a powerful visuali-
zation tool, and a programming language. It is the only portion of the book
in which the Maple syntax is discussed for its own sake. Of course, syntax
is discussed elsewhere but only as part of the general discussion surround-
ing the application being considered. If you are already comfortable with
the Maple system, feel free to skip this chapter. We would, however, sug-

1

gest that even the most advanced users should give this first chapter a
cursory glance as a means of introducing the authors’ style. Chapters 2
through 8 concentrate on how to apply Maple to problems in the areas of
analog and discrete control theory, analog and digital filtering, ordinary
differential equations, power supply design, and curve fitting to data.

What is a CAS ?
A computer algebra system is just a calculator that does mathematics, but
unlike a conventional calculator it does more than just manipulate floating-
point numbers. A CAS can perform numerical computations using either
exact or floating-point arithmetic, and it can manipulate symbolic quanti-
ties and display both functions and data graphically. Some, but not all,
CASs are also sophisticated programming environments ideally suited for
the representation and manipulation of mathematical quantities and
objects.

Numbers
The majority of modern CASs are not limited to the number of significant
digits set by the floating-point hardware so they are capable of providing
solutions that are exact or to a user-specified level of precision. Maple sup-
ports arbitrary precision arithmetic, which means that it is capable of stor-
ing and using numbers having in excess of 500,000 digits. This is in stark
contrast to a normal calculator or spreadsheet that can only support 10 dig-
its. Here we calculate the product of the cubes of the first 40 odd numbers,

∏
I = 0

39

(2i + 1)3:

◗ product((2*x+1)^3, x=0..39);

507748306245828599556221571230208944802988775653262
350807652219192332706057011255827529763014747456
4870095938232290016243558763746110353766146334154
13352736271917819976806640625

This returns the floating-point approximation.

Applied Maple for Engineers and Scientists

2

◗ evalf(product((2*x+1)^3, x=0..39));

.5077483062 10 177

In the preceding example we have used Maple to calculate a large inte-
ger both exactly and approximately, Maple can also represent other mathe-
matical quantities exactly: √2 , 1⁄3, γ, π, e, etc. The advantage of being able
to manipulate exact quantities is demonstrated below:

◗ 1/3 * 3;

1

◗ ANS:=evalf(1/3);

ANS := .3333333333

◗ ANS * 3;

.9999999999

It is obvious that these results are not equal. This is because the
second expression is merely an approximation of the first exact expression.
Regardless of how many significant digits are used, the second expression
will never be equal to the first. Although this is a trivial example it is not
difficult to imagine a case where such a simple error would be
unacceptable.

Symbols
A symbol can just as easily represent a known quantity such as π, e, or γ as
it can an unknown one such as x. The ability to define and manipulate sym-
bolic quantities is where the true power of a CAS such as Maple lies. We
can define mathematical formulas symbolically, operate on them, and then
substitute for known values when appropriate. For example, take the ex-
pression for compound interest,

interest =
principal ⋅ time ⋅ rate

100

Introduction

3

Once we have entered this in our current CAS session, we can manipu-
late it to make the subject of the expression time and hence calculate the
time necessary to accrue a target amount of interest given a certain rate and
principal. The following is how we would tackle this using Maple. If the
syntax does not immediately make sense, do not worry because we will
cover it shortly. First we define the equation relating the amount of interest
to the amount of principal, the time, and the prevailing interest rate.

◗ EQN:= i = p*t*r/100;

EQN := i = 1
100

ptr

In this particular instance we will make time the object of the equation.
We do this with the isolate function. This function is one of many
Maple functions that is readlib defined, which means that although it is
part of the Maple library the function is not part of the main package and
must be loaded explicitly using readlib as shown.

◗ EQN1:=readlib(isolate)(EQN, t);

EQN1 := t = 100
i

pr

◗ subs(i=5004/10, p=1000, r=51/5, EQN1);

t = 417
85

Here are two more examples of symbolic computation: defining the
volume of a sphere in terms of the radius r and obtaining the Mellin trans-
form of the expression ln(y)e(-3y^2).

◗ volume_of_a_sphere := (4*Pi*r^3)/3;

volume_of_a_sphere := 4
3

π r3

Applied Maple for Engineers and Scientists

4

◗ with(inttrans,[mellin]):

mellin(ln(y)*exp(-3*y^2), y, s);

−
1
4





1
3





(1⁄2 s)

ln(3) Γ



1
2

s


+ 1
4





1
3





(1⁄2 s)

Ψ



1
2

s


Γ



1
2

s


More about Maple
Maple Vr4 is a comprehensive CAS that can perform numerical, symbolic,
and graphical computations on PCs (DOS, Windows, Mac, Amiga, etc.)
and workstations (Apollo, HP, Sun, DEC, etc.). It is an interactive, easy-to-
use system comprising more than 2500 functions that can be used either
on its own or in conjunction with many commonly used numerical analysis
and office applications. It is also its own programming language: 95% of
Maple Vr4 is written in Maple, which means that its scope is essentially
limitless. If an application area is not initially supported, Maple is quickly
extended through the addition of new functions and procedures. It is there-
fore hardly surprising that Maple is the first choice for many mathemati-
cians, engineers, scientists, educators, and others who need an easy-to-use
environment in which to perform mathematics.

Maple was first conceived late in 1980 at the University of Waterloo as
a research project. Since then it has steadily grown to become the largest,
most robustly tested general mathematical software system currently avail-
able. It consists of three distinct parts: the kernel, the library, and the work-
sheet. The worksheet, with its typeset mathematics, text, and graphics
support is a natural medium for entering and manipulating mathematical
expressions, models, prototypes, and test data. The kernel, which is writ-
ten in C, contains the system core functions and accounts for approxi-
mately 5% of the Maple Vr4 system. The library, on the other hand, is
where the majority of the system resides. Functions held in the library are
written in Maple and are user accessible.

Maple: a tutorial
The goal of this tutorial is twofold: First, it introduces you to the Maple
syntax and, second, it gives you a quick tour of Maple itself. We should, at
this point, reiterate that this tutorial gives only the briefest of introductions
to the Maple syntax and may be skipped by the experienced user.

Introduction

5

Help
Maple’s Help database consists of more than 8 MB of data organized into
manual style pages containing examples and hypertext links. Every page
has the same basic format: Function, Calling Sequence, Parameters, De-
scription, Arguments, Examples, and See Also sections. Sections contain-
ing pointers to additional information, for example, the See Also section,
contain hyperlinks to other Help pages. This wealth of information is
searchable in a variety of ways via the Help menu or the Worksheet—con-
tents, topic/keyword, or full-text searches from the menu—and the manual
pages and hypertext links are directly accessible from the Worksheet. If we
access Maple’s Help system from the Help menu we do so via dialog
boxes, whereas when using the Worksheet we can use the either the ques-
tion mark notation (?, ?? , and ???) or the help function. Either method
of accessing the help system will result in a Help Worksheet being dis-
played for the topic or keyword used in the search if a match is found. Be-
cause the entries in the Help menu are self-explanatory, we will
concentrate on how to use the Help system from within the Worksheet.
The Help system is accessed from the Worksheet by using the question
mark as follows (note that the semicolon terminator is not required):

◗ ?help

The brackets on the left-hand side of the Worksheet shown in
Figure 1.1 are collapsible regions and the underlined text indicates hyper-
text. The requested help page is displayed as an inert Worksheet (the
Maple commands cannot be executed) in its own window, which means
that all or part of it can be copied into the currently active Worksheet using
the normal copy-and-paste procedure. The Examples section of a Help
page can be copied separately, without highlighting them beforehand, us-
ing the Edit:Copy Examples menu item. The selected items are then copied
into the active Worksheet using either Edit:Paste or Edit:Paste Maple Text.
The first method will result in inclusion of both the Maple input and out-
put regions, whereas the second only copies the Maple input regions into
the active Worksheet, as shown in Figure 1.2, in which the Examples sec-
tion for the Help topic simplify[power] are used as an example.

The Help system will also look for partial matches, so, for example, en-
tering ?A will prompt us by providing pointers to the Maple functions
that begin with A.

◗ ?A

Applied Maple for Engineers and Scientists

6

There are no matching topics. Try one of the following:

AFactor AFactors Airy AngerJ

Function: help - descriptions of syntax, datatypes, and functions

Calling Sequence:

?topic or ?topic,subtopic or ?topic[subtopic] or

help(topic) or help(topic,subtopic) or help(topic[subtopic])

Description:
intro introduction to Maple

index list of all help categories

index[category] list of help files on specific topics

topic explanation of a specific topic

topic[subtopic] explanation of a subtopic under a topic

distribution for information on how to obtain Maple

copyright for information about copyrights

• Note 1: The recommended way to invoke help is to use the question mark.

• Note 2: When invoking help using the function call syntax, help(topic), Maple keywords
(reserved words) must be enclosed in backquotes. For example, help(quit) causes a syntax
error. Use help(`quit`) instead. Note that the string delimiter is the backquote (`), not the
apostrophe ('), nor the double quote ("). When using the question mark syntax for help, no
quotes are required.

• Note 3: A command must end with a semicolon, followed by RETURN or ENTER, before
Maple will execute it and display the result. The semicolon can appear on the next line if you
forget to end the command with it, but it must appear. There can be multiple commands on
one line, separated by semicolons or colons. An exception to this is when a line starts with a
question mark in which case help is invoked and no semicolon is required.

• To contact Waterloo Maple Software, see distribution. To contact the authors of Maple, see
scg.

See Also:keyword, quotes, colon, quit, example, scg, distribution, TEXT, makehelp

-

-

-

Figure 1.1

Function: sin, cos, ... - The Trigonometric functions

Function: sinh, cosh, ... - The Hyperbolic functions

Calling Sequence:

sin(x cos(x) tan(x)

sec(x) csc(x) cot(x)

sinh(x) cosh(x) tanh(x)

sech(x) csch(x)coth(x)

Parameters:

x - an expression

Description:

Examples:

See Also:invtrig, invfunc, inifcns

-

+

+

+
Figure 1.2

Introduction

7

The inclusion of an Examples section in the manual is a very useful fea-
ture. By using ??? or its functional equivalent example , this section can
be accessed for any Maple topic that has a Help page. In the example of
Figure 1.3 we get the Examples section for the rand function directly using
the ??? but example(rand) would produce the same result.

Similarly, the function description and the calling sequence section can
be accessed directly by using ?? . In Figure 1.4, we get the function descrip-
tion and the calling sequence for the sin and other trigonometric
functions.

Finally, hyperlinks to functions and information related to the current
topic of interest can also be easily obtained using the function related
(see Figure 1.5).

Function: rand - Random Number Generator

Description:

Examples

> rand();

427419669081

> rand();

321110693270

> die := rand(1..6):

> die();

4

> die();

6

See Also:randpoly, randmatrix, stats[random], combinat, randomize

+

-

+

+

Figure 1.3

> simplify((a^b)^c,power);

> simplify((a^b)^c,power,symbolic);

> simplify(x^a*x^b, power);

> simplify(exp(5*ln(x)+1), power);

> simplify(ln(x*y),power);

> simplify(ln(x*y),power,symbolic);
Figure 1.4

Applied Maple for Engineers and Scientists

8

◗ related(dsolve[numeric]);

Maple as a calculator

Numeric
Here we use Maple to perform exact and approximate arithmetic:

◗ 1234+5678;

6912

◗ 1/2 - 3/4 + 5/6 - 7/8 + 9/10;

73
120

◗ 1357^24;

1520254661801097535145921172472595185185444
206728322240792485279153288917601

◗ 2468*1357^(-1/2);

2468
1357

√1357

The following examples use the ditto (“) pointer to calculate the float-
ing-point approximations to the previous two expressions:

Function: dsolve/numeric - numerical solution of ordinary differential equations

Description:

Examples:

See Also:dsolve[rkf45], dsolve[dverk78], dsolve[classical], dsolve[gear],

dsolve[mgear], dsolve[lsode], dsolve[taylorseries], plots[odeplot], DEtools[DEplot],

DEtools[DEplot3d], DEtools[PDEplot]

+

+

+

+

Figure 1.5

Introduction

9

◗ evalf(“);

66.99698076

◗ evalf(“”,25);

66.99698076106124289230084

The previous result stack in only three deep so more than three double
quotes have no meaning. We can see that in the first case the default
number of significant digits is used, whereas in the second 25 digits are
used. This type of calculation is made possible because Maple supports ar-
bitrary precision arithmetic as standard. The default number of digits (10)
used in a floating-point calculation is held in the global variable Digits .

If we access some of Maple’s 2,500 standard functions we can easily
perform more complex calculations:

◗ erf(infinity);

1

◗ 120!;

668950291344912705758811805409037258675274633313
80298102956713523016355724496298936687416527198
4981308157637893214090552534408589408121859898
4811143896500059649605212569600000000000000000
00000000000

◗ evalf(log(Pi/exp(1)),200);

.144729885849400174143427351353058711647294812915311
57151362307147213776988482607978362327027548970
77020098122286979891590482055279234565872790810
788102868252763939142663459029024847733588699
3778920313

Applied Maple for Engineers and Scientists

10

◗ exp(1);

e

◗ evalf(“,40);

2.718281828459045235360287471352662497757

◗ evalf(sqrt(3.56*log(Pi))*12345.67,5);

24922.

Complex arithmetic Maple operates over both the real and complex do-
mains, I being the complex constant: √−1 .

◗ (1+7*I)/((2+I)*conjugate(-3+5*I));

−
46
85

+ 3
85

I

Name aliasing is also supported. This means that j, commonly used in
engineering to mean √−1 , can be aliased to I.

◗ alias(I=I,j=sqrt(-1));

j

◗ j*j;

−1

Trigonometric functions Maple supports all of the standard trigonomet-
ric and hyperbolic functions:

◗ sin(Pi/4);

1
2

√2

Introduction

11

◗ evalf(“);

.7071067810

◗ tanh(88.5);

1.

◗ sec(-1.);

1.850815718

◗ evalf(csch(exp(3.*Pi)));

.4750727074 10−5381

Symbolic
Maple’s great strength lies in its ability to perform symbolic calculations:

◗ expand((x - 3*y^3)^5);

x5 − 15x4y3 + 90x3y6 − 270x2y9 + 405xy12 − 243y15

◗ normal(1/a-1/b*1/c);

−
− b c + a

a b c

◗ factor(diff((x - 3*y^3)^5,y));

− 45 
x − 3 y3


4

y2

Series, sums, and products Maple can generate series expansions (such
as Taylor and power), summations, and products of arbitrary expressions
quickly and without error:

Applied Maple for Engineers and Scientists

12

◗ series(sin(x),x=h,5);

sin(h) + cos(h) (x − h) − 1
2

sin(h) (x − h)2 − 1
6

cos(h)(x − h)3

+ 1
24

sin(h) (x − h)4 + O
(x − h)5



◗ series(GAMMA(x),x=0,3);

x−1 − γ + 



1
12

π2 + 1
2

γ2



x + 


−

1
3

ζ(3) − 1
12

π2 γ − 1
6

γ3



x2+ O(x3)

◗ normal(sum(1/(1-N)^x,x=1..4));

−
− 4 + 6 N − 4 N 2 + N 3

(− 1 + N)4

If no range is specified, the indefinite form is returned, for example,

here we compute the indefinite product π
(1 − N)x

(x + 1)
in x:

◗ product((1-N)^x/(x+1),x);

(1 − N)(1⁄2 x (x − 1))

Γ(x + 1)

Constants Maple uses the globally accessible sequence constants to
maintain the list of currently recognized constants:

◗ constants;

false γ, ∞, true, Catalan, E, FAIL, π

◗ type(123, constant);

true

Introduction

13

◗ type(pi, constant);

false

◗ type(A_VARIABLE, constant);

false

The list can be added by the user very easily, as shown here:

◗ constants := constants, A_VARIABLE;

constants := false, γ, ∞, true, Catalan, E, FAIL, π, A_VARIABLE

A constant added to the constants list is treated in the same way as the
initially known constants:

◗ type(2*A_VARIABLE/3.5, constant);

true

Variables A variable can be any name other than a reserved word. Maple
treats variables in a way that mimics the normally understood mathematical
variable. Maple variables can either have values assigned to them or they
can remain unassigned. An assigned variable behaves in the same way as a
variable in any other programming language in that it can be viewed, set,
reset, and used in calculations. We can set variables and look at them:

◗ x:=10!:

x;

3628800

Or x can be used in a calculation and be reassigned:

◗ x:=ifactor(x);

x := (2)8 (3)4 (5)2 (7)

Applied Maple for Engineers and Scientists

14

An unassigned variable is treated as a symbol that can be used in calcu-
lations and have a value assigned to it at some later time:

◗ NOT_ASSIGNED;

NOT_ASSIGNED

Equation solver
Maple can be used to investigate the solutions to systems of algebraic and
differential equations.

Numerical solutions

◗ fsolve(cos(alpha)=alpha^2,{alpha});





α = .8241323123




◗ solve(X^7+X+1=0, X);

RootOf 
_Z 7 + _Z + 1



Maple has returned the RootOf placeholder as a solution. This and
other placeholders (DESol, Limit, Product, …) are used by
Maple to store, manipulate, and display data in a concise way. By using
allvalues we force Maple to return the roots of the polynomial.

◗ allvalues(“);

−.7965443541 .7052980879 +.6376237698 I .7052980879
+.6376237698 I .9798083845 + .5166768838 I

Here, by means of a Fehlberg four-five-order Runga-Kutta solver, we
solve numerically a first-order ode. We then plot the result (see Figure 1.6).

◗ f:=dsolve({diff(y(t), t)=sin(t)^2, y(0)=3}, y(t),

type=numeric);

f := proc(rkf45_x) ... end

Introduction

15

◗ plot(‘subs‘(f(T), y(t)), T=0..5);

Symbolic solutions Find the points of intersection of a circle of radius r
centered at the origin and an ellipse with major and minor axes a and b,
respectively:

◗ circle := x^2 + y^2 = r^2;

ellipse := x^2/a + y^2/b = 1;

circle := x2 + y2 = r2

ellipse := x2

a + y2

b = 1

◗ pts := [solve({circle, ellipse}, {x, y})];

pts := 







y = RootOf 
(−b + a)_Z2 + br2 − ab


1
2

















x = RootOf 
(−b + a)_Z2 + ab − r2a










We can also investigate systems of inequalities:

5.5

5

4.5

4

3.5

3
0 1 2 3 4 5

Figure 1.6

Applied Maple for Engineers and Scientists

16

◗ solve(x^3+x^2-5>5, x);

RealRange



Open



1
3

(134 + 3√1995)
1⁄3 + 1

3
1

(134 + 3√1995)
1⁄3

− 1
3





, ∞



Here we solve a second-order ode. The solution contains two con-
stants of integration because no initial conditions are specified.

◗ dsolve(diff(y(t), t$2) + y(t) = 12*cos(t)^2, y(t));

y(t) = − 4 cos(t)2 + 4 cos(t) + 8 + _C1 cos(t) + _C2 sin(t)

Calculus
Maple supports single and multivariate calculus. First let us look at the
process of differentiation:

◗ diff(sin(x)*x^2, x);

cos(x) x2 + 2 sin(x) x

◗ diff(expand((sin(x)+tan(y))^2), x, y);

2 cos(x) (1 + tan(y)2)

Both definite and indefinite integration can be performed. Integration
is performed through a combination of knowledge-based programming,
simplification, and the application of the Riche algorithm. Numerical inte-
gration can be easily performed if a symbolic closed-form solution cannot
be found:

◗ int(1/(1-x^3), x);

−
1
3

ln(x − 1) + 1
6

ln
x2 + x + 1

 + 1
3

√3 arctan 



1
3

(2x + 1) √3 



Introduction

17

◗ Int(2*x*sin(x), x=0..Pi/a) = int(2*x*sin(x), x=0..Pi/a);

∫
0

π
a

2 sin(x) x dx = 2

sin




π
a





a − cos




π
a





π

a

In this particular example we use the inert form of the integrate func-
tion (Int) with evalf to calculate the numerical solution. By using the
inert form Maple does not waste time searching for a symbolic solution,
which in this case does not exist.

◗ evalf(Int(exp(exp(exp(-x))), x=0..3));

13.77323428

Graphics
An increasingly important part of any research and development tool is its
ability to display data. Maple possesses an expansive set of both two- and
three-dimensional plotting functions, tools, and animation routines. The
style of a plot can be filled, point, or wireframe, axes can be included, and
labels and a title can be added. All of these options can be set either at the
command line or via the graphics menu items. Version Vr4 also illuminates
three-dimensional surfaces with user-selectable lighting models. Color
functions can be added as a means of adding an extra dimension to any
plot. Figures 1.7 and 1.8 give the plots of the following two operations:

◗ plot((x^3-5*x^2+2*x+8)/(x^3-3*x^2-25*x+75), x=-10..10,

discont=true, view=[DEFAULT, -10..10],

labels=[‘x’,’f(x)’]);

◗ t:=(x,y) - sqrt(x^2+y^2):

plot3d(cos(t((x+3), (y+3))*Pi)*exp(-t((x+3),

(y+3)))+3*cos(t((x-1),

(y-1))*Pi)*exp(-t((x-1), (y-1))), x=-3..3, y=-3..3,

style=HIDDEN, color=BLACK, numpoints=40^2,

orientation=[18, 50]);

Applied Maple for Engineers and Scientists

18

Before leaving plots we should mention that version Vr4 of Maple sup-
ports animation. Animate and animate3d functions are available as a
standard sequence of plot structures, hence giving the perception of anima-
tion. In Figure 1.9, we animate a bouncing ball using this second method:

10

5

0

−5

−10

0
x

105−5−10

fn(x)

Figure 1.7

Figure 1.8

Introduction

19

◗ path := t -> 5*exp(-0.5*Pi*t)*abs(cos(t)):

ball:= (x, y) -> plottools[disc](x, y+1, color=BLACK):

seq(plots[display]([path(x), ball(x, path(x))], x=0..5):

plots[display](“, insequence=true);

Data structures
Maple can store numeric, symbolic, graphic, or programming data in sets,
lists, tables, vectors, arrays, and matrices. This extensive range of data
structures allows us to both store and manipulate our data in a way that is
appropriate to the specific problem.

5

4

3

2

1

0

t
543210

5

4

3

2

1

0

t
543210

5

4

3

2

1

0

t
543210

5

4

3

2

1

0

t
543210

5

4

3

2

1

0

t
543210

5

4

3

2

1

0

t
543210

Figure 1.9

Applied Maple for Engineers and Scientists

20

Lists and sets Lists and sets are common structures used to store and ma-
nipulate linear data. The major differences between the two are (1) a list is
ordered whereas a set is not and (2) sets will automatically remove repeated
entries. Lists are defined using square brackets […] while sets use curly
braces {…}. The elements of either can be any valid Maple expression.

◗ A_LIST := [1, 2, 4/5, GAMMA, ‘the last element’];

A_LIST := 


1, 2,

4
5

, Γ, the last element


◗ A_SET:= {1, 2, 4/5, GAMMA, ‘the last element’ };

A_SET := { 1, 2, Γ, “the last element”}

Note that the element “the last element” is a string. Strings are denoted
using string quotes ‘…’. These data structures can be easily manipulated
using op , nops , subsops , intersect , union , member, and
minus .

◗ THE_LENGTH:=nops(A_LIST);

THE_LENGTH := 5

◗ THE_2ND_ELEMENT:=op(2, A_SET);

THE_2ND_ELEMENT := 2

◗ ELEMENTS_2_TO_4 := op(2..4, A_SET);

ELEMENTS_2_TO_4 := 


2, Γ, the last element




◗ A_SET intersect {4/5, Zeta, ‘the last element’};




the last element,

4
5





Introduction

21

Now remove elements:

◗ A_SET minus {1, GAMMA};




2, the last element,

4
5





◗ subsop(3=NULL, A_LIST);

[1, 2, Γ, the last element]

or

◗ A_LIST[3]:=NULL;

[1, 2, Γ, the last element]

Here we test for list and set membership:

◗ member(Pi, A_LIST);

false

◗ member(‘the last element’, A_SET);

true

Lists and sets can be joined.

◗ [op(A_LIST), op([‘a’, [‘new’], ‘list’])];




1, 2,

4
5

, Γ, the last element, a, [new], list


◗ A_SET union { {‘a’}, ‘new’, ‘set’};




1, 2, set, Γ, the last element, 



a



, new,

4
5





Applied Maple for Engineers and Scientists

22

Arrays, matrices, and vectors Arrays, matrices, and vectors in Maple
mimic their mathematical namesakes. Arrays and matrices are ideally
suited to the storage and manipulation of two-dimensional data, whereas
one-dimensional data can be manipulated using vectors. The major differ-
ence between an array and a matrix is that matrix indices must start at zero,
whereas an array can be indexed from any integer starting point.

Here we define and manipulate some arrays. First we define an empty
array and then set the element A2,2 equal to four:

◗ A := array(1..2, 1..3);

A := array (1 .. 2, 1 .. 3, [])

◗ A[2,2]:=4;

A2,2 := 4

To look at the contents of an array we use eval , evalm , or print .
This step is necessary because arrays conform to the principle of last name
evaluation. This means that for an array printed in the normal way (by en-
tering the array name followed by a carriage return), only the array’s name
will be printed because it is the last name evaluated. To see the contents of
the array, full evaluation needs to be forced:

◗ A;

A

◗ evalm(A);





A1, 1

A2, 1

A1, 2

4
A1, 2

A2, 3





Here we define and operate on some matrices. Maple’s linear algebra
tools are grouped together in the Maple package linalg (see ?linalg
for more details). All or some of the functions in the linalg package, this
goes for Maple’s other packages as well, can be loaded using with . An al-
ternative method of accessing a particular function is to use its long name:

Introduction

23

package name[function name] . In the following examples, we use
the long name method to access a selection of linalg functions.

◗ B:=linalg[matrix](2, 2, [a, b, c, d]);

B := 



a
b

b
d




◗ C:=linalg[matrix](2, 2, [[1, 2],[3, 4]]);

C := 



1
3

2
4




◗ evalm(B &* C);





a + 3b
c + 3d

2a + 4b
2c + 4d





In a similar fashion we define and operate on some vectors:

◗ linalg[vector](3);



?1 ?2 ?3



◗ linalg[vector]([1, 2, 3]):

d:=linalg[transpose](“);

d := transpose ([1 2 3])

The previous result, although correct, is not displayed in the column
form we expected. Maple can manipulate row and column vectors cor-
rectly as we will see later.

◗ e:=linalg[vector]([sin(a), Pi, 3]);

e := [sin(a) π 3]

Applied Maple for Engineers and Scientists

24

◗ linalg[crossprod](e, linalg[transpose](d));

[3 π − 6 3 − 3 sin(a) 2 sin(a) − π]

Tables Maple is capable of storing and manipulating multidimensional
data in tables. A table is a generalized form of the more common structures
of arrays and matrices. Unlike these specialized structures, a table has some
significant advantages: A table can be n-dimensional (note that an array
with more than two dimensions is automatically cast into a table by Maple)
and its index can be any Maple expression.

Here we create a table implicitly by making assignments to an indexed
variable.

◗ A_DIFF_TABLE[sin(x)]:= cos(x); A_DIFF_TABLE[cos(x)]:=

-sin(x);

A_DIFF_TABLE sin(x) := cos(x)
A_DIFF_TABLE cos(x) := −sin(x)

Here we define a two-dimensional table explicitly:

◗ A_2D_TABLE := table([(-1,-1)=’first row’, (-1,0)=zero,

(-1,1)=one, (1,-1)=’second row’, (1,0)=zero,

(1,1)=’last entry’]);

A_2D_TABLE := table([
(−1, 1) = one
(1, −1) = second row
(1, 0) = zero
(−1, −1) = first row
(−1, 0) = zero
(1, 1) last entry
])

This adds an entry to our first table:

Introduction

25

◗ A_DIFF_TABLE[tan(x)]:=1/cos(x);

A_DIFF_TABLE tan(x) := 1
cos(x)

The previous entry is in error so it needs to be altered:

◗ A_DIFF_TABLE[tan(x)]:=1+tan(x)^2;

A_DIFF_TABLE tan(x) := 1 + tan(x)2

We will make one final entry in our test table and then we will take a
look at it:

◗ A_DIFF_TABLE[x^n]:=n*x^(n-1);

A_DIFF_TABLE x
n := nx (n − 1)

◗ A_DIFF_TABLE;

A_DIFF_TABLE

This is not what we expected but it is correct. Maple evaluates table
names in the same way as it does an array name using last name evaluation.
To view the contents of a table, eval or print must be used:

◗ print(A_DIFF_TABLE);

table ([
cos(x) = −sin(x)
sin(x) = cos(x)
tan(x) = 1 + tan(x)2
xn = nx(n −1)

)]

Applied Maple for Engineers and Scientists

26

Maple as a programmable calculator
Maple’s extensive list of functions and procedures makes it a powerful
mathematical tool that can be applied easily to problem areas as diverse as
virology and cosmology. However, ideas and techniques change and ad-
vance—as is true of all fields of human endeavor—so Maple would soon be-
come obsolete if it were not able to adapt. Maple can adapt because in
addition to being a CAS it is also a powerful programming language.

Functions
A function is a Maple object that performs work, taking arguments as in-
puts and returning an answer. The general form of a function definition is:

tag := (arg1, arg2, ..., argn) → body

where tag is associated with the function definition, sometimes called the
head, arg1 , arg2 , ..., argn is the list of formal parameters passed to
body. The formal parameter names appearing in the argument list on the
left-hand side of the arrow match with the corresponding variables in body
of the definition. The body is an expression that yields the value of the
function when the formal parameters are replaced with the values of the ac-
tual arguments.

The function f(x, y, z) is a function of three variables x, y, and z and
returns the sum of the first two arguments raised to the third argument:
f(x, y, z) = xz + yz. This simple function is represented in Maple as:

◗ f := (x, y, z) -> x^z + y^z;

f := (x, y, z) → xz + yz

The function is invoked as follows:

◗ f(A, 4, Pi);

Aπ + 4π

Pure functions The Maple name space contains every function and vari-
able name that has had an assignment made to it by either the user or the
system. A pure function does not have a tag associated with it and hence re-

Introduction

27

duces the loading on the Maple name space. A pure function is defined as
follows:

(arg1, arg2, ..., argn) → body

In the following examples, we see how pure functions, based on map
and map2, can be easily used when manipulating data. The functions map
and map2 are extremely powerful Maple functions that enable complex op-
erations to be performed easily on the elements of data structures like ta-
bles, lists, arrays, and matrices. The required operation is mapped onto
every element in the target data structure.

◗ map(x -> x^2 , array([[x, x^2], [1+x, x^d]]));





x2

(1 + x)2
x4

(xd)2




◗ map2((x,y)->x^y, n, {1,2,3});

{n, n2, n3}

Unapply Maple expressions can be transformed into functions easily us-
ing unapply . In the following example we find the closed-form solution
for the eigenvalues of a two-by-two matrix and then transform the solution
into a Maple function. First we define an empty array.

◗ A:=array(1..2, 1..2);

A := array (1 .. 2, 1 .. 2, [])

Next we calculate its characteristic equation in λ. We do this by creat-
ing a weighted two-by-two identity matrix using linalg[band] , sub-
tracting it from the matrix A1, and computing the determinant of the
resulting matrix:

◗ A1 := evalm(A - linalg[band]([lambda], 2));

A1 :=




A1,1−λ
A2,1

A1,2

A2,2−λ




Applied Maple for Engineers and Scientists

28

◗ A2 := linalg[det](A1);

A2 := A1, 1A2, 2 − A1, 1λ − λA2, 2 + λ2 − A1, 2A2, 1

This solves the characteristic equation for l.

◗ SOLS := [solve(A2, lambda)];





1
2

A1,1 + 1
2

A2,2 + 1
2

√A1,1
2 − 2A1,1A2,2 + A2,2

2 + 4A1,2 A2,1 , 







1
2

A1,1 + 1
2

A2,2 − 1
2

√A1,1
2 − 2A1,1 A2,2 + 4A1,2 A2,1





Here we use unapply to form a function that takes an array as input
and returns a list of eigenvalues:

◗ E_VALUES := unapply(SOLS,A);

E_VALUES := A →





1
2

A1,1 + 1
2

A2,2 + 1
2

√A1,1
2 − 2A1,1A2,2 + A2,2

2 + 4A1,2 A2,1 , 







1
2

A1,1 + 1
2

A2,2 − 1
2

√A1,1
2 − 2A1,1 A2,2 + A2,2

2 + 4A1,2 A2,1




The eigenvalues can now be calculated for any two-by-two matrix:

◗ E_VALUES(array([[1,2],[3,4]]));





5
2

+ 1
2

√33,
5
2

− 1
2

√33 



Control statements
Maple supports basic control structures to govern the flow of evaluation
(if and elif), as well as repetition (for and while). Although it is
more usual to use these control structures inside Maple procedures and
functions, we will use them interactively in the following examples for
clarity.

Introduction

29

If Here is a simple conditional statement to test an input to see whether it
is odd or even.

◗ x:=4:

if x mod 2 = 0 then

print(cat(x,’ is even’));

else

print(cat(x,’ is odd’));

fi;

4 is even

In this and the following example, the infix form of the mod function is
used. A function is said to be invoked in infix form when the following syn-
tax is used: arg1 function name arg2. Note that not every Maple function
has a standard infix form. The infix form of a function is used for this situ-
ation: If nested if statements are needed, then the elif statement is used
in conjunction with if as shown. Here we extend the above example to
test for zero:

◗ x:=-3:

if x=0 then

print(‘zero entered’)

elif x mod 2 = 0 then

print(cat(x,’ is even’));

else

print(cat(x,’ is odd’));

fi;

−3 is odd

Looping
There are two basic repetition constructs, for and while . However,
looping can also be accomplished with seq and $.

For The general syntax of the for construct is for |count| from
|start| by |increment| to |end| do body od . Any expres-
sion of the form |keyword| is optional. If omitted they default to unity
with the exception of end , which defaults to infinity. The following exam-
ples demonstrate how the for-loop operates:

Applied Maple for Engineers and Scientists

30

◗ ANS:=NULL:

for x to 5 by 2 do ANS:=ANS, sin(x) od:

ANS;

sin(1), sin(3), sin(5)

◗ ANS:=NULL:

for x from -1 to 1 by 0.2 do ANS:=ANS, x^2 od:

ANS;

1, .64, .36, .16, .04, 0, .04, .16, .36, .64, 1.00

◗ ANS:=NULL:

for x from -5 to 5 do ANS:=ANS, x^(1/2) od:

ANS;

√−5 , √−4 , √−3 , √−2 , I, 0, 1, √2 , √3 , √4 , √5

The for construct does have one other form that is useful when oper-
ating on objects, such as lists or sets of unknown length, the for-in
construct.

◗ ANS:=NULL:

for x in [a, b, c, d, e, f] do ANS:=ANS, (x+1)/x od:

ANS;

1 + a
a

,
1 + b

b
,

1 + c
c

,
1 + d

d
,

1 + e
e

,
1 + f

f

While The while construct is an alternate way of performing repetitive
operations and has this basic form: while condition is true do body od .

◗ ANS:=NULL: x:=1:

while ithprime(x) 12 do

ANS:=ANS, cat(ithprime(x)<’ is prime’);

x:=x+1;

od:

ANS;

Introduction

31

2 is prime, 3 is prime, 5 is prime, 7 is prime, 11 is prime

Seq and $ Maple provides two alternative methods of looping: seq and
$. Both of these functions are basically equivalent to: for count from
start to end by 1 do .. od. A couple of points, however,
should be noted: The variable used as the count will maintain its final value
on exit and only seq will operate over sets and lists.

◗ seq(n^x, x=0..5);

1, n, n2, n3, n4, n5

The count variable x now has a value:

◗ x;

6

The function seq also works over the elements of a list:

◗ seq(f^2, f=[1,2,a,b]);

1, 4, a2, b2

Both constructs will operate on floats, but not on symbolic constants
such as π. In such cases evalf is simply used to convert to a float. The $
symbol is the infix form of seq and is used as follows:

◗ n^y$(y=1.1..5.7);

n1.1, n2.1, n3.1, n4.1, n5.1

The alternative form of $ can also be used to create variables of the
form a1, a2, …, or copies easily:

◗ ‘a.n‘$(n=1..3);

a1, a2, a3

Applied Maple for Engineers and Scientists

32

◗ A_COPY$4;

A_COPY, A_COPY, A_COPY, A_COPY

Procedural
Procedural programming is deeply entrenched in Maple and is supported
by the most popular programming languages and tools such as BASIC,
FORTRAN, C, and Pascal.

The general form of a procedure is:

◗ procedure_name :=proc(arg 1, arg 2, ..., arg n)

local var 1, var 2, ..., var n;

global var 1, var 2, ..., var n;

options opt 1, opt 2, ..., opt n;

body

end;

The formal parameters arg1, arg2, ..., argn correspond to
variables found within the body of the procedure with the same names. If
no operands are specified then, like C, the argument list can be any length.
In this case the global variables args and nargs are used to retrieve the
argument list and its length. In the next example we construct a custom
plotting procedure that takes a function and a range and plots the function
and its integral. The integral is computed and stored using the local vari-
able the_int . It should also be noted that the function op is used
to extract the independent variable from the range r .

◗ MY_PLOT := proc(x, r)

local the_int;

the_int:= int(x, op(1, r));

plot({x, the_int}, r, color=BLACK);

end:

Next we call the procedure defined above:

◗ MY_PLOT(sin(X)/X, X=-10..10);

A plot of this procedure is shown in Figure 1.10. For further informa-
tion on procedure options see ?procedure[options] .

Introduction

33

Pure procedures In the same way that Maple supports pure functions
it also supports pure procedures. A pure procedure is exactly the same in-
ternally as a normal procedure but does not have a tag assigned to it. The
first example uses zip . This function is very useful in many applications
where the corresponding elements of two data structures have to be com-
bined to produce the result. The lengths of the component data structures
do not have to be the same as the example shows. Although in many cases
pure procedures and interchangeable with pure functions, these examples
show how pure procedures are used.

◗ zip(proc(x, y) x^y end,[tan(1), cot(2), coth(3)],

[a,b], filler);


tan(1)a, cot(2)b, coth(3)filler



◗ map(proc(x) x^2 end, [a, b, c]);


a2, b2, c2



1.5

1

0.5

0

−0.5

−1

−1.5

1050−10
X

−5

Figure 1.10

Applied Maple for Engineers and Scientists

34

Types
Maple strongly types language. The following parameter types are some of
the more commonly used ones. For more information see ?type .

Table 1.1

^ * ** + < <=

<> = PLOT PLOT3D RootOf algebraic

anything array complex constant equation float

fraction function indexed linear list listlist

matrix negative numeric positive procedure ange

rational series set string string vector

◗ whattype(2/37);

fraction

◗ whattype(series(exp(beta), beta));

series

◗ type(10!, integer);

true

◗ type([a=1, b=2], [‘name’ = ‘integer’, ‘name’= ‘integer’]);

true

Next we use the Maple type-checking routines in conjunction with pro-
cedure definition. First we perform the check at the top level and then it is
carried out within the body of the procedure.

Introduction

35

◗ A_TEST := proc(x: :numeric, y: :{posint, function})

print(‘Parametrs check’) end:

◗ A_TEST(1, cos(x));

Parameters check

◗ A_TEST(z, cos(x));

Error, A_TEST expects its first argument x to be of type

numeric but received z

◗ A_TEST_2 := proc()

if type(args, numeric) then print(‘Ok’)

else print(‘Error’)

fi end:

◗ A_TEST_2(1234);

OK

◗ A_TEST_2(abcd);

Error

By comparing the two approaches, we can see that the first implemen-
tation is the simplest but allows no ability to recover from the error condi-
tion. The second implementation, on the other hand, is harder to program
but it does give us the ability to recover gracefully from error conditions oc-
curring as a result of the use of illegal arguments and to continue process-
ing with default values for instance.

RETURN and ERROR
Loops and procedures can be terminated in one of two ways: the end con-
dition becomes valid or a RETURNor an ERRORcan be used. When a
RETURNis encountered the current control statement is terminated and
control is passed to the next level above. When an ERRORis encountered,
on the other hand, control is passed to the top level and the current proc-
ess chain is terminated.

Applied Maple for Engineers and Scientists

36

◗ FOR_TEST := proc(x, y) local n, nn;

nn:=NULL:

if x=0 and y=0 then ERROR(‘Non-zero entries required’) fi;

for n from x to 100 do

if n>y then RETURN(nn) else nn:=nn,[n,n^3] fi;

od;

nn;

end:

We can see how this works as follows:

◗ FOR_TEST(90, 101);

[90, 729000], [91, 753571], [92, 778688], [93, 804357],
[94, 830584], [95, 857375], [96, 884736], [97, 912673],
[98, 941192], [99, 970299], [100, 1000000]

◗ FOR_TEST(-1, 4);

[−1, −1], [0, 0,], [1, 1], [2, 8], [3, 27], [4, 64]

◗ FOR_TEST(0, 0);

Error, (in FOR_TEST), Nonzero entries required.

Introduction

37

Applied Maple for Engineers and Scientists

Chapter 2
Active filter design and analysis

Filters are designed to reject certain interference signals while al-
lowing certain desired pieces of information to pass unattenuated.
Filters can be realized in mechanical, electrical, chemical, and other

applied science applications.
In the first application, we will concentrate on the analysis and synthe-

sis of an electrical low-pass filter (LPF). In particular, the analog (as op-
posed to a digital hardware implementation) active LPF topology will
have a Butterworth magnitude response. The Butterworth response is spe-
cifically characterized as having a maximally flat magnitude response. This
means that while information is within the filter’s passband, the signal’s
amplitude response will not change until it diminishes to exactly (at least
mathematically) 0.7071 times its passband gain at the cutoff frequency.
The LPF passes information below the cutoff, break, or 3-dB frequency
while increasingly attenuating all frequencies above the cutoff frequency.
The order of the LPF determines the rate (usually expressed in decibels

39

per decade or octave) at which the higher frequencies are attenuated be-
yond the cutoff frequency.

The Butterworth LPF’s characteristics are dependent on derived com-
ponent values and tolerances and several test simulations are performed to
show the reader how Maple can easily emulate certain electronic circuits.

In contrast, the second application is a switching bandpass filter (BPF)
whose filter properties are dependent for the most part on a digital clocking
signal and not on component values. Switching BPFs exhibit some very
unique properties that are unavailable in an analog or continuous sense.

Case I: analog low-pass filter design
and analysis

One of the most common electronic filters utilized in electronic design is
the LPF. Today, the active resistor-capacitor (RC) filter is common due to
its low cost and the extreme flexibility of its topology.

Figure 2.1 shows a typical second-order LPF whose Butterworth re-
sponse is dictated by the passive component values R1, R2, C1, C2. This
particular topology uses a noninverting unity gain configured operational
amplifier with one positive feedback connection. Inverting topologies are
also useful, but for maximum transfer bandwidth control with good input
and output impedance across those frequencies, the topology in Figure 2.1
is about the best. The single application drawback is that the passband gain
is fixed at unity.

C1

R2
Vout

R1Vin(t)

V1(t)

C2

Vout(t)

+

−

Figure 2.1
Second-order

Butterworth LPF.

Applied Maple for Engineers and Scientists

40

As designers, we are allowed to vary any of the passive components
(R1, R2, C1, C2) to ensure that we obtain the Butterworth response with
the desired cutoff frequency. Consequently, we should first determine the
overall voltage transfer function associated with Figure 2.1 as

Voltage transfer function =
Vout(t)
Vin(t)

To determine how each of the components relates to the cutoff fre-
quency and Butterworth amplitude response, we use Maple to derive the
necessary constituent relationships to form the symbolic design con-
straints. Finally, we take the symbolic expressions and substitute the
desired filter specifications (i.e., cutoff frequency and Butterworth pass-
band characteristics) to finalize the hardware design.

Use of Laplace transform explained
The analysis will be performed in the frequency domain using the Laplace
transform. Many suitable engineering texts have been published that ex-
plain the use of the Laplace transform for performing nodal and mesh
analyses for most linear time invariant (LTI) topologies [1–3]. LTI topolo-
gies—electrical, mechanical, chemical, etc.—exhibit constant coefficients
associated with their respective dynamic equations. The dynamics could
be with respect to any number of physical variables. In the case of the fol-
lowing LPF, all coefficients in the describing or constituent nodal equa-
tions have coefficients whose values are functions of the passive electronic
components from which they are comprised.

Constituent relationships derived
The Laplace transform allows the designer to formulate the symbolic ex-
pressions describing the LPF’s characteristics in the polynomial, s, defined
by the following identity, which transforms a time function, f(t), into a fre-
quency-domain function, F(s)

Laplace 



f (t)



= F (s) ≡ ∫
0

s

f (t)e−st dt

where

s = jω

Active filter design and analysis

41

Use of the Laplace transform allows the designer to use algebraic
rather than differential equations to solve the LPF design problem.

First, to find the derivation of the constituent relationships via Kirch-
hoff’s laws, we state the following two independent node expressions as
shown in Figure 2.1 (using the Laplace transform):

currents about the node labeled V1(t)
V1 − VIN

R1
+

V1 − VOUT

R2
+ sC1(V1 − VOUT) = 0

currents about the node labeled Vout(t)
VOUT − V1

R2
+ sC2VOUT = 0

To arrange the above expressions into matrix algebra form for the un-
knowns V1, VOUT, we rewrite the equations as





1
R1

+ 1
R2

+ sC1



V1 + 



−

1
R2

− sC1



VOUT =

VIN

R1




−

1
R2




V1 + 




1
R2

+ sC2



VOUT = 0

or in matrix formulation



















1
R1

+ 1
R2

+ sC1







−

1
R2








−

1
R2

− sC1








1
R2

+ sC2






















V1
VOUT





=
















VIN

R1





0












or equivalently in the following vector equation [1]:

Ax = y

Applied Maple for Engineers and Scientists

42

where

A →



















1
R1

+ 1
R2

+ sC1







−

1
R2








−

1
R2

− sC1








1
R2

+ sC2


















x → 



V1

VOUT





y →
















VIN

R1





0












then solving for the variables V1, VOUT in vector form yields

x = A−1y

or if we expand it into a matrix formulation, we obtain





V1

VOUT





=



















1
R1

+ 1
R2

+ sC1







−

1
R2








−

1
R2

− sC1








1
R2

+ sC2


















−1
















VIN

R1





0












Solving this last expression in Maple is done by assigning the following
expressions:

x → 



V1

VOUT





Unknown_Variable_Matrix
Maple

Active filter design and analysis

43

A →



















1
R1

+ 1
R2

+ sC1







−

1
R2








−

1
R2

− sC1








1
R2

+ sC2


















−1

A_Matrix

y →
















VIN

R1





0












Y_Matrix

and then entering them into a Maple session:

◗ with (linalg):

A_Matrix := array ([[1/R1+1/R2+s*C1,-1/R2-s*C1],

[-1/R2,1/R2+s*C2]]);

Y_Matrix := array ([[Vin/R1],[0]]);

Unknown_Variable_Matrix := evalm(((A_Matrix)^(-1))&*

(Y_Matrix));

A_Matrix :=










1
R1

+ 1
R2

+ sC1

−
1

R2

−
1

R2
− sC1

1
R2

+ sC2











Y_Matrix :=











VIN

R1

0











Unknown_Variable_Matrix :=













(1 + sC2 R2)Vin

1 + sC2 R2 + R1 sC2 + s2C1 R1 R2 C2
Vin

1 + sC2 R2 + R1 sC2 + s2C1 R1 R2 C2













Maple

Maple

Applied Maple for Engineers and Scientists

44

Incidentally, since either column or row matrices are vectors, the user
could set up the Maple A_Matrix and Unknown_Variable_
Matrix variables as A_Vector and Unknown_Variable_Vector
to more clearly represent these variables in a session. However, the single-
order vector is only a special case of the multidimensional-order matrix.

Note that the matrix multiplication between A_Matrix inverse and
Y_Matrix is performed with the “&*” operation rather than the “*” op-
erator. Maple distinguishes between matrix and scalar multiplication with
this notation.

Abstracting the variable’s solutions,

◗ V1 := Unknown_Variable_Matrix[1,1];

Vout := Unknown_Variable_Matrix[2,1];

V1 :=
(1 + sC2 R2)Vin

1 + sC2 R2 + R1 sC2 + s2C1 R1 R2 C2

Vout :=
Vin

1 + sC2 R2 + R1 sC2 + s2C1 R1 R2 C2

Since the LPF’s overall voltage transfer function was previously
defined as

LPF_Transfer =
VOUT

VIN

we appear to have our transfer function with the second equation, thus

◗ LPF_Transfer := Vout/Vin;

LPF_Transfer := 1

1 + sC2 R2 + R1 sC2 + s2C1 R1 R2 C2

We may rewrite the second-order LPT_Transfer expression as

LPF_Transfer = 1

s2

ωN
2 +

2ζ
ωN

+ 1

Active filter design and analysis

45

where ωN and ζ are the natural frequency and damping factor, respec-
tively, of the second-order system [1,2].

Now we must collect this coefficient information from the
LPF_Transfer equation, hence

◗ LPF_Transfer_Denominator := denom(LPF_Transfer):

Second_Order_Coeff := coeff(LPF_Transfer_Denominator,s,2);

First_Order_Coeff := coeff(LPF_Transfer_Denominator,s,1);

Zero_Order_Coeff := coeff(LPF_Transfer_Denominator,s,0);

Second_Order_Coeff := C1 R1 R2 C2
First_Order_Coeff := C1 R2 + R1 C2
Zero_Order_Coeff := 1

Associating these Maple coefficient extraction values with the general
LPF_Transfer results in the following second-order coefficients having
the circuit component values shown in Figure 2.1:

◗ Natural_Frequency_Radians := 1/sqrt(Second_Order_Coeff);

Damping_Factor := (Natural_Frequency_Radians/2)

*First_Order_Coeff;

Natural_Frequency_Radians := 1

√C1 R1 R2 C2

Damping_Factor := 1
2

C1 R2 + R1 C2

√C1 R1 R2 C2

Comparing these expressions with any standard control theory text on
second-order systems [1–3] shows the following for the natural frequency
ωN and damping factor ζ:

ωN = 1
√R1R2C1C2

ζ =
C2(R1 + R2)
2√R1R2C1C2

Applied Maple for Engineers and Scientists

46

Hence, these Maple symbolically derived expressions agree with the
previously cited texts.

If we want the Natural_Frequency_Radians in hertz, then

fN = 1
2π√R1R2C1C2

To impose a Butterworth or maximally flat amplitude response, or flat
passband gain, we need to impose the following on the damping factor:

ζ =
C2(R1 + R2)
2√R1R2C1C2

→ 1
√2

Hence, we have our first design constraint toward the design of a But-
terworth LPF. This constraint comes from [1] if the reader is interested in
discovering more about filter and network theory.

Now let’s build ourselves a very common Butterworth filter with a
1-kHz cutoff frequency.

Designing a 1-kHz Butterworth LPF
From the previously derived Natural_Frequency_Hertz and ζ
expressions, we state the following design constraints:

fN = 1
2π√R1R2C1C2

= 1,000 Hz

ζ =
C2(R1 + R2)
2√R1R2C1C2

=
1

√2

Now we have four unknowns in two equations, hence we need to re-
duce the number of independent variables by two. The most direct way is
to impose some initial constraints such as these:

R1 = R2 = R

Active filter design and analysis

47

C1 = βC2

Implementing this in a Maple session,

◗ Natural_Frequency_Hertz := 1/(2*Pi*sqrt(R1*R2*C1*C2)):

Damping_Factor := C2*(R1+R2)/(2*sqrt(R1*R2*C1*C2)):

R1 := R:

R2 := R:

C1 := beta*C2:

Results :=

solve({Natural_Frequency_Hertz=1000,

Damping_Factor=1/sqrt(2)},{beta,R}):

Solutions := subs(Results,[beta,R]):

beta := op(1,Solutions);

R := op(2,Solutions);

β := 2

R := 1
4000

√2

C2 π

Now we have two expressions that give us the nice result that the two
capacitors are related by an integer and all resistors are defined once we
pick a value for C2.

The fact that the capacitors are related by an integer is especially nice
from the practical standpoint that capacitor values have the added problem
of variable geometry (physical size) depending on type (polycarbonate,
polypropylene, paper, electrolytic, etc.), voltage rating, and physical
mounting configuration (axial or stand-up). Having an integer value for the
capacitors allows the designer simply to purchase two, three, or whatever
number of capacitors to complete the filter design. Matching capacitors for
a design is not nearly as easy as it is for matching two or more resistors.

At this point we simply try some values to initiate the LPF design. Gen-
erally, a designer starts with some simple resistor and capacitor values.
These values might be components that are readily available in the lab or
from a vendor. Consequently, we will start by letting R = 10,000Ω, which
forces C2 = 11,253 pF, which we will call .01 µF. Both of these component
values are common in most labs, electronic kits, or gutted electronic equip-
ment. The complete component value set then becomes

Applied Maple for Engineers and Scientists

48

R1 = R2 = 10,000Ω
C1 = 20,000 pF

C2 = 10,000 pF

Let’s use Maple to determine these coefficients’ effect on
LPF_Transfer :

◗ LPF_Transfer_Complex := subs(s=I*w,LPF_Transfer):

LPF_Transfer_Mag := evalc(abs(LPF_Transfer_Complex));

LPF_Transfer_Phase :=

arctan(evalc(Im(LPF_Transfer_Complex)/

Re(LPF_Transfer_Complex)));

LPF_Transfer_Mag := +

1 / 
1 − 2w2 C1 R1 R2 C2 + w4C12 R12 R22 C22 1

2
}

1⁄2





1
2

+ w2C22 R22 + 2w2C22 R2 R1 + R12 w2C22 



1⁄2

LPF_Transfer_Phase := − arctan




wC2 R2 + R1 wC2

1 − w2C1 R1 R2 C2





Bode magnitude and phase plots
Bode plots [1–3] are a convenient method for determining the magnitude
and phase response of any linear (or nonlinear in special cases) system.

Magnitude response
The magnitude response, shown in Figure 2.2, depicts the gain of the But-
terworth LPF over any particular frequency range. The Bode magnitude
plot will indicate any part of the LPF’s spectral response that is not “flat”
or, in other words, that exhibits some kind of ripple or varying gain with
frequency. The Butterworth criterion says this must not happen except
when uniformly decreasing after the cutoff frequency (which we have de-
cided is 1 kHz). The x-axis represents frequency units in hertz and the
y-axis represents gain, which is measured in decibels (dB), which can be
expressed as

Active filter design and analysis

49

dB = 20 log10




Output signal

Input signal





Technically speaking, gain is dimensionless; however, when expressed
in decibels, what you are actually expressing on the y-axis is output re-
sponse relative to the input excitation.

Phase response
The phase response, as shown in Figure 2.3, indicates how a sinusoidal
output signal’s phase will vary with respect to the input sinusoidal. Hence,
if the input signal is defined as zero phase, then a negative phase response
indicates that the output response will lag the input in time or, equiva-
lently, phase. Conversely, a positive phase indicates the output signal an-

0

−10

Decibel

−20

−30

−40

2.5 3 3.5 4

Frequency

Figure 2.2 Bode plot for Butterworth LPF (cutoff frequency = 1 kHz, damping factor = 0.7071, y-axis is

in decibels, x-axis is in 10N Hz).

Applied Maple for Engineers and Scientists

50

ticipates the input signal. This last case is impossible (how can an output
signal appear before the input signal was applied to the filter?) but can
mathematically appear as a result. What this means is that the circuit or sys-
tem has slipped a cycle, which might be 90 degrees, 180 degrees, 360 de-
grees, or other multiple value of the input sinusoidal phase. Such phase
slips are sometimes called Rice clicks in FM (frequency modulated) receiv-
ers [4], which use a phase-lock loop (PLL) topology approach to detecting
frequency changes from a central carrier frequency.

We plot the logarithmic form of LPF_Transfer_Mag versus fre-
quency (in hertz) as follows:

◗ with (plots):

readlib(log10):

LPF_Transfer_Mag_Subs := subs(w=2*Pi*f,R1=10000,

R2=10000,C1=20000*10^(-12),C2=10000*10^(-12),

LPF_Transfer_Mag):

LPF_Transfer_Mag_Decibel := 20*log10(LPF_Transfer_Mag_Subs):

f := 10^N:

plot (LPF_Transfer_Mag_Decibel,N=2..4,axes=boxed,

style=point,

symbol= cross ,color=black,labels=[Frequency,Decibel]);

The reader can see the nicely flat corner frequency at N = 3
(x-axis = 10N Hz) or 1 kHz. Further, due to the second order, the response
is around 35 to 40 dB below the passband, which is defined as the magni-
tude response below the cutoff frequency in a LPF.

Now let’s look at the phase plot over the same frequency range:

◗ LPF_Transfer_Phase_Subs :=

subs(w=2*Pi*f,R1=10000,R2=10000,C1=20000

*10^(-12),C2=10000*10^(-12),LP F_ Transfer_Phase):

plot (180/Pi*LPF_Transfer_Phase_Subs,N=2..4,axes=boxed,

color=black,labels=[Frequency,Phase]);

We can see a slight deviation from the ideal cutoff of 1 kHz in the
Figure 2.3 plot, because the phase shift should be −90 degrees at
N = 3 (103 = 1 kHz). Instead, we have a shift slightly less than the ideal
−90 degrees. Making sure that we are close, let’s numerically evaluate the
LPF_Transfer_Phase expression at ω = 2π(1000) with Maple:

Active filter design and analysis

51

◗ Cutoff_Phase := evalf(subs(f=1000,180/Pi*

LPF_Transfer_Phase_Subs));

Cutoff_Phase := −80.49366995

This indicates that our cutoff frequency is higher (i.e., 1 kHz) than
originally designed. In fact, using Maple, we can determine the actual half-
power point as follows:

◗ Phase_Cutoff_All := solve(LPF_Transfer_Phase_Subs=

-Pi/2.00001,f);

Phase_Cutoff_Real_Positive := select(type,

Phase_Cutoff_All],

positive(numeric));

Frequency

80

60

40

20

Phase 0

−20

−40

−60

−80

32.5 3.5 4

Figure 2.3 Phase plot for Butterworth LPF (cutoff frequency = 1 kHz, damping factor = 0.7071, y-axis is

in degrees, x-axis is 10N Hz).

Applied Maple for Engineers and Scientists

52

Phase_Cutoff_All := −1125.401644 , 1125.389145
Phase_Cutoff_Real_Positive := [1125.389145]

Obviously, the positive root is the one of interest, hence with the given
component values, the LPF cutoff is 1125.389145 Hz.

We could have arrived at a similar (though not identical value) actual
cutoff frequency by solving the LPF_Transfer_Mag expression for the
half-power point or where

LPF_Transfer_Mag = 1
√2

Therefore

◗ Value := evalf(1/sqrt(2)):

Mag_Cutoff_All := solve(LPF_Transfer_Mag_Subs=Value,f);

Mag_Cutoff_Real_Positive := select(type,[Mag_Cutoff_All],

positive(numeric));

Mag_Cutoff_All :=
1125.395395 , −1125.395395 , 1125.395395 I, −1125.395395 I
Mag_Cutoff_Real_Positive := [1125.395395]

As expected, the cutoff frequency is slightly higher than designed,
though by a small amount. Also, the numerical value is slightly different
than by the phase computations, but well within numerical acceptability.

Improvement on the 1-kHz Butterworth LPF
We have seen that we were off the design cutoff frequency by around 10%.
Consequently, for the sake of practicality, we will leave the two capacitors
at their current values and adjust the resistive components to trim the cut-
off frequency closer to the desired 1 kHz.

Starting with the following constraints:

C1 = .02 µF
C2 = .01 µF
R1 ≠ R2

Active filter design and analysis

53

and further adhering to the Butterworth criterion,

ζ =
√2
2

We also use the previous equations describing the Butterworth’s cutoff
frequency and damping factor:

fN = 1
2π√R1R2C1C2

= 1000

ζ =
C2(R1 + R2)
2√R1R2C1C2

= 1
√2

We now solve for the resistive values in Maple:

◗ C1 := .02*10^(-6):

C2 := .01*10^(-6):

Natural_Frequency_Hertz := 1/(2*Pi*sqrt(R1*R2*C1*C2)):

Damping_Factor := C2*(R1+R2)/(2*sqrt(R1*R2*C1*C2)):

Results :=

fsolve({Natural_Frequency_Hertz=1000,

Damping_Factor=1/sqrt(2)},{R1,R2},co mplex);

Solutions := subs(Results,[R1,R2]):

R1 := Re(op(1,Solutions));

R2 := Re(op(2,Solutions));

Results := 


R1 = 11253.95394 − .3785358168 I, 







R2 = 11253.95394 + .3785358168 I 




R1 := 11253.95394

R2 := 11253.95394

Notice that Maple found complex roots (after invoking the complex
argument within the fsolve command) for the resistance values, hence
we had to abstract the real values by invoking the Re command on the
Solutions operands result. Further, note the relative magnitude differ-
ence between the real and imaginary parts of the R1, R2 Result solu-
tions. What this indicates is that the solution roots (resistance values) are
identical. However, due to round-off error within Maple’s fsolve engine,

Applied Maple for Engineers and Scientists

54

the root-finding algorithm created some negative nonzero radicand value,
which, when evaluated numerically, created an imaginary component.
Consequently, users should always look at their results and evaluate these
findings within the framework of the defining filter equations. To prove
that the resistance values are valid, let’s substitute these component values
back into the Butterworth LPF’s equations. You can easily do this by
asking Maple to reiterate the Natural_Frequency_Hertz and
Damping_Factor values, since all component values are still in Maple’s
memory. Hence,

◗ Natural_Frequency_Check := evalf(Natural_Frequency_Hertz);

Damping_Factor_Check := evalf(Damping_Factor);

Natural_Frequency_Check := 1000.000001
Damping_Factor_Check := .7071067814

Not only are the component values numerically correct with easily
found capacitive values, but we have the added bonus that finding 1% met-
al film resistors with the required 11.2-kΩ value is quite easily done. Now
let’s put the new 1% metal film resistor values into the Butterworth design
and see what we obtain for a cutoff frequency and damping factor:

◗ R1 := 11.2*10^3:

R2 := 11.2*10^3:

C1 := .02*10^(-6):

C2 := .01*10^(-6):

Natural_Frequency_Hertz :=

evalf(1/(2*Pi*sqrt(R1*R2*C1*C2)));

Damping_Factor := C2*(R1+R2)/(2*sqrt(R1*R2*C1*C2));

Natural_Frequency_Hertz := 1004.817317
Damping_Factor := .7071067810

These component values are much better than our first attempt at real-
izing the desired Butterworth LPF design.

Butterworth LPF component sensitivity analysis
Now that we have seen (by both phase and magnitude computations) that
our designed cutoff frequency is correct, we need to investigate the sensitiv-

Active filter design and analysis

55

ity of the LPF to component values. Consequently, let’s define
the sensitivity function, SB

A, as

SB
A ≡ B

A
∂A
∂B

Simply stated, this function gives the percentage change of function A
with respect to variable B. Consequently, the sensitivity of the cutoff fre-
quency and damping factor to each of the component variables comprising
the Butterworth topology is given in Table 2.1.

Table 2.1
Sensitivity

cases of the
Butterworth LPF

Component
(variable)

Cutoff frequency
sensitivity




FN = 1

2π√R 1R 2C 1C 2





Damping factor
sensititivy





ζ = 1
2

C 2(R 1 + R 2)

√R 1R 2C 1C 2





R1 SR
1

f
N ≡ CASE_1 SR

1

ζ ≡ CASE_5

R2 SR
2

f
N ≡ CASE_2 SR

2

ζ ≡ CASE_6

C1 SC
1

f
N ≡ CASE_3 SC

1

ζ ≡ CASE_7

C2 SC
2

f
N ≡ CASE_4 SC

2

ζ ≡ CASE_8

We let Maple handle the calculus and algebra for the eight cases:

◗ N_F := 1/(2*Pi*sqrt(R1*R2*C1*C2)):

D_F := (C2*(R1+R2))/(2*sqrt(R1*R2*C1*C2)):

CASE_1 := simplify((R1/N_F)*diff(N_F,R1));

CASE_2 := simplify((R2/N_F)*diff(N_F,R2));

CASE_3 := simplify((C1/N_F)*diff(N_F,C1));

CASE_4 := simplify((C2/N_F)*diff(N_F,C2));

CASE_5 := simplify((R1/D_F)*diff(D_F,R1));

CASE_6 := simplify((R2/D_F)*diff(D_F,R2));

CASE_7 := simplify((C1/D_F)*diff(D_F,C1));

CASE_8 := simplify((C2/D_F)*diff(D_F,C2));

Applied Maple for Engineers and Scientists

56

Then we put the computed results into a tabular form, as shown in
Table 2.2. From Table 2.2, we see that for six out of eight possible cases,
the cutoff frequency and/or damping factor can exhibit a negative 50%
change or shift in cutoff frequency for a unit change in a particular compo-
nent’s value. However, cases 5 and 6 indicate that if R1 = R2, then there is
a zero component sensitivity for the LPF’s damping factor. This was the
initial design exercise for creating the Butterworth LPF. However, after
constraining the two capacitors to be integer multiples of each other (a
practicality issue), we found that the resistive values still came out equal.
Consequently, this final design result has the added bonus of having the
lowest damping factor change for any change between the two resistor
values.

Table 2.2
Maple computer

sensitivies

Component
(variable)

Cutoff frequency
sensitivity

Damping factor
sensitivity

R1 SR
1

f
N ≡ CASE_1 = − 1

2 SR
1

ζ ≡ CASE_5 = 1
2

R1 − R2

R1 + R2

R2
SR

2

f
N ≡ CASE_2 = − 1

2 SR
2

ζ ≡ CASE_6 = 1
2

R2 − R1

R1 + R2

C1
SC

1

f
N ≡ CASE_3 = − 1

2
SC

1

ζ ≡ CASE_7 = − 1
2

C2
SC

2

f
N ≡ CASE_4 = − 1

2
SC

2

ζ ≡ CASE_8 = − 1
2

What about situations when the values of the resistors are not equal?
Could this happen by design? Is it desirable to have unbalanced resistor
values in the Butterworth LPF topology? Let’s take a quick look at this
prospect.

Unequal resistance values in the Butterworth
LPF topology
From Table 2.2, we saw that unequal resistance values certainly increase
the cutoff frequency’s sensitivity to resistor component value change. That
is certainly not a desirable result. However, for the sake of design interest,
let’s force the following constraint:

Active filter design and analysis

57

R1 = αR2

C1 = βC2

where α, β are real scalars. Remember, we want β to retain its integer value
for practical reasons (that is, because of the difficulty of finding arbitrarily
related capacitor values). Now the Butterworth design equations become

fN = 1
2π√R1R2C1C2

= 1

2πR2C2√αβ
= 1000

ζ =
C2(R1 + R2)
2√R1R2C1C2

=
R2C2(α + 1)

2R2C2√αβ
= 1

√2

Again, we have four unknowns and two equations; therefore, let’s im-
pose the following criteria:

R2 = 12 kΩ
C2 = .01 µF

Solving for α, β we obtain

◗ R2 := 12*10^3:

C2 := .01*10^(-6):

Natural_Frequency_Hertz := 1/(2*Pi*R2*C2*sqrt(alpha*beta)):

Damping_Factor :=

R2*C2*(alpha+1)/(2*R2*C2*sqrt(alpha*beta)):

Results := solve ({Natural_Frequency_Hertz=1000,

Damping_Factor=1/sqrt(2)},{alpha,beta});

Solutions := subs(Results,[alpha,beta]):

alpha := op(1,Solutions);

beta := op(2,Solutions);

Results := 


β = 2.008828030 , α = .8756589909 




α := .8756589909
β := 2.008828030

Applied Maple for Engineers and Scientists

58

Consequently, under these constraints there was a unique solution
and we did retain a strongly integer relationship between C1,C2 while ob-
taining different resistor values. Therefore, the new component values of
the Butterworth LPF are as follows:

R1 = αR2 = 10.50 kΩ
R2 = 12 kΩ
C1 = βC2 = .02 µF

C2 = .01 µF

Again, the R1s are easily obtained in a 1% metal thin-film-type resistor
as are the R2s. However, as shown before in the sensitivity discussion, the
damping factor now has a greater resistance component sensitivity. In fact,
the sensitivity functions numerically compute to be

SR1

ζ = 1
2

R1 − R2

R1 + R2
= 1

2
(10.5 − 12)
(10.5 + 12)

= − .033

SR2

ζ = 1
2

R1 − R2

R1 + R2
= 1

2
(12 − 10.5)
(10.5 + 12)

= + .033

which indicates an approximate 3% variation in the damping factor for
every unit variation in the resistance values. Further, since the signs are op-
posite and the resistors will have identical temperature coefficients (pro-
vided they are the same type and physically close), any resistance change
due to temperature variation will be compensated for, causing little to no
significant effect on the Butterworth’s damping factor.

The capacitors’ sensitivity functions were not changed by this analysis
because the sensitivity function for them was independent of their specific
or relative value to each other.

One final cautionary note about the solve and
fsolve commands
Always view your results (regardless of what type of engineering problem
you are analyzing) to see if you have come up with any unexpected imagi-
nary terms as a result of Maple’s evaluation. In the previous component
evaluation case, we had imaginary terms, hence we needed to use the Re
command to abstract the real part of the solution. If we had not bothered to
look at the Results evaluation and simply went to abstract them, no output

Active filter design and analysis

59

would have been produced. This would have led the user to incorrectly be-
lieve there are no solutions (which Maple can do if no solutions exist to a
set of simultaneous equations). So make sure you always observe the
solve or fsolve commands’ results before continuing with your
analysis.

Now that we have a realistic 1-kHz Butterworth LPF design, let’s ex-
amine some simulations of output responses to some sinusoidal and step
functions.

The intent of a LPF is to attenuate frequencies beyond the designed
filter’s cutoff frequency. The question becomes one of how strongly we
want to attenuate and, therefore, how close can an interfering signal be to
the desired bandwidth before it becomes a problem for a given design.

Butterworth LPF test setup
Figure 2.4 represents our test setup for evaluating the Butterworth LPF un-
der the following conditions:

• Out-of-band signal attenuation;

• Step response.

Creating the signal sources in Maple, we get

◗ F1 := 500:

F2 := 5000:

Signal_1 := sin(2*Pi*F1*t);

Desired signal

Interfering signal

Signal #2
(5 KHz)

Signal #1
(500 Hz)

Signal #1
+

Signal #2

Butterworth LPF
(1000 Hz)

Filtered channel
information

Total channel
information

R1
R2

C1
C2

Σ

Figure 2.4
Test setup for LPF

measurements.

Applied Maple for Engineers and Scientists

60

Signal_2 := sin(2*Pi*F2*t);

Channel_Signal := Signal_1 + Signal_2;

Signal_1 := sin(1000 π t)
Signal_2 := sin(10,000 π t)
Channel_Signal := sin(1000 π t) + sin(10,000 π t)

then taking the Laplace transform of the total channel signal, which is the
summed input of the test signals shown in Figure 2.4, we have

◗ with(inttrans):

Channel_Signal_Laplace := expand(Laplace

(Channel_Signal,t,s));

Channel_Signal_Laplace :=

11,000
πs2


s2 + 1,000,000 π2



s2 + 100,000,000 π2



+ 110,000,000,000
π3


s2 + 1,000,000 π2



s2 + 100,000,000 π2



substituting the component values into the LPF_Transfer function pre-
viously derived results in the following:

LPF_Transfer = 1

R1R2C1C2s2 + (R1C2 + R2C2) s + 1

and multiplying the channel information by the Butterworth
LPF_Transfer function yields the filter’s output:

◗ LPF_Transfer := 1/(R1*R2*C1*C2*s^2+(R1*C2+R2*C2)*s+1):

LPF_Transfer_Subs := subs(R1=10.5*10^3,R2=12*10^3,

C1=.02*10^(-6),C2=.01*10^(-6),LPF_Transfer):

Filter_Output_Laplace := Channel_Signal_Laplace*

LPF_Transfer_Subs;

Active filter design and analysis

61

Filter_Output_Laplace :=




π s2


s2 + 1,000,000 π2



s2 + 1,000,000 π2











+ 110,000,000,000
π3


s2 + 1,000,000 π2



s2 + 100,000,000 π2







/


.2520000000 10−7 s2 + .0002250000000s + 1



Performing the inverse Laplace transform yields the time-domain re-
sponse, therefore,

◗ Filter_Output_Time := evalf(simplify(invlaplace

(Filter_Output_Laplace,s,t)));

Filter_Output_Time := .7060431942 sin(3141.592654 t)
− .6642910232 cos(3141.592654 t)
− .03851414293 sin(31415.92654 t)
− .01140445884 cos(31415.92654 t)
+ .4518843917 e(−4464.285714 t) sin(4444.400154 t)
+ .6756954821 e(−4464.285714 t) cos(4444.400154 t)

The Filter_Output_Time expression exhibits a steady-state and
transient output response. The transient aspects are easy to spot. They are
the output terms with the decaying exponential coefficients.

Now let’s plot the unfiltered and filtered information as shown in
Figure 2.4 to compare how well our Butterworth LPF has attenuated the
5-kHz interference signal:

◗ with(plots):

Filtered_Plot :=

plot(Filter_Output_Time,t=0..2*(1/500),style=line,

color=black):

Unfiltered_Plot :=

plot(Channel_Signal,t=0..2*(1/500),

linestyle=2,color=black,n umpoints=512):

display({Filtered_Plot,Unfiltered_Plot},axes=boxed,

labels=[Time,Output]);

Applied Maple for Engineers and Scientists

62

Figure 2.5 indicates that we have greatly attenuated the 5-kHz interfer-
ence, which was strongly corrupting our 500-Hz information. To increase
filtering, we would need to either lower the cutoff frequency toward the de-
sired frequency and/or increase the order of the Butterworth LPF. The cur-
rent design is attenuating the 5-kHz signal by a factor of

Attenuation ≈ 



fNoise

f−3dB





2

=




5000 Hz

1000 Hz





2

= 25

Hence, we have improved signal to noise (SNR) by 20 log10 (25) ≈ 28 dB.

Time

2

1

0

−1

−2
0.001 0.002 0.003 0.004

Output

Figure 2.5 Comparison between filtered and unfiltered output, both at 500 Hz (filtered signal, solid

line; unfiltered signal, dashed line).

Active filter design and analysis

63

Design iteration of LPFs for newer filtering
requirements
The question now arises: Is this sufficient attenuation for the given filtering
application? The answer is that it depends on the specification given to the
designer. Let’s say the customer looks at our design and realizes the final
design requires another 5 dB of 5-kHz signal attenuation before the prod-
uct is viable. There are two immediate approaches for obtaining
the increased 5-kHz signal attenuation:

1. Decrease the cutoff frequency;

2. Increase the order of the Butterworth LPF.

Solution 2 is viable when most of the passband up to 1 kHz is re-
quired. Using a higher order LPF than the currently designed second-or-
der LPF will more rapidly attenuate signals beyond the cutoff frequency
without causing excessive attenuation within the 1-kHz passband. How-
ever, the higher order filter will require more hardware, design time, and a
higher cost. If, on the other hand, we only need to see the 500-Hz signal,
then following solution 1 by reducing the cutoff frequency in the original
topology should be sufficient to fulfill the customer’s requirement.

Consequently, we reiterate the capacitive component restriction,

C1 = .02 µF

C2 = .01 µF

also knowing that we now need a total 5-kHz attenuation of

28 dB + 5 dB = 33 dB → 5 kHz

or about a 45-to-1 attenuation at 5 kHz. Further, we also want the follow-
ing criterion to hold true as well:

ζ =
C2(R1 + R2)
2√R1R2C1C2

= 1
√2

in order for the LPF topology to retain the Butterworth response. There-
fore, entering these constraints and constants into Maple,

Applied Maple for Engineers and Scientists

64

◗ readlib(unassign):

unassign (‘R1’,’R2’):

C1 := .02*10^(-6):

C2 := .01*10^(-6):

freq := 5000:

LPF_Transfer := 1/(R1*R2*C1*C2*s^2+(R1*C2+R2*C2)*s+1):

LPF_Transfer_Mag := evalc(abs(subs(s=2*Pi*I*freq,

LPF_Transfer)));

Damping_Factor := C2*(R1+R2)/(2*sqrt(R1*R2*C1*C2));

LPF_Transfer_Mag := 1 / 

−.2000000000 10−7 R1 R2 π2 + 1



2







1
2

+ (.0001000000000 πR1 + .0001000000000 πR2)2



1⁄2

Damping_Factor := .3535533907
R1 + R2

√R1 R2

Now, working backwards, we solve the LPF_Transfer_Mag equa-
tion for the unknown resistors, R1,R2, by invoking the computed filter’s
magnitude response at 5 -kHz and the Damping_Factor constraint for
ensuring a Butterworth response:

◗ Solutions_45db := solve({LPF_Transfer_Mag=1/45,

Damping_Factor=1/sqrt(2)},{R1, R2});

Results := subs(Solutions_45db,[R1,R2]):

R1 := op(1,Results);

R2 := op(2,Results);

Solutions_45db := 



R1 = 19042.39265 , R2 = 12694.92848 



R1 := 19042.39265
R2 := 12694.92848

These resistor values correspond to a new cutoff frequency (in hertz) of

◗ Natural_Frequency_Hertz :=

evalf(1/(2*Pi*sqrt(R1*R2*C1*C2)));

Natural_Frequency_Hertz := 723.8177791

Active filter design and analysis

65

which is acceptable, since this does not attenuate the 500-Hz signal, retains
the Butterworth response, and produces 5 dB more attenuation at the
5-kHz interference spectral location.

The final Butterworth LPF filter design that incorporates all of the pre-
vious customer requirements is as follows:

R1 = 19KΩ → 1% metal film

R2 = 12.7KΩ → 1% metal film

C1 = .02µF

C2 = .01µF

Now, let’s use the test setup with these new design values and see what
the output appears as.

◗ with(plots):

with(inttrans):

F1 := 500:

F2 := 5000:

Signal_1 := sin(2*Pi*F1*t):

Signal_2 := sin(2*Pi*F2*t):

Channel_Signal := Signal_1 + Signal_2:

Channel_Signal_Laplace := expand(laplace

(Channel_Signal,t,s)):

LPF_Transfer := 1/(R1*R2*C1*C2*s^2+(R1*C2+R2*C2)*s+1):

LPF_Transfer_Subs := subs(R1=19*10^3,R2=12.7*10^3,

C1=.02*10^(-6),C2=.01*10^(-6),LPF_Transfer):

Filter_Output_Laplace := Channel_Signal_Laplace*

LPF_Transfer_Subs:

Filter_Output_Time :=

evalf(simplify(invlaplace

(Filter_Output_Laplace,s,t))):

Filtered_Plot :=

plot(Filter_Output_Time,t=0..2*(1/500),

style=line,color=black):

Unfiltered_Plot :=

plot(Channel_Signal,t=0..2*(1/500),

linestyle=2,color=black,numpoints=512):

display({Filtered_Plot,Unfiltered_Plot},axes=boxed,

labels=[Time,Output]);

Applied Maple for Engineers and Scientists

66

Compare Figure 2.6 to Figure 2.5 and there are two immediate obser-
vations. First, the filtered output (solid line) is somewhat smoother in
Figure 2.6 and, second, there is a slightly greater phase shift between the
filtered and unfiltered signals in Figure 2.6. The extra smoothness in
Figure 2.6 is directly attributable to the added filtering (5 dB more) of the
5-kHz interference signal. The added phase shift is again caused by the ex-
tra low-pass filtering and should not be a surprise.

In brief, we have gone through two iterations of the Butterworth LPF
to improve on the required electronic components and a third iteration to
accommodate the added 5 dB at 5-kHz attenuation required in the cus-
tomer’s updated requirement.

Unit step response
Another important aspect of filtering is the filter’s step response. This
measure indicates how well a filter allows rapidly changing signals to be re-

Time

2

1

0

-1

-2

Output

0.001 0.002 0.003 0.004

Figure 2.6 Final Butterworth LPF design (filtered signal [500 Hz], solid line; unfiltered signal [500 Hz +

5000 Hz], dashed line).

Active filter design and analysis

67

constructed after filtering. Obviously, a low-pass filter is not going to pass a
fast transition very well by definition; however, with that said, certain step
responses are still required of LPFs even when one is trying to suppress
high-frequency noise.

Using our previously described Butterworth 1-kHz LPF, let’s intro-
duce the step function:

VIN = 



0
1

t < 0
t ≥ 0





The Laplace transform of this is simply

L [VIN = Unit step] = 1
s

then recomputing the Butterworth LPF’s output with the step input, we get

◗ with(plots):

readlib(laplace):

R1 := 19*10^3:

R2 := 12.7*10^3:

C1 := .02*10^(-6):

C2 := .01*10^(-6):

LPF_Transfer := 1/(R1*R2*C1*C2*s^2+(R1*C2+R2*C2)*s+1):

Multiplying by the input step transform yields the output Laplace
expression

◗ Output_Laplace := LPF_Transfer*(1/s);

Output_Laplace := 1


.4826000000 10−7 s2 + .0003170000000 s + 1

 s

and taking the inverse transform gives the final equation for the output’s
time domain response, Output_Time ,

Applied Maple for Engineers and Scientists

68

◗ Output_Time := invlaplace(Output_Laplace,s,t);

Output_Time := 1. − 1.042002364 e(−3284.293411 t) sin(3151.905911 t)
− 1. e(−3284.293411 t) cos(3151.905911 t)

Not surprisingly, we have the unit output with two exponentially de-
caying sinusoidals. Plotting this result shows one of the reasons why Butter-
worth filters are not the best for maximally flat transient response.

◗ with(plots):

Unit_Step := 1:

Step_Plot := plot(Unit_Step,t=0..+.002,linestyle=3,

color=black):

Response_Plot :=

plot(Output_Time,t=0..+.002,style=line,

color=black):

display({Step_Plot,Response_Plot},axes= boxed,labels=

[Time,Output]);

Figure 2.7 shows a substantial overshoot at around 0.001 second,
which is caused by the group phase delay associated with any LPF topol-
ogy. Butterworth filters are maximally flat passband magnitude, not phase,
filters. Thompson or Bessel filters, which have a small amount of passband
magnitude ripple, will give much smoother phase response to fast or tran-
sient signals. In fact, these filter topologies are known as maximally flat
phase filters [3,4].

Conclusion
In this section, Maple has allowed the us to characterize, analyze, and de-
sign the dynamics of the Butterworth LPF in terms of:

1. The overall transfer function;

2. Optimized component values that are physically realizable;

3. LPF sensitivity to component values;

4. Altered design values in order to change the LPF’s response;

5. Viewing the LPF’s time-domain unit step response.

Active filter design and analysis

69

Maple has the great ability to exercise any dynamic topology (in
this case, a linear electronic circuit) under any number of interesting condi-
tions. In the case of the Butterworth LPF, we chose a rather common appli-
cation of interference signal attenuation. We arbitrarily created a desired
and undesired signal channel and simulated the Butterworth LPF’s func-
tion. Then with Maple’s symbolic, numeric, and graphic capabilities, we
were able to see and test the results of our design and how sensitive the de-
sign was to real component values. This, in turn, helps the designer realize
the efficacy of the chosen LPF, the component values, and the topology’s
relative sensitivity to component variations.

Admittedly, we reused many Maple command lines repetitively
throughout this and other sections, but with one specific purpose in mind.
The more the user sees certain command structures, the more those basic
structures should become instinctive when used for more advanced and
general-purpose applications.

1

0.8

0.6

0.4

0.2

0

Output

Time

0 0.005 0.001 0.0015 0.002

Figure 2.7 Butterworth LPF step response (cutoff = 723.81 Hz).

Applied Maple for Engineers and Scientists

70

Case II: comb filter analysis and design
A very interesting set of filters has been derived using switched capacitor
circuits. These filters have the desirable property of programmable attrib-
utes such as passband gain, cutoff frequency, and other features completely
specified by a simple digital clocking signal. One of the more common im-
plementations of this idea uses a charge-coupled device (CCD) technology.
This approach is fabricated in silicon and is functionally equivalent to a se-
ries of capacitors that moves their respective signal charge via a discrete
clocking signal from one end of a serial register to the opposing end as
shown in Figure 2.8. The reader should note that Figure 2.8 is only a
crude model of how real CCD technology is implemented, but this simple
model will suffice for our analysis purposes.

Table 2.3 shows the basic description of the switches (S1, S2, S3, ...,
Sn) as a function of the clocking period (1/Fclock).

Upon the nth clock period, the signal is entered into the output buffer
by switching to Sn’s “0” state. Consequently, after n clock periods, the
CCD register is completely updated with new values introduced by the
input buffer (provided we have a one translation per clock signal). In
essence, you have an analog first-in/first-out register or FIFO. The CCD
shift registers come in a variety of sizes starting with as few as 64 cells and
increase all the way up to around 16,000 cells as well as some serial-paral-
lel combinations for producing serial-in/parallel-out protocols.

+ + + + +

Sequential
logic

Input
buffer

Signal direction flow

All amplifiers have a +1 gain

Output
buffer1 1 1 10 0 0 0

Fclock

S1

C

S2

C

S3

C

Sn

C

Figure 2.8 Basic circuit model of a serial CCD.

Active filter design and analysis

71

Table 2.3
Switch states for

CCD model

Switch states

Clock
period S1 S2 S3 … Sn

0 1 0 0 0

1 0 1 0 0

2 0 0 1 0

3 0 0 0 0

n_1 0 0 0 1

n 1 0 0 0

Filter derivation and analysis
A simple analog model of this delay element can be stated as

f(t − T)

where

T =
No. of CCD cells

Fclk

Taking the Laplace transform with Maple of this delay element yields

◗ with(inttrans):

Time_Delay_Integrate := simplify(int(f(t-T)*exp(-s*t),

t=0..infinity));

Time_Delay_Laplac e := expand(laplace(F(t-T),t,s));

Time_Delay_Integrate := ∫
0

∞
f(t − T) e(−st) dt

Time_Delay_Laplace := Laplace (F(t −T), t, s)

Applied Maple for Engineers and Scientists

72

Unfortunately, Maple cannot evaluate this transform with either the
definition form, Time_Delay_Integrate , or through the internal li-
brary, Time_Delay_Laplace . Consequently, we need to look it up in a
mathematics table, which will show you that the following is a Laplace
transform of the general delay function:

L(f (t − T)) = e−sT

The comb filter uses this delay element in a classic feedback topology
that is used to create a periodic passband transfer function. Graphically,
this control diagram appears as shown in Figure 2.9. In Figure 2.9, the
feedback gain, α, has the adjustable range

0 ≤ α < 1

The feedback cannot be allowed to reach unity due to the generation
of a sustained output with no input (oscillation). However, in some de-
signs, this aspect is desired.

The overall transfer function of Figure 2.9 then becomes

H(s) = e−sT

1 + αe−sT

Entering this expression into Maple α → alfa

Input Delay
element

Output

α

Σ
+

−

Figure 2.9
Control diagram

of comb filter.

Active filter design and analysis

73

◗ H_Laplace := (exp(-s*T))/(1+alfa*exp(-s*T));

H_Laplace := e(−sT)

1 + alfa e(−sT)

upon substituting s = Iω into the transfer expression, we obtain

◗ H_JW := subs(s=I*w,H_Laplace);

H_JW := e(−I w T)

1 + alfa e(−I w T)

Taking advantage of Euler’s identity, which states the following:

e±jωT = cos(ωT) ± j sin(ωT)

and substituting this identity into the H_JWexpressions and simplifying,
we get these results:

◗ H_Euler := subs(exp(-I*w*T)=cos(w*T)-I*sin(w*T),H_JW);

H_Euler :=
cos(wT) − I sin(wT)

1 + alfa (cos(wT) − I sin(wT))

Remembering that Maple uses “I” instead of “j” to represent an imagi-
nary quantity, we evaluate the transfer function’s magnitude response:

◗ H_Mag := simplify(evalc(abs(H_Euler)));

H_Mag := √1

1 + 2 alfa cos(wT) + alfa2

Determining the maximal responses requires us to substitute a dummy
variable for the wT product in the H_Magexpression, then take the deriva-
tive with respect to that dummy variable:

Applied Maple for Engineers and Scientists

74

wT = A

d(H_Mag)
d(A)

= 0

and then substitute the value of wT into the H_Magexpression. Therefore,

◗ H_Mag_A := subs(w*T=A,H_Mag):

H_Mag_Derivative := diff(H_Mag_A,A);

H_Mag_Derivative :=
alfa sin(A)

√1

alfa2 + 2 alfa cos(A) + 1

alfa2 + 2 alfa cos(A) + 1


2

and solving for the variable A that will gives us zero derivative,

◗ Solution := solve(H_Mag_Derivative=0,A);

Solution := π, 0

However, we do not know which value corresponds to the maximum
rather than the minimum associated with the valleys between peaks. There-
fore, we should take a second derivative and substitute the [0, π] values to
determine which value is referring to the maximum. To facilitate this com-
putation, we will arbitrarily assign alfa =.50 so the derivative test func-
tions evaluate numerically. This is acceptable, because alfa affects not
the location but the heights of the maximal peaks.

◗ H_Mag_Derivative_2 := diff(H_Mag_Derivative,A):

H_Mag_D1 := evalf(subs(A=0,alfa=.5, H_Mag_Derivative_2));

H_Mag_D2 := evalf(subs(A=Pi,alfa=.5, H_Mag_Derivative_2));

H_Mag_D1 := .1481481482
H_Mag_D2 := −4.000000000

Active filter design and analysis

75

Clearly, the second computation, H_Mag_D2, indicates the negative
change when evaluated at π, hence the maximal peaks are at the odd inte-
ger multiples of π or

A = π, 3π, 5π, … or
A = (2N + 1)π where N = 0, 1, 2, 3, …

So now, let’s redefine the H_Magexpression by substituting this peri-
odic function for the dummy variable, A,

◗ H_Mag := subs(A=(2*N+1)*Pi,H_Mag_A);

H_Mag := √1

alfa2 + 2 alfa cos((2 N + 1) π) + 1

To get a sense of how this filter’s transfer function behaves, let’s plot
several graphs onto one common plot with various values of alfa :

◗ with(plots):

alfa := .25:

Plot_1 := plot(H_Mag,N=0..2,color=black,style=point,

symbol=cross):

alfa := .50:

Plot_2 := plot(H_Mag,N=0..2,color=black,style=point,

symbol=diamond):

alfa := .75:

Plot_3 := plot(H_Mag,N=0..2,color=black,style=point,

symbol=circle):

display({ Plot_1,Plot_2,Plot_3},axes=boxed,

labels=[N_Value,MAG]);

Figure 2.10 shows each discrete resonant peak whose amplitude or
gain function within any peak region is greatly affected by the alfa vari-
able. In fact, the peak value is completely determined by this variable.

To get an even larger picture of the comb filter’s behavior let’s produce
a 3-D plot of the transfer function’s response versus alfa and N. First we
must redefine alfa as a variable, since this Maple session remembers it as
a numerical value (namely, alfa =.75 from Figure 2.10):

Applied Maple for Engineers and Scientists

76

◗ alfa := ‘alfa’:

plot3d(H_Mag,alfa=.25..+.75,N=0..2,color=black,

style=hidden,axes=boxed,labels=[alfa,N_Value,MAG]);

Notice that the peak locations in Figure 2.11 do not change with alfa;
however, as stated, the magnitude of the peak responses is greatly affected.
Also, the general shape about any peak is identical and not a function of lo-
cation, but, again, of the variable alfa .

Determining the peak response value for any peak is simply H_Mag
evaluated by any integer value of N, hence,

◗ H_Mag_Peak_Value := subs(cos((2*N+1)*Pi)=-1,H_Mag);

H_Mag_Peak_Value := √1

alfa2 − 2 alfa + 1

4

3.5

3

2.5

2

1.5

1

0.5 1 1.5 2

N_Value

MAG

Figure 2.10 General comb filter response for various values of Alfa (alfa =.75, circles; alfa =.50,

diamonds; alfa = .25, crosses).

Active filter design and analysis

77

Warning: a common pitfall associated with plotting
At this point, the author would like to point out a common error associated
with deriving graphic results without having some a priori knowledge
about the problem.

Let’s replot Figure 2.11, but give it many more peaks, say, N= 10, and
produce the corresponding 3-D plot over the same range of alfa .

◗ plot3d(H_Mag,alfa=.25..+.75,N=0..10,color=black,

style=hidden,axes=boxed,labels=[alfa,N_Value,MAG]);

Figure 2.12 shows that we have 11 peaks, which is correct (N=0,1, 2,
3, ..., 10), but the peaks are badly distorted. So what happened? The
mathematics are correct, but the graphics are undersampled for the func-
tion being plotted. What this means is when you have 11 peaks, we should
have a resolution (at least in the N_Value axis) of twice this value (the sam-
pling theorem strikes again!). Maple has a default 3-D plotting grid of
25 × 25, which, in this case, was sufficient to show the peaks’ existence,
but not of sufficient quality to depict the equally high and spaced profiles
we expected. Hence, replotting Figure 2.12 with an increase in the resolu-
tion using the grid plotting option should increase the quality of the dis-
torted peaks.

4

3.5

3

2.5
MAG

2

1.5

1

0
0.5

1
1.5

2N_Value 0.7
0.6

0.5
alfa

0.4
0.5

Figure 2.11
3-D plot of the

comb filter’s
response.

Applied Maple for Engineers and Scientists

78

◗ plot3d(H_Mag,alfa=.25..+.75,N=0..10,color=black,

style=hidden,axes=boxed,labels=[alfa,N_Value,MAG],

grid=[50,50]);

Figure 2.13 definitely shows higher quality information, but the peaks
are still badly distorted because we are not seeing the equally peaked reso-
nant peaks associated with the comb filter. It appears that simply doubling
the resolution is not quite good enough resolution to show graphically the
11 peak responses. Hence, we increase the resolution to
GRID=[100,100] :

◗ plot3d(H_Mag,alfa=.25..+.75,N=0..10,color=black,

style=hidden,axes=boxed,labels=[alfa,N_Value,MAG],

grid=[100,100]);

Figure 2.14 is much better, but, again, one could come to a false con-
clusion about the filter’s response over this resonance range.

If we were to increase the 3-D resolution to 200 × 200, we would see
pretty much what is shown in Figure 2.14, but at a much heavier (four
times heavier) computational cost to our computer’s resources. The lesson
here is simple: Display only what you need to display and have a little a pri-
ori knowledge about your problem. These simple rules will keep you from
getting erroneous results.

4

3.5

3

2.5
MAG

2

1.5

1

0
0.5

1
1.5

2
N_Value 0.7

0.6
0.5
alfa

0.4
0.5

Figure 2.12
3-D plot of comb

filter response.

Active filter design and analysis

79

Another approach that is extremely useful is that, because we do not
need high resolution along the alfa axis, we could have specified a
GRID=[200,25] plotting option. This would greatly reduce computa-
tional resources (one-eighth that of the 200 × 200 grid plot) and still allow
us to visualize graphically the comb filter’s response.

4

3.5

3

2.5
MAG

2

1.5

1

0
0.5

1
1.5

2N_Value 0.7
0.6

0.5
alfa

0.4
0.5

Figure 2.13
3-D plot of
comb filter

response with the
GRID=[50,50]

option.

4

3.5

3

2.5
MAG

2

1.5

1

0
0.5

1
1.5

2N_Value 0.7
0.6

0.5
alfa

0.4
0.5

Figure 2.14
3-D plot of
comb filter

response with the
GRID=[100,100]

option.

Applied Maple for Engineers and Scientists

80

Separating a known signal from an interfering
neighboring background design
Now returning to our comb filter analysis, suppose we want to examine
how much filtering of a signal from an interfering neighboring signal we
can derive by using this type of filter.

Figure 2.15 shows the experimental test setup we are going to emulate
with Maple. Further, let’s define the input signals as follows:

Signal 1 = sin(2π × 100t)
Signal 2 = sin(2π × 200t)

Since we want to recover the signal #1 sinusoidal, the comb filter
should have its peak centered at signal #1’s value. At this point, we need to
define the wT argument as

wT = 2πfT

where, in particular,

w = 2πfi

T =
No. of CCD cells

fclk
→ Effective CCD time delay

fi → Information frequency
fclk → CCD clocking frequency

Signal #1

Signal #2

Comb
filter

Signal #1

Signal #1 = Desired signal
Signal #2 = Interfering signal

Σ

Figure 2.15
Signal separation

application.

Active filter design and analysis

81

We defined this at the peak response when the sinusoidal argument
was defined by

wT = (2N + 1) π

where N = 0, 1, 2, 3, …

but now we need to implement the variables associated with the physical
device.

The variable T is defined as the total delay with the CCD, which is a
function of both clocking speed, fclk, and number of delay cells, (number of
CCD cells). Substituting this knowledge into the wT expression
results in

wT = 2πfN




Cells
fclk





+ (2N + 1)π

Therefore, solving for fN yields

fN =
2N + 1

2T

Further, since the number of CCD delay cells can be made arbitrary
without affecting the quality of the analysis, let’s give it an arbitrary value
of 1000 (actually, most real units have 1024 as a normal cell count). Substi-
tuting this fact into the fN expression gives the location (in hertz) of the
comb filter’s peak responses as a function of the clocking rate and peak
harmonic, N:

fN(Hz) =
2N + 1

2




fclk

Cells




=
2N + 1

2




fclk

1000




=
(2N + 1) fclk

2000

Applied Maple for Engineers and Scientists

82

Finally, we give the fundamental and harmonic peak centers and the as-
sociated frequencies for this physical design in Table 2.4.

Table 2.4
Relationship

between
fundamental and

harmonic peak
centers and

associated passed
signals (based on

1024 cells)

N fN (Hz)
Frequency
passed (Hz)

0 (fundamental) fclk
2000

100

1 (third harmonic) 3fclk
2000

300

2 (fifth harmonic) 5fclk
2000

500

From Table 2.4, we see that the following is true if the CCD’s clocking
speed is set to acquire the fundamental (i.e., N= 0):

fclk

2000
= 100 or

fclk = 200 kHz

Now let’s set up the signals from before and compute the magnitude re-
sponse of the comb filter:

◗ with (inttrans):

H := (cos(w*T)-I*sin(w*T)+alfa)/(alfa^2+2*alfa*cos(w*T)+1):

H_Mag := simplify(evalc(abs(H)));

H_Mag := √1

alfa2 + 2 alfa cos(w T) + 1

Now we know from Table 2.4 that we need a clocking frequency of
200 kHz to acquire the desired signal (100 Hz) and maximally reject the in-
terfering neighbor (200 Hz). Hence, we substitute this value, along with
the CCD cell count to arrive at the effective T value or

Active filter design and analysis

83

T =
CCD cell count

fclk
= 100

200 kHz
= .005

also substituting

w = 2πf1

Hence, we put these values into the Maple H_Magexpression:

◗ H_Mag_General := subs(T=.005,w=2*Pi*Fi,H_Mag);

H_Mag_General := √1

alfa2 + 2 alfa cos(.010 π Fi) + 1

We then compute the comb filter’s rejection ratio as defined by

Rejection ratio =
Passband response

Stopband response
=

H_Mag_General (Fi = 100 Hz)
H_Mag_General (Fi = 200 Hz)

for a given alfa and implement this definition in Maple:

◗ H_Mag_General_100 := subs(Fi=100,H_Mag_General):

H_Mag_General_200 := subs(Fi=200,H_Mag_General):

Rejection_Ratio :=

simplify(H_Mag_General_100/H_Mag_General_200);

Rejection_Ratio =
√1

alfa2 − 2. alfa + 1

√1

alfa2 + 2. alfa + 1.

Let’s plot this function as a function of alfa to see what kind of values
we need to consider for sufficient attenuation of the neighboring signal
(200 Hz).

Applied Maple for Engineers and Scientists

84

◗ plot(Rejection_Ratio,alfa=0..+.9,color=black,axes=boxed,

labels=[alfa,RR]);

It might be easier to replot Figure 2.16 with a log plot, since engineers
usually discuss ratios in terms of decibels (see Figure 2.17). Hence,

◗ readlib(log10):

Rejection_Ratio_DB := 20*log10(Rejection_Ratio):

plot(Rejection_Ratio_DB,alfa=0..+.9,color=black,axes=boxed

labels=[alfa,DB]);

Therefore, for a given rejection ratio, we can decide how much the
neighboring signal needs to be attenuated. If the interfering signal were
closer, say, at 120 Hz, we would have to operate much higher values of
alfa (i.e., closer to unity), but with the disadvantage of amplitude stability
at the desired signal.

18

16

14

12

RR

8

6

4

2

10

0.2 0.4 0.6 0.8
alfa

Figure 2.16 Rejection ratio (RR) between 100- and 200-Hz signals.

Active filter design and analysis

85

An easier and more often used method for increasing the attenuation of
very close signals is by cascading two or more comb filters. This method al-
lows the use of more stable alfa values on a per-stage basis, while greatly
increasing the attenuation of the unwanted neighboring frequency.

Cascading comb filters
We can quickly look at the passband profile result associated with two
filters that are cascaded, because all of the constituent CCD switching filter
equations are in Maple’s memory, and there is no need to derive any pre-
vious relationships because that has already been done for the single filter
case. Therefore, assuming no loading of the filters (i.e., the output of the
first filter does not “see” the input impedance of the second filter … a valid
approximation for real hardware), and identical filter topologies, the cas-
caded transfer function can be simply stated from Figure 2.18.

dB

2525

20

10

5

0

15

alfa
0.2 0.4 0.6 0.8

Figure 2.17 Log plot of Figure 2.16.

Applied Maple for Engineers and Scientists

86

Enter into Maple the transfer function magnitude of the original filter
transfer function

◗ with(inttrans):

H_Laplace := (exp(-s*T))/(1+alfa*exp(-s*T)):

then obtain the magnitude

◗ H_JW := subs(s=I*w,H_Laplace):

H_Euler := subs(exp(-I*w*T)=cos(w*T)-I*sin(w*T),H_JW):

H_Mag := simplify(evalc(abs(H_Euler)));

H_Mag := √1

1 + 2 alfa cos(wT) + alfa2

Because this is the magnitude, we need only square the H_Magand
substitute the sinusoidal argument function, wT = (2N + 1) π, into both
expressions, to obtain the two periodic transfer functions. Hence,

◗ H_Mag := subs(w*T=(2*N+1)*Pi,H_Mag);

H_Mag_Cascade := subs(w*T=(2*N+1)*Pi,H_Mag^2);

H_Mag := √1

1 + 2 alfa cos((2 N + 1)π) + alfa2

H_Mag_Cascade := 1

1 + 2 alfa cos((2 N + 1) π) + alfa2

Clocking
frequency

Input
signal

Switching filter
number 1

Switching filter
number 2

Output
signal

Figure 2.18
Cascaded

switching filter
topology.

Active filter design and analysis

87

We will use the same three alfa values as computed and displayed in
Figure 10, hence

◗ with(plots):

alfa := .25:

Plot_1 := plot(H_Mag_Cas-

cade,N=0..2,color=black,style=point,symbol=cross):

alfa := .50:

Plot_2 := plot(H_Mag_Cascade,N=0..2,color=black,style=point,

symbol=diamond):

alfa := .75:

Plot_3 := plot(H_Mag_Cascade,N=0..2,color=black,style=point,

symbol=c ircle):

display({Plot_1,Plot_2,Plot_3},axes=boxed,

labels=[N_Value,MAG]);

Note the gain goes as the square, hence the selectivity is greater than
the single filter stage. This is evident since the rate of change as you move
along the x-axis in Figure 2.19 is greater than that in Figure 2.10. To prove
this, let’s evalute the ratio of the two normalized (i.e., both transfers maxi-
mized for unity) filter functions and plot the result as a function of different
alfas :

◗ H_Mag_Norm := H_Mag*abs(alfa-1):

H_Mag_Cascade_Norm := H_Mag_Norm^2:

H_Mag_Ratio := simplify

(subs(w*T=(2*N+1)*Pi,H_Mag_Norm/H_Mag_Cascade_Norm));

H_Mag_Ratio := √1

1 − 2 alfa cos(2 π N) + alfa2


1 − 2 alfa cos(2 π N) + alfa2

 / ( alfa − 1 )

Now plotting H_Mag_Ratio ,

◗ with(plots):

alfa := .25:

Plot_1 := plot(H_Mag_Ratio,N=0..2,color=black,style=point,

symbol=cross

Applied Maple for Engineers and Scientists

88

Plot_2 := plot(H_Mag_Ratio,N=0..2,color=black,style=point,

symbol=diamo nd):

alfa := .75:

Plot_3 := plot(H_Mag_Ratio,N=0..2,color=black,style=point,

symbol=circle) :

display({Plot_1,Plot_2,Plot_3},axes=boxed,

labels=[N_Value,MAG]);

Figure 2.20 shows that as we vary the alfa value, the ratio is always
greater than unity, indicating that the denominator function (normalized
cascaded transfer) is less than the numerator (normalized noncascaded
transfer). Note further that at the passband peaks (N_Value =0, 1, 2, ...),
the ratio must be unity because both functions were normalized for their
maximums. Consequently, all values outside the peaks are ratiometrically
greater than unity, indicating the cascaded switching filter has higher selec-
tivity for any given alfa .

16

14

12

10

8

6

4

2

MAG

N_Value

0 0.5 1.5 21

Figure 2.19 General cascaded comb filter response for various alfa (alfa = .75, circles; alfa = .50,

diamonds; alfa = .25, crosses).

Active filter design and analysis

89

Conclusion
The idea of controlling the center or pass frequency by adjusting a digital
clocking signal has great appeal for those of us involved with computer-
controlled processes. Certainly, such a filter is extremely useful in the tele-
communications business where sharp neighborhood signal rejection is
important when a company is trying to squeeze as many voice channels
onto one line a possible without crosstalk or aliasing taking place within
any one isolated information band. Other immediate applications of the
switching bandpass filter can be used in a tracking filter scheme where an
input signal is tracked as the clocking frequency changes to maximize the
received input signal. The correction or error signal generated would be
fed to a voltage-controlled oscillator (VCO) that clocks the CCD. This, in
effect, is what your frequency-modulated (FM) receiver does, though not
using CCD technology (primarily due to cost).

Maple allowed us to delve into some of the dynamics of the equations
that describe CCD operation. From the manipulation of these equations,

7

6

5

4

3

2

1

MAG

0 0.5

N_Value

1.5 21

Figure 2.20 Ratio of single-to-cascaded transfer functions versus various values of alfa (alfa = .75,

circles; alfa = .50, diamonds; alfa = .25, crosses).

Applied Maple for Engineers and Scientists

90

we were able to ascertain operating parameters necessary to acquire a cho-
sen frequency, while rejecting a close neighboring interfering signal. We
were also able to see graphically what was happening in the neighboring
spectrum (i.e., the rate of increasing attenuation around the centrally
passed frequency).

As to the issue of cascading switching filters to enhance neighboring
signal attenuation, the basic premise of multiplying transfer function magni-
tudes and Maple gave us a quick look into what improvements we can ex-
pect without getting the user reinvolved with the constituent relationships.
This saved a tremendous amount of time and effort by not having to revisit
the basic mathematical structures of the CCD switching filter.

References:

[1] Tietze, U., and C. Schenk, Advanced Electronic Circuits, New York:
Springer-Verlag, 1978.

[2] Roberge, J. K., Operational Amplifiers: Theory and Practice, New
York: John Wiley & Sons, 1975.

[3] Weinberg, L., Network Analysis and Synthesis, New York:
McGraw-Hill Book Co., 1962.

[4] Krauss, H. L., C. W. Bostian, and F. H. Raab, Solid State Radio
Engineering, New York: John Wiley & Sons, 1980.

Active filter design and analysis

91

Applied Maple for Engineers and ScientistsCurve fitting

Chapter 3
Curve fitting

Introduction

The example we examine in this chapter is a typical situation that
scientists and engineers come in contact with during routine analy-
sis of a new piece of equipment, phenomena, or an algorithm de-

velopment. There are two general types of data curve fitting. The first is
involved with determining the best fit given very few data points (a data-
starved problem). The second type is used when there are thousands of
data points (a data-rich problem). Generally, abstracting the desired infor-
mation from each of these categories can be tedious and full of pitfalls in
terms of what the observer believes he or she is getting. Beyond these two
classifications of data fitting, the reader should realize that we are going to
talk about interpolators (i.e., estimators) as opposed to extrapolators (i.e.,
predictors), which could generate several books of information by
themselves.

93

Another important aspect about regression estimators is the cost func-
tion used to determine “goodness of fit” of the observed data to the model.
Perhaps the most common is called the least squares error (LSE), which
defines the error as

LSE = min ∑
i=1

N



yi

observed − yi
estimate


2

Conceptually, an algorithm (and there are many) attempts to minimize
differential or error between the observed (yobserved) and estimated
(yestimated) data at successive points along the modeled function. Another
common cost or penalty function is defined as the least median squares er-
ror (LMSE), which is defined as

LMSE = min







1
N − 1 ∑

i = 1

N



yi

observed − yi
estimate



2 






In the LMSE cost function, the algorithm is always trying to minimize
the median or average of the squared error. Contrast this with the LSE,
which minimizes the square error. The LMSE cost function gives much
better robustness (less variance of error) when a few data points lie rela-
tively far away from the majority of the rest. However, in this brief expose,
we will use the more common LSE function without any loss of generality
as it relates to curve-fitting data. If the reader wants to use a more rigorous
cost function, then the following Maple code needs only slight modifica-
tion to implement a more aggressive cost function. Several excellent refer-
ences exist that give practical and theoretical explanations of what we will
investigate in this section [1–3]. These references give typical and ad-
vanced examples that the reader can try out on his or her own with Maple.

Regardless of which cost function is used, the reader should be able to
use the following Maple procedures to apply these principles to whatever
he/she is required to analyze or use for data design.

Applied Maple for Engineers and Scientists

94

Case study: Gaussian peak estimator filter
example with regressive curve fitting

Our first example is of a data-starved variety in which we are trying to get
the best precision possible for a peak intensity reading. Precision means the
instrument has the ability to reproduce specific readings within certain tol-
erances given a set of conditions. This aspect is of particular importance
when absolutes are not necessary (except when calibrating the instrument
at the beginning of an experiment). However, the instrument’s ability to re-
produce readings (in this case, peak light intensity at a given wavelength) is
crucial to the machine’s functional and economic viability.

The following data are taken from an atomic spectroscopy unit that
can spectrally detect very close wavelengths (excellent optical dispersion)
for the purposes of determining what atomic elements exist in a sample
mixture. The instrument’s ability to identify what elements are present is a
direct function of how well the instrument can decipher and reproduce
peak intensity readings.

For the first “go through,” let’s take one data set from our new instru-
ment. In this situation, our instrument will only be allowed to obtain 16
peak intensities (it could be less). From these readings, we can assume that
the intensity profile is Lorentzian [1], i.e.,

Intensity profile → I0[sinc(x)]2

but a Gaussian profile

Intensity profile → I0ek
1(k2 − µ)2

will be close enough to suit our requirements.
By assuming an intensity profile, we can eliminate much of the deci-

sion space that must be searched to arrive at the optimal regression coeffi-
cients for our estimator. This statement says that the more we bias the
intensity profile to a known form, the less chance we have of getting final re-
sults that are far afield of the observed intensity profile function.

Hence the strategy for us to follow is to determine what specific Gauss-
ian profile best fits the observed intensity data. We do this by applying the
general Gaussian profile function:

Estimated intensity = k1ek2(x − k3)2

Curve fitting

95

After finding the k1, k2, k3 coefficients, via a Maple session, we will
compare the estimated and actual intensity data to see how well the curve
fit worked.

Along with this approach, we will also approximate the Gaussian
profile function with the same data using a nonlinear regression technique
called the Levenberg-Marquardt algorithm (LMA). Finally, we will show
the reader the more dangerous approach of using a high-order general poly-
nomial, i.e.,

Estimated intensity = a0 + a1x + a2x2 + a3x3 + … + aNxN

for approximating the intensity profile from the observed data. This is the
most dangerous approach because the results can easily mislead the investi-
gator as to the estimation obtained from the observations.

Starting the Maple regression session
The very first thing we need to do is to initialize Maple with the appropri-
ate mathematics libraries required to perform the regression analysis. The
libraries are [STATS] (statistics) and [PLOTS] (graphical output plot-
ting). Remember that the user only needs to start these libraries once per
Maple session. However, during this case study, as in other application
chapters, the authors will reiterate the libraries so that the reader will asso-
ciate certain Maple libraries with certain approaches used in the template
applications.

Linear regression using a logarithmic
representation of the Gaussian model

◗ with (stats):

with (plots):

Next, enter the observable intensity data (Yvalues_raw) at uniform and
discrete window step positions (Xvalues) into Maple:

◗ Yvalues_raw :=

[25059,34459,56923,109885,152544,198619,256505,

289850,295849,273272,225068,171780,126180,70684,43297,

25515];

Xvalues := [seq(i,i=0..nops(Yvalues_raw)-1)];

Applied Maple for Engineers and Scientists

96

Yvalues_raw := [25059 , 34459 , 56923 , 109885 , 152544 ,
198619 , 256505 , 289850 , 295849 , 273272 , 225068 , 171780 ,
126180 , 70684 , 43297 , 25515]
Xvalues := [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Since the linear regression algorithm cannot not directly deal with the
Gaussian exponential form, we need to convert the model into a linear com-
bination of increasing polynomials by converting the raw intensity values
(Yvalues_raw) to the natural logarithm form (Yvalues) or

Estimated Intensity =

Yvalues_raw = k1ek2(x − k3)2

a0 + a1x + a2x2

By taking the natural logarithm of the both sides

1n(Yvalues_raw) = 1n
k1ek2(x − k3)2


= 1n(k1) + k2(x − k3)2

= 1n(k1) + k2x2 − 2k2k3x + k2k32

Equating coefficients from the general quadratic polynomial form gives

a2 = (k2)
a1 = 2(k2k3)
a0 = 

k2k33 + 1n(k1)

or grouping like powers of x, we obtain

1n(Yvalues_raw) = Yvalues = (k2)x2 + 2(k2k3)x + 
k2k32 + 1n(k1)

Therefore, by taking the natural logarithm of the raw intensity data, we
perform regression on this data to the aforementioned quadratic polyno-
mial. Let’s start by getting Maple to take the logarithm of the intensity data:

Transform

Curve fitting

97

◗ Yvalues := evalf(transform[multiapply[(y)-ln(y)]]

([Yvalues_raw]));

Yvalues := [10.12898832 , 10.44752549 , 10.94945476 ,
11.60718964 , 11.93520836 , 12.19914370 , 12.45490344 ,
12.57711883 , 12.59760447 , 12.51822292 , 12.32415786 ,
12.05396987 , 11.74546474 , 11.16597452 , 10.67583863 ,

10.14702179]

Now, to perform the least squares regression with the assumed quad-
ratic polynomial function (y=a+b*x+c*x^2) and abstract the appropri-
ate {a, b, c} regression coefficients, we use the following code:

◗ eq_fit := fit[leastsquare[[x,y],y=a+b*x+c*x^2]]

([Xvalues,Yvalues]);

a := coeff(rhs(eq_fit),x,0);

b := coeff(rhs(eq_fit),x,1);

c := coeff(rhs(eq_fit),x,2);

eq_fit := y = 9.920667962 + .689997947 x − .04516343047 x2
a := 9.920667962
b := .689997947
c := −.04516343047

Remembering how we obtained the logarithmic regression form, we
must now substitute these coefficients back into the original Gaussian func-
tion. This is accomplished by doing a little “back-of-the-envelope” algebra,
which results in the following:

Substituting the regression coefficients back into the original Gaussian
form, we obtain the estimator function (Y_Estimated):

k2 = a2 k3 =
a1

2a2
k1 = ea0 −

a2a1
2

4a2

thereforetherefore

Applied Maple for Engineers and Scientists

98

◗ Y_Estimated :=

(exp(a-(b^2/(4*c))))*((exp(c*(x+b/(2*c))^2)));

Y_Estimated := 283815.8695 e(−.04516343047 (x − 7.638900985)2)

We can determine the x-value (X_Max_Value) by solving where
the derivative of the estimated intensity function (Y_Estimated_
Derivative) equals zero. Then, knowing this allows us to determine the
approximate step position where the peak intensity (Y_Max_Value) ex-
ists and its value:

◗ Y_Estimated_Derivative := diff(Y_Estimated,x);

X_Max_Value := solve(Y_Estimated_Derivative=0,x);

Y_Max_Value := evalf(subs(x=X_Max_Value,Y_Estimated));

Y_Estimated_Derivative := 283815.8695

(− .09032686094x + .6899979470) e(−.0451634307(x − 7.638900985)2)

X_Max_Value := 7.638900985Y_Max_Value := 283815.8695

Plotting the curve fit and residual error
Plotting the actual and estimated intensities versus window step position
subjectively indicates how close an estimate or “fit” we have accomplished
(see Figure 3.1):

◗ Data_Set := zip((a,b)->[a,b],Xvalues,Yvalues_raw):

Data_Plot := pointplot(Data_Set,style=point,

symbol= circle,color=black):

Estimated_Plot := plot(Y_Estimated,x=0..nops(Yvalues_raw)-1,

style=line,color=black):

display({Estimated_Plot,Data_Plot},axes=boxed,

labels= [Window_Step_Position,Intensity]);

Now let’s code and plot the residual error between the estimated and
the actual intensity data as shown in Figure 3.2:

Curve fitting

99

◗ Estimator := y=Y_Estimated:

Transform_Equation := unapply(rhs(Estimator),x):

Estimated_Data :=

transform[apply[Transform_Equation]](Xvalues):

Residual_Error := transform[multiapply[(x,y)->x-y]]

([Yvalues_raw,Estimated_Data]):

Error_Set := zip((a,b)->[a,b],Xvalues,Residual_Error):

Error_1 := pointplot(Error_Set,style=line,color=black):

Error_2 := pointplot(Error_Set,style=point,symbol= circle,

color=black):

display({Error_1,Error_2},labels=[Window_Step_Position,

Intensity],axes=boxed);

Window_Step_Position

300,000

250,000

200,000

Intensity

100,000

50,000

150,000

2 4 6 8 1410 12

Figure 3.1 Estimated (solid line) and actual (open circles) intensity versus window step position

(second-order polynomial Ln form).

Applied Maple for Engineers and Scientists

100

Now plotting residual error versus window step position as a relative
percentage error at each step, we generate Figure 3.3:

◗ Percent_Residual_Error := transform[multiapply[(x,y)

-> ((x-y)/x)*100]]([Yvalues_raw,Estimated_Data]):

Percent_Error_Set :=

zip((a,b)->[a,b],Xvalues,Percent_Residual_Error):

Percent_Error_1 := pointplot(Percent_Error_Set,style=line):

Percent_Error_2 :=

pointplot(Percent_Error_Set,style=point,symbol=circle,

color=black):

display({Percent_Error_1,Percent_Error_2},labels=

[Window_Step_Position,Percent_Error],axes=boxed);

10,000

5,000

0

−5,000

−10,000

Intensity

Window_Step_Position

0 2 4 6 8 10 12 14

Figure 3.2 Residual error between estimated and actual intensity versus window step position.

Curve fitting

101

Figure 3.3 indicates a fairly well behaved regression in terms of relative
positional error. Notice that residual errors generally show up at the begin-
ning and end, while retaining a fairly smooth error variance in the middle
of the data set. Simply stated, the regression process is trying to “smooth”
the data behavior, but until it gets a few starting pieces of data, it may
wildly fly around with a few data points in the beginning. Once the regres-
sion has some extra data or trend momentum, it begins to calm down and
settle about some mean or averaging process dictated by the cost function.
The end of the estimation window exhibits a large excursion because the
quadratic function has a certain amount of information bandwidth. Hence,
when the data suddenly stop, the quadratic information filter has a tran-
sient response. This fact becomes extremely evident with higher order
polynomials and small data sets. The reader will experience this situation
when we perform a regression with a high-order polynomial later in this
section.

15

10

5

0

−5

Percent_Error

−10

−15

Window_Step_Position

0 2 4 6 8 10 12 14

Figure 3.3 Percent relative residual error versus window step position (second-order fit).

Applied Maple for Engineers and Scientists

102

Obtaining peak intensity RSD by linear regression on
multiple data sets
If we have a number of runs or data sets of intensity data, we can determine
the relative standard deviation (RSD) of the peak intensity associated with
the regressive curve fitter. Hence, let’s use a loop to abstract the data from
10 runs and perform the appropriate averaging of peak levels or maxima of
the Gaussian-shaped intensity profiles.

Again, we initialize Maple for the libraries that are needed to perform
the peak estimator’s synthesis:

◗ with (plots):

with (stats):

To determine the estimator’s RSD capability, we first start by entering
the 10 strings of window raw intensity data:

◗ Yvalues_raw(1) :=

[25059,34459,56923,109885,152544,198619,256505,289850,295849,

273272,225068,171780,126180,70684,43297,25515]:

Yvalues_raw(2) :=

[16142,23101,37309,82903,123089,161534,223857,267502,294544,

296350,2 64693,226965,181950,119709,79059,52353]:

Yvalues_raw (3) :=

[23853,34409,54547,107772,147408,190335,253463,284703,293676,

284066,233891,184085,137663,82013,47451,28750]:

Yvalues_raw(4) :=

[42339,59722,87024,155752,204287,245568,290199,289464,272198,

246212,187953,141533,98621,56186,33778,21203]:

Yvalues_raw(5) :=

[86172,108518,147092,219739,259478,287404,301906,271885,

232533,18794 8,125513,83811,58396,29801,16991,11355]:

Yvalues_raw(6) :=

[72548,94368,133371,197988,249126,279774,292374,268231,

243549,200351,138546,94043,62918,32122,18877,12192]:

Yvalues_raw(7) :=

[48609,65256,94868,151736,203552,244670,289439,295627,282365,

253035,19195 5,140082,102895,54583,31780,19525]:

Yvalues_raw(8) :=

[16907,24572,39079,79189,121543,165090,225141,272662,295347,

296574,268700,216644,169936,106075,68572,43873]:

Yvalues_raw(9) :=

[6628,8489,13492,29828,50541,76777,130350,189591,224634,

Curve fitting

103

255294,288537,280874,270477,210871,163214,119500]:

Yvalues_raw(10) :=

[6337,8282,12323,27675,46061,71486,125680,173236,215764,

256192,290531,286705,277525,223899,177035,136611]:

Next, we generate a procedure called GaussianEstimator , which
will produce the following quantities (on a per-intensity-run basis) for us
once we give the procedure a list of intensity values, Yvalues_raw .

• The peak value for the intensity data set;

• The data set variance between the estimation and actual data;

• The data set standard deviation between the estimation and actual
data;

• The residual error for the data set given in list form.

If you look closely, the following procedure is similar to the first go
through of the estimator’s program structure. The difference now is the im-
plementation of previous effort into a Maple procedure. This approach is
more efficient with Maple’s (and your computer’s) resources than using a
subscripted session where each Maple line of code generates a large array.

Then by performing a do loop after the data set has been processed by
the procedure, we can abstract the appropriate statistical information. This
do loop will keep a record of each do loop pass in order to accumulate re-
sults for each individual data set. This is necessary to compute averages,
standard deviations, variances, and the like for the individual data sets as
well as to generate the required database for interdata set analysis.

GaussianEstimator := proc(Yvalues_raw)

Declaration of local variables used in algorithm...

local Xvalues, # the sequenced window step positions

Yvalues, # the logarithmic raw intensity values

eq_fit, # least squares equation fit

a, # zero order regression coefficient

b, # first order regression coefficient

c, # second order regression coefficient

Y_Estimated, # estimated intensity function

Y_Estimated_Derivative, # derivative of estimated function

X_Max_Value, # window step position at estimated peak intensity

Y_Max_Value, # estimated peak intensity

Estimator, # interim equation

Transform_Equation, # interim equation

Estimated_Data, # estimated intensity for given window step position

Residual_Error, # residual error between estimated and actual intensities

Estimator_Variance, # variance of the residual error

Applied Maple for Engineers and Scientists

104

Estimator_Standard_Deviation, # standard deviation of the estimator error

Residual_Error_Set, # residual error data set

indexer; # indexing variable

options ‘Copyright 1995 by Chris Tocci’;

Main Algorithm...

Xvalues := [seq(indexer,indexer=0..nops(Yvalues_raw)-1)]:

Yvalues := evalf(transform[multiapply[(y)->ln(y)]]([Yvalues_raw])):

eq_fit := fit[leastsquare[[x,y],y=a+b*x+c*x^2]]([Xvalues,Yvalues]):

a := coeff(rhs(eq_fit),x,0):

b := coeff(rhs(eq_fit),x,1):

c := coeff(rhs(eq_fit),x,2):

Y_Estimated := (exp(a-(b^2/(4*c))))*((exp(c*(x+b/(2*c))^2))):

Y_Estimated_Derivative := diff (Y_estimated,x):

X_Max_Value := solve(Y_Estimated_Derivative=0,x):

Y_Max_Value := evalf(subs(x=X_Max_Value,Y_Estimated)):

Estimator := y=Y_Estimated:

Transform_Equation := unapply(rhs(Estimator),x):

Estimated_Data := transform[apply[Transform_Equation]](Xvalues):

Residual_Error := transform[multiapply[(x,y)->x-y]]([Yvalues_raw,Estimated_Data]):

Estimator_Variance := describe[variance](Residual_Error):

Estimator_Standard_Deviation := describe[standarddeviation](Residual_Error):

Residual_Error_Set := zip((a,b)-[a,b],Xvalues,Residual_Error):

[Y_Max_Value,Estimator_Variance,Estimator_Standard_Deviation,Residual_Error_Set]:

end:

NOTE that in the last line of the Maple procedure, all of the important informa-
tion is put together in a single list:

◗ [Y_Max_Value,Estimator_Variance,

Estimator_Standard_Deviation,Residual_Error_Set]:

where Y_Max_Value is the peak intensity within any one run,
Estimator_Variance is the intensity variance between estimation and
actual intensity data, Estimator_Standard_Deviation is the inten-
sity standard deviation between estimation and actual intensity data, and
Residual_Error_Set is the ordered pairs representing the windows
step position and the corresponding intensity value differential between the
estimation and actual.

Now, the do loop is used for abstracting and accumulating
(indexing, if you like) the required statistical information from the
GaussianEstimator procedure for each data set. We have incorpo-
rated some line print commands (lprint) to report these previously men-
tioned variables as the program goes through each loop iteration. These
line prints can be useful when the user needs to see what is going on inside
the loop during execution. Also, line printing, in this case, specifically

Curve fitting

105

gives the user important numerical or symbolic insight associated with
each of the intensity data sets. This insight might be necessary if things do
not make sense at the end of a Maple session. Get in the habit of line print-
ing your values in Maple procedures and do loops until you are sure of the
veracity of your results.

for n from 1 to 10 do

Estimated_Yvalues_Peak(n) := op(1,GaussianEstimator(Yvalues_raw(n))):

lprint(‘Intensity Data Set’,n):

lprint(‘Estimated Peak is’,op(1,GaussianEstimator(Yvalues_raw(n)))):

lprint(‘Estimator Variance is’,op(2,GaussianEstimator(Yvalues_raw(n)))):

lprint(‘Estimator Standard Deviation is’,op(3,GaussianEstimator(Yvalues_raw(n)))):

lprint(‘’):

lprint(‘Residual Error Data Set for plotting purposes is as follows...’):

lprint(‘’):

lprint(op(4,GaussianEstimator(Yvalues_raw(n)))):

lprint(‘ __’):

od:

Intensity Data Set 1

Estimated Peak is 283815.8723

Estimator Variance is 50163044.16

Estimator Standard Deviation is 7082.587208

Residual Error Data Set for plotting purposes is as follows...

[[0, 4712.42278], [1, -4314.89519], [2, -10585.59134], [3, 2498.3726], [4,

-3523.6542], [5, -8608.3845], [6, 5112.1444], [7, 11218.4699], [8, 13699.5998], [9,

12236.5170], [10, 4424.3144], [11, 1385.7233], [12, 5956.3119], [13, -6815.09532],

[14, -2346.06094], [15, 955.22218]]

__

Intensity Data Set 2

Estimated Peak is 288260.8159

Estimator Variance is 35235193.39

Estimator Standard Deviation is 5935.926132

Residual Error Data Set for plotting purposes is as follows...

[[0, 3011.29849], [1, -2785.20830], [2, -9607.34324], [3, 4730.30757], [4, 3342.9527],

[5, -7098.9760], [6, 5534.2348], [7, 7647.1998], [8, 10204.1923], [9, 10314.5978],

[10, 161.6716], [11, 2054.5480], [12, 6150.6093], [13, -6619.1958], [14, -4397.16492],

[15, 1666.56408]]

__

•

•

•

Intensity Data Set 10

Estimated Peak is 269799.2195

Estimator Variance is 151521708.2

Estimator Standard Deviation is 12309.41440

Residual Error Data Set for plotting purposes is as follows...

[[0, 2064.904548], [1, -566.056479], [2, -4759.16049], [3, -3066.54453], [4,

-5508.93017], [5, -9154.90192], [6, 8135.5349], [7, 13524.2144], [8, 13480.8444], [9,

17372.1348], [10, 27704.5001], [11, 17082.6882], [12, 19696.7633], [13, -5923.7953],

Applied Maple for Engineers and Scientists

106

[14, -13925.5693], [15, -11293.8014]]

__

Finally, we compute the statistical information from Maple’s
do loop and computing the overall intensity peak average,
Y_Max_Value_Average , the peak value standard deviation,
Y_Max_Value_StanDev , and the desired RSD, Y_Max_Value_RSD ,
for all 10 data sets:

Digits := 4:

Y_Max_Average_Seq := [seq(Estimated_Yvalues_Peak(n),n=1..10)]:

Y_Max_Value_Average := describe[mean](Y_Max_Average_Seq);

Y_Max_Value_StanDev := describe[standarddeviation](Y_Max_Average_Seq);

Y_Max_Value_RSD := (Y_Max_Value_StanDev/Y_Max_Value_Average)*100;

Y_Max_Value_Average := 280900.
Y_Max_Value_StanDev := 6855
Y_Max_Value_RSD := 2.440

Next, for comparison purposes, we abstract the maximum raw inten-
sity values (Yvalues_raw_Max) from the individual data sets and com-
pute the data’s RSD over 10 data sets in the same manner. Writing a quick
Maple do loop for abstracting the peak intensity values from each of the 10
data sets yields the desired results:

◗ for m from 1 to 10 do

Yvalues_raw_Peak(m) := op(nops(Yvalues_raw(m)),

sort(Yvalues_raw(m))):

od:

Yvalues_raw_Peak_Seq := [seq(Yvalues_raw_Peak(m),m=1..10)]:

Yvalues_raw_Peak_Average := evalf(describe[mean]

(Yvalues_raw_Peak_Seq));

Yvalues_raw_Peak_StanDev :=

evalf(describe[standarddeviation]

(Yvalues_raw_Peak_Seq));

Yvalues_raw_Peak_RSD := evalf((Yvalues_raw_Peak_StanDev/

Yvalues_raw_Peak_Average)*100);

and the output is:

Yvalues_raw_Peak_Average := 294200.
Yvalues_raw_Peak_StanDev := 3735
Yvalues_raw_Peak_RSD := 1.270

Curve fitting

107

As we can see, the RSD of the curve estimator (Y_Max_Value_RSD)
is about half as good as the straightforward peak picking method or ap-
proach (Yvalues_raw_Peak_RSD) of 10 successive windows. The rea-
son is that the estimator depends on all data presented to the filter, whereas
the simple peak detector approach, depends on only one value within the
window.

The drawback to the peak detector method is if any one peak is bad it
can significantly affect the overall RSD measurement. On the other hand, if
any one, two, or even three measured values are bad, they are averaged
against others in the window, hence their influence is reduced significantly.
Therefore, even though the estimator might not have the best RSD for one
time, it will be much more robust under a much wider range of noisy win-
dow data than the peak method.

Comparison of peak method versus regression for
robustness against outlier data
To prove this statement, let’s alter some of the previous data’s peak values
to see the comparison of the estimator against the peak method (in other
words, we artificially create outlier data).

First, we alter the first two window data sets’ peak values by 10%, say,
make them 10% higher than actually measured, i.e.,

Yvalues_raw(1)(peak) = 295849 to 325433.9(+10%)
Yvalues_raw(2)(peak) = 296350 to 325985.0(+10%)

◗ Yvalues_raw(1) :=

[25059,34459,56923,109885,152544,198619,256505,289850,

325433.9,273272,225068,171780,126180,70684,43297,25515]:

Yvalues_raw(2) :=

[16142,23101,37309,82903,123089,161534,223857,267502,294544,

325985.0,264693,226965,181950,119709,79059,52353]:

Yvalues_raw(3) :=

[23853,34409,54547,107772,147408,190335,253463,284703,293676,

284066,233891,184085,137663,82013,47451,28750]:

Yvalues_raw(4) :=

[42339,59722,87024,155752,204287,245568,290199,289464,272198,

246212,187953, 141533,98621,56186,33778,21203]:

Yvalues_raw(5) :=

[86172,108518,147092,219739,259478,287404,301906,271885,

232533,187948,125513,83811,58396,29801,16991,11355]:

Yvalues_raw(6) :=

Applied Maple for Engineers and Scientists

108

[72548,94368,133371,197988,249126,279774,292374,268231,

243549,200351,138546,94043,62918,32122,18877,12192]:

Yvalues_raw(7) :=

[48609,65256,94868,151736,203552,244670,289439,295627,282365,

253035,191955,140082,102895,54583,31780,19525]:

Yvalues_raw(8) :=

[16907,24572,39079,79189,121543,165090,225141,272662,295347,

296574,268700,216644,169936,106075,68572,43873]:

Yvalues_raw(9) :=

[6628,8489,13492,29828,50541,76777,130350,189591,224634,

255294,288537,280874,270477,210871,163214,119500]:

Yvalues_raw(10) :=

[6337,8282,12323,27675,46061,71486,125680,173236,215764,

256192,290531,286705,277525,223899,177035,136611]:

Performing the same algorithm via the GaussianEstimator proce-
dure for the 10 intensity data sets, we get

◗ for n from 1 to 10 do

Estimated_Yvalues_Peak(n) := op(1,GaussianEstimator

(Yvalues_raw(n))):

od:

computing the overall intensity average, standard deviation, and RSD of
the intensity peaks over the 10 new data sets:

◗ Digits := 4:

Y_Max_Average_Seq := [seq(Estimated_Yvalues_Peak(n),

n=1..10)]:

Y _Max_Value_Average := describe[mean](Y_Max_Average_Seq);

Y_Max_Value_StanDev := describe[standarddeviation]

(Y_Max_Average_Seq);

Y_Max_Value_RSD := (Y_Max_Value_StanDev/

Y_Max_Value_Average)*100;

and the output is:

Y_Max_Value_Average := 281600.
Y_Max_Value_StanDev := 7537.
Y_Max_Value_RSD := 2.676

Curve fitting

109

The RSD value is only slightly higher this time (2.676% versus
2.440%) using the Gaussian estimator. This increase corresponds to an
RSD increase of around 9.67%.

Now let’s see what happens when deriving the same measures with
only the peak intensity from each data set:

◗ for m from 1 to 10 do

Yvalues_raw_Peak(m) := op(nops(Yvalues_raw(m)),sort

(Yvalues_raw(m))):

od:

Yvalues_raw_P eak_Seq := [seq(Yvalues_raw_Peak(m),m=1..10)]:

Yvalues_raw_Peak_Average := evalf(describe[mean]

(Yvalues_raw_Peak_Seq));

Yvalues_raw_Peak_StanDev := evalf(describe

[standarddeviation] (Yvalues_raw_Peak_Seq));

Yvalues_raw_Peak_RSD := evalf((Yvalues_raw_Peak_StanDev/

Yvalues_raw_Peak_Average)*100);

and the result is:

Yvalues_raw_Peak_Average := 300200.
Yvalues_raw_Peak_StanDev := 13310.
Yvalues_raw_Peak_RSD := 4.434

While the estimator’s RSD changed about +9.67%, the peak picked
RSD changed by about +249.13%! Consequently, the estimator is clearly
more dependent on the collective data set, whereas the peak method is de-
pendent on one-out-of-N points.

Obviously, had we altered any of the data points around the peak, the
peak method would have shown no RSD change, whereas the estimator
would have reflected some change. Therefore, the efficacy of an estimator
depends on whether the user has a very precise way of obtaining the peak
value and how important nonpeak values are to one’s final analysis. If the
user has limited resources and an excellent peak detection hardware sys-
tem, then the much simpler and faster peak detection method should be
used. If, on the other hand, one requires peak data under a volatile data ac-
quisition environment, then use the estimator approach for a more uniform
RSD behavior under a much noisier set of conditions.

Applied Maple for Engineers and Scientists

110

Problem data set for linear regression
Now let’s look at a data set that can “confuse” an estimator based on the
previous approach of taking the logarithm of the raw data values in order to
implement a linear polynomial combination.

with (plots):

with (stats):

Yvalues_raw :=

[569322,647595,871287,904318,820139,700099,434252,216687,150058,81671,57118,32746,25717

17639,13063,11527]:

Xvalues := [seq(i,i=0..nops(Yvalues_raw)-1)]:

Yvalues := evalf(transform[multiapply[(y)->ln(y)]]([Yvalues_raw])):

eq_fit := fit[leastsquare[[x,y],y=a+b*x+c*x^2]]([Xvalues,Yvalues]):

a := coeff(rhs(eq_fit),x,0);

b := coeff(rhs(eq_fit),x,1);

c := coeff(rhs(eq_fit),x,2);

‘—————————————————————————————————’;

‘Original Coefficients prior to performing the Log Conversion’;

‘—————————————————————————————————’;

k1 := exp(a-(b^2)/(4*c));

k2 := c;

k3 := b/(2*c);

‘—————————————————————————————————’;

Y_Estimated := (exp(a-(b^2/(4*c))))*((exp(c*(x+b/(2*c))^2))):

Y_Estimated_Derivative := diff(Y_Estimated,x):

X_Max_Value := solve(Y_Estimated_Derivative=0,x);

Y_Max_Value := evalf(subs(x=X_Max_Value,Y_Estimated));

Data_Set := zip((a,b)->[a,b],Xvalues,Yvalues_raw):

Data_Plot := pointplot(Data_Set,style=point,symbol=circle,color=black):

Estimated_Plot := plot(Y_Estimated,x=0..nops(Yvalues_raw)-1,style=line,color=black):

display({Estimated_Plot,Data_Plot},axes=boxed,labels=[Window_Step_Position,Intensity],

title= ‘Estimated (line) & Actual (point) Intensity versus Window Step Position’);

Looking at only the numerical results of the LMS estimator’s output:

a := 13.76022887
b := −.084211727
c := −.01640900803

k1 := .1054179619 107

k2 := −.01640900803
k3 := 2.566021263

Curve fitting

111

X_Max_Value := −2.566021263
Y_Max_Value := .1054179619 107

The reason for this grossly inaccurate estimation is due to the fact that
taking the logarithm of the raw data creates increasingly larger errors for
the window extremum. For instance, we can reverse the data sequence and
get the same grossly inaccurate estimation, i.e.,

◗ Yvalues_raw :=

[11527,13063,17639,25717,32746,57118,81671,150058,216687,

43425 2,700099,820139,904318,871287,647595,569322]:

and the output (see Figure 3.4)

a := 8.805026173
b :=.576481963
c := −.01640900774
X_Max_Value := 17.56602143
Y_Max_Value := .1054179640 107

Notice that the estimator puts the peak value exactly the same amount
outside the window (2.566021 = 17.566021 − 15) in this case as it did
during the previous estimation (− 2.566021 = 0 − 2.566021) when it esti-
mated the peak before the window. Hence, one may deduce that the estima-
tion error mechanism is the same and indeed it is.

The reason for the error is twofold: First, by taking the logarithm, you
have compressed information, thereby forfeiting resolution of that informa-
tion; and, second, after compressing the information, you are only obtain-
ing one or two more data points before there is no more window data. This
means that the regression mechanism does not have enough or sufficiently
new or updated information about phenomena information before it runs
into the end of the data string. Consequently, with lower resolution and
fewer pieces of information to compensate against the lower resolution, the
regression process begins to become unstable. This type of regression er-
ror is especially true of data-starved acquisition systems where the amount
of data is so low that “recovering” from a few “wild” points can be nearly
impossible. This effect leads to the grossly inaccurate estimates shown
previously.

Applied Maple for Engineers and Scientists

112

Regression improvement by cheating or data stuffing
Let’s prove the preceding statement by artificially increasing or stuffing the
amount of information at the end of the window by attempting to follow
the Gaussian profile to see if our estimator performance improves.

◗ with (plots):

with (stats):

Yvalues_raw_new :=

[25717,32746,57118,81671,150058,216687,434252,700099,820139,

904318,887802,871287,759441,647595,608458,569322]:

Xvalues := [seq(i,i=0..nops(Yvalues_raw_new)-1)]:

Yvalues := evalf(transform[multiapply[(y)-ln(y)]]

([Yvalues_raw_new])):

eq_fit := fit[leastsquare[[x,y],y=a+b*x+c*x^2]]([Xvalues,

Yvalues]):

a := coeff(rhs(eq_fit),x,0);

b := coeff(rhs(eq_fit),x,1);

c := coeff(rhs(eq_fit),x,2);

Window_Step_Position

800,000

600,000

Intensity

400,000

200,000

0

0 2 4 6 8 10 12 14

Figure 3.4 Estimated (solid line) and actual (open circles) intensity versus window step position.

Curve fitting

113

Y_Estimated :=

(exp(a-(b^2/(4*c))))*((exp(c*(x+b/(2*c))^2))):

Y_Estimated_Derivative := diff(Y_Estimated,x):

X_Max_Value := solve(Y_Estimated_Derivative=0,x);

Y_Max_Value := evalf(subs(x=X_Max_Value,Y_Estimated));

Data_Set := zip((a,b)->[a,b],Xvalues,Yvalues_raw_new):

Data_Plot := pointplot(Data_Set,style=point,symbol=circle,

color=black):

Estimated_Plot := plot(Y_Estimated,

x=0..nops(Yvalues_raw_new)-1,

style=line,color=black):

display({Estimated_Plot,Data_Plot},axes=boxed,labels=

[Window_Step_Position,Intensity]);

a := 9.786117301
b := .709475575
c := -.03230337911

X_Max_Value := 10.98144520
Y_Max_Value := 874712.7975

Figure 3.5 indicates a better fit; however, it also appears that we have
extended the window. Unfortunately, this method is only useful for exem-
plifying how sensitive the linear regression is to the initial and final data in a
data-starved situation. Obviously, one cannot artificially add data where
there are no data without causing an immediate outcry from one’s profes-
sional peers.

Fortunately, to circumvent this type of problem with certain data sets,
one can use a nonlinear regression technique that does not rely on taking
the logarithm or any other trick to convert the regression process into a lin-
ear polynomial combination curve fit.

Nonlinear regression:
the Levenberg-Marquardt algorithm
Rather than altering the original model to fit into a function that can be rep-
resented by a linear combinatorial polynomial, nonlinear regression uses
the modeled equation (in our case, a Gaussian profile) directly via gradient
and difference equations. Nonlinear regressions move incrementally, con-
stantly looking for changes in the residual errors (difference between the ac-
tual and estimated values) and compensating accordingly to keep them at a
minimum as defined by some cost function and independent variable(s).

Applied Maple for Engineers and Scientists

114

In particular, the Levenberg-Marquardt algorithm (LMA) is one of the
more commonly used nonlinear regression techniques today. The follow-
ing LMA was developed by Dr. Jerome M. Lang at Waterloo Maple Soft-
ware, Inc., and incorporates some initial Newtonian line searching to
facilitate rapid location of the global optimization region associated with
the solution. (For further reading about nonlinear optimization techniques,
[1,2] are recommended.)

◗ with (linalg):

with (plots):

with (stats):

Digits := 5:

LevenbergMarquardt:=proc(expr,vars,initial,epsilon)

local

d, # dimension

delta_f_k, # change in function

900,000

800,000

700,000

600,000

Intensity
500,000

400,000

300,000

200,000

100,000

Window_Step_Positon

2 4 6 8 10 12 14

Figure 3.5 Estimated (solid line) and actual (open circles) intensity versus window step position (data

shifting to improve regression curve fit).

Curve fitting

115

delta_k, # correction vector

delta_q_k, # change in quadratic approximation to the func-

tion

f, # function to minimize

f_k, # function at current point

f_k_delta, # function at trial point

g, # gradient function

g_k, # grad function at current point

G, # hessian function

G_k, # hessian at current point

H_k, # coeff matrix to solve for correction

i, # counter

Id, # identity matrix

loop_no, # loop number

nu_k, # line-search parameter

r_k, # accuracy ratio measuring how close is the quadratic

appx to the exact function

var_subs, # to go from user vars to ours

x, # name of indexed variables to replace vars

x_k; # current position

options ‘Copyright 1994 by Waterloo Maple Software’;

d:=nops(vars);

var_subs:={seq(vars[i]=x[i], i=1..d)};

f:=unapply(subs(var_subs,expr), x);

g:=subs(‘_BODY’=convert

linalg[grad](f(x),[x[1],x[2],x[3]]),’list’),

‘_PARMS’=x,_PARMS->array(_BODY));

G:=subs(‘_BODY’=convert(linalg

[hessian](f(x),[x[1],x[2],x[3]]),

‘listlist’),’_PARMS’=x,_PARMS-array(_BODY));

INITIALIZATION

x_k:=linalg[vector](evalf(initial));

nu_k:=1.0;

Id:=array(identity,1..d,1..d);

r_k:=NULL; # for printing first time through

delta_f_k:=infinity;

if not(nu_k>0) then ERROR(‘nu_k must be positive’) fi;

userinfo(2, ‘stats’, ‘loop_no, f_k, delta_f_k, x_k, nu_k,

r_k’);

MAIN LOOP

for loop_no do

step 1

f_k:=f(x_k); g_k:=g(x_k); G_k:=G(x_k);

Applied Maple for Engineers and Scientists

116

userinfo(2, ‘stats’, loop_no, f_k, delta_f_k, con-

vert(x_k,’list’),

nu_k, r_k);

step 2

do

H_k:=linalg[matadd](G_k, Id, 1, nu_k);

if linalg[definite](H_k,’positive_def’) then break; fi;

nu_k:=4*nu_k;

od;

step 3

delta_k:=linalg[linsolve](H_k, linalg[scalarmul](g_k, -1));

STOPPING CONDITION

if linalg[dotprod](delta_k,delta_k)<epsilon^2 then break

fi;

step 4

f_k_delta:=f(linalg[matadd](x_k,delta_k));

delta_f_k:=f_k_delta-f_k;

delta_q_k:=linalg[dotprod](g_k,delta_k)+1/2*linalg[innerprod]

(delta_k, G_k, delta_k);

r_k:=delta_f_k/delta_q_k;

step 5

if r_k</4 then nu_k:=4*nu_k

elif r_k3/4 then nu_k:=nu_k/2

else # nu_k is unchanged

fi;

step 6

if r_k>0 then x_k:=linalg[matadd](x_k, delta_k);

else # x_k is unchanged

fi;

od;

[seq(vars[i]=x_k[i], i = 1..d)];

end:

infolevel[stats] := 2; # This line gives the LMA’s output

iteration toward the solution.

infolevelstats := 2

Now with the LMA defined, let’s recast the problem in a slightly differ-
ent way. The LMA simply requires that we define the difference between
the actual and estimated to be minimal, hence, the cost function to be mini-
mized will be:

Curve fitting

117

Gaussian_Fit_Error_Squared = (k1ek2(x + k3)2

− Yvalues_raw)2

The variables to be varied are:

[k1, k2, k3]

and the initial starting point for these variables can be obtained from the
previously performed regression; hence,

k1(initial) = .1054179587 ⋅ 107

k2(initial) = −.01640900845
k3(initial) = 2.566021006

or

[.1054179587 ⋅ 107, −.01640900845, 2.566021006]

and an arbitrary error criterion of, say 1% or

.01

But we must first get the original estimation form into a compatible
form for the LMA optimization. As stated, we defined the cost function to
be minimized as Gaussian_Fit_Error_Squared , which is equal to
the difference squared between the actual and estimated values. The squar-
ing prohibits any algebraically added values to create zero error (cost); i.e.,
only zero differentials can contribute zero error.

◗ Yvalues_raw :=

[569322,647595,871287,904318,820139,700099,434252,216687,

150058,81671,57118,32746,25717,17639,13063,11527]:

Xvalues := [seq(i,i=0..nops(Yvalues_raw)-1)]:

k1_initial := .1054179587*10^7:

k2_initial := -.01640900845:

k3_initial := 2.566021006:

Yvalues_est := transform[multiapply[(x)->(k1*exp(-k2*

(x-k3)^2))]]([Xvalues]):

Gaussian_Fit_Error_Squared := transform[multiapply

Applied Maple for Engineers and Scientists

118

(x,y)-(x-y)^2]]([Yvalues_raw,Yvalues_est]):

Sum_Gaussian_Fit_Error_Squared := evalf

(add(i,i=Gaussian_Fit_Error_Squared)):

LMA_Result := LevenbergMarquardt(Sum_Gaussian_Fit_Error_

Squared,[k1,k2,k3],[k1_initial,k2_initial,k3_initial],.01);

Solutions := subs(LMA_Result,[k1,k2,k3]):

k1 := Solutions[1];

k2 := Solutions[2];

k3 := Solutions[3];

The output iteration associated with the LMA’s convergence toward
the minimal least squares error of the model with the data is

LevenbergMarquardt: loop_no, f_k, delta_f_k, x_k, nu_k, r_k

LevenbergMarquardt: 1 .34523e15 infinity [.10542e7, -.16409e-1, 2.5660] 1.0

LevenbergMarquardt: 2. .12727e15 -.21796e15 [.10542e7, -.11988e-1, 2.3218] .14075e15 1.2206

LevenbergMarquardt: 3. .50500e14 -.76770e14 [.10542e7, -.79964e-2, 2.1712] .70375e14 1.2449

LevenbergMarquardt: 4. .21452e14 -.29048e14 [.10542e7, -.40671e-2, 2.0611] .35188e14 1.2569

LevenbergMarquardt: + 5. .98006e13 -.11651e14 [.10542e7, .150e-4, 1.9686] .17594e14 1.2653

LevenbergMarquardt: 6. .47928e13 -.50078e13 [.10542e7, .44776e-2, 1.8785] .87970e13 1.2726

LevenbergMarquardt: + 7 .24521e13 -.23407e13 [.10542e7, .96326e-2, 1.7784] .43985e13 1.2774

LevenbergMarquardt: + 8. .12708e13 -.11813e13 [.10542e7, .15893e-1, 1.6624] .21993e13 1.2751

LevenbergMarquardt: 9. .68161e12 -.58919e12 [.10542 e7, .23536e-1, 1.5475] .10997e13 1.2611

LevenbergMarquardt: 10. .43731e12 -.24430e12 [.10542e7, .32202e-1, 1.4993] .54985e12 1.2504

LevenbergMarquardt: 11. .34121e12 -.9610e11 [.10542e7, .42014e-1, 1.6618] .27493e12 1.2472

LevenbergMarquardt: + 12. .13940e12 -.20181e12 [.10542e7, .65746e-1, 2.5901] .13747e12 .92799

LevenbergMarquardt: 13. .80053e11 -.59347e11 [.10542e7, .86241e-1, 2.9358] .68735e11 .97217

LevenbergMarquardt: 14. .77059e11 -.2994e10 [.10542e7, .91583e-1, 2.9134] .34368e11 1.0506

LMA_Result := 
k1 = .10542 107, k2 = .091583, k3 = 2.9134


k1 := .10542 107

k2 := .091583
k3 := 2.9134

Now let’s plot this LMA regressed estimation model along with the
original data to see how the fit appears:

◗ Estimated := k1*exp(-k2*(x-k3)^2):

Actual := zip((a,b)-[a,b],Xvalues,Yvalues_raw):

Estimated_1 :=

plot(Estimated,x=0..nops(Yvalues_raw)-1,color=black,

style=line):

Curve fitting

119

Actual_1 := pointplot(Actual,style=point,symbol=circle,

color=black):

display({Estimated_1,Actual_1},labels=[Window_Step_Position,

Intensity],axes=boxed);

Figure 3.6 shows that the LMA did a reasonable job at modeling the
data profile with the Gaussian function. The primary danger with most
nonlinear regression algorithms is one of initiation. Some nonlinear regres-
sion techniques take a very long time to converge if they are initialized too
far away from the solution region. Other nonlinear regression approaches
can yield completely erroneous results if the initial starting points are too
far from the solution space. That is why the reader should use a prefilter re-
gression, even if it is wrong, as we did in this example. In that way, the non-
linear regression has an excellent start due to close proximity to the
solution space. This will reward the user with reasonably fast convergence
and good results.

General polynomial regression
Another approach simply and blindly assumes the estimation can fol-

low a general polynomial form:

yestimate = a + bx + cx2 + dx3 + ex4 + …

To show how easy this method is, let’s use the previously difficult data
set that we had to curve fit using the LMA:

◗ with (plots):

with (stats):

Yvalues :=

[569322,647595,871287,904318,820139,700099,434252,216687,

150058,81 671,57118,32746,25717,17639,13063,11527]:

Xvalues := [seq(i,i=0..nops(Yvalues)-1)]:

eq_fit := fit[leastsquare[[x,y],

y=a+b*x+c*x^2+d*x^3+e*x^4+f*x^5+g*x^6]]

([Xvalues, Yvalues]):

a := evalf(coeff(rhs(eq_fit),x,0)):

b := evalf(coeff(rhs(eq_fit),x,1)):

c := evalf(coeff(rhs(eq_fit),x,2)):

Applied Maple for Engineers and Scientists

120

d := evalf(coeff(rhs(eq_fit),x,3)):

e := evalf(coeff(rhs(eq_fit),x,4)):

f := evalf(coeff(rhs(eq_fit),x,5)):

g := evalf(coeff(rhs(eq_fit),x,6)):

Now that we have the regression coefficients, solve for the multiple
peak values (Y_Max_Values) and their corresponding window step posi-
tions (X_Max_Values) associated with the polynomial model:

◗ Y_Estimated := a+b*x+c*x^2+d*x^3+e*x^4+f*x^5+g*x^6:

Y_Estimated_Derivative := diff(Y_Estimated,x):

X_Peak_Values := [fsolve(Y_Estimated_Derivative=0,x)];

for i from 1 to nops(X_Peak_Values)

do Y_Estimated_Peak(i) := subs(x=X_Peak_Values[(i)],

Y_Estimated):

od:

0 2 4 6 8 10 12 14

Intensity

1e+06

800,000

600,000

400,000

200,000

0

Window_Step_Position

Figure 3.6 LMA estimated (solid line) and actual (open circles) intensities versus window step position

(residual square error constrained to 1%).

Curve fitting

121

Y_Peak_Values := [seq(Y_Estimated_Peak(i),i=1..nops

(X_Peak_Values))];

X_Peak_Values := [−.1370943937 , 2.951874268 ,
9.828839319 , 11.64172962 , 14.25935997]

Y_Peak_Values := [554151.9313 , 899447.9633 ,
36962.397 , 55348.95 , −22785.75]

Note that some solutions to this sixth order are pure filter artifact from
the regression process. The X_Peak_Values value equal to −.13709…
and the Y_Max_Values value equal to −22785.75 clearly do not repre-
sent anything associated with the data set. The X_Max_Values artifact is
noise because this filter is not a predictor (extrapolation), but an estimator
(interpolation). The negative Y_Max_Values artifact is noise because
there is no such thing as “negative” light (make sure during your modeling
that you experience “reality checks” frequently!).

Now that we have the x-y values associated with the polynomial’s
extrema, let’s abstract the polynomial’s result for the maximal intensity
(Y_Max_Value) and its corresponding window step position
(X_Max_Value):

◗ Zipped_Pairs :=

zip((x,y)->[y,x],X_Peak_Values,Y_Peak_Values):

Boolean_ Condition := (a,b)->if op(1,a)<op(1,b) then true

else false fi:

Sorted_Ordered_Pairs :=

sort(Zipped_Pairs,Boolean_Condition):

XY_Max_Coordinate := op(nops(Sorted_Ordered_Pairs),

Sorted_Ordered_Pairs):

Y_Max_Value := op(1,XY_Max_Coordinate);

X_Max_Value := op(2,XY_Max_Coordinate);

Y_Max_Value := 899447.9633
X_Max_Value := 2.951874268

These x-y values graphically correspond to the data set peak fairly well
as shown in Figure 3.7 when we generate a composite curve fit and data
plot:

Applied Maple for Engineers and Scientists

122

◗ Data_Set := zip((a,b)->[a,b],Xvalues,Yvalues):

Data_Plot := pointplot(Data_Set,style=point,symbol=circle,

color=black):

Estimated_Plot := plot(Y_Estimated,x=0..nops(Yvalues)-1,

style=line,color=black):

display({Es timated_ Plot,Data_Plot},axes=boxed,labels=

[Window_Step_Position,Intensity]);

In Figure 3.7, note the rippling of the curve fit due to the polynomial.
Remember, a curve has N − 1 extrema, where N is the order of the func-
tion. In this case, N = 6, hence there are 5 extrema of which 4 are clearly
visible within the confines of the window and the fifth is just starting to
show at the window’s entry (i.e., Window_Step_Position =x=0).

By plotting the residual error between the actual and estimated data,
we can see where the interpolation errors are greatest. Also, when the user
uses very high order polynomials, the residual error plot (Figure 3.8) will
exhibit a large amount of “zigzag” behavior.

800,000

600,000

Intensity

400,000

200,000

0

2 4 6 8 10 12 14

Window_Step_Position

Figure 3.7 Estimated (solid line) and actual (open circles) intensity versus window step position for

general polynomial fit (sixth-order fit).

Curve fitting

123

◗ Estimator := y=Y_Estimated:

Transform_Equation := unapply(rhs(Estimator),x):

Estimated_Data :=

transform[apply[Transform_Equation]](Xvalues):

Residual_Error := transform[multiapply[(x,y)->x-y]]

([Yvalues, Estimated_Data]):

Error_Set := zip((a,b)-[a,b],Xvalues,Residual_Error):

Error_1 := pointplot(Error_Set,style=line,color=black):

Error_2 :=

pointplot(Error_Set,style=point,symbol=circle,color=black):

display({Error_1,Error_2},axes=boxed,labels=

[Window_Step_Position,Intensity]);

Window_Step_Position

Intensity

30,000

20,000

10,000

0

−10,000

−20,000

−30,000

−40,000

−50,000

0 2 4 6 8 10 12 14

Figure 3.8 Residual error between estimated (solid line) and actual (open circles) intensity versus

window step position (sixth-order fit).

Applied Maple for Engineers and Scientists

124

Now we plot residual error versus window step position as a relative
percentage error at each step:

◗ Percent_Residual_Error := transform[multiapply[(x,y)

-> ((x-y)/x)*100]]([Yvalues,Estimated_Data]):

Percent_Error_Set := zip((a,b)-[a,b],Xvalues,

Percent_Residual_Error):

Percent_Error_1 := pointplot(Percent_Error_Set,style=line):

Percent_Error_2 :=

pointplot(Percent_Error_Set,style=point,symbol=circle,

color=black):

display({ Percent_Error_1,Percent_Error_2},labels=

[Window_Step_Position,Percent_Er ror],axes=boxed);

Figure 3.9 shows a relatively large percent error at the end of the sam-
pling window. As stated earlier, this effect is typical of simple linear regres-
sion type filters since there is no extra data beyond the window to average
into the final estimation. This causes a sort of burst or accumulation of er-
ror to appear at the end of any simple polynomial regression fit. Compare
this plot to Figure 3.3 where a second-order fit was accomplished. Notice
that the relative percent error was smaller across the window. Clearly the
jagged error effect becomes worse with higher order polynomials and data
that vary (whether actually or from measurement error) greatly from the
previous few data points. Figure 3.3 showed a large jagged relative error at
the beginning of the sampling window as opposed to Figure 3.9. This
effect happens because there are no “trend” data to start the regression,
hence a rather large initial guess can be very wrong at the beginning of the
sampling window. This, in effect, is similar to the transient behavior associ-
ated with circuits when they are exposed to any sudden change of the input.

The single biggest problem associated with the general polynomial fit
is the model’s ability to become noisy by responding to nearly every data
point. What happens, simply, is that the polynomial regression tries to get
every point it can within the confines of the polynomial’s order. For in-
stance, if we had a tenth-order polynomial, the estimator curve could have
a maximum of nine (10 − 1= 9) extrema. If we had 9 or fewer data points,
this regression would nearly hit every point, thereby neutralizing any
smoothing or averaging aspect of the estimator. In short, the estimator filter
has too much bandwidth.

Curve fitting

125

High-order polynomial regression fit problems
To the pitfall just mentioned that is associated with general polynomial
curve fitting, let’s take the last set of data and use an artificially high polyno-
mial order, say, 12. Further, let’s allow one of the data points to be some-
what of an outlier to show what happens when the bandwidth of the
estimator is too high for useful purposes. We will choose a peak data point
(Yvalues = 904318) and cut it in half (Yvalues = 452159) to represent a sin-
gle data point that either exhibited a noise or measurement corruption:

◗ with (plots):

with (stats):

Yvalues :=

[569322,647595,871287,452159,820139,700099,434252,216687,

150058,81671,57118,32746,25717,17639,13063,11527]:

Xvalues := [seq(i,i=0..nops(Yvalues)-1)]:

Percent_Error

250

200

150

100

50

0

−50

−100

0 2 4 6 8 10 12 14

Window_Step_Position

Figure 3.9 Percent relative residual error versus window step position (sixth-order fit).

Applied Maple for Engineers and Scientists

126

eq_fit := fit[least-

square[[x,y],y=a+b*x+c*x^2+d*x^3+e*x^4+f*x^5+g*x^6+h*x^7

+ i*x^8+j*x^9+k*x^10+l*x^11+m*x^12]]([Xvalues,Yvalues]):

a := evalf(coeff(rhs(eq_fit),x,0)):

b := evalf(coeff(rhs(eq_fit),x,1)):

c := evalf(coeff(rhs(eq_fit),x,2)):

d := evalf(coeff(rhs(eq_fit),x,3)):

e := evalf(coeff(rhs(eq_fit),x,4)):

f := evalf(coeff(rhs(eq_fit),x,5)):

g := evalf(coeff(rhs(eq_fit),x,6)):

h := evalf(coeff(rhs(eq_fit),x,7)):

i := evalf(coeff(rhs(eq_fit),x,8)):

j := evalf(coeff(rhs(eq_fit),x,9)):

k := evalf(coeff(rhs(eq_fit),x,10)):

l := evalf(coeff(rhs(eq_fit),x,11)):

m := evalf(coeff(rhs(eq_fit),x,12)):

Now that we have the regression coefficients, solve for the multiple
peak values (Y_Max_Values) and their corresponding window step posi-
tions (X_Max_Values) associated with the polynomial model:

◗ Y_Estimated :=

a+b*x+c*x^2+d*x^3+e*x^4+f*x^5+g*x^6+h*x^7+i*x^8+j*x^9

+ k*x^10+l*x^11+m*x^12:

Y_Estimated_Derivative := diff(Y_Estimated,x):

X_Peak_Values := [fsolve(Y_Estimated_Derivative=0,x)];

for i from 1 to nops(X_Peak_Values)

do Y_Estimated_Peak(i) := subs(x=X_Peak_Values[(i)],

Y_Estimated):

od:

Y_Peak_Values := [seq(Y_Estimated_Peak(i),

i=1..nops(X_Peak_Values))];

X_Peak_Values := [−11.70881911 , .3224662904 , 1.578737402 ,
3.091536358 , 4.687042269 , 7.743771431 , 8.814838531 ,
10.86172372 , 12.26584677 , 13.55914242 , 14.68280892]

Y_Peak_Values := [.2961197602 1012, 107056.6765 , 899412.4643 ,
560382.9827 , 773676.2481 , 112923.53 , 143372.0 , −14721. ,
82580 , −87660. , 434000]

Curve fitting

127

Again note that some solutions to this twelfth-order problem show
strong filter artifact from the regression process. The X_Peak_Values

value equal to −.11.70881911 and two Y_Max_Values values (−14721
and −87660) clearly do not represent anything associated with the ob-
served data set. The first Y_Max_Values value is quite high
(.2961197602 × 1012), which is a regression artifact when compared to the
observed data. Consequently, the reader is again warned against accepting
any regression result blindly without verifying the veracity of the output
against the real data.

Now that we have the x-y values associated with the polynomial’s
peaks, let’s abstract the polynomial’s result for the maximal intensity
(Y_Max_Value) and its corresponding window step position
(X_Max_Value). These x-y values graphically correspond to the data set
peak fairly well as shown when we generate a composite curve fit and data
plot (Figure 3.10):

◗ Data_Set := zip((a,b)-[a,b],Xvalues,Yvalues):

Data_Plot := pointplot(Data_Set,style=point,symbol= circle,

color=black):

Estimated_Plot := plot(Y_Estimated,x=0..nops(Yvalues)-1,

style=line,color=black):

display({Estimated_Plot,Data_Plot},axes=boxed,labels=

[Window_Step_Position,Intensity]);

Note the severe rippling of the curve fit in Figure 3.10 due to the high-
order polynomial. Remembering this curve has 12–1 or 11 extrema, 10 are
clearly seen in Figure 3.9. Obviously, the eleventh extremum is outside the
16-step window, but we do not know on which side it exists.

Again, plotting the residual error between the actual and estimated
data, we can see where the interpolation errors are greatest (Figure 3.11).

Also, when the user uses very high order polynomials, the residual er-
ror plot will exhibit a large amount of zigzag behavior.

Applied Maple for Engineers and Scientists

128

◗ Estimator := y=Y_Estimated:

Transform_Equation := unapply(rhs(Estimator),x):

Estimated_Data :=

transform[apply[Transform_Equation]](Xvalues):

Residual_Error := transform[multiapply[(x,y)-x-y]]([Yvalues,

Estimated_Data]):

Error_Set := zip((a,b)-[a,b],Xvalues,Residual_Error):

Error_1 := pointplot(Error_Set,style=line,color=black):

Error_2 :=

pointplot(Error_Set,style=point,symbol=circle,color=black):

−200,000

−400,000

−600,000

−800,000

Intensity

Window_Step_Position

2 4 6 8 10 12 14

200,000

1e+06

800,000

600,000

400,000

0

Figure 3.10 Estimated (solid line) and actual (open circles) intensity versus window step position for

general polynomial fit (twelfth-order fit).

Curve fitting

129

display({Error_1,Error_2},labels=[Window_Step_Position,

Intensity], axes=boxed);

Again, plotting the residual error versus window step position as a rela-
tive percentage error at each step (Figure 3.12):

◗ Percent_Residual_Error := transform[multiapply[(x,y)-

((x-y)/x)*100]]([Yvalues,Estimated_Data]):

Percent_Error_Set :=

zip((a,b)-[a,b],Xvalues,Percent_Residual_Error):

Percent_Error_1 := pointplot(Percent_Error_Set,style=line):

Percent_Error_2 :=

pointplot(Percent_Error_Set,style=point,symbol=circle,

color=black):

Window_Step_Position

0 2 4 6 8 10 12 14

20,000

0
Intensity

−20,000

−40,000

40,000

Figure 3.11 Residual error between estimated (solid line) and actual (open circles) intensity versus

window step position (twelfth-order fit).

Applied Maple for Engineers and Scientists

130

display({Percent_Error_1,Percent_Error_2},labels=

[Window_Step_Position,Percent_Error],axes=boxed);

Again, note in Figure 3.12 the large jagged percent error toward the
end of the window. This indicates that for any window step position an er-
ror between estimated and observed data will create a large “reaction” to
the high-order polynomial. Again, because this high-order polynomial
“filter” has the bandwidth to track the data, it can jump quickly from meas-
ure to measure trying to compensate rather than smooth the result.

Quick moral about curve fitting
Finally, the moral of the curve-fitting story is that the reader should never
arbitrarily use a higher order estimator than is necessary to smooth the
data. Further, before using any regression, linear or otherwise, try to figure
what the data are doing in a subjective way before you get into all the me-
chanics of producing a large Maple session. Sometimes, and it is an art, a

100

50

0

−50

200

150

Window_Step_Position

2 4 6 8 10 12 14

Percent_Error

0

Figure 3.12 Percent relative residual error versus window step position (twelfth-order fit).

Curve fitting

131

little human insight in the beginning is worth hundreds of hours and per-
haps tens of thousands of dollars of effort, after the fact.

Conclusion
Maple has allowed us to see the effects of using several different regressors
or estimators with a given set of data. What becomes clear is that whatever
the user has for data determines which type of curve fitting to use (i.e., sim-
ple polynomial, nonlinear, or high-order polynomial). No software pack-
age can take the place of human intuition and past experience with data
structures when it comes time to use the correct curve-fitting algorithm.
However, when one has determined which type or even types have effi-
cacy, Maple can easily get the user up and running both numerically and
graphically to produce the required insights and/or algorithm implementa-
tion. Contrast what we have done in this chapter with Maple as opposed to
more conventional numerical packages on the market. Most C, C++, and
nonsymbolic statistical packages can give you curve fitting, but only a sym-
bolic package can give a universal handle on the algorithmic engine in sym-
bolic form that is understandable to the user. This fact is critical to the
human comprehension of any underlying process, because, as humans, we
are quicker to see a trend via symbolics rather than abstracting information
associated with an analysis via a bunch of numbers. Maple allows the user
to deal in concepts much more than any standard numerical only analysis
package.

References

[1] Wadsworth, Harrison M. (ed.), Handbook of Statistical Methods for
Engineers and Scientists, New York: McGraw-Hill, 1990.

[2] Fletcher, R., Practical Methods of Optimization, 2nd Ed., New York:
John Wiley & Sons, 1987.

[3] Draper, N. R., and H. Smith, Applied Regression Analysis, New York:
John Wiley & Sons, 1981.

Applied Maple for Engineers and Scientists

132

Applied Maple for Engineers and ScientistsMathematical models: working with differential equations

Chapter 4
Mathematical models:
working with differential equations

An important part of the design process is the modeling and simula-
tion stage using a mathematical prototype. Once the basic frame-
work of a prototype is in place, it is important to be able to

interrogate its state at any time during the simulation process, modify the
model, and rerun it as necessary. The Maple system enables us to develop
complex mathematical models, run them, analyze their output, modify
them, and then rerun them easily.

In this chapter we take a brief look at some of the functions that Maple
provides for investigating differential equations. We analyze the time re-
sponse of a tachometer needle using the series methods and develop and in-
vestigate a shock absorber model. Maple’s ability to deal with both linear
and nonlinear systems is addressed. The techniques used in this section
are applicable to any dynamic system modeled using differential equations,
not just to the control systems that are discussed in the examples.

133

ODE tools: a tour
The most commonly used tool is the dsolve function. In addition, the
DEtools , Difforms , and Liesymm packages contain functions that can
be used to manipulate both ordinary differential equations (ODEs) and par-
tial differential equations (PDEs). The Liesymm package is not considered
further because it is beyond the scope of this book.

The dsolve function
Maple’s standard tool for solving ODEs either symbolically or numerically,
is the dsolve function. In the first example, we find the time solution to a
second-order ODE with a triangular wave-forcing function. In this particu-
lar example, the triangle wave is approximated with a six-term Fourier
series:

◗ SYS1:=diff(x(t), t, t)+2*diff(x(t), t)+50*x(t) =

sum(100*cos(t*(2*n+1))/(2*n+1)^2, n=0..5);

SYS1 :=




∂2

∂t2 x(t)




+ 2




∂
∂t

x(t)




+ 50 x(t) = 100 cos(t)

+ 100
9

cos(3t) + 4 cos(5t) + 100
49

cos(7t) + 100
81

cos(9t)

When the system is initially at rest, the initial conditions are as follows:

◗ ICS1:=D(x)(0)=0, x(0)=0;

ICS1 := D(x)(0) = 0, x(0) = 0

The Dor differential operator can be used to compute the derivative of
a function. The call D(f)(x) is equivalent the call diff(f(x), x) :

◗ D(x)(t)=diff(x(t), t);

D(x)(t) =
∂
∂t

x(t)

Applied Maple for Engineers and Scientists

134

The preceding relationship becomes obvious if we let x equal the tan-
gent and evaluate it:

◗ eval(subs(x=tan, “));

1 + tan(t)2 = 1 + tan(t)2

Returning to the definition of the initial conditions, we can see that the
expression D(x)(0) is equivalent to the value of d

dtx(t)|t = 0
.

The time response x(t) is obtained and plotted using dsolve , rhs ,
and plot as shown. As the function dsolve returns an equation of the form
x(t)=…, the right-hand side is isolated using rhs so that it can be graphed
(see Figure 4.1):

◗ plot(rhs(dsolve({SYS1, ICS1}, x(t))), t=0..10,

labels=[‘t’, ‘x(t)’]);

Numeric
When a closed-form analytic solution cannot be found, then a numerical so-
lution can be attempted, as the next example shows:

84

3

2

1

0

−1

−2

x(t)

0

t

1062

Figure 4.1

Mathematical models: working with differential equations

135

◗ SYS2:=diff(x(t), t)+(2+cos(t^2))*x(t)=2*sin(0.1*t^2),

x(0)=0;

SYS2 :=




∂
∂t

x(t)




+ (2 + cos(t2)) x(t) = 2 sin(.1t2), x(0) = 0

◗ dsolve({SYS2}, x(t));

x(t) = 2. ∫
0

t

sin(.1000000000 u2) du ∫
0

t

e(2.u) du

∫
0

t

e(1.253314137 FresnelC(.7978845605 u)) du

e(−2.t − 1.253314137 FresnelC(.7978845605 t))

By specifying the method as numeric, we turn Maple’s ODE solver
from a symbolic one into a numerical one:

◗ SOLS:=dsolve({SYS2}, x(t), type=numeric);

SOLS := proc(rkf45_x) ... end

Maple returns a called procedure such that the value of the function
can be computed for any specified t. The formal parameter name, in this
case rkf45_x , indicates which algorithm has been used.

◗ SOLS(10);

[t = 10, x(t) = .1582530550576577]

Using this procedure we are able to plot the time response x(t)
(see Figure 4.2):

◗ pts:=[seq(subs(SOLS(T/10), [T/10, x(t)]), T=0..100)]:

◗ plot(pts, labels=[‘t’,’x(t)’]);

Applied Maple for Engineers and Scientists

136

The default numerical solver is the Fehlberg fourth-fifth order Runga-
Kutta method (see ?dsolve[numeric]). This algorithm requires four
evaluations of the function in order to return an estimate of the dependent
variable, which is equivalent to using a Taylor expansion as far as the term
in (x − x0)4. Although the Fehlberg fourth-fifth order Runga-Kutta
method is applicable in most cases this is not always the case. For this rea-
son, Maple supports a set of alternative numerical solvers, as shown in
Table 4.1. See ?dsolve[algorithm name] for more information.

The DEtools package
The DEtools package continues a suite of tools for investigating PDEs
and ODEs graphically.

As before we model a second-order dynamic system with a second-or-
der ODE, which we try to solve analytically using dsolve . The initial con-
ditions are y´(0) = 0 and y(0) = 1.

86

1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

0

t

1042

x(t)

Figure 4.2

Mathematical models: working with differential equations

137

Algorithm
name Method Comments

dverk78 Seventh-eight order continous
Runga-Kutta.

Improved accuracy over fourth-fifth
method but with an increased time of
computation.

classical Forward Euler method.

Heun formula also known as the
trapezoidal or improved Euler method.

Improved polygon method or modified
Euler method.

Adams-Bashford and
Adams-Bashford-Moulton methods.

A collection of classical methods using a
fixed step size between mesh points.
None of the methods employs error
correction or estimation to improve
accuracy. The default method is Forward
Euler.

The Adams-Bashford method is a
predictor method, whereas the
Adams-Bashford-Moulton method is a
predictor-corrector.

gear Gear method. Uses a variable-size single-step
extrapolation method. The two methods
are a Burlirsch-Stoer rational
extrapolation method (default) and a
polynomial extrapolation method.

mgear Multistep Gear method. Uses a variable-size multistep algorithm
that is applicable to both stiff and nonstiff
systems. The step size is determined by
evaluating the Jacobian matrix of the
system at every step. The Jacobian can be
computed either symbolically or by using
numerical differencing of the derivatives
(default). The Adams predictor-corrector
method can also be used to determine the
step size.

lsode The Livermore Stiff ODE solver. Uses a variable size multistep algorithm to
solve stiff systems of ODEs.

taylorseries Taylor series method. Used for high-accuracy solutions. Because
this method is computationally intensive,
computation times can be high.

Table 4.1 Alternative numerical solvers

Applied Maple for Engineers and Scientists

138

◗ SYS3 := diff(y(t), t$2) + cos(t)*sin(t)*diff(y(t),t) +

exp(t/10)*y(t) = cos(t)^2;

SYS3 :=




∂2

∂t2 y(t)




+ cos(t) sin(t)




∂
∂t

y(t)




+ e(1⁄10 t) y(t) = cos(t)2

◗ dsolve({SYS3, D(y)(0)=0, y(0)=1}, y(t));

Maple returns null indicating that a solution could not be found. In-
stead of obtaining the numerical solution to the system and plotting it as
we did earlier, we use the general ODE plotter DEplot found in the
DEtools package.

A package in Maple is a collection of functions with a common theme.
The functions in a particular package can be accessed in one of two ways:
Use their long names (package_name[function_name](arg1,
arg2, .., argn)) or define their short names in Maple’s name space
using with and the short function name. Using with we load the functions
in the DEtools package:

◗ with(DEtools);

[Denormal, DEPlot, DEPlot3d, Dchangevar, PDEchangecoords, PDEplot,
autonomous, convertAlg, convertsys, dfieldplot, indicialeq, phaseportrait,

reduceOrder, regularsp, translate, untranslate, varparam]

The list that is returned lists the functions that have been loaded from
the specified package. These functions can now be called in exactly the
same way (using the short name syntax) as the standard Maple functions.

Using DEplot we can solve our ODE and plot the result directly. The
function’s syntax is as follows: an ODE or system of ODEs to be solved,
the axes (in this case the abscissa is the independent variable t and the ordi-
nate is the response y(t)), the range of the independent variable, and the in-
itial conditions followed by any optional arguments. In this example, we
have set the step for the independent variable to be 0.1 (see Figure 4.3):

◗ DEplot(SYS3, [t, y], 0..20, {[0, 1, 0]}, stepsize=0.1);

Mathematical models: working with differential equations

139

We need to exercise some care when using DEplot because initial
conditions can be specified in one of two ways, either [t, y(t), y´(t), ...] or
[y(t) = ic, y´(t) = ic1, ...]. So, for example, the following are both identical
and valid: [2, -1, 1], [y(2) = -1, D(y)(2) = 1] .

Phase-Plane Techniques
Systems containing nonlinearities can prove difficult to analyze using con-
ventional methods, and in some cases phase-plane techniques can provide
much needed insight into the nonlinear system’s behavior. The phase
plane provides a bird’s-eye view of the possible solutions to the ODE for a
given set of initial conditions by showing us the possible trajectories of the
system.

In conjunction with the following nonlinear second-order ODE, we
use the Maple functions dfieldplot and phaseportrait to plot a di-
rection field and a trajectory:

◗ SYS4:=diff(y(t),t,t)+diff(y(t),t)/(1-y(t))+y(t)=0;

SYS4 :=




∂2

∂t2 y(t)




+

∂
∂t

y(t)

1 − y(t)
+ y(t) = 0

y

1.5

1

0.5

0

−0.5

−1

t

20151050

Figure 4.3

Applied Maple for Engineers and Scientists

140

The first task is to convert our second-order ODE into two
coupled first order ODEs so that we can use both dfieldplot and
phaseportrait . We do this by defining two state variables, x1(t) and
x2(t):

◗ STATE1:=y(t)=x[1](t);

STATE 1 := y(t) = x1(t)

◗ STATE2:=diff(y(t),t)=x[2](t);

STATE 2 :=
∂
∂t

y(t) = x2(t)

By using these variables we can transform the original ODE into two
coupled ODEs as shown:

◗ ‘2ND_DE’ := subs(STATE2, STATE1, SYS4);

2ND_DE :=




∂
∂t

x2(t)




+
x2(t)

1 − x1(t)
+ x1(t) = 0

We are now ready to plot the direction field x1(t) versus x2(t).

◗ dfieldplot({‘2ND_DE’, ‘1ST_DE’}, [x[1](t), x[2](t)],

t=10..30, x[1]=-10..10, x[2]=-10..10, color=BLACK);

Two things are immediately deducible from the direction field of
Figure 4.4: The circular nature of the arrows indicates that limit cycles are
possible and that a singularity at x1(t) equals one.

The next step is to compute the phase portrait of the system with in-
itial conditions of x1(0) = 4 and x2(0) = 1 using phaseportrait (see
Figure 4.5):

◗ phaseportrait([‘2ND_DE’, ‘1ST_DE’], [x[1](t), x[2](t)],

t=0..30, {[0,4,1]}, stepsize=0.2, thickness=2, color=BLACK);

Mathematical models: working with differential equations

141

x1

x2

−5−10

10

5

0 1050

−5

−10

Figure 4.4

0 0.1 0.2

t

0.3 0.4 0.5

0.3

0.4

0.5

0.6

0.7

0.8

x1, n[2](t)

Figure 4.5

Applied Maple for Engineers and Scientists

142

Using display , found in the plots package, we can place a trajectory
on this direction field (see Figure 4.6).

◗ plots[display]({“,”"}, view=[-6..6, -8..6]);

We can see with reference to Figure 4.6 that the system, although it
does not enter a limit cycle, is stable if very oscillatory. It is also possible to
see the effect of the singularity on the system’s response.

The difforms package
The difforms package contains a set of functions that enables us to
define the variables in a computation, operate on them, and interrogate the
resulting functions. This package has its origins more in the mathemati-
cian’s world than the engineer’s in terms of the terminology used. The
three functions of most interest to us in this package are d, defform , and
&^, which computes the exterior derivative of an expression, defines the ba-
sic variables used in a computation, and represents the wedge product, re-
spectively. Using the difforms package a formal framework can be
quickly formed that enables us to describe complex dynamic systems using
differential equations and the elements that make up differential equations
and to then manipulate them. The following code loads three functions
from the difforms package:

−6

−6

−8

−4

−4

−2

−2

0 2 4 6

x[1](t)x[2](t)

6

4

2

0

Figure 4.6

Mathematical models: working with differential equations

143

◗ with(difforms, [defform, d, &^]);

[&^, d, defform]

First we declare our system of variables:

◗ EXPR := defform(A=function, B=scalar, C=scalar, f=scalar):

This takes the external derivative

◗ d(f*A+&^(B,C));

(d(f) &^A) + fd(A) + Cd(B) + Bd(C)

Here we take the derivative of a simpler function:

◗ d(A(B,C));





∂
∂B

A(B, C)




d(B) +




∂
∂C

A(B, C)




d(C)

Here we define known external derivatives:

◗ defform(d(B) = X, d(C)=0);

Here we view the simplified expression:

◗ EXPR;





∂
∂B

A(B, C)




X

Series methods
Although power series methods for solving ODEs are well understood and
in many cases are perfectly adequate for finding accurate approximations,
they do exhibit some drawbacks: The resultant series must converge and
they can be computationally problematic in that they can require the evalu-

Applied Maple for Engineers and Scientists

144

ation of high-order derivatives. Maple uses the Frobenius series method,
which assumes that a solution of the following form is possible:
y = xc(a0 + a1x + a2x2 + a3x3 + … + arx

r + …); see ?dsolve
[series] for more information. In this example, however, we will use
the Taylor series, for the sake of clarity, to demonstrate how Maple can be
used to manipulate series in order to calculate the time response of a dy-
namic system described by a differential equation.

This method requires that a Taylor’s series can be formed for a func-
tion y = f(t) at t =0 by manipulating the higher order derivatives, f´(t), f´´(t),
f´´´(t) , … . The general form of the Taylor series can be seen by simply
computing the Taylor series for an arbitrary function of t.

◗ taylor(f(t),t);

f(0) + D(f)(0)t + 1
2

D(2)(f)(0)t2 + 1
6

D(3)(f)(0)t3

+ 1
24

D(4)(f)(0)t4 + 1
120

D(5)(f)(0)t5 + O(t6)

The dynamics of a tachometer needle can be described with the follow-
ing ODE: dθ/dt = 1 + cos(t/10) − 0.05θ where t is time and θ is the angu-
lar displacement of the needle. We solve this ODE using the series
methods as follows: Obtain the higher derivatives (the more derivatives,
the better the accuracy), reduce them to functions of the first-order deriva-
tive, evaluate the derivatives at the point t = 0, generate the Taylor’s series
and substitute the derivatives into the series, and, finally, substitute the in-
itial condition and convert to a polynomial.

With reference to the Taylor series generated earlier we can see that it
is fifth order—because the default number of terms calculated by Maple is
six, no order number was specified. In the following treatment we only
need to calculate the first five derivatives. Using the Dand @@operators we
can map the preceding equation into Maple, but before we do we take a
quick look at the @@operator. The @@operator is the infix form of the re-
peated composition operator, which is used to apply functions and opera-
tors repeatedly. So applying the function f four times to the argument arg
we get the following:

◗ (f@@4)(arg);

f (4)(arg)

Mathematical models: working with differential equations

145

By expanding the previous result we can see that the function f is first
applied to the argument and then the function f is applied to the first result
followed by a further application of f to that result and so on.

Now we can define the ODE describing the systems dynamics in
Maple as follows:

◗ SYS5 := (D@@(n))(theta)(t) = (D@@(n-1))(1+cos(t/10)-

0.05*theta(t));

SYS5 := D(n)(θ)(t) = D(n − 1)


1 + cos




1
10

t


− .05 θ(t)


At first glance this does not resemble the original ODE given earlier.
However, a closer look reveals that with n set to one and thinking of
D(θ)(t) as shorthand for dθ/dt, SYS5and the above ODE are the same.

◗ subs(n = 1, SYS5);

D(1)(θ)(t) = D(0)


1 + cos




1
10

t


− .05 θ(t)


Using this general expression we can generate the higher order deriva-
tives with seq . However, we do need a trick to be able to do this. We can-
not apply the Doperator, using the repeated composition operator @@, to
the expression 1+ cos (t/10) − 0.05θ(t). The trick is to represent this as a
function of t.

◗ TEMP:= t -1 + cos(t/10) - 0.05*theta(t);

TEMP := t → 1 + cos


1
10

t


− .05 θ(t)

Now we are able to generate the higher order derivatives:

◗ TERMS := [seq((D@@(n))(theta)(t) = (D@@(n-1))(TEMP)(t),

n=1..5)];

Applied Maple for Engineers and Scientists

146

ative is a function of the (n − 1)th derivative. So the next stage is to step
through the list of differential equations, reducing them to functions of the
first-order derivative only. We use a do loop for this operation:

TERMS := 


D(θ)(t) = 1 + cos



1
10

t


− .05 θ(t), 



D(2)(θ)(t) = −
1

10
sin




1
10

t


− .05 D(θ)(t),

D(3)(θ)(t) = −
1

100
cos




1
10

t


− .05 D(2)(θ)(t),

D(4)(θ)(t) = 1
1000

sin



1
10

t


− .05 D(3)(θ)(t),





D(5)(θ)(t) = 1
10000

cos



1
10

t


− .05 D(4)(θ)(t)


It is easy to see from this result that the nth derivative is a function of
the (n − 1)th derivative. So the next stage is to step through the list of differ-
ential equations, reducing them to functions of the first-order derivative
only. We use a do loop for this operation:

◗ ANS1 := [TERMS[1]]:

for n from 5 to 2 by -1 do

ANS1:=[op(ANS1),

subs(op([seq(op(n-N,[TERMS[1..n-1]]), N=1..n-1)]),

TERMS[n])];

od:

ANS1;




D(θ)(t) = 1 + cos




1
10

t


− .05 θ(t), D(5)(θ)(t) = 



.00008125000000 cos


1
10

t


− .00003750000000 sin



1
10

t


+ .625 10−5 − .3125 10−6 θ(t), D(4)(θ)(t) =

.0007500000000 sin



1
10

t


+ .0003750000000 cos



1
10

t


Mathematical models: working with differential equations

147

− .000125 + .625 10−5 θ(t), D(3)(θ)(t) =

−.00750000000 cos



1
10

t


+ .005000000000 sin



1
10

t


+ .0025

− .000125 θ(t), D(2)(θ)(t) = −
1

10
sin




1
10

t


− .05




− .05 cos



1
10

t


+ .0025 θ(t)





D(θ)(t) = 1 + cos



1
10

t


− .05 θ(t), D5(θ)(t) = 



.00008125000000 cos



1
10

t


− .00003750000000 sin



1
10

t


+ .625 10−5 − .3125 10−6 θ(t), D(4)(θ)(t) =

.0007500000000 sin



1
10

t


+ .0003750000000 cos


1
10

t


− .000125 + .625 10−5 θ(t), D(3)(θ)(t) =

−.00750000000 cos



1
10

t


+ .005000000000 sin



1
10

t


+ .0025

− .000125 θ(t), D2(θ)t = −
1

10
sin




1
10

t


− .05





− .05 cos



1
10

t


+ .0025 θ(t)


Note the way that subs is used for sequential substitution. The order
of the substitution equations has been reversed. The next step is to evalu-
ate the derivatives at the point t = 0:

◗ AT_ZERO := subs(t=0,ANS1);

Applied Maple for Engineers and Scientists

148

AT_ZERO :=




D(θ)(0) = 1 + cos(0) − .05 θ(0), D(5)(θ)(0) = x3

x3




.00008125000000 cos(0) − .00003750000000 sin(0) + .625 10−5

− .3125 10−6 θ(0), D(4)(θ)(0) = .0007500000000 sin(0)

+ .00037540000000 cos(0) − .000125 + .625 (10 sup {-5})θ(0),

D(3)(θ)(0) = −.00750000000 cos(0) + .005000000000 sin(0)

+ .0025 − .000125 θ(0),





D(2)(θ)(0) = −
1

10
sin(0) − .05 − .05 cos(0) + .0025 θ(0)



Once we have generated a Taylor’s series in θ(t) we substitute for the
derivatives:

◗ THE_SERIES:=taylor(theta(t), t);

THE_SERIES := θ(0) + D(θ)(0)t + 1
2

D(2)(θ)(0)t2 + 1
6

D(3)(θ)(0)t3

+ 1
24

D(4)(θ)(0)t4 + 1
120

D(5)(θ)(0)t5 + O(t6)

◗ WITHOUT_DIFFS:= subs(AT_ZERO, THE_SERIES);

WITHOUT_DIFFS := θ(0) + (2 − .05 θ(0)) t
+ (− .05000000000 + .001250000000 θ(0)) t2

+ (− .0008333333335 − .00002083333334 θ(0)) t3

+ (.00001041666667 + .2604166667 10−6 θ(0)) t4

+ (.7291666666 10−6 − .2604166667 10−8 θ(0)) t5 +O(t6)

Here we substitute the initial condition and convert the resulting ex-
pression to a polynomial by removing the order term:

Mathematical models: working with differential equations

149

◗ WITH_IC := subs(theta(0) = 1, WITHOUT_DIFFS);

WITH_IC := 1 + 1.95 t − .04875000000 t2 − .0008541666668 t3

+ .00001067708334 t4 + .7265624999 10−6 t5 + O(t6)

◗ SERIES_APPROX := convert(WITH_IC, polynom);

SERIES_APPROX := 1 + 1.95t − .04875000000t2

− .0008541666668t3 + .00001067708334t4 + .7265624999 10−6t5

We now plot the response in Figure 4.7.

◗ plot(SERIES_APPROX, t=0..40, labels=[‘t’,’Theta’]);

As previously mentioned series techniques only provide approximate
solutions to ODEs; the accuracy of the solution is determined by the type
of series used and the number of terms in the series. Bearing this in mind,
the accuracy of the time response of the tachometer needle appears to alter
over its range. Within the range t = 0..20 the response is as we would ex-
pect with the needle’s angular position increasing, overshooting, and then,

Theta

40

30

20

10

t
403020100

Figure 4.7

Applied Maple for Engineers and Scientists

150

following some oscillations, finally settling at its final position. It is in the
range t = 20..40 that the needle’s response is not as we would expect as the
angular position grows in an unbounded fashion. This accuracy problem is
common with series methods because the series in question is only guaran-
teed to be accurate for a limited range about the point of expansion, in out
case t = 0. It is possible to improve the accuracy of a series method solution
by using an alternative series, as Maple does. We increase the number of
terms used and change the point about which the function is expanded.
This last method means that a piecewise linear approximation to the solu-
tion can be constructed in an iterative fashion. In this particular example,
however, an analytic solution exists so we can compare that with the ap-
proximate solution obtained using the series approach. First we save the
plot of the series solution, changing the line style to dashed, so that we can
compare it with the analytic solution.

◗ PLOT1 := plots[display]({“}, linestyle=2):

Using dsolve we calculate the exact solution before displaying the
two responses on the same graph (see Figure 4.8):

◗ EXACT := dsolve({SYS5, theta(0)=1}, theta(t));

EXACT := θ(t) = 20. + 4. cos(.1000000000t)
+ 8. sin(.1000000000t) −23. e(−.05000000000t)

40

30

20

10

Theta

t
403020100

Figure 4.8

Mathematical models: working with differential equations

151

This plots the approximate and the exact solutions:

◗ plots[display]({plot(rhs(EXACT), t=0..40), PLOT1},

labels=[‘t’,’Theta’]);

Modeling dynamic systems
Using Maple’s ability to represent and manipulate symbolic quantities, we
can quickly describe a dynamic system, using differential equations, and
analyze it. In many instances, we will be able to obtain the exact closed-
form solutions describing its behavior.

A simple shock absorber
In our first example, we consider a mass (m1), a spring (constant k1) of
length s1, and a damper (frictional constant b1) arrangement set up as a sim-
ple shock absorber (Figure 4.9). In this particular example, we are inter-
ested in determining the behavior over time of the center of the
mass (x1) following a disturbance in the reference x0.

By equating the forces acting on the mass m1 we can determine the
equations of motion that describe the system’s behavior, in this case,
over time.

◗ mass[1]:= 0 = m[1]*diff(x[1](t),t,t) + b[1]*diff(x[1](t),t)

- k[1]*(s[1]-x[1](t)+x[0](t));

Spring

k1

Damper

b1

Mass

m1

x1 = 0

x0 = 0

Spring length

s1

Figure 4.9

Applied Maple for Engineers and Scientists

152

mass1 := 0 + m1




∂2

∂t2 x1(t)




+ b1




∂
∂t

x1(t)




− k1 

s1 − x1(t) + x0 (t)



This is the general equation describing the system’s motion so we need
to define the parameter values and the initial conditions before we proceed.
The system parameters are as shown, the system is assumed to be initially
at rest, and the forcing function is sin2(2.7t)/2. This particular forcing func-
tion has been chosen to simulate a series of impulses.

◗ params:=[m[1]=1, k[1]=1, b[1]=1, s[1]=1,

x[0](t)=0.5*sin(t*2.7)^2];

params := 

m1 = 1, k1 = 1, b1 = 1, s1 = 1, x0(t) = .5 sin(2.7 t)2



◗ ics:=D(x[1])(0)=0, x[1](0)=1;

ics := D(x1)(0) = 0, x1(0) = 1

These are substituted into the second-order ODE describing the
shock absorber, which is then solved analytically using dsolve :

◗ {subs(params, mass[1]), ics}, {x[1](t)}





D(x1)(0) = 0, x1(0) = 1,




11

212












0 =




∂2

∂t2 x1(t)




+




∂
∂t

x1(t)




− 1 + x1(t) − .5 sin(2.7 t)2



, 


x1(t)




The convert(..., rational) is necessary because dsolve
is unable to deal with floating-point numbers in the ODE’s coefficients.

Mathematical models: working with differential equations

153

◗ simplify(dsolve(op(convert([“], rational))));

x1(t) = 2200
5137841

sin



1
2

√3 t


sin



1
2

√3 t + 27
5

t


+ 3375
4110728

cos



1
2

√3 t


sin



1
2

√3 t + 27
5

t


− 3375
4110728

cos



1
2

√3 t


sin



1
2

√3 t − 27
5

t


+ 2200
5137841

cos



1
2

√3 t


cos


1
2

√3 t − 27
5

t


+ 2200
5137841

cos



1
2

√3 t


cos


1
2

√3 t + 27
5

t


+ 2200
5137841

sin



1
2

√3 t


sin



1
2

√3 t − 27
5

t


+ 5
4

+ 9425
6166092

cos


1
2

√3 t


sin



1
2

√3 t − 27
5

t

√3

+ 64485
4110728

cos



1
2

√3 t


cos


1
2

√3 t − 27
5

t

√3

+ 9425
6166092

cos


1
2

√3 t


sin



1
2

√3 t + 27
5

t

√3

− 64485
4110728

cos



1
2

√3 t


cos


1
2

√3 t + 27
5

t

√3

− 9425
6166092

sin



1
2

√3 t


cos


1
2

√3 t + 27
5

t

√3

+ 64485
4110728

sin



1
2

√3 t


sin



1
2

√3 t − 27
5

t

√3

− 9425
6166092

sin



1
2

√3 t


cos


1
2

√3 t − 27
5

t

√3

Applied Maple for Engineers and Scientists

154

− 64485
4110728

sin



1
2

√3 t


sin



1
2

√3 t + 27
5

t

√3

− 3375
4110728

cos



1
2

√3 t


sin



1
2

√3 t + 27
5

t


+ 3375
4110728

cos



1
2

√3 t


sin



1
2

√3 t − 27
5

t


+ 531441
2055364

e(−1⁄2t) cos



1
2

√3 



− 164997
2055364

√3 e(−1⁄2t) sin



1
2

√3 t


As we can see, the solution of even simple-looking ODEs can be com-
plex. Here we display both the time response of the system and the forcing
function together:

◗ Plots[display](array(1..2,1..1,[[plot(rhs(“), t=0..10,

labels=[‘t’,’o/p’])],[plot(0.5*sin(2.7*t)^2, t=0..10,

labels=[‘t’,’i/p’])]]));

We can see in Figure 4.10 that this system would not make a particu-
larly good shock absorber because its response time is too slow. With refer-
ence to the time response, we can deduce that the shock absorber is

1.3

1.25

1.2

1.15

1.1

1.05

1

t
1086420

o/p

0.5

0.4

0.3

0.2

0.1

0
0

t
108642

i/p

Figure 4.10

Mathematical models: working with differential equations

155

bouncing from high-spot to high-stop as the steady-state output is centered
on the dc value of the input signal and tracks the oscillations at the input’s
fundamental frequency.

Using the Heaviside function
In many practical systems the forcing function to a system will be discon-
tinuous in nature. For example, by using the Heaviside function we can
model step, pulse, delayed, and windowed forcing functions.

In the previous example, we approximated a pulse train forcing func-
tion with a sin2t function. Here, instead we can use Heaviside functions as
shown:

◗ f(t):=sum(Heaviside (t-n)*(-1)^(n+1), n=1..10);

f(t) := Heaviside(t − 1) − Heaviside(t − 2) + Heaviside(t − 3)
− Heaviside(t − 4) + Heaviside(t − 5) − Heaviside(t − 6)
+ Heaviside(t − 7) − Heaviside(t − 8) + Heaviside(t − 9)
− Heaviside(t − 10)

Here we plot the forcing function f(t). We save this plot for future use
by assigning it to the variable p1 (see Figure 4.11):

◗ plot(f(t), t=0..20, labels=[‘t’,’f(t)’]);

◗ p1:=":

The parameter definition is modified to include the forcing function
f(t):

◗ params:=[m[1]=1, g=10, k[1]=1, b[1]=1, x[0](t)=f(t),

s[1]=1]:

We can now substitute the new parameter list into the ODE describing
the mass’s motion developed above and then solve it.

◗ {subs(params, mass[1]), ics}, {x[1](t)};

dsolve(“);

p2:=plot(rhs(”), t=0..20):

Applied Maple for Engineers and Scientists

156

The forcing function and system’s time response are displayed to-
gether in Figure 4.12 using the display function found in the plots
package.

◗ plots[display]({p2,p1}, labels=[‘t’,’o/p’]);

t

0

f(t)

1

0.8

0.6

0.4

0.2

0 2015105

Figure 4.11

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

t
20151050

o/p

Figure 4.12

Mathematical models: working with differential equations

157

A twin mass shock absorber
In the next example, we model a car tire-spring-damper assembly with two
masses (m1 and m2), two springs (constants k1 and k2) of length s1 and s2,
respectively, and two dampers (frictional constants b1 and b2) arranged as
shown in Figure 4.13. The bottom mass-spring-damper arrangement mod-
els the tire whereas the top mass-spring-damper configuration models the
car’s shock absorber assembly. In this particular example, we are interested
in determining the behavior over time of both of the center of the masses
(x1 and x2) following a disturbance in the reference x0.

By equating the forces acting on both of the masses, we can determine
the equations of motion that describe the system’s behavior over time. In
this example, we are faced with two coupled ODEs that must be solved
simultaneously.

◗ mass[1]:=m[1]*diff(x[1](t),t,t)-k[1]*(s[1]-(x[1](t)

x[2](t)))+b[1]*diff(x[1](t)-x[2](t),t)=0;

Spring

k1

Damper

b1

Mass
x1 = 0

Spring length

s1

Spring

k2

Damper

b2

Mass
m2

m1

x2 = 0

x0 = 0

Spring length

s2

Figure 4.13

Applied Maple for Engineers and Scientists

158

x[2](t)-x[0](t),t)=0;

mass1 := m1




∂2

∂t2 x1(t)




− k1 

s1 − x1(t) + x2(t)



+ b1








∂
∂t

x1(t)




−




∂
∂t

x2(t)








= 0

◗ mass[2]:=m[2]*diff(x[2](t),t,t)-k[1]*(-s[1]+x[1](t)

x[2](t))-b[1]*diff(x[1](t)-x[2](t),t) -k[2]*(s[2]

x[2](t)+x[0](t))+b[2]*diff(x[2](t)-x[0](t),t)=0;

mass2 := m2




∂2

∂t2 x2(t)




− k1 

−s2 + x2(t) − x2(t)



− b1








∂
∂t

x1(t)




−




∂
∂t

x2(t)








− k2

s2 − x2(t) + x0(t)



+ b2








∂
∂t

x2(t)




−




∂
∂t

x0(t)








= 0

As in the previous example, these are the general equations so we will
need to assign values to the system parameters for mass mi, damping bi,
and the spring constants ki. The forcing function x0(t) is also defined.

◗ params:=[m[1]=200, m[2]=10, k[1]=25000, k[2]=15000,

b[1]=50,b[2]=1000,x[0](t)=0.2, s[1]=0.2, s[2]=0.3];

params := 

m1 = 200, m2 = 10, k1 = 25000, k2 = 15000, b1 = 50, 





b2 = 1000, x0(t) = .2, s2 = .3


The final set of parameters that needs to be defined are the initial
conditions:

◗ ics:=x[1](0)=0.5, x[2](0)=0.3, D(x[1])(0)=0, D(x[2])(0)=0;

ics := x1(0) = .5, x2(0) = .3, D(x1)(0) = 0, D(x2)(0) = 0

Mathematical models: working with differential equations

159

The ODEs and the parameter values are brought together using the
substitution function subs to form the equations that we will be manipulat-
ing further:

◗ eqns:=subs(params,{mass[1], mass[2]});

eqns :=




200




∂2

∂t2 x1(t)




− 5000.0 + 25000 x1(t) − 25000 x2(t)




+ 50




∂
∂t

x2(t)




− 50




∂
∂t

x2(t)




= 0, 10




∂2

∂t2 x1(t)




− 2500.0

− 25000 x1(t) + 40000 x2(t) − 50




∂
∂t

x1(t)




+ 1050




∂
∂t

x2(t)








− 1000




∂
∂t

.2




= 0




In this particular case we will use Laplace transform methods to solve
the variables xi(t). The Laplace transform functions are found in the inte-
gral transforms package inttrans , which we load using with . If you are
concerned with system resources (i.e., unnecessarily loading functions into
Maple work space that will not be used) you can load only the Laplace
transform functions by using with (inttrans, [laplace,
invlaplace]):

◗ with(inttrans):

We can now take the Laplace transforms of the system’s differential
equations:

◗ laplace(eqns, t, s);





200. 


laplace (x1(t), t, s) s − 1. x1(0)


s − 200. D(x1)(0) − 5000.
1
s





+ 25000. laplace 

x1(t), t, s


− 25000. laplace 


x2 (t), t, s


+ 50. laplace 


x1(t), t, s


s − 50. x1(0) − 50. laplace 


x2(t), t, s


s

+ 50. x2(0) = 0, 10. 

laplace


x2(t), t, s


s − 1. x2(0)


s

Applied Maple for Engineers and Scientists

160

− 10. D(x2)(0) − 2500.
1
s

− 25000. laplace 

x1(t), t, s



+ 40000. laplace 

x2(t), t, s


s − 50. laplace 


x1(t), t, s


s





1
s + 50. x1(0) + 1050. laplace 


x2(t), t, s


s − 1050. x2(0) = 0





We can make these expressions clearer by means of Maple’s alias facil-
ity. The two unknowns that we are interested in are the Laplace trans-
formed quantities laplace(x1(t)) and laplace(x2(t)), which we will alias to X1
and X2, respectively:

◗ alias(X1=laplace(x[1](t), t, s), X2=laplace(x[2](t), t, s));

I, diff1, ∫1, X1, X2

Maple returns a sequence of the aliases currently known to the system.
Now we substitute for the initial conditions:

◗ subs(ics, “”);




200. (X1 s − .5) s − 5000.

1
s − 25000. X1 + 25000. X2 + 50. X1 s





− 10.0− 50. X2 s = 0, 10. (X2 s − .3) s − 2500.
1
s

− 25000. X1





1
s

+ 40000. X2 − 50. X1 s − 290.0 + 1050. X2 s = 0




We now can solve for the two unknowns X1 and X2

◗ solve(“, {X1, X2});





X1 = .5000000000
16600. s2 + .1050000 107 + 52100. s + 421. s3 + 4. s4

s750000. + 51500. s + 16600. s2 + 4. s4 + 421. s3


,








X2 = .3000000000
4. s4 + 421. s3 + 20600. s2 + 52500. s + .1250000 107

s750000. + 51500. s2 + 16600. s2 + 4. s4 + 421. s3






Mathematical models: working with differential equations

161

Using map in conjunction with invlaplace , we take the inverse
transform of both solutions in a single step and obtain the time responses
xi(t):

◗ map(invlaplace, “, s, t);

{x1(t) = .7000000000
− .003867611722 e(−51.60982474 t) cos(35.05255107 t)
+ .001213402066 e(−51.60982474 t) sin(35.05255107 t)
− .1961323883 e(−1.015175265 t) cos(6.866003481 t)
− .06426567528 e(−1.015175265 t) sin(6.866003481 t), x2(t) =

.5000000000 − .08350768725 e(-51.60982474 t) cos(35.05255107 t)
− .1143131946 e(-51.60982474 t) sin (35.05255107 t)
− .1164923127 e(-1.015175265 t) cos (6.866003481 t)

− .06133234948 e(−1.015175265 t) sin(6.866003481 t)}

Maple returns a set of solutions which we map onto a list of solutions a
shown.

◗ sols :=subs(“, [x[1](t), x[2] (t)]);

sols := [.7000000000 − .003867611722 e(−51.60982474 t) cos(35.05255107 t)
+ .001213402066 e(−51.60982474 t) sin(35.05255107 t)
− .1961323883 e(−1.015175265 t) cos(6.866003481 t)
− .06426567528 e(−1.015175265 t) sin(6.866003481 t),

.5000000000 − .08350768725 e(-51.60982474 t) cos(35.05255107 t)
− .1143131946 e(-51.60982474 t) sin (35.05255107 t)
− .1164923127 e(-1.015175265 t) cos (6.866003481 t)
− .06133234948 e(−1.015175265 t) sin(6.866003481 t)]

Now we can plot the response of the system for an input step of 0.2
units in amplitude (Figure 4.14):

◗ plot({sols[1], sols[2]},t=0..5,numpoints=100,

labels=[‘t’,’x[1](t), n[2](t)’]);

Applied Maple for Engineers and Scientists

162

At first glance the step response of this system does not seem unusual
with a settling time of approximately 3 sec, an overshoot of approximately
70%, and a natural damped natural frequency of about 1.2 Hz. The re-
sponses are closely coupled with only a slight delay between the two
masses. However, on closer inspection, the initial rises of each curve are
not the same. Using Maple we can zoom in on this portion of the response
(see Figure 4.15):

◗ plot({sols[1], sols[2]},t=0..0.5, numpoints=100,

labels=[‘t’,’x[1](t), n[2](t)’]);

0.8

0.7

0.6

0.5

0.4

0.3

x[1](t), x[2](t)

t

543210

Figure 4.14

x[1](t), n[2](t)

0.8

0.7

0.6

0.5

0.4

0.3

t
0.50.40.30.20.10

Figure 4.15

Mathematical models: working with differential equations

163

Using piecewise
The strange “kink” in the response of mass m2 is indicative of the presence
of high-frequency components. The high-frequency components in the
output could lead to unsuitable operation for a shock absorber assembly
when it is subjected to a sequence of impulses such as those that could be
encountered when a car passes over a railroad crossing. It is this type of in-
put and how to model it that we consider in this section.

As before we define the parameters for the system but this time we set
the forcing function to f(t) as defined below:

◗ params:=[m[1]=200, m[2]=10, k[1]=25000, k[2]=15000,

b[1]=50, b[2]=1000, x[0](t)=f(t), s[1]=0.2, s[2]=0.3];

params := 

m1 = 200, m2 = 10, k1 = 25,000, k2 = 15,000, b1 = 50,





b2 = 1000, x0(t) = f(t), s1 = .2, s2 = .3


Using the piecewise function we model a sequence of impulses that
will become the system’s forcing function:

◗ f(t):=piecewise(t<=1,0.1,t>1 and t<=1.5,0, t>1.5 and

t<=1.75, 0.2, t>1.75 and t<=2.2, 0, t>2.4 and t<=2.7,

-0.2, t>2.7, 0):

Here we substitute for the system parameters and the forcing function
prior to solving for xi(t) numerically:

◗ sols:=dsolve(subs(params,{mass[1], mass[2], ics}),

{x[1](t), x[2](t)}, numeric);

◗ sols := proc(rkf45_x) ... end

This time we use odeplot to plot the time responses xi(t) over the
range t = 0..5 s. The system response along with the forcing function are
displayed in Figure 4.16.

◗ plots[odeplot](sols, [[t,x[1](t)],[t,x[2](t)]],0..5,

numpoints=100);

Applied Maple for Engineers and Scientists

164

As predicted the response of the top mass is smooth despite the impul-
sive nature of the forcing function, whereas the response of the lower mass
exhibits a number of discontinuities corresponding to the rising and falling
edges of the forcing function. In a real system, where the lower mass-
spring-damper assembly would be tire, such behavior could lead to a loss
of traction and hence control of the vehicle.

A nonlinear system
Thus far we have used Maple to investigate linear ODEs but that tools and
techniques used are equally applicable to nonlinear ODEs. In some cases it
may be possible to obtain an analytical solution to a nonlinear ODE, in
which case dsolve can still be used. For example,

◗ dsolve(diff(y(t),t,t)=y(t)^2, y(t));

t = ∫
0

y(t)
− 3

1

√6y13 + 9_C1
dy1 − _C2,

t = ∫
0

y(t)
3

1

√6y23 + 9_C1
dy2 − _C2

0.6

0.4

0.2

0

−0.2

i/p, o/p

t

543210

Figure 4.16

Mathematical models: working with differential equations

165

The number of nonlinear ODEs that can be solved analytically is
small, which means that more often than not we are forced to solve non-
linear ODEs numerically. As we have already seen, Maple has a powerful
array of numerical solvers that we can apply to nonlinear ODEs. Returning
to the linear coupled system of ODEs considered earlier, we can consider a
nonlinear system by introducing a nonlinear spring into the top mass-
damper-spring assembly of the preceding example. We redefine the force
balance equation for the top mass as follows:

◗ mass[1]:=m[1]*diff(x[1](t),t,t)-k[1]*(s[1]-(x[1](t)-

x[2](t))^2)+b[1]*diff(x[1](t)-x[2](t),t)=0;

mass1 := m1




∂2

∂t2 x1(t)




− k1

s1 − 


x1(t) − x2(t)



2



+ b1








∂1

∂t1 x1(t)




−




∂1

∂t1 x2(t)








= 0

We use the following system parameters and the original initial condi-
tions to compute the system step response:

◗ ics:=x[1](0)=0.5, x[2](0)=0.3, D(x[1])(0)=0, D(x[2])(0)=0:

params:=[m[1]=200, m[2]=10, k[1]=25000, k[2]=15000,

b[1]=50,b[2]=1000, x[0](t)=0.2, s[1]=0.2, s[2]=0.3]:

sols:=dsolve(simplify(subs(params,{mass[1], mass[2],

ics})), {x[1](t), x[2](t)}, numeric);

sols := proc(rkf45_x) ... end

Note the use of simplify to tidy up the differential equations prior
to them being passed to dsolve .

◗ plots[odeplot](sols, [[t,x[1](t)],[t,x[2](t)]],0..5,

numpoints=100, labels=[‘t’,’x1(t), x2(t)’]);

The response obtained (Figure 4.17) for the nonlinear system is obvi-
ously different from that obtained for the linear system in that the displace-

Applied Maple for Engineers and Scientists

166

ment of both masses is much larger and the settling time in increased. The
kink in the lower traces is not, however, as pronounced in the nonlinear
system as in the linear one.

The ability to deal with nonlinear components in our models enables
us to investigate how systems will react to marked changes in the system’s
parameters. For example, what happens to the system if a spring or damper
fails? In this our final example in this section, we investigate how the sys-
tem’s response changes with regard to changes in the damping coefficient
of the bottom mass-spring-damper assembly. Such a change in the coeffi-
cient could be associated with changes in temperature or a punctured tire.

First we define how the damper’s coefficient of friction will change
over time:

◗ B:=T->piecewise(T>12, 4000, T>8, 1000, T>4, 500,T>0, 0):

The profile of the damping coefficient can be plotted as shown in
Figure 4.18.

◗ plot(B(t),t=0..20, labels=[‘t’,’B(t)’]);

0 2

t

3 4 5

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

x1(t), x2(t)

1

Figure 4.17

Mathematical models: working with differential equations

167

Next we define the square-wave forcing function of 4-Hz frequency
and peak-to-peak amplitude of 0.4 units:

◗ f:=T->piecewise(T>16, 0.2, T>12, -0.2, T>8, 0.2, T>4, -0.2,

T>0, 0.2):

Here we plot the forcing function, which is shown in Figure 4.19:

◗ plot(f(t),t=0..20, labels=[‘t’,’f(t)’]);

The parameter list is altered so that the coefficients b2 and x0(t) are the
functions of time B(t) and f(t), respectively:

◗ params:=[m[1]=200, m[2]=10, k[1]=25000, k[2]=15000,

b[1]=50, b[2]=B(t),x[0](t)=f(t), s[1]=0.2, s[2]=0.3];

params := 

m1 = 200, m2 = 10, k1 = 25000, k2 = 15000, b1 = 50, b2 = 


piecewise(0, 12 < t, 4000, 8 < t, 1000, 4 < t, 500, 0 < t, 0,
undefined), x0(t) = piecewise(0, 16 < t, .2, 12 < t, −.2, 8 < t, .2

4 < t, −.2, 0 < t, .2, undefined), s1 = .2, s2 = .3]

4,000

3,000

2,000

1,000

0

t

20151050

B(t)

Figure 4.18

Applied Maple for Engineers and Scientists

168

We can now solve this numerically

◗ sols:=dsolve(subs(params,{mass[1], mass[2], ics}),

{x[1](t), x[2](t)}, numeric);

◗ sols := proc(rkf45_x) ... end

and plot the result (Figure 4.20) as before using odeplot :

◗ plots[odeplot](sols,[[t,x[1](t)],[t,x[2](t)]],0..20,

numpoints=100, labels=[‘t’,’x1(t), x2(t)’]);

This previous plot demonstrates that this particular system is closely
coupled. As the tire becomes more and more stiff, the oscillations of both
the masses reduces until, in the range of t = 16..20, the majority of the
damping is supplied by the top damper. The data displayed in Figure 4.20
is a little cluttered. By altering the representation to a three-dimensional
surface, the oscillations and their effect on the system’s step response as the
damping coefficient varies can be clearly seen.

0.2

0.1

0

−0.1

−0.2

150

t

20105
f(t)

Figure 4.19

Mathematical models: working with differential equations

169

First we redefine the function B(t) so that it has four bands and the pa-
rameter list so that the forcing function is a step of amplitude 0.2 units:

◗ B:=T->piecewise(T>3, 4000, T>2, 1000, T> 1, 500, T>0, 0):

params:=[m[1]=200, m[2]=10, k[1]=25000, k[2]=15000,

b[1]=50,b[2]=B,x[0](t)=0.2, s[1]=0.2, s[2]=0.3]:

Next we define a function that returns a Maple procedure. The proce-
dure is the numeric solution, for a given damping coefficient, to the non-
linear ODE:

◗ sols:=(y)-dsolve(subs(params, B=B(y),{mass[1], mass[2],

ics}), {x[1](t),x[2](t)}, numeric);

sols := y → dsolve 

subs 


params, B = B(y), 



ics, mass1, mass 2
















x1(t), x2(t)



, numeric



This is called in the following manner:

0.8

0.6

0.4

0.2

0
0

t

2015105

x1(t), x2(t)

Figure 4.20

,

Applied Maple for Engineers and Scientists

170

◗ sols(3);

proc(rkf45_x) ... end

By using two nested for loops we construct the surface. The outer
loop computes the step response for each band in the damping function,
and the inner loop copies the response to thicken the band. Finally, the
computed data are displayed using the surfdata function found in the
plots package (Figure 4.21).

◗ ANS:=NULL:

for n in [0,1,2,3] do

TEMP:=plots[odeplot](sols(n), [t, x[1](t)], 0..5,

numpoints=100);

TEMP:=op(1,op(1,[op(TEMP)]));

ANS:=ANS,map((x,y)-[y, op(x)],TEMP,2*n);

for nn to 2 do

ANS:=ANS,map((x,y)-[y, op(x)],TEMP,2*n+nn);

od;

od:

plots[surfdata]([ANS], color=BLACK, orientation=[25, 60],

axes=FRAME,labels=[‘b1’,’t’,’x1(t)’]);

0.9

0.8

0.7

0.6

0.5

x1(t)

5
4

32
1

0

10

8

6
4

2
0

t

b1

Figure 4.21

Mathematical models: working with differential equations

171

Applied Maple for Engineers and ScientistsContinuous control application theory

Chapter 5
Continuous control
application theory

Linear control system analysis

The most common use for Maple’s linear algebra capabilities are
those applications where matrix algebra is advantageous when
dealing with systems that have many constituent equations de-

scribing the underlying dynamics. These systems arise in particular when
dealing with circuits (mesh and nodal equations) and general control sys-
tem analysis (stability and sensitivity analysis with many variables).

Many extremely valuable references are available that discuss classical
control techniques [1–4]. Most of these texts introduce the use of matrices
and linear algebra since most control system applications, whether done in
the frequency or the time domain, are described and solved using these
mathematical methods.

173

We deal here with two separate approaches for solving a standard lin-
ear controller, namely, the frequency-domain method and the time-domain
method. The best way to perform this comparison is to analyze a control
problem and compare the desired results, both graphically and analyti-
cally. This comparison will demonstrate that linear algebra is a very
powerful method for obtaining needed solutions. However, and more im-
portantly, some basic matrix methods coupled with Maple give the user an
ability to play with internal system dynamics symbolically, hence greatly
helping the user understand the underlying general dynamics associated
with any variable of any given controller.

We start our discussion with the general feedback model as shown in
Figure 5.1. No matter how complicated the controller becomes, most de-
tailed analyses break the bigger system into smaller subsystems as shown in
Figure 5.1. Consequently, the importance of knowing how to use Maple to
set up, solve, and manipulate variables within the system under investiga-
tion is what this chapter is about.

Figure 5.1 shows the basic feedback controller with designated input,
output, feed-forward (forward dynamics), and feedback (reverse dynamics)
paths. These are described as follows:

1. Forward dynamics. Sometimes called the plant. This block repre-
sents the dynamics associated with the power or overall system
actuator. It is also called the effector or motivator branch.

2. Reverse dynamics. Sometimes called the compensator. This block
represents the dynamics associated with the sensor of the overall
system actuator. It is also called the affector or sensor branch.

3. Summation (∑). This block creates the difference between the
forward and reverse system components. This difference signal is
known as the control system error signal.

Input
Error
signal

Forward
dynamics

Reverse
dynamics

OutputΣ

G

H

+

−

Figure 5.1
Standard feedback
controller model.

Applied Maple for Engineers and Scientists

174

We start our analysis of the frequency-domain approach with a simple
example and compare the results with the time-domain analysis given later.

Frequency-domain approach
Generally, the block components shown in Figure 5.1 are transformed via
Laplace transforms for analysis [1–4]. This transform technique allows the
user to describe the system dynamics in algebraic terms rather than inte-
grodifferential time-invariant equations. Thus, the Laplace transform of a
time function, f(t), becomes F(s) as defined by

Laplace[f(t)] = F(s)

Mathematically, this is achieved by the following transform:

Laplace[f(t)] = ∫
0

∞
f(t)e−st dt ≡ F(s)

where s = jω and j represents the imaginary value of √−1 .
As a consequence, the system blocks are considered linear, although

this graphic representation can certainly be utilized with nonlinear dynam-
ics. However, Laplace transform techniques cannot be used in these
cases [1–3].

Let’s borrow some system dynamics from an air stabilizer design used
in aerodynamics [2] (see Table 5.1). The overall closed-loop or system
transfer function, assuming no loading between blocks, is defined as

Table 5.1
Stabilizer

controller
transfer functions

Control branch Laplace transform

Forward dynamics
G(s) =

2(s + 2)2

2s2 + 3s + 2

Reverse dynamics
H(s) = 1

2s

The no loading between system blocks means that no individual
block’s output is affected by the input of the following system block.

Continuous control application theory

175

Overall transfer function =
G(s)

1 + G(s)H(s)

Incorporating this expression via Maple yields,

◗ G := 2*(s+2)^2/(2*s^2+3*s+2):

H := 1/(2*s):

System_Xfer_Function := simplify(G/(1+G*H));

System_Xfer_Function :=
s(s + 2)2

s3 + 2 s2 + 3 s + 2

Now, let’s give the system an input step function:

Input = 1
s

The output response is determined by multiplying the system with the
input function, or

Output = (System transfer function) × (Input)

Hence,

◗ Input := 1/s:

System_Response := simplify(System_Xfer_Function*Input);

System_Response :=
(s + 2)2

s3 + 2 s2 + 3 s + 2

Now we invoke the Laplace transform within the inttrans library,
because we will be converting between the frequency and time domains:

◗ with(inttrans):

Computing the inverse Laplace transform of the System_Response ,
we obtain

Applied Maple for Engineers and Scientists

176

◗ System_Response_Time_Domain := evalf(invlaplace(System_

Response,s,t));

System_Response_Time_Domain := .5000000000 e(−1. t)

+ 2.078804601 e(−.5000000000 t) sin(1.322875656 t)
+ .5000000000 e(−.5000000000 t) cos(1.322875656 t)

Plotting the output response (Figure 5.2), we see the time-domain sys-
tem’s response to a unit step function as

◗ with(plots):

plot (System_Response_Time_Domain,t=0..10,axes=

normal,color=black, labels=[time,response]);

At this point, engineers are interested in the roots of the closed-loop
Laplace transfer function expression. The roots of the Laplacian polyno-
mial function, System_Response , give the stability and response charac-
teristics of the individual components that comprise the overall closed-loop
transfer function. The following Maple structure will factor the polynomial
for the characteristic roots:

◗ Factored_Denominator := factor(denom(System_Response));

Factored_Denominator := (s + 1) (s2 + s + 2)

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0

Response

−0.2

−0.4
Time

2 4 6 8 10Figure 5.2
Time-domain step

response for
controller example.

Continuous control application theory

177

Maple was able to factor the third-order polynomial, but could not fac-
tor the composite quadratic term because that term contains complex
roots. However, we can have Maple directly solve the denominator expres-
sion for the three roots with the solve command:

◗ System_Roots := [evalf(solve(Factored_Denominator=0,s))];

System_Roots := [−1., −.5000000000 + 1.322875656 I,
−.5000000000 − 1.322875656 I]

Extracting and separating the roots from the System_Roots
expression:

◗ Root_1 := op(1, System_Roots);

Root_2 := op(2, System_Roots);

Root_3 := op(3, System_Roots);

Root_1 := −1.
Root_2 := − .5000000000 + 1.322875656 I
Root_3 := − .5000000000 − 1.322875656 I

Now that we have the roots of the characteristic equation of the system,
we can see that none of the roots is in the right half plane (i.e., none of the
real aspects of the complex roots exhibits a positive number), hence the
system is stable. Stability is defined when a bounded input produces a
bounded output. If a system exhibits positive real roots, then the output
grows exponentially with time for any input [1–3]. Further, [1–3] indicate
the following about the three roots:

Root_1 → Pure exponential decay term
Root_2, Root_3 → Exponentially decaying sinusoidal term

In fact, we could have written the general time-domain response
directly from these root expressions. Hence, the general form would
have been

Applied Maple for Engineers and Scientists

178

Output (t) = K1e([Root_1])t + e(Re[Root_2, 3]) 

K2 sin(Im[Root_2, 3]t) 





+ K3 cos(Im[Root_2, 3]t)


where

Re[Root_2,3] → Real part of either Root_2 or Root_3

Im[Root_2,3] → Imaginary part of either Root_2 or Root_3

K1, K2, K3 → Coefficients dependent on intial conditions
and characteristic roots

Partial fraction expansion
A very useful way to derive the Laplace transforms of complex rational
polynomials is to use a method known as partial fraction expansion [1–4].
This method allows the user to deal with smaller rational polynomials that
transform easier via the Laplace transform definition. The basic idea here is
that an Nth-order rational polynomial is equivalent to N first-order rational
polynomials.

Certain polynomials can have their partial fraction expression obtained
via Maple; however, for the simple approach, the roots must not be com-
plex (i.e., they must be real numbers). If the roots are complex or purely
imaginary, then you should use the complex option within the convert
command argument when using the parfrac option. We demonstrate
this and another approach for handling complex roots in the next
subsection.

Real and distinct roots
Consider the following Laplacian transfer function:

◗ Transfer_Function := (s+5)/(s^3+6*s^2+11*s+6);

Transfer_Function :=
s + 5

s3 + 6 s2 + 11 s + 6

using the convert command with the parfrac option:

Continuous control application theory

179

◗ Partial_Fraction_Form := convert(Transfer_Function,

parfrac,s);

Partial_Fraction_Form := 1
s + 3

− 3
1

s + 2
+ 2

1
s + 1

Now, we can take the Laplace transform of each transfer function con-
tributor, multiply each term by the input driving function, and add them to
obtain the complete output time-domain response (linearity property). To
illustrate this, let’s assign new Maple variables to each contributor:

◗ First_Term := op(1,Partial_Fraction_Form);

Second_Term := op(2,Partial_Fraction_Form);

Third_Term := op(3,Partial_Fraction_Form);

First_Term :=
1

s + 3

Second_Term := − 3
1

s + 2

Third_Term := 2
1

s + 1

Now assume the input is a unit step:

◗ Unit_Step_Input := 1/s:

Then multiply each contributor with the input transform:

◗ First_Term_Laplace := First_Term*Unit_Step_Input;

Second_Term_Laplace := Second_Term*Unit_Step_Input;

Third_Term_Laplace := Third_Term*Unit_Step_Input;

First_Term_Laplace :=
1

(s + 3) s

Second_Term_Laplace := − 3
1

(s + 2) s

Third_Term_Laplace := 2
1

(s + 1) s

Applied Maple for Engineers and Scientists

180

take the inverse transform of each contributor:

◗ with(inttrans):

First_Term_Time := invlaplace(First_Term_Laplace,s,t);

Second_Term_Time := invlaplace(Second_Term_Laplace,s,t);

Third_Term_Time := invlaplace(Third_Term_Laplace,s,t);

First_Term_Time := −
1
3

e(−3 t) + 1
3

Second_Term_Time :=
3
2

e(−2 t) − 3
2

Third_Term_Time := − 2 e(−t) + 2

and add all the output time-domain responses:

◗ System_Response_Time := First_Term_Time+Second_Term_Time

+Third_Term_Time;

System_Response_Time := −
1
3

e(−3 t) + 5
6

+ 3
2

e(−2 t) − 2 e(−t)

Compare this to the direct approach for obtaining the output response
to a unit step input function:

◗ System_Response_Time_Direct := invlaplace(Transfer_

Function*Unit_Step_Input,s,t);

System_Response_Time_Direct := −
1
3

e(−3 t) + 5
6

+ 3
2

e(−2 t) − 2 e(−t)

This last expression is identical to the previously obtained one except
that the ability to see the individual effects of the roots is not directly ob-
served. Obviously this method is especially useful when the reader needs
to perform individual root analyses as they apply to the output’s response.

Real and nondistinct roots
What about Maple’s ability to abstract the roots of a polynomial if the roots
are real, but nondistinct (repetitive)? Let’s create a Laplacian output func-

Continuous control application theory

181

tion that exhibits two repetitive roots at s = −2, a distinct root at s = −3,
and a zero at s = −1, namely,

System_Response =
s + 1

(s + 2)2 (s + 3)

Enter the function into Maple,

◗ System_Response := (s+1)/((s+2)^2*(s+3));

System_Response =
s + 1

(s + 2)2 (s + 3)

perform the partial fraction expansion,

◗ Partial_Fraction_Form := convert(System_Response,parfrac,s);

Partial_Fraction_Form := −
1

(s + 2)2 + 2
1

s + 2
− 2

1
s + 3

which is correct if you were to do a hand calculation, and then compare it
to the coefficient solutions (A, B, C) of the following expression, which is
generated by the residue theorem [1–3]:

System_Response =
s + 1

(s + 2)2(s + 3)
= A

s + 2
+ B

(s + 2)2 + C
s + 3

When compared to the Partial_Fraction_Form , this would indi-
cate the following values for the coefficients:

A = 2
B = −1
C = −2

To prove this fact, let’s perform the analysis in Maple. We start by
defining the left- and right-hand sides of the last System_Response
equation:

Applied Maple for Engineers and Scientists

182

f1 → Left-hand side
f2 → Right-hand side

Hence,

◗ f1 := (s+1)/((s+2)^2*(s+3));

f2 := A/(s+2)+B/(s+2)^2+C/(s+3);

f1 :=
s + 1

(s + 2)2 (s + 3)

f 2 := A
s + 2

+ B
(s + 2)2 + C

s + 3

Then use Maple’s do loop capability to generate the different simulta-
neous equations (i.e., three different solutions for three different values) re-
quired to solve for the three unknown coefficients:

◗ for i from 0 to 2 do

F1(i) := subs(s=i,f1):

F2(i) := subs(s=i,f2):

Equation(i) := F1(i)-F2(i):

od:

Now with the three simultaneous equations, Equation(i) , gener-
ated and stored in Maple’s memory, we regenerate the subscripted equa-
tions, Equations , into a list with the seq command. Then we abstract
each operand within the Equations list with the op command, and use
Maple’s solve command to generate another list comprised of the coeffi-
cient solutions, Solutions :

◗ Equations := [seq(Equation(i),i=0..2)]:

Eq_1 := op(1,Equations):

Eq_2 := op(2,Equations):

Eq_3 := op(3,Equations):

Solutions := solve({Eq_1=0,Eq_2=0,Eq_3=0},{A,B,C}):

Finally, abstracting the results and reassociating those values back with
the original unknown variables, we obtain the numerical results of the un-
known partial fraction coefficients (A, B, C):

Continuous control application theory

183

◗ Results := subs(Solutions,[A,B,C]):

A := op(1,Results);

B := op(2,Results);

C := op(3,Results);

A := 2
B := −1
C := −2

These values agree with the values obtained using Maple’s
convert[parfrac] command. Hence, the reader can see that Maple
performs a significant amount of internal computation to obtain the partial
fraction values of a given function with the convert[parfrac]
command.

Continuing, let’s isolate the individual Laplacian terms by assigning
them variable names:

◗ First_Term_Laplace := A/(s+2);

Second_Term_Laplace := B/(s+2)^2;

Third_Term_Laplace := C/(s+3);

First_Term_Laplace := 2
1

s + 2

Second_Term_Laplace := −
1

(s + 2)2

Third_Term_Laplace := − 2
1

s + 3

Now, take the inverse Laplace transform of each partial fraction term:

◗ First_Term_Time := invlaplace(First_Term_Laplace,s,t);

Second_Term_Time := invlaplace(Second_Term_Laplace,s,t);

Third_Term_Time := invlaplace(Third_Term_Laplace,s,t);

First_Term_Time := 2 e(−2 t)

Second_Term_Time := − t e(−2 t)

Third_Term_Time := − 2 e(−3 t)

Applied Maple for Engineers and Scientists

184

The final output time-domain expression is the sum of all partial frac-
tion terms, hence the reader can see that the sum of these time-domain ex-
pressions is identical to the direct inverse transform of the
Partial_Fraction_Form obtained with Maple:

◗ System_Response_Time :=

invlaplace(Partial_Fraction_Form,s,t);

System_Response_Time := −t e(−2 t) + 2 e(−2 t) − 2 e(−3 t)

or the inverse of the System_Response :

◗ System_Response_Time_Direct :=

invlaplace(System_Response,s,t);

System_Response_Time_Direct := −t e(−2 t) + 2 e(−2 t) − 2 e(−3 t)

or reiterating our hand-calculated version (now that Maple remembers the
computed partial fraction coefficients):

◗ System_Response_Time_HC := invlaplace(f2,s,t);

System_Response_Time_HC := −t e(−2 t) + 2 e(−2 t) − 2 e(−3 t)

which is identical to the two previous time-domain inverse transforms.
The double root at s = −2 caused the te(−2t) and e(−2t) form in the out-

put, whereas the real and distinct root at s = −3 directly created the e(−3t)

term. The reason we know this is because each of the time-domain terms,
First_Term_Time , etc., corresponds to each of the frequency-domain
described roots, First_Term , etc., which is directly observed from the
Maple commands previously shown, i.e.,

◗ First_Term_Laplace := A/(s+2);

Second_Term_Laplace := B/(s+2)^2;

Third_Term_Laplace := C/(s+3);

Continuous control application theory

185

First_Term_Laplace := 2
1

s + 2

Second_Term_Laplace := −
1

(s + 2)2

Third_Term_Laplace := − 2
1

s + 3

yielded

◗ First_Term_Time := invlaplace(First_Term_Laplace,s,t);

Second_Term_Time := invlaplace(Second_Term_Laplace,s,t);

Third_Term_Time := invlaplace(Third_Term_Laplace,s,t);

First_Term_Time := 2 e(−2 t)

Second_Term_Time := − t e(−2 t)

Third_Term_Time := − 2 e(−3 t)

Hence,

Frequency domain Time domain

First_Term_Laplace := 2
1

s + 2
First_Term_Time := 2 e(−2 t)

Second_Term_Laplace := − 1

(s + 2)2
Second_Term_Time := −t e(−2 t)

Third_Term_Laplace := −2
1

s + 3
Third_Term_Time := −2 e(−3 t)

Remember, when Maple solves an equation or provides a transform of
some function, the order of the result may not (and usually does not) corre-
spond to the order in which the operands were entered into a Maple ses-
sion for computation. Therefore, be careful of your Maple associations.

Applied Maple for Engineers and Scientists

186

Complex roots
Maple can create a partial fraction expression directly from expressions
containing complex roots. However, the user must specify the complex op-
tion within the convert[parfrac] command.

Consider the transfer function from the system that was stated earlier:

System_Xfer_Function =
s(s + 2)2

s3 + 2s2 + 3s + 2

Since we already know that Maple can directly solve for the roots, let’s
obtain the system’s output response to a unit step function via partial frac-
tion expansion. Hence, if

System_Response =
s(s + 2)2

s3 + 2s2 + 3s + 2




1
s




=
(s + 2)2

s3 + 2s2 + 3s + 2

Let’s attempt to perform the partial fraction expansion directly without
the complex option:

◗ System_Response := ((s+2)^2)/(s^3+2*s^2+3*s+2):

System_Response_Partial_Fraction := convert(System_

Response,parfrac,s);

System_Response_Partial_Fraction := 1
2

1
s + 1

+ 1
2

6 + s
s2 + s + 2

and now with the complex option:

◗ System_Response_Partial_Fraction_C := convert(System_

Response,parfrac,s,complex);

System_Response_Partial_Fraction_C := .49998
1

s + 1

+
.25001 + 1.0394 I

s + .50000 + 1.3229 I
+

−.25001 + 1.0394 I
−1. s − .50000 + 1.3229 I

Continuous control application theory

187

Depending on what the user desires, Maple has yielded either the
quadratic or fully factored complex partial fraction form. Maple can easily
convert either expression into the correct time-domain expression, hence,
the quadratic form:

◗ System_Response_Time := invlaplace(System_Response_

Partial_Fraction,s,t);

System_Response_Time := 1
2

e(−t) + 1
2

e(− 1⁄2 t) cos


1
2

√7 t


+ 11
14

e(− 1⁄2 t) √7 sin



1
2

√7 t


or the complex form:

◗ System_Response_Time_C := invlaplace(System_Response_

Partial_Fraction,s,t);

System_Response_Time_C := .49998 e(−1. t)

+ (.25001 + 1.0394 I) e((−.50000 − 1.3229 I) t)

+ (.25001 − 1.0394 I) e((−.50000 + 1.3229 I) t)

We need to eliminate the explicit imaginary terms from the
System_Response_Time_C expression . To do so, we use the
evalc command:

◗ System_Response_Time_C1 := evalc(invlaplace(System_

Response_Partial_Fraction,s,t));

System_Response_Time_C1 := .49998 e(−1. t)

+ .50002 e(−.50000 t)cos(1.3229 t)
+ 2.0788 e(−.50000 t) sin(1.3229 t)

or we could have converted the inverse to a trig with the simplify and
convert[trig] command[option] :

Applied Maple for Engineers and Scientists

188

◗ System_Response_Time_C2 := simplify(convert(invlaplace

(System_Response_Partial_Fraction,s,t),trig));

System_Response_Time_C2 := .49998 cosh(t)
− .49998 sinh(t) + .50002 cosh(.50000 t) cos(1.3229 t)
− .50002 sinh(.50000 t) cos(1.3229 t)
+ 2.0788 cosh(.50000 t) sin(1.3229 t)
− 2.0788 sinh(.50000 t) sin(1.3229 t)

Clearly, the System_Response_Time_C2 expression is not as
familiar to work with as either the System_Response_Time_C1 or
System_Response_Time expressions. However, these expressions are
approximately the same. The reason for the word approximate is due to
the floating-point operations that Maple performs to obtain the complex
computation.

An alternate and manual method for obtaining the time-domain re-
sponse of System_Response is to abstract the root denominators of the
partial fraction expansion, System_Response_Partial_Fraction ,
by initially factoring the denominator of the System_Response and ob-
taining the necessary terms to perform a general coefficient partial fraction
expansion form:

◗ System_Response := ((s+2)^2)/(s^3+2*s^2+3*s+2):

System_Response_Partial_Fraction := convert(System_Response,

parfrac,s);

System_Response_Partial_Fraction := 1
2

1
s + 1

+ 1
2

6 + s
s2 + s + 2

As expected, the quadratic is left in the expansion. Now let’s separate
the denominator terms to deal with them more easily (we also divide by the
common scalar so as to isolate the polynomials in s):

◗ First_Root := denom(op(1,System_Response_Partial_

Fraction))/2;

Quadratic_Root := denom(op(2,System_Response_Partial_

Fraction))/2;

First_Root := s + 1

Quadratic_Root := s2 + s + 2

Continuous control application theory

189

As stated previously, we can obtain a valid partial fraction expansion of
the System_Response when stated as follows:

System_Response =
(s + 2)2

s3 + 2s2 + 3s + 2
= A

s + Root_1

+ B
s + Root_2

+ C
s + Root_3

where A, B, C, Root_1, Root_2, Root_3 can be real or complex quanti-
ties. The general Laplacian form obtained from this approach is

X
s + Root_Z

XeRoot_Z

Continuing with our problem, we now solve for the roots of both first-
order (FRoot_Output) and quadratic (QRoots_Output) terms:

◗ FRoot_Output := [solve(First_Root=0,s)];

QRoots_Output := [solve(Quadratic_Root=0,s)];

FRoot_Output := [− 1]

QRoots_Output := 


−

1
2

+ 1
2

I √7 , −
1
2

− 1
2

I √7 



We abstract and assign the roots to some interim Maple variables,

◗ FRoot := op(1,FRoot_Output);

QRoot_1 := op(1,QRoots_Output);

QRoot_2 := op(2,QRoots_Output);

FRoot1 := − 1

Qroots_1 := −
1
2

+ 1
2

I √7

Qroot_2 := −
1
2

− 1
2

I √7

generate the quadratic root’s partial fraction expansion along with the first-
order root operands,

Inverse Laplace

Applied Maple for Engineers and Scientists

190

◗ PFraction_1 := A/(s-FRoot);

PFraction_2 := B/(s-QRoot_1);

PFraction_3 := C/(s-QRoot_2);

Pfraction_1 := A
s + 1

Pfraction_2 := B

s + 1
2

− 1
2

I √7

Pfraction_3 := C

s + 1
2

+ 1
2

I √7

and add the individual partial fraction terms to obtain the total Laplace out-
put response for the input unit step function:

◗ Partial_Fraction_Output := PFraction_1+PFraction_2+

PFraction_3;

Partial_Fraction_Output :=
A

s + 1
+ B

s + 1
2

− 1
2

I √7
+ C

s + 1
2

+ 1
2

I √7

Solving for the A,B,C coefficients a little differently than before, we gen-
erate a set of equations with arbitrarily assigned values of the Laplace vari-
able, s:

◗ PF_Output_1 := subs(s=1,System_Response)-subs(s=1,Partial_

Fraction_Output);

PF_Output_2 := subs(s=2,System_Response)-subs(s=2,Partial_

Fraction_Output);

PF_Output_3 := subs(s=3,System_Response)-subs(s=3,Partial_

Fraction_Output);

Continuous control application theory

191

PF_Output_1 := 9
8

− 1
2

A − B
3
2

− 1
2

I √7
− C

3
2

+ 1
2

I √7

PF_Output_2 := 2
3

− 1
3

A − B
5
2

− 1
2

I √7
− C

5
2

+ 1
2

I √7

PF_Output_3 := 25
56

− 1
4

A − B
7
2

− 1
2

I √7
− C

7
2

+ 1
2

I √7

and solve the simultaneous equations:

◗ Solutions :=solve({PF_Output_1=0,PF_Output_2=0,

PF_Output_3=0},{A,B,C}) ;

Solutions := 



A = 1
2

, C = 1
4

+ 11
28

I √7 , B = 1
4

− 11
28

I √7 



We abstract the results and assign the values to the appropriate
coefficient:

◗ Results := subs(Solutions,[A,B,C]):

A := op(1,Results);

B := op(2,Results);

C := op(3,Results);

A := 1
2

B := 1
4

− 11
28

I √7

C := 1
4

+ 11
28

I √7

and restate the original output partial fraction function to obtain Maple’s
response:

Applied Maple for Engineers and Scientists

192

◗ Partial_Fraction_Output;

1
2

1
s + 1

+

1
4

− 11
28

I √7

s + 1
2

− 1
2

I √7
+

1
4

+ 11
28

I √7

s + 1
2

+ 1
2

I √7

Since we have complex terms in the coefficients, let’s simply use
Maple’s evalc command when taking the inverse Laplace transform to in-
terpret these automatically into contributing output response phase terms:

◗ System_Response_Time :=

evalc(invlaplace(Partial_Fraction_ Output,s,t));

System_Response_Time := 1
2

e(−t) + 1
2

e(−1⁄2 t) cos



1
2

t √7 



+ 11
14

√7 e(−1⁄2 t) sin



1
2

t √7 



Finally, plotting the unit step response,

◗ with(plots):

plot(System_Response_Time,t=0..10,color=black,axes=normal,

labels=[Time,Response]);

As Figure 5.3 shows, the result is identical to the previously plotted
Figure 5.2.

Let’s compare this final result with Maple’s direct inverse Laplace
transform of the System_Response :

◗ Direct_Result := invlaplace(System_Response,s,t);

Direct_Result :=
1
2

e(−t) + 1
2

e(−1⁄2 t) cos


1
2

t √7 



+ 11
14

√7 e(−1⁄2 t) sin



1
2

t √7 



Continuous control application theory

193

The reader will see that the Direct_Result is identical to the partial
fraction result, System_Response_Time .

In summary, the use of partial fraction expansion is useful when analyz-
ing the effect of individual terms or roots associated with any linear system
function. Originally, partial fractions were used when symbolic mathemat-
ics packages were not available to students and professionals and obtaining
time-domain solutions from large Laplace transforms was either impossible
or cumbersome. Partial fraction expansion breaks the problem down into
smaller transforms. In this way, the student or professional can obtain the
inverse by hand and/or look-up tables.

Time-domain approach
The state space approach to analyzing control systems has become ex-
tremely popular due to the advent of computers. In fact, this method has
almost become the de facto standard given the prevalence of the personal
computer.

State space techniques use matrix representation of system parameters
to ascertain transient, steady-state, and general dynamic responses of very
high order linear and some nonlinear systems [1,3,5,6].

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0

Response

−0.2

−0.4 Time

2 4 6 8 10
Figure 5.3

Partial fraction
expansion solution

to unit step
response.

Applied Maple for Engineers and Scientists

194

Time-invariant versus time-variant systems
For the remainder of this chapter, we examine constant coefficient matrices
(i.e., linear time-invariant systems). Time-dependent coefficient or linear
time-variant systems can require the users to perform a similarity or other
type of transform [3–6] of the state space vector equation, which the
authors do not want to involve the reader with at this time.

The authors do not want to confuse the reader by delving into some
odd systems that require this or other transformation techniques while
studying the main chapter. We only want to expose the reader to the basic
approach of state space using Maple from which all other techniques are
usually derived or based. If the reader is more interested in this and other
matrix transformations, they are referred to the cited references. A basic
similarity transformation is depicted in Appendix A at the end of the book.

Analysis of a time-invariant system: fundamentals
Our first approach is to characterize the system by the use of state vari-
ables, which are generated by choosing specific states or nodes (xi) of inter-
est in the system under consideration. One starts by creating a set of state
equations and putting them into a normal equation form, which simply
means the set of simultaneous equations representing a linear transforma-
tion of coupled dependent variables, hence,

x
.

1 = a11x1 + a12x2 + a13x3 + …

+ a1NxN + b11u1 + … + b1MuM

x
.

2 = a21x1 + a22x2 + a23x3 …

+ a2NxN + b21u1 + … +b2MuM

⋅
⋅
⋅

x
.

N = aN1x1 + aN2x2 + aN3x3 + …

+ aNNxN + bN1u1 + … + bNMuM

which can be implemented into matrix formulation as

Continuous control application theory

195

d
dt

















x1

x2

x3

⋅
⋅
⋅

xN

















=

















a11

a21

a31

⋅
⋅
⋅

aN1

a12

a22

a32

aN2

a13

a23

a33

aN3

⋅
⋅
⋅
⋅

⋅

⋅
⋅
⋅

⋅

⋅

⋅
⋅
⋅

⋅
⋅

a1N

a2N

a3N

⋅
⋅
⋅

aNN

































x1

x2

x3

⋅
⋅
⋅

xN

















+

















b11

b21

b31

⋅
⋅
⋅

bN1

b12

b22

b32

⋅

⋅

⋅

⋅

⋅

⋅

⋅

b1M
b2M
b3M

⋅
⋅
⋅

bNM

































u1

u2

u3

⋅
⋅
⋅

uM

















which can then be restated in a matrix shorthand vector matrix form as

x
. = Ax + Bu

or, in general,

x
. (t) = A(t)x(t) + B(t)u(t)

Similarly, the output vector y of any system can be stated as follows:

















y1

y2

y3

⋅
⋅
⋅

yP

















=

















c11

c21

c31

⋅
⋅
⋅

cP1

c12

c22

c32

cP2

c13

c23

c33

cP3

⋅
⋅
⋅
⋅

⋅

⋅
⋅
⋅

⋅

⋅

⋅
⋅
⋅

⋅
⋅

c1N

c2N

c3N

⋅
⋅
⋅

cPN

































x1

x2

x3

⋅
⋅
⋅

xN

















+

















d11

d21

d31

⋅
⋅
⋅

dP1

⋅

⋅

⋅

⋅

⋅

⋅

d1M
d2M
d3M

⋅
⋅
⋅

dPM

































u1

u2

u3

⋅
⋅
⋅

uM

















which, again, can be restated in shorthand vector matrix form as

y = Cx + Du

For our particular example, we will only have one input and one output
so the vector matrix equations reduce to

Applied Maple for Engineers and Scientists

196

x
. = Ax + Bu
y = <Cx> + du

where u, y, <Cx>, and d are scalars (<Cx> represents the inner or scalar
product).

Let’s start by converting the previous frequency-domain transfer func-
tion into a time differential form, i.e.,

Output
Input

=
s(s + 2)2

s3 + 2s2 + 3s + 2

First, cross-multiplying the Laplace transfer function, we obtain

Output 
s3 + 2s2 + 3s + 2

 = Input 
s(s + 2)2



letting Output → y(t), Input → u(t) and realizing that s → d⁄dt, then the pre-
vious expression becomes (assuming initial conditions are zero):

d3y(t)
dt3 + 2

d2y(t)
dt2 + 3

dy(t)
dt

+ 2y(t) =
d3u(t)

dt3 + 4
d2u(t)

dt2 + 4
du(t)

dt

or in the shorthand dot notation,

y + 2y
.. + 3y

. + 2y = u + 4u
.. + 4u

..

Restating this problem into the normal state space equation form,
we get

x
.

1 = x2

x
.

2 = x3

x
.

3 ≡ y = −2y
.. − 3y

. − 2y + u + 4u
.. + 4u

.

The problem with directly implementing this form of the simulation is
the rather difficult aspect of handling input derivatives (i.e., u, u

..
, u

.
). De-

rivatives, whether done in a numerical or symbolic simulation, create prob-

… …

… …

…

Continuous control application theory

197

lems due to the noisy nature associated with these operators. Noisy opera-
tion means that, computationally, derivatives are very sensitive to slight
variations in value. Therefore, any extraneous artifact not associated with
the solution is amplified and will directly contribute to a lower quality re-
sult. Consequently, utilizing the following state flow diagram more easily fa-
cilitates the vector matrix setup for either a time- or frequency-domain
analysis, regardless of the input derivative variable number or order.

Figure 5.4 shows the general simulation diagram formulation for a sys-
tem that can be expressed as a rational polynomial in s or time-domain vari-
able derivative of the form

y(s)
u(s)

=
ansn + an − 1sn − 1 + … + a2s2 + a1s + a0

bmsm + bm − 1sm − 1 + … + b2s2 + b1s + b0

Simulation diagram form for an arbitrary rational polynomial function.
Hence, in the time-domain differential form,

y(t)
u(t)

=
an

dn

dtn + an − 1
dn − 1

dtn − 1
+ … + a2

d2

dt2 + a1
d
dt

+ a0

bm
dm

dtm + bm − 1
dm − 1

dtm − 1
+ … + b2

d2

dt 2
+ b1

d
dt + b0

an

an 1−

1/bm

a2

a1

a0

−b0

−b1

−b2

−bn 1−

Σ

Σ ∫ ∫ ∫ ∫

u(t)

y(t)

Figure 5.4
General simulation

diagram.

Applied Maple for Engineers and Scientists

198

for

m ≥ n

This canonical simulation form is one of the easiest to
implement provided one realizes that the state variables (i.e.,
x
.

1, x
.

2, x
.

3, …, x
.

m − 2, x
.

m − 1) are not directly representative of the differ-

ent output (i.e.,y, y
.
, y
..

, etc.) variable orders. However, one can easily obtain
the solutions any of these y variables by directly taking the derivative of the
output vector matrix equation. Therefore, plugging in our specific example
into Figure 5.4 yields the simulation diagram of Figure 5.5.

From Figure 5.5, we can generate the previous example’s state space
matrices by inspection, thus the form

x
. = Ax + Bu
y = <Cx> + du

u(t)

x3

y(t)Σ

Σ

1

4

4

−2

−3

−2

∫ ∫ ∫

x = x3 2

x = x2 1Figure 5.5
Simulation diagram

for previously
given example.

Continuous control application theory

199

becomes








x
.

1

x
.

2

x
.

3








=







0
0

− 2

1
0

− 3

0
1

− 2















x1

x2

x3








+ u(t)

y(t) = [− 2 1 2]







x1

x2

x3








+ [1] u(t)

= − 2x1 + x2 + 2x3 + u(t)

where

A =







0
0

− 2

1
0
−3

0
1

− 2








B = ≡

C = [− 2 1 2] d = [1]

As the reader can see from the scalar output equation, the complete
output time-domain solution for this system y(t) is obtained by solving the
column state vector for any given input function, u(t):








x1

x2

x3








≡ x or x(t)

The state transition matrix
The time-domain solution for the state space approach uses the following
formulation [2,3]:

x(t) = Φ(t − t0)x(t0) + ∫
t0

t

Φ(t − λ)Bu(λ) dλ

0
0
0

0
0
0

Applied Maple for Engineers and Scientists

200

where Φ(t − t0) is the state transition matrix initiated at t0 and is defined as

Φ(t − t0) ≡ eA(t − t0)

Therefore, evaluating our specific transition matrix, and assuming
t0 = 0, we have the following transition matrix expression:

Φ(t) ≡ eAt = e








0
0

−2t

t
0

−3t

0
t

−2t








Cayley-Hamilton theorem
The Cayley-Hamilton theorem [2–4] says that a matrix solves its own char-
acteristic equation (via the eigenvalues); hence, the transition or exponen-
tial matrix can be solved by implementing this theorem. Therefore,
because we have a third-order system, the transition matrix becomes

eAt = α2(At)2 + α1(At) + α0I

where α2, α1, α0 are scalars and represents a 3 × 3 identity matrix. Obvi-
ously, this matrix equation creates a 3 × 3 square matrix on both sides of
the equation. Now we implement a scalar representation of the matrix equa-
tion since the Cayley-Hamilton theorem says a scalar form of eigenvalues
(λ) will solve for the three unknown coefficients, α2, α1, α0…

eλit = α2(λit)
2 + α1(λit) + α0

where there are three scalar equations to solve in a simultaneous fashion
due to the order of the system. Hence,

eλ1t = α2(λ1t)2 + α1(λ1t) + α0

eλ2t = α2(λ2t)2 + α1(λ2t) + α0

eλ3t = α2(λ3t)2 + α1(λ3t) + α0

Continuous control application theory

201

State space analysis with Maple
Now, let’s determine the three (λ1, λ2, λ3) eigenvalues via the following
matrix formulation:

det|A − λI| = 0

Hence,

◗ with (linalg):

A_Matrix := array ([[0,1,0],[0,0,1],[-2,-3,-2]]):

Identity := array ([[1,0,0],[0,1,0],[0,0,1]]):

Interim_1 := evalm (A_Matrix-(lambda)*Identity):

Interim_2 := det (Interim_1):

Interim_3 := solve (Interim_2=0,lambda):

Eigenvalue_1 := Interim_3[1];

Eigenvalue_2 := Interim_3[2];

Eigenvalue_3 := Interim_3[3];

Eigenvalue_1 := − 1

Eigenvalue_2 := −
1
2

+ 1
2

I √7

Eigenvalue_3 := −
1
2

− 1
2

I √7

or using Maple’s eigenvals operand and abstracting the eigenvalues, we
obtain the same result:

◗ Eigenvalues := [eigenvals(A_Matrix)];

Eigenvalue_1 := op(1,Eigenvalues);

Eigenvalue_2 := op(2,Eigenvalues);

Eigenvalue_3 := op(3,Eigenvalues);

Eigenvalues := 


− 1, −

1
2

+ 1
2

I √7 , −
1
2

− 1
2

I √7 



Eigenvalue_1 := − 1

Eigenvalue_2 := −
1
2

+ 1
2

I √7

Eigenvalue_3 := −
1
2

− 1
2

I √7

Applied Maple for Engineers and Scientists

202

Notice the I or imaginary component to our complex eigenvalues.
Also, note that complex eigenvalues must appear as conjugate pairs
(Eigenvalue_2 and Eigenvalue_3), whereas eigenvalue 1 is real, as
we have seen before in the frequency-domain approach.

Continuing with our state transition matrix computation, remember
that

eAt = α2(At)2 + α1(At) + α0I

therefore via the Cayley-Hamilton theorem we generate the simultaneous
equation set as follows:

eλ1t = α2(λ1t)2 + α1(λ1t) + α0

eλ2t = α2(λ2t)2 + α1(λ2t) + α0

eλ3t = α2(λ3t)2 + α1(λ3t) + α0

or put into another form for Maple to solve

Equation_1 = α2(λ1t)2 + α1(λ1t) + α0 − eλ1t

Equation_2 = α2(λ2t)2 + α1(λ2t) + α0 − eλ2t

Equation_3 = α2(λ3t)2 + α1(λ3t) + α0 − eλ3t

This is clearly messy, thus,

◗ Equation_1 := alfa2*(Eigenvalue_1*t)^2+alfa1*

(Eigenvalue_1*t)+alfa0-exp(Eigenvalue_1 *t);

Equation_2 := alfa2*(Eigenvalue_2*t)^2+alfa1*

(Eigenvalue_2*t)+alfa0-exp(Eigenvalue_2*t);

Equation_3 := alfa2*(Eigenvalue_3*t)^2+alfa1*

(Eigenvalue_3*t)+alfa0-exp(Eigenvalue_3*t);

Continuous control application theory

203

Equation_1 := alfa2 t2 − alfa1 t + alfa0 − e−t

Equation_2 := alfa2 


−

1
2

+ 1
2

I √7 



2

t2

+ alfa1 


−

1
2

+ 1
2

I √7 



t + alfa0 − e((−1⁄2 + 1⁄2 I √7) t)

Equation_3 := alfa2 


−

1
2

− 1
2

I √7 



2

t2

+ alfa1 


−

1
2

− 1
2

I √7 



t

+ alfa0 − e((−1⁄2 − 1⁄2 I √7) t)

and then

◗ Solutions := solve({Equation_1=0,Equation_2=0,

Equation_3=0},{alfa2,alfa1,alfa0});

Solutions := 


alfa1 = −

1
28

I





5 e(I √7 t) + 2 I √e(I √7 t) √7 e(−t) √et − I √7 e(I √7 t) − 5 − I √7 

 √7 /


t √e(I √7 t) √et 

 , alfa2 = −
1

448

− 6 I √7 e(I √7 t) 



+ 35 e(−t) √e(I √7 t) √et − 14 e(I √7 t) − I √7 − 21


 + 7 I √e(I √7 t) √7 e(−t) √et 

 (−5 + I √7) / 
t2 √e(I √7 t) √et 

 ,










alfa0 = 1
7

−I √7 e(I√7 t) + 7 e(−t) √e(I √7 t) √et + I √7

√e(I √7 t) √et










Now abstract the roots and assign them to the appropriate variable:

Applied Maple for Engineers and Scientists

204

◗ XX := subs(Solutions,[alfa2,alfa1,alfa0]):

alfa2 := simplify(XX[1]);

alfa1 := simplify(XX[2]);

alfa0 := simplify(XX[3]);

alfa2 := 
4 e


1⁄2t (−1 + I√7) 

 + 3 e(−1⁄2t (I √7 + 1)) − I √7 e(−1⁄2t (I √7 + 1)) 



 + I e(−t) √7 − 7 e(−t)





−

1
112

I √7 − 1
16




/ t2

alfa1 := 
16 e(−1⁄2 t(I √7 + 1)) + 5 I √7 e(1⁄2 t(−1 + I√7)) − 9 e(1⁄2 t(−1 + I√7)) 




 − 5 Ie(−t) √7 − 7 e(−t)





−

1
64

+ 5
448

I √7 


/ t

alfa0 := −
1
7

I √7 e(1⁄2 t(−1 + I √7)) + e(−t) + 1
7

I √7 e(−1⁄2 t(I √7 + 1))

Note the presence of the imaginary term, I . Unfortunately, Maple can-
not automatically “see” certain trigonometric identities which would ab-
sorb the imaginary and real terms into trigonometric functions and, hence,
would greatly ease our computations and simplify our results. The particu-
lar trigonometric identities of interest here are

cos(θ) =
eIθ + e−Iθ

2

sin(θ) =
eIθ − e−Iθ

2I

However, Maple can see these identities when asked to do so in a
certain way. Let’s reformulate the alfa coefficients by asking Maple to
combine the exponentials and other terms in the coefficients into any appli-
cable trigonometric forms with the combine(expression,trig)
command. We will further ask Maple to simplify those trigonometric re-
sults before displaying them. The evalc command requires the combina-
tion process to use and be cognizant of complex forms in the trigonometric
conversions.

Continuous control application theory

205

◗ alfa_0 := simplify(evalc(combine(alfa0,trig)));

alfa_1 := simplify(evalc(combine(alfa1,trig)));

alfa_2 := simplify(evalc(combine(alfa2,trig)));

alfa_0 := 2
7

√7 e(−1⁄2 t) sin



1
2

√7 t


+ e(−t)

alfa_1 := 1
14

− 7 e(−1⁄2 t) cos


1
2

√7 t


+ 5 √7 e(−1⁄2 t) sin



1
2

√7 t


+ 7 e(−t)

t

alfa_2 := 1

14

− 7 e(−1⁄2 t) sin



1
2

√7 t


− 7 e(−1⁄2 t) cos



1
2

√7 t


+ 7 e(−t)

t2

Now we have the coefficients in terms that are necessary for substitu-
tion into the transition matrix. Therefore, solving for the transition matrix
(assuming t0 = 0):

Φ(t) ≡ eAt = e








0
0

−2t

t
0

−3t

0
t

−2t






 = α2(At)2 + α1(At) + α0I

by directly substituting the alpha coefficients (alfa_0,alfa_1,
alfa_2) and performing the following substitution into the time variable
t as

t = t − ζ

we can set up the Transition_Matrix (Φ(t − ζ) expression into the follow-
ing (zero initial conditions and t0 = 0) for integration. Also, substituting the
input step function, u(ζ) = 1, and the B matrix will also finalize the inte-
grand product setup, hence, symbolically we perform the following:

x(t) = Φ(t − t0)x(t0) + ∫
t0

t

Φ(t − ζ)Bu(ζ) dζ

for t0 = 0 and x(t0) = 0 then becomes

Applied Maple for Engineers and Scientists

206

x(t) = ∫
0

t

Φ(t − ζ)Bu(ζ) dζ

for u(ζ) = 1 which becomes

x(t) = ∫
0

t

Φ(t − ζ)B dζ

Implementing this with the Maple commands,

◗ Transition_Matrix := evalm(subs(t=t-zeta,alfa_2*

(A_Matrix*t)^2+alfa_1*A_Matrix*t+alfa_0*Identity)):

B_Matrix := array([[0],[0],[1]]):

Now with the integrand component computed, we perform matrix
multiplication of the B_Matrix and Transition_Matrix matrices,
which completes the integrand expression

◗ Integrand := evalm(Transition_Matrix&*B_Matrix);

Integrand :=





1
14

√7 e(−1⁄2 t + 1⁄2 ζ) sin



1
2

√7 (t − ζ)










− 1
2

e(−1⁄2 t + 1⁄2 ζ) cos



1
2

√7 (t − ζ)


+ 1
2

e(−t + ζ)







3
14

√7 e(−1⁄2 t + 1⁄2 ζ) sin



1
2

√7 (t − ζ)










+ 1
2

e(−1⁄2 t + 1⁄2 ζ) cos



1
2

√7 (t − ζ)


− 1
2

e(−t + ζ)






− 5

14
√7 e(−1⁄2 t + 1⁄2 ζ) sin




1
2

√7 (t − ζ)










+ 1
2

e(−1⁄2 t + 1⁄2 ζ) cos



1
2

√7 (t − ζ)


+ 1
2

e(−t + ζ)



Obtain the individual state variables (x(t)) results:

Continuous control application theory

207

◗ State_X1 := [int(Integrand[1,1],zeta=0..t)];

State_X2 := [int(Integrand[2,1],zeta=0..t)];

State_X3 := [int(Integrand[3,1],zeta=0..t)];

State_X1 := 



1
2

− 1
7

√7 e(−1⁄2 t) sin



1
2

√7 t


− 1
2

e(−t)



State_X2 := 


−

1
2

e(−1⁄2 t) cos


1
2

√7 t


+ 1
14

√7 e(−1⁄2 t) sin



1
2

√7 t


+ 1
2

e(−t)



State_X3 := 



1
2

e(−1⁄2 t) cos


1
2

√7 t


+ 3
14

√7 e(−1⁄2 t) sin



1
2

√7 t


− 1
2

e(−t)



Create the state variable vector (State_Variable_Vector) and
convert the matrix or array into a vector for an inner product computation
done later:

◗ State_Variable_Vector := con-

vert(stack(State_X1,State_X2,State_X3),vector);

State_Variable_Vector := 



1
2

− 1
7

√7 e(−1⁄2 t) sin



1
2

√7 t


− 1
2

e(−t) 



−
1
2

e(−1⁄2t) cos



1
2

√7 t


+ 1
14

√7 e(−1⁄2 t) sin



1
2

√7 t


+ 1
2

e(−t)





1
2

e(−1⁄2 t) cos



1
2

√7 t


+ 3
14

√7 e(−1⁄2 t) sin



1
2

√7 t


− 1
2

e(−t)



Enter the C vector in the output equation:

◗ C_Vector := vector([-2,1,2]);

C_Vector := [−2 1 2]

and substitute into the output function by implementing the inner product
operation of the C_Vector with the State_Variable_Vector plus
addition of the input step function:

Applied Maple for Engineers and Scientists

208

◗ Output := innerprod(C_Vector,State_Variable_Vector)+1;

Output := 11
14

√7 e(−1⁄2 t) sin



1
2

√7 t


+ 1
2

e(−t)

+ 1
2

e(−1⁄2 t) cos



1
2

√7 t


As stated earlier, even though the state variables chosen,
x1(t), x2,(t), x3(t), do not directly represent time derivative states of the out-
put (as is true in some simulation diagram forms), the output equation,
y(t) = <Cx> + du(t), related these computed states and any inputs, to the
final output result, Output .

Now we plot this result to compare with the previous section using the
frequency-domain approach to get the solution:

◗ with(plots):

plot(Output,t=0..10,color=black,axes=normal,

labels=[Time, Response]);

Figure 5.6 is identical to the frequency-domain output plot depicted in
Figures 5.2 and 5.3. The difference with this approach is the more general
mathematics involved with the system’s dynamics. The state space ap-
proach is also useful when the coefficients are functions of time. This linear
time-variant system cannot be handled by Laplace transform methods,

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0

Response

−0.2

−0.4
Time

2 4 6 8 10Figure 5.6
Output response

for the third-order
system example.

Continuous control application theory

209

hence, with the use of personal computers and Maple, one can perform
some rather indepth dynamic analyses utilizing the state space technique
just discussed (see MATRZANT.MWS file on enclosed diskette).

Conclusion
In this chapter, we have examined a simple template application of a third-
order linear system for both frequency- and time-domain approaches. The
fundamental difference was that the Laplace transform method was simpler
to understand and mathematically set up, since all computations are alge-
braic in nature. However, if the system dynamics have nonconstant coeffi-
cients, then the state space or time-domain approach would have been the
only method available to us for analysis. In either case, we had the ability to
see the individual characteristic root effects. Though expressly discussed
in the Laplace transform via partial fraction expansion, we did not get into
the equivalent analysis via eigenvalue observation with the state space
method. However, one obtains this individual root effect information on
computation of the characteristic equation root solution in the state space
approach. Since the characteristic equation has to be computed as a natural
course of solving the control problem in the time domain (i.e., the eigenval-
ues), there was no need to examine specifically the individual root effect on
the output response.

Maple has given the user a quick and exhaustive method of setting up
and solving linear control problems of any order. In our template applica-
tion, we used a documented third-order system, but it could have easily
been a much higher order system without any change in either the mathe-
matical or Maple syntax procedures.

As for nonlinear control problems, the standard procedure for setting
up the solutions using describing or linearizing functions and numerical
methods for obtaining specific solutions under a set of initial conditions is
well documented [5,6] and easily implemented with Maple. The funda-
mental difference between linear and nonlinear solutions in Maple would
be the increased number of procedures for numerical iteration to obtain
bounded error solutions. However, the study of nonlinear systems with
Maple was not the intention of the authors for this text at this time. Such
systems require a much more rigorous mathematical base than we have pre-
sented for this section and is better left for another chapter.

Applied Maple for Engineers and Scientists

210

References

[1] DeRusso, Roy, and Close, State Variables for Engineers, New York:
John Wiley & Sons, 1965.

[2] Dorf, R., Modern Control Systems, Reading, MA: Addison-Wesley
Publishing Co., 1967.

[3] Hirsch, M., and S. Smale, Differential Equations, Dynamical Systems,
and Linear Algebra, New York: Academic Press, 1974.

[4] Saucedo, R., and E. Schiring, Introduction to Continuous and Digital
Control Systems, New York: Macmillan Publishing Co., 1968.

[5] Ku, Y. H., Analysis and Control of Nonlinear Systems, The Ronald
Press Co., 1958.

[6] Cunningham, W. J., Introduction to Nonlinear Analysis, New York:
McGraw-Hill Book Company, 1958.

Continuous control application theory

211

Applied Maple for Engineers and Scientists

Chapter 6
Discrete control applications

Digital control is dependent on our being able to perform two
fundamental operations, sampling and storage, both of which can
be simulated in a Maple session. Through the process of sampling

the signals present within a continuous system, we physically and mathe-
matically transform the continuous system into a discrete or digital one.
The effect of sampling a continuous control system can be rather dramatic
as the following example illustrates. Using the Laplace operator s, define
the transfer function of a dynamic system as follows:

1

1 + s2

which has the corresponding impulse response shown in Figure 6.1.

213

By simply sampling this conditionally stable system we transform it
into an unconditionally stable one as the impulse response of the sampled
system shows (Figure 6.2).

f(t)

1

0.5

0

−0.5

−1

60

t

10842

Figure 6.1
Continuous

system.

f(t)

0.5

0.4

0.3

0.2

0.1

0

−0.1

40

t

10862

Figure 6.2
Sampled system.

Applied Maple for Engineers and Scientists

214

The impulse response of the sampled system, in terms of the delay op-

erator
1
z

, is

1

2 + 2z−1 + z−2

The process of transforming a continuous system into a discrete one,
computing the discrete system’s time response using Maple, is discussed in
this chapter.

First we see how, by using Maple, we can obtain the pulse transform
function of a continuous system (converting from a continuous to a discrete
system) and then apply a forcing function and compute the resulting time
series. Then we see how Maple can help us form the state space matrices
from a system’s transfer function and then convert the matrices from one ca-
nonical form to another.

The pulse transfer function
The pulse transfer function is the digital version of the continuous system’s
transfer function and describes the digital system’s behavior in terms of in-
put and output pulses. Commonly, the input and output pulse trains are
produced by sampling both the input and output signals repeatedly at a
fixed rate, the sampling rate for the system. The idea of the pulse transfer
function is conveyed in Figure 6.3 where x(t) is the system input and G(s)
is the system’s dynamics. You will notice that both starred variables, which
are functions of time, and functions of z are used to label the same signals
on the diagram. The starred variables represent sampled continuous sig-
nals, whereas the variables that are a function of z represent the continuous
signals transformed into the discrete realm, via a transformation technique,
and is the notation that we will be using in this chapter. Both sets of starred
and z signals are equivalent and can be thought of as time series of weighted
impulses. The connection between a continuous signal and its starred and
z representation is shown in Figure 6.4.

G(s)x(t)
x (t)* y (t)*

X(z) Y(z)T T

Figure 6.3

Discrete control applications

215

Transforming continuous signals
A number of techniques are available to us by which we can compute the
Z-transform of a continuous signal. The most direct technique involves
summing an infinite series of samples or weighted impulses; other tech-
niques involve approximation by substitution and transforming from the
s domain to the z domain. This final method is also known as the impulse
or step invariant transform. We consider the direct approach first. A step of
amplitude α can be described as the following series for positive n.

◗ Step := n->alpha*z^(-n);

Step := n → α z(−n)

A unit step function, i.e., α=1, is shown in Figure 6.5. The first ten terms
of the step function are easily calculated:

◗ TERMS:=convert([seq(Step(n), n=0..10)], ‘+’);

TERMS :=

α +
α
z

+
α
z2

+
α
z3

+
α
z4

+
α
z5

+
α
z6

+
α
z7

+
α
z8

+
α
z9

+
α
z10

2

1.5

1

0.5

0

−0.5
1086420

t

2

1.5

1

0.5

0

−0.5
z−10z−8z−6z−4z−2z0

1/z

2

1.5

1

0.5

0

−0.5
1086420

t

Continuous signal Sampled

Transformed

Starred signal

z signal

Figure 6.4

Applied Maple for Engineers and Scientists

216

If we now sum our series from zero to infinity and a closed form exists,
it will by definition be the Z-transform of the continuous step function
αh(t).1 The variable n needs to be reset because it currently has a value
from the previous seq operation. Now we can perform the summation2

◗ n:=’n’:

Sum(Step(n), n=0..infinity)=sum(alpha*z^(-n),

n=0..infinity);

∑
n = 0

∞

α z(−n) =
α z

−1 + z

The right-hand side of this expression represents the closed-form solu-
tion, which we denote as STEP.

h(t)

1

0.8

0.6

0.4

0.2

0

t

1050−5−10

Figure 6.5
A unit step.

Discrete control applications

217

1. The unit step is commonly denoted by h(t).

2. The function Sumis the inert form of the function sum. Maple returns inert function calls unevaluated.

◗ STEP:=rhs(“);

STEP :=
α z

−1 + z

The convention when using the Z-transform is that the current sample
is denoted by z0; the next sample, the one taken after a delay of one sample
period, is z−1; the sample taken after two sample delays is z−2; and so on.
This means that a series of samples can be easily time shifted either by mul-
tiplying or dividing by the z operator (multiplying will shift the series for-
ward in time whereas dividing will delay it). It is for this reason that the z
operator is also known as the delay operator.

Next we find the Z-transform of the exponential sequence Aeτt where τ
is the time constant:

◗ Exp:=A*exp(tau*t);

Exp := A e(τ t)

As before we sum this expression for t = 0..infinity:

◗ sum(Exp*z^(-t), t=0..infinity);

∑
t = 0

∞

A e(αt) z(−t)

Unfortunately, this is not what we expect as Maple has returned an un-
evaluated form. We are still able to compute the Z-transform of the expo-
nential sequence by performing a simple substitution, rt = eτt, and then
performing the summation on this new expression:

◗ TEMP:=subs(exp(tau*t)=r^t, Exp);

TEMP := A rt

Applied Maple for Engineers and Scientists

218

◗ Z_Exp:=sum(TEMP*z^(-t), t=0..infinity);

Z_Exp := −
A z

r − z

Now we can perform the substitution, r = eτT where T is the sampling
period, to obtain the general Z-transform of the exponential sequence:

◗ Z_Exp:=normal(subs(r=exp(tau*T), Z_Exp));

Z_Exp :=
A z

−e(τ T) + z

Using the Z-transform for the exponential sequence we can easily find
the Z-transforms of a whole new class of functions, for example, trigono-
metric functions. Here we find the Z-transform of the function sin(ωt):

◗ ToExp := convert(sin(omega*t), exp);

ToExp := −
1
2

I 


e(I ω t) − 1

e(I ω t)




Before we continue we need to change the expression ToExp slightly:

◗ ToExp:=subs(1/exp(I*omega*t)=exp(-I*omega*t), ToExp);

ToExp := −
1
2

I 
e(I ω t) − e(−I ω t)



With reference to this expression, we see that τ in the general expres-
sion for the Z-transform of the exponential Ae(τt) = …, calculated earlier, is
equal to Iω (the sign of τ equals the sign Iω) and A is equal to unity, so sub-
stituting we get the following:

Discrete control applications

219

◗ ZTF:=subs(exp(I*omega*t)=Z_Exp, tau=I*omega,

exp(-I*omega*t)=Z_Exp, tau=-I*omega, A=1, ToExp);

ZTF := −
1
2

I 



z

−e(I ωT) + z
− z

−e(−I ωT) + z




By representing the exponential terms as trigonometric functions we
display the above expression ZTF in its usual form. Again, because we are
using a CAS, the sequence of the operations and type of operation per-
formed do not always match the sequence of operations that we would ex-
pect if we were solving the same problem by hand.

◗ convert(ZTF, trig);

−
1
2

I 



z
−cos(ω T) − I sin(ω T) + z

− z
−cos(ω T) + I sin(ω T) + z





◗ normal(“, expanded);

z sin(ω T)
cos(ω T)2 − 2 cos(ω T) z + sin(ω T)2 + z2

So, finally we have the Z-transform of sin(ωt):

◗ simplify(“);

z sin(ω T)
− 2 cos(ω T) z + 1 + z2

Of course, whenever using a computer algebra tool we should always
exercise some caution as the final example of computing the Z-transform di-
rectly shows. Here we are trying to return the Z-transform of the unit ramp
shown in Figure 6.6.

Applied Maple for Engineers and Scientists

220

◗ RAMP = sum(n*z^(-n), n=0..infinity);

RAMP = 2

1
2

z4



1 − 1

z




(−1 + z)3 − 1
2

z

z2

◗ simplify(“);

RAMP =
−1 + 2 z
z(−1 + z)2

Unfortunately, Maple returns an incorrect answer when compared
with the result returned by the built-in Z-transform function ztrans:

◗ ztrans(t, t, z);

z
(z − 1)2

r(t)

10

8

6

4

2

0

t

1086420
Figure 6.6

A unit ramp.

Discrete control applications

221

We confirm our suspicions by taking the inverse transform of the Z-
transform of the ramp obtained using the direct method.

◗ invztrans(“”", z, t);

∆(t) RAMP = −∆(t − 1) + t

The moral of the story is that care should always be exercised when us-
ing computers to manipulate complex expressions and answers should be
checked wherever possible!

Impulse-invariant transformation
The method of substituting for the exponential terms, as in the sin(ωt) ex-
ample given earlier, is more formally known as the impulse-invariant trans-
formation and is commonly used when a continuous system needs to be
quantized. Using this technique we compute the Z-transform of a test sys-
tem by first obtaining the system’s impulse response and expanding it us-
ing partial fractions and substituting for the exponential terms. This
technique is easily demonstrated with a simple example. Consider the fol-
lowing continuous Laplace expression:

◗ SYS:=4/(s^3+6.5*s^2+5.5*s);

SYS := 4
1

s3 + 6.5 s2 + 5.5 s

The first step is to transform the transfer function into partial fractions
using convert(..., parfrac,... .) . Before we do this we must
convert the floating-point numbers in the denominator of SYSinto
rationals:

◗ SYSR:=convert(SYS, rational);

SYSR := 4
1

s3 + 13
2

s2 + 11
2

s

Applied Maple for Engineers and Scientists

222

◗ PF:=convert(SYSR, parfrac,s);

PF := 8
11

1
s

+ 32
99

1
2 s + 11

− 8
9

1
s + 1

The partial fraction form of the transfer function is used because it en-
sures that when we take the inverse Laplace transform of it we get a result
that consists of atomic elements; in this case, steps, impulses, and exponen-
tial terms. The Laplace transform pair is loaded from the inttrans pack-
age using with as follows:

◗ with(inttrans, [laplace, invlaplace]):

IRESPONSE:=invlaplace(PF, s, t);

IRESPONSE := 8
11

+ 16
99

e(−11⁄2 t) − 8
9

e(−t)

Now we can substitute for the step and the exponential terms using the
transforms calculated earlier. We will do the substitutions one at a time
starting with the step.

◗ H[z]:=subs(alpha=select(type, IRESPONSE, numeric), STEP);

Hz := 8
11

z
−1 + z

◗ Exps := select(has, IRESPONSE, exp);

Exps := 16
99

e(−11⁄2 t) − 8
9

e(−t)

Here we define a custom conversion routine (“teach” Maple’s convert
routine a new conversion type) to transform the exponential terms. The
routine takes an expression containing an exponential and makes a copy
(a1) of the numeric multiplier, if present, it makes a copy (a2) of the expo-
nential and then finds the free variable (a3). The transformation is then
made using subs and the contents of a1 , a2 , and a3 .

Discrete control applications

223

◗ ‘convert/toexp’:=proc(a) local a1, a2, a3;

options ‘Copyright Coded by Dr. Steve Adams 1995’;

a1:=select(type, a, numeric);

a2:=op(select(type, a, function));

a3:=op(indets(a2));

subs(A=a1, alpha=a2, a3=T, A*z/(z-exp(alpha))):

end:

We apply the conversion routine to the remaining elements of the im-
pulse response and compute the complete pulse transfer function Hz.

◗ H[z]:=H[z] + map(convert, Exps, toexp);

Hz := 8
11

z
−1 + z

+ 16
99

z

z − e(−11⁄2 T) − 8
9

z

z − e(−T)

The Z-transform Hz still is general in that the sample period T is still
present as a variable, which gives us a chance to see how the simple choice
of sample period affects the impulse response of the system. The following
sequence of Maple commands computes the time response of Hz, trans-
forms the time response into function notation, and then generates a three-
dimensional surface as the sample period T is varied:

◗ h(t):=invztrans(H[z], z, t);

h(t) := 1

99

72 

eT



t



13⁄2
+ 16

eT


t
− 88 


eT



t



11⁄2



eT



t



13⁄2

◗ h(t):=unapply(h(t), T, t);

h(t) := (T, t) → 1

99

72 

eT



t



13⁄2
+ 16

eT


t
− 88 


eT



t



11⁄2



eT



t



13⁄2

Applied Maple for Engineers and Scientists

224

◗ plot3d(h(‘t’)(T, t), t=0..3, T=0.01..1, labels=[‘’T’’,

‘’t’’, ‘h(t)’], title=’Effect Of T Size On System Impulse

Response’, axes=BOXED, style=HIDDEN, color=BLACK, orienta-

tion=[-25, 70]);

Figure 6.7 shows how the effective time constant of the system
increases as the sample period is reduced.

Substitution methods
Next we take a look at two of the substitution methods available for calculat-
ing the Z-transform of a continuous signal or system. The two techniques
that we will look at are (1) using a numerical solution to the differential
equation and (2) the bilinear transform. Both techniques provide a relation-
ship between the Laplace operator s, which is equivalent to the differential
operator d⁄dt, and the delay operator z, which means that we can transform
between continuous and discrete functions.

The first approach relies on us being able to make the following
approximation:

∂
∂t

x(t) ≈
x(n) − x(n − 1)

T

T
3

2.5
2

1.5
1

0.5
0

0.6

0.5

0.4

0.3

0.2

0.1

h(t)

0

t

10.80.60.40.20

Figure 6.7
Effect of T

size on system
impulse response.

Discrete control applications

225

This expression approximates the derivative of x(t) with a finite differ-
ence, which is true for a sufficiently small sample period T. If we use the
respective operator notation, d⁄dt = s, and the delay as 1⁄z, in the above
approximation, we get

◗ Approx[1] := s=(1-z^(-1))/T;

Approx1 := s =
−

1
z

+ 1

T

The bilinear transform on the other hand is derived by solving a simple
first-order ordinary differential equation (ODE) of the form

◗ ODE:=diff(y(t), t) + a*y(t) = b*u(t);

ODE :=




∂
∂t

y(t)




+ a y(t) = b u(t)

using a popular numerical integration technique. The bilinear transform is
in fact a conformal mapping, which translates the jω axis of the s-plane
onto the unit circle of the z-plane. If we integrate each side over the limits
(n −1)T to nT we get:

◗ IntODE:=map(int,lhs(ODE), t=(n-1)*T..n*T)=int(rhs(ODE),

t=(n-1)*T..n*T);

IntODE := y(n T) − y(n T − T)

+ + ∫
(n − 1)T

n T

a y(t) dt = ∫
(n − 1)T

n T

b u(t) dt

The unevaluated integrals can be approximated by applying the trape-
zoid rule (see ?student[trapezoid]). First we isolate the integrals,
using select , and then apply the trapezoid rule. The command
select(type, lhs(IntODE) , specfunc(anything, int)) is
used to isolate the functions of the form int(anything, anything)
from the expression lhs(IntODE) .

Applied Maple for Engineers and Scientists

226

◗ TheInts:=[select(type, lhs(IntODE), specfunc(anything,

int)),rhs(IntODE)];

TheInts :=



∫

(n − 1)T

n T

a y(t) dt, ∫
(n − 1)T

n T

b u(t) dt




◗ Y:=student[trapezoid](op(op(1, TheInts)), 1);

Y := 1
2

(n T − (n − 1)T)








a y((n − 1) T) + 2






∑
i = 0

0

a y((n − 1) T + i(n T − (n − 1)T))







+ a y(n T)







Expanding and simplifying the above result we get

◗ Y:=expand(simplify(Y));

Y := 1
2

T a y((n − 1) T) + T a






∑

i = 1

0

y(n T − T + i T)







+ 1
2

T a y(n T)

If we do the same with the second element of TheInts and combine
the results we get the following:

◗ U:=expand(simplify(student[trapezoid](op(op(2,

TheInts)),1))):

◗ RR:=convert([op(1..2, lhs(IntODE)), op(1,Y), op(3,Y)],

‘+’)= convert([op(1, U), op(3, U)], ‘+’);

RR := y(n T) − y(n T − T) + 1
2

T a y((n − 1)T)

+ 1
2

T a y(n T) = 1
2

T b u((n − 1)T) + 1
2

T b u(n T)

Discrete control applications

227

Taking the Z-transform of this difference equation by substituting for
x(nT) = x and x((n − 1)T) = xz−1, where x can be either y or b, we get

◗ ZT:=subs((n-1)*T = (n*T-T), (n*T-T)=1/z, n*T=1,RR);

ZT := y(1) − y



1
z




+ 1
2

T a y



1
z




+ 1
2

T a y(1)

= 1
2

T b u



1
z




+ 1
2

T b u(1)

By convention transformed variables are represented as uppercase
characters, for example, Z(y(t)) → Y(z) where Z(y(t)) is the Z-transform of
y(t). We can achieve this cosmetic change in the above transformed expres-
sion by first clearing the variables Y and U, which we used earlier, and then
defining two functions as follows. When the expression ZT is used next
Maple will automatically perform the simplification.

◗ Y:=’Y’:U:=’U’:

y:=x->Y[z]*x:u:=x->U[z]*x:

Solving for Y[z]/U[z], the system’s transfer function, we get the
following:

◗ Discrete:=simplify(solve(ZT,Y[z]))/U[z];

Discrete :=
T b (1 + z)

2 z − 2 + T a + T a z

If, by definition, the discrete and the continuous transfer functions are
similar, we need to compare them in order to determine under what cir-
cumstances this is true. First, therefore, let us compute the s-domain repre-
sentation of the ode

d
dt

y(t) + ay(t) = bu(t)

The use of the Maple alias facility enables us to view the result in a con-
cise form:

Applied Maple for Engineers and Scientists

228

◗ y:=’y’:u:=’u’:

alias(y[s]=laplace(y(t),t,s), b[s]=laplace(u(t), t,s)):

laplace(ODE, t, s);

ys s − y(0) + a ys = b bs

Now solving the above for y[s]/b[s], setting y(0)=0, and assuming that
the system is initially at rest, we get the following continuous transfer
function:

◗ Continuous:=subs(y(0)=0,solve(“, y[s]))/b[s];

Continuous := b
s + a

By comparing the Discrete and Continuous expressions we can
see that for them to be equal the following must be true:

◗ Approx[2]:=simplify(readlib(isolate)(Continuous=

Discrete, s));

Approx2 := s = 2
− 1 + z

T(1 + z)

This mapping is the bilinear transform. If we now apply this and the
previous mapping to our test system with a sample period of 1⁄5 we get:

◗ tf[1]:=convert(simplify(subs(Approx[1], T=1/5, SYS)),

rational);

tf1 := 8
5

z3

− 50 + 215 z − 291 z2 + 126 z3

◗ tf[2]:=convert(simplify(subs(Approx[2], T=1/5, SYS)),

rational);

Discrete control applications

229

tf2 = 4
5

(1 + z)3

(− 1 + z) 
81 − 378 z + 341 z2



Finally, we show the first transformation again so that the results of all
three techniques can be easily compared:

◗ tf[3]:=convert(simplify(subs(T=1/5,H[z])), rational);

tf3 := 8
99

z 
− 11 z e(−1⁄5) + 2 e(−11⁄10) z + 9 e(−13⁄10) + 9 z 




 + 2 e(−1⁄5) − 11 e(−11⁄10)

 / 
(−1 + z) 

z − e(−11⁄10)



z − e(−1⁄5)





It is obvious that each approach results in a subtly different answer.
The differences can be seen if we plot the impulse response obtained from
each of the transfer functions. The following procedure generates a list of
points that, when plotted, gives a staircase plot from a Z-transform and a
time range. One thing to note in the procedure is the use of eval and the
delay quotes. The delay quotes are used so that the sequence operator
functions correctly and eval is used to force evaluation of the point pairs
generated:

◗ calc_response:=proc(X, Z, R)

options ‘Copyright Coded by Dr. Steve Adams 1996’;

local ans, pts, n, var;

var:= op(1, R);

ans:= invztrans(X,Z,var);

ans:=eval([‘seq’([var, ans], R)]);

pts:=NULL;

for n to nops(ans)-1 do

pts:=pts, ans[n], [op(1, ans[n+1]), op(2, ans[n])];

od;

[pts]:

end:

With reference to the transfer function tf 3,we can see that the degree
of the numerator is the same as the denominator. This will result in ∆s be-
ing present in the corresponding time response and in Iris (Maple’s graphi-
cal engine) being unable to plot expressions containing ∆s. The following
function will remove any ∆s that appear:

Applied Maple for Engineers and Scientists

230

◗ Delta:=x->if x=0 then 1 else 0 fi:

Now we can plot and compare the three transfer functions (see
Figure 6.8):

◗ plot({plots[textplot]([0.1, 2.5, ‘tf[1]’]),

calc_response(tf[1], z, ‘t’=0..15)):

plot({plots[textplot]([0.2, 4, ‘tf[2]’]),

calc_response(tf[2], z, ‘t’=1..15)):

plot({plots[textplot]([16, 0.6, ‘tf[3]’]),

calc_response(tf[3], z, ‘t’=0..15)}):

◗ plots[display]({“”", “”, “}, title=’Impulse Responses’,

labels=[‘’t’’,’f(t)’]);

The three basic responses are similar except for the relative amounts of
gain in each system.

f(t)

0.6

0.5

0.4

0.3

0.2

0.1

0

t
14121086420

tf[1]

tf[2]

tf[3]

Figure 6.8
Impulse responses.

Discrete control applications

231

Conclusion
As previously mentioned the pulse transfer functions obtained by different
methods for the same continuous system are similar but not identical.
What then are the advantages for choosing one method over another?

Impulse-invariant transform When the impulse-invariant transform is
used, we are ensuring that the impulse response of the discrete system is
identical to that of the continuous system, at least at the sample instances.
The consequence of using this approach is the introduction of distortion
due to aliasing. This is easily understood if the relationship between the fre-
quency responses of the continuous and the discrete systems is examined.
Unlike the frequency response of the continuous system, the frequency
spectrum of the discrete system is repeated many times due to the fact that
when the continuous spectrum is sampled with a period of T seconds the
spectrum of the sampled signal is simply a scaled version of the continuous
one repeated every R Hz. The repetition frequency R is equal to 1/T Hz
and the scale factor is 1/T. The sampling period must be set sufficiently
high so that the repeated spectra do not overlap, thus eliminating any
chance of aliasing and mismatch in the discrete system’s impulse response
(see Figure 6.9). This is not possible in practical systems although it is pos-
sible to approximate such conditions.

Another point of interest is the actual mapping of the s-plane onto the
z-plane. This mapping is as follows: The left-hand side of the s-plane maps
onto the interior of the unit circle centered on the origin of the z-plane,
whereas the right-hand side of the s-plane maps to the exterior as shown in
Figure 6.10.

−R 0 R

Amp

f
−R 0 R

Amp

f

Sampling without aliasing Sampling with aliasing

Figure 6.9

Applied Maple for Engineers and Scientists

232

Despite the nonlinear relationship of the overall mapping, the relation-
ship between the continuous frequency and the corresponding discrete fre-
quency is linear, which means that the shape of the frequency response is
preserved and hence the identical (at the sample instances) impulse re-
sponses of the continuous and discrete systems.

Numerical approximation This transformation method, although easy,
gives less than ideal results. In order to achieve accurate transformation
from the continuous to the discrete worlds, very high sample rates are nec-
essary. This tends to result in inefficient designs in every area except for
low-pass digital filters. The mapping provided by this method is like the
previous one, nonlinear. Unlike the previous one, however, the relation-
ship linking the continuous frequency spectrum to the discrete one is also
nonlinear. Whereas the invariant impulse response transform mapped the
s-plane to either the inside or outside of the unit circle, this transform maps
the left-hand side of the s-plane onto the interior of a circle of radius 1⁄2
with a center of (−1⁄2, 0) as shown in Figure 6.11.

s-plane z-plane

Mapping from s-plane to z-plane

LHS

RHS
Unit circle

Figure 6.10

s-plane z-plane

Mapping from s-plane to z-plane

LHS

RHS Circle of radius 1/2,
center (1/2, 0)−

Figure 6.11

Discrete control applications

233

As before, the right-hand side maps to the outside of this circle. Al-
though different than the earlier one, this mapping does preserve stability
but without mapping the jω-axis into the unit circle in the z-plane.

Bilinear transform This transform method has these advantages over
the previous two: Aliasing is avoided, it is efficient, and the dc gain of the
system is preserved (s = 0 → z = 1) and is valid for any order of system
since any nth-order system can be represented as n first-order systems. Al-
though the mapping provided by this technique is, as we would expect,
nonlinear, the frequency mapping between the s- and the z-planes is one to
one and aliasing has been avoided at the cost of distorting the frequency
axis. Like the first mapping, the bilinear transform maps the stable poles
and zeros to the interior of the unit circle centered at the origin of the
z-plane and the unstable ones to its exterior.

Calculating the time response
The computation of a system’s time response (at the sample instants) is, in
effect, the inverse transformation from the discrete realm to the continuous.
This process can be performed in one of three basic ways: Solve the recur-
rence relationship formed by the Z-transform, polynomial or synthetic long
division, or the direct method.

The recurrence relationship
A recurrence relationship is one that describes the current value of a se-
quence in terms of its history and in some cases its future. For example,
the exponential filter describes the following recurrence relationship:
y(n) = r(n)e

α + (1 − eα)y(n − 1) where the current output y(n) is a weighted
combination of the current filter input r(n) and the previous filter output
y(n-1). Recurrence relationships are easily generated from a system’s discrete
transfer function and solved, after which the corresponding time sequence
can be computed. The following sequence of Maple commands demon-
strates how this is done using the transfer function

1

1 − 3z−1 − 0.2z−2
,

which is equal to
Y(z)
U(z)

, the ratio of the input signal to output signal.

Applied Maple for Engineers and Scientists

234

◗ SYS:=1/(1-3/z-0.2/z^2);

SYS := 1

1 − 3
1
z − .2

1

z2

Using numer and denom we first isolate the numerator and the
denominator:

◗ BOT:=denom(SYS);

BOT := z2 − 3 z − .2

◗ TOP:=numer(SYS);

TOP := z2

We can see from the two expressions that Maple rationalizes and sim-
plifies SYSto

z2

z2 − 3z − 0.2

prior to computing the numerator and the denominator. The next stage is
to manipulate these expressions by dividing them both by z raised to the
degree of the numerator, in this case z2, which is equal to TOP, to transform
all of the forward time shifts into time delays. We will assume that the sys-
tem’s forcing function U(z) is a unit step. Note, however, that the forcing
function can be any sequence, as discussed in the next section.

◗ LHS:=expand(BOT/TOP);

LHS := 1 − 3
1
z

− .2
1

z2

◗ RHS:=TOP/TOP;

RHS := 1

Discrete control applications

235

We are now at the stage where we can convert the Z-transform into a re-
currence relationship that can be solved by replacing terms in z with terms
of the form Ψ(n − β) where Ψ is the signal of interest, β an integer denot-
ing the number of delays associated with the term, and n the current time
count. The custom conversion routine defined below enables us to convert
the polynomial in 1⁄z into its equivalent recurrence relationship. The rou-
tine takes the expression to be converted, the name of the signal, the from
variable and the to variable as parameters.

◗ ‘convert/toRR’:=proc(x, y, z, t) local a1,a2;

option ‘Copyright Coded by Dr. Steve Adams 1995’;

a1:=select(type, x, numeric);

a2:=degree(x, z);

a1*y(t+a2);

end:

We now translate LHSwith the signal name Y, the variable z , and
the variable n as follows. The map function enables us to convert each
term of the expression LHS in a single operation and is equivalent to con-
vert(op(i, LHS), toRR, Y, z, n) for i=1..nops(LHS) .

◗ RR := map(convert, LHS, toRR, Y, z, n);

RR := Y(n) − 3 Y(n − 1) − .2 Y(n − 2)

Now using rsolve , the Maple recurrence relationship solver, we can
solve RR for Y(n) with the initial conditions Y(0)=3 and Y(1)=0 :

◗ SEQ:=rsolve({RR=RHS, Y(0)=3, Y(1)=0}, Y(n));

SEQ := 3
7

(−47 + 21 √5) √5



−2

1
− 7 √5 + 15





n

− 7 √5 + 15

+ 3
7

(47 + 21 √5) √5



− 2

1
15 + 7√5





n

15 + 7 √5
− 5

11

Applied Maple for Engineers and Scientists

236

+ 10
77

(−16 + 7 √5) √5



− 2

1
−7 √5 + 15





n

− 7 √5 + 15

+ 10
77

(16 + 7 √5) √5



− 2

1
15 + 7√5





n

15 + 7 √5

We plot this function, which is valid at the sample instances, by trans-
forming it to function notation, generating the sequence of samples, con-
verting the samples to a staircase plot, and then displaying the result
(Figure 6.12):

◗ TIME:=unapply(SEQ, n):

THE_SEQ:=[seq([T, TIME(T)], T=[0,1,2,3,4,5])]:

STAIR:=NULL:

for n to nops(THE_SEQ)-1 do

STAIR:=STAIR, THE_SEQ[n], [op(1, THE_SEQ[n+1]),

op(2, THE_SEQ[n])];

od:

plot([STAIR], labels=[‘t’,’f(t)’], title=

‘Impulse Response’);

We can deduce from the plot of Figure 6.12 that this particular system
is unstable. This is further confirmed by looking at the poles of the system.

◗ solve(BOT, {z});




z = 3.065247585



, 



z = −.065247585




One of the poles lies outside the unit circle, indicating the system is
unstable.

Discrete control applications

237

The direct method
The direct method is more general than the recurrence relationship
method because it does not rely on a closed-form solution being available.
It is also well suited to computer implementation as well as being able to in-
corporate random input sequences. As before we use SYSas our example
pulse transfer function. The basic principle for computing the output se-
quence is as follows, the discrete transfer function G(z) is equal to the quo-
tient Y(z)/U(z), which can be manipulated to yield Yn + aYn-1 + bYn-2 + …
= Un + Un-1 + … Further manipulation yields the desired equation for the
current output as a function of the current input and the previous inputs
and outputs: Yn = −aYn 1 − bYn-2 + … +Un − Un-1 + …

◗ SYS;

1

1 − 3
1
z − .2

1

z2

As before we need to operate on the numerator and denominator of
this expression separately to isolate the sample weights.

f(t)

18

16

14

12

10

8

6

4

2

0

t
543210

Figure 6.12
Impulse response.

Applied Maple for Engineers and Scientists

238

◗ BOT:=denom(SYS);

BOT := z2 − 3 z − .2

Next we determine the degree of the polynomial BOTby determining
the free variable and then using degree .

◗ VAR:=indets(SYS);

VAR := 


z




◗ TO:=degree(BOT, VAR);

TO := 2

Using this as the upper bound, we form a list of ordered coefficients in
an explicit fashion instead of using coeffs because this command will not
return zero for any missing terms.

◗ YWEIGHTS:=[seq(coeff(BOT, op(VAR), n), n=0..TO)];

YWEIGHTS := [−.2, −3, 1]

Reading this list from right to left we have the weights to be applied to
the current output Y(n), the previous output Y(n −1), and the output prior to
that Y(n − 2), respectively.

Although trivial in this example, repeating the same sequence of opera-
tions would return a list of weights associated with current and past values
of the input sequence. In this example the list is, by inspection, [1] :

◗ UWEIGHTS:=[1];

UWEIGHTS := [1]

Now that we have the weightings and the respective delays, we can
compute the output sequence from a given input sequence and a set of in-
itial conditions. Here we assume that the system is initially at rest:

Discrete control applications

239

◗ ICS:=[0, 0];

ICS := [0, 0]

The first output is calculated, assuming that the first input sample is
one, as follows:

◗ OUTPUT:=zip((x, y)-> -x*y, ICS, op(1..2, YWEIGHTS)) +

zip((x,y)-> x*y, UWEIGHTS, [1]);

OUTPUT := [0, 0] + [1]

The elements of the lists are summed to return Yn :

◗ OUTPUT:=map(convert,OUTPUT, ‘+’);

OUTPUT := 1

Before we can repeat the process and compute the next value in the
output sequence we need to update the list containing the previous output
values, in our case the variable ICS:

◗ ICS:=[ICS[1], OUTPUT];

ICS := [0, 1]

Before we plot the system output for a forcing function of a bipolar
square wave with a peak-to-peak amplitude of two (Figure 6.13), we must
remind ourselves that our test system is unstable in its current configura-
tion (see the previous section).

By placing a 10:1 attenuator in the forward path we stabilize the sys-
tem (Figure 6.14). This particular modification is easily accomplished by
simply dividing the Y(n) weighting in the calling sequence as shown here:

◗ plot(output_sequence([-2, -3, 1/10], [1], [0, 0],

[1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1]),

title=’System Output’, labels=[‘t’,’o/p’]);

Applied Maple for Engineers and Scientists

240

This entire process has been automated in the function
output_sequence found on the program disk.

6
f(t)

1

0.5

0

−0.5

−1
t

108420

Figure 6.13
Forcing function.

8
o/p

0.4

0.2

0

−0.2

−0.4
t

1210642

Figure 6.14
System output.

Discrete control applications

241

◗ output_sequence := proc(YWEIGHTS, UWEIGHTS, ics, IP)

local OUTPUT, ICS, n, temp;

ICS:=ics;

OUTPUT:=NULL:

for n to nops(IP) do

temp:=op(3, YWEIGHTS)*map(convert, zip((x, y)-> -x*y, ICS,

[op(1..2, YWEIGHTS)]) +

zip((x,y)-> x*y, UWEIGHTS, [IP[n]]), ‘+’);

OUTPUT:=OUTPUT, [n,temp];

ICS:=[ICS[1], IP[n]];

od;

temp:=[OUTPUT];

OUTPUT:=NULL:

for n to nops(temp)-1 do

OUTPUT:=OUTPUT, temp[n], [op(1, temp[n+1]), op(2,

temp[n])];

od;

[OUTPUT];

end:

State space equations and their canonical forms
One of Maple’s primary uses to the control engineer is as a fast, efficient,
and accurate manipulator of equations, expressions, and matrices using the
host of functions found in the linalg package. In this section, we use Ma-
ple to convert discrete transfer functions into their state space forms and
generate the many useful canonical forms.3

Transfer function to state space (the controllable
canonical form)
Historically, dynamic systems have been described using differential equa-
tions. Now, however, state space descriptions using matrices are common.
Using state matrices a dynamic system can now be described in the follow-
ing manner:

Applied Maple for Engineers and Scientists

242

3. Although discrete systems are being used in this example, the techniques are equally applicable to continuous

systems.

x
. = Ax + Bu
y = Cx + Du

where x
.
, x, A, B, u, y, C, and D are all matrices. The system states are held

in the x matrix, the A matrix contains the system coefficients, the B matrix
contains the input gains, u is the input matrix, y is the system output, the C
matrix contains the output gains, and D is known as the disturbance matrix.

Using the pulse transfer function of a discrete system it is a relatively
simple process to generate the corresponding state space matrices. Al-
though this looks like a complex process, do not forget that we are using
Maple, which does all of the housekeeping for us, ensuring that no terms
are missed and no signs are dropped. Omitting terms and dropping signs is
all too easy when we are dealing with high-order complex systems contain-
ing both numbers and symbols.

In the following example, we derive the state space representation of a
third-order discrete system with symbolic coefficients:

◗ SYS:=z^3/(a*z^3 + b*z^2+c*z+d);

SYS := z3

a z3 + b z2 + c z + d

We have deliberately selected a system where the degrees of the nu-
merator and the denominator are equal, which means that we must first di-
vide out the transfer function by converting it to a continued fraction using
convert(…, confrac, …) :

◗ D_SYS:=convert(SYS, confrac, z);

D_SYS := 1
a

− b ⁄ 









a2 x
x
x
x





















z −
− b2 + c a

a b
x
x
x
x



































−
b d − c2

b2









z +
c(2 b d − c2)

b(b d − c2) +
d3 b

(b d − c2)2


z −

d c
b d − c2







































Discrete control applications

243

The first term is the disturbance matrix D [we use Dist because D is a
Maple system name (the differential operator) and is protected]:

◗ Dist:=linalg[matrix](1,1, [[op(1, D_SYS)]]);

Dist := 



1
a





The first row of the A matrix is made up of the coefficients of the nu-
merator of the remaining polynomial D_SYS:

◗ POLY:=normal(op(2, D_SYS), expanded);

POLY :=
−b z2 − d − c z

a2 z3 + a b z2 + a c z + d a

For convenience we really want the coefficient of the leading term of
the denominator to be unity and we must allow for this when we form the
matrices:

◗ DIV:=lcoeff(denom(POLY), z);

DIV := a2

By picking off each coefficient of the denominator in turn, starting with
the highest-but-one term in z, negating it, and dividing by the leading coeffi-
cient (DIV), we can construct the A matrix:

◗ TO:=degree(denom(POLY), z)-1;

TO := 2

◗ FIRST:=[seq(-coeff(expand(denom(POLY)), z, TO-n)/DIV,

n=0..TO)];

FIRST := 


−

b
a, −

c
a, −

d
a





Applied Maple for Engineers and Scientists

244

The other two rows of the A matrix are [1, 0, 0] and [0, 1, 0], so the
final A matrix becomes:

◗ A:=linalg[matrix](3,3, [FIRST, [1,0,0],[0,1,0]]);

A :=













−
b
a

1

0

−
c
a

0

1

−
d
a

0

0













The C matrix is just the negated numerator coefficients of the transfer
function divided by DIV starting with the highest-term-but-one in z and
continuing through the lowest term in z:

◗ C:= linalg[matrix](1,3, [[seq(-coeff(expand(numer(POLY)), z,

TO-n)/DIV, n=0..TO)]]);

C := 



b
a2

c
a2

d
a2





Finally, because the system is a single-input/single-output system, the
B matrix is

◗ B:=linalg[matrix](3,1, [[1], [0], [0]]);

These state matrices are said to be in the controllable canonical form
and are well suited to the design of state variable feedback controllers.

Jordan canonical form
In many designs it is advantageous to decouple the system through the
diagonalization of the A matrix and the application of a transformation
matrix. If the system has distinct eigenvalues, then the matrix transfor-
mation x = Pz, where P is a Vandermonde matrix (see

B :=
1
0
0

Discrete control applications

245

?linalg[vandermonde]) formed from the eigenvalues, is possible. Ma-
ple has the built-in function jordan with which to perform the transfor-
mation. For the sake of brevity we set values for the a, b, c, and d to one,
two, three, and four, respectively, and then diagonalize the A matrix.

◗ NEWA:=linalg[jordan](subs(a=1, b=2, c=3, d=4, eval(A)),

TRANS);

NEWA :=










1
2





35
27

+ 5
9

√6 



1⁄3
− 5

18
1





35
27

+ 5
9

√6 



1⁄3
− 2

3






















− 1
2

I √3










−



35
27

+ 5
9

√6 



1⁄3

− 5
9

1





35
27

+ 5
9

√6




1⁄3











, 0, 0






















0,
1
2





35
27

+ 5
9

√6 



1⁄3
− 5

18
1





35
27

+ 5
9

√6 



1⁄3
− 2

3






















+ 1
2

I √3










−



35
27

+ 5
9

√6 



1⁄3

− 5
9

1





35
27

+ 5
9

√6




1⁄3











, 0
















0, 0, −



35
27

+ 5
9

√6 



1⁄3
+ 5

9
1





35
27

+ 5
9

√6 



1⁄3
− 2

3





Simplifying this we get

Applied Maple for Engineers and Scientists

246

◗ map(evalf, NEWA);








−.1746854042 + 1.546868888 I, 0, 0
0, −.1746854042 − 1.546868888 I, 0
0, 0, −1.650629192








The jordan function returns a transition matrix, specified by the last
argument passed to the function, which in our case is tagged TRANS.

◗ evalf(eval(TRANS), 4);








1. 1.825 + 1.547 I .2891 + 2.554 I
1. 1.825 − 1.547 I .2891 − 2.554 I
1. .3487 2.423








The inverse of this transition matrix can then be used to transform the
B, C, and Dist matrices.

◗ ‘B’:=evalf(evalm(linalg[inverse](eval(TRANS)) &* B));

B :=







.2019853944 + .3056525967 I

.1805460653 − .1509657080 I
−.1093801481 − .1043649861 I








◗ ‘C’:=evalf(evalm(subs(a=1, b=2, c=3, d=4, eval(C)) &* linalg

[inverse](TRANS)));

C := [.5080883927 − .250518744 I,
.5080883927 + .2590518744 I,
.9838232148]

Observable canonical form
The dual form of the controllable canonical form is known as the observ-
able canonical form. Like the controllable form the coefficients of the trans-
fer function appear directly in the state matrices. The controllable form
matrices can be transformed into the observable form simply as follows:
A→AT, B→CT, and C→BT; hence, we get:

Discrete control applications

247

◗ A:=linalg[transpose](A);

A :=













−
b
a

−
c
a

−
d
a

1

0

0

0

1

0













◗ temp:=eval(C):

◗ C:=linalg[transpose](B);

C := [1 0 0]

and

◗ B:=linalg[transpose](temp);

B :=















b
a2

c
a2

d
a2















Applied Maple for Engineers and Scientists

248

Applied Maple for Engineers and Scientists

Chapter 7
Discrete data processing

Most common discrete data processing applications fall into one
of two general categories: digital signal processing and image
processing. In many instances the operations required are simi-

lar if not identical. Although in this discussion we will concentrate mainly
on image processing tools, many of the tools developed are equally applica-
ble to signal processing. Because we will be using plots to generate our test
data and to display the processed results, we will start with a brief overview
of the Maple plotting routines and structures.

Maple plots
The most commonly used plotting functions are plot and plot3d and
they are immediately accessible. In addition to these, two additional plot-
ting packages are available in Maple: plots and plottools . The
plots package contains additional data visualization tools, and the

249

plottools packages contains a set of graphics primitives and graphics
manipulation routines such as rotation and translation functions.

The plot structure
All maple plotting functions produce either a PLOTor a PLOT3Ddata
structure describing the image to be displayed. Both types of plot
structure have the same basic form: PLOT(plot_object1,
plot_object2, .., plot_objectn, plot_options)
or PLOT3D(plot_object1, plot_object2, ..,
plot_objectn, plot_options) . For example, here are
plot structures for the plots in Figures 7.1 and 7.2:

◗ PLOT(CURVES([[0,0],[2,2],[1,-1],[1,3],[3,4]]), TEXT([1.1,3],

‘Strange Curve’,ALIGNABOVE, ALIGNRIGHT, FONT(TIMES,

BOLDITALIC,15)));

◗ PLOT3D(MESH([[[0,0,0], [1,0,0]], [[0,1,2], [1,1,2]],

[[0,2,0], [1,2,0]]]),POLYGONS([[0, 0,.5], [1, 0, .5],

[1,2,.5], [0, 2, .5]]), ORIENTATION(150, 70),

TITLE(‘A-FRAME’), COLOUR(RGB,0,0,0));

4

3

2

1

0

−1

10

Strange Curve

32.521.50.5

Figure 7.1

Applied Maple for Engineers and Scientists

250

The objects plot_object i can take a number of different forms
but they conform to the same basic syntax throughout, namely, object_
type(data) . The object_type describes how the data are
to be drawn and can be one of the following: CURVES, POINTS,
POLYGONS, TEXT, GRID, or MESH. The objects POINTS, POLYGONS,
and TEXTcan be either two- or three-dimensional depending on whether
the data supplied to each are in the form of pairs or triplets. The
plot_options are used to set the style of the resulting plot and allow us
to set such things as color, axes styles, view ranges, font styles, point sym-
bols, and so on. The table in Appendix B shows the correspondence be-
tween the various plot data structures and the user-defined plot options.
Unless otherwise stated, the data structures and their corresponding plot
options are equally applicable to two- and three-dimensional plot
structures.

LIGHTMODEL(USER |
LIGHT_1 | LIGHT_2 |
LIGHT_3 | LIGHT_4)

lightmodel= USER |
LIGHT_1 | LIGHT_2 |
LIGHT_3 | LIGHT_4

Allows a lighting scheme,
from those available, to
be selected. If USER is
specified the light
definitions given in the
LIGHT and
AMBIENTLIGHT options
are used.

Before we move on, it is worth mentioning that the plot data structures
are in reality unevaluated function calls that are evaluated when they are
passed to IRIS, Maple’s graphics interface. An unevaluated function can

Figure 7.2
A_FRAME.

Discrete data processing

251

have many uses in Maple; in this case, it is just a wrapper placed around
some plot data as a convenient way of storing the data and context in a way
that it can be passed to and processed by IRIS. For more information see
?plot[structure] and plots[options] .

Image conversion
In this first section, we develop a set of conversion tools: togreyscale ,
tofalsecolor , normalize , and histogram . These tools enable us
to convert images’ color formats from RGB color to monochrome and from
monochrome to RGB color, normalize monochrome color data to the
range 0 .. 1, where 0 is black and 1 is white, and return a histogram of a
data set, respectively. In this particular case we develop our own procedure
in deference to Maple’s own histogram function (stats[statplots,
histogram]) because there is no exact match between the functionality
required and that provided. The mismatch is because Maple’s histogram
procedure has been designed and implemented as a statistical tool, not as a
DSP tool.

To develop and apply these tools, we need to be able to both retrieve
and manipulate a plot’s color information and then reattach it. In a Maple
plot the color information can be specified in three ways: an RGBcolor spe-
cification, an HSVcolor specification, or a HUEcolor specification. The
RGBspecification uses three floating-point values, each between 0 and 1,
for each of the primary colors. HUE, on the other hand, uses a single float-
ing-point value, also between 0 and 1, to select the color, whereas the HSV
specification requires three floating-point values between 1 and 0: one for
color, one for saturation, and one for brightness. The HUEdefinition cycles
through the spectrum with the 0–1 transition being the join. Hence,
COLOUR(HUE, 0) equals COLOUR(HUE, 1) equals black (Figure 7.3).

NOTE that because of Maple’s Canadian origins, many spellings are UK-English,
not American-English.

◗ PLOT(POLYGONS([[0,0],[2,0],[2,2],[0,2]]), COLOUR(RGB, 0, 0,

0), TITLE(‘A Black Square’));

Applied Maple for Engineers and Scientists

252

The following plot structure created by explicitly assigning color val-
ues using a color function shows how the color information is attached to a
plot object. We use the RGB format so our color function has to provide
values for each color. Although we have taken care to scale the color func-
tion’s output to lie within the range 0 .. 1 this is not strictly necessary be-
cause Maple normalizes the color data prior to rendering it.

◗ COLORFUNC:=[x/3, (3-y)/3, x*y/9];

COLORFUNC := 



1
3

x, 1 − 1
3

y,
1
9

x y



Using this color function we compute plot structure. By assigning it to
a variable, we force Maple to display the data and not the plot.

◗ TESTPLOT:=plot3d(sin(x*y), x=0..3, y=0..3, color=COLORFUNC,

numpoints=9);

TESTPLOT := PLOT3D(GRID(0 .. 3., 0 .. 3., [[0, 0, 0, 0],

[0, .8414709848078965, .9092974268256817, .1411200080598672],

[0, .9092974268256817, −.7568024953079282, −.2794154981989259],

[0, .1411200080598672, −.2794154981989259, .4121184852417566]],

COLOR(RGB, 0, 1., 0, 0, .6666666666666667, 0, 0,

2

1.5

1

0.5

0
21.510.50Figure 7.3

A black square.

Discrete data processing

253

.3333333333333334, 0, 0, 0, 0, .3333333333333333, 1., 0,

.3333333333333333, .6666666666666667, .1111111111111111,

.3333333333333333, .3333333333333334, .2222222222222222,

.3333333333333333, 0, .3333333333333333, .6666666666666666, 1., 0,

.6666666666666666, .6666666666666667, .2222222222222222,

.6666666666666666, .3333333333333334, .4444444444444444,

.6666666666666666, 0, .666666666666666, 1., 1., 0, 1.,

.6666666666666667, .3333333333333333, 1., .3333333333333334,

.6666666666666666, 1., 0, 1.)), AXESLABELS(x, y,), TITLE(),
STYLE(PATCH))

With reference to the preceding Maple output, we can see that Maple
inserted the plot’s color information after the three-dimensional surface
definition. We can, therefore, isolate the color information by selecting the
correct portion of the plot structure. In this particular example, the infor-
mation we are interested in is surrounded by the wrapper GRID and can be
picked out by op . The op function allows us to select operands from
within data structures, in the current release,1 op’s functionality has been
extended to operate on nested data structures implicitly. The call
op([4, 1], …) returns the first operand of the fourth operand of the
plot structure, namely, the color information.

◗ DATA:=op([4, 1], TESTPLOT);

DATA := COLOR(RGB, 0, 1., 0, 0, .6666666666666667, 0, 0,

.3333333333333334, 0, 0, 0, 0, .333333333333333, 1., 0,

.3333333333333333, .6666666666666667, .1111111111111111,

.3333333333333333, .3333333333333334, .2222222222222222,

.3333333333333333, 0, .3333333333333333, .6666666666666666, 1., 0,

.6666666666666666, .6666666666666667, .2222222222222222,

.6666666666666666, .3333333333333334, .4444444444444444,

.6666666666666666, 0,.6666666666666666, 1., 1., 0, 1.,

.6666666666666667, .3333333333333333, 1., .3333333333333334,

.666666666666666, 1., 0, 1.)

Applied Maple for Engineers and Scientists

254

1. This syntax is valid for releases greater than Maple Vr3. For earlier releases, nested ops must be used;

i.e., op (4, op(1, ...)).

We can see that the color information is presented as a sequence of
data points, which must be taken three at a time to provide the actual color.
If we take a closer look at the data, we can see that there are more data
points than there appear to be grid points, i.e., numpoints equals 9 while
there are 16 data points. This is because Maple generates a grid that is num-
bered from zero to √numpoints , hence the extra points. Here we read in a
previously created test image and then plot the three original planes. Now
that we can isolate the color information, the next step is to isolate the indi-
vidual color planes—red, green, and blue. By way of an example, we re-
move the red color plane from the image data using a for loop as shown:

◗ RDATA:=NULL:

for n from 2 to nops(DATA) by 3 do

RDATA:=RDATA, op(n, DATA);

od:

[RDATA];

[0, 0, 0, 0, .3333333333333333, .3333333333333333, .3333333333333333,

.3333333333333333, .6666666666666666, .6666666666666666,

.6666666666666666, .6666666666666666, 1., 1., 1., 1.]

The list of red color values has no spatial information (i.e., where in
the plot grid it applies) associated with it so we must recreate this manu-
ally. This is a simple task of converting the list into a square matrix whose
ijth element corresponds with the (i − 1)(j − 1)th red intensity in the image
grid. The offset is necessary because Maple matrix indices must start at one.

◗ REDMAT:= linalg[matrix](sqrt(nops([RDATA])),

sqrt(nops([RDATA])),[RDATA]);

REDMAT :=

[0, 0, 0, 0]

.3333333333333333 , .3333333333333333 , .3333333333333333 ,
.3333333333333333]

[.6666666666666666 , .6666666666666666 , .66666666666666666 ,
.6666666666666666]

[1., 1., 1., 1.]

Discrete data processing

255

The intensity of the image’s red component can be viewed with
matrixplot , which is found in the plots package (Figure 7.4):

◗ plots[matrixplot](REDMAT, axes= FRAME,

labels=[‘x’,’y’,’Int’],

title=’Image’s red plane’, style=HIDDEN, color=BLACK);

The Maple code just developed has been encapsulated in the following
two procedures. The first procedure takes two arguments, the color data
and the color plane required, and returns the selected color information as
a list. Within the body of the procedure, the selected color plane is con-
verted into an index offset into the data structure by using a table. The
color information is then stepped through and the appropriate data are
removed using a for loop. The second procedure takes the color informa-
tion list and returns a graphical representation of it using matrixplot :

◗ GET_COLOR:=proc(data, colour)

options ‘Copyright Coded by Dr. Steve Adams 1995’;

local colordat, temp, n;

colordat:=table([RED=1, GREEN=2, BLUE=3]);

temp:=NULL;

for n from 1+colordat[colour] to nops(data) by 3 do

temp:=temp, op(n, data);

od;

[temp];

end:

1

0.8

0.6

0.4

0.2

0
1

3.5
3

2.5
2

1.5

Int

y

4

x

4
3.5

3
2.5

2
1.5

1

Figure 7.4

Applied Maple for Engineers and Scientists

256

◗ COLOR_PLOT:=proc(data, Title)

options ‘Copyright Coded by Dr. Steve Adams 1996’;

local count;

count:=sqrt(nops(data));

plots[matrixplot](linalg[matrix](count, count, data),

style=WIREFRAME, color=BLACK, axes=FRAME, title=Title,

labels=[‘x’,’y’,’Int’]):

end:

Applying these functions to a previously obtained color (stored in the
file colour.dat) plot to return the three color planes—red, blue, and
green—and plotting the results as a graphics array we get the following:

◗ read(‘colour.dat’):

◗ P1:=COLOR_PLOT(GET_COLOR(DATA, RED), ‘Red Plane’):

◗ P2:=COLOR_PLOT(GET_COLOR(DATA, GREEN), ‘Green Plane’):

◗ P3:=COLOR_PLOT(GET_COLOR(DATA, BLUE), ‘Blue Plane’);

◗ plots[display](array(1..1, 1..3, [P1, P2, P3])):

Figures 7.5, 7.6, and 7.7 show the intensities of the three primary col-
ors (red, blue, and green, respectively) at each point on a three-dimen-
sional surface. The actual surface is irrelevant at this point because we are
only interested in its color map.

Togreyscale
A common digital image processing transformation is to change an
image’s color map into a greyscale one by forcing the red, green, and blue
components of the RGB data structure to be equal. This approach can
drastically reduce the size required to store an image. In this example we
use, as a starting point, the color information stored earlier in the variable
DATA.

Maple supports an extensive set of conversion routines that can
be easily extended by the user. The procedure convert uses helper
routines to manipulate data passed to it. These “helper” routines all
have the same form of procedure name: convert/helper_name and
are all invoked in the same way: convert(data, helper_name) .
Hence, in this particular case we create the helper routine convert/
togreyscale , shown next, to convert an image’s color information

Discrete data processing

257

into greyscale information that is invoked with convert(data,
togreyscale) . The core of this routine is a for loop that allows us to
step through the data backwards in steps of three. Each triplet is averaged
to compute the greyscale value.

1

0.8

0.6

0.4

0.2

0

25

20

15
10

5

Int

y x

25
20

15
10

5

Figure 7.5
Red plane.

Int

1

0.8

0.6

0.4

0.2

0

25

20
15

10

5

y x

25

20

15

10

5

Figure 7.6
Green plane.

Applied Maple for Engineers and Scientists

258

◗ ‘convert/togreyscale’:=proc(data)

options ‘Copyright coded by Dr. Steve Adams 1995’;

local n, START, new_data, level;

new_data:=NULL;

START:=nops(data)-1;

for n from START-1 to 1 by -3 do

level:= convert([op(n..n+2, data)], ‘+’)/3;

new_data:=level$3, new_data;

od;

COLOUR(RGB, new_data);

end:

Converting the color data to greyscale data and plotting the three indi-
vidual color planes enables us to compare the new color data with the
original data shown earlier.

◗ NEW_DATA:=convert(DATA, togreyscale):

As above we plot each color plane of the new greyscale image for
comparison:

Int

1

0.8

0.6

0.4

0.2

0

25

20

15
10

5

y
x

25

20

15

10

5

Figure 7.7
Blue plane.

Discrete data processing

259

◗ P11:=COLOR_PLOT(GET_COLOR(NEW_DATA, RED), ‘New Red Plane’):

◗ P21:=COLOR_PLOT(GET_COLOR(NEW_DATA, GREEN),

‘New Green Plane’):

◗ P31:=COLOR_PLOT(GET_COLOR(NEW_DATA, BLUE), ‘

New Blue Plane’):

◗ plots[display](array(1..1, 1..3, [P11, P21, P31]));

0.7
0.6
0.5

Int 0.4
0.3
0.2
0.1

0

25
20

15
10

5

y x

25
20

15
10

5

Figure 7.8
New red plane.

0.7
0.6
0.5

Int 0.4
0.3
0.2
0.1

0

25
20

15
10

5

y x

25
20

15
10

5

Figure 7.9
New green plane.

Applied Maple for Engineers and Scientists

260

With reference to Figures 7.8, 7.9, and 7.10, we can see that all of the
color intensities have the same value for any given point on the image,
which means that the color map is now a greyscale one. The final stage in
this process is to substitute the greyscale information into the original plot
structure:

◗ NEW_PLOT:=subs(DATA=NEW_DATA, TESTPLOT):

The new greyscale image can now be viewed, which is left as an exer-
cise for the reader.

Before we move to our next topic, normalization, we conclude this sec-
tion by outlining how Maple generates greyscale images. Unless otherwise
specified by explicitly defining a color map, Maple produces an image ob-
ject with the default color map applied automatically by IRIS. The default
color map, usually a hue value dependent on the x-y-z coordinate of the
point in question, can be overridden by setting the user option shading to
be equal to a valid map, currently, XYZ, XY, Z, ZGREYSCALE, ZHUE,
and NONE. Depending on which color map is selected, IRIS computes the
color at each point on the surface as it renders it. If we want to display a
greyscale image, we simply set shading as shown: shading=
ZGREYSCALE. This has the same effect as setting the color map explicitly
with the red, green, and blue components equal.

0.7
0.6
0.5

Int 0.4
0.3
0.2
0.1

0

25
20

15
10

5

y x

25
20

15
10

5

Figure 7.10
New blue plane.

Discrete data processing

261

Normalize
If we refer to the greyscale information displayed in the last section, we see
that the intensity values do not cover all of the intensity values available,
namely, 0 .. 1. It can be seen that the intensity values only range between
0.2 to 0.7 resulting in the contrast of the image being compressed. A sim-
ple, but effective, image processing technique is contrast adjustment is one
in which the original intensity values are mapped onto the entire support-
able range of intensity values as shown in Figure 7.11.

The actual mapping process that we will perform is linear, in which we
will first shift the data and then stretch it to cover the range 0 .. 1. But first
we need to isolate the original data and, because all of the color planes con-
tain the same information in the greyscale image, we will simply isolate the
red plane data:

◗ DATA_ONLY:=GET_COLOR(NEW_DATA, RED):

Before we adjust the contrast we will take a look at a histogram of the
original data. Before we can do this, however, we need to manipulate the
raw data to take into account that we are dealing with a discrete system. In
a discrete system the number of valid levels is determined by the bit length
or depth of the imaging system. In our example, we will use a bit depth of
eight giving 256 (0 .. 255) valid levels:

◗ BIT_DEPTH:=8;

BIT_DEPTH := 8

Here we look at the first five elements of the data:

0.23 0.31 0.5 .. 0.56 0.79

0.0 .. 1.0

Original data

Mapped data

Figure 7.11

Applied Maple for Engineers and Scientists

262

◗ DATA_ONLY[1..5];

[0, .001306928340, .005207319179, .01164030823, .02050551083]

Now we quantize the original data to the bit depth of the system using
mapand round as shown next. The function round rounds down a nu-
meric value to the nearest integer:

◗ QUANTIZED:=map(round,map((x,y)-x*y, DATA_ONLY,

2^BIT_DEPTH-1)):

Here we look at the first five elements of the quantized data:

◗ QUANTIZED[1..15];

[0, 0, 1, 3, 5, 8, 11, 15, 20, 24, 29, 34, 40, 45, 50]

Now we are ready to sort the quantized data into bins, one unit wide,
and plot them to produce the required histogram. Filling the bins is done
very simply by using a table and a for loop. First we create 256 empty
bins as shown:

◗ BINS:=table([seq(n=0, n=0..2^BIT_DEPTH-1)]):

Now we step through the sorted data incrementing the bin counts as
appropriate:

◗ for n in QUANTIZED do

BINS[n]:=BINS[n]+1;

od:

Before we can plot the data we have to convert the table entries, which
is in essence unsorted, into a sorted list of data pairs: [bin number,
entries] .

◗ pts := [seq([n, BINS[n]], n=0..2^BIT_DEPTH-1)]:

In Figure 7.12, we plot the histogram of the original data quantized to
eight bits:

Discrete data processing

263

◗ plot(pts, labels=[‘Bin’,’Count’]);

The histogram plot, although valid, needs some cosmetic adjustment
because Maple by default plots a list by connecting all of the points in se-
quence. What we want is a sequence of vertical lines the length of which is
proportional to the number of the entries in the bin. We can achieve this
very easily by scanning the point pairs searching for nonzero abscissa val-
ues. Once a nonzero value is discovered, two additional points are in-
serted, one on either side, which forces Maple to plot a line starting and
ending at the point [bin number, 0] . For example, given the point se-
quence [0, 0], [1, 10], [2, 4] we would generate the new
point sequence [0, 0], [1, 0] , [1, 10], [1, 0] , [2, 0] ,
[2, 4], [2, 0] , where the additional point pairs are emboldened for
clarity. This process is demonstrated in Figure 7.13. The following Maple
function performs this task:

◗ FUNC:=x->if x[2]<>0 then [x[1], 0], x, [x[1], 0] else x fi;

◗ FUNC :=proc(x)

options operator,arrow;

if x[2] <>0 then [x[1],0],x,[x[1],0] else x fi

end

16

14

12

10

8

6

4

2

0

Bin
250200150100500

Count

Figure 7.12

Applied Maple for Engineers and Scientists

264

Here we test our new function to check that it operates as we expect:

◗ FUNC([1,1]);

[1, 0], [1, 1], [1, 0]

◗ FUNC([1,0]);

[1, 0]

Now we are ready to replot the histogram (Figure 7.14):

◗ plot(map(FUNC, pts), title=’Histogram Plot’,

labels=[‘Bins’,’Count’]);

The process just explained to generate a histogram plot of a set of data
has been automated in the function histogramplot found in the pro-
gram disk.

The histogram confirms our original observation that the contrast of
the original image is compressed because there are no intensity values in
the range 200 .. 250 present in the original plot. The original data are there-
fore adjusted for contrast by first resetting the origin and then stretched the
translated data so that it covers the supported range 0 .. 1. This resets the
origin:

21.510.50

10

8

6

4

2

0
21.510.50

10

8

6

4

2

0

(b)(a)

Figure 7.13
(a) Original, and

(b) with extra
points.

Discrete data processing

265

◗ LOW:=min(op(DATA_ONLY));

LOW := 0

◗ SHIFTED := map((x,y)->x-y, DATA_ONLY, LOW):

Now we stretch the shifted data:

◗ HIGH:=max(op(SHIFTED));

HIGH := .7819887006

◗ STRETCHED := map((x, y)->x/y, SHIFTED, HIGH):

Here we look at the first and last five elements of the adjusted data set:

16

14

12

10

8Count

6

4

2

0

Bins
250200150100500

Figure 7.14
Histogram plot.

Applied Maple for Engineers and Scientists

266

◗ [op(op(1..5,sort(STRETCHED))), ‘..’, op(op(nops(STRETCHED)

-5..nops(STRETCHED), sort(STRETCHED)))];

[0, .001671288011, .006659072152, .01488551973, .02622225975, ..,

.9865825261, .9871622880, .9948650055, .9959871150, .9994963150,
1.000000000]

As before we first quantize the data to eight bits and then using
histogramplot we plot a histogram of the adjusted data (Figure 7.15):

◗ QUANTIZED:=map(round,map((x,y)->x*y, STRETCHED,

2^BIT_DEPTH-1)):

◗ histogramplot(QUANTIZED, 8, title=’Normalized Histogram

Plot’);

With reference to the histogram of Figure 7.15 we can see that the im-
age’s contrast has been successfully stretched, but the overall shape of its
intensity profile has remained unchanged. The number of instances of vari-
ous intensity values occurring in the contrast adjusted image will be differ-
ent than the unadjusted image as a result of the mapping and quantization
process.

18

16

14

12

10

8

6

4

2

0

Bins
250200150100500

Count

Figure 7.15
Normalized
histogram.

Discrete data processing

267

The normalize function can be found on the program disk.

Tofalsecolor
In many applications the analysis of an image is simplified by adding false
color, as the next example demonstrates. We wish to investigate the three-
dimensional image shown in Figure 7.16 by applying contours of equal
color intensity.

◗ plot3d(exp(-sin(x^2)-cos(y^2)), x=-2..2, y=-2..2,

labels=[‘x’,’y’,’z’], style=CONTOUR, color=BLACK);

With the image in its original form we are unable to deduce much re-
garding the dominant plateau region of the surface. One possible approach
is to apply a mapping function to the data, analogous to applying false
color, and plotting the result (Figure 7.17):

◗ MAP:=log;

MAP := log

◗ plot3d(MAP(exp(-sin(x^2)-cos(y^2))), x=-2..2, y=-2..2,

labels=[‘x’,’y’,’z’], style=CONTOUR, color=BLACK);

Figure 7.16

Applied Maple for Engineers and Scientists

268

By manipulating the data in this way we can ‘see’ information buried in
the data.

Using Maple we can add false color to the adjusted greyscale data gen-
erated earlier (stored in the variable NEW_DATA) using mapping functions.
These mapping functions are normally functions of intensity and can re-
turn any value in the range 0 .. 1. The example functions that we will be
using as defaults, one for each plane, are as follows:

◗ a:=t->((1-cos(t*2*Pi))^2)/4;

b:=t->(1-cos(t*Pi))/2;

c:=t->(cos(t*Pi)+1)/2;

a := t → 1
4

(1 − cos(2 t π)) 2

b := t → 1
2

− 1
2

cos(t π)

c := t → 1
2

cos(t π) + 1
2

Here we plot the mapping functions as a function of intensity over the
range 0 .. 1 (Figure 7.18):

◗ plots[display]([plots[textplot]([[0.1, 0.9, ‘a’],[0.5, 0.9,

‘b’],[0.9, 0.9, ‘c’]]),plot({a(t), b(t), c(t)}, t=0..1,

title=’False Color Functions’, color=BLACK,

labels=[‘Old’,’New’])]);

Figure 7.17

Discrete data processing

269

The process of applying false color is outlined in the next example.
First we get the color data for the other two planes (we have already nor-
malized the red color plane data and stored it in the variable STRETCHED)
in our test image and normalize it:

◗ DATA2:=normalize(GET_COLOR(NEW_DATA, GREEN)):

DATA3:=normalize(GET_COLOR(NEW_DATA, BLUE))):

Using this and the previously obtained data (STRETCHED) we apply
the false color mapping functions in order to generate three new color
planes:

◗ NEW_COLOR1:=map(a, STRETCHED):

NEW_COLOR2:=map(b, DATA2):

NEW_COLOR3:=map(c, DATA3):

The three sets of false color information need to be knitted together in
the correct order so the complete COLOURdata structure can be built. We
do this in two stages:

Old

a b c

1

0.8

0.6

New

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Figure 7.18

Applied Maple for Engineers and Scientists

270

◗ TEMP:=zip((x,y)->[x,y], NEW_COLOR1, NEW_COLOR2):

COLOUR(RGB, op(map(op,zip((x,y)->[op(x), y], TEMP,

NEW_COLOR3)))):

Again this is left to the reader to do as an exercise. Before moving on,
we will look at the first false color plane data as a three-dimensional surface
(Figure 7.19):

◗ plots[matrixplot](linalg[matrix](25,25,NEW_COLOR1),

title=’False Color Plane 1’, labels=[‘x’,’y’,’Int’],

color=BLACK, style=HIDDEN, axes=FRAME);

The process of applying false color to greyscale images has
been extended and encapsulated in the procedure ‘convert/
tofalsecolor’ which is available on the data disk.

Conclusion
In the previous section we demonstrated how Maple can be used effec-
tively as a tool to manipulate and investigate discrete images. We have also
shown how Maple can help us to develop prototype algorithms for digital
image processing techniques by first developing the algorithm interactively
and then implementing the algorithm as a procedure. The three tools devel-
oped in this manner were the conversion routines togreyscale and

1

0.8

0.6

0.4
Int

0.2

0

25

20

15

10
5

y x

25
20

15
10

5

Figure 7.19
False color plane 1.

Discrete data processing

271

tofalsecolor , the utility functions normalize and GET_COLOR, and
the plotting routines COLOR_PLOTand histogramplot.

Linear filters
Another common discrete data processing application is that of time series
data filtering. With Maple’s list and array structures, we can manipulate
time series data very effectively. In this section we use Maple to develop
routines to implement five of the more common filtering techniques,
namely, first-order differencing, moving average, moving median, and
exponential filtering.

Differencing
Differencing is a technique commonly applied to time series data in disci-
plines as diverse as finance to image processing. For example, recently, the
stock market appears to be relentlessly increasing and therefore it may ap-
pear to be a good long-term investment. However, if the average increases
in the average price are less than the prevailing rate of inflation, then it
would not be such an attractive proposition. We can use differencing tech-
niques to determine the underlying trend, if any, concealed within the data.
In this particular implementation we operate on a list data structure using
the for-next construct. First we read the series data into the current
Maple session. The data file is in a Maple-friendly form (i.e., the file con-
tains text that conforms to the Maple syntax) so the data are automatically
assigned to the variable SERIES_DATA. The time series data consists of a
list with 256 entries, a portion of which, along with a plot of the data
(Figure 7.20), is given here:

◗ read(‘series.dat’):

◗ [op(op(1..10,SERIES_DATA)), ‘..’, op(op(246..255,

SERIES_DATA))];

[2, 0, 1, 0, 1, 0, 0, 1, 0, 0, .., 4, 1, 0, 3, 1, 2, 2, 2, 0, 2]

◗ plots[listplot](SERIES_DATA, title=’Original Data’,

labels=[‘t’,’amp’]);

Applied Maple for Engineers and Scientists

272

Using a sample of the entire data set we will develop the difference
algorithm:

◗ SAMPLE:=SERIES_DATA[1..10];

SAMPLE := [2, 0, 1, 0, 1, 0, 0, 1, 0, 0]

The algorithm used is as follows: The ith filtered output is the differ-
ence between the ith and the (i+1)th inputs. We compute the filter’s output
sequence using the for-next construct shown:

◗ temp:=NULL:

for n to nops(SAMPLE)-1 do

the_diff:=SAMPLE[n+1] - SAMPLE[n]:

temp := temp, the_diff:

print(temp);

od:

[temp];

t
250200150100500

amp

20

15

10

5

0

Figure 7.20
Original data.

Discrete data processing

273

− 2

− 2, 1

− 2, 1, −1

− 2, 1, −1, 1

− 2, 1, −1, 1, −1

− 2, 1, −1, 1, −1, 0

− 2, 1, −1, 1, −1, 0, 1

− 2, 1, −1, 1, −1, 0, 1, −1

− 2, 1, −1, 1, −1, 0, 1, −1, 0

[− 2, 1, −1, 1, −1, 0, 1, −1, 0]

We can see that the manipulated data do not contain the first and last
data points of the original list and, hence, each time the difference filter is
used the length of the available data set is reduced by two as we lose the
first and the last data points from the list. The function difference ,
found on the program disk, takes a list of samples and returns a list of their
differences. Here we use this function to return a list of differences from the
original data and plot it (Figure 7.21) using listplot :

◗ DIFFERENCED:=difference(SERIES_DATA):

plots[listplot]([DIFFERENCED], title=’Difference Filter

Output’,labels=[‘t’,’delta’]);

The output from the difference filter shows the underlying trends pre-
sent. With reference to both the original and the filtered data, we can see
that the test data exhibit periods of uniform growth and decline on top of
which periods of volatile activity are impressed. By using the difference
filter it is easy to highlight the periods of high volatility that are directly
applicable to, for example, the finance industry.

Applied Maple for Engineers and Scientists

274

Moving average
Another common filtering technique that is effective at reducing the noise
component of a data set is that of returning the moving average of a data
set. Unfortunately this type of filtering has the tendency to blur edges be-
cause it mimics a low-pass filtering operation. The moving average algo-
rithm, like the differencing algorithm, is relatively simple to implement in
Maple through the manipulation of matrices. Put simply, a moving average
filter takes a list of samples and produces a new one, the elements of which
are the average of a windowed version of the original. This process is de-
picted in Figure 7.22, where we take a three-element window and pass it
the data to generate the new filtered data. The first element of the filtered
data is the same as the original because only a single element is covered by
the filter window. The second element is the average of the first two of the
original data as the window has now moved to cover them. The third entry
in the filtered data set is the average of the first three elements of the origi-
nal data set and so on. As before we use SAMPLEas our test data set with
which to develop our filter.

◗ WINDOW:=3;

WINDOW := 3

10

8

6

4

2

0

−2

−4

delta

−6

t
250200150100500Figure 7.21

Difference filter
output.

Discrete data processing

275

Create a matrix of the data that is larger by 2(WINDOW-1) and pad it
with zeros at both the beginning and the end. This makes it easier to sweep
the window over the data at its extremities.

◗ ZEROS:=0$WINDOW-1;

ZEROS := 0, 0

◗ MAT:=linalg[matrix](1, nops(SAMPLE)+(WINDOW-1)*2, [ZEROS,

op(SAMPLE), ZEROS]);

MAT := [0 0 2 0 1 0 1 0 0 1 0 0 0 0]

Using the for loop shown next, we sweep the window over the pre-
ceding matrix and compute the next element in the filtered data set by first
removing the windowed elements, converting the submatrix to a list of
lists, isolating the sublist, and then finding the average of its entries. The
result is appended to the previously calculated results.

◗ FILTERED:=NULL:

for n to nops(SAMPLE) do

temp:=linalg[submatrix](MAT, 1..1, n..n+2):

temp:=convert(temp, listlist):

temp:=convert(op(temp), ‘+’)/WINDOW:

FILTERED:=FILTERED, temp:

print(FILTERED);

od:

[FILTERED];

x1 x2 x3 x4 .. xn

x1 x2 x3 x4 .. xn

x1 x2 x3 x4 .. xn

x1 x2 x3 x4 .. xn

Direction of travel
of window

Window

Data

Figure 7.22

Applied Maple for Engineers and Scientists

276

2
3

2
3

,
2
3

2
3

,
2
3

, 1

2
3

,
2
3

, 1,
1
3

2
3

,
2
3

, 1,
1
3

,
2
3

2
3

,
2
3

, 1,
1
3

,
2
3

,
1
3

2
3

,
2
3

, 1,
1
3

,
2
3

,
1
3

,
1
3

2
3

,
2
3

, 1,
1
3

,
2
3

,
1
3

,
1
3

,
1
3

2
3

,
2
3

, 1,
1
3

,
2
3

,
1
3

,
1
3

,
1
3

,
1
3

2
3

,
2
3

, 1,
1
3

,
2
3

,
1
3

,
1
3

,
1
3

,
1
3

,
1
3





2
3

,
2
3

, 1,
1
3

,
2
3

,
1
3

,
1
3

,
1
3

,
1
3

,
1
3





The function moving_ave , which is an extension of the for loop
shown previously, is found on the program disk and can be used to filter a
list of sample points. In addition to the data list, the window length must
also be specified. Here we apply moving_ave to the data list used in the
previous example (Figure 7.23):

◗ FILTERED:=moving_ave(SERIES_DATA,3):

plots[listplot]([FILTERED], title=’Moving Average Filter

Output’, lables=[‘t’,’amp’]);

Discrete data processing

277

Now we can investigate the effect on the filtered data of altering the
window size:

◗ MANY_TIMES:=SERIES_DATA:

for n to 3 do

MANY_TIMES:=MANY_TIMES, moving_ave(op(n, [MANY_TIMES]),

3*n)

od:

Using listplot we can plot the output from each iteration
(Figures 7.24 through 7.27). By placing the resulting plots into an array
structure we can compare the output for each iteration easily. By using a ta-
ble we can easily place a relevant title on each plot.

◗ TITLES:=table([1=’Original Data’, 2=’Window = 3’, 3=’Window

= 6’, 4=’Window = 9’]):

temp:=[seq(plots[listplot]([MANY_TIMES[n]], title=TITLES[n]

view=[0..255, 0..20]), n=1..4)]:

plots[display](array(1..2,1..2, [temp[1..2], temp[3..4]])):

amp

10

8

6

4

2

0

t
250200150100500Figure 7.23

Moving average
filter output.

Applied Maple for Engineers and Scientists

278

t
250200150100500

amp

20

15

10

5

0

Figure 7.24
Original data.

amp

20

15

10

5

0

t
250200150100500

Figure 7.25
Window = 3.

Discrete data processing

279

The moving average filter is an easy filter to implement that possesses
good noise reduction qualities. With reference to Figures 7.24 through

amp

20

15

10

5

0

t
250200150100500

Figure 7.26
Window = 6.

amp

20

15

10

5

0

t
250200150100500

Figure 7.27
Window = 9.

Applied Maple for Engineers and Scientists

280

7.27, we can see that there is a trade-off between the amount of smoothing
achieved, determined by the window size and the retention of information
in areas of high volatility or rapid change. As the window size is increased,
more elements are averaged, which results in increased noise rejection but
individual peaks in the data tend to be blurred. The reduction in signal am-
plitude is an artifact of the averaging process that can be avoided through
normalization techniques.

Moving median
The moving median filter is similar to the moving average filter in terms of
operation (computing the new data from the old data by sweeping a win-
dow over the old data). but instead of using the average value, we use the
median value of the windowed data. So, for example, the median of the
data list SAMPLEis:

◗ stats[describe, median](SAMPLE);

0

We can see more clearly how this answer was arrived at by first sorting
SAMPLEand then taking the middle entry:

◗ sort(SAMPLE);

[0, 0, 0, 0, 0, 0, 1, 1, 1, 2]

◗ op(floor(nops(SAMPLE)/2), “);

0

Next we repeat the filtering process while sweeping the window across
the data:

◗ WINDOW:=3:

MAT:=linalg[matrix](1, nops(SAMPLE), SAMPLE):

FILTERED:=op(1..WINDOW-1, SAMPLE):

◗ for n from WINDOW to nops(SAMPLE)-WINDOW+1 do

temp:=linalg[submatrix](MAT, 1..1, n..n+WINDOW-1):

Discrete data processing

281

temp:=convert(temp, listlist):

temp:=stats[describe, median](op(temp)):

FILTERED:=FILTERED, temp:

print(FILTERED);

od:

2, 0, 1
2, 0, 1, 0

2, 0, 1, 0, 0
2, 0, 1, 0, 0, 0

2, 0, 1, 0, 0, 0, 0
2, 0, 1, 0, 0, 0, 0, 0

Now we can compare the original with the filtered data:

◗ FILTERED:=FILTERED, op(nops(SAMPLE)-WINDOW+2..nops

(SAMPLE), SAMPLE);

FILTERED := 2, 0, 1, 0, 0, 0, 0, 0, 0, 0

◗ SAMPLE;

[2, 0, 1, 0, 1, 0, 0, 1, 0, 0]

When applying a median filter, we have the option of applying it until
the filtered data are identical to the unfiltered data. At this point no more
filtering is possible so we stop. In Maple we would implement this as fol-
lows. First we save the original data for the current iteration:

◗ OLD:=[FILTERED]:

FILTERED:=moving_median([FILTERED],3);

FILTERED := [2, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Are the filtered data equal to the original?

Applied Maple for Engineers and Scientists

282

◗ linalg[iszero](linalg[matrix](1, nops(OLD), zip((x,y)->x-y,

OLD,FILTERED)));

false

This time around they are not, so we must continue:

◗ OLD:=FILTERED:

FILTERED:=moving_median(FILTERED,3);

FILTERED := [2, 0, 0, 0, 0, 0, 0, 0, 0, 0]

We continue to repeat the operations in the loop until the output data
from an iteration are equal to the prior iteration. Although it is not neces-
sary to continue in this particular way, the following code can be used to
filter the data repeatedly and compare the filter’s output with its input. If
the filter’s input and output are different, then the filtering operation
ceases; if not, it continues:

◗ while not linalg[iszero](linalg[matrix](1, nops(OLD),

zip((x,y)->x-y, OLD, FILTERED))) do

OLD:=FILTERED:

FILTERED:=moving_median(FILTERED,3);

od;

Here we use the function moving_median first in a single-shot mode
and then with repeated application. The mode of operation is set with a
third, optional, argument. If this argument is omitted, the single-shot mode
of operation is used by default. The difference in the filter’s output is
obvious.

◗ moving_median(SAMPLE, 3, repeated=false);

[2, 0, 1, 0, 0, 0, 0, 0, 0, 0]

◗ moving_median(SAMPLE, 3, repeated=true);

[2, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Discrete data processing

283

Here we test the moving median filter on our test data and show the re-
sults in Figure 7.28:

◗ FILTERED:=moving_median(SERIES_DATA,3):

plots[listplot]([FILTERED], title=’Moving Median Filter

Output’);

Now we can look at the effect on the filtered data as we pass it through
the filter more than once:

◗ MANY_TIMES:=SERIES_DATA:

for n to 3 do

MANY_TIMES:=MANY_TIMES, moving_median(op(n, [MANY_TIMES]),

3)

od:

t
250200150100500

amp

8

6

4

2

0

10

Figure 7.28
Moving median

filter output.

Applied Maple for Engineers and Scientists

284

Using listplot we can plot the output from each iteration
(Figures 7.29 through 7.32). By placing the resulting plots into an array
structure, we can compare the output for each iteration easily. By using a
table we can easily place a relevant title on each plot.

◗ TITLES:=table([1=’Original Data’, 2=’First Iteration’,

3=’Second Iteration’, 4=’Third Iteration’]):

temp:=[seq, plots[listplot]([MANY_TIMES[n]],

title=TITLES[n] , view=[0..255, 0..20]), n=1..4)]:

plots[display](array(1..2, 1..2, [temp[1..2], temp[3..4]])):

The moving median filter is another easy filter to implement that
possesses good noise reduction qualities. Like the moving average filter
discussed earlier, there is a trade-off between the amount of smoothing
achieved, determined by the window size, and the retention of information
in areas of high volatility or rapid change. The major advantage of the mov-
ing median filter over the moving average is its ability to reject noise while
retaining individual peaks in the data. The reduction in signal amplitude,
which is a consequence of the filtering process, is not as dramatic as in the
moving average filter’s case and can be avoided through normalization
techniques.

t
250200150100500

amp

20

15

10

5

0

Figure 7.29
Original data.

Discrete data processing

285

20

15

10

5

0

t
250200150100500

amp

Figure 7.30
First iteration.

amp

20

15

10

5

0

t
250200150100500

Figure 7.31
Second iteration.

Applied Maple for Engineers and Scientists

286

Exponential filtering
The filters that we have looked at so far have all operated on the data, giv-
ing each element in the data set an equal weight. The filters have also all
been without memory, that is to say, once a filtered sample has been com-
puted it plays no further role in the filtering function. The exponential filter
is different on both counts: Previously calculated filter outputs are used in
the calculation of the current output, and previous outputs have a weight
associated with them that decreases exponentially the further back in time
we go. The first task is to build the type of filter that we want, in this case a
simple exponential filter:

◗ filter := y(t)/r(t)=exp(a*t);

filter :=
y(t)
r(t)

= e(a t)

Using the Z-transform function found in the integral transforms pack-
age inttrans we transform the continuous filter into its discrete form.
We are using the normal conventions in terms of t and z.

amp

20

15

10

5

0

t
250200150100500

Figure 7.32
Third iteration.

Discrete data processing

287

◗ with(inttrans):

Before we actually perform this filtering operation we develop a simple
function that performs cross multiplication:

◗ cross_multiply:= x->numer(lhs(x))*denom(rhs(x)) =

numer(rhs(x))*denom(lhs(x));

cross_multiply :=
x → numer(lhs(x)) denom(rhs(x)) = numer(rhs(x)) denom(lhs(x))

Applying this to the filter transfer function we get

◗ Filter:=cross_multiply(Y(z)/R(z)= ztrans(rhs(filter),

t, z));

Filter := Y(z) 
z − ea

 = z R(z)

The filter response in terms of z can now be manipulated. Here we
multiply each side by z to ensure that the input R(z) is always the current
sample.

◗ Filter:=expand(Filter/z);

Filter := Y(z) −
Y(z) ea

z
= R(z)

Using Maple’s alias function we simplify the printed form of the trans-
fer function:

◗ alias(Y=Y(z), R=R(z));

I, Y, R

Next we get the coefficients of Y(z) and R(z), respectively. These will
be the weightings that are applied to the filter samples:

Applied Maple for Engineers and Scientists

288

◗ map(coeffs, Filter, {Y, R});

1 − ea

z = 1

◗ coefflist:=map(convert,",list);

coefflist :=



1, − ea

z




= [1]

The next stage is to recreate the filter transfer function in terms of the
current output, the previous outputs, and the current input. We define
these as y0, y1, and r0, respectively.

◗ left:=zip((x,y)->x*y,lhs(coefflist), [‘y.n’$(n=0..1)]);

left :=



y0, − eay1

z




◗ right:=zip((x,y)->x*y,rhs(coefflist), [‘r.n’$n=0..0]);

right := [r0]

◗ new_filter:=subs(z=1, readlib(isolate)(convert(left, ‘+’) =

convert(right, ‘+’), y0));

new_filter := y0 = r0 + eay1

The first thing that we notice is that the filter has gain. We can elimi-
nate this by adjusting the weighting of the filter input r0. It is common
when designing digital filters of this nature to ensure that the filter coeffi-
cients add to unity. In this case we need to multiply r0 by A and y1 by
1 − A, where A is ea and is known as the filter weight.

Discrete data processing

289

◗ new_filter:=subs(r0=r0*A, exp(a)=(1-A), A=exp(a),

new_filter);

new_filter := y0 + r0 ea + 
1 − ea

 y1

Now we can use unapply to convert the transfer function into function
notation:

◗ NEW_FILTER := unapply(rhs(new_filter), r0, y1, a);

NEW_FILTER := (r0, y1, a) → r0 ea + 
1 − ea

 y1

Finally, we test the filtering function.

◗ NEW_FILTER(1,0,-0.5);

.6065306597

◗ NEW_FILTER(0, “, -0.5);

.2386512185

So far so good. Now using a loop we compute and plot (Figure 7.33)
the filter’s impulse response:

◗ LAST:=0:ANS:=NULL:R:=1:

for n from 0 to 10 do

LAST:=NEW_FILTER(R, LAST, -0.5):

ANS:=ANS, [n, LAST]:

if n>=0 then R:=0 fi:

od:

plot([ANS], title=’Impulse Response’, labels=[‘t’,’amp’]);

Applied Maple for Engineers and Scientists

290

Here we apply the new filter to our test data. We are using the function
exp_filter found on the program disk.

◗ exp_filter(SAMPLE, -0.7);

[.9931706076, .4999766797, .7482809121, .3766956080, .6862194089,
.3454529353, .1739060845, .5841321825, .2940607252, .1480344906]

By applying the exp_filter to our test data, we can exponentially
smooth it. In the first case we use a filter weight of −0.7 and plot
(Figure 7.34) the filter output using listplot as shown:

◗ exp_filter(SERIES_DATA, -0.7):

plots[listplot]([“], title=’Output from Exponential

Filter’, labels=[‘t’,’amp’]);

amp

0.6

0.5

0.4

0.3

0.2

0.1

0

t
1086420

Figure 7.33
Impulse response.

Discrete data processing

291

As with the previous types, it is beneficial to compare the exponential
filters response to changing filter weights. The next few lines of Maple
code produce plots of the original and filtered data, with filter weights
−0.7, −0.3, and −0.1, and displays them all in a single graphics array
(Figures 7.35 through 7.38):

◗ MANY_TIMES:=READINGS:WEIGHTS:=[-0.7, -0.3, -0.1]:

for n to 3 do

MANY_TIMES:=MANY_TIMES,exp_filter(READINGS, WEIGHTS[n]):

od:

◗ TITLES:=table([1=’Original Data’, 2=’Filter Weight = -0.7’,

3=’Filter Weight = -0.3’, 4=’Filter Weight = -0.1’]):

temp:=[seq(plots[listplot]([MANY_TIMES[n]],

title=TITLES[n], view=[0..255, 0..20]), n=1..4)]:

plots[display](array(1..2,1..2, [temp[1..2], temp[3..4]])):

6amp

10

8

4

2

0

t
250200150100500Figure 7.34

Output from
exponential filter.

Applied Maple for Engineers and Scientists

292

t
250200150100500

amp

20

15

10

5

0

Figure 7.35
Original data.

amp

20

15

10

5

0

t
250200150100500

Figure 7.36
Filter weight

= −0.7.

Discrete data processing

293

amp

20

15

10

5

0

t
250200150100500Figure 7.37

Filter weight

= −0.3.

amp

20

15

10

5

0

t
250200150100500

Figure 7.38
Filter weight

= −0.1.

Applied Maple for Engineers and Scientists

294

The exponential filter is unique among the filter configurations dis-
cussed in this section in that it contains hystersis (i.e., there is a memory
component in its implementation which means that the next filter output is
affected by previous filter outputs). With reference to Figures 7.35 through
7.38, we can see that the exponential filter has good noise reduction quali-
ties while being able to retain data that are changing rapidly. The level of
noise reduction and the corresponding ability to track fast changing data
are determined by the filter weight—the higher the weight the greater the
noise reduction. The reduction in signal amplitude is due to the filter
process and can be avoided through the application of normalization
techniques.

Conclusion
The final graphics show the original series data along with the outputs
from the difference, moving average, moving median, and the exponential
filters (Figure 7.39 through 7.47).

t
250200150100500

amp

20

15

10

5

0

Figure 7.39
Original data.

Discrete data processing

295

10

8

6

4

2

0

−2

−4

delta

−6

t
250200150100500Figure 7.40

Difference filter
output.

amp

10

8

6

4

2

0

t
250200150100500Figure 7.41

Moving average
filter output.

Applied Maple for Engineers and Scientists

296

t
250200150100500

amp

8

6

4

2

0

10

Figure 7.42
Moving median

filter output.

6amp

10

8

4

2

0

t
250200150100500

Figure 7.43
Output from

exponential filter.

Discrete data processing

297

amp

20

15

10

5

0

t
250200150100500Figure 7.44

Filter weight

= −0.3.

amp

20

15

10

5

0

t
250200150100500Figure 7.45

Filter weight

= −0.1.

Applied Maple for Engineers and Scientists

298

amp

20

15

10

5

0

t
250200150100500

Figure 7.46
Window = 6.

amp

20

15

10

5

0

t
250200150100500

Figure 7.47
Window = 9.

Discrete data processing

299

The four filter configurations that have been discussed in this chapter
are the differencing filter, the moving average filter, the moving mean filter,
and the exponential filter. The differencing filter is good at helping to iden-
tify underlying trends and areas of rapid changes within data sets. The mov-
ing average and moving mean filters both exhibit good noise cancellation
properties with the moving median filter possessing the best ability to track
fast moving data. Finally, the exponential filter is a special implementation
of a digital filter that has good noise reduction qualities and can track fast
moving data adequately. All of the filters reduce the signal amplitude but
this attenuation can be avoided through the application of normalization
techniques.

Applied Maple for Engineers and Scientists

300

Applied Maple for Engineers and Scientists

Chapter 8
Switching topologies

Generally, switching topologies are used for optimal power han-
dling efficiency (conventional switching power supplies) and/or
certain types of signal processing (e.g., precision analog multipli-

ers/dividers, phase detectors). Two immediate and common applications
involving switching circuit topologies are (1) pulse width modulator
(PWM) signal acquisition and/or PWM drivers, and (2) switching power
supplies. Both of these circuit topologies utilize switching to minimize the
amount of varying conduction time, which results in excessive heating, ex-
perienced by the controlling device(s). Also, if it is a signal processing ap-
plication, then varying conduction times cause mathematical errors via
excessive noise (amplitude variance versus phase information variations).

In this chapter we explore two methods for analyzing switching output
waveforms. The first method assumes the system is at steady state and each
period exhibits the same response. The second method uses Fourier analy-
sis to show the transient startup behavior of the switching topology.

301

For further reading on the solution for these and other switching net-
works, [1–4] are strongly recommended.

Steady-state method

Pulse width modulator driver
Figure 8.1 shows a typical PWM input waveform with a period, T. The
second part of this design requires a filter that simply produces the average
of the PWM waveform. Figure 8.2 shows a simple RC filter that achieves
this result. Further, we know what the output voltage will approximate, so
we can redraw Figure 8.1 with the filtered output superimposed as shown
in Figure 8.3.

Input
voltage

Conduction
phase

Nonconduction
phase

A

0
0 T/4 T/2 3T/4 T Time

Figure 8.1
PWM input
waveform.

Input
voltage
(Vin)

R

C

Output
voltage
(Vout)

Figure 8.2
RC filter.

Applied Maple for Engineers and Scientists

302

Note that we have assumed a steady-state solution for the network for a
given set of conditions. In short, the output voltage waveform will exhibit a
periodic form once transients have gone to zero. Therefore, we may derive
the voltages V1 and V2 and from these values determine the entire steady-
state response of the PWM circuit.

Perhaps the most important aspect of this driver is what kind of output
can we tolerate in terms of ripple or switching noise associated with the
switching operation? By deriving the V1 and V2 values in Figure 8.3, we
not only solve the steady-state dynamics, but can also reverse engineer the
process to determine the maximum allowable ripple (i.e., |V1−V2|) for any
given set of circuit parameters.

To determine this and other important design aspects, let’s start a
Maple session that enters the waveforms and RC filter topology. Starting
with the required Maple libraries,

◗ with(inttrans)::

with(plots):

we enter the topology and switching input waveform values:

◗ Freq := 10^4:

R := 1000:

C := 10^(-6):

alfa := .5:

Vin := 10/s:

T := 1/Freq:

Input
voltage

Nonconduction
phase

Output
voltageConduction

phase

A

V1

0
0 T/4 T/2 3T/4 T Time

V1

V2V2

Figure 8.3

Switching topologies

303

where

Freq → switching frequency (hertz)
R → resistor value (ohms)
C → capacitor value (farads)
alfa → duty cycle (dimensionless)
Vin → input voltage (volts)
T → switching period (seconds)

Next, we take the inverse Laplace transforms associated with two con-
tinuous regimes, i.e.,

Regime 1 0 ≤ t < αT
Regime 2 αT ≤ t < T

Let’s define the output under the two regimes as

Regime 1 VOUT → VOUT
1 → Vout_1_Time

Regime 2 VOUT → VOUT
2 → Vout_2_Time

Therefore, in Maple syntax,

◗ Vout_1_Time := invlaplace((Vin+s*R*C*V1/s)/(s*R*C+1),s,t);

Vout_2_Time := invlaplace((s*R*C*V2/s)/(s*R*C+1),s,t);

Vout_1_Time := 10 − 10 e(−1000 t) + V1 e(−1000 t)

Vout_2_Time := V2 e(−1000 t)

Figure 8.3 indicates that at steady state the boundary conditions under
the two regimes are

VOUT
1 (t = αT) = V2

VOUT
2 (t = T − αT) = V1

Applied Maple for Engineers and Scientists

304

We cannot simply state the second boundary condition as

VOUT
2 (t = T) = V1

because as far as the output voltage under the second regime is concerned,
the dynamics are functionally dependent on a time duration as opposed to
any specific time on an arbitrary time axis. Consequently, we have two
equations and two unknowns and can get the unique solution in Maple as
follows: First, we solve the following boundary conditions just stated as:

◗ Vout_1_Time_AlfaT := evalf(subs(t=alfa*T,Vout_1_Time));

Vout_2_Time_TminusAlfaT := evalf(subs(t=T-alfa*T,

Vout_2_Time));

Vout_1_Time_AlfaT := .487705755 + .9512294245 V1
Vout_2_Time_TminusAlfaT := .9512294245 V2

Then using Maple’s solve command,

◗ Solutions : =

solve({Vout_1_Time_AlfaT=V2,Vout_2_Time_TminusAlfaT=V1},

{V1,V2});

Solutions := 


V2 = 5.124973963 , V1 = 4.875026033 




Converting the result into an order list for resubstitution, we perform
the following:

◗ XX := subs(Solutions,[V1,V2]):

V1 := XX[1];

V2 := XX[2];

V1 = 4.875026033
V2 = 5.124973963

Now, we need to convert the output voltage under the second regime
(αT ≤ t < T) to reflect the time duration by sliding the time scale relative to
the VOUT

2 (t) expression as mentioned earlier. Hence,

Switching topologies

305

◗ Vout_2_Time_Duration : = subs(t = t-alfa*T,Vout_2_Time):

In this way, we can substitute the graphic values of time into the sec-
ond regime’s output expression directly as we see them in the graph.

Plotting the periodic voltage output along with the average value
requires that we first compute the average value of the periodic output as

VAVG = 1
T







∫
0

αT

VOUT
1 (t)dt + ∫

αT

T

VOUT
2 (t)dt








In Maple,

◗ Output_Average := 1/T*(int(Vout_1_Time,t=0..alfa*T)+int

(Vout_2_Time_Duration,t=alfa*T..T));

Output_Average := 5.000000000

This result is not surprising considering that we are using a 50% duty
cycle with a 10-volt PWM square wave.

Now plotting the average value along with the entire two-regime time
response over a per period of T,

◗ Plot_1 := plot(Vout_1_Time,t=0..alfa*T,color = black,

style=point,symbol=cross):

Plot_2 := plot(Vout_2_Time_Duration,t=alfa*T..T,

color=black,style=point,symbol=circle):

Plot_3 := plot (Output_Average,t=0..T,color=black):

display({Plot_1,Plot_2,Plot_3},axes=boxed,color=black,

labels=[Time_seconds,Voltage]);

In Figure 8.4, we point plotted the regimes differently, so that the
reader can see the individual solutions on one plot. Regime 1 or 0 ≤ t < αT
is plotted with crosses, whereas regime 2 or αT ≤ t < T is plotted with
circles.

Applied Maple for Engineers and Scientists

306

Now we can play around with the variables to see the effects of parame-
ter variation. For instance, what if we were to increase the RC filter’s band-
width by two orders of magnitude? We would expect to see more of the
traditional RC roll-off characteristics on a per-period basis. Therefore,
change the filter capacitor to 0.1 µF and resistance to 100 Ω.

◗ with(plots):

with(inttrans):

Freq := 10^4:

R := 100:

C := 10^(-7):

alfa := .5:

Vin := 10/s:

T := 1/Freq:

Vout_1_Time := invlaplace((Vin+s*R*C*V1/s)/(s*R*C+1),s,t):

Vout_2_Time := invlaplace((s*R*C*V2/s)/(s*R*C+1),s,t):

5.1

5.05

Voltage 5

4.95

4.9

0 2e-05 4e-05

Time_seconds

6e-05 8e-05 0.001

Figure 8.4 Output voltage plot of filtered PWM signal (R = 1000ohms, C = 1 µF, frequency = 10 kHz,

duty cycle = 50%, Vin = 10V).

Switching topologies

307

Vout_1_Time_AlfaT := evalf(subs(t=alfa*T,Vout_1_Time)):

Vout_2_Time_TminusAlfaT := evalf(subs(t=T-alfa*T,

Vout_2_Time)):

Solutions := solve({Vout_1_Time_AlfaT=V2,

Vout_2_Time_TminusAlfaT=V1},{V1,V2}):

XX := subs(Solutions,[V1,V2]):

V1 := XX[1]:

V2 := XX[2]:

Vout_2_Time_Duration := subs(t=t-alfa*T,Vout_2_Time):

Output_Average := 1/T*(int(Vout_1_Time,t=0..alfa*T)+

int(Vout_2_Time_Duration,t=alfa*T..T)):

Plot_1 := plot(Vout_1_Time,t=0..alfa*T,color=black,

style=point,symbol=cross):

Plot_2 := plot(Vout_2_Time_Duration,t=alfa*T..T,

color=black,style=point,symbol=circle):

Plot_3 := plot (Output_Average,t=0..T,color=black):

display({Plot_1,Plot_2,Plot_3},axes=boxed, color=black,

labels=[Time_seconds,Voltage]);

Figure 8.5 shows that the low-pass RC filter has allowed the ripple to
nearly be the full square-wave swing or 10V peak to peak.

Now let’s set the duty cycle to 25% under the two previously per-
formed filter values:

R = 1000 Ω and C = 1 µF

◗ with(plots):

with(inttrans):

Freq := 10^4:

R := 1000:

C := 10^(-6):

alfa := .25:

Vin := 10/s:

T := 1/Freq:

Vout_1_Time := invlaplace((Vin+s*R*C*V1/s)/(s*R*C+1),s,t):

Vout_2_Time := invlaplace((s*R*C*V2/s)/(s*R*C+1),s,t):

Vout_1_Time_AlfaT := evalf(subs(t=alfa*T,Vout_1_Time)):

Vout_2_Time_TminusAlfaT := evalf(subs(t=T-alfa*T,

Vout_2_Time)):

Solutions := solve({Vout_1_Time_AlfaT=V2,

Vout_2_Time_ TminusAlfaT=V1},{V1,V2}):

Applied Maple for Engineers and Scientists

308

XX := subs(Solutions,[V1,V2]):

V1 := XX[1]:

V2 := XX[2]:

Vout_2_Time_Duration := subs(t=t-alfa*T,Vout_2_Time):

Output_Average := 1/T*(int(Vout_1_Time,t=0..alfa*T)+

int(Vout_2_Time_Duration,t=alfa*T..T)):

Plot_1 := plot(Vout_1_Time,t=0..alfa*T,color=black,

style=point,symbol=cross):

Plot _2 := plot(Vout_2_Time_Duration,t=alfa*T..T,

color=black,style=point,symbol=circle):

Plot_3 := plot (Output_Average,t=0..T,color=black):

display({Plot_1,Plot_2,Plot_3},axes=boxed,color=black,

labels=[Time_seconds,Voltage]);

10

8

6

Voltage

4

2

0
2e-05 4e-05

Time_seconds

6e-05 8e-05 0.001

Figure 8.5 Output voltage plot of filtered PWM signal (R = 100 ohms, C = 0.1 µF, frequency = 10 kHz,

duty cycle = 50%, Vin = 10V).

Switching topologies

309

R = 100 Ω and C = 0.1 µF

◗ with(plots):

with(inttrans):

Freq := 10^4:

R := 100:

C := 10^(-7):

alfa := .25:

Vin := 10/s:

T := 1/Freq:

Vout_1_Time := invlaplace((Vin+s*R*C*V1/s)/(s*R*C+1),s,t):

Vout_2_Time := invlaplace((s*R*C*V2/s)/(s*R*C+1),s,t):

Vout_1_Time_AlfaT := evalf(subs(t=alfa*T,Vout_1_Time)):

Vout_2_Time_TminusAlfaT := evalf(subs(t=T-alfa*T,

Vout_2_Time)):

Solutions := solve({Vout_1_Time_AlfaT=V2,

Vout_2_Time_TminusAlfaT=V1},{V1,V2}):

XX := subs(Solutions,[V1,V2]):

V1 :=XX[1]:

V2 := XX[2]:

Vout_2_Time_Duration := subs(t=t-alfa*T,Vout_2_Time):

Output_Average := 1/T*(int(Vout_1_Time,t=0..alfa*T)+

int(Vout_2_Time_Duration,t=alfa*T..T)):

Plot_1 := plot(Vout_1_Time,t=0..alfa*T,color=black,

style =point,symbol=cross):

Plot_2 := plot(Vout_2_Time_Duration,t=alfa*T..T,

color=black,style=point,symbol=circle):

Plot_3 := plot (Output_Average,t=0..T,color=black):

display({Plot_1,Plot_2,Plot_3},axes=boxed,color=black,

labels=[Time_seconds,Voltage]);

From Figures 8.6 and 8.7 we immediately see that having a low-pass
filter whose cutoff frequency

fCUTOFF = 1
2πRC

is well below the switching frequency provides a reasonably good averag-
ing of the input waveform. The cutoff frequencies associated with the first
and second cases were

Applied Maple for Engineers and Scientists

310

Case 1 fCUTOFF = 1
2πRC

= 1
2π(1000)(1µF)

= 159.15 Hz

Case 2 fCUTOFF = 1
2πRC

= 1
2π(100)(.1µF)

= 15.915 kHz

With a switching frequency of 10 kHz, most of the switching fre-
quency was removed in the first case, and almost all of the switching infor-
mation was passed in the second case as is evident from the plots. Now,
let’s reverse the process by specifying a certain ripple |V1 − V2| ≤ ζ for a
given load under fixed conditions of duty cycle and input switching volt-
age. In this way, whether the circuit is being used for signal processing or
power transduction, we will know the switching ripple’s worst case

2.58

2.56

2.54

2.52

2.5Voltage

2.48

2.46

2.44

2.42

2e-05 4e-05

TIme_seconds

6e-05 8e-05 0.0001

Figure 8.6 Output voltage plot of filtered PWM signal (R = 1000 ohms, C = 1 µF, frequency = 10 kHz,

duty cycle = 25%, Vin = 10V).

Switching topologies

311

scenario. In signal processing applications, the ripple can detract from the
averaging filter’s dynamic range, whereas for a power application (say, heat-
ing coils), the ripple connotes the excessive voltages (especially V1) beyond
the desired average value stressing the elements.

If we constrain the ripple to a maximum of 1V peak to peak
V1 − V2 ≤ 1 under a duty cycle of 50% with an applied input switching volt-
age of 50V at 5 kHz, then we can determine the minimal RC product
needed to ensure this specification. First we enter the knowns of the prob-
lem along with the appropriate Maple libraries:

8

6

4

2

0

Voltage

2e-05 4e-05 6e-05 8e-05 0.0001

Time_seconds

Figure 8.7 Output voltage plot of filtered PWM signal (R = 100 ohms, C = 0.1 µF, frequency = 10 kHz,

duty cycle = 25%, Vin = 10V).

Applied Maple for Engineers and Scientists

312

◗ with(inttrans):

Freq := 5*10^3:

alfa := .50:

Vin := 50/s:

T := 1/Freq:

Vout_1_Time := invlaplace((Vin+s*RC*V1/s)/(s*RC+1),s,t):

Vout_2_Time := invlaplace((s*RC*V2/s)/(s*RC+1),s,t):

Vout_1_Time_AlfaT := evalf(subs(t=alfa*T,Vout_1_Time)):

Vout_2_Time_TminusAlfaT := evalf(subs(t=T-alfa*T,

Vout_2_Time)):

Solutions := solve({Vout_1_Time_AlfaT=V2,

Vout_2_Time_TminusAlfaT=V1},{V1,V2}):

XX := subs(Solutions,[V1,V2]):

V1 := XX[1]:

V2 := XX[2]:

Peak_To_Peak_Ripple :=abs(V2-V1);

Peak_To_Peak_Ripple :=








50.
1

e



−.0001000000000

1
RC



 +1.

− 50.
e



−.0001000000000

1
RC





e



−.0001000000000

1
RC



 + 1








Now that we have the expression relating the RC product to the peak-
to-peak ripple, we solve the expression using Maple’s solve command:

◗ Ripple_Result : = solve(Peak_To_Peak_Ripple = 1,RC);

Ripple_Result := −.002499666603 , .002499666629

Since the RC product must be positive and nonzero, the correct value
for the problem is

RCMINIMUM = .002499666629

From this, we can simply play a balancing act between available resis-
tor and capacitance values to obtain the minimal RC product to ensure the
previous design requirements.

Switching topologies

313

From an analysis point of view, the question now becomes what is the
allowable range of duty cycle variance to ensure that the peak-to-peak rip-
ple does not exceed 1V? This question is best answered by looking at the
dependence of output ripple voltage as a function of duty cycle, hence, a
plot of these variables in Maple becomes

◗ with(plots):

with(inttrans):

Freq : =5*10^3:

RC : =.002499666629:

Vin : =50/s:

T :=1/Freq:

Vout_1_Time := invlaplace((Vin+s*RC*V1/s)/(s*RC+1),s,t):

Vout_2_Time : =invlaplace((s*RC*V2/s)/(s*RC+1),s,t):

Vout_1_Time_AlfaT := evalf(subs(t=alfa*T,Vout_1_Time)):

Vout_2_Time_TminusAlfaT := evalf(subs(t=T-alfa*T,

Vout_2_Time)):

Solutions := solve({Vout_1_Time_AlfaT=V2,

Vout_2_Time_TminusAlfaT=V1},{V1,V2}):

XX := subs(Solutions,[V1,V2]):

V1 :=XX[1]:

V2 := XX[2]:

Peak_To_Peak_Ripple := abs(V2-V1):

plot(Peak_To_Peak_Ripple,alfa=.3..+.7,axes=boxed,

color=black,labels=[D uty_Cycle,Ripple]);

From Figure 8.8, it appears that the original computation of the mini-
mal RC product was given at the maximal ripple duty cycle value (50%).
Therefore, to ensure a range of acceptable duty cycle variations, we need
only specify the minimum RC product sufficient to ensure that we do not
exceed the 1V peak-to-peak ripple specification at 50%.

However, if we are in the signal processing business and we are con-
cerned over the relative signal-to-noise ratio (SNR), then the picture is
different. For instance, if we operate the PWM system at a low duty cycle,
incurring a low average value, then the recovered information (average
value) might not be sufficiently larger than that passed through switching
frequency ripple.

Applied Maple for Engineers and Scientists

314

The relative SNR merit function, SNRREL, might be

SNRREL =
Average output

Peak−to−peak ripple output

Since we have computed these functions previously, we can plot this
merit function as a function of duty cycle. Thus,

◗ with(plots):

with(inttrans):

Freq := 5*10^3:

RC := .002499666629:

Vin := 50/s:

T := /Freq:

1

0.96

0.98

0.94

0.92Ripple

0.9

0.88

0.86

0.84

0.3 0.4 0.5 0.6 0.7

Duty_Cycle

Figure 8.8 Peak-to-peak ripple versus duty cycle (RC = .002499666629, frequency = 5 kHz, duty cycle

range = 30% to 70%, Vin = 50V).

Switching topologies

315

Vout_1_Time := invlaplace((Vin+s*RC*V1/s)/(s*RC+1),s,t):

Vout_2_Time := invlaplace((s*RC*V2/s)/(s*RC+1),s,t):

Vout_1_Time_AlfaT := evalf(subs(t=alfa*T,Vout_1_Time)):

Vout_2_Time_TminusAlfaT := evalf(subs(t=T-alfa*T,

Vout_2_Time)):

Solutions := solve({Vout_1_Time_AlfaT=V2,Vout_2_Time_

TminusAlfaT=V1},{V1,V2}):

XX := subs(Solutions,[V1,V2]):

V1 := XX[1]:

V2 := XX[2]:

Vout_2_Time_Duration := subs(t=t-alfa*T,Vout_2_Time):

Output_Average := 1/T*(int(Vout_1_Time,t=0..alfa*T)+

int(Vout_2_Time_Duration,t=alfa*T..T)):

Peak_To_Peak_Ripple := abs(V2-V1):

SNR_Rel := Output_Average/ Peak_To_Peak_Ripple:

plot(SNR_Rel,alfa=+.1..+.9,axes=boxed,color=black,

labels= [Duty_Cycle,SNR]);

As evident in Figure 8.9, the lower duty cycles have a much lower
SNR, even though Figure 8.8 indicated that a 50% duty cycle gave the
maximal ripple. Consequently, depending on the application of this type
of signal handling, one needs to determine which aspect of the PWM recov-
ered information is of importance, in other words, which quiescent operat-
ing point should be employed.

Switching power supply
In those applications where the regulated output dc voltage is less than the
input unregulated dc voltage, a certain switching regulator is utilized. Since
the output is less than the input voltage, it is called a buck-type converter.
If the output voltage is greater than the input, then the switching regulator
is called a boost-type converter. We will be dealing with the design and
analysis of a buck-type dc-to-dc converter.

Figure 8.10 depicts the general topology associated with a buck-type
converter, which can be functionally reduced to Figure 8.11 for analysis
purposes. From Figure 8.11, one notices the second-order low-pass filter
(LPF) with the inductor, capacitor, and resistive load circuitry. The topol-
ogy is simply a series resonant circuit with resistive dissipation. Further
simplification is obtained when the switching transistor model (Q1) and
PWM controller blocks are modeled and removed by incorporation of
their function into the input signal as shown in Figure 8.12.

Applied Maple for Engineers and Scientists

316

120

100

80

SNR

60

40

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Duty_Cycle

Figure 8.9 Relative SNR versus duty cycle (RC = .002499666629, frequency = 5kHz, Vin = 50V).

Vdc Q1 L Vout

RC
D1

FeedbackPWM
controller

Figure 8.10
Simple buck-type
switching power

supply.

Switching topologies

317

The average dc output voltage (Vout, Figure 8.12(a)) dependence on
duty cycle (α → alfa, Figure 8.12(b)) transfer function is more complex
and exhibits different dynamics than the previously described PWM de-
sign case. The same is also true for the output voltage ripple computations.
Again, the recovered output, relative to the input waveform, will appear as
shown in Figure 8.13.

Vdc Q1
L Vout

RC

FeedbackPWM
controller

Figure 8.11
Base buck-type

converter
topology.

Vout
L

C RVin

Vin(t)

Vdc

Time
0

0 αT T

(a)

(b)

Figure 8.12
Basic model for

the buck-type
converter.

Applied Maple for Engineers and Scientists

318

However, there is another initial condition associated with this second-
order circuit, namely, the inductor’s (L) core current along with the output
capacitor’s initial voltage at each time interface. These initial boundary con-
ditions are shown in Figure 8.14 and apply identically to each period once
the steady-state dynamics have been reached.

The initial current source in parallel with the inductor has two dc
states as does the initial voltage source in series with the output capacitor.
The nomenclature is as follows:

Input
voltage
(Vin)

Nonconduction
phase

Output
voltage
(Vout)Conduction

phase

A

V1

0
0 T/4 T/2 3T/4 T Time

V1

V2V2

Figure 8.13
Output and input

waveforms on a
per-period basis.

+

−

Vout

I(1,2)

L

Vin C
R

V(1,2)
Figure 8.14

Boundary initial
conditions
elements.

Switching topologies

319

Regime 1 (0 ≤ t < αT)
Inductor current = I1
Capacitor voltage = V1

Regime 2 (αT ≤ t < T)
Inductor current = I2
Capacitor voltage = V2

Therefore, there are two circuits that are being solved and matched at
the time boundaries indicated earlier. Figures 8.15(a) and 8.15(b) show
the two topologies within the two time regimes. From these circuits, one
derives the appropriate equations for each regime.

Let’s begin by initiating the appropriate Maple libraries and compo-
nent values into a session:

+

−

Vout_1_time

I(1,2)

L

Vin C
R

V(1,2)

Regime 1

Vout_2_time

Regime 2R

V(2)

C

L
I(2)

(a)

(b)

Figure 8.15
Two models

associated with
the two switching

regimes.

Applied Maple for Engineers and Scientists

320

◗ with(inttrans):

Freq := 40*10^3:

R := 50:

L := 10^(-2):

C := 10^(-3):

Vin := 24/s:

alfa := .50:

T := 1/Freq:

Computing the time-domain forms over the two regimes per period as
before,

◗ Vout_1_Time :=invlaplace((Vin+s*L*C*V1+L*I1)/

(L*C*s^2+s*L/R+1),s,t);

Vout_2_Time :=invlaplace((s*L*C*V2+L*I2)/

(L*C*s^2+s*L/R+1),s,t);

Vout_1_Time := 24 − 8
111

e(−10 t) sin(30 √3 √37 t) √3 √37

+ 100
333

I1 e(−10 t) sin(30 √3 √37 t) √3 √37

− 24 e(−10 t) cos(30 √3 √37 t)

− 1
333

V1 e(−10 t) sin(30 √3 √37 t) √3 √37

+ V1 e(−10 t) cos(30 √3 √37 t)

Vout_2_Time := −
1

333
V2 e(−10 t) sin(30 √3 √37 t) √3 √37

+ V2 e(−10 t) cos(30 √3 √37 t)

+ 100
333

I2 e(−10 t) sin(30 √3 √37 t) √3 √37

From these results, we compute a few boundary conditions:

VOUT _1_Time(t = 0) = VOUT _1_Time_Zero = V1

(Second-to-first regime boundary check)

VOUT_2_Time(t = 0) = VOUT_2_Time_Zero = V2
(First-to-second regime boundary check)

Switching topologies

321

VOUT_1_Time(t = αT) = VOUT_1_Time_AlfaT
VOUT_2_Time(t = T − αT) = VOUT_2_Time_AlfaT

Continuing,

◗ Vout_1_Time_Zero := evalf(subs(t=0,Vout_1_Time));

Vout_2_Time_Zero := evalf(subs(t=0,Vout_2_Time));

VOUT_1_Time_Zero := 1. V1

VOUT_2_Time_Zero := 1. V2

They check out; now continuing to generate the two basis equations,

◗ Vout_1_Time_AlfaT := evalf(subs(t = alfa*T,Vout_1_Time));

Vout_2_Time_TminusAlfaT := evalf(subs(t = T-alfa*T,

Vout_2_Time));

VOUT_1_Time_AlfaT := .00018748 + .01249840508 I1
+ .9997422200 V1

VOUT_2_Time_TminusAlfaT := .9997422200 V2 +
.01249840508 I2

Maple nearly has all the basis equations, but we still need two more
conditions to solve uniquely. Note in Figures 8.15(a) and 8.15(b) that for
any boundary (again, assuming steady state) that the following statements
must hold:

I1 =
V1

R

I2 =
V2

R

this is true because the boundary exhibits zero time duration, hence all in-
ductors and capacitors have infinite and zero impedance, respectively.

Now Maple has a sufficient number of equations to solve for unique so-
lutions at the boundaries.

◗ Solutions := solve({Vout_2_Time_TminusAlfaT=V1,

Vout_1_Time_AlfaT=V2,I1=V1/R,I2=V2/R},{V1,V2,I1,I2});

Applied Maple for Engineers and Scientists

322

Solutions := {V2 = 11.99971838 , V1 = 11.99962464 ,
I2 = .2399943676 , I1 = .2399924928 }

Reassigning the variables explicitly since Maple’s output is in a set
form,

◗ XX :=subs(Solutions,[V1,V2,I1,I2]);

XX := [11.99962464 , 11.99971838 , .2399924928 , .2399943676]

then associating and abstracting the numerical solutions to the variables of
interest,

◗ V1 := XX[1];

V2 := XX[2];

I1 := XX[3];

I2 := X[4];

V1 := 11.99962464
V2 := 11.99971838
I1 := .2399924928
I2 := .2399943676

Note that the values are pretty close to each other since we are filtering at

fCUTOFF = 1
2π√LC

= 1

2π√(10 mH)(1000 uF)
= 50Hz

which is 2.90 orders below the switching frequency (40 kHz) with a sec-
ond-order LPF. This will account for approximately a 640,000:1 attenu-
ation of the 24V dc square-wave input. A quick reality check indicates that
the V1,V2 differential of peak-to-peak ripple is about 94 µV. Dividing the
24V dc drive (or 24V peak to peak) by 640,000 yields an expected peak
to peak value of 37.5 µV. The ratiometric difference between the Maple
computation and the theoretical estimate is due to the effective Q gain
associated with the series resonant circuit. This would indicate a Q of
around 2.5.

Switching topologies

323

Now we can state the final time-domain expression for the two time re-
gimes on a per-period basis:

◗ Vout_1_Time_Final := evalf(subs(V1=V1,Vout_1_Time));

Vout_2_Time_Duration := evalf(subs(V2=V2,Vout_2_Time)):

Vout_2_Time_Final := evalf(subs(t=t-alfa*T,Vout_2_Time_

Duration));

Vout_1_Time_Final := 24. − .3796750740 e(−10. t) sin(316.0696125 t)
− 12.00037536 e(−10. t) cos(316.0696125 t)

Vout_2_Time_Final := .3796542881

e(−10. t +.0001250000000) sin(316.0696125 t − .003950870156)
+ 11.99971838

e(−10. t +.0001250000000) cos(316.0696125 t − .003950870156)

Now to create plots of both regimes (i.e., output for 0 ≤ t < T) with the
corresponding average dc value, we enter the following to display pertinent
output voltage information of the converter under the given constraints:

◗ Output_Average := 1/T*(int(Vout_1_Time_Final,t=0..alfa*T)+

int(Vout_2_Time_Final,t=alfa*T..T));

Output_Peak_to_Peak_Ripple := abs(V1-V2);

Output_Average := 11.99967152
Output_Peak_to_Peak_Ripple := .00009374

and to generate the compound plot (Figure 8.16):

◗ with(plots):

Plot_1 := plot(Vout_1_Time_Final,t=0..alfa*T,color = black,

style=point,symbol=cross):

Plot_2 := plot(Vout_2_Time_Final,t=alfa*T..T,color = black,

style=point,symbol=circle):

Plot_3 := plot(Output_Average,t=0..T,color=black):

display({Plot_1,Plot_2,Plot_3},axes=boxed,labels=

[Time_seconds,Voltage]);

Applied Maple for Engineers and Scientists

324

Now let’s try some different component values and another duty cycle:

◗ with(plots):

with(inttrans):

Freq := 40*10^3:

R := 50:

L := 10^(-3):

C := 10^(-5):

Vin := 24/s:

alfa := .25:

T := 1/Freq:

Vout_1_Time := invlaplace((Vin+s*L*C*V1+L*I1)/

(L*C*s^2+s*L/R+1),s,t):

Vout_2_Time := invlaplace((s*L*C*V2+L*I2)/

(L*C*s^2+s*L/R+1),s,t):

Vout_1_Time_Zero := evalf(subs(t=0,Vout_1_Time)):

Vout_2_Time_Zero := evalf(subs(t=0,Vout_2_Time)):

11.99986

11.99984

Voltage

11.99982

11.9998

11.99978

5e-06 1e-05 1.5e-05 2e-05 2.5e-05

Time_seconds

Figure 8.16 Buck converter output waveform (R = 50 ohms, L = 10 mH, C = 1000 µF, Vin = 24V, duty

cycle = 50%).

Switching topologies

325

Vout_1_Time_AlfaT := evalf(subs(t=alfa*T,Vout_1_Time)):

Vout_2_Time_TminusAlfaT :=evalf(subs(t=T-alfa*T,

Vout_2_Time)):

Solutions := solve({Vout_2_Time_TminusAlfaT=V1,

Vout_1_Time_AlfaT=V2,I1=V1/R,I2=V2/R},{V1,V2,I1,I2}):

XX := subs(Solutions,[V1,V2,I1,I2]):

V1 := XX[1]:

V2 := XX[2]:

I1 := XX[3]:

I2 := XX[4]:

Vout_1_Time_Final := evalf(subs(V1=V1,Vout_1_Time)):

Vout_2_Time_Duration := evalf(subs(V2=V2,Vout_2_Time)):

Vout_2_Time_Final := evalf(subs(t=t-alfa*T,Vout_2_Time_

Duration)):

Output_Average := 1/T*(int(Vout_1_Time_Final,t=0..alfa*T)+

int(Vout_2_Time_Final,t=alfa*T..T));

Output_Peak_to_Peak_Ripple :=abs(V1-V2);

Plot_1 := plot(Vout_1_Time_Final,t=0..alfa*T,color=black,

style=point,symbol=cross):

Plot_2 := plot(Vout_2_Time_Final,t=alfa*T..T,color=black,

style=point,symbol=cir cle):

Plot_3 := plot(Output_Average,t=0..T,color=black):

display({Plot_1,Plot_2,Plot_3},axes=boxed,labels =

[Time_seconds,Voltage]);

Output_Average := 2.410331814
Output_Peak_to_Peak_Ripple := .042026107

Figure 8.17 exhibits a much larger peak-to-peak ripple than pre-
viously. This is the result of a much smaller amount of filtering (note the
reduction in capacitance and inductance). Also note that the dc or average
recovered voltage is not linearly related to the duty cycle as was the PWM
case. If this system were linear, we would have expected to see an average
dc value of 6.0V (25% of 24V) instead of the computed 2.41V.

To see the dependence of the average output dc voltage on duty cycle,
we need to set up the equation relating these two items and then plot them;
thus:

Applied Maple for Engineers and Scientists

326

◗ with(plots):

with(inttrans):

Freq := 40*10^3:

R := 50:

L := 10^(-3):

C := 10^(-5):

Vin := 24/s:

T := 1/Freq:

Vout_1_Time := invlaplace((Vin+s*L*C*V1+L*I1)/

(L*C*s^2+s*L/R+1),s,t):

Vout_2_Time := invlaplace((s*L*C*V2+L*I2)/

(L*C*s^2+s*L/R+1),s,t):

Vout_1_Time_Zero := evalf(subs(t=0,Vout_1_Time)):

Vout_2_Time_Zero := evalf(subs(t=0,Vout_2_Time)):

Vout_1_Time_AlfaT := evalf(subs(t=alfa*T,Vout_1_Time)):

Vout_2_Time_TminusAlfaT := evalf(subs(t=T-alfa*T,

2.42

2.41

Voltage

2.4

2.39

0 5e-06 1e-05 1.5e-05 2e-05 2.5e-05

Time_seconds

Figure 8.17 Buck converter output waveform (R = 50 ohms, L = 1 mH, C = 10 µF, Vin = 24V, duty cycle

= 25%, frequency = 40 kHz).

Switching topologies

327

Vout_2_Time)):

Solutions := solve({Vout_2_Time_TminusAlfaT=V1,

Vout_1_Time_AlfaT=V2,I1=V1/R,I2=V2/R},{V1,V2,I1,I2}):

XX := subs(Solutions,[V1,V2,I1,I2]):

V1 := XX[1]:

V2 := XX[2]:

I1 := XX[3]:

I2 := XX[4]:

Vout_1_Time_Final := evalf(subs(V1=V1,Vout_1_Time)):

Vout_2_Time_Duration := evalf(subs(V2=V2,Vout_2_Time)):

Vout_2_Time_Final := evalf(subs(t=t-alfa*T,Vout_2_Time_

Duration)):

Output_Average := 1/T*(int(Vout_1_Time_Final,t=0..alfa*T)+

int(Vout_2_Time_Final,t=alfa*T..T)):

plot(Output_Average,alfa=0..1,color=black,axes=boxed,

labels=[Duty_Cycle,Voltage]);

Clearly, Figure 8.18 does not represent a linear relationship between
duty cycle and dc output voltage. Consequently, this type of filtering
would not be an advisable approach to signal processing (i.e., decoding
phase information), especially if linearity were important. However, for
power supply regulation it is desirable, because the efficiency of these
switching converters can be as high as 95% (depending on the power levels
involved). Further, considering the compressing of the encoded informa-
tion (the dc value), one would want to operate the buck converter some-
where around the middle of the duty cycle curve. Otherwise, larger loop
gains will be necessary to hold output voltage levels at values far removed
from the 12V center (duty cycle = 50% at Vin = 24V) under varying pa-
rameter and environmental conditions. This could lead to instability and
probable loss of the controlled output voltage variance specification.

To show Figure 8.18’s S-shaped dependence on the value of induc-
tance, let’s produce a 3-D plot of average output voltage versus duty cycle
and inductance value:

Applied Maple for Engineers and Scientists

328

◗ with(plots):

with(inttrans):

Freq := 40*10^3:

R := 50:

C := 10^(-5):

Vin := 24/s:

T := 1/Freq:

Vout_1_Time := invlaplace((Vin+s*L*C*V1+L*I1)/

(L*C*s^2+s*L/R+1),s,t):

Vout_2_Time := invlaplace((s*L*C*V2+L*I2)/

(L*C*s^2+s*L/R+1),s,t):

Vout_1_Time_Zero := evalf(subs(t=0,Vout_1_Time)):

Vout_2_Time_Zero := evalf(subs(t=0,Vout_2_Time)):

Vout_1_Time_AlfaT := evalf(subs(t=alfa*T,Vout_1_Time)):

Vout_2_Time_TminusAlfaT := evalf(subs(t=T-alfa*T,

20

15

10

5

0

Voltage

0 0.2 0.4 0.6 0.8 1

Duty_cycle

Figure 8.18 Output voltage versus duty cycle of buck converter (R = 50 ohms, L = 1 mH, C = 10 µF,

Vin = 24V, frequency = 40 kHz).

Switching topologies

329

Vout_2_Time)):

Solutions := solve({Vout_2_Time_TminusAlfaT=V1,

Vout_1_Time_AlfaT=V2,I1=V1/R,I2=V2 /R},{V1,V2,I1,I2}):

XX := subs(Solutions,[V1,V2,I1,I2]):

V1 := XX[1]:

V2 := XX[2]:

I1 := XX[3]:

I2 := XX[4]:

Vout_1_Time_Final := evalf(subs(V1=V1,Vout_1_Time)):

Vout_2_Time_Duration := evalf(subs(V2=V2,Vout_2_Time)):

Vout_2_Time_Final := evalf(subs(t=t-alfa*T,Vout_2_Time_

Duration)):

Output_Average := 1/T*(int(Vout_1_Time_Final,t=0..alfa*T)+

int(Vout_2_Time_Final,t=alfa*T..T)):

Now plotting the three variable relationship,

◗ plot 3d(Output_Average,alfa=0..1,L=10^(-9)..10^(-5),

grid=[50,50], color=black,axes=boxed,

style=hidden,orientation= [-45,60],labels=[Duty_Cycle,

Inductance,Volts]);

Figure 8.19 shows that as the inductance value (scale on the right-hand
side baseline) decreases, the output voltage transfer becomes linear with
the duty cycle (dc). The peaking taking place during the lower inductance
values reflects the fact that some resonant behavior is getting through to the
output along with a dramatic increase in switching ripple (look closely at
the jagged nature of the straight line at low inductance on the left-hand wall
of the 3-D plot). Clearly, the inductor affords us a great deal of filtering, but
does so at the cost of linearity to the output voltage’s dependence upon
duty cycle.

Fourier method
Now that we have seen the exact solution at steady state on a per-period ba-
sis, let’s look at another method for determining the output voltage charac-
teristics. However, this method approximates the input PWM signal with
its approximate Fourier series. Also, this method does not use any time
sliding to implement two separate time-domain solutions to reconstruct the
complete periodic solution; instead, this approach works on the premise of
a running time average.

Applied Maple for Engineers and Scientists

330

Before we start generating Maple code, let’s review the Fourier series
that will approximate the PWM equivalent input as shown in Figure 8.1.
Simply stated, the Fourier series can approximate any periodic function
with a finite number of discontinuities that converge from both the left- and
right-hand side of any given discontinuity. Further, the Fourier series ap-
proximation quality depends on how many expansion terms one wants to
handle during the analysis. Consequently, creating a PWM waveform (a
general square wave) is generally considered reasonably approximated
with the first 10 harmonics. More harmonics are better, but this can be-
come computationally prohibitive, as we shall see during our forthcoming
revisit of the buck-type switching power supply.

The Fourier series is defined by the following set of constituent
relations:

60

40

20

0

−20

Volts

0
0.2

0.4

0.8
1

Duty_cycle 0.6

0
2e-06

4e-06
6e-06

8e-06
1e-05

Inductance

Figure 8.19 Dependence of converter linearity on Inductance (C = 10 µF, Vin = 24V, R = 50 ohms,

frequency = 40 kHz).

Switching topologies

331

f(t) = a0 + ∑
n = 1

∞



an cos(nω0t) + bn sin(nω0t)



where the Fourier coefficients are

a0 = 1
T ∫

−T⁄2

T⁄2
f(t)dt

a0 = 2
T ∫

−T⁄2

T⁄2
f(t) cos(nω0t)dt

bn = 2
T ∫

−T⁄2

T⁄2
f(t) sin(nω0t)dt

Revisiting Figure 8.1 again, by inspection, we can state the limits of
integration:

a0 = 1
T ∫

0

αT

f(t)dt

a0 = 2
T ∫

0

αT

f(t) cos(nω0t)dt

bn = 2
T ∫

0

αT

f(t) sin(nω0t)dt

where

f(t) = 



A
0

for
for

0 ≤ ± < αT
αT ≤ ± < T

Applied Maple for Engineers and Scientists

332

and where

A → Peak amplitude of input square wave
T → Switching period
α → Duty cycle
ω0 = 2πf0 → Switching frequency

Substituting this dc voltage value, f (t), into the Fourier relations yields
the following Fourier coefficients:

a0 = Aα

an = 2A
T

sin(nω0αT)
nω0

bn = 2A

T



1 − cos(nω0αT)


nω0

Resubstituting this into the overall Fourier series form gives us

f(t) = Aα + 2A
ω0T ∑

n = 1

∞




sin(n0αT) cos(nω0t) + (1 − cos(nω0αT)) sin(nω0t)
n





Since we know that ω0 = 2πf = 2π⁄T, then the series can be restated as

f(t) = Aα + A
π ∑

n = 1

∞ 






sin(2πnα) cos




2πnt
T





+ (1 − cos(2πnα)) sin




2πnt
T





n








This is the input voltage function form we will use in our Maple ses-
sion to compute the output voltage waveform after passing through a sec-
ond-order low-pass passive RLC circuit. Put graphically, Figure 8.20
shows the process we will now analyze.

Switching topologies

333

Starting the Maple session with the appropriate libraries,

◗ with(inttrans):

with (plots):

we continue by entering the circuit components and input switching wave-
form shown in Figures 8.12(a) and 8.12(b), respectively:

◗ Switching_Freq := 40*10^3:

Vin := 24:

L := 10^(-2):

C := 10^(-3):

R := 50:

alfa := .50:

T := 1/Switching_Freq:

Computing the Fourier coefficients,

◗ Ao := 1/T*int(Vin,t=0..alfa*T);

An := 2/T*int(Vin*cos(2*n*Pi*t/T),t=0..alfa*T);

Bn := 2/T*int(Vin*sin(2*n*Pi*t/T),t=0..alfa*T);

Ao := 12.00000000

An := 7.639437266
sin(3.141592654 n)

n

Bn := − 7.639437266
cos(3.141592654 n)

n
+ 24

1
n π

Output
voltage
waveform

Duty
cycle

Second-order
LPF

Fourier series
approximation

Vdc

A α

T

Switching
frequency

Approximated PWM
input voltage function

Figure 8.20
Overall Fourier

analysis process.

Applied Maple for Engineers and Scientists

334

The Ao term represents the dc component of the Fourier series and
simply evaluates from the integral to the following:

Ao = Vin × alfa = 24V × 50% = 12V

Now substituting the coefficients into the approximating series,

◗ Vin_Fourier : =

Ao+sum(An*cos(2*n*Pi*t/T)+Bn*sin(2*n*Pi*t/T),

n = 1..10);

Vin_Fourier := 12.00000000 − .3133748821 10−8 cos(251327.4123 t)

+ 15.27887453 sin(251327.4123 t)

+ .3133748821 10−8 cos(502654.8246 t)

− .3133748822 10−8 cos(753982.2370 t)

+ 5.092958178 sin(753982.2370 t)

+ .1077318609 10−7 cos
.1005309649 107 t

− .3133748821 10−8cos
.1256637062 107 t

+ 3.055774906 sin
.1256637062 107 t

− .1959209356 10−8 cos
.1507964474 107 t

− .5316445184 10−8 cos
.1759291886 107 t

+ 2.182696362 sin
.1759291886 107 t

+ .1223889504 10−8 cos
.2010619299 107 t

− .6529054273 10−8 cos
.2261946711 107 t

+ 1.697652726 sin
.2261946711 107 t

+ .3133748821 10−8 cos
.2513274123 107 t

If we plot this Fourier approximation, we can compare the series ap-
proximation (at least subjectively) against the exact input waveform shown

Switching topologies

335

in Figure 8.12(b). The following Maple structure will generate two com-
plete switching waveform periods:

◗ Fourier_Plot :=plot(Vin_Fourier,t=0..2*T,color=black):

piece_1 :=piecewise(t=0,Vin,0):

piece_2 :=piecewise(t=alfa*T,-Vin,0):

piece_3 :=piecewise(t=T,Vin,0):

piece_4 :=piecewise(t=T*(1+alfa),-Vin,0):

Exact_Plot :=plot(piece_1+piece_2+piece_3+piece_4,

t=0..2*T,color=black):

display({Fourier_Plot,Exact_Plot},axes=boxed,labels=

[Time_seconds,Voltage]);

Figure 8.21 indicates that the first 10 harmonics (plus dc term) seem to
give a fairly reasonable approximation to the 50% duty cycle modulated in-
put waveform.

If we were to sacrifice some computer resources and wait a bit (this
computation can get really long and cause dangerously low system re-
sources, so save your work before you execute the Maple command), we
can increase the approximation to the first 30 harmonics:

◗ Vin_Fourier_30 :=Ao+sum(An*cos(2*n*Pi*t/T)+Bn*

sin(2*n*Pi*t/T),n=1..30):

Fo urier_Plot_30

:=plot(Vin_Fourier_30,t=0..2*T,color=black):

display({Fourier_Plot_30,Exact_Plot},axes=boxed,

labels=[Time_seconds,Voltage]);

Clearly, the more harmonics we incorporate into the input PWM
synthesis, the better the approximation (Figure 8.22). The limit here, of
course, is that of time and system resources for the extra harmonic terms as-
sociated with the Fourier series expansion. It is for this reason that we will
use the approximation depicted in Figure 8.21, which only uses the first 10
harmonics.

Later, we take the Laplace transform of each of these harmonics. One
can readily see that this computational approach can get extremely inten-
sive, especially if the use of a large number of harmonics is required for a
more accurate result.

Applied Maple for Engineers and Scientists

336

Now continuing by taking the Laplace transform of the Fourier ap-
proximated input voltage (Figure 8.20, Vin_Fourier) and stating the
second-order LCR filter’s (Figure 8.12(a)) transform,

◗ Vin_Laplace :=laplace(Vin_Fourier,t,s):

LPF_Transfer :=1/(L*C*s^2+L/R*s+1):

Output_Voltage_Laplace :=LPF_Transfer*Vin_Laplace:

Output_Voltage_Time :=invlaplace(Output_Voltage_Laplace,

s,t):

and then plotting the output as a function of time over the first 10,000
switching periods. The result we obtain is as follows (the superimposed
diamond plot of Figure 8.23 represents the final average dc output value):

25

20

15

10

5

0

Voltage

0 1e-05 2e-05

Time_seconds

3e-05 4e-05 5e-05

Figure 8.21 Comparison of Fourier approximation to exact input waveform (10 harmonics plus dc with

a 50% duty cycle).

Switching topologies

337

◗ Output_Plot := plot(Output_Voltage_Time,t=0..10000*T,

color=black):

Output_DC_Plot := plot(Ao,t=0..10000*T,color=black,

style=point,symbol=diamond):

display({Output_Plot, Output_DC_Plot},axes=boxed,

labels=[Time_seconds,Voltage]);

Figure 8.23 shows a typical underdamped second-order effect to a
12V step input. As stated earlier, the 12V average is the dc term associated
with the Fourier series approximation.

25

20

15

10

5

0

1e-05 2e-05 3e-05 4e-05 5e-05

Voltage

Time_seconds

Figure 8.22 Comparison of the Fourier approximation with the exact input waveform (30 harmonics

plus dc).

Applied Maple for Engineers and Scientists

338

In the exact method, we derived the boundary voltages to solve the out-
put waveform for any period. This method also gave us the peak-to- peak
ripple by simply subtracting the two boundary voltages. The output ripple
value can be determined from the Fourier method, but only after we per-
form an RMS (Root-Mean-Square) derivation of the approximated out-
put function (Output_Voltage_Time).

We start by going well out in time, where the output has settled down,
and integrating over one period. In this case, the choice of translating out
to 100,000 switching periods was used, which, at 40 kHz, equates to about
2.5 sec after startup. Further increases in this period measure decreased
the ripple computation but did not change the ripple value appreciably.

20

15

10

5

0

Voltage

0 0.5 0.1 0.15 0.2 0.25

Time_seconds

Figure 8.23 Output voltage derived from Fourier series analysis (Vin = 24V, L = 10 mH, C = 1000 µF,

R = 50 ohms, duty cycle = 50%, frequency = 40 kHz).

Switching topologies

339

◗ Output_RMS_Ripple := evalf(sqrt(1/T*(int((Output_

Voltage_Time-Ao)^2,t=100000*T..100001*T))));

Output_PP_Ripple := evalf(2*Output_RMS_Ripple*sqrt(2));

Output_RMS_Ripple := .00001711662531
Output_PP_Ripple := .00004841312730

Consequently, the peak-to-peak ripple with the Fourier method was
about half the value computed using the exact method (peak-to-peak ripple
= 94 µV). The reason for the lower ripple value in the Fourier method is
due to the fact that we only used the first 10 harmonics, whereas in the ex-
act method, all harmonics were present, hence leading to a higher residual
ripple value.

At this point, we can play around with some component values and
watch the effects at the output. For instance, let’s change the duty cycle, in-
ductor, and capacitance values to the following:

alfa → .25
C → 10 µF
L → l mH

Starting the Maple session:

◗ with(inttrans):

with (plots):

The component values are entered:

◗ Switching_Freq := 40*10^3:

Vin := 24:

L := 10^(-3):

C := 10^(-5):

R := 50:

alfa := .25:

T := 1/Switching_Freq:

The Fourier coefficients are computed:

Applied Maple for Engineers and Scientists

340

◗ Ao := 1/T*int(Vin,t=0..alfa*T):

An := 2/T*int(Vin*cos(2*n*Pi*t/T),t=0..alfa*T):

Bn := 2/T*int(Vin*sin(2*n*Pi*t/T),t=0..alfa*T):

The Fourier approximation using the first 10 harmonics is computed:

◗ Vin_Fourier := Ao+sum(An*cos(2*n*Pi*t/T)+Bn*

sin(2*n*Pi*t/T),n=1..10):

Compare the Fourier approximation with the exact PWM input wave-
form (Figure 8.24):

◗ Fourier_Plot := plot(Vin_Fourier,t=0..2*T,color=black):

piece_1 := piecewise(t=0,Vin,0):

piece_2 := piecewise(t=alfa*T,-Vin,0):

piece_3 := piecewise(t=T,Vin,0):

piece_4 := piecewise(t=T*(1+alfa),-Vin,0):

Exact_Plot :=plot(piece_1+piece_2+piece_3+piece_4,

t=0..2*T,color=black):

display({Fourier_Plot,Exact_Plot},axes=boxed,labels=

[Time_seconds,Voltage]);

The the appropriate Laplace transforms are taken and the time-domain
output is computed:

◗ Vin_Laplace := laplace(Vin_Fourier,t,s):

LPF_Transfer := 1/(L*C*s^2+L/R*s+1):

Output_Voltage_Laplace := LPF_Transfer*Vin_Laplace:

Output_Voltage_Time : = invlaplace (Output_Voltage_Laplace,

s,t):

We then plot (Figure 8.25) the output’s time-domain response (line)
along with the average value (diamond):

◗ Output_Plot :=plot(Output_Voltage_Time,t=0..100*T,

color=black):

Output_DC_Plot :=plot(Ao,t=0..100*T,color=black,

style=point,symbol=diamond):

display({Output_Plot, Output_DC_Plot},axes=boxed,

labels=[Time_seconds,Voltage]);

Switching topologies

341

We now compute the output ripple’s RMS and peak-to-peak value:

◗ Output_RMS_Ripple := evalf(sqrt(1/T*(int

((Output_Voltage_Time-Ao)^2,t=10000*T..10001*T))));

Output_PP_Ripple := evalf(2*Output_RMS_Ripple*sqrt(2));

Output_RMS_Ripple := .01230936550
Output_PP_Ripple := .03481614326

The peak-to-peak ripple is comparable to the exact method computa-
tion (peak to peak = 42 mV), though, as before, it is lower with the Fourier
method due to the presence of only the first 10 harmonics. However, what
is interesting here is that the average value appears to be about

25

20

15

10

5

0

Voltage

1e-05 2e-05 3e-05 4e-05 5e-05

Time_seconds

Figure 8.24 Comparison of Fourier approximation to exact input waveform (10 harmonics plus dc with

a 25% duty cycle).

Applied Maple for Engineers and Scientists

342

6.0V (25% of 24V), whereas the exact method gave us around 2.41V. Why
is this? From Figure 8.18 we saw that some sort of output voltage compres-
sion was taking place, and Figure 8.19 indicated the compression was de-
pendent on the existence of the inductor. Consequently, the phenomenon
is not strictly a function of the duty cycle, but the interactive presence be-
tween the inductor and output capacitor (a second-order effect). There-
fore, is the Fourier method somewhat incorrect? No, but understand that
the approximation eliminates an infinite number of harmonics that are re-
ally present in the input to the second-order filter. Remember, the lower
significant harmonic contents of a PWM waveform are maximal at a 50%
duty cycle and, by symmetrical reasoning, minimal at duty cycles above
and below the 50% point. Consequently, this approximation will contrib-
ute further to the output’s compressed transfer and, in this case, to the non-
linear output voltage versus duty cycle transfer function.

10

8

6

4

2

0

Voltage

0 0.0005 0.001 0.0015 0.002 0.0025

Time_seconds

Figure 8.25 Output voltage derived from Fourier series analysis (Vin = 24V, L = 1 mH, C = 10 µF,

R = 50 ohms, duty cycle = 25%, frequency = 40 kHz).

Switching topologies

343

References

[1] Pressman, A. I., Switching and Linear Power Supply, Power Converter
Design, Hayden Book Co., 1977.

[2] Chryssis, George, High-Frequency Switching Power Supplies, New
York: McGraw-Hill, 1984.

[3] Close, Charles M.,The Analysis of Linear Circuits, New York:
Harcourt, Brace & World, 1966.

[4] Chua, Leon O., Introduction to Nonlinear Network Theory, New York:
McGraw-Hill, 1969.

Applied Maple for Engineers and Scientists

344

Applied Maple for Engineers and Scientists

Appendix A

Define the state equation

x
. = A(t)x

where A(t) contains one or more time-dependent elements. Then looking
at a reduced scalar formulation (i.e., dealing with only one state variable),

x
. = a(t)x

A solution to this scalar form is

x(t) = eb(t)x(τ)

345

where τ is defined as the initial time condition. Letting τ = 0 will not invali-
date this analysis, therefore we rewrite the scalar solution form as

x(t) = eb(t)x(0)

and

b(t) = ∫
τ = 0

t

a(λ)dλ

Substituting this result into the vector/matrix form, we obtain:

x(t) =



e∫0

t
A(λ)dλ




x(0)

However, if we substitute this expression into x
. = A(t)x, we see that

this expression holds true if and only if

d
dt

eB(t) =
dB(t)

dt
eB(t)

where

B(t) = ∫
0

t

A(λ)dλ

Unfortunately, these last two mathematical statements are rarely true
except when the A matrix is either a constant or diagonal matrix. In fact, it
can be shown that the A matrix must have the following commutative prop-
erty [1] if we are to use the conventional scalar approach for the state vari-
able solutions:

A(t1)A(t2) = A(t2)A(t1)

Needless to say, when dealing with matrices, this equation can only be
true for a constant coefficient or for diagonal matrices.

Applied Maple for Engineers and Scientists

346

Hence, if we desire to solve this type of state variable system, then let’s
perform a diagonalization of the A matrix using what is known as a similar-
ity transformation. The similarity transformation requires the user to ob-
tain the eigenvectors and redefine the states as follows:

x = Pq

Then assuming a constant coefficient transformation matrix, P,

x
. = Pq

.

substituting this expression into the state space formulation,

x
. = Ax + Bu Pq

. = A(Pq) + Bu

and premultiplying both sides by P-1 yields

q
. = P−1APq + P−1Bu

The matrix expression P-1AP is exactly of the form

M−1AM → D

Hence,

P = M

where M is defined as the modal matrix and is composed of the A’s eigen-
vectors. The D matrix product is special and is denoted as the spectral or
canonic matrix associated with the A matrix. By way of definition, the ma-
trix A is said to be similar to a matrix D if there exists a nonsingular matrix
M such that M−1AM → D holds true.

Transforms

Appendix A

347

The D matrix has the property

D =















λ1

0

0

⋅
0

0

λ2

0

⋅
0

0

0

λ3

⋅
⋅

⋅
⋅
⋅
⋅
0

0

0

⋅
0

λN















where it only has diagonal elements, which are the A matrix’s distinct eigen-
values (nonrepeated characteristics roots). Consequently, substituting this
expression into our transformed state space formulation yields

q
. = Dq + M−1Bu

Then let’s redefine this state equation in more familiar terms of A and B:

q
. = ANq + BNu

where AN = M−1AM and BN = M−1B. At this point, the user has to re-
member what the new state variables, q, represent in terms of the original
state variables, x, i.e.,

x = Pq = Mq

Hence, on obtaining the solution set in q, one resubstitutes and pre-
multiplies by the modal matrix results in the solutions for the original states.

Also, the output matrix formulation was given as

y = Cx + Du

Hence,

y = C(Mq) + Du → CNq + Du

where CN = CM.

Applied Maple for Engineers and Scientists

348

The process of obtaining the transition matrix and continuing onto the
final complete solution to the states is identical to the process described in
Chapter 5.

Reference

[1] Hirsch, M., and S. Smale, Differential Equations, Dynamical Systems,
and Linear Algebra, New York: Academic Press, 1974.

Appendix A

349

Applied Maple for Engineers and Scientists

Appendix B

351

Data Structure Keyword* User Plot Option Description

STYLE(POINT | LINE |

PATCH | PATCHNOGRID |

HIDDEN | CONTOUR |

PATCHCONTOUR) .

style= POINT | LINE |

PATCH | PATCHNOGRID|

HIDDEN | CONTOUR |

PATCHCONTOUR.

Sets the plot style of the nontext
objects in the image. The options
given in italics are for 3-D plots.

THICKNESS(0 | n) , where n is
a positive integer.

thickness=0 | n . Controls the thickness of any line
segments, other than the axes,
resulting from a graphics
primitives in the image. The
higher the value of n the thicker
the line. The special value 0

corresponds to the default
thickness for the selected output
device.

LINESTYLE(0 | n) ,
where n is a positive integer.

linestyle= 0 | n . Sets the dash pattern to be used
when drawing line segments in
the image. The special value 0

selects the device default whereas
the value 1 selects a solid line.

COLOUR†(RGB,r, g, b) |

COLOUR(HUE, c) |

COLOUR(HSV,c, s, h) |

COLOUR(type) , where the
variables r, g, b, c, s and h

are floating-point numbers in the
range 0..1 and type can be
XYZSHADING | XYSHADING |

ZSHADING | ZHUE |

ZGREYSCALE.

color=expr , where expr is
either a color name‡ (red, blue,
green, etc.), a value (0 .. 1), a
procedure returning a valid color
desciptor, or a valid color
expression.

Specifies the color of the graphics
object. The options in italics are
applicable to the rendering of
three-dimensional surfaces and
apply color information according
to a particular attribute of the
plot in question.

AXESSTYLE(BOX | FRAME |

NORMAL | NONE |DEFAULT) .
axesstyle= BOX | FRAME |

NORMAL | NONE.
Selects the axes style for the
image.

* All of the valid arguments to each structure and option are listed with the default being emboldened. Where a single
argument must be selected from a list the elements of the list are seperated using | , for example, op1 | op 2 | op 3 is
shorthand for select op1 or op2 or op3.

† Due to Maple’s Canadian origins, many spellings are UK-English instead of American-English.

‡ The color name must be known to Maple. For more help see ?color.

Applied Maple for Engineers and Scientists

352

Data Structure Keyword* User Plot Option Description

AXESTICKS(xvals, yvals,

zvals) , where xvals, yvals

and zvals , in the
three-dimensional case can be N,

| [n
1
, n

2
, .., n

i
] |

[eqn
1
, eqn

2
, .., eqn

i
] |

DEFAULT, where N is an integer,
n

i
are numbers and eqn

i
have

the form n
i
=label

i
. The value

label
i

is a string.

xtickmarks=xvals and
ytickmarks=yvals , or
axisticks=[xvals, yvals,

zvals] in the three-dimensional
case.

Allows the number, location and
labeling of the tick marks on an
axis to be specified. An integer
value causes the axis ticks to be
chosen such that there is at least
the number requested, a list of
numbers causes the ticks and
labels to be those specified in the
list and no more while a list of
equations produces tick marks at
the position specified by the
left-hand side of the equation
with the label specified by the
right-hand side.

SCALING(DEFAULT |

CONSTRAINED |

UNCONSTRAINED) .

scaling=CONSTRAINED |

UNCONSTRAINED.
Scaling is used to determine
whether the x and y axes scaling
is the same: CONSTRAINED,

independent: UNCONSTRAINED.
Selecting DEFAULTnormally is
the same as selecting
UNCONSTRAINED.

SYMBOL(BOX | CROSS |

CIRCLE | POINT | DIAMOND

| DEFAULT) .

symbol=BOX|CROSS|CIRCLE|

POINT|DIAMOND.
Allows the point plot symbol
accordingly.

TITLE(Null string | title

string) .
title=title string . Enables a title to be set for the

plot.

AXESLABELS(Null string |

x-label string, Null

string | y-label string) .

axeslabels= Null string |

x-label string, Null

string | y-label string .

Enables axes labels to be set for
the plot. If used both label
specifications must be present.

* All of the valid arguments to each structure and option are listed with the default being emboldened. Where a single
argument must be selected from a list the elements of the list are seperated using | , for example, op1 | op 2 | op 3 is
shorthand for select op1 or op2 or op3.

Appendix B

353

Data Structure Keyword* User Plot Option Description

FONT(family, typeface, size) where
family can be TIMES | COURIER

| HELVETICA , typeface can be
ROMAN | DEFAULT | BOLD |

ITALIC | BOLDITALIC |

OBLIQUE | BOLDOBLIQUEand
size is the point size.§

font=[family, typeface,

size], axesfont=[family,

typeface, size],

labelfont=[family,

typeface, size],

titlefont=[family,

typeface, size] .

Allows the font, used in rendering
TEXTobjects, to be specified.
The font specification of a text
object is set either directly using
FONTor via the plot options
shown.II

VIEW(x
1
..x

2
| DEFAULT,

y
1
..y

2
| DEFAULT) , where xi

and yi are numbers.

view=[x1..x2, y1..y2] . Allows regions of a plot to be
viewed. The ranges x

1
..x

2
and

y
1
..y

2
specify the subrange of

the x-y plane that is to be
displayed. The special value
DEFAULTforces a view to be
selected such that all of the
elements in the plot object are
displayed.

GRIDSTYLE(TRIANGULAR |

RECTANGULAR).

gridstyle=TRIANGULAR |

RECTANGULAR.
Allows either a rectangular or
triangular grid to be used when a
three-dimensional surface is
rendered.

ORIENTATION(45 | θ, 45 |

φ), where . θ and θ are angles of
rotation and inclination
respectively in degrees.

orientation=[theta,phi]. Set the view angle of a
three-dimensional plot.

AMBIENTLIGHT(r, g, b) ,
where the entries r, g and b

have numeric values between 0

and 1.

ambientlight=[r, g, b] . Sets the ambient light of a
three-dimensional plot in terms
of the intensity of the red, green,
and blue components of the light.

* All of the valid arguments to each structure and option are listed with the default being emboldened. Where a single
argument must be selected from a list the elements of the list are seperated using | , for example, op1 | op 2 | op 3 is
shorthand for select op1 or op2 or op3.

§ For more information see ?plot[options].

II It should be noted that not all combinations are possible.

Applied Maple for Engineers and Scientists

354

Data Structure Keyword* User Plot Option Description

LIGHT(45 | θ, 45 | φ, r,

g, b), where θ and φ specify
the direction to the light in polar
coordinates (angles specified in
degrees) and r, g and b have
numeric values as in
AMBIENTLIGHT defined above.

light=[θ, φ, r, g, b] . Allows the direction and intensity
of a directed light shining on a
three-dimensional surface to be
specified.

LIGHTMODEL(USER | LIGHT_1

| LIGHT_2 | LIGHT_3 |

LIGHT_4) .

lightmodel= USER |

LIGHT_1 | LIGHT_2 |

LIGHT_3 | LIGHT_4 .

Allows a lighting scheme, from
those available, to be selected. If
USERis specified the light
definitions given in the LIGHT and
AMBIENTLIGHToptions are used.

* All of the valid arguments to each structure and option are listed with the default being emboldened. Where a single
argument must be selected from a list the elements of the list are seperated using | , for example, op1 | op 2 | op 3 is
shorthand for select op1 or op2 or op3.

Appendix B

355

Applied Maple for Engineers and Scientists

Glossary

Term Description Syntax

! The factorial of a expression. expr!
5! = 120

“ Shorthand for the previously evaluated
expression. The evaluation stack is three
deep (i.e., “, ““, and “““ can be used).

a:=2:
“
2

$ The infix form of seq. expr$range
a$4
a^n$n=1..4

357

Term Description Syntax

&^ Part of the liesymm package, this infix
operator computes the wedge product of
its arguments.

expr1&^expr2

- The arrow operator used in defining
functions.

f:=(args)-body
f:=x-x^2
f:=(a,b)-a*b

:: Infix operator used to assign a type
definition to a procedure argument.

proc(argn::typen)
proc(x::numeric)

? Return the help page for the specified
topic or function.

?topic
?topic[sub-topic]
?help
?plots[animate]

?? Return the calling sequence for the
specified function.

??function
??package[function]
??sin
??plots[animate]

??? Return the examples section for the
specified function.

???function
???package[function]
???sin
???plots[animate]

@ The repeated composition operator that
applies the expression f to the expression
g n times.

(f@@n)(g)
(sin@@2)(x)
a@@y

A matrix Used in state-space analysis, the elements
of the A matrix are determined by the
system’s dynamics.

abs Calculate the absolute value of an
expression.

abs(expr)
abs(-2)
abs(n)

alias Create an alias to an expression. alias(aliasi=expri)
alias(sin=s)
alias(a_matrix=linalg[matrix])

Applied Maple for Engineers and Scientists

358

Term Description Syntax

aliasing Aliasing is caused when a signal is sampled
at a rate less than the Nyquist rate. This
causes the higher frequency components
of the signal to be folded down or aliased
to lower frequences. This effect accounts
for the wagon wheels “running”
backwards in old films.

allvalues Evaluate all of the possible values of an
expression containing RootOfs.

allvalues(expr)
allvalues(expr, dependent)

analytic solution A solution that has been obtained by
resorting to numerical methods.

animate Create a two-dimensional animation of the
functions over the range r with the frame
parameter t. This function is found in the
plots package.

animate(funci, r, t, opts)
animate(sin(x+p), x=0..10,
p=0..5)

animate3d Create a three-dimensional animation of
the functions over the ranges r1, r2 with
the frame parameter t. This function is
found in the plots package.

animate3d(funci, r1, r2, t,
opts)
animate(sin(x*y+p), x=0..10,
y=0..3, p=0..5)

arbitrary precision arithmetic The ability to perform floating point
calculations with a selected number of
digits.

args A global variable containing the list of
arguments passed to the current
procedure.

array A Maple array is defined by setting the
row and column dimensions and the
elements.

array(dim)
array(dim, elems)
array(dim1, dim2)
array(dim1, dim2,, elems)
array(0..2)
array(0..1, 1..2)
array(1..2, [1,2])
array(1..2, 1..2, [[a, b], [1, 2]])

assigned A Boolean test to determine whether a
name has a value other than its name.

assigned(name)
assigned(f)

Glossary

359

Term Description Syntax

attenuator A device that reduces a signals amplitude
by a preset ratio.

axis jw Also called the frequency axis, it is the
vertical axis on the s-plane.

B matrix Used in state-space analysis, the elements
of the B matrix represent the input gains
of the system.

Bilinear transform The bilinear transform is conformal
mapping which translates the j axis of the
s-plane onto the unit circle of the z-plane.

s =
1 − 1

z
T

s = 2
1 − z

T(1 + z)

bit depth The number of bits available to represent
all of the intensity levels in an image.

Boolean valued expression An expression that can only take true or
false.

C matrix Used in state-space analysis the elements
of the C matrix represent the output gains
of the system.

controllable State matrices in a form that are well
suited to the design of state variable
feedback controllers.

Jordan The system is decoupled, as A matrix is
diagonal.

observable In the observable canonical form, the
system coefficients appear in the first
column of the A matrix.

canonical form An expression is said to be in a canonical
form when it is the most concise form.

CAS Computer algerba system.

Applied Maple for Engineers and Scientists

360

Term Description Syntax

cat The concatonation function. cat(expri)
cat(‘a’, ‘ b’, ‘ 1’)

characteristic equation The characteristic equation in l of a matrix
is | A-Iλ|=0.

coeff Return the coefficient of the term in xn in
the polynomial p.

coeff(p,x)
coeff(p,x,n)
coeff(p,x^n)
coeff(x+x^2, x, 2)
coeff(x+x^2, x^2)
coeff(x+x^2, x)

coeffs Return all of the coefficients of the
polynomial in x.

coeffs(p, x)

color function A function that determines the coloring of
an image.

color,
COLOUR

The wrapper for an image’s color
information.

COLOUR(format, data)
COLOUR(RGB,0,1,0)

color,
default map

Maple’s default color map for coloring a
surface. Color is applied at a point on the
surface as a function of that point’s x-y-z
coordinates.

color,
false

The application of unnatural colors to an
image for the purpose of image
enhancement.

color,
HVS

The Maple keyword determing that the
color information is in the
hue-intensity-saturation format.

color,
mapping functions

See color function.

color,
plane, 15

A single layer of color information used in
a composite color image.

Glossary

361

Term Description Syntax

color,
primary

A set of pure colors from which all other
colors can be made.

RGB
CYM

color,
RGB

The Maple keyword determing that the
color information is in the red-green-blue
format.

conditional statement See if.

conformal mapping A function that defines the mathematical
relationship between two systems.

conjugate Return the conjugat of a complex number. conjugate(expr)
conjugate(a+I*b)
conjugate(3/4+I*0.56)

constants A global variable containing the constants
known to Maple.

convert,
+

Add the elements of a list or set. convert(expr, ‘+’)
convert([a, b, c], ‘+’)
convert({1, 2, 3}, ‘+’)

convert,
confrac

Transform an expression into its
continued fraction form.

convert(expr, confrac, var)
convert(1/(s^2*(s+1)),
confrac, s)
convert(exp(y), confrac, y)

convert,
exp

Convert a trigonometric expression into
one comprising exponentials.

convert(expr, exp)
convert(sin(y)+cos(y),
exp)convert(sin(y)+cos(y),
exp)
convert(tan(t), exp)

convert,
helper functions

Conversion helper functions are
implemented by the user to extend the
convert function. Helper functions are
either functions or procedures but all
conform to the same naming convention:
“convert\convert_tag.”

‘convert\convert_tag’:= …

Applied Maple for Engineers and Scientists

362

Term Description Syntax

convert,
parfrac

Decompose a rational function f in the
variable var into partial fractions.

convert(expr, parfrac, var)
convert(1/(s^2*(s+1)),
parfrac, s)
convert(exp(y)/(y+1), parfrac,
y)

convert,
polynom

Convert a series data structure into a
polynomial by removing the order term.

convert(expr, polynom)
convert(series(exp(x), x),
polynom)

convert,
rational

Convert a floating-point number to an
approximate rational number.

convert(num, rational, opts)
convert(3.142, rational)
convert(3.142, rational, 5)

convert,
trig

Convert all exponentials in expr to
trigonometric and hyperbolic
trigonometric functions.

convert(expr, trig)
convert(exp(I*t)+I*exp(t)

convert The mechanism by which Maple objects
and data structures can be converted to
different formats.

CURVES A wrapper inside a plot structure
containing data points that are to be
plotted as a curve.

CURVE(data)
CURVE([[0, 0], [10, 100]])

D matrix Used in state-space analysis, the D matrix
is the disturbance matrix.

D The Maple differential operator.

dc gain The gain of a system at zero hertz.

DC A signal with a frequency of zero hertz.

defform Define the basic variables used in a
computation or define the exterior
derivative of an expression using the
equations eqni.

defform(eqni)
defform(a=const,b=scalar)

degree Return the degree (highest power of the
free variable) of a polynomial.

degree(poly, var)
degree(x^7-y^5*x-1=0, x)

Glossary

363

Term Description Syntax

denom Return the denominator of a quotient. denom(expr)
denom((1+s)/(1-s)

DEplot See ODE, odeplot.

derivative,
finite difference

Approximate the derivative of a function
at a point (x, y) using the horizontal and
vertical differences between it and a
previous point;
dy
dx

≈
inc in y
inc in x

DESol A representation of a solution of a
differential equation.

DEtools The Maple package containing the
differeintial equation manipulation utilities.

dfieldplot Found in the Detools package, this plots
the direction field of one- or two-
dimensional systems of differential
equations over the range t. This function
uses numerical techniques.

dfieldplot(eqni, vari, t, opts
dfieldplot(y^2*sin(x),[x,y],-5..5)
;)

diff Return the derivative, with respect to the
variable var, of an expression.

diff(expr, var)
diff(sin(x), x)

difference equation See recurrence relation.

differential operator See D.

difforms The Maple package containing differential
equation manipulation utilities.

digital control The method of manipulating the behavior
of dynamical systems using digital
techniques.

digital signal processing The method of manipulating continuous
and discrete signals using digital techniques.

Applied Maple for Engineers and Scientists

364

Term Description Syntax

discont The optional argument to plot allowing
any discontinuities encountered to be
displayed.

plot(func, range,
discont=true, opts)
plot(tan(x), x=-10..10,
discont=true)

discrete transfer function The expression linking the input and
output of a discrete system.

display Found in the plots package display is used
to rerender plot structures.

display(plot, opts)
display({ploti}, opts)
display(pp)
display({plot(sin), plot(cos)})

ditto See “.

dverk78 A setting for dsolve’s optional argument
method which sets the method to be used
to be the gear method.

dsolve({diff(y(t),t)=y(t),
y(0)=3}, y(t),
method=dverk78)

dsolve,
gear

A setting for dsolve’s optional argument
method, which sets the method to be
used to be the gear method.

dsolve({diff(y(t),t)=y(t),
y(0)=3}, y(t), method=gear)

dsolve,
lsode

A setting for dsolve’s optional argument
method, which sets the solution method
to lsode.

dsolve({diff(y(t),t)=y(t),
y(0)=3}, y(t), method=lsode)

dsolve,
mgear

A setting for dsolve’s optional argument
method, which sets the solution method
to mgear.

dsolve({diff(y(t),t)=y(t),
y(0)=3}, y(t), method=mgear)

dsolve,
numeric

A setting for dsolve’s optional argument
method, which sets the solution method
to numerical.

dsolve({diff(y(t),t)=y(t),
y(0)=3}, y(t), numeric)

dsolve,
Runga-Kutta

The default numeric method used by
dsolve.

dsolve({diff(y(t),t)=y(t),
y(0)=3}, y(t), numeric)

dsolve,
taylorseries

A setting for dsolve’s optional argument
method, which sets the solution method
to Taylor series.

dsolve({diff(y(t),t)=y(t),
y(0)=3}, y(t),
method=taylorseries)

Glossary

365

Term Description Syntax

dsolve Maple’s ordinary differential equation
solver.

dsolve({eqns}, {vars}, opts)
dsolve(diff(y(t),t)=y(t), y(t))
dsolve({diff(y(t),t)=y(t),
y(0)=3}, y(t))

DSP Digital signal processing.

dynamical system A system that contains both energy
storage and enegry disipation elements.

eigenvalues Values indicating the behavior of a
dynamical system.

erf Return the error function of expr. erf(expr)
erf(Pi/2)

ERROR Force an error condition resulting in
control being returned to the top-most
level.

ERROR()
ERROR(expr)
ERROR(‘this is wrong’)
ERROR(0)

eval Force the evaluation of an expression. eval(expr)
eval(sin)

evalf Evaluate expr as a floating point quantity. evalf(expr)
evalf(expr, digits)
evalf(Pi/2)
evalf(Pi/2, 500)

evalm Evaluate expr as a matrix. evalm(expr)
evalm(A &* B)

example See ???.

exp Return the exponential of expr. exp(expr)
expr(1)

expand Expand the subterms in expr. expand(expr)
expand((x+1)*(a+b))

exterior derivative Creates an explicit differential form of a
multivariate expression.

Applied Maple for Engineers and Scientists

366

Term Description Syntax

factor Factorize an expression. factor(expr)
factor((x^2+1))

Fehlberg four-five order
Runga-Kutta

The default method used by Maple to
solve ODEs numerically.

filter,
difference

A filter whose output is the difference
between the previous two input data
values.

filter,
digital

A filter, predominantly microprocessor
based, which operates on numeric
representations of continuous signals.

filter,
exponential

A digital filter whose next output is
dependent upon the next data and
previous output values.

filter,
forcing function

The input signal to the filter.

filter,
hystersis

See filter memory.

filter,
linear

A filter whose output is a linear weighted
combination of its input and output values.

filter,
low-pass

A filter that attenuates all frequency
components above a certian cut-off
frequency.

filter,
memory

The filter’s ability to store previous output
values.

filter,
moving average

The filter output is the average value of
the windowed data.

filter,
moving median

The filter output is the median value of the
windowed data.

Glossary

367

Term Description Syntax

filter,
weight

Used with the exponential filter, it
determines the level of emphasis applied
to previous filter output values.

filter,
window size

This number of data points manipulated at
once to compute the filter’s next output.

filter,
window

A method by which a fixed number of data
points are isolated, prior to the filter’s
output being computed, from a stream of
data.

floor Return the nearest integer that is less than
or equal to expr.

floor(expr)
floor(3.4)

FONT A wrapper containing font information in a
plot structure.

FONT(family, face, size)

for One of Maple’s looping constructs. for var to val do expr od
for var to val by inc do expr
od
for var from init to val by inc
do expr od
for var in expr1 do expr2 od
for x to 10 do x+1 od
for y to 4 by 0.1 do y^2 od
for z from -2 to 2 by .5 do z
od
for a in [1,2,3] do a^2 od

force balance equation For a body in equilibium, the sum of the
forces acting upon it must equal zero.

forcing function,
discontinuous

A forcing function containing
discontinuities, such as a step or a pulse.

forcing function,
pulse train

A forcing function comprising a sequence
of pulses.

forcing function,
pulse

A forcing function comprising a single
pulse.

Applied Maple for Engineers and Scientists

368

Term Description Syntax

forcing function,
step

A forcing function comprising step change.

forcing function The function that is used to excite a
dynamical system via its input terminal.

friendly files Text files that only contain valid Maple
expressions.

fsolve Maple’s numeric equation solver. fsolve(eqn,)
fsolve(eqn, var)
fsolve(x+1=0)
fsolve(sin(y)=cos(y), y)

function,
body

The expressions comprising the function.

function,
pure

A function without a name.

function A Maple expression capable of
manipulating expressions.

f:=x-x^2
f:=(a,b)-a*b

fundamential frequency The lowest frequency component present
in a complex waveform.

GAMMA Return either the complete or the
incomplete G function.

GAMMA(expr)
GAMMA(expr, expr)
GAMMA(2.3)
GAMMA(2.3+I, 3/4)

greyscale,
default

The default map used by Maple to
represent a color image in monochrome,
invoked by setting shading=GREYSCALE.

greyscale A map often used to represent a color
image in monochrome.

GRID Plot structure representing a surface
defined by a uniform sampling over an
aligned rectangular region.

GRID(a..b,c..d,[[z11,...z1n],[z21
,...z2n],...[zm1...zmn]])
GRID(1..2, 1..2, [[1, 2], [2, 2],
[1, 4], [4, 8]])

Glossary

369

Term Description Syntax

has,
exp

Determine whether an expression
contains any exponential components.

has(expr, exp)
has(sin(f)+5, exp)
has(exp(sin(y))*y, exp)

Heaviside A step function with a value of unity for
t < 0 and zero for t.

help The procedural form of ?. help(topic)
help(topic, sub-topic)

histogram A graphical representation of quantized
data showing the data values and their
frequencies.

hyperlinks Live links embeded in a document that
allow easy navigation through it.

Hz The unit of frequency, hertz.

I The Maple constant corresponding to the
imaginary constant Ã-1.

if … fi The conditional construct, where test is a
Boolean valued expression.

if test then expr fi
if test then expr1 else expr2 fi
if test1 then expr1 elif test2
then expr2 else expr3 fi

ifactor Return the integer factors of expr. ifactor(expr)
ifactor((2^64+4)/5)

image processing An operation whereby an image is altered
to produce a new one.

image The data being processed.

impulse,
response

The time response of a dynamical system
that has been excited using an impulse.

impulse,
weighted

An impulse with a finite amplitude.

Applied Maple for Engineers and Scientists

370

Term Description Syntax

impulse A pulse of infinite height and infinitely
narrow width with an area equal to unity.

indets Return the unassigned variables in an
expression.

indets(expr)
indets(sin(x)+a/b+7)

infinity The Maple constant corresponding to ∞.

infix form The form that a procedure or function
takes when it is invoked by placing it
between its arguments.

arg1 func arg2
arg1 proc arg2

insequence An optional argument to display that when
set equal to true causes a sequence ploti
to be displayed as an animation.

display({ploti},
insequence=true, opts)

int Return the intergral of an expression. int(expr, var)
int(expr, range)
int(sin(y), y)
int(sin(y), y=-1..alpha)

integer The Maple type integer. type(3, integer)

integration trapezoid rule A method of approximating the area
under a function.

intensity The value of brightness of an image at the
point (x,y).

intersect Return the intersetion of two sets. intersect(set1, set2)
intersect({1,2,3,a}, {a})

inttrans The Maple package containing the integral
transformations.

inverse Z transform,
direct method

Obtaining the time response of a discrete
system by obtaining the weighted sum of
the system’s previous outputs and the
system’s previous (and current) inputs.

Glossary

371

Term Description Syntax

inverse Z transform,
long division method

Obtaining the time response of a discrete
system described by a polynomial in 1/z
through the process of long polynomial
division.

inverse Z transform The process of transforming an expression
from the discrete domain to the
continuous domain.

invlaplace Compute the inverse Laplace transform of
expr.

invlaplace(expr, var1, var2)

invlaplace(1/(1-s), s, t)
invztrans

Compute the inverse Z transform of expr. invztrans(expr, var1, var2)
invztrans(1/(1-z), z, t)

IRIS The Maple display engine.

isolate Isolate an expression from an equation.
This function is readlib defined.

isolate(eqn, expr)
isolate(x*y-4=0, y)

ithprime Return the ith prime number. ithprime(i)
ithprime(501)

j The complex constant √−1 , used by
engineers.

jordan Compute the Jordan form of a matrix. The
transition matrix is stored in the optional
name. This function is found in the linalg
package.

jordan(mat)
jordan(mat, name)
jordan(matrix(2,2,[1,2,3,4]))
jordan(matrix(2,2,[1,2,3,4]),
‘trans’)

kernel The part of the Maple system that is
compiled for reasons of efficiency.

Applied Maple for Engineers and Scientists

372

Term Description Syntax

labels The optional argument to plot and plot3d
allowing axes labels to be set.

plot(func, range,
labels=[namex, namey], opts)
plot3d(func, range1, range2,
labels=[namex, namey,
namez], opts)
plot(sin, labels=[‘x’, ‘amp’])
plot(sin, labels=[‘x’, ‘amp’])
plot3d(sin(x/y), x=0..1,
y=1..2. labels=[‘x’, ‘y’ ,’ z’])

Laplace transform The process of transforming a function of
time into a function of the Laplace
operators.

laplace Return the Laplace transform in var2 of
the function func in var1. The Laplace
transform pair is found in the inttrans
package.

laplace(func, var1, var2)
laplace(sin(x)^2, x, g)

last name evaluation The process whereby the last name only is
evaluated. This applies particularly to
matrices, tables, and arays. It is done to
save screen real estate.

lcoeff Return the leading coefficient of a
polynomial.

lcoeff(poly)
lcoeff(poly, var)
lcoeff(2*x^2+x-1)
lcoeff(a*x^2+x-1, a)

lhs Obtain the left-hand side of an equation. lhs(eqn)
lhs(a)
lhs(x^2+1=a+b)

library The part of the Maple system that
contains approximately 95% of Maple’s
functionality.

Liesymm The Maple package containing functions
for determining equations
leading to the similarity solutions of a
system of partial differential equations.

Limit The inert form of limit. Limit(expr, lim, opts)

Glossary

373

Term Description Syntax

limit Return the limit of an expression in the
limit lim.

limit(expr, lim, opts)
limit(sin(x)/x, x=0)
limit(cos(x)/x, x=0, left)

linalg The Maple package containing the linear
and matrix algebra functions.

linalg[band] Define a band matrix. linalg[band]([elem], size);
linalg[band]([A], 3);

linalg[crossprod] Return the vector product of two lists or
vectors.

linalg[crossprod](list1, list2)
linalg[crossprod]([1,2,3],
[a,b,c])

linalg[det] Return the determinant of a matrix. linalg[det](mat)
linalg[det](matrix(2,2,
[1,2,3,4])

linalg[inverse] Return the inverse of a matrix. linalg[inverse](mat)
linalg[inverse](matrix(2,2,
[1,2,3,4])

linalg[iszero] Determine whether a matrix is zero. linalg[iszero](mat)
linalg[iszero](matrix(2,2,
[0,0,0,0,])

linalg[jordan] See jordan.

linalg[matrix] Define an n-by-m matrix in the Maple
system.

linalg[matrix](n, m, [elemi,j])
linalg[matrix](2,2, [1,2,3,4])

linalg[submatrix] Select a submatrix from an already existing
one.

linalg[submatrix](mat, rows,
cols)
linalg[submatrix](A, 1..2, 3..5)

linalg[transpose] Return the transpose of a matrix. linalg[transpose](mat)
linalg[transpose](matrix(2,2,
[1,2,3,4])

linalg[vector] See vector.

Applied Maple for Engineers and Scientists

374

Term Description Syntax

list A Maple type and data structure. type([1,2,3], list)
[1,2,3,4]

listlist A Maple type, a list of lists. type([[a],[b,c]], listlist)

listplot Found in the plots package this will plot a
curve defined using a list of points, [[x1,
y1],[x2, y2], … [xn, yn]].

listplot(list, opts)

log Return the general logarithm of expr. log(expr)
log(a)
log(123.456)

long name A Maple function or procedure name that
includes the package name. These can be
used without the respective function or
package being loaded using with.

linalg[matrix]
liesymm[&^]
plots[listplot]

map Apply an operation or function to the
elements comprising a compound
expression.

map(f, expr, ops)
map(x-x^2, [1,2,a])
map((x, y)-x+y, [1, r], 7)

map2 Apply a function, with the first parameter
specified, to the operands of a compound
expression.

map2(func, op1, expr)
map2((x,y)-x^y, 10, [a, b])

matrixplot Found in the plots package, matrixplot
enables numerical matrices to be displayed
as a three-dimensional surface.

matrixplot(mat, opts)
matrixplot(matrix(2,2,
[1,2,3,4])

mellin Found in the inttrans package, mellin
returns the Mellin transform in var2 of an
expression in var1.

mellin(expr, var1, var2)
mellin(sin(t), t, p)

member Test for membership of a set or list. If the
optional argument is used and member
returns true, the position of the first
occurance of elm is stored in it.

member(expr, elem)
member(expr, elem, opts)
member([1,2,3], 3)
member({1,2,3,4,5,6}, 4,
‘where’)

Glossary

375

Term Description Syntax

MESH A wrapper inside a plot structure
containing data points ([x, y, z]) that define
a surface.

MESH(data)
MESH([[[0, 0, 0], [10, 100,
1000]], [[0, 0, 0], [10, 100,
1000]]])

minus Return the difference of two sets. set1 minus set2
{1,2,3} minus {3,4}

mod Return the expression evaluated over the
integers modulo m.

expr mod m
12 mod 4

name A name is a Maple string that can have
data assigned to it. A name can be less
than or equal to 500k characters in length.

a
‘A_string’

nops Return the number of operands in a
compound expression.

nops(expr)
nops(a)
nops([1,2,3,4,5])

normal Return a normalize or simplified rational
expression. If the optional expanded is
present, then the numerator and
denominator will be a product of
expanded polynomials.

normal(expr)
normal(expr, expanded)
normal(1/a+1/b)
normal(1/(a*(a+1))+1/b,
expanded)

normalize The process whereby a set of data values
are mapped onto the range 0..1.

not The Boolean negation operation. not a

NULL The Maple Null operator.

numer Return the numertor of a quotient. numer(expr)
numer((1+s)/(1-s)

numeric A Maple type. type(34, numeric)
type(2/3, numeric)
type(-67.9, numeric)

Applied Maple for Engineers and Scientists

376

Term Description Syntax

numpoints The optional argument to plot and plot3d
allowing the number of plot points to be
set.

plot(func, range,
numpoints=value opts)
plot3d(func, range1, range2,
numpoints=value, opts)
plot(sin, numpoints=100)
plot3d(sin(x/y), x=0..1,
y=1..2. numpoints=40^2)

ODE,
analytical solution

Normally an exact solution obtained
without resulting to numerical methods.

ODE,
coupled

An nth-order ODE described with a set of
simultaneous lower order ODEs.

ODE,
initial conditions

Values from which the constants of
integration can be obtained.

ODE,
numerical solution

An approximate solution to the ODE
obtained by using one of the numerical
methods known to Maple.

ODE,
odeplot

A plotter capable of plotting an ODE using
the procedures supplied by dsolve(…,
numeric).

odeplot(proc, vars, r1, r2,
opts);

ODE Ordinary differential equation.

op Return a single or list of operands from a
compound expression.

op(expr)
op(num, expr)
op(range, expr)
op([num1, num2], expr)
op(2^a)
op(2, [1, 2, 3])
op(2..3, [1, 2, 3])
op([2, 2], [1, [2^a], 3])

operator,
delay

See z.

operator,
differential

d
dt

Glossary

377

Term Description Syntax

operator
Laplace

See s.

operator,
z

A delay of one sample period is
introduced when an expression is divided
by the delay operator z. Using this
technique, continuous signals can be
discretized and the temperal information
maintined.

orientation The optional argument to plot3d allowing
the viewing orientation (q, j) to be set.

plot3d(func, range1, range2,
orientation=[q, j], opts)
plot3d(sin(x/y), x=0..1,
y=1..2. orientation=[10,
-150])

overshoot The amount by which the output of a
dynamical system initially overshoots the
steady-state value following the application
of a step input.

partial differential equations A differential equation in more than a
single variable.

partial fraction expansion A process whereby a rational function f in
the variable x is decomposed into partial
fractions.

phase-plane A graphical method of approximating
solutions to first- and second-order
differential equations.

phaseportrait Plot the phase portrait or approximate
solutions to one- or two-dimensional
systems of differential equations. This uses
numerical methods.

phaseportrait(eqni, vars,
range, ics, opts)

Pi The Maple representation of 1.

piecewise Construct a function using segments. piecewise(eqni)
piecewise(x, sin(x), x3,
cos(x), 3)

Applied Maple for Engineers and Scientists

378

Term Description Syntax

PLOT An unevaluated function that forms the
data structure of a two-dimensional plot

PLOT(data)
PLOT(CURVES([[1,1],[2,3]]),
TITLE(‘A plot’))

plot Generate a two-dimensional plot of the
functions over the range r.

plot(func)
plot(func, r, opts)
plot({func}, r, opts)
plot([pts], opts)
plot(sin)
plot(sin(t), t=0..Pi)
plot({sun(y), cos(y)}, y=-5..5)
plot([[1, 1],[2, 4]])

PLOT3D An unevaluated function that forms the
data structure of a three-dimensional plot.

PLOT3D(data)
PLOT(MESH([[[1,1,1],[2,3,4]],[
[1,2,3],[4,3,6]]]), TITLE(‘A 3d
plot’))

plot3d Generate a two-dimensional plot of the
functions over the range r.

plot(func)
plot(func, r, opts)
plot({func}, r, opts)
plot([pts], opts)
plot(sin)
plot(sin(t), t=0..Pi)
plot({sun(y), cos(y)}, y=-5..5)
plot([[1, 1],[2, 4]])

plots, 10Z The Maple package containing the graphing
functions and utilities.

plots[display] See display.

plots[listplot] See listplot.

plots[matrixplot] See matrixplot.

plots[odeplot] See ODE, odeplot.

plots[surfdata] See surfdata.

plots[textplot] See textplot.

Glossary

379

Term Description Syntax

plottools The Maple package containing the plotting,
utilities, and graphical objects.

plottools[disk] Plots a disk. plottools[disk]([x, y], rad,
opts)
plottools[disk]([0, 1], 5)

POINTS A setting for STYLE determining that all
nontext objects will be rendered as points.

pole The roots of the denominator of the
system transfer function when expressed
in either the s- or z-plane.

POLYGONS A wrapper inside a plot structure
containing data that are to be plotted as
polygons.

POLYGONS(data)
POLYGONS([[1,1], [2,2],
[3,3]])

polynomial
degree of

See degree.

posint A Maple type. type(3, posint)

print Print an expression to the current output
device.

print(expr)
print(‘This is printed’)
print(sin)

proc The Maple keyword used in a procedure
definition.

f:=proc(args) body end
f:=proc(x) x^2 end
f:=proc(a,b) a*b end

procedure,
body

The expressions comprising the procedure.

procedure,
pure

A procedure without a name.

procedure A Maple expression for manipulating
expressions.

f:=proc(args) body end
f:=proc(x) x^2 end
f:=proc(a,b) a*b end

Applied Maple for Engineers and Scientists

380

Term Description Syntax

product Compute the product of expr. product(expr)
product(expr, r)
product(1/n)
product(n^s, s=0..3)

pulse transfer function The transfer function of a discretized
system.

quantization The process whereby a signal with an
infinite number of levels is represented by
a fixed number, for example, 256.

read Read the contents of file into the current
Maple session.

read(file)
read(‘data.ms’)
read(data1)

readlib Read a readlib-defined function or
procedure into the current Maple session.
Readlib-defined functions and procedures
are not stored using the Maple package
structure.

readlib(func)
readlib(isolate)

recurrence relationship A relationship equating the current output
to a weighted sum of previous outputs.

y(n)=y(n-1)+y(n-2)

related Return the “see also” section of specified
help page.

related(topic)
related(sin)

repetition frequency The frequency at which an object or
operation is repeated.

RETURN Return control to the previous level. RETURN()
RETURN(expr)
RETURN(‘data invalid’)
RETURN(0)

rhs Obtain the right-hand side of an equation. rhs(eqn)
rhs(a)
rhs(x^2+1=a+b)

RootOf The placeholder for the roots of a
polynomial.

RootOf(x^2-1)

Glossary

381

Term Description Syntax

round Return the nearest integer to expr. round(expr)
round(3.4)

rsolve The Maple recurrence relationship solver,
which solves the equations eqni for the
functions funci.

rsolve(eqns, fcns)
rsolve(y(n-1)=y(n), y(n))

s
The Laplace operator where s = d

dt
and

1
s

= ∫ dt.

s-plane The plane on which the trajectories of a
continuous system’s poles are plotted.

sample instance The point at which a sample is valid.

sample period The period between successive samples of
a continuous system.

sampling
period

See sample period.

sampling
rate

See sample period.

sampling The process by which a continuous system
is converted into a discrete one.

sec Return the secant of expr. sec(expr)
sec(5.46)

select Select all elements of a specified type from
an object.

select(oper, expr)
select(oper, expr, opts)
select(isprime, [$1..20])
select(type, [$10..20], even)

seq The Maple sequence operator. A
sequence is formed using expr over the
range r=x..y such that r=x, x+1, x+2, ... for
r≤y.

seq(expr, r)
seq(a^n, n=1..3)
seq(a*n, n=[1,2,3,s])

Applied Maple for Engineers and Scientists

382

Term Description Syntax

series,
Fourier

The Fourier series has the following form:

y = a0 + ∑
n=1

∞

bn sin(nωt) + ∑
n=1

∞

cncos(nωt)

series,
Frobenius

The Frobenius series has the following
form:
y = xc (a0 + a1x + a2x2 + a3x3 + ... +
arxr + ...)
where a0 is the first nonzero coefficient.

series,
Taylor

The Taylor series has the following form;

y = f(0) + f ′(0)t +
f ′′(0)t2

2
+

f ′′′(0)t2

6
+ … +

fn(0)tn

n!

38

set A Maple type and data structure. type({1,2,3}, set)
{a,b,c}

settling time The time taken for a dynamical system to
reach its steady-state ± 5% (sometimes
±2% is used).

short name A Maple function or procedure name
without the package name included. These
can only be used once the respective
function or package has been loaded using
with.

matrix
&^
listplot

simplify Return a simplified form of expr. simplify(expr)
simplify(expr, {siderels})
simplify(1+a+2*a)
simplify(x+y+z, {y+z=A})

sin Return a sine form of expr. sin(expr)
sin(a)
sin(3.67)

single-input-single-output A dynamical system with a single input
terminal and a single output terminal.

Glossary

383

Term Description Syntax

single-shot An event that only happens once after it
has been triggered.

solve Maple’s symbolic equation solver.

sort Return a sorted set of objects. sort(obj)
sort(q,w,e,r,t,y)
sort(1,3,4,7,3,9,3,2,8,5,4)

spectrum,
continuous

The frequency spectrum of a continuous
system.

spectrum,
discrete

The frequency spectrum of a discrete
system.

spectrum A graphical representation of a signal’s
frequency components.

sqrt Return the square root of expr. sqrt(expr)
sqrt(2.34)

stable system A dynamical system whose output does
not grow in an unbounded fashion with
time in the absence of any stimuli.

staircase plot A two-dimensional plot that resembles a
staircase. Often used to plot signals within
a digital system that only change at the
sampling instant.

stared variables Variables representing samples versions of
a corresponding continuous signal.

state variable feedback
controller

A controller using all of the system states.

state variables The variables that define the state of a
dynamical system at any time.

state-space matrices The matrices that define a system in
state-space: x

.
_ = Ax__ + Bu__

y_ = Cx__ + D__

Applied Maple for Engineers and Scientists

384

Term Description Syntax

state-space The n-dimensional space that contains the
trajectories of the system’s states.

stats[describe, median] Return the median of a sorted list of
numbers.

stats[describe,
median]([data])
stats[describe,
median]([1,4,3,7,6,2,1])

steady state The final state of a dynamical system
reached when there is no further change
in its input.

step function A function that abruptly changes from one
amplitude to another.

string A Maple type. ‘This is a string’

student[trapezoid] A numerical method of approximating an
intergral of func over the range r. The
optional argument specifies the number of
rectangles to use in the computation.

trapezoid(func, r)
trapezoid(func, r, n)
trapezoid(sin(t), t=0..5)
trapezoid(sin(t), t=0..5, 10)

style The optional argument to plot allowing
the interpolation style to be set.

plot(func, range, style=value,
opts)
plot(tan(x), x=-10..10,
style=line)

sub-matrix A matrix produced by removing elements
from another matrix.

subs Substitute the equations into the
expression.

subs(eqni, expr)
subs([eqni], expr)
subs(a=3, b=t, a*sin(a*t))
subs([a=y, y=x], a*y)

subsop Substitute for the specified operands in
the expression.

subsop(opi, expr)
subsop(0=g, f(t))
subsop(2=3, [a, b, c])

Sum The inert form of sum. Sum(expr, eqn,)

Glossary

385

Term Description Syntax

sum Return the definite or indefinite,
(determined by eqn), sum of the
expression.

sum(expr, eqn)
sum(1/n^2, n)
sum(1/n^2, n=1..5)

surfdata Produce a three-dimensional surface from
a list of amplitude points. This is found in
the plots package.

surfdata(data, opts)
surfdata([[1,2,3],[4,5,6],
[1,2,3]])

system,
continuous

A dynamical system whose output is valid
for all time t.

system,
digital

A dynamical system whose output is valid
at the sample instance.

system,
discrete

See system, digital.

system,
dynamics

The part of a system that determines how
that system will react when it is excited.

system,
state

The condition of a dynamical system at a
given moment in time.

system,
unstable

See unstable system.

table Define a Maple table using the equations
eqn. The left-hand side of eqn is the index
into the table, while the right-hand side is
the table entry.

table[eqni])
table([a=1, b=2])

tanh Return the hypobolic tangent of an
expression.

tanh(expr)
tanh(a)
tanh(5/6)

taylor Return the Taylor series approximation of
an expression about the point given by
eqn. By default six terms are returned.

taylor(expr, eqn, opts)
taylor(sin(x), x)
taylor(sin(x), x, 19)
taylor(sin(x), x=h, 7)

Applied Maple for Engineers and Scientists

386

Term Description Syntax

TEXT The wrapper for an image’s text
information.

TEXT([x,y],’string’,horiz,vert)
TEXT([1,1],’This is text’,
ALIGNLEFT, ALIGNBELOW)

textplot Render text on a graphic. textplot(data, opts)
textplot([1, 2, ‘This is text’])

time constant A measure of how quickly a dynamical
system will respond to external stimuli.

time response The output of a dynamical system as a
function of time.

time series data Data that has been gathered periodically
over time.

transfer function A description relating a dynamical system’s
input and output.

type,
anything

Test for any valid Maple expression. type(x, anything)

type,
function

Test for a Maple function. type(x-x^2, function)

type,
numeric

Test for a numeric quantity. type(56, numeric)

type,
specfunc

Test for a specific function with a given
type of argument.

type(sin(t), specfunc(name,
sin))

type Maple’s type checker, which can be used
in procedural programming because it is a
Boolean valued function.

type(expr, type)
type(sin, function)
type(a, posint)

u matrix Used in state-space analysis, the u matrix
contains the system’s inputs.

unapply Convert an expression to functional
notation in var.

unapply(expr, var)
unapply(x^2+x+1, x)

Glossary

387

Term Description Syntax

unassigned Determine whether a Maple expression is
unassigned.

unassign(name)

unconditionally stable See stable system.

union Return the union of two sets. union(set1, set2)
union({1,2,3,a}, {a})

unit circle The region of unconditional stability on
the z-plane.

unit step A step change in a signal of unit amplitude.

unstable system A dynamical system whose output grows
in an unbounded fashion with time in the
absence of any stimuli.

Vandermonde matrix A square matrix with its (i,j)th entry equal
to L(j-1) where L is the matrices’ second
column.











1

1

1

a

b

c

a2

b2

c2











vector Define a vector in Maple. vector(len)
vector([elmi])
vector(3)
vector([1,2,3,4])

view The optional argument to plot and plot3d
allowing a specific view to be set.

plot(func, range,
view=[rangex, rangey], opts)
plot3d(func, range1, range2,
view=[rangex, rangey,
rangez], opts)
plot(sin, view=[1..4,
DEFAULT
plot3d(sin(x/y), x=0..1,
y=1..2. view=[0.5..1, 1..3/2,
-1..1])

volatility A measure of how rapidly time series data
is changing.

wedge product see &^.

Applied Maple for Engineers and Scientists

388

Term Description Syntax

whattype Maple’s interactive type checker. whattype(expr)
whattype(sin)
whattype(6/8)

while A form of the repetition construct
supported by Maple. The body of the loop
is evaluated while the loop test is true.

while test do … od
while true do x:=x+1 od

with Load the package function’s short names
into the session’s name space.

with(pack)
with(pack, [funci])
with(linalg)
witn(linalg, [matrix, vector])

Worksheet Maple’s graphical user interface.

x matrix Used in state-space analysis, this matrix
contains the states of the system under
observation.

y matrix Used in state-space analysis, this matrix
contains the output signals of the system.

Z transform,
direct

A method of discretizing a system by
finding a closed form solution to an infinite
sum.

Z transform,
impulse-invariant

A method of discretizing a system in such
a way that the discrete and continuous
impulse responses are identical, at least at
the sample instances.

Z transform,
step invatiant

A method of discretizing a system in such
a way that the discrete and continuous
step responses are identical, at least at the
sample instances.

Z transform,
substitution method

A method of discretizing a system by
substituting for s in the continuous
transfer function.

z-plane The plane on which the trajectories of a
continuous system’s poles are plotted.

Glossary

389

Term Description Syntax

Z-transform The process of discretizing a function of
time.

zero The roots of the numerator of the system
transfer function when expressed in either
the s- or z-plane.

zip Combine the elemets of two lists or
vectors according to some operation.

zip(f, expr1, expr2, opts)
zip((x,y)-x+y, [1,2,3], [a,b,c])
zip((x,y)-x^y, [a,b,c], [1], r)

ztrans Return the Z transform in var2 of the
function func in var1.

ztrans(func, var1, var2)
ztrans(sin(x)^2, x, z)

Applied Maple for Engineers and Scientists

390

Applied Maple for Engineers and Scientists

About the authors

Christopher S. Tocci is currently a senior projects engineer at Allen-
Bradley Automation Company, Inc., in Chelmsford, Massachusetts.
Dr. Tocci was also one of the cofounders of Applied Research Consor-
tium, Inc., in Charlton, Massachusetts. His past technical experience has
been in atomic spectroscopy, medical engineering, optical communica-
tions, optical device technology, and biophysics. He has been involved
with industrial and military hardware designs and analysis of optics and
optoelectronics as it applied to infrared sensors, two-dimensional signal
processing, communication, and interconnection for massively parallel
computing architectures. He has had senior positions at Baird Electronic,
Raytheon, MIT Lincoln Labs, Augat Fiberoptics, and he has consulted for
Ciba-Geigy Diagnostics on optical metrology for blood analysis. Dr. Tocci
has had several patents in electro-optical device technology and over 35
publications in both trade and professional journals. He received his Ph.D.
from Clarkson University in engineering science in 1985. Dr. Tocci is a

391

member of OSA, Who’s Who in the East in Science & Technology, AMS,
AAAS, and the NRA.

Steven Adams is currently technical marketing director for TCI Soft-
ware Research, Inc., in Las Cruces, New Mexico. Previously, Dr. Adams
was the director of Technical Marketing for Harmonix Corporation,
Woburn, Massachusetts. Dr. Adams has had a strong working relationship
with Waterloo Maple Software in Waterloo, Canada, since 1993, when he
was manager of their U.S. Technical Services group. Previous to his in-
volvement with Maple Software, he was technical member of Wolfram Re-
search’s Applications Group, the developers of Mathematica. Dr. Adams
has had several consulting and lecturing positions within industry and aca-
demia—most notably, senior lecturer at South Bank Polytechnic, London,
U.K., in the Department of Electrical and Electronic Engineering. At
South Bank Polytechnic, Steve lectured on robotics, modern control sys-
tems, and sensor design and analysis. Dr. Adams has also lectured in Bom-
bay and Puna, India, as a sponsored representative of the British Council,
and IPM in Moscow CIS, Russia, as sponsored by the British Royal Soci-
ety. Steve received his Ph.D. in Electrical Engineering from King’s College,
University of London, School of Electronic Engineering, London, U.K.,
in 1984.

Applied Maple for Engineers and Scientists

392

Applied Maple for Engineers andScientists

Index

$ function, 32–33, 357
&^, 358
3-D plotting grid, 78
???, 8, 358
??, 358
?, 358
“, 9, 357
!, 357
-, 358
@@ operator, 145, 358

Abs function, 358
Active filter design and analysis, 39–91

analog LPF, 40–70
comb, 71–91

Alias facility, 161, 228
Alias function, 288, 358
Aliasing, 359
Allvalues function, 359
A matrix, 358
Analog LPF design and analysis, 40–69

1-kHz Butterworth LPF, 47–49
bode magnitude and phase plots, 49–53

Butterworth LPF component
sensitivity analysis, 55–57

Butterworth unequal resistance values, 57–60
conclusion, 69–70
constituent relationships derived, 41–47
Laplace transform, 41
for newer filter requirements, 64–67
unit step response, 67–69

Analytic solution, 359
Animate 3d function, 19, 359
Animate function, 19, 359
Applied Maple for Engineers and Scientists

application areas, xvi
organization of, xiv–xvi
philosophy of, xiv
purpose of, xiv
who needs to use, xiv

Arbitrary precision arithmetic, 359
Args variable, 359
Array function, 359
Arrays, 23, 359
Assigned function, 359
Attenuation, 64

393

Attenuation (continued)
increasing, of very close signals, 86
sufficient, 64

Attenuators
10:1, 240
defined, 360

Axis jw, 360

Bandpass filter (BPF), 40
Bessel filters, 69
Bilinear transform, 225

advantages, 234
conformal mapping, 226
defined, 360
deriving, 226
mapping, 229
See also Substitution methods

Bit depth, 360
Blue plane, 259, 261
B matrix, 360
Bode magnitude, 49–50
Boolean valued expression, 360
Buck-type converter, 329

base topology, 318
basic model for, 318
output voltage vs. duty cycle, 329
output waveform, 325, 327
See also Switching power supply

Butterworth amplitude response, 41
Butterworth LPF, 40

1-kHz, 47–49
1-kHz improvement, 53–55
bode plot for, 50
component sensitivity analysis, 55–57
cutoff frequency, 54
damping factor, 54
designing, 47–49
filter design, 66, 67
filtered/unfiltered output comparison, 63
flat transient response and, 69
interference signal attenuation, 62
phase plot for, 52
second-order, 40
sensitivity cases for, 56
spectral response, 49
test setup, 60–63

unequal resistance values, 57–60
See also Low-pass filters (LPFs)

Calculator, 9–26
calculus, 17–18
data structures, 20–26
equation solver, 15–17
graphics, 18–20
numeric, 9–12
symbolic, 12–15

Canonical forms
controllable, 242–45, 360
defined, 360
jordan, 245–47, 360
observable, 247–48, 360
See also State space equations

Canonic matrix, 347
Capacitors, sensitivity functions, 59
Cascading comb filters, 86–90

improvements, 91
response for various alfa, 89
switching technology, 87
See also Comb filters

Cat function, 361
Cayley-Hamilton theorem, 201, 203
Characteristic equation, 361
Charge-coupled devices (CCDs), 71

circuit model, 71
clocking speed, 83
delay cells, 82
shift registers, 71
switching filter equations, 86
switch states for, 72
total delay with, 82

Classical algorithm, 138
C matrix, 360
Coefficient extraction values, 46
Coeffs function, 239, 361
Color functions, 361–62
Color information, 252

greyscale conversion of, 257–61
specification methods, 252

COLOUR wrapper, 361
Comb filters

3D-plot response, 78, 79, 80
analysis and design, 71–91

Applied Maple for Engineers and Scientists

394

behavior, 76
cascading, 86–90
control diagram, 73
delay element, 73
derivation and analysis, 72–80
filtering from interfering

background signal, 81–86
magnitude response, 83
peak responses, 82
rejection ratio, 84, 85
response for various values, 77

Combine function, 205
Complex arithmetic, 11
Complex roots, 187–94
Composite curve fitting, 122–23
Computer algebra system (CAS), xiii, 1

defined, 2, 360
numbers, 2–3
performance of, 2
symbols, 3–5

Computer sensitivities, 57
Conformal mapping, 226, 362
Conjugate function, 362
Constants, 13–14

defined, 362
list, 14

Continuous control application theory, 173–210
frequency-domain approach, 175–94
linear control system analysis, 173–75
time-domain approach, 194–210

Continuous signals, transforming, 216–34
impulse-invariant, 222–25
substitution methods, 225–34
See also Pulse transfer function

Continuous system
illustrated, 214
pulse transfer function of, 215
transformation process, 215

Continuous transfer function, 229
Contrast adjustment, 262
Controllable canonical form, 242–45
Controllable form matrices, 247–48
Control structures, 29–30
Control system analysis, 173–75

frequency-domain approach, 175–94
time-domain approach, 194–210

Conversion helper functions, 362
Conversion routine, custom, 223–24
Convert function, 179, 184, 362–63
Cost functions, 94, 117, 118
Cross multiplication function, 288
Curve fitting, 93–132

composite, 122–23
conclusion, 132
LMA, 114–20
moral about, 131–32
regressive, 95–143
rippling, 123
types of, 93

CURVES wrapper, 363
Cutoff frequency

Butterworth, 54
lowering, 63
resistor values and, 65
trimming, 53

Damping coefficient, 167–68, 169, 170
Damping factor, 47

Butterworth, 54
component sensitivity for, 57

Data structures, 20–26
arrays, 23
keywords, 352–55
lists, 21–22
matrices, 23–24
sets, 21–22
tables, 25–26
vectors, 24–25

Dc gain, 363
Defform function, 363
Degree function, 363
Delay cells, 82
Delay function, 73
Delay operator, 225
Delay quotes, 230
Denom function, 364
DEplot, 139–40, 364
DESol, 364
DEtools package, 137–44

contents of, 137
defined, 364
DEplot, 139–40, 364

Index

395

DEtools package (continued)
function access, 139
phase-plane techniques, 140–43
See also ODE tools

Dfieldplot function, 140–41, 364
Difference function, 274, 364
Differencing, 272–75

advantages, 300
algorithm, 273
defined, 272
filter, 367
output, 274–75, 296
time series data, 272
See also Linear filters

Differential equations, 133–71
defined, 364
describing dynamic systems with, 152
Laplace transforms of, 160–61
numerical solution to, 225
partial (PDEs), 134
reducing, 147
See also Ordinary differential equations (ODEs)

Differential operator, 225, 244
Difforms package, 143–44

contents of, 143
defined, 364
in formal framework, 143
loading functions from, 144
See also ODE tools

Digital control, 364
Digital signal processing (DSP), 364, 366
Direct method, 238–42

defined, 238, 389
See also Time response calculation; Z-transform

Discrete control applications, 213–48
pulse transfer function, 215–42
state space equations, 242–48

Discrete data processing, 249–300
categories, 249
image conversion, 252–72
linear filters, 272–95
Maple plots, 249–50
plot structure, 250–52

Discrete transfer function, 365
Display function, 365
Disturbance matrix, 244

Ditto (“) pointer, 9, 357
D matrix, 363
Do loops, 105, 106, 107, 147, 183
D operator, 363, 364
Dsolve function, 134–37, 153, 365–66

floating-point numbers in ODE
coefficients and, 153

nonlinear ODEs and, 165
numeric, 135–37
returned equation, 135

Duty cycle
acceptable variations, 314
of buck converter, 329
low, 314
output dc voltage and, 326
peak-to-peak ripple vs., 315
relative SNR vs., 317
ripple value, 314
SNR and, 316

Dverk78 algorithm, 138, 365
Dynamic system modeling, 152–71

defined, 366
with differential equations, 152
with Heaviside function, 156–57
nonlinear system, 165
simple shock absorber, 152–56
twin mass shock absorber, 158–65
See also Mathematical models

Eigenvals operand, 202
Eigenvalues

abstracting, 202
defined, 366
distinctive, 245

Equation solver, 15–17
numerical solutions, 15–16
symbolic solutions, 16–17

Erf function, 366
ERROR, 36–37, 366
Euler’s identity, 74
Evalc function, 188, 193, 205
Evalf function, 366
Eval function, 366
Evalm function, 366
Example function, 8, 366
Expand function, 366

Applied Maple for Engineers and Scientists

396

Exp_filter function, 291
Exp function, 366
Exponential filtering, 287–95

advantages, 300
comparisons, 292
defined, 287
filter, 367
filter weight, 289–90
impulse response, 290–91
noise reduction, 295
output, 297
signal amplitude reduction, 295
testing, 290
tracking, 295
See also Linear filters

Exterior derivative, 366

Factor function, 367
False color, 268–71

application process, 270
to greyscale images, 271
illustrated, 271
mapping functions, 270
plane data, 271
See also Image conversion

Feedback controller
model, 174
state variable, 360

Fehlberg fourth-fifth order Runga-Kutta method,
15, 137, 367

Filters, 367–68
Filter transfer function, 288, 289
Filter weight, 289–90

changing, 292
defined, 289, 368
illustrated, 293–94, 298
See also Exponential filtering

Floating-point approximations, 2, 9–10
FONT wrapper, 368
Force balance equation, 368
Forcing functions, 156–57, 369

of bipolar square wave, 240
defining, 159
discontinuous, 368
displaying, 157
filter, 367

modeling, 164
plotting, 156, 168
pulse, 368
pulse train, 368
square-wave, 168
step, 369
substituting for, 164
system output illustration, 241

For loops, 30–31, 256, 263, 277
defined, 368
nested, 171

Forward dynamics, 174
Fourier approximation, 335

comparison with exact
input waveform, 338, 342

comparison with exact PWM
input waveform, 341

comparison with exact waveform, 337
dc term, 338
with first 10 harmonics, 341
Laplace transform of, 337
quality, 331

Fourier method, 330–43
analysis process, 334
output ripple value, 339
peak-to-peak ripple with, 340
running time average, 330
time sliding and, 330
See also Steady-state method

Fourier series, 330, 331
analysis, output voltage from, 339, 343
approximating, 335
coefficients, 332, 333, 334
dc component, 335
defined, 383
defining, 331–32

Frequency-domain approach, 175–94
output plot, 209
partial fraction expression, 179–94
roots, 185
See also Time-domain approach

Frequency response, 233
Friendly files, 369
Frobenius series

defined, 383
method, 145

Index

397

Fsolve function, 54, 59–60, 369
Function list

$, 32–33, 357
abs, 358
alias, 288, 358
allvalues, 359
animate3d, 19, 359
animate, 19, 359
array, 359
assigned, 359
cat, 361
coeff, 361
conjugate, 362
defform, 363
degree, 363
denom, 364
dfieldplot, 140–41, 364
diff, 364
difference, 274
display, 365
dsolve, 134–37, 153, 365–66
erf, 366
eval, 366
evalf, 366
evalm, 366
exp, 366
expand, 366
exp_filter, 291
factor, 367
has, 370
Heaviside, 156–57, 370
histogramplot, 265–67
ifactor, 370
indets, 371
int, 371
integrate, 18
intersect, 371
invlaplace, 372
isolate, 372
ithprime, 372
jordan, 246–47, 372
laplace, 374
lcoeff, 374
lhs, 373
limit, 373–74
listplot, 375

log, 375
LPF_Transfer, 61
map2, 28, 375
map, 28, 236, 375
matrixplot, 256, 375
mellin, 375
member, 375
moving_ave, 277
moving_median, 283–84
nops, 376
normal, 376
numer, 376
op, 254, 377
phaseportrait, 140–41, 378
piecewise, 164–65, 378
plot3d, 249, 379
plot, 249, 379
print, 380
product, 381
read, 381
readlib, 381
related, 8, 381
rhs, 381
RootOf, 381
round, 263, 382
rsolve, 382
sec, 382
select, 226, 382
seq, 32–33, 382
simplify, 383
sin, 8, 383
sort, 384
sqrt, 384
stats, 385
subs, 385
subsop, 385
sum, 386
surfdata, 171, 386
table, 386
tanh, 386
taylor, 386
textplot, 387
unapply, 28–29, 387
unassigned, 388
union, 388
vector, 388

Applied Maple for Engineers and Scientists

398

whattype, 389
with, 389
zip, 390
ztrans, 221, 390

Functions, 27–29
body, 369
defined, 27, 369
definition form, 27
example, 8
forcing, 156–57, 159
hyperlinks to, 8–9
infix form, 30, 371
parameters, 27
pure, 27–28, 369

Fundamental frequency, 369

GAMMA, 369
Gaussian profile function, 95–96
Gear algorithm, 138
General polynomial regression, 120–26

estimated and actual intensity, 123
problems, 125
See also Polynomial regression; Regression

Graphical computations
calculator, 18–20
Maple, 5

Green plane, 258, 260
Greyscale

conversion, 257–61
default, 369
defined, 369
false color and, 271
image generation, 261

Grids, 255, 369

Has function, 370
Heaviside function, 156–57

defined, 370
using, 156

Help, 370
database, 6
menu, 6

High-order polynomial regression, 126–31
filter bandwidth, 131
peaks, 128
rippling, 128
See also Polynomial regression; Regression

Histogramplot function, 265–67
Histogram plots, 263–65

defined, 370
illustrated, 266, 267
procedure for, 252

H_Mag expression, 84, 87
HSV color specification, 252
HUE color specification, 252
Hyperlinks, 370

Ifactor function, 370
If...fi construct, 370
Image conversion, 252–72

blue plane, 259, 261
defined, 370
false color, 268–72
green plane, 258, 260
to greyscale, 257–61
normalization, 262–68
red component, viewing, 256
red plane, 258, 260
tools, 252
See also Discrete data processing

Impulse, 371
responses, 231, 238, 290–91, 370
transform, 216
weighted, 370

Impulse-invariant transformation, 222–25
advantages of, 232–33
defined, 222, 389
time constant and, 225
See also Z-transform

Indets function, 371
Inductance, 330, 331
Infix form, 30, 371
Inner product operation, 208
Input pulses, 215
Input step function, 176, 181, 206
Integrate function, 18
Integration trapezoid rule, 226, 371
Intensity

average computation, 109
defined, 371
estimated and actual vs. window

step position, 100, 113
LMA estimated and actual, 121

Index

399

Intensity (continued)
peak RSD, 103–8
profile, 95

Intersect function, 371
Int function, 371
Inttrans package, 223, 287, 371
Inverse Z transform, 371–72
Invlaplace function, 372
IRIS, 252

color computation, 261
defined, 372

Isode algorithm, 138
Isolate function, 372
Ithprime function, 372

Jordan canonical form, 245–47, 360
Jordan function, 246–47, 372

Kernel, 5, 372

Laplace function, 373
Laplace transform, 41, 61

defined, 373
of delay function, 73
of Fourier approximation, 337
of harmonics, 336
inverse, 62

computing, 176–77
of partial fraction terms, 184

methods, 160
output, 68–69
of step function, 68
of time function, 175
use of, 42

Laplacian output function, 181–82
Laplacian polynomial function, 177
Laplacian transfer function, 179
Last name evaluation, 373
Lcoeff function, 373
Least median squares error (LMSE), 94
Least squares error (LSE), 94
Least squares regression, 98
Levenberg-Marquardt algorithm (LMA),

96, 114–20
curve fitting, 114–20
defined, 115
estimated and actual intensities, 121

optimization, 118
output iteration, 119
regressed estimation model, 119–20
See also Nonlinear regression

Lhs function, 373
Libraries, 5

defined, 373
PLOTS, 96
STATS, 96

Liesymm package, 134, 373
Limit function, 373–74
Linalg package, 242, 374
Linear control system analysis, 173–75
Linear filters, 272–95

differencing, 272–75
exponential filtering, 287–95
moving average, 275–81
moving median, 281–87
See also Discrete data processing

Linear regression, 96–114
problem data for, 111–13
sensitivity, 114
using logarithmic representation of

Gaussian model, 96–114
See also Regression

Linear time invariant (LTI) topologies, 41
Line print commands, 105
Line printing, 105–6
Listplot function, 375
Lists, 21–22

converting to square matrix, 255
defined, 375
defining, 21
joining, 22
sets vs., 21
summed elements, 240
testing for, 22

Log function, 375
Looping, 30–33

$, 32–33
for, 30–31
seq, 32–33
terminating, 36
while, 31–32
See also Do loops; For loops

Low-pass filters (LPFs), 39–40

Applied Maple for Engineers and Scientists

400

analog design and analysis, 40–70
Butterworth, 40, 47–49, 53–55, 60–63
design iteration for newer

filtering requirements, 64–67
intent of, 60
measurement test setup, 60
order of, 39
second-order, 316
voltage transfer function, 45

LPF_Transfer function, 61

Macsyma, 1
Magnitude response

analog LPF, 49–50
comb filter, 83

Map2 function, 28, 375
Map function, 28, 236, 375
Maple

as calculator, 9–26
defined, xiii
functions, 5
graphical computations, 5
Help database, 6
history of, 5
kernel, 5
library, 5
numerical computations, 5, 9–12
parts of, 6
plots, 249–50
as programmable calculator, 27–36
symbolic computations, 5, 12–15
syntax, 1
tutorial, 5–37
Vr4, 5
worksheet, 5

Mapping functions, 269, 270
Mathematical models, 133–71

dynamic systems, 152–71
ODE tools, 134–44
series methods, 144–52

Matrices, 23–24, 45
Matrixplot function, 256, 375
Mellin function, 4, 375
Member function, 375
Memory, component values in, 55
MESH wrapper, 376

Mgear algorithm, 138
Modal matrix, 347
Moving average, 275–81

advantages, 300
data elements, 275
defined, 275
filter, 280–81, 367
implementation, 275
output, 296
window size and, 281
See also Linear filters

Moving_ave function, 277
Moving median, 281–87

advantages, 285, 300
applying, 282
defined, 281
filter, 285, 367
implementation, 281–85
iterations, 286–87
output, 284, 297
smoothing and, 285
See also Linear filters

Moving_median function, 283–84

Nonlinear ODEs, 165–71
dsolve function and, 166
lower traces kink, 167
See also Ordinary differential equations (ODEs)

Nonlinear regression, 114–20
approaches, 120
danger, 120
See also Regression

Nops function, 376
Normal function, 376
Normalization, 262–68

defined, 376
histogram, 267
See also Image conversion

NULL operator, 376
Numer function, 376
Numerical computations

calculator, 9–12
CAS and, 2–3
dsolve function, 135–37
equation solver, 15–16
Maple, 5

Index

401

Observable canonical form, 247–48, 360
ODE tools, 134–44

alternative numerical solvers, 138
DEtools package, 137–43
difforms package, 143–44
dsolve function, 134–37
liesymm package, 134
See also Mathematical models

Operators, 377–78
Op function, 183, 254, 377
Ordinary differential equations (ODEs), 134, 377

analytical solution, 377
coupled, 158, 377
first-order, 226
initial conditions, 377
nonlinear, 165–71
numerical solution, 377
odeplot, 377
plotter, 139
power series methods, 144
series method solutions, 150
solving, 134–37
time solution, 134
See also ODE tools

Output pulses, 215
Output vectors, 196
Overshoot, 378

Packages
DEtools, 137–44, 364
difforms, 143–44
inttrans, 223, 287, 371
liesymm, 134, 373
linalg, 242, 374
plots, 171, 249, 256, 379
plottools, 249–50, 380

Parameters, 27
Partial differential equations (PDEs), 134, 378
Partial fraction expansion, 179–94

complex roots, 187–94
defined, 378
inverse Laplace transform of terms, 184
real and distinct roots, 179–81
real and nondistinct roots, 181–86
solution to unit step response, 194
term sums, 185

transform breakdown, 194
See also Frequency-domain approach

Peak centers, 83
Peak data point, 126
Peak estimator filter example, 95–132
Peak picking method, 108
Peak-to-peak ripples, 313

differential, 323
duty cycle vs., 315
with Fourier method, 340
obtaining, 339
output value computation, 342

Phase-lock loop (PLL), 51
Phase-plane, 378
Phaseportrait function, 140–41, 378
Phase response, 50–53
Piecewise function, 164–65

defined, 378
using, 164

Plot3d function, 249, 379
Plot function, 249, 379
Plots package, 171, 249, 256, 379
Plot structures, 250–52

PLOT3D, 250, 379
PLOT, 250, 379
three-dimensional, 251
two-dimensional, 251

Plotting, 78–80
3-D grid, 78
curve fit, 99–102
damping coefficient change, 167–68
forcing function, 156, 168
periodic voltage output, 306–7
residual error, 99–102, 123

between actual and estimated data, 128
as relative percentage error, 125, 130

Taylor series response, 150
three variable relationship, 330
time-domain output response, 177
twin mass shock absorber, 162–63

Plottools package, 249–50, 380
Pole, 380
POLYGONS wrapper, 380
Polynomial regression, 120–31

curve fit rippling, 123
general, 120–26

Applied Maple for Engineers and Scientists

402

high-order, 126–31
maximal intensity, 122
window step positions associated with, 121

Print function, 380
Procedures, 33–34

defined, 380
form of, 33
parameters, 33
pure, 34
terminating, 36

Proc keyword, 380
Product function, 381
Programmable calculator, 27–36

control statements, 29–30
functions, 27–29
looping, 30–33
procedural programming, 33–34
RETURN/ERROR and, 36–37
types, 35–36

Pulse transfer function, 215–42
computing, 224
continuous signal transformation, 216–34
defined, 215, 381
of discrete system, 243
time response calculation, 234–42

Pulse width modulator (PWM)
controller blocks, 316
drivers, 301, 302–16
input synthesis, 336
input waveform, 302
output voltage plot, 309, 311, 312
signal acquisition, 301
steady-state response, 303
See also Steady-state method

Pure functions, 27–28
Pure procedures, 34

Quadratic polynomial function, 97, 98
Quantization, 381

RC filters, 40, 302, 303
bandwidth increase, 307
cutoff frequency, 310
low-pass, 308

RC product, 313
Read function, 381
Readlib function, 381

Recurrence relationship, 234–38
defined, 234, 381
generation of, 234
See also Time response calculation

Red plane, 258, 260
Regression

coefficients, 98, 121, 127
errors, 112
estimators, 94
filter artifacts and, 128
general polynomial, 120–26
improvement by cheating or

data stuffing, 113–14
least squares, 98
linear, 96–114
for robustness against outlier data, 108–10
starting session, 96

Regressive curve fitting, 95–132
Rejection ratio, 84, 85
Related function, 8, 381
Relative standard deviation (RSD), 103

of curve estimator, 108
estimator capability, 103
measurement, 108
peak intensity, 103–8
uniform behavior, 110

Repetition frequency, 381
Residual error

between estimated and
actual intensity, 124, 128

percent relative, 102, 126
plotting, 99–102, 123
plotting as relative percentage error, 125, 130
window step position vs., 101, 102

Resistor-capacitor filters. See RC filters
Resulting time series, 215
RETURN, 36–37, 381
Reverse dynamics, 174
RGB color specification, 252, 253
Rhs function, 381
Rice clicks, 51
Riche algorithm, 17
Rippling

curve fitting, 123
high-order polynomial, 128
See also Peak-to-peak ripples

Index

403

RootOf function, 381
Roots

abstracting and assigning, 190
of characteristic equation, 178
complex, 187–94
frequency-domain, 185
real and distinct, 179–81
real and nondistinct, 181–86

Round function, 263, 382
Rsolve function, 382

Sampled system
illustrated, 214
impulse response, 215

Sample instance, 382
Sampling

with aliasing, 232
in continuous control system, 213
defined, 382
period, 219, 232, 382
rate, 382
without aliasing, 232

Sec function, 382
Select function, 226, 382
Sensitivities

of Butterworth LPF, 56
Butterworth LPF component analysis, 55–57
capacitor functions, 59
for damping factor, 57
Maple computer, 57

Sensitivity function, 56
Seq function, 32–33, 382
Series expansions, 12–13
Series methods, 144–52

accuracy problems, 151
ODE solutions, 150
See also Fourier series; Frobenius series;

Taylor series
Sets, 21–22

defining, 21
joining, 22
lists vs., 21
testing for, 22

Settling time, 383
Shock absorbers

simple model, 152–56

twin mass model, 158–65
Short name, 383
Signal separation application, 81
Signal-to-noise ratio (SNR), 63, 314

duty cycles and, 316
relative merit function, 315
relative vs. duty cycle, 317

Similarity transformation, 347
Simple shock absorber, 152–56

forcing function, 153, 156–57
illustrated, 152
motion equation, 153
time response, 155–56
See also Dynamic system modeling; Twin mass

shock absorber
Simplify function, 383
Sin function, 8, 383
Single-shot, 384
Solve function, 59–60, 183, 305, 313, 384
Sort function, 384
Spectrum, 384
S-plane, 382
Sqrt function, 384
Stability, defining, 178
Stable system, 384
Staircase plots, 230, 384
Stared variables, 215, 384
State equation, 345
State matrices, 242–43
State-space

analysis with Maple, 202–10
approach, 200–201
defined, 385
matrices, 384
uses, 209–10

State space equations, 242–48
controllable canonical form, 242–45
jordan canonical form, 245–47
observable canonical form, 247–48
transfer function, 242–48

State transition matrix, 200–210
Cayley-Hamilton theorem, 201
state space analysis, 202–10
See also Time-domain approach

State variables, 195
defined, 384

Applied Maple for Engineers and Scientists

404

vector, 208
Stats function, 385
Steady-state method, 302–30

boundary conditions, 304, 305
defined, 385
pulse width modulator driver, 301–16
switching power supply, 316–30
See also Fourier method

Step function, 68
defined, 385
input, 176
unit, 177, 216

Step response, 67–69
Strings, 21
Stuffing, 113–14
Sub-matrix, 385
Subs function, 385
Subsop function, 385
Substitution methods, 225–31

bilinear transform, 226–31, 234
numerical solution, 225–26
types of, 225
See also Z-transform

Sum function, 386
Summation, 174
Surfdata function, 171, 386
Switching power supply, 316–30

efficiency, 328
initial boundary conditions, 319
models, 320
single buck-type, 316, 317
time-domain forms, 321
See also Steady-state method

Switching topologies, 301–43
Fourier method, 330–43
steady-state method, 302–30
uses, 301

Symbolic computations
calculator, 12–15
CAS and, 3–5
equation solver, 16–17
Maple, 5

Systems, 386
System transfer function, 175

Table function, 386

Tables, 25–26
creating, 25
defined, 25
name evaluation, 26
viewing contents of, 26

Tanh function, 386
Taylor function, 386
Taylor series, 145

accuracy problem, 151
computing, 145
defined, 383
fifth order, 145
generating, 146–49
plotting response, 150
See also Series methods

Taylorseries algorithm, 138
Textplot function, 387
TEXT wrapper, 387
Thompson filters, 69
Time constant, 387
Time-domain

differential form, 198–99
output responses, 181
responses, 387

Time-domain approach, 194–210
general simulation diagram, 198
response from root expressions, 178–79
state transition matrix, 200–210
system response to unit step function, 177
time-invariant vs. time-variant systems, 195
See also Frequency-domain approach

Time function, 175
Time-invariant systems, 195–200

analysis of, 195–200
time-variant systems vs., 195
See also Time-domain approach

Time response calculation, 234–42
direct method, 238–42
recurrence relationship, 234–38
See also Pulse transfer function

Time series data, 387
Transfer function, 73, 187

behavior, 76
continuous, 229
defined, 387
dividing out, 243

Index

405

Transfer function (continued)
filter, 288, 289
frequency-domain conversion, 197
Laplace, 197
magnitude, 87
magnitude response, 74
single-to-cascaded ratio, 90
to state space, 242–48
transforming into partial fractions, 222

Transformations
continuous signal, 216–34
impulse-invariant, 222–25
similarity, 347
transfer function into partial fractions, 222

Transition matrix, 201, 206, 247
Trapezoid rule, 226, 371
Triangle waves, approximating, 134
Trigonometric functions, 11–12
Tutorial, 5–37

calculator, 9–26
goal of, 5
Help, 6–9
programmable calculator, 27–36

Twin mass shock absorber, 158–65
coupled ODEs, 158–59
forcing function, 159
illustrated, 158
input step response plot, 162
mass-spring-damper arrangement, 158
See also Dynamic system modeling; Simple

shock absorber
Types, 35–36

checking routines, 35–36
defined, 387
list of, 35

U matrix, 387
Unapply function, 28–29, 387
Unassigned function, 388
Unequal resistance values, 57–60
Union function, 388
Unit circle, 388
Unit step function, 177, 216

calculating, 216
defined, 388
illustrated, 217

Unstable system, 388

Vandermonde matrix, 388
Variables, 14–15

abstracting solutions, 45
convention transformed, 228
dummy, 74–75
setting, 14
stared, 215, 384
state, 195, 384
unassigned, 15

Vector function, 388
Vectors, 24–25

matrix/array conversion to, 208
output, 196
state variable, 208

Volatility, 388
Voltage-controlled oscillator (VCO), 90

Whattype function, 389
While construct, 31–32, 389
With function, 389
Worksheet, 5, 389
Wrappers, 252

X matrix, 389

Y matrix, 389

Zero, 390
Zip function, 390
Z-plane, 389
Z-transform, 218

built-in function, 221
defined, 390
of differential equation, 228
direct, 389
for exponential sequence, 219
impulse-invariant, 389
inverse

direct method, 371
long division method, 372

of sin, 220
step invariant, 389
substitution method, 389
of test system, 222
of unit ramp, 220–21

Ztrans function, 221, 390

Applied Maple for Engineers and Scientists

406

	Foreword xi
	Preface xiii
	1 Introduction 1
	What is a CAS? 2
	More about Maple 5
	Maple: a tutorial 5

	2 Active filter design and analysis 39
	Case I: analog low-pass filter design and analysis 40
	Case II: comb filter analysis and design 71

	3 Curve fitting 93
	Introduction 93
	Case study: Gaussian peak estimator filter example with regressive curve fitting 95

	4 Mathematical models: working with differential equations 133
	ODE tools: a tour 134
	Series methods 144
	Modeling dynamic systems 152

	5 Continuous control application theory 173
	Linear control system analysis 173
	Frequency-domain approach 175
	Time-domain approach 194
	Conclusion 210

	6 Discrete control applications 213
	The pulse transfer function 215
	State space equations and their canonical forms 242

	7 Discrete data processing 249
	Maple plots 249
	The plot structure 250
	Image conversion 252
	Linear filters 272
	Conclusion 295

	8 Switching topologies 301
	Steady-state method 302
	Fourier method 330

	Appendix A 345
	Appendix B 351
	Glossary 357
	About the authors 391
	Index 393

