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Preface

This is an introductory textbook for a first course in applied statistics and probability for un-
dergraduate students in engineering and the physical or chemical sciences. These individuals
play a significant role in designing and developing new products and manufacturing systems
and processes, and they also improve existing systems. Statistical methods are an important
tool in these activities because they provide the engineer with both descriptive and analytical
methods for dealing with the variability in observed data. Although many of the methods we
present are fundamental to statistical analysis in other disciplines, such as business and
management, the life sciences, and the social sciences, we have elected to focus on an
engineering-oriented audience. We believe that this approach will best serve students in
engineering and the chemical/physical sciences and will allow them to concentrate on the
many applications of statistics in these disciplines. We have worked hard to ensure that our ex-
amples and exercises are engineering- and science-based, and in almost all cases we have used
examples of real data—either taken from a published source or based on our consulting expe-
riences.

We believe that engineers in all disciplines should take at least one course in statistics.
Unfortunately, because of other requirements, most engineers will only take one statistics
course. This book can be used for a single course, although we have provided enough mate-
rial for two courses in the hope that more students will see the important applications of sta-
tistics in their everyday work and elect a second course. We believe that this book will also
serve as a useful reference.

ORGANIZATION OF THE BOOK

We have retained the relatively modest mathematical level of the first two editions. We have
found that engineering students who have completed one or two semesters of calculus should
have no difficulty reading almost all of the text. It is our intent to give the reader an understand-
ing of the methodology and how to apply it, not the mathematical theory. We have made many
enhancements in this edition, including reorganizing and rewriting major portions of the book.

Perhaps the most common criticism of engineering statistics texts is that they are too
long. Both instructors and students complain that it is impossible to cover all of the topics in
the book in one or even two terms. For authors, this is a serious issue because there is great va-
riety in both the content and level of these courses, and the decisions about what material to
delete without limiting the value of the text are not easy. After struggling with these issues, we
decided to divide the text into two components; a set of core topics, many of which are most

PQ220 6234F.FM  5/30/02  1:02 PM  Page v RK UL 6 RK UL 6:Desktop Folder:untitled folder:
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likely to be covered in an engineering statistics course, and a set of supplementary topics, or
topics that will be useful for some but not all courses. The core topics are in the printed book,
and the complete text (both core and supplementary topics) is available on the CD that is
included with the printed book. Decisions about topics to include in print and which to include
only on the CD were made based on the results of a recent survey of instructors.

The Interactive e-Text consists of the complete text and a wealth of additional material
and features. The text and links on the CD are navigated using Adobe Acrobat™. The links
within the Interactive e-Text include the following: (1) from the Table of Contents to the se-
lected eText sections, (2) from the Index to the selected topic within the e-Text, (3) from refer-
ence to a figure, table, or equation in one section to the actual figure, table, or equation in an-
other section (all figures can be enlarged and printed), (4) from end-of-chapter Important
Terms and Concepts to their definitions within the chapter, (5) from in-text boldfaced terms
to their corresponding Glossary definitions and explanations, (6) from in-text references to the
corresponding Appendix tables and charts, (7) from boxed-number end-of-chapter exercises
(essentially most odd-numbered exercises) to their answers, (8) from some answers to the
complete problem solution, and (9) from the opening splash screen to the textbook Web site.

Chapter 1 is an introduction to the field of statistics and how engineers use statistical
methodology as part of the engineering problem-solving process. This chapter also introduces
the reader to some engineering applications of statistics, including building empirical models,
designing engineering experiments, and monitoring manufacturing processes. These topics
are discussed in more depth in subsequent chapters.

Chapters 2, 3, 4, and 5 cover the basic concepts of probability, discrete and continuous
random variables, probability distributions, expected values, joint probability distributions,
and independence. We have given a reasonably complete treatment of these topics but have
avoided many of the mathematical or more theoretical details.

Chapter 6 begins the treatment of statistical methods with random sampling; data sum-
mary and description techniques, including stem-and-leaf plots, histograms, box plots, and
probability plotting; and several types of time series plots. Chapter 7 discusses point estimation
of parameters. This chapter also introduces some of the important properties of estimators, the
method of maximum likelihood, the method of moments, sampling distributions, and the cen-
tral limit theorem.

Chapter 8 discusses interval estimation for a single sample. Topics included are confi-
dence intervals for means, variances or standard deviations, and proportions and prediction and
tolerance intervals. Chapter 9 discusses hypothesis tests for a single sample. Chapter 10 pre-
sents tests and confidence intervals for two samples. This material has been extensively rewrit-
ten and reorganized. There is detailed information and examples of methods for determining
appropriate sample sizes. We want the student to become familiar with how these techniques
are used to solve real-world engineering problems and to get some understanding of the con-
cepts behind them. We give a logical, heuristic development of the procedures, rather than a
formal mathematical one.

Chapters 11 and 12 present simple and multiple linear regression. We use matrix algebra
throughout the multiple regression material (Chapter 12) because it is the only easy way to
understand the concepts presented. Scalar arithmetic presentations of multiple regression are
awkward at best, and we have found that undergraduate engineers are exposed to enough
matrix algebra to understand the presentation of this material.

Chapters 13 and 14 deal with single- and multifactor experiments, respectively. The no-
tions of randomization, blocking, factorial designs, interactions, graphical data analysis, and
fractional factorials are emphasized. Chapter 15 gives a brief introduction to the methods and
applications of nonparametric statistics, and Chapter 16 introduces statistical quality control,
emphasizing the control chart and the fundamentals of statistical process control.
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Each chapter has an extensive collection of exercises, including end-of-section exercises
that emphasize the material in that section, supplemental exercises at the end of the chapter
that cover the scope of chapter topics, and mind-expanding exercises that often require the
student to extend the text material somewhat or to apply it in a novel situation. As noted
above, answers are provided to most odd-numbered exercises and the e-Text contains com-
plete solutions to selected exercises.

USING THE BOOK

This is a very flexible textbook because instructors’ ideas about what should be in a first
course on statistics for engineers vary widely, as do the abilities of different groups of stu-
dents. Therefore, we hesitate to give too much advice but will explain how we use the book.

We believe that a first course in statistics for engineers should be primarily an applied sta-
tistics course, not a probability course. In our one-semester course we cover all of Chapter 1
(in one or two lectures); overview the material on probability, putting most of the emphasis on
the normal distribution (six to eight lectures); discuss most of Chapters 6 though 10 on confi-
dence intervals and tests (twelve to fourteen lectures); introduce regression models in
Chapter 11 (four lectures); give an introduction to the design of experiments from Chapters 13
and 14 (six lectures); and present the basic concepts of statistical process control, including
the Shewhart control chart from Chapter 16 (four lectures). This leaves about three to four pe-
riods for exams and review. Let us emphasize that the purpose of this course is to introduce
engineers to how statistics can be used to solve real-world engineering problems, not to weed
out the less mathematically gifted students. This course is not the “baby math-stat” course that
is all too often given to engineers.

If a second semester is available, it is possible to cover the entire book, including much
of the e-Text material, if appropriate for the audience. It would also be possible to assign and
work many of the homework problems in class to reinforce the understanding of the concepts.
Obviously, multiple regression and more design of experiments would be major topics in a
second course.

USING THE COMPUTER

In practice, engineers use computers to apply statistical methods to solve problems. Therefore,
we strongly recommend that the computer be integrated into the class. Throughout the book we
have presented output from Minitab as typical examples of what can be done with modern sta-
tistical software. In teaching, we have used other software packages, including Statgraphics,
JMP, and Statisticia. We did not clutter up the book with examples from many different packages
because how the instructor integrates the software into the class is ultimately more important
than which package is used. All text data is available in electronic form on the e-Text CD. In
some chapters, there are problems that we feel should be worked using computer software. We
have marked these problems with a special icon in the margin.

In our own classrooms, we use the computer in almost every lecture and demonstrate
how the technique is implemented in software as soon as it is discussed in the lecture.
Student versions of many statistical software packages are available at low cost, and students
can either purchase their own copy or use the products available on the PC local area net-
works. We have found that this greatly improves the pace of the course and student under-
standing of the material.
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USING THE WEB

Additional resources for students and instructors can be found at www.wiley.com/college/
montgomery/.
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1 The Role of Statistics
in Engineering

CHAPTER OUTLINE

1
LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Identify the role that statistics can play in the engineering problem-solving process
2. Discuss how variability affects the data collected and used for making engineering decisions
3. Explain the difference between enumerative and analytical studies
4. Discuss the different methods that engineers use to collect data
5. Identify the advantages that designed experiments have in comparison to other methods of col-

lecting engineering data
6. Explain the differences between mechanistic models and empirical models
7. Discuss how probability and probability models are used in engineering and science

CD MATERIAL

8. Explain the factorial experimental design.
9. Explain how factors can Interact.

Answers for most odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also

1-1 THE ENGINEERING METHOD AND
STATISTICAL THINKING

1-2 COLLECTING ENGINEERING DATA

1-2.1 Basic Principles

1-2.2 Retrospective Study

1-2.3 Observational Study

1-2.4 Designed Experiments

1-2.5 A Factorial Experiment for the 
Pull-off Force Problem (CD Only)

1-2.6 Observing Processes Over Time 

1-3 MECHANISTIC AND EMPIRICAL
MODELS

1-4 PROBABILITY AND PROBABILITY
MODELS

1
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2 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

1-1 THE ENGINEERING METHOD AND STATISTICAL THINKING

An engineer is someone who solves problems of interest to society by the efficient application
of scientific principles. Engineers accomplish this by either refining an existing product or
process or by designing a new product or process that meets customers’needs. The engineering,
or scientific, method is the approach to formulating and solving these problems. The steps in
the engineering method are as follows:

1. Develop a clear and concise description of the problem.

2. Identify, at least tentatively, the important factors that affect this problem or that may
play a role in its solution.

3. Propose a model for the problem, using scientific or engineering knowledge of the
phenomenon being studied. State any limitations or assumptions of the model.

4. Conduct appropriate experiments and collect data to test or validate the tentative
model or conclusions made in steps 2 and 3.

5. Refine the model on the basis of the observed data.

6. Manipulate the model to assist in developing a solution to the problem.

7. Conduct an appropriate experiment to confirm that the proposed solution to the prob-
lem is both effective and efficient.

8. Draw conclusions or make recommendations based on the problem solution.

The steps in the engineering method are shown in Fig. 1-1. Notice that the engineering method
features a strong interplay between the problem, the factors that may influence its solution, a
model of the phenomenon, and experimentation to verify the adequacy of the model and the
proposed solution to the problem. Steps 2–4 in Fig. 1-1 are enclosed in a box, indicating that
several cycles or iterations of these steps may be required to obtain the final solution.
Consequently, engineers must know how to efficiently plan experiments, collect data, analyze
and interpret the data, and understand how the observed data are related to the model they
have proposed for the problem under study.

The field of statistics deals with the collection, presentation, analysis, and use of data to
make decisions, solve problems, and design products and processes. Because many aspects of
engineering practice involve working with data, obviously some knowledge of statistics is
important to any engineer. Specifically, statistical techniques can be a powerful aid in design-
ing new products and systems, improving existing designs, and designing, developing, and
improving production processes.

Figure 1-1 The
engineering method.
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1-1 THE ENGINEERING METHOD AND STATISTICAL THINKING 3

Statistical methods are used to help us describe and understand variability. By variability,
we mean that successive observations of a system or phenomenon do not produce exactly the
same result. We all encounter variability in our everyday lives, and statistical thinking can
give us a useful way to incorporate this variability into our decision-making processes. For
example, consider the gasoline mileage performance of your car. Do you always get exactly the
same mileage performance on every tank of fuel? Of course not—in fact, sometimes the mileage
performance varies considerably. This observed variability in gasoline mileage depends on
many factors, such as the type of driving that has occurred most recently (city versus highway),
the changes in condition of the vehicle over time (which could include factors such as tire
inflation, engine compression, or valve wear), the brand and/or octane number of the gasoline
used, or possibly even the weather conditions that have been recently experienced. These factors
represent potential sources of variability in the system. Statistics gives us a framework for
describing this variability and for learning about which potential sources of variability are the
most important or which have the greatest impact on the gasoline mileage performance.

We also encounter variability in dealing with engineering problems. For example, sup-
pose that an engineer is designing a nylon connector to be used in an automotive engine
application. The engineer is considering establishing the design specification on wall thick-
ness at 3�32 inch but is somewhat uncertain about the effect of this decision on the connector
pull-off force. If the pull-off force is too low, the connector may fail when it is installed in an
engine. Eight prototype units are produced and their pull-off forces measured, resulting in the
following data (in pounds): 12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, 13.1. As we anticipated,
not all of the prototypes have the same pull-off force. We say that there is variability in the
pull-off force measurements. Because the pull-off force measurements exhibit variability, we
consider the pull-off force to be a random variable. A convenient way to think of a random
variable, say X, that represents a measurement, is by using the model

(1-1)

where � is a constant and � is a random disturbance. The constant remains the same with every
measurement, but small changes in the environment, test equipment, differences in the indi-
vidual parts themselves, and so forth change the value of �. If there were no disturbances, �
would always equal zero and X would always be equal to the constant �. However, this never
happens in the real world, so the actual measurements X exhibit variability. We often need to
describe, quantify and ultimately reduce variability.

Figure 1-2 presents a dot diagram of these data. The dot diagram is a very useful plot for
displaying a small body of data—say, up to about 20 observations. This plot allows us to see eas-
ily two features of the data; the location, or the middle, and the scatter or variability. When the
number of observations is small, it is usually difficult to identify any specific patterns in the vari-
ability, although the dot diagram is a convenient way to see any unusual data features.

The need for statistical thinking arises often in the solution of engineering problems.
Consider the engineer designing the connector. From testing the prototypes, he knows that the
average pull-off force is 13.0 pounds. However, he thinks that this may be too low for the

X � � � �

12 1413 15

Pull-off force

Figure 1-2 Dot diagram of the pull-off force
data when wall thickness is 3/32 inch.
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Figure 1-3 Dot diagram of pull-off force for two wall
thicknesses.
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4 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

Figure 1-5 Enumerative versus analytic study.
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intended application, so he decides to consider an alternative design with a greater wall
thickness, 1�8 inch. Eight prototypes of this design are built, and the observed pull-off force
measurements are 12.9, 13.7, 12.8, 13.9, 14.2, 13.2, 13.5, and 13.1. The average is 13.4.
Results for both samples are plotted as dot diagrams in Fig. 1-3, page 3. This display gives
the impression that increasing the wall thickness has led to an increase in pull-off force.
However, there are some obvious questions to ask. For instance, how do we know that an-
other sample of prototypes will not give different results? Is a sample of eight prototypes
adequate to give reliable results? If we use the test results obtained so far to conclude that
increasing the wall thickness increases the strength, what risks are associated with this de-
cision? For example, is it possible that the apparent increase in pull-off force observed in
the thicker prototypes is only due to the inherent variability in the system and that increas-
ing the thickness of the part (and its cost) really has no effect on the pull-off force?

Often, physical laws (such as Ohm’s law and the ideal gas law) are applied to help design
products and processes. We are familiar with this reasoning from general laws to specific
cases. But it is also important to reason from a specific set of measurements to more general
cases to answer the previous questions. This reasoning is from a sample (such as the eight con-
nectors) to a population (such as the connectors that will be sold to customers). The reasoning
is referred to as statistical inference. See Fig. 1-4. Historically, measurements were obtained
from a sample of people and generalized to a population, and the terminology has remained.
Clearly, reasoning based on measurements from some objects to measurements on all objects
can result in errors (called sampling errors). However, if the sample is selected properly, these
risks can be quantified and an appropriate sample size can be determined.

In some cases, the sample is actually selected from a well-defined population. The sam-
ple is a subset of the population. For example, in a study of resistivity a sample of three wafers
might be selected from a production lot of wafers in semiconductor manufacturing. Based on
the resistivity data collected on the three wafers in the sample, we want to draw a conclusion
about the resistivity of all of the wafers in the lot.

In other cases, the population is conceptual (such as with the connectors), but it might be
thought of as future replicates of the objects in the sample. In this situation, the eight proto-
type connectors must be representative, in some sense, of the ones that will be manufactured
in the future. Clearly, this analysis requires some notion of stability as an additional assump-
tion. For example, it might be assumed that the sources of variability in the manufacture of the
prototypes (such as temperature, pressure, and curing time) are the same as those for the con-
nectors that will be manufactured in the future and ultimately sold to customers.

Physical
laws

Types of
reasoning

Product
designs

Population

Statistical inference

Sample

Figure 1-4 Statistical inference is one type of
reasoning.
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1-2 COLLECTING ENGINEERING DATA 5

The wafers-from-lots example is called an enumerative study. A sample is used to make
an inference to the population from which the sample is selected. The connector example is
called an analytic study. A sample is used to make an inference to a conceptual (future)
population. The statistical analyses are usually the same in both cases, but an analytic study
clearly requires an assumption of stability. See Fig. 1-5, on page 4.

1-2 COLLECTING ENGINEERING DATA

1-2.1 Basic Principles

In the previous section, we illustrated some simple methods for summarizing data. In the en-
gineering environment, the data is almost always a sample that has been selected from some
population. Three basic methods of collecting data are

A retrospective study using historical data

An observational study

A designed experiment

An effective data collection procedure can greatly simplify the analysis and lead to improved
understanding of the population or process that is being studied. We now consider some ex-
amples of these data collection methods.

1-2.2 Retrospective Study

Montgomery, Peck, and Vining (2001) describe an acetone-butyl alcohol distillation
column for which concentration of acetone in the distillate or output product stream is an
important variable. Factors that may affect the distillate are the reboil temperature, the con-
densate temperature, and the reflux rate. Production personnel obtain and archive the
following records:

The concentration of acetone in an hourly test sample of output product

The reboil temperature log, which is a plot of the reboil temperature over time

The condenser temperature controller log

The nominal reflux rate each hour

The reflux rate should be held constant for this process. Consequently, production personnel
change this very infrequently.

A retrospective study would use either all or a sample of the historical process data
archived over some period of time. The study objective might be to discover the relationships
among the two temperatures and the reflux rate on the acetone concentration in the output
product stream. However, this type of study presents some problems:

1. We may not be able to see the relationship between the reflux rate and acetone con-
centration, because the reflux rate didn’t change much over the historical period.

2. The archived data on the two temperatures (which are recorded almost continu-
ously) do not correspond perfectly to the acetone concentration measurements
(which are made hourly). It may not be obvious how to construct an approximate
correspondence.
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6 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

3. Production maintains the two temperatures as closely as possible to desired targets or
set points. Because the temperatures change so little, it may be difficult to assess their
real impact on acetone concentration.

4. Within the narrow ranges that they do vary, the condensate temperature tends to in-
crease with the reboil temperature. Consequently, the effects of these two process
variables on acetone concentration may be difficult to separate.

As you can see, a retrospective study may involve a lot of data, but that data may contain
relatively little useful information about the problem. Furthermore, some of the relevant
data may be missing, there may be transcription or recording errors resulting in outliers
(or unusual values), or data on other important factors may not have been collected and
archived. In the distillation column, for example, the specific concentrations of butyl alco-
hol and acetone in the input feed stream are a very important factor, but they are not
archived because the concentrations are too hard to obtain on a routine basis. As a result of
these types of issues, statistical analysis of historical data sometimes identify interesting
phenomena, but solid and reliable explanations of these phenomena are often difficult to
obtain.

1-2.3 Observational Study

In an observational study, the engineer observes the process or population, disturbing it as lit-
tle as possible, and records the quantities of interest. Because these studies are usually con-
ducted for a relatively short time period, sometimes variables that are not routinely measured
can be included. In the distillation column, the engineer would design a form to record the two
temperatures and the reflux rate when acetone concentration measurements are made. It may
even be possible to measure the input feed stream concentrations so that the impact of this fac-
tor could be studied. Generally, an observational study tends to solve problems 1 and 2 above
and goes a long way toward obtaining accurate and reliable data. However, observational
studies may not help resolve problems 3 and 4.

1-2.4 Designed Experiments

In a designed experiment the engineer makes deliberate or purposeful changes in the control-
lable variables of the system or process, observes the resulting system output data, and then
makes an inference or decision about which variables are responsible for the observed changes
in output performance. The nylon connector example in Section 1-1 illustrates a designed ex-
periment; that is, a deliberate change was made in the wall thickness of the connector with the
objective of discovering whether or not a greater pull-off force could be obtained. Designed
experiments play a very important role in engineering design and development and in the
improvement of manufacturing processes. Generally, when products and processes are designed
and developed with designed experiments, they enjoy better performance, higher reliability, and
lower overall costs. Designed experiments also play a crucial role in reducing the lead time for
engineering design and development activities.

For example, consider the problem involving the choice of wall thickness for the
nylon connector. This is a simple illustration of a designed experiment. The engineer chose
two wall thicknesses for the connector and performed a series of tests to obtain pull-off
force measurements at each wall thickness. In this simple comparative experiment, the
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engineer is interested in determining if there is any difference between the 3�32- and 
1�8-inch designs. An approach that could be used in analyzing the data from this experi-
ment is to compare the mean pull-off force for the 3�32-inch design to the mean pull-off
force for the 1�8-inch design using statistical hypothesis testing, which is discussed in
detail in Chapters 9 and 10. Generally, a hypothesis is a statement about some aspect of the
system in which we are interested. For example, the engineer might want to know if the
mean pull-off force of a 3�32-inch design exceeds the typical maximum load expected to
be encountered in this application, say 12.75 pounds. Thus, we would be interested in test-
ing the hypothesis that the mean strength exceeds 12.75 pounds. This is called a single-
sample hypothesis testing problem. It is also an example of an analytic study. Chapter 9
presents techniques for this type of problem. Alternatively, the engineer might be inter-
ested in testing the hypothesis that increasing the wall thickness from 3�32- to 1�8-inch
results in an increase in mean pull-off force. Clearly, this is an analytic study; it is also an
example of a two-sample hypothesis testing problem. Two-sample hypothesis testing
problems are discussed in Chapter 10.

Designed experiments are a very powerful approach to studying complex systems, such
as the distillation column. This process has three factors, the two temperatures and the reflux
rate, and we want to investigate the effect of these three factors on output acetone concentra-
tion. A good experimental design for this problem must ensure that we can separate the effects
of all three factors on the acetone concentration. The specified values of the three factors used
in the experiment are called factor levels. Typically, we use a small number of levels for each
factor, such as two or three. For the distillation column problem, suppose we use a “high,’’ and
“low,’’ level (denoted +1 and �1, respectively) for each of the factors. We thus would use two
levels for each of the three factors. A very reasonable experiment design strategy uses every
possible combination of the factor levels to form a basic experiment with eight different set-
tings for the process. This type of experiment is called a factorial experiment. Table 1-1 pres-
ents this experimental design.

Figure 1-6, on page 8, illustrates that this design forms a cube in terms of these high and
low levels. With each setting of the process conditions, we allow the column to reach equilib-
rium, take a sample of the product stream, and determine the acetone concentration. We then
can draw specific inferences about the effect of these factors. Such an approach allows us to
proactively study a population or process. Designed experiments play a very important role in
engineering and science. Chapters 13 and 14 discuss many of the important principles and
techniques of experimental design.

1-2 COLLECTING ENGINEERING DATA 7

Table 1-1 The Designed Experiment (Factorial Design) for the 
Distillation Column

Reboil Temp. Condensate Temp. Reflux Rate

�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
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8 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

1-2.5 A Factorial Experiment for the Connector Pull-off 
Force Problem (CD Only)

1-2.6 Observing Processes Over Time

Often data are collected over time. In this case, it is usually very helpful to plot the data ver-
sus time in a time series plot. Phenomena that might affect the system or process often be-
come more visible in a time-oriented plot and the concept of stability can be better judged.

Figure 1-7 is a dot diagram of acetone concentration readings taken hourly from the
distillation column described in Section 1-2.2. The large variation displayed on the dot
diagram indicates a lot of variability in the concentration, but the chart does not help explain
the reason for the variation. The time series plot is shown in Figure 1-8, on page 9. A shift
in the process mean level is visible in the plot and an estimate of the time of the shift can be
obtained.

W. Edwards Deming, a very influential industrial statistician, stressed that it is important
to understand the nature of variability in processes and systems over time. He conducted an
experiment in which he attempted to drop marbles as close as possible to a target on a table.
He used a funnel mounted on a ring stand and the marbles were dropped into the funnel. See
Fig. 1-9. The funnel was aligned as closely as possible with the center of the target. He then
used two different strategies to operate the process. (1) He never moved the funnel. He just
dropped one marble after another and recorded the distance from the target. (2) He dropped
the first marble and recorded its location relative to the target. He then moved the funnel an
equal and opposite distance in an attempt to compensate for the error. He continued to make
this type of adjustment after each marble was dropped.

After both strategies were completed, he noticed that the variability of the distance
from the target for strategy 2 was approximately 2 times larger than for strategy 1. The ad-
justments to the funnel increased the deviations from the target. The explanation is that the
error (the deviation of the marble’s position from the target) for one marble provides no
information about the error that will occur for the next marble. Consequently, adjustments
to the funnel do not decrease future errors. Instead, they tend to move the funnel farther
from the target.

This interesting experiment points out that adjustments to a process based on random dis-
turbances can actually increase the variation of the process. This is referred to as overcontrol
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1-2 COLLECTING ENGINEERING DATA 9
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Figure 1-8 A time series plot of concentration provides
more information than the dot diagram.

Target Marbles

Figure 1-9 Deming’s funnel experiment.

or tampering. Adjustments should be applied only to compensate for a nonrandom shift in
the process—then they can help. A computer simulation can be used to demonstrate the les-
sons of the funnel experiment. Figure 1-10 displays a time plot of 100 measurements
(denoted as y) from a process in which only random disturbances are present. The target
value for the process is 10 units. The figure displays the data with and without adjustments
that are applied to the process mean in an attempt to produce data closer to target. Each
adjustment is equal and opposite to the deviation of the previous measurement from target.
For example, when the measurement is 11 (one unit above target), the mean is reduced by
one unit before the next measurement is generated. The overcontrol has increased the devia-
tions from the target.

Figure 1-11 displays the data without adjustment from Fig. 1-10, except that the measure-
ments after observation number 50 are increased by two units to simulate the effect of a shift
in the mean of the process. When there is a true shift in the mean of a process, an adjustment
can be useful. Figure 1-11 also displays the data obtained when one adjustment (a decrease of
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Figure 1-10 Adjust-
ments applied to
random disturbances
overcontrol the process
and increase the devia-
tions from the target.
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10 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING
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Figure 1-11 Process
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control chart for the
chemical process
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two units) is applied to the mean after the shift is detected (at observation number 57). Note
that this adjustment decreases the deviations from target.

The question of when to apply adjustments (and by what amounts) begins with an under-
standing of the types of variation that affect a process. A control chart is an invaluable way
to examine the variability in time-oriented data. Figure 1-12 presents a control chart for the
concentration data from Fig. 1-8. The center line on the control chart is just the average of the
concentration measurements for the first 20 samples ( ) when the process is sta-
ble. The upper control limit and the lower control limit are a pair of statistically derived lim-
its that reflect the inherent or natural variability in the process. These limits are located three
standard deviations of the concentration values above and below the center line. If the process
is operating as it should, without any external sources of variability present in the system, the
concentration measurements should fluctuate randomly around the center line, and almost all
of them should fall between the control limits.

In the control chart of Fig. 1-12, the visual frame of reference provided by the center line
and the control limits indicates that some upset or disturbance has affected the process around
sample 20 because all of the following observations are below the center line and two of them

x � 91.5 g�l
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1-3 MECHANISTIC AND EMPIRICAL MODELS 11

actually fall below the lower control limit. This is a very strong signal that corrective action is
required in this process. If we can find and eliminate the underlying cause of this upset, we can
improve process performance considerably.

Control charts are a very important application of statistics for monitoring, controlling,
and improving a process. The branch of statistics that makes use of control charts is called sta-
tistical process control, or SPC. We will discuss SPC and control charts in Chapter 16.

1-3 MECHANISTIC AND EMPIRICAL MODELS

Models play an important role in the analysis of nearly all engineering problems. Much of the
formal education of engineers involves learning about the models relevant to specific fields
and the techniques for applying these models in problem formulation and solution. As a sim-
ple example, suppose we are measuring the flow of current in a thin copper wire. Our model
for this phenomenon might be Ohm’s law:

or

(1-2)

We call this type of model a mechanistic model because it is built from our underlying
knowledge of the basic physical mechanism that relates these variables. However, if we
performed this measurement process more than once, perhaps at different times, or even on
different days, the observed current could differ slightly because of small changes or varia-
tions in factors that are not completely controlled, such as changes in ambient temperature,
fluctuations in performance of the gauge, small impurities present at different locations in the
wire, and drifts in the voltage source. Consequently, a more realistic model of the observed
current might be

(1-3)

where � is a term added to the model to account for the fact that the observed values of
current flow do not perfectly conform to the mechanistic model. We can think of � as a
term that includes the effects of all of the unmodeled sources of variability that affect this
system.

Sometimes engineers work with problems for which there is no simple or well-
understood mechanistic model that explains the phenomenon. For instance, suppose we are
interested in the number average molecular weight (Mn) of a polymer. Now we know that Mn

is related to the viscosity of the material (V ), and it also depends on the amount of catalyst (C )
and the temperature (T ) in the polymerization reactor when the material is manufactured. The
relationship between Mn and these variables is

(1-4)

say, where the form of the function f is unknown. Perhaps a working model could be devel-
oped from a first-order Taylor series expansion, which would produce a model of the form

(1-5)Mn � �0 � �1V � �2C � �3T

Mn � f 1V, C, T 2

I � E�R � �

I � E�R

Current � voltage�resistance
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12 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

Table 1-2 Wire Bond Pull Strength Data

Observation Pull Strength Wire Length Die Height
Number y x1 x2

1 9.95 2 50
2 24.45 8 110
3 31.75 11 120
4 35.00 10 550
5 25.02 8 295
6 16.86 4 200
7 14.38 2 375
8 9.60 2 52
9 24.35 9 100

10 27.50 8 300
11 17.08 4 412
12 37.00 11 400
13 41.95 12 500
14 11.66 2 360
15 21.65 4 205
16 17.89 4 400
17 69.00 20 600
18 10.30 1 585
19 34.93 10 540
20 46.59 15 250
21 44.88 15 290
22 54.12 16 510
23 56.63 17 590
24 22.13 6 100
25 21.15 5 400

where the �’s are unknown parameters. Now just as in Ohm’s law, this model will not exactly
describe the phenomenon, so we should account for the other sources of variability that may
affect the molecular weight by adding another term to the model; therefore

(1-6)

is the model that we will use to relate molecular weight to the other three variables. This type of
model is called an empirical model; that is, it uses our engineering and scientific knowledge of
the phenomenon, but it is not directly developed from our theoretical or first-principles under-
standing of the underlying mechanism.

To illustrate these ideas with a specific example, consider the data in Table 1-2. This table
contains data on three variables that were collected in an observational study in a semicon-
ductor manufacturing plant. In this plant, the finished semiconductor is wire bonded to a
frame. The variables reported are pull strength (a measure of the amount of force required to
break the bond), the wire length, and the height of the die. We would like to find a model
relating pull strength to wire length and die height. Unfortunately, there is no physical mech-
anism that we can easily apply here, so it doesn’t seem likely that a mechanistic modeling
approach will be successful.

Mn � �0 � �1V � �2C � �3T � �
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Figure 1-13 Three-
dimensional plot of
the wire and pull
strength data.

Figure 1-13 presents a three-dimensional plot of all 25 observations on pull strength, wire
length, and die height. From examination of this plot, we see that pull strength increases as both
wire length and die height increase. Furthermore, it seems reasonable to think that a model such as

would be appropriate as an empirical model for this relationship. In general, this type of em-
pirical model is called a regression model. In Chapters 11 and 12 we show how to build
these models and test their adequacy as approximating functions. We will use a method for
estimating the parameters in regression models, called the method of least squares, that
traces its origins to work by Karl Gauss. Essentially, this method chooses the parameters in
the empirical model (the �’s) to minimize the sum of the squared distances between each
data point and the plane represented by the model equation. Applying this technique to the
data in Table 1-2 results in

(1-7)

where the “hat,” or circumflex, over pull strength indicates that this is an estimated or pre-
dicted quantity.

Figure 1-14 is a plot of the predicted values of pull strength versus wire length and die
height obtained from Equation 1-7. Notice that the predicted values lie on a plane above the
wire length–die height space. From the plot of the data in Fig. 1-13, this model does not ap-
pear unreasonable. The empirical model in Equation 1-7 could be used to predict values of
pull strength for various combinations of wire length and die height that are of interest.
Essentially, the empirical model could be used by an engineer in exactly the same way that
a mechanistic model can be used.

Pull strength � 2.26 � 2.741wire length2 � 0.01251die height2

Pull strength � �0 � �11wire length2 � �21die height2 � �
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14 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

1-4 PROBABILITY AND PROBABILITY MODELS

In Section 1-1, it was mentioned that decisions often need to be based on measurements from
only a subset of objects selected in a sample. This process of reasoning from a sample of
objects to conclusions for a population of objects was referred to as statistical inference. A
sample of three wafers selected from a larger production lot of wafers in semiconductor man-
ufacturing was an example mentioned. To make good decisions, an analysis of how well a
sample represents a population is clearly necessary. If the lot contains defective wafers, how
well will the sample detect this? How can we quantify the criterion to “detect well”? Basically,
how can we quantify the risks of decisions based on samples? Furthermore, how should sam-
ples be selected to provide good decisions—ones with acceptable risks? Probability models
help quantify the risks involved in statistical inference, that is, the risks involved in decisions
made every day.

More details are useful to describe the role of probability models. Suppose a production
lot contains 25 wafers. If all the wafers are defective or all are good, clearly any sample will
generate all defective or all good wafers, respectively. However, suppose only one wafer in
the lot is defective. Then a sample might or might not detect (include) the wafer. A probabil-
ity model, along with a method to select the sample, can be used to quantify the risks that the
defective wafer is or is not detected. Based on this analysis, the size of the sample might be
increased (or decreased). The risk here can be interpreted as follows. Suppose a series of lots,
each with exactly one defective wafer, are sampled. The details of the method used to select
the sample are postponed until randomness is discussed in the next chapter. Nevertheless,
assume that the same size sample (such as three wafers) is selected in the same manner from
each lot. The proportion of the lots in which the defective wafer is included in the sample or,
more specifically, the limit of this proportion as the number of lots in the series tends to infin-
ity, is interpreted as the probability that the defective wafer is detected.

A probability model is used to calculate this proportion under reasonable assumptions for
the manner in which the sample is selected. This is fortunate because we do not want to at-
tempt to sample from an infinite series of lots. Problems of this type are worked in Chapters 2
and 3. More importantly, this probability provides valuable, quantitative information regard-
ing any decision about lot quality based on the sample.

Recall from Section 1-1 that a population might be conceptual, as in an analytic study that
applies statistical inference to future production based on the data from current production.
When populations are extended in this manner, the role of statistical inference and the associ-
ated probability models becomes even more important.

In the previous example, each wafer in the sample was only classified as defective or not.
Instead, a continuous measurement might be obtained from each wafer. In Section 1-2.6, con-
centration measurements were taken at periodic intervals from a production process. Figure 1-7
shows that variability is present in the measurements, and there might be concern that the
process has moved from the target setting for concentration. Similar to the defective wafer,
one might want to quantify our ability to detect a process change based on the sample data.
Control limits were mentioned in Section 1-2.6 as decision rules for whether or not to adjust
a process. The probability that a particular process change is detected can be calculated with
a probability model for concentration measurements. Models for continous measurements are
developed based on plausible assumptions for the data and a result known as the central limit
theorem, and the associated normal distribution is a particularly valuable probability model
for statistical inference. Of course, a check of assumptions is important. These types of prob-
ability models are discussed in Chapter 4. The objective is still to quantify the risks inherent
in the inference made from the sample data.
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Throughout Chapters 6 through 15, decisions are based statistical inference from sample
data. Continuous probability models, specifically the normal distribution, are used extensively
to quantify the risks in these decisions and to evaluate ways to collect the data and how large
a sample should be selected.

IMPORTANT TERMS AND CONCEPTS 

1-4 PROBABILITY AND PROBABILITY MODELS 15

c01.qxd  5/22/02  11:15 M  Page 15 RK UL 6 RK UL 6:Desktop Folder:TOD Y {22/5/2002} CH 1to3:



1-2.5 A Factorial Experiment for the Connector Pull-off Force Problem
(CD only)

Much of what we know in the engineering and physical-chemical sciences is developed
through testing or experimentation. Often engineers work in problem areas in which no
scientific or engineering theory is directly or completely applicable, so experimentation
and observation of the resulting data constitute the only way that the problem can be
solved. Even when there is a good underlying scientific theory that we may rely on to
explain the phenomena of interest, it is almost always necessary to conduct tests or exper-
iments to confirm that the theory is indeed operative in the situation or environment in
which it is being applied. We have observed that statistical thinking and statistical methods
play an important role in planning, conducting, and analyzing the data from engineering
experiments.

To further illustrate the factorial design concept introduced in Section 1-2.4, suppose that
in the connector wall thickness example, there are two additional factors of interest, time and
temperature. The cure times of interest are 1 and 24 hours and the temperature levels are 70°F
and 100°F. Now since all three factors have two levels, a factorial experiment would consist
of the eight test combinations shown at the corners of the cube in Fig. S1-1. Two trials, or
replicates, would be performed at each corner, resulting in a 16-run factorial experiment. The
observed values of pull-off force are shown in parentheses at the cube corners in Fig. S1-1.
Notice that this experiment uses eight 3�32-inch prototypes and eight 1�8-inch prototypes, the
same number used in the simple comparative study in Section 1-1, but we are now investigat-
ing three factors. Generally, factorial experiments are the most efficient way to study the joint
effects of several factors.

Some very interesting tentative conclusions can be drawn from this experiment. First,
compare the average pull-off force of the eight 3�32-inch prototypes with the average pull-off
force of the eight 1�8-inch prototypes (these are the averages of the eight runs on the left face
and right face of the cube in Fig. S1-1, respectively), or 14.1 � 13.45 � 0.65. Thus, increas-
ing the wall thickness from 3�32 to 1�8-inch increases the average pull-off force by 0.65
pounds. Next, to measure the effect of increasing the cure time, compare the average of the
eight runs in the back face of the cube (where time � 24 hours) with the average of the eight
runs in the front face (where time � 1 hour), or 14.275 � 13.275 � 1. The effect of increas-
ing the cure time from 1 to 24 hours is to increase the average pull-off force by 1 pound; that
is, cure time apparently has an effect that is larger than the effect of increasing the wall

1-1

Figure S1-1 The
factorial experiment
for the connector wall
thickness problem.
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1-2

thickness. The cure temperature effect can be evaluated by comparing the average of the eight
runs in the top of the cube (where temperature � 100°F) with the average of the eight runs in
the bottom (where temperature � 70°F), or 14.125 � 13.425 � 0.7. Thus, the effect of in-
creasing the cure temperature is to increase the average pull-off force by 0.7 pounds. Thus, if
the engineer’s objective is to design a connector with high pull-off force, there are apparently
several alternatives, such as increasing the wall thickness and using the “standard’’ curing
conditions of 1 hour and 70°F or using the original 3�32-inch wall thickness but specifying a
longer cure time and higher cure temperature.

There is an interesting relationship between cure time and cure temperature that can be
seen by examination of the graph in Fig. S1-2. This graph was constructed by calculating the
average pull-off force at the four different combinations of time and temperature, plotting
these averages versus time and then connecting the points representing the two temperature
levels with straight lines. The slope of each of these straight lines represents the effect of cure
time on pull-off force. Notice that the slopes of these two lines do not appear to be the same,
indicating that the cure time effect is different at the two values of cure temperature. This is an
example of an interaction between two factors. The interpretation of this interaction is very
straightforward; if the standard cure time (1 hour) is used, cure temperature has little effect,
but if the longer cure time (24 hours) is used, increasing the cure temperature has a large effect
on average pull-off force. Interactions occur often in physical and chemical systems, and
factorial experiments are the only way to investigate their effects. In fact, if interactions are
present and the factorial experimental strategy is not used, incorrect or misleading results may
be obtained.

We can easily extend the factorial strategy to more factors. Suppose that the engineer
wants to consider a fourth factor, type of adhesive. There are two types: the standard
adhesive and a new competitor. Figure S1-3 illustrates how all four factors, wall thickness,
cure time, cure temperature, and type of adhesive, could be investigated in a factorial
design. Since all four factors are still at two levels, the experimental design can still be
represented geometrically as a cube (actually, it’s a hypercube). Notice that as in any fac-
torial design, all possible combinations of the four factors are tested. The experiment re-
quires 16 trials.

Figure S1-2 The two-factor interaction between cure time and cure temperature.
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1-3

Generally, if there are k factors and they each have two levels, a factorial experimental
design will require 2k runs. For example, with k � 4, the 24 design in Fig. S1-3 requires 16
tests. Clearly, as the number of factors increases, the number of trials required in a factorial
experiment increases rapidly; for instance, eight factors each at two levels would require
256 trials. This quickly becomes unfeasible from the viewpoint of time and other resources.
Fortunately, when there are four to five or more factors, it is usually unnecessary to test all
possible combinations of factor levels. A fractional factorial experiment is a variation of
the basic factorial arrangement in which only a subset of the factor combinations are actu-
ally tested. Figure S1-4 shows a fractional factorial experimental design for the four-factor
version of the connector experiment. The circled test combinations in this figure are the
only test combinations that need to be run. This experimental design requires only 8 runs in-
stead of the original 16; consequently it would be called a one-half fraction. This is an ex-
cellent experimental design in which to study all four factors. It will provide good informa-
tion about the individual effects of the four factors and some information about how these
factors interact.

Factorial and fractional factorial experiments are used extensively by engineers and sci-
entists in industrial research and development, where new technology, products, and
processes are designed and developed and where existing products and processes are im-
proved. Since so much engineering work involves testing and experimentation, it is essential
that all engineers understand the basic principles of planning efficient and effective
experiments. We discuss these principles in Chapter 13. Chapter 14 concentrates on the facto-
rial and fractional factorials that we have introduced here.

Figure S1-3 A four-factorial experiment for the connector wall thick-
ness problem.

Figure S1-4 A fractional factorial experiment for the connector wall
thickness problem.
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2Probability

CHAPTER OUTLINE

LEARNING OBJECTIVES 

After careful study of this chapter you should be able to do the following:
1. Understand and describe sample spaces and events for random experiments with graphs, tables,

lists, or tree diagrams
2. Interpret probabilities and use probabilities of outcomes to calculate probabilities of events in dis-

crete sample spaces
3. Calculate the probabilities of joint events such as unions and intersections from the probabilities

of individual events
4. Interpret and calculate conditional probabilities of events
5. Determine the independence of events and use independence to calculate probabilities
6. Use Bayes’ theorem to calculate conditional probabilities
7. Understand random variables

CD MATERIAL
8. Use permutation and combinations to count the number of outcomes in both an event and the

sample space.

2-1 SAMPLE SPACES AND EVENTS

2-1.1 Random Experiments

2-1.2 Sample Spaces

2-1.3 Events

2-1.4 Counting Techniques (CD Only)

2-2 INTERPRETATIONS OF 
PROBABILITY

2-2.1 Introduction

2-2.2 Axioms of Probability

2-3 ADDITION RULES

2-4 CONDITIONAL PROBABILITY

2-5 MULTIPLICATION AND TOTAL
PROBABILITY RULES

2-5.1 Multiplication Rule

2-5.2 Total Probability Rule

2-6 INDEPENDENCE

2-7 BAYES’ THEOREM

2-8 RANDOM VARIABLES

16

c02.qxd  5/10/02  1:06 PM  Page 16 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



2-1 SAMPLE SPACES AND EVENTS 17

Answers for most odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

2-1 SAMPLE SPACES AND EVENTS

2-1.1 Random Experiments

If we measure the current in a thin copper wire, we are conducting an experiment. However,
in day-to-day repetitions of the measurement the results can differ slightly because of small
variations in variables that are not controlled in our experiment, including changes in ambient
temperatures, slight variations in gauge and small impurities in the chemical composition of
the wire if different locations are selected, and current source drifts. Consequently, this exper-
iment (as well as many we conduct) is said to have a random component. In some cases,
the random variations, are small enough, relative to our experimental goals, that they can be
ignored. However, no matter how carefully our experiment is designed and conducted, the
variation is almost always present, and its magnitude can be large enough that the important
conclusions from our experiment are not obvious. In these cases, the methods presented in this
book for modeling and analyzing experimental results are quite valuable.

Our goal is to understand, quantify, and model the type of variations that we often
encounter. When we incorporate the variation into our thinking and analyses, we can make
informed judgments from our results that are not invalidated by the variation.

Models and analyses that include variation are not different from models used in other areas
of engineering and science. Figure 2-1 displays the important components. A mathematical
model (or abstraction) of the physical system is developed. It need not be a perfect abstraction.
For example, Newton’s laws are not perfect descriptions of our physical universe. Still, they are
useful models that can be studied and analyzed to approximately quantify the performance of a
wide range of engineered products. Given a mathematical abstraction that is validated with
measurements from our system, we can use the model to understand, describe, and quantify
important aspects of the physical system and predict the response of the system to inputs.

Throughout this text, we discuss models that allow for variations in the outputs of a sys-
tem, even though the variables that we control are not purposely changed during our study.
Figure 2-2 graphically displays a model that incorporates uncontrollable inputs (noise) that
combine with the controllable inputs to produce the output of our system. Because of the

Physical system

Model

Measurements Analysis

Figure 2-2 Noise variables affect the
transformation of inputs to outputs.

Figure 2-1 Continuous iteration between model
and physical system.

Controlled
variables

Noise
variables

OutputInput System
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18 CHAPTER 2 PROBABILITY

uncontrollable inputs, the same settings for the controllable inputs do not result in identical
outputs every time the system is measured.

Voltage

C
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nt

Figure 2-3 A closer examination of the system
identifies deviations from the model.
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Figure 2-4 Variation causes disruptions in the system.

An experiment that can result in different outcomes, even though it is repeated in the
same manner every time, is called a random experiment.

Definition

For the example of measuring current in a copper wire, our model for the system might
simply be Ohm’s law. Because of uncontrollable inputs, variations in measurements of current
are expected. Ohm’s law might be a suitable approximation. However, if the variations are
large relative to the intended use of the device under study, we might need to extend our model
to include the variation. See Fig. 2-3.

As another example, in the design of a communication system, such as a computer or
voice communication network, the information capacity available to service individuals using
the network is an important design consideration. For voice communication, sufficient
external lines need to be purchased from the phone company to meet the requirements of a
business. Assuming each line can carry only a single conversation, how many lines should be
purchased? If too few lines are purchased, calls can be delayed or lost. The purchase of too
many lines increases costs. Increasingly, design and product development is required to meet
customer requirements at a competitive cost.

In the design of the voice communication system, a model is needed for the number of calls
and the duration of calls. Even knowing that on average, calls occur every five minutes and that
they last five minutes is not sufficient. If calls arrived precisely at five-minute intervals and lasted
for precisely five minutes, one phone line would be sufficient. However, the slightest variation in
call number or duration would result in some calls being blocked by others. See Fig. 2-4. A system
designed without considering variation will be woefully inadequate for practical use. Our model
for the number and duration of calls needs to include variation as an integral component. An
analysis of models including variation is important for the design of the phone system.

2-1.2 Sample Spaces

To model and analyze a random experiment, we must understand the set of possible out-
comes from the experiment. In this introduction to probability, we make use of the basic
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2-1 SAMPLE SPACES AND EVENTS 19

A sample space is often defined based on the objectives of the analysis.

EXAMPLE 2-1 Consider an experiment in which you select a molded plastic part, such as a connector, and
measure its thickness. The possible values for thickness depend on the resolution of the meas-
uring instrument, and they also depend on upper and lower bounds for thickness. However, it
might be convenient to define the sample space as simply the positive real line

because a negative value for thickness cannot occur.
If it is known that all connectors will be between 10 and 11 millimeters thick, the sample

space could be

If the objective of the analysis is to consider only whether a particular part is low, medium,
or high for thickness, the sample space might be taken to be the set of three outcomes:

If the objective of the analysis is to consider only whether or not a particular part con-
forms to the manufacturing specifications, the sample space might be simplified to the set of
two outcomes

that indicate whether or not the part conforms.

It is useful to distinguish between two types of sample spaces.

S � 5yes, no6

S � 5low, medium, high6

S � 5x ƒ 10 � x � 116

S � R� � 5x 0  x � 06

The set of all possible outcomes of a random experiment is called the sample space
of the experiment. The sample space is denoted as S.

Definition

A sample space is discrete if it consists of a finite or countable infinite set of outcomes.
A sample space is continuous if it contains an interval (either finite or infinite) of
real numbers.

Definition

In Example 2-1, the choice S � R� is an example of a continuous sample space, whereas
S �{yes, no} is a discrete sample space. As mentioned, the best choice of a sample space

concepts of sets and operations on sets. It is assumed that the reader is familiar with these
topics.
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20 CHAPTER 2 PROBABILITY

depends on the objectives of the study. As specific questions occur later in the book, appro-
priate sample spaces are discussed.

EXAMPLE 2-2 If two connectors are selected and measured, the extension of the positive real line R is to take
the sample space to be the positive quadrant of the plane:

If the objective of the analysis is to consider only whether or not the parts conform to the
manufacturing specifications, either part may or may not conform. We abbreviate yes and no
as y and n. If the ordered pair yn indicates that the first connector conforms and the second
does not, the sample space can be represented by the four outcomes:

If we are only interested in the number of conforming parts in the sample, we might sum-
marize the sample space as

As another example, consider an experiment in which the thickness is measured until a
connector fails to meet the specifications. The sample space can be represented as

In random experiments in which items are selected from a batch, we will indicate whether
or not a selected item is replaced before the next one is selected. For example, if the batch
consists of three items {a, b, c} and our experiment is to select two items without replace-
ment, the sample space can be represented as

This description of the sample space maintains the order of the items selected so that the out-
come ab and ba are separate elements in the sample space. A sample space with less detail
only describes the two items selected {{a, b}, {a, c}, {b, c}}. This sample space is the possi-
ble subsets of two items. Sometimes the ordered outcomes are needed, but in other cases the
simpler, unordered sample space is sufficient.

If items are replaced before the next one is selected, the sampling is referred to as with
replacement. Then the possible ordered outcomes are

The unordered description of the sample space is {{a, a}, {a, b}, {a, c}, {b, b}, {b, c}, {c, c}}.
Sampling without replacement is more common for industrial applications.

Sometimes it is not necessary to specify the exact item selected, but only a property of the
item. For example, suppose that there are 5 defective parts and 95 good parts in a batch. To
study the quality of the batch, two are selected without replacement. Let g denote a good part
and d denote a defective part. It might be sufficient to describe the sample space (ordered) in
terms of quality of each part selected as

S � 5gg, gd, dg, dd6

Swith � 5aa, ab, ac, ba, bb, bc, ca, cb, cc6

Swithout � 5ab, ac, ba, bc, ca, cb6

S � 5n, yn, yyn, yyyn, yyyyn, and so forth6

S � 50, 1, 26

S � 5yy, yn, ny, nn6

S � R� � R�
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2-1 SAMPLE SPACES AND EVENTS 21

One must be cautious with this description of the sample space because there are many more
pairs of items in which both are good than pairs in which both are defective. These differences
must be accounted for when probabilities are computed later in this chapter. Still, this sum-
mary of the sample space will be convenient when conditional probabilities are used later in
this chapter. Also, if there were only one defective part in the batch, there would be fewer
possible outcomes

because dd would be impossible. For sampling questions, sometimes the most important part
of the solution is an appropriate description of the sample space.

Sample spaces can also be described graphically with tree diagrams. When a sample
space can be constructed in several steps or stages, we can represent each of the n1 ways of
completing the first step as a branch of a tree. Each of the ways of completing the second step
can be represented as n2 branches starting from the ends of the original branches, and so forth.

EXAMPLE 2-3 Each message in a digital communication system is classified as to whether it is received
within the time specified by the system design. If three messages are classified, use a tree
diagram to represent the sample space of possible outcomes.

Each message can either be received on time or late. The possible results for three mes-
sages can be displayed by eight branches in the tree diagram shown in Fig. 2-5.

EXAMPLE 2-4 An automobile manufacturer provides vehicles equipped with selected options. Each vehicle
is ordered

S � 5gg, gd, dg6

on time late

on time late

on time late on time late on time late

on time late

on time late

Message 3

Message 2

Message 1

Figure 2-5 Tree
diagram for three
messages.

With or without an automatic transmis-
sion

With or without air-conditioning

With one of three choices of a stereo
system

With one of four exterior colors

If the sample space consists of the set of all possible vehicle types, what is the number of
outcomes in the sample space? The sample space contains 48 outcomes. The tree diagram for
the different types of vehicles is displayed in Fig. 2-6.

EXAMPLE 2-5 Consider an extension of the automobile manufacturer illustration in the previous example in
which another vehicle option is the interior color. There are four choices of interior color: red,
black, blue, or brown. However,

With a red exterior, only a black or red interior can be chosen.

With a white exterior, any interior color can be chosen.
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22 CHAPTER 2 PROBABILITY

With a blue exterior, only a black, red, or blue interior can be chosen.

With a brown exterior, only a brown interior can be chosen.

In Fig. 2-6, there are 12 vehicle types with each exterior color, but the number of interior
color choices depends on the exterior color. As shown in Fig. 2-7, the tree diagram can be ex-
tended to show that there are 120 different vehicle types in the sample space.

2-1.3 Events

Often we are interested in a collection of related outcomes from a random experiment.

Color

Stereo

Air conditioning

Transmission  

Automatic Manual

1 2 3 1 2 3 1 2 3 1 2 3

Yes No Yes No

n = 48

Figure 2-6 Tree diagram for different types of vehicles.

Exterior color Red White Blue Brown

RedBlackInterior color

12 × 2 = 24 12 × 4 = 48 12 × 3 = 36 12 × 1 = 12

24 + 48 + 36 + 12 = 120 vehicle types

Figure 2-7 Tree dia-
gram for different
types of vehicles with
interior colors.

We can also be interested in describing new events from combinations of existing events.
Because events are subsets, we can use basic set operations such as unions, intersections, and

An event is a subset of the sample space of a random experiment.
Definition
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2-1 SAMPLE SPACES AND EVENTS 23

complements to form other events of interest. Some of the basic set operations are summa-
rized below in terms of events:

The union of two events is the event that consists of all outcomes that are contained
in either of the two events. We denote the union as .

The intersection of two events is the event that consists of all outcomes that are
contained in both of the two events. We denote the intersection as .

The complement of an event in a sample space is the set of outcomes in the sample
space that are not in the event. We denote the component of the event E as .

EXAMPLE 2-6 Consider the sample space S � {yy, yn, ny, nn} in Example 2-2. Suppose that the set of all out-
comes for which at least one part conforms is denoted as E1. Then,

The event in which both parts do not conform, denoted as E2, contains only the single out-
come, E2 � {nn}. Other examples of events are , the null set, and E4 � S, the sample
space. If E5 � {yn, ny, nn},

EXAMPLE 2-7 Measurements of the time needed to complete a chemical reaction might be modeled with the
sample space S � R�, the set of positive real numbers. Let

Then,

Also,

EXAMPLE 2-8 Samples of polycarbonate plastic are analyzed for scratch and shock resistance. The results
from 50 samples are summarized as follows:

shock resistance

high low

scratch resistance high 40 4
low 1 5

Let A denote the event that a sample has high shock resistance, and let B denote the event that a
sample has high scratch resistance. Determine the number of samples in 

The event consists of the 40 samples for which scratch and shock resistances
are high. The event consists of the 9 samples in which the shock resistance is low. The
event consists of the 45 samples in which the shock resistance, scratch resistance,
or both are high.

A ´ B
A¿

A ¨ B
A ¨ B, A¿, and A ´ B.

E1¿ � 5x 0  x � 106  and  E1¿ ¨ E2 � 5x 0  10 � x � 1186

E1 ´ E2 � 5x 0  1 � x � 1186  and  E1 ¨ E2 � 5x 0  3 � x � 106

E1 � 5x 0  1 � x � 106  and  E2 � 5x 0  3 � x � 1186

E1 ´ E5 � S  E1 ¨ E5 � 5yn, ny6  E¿1 � 5nn6

E3 � 	

E1 � 5yy, yn, ny6

E¿

E1 ¨ E2

E1 ´ E2
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24 CHAPTER 2 PROBABILITY

Diagrams are often used to portray relationships between sets, and these diagrams are
also used to describe relationships between events. We can use Venn diagrams to represent a
sample space and events in a sample space. For example, in Fig. 2-8(a) the sample space of
the random experiment is represented as the points in the rectangle S. The events A and B are
the subsets of points in the indicated regions. Figure 2-8(b) illustrates two events with no com-
mon outcomes; Figs. 2-8(c) to 2-8(e) illustrate additional joint events.

Two events with no outcomes in common have an important relationship.

A B A B

(a)

Sample space S with events A and B

  (b)

A B

 (c)

A B

(e)

A B

(d)

A ∩ B

S

(A ∩ C)'

SS

(A ∪ B) ∩ C

SS

C C

Figure 2-8 Venn diagrams.

Two events, denoted as E1 and E2, such that

are said to be mutually exclusive.

E1 ¨ E2 � 	

Definition

The two events in Fig. 2-8(b) are mutually exclusive, whereas the two events in Fig. 2-8(a)
are not.

Additional results involving events are summarized below. The definition of the comple-
ment of an event implies that

The distributive law for set operations implies that

1A ´ B2 ¨ C � 1A ¨ C2 ´ 1B ¨ C2,  and  1A ¨ B2 ´ C � 1A ´ C2 ¨ 1B ´ C2

1E¿ 2 ¿ � E
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2-1 SAMPLE SPACES AND EVENTS 25

Provide a reasonable description of the sample space for each
of the random experiments in Exercises 2-1 to 2-18. There can
be more than one acceptable interpretation of each experi-
ment. Describe any assumptions you make.

2-1. Each of three machined parts is classified as either
above or below the target specification for the part.

2-2. Each of four transmitted bits is classified as either in
error or not in error.

2-3. In the final inspection of electronic power supplies,
three types of nonconformities might occur: functional, minor,
or cosmetic. Power supplies that are defective are further clas-
sified as to type of nonconformity.

2-4. In the manufacturing of digital recording tape, elec-
tronic testing is used to record the number of bits in error in a
350-foot reel.

2-5. In the manufacturing of digital recording tape, each of
24 tracks is classified as containing or not containing one or
more bits in error.

2-6. An ammeter that displays three digits is used to meas-
ure current in milliamperes.

2-7. A scale that displays two decimal places is used to
measure material feeds in a chemical plant in tons.

2-8. The following two questions appear on an employee
survey questionnaire. Each answer is chosen from the five-
point scale 1 (never), 2, 3, 4, 5 (always).

Is the corporation willing to listen to and fairly evaluate
new ideas?

How often are my coworkers important in my overall job
performance?

2-9. The concentration of ozone to the nearest part per billion.

2-10. The time until a tranaction service is requested of a
computer to the nearest millisecond.

2-11. The pH reading of a water sample to the nearest tenth
of a unit.

2-12. The voids in a ferrite slab are classified as small,
medium, or large. The number of voids in each category is
measured by an optical inspection of a sample.

2-13. The time of a chemical reaction is recorded to the
nearest millisecond.

2-14. An order for an automobile can specify either an
automatic or a standard transmission, either with or without
air-conditioning, and any one of the four colors red, blue,
black or white. Describe the set of possible orders for this
experiment.

2-15. A sampled injection-molded part could have been
produced in either one of two presses and in any one of the
eight cavities in each press.

2-16. An order for a computer system can specify memory
of 4, 8, or 12 gigabytes, and disk storage of 200, 300, or 400
gigabytes. Describe the set of possible orders.

2-17. Calls are repeatedly placed to a busy phone line until
a connect is achieved.

2-18. In a magnetic storage device, three attempts are made
to read data before an error recovery procedure that reposi-
tions the magnetic head is used. The error recovery procedure
attempts three repositionings before an “abort’’ message is
sent to the operator. Let

s denote the success of a read operation

f denote the failure of a read operation

F denote the failure of an error recovery procedure

S denote the success of an error recovery procedure

A denote an abort message sent to the operator.

Describe the sample space of this experiment with a tree
diagram.

DeMorgan’s laws imply that

Also, remember that

2-1.4 Counting Techniques (CD Only)

As sample spaces become larger, complete enumeration is difficult. Instead, counts of
the number outcomes in the sample space and in various events are often used to analyze the
random experiment. These methods are referred to as counting techniques and described on
the CD.

EXERCISES FOR SECTION 2-1

A ¨ B � B ¨ A  and  A ´ B � B ´ A

1A ´ B2 ¿ � A¿ ¨ B¿  and  1A ¨ B2 ¿ � A¿ ´ B¿
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26 CHAPTER 2 PROBABILITY

2-19. Three events are shown on the Venn diagram in the
following figure:

Reproduce the figure and shade the region that corresponds to
each of the following events.
(a) (b)
(c) (d)
(e)

2-20. Three events are shown on the Venn diagram in the
following figure:

Reproduce the figure and shade the region that corresponds to
each of the following events.
(a) (b)
(c) (d)
(e)

2-21. A digital scale is used that provides weights to the
nearest gram.
(a) What is the sample space for this experiment?
Let A denote the event that a weight exceeds 11 grams, let B
denote the event that a weight is less than or equal to 15
grams, and let C denote the event that a weight is greater than
or equal to 8 grams and less than 12 grams.
Describe the following events.
(b) (c)
(d) (e)

(f) (g)
(h) (i)

2-22. In an injection-molding operation, the length and
width, denoted as X and Y, respectively, of each molded part
are evaluated. Let

A denote the event of 48 � X � 52 centimeters

B denote the event of 9 � Y � 11 centimeters

C denote the event that a critical length meets customer
requirements.

Construct a Venn diagram that includes these events. Shade
the areas that represent the following:
(a) A (b)
(c) (d)
(e) If these events were mutually exclusive, how successful

would this production operation be? Would the process
produce parts with X � 50 centimeters and Y � 10
centimeters?

2-23. Four bits are transmitted over a digital communica-

tions channel. Each bit is either distorted or received without

distortion. Let Ai denote the event that the ith bit is distorted,

.
(a) Describe the sample space for this experiment.
(b) Are the Ai’s mutually exclusive? 
Describe the outcomes in each of the following events:
(c) (d)
(e) (f)

2-24. A sample of three calculators is selected from a manu-
facturing line, and each calculator is classified as either defective
or acceptable. Let A, B, and C denote the events that the first,
second, and third calculators respectively, are defective.
(a) Describe the sample space for this experiment with a tree

diagram.
Use the tree diagram to describe each of the following
events:
(b) A (c) B
(d) (e)

2-25. A wireless garage door opener has a code determined
by the up or down setting of 12 switches. How many out-
comes are in the sample space of possible codes?

2-26. Disks of polycarbonate plastic from a supplier are an-
alyzed for scratch and shock resistance. The results from 100
disks are summarized below:

shock resistance

high low

scratch high 70 9

resistance low 16 5

Let A denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch

B ´ CA ¨ B

1A1 ¨ A22 ´ 1A3 ¨ A42A1 ¨ A2 ¨ A3 ¨ A4

A1¿A1

i � 1, p , 4

A ´ BA¿ ´ B
A ¨ B

A ´ 1B ¨ C2B¿ ¨ C
A ¨ B ¨ C1A ´ C2 ¿

A ´ B ´ CA¿
A ¨ BA ´ B

1A ¨ B2 ¿ ´ C
1B ´ C2 ¿1A ¨ B2 ´ C
1A ¨ B2 ´ 1A ¨ B¿ 2A¿

A B

C

1A ¨ B2 ¿ ´ C
1B ´ C2 ¿1A ¨ B2 ´ C
A ¨ BA¿

A B

C
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2-2 INTERPRETATIONS OF PROBABILITY 27

resistance. Determine the number of disks in and
.

2-27. Samples of a cast aluminum part are classified on the
basis of surface finish (in microinches) and edge finish. The
results of 100 parts are summarized as follows:

edge finish

excellent good

surface excellent 80 2

finish good 10 8

(a) Let A denote the event that a sample has excellent surface
finish, and let B denote the event that a sample has excel-
lent edge finish. Determine the number of samples in

and .
(b) Assume that each of two samples is to be classified on the

basis of surface finish, either excellent or good, edge finish,
either excellent or good. Use a tree diagram to represent the
possible outcomes of this experiment.

2-28. Samples of emissions from three suppliers are classi-
fied for conformance to air-quality specifications. The results
from 100 samples are summarized as follows:

conforms

yes no

1 22 8

supplier 2 25 5

3 30 10

Let A denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
Determine the number of samples in and .

2-29. The rise time of a reactor is measured in minutes (and
fractions of minutes). Let the sample space be positive, real
numbers. Define the events A and B as follows:

and

Describe each of the following events:
(a) (b)
(c) (d)

2-30. A sample of two items is selected without replace-
ment from a batch. Describe the (ordered) sample space for
each of the following batches:
(a) The batch contains the items {a, b, c, d}.
(b) The batch contains the items {a, b, c, d, e, f, g}.
(c) The batch contains 4 defective items and 20 good items.
(d) The batch contains 1 defective item and 20 good items.

2-31. A sample of two printed circuit boards is selected
without replacement from a batch. Describe the (ordered)
sample space for each of the following batches:
(a) The batch contains 90 boards that are not defective, 8

boards with minor defects, and 2 boards with major
defects.

(b) The batch contains 90 boards that are not defective, 8
boards with minor defects, and 1 board with major
defects.

2-32. Counts of the Web pages provided by each of two
computer servers in a selected hour of the day are recorded.
Let A denote the event that at least 10 pages are provided by
server 1 and let B denote the event that at least 20 pages are
provided by server 2.
(a) Describe the sample space for the numbers of pages for

two servers graphically.

Show each of the following events on the sample space graph:
(b) A (c) B
(d) (e)

2-33. The rise time of a reactor is measured in minutes
(and fractions of minutes). Let the sample space for the rise
time of each batch be positive, real numbers. Consider
the rise times of two batches. Let A denote the event that the
rise time of batch 1 is less than 72.5 minutes, and let B
denote the event that the rise time of batch 2 is greater than
52.5 minutes.

Describe the sample space for the rise time of two batches
graphically and show each of the following events on a two-
dimensional plot:
(a) A (b)
(c) (d) A ´ BA ¨ B

B¿

A ´ BA ¨ B

A ´ BA ¨ B
B¿A¿

B � 5x ƒ  x � 52.56

A � 5x ƒ  x � 72.56

A ´ BA¿ ¨ B, B¿,

A ´ BA¿ ¨ B, B¿,

A ´ B
A ¨ B, A¿,

2-2 INTERPRETATIONS OF PROBABILITY

2-2.1 Introduction

In this chapter, we introduce probability for discrete sample spaces—those with only a finite
(or countably infinite) set of outcomes. The restriction to these sample spaces enables us to
simplify the concepts and the presentation without excessive mathematics.
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Whenever a sample space consists of N possible outcomes that are equally likely, the
probability of each outcome is .1
N

28 CHAPTER 2 PROBABILITY

Probability is used to quantify the likelihood, or chance, that an outcome of a random
experiment will occur. “The chance of rain today is 30%’’ is a statement that quantifies our
feeling about the possibility of rain. The likelihood of an outcome is quantified by assigning a
number from the interval [0, 1] to the outcome (or a percentage from 0 to 100%). Higher num-
bers indicate that the outcome is more likely than lower numbers. A 0 indicates an outcome
will not occur. A probability of 1 indicates an outcome will occur with certainty.

The probability of an outcome can be interpreted as our subjective probability, or degree
of belief, that the outcome will occur. Different individuals will no doubt assign different
probabilities to the same outcomes. Another interpretation of probability is based on the con-
ceptual model of repeated replications of the random experiment. The probability of an
outcome is interpreted as the limiting value of the proportion of times the outcome occurs in
n repetitions of the random experiment as n increases beyond all bounds. For example, if we
assign probability 0.2 to the outcome that there is a corrupted pulse in a digital signal, we
might interpret this assignment as implying that, if we analyze many pulses, approximately
20% of them will be corrupted. This example provides a relative frequency interpretation of
probability. The proportion, or relative frequency, of replications of the experiment that result
in the outcome is 0.2. Probabilities are chosen so that the sum of the probabilities of all out-
comes in an experiment add up to 1. This convention facilitates the relative frequency inter-
pretation of probability. Figure 2-9 illustrates the concept of relative frequency.

Probabilities for a random experiment are often assigned on the basis of a reasonable
model of the system under study. One approach is to base probability assignments on the sim-
ple concept of equally likely outcomes.

For example, suppose that we will select one laser diode randomly from a batch of 100.
The sample space is the set of 100 diodes. Randomly implies that it is reasonable to assume
that each diode in the batch has an equal chance of being selected. Because the sum of the
probabilities must equal 1, the probability model for this experiment assigns probability of
0.01 to each of the 100 outcomes. We can interpret the probability by imagining many repli-
cations of the experiment. Each time we start with all 100 diodes and select one at random.
The probability 0.01 assigned to a particular diode represents the proportion of replicates in
which a particular diode is selected.

When the model of equally likely outcomes is assumed, the probabilities are chosen to
be equal.

Time

Corrupted pulse

Relative frequency of corrupted pulse = 2
10

Vo
lt

ag
e

Figure 2-9 Relative
frequency of corrupted
pulses sent over a com-
munication channel.
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2-2 INTERPRETATIONS OF PROBABILITY 29

It is frequently necessary to assign probabilities to events that are composed of several
outcomes from the sample space. This is straightforward for a discrete sample space.

EXAMPLE 2-9 Assume that 30% of the laser diodes in a batch of 100 meet the minimum power requirements
of a specific customer. If a laser diode is selected randomly, that is, each laser diode is equally
likely to be selected, our intuitive feeling is that the probability of meeting the customer’s
requirements is 0.30.

Let E denote the subset of 30 diodes that meet the customer’s requirements. Because
E contains 30 outcomes and each outcome has probability 0.01, we conclude that the prob-
ability of E is 0.3. The conclusion matches our intuition. Figure 2-10 illustrates this
example.

For a discrete sample space, the probability of an event can be defined by the reasoning
used in the example above.

For a discrete sample space, the probability of an event E, denoted as P(E), equals the
sum of the probabilities of the outcomes in E.

Definition

E

Diodes

S

P(E) = 30(0.01) = 0.30

Figure 2-10
Probability of the
event E is the sum of
the probabilities of the
outcomes in E.

EXAMPLE 2-10 A random experiment can result in one of the outcomes {a, b, c, d} with probabilities 0.1, 0.3,
0.5, and 0.1, respectively. Let A denote the event {a, b}, B the event {b, c, d}, and C the event
{d}.Then,

Also, , and . Furthermore, because 
. Because 

Because is the null set, .P1A ¨ C2 � 0A ¨ C
A ´ B � 5a, b, c, d6, P1A ´ B2 � 0.1 � 0.3 � 0.5 � 0.1 � 1.P1A ¨ B2 � 0.3

A ¨ B � 5b6,P1C¿ 2 � 0.9P1A¿ 2 � 0.6, P1B¿ 2 � 0.1

P1C2 � 0.1

P1B2 � 0.3 � 0.5 � 0.1 � 0.9

P1A2 � 0.1 � 0.3 � 0.4
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30 CHAPTER 2 PROBABILITY

EXAMPLE 2-11 A visual inspection of a location on wafers from a semiconductor manufacturing process re-
sulted in the following table:

If one wafer is selected randomly from this process and the location is inspected, what is the
probability that it contains no particles? If information were available for each wafer, we could
define the sample space as the set of all wafers inspected and proceed as in the example with
diodes. However, this level of detail is not needed in this case. We can consider the sample space
to consist of the six categories that summarize the number of contamination particles on a wafer.
Then, the event that there is no particle in the inspected location on the wafer, denoted as E, can
be considered to be comprised of the single outcome, namely, E � {0}. Therefore,

What is the probability that a wafer contains three or more particles in the inspected
location? Let E denote the event that a wafer contains three or more particles in the inspected
location. Then, E consists of the three outcomes {3, 4, 5 or more}. Therefore,

EXAMPLE 2-12 Suppose that a batch contains six parts with part numbers {a, b, c, d, e, f }. Suppose that two
parts are selected without replacement. Let E denote the event that the part number of the first
part selected is a. Then E can be written as E � {ab, ac, ad, ae, af }. The sample space can be
enumerated. It has 30 outcomes. If each outcome is equally likely, .

Also, if E2 denotes the event that the second part selected is a, E2 � {ba, ca, da, ea, fa}

and with equally likely outcomes, .

2-2.2 Axioms of Probability

Now that the probability of an event has been defined, we can collect the assumptions that we
have made concerning probabilities into a set of axioms that the probabilities in any random
experiment must satisfy. The axioms ensure that the probabilities assigned in an experiment
can be interpreted as relative frequencies and that the assignments are consistent with our
intuitive understanding of relationships between relative frequencies. For example, if event A
is contained in event B, we should have . The axioms do not determine
probabilities; the probabilities are assigned based on our knowledge of the system under
study. However, the axioms enable us to easily calculate the probabilities of some events from
knowledge of the probabilities of other events.

P1A2 � P1B2

P1E22 � 5
30 � 1
6

P1E2 � 5
30 � 1
6

P1E2 � 0.10 � 0.05 � 0.10 � 0.25

P1E2 � 0.4

Number of
Contamination 

Particles Proportion of Wafers

0 0.40
1 0.20
2 0.15
3 0.10
4 0.05
5 or more 0.10

c02.qxd  5/10/02  1:07 PM  Page 30 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



2-2 INTERPRETATIONS OF PROBABILITY 31

Probability is a number that is assigned to each member of a collection of events
from a random experiment that satisfies the following properties:

If S is the sample space and E is any event in a random experiment,

(1)

(2)

(3) For two events E1 and E2 with 

P1E1 ´ E22 � P1E12 � P1E22
E1 ¨ E2 � 	

0 � P1E2 � 1

P1S2 � 1

Axioms of
Probability

The property that is equivalent to the requirement that a relative frequency
must be between 0 and 1. The property that P(S) � 1 is a consequence of the fact that an
outcome from the sample space occurs on every trial of an experiment. Consequently, the rel-
ative frequency of S is 1. Property 3 implies that if the events E1 and E2 have no outcomes in
common, the relative frequency of outcomes in is the sum of the relative frequencies
of the outcomes in E1 and E2.

These axioms imply the following results. The derivations are left as exercises at the end
of this section. Now,

and for any event E,

For example, if the probability of the event E is 0.4, our interpretation of relative
frequency implies that the probability of is 0.6. Furthermore, if the event E1 is contained
in the event E2,

EXERCISES FOR SECTION 2-2

P1E12 � P1E22

E¿

P1E¿ 2 � 1 � P1E2

P1	2 � 0

E1 ´ E2

0 � P1E2 � 1

2-34. Each of the possible five outcomes of a random ex-
periment is equally likely. The sample space is {a, b, c, d, e}.
Let A denote the event {a, b}, and let B denote the event
{c, d, e}. Determine the following:
(a) (b)
(c) (d)
(e)

2-35. The sample space of a random experiment is {a, b, c,
d, e} with probabilities 0.1, 0.1, 0.2, 0.4, and 0.2, respectively.
Let A denote the event {a, b, c}, and let B denote the event
{c, d, e}. Determine the following:
(a) (b)
(c) (d)
(e)

2-36. A part selected for testing is equally likely to have
been produced on any one of six cutting tools.
(a) What is the sample space?
(b) What is the probability that the part is from tool 1?
(c) What is the probability that the part is from tool 3 or

tool 5?
(d) What is the probability that the part is not from tool 4?

2-37. An injection-molded part is equally likely to be ob-
tained from any one of the eight cavities on a mold.
(a) What is the sample space?
(b) What is the probability a part is from cavity 1 or 2?
(c) What is the probability that a part is neither from cavity 3

nor 4?
P1A ¨ B2

P1A ´ B2P1A¿ 2
P1B2P1A2

P1A ¨ B2
P1A ´ B2P1A¿ 2
P1B2P1A2
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32 CHAPTER 2 PROBABILITY

2-38. A sample space contains 20 equally likely outcomes.
If the probability of event A is 0.3, how many outcomes are in
event A?

2-39. Orders for a computer are summarized by the op-
tional features that are requested as follows:

proportion of orders

no optional features 0.3

one optional feature 0.5

more than one optional feature 0.2

(a) What is the probability that an order requests at least one
optional feature?

(b) What is the probability that an order does not request
more than one optional feature?

2-40. If the last digit of a weight measurement is equally
likely to be any of the digits 0 through 9,

(a) What is the probability that the last digit is 0?

(b) What is the probability that the last digit is greater than or
equal to 5?

2-41. A sample preparation for a chemical measurement is
completed correctly by 25% of the lab technicians, completed
with a minor error by 70%, and completed with a major error
by 5%.

(a) If a technician is selected randomly to complete the prepa-
ration, what is the probability it is completed without
error?

(b) What is the probability that it is completed with either a
minor or a major error?

2-42. A credit card contains 16 digits between 0 and 9.
However, only 100 million numbers are valid. If a number is
entered randomly, what is the probability that it is a valid
number?

2-43. Suppose your vehicle is licensed in a state that issues
license plates that consist of three digits (between 0 and 9) fol-
lowed by three letters (between A and Z). If a license number
is selected randomly, what is the probability that yours is the
one selected?

2-44. A message can follow different paths through
servers on a network. The senders message can go to one of
five servers for the first step, each of them can send to five
servers at the second step, each of which can send to four
servers at the third step, and then the message goes to the re-
cipients server.
(a) How many paths are possible?
(b) If all paths are equally likely, what is the probability that a

message passes through the first of four servers at the
third step?

2-45. Disks of polycarbonate plastic from a supplier are an-
alyzed for scratch and shock resistance. The results from 100
disks are summarized as follows:

shock resistance

high low

scratch high 70 9

resistance low 16 5

Let A denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch resist-
ance. If a disk is selected at random, determine the following
probabilities:
(a) (b)
(c) (d)
(e) (f)

2-46. Samples of a cast aluminum part are classified on the
basis of surface finish (in microinches) and edge finish. The
results of 100 parts are summarized as follows:

edge finish

excellent good

surface excellent 80 2

finish good 10 8

Let A denote the event that a sample has excellent surface fin-
ish, and let B denote the event that a sample has excellent
length. If a part is selected at random, determine the following
probabilities:
(a) (b)
(c) (d)
(e) (f)

2-47. Samples of emissions from three suppliers are classi-
fied for conformance to air-quality specifications. The results
from 100 samples are summarized as follows:

conforms

yes no

1 22 8

supplier 2 25 5

3 30 10

Let A denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
If a sample is selected at random, determine the following
probabilities:
(a) (b)
(c) (d)
(e) (f)

2-48. Use the axioms of probability to show the following:

(a) For any event .

(b)
(c) If A is contained in B, then P1A2 � P1B2

P1	2 � 0

E, P1E¿ 2 � 1 � P1E2
P1A¿ ´ B2P1A ´ B2
P1A ¨ B2P1A¿ 2
P1B2P1A2

P1A¿ ´ B2P1A ´ B2
P1A ¨ B2P1A¿ 2
P1B2P1A2

P1A¿ ´ B2P1A ´ B2
P1A ¨ B2P1A¿ 2
P1B2P1A2
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2-3 ADDITION RULES

Joint events are generated by applying basic set operations to individual events. Unions of events,
such as ; intersections of events, such as ; and complements of events, such as ,
are commonly of interest. The probability of a joint event can often be determined from the prob-
abilities of the individual events that comprise it. Basic set operations are also sometimes helpful
in determining the probability of a joint event. In this section the focus is on unions of events.

EXAMPLE 2-13 Table 2-1 lists the history of 940 wafers in a semiconductor manufacturing process. Suppose
one wafer is selected at random. Let H denote the event that the wafer contains high levels of
contamination. Then, .

Let C denote the event that the wafer is in the center of a sputtering tool. Then,
Also, is the probability that the wafer is from the center of the sput-

tering tool and contains high levels of contamination. Therefore,

The event is the event that a wafer is from the center of the sputtering tool or
contains high levels of contamination (or both). From the table, . An
alternative calculation of can be obtained as follows. The 112 wafers that comprise
the event are included once in the calculation of P(H) and again in the calculation of
P(C). Therefore, can be found to be

The preceding example illustrates that the probability of A or B is interpreted as 
and that the following general addition rule applies.

P1A ´ B2
 � 358
940 � 626
940 � 112
940 � 872
940

P1H ´ C2 � P1H2 � P1C2 � P1H ¨ C2
P1H ´ C2H ¨ C

P1H ´ C2 P1H ´ C2 � 872
940
H ´ C

P1H ¨ C2 � 112
940

P1H ¨ C2P1C2 � 626
940.

P1H2 � 358
940

A¿A ¨ BA ´ B

Table 2-1 Wafers in Semiconductor Manufacturing Classified 
by Contamination and Location

Location in Sputtering Tool

Contamination Center Edge Total

Low 514 68 582
High 112 246 358

Total 626 314

(2-1)P1A ´ B2 � P1A2 � P1B2 � P1A � B2

EXAMPLE 2-14 The wafers such as those described in Example 2-13 were further classified as either in the
“center’’ or at the “edge’’ of the sputtering tool that was used in manufacturing, and by the
degree of contamination. Table 2-2 shows the proportion of wafers in each category. What is
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If A and B are mutually exclusive events, 

(2-2)P1A ´  B2 � P1A2 � P1B2

34 CHAPTER 2 PROBABILITY

the probability that a wafer was either at the edge or that it contains four or more particles? Let
E1 denote the event that a wafer contains four or more particles, and let E2 denote the event
that a wafer is at the edge.

The requested probability is . Now, and . Also,
from the table, . Therefore, using Equation 2-1, we find that

What is the probability that a wafer contains less than two particles or that it is both at the
edge and contains more than four particles? Let E1 denote the event that a wafer contains less
than two particles, and let E2 denote the event that a wafer is both from the edge and contains
more than four particles. The requested probability is . Now, and

. Also, E1 and E2 are mutually exclusive. Consequently, there are no wafers in
the intersection and . Therefore,

Recall that two events A and B are said to be mutually exclusive if . Then,
, and the general result for the probability of simplifies to the third ax-

iom of probability.
A ´ BP1A ¨ B2 � 0

A ¨ B � 	

P1E1 ´ E22 � 0.60 � 0.03 � 0.63

P1E1 ¨ E22 � 0
P1E22 � 0.03

P1E12 � 0.60P1E1 ´ E22

P1E1 ´ E22 � 0.15 � 0.28 � 0.04 � 0.39

P1E1 ¨ E22 � 0.04
P1E22 � 0.28P1E12 � 0.15P1E1 ´ E22

Table 2-2 Wafers Classified by Contamination and Location

Number of
Contamination

Particles Center Edge Totals

0 0.30 0.10 0.40
1 0.15 0.05 0.20
2 0.10 0.05 0.15
3 0.06 0.04 0.10
4 0.04 0.01 0.05
5 or more 0.07 0.03 0.10

Totals 0.72 0.28 1.00

Three or More Events
More complicated probabilities, such as , can be determined by repeated use
of Equation 2-1 and by using some basic set operations. For example,

P1A ´ B ´ C2 � P 3 1A ´ B2 ´ C 4 � P1A ´ B2 � P1C2 � P 3 1A ´ B2 ¨ C 4

P1A ´  B ´  C2
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2-3 ADDITION RULES 35

Upon expanding by Equation 2-1 and using the distributed rule for set opera-
tions to simplify , we obtain

We have developed a formula for the probability of the union of three events. Formulas can be
developed for the probability of the union of any number of events, although the formulas
become very complex. As a summary, for the case of three events

� P1B ¨ C2 � P1A ¨ B ¨ C2 � P1A2 � P1B2 � P1C2 � P1A ¨ B2 � P1A ¨ C2� 3P1A ¨ C2 � P1B ¨ C2 � P1A ¨ B ¨ C2 4
 � P1A2 � P1B2 � P1A ¨ B2 � P1C2P1A ´ B ´ C2 � P1A2 � P1B2 � P1A ¨ B2 � P1C2 � P 3 1A ¨ C2 ´ 1B ¨ C2 4

P 3 1A ´ B2 ¨ C 4P1A ´ B2

Results for three or more events simplify considerably if the events are mutually exclu-
sive. In general, a collection of events, is said to be mutually exclusive if there
is no overlap among any of them.

The Venn diagram for several mutually exclusive events is shown in Fig. 2-11. By gener-
alizing the reasoning for the union of two events, the following result can be obtained:

E1, E2, p , Ek,

(2-3)� P1A ¨ C2 � P1B ¨ C2 � P1A ¨ B ¨ C2P1A ´ B ´ C2 � P1A2 � P1B2 � P1C2 � P1A ¨ B2

E1

E2

E3

E4

Figure 2-11 Venn
diagram of four mutu-
ally exclusive events.

A collection of events, is said to be mutually exclusive if for all pairs,

For a collection of mutually exclusive events,

(2-4)P1E1 ´ E2 ´ p ´ Ek2 � P1E12 � P1E22 � p P1Ek2

Ei ¨ Ej � 	

E1, E2, p , Ek,

EXAMPLE 2-15 A simple example of mutually exclusive events will be used quite frequently. Let X denote the
pH of a sample. Consider the event that X is greater than 6.5 but less than or equal to 7.8. This
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36 CHAPTER 2 PROBABILITY

probability is the sum of any collection of mutually exclusive events with union equal to the
same range for X. One example is

Another example is

The best choice depends on the particular probabilities available.

EXERCISES FOR SECTION 2-3

� P17.1 � X � 7.42 � P17.4 � X � 7.82P16.5 � X � 7.82 � P16.5 � X � 6.62 � P16.6 � X � 7.12

P16.5 � X � 7.82 � P16.5 � X � 7.02 � P17.0 � X � 7.52 � P17.5 � X � 7.82

2-49. If , and 
determine the following probabilities:
(a) (b)
(c) (d)
(e) (f)

2-50. If A, B, and C are mutually exclusive events with
and determine the fol-

lowing probabilities:
(a) (b)
(c) (d)
(e)

2-51. If A, B, and C are mutually exclusive events, is it pos-
sible for P(A) � 0.3, P(B) � 0.4, and P(C) � 0.5? Why or
why not?

2-52. Disks of polycarbonate plastic from a supplier are an-
alyzed for scratch and shock resistance. The results from 100
disks are summarized as follows:

shock resistance

high low

scratch high 70 9

resistance low 16 5

(a) If a disk is selected at random, what is the probability that
its scratch resistance is high and its shock resistance is
high?

(b) If a disk is selected at random, what is the probability
that its scratch resistance is high or its shock resistance
is high?

(c) Consider the event that a disk has high scratch resistance
and the event that a disk has high shock resistance. Are
these two events mutually exclusive?

2-53. The analysis of shafts for a compressor is summarized
by conformance to specifications.

roundness conforms

yes no

surface finish yes 345 5

conforms no 12 8

P1A¿ ¨ B¿ ¨ C¿ 2
P 3 1A ´ B2 ¨ C 4P1A ¨ B2
P1A ¨ B ¨ C2P1A ´ B ´ C2

P 1C 2 � 0.4,P 1B2 � 0.3,P 1A2 � 0.2,

P1A¿ ´ B2P 3 1A ´ B2 ¿ 4
P1A ¨ B¿ 2P1A¿ ¨ B2
P1A ´ B2P1A¿ 2

P 1A ¨ B2 � 0.1,P 1B2 � 0.2,P 1A2 � 0.3 (a) If a shaft is selected at random, what is the probability that
the shaft conforms to surface finish requirements?

(b) What is the probability that the selected shaft conforms
to surface finish requirements or to roundness require-
ments?

(c) What is the probability that the selected shaft either con-
forms to surface finish requirements or does not conform
to roundness requirements?

(d) What is the probability that the selected shaft conforms to
both surface finish and roundness requirements?

2-54. Cooking oil is produced in two main varieties: mono-
and polyunsaturated. Two common sources of cooking oil are
corn and canola. The following table shows the number of
bottles of these oils at a supermarket:

type of oil

canola corn

type of mono 7 13

unsaturation poly 93 77

(a) If a bottle of oil is selected at random, what is the proba-
bility that it belongs to the polyunsaturated category?

(b) What is the probability that the chosen bottle is monoun-
saturated canola oil?

2-55. A manufacturer of front lights for automobiles tests
lamps under a high humidity, high temperature environment
using intensity and useful life as the responses of interest. The
following table shows the performance of 130 lamps:

useful life

satisfactory unsatisfactory

intensity satisfactory 117 3

unsatisfactory 8 2

(a) Find the probability that a randomly selected lamp will
yield unsatisfactory results under any criteria.

(b) The customers for these lamps demand 95% satisfactory
results. Can the lamp manufacturer meet this demand?

2-56. The shafts in Exercise 2-53 are further classified in terms
of the machine tool that was used for manufacturing the shaft.
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2-4 CONDITIONAL PROBABILITY 37

Tool 1

roundness conforms

yes no

surface finish yes 200 1

conforms no 4 2

Tool 2

roundness conforms

yes no

surface finish yes 145 4

conforms no 8 6

(a) If a shaft is selected at random, what is the probability that
the shaft conforms to surface finish requirements or to
roundness requirements or is from Tool 1?

(b) If a shaft is selected at random, what is the probability that
the shaft conforms to surface finish requirements or does
not conform to roundness requirements or is from Tool 2?

(c) If a shaft is selected at random, what is the probability that
the shaft conforms to both surface finish and roundness
requirements or the shaft is from Tool 2?

(d) If a shaft is selected at random, what is the probability that
the shaft conforms to surface finish requirements or the
shaft is from Tool 2?

2-4 CONDITIONAL PROBABILITY

A digital communication channel has an error rate of one bit per every thousand transmitted.
Errors are rare, but when they occur, they tend to occur in bursts that affect many consecutive
bits. If a single bit is transmitted, we might model the probability of an error as 1�1000.
However, if the previous bit was in error, because of the bursts, we might believe that the
probability that the next bit is in error is greater than 1�1000.

In a thin film manufacturing process, the proportion of parts that are not acceptable is 2%.
However, the process is sensitive to contamination problems that can increase the rate of parts
that are not acceptable. If we knew that during a particular shift there were problems with the
filters used to control contamination, we would assess the probability of a part being unac-
ceptable as higher than 2%.

In a manufacturing process, 10% of the parts contain visible surface flaws and 25% of the
parts with surface flaws are (functionally) defective parts. However, only 5% of parts without
surface flaws are defective parts. The probability of a defective part depends on our knowl-
edge of the presence or absence of a surface flaw.

These examples illustrate that probabilities need to be reevaluated as additional informa-
tion becomes available. The notation and details are further illustrated for this example.

Let D denote the event that a part is defective and let F denote the event that a part has a
surface flaw. Then, we denote the probability of D given, or assuming, that a part has a sur-
face flaw as . This notation is read as the conditional probability of D given F, and it
is interpreted as the probability that a part is defective, given that the part has a surface flaw.
Because 25% of the parts with surface flaws are defective, our conclusion can be stated as

. Furthermore, because denotes the event that a part does not have a surface
flaw and because 5% of the parts without surface flaws are defective, we have that

. These results are shown graphically in Fig. 2-12.P1D ƒ F¿ 2 � 0.05

F¿P1D ƒ F2 � 0.25

P1D ƒ F2

5% defective

P(DF’) = 0.05

F’ = parts without
       surface flaws

25%
defective

P(DF) = 0.25

F = parts with
         surface flaws

Figure 2-12
Conditional probabili-
ties for parts with
surface flaws.
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The conditional probability of an event B given an event A, denoted as , is

(2-5)

for .P1A2 � 0

P1B ƒ A2 � P1A ¨ B2
P1A2
P1B ƒ A2

Definition

38 CHAPTER 2 PROBABILITY

EXAMPLE 2-16 Table 2-3 provides an example of 400 parts classified by surface flaws and as (functionally)
defective. For this table the conditional probabilities match those discussed previously in this
section. For example, of the parts with surface flaws (40 parts) the number defective is 10.
Therefore,

and of the parts without surface flaws (360 parts) the number defective is 18. Therefore,

In Example 2-16 conditional probabilities were calculated directly. These probabilities
can also be determined from the formal definition of conditional probability.

P1D ƒ F¿ 2 � 18
360 � 0.05

P1D ƒ F2 � 10
40 � 0.25

Table 2-3 Parts Classified

Surface Flaws

Yes (event F) No Total

Defective Yes (event D) 10 18 38
No 30 342 362
Total 40 360 400

This definition can be understood in a special case in which all outcomes of a random exper-
iment are equally likely. If there are n total outcomes, 

Also,

Consequently,

P 1A ¨ B2
P1A2 �
number of outcomes in A ¨ B

number of outcomes in A

P 1A ¨ B2 � 1number of outcomes in A ¨ B2
n

P 1A2 � 1number of outcomes in A2
n
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2-4 CONDITIONAL PROBABILITY 39

Therefore, can be interpreted as the relative frequency of event B among the trials that
produce an outcome in event A.

EXAMPLE 2-17 Again consider the 400 parts in Table 2-3. From this table

Note that in this example all four of the following probabilities are different:

Here, P(D) and are probabilities of the same event, but they are computed under two
different states of knowledge. Similarly, P(F) and are computed under two different
states of knowledge.

The tree diagram in Fig. 2-13 can also be used to display conditional probabilities. The
first branch is on surface flaw. Of the 40 parts with surface flaws, 10 are functionally defec-
tive and 30 are not. Therefore,

Of the 360 parts without surface flaws, 18 are functionally defective and 342 are not. Therefore,

Random Samples from a Batch
Recall that to select one item randomly from a batch implies that each item is equally likely.
If more than one item is selected, randomly implies that each element of the sample space is
equally likely. For example, when sample spaces were presented earlier in this chapter, sam-
pling with and without replacement were defined and illustrated for the simple case of a batch
with three items {a, b, c}. If two items are selected randomly from this batch without replace-
ment, each of the six outcomes in the ordered sample space

has probability . If the unordered sample space is used, each of the three outcomes in
{{a, b}, {a, c}, {b, c}} has probability .1
3

1
6

Swithout � 5ab, ac, ba, bc, ca, cb6

P1D ƒ F¿ 2 � 342
360  and  P1D¿ ƒ F¿ 2 � 18
360

P1D ƒ F2 � 10
40  and  P1D¿ ƒ F2 � 30
40

P1F ƒ D2P1D ƒ F2
P1D2 � 28
400  P1D ƒ F2 � 10
40

P1F2 � 40
400  P1F ƒ D2 � 10
28

P1D ƒ F2 � P1D ¨ F2
P1F2 �
10

400^ 40
400

�
10
40

P1B ƒ A2

Surface flaw

No Yes

No Yes No Yes

Defective

360
400

40
400

342
360

18
360

30
40

10
40

Figure 2-13 Tree
diagram for parts
classified
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40 CHAPTER 2 PROBABILITY

What is the conditional probability that b is selected second given that a is selected
first? Because this question considers the results of each pick, the ordered sample space is
used. The definition of conditional probability is applied as follows. Let E1 denote the
event that the first item selected is a and let E2 denote the event that the second item se-
lected is b. Then,

and from the definition of conditional probability

When the sample space is larger, an alternative calculation is usually more convenient.
For example, suppose that a batch contains 10 parts from tool 1 and 40 parts from tool 2. If
two parts are selected randomly, without replacement, what is the conditional probability that
a part from tool 2 is selected second given that a part from tool 1 is selected first? There are
50 possible parts to select first and 49 to select second. Therefore, the (ordered) sample space
has outcomes. Let E1 denote the event that the first part is from tool 1 and E2

denote the event that the second part is from tool 2. As above, a count of the number of out-
comes in E1 and the intersection is needed.

Although the answer can be determined from this start, this type of question can be
answered more easily with the following result.

50 � 49 � 2450

P1E2 ƒ E12 � P1E1 ¨ E22
P1E12 �
1
6
1
3

� 1
2

E1 � 5ab, ac6  and  E2 � 5ab, cb6  and  E1 ¨ E2 � 5ab6

To select randomly implies that at each step of the sample, the items that remain in
the batch are equally likely to be selected.

If a part from tool 1 were selected with the first pick, 49 items would remain, 9 from tool 1 and
40 from tool 2, and they would be equally likely to be picked. Therefore, the probability that
a part from tool 2 would be selected with the second pick given this first pick is

In this manner, other probabilities can also be simplified. For example, let the event E
consist of the outcomes with the first selected part from tool 1 and the second part from tool 2.
To determine the probability of E, consider each step. The probability that a part from tool 1
is selected with the first pick is . The conditional probability that a part from
tool 2 is selected with the second pick, given that a part from tool 1 is selected first is

. Therefore,

P1E2 � P 1E2 0
 
E12P1E12 �

40
49

�
10
50

� 0.163

P1E2 ƒ E12 � 40
49

P1E12 � 10
50

P1E2 ƒ E12 � 40
49.
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2-4 CONDITIONAL PROBABILITY 41

Sometimes a partition of the question into successive picks is an easier method to solve the
problem.

EXAMPLE 2-18 A day’s production of 850 manufactured parts contains 50 parts that do not meet customer
requirements. Two parts are selected randomly without replacement from the batch. What is
the probability that the second part is defective given that the first part is defective?

Let A denote the event that the first part selected is defective, and let B denote the event
that the second part selected is defective. The probability needed can be expressed as

If the first part is defective, prior to selecting the second part, the batch contains 849
parts, of which 49 are defective, therefore

EXAMPLE 2-19 Continuing the previous example, if three parts are selected at random, what is the probability
that the first two are defective and the third is not defective? This event can be described in
shorthand notation as simply P(ddn). We have

The third term is obtained as follows. After the first two parts are selected, there are 848
remaining. Of the remaining parts, 800 are not defective. In this example, it is easy to obtain
the solution with a conditional probability for each selection.

EXERCISES FOR SECTION 2-4

P1ddn2 �
50

850
�

49
849

�
800
848

� 0.0032

P1B ƒ A2 � 49
849

P1B ƒ A2.

2-57. Disks of polycarbonate plastic from a supplier are an-
alyzed for scratch and shock resistance. The results from 100
disks are summarized as follows:

shock resistance

high low

scratch high 70 9

resistance low 16 5

Let A denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch resist-
ance. Determine the following probabilities:
(a) P(A) (b) P(B)
(c) (d)

2-58. Samples of a cast aluminum part are classified
on the basis of surface finish (in microinches) and length
measurements. The results of 100 parts are summarized as
follows:

length

excellent good

surface excellent 80 2

finish good 10 8

P1B ƒ A2P1A ƒ B2

Let A denote the event that a sample has excellent surface fin-
ish, and let B denote the event that a sample has excellent
length. Determine:
(a) (b)
(c) (d)
(e) If the selected part has excellent surface finish, what is the

probability that the length is excellent?
(f) If the selected part has good length, what is the probability

that the surface finish is excellent?

2-59. The analysis of shafts for a compressor is summarized
by conformance to specifications:

roundness conforms

yes no

surface finish yes 345 5

conforms no 12 8

(a) If we know that a shaft conforms to roundness require-
ments, what is the probability that it conforms to surface
finish requirements?

(b) If we know that a shaft does not conform to roundness
requirements, what is the probability that it conforms to
surface finish requirements?

P1B ƒ A2P1A ƒ B2
P1B2P1A2
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42 CHAPTER 2 PROBABILITY

2-60. The following table summarizes the analysis of samples
of galvanized steel for coating weight and surface roughness:

coating weight

high low

surface high 12 16

roughness low 88 34

(a) If the coating weight of a sample is high, what is the prob-
ability that the surface roughness is high?

(b) If the surface roughness of a sample is high, what is the
probability that the coating weight is high?

(c) If the surface roughness of a sample is low, what is the
probability that the coating weight is low?

2-61. Consider the data on wafer contamination and loca-
tion in the sputtering tool shown in Table 2-2. Assume that one
wafer is selected at random from this set. Let A denote the
event that a wafer contains four or more particles, and let B
denote the event that a wafer is from the center of the sputter-
ing tool. Determine:
(a) (b)
(c) (d)
(e) (f)

2-62. A lot of 100 semiconductor chips contains 20 that are
defective. Two are selected randomly, without replacement,
from the lot.
(a) What is the probability that the first one selected is defec-

tive?
(b) What is the probability that the second one selected is

defective given that the first one was defective?
(c) What is the probability that both are defective?
(d) How does the answer to part (b) change if chips selected

were replaced prior to the next selection?

2-63. A lot contains 15 castings from a local supplier and 25
castings from a supplier in the next state. Two castings are
selected randomly, without replacement, from the lot of 40.
Let A be the event that the first casting selected is from the
local supplier, and let B denote the event that the second cast-
ing is selected from the local supplier. Determine:
(a) (b)
(c) (d)

2-64. Continuation of Exercise 2-63. Suppose three cast-
ings are selected at random, without replacement, from the lot

of 40. In addition to the definitions of events A and B, let C
denote the event that the third casting selected is from the
local supplier. Determine:
(a)
(b)

2-65. A batch of 500 containers for frozen orange juice con-
tains 5 that are defective. Two are selected, at random, without
replacement from the batch.
(a) What is the probability that the second one selected is

defective given that the first one was defective?
(b) What is the probability that both are defective?
(c) What is the probability that both are acceptable?

2-66. Continuation of Exercise 2-65. Three containers are
selected, at random, without replacement, from the batch.
(a) What is the probability that the third one selected is defec-

tive given that the first and second one selected were
defective?

(b) What is the probability that the third one selected is
defective given that the first one selected was defective
and the second one selected was okay?

(c) What is the probability that all three are defective?

2-67. A maintenance firm has gathered the following infor-
mation regarding the failure mechanisms for air conditioning
systems:

evidence of gas leaks

yes no

evidence of yes 55 17

electrical failure no 32 3

The units without evidence of gas leaks or electrical failure
showed other types of failure. If this is a representative sample
of AC failure, find the probability
(a) That failure involves a gas leak
(b) That there is evidence of electrical failure given that there

was a gas leak
(c) That there is evidence of a gas leak given that there is

evidence of electrical failure

2-68. If , must A � B? Draw a Venn diagram to
explain your answer.

2-69. Suppose A and B are mutually exclusive events.
Construct a Venn diagram that contains the three events A, B,
and C such that and ?P1B ƒ C2 � 0P1A ƒ C2 � 1

P1A ƒ B2 � 1

P1A ¨ B ¨ C¿ 2
P1A ¨ B ¨ C2

P1A ´ B2P1A ¨ B2
P1B ƒ A2P1A2

P1A ´ B2P1A ¨ B2
P1B ƒ A2P1B2
P1A ƒ B2P1A2

2-5 MULTIPLICATION AND TOTAL PROBABILITY RULES

2-5.1 Multiplication Rule

The definition of conditional probability in Equation 2-5 can be rewritten to provide a general
expression for the probability of the intersection of two events. This formula is referred to as
a multiplication rule for probabilities.
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2-5 MULTIPLICATION AND TOTAL PROBABILITY RULES 43

The last expression in Equation 2-6 is obtained by interchanging A and B.

EXAMPLE 2-20 The probability that an automobile battery subject to high engine compartment temperature
suffers low charging current is 0.7. The probability that a battery is subject to high engine
compartment temperature is 0.05.

Let C denote the event that a battery suffers low charging current, and let T denote the
event that a battery is subject to high engine compartment temperature. The probability that a
battery is subject to low charging current and high engine compartment temperature is

2-5.2 Total Probability Rule

The multiplication rule is useful for determining the probability of an event that depends on
other events. For example, suppose that in semiconductor manufacturing the probability is
0.10 that a chip that is subjected to high levels of contamination during manufacturing causes
a product failure. The probability is 0.005 that a chip that is not subjected to high contamina-
tion levels during manufacturing causes a product failure. In a particular production run, 20%
of the chips are subject to high levels of contamination. What is the probability that a product
using one of these chips fails?

Clearly, the requested probability depends on whether or not the chip was exposed to high
levels of contamination. We can solve this problem by the following reasoning. For any event
B, we can write B as the union of the part of B in A and the part of B in . That is,

This result is shown in the Venn diagram in Fig. 2-14. Because A and are mutually exclu-
sive, and are mutually exclusive. Therefore, from the probability of the union
of mutually exclusive events in Equation 2-2 and the Multiplication Rule in Equation 2-6, the
following total probability rule is obtained.

A¿ ¨ BA ¨ B
A¿

B � 1A ¨ B2 ´ 1A¿ ¨ B2
A¿

P1C ¨ T 2 � P1C ƒ T 2P1T 2 � 0.7 � 0.05 � 0.035

A A'

B

B ∩ A
B ∩ A'

Figure 2-14 Partitioning
an event into two mutually
exclusive subsets.

E1

B ∩ E1

E2 E3
E4

B ∩ E2
B ∩ E3

B ∩ E4

B = (B ∩ E1) ∪ (B ∩ E2) ∪ (B ∩ E3) ∪ (B ∩ E4) 

Figure 2-15 Partitioning an event into
several mutually exclusive subsets.

(2-6)P1A ¨ B2 � P1B ƒ A2P1A2 � P1A ƒ B2P1B2
Multiplication Rule
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44 CHAPTER 2 PROBABILITY

EXAMPLE 2-21 Consider the contamination discussion at the start of this section. Let F denote the event
that the product fails, and let H denote the event that the chip is exposed to high levels of
contamination. The requested probability is P(F), and the information provided can be rep-
resented as

From Equation 2-7,

which can be interpreted as just the weighted average of the two probabilities of failure.

The reasoning used to develop Equation 2-7 can be applied more generally. In the devel-
opment of Equation 2-7, we only used the two mutually exclusive A and . However, the fact
that , the entire sample space, was important. In general, a collection of sets

such that is said to be exhaustive. A graphical dis-
play of partitioning an event B among a collection of mutually exclusive and exhaustive
events is shown in Fig. 2-15 on page 43.

E1 ´  E2 ´ p ´ Ek � SE1, E2, p , Ek

A ´ A¿ � S
A¿

P1F2 � 0.1010.202 � 0.00510.802 � 0.0235

 P1H2 � 0.20  and    P1H¿ 2 � 0.80

 P1F ƒ H2 � 0.10  and  P1F ƒ H¿ 2 � 0.005

Assume are k mutually exclusive and exhaustive sets. Then

(2-8) � P1B ƒ E12P1E12 � P1B ƒ E22P1E22 � p � P1B ƒ Ek2P1Ek2
P1B2 � P1B ¨ E12 � P1B ¨ E22 � p � P1B ¨ Ek2

E1, E2, p , Ek

Total Probability
Rule (multiple

events)

EXAMPLE 2-22 Continuing with the semiconductor manufacturing example, assume the following probabili-
ties for product failure subject to levels of contamination in manufacturing:

Probability of Failure Level of Contamination

0.10 High
0.01 Medium
0.001 Low

For any events A and B,

(2-7)P1B2 � P1B ¨ A2 � P1B ¨ A¿ 2 � P1B ƒ A2P1A2 � P1B ƒ A¿ 2P1A¿ 2

Total Probability
Rule (two events)
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2-5 MULTIPLICATION AND TOTAL PROBABILITY RULES 45

In a particular production run, 20% of the chips are subjected to high levels of contami-
nation, 30% to medium levels of contamination, and 50% to low levels of contamination.
What is the probability that a product using one of these chips fails? Let

H denote the event that a chip is exposed to high levels of contamination

M denote the event that a chip is exposed to medium levels of contamination

L denote the event that a chip is exposed to low levels of contamination

Then,

This problem is also conveniently solved using the tree diagram in Fig. 2-16.

EXERCISES FOR SECTION 2-5

 � 0.1010.202 � 0.0110.302 � 0.00110.502 � 0.0235

 P1F2 � P1F ƒ H2P1H2 � P1F ƒ M2P1M2 � P1F ƒ L2P1L2

0.10(0.20)
= 0.02

0.90(0.20)
= 0.18

0.01(0.30)
= 0.003

0.99(0.30)
= 0.297

0.001(0.50)
= 0.0005

0.999(0.50)
= 0.4995

P(Fail) = 0.02 + 0.003 + 0.0005 = 0.0235

Contamination

0.20 0.50

0.30

High Medium Low

P(FailHigh)
= 0.10

P(Not FailHigh)
= 0.90

P(FailMedium)
= 0.01

P(Not FailMedium)
= 0.99

P(FailLow)
= 0.001

P(Not FailLow)
= 0.999

Figure 2-16 Tree
diagram for 
Example 2-22.

2-70. Suppose that and 

Determine the following:
(a)
(b)

2-71. Suppose that and

What is P(A)?

2-72. The probability is 1% that an electrical connector that
is kept dry fails during the warranty period of a portable com-
puter. If the connector is ever wet, the probability of a failure
during the warranty period is 5%. If 90% of the connectors are
kept dry and 10% are wet, what proportion of connectors fail
during the warranty period?

2-73. Suppose 2% of cotton fabric rolls and 3% of nylon
fabric rolls contain flaws. Of the rolls used by a manufacturer,
70% are cotton and 30% are nylon. What is the probability
that a randomly selected roll used by the manufacturer con-
tains flaws?

P1B2 � 0.8.

P1A ƒ B2 � 0.2,   P1A ƒ B¿ 2 � 0.3,

P1A¿ ¨ B2
P1A ¨ B2

P1B2 � 0.5.P1A ƒ B2 � 0.4 2-74. In the manufacturing of a chemical adhesive, 3% of
all batches have raw materials from two different lots. This
occurs when holding tanks are replenished and the remaining
portion of a lot is insufficient to fill the tanks.

Only 5% of batches with material from a single lot require
reprocessing. However, the viscosity of batches consisting of
two or more lots of material is more difficult to control, and
40% of such batches require additional processing to achieve
the required viscosity.

Let A denote the event that a batch is formed from
two different lots, and let B denote the event that a lot
requires additional processing. Determine the following
probabilities:
(a) (b)
(c) (d)
(e) (f)
(g) P1B2

P1A ¨ B¿ 2P1A ¨ B2
P1B ƒ A¿ 2P1B ƒ A2
P1A¿ 2P1A2
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46 CHAPTER 2 PROBABILITY

2-6 INDEPENDENCE

In some cases, the conditional probability of might equal P(B). In this special case,
knowledge that the outcome of the experiment is in event A does not affect the probability that
the outcome is in event B.

EXAMPLE 2-23 Suppose a day’s production of 850 manufactured parts contains 50 parts that do not meet
customer requirements. Suppose two parts are selected from the batch, but the first part is
replaced before the second part is selected. What is the probability that the second part is
defective (denoted as B) given that the first part is defective (denoted as A)? The probability
needed can be expressed as 

Because the first part is replaced prior to selecting the second part, the batch still contains
850 parts, of which 50 are defective. Therefore, the probability of B does not depend on
whether or not the first part was defective. That is,

Also, the probability that both parts are defective is

P1A ¨ B2 � P1B 0 A2P1A2 � a 50
850
b � a 50

850
b � 0.0035

P1B ƒ A2 � 50
850

P1B ƒ A2.

P1B ƒ A2

2-75. The edge roughness of slit paper products increases as
knife blades wear. Only 1% of products slit with new blades
have rough edges, 3% of products slit with blades of average
sharpness exhibit roughness, and 5% of products slit with
worn blades exhibit roughness. If 25% of the blades in manu-
facturing are new, 60% are of average sharpness, and 15% are
worn, what is the proportion of products that exhibit edge
roughness?

2-76. Samples of laboratory glass are in small, light pack-
aging or heavy, large packaging. Suppose that 2 and 1% of
the sample shipped in small and large packages, respec-
tively, break during transit. If 60% of the samples are
shipped in large packages and 40% are shipped in small
packages, what proportion of samples break during
shipment?

2-77. Incoming calls to a customer service center are classi-
fied as complaints (75% of call) or requests for information
(25% of calls). Of the complaints, 40% deal with computer
equipment that does not respond and 57% deal with
incomplete software installation; and in the remaining 3% of
complaints the user has improperly followed the installation
instructions. The requests for information are evenly divided
on technical questions (50%) and requests to purchase more
products (50%).
(a) What is the probability that an incoming call to the cus-

tomer service center will be from a customer who has not
followed installation instructions properly?

(b) Find the probability that an incoming call is a request for
purchasing more products.

2-78. Computer keyboard failures are due to faulty electri-
cal connects (12%) or mechanical defects (88%). Mechanical
defects are related to loose keys (27%) or improper assembly
(73%). Electrical connect defects are caused by defective
wires (35%), improper connections (13%), or poorly welded
wires (52%).
(a) Find the probability that a failure is due to loose keys.
(b) Find the probability that a failure is due to improperly

connected or poorly welded wires.

2-79. A batch of 25 injection-molded parts contains 5 that
have suffered excessive shrinkage.
(a) If two parts are selected at random, and without replace-

ment, what is the probability that the second part selected
is one with excessive shrinkage?

(b) If three parts are selected at random, and without replace-
ment, what is the probability that the third part selected is
one with excessive shrinkage?

2-80. A lot of 100 semiconductor chips contains 20 that are
defective.
(a) Two are selected, at random, without replacement, from

the lot. Determine the probability that the second chip se-
lected is defective.

(b) Three are selected, at random, without replacement,
from the lot. Determine the probability that all are
defective.
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2-6 INDEPENDENCE 47

EXAMPLE 2-24 The information in Table 2-3 related surface flaws to functionally defective parts. In that case,
we determined that and Suppose that the
situation is different and follows Table 2-4. Then,

That is, the probability that the part is defective does not depend on whether it has surface
flaws. Also,

so the probability of a surface flaw does not depend on whether the part is defective.
Furthermore, the definition of conditional probability implies that

but in the special case of this problem

The preceding example illustrates the following conclusions. In the special case that
we obtain

and

These conclusions lead to an important definition.

P1A ƒ B2 �
P1A ¨ B2

P1B2 �
P1A2P1B2

P1B2 � P1A2

P1A ¨ B2 � P1B ƒ A2P1A2 � P1B2P1A2
P1B 0 A2 � P1B2,

P1F ¨ D2 � P1D2P1F2 �
2

40
�

2
20

�
1

200

P1F ¨ D2 � P1D ƒ F2P1F2

P1F ƒ D2 � 2
20 � 0.10  and  P1F2 � 40
400 � 0.10

P1D ƒ F2 � 2
40 � 0.05  and  P1D2 � 20
400 � 0.05

P1D2 � 28
400 � 0.07.P1D ƒ F2 � 10
40 � 0.25

Table 2-4 Parts Classified

Surface Flaws

Yes (event F) No Total

Defective Yes (event D) 2 18 20
No 38 342 380
Total 40 360 400

Two events are independent if any one of the following equivalent statements is true:

(1)

(2)

(3) (2-9)P1A ¨ B2 � P1A2P1B2
P1B ƒ A2 � P1B2
P1A ƒ B2 � P1A2

Definition
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48 CHAPTER 2 PROBABILITY

It is left as a mind-expanding exercise to show that independence implies related results
such as 

The concept of independence is an important relationship between events and is used
throughout this text. A mutually exclusive relationship between two events is based only on
the outcomes that comprise the events. However, an independence relationship depends on the
probability model used for the random experiment. Often, independence is assumed to be part
of the random experiment that describes the physical system under study.

EXAMPLE 2-25 A day’s production of 850 manufactured parts contains 50 parts that do not meet customer
requirements. Two parts are selected at random, without replacement, from the batch. Let A
denote the event that the first part is defective, and let B denote the event that the second part
is defective.

We suspect that these two events are not independent because knowledge that the first
part is defective suggests that it is less likely that the second part selected is defective. Indeed,

Now, what is P(B)? Finding the unconditional P(B) is somewhat difficult
because the possible values of the first selection need to be considered:

Interestingly, P(B), the unconditional probability that the second part selected is defec-
tive, without any knowledge of the first part, is the same as the probability that the first part
selected is defective. Yet, our goal is to assess independence. Because does not equal
P(B), the two events are not independent, as we suspected.

When considering three or more events, we can extend the definition of independence
with the following general result.

P1B ƒ A2

 � 50�850
 � 149�8492 150�8502 � 150�8492 1800�8502

 P1B2 � P1B ƒ A2P1A2 � P1B ƒ A¿ 2P1A¿ 2

P1B ƒ A2 � 49�849.

P1A¿ ¨ B¿ 2 � P1A¿ 2P1B¿ 2.

The events E1, E2 are independent if and only if for any subset of these
events 

(2-10)P1Ei1 ¨ Ei2 ¨ p ¨ Eik2 � P1Ei12 � P1Ei22 � p � P1Eik2

Ei1, Ei2, p , Eik,
, p , En

Definition

This definition is typically used to calculate the probability that several events occur assuming
that they are independent and the individual event probabilities are known. The knowledge
that the events are independent usually comes from a fundamental understanding of the ran-
dom experiment.

EXAMPLE 2-26 Assume that the probability that a wafer contains a large particle of contamination is 0.01 and
that the wafers are independent; that is, the probability that a wafer contains a large particle is
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2-6 INDEPENDENCE 49

not dependent on the characteristics of any of the other wafers. If 15 wafers are analyzed, what
is the probability that no large particles are found?

Let Ei denote the event that the ith wafer contains no large particles, 
Then, The probability requested can be represented as
From the independence assumption and Equation 2-10,

EXAMPLE 2-27 The following circuit operates only if there is a path of functional devices from left to right.
The probability that each device functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

P1E1 ¨ E2 ¨  p ¨ E152 � P1E12 � P1E22 � p � P1E152 � 0.9915 � 0.86

P1E1 ¨ E2 ¨  
p ¨ E152.P1Ei2 � 0.99.

i � 1, 2, p , 15.

0.95

0.95

a b

Let T and B denote the events that the top and bottom devices operate, respectively. There
is a path if at least one device operates. The probability that the circuit operates is

a simple formula for the solution can be derived from the complements and From the
independence assumption,

so

EXAMPLE 2-28 The following circuit operates only if there is a path of functional devices from left to right.
The probability that each device functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

P1T or B2 � 1 � 0.052 � 0.9975

P1T¿ and B¿ 2 � P1T¿ 2P1B¿ 2 � 11 � 0.9522 � 0.052

B¿.T¿

P1T or B2 � 1 � P 3 1T or B2 ¿ 4 � 1 � P1T¿ and B¿ 2

0.9

0.9

0.95

0.95

0.9 0.99a b
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50 CHAPTER 2 PROBABILITY

The solution can be obtained from a partition of the graph into three columns.
The probability that there is a path of functional devices only through the three units on the
left can be determined from the independence in a manner similar to the previous example.
It is

Similarly, the probability that there is a path of functional devices only through the two units
in the middle is

The probability that there is a path of functional devices only through the one unit on the right
is simply the probability that the device functions, namely, 0.99. Therefore, with the inde-
pendence assumption used again, the solution is

EXERCISES FOR SECTION 2-6

11 � 0.132 11 � 0.0522 10.992 � 0.987

1 � 0.052

1 � 0.13

2-81. If and are
the events A and B independent?

2-82. If and are
the events B and the complement of A independent?

2-83. Disks of polycarbonate plastic from a supplier are an-
alyzed for scratch and shock resistance. The results from 100
disks are summarized as follows:

shock resistance

high low

scratch high 70 9

resistance low 16 5

Let A denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch resist-
ance. Are events A and B independent?

2-84. Samples of a cast aluminum part are classified on the
basis of surface finish (in microinches) and length measure-
ments. The results of 100 parts are summarized as follows:

length

excellent good

surface excellent 80 2

finish good 10 8

Let A denote the event that a sample has excellent surface fin-
ish, and let B denote the event that a sample has excellent
length. Are events A and B independent?

2-85. Samples of emissions from three suppliers are classi-
fied for conformance to air-quality specifications. The results
from 100 samples are summarized as follows:

conforms

yes no

1 22 8

supplier 2 25 5

3 30 10

Let A denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
(a) Are events A and B independent?
(b) Determine 

2-86. If and A and B are mutually
exclusive, are they independent?

2-87. The probability that a lab specimen contains high lev-
els of contamination is 0.10. Five samples are checked, and
the samples are independent.
(a) What is the probability that none contains high levels of

contamination?
(b) What is the probability that exactly one contains high

levels of contamination?
(c) What is the probability that at least one contains high

levels of contamination?

2-88. In a test of a printed circuit board using a random test
pattern, an array of 10 bits is equally likely to be 0 or 1.
Assume the bits are independent.
(a) What is the probability that all bits are 1s?
(b) What is the probability that all bits are 0s?
(c) What is the probability that exactly five bits are 1s and five

bits are 0s?

2-89. Eight cavities in an injection-molding tool produce
plastic connectors that fall into a common stream. A sample is

P1A2 � 0.2, P1B2 � 0.2,

P1B ƒ A2.

P1A2 � 0.3,P1A ƒ B2 � 0.3,  P1B2 � 0.8,

P1A2 � 0.5,P1A ƒ B2 � 0.4,  P1B2 � 0.8,
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2-7 BAYES’ THEOREM 51

chosen every several minutes. Assume that the samples are
independent.
(a) What is the probability that five successive samples were

all produced in cavity one of the mold?
(b) What is the probability that five successive samples were

all produced in the same cavity of the mold?
(c) What is the probability that four out of five successive

samples were produced in cavity one of the mold?

2-90. The following circuit operates if and only if there is a
path of functional devices from left to right. The probability
that each device functions is as shown. Assume that the prob-
ability that a device is functional does not depend on whether
or not other devices are functional. What is the probability that
the circuit operates?

2-91. The following circuit operates if and only if there is a
path of functional devices from left to right. The probability
each device functions is as shown. Assume that the probabil-
ity that a device functions does not depend on whether or not

other devices are functional. What is the probability that the
circuit operates?

2-92. An optical storage device uses an error recovery proce-
dure that requires an immediate satisfactory readback of any
written data. If the readback is not successful after three writing
operations, that sector of the disk is eliminated as unacceptable
for data storage. On an acceptable portion of the disk, the proba-
bility of a satisfactory readback is 0.98. Assume the readbacks
are independent. What is the probability that an acceptable por-
tion of the disk is eliminated as unacceptable for data storage?

2-93. A batch of 500 containers for frozen orange juice con-
tains 5 that are defective. Two are selected, at random, without
replacement, from the batch. Let A and B denote the events
that the first and second container selected is defective, re-
spectively.
(a) Are A and B independent events?
(b) If the sampling were done with replacement, would A and

B be independent?

0.95

0.9

0.95

0.9

0.9

0.8

0.95

0.9

0.95

0.8

0.95

0.7

2-7 BAYES’ THEOREM

In some examples, we do not have a complete table of information such as the parts in Table
2-3. We might know one conditional probability but would like to calculate a different one. In
the semiconductor contamination problem in Example 2-22, we might ask the following: If
the semiconductor chip in the product fails, what is the probability that the chip was exposed
to high levels of contamination?

From the definition of conditional probability,

Now considering the second and last terms in the expression above, we can write

P1A ¨ B2 � P1A ƒ B2P1B2 � P1B ¨ A2 � P1B ƒ A2P1A2

(2-11)P1A ƒ B2 �
P 1B ƒ A2P1A2

P1B2  for P1B2 � 0

This is a useful result that enables us to solve for in terms of P1B ƒ A2.P1A ƒ B2
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52 CHAPTER 2 PROBABILITY

EXAMPLE 2-30 Because a new medical procedure has been shown to be effective in the early detection of an
illness, a medical screening of the population is proposed. The probability that the test cor-
rectly identifies someone with the illness as positive is 0.99, and the probability that the test
correctly identifies someone without the illness as negative is 0.95. The incidence of the
illness in the general population is 0.0001. You take the test, and the result is positive. What is
the probability that you have the illness?

Let D denote the event that you have the illness, and let S denote the event that the test
signals positive. The probability requested can be denoted as . The probability that the
test correctly signals someone without the illness as negative is 0.95. Consequently, the prob-
ability of a positive test without the illness is

From Bayes’ Theorem,

Surprisingly, even though the test is effective, in the sense that is high and
is low, because the incidence of the illness in the general population is low, the

chances are quite small that you actually have the disease even if the test is positive.
P1S ƒ D¿ 2

P1S 0D2
 � 1
506 � 0.002

 � 0.9910.00012
 30.9910.00012 � 0.0511 � 0.00012 4
 P1D ƒ S2 � P1S ƒ D2P1D2
 3P1S ƒ D2P1D2 � P1S ƒ D¿ 2P1D¿ 2 4

P1S ƒ D¿ 2 � 0.05

P1D ƒ S2

EXAMPLE 2-29 We can answer the question posed at the start of this section as follows: The probability
requested can be expressed as Then,

The value of P(F) in the denominator of our solution was found in Example 2-20.

In general, if P(B) in the denominator of Equation 2-11 is written using the Total
Probability Rule in Equation 2-8, we obtain the following general result, which is known as
Bayes’Theorem.

P1H ƒ F2 �
P1F ƒ H2P1H2

P1F2 �
0.1010.202

0.0235
� 0.85

P1H 0 F2.

If are k mutually exclusive and exhaustive events and B is any 
event,

(2-12)

for P1B2 � 0

P1E1 ƒ B2 �
P1B ƒ E12P1E12

P1B ƒ E12P1E12 � P1B ƒ E22P1E22 � p � P1B ƒ Ek2P1Ek2 

E1, E2, p , Ek

Bayes’
Theorem
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2-8 RANDOM VARIABLES 53

EXERCISES FOR SECTION 2-7

2-94. Suppose that and

Determine 

2-95. Software to detect fraud in consumer phone cards
tracks the number of metropolitan areas where calls origi-
nate each day. It is found that 1% of the legitimate users
originate calls from two or more metropolitan areas in a
single day. However, 30% of fraudulent users originate
calls from two or more metropolitan areas in a single day.
The proportion of fraudulent users is 0.01%. If the
same user originates calls from two or more metropolitan
areas in a single day, what is the probability that the user is
fraudulent?

2-96. Semiconductor lasers used in optical storage products
require higher power levels for write operations than for read
operations. High-power-level operations lower the useful life
of the laser.

Lasers in products used for backup of higher speed mag-
netic disks primarily write, and the probability that the useful
life exceeds five years is 0.95. Lasers that are in products that
are used for main storage spend approximately an equal
amount of time reading and writing, and the probability that
the useful life exceeds five years is 0.995. Now, 25% of the
products from a manufacturer are used for backup and 75% of
the products are used for main storage.

Let A denote the event that a laser’s useful life exceeds five
years, and let B denote the event that a laser is in a product that
is used for backup.

Use a tree diagram to determine the following:
(a) (b)
(c) (d)
(e) (f)
(g) What is the probability that the useful life of a laser

exceeds five years?
(h) What is the probability that a laser that failed before five

years came from a product used for backup?

2-97. Customers are used to evaluate preliminary product
designs. In the past, 95% of highly successful products
received good reviews, 60% of moderately successful prod-

ucts received good reviews, and 10% of poor products
received good reviews. In addition, 40% of products have
been highly successful, 35% have been moderately
successful, and 25% have been poor products.
(a) What is the probability that a product attains a good

review?
(b) If a new design attains a good review, what is the proba-

bility that it will be a highly successful product?
(c) If a product does not attain a good review, what is the

probability that it will be a highly successful product?

2-98. An inspector working for a manufacturing company
has a 99% chance of correctly identifying defective items and
a 0.5% chance of incorrectly classifying a good item as defec-
tive. The company has evidence that its line produces 0.9% of
nonconforming items.
(a) What is the probability that an item selected for inspection

is classified as defective?
(b) If an item selected at random is classified as nondefective,

what is the probability that it is indeed good?

2-99. A new analytical method to detect pollutants in water
is being tested. This new method of chemical analysis is im-
portant because, if adopted, it could be used to detect three dif-
ferent contaminants—organic pollutants, volatile solvents,
and chlorinated compounds—instead of having to use a single
test for each pollutant. The makers of the test claim that it can
detect high levels of organic pollutants with 99.7% accuracy,
volatile solvents with 99.95% accuracy, and chlorinated com-
pounds with 89.7% accuracy. If a pollutant is not present, the
test does not signal. Samples are prepared for the calibration
of the test and 60% of them are contaminated with organic
pollutants, 27% with volatile solvents, and 13% with traces of
chlorinated compounds.

A test sample is selected randomly.
(a) What is the probability that the test will signal?
(b) If the test signals, what is the probability that chlori-

nated compounds are present?

P1A2P1A ¨ B¿ 2
P1A ¨ B2P1A ƒ B¿ 2
P1A ƒ B2P1B2

P1B ƒ A2.P1B2 � 0.2.

P1A ƒ B2 � 0.7, P1A2 � 0.5,

2-8 RANDOM VARIABLES

We often summarize the outcome from a random experiment by a simple number. In many
of the examples of random experiments that we have considered, the sample space has
been a description of possible outcomes. In some cases, descriptions of outcomes are suf-
ficient, but in other cases, it is useful to associate a number with each outcome in the sam-
ple space. Because the particular outcome of the experiment is not known in advance, the
resulting value of our variable is not known in advance. For this reason, the variable that
associates a number with the outcome of a random experiment is referred to as a random
variable.
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54 CHAPTER 2 PROBABILITY

Sometimes a measurement (such as current in a copper wire or length of a machined part)
can assume any value in an interval of real numbers (at least theoretically). Then arbitrary pre-
cision in the measurement is possible. Of course, in practice, we might round off to the nearest
tenth or hundredth of a unit. The random variable that represents this measurement is said to
be a continuous random variable. The range of the random variable includes all values in an
interval of real numbers; that is, the range can be thought of as a continuum.

In other experiments, we might record a count such as the number of transmitted bits that
are received in error. Then the measurement is limited to integers. Or we might record that a
proportion such as 0.0042 of the 10,000 transmitted bits were received in error. Then the
measurement is fractional, but it is still limited to discrete points on the real line. Whenever
the measurement is limited to discrete points on the real line, the random variable is said to be
a discrete random variable.

A random variable is a function that assigns a real number to each outcome in the
sample space of a random experiment.

A random variable is denoted by an uppercase letter such as X. After an experi-
ment is conducted, the measured value of the random variable is denoted by a low-
ercase letter such as milliamperes.x � 70

Definition

A discrete random variable is a random variable with a finite (or countably infinite)
range.
A continuous random variable is a random variable with an interval (either finite or
infinite) of real numbers for its range.

Definition

In some cases, the random variable X is actually discrete but, because the range of possible
values is so large, it might be more convenient to analyze X as a continuous random variable. For
example, suppose that current measurements are read from a digital instrument that displays the
current to the nearest one-hundredth of a milliampere. Because the possible measurements are
limited, the random variable is discrete. However, it might be a more convenient, simple approx-
imation to assume that the current measurements are values of a continuous random variable.

Examples of continuous random variables:
electrical current, length, pressure, temperature, time, voltage, weight

Examples of discrete random variables:
number of scratches on a surface, proportion of defective parts among 1000
tested, number of transmitted bits received in error.

Examples of
Random

Variables

EXERCISES FOR SECTION 2-8

2-100. Decide whether a discrete or continuous random
variable is the best model for each of the following vari-
ables:
(a) The time until a projectile returns to earth.

(b) The number of times a transistor in a computer memory
changes state in one operation.

(c) The volume of gasoline that is lost to evaporation during
the filling of a gas tank.
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2-8 RANDOM VARIABLES 55

(d) The outside diameter of a machined shaft.
(e) The number of cracks exceeding one-half inch in 10 miles

of an interstate highway.
(f) The weight of an injection-molded plastic part.
(g) The number of molecules in a sample of gas.
(h) The concentration of output from a reactor.
(i) The current in an electronic circuit.

Supplemental Exercises

2-101. In circuit testing of printed circuit boards, each
board either fails or does not fail the test. A board that fails the
test is then checked further to determine which one of five de-
fect types is the primary failure mode. Represent the sample
space for this experiment.

2-102. The data from 200 machined parts are summarized
as follows:

depth of bore

above below
edge condition target target

coarse 15 10

moderate 25 20

smooth 50 80

(a) What is the probability that a part selected has a moderate
edge condition and a below-target bore depth?

(b) What is the probability that a part selected has a moderate
edge condition or a below-target bore depth?

(c) What is the probability that a part selected does not have a
moderate edge condition or does not have a below-target
bore depth?

(d) Construct a Venn diagram representation of the events in
this sample space.

2-103. Computers in a shipment of 100 units contain a
portable hard drive, CD RW drive, or both according to the
following table:

portable hard drive

yes no
CD RW

yes 15 80

no 4 1

Let A denote the events that a computer has a portable hard
drive and let B denote the event that a computer has a CD RW
drive. If one computer is selected randomly, compute
(a) (b)
(c) (d)
(e)

2-104. The probability that a customer’s order is not
shipped on time is 0.05. A particular customer places three
orders, and the orders are placed far enough apart in time that
they can be considered to be independent events.

(a) What is the probability that all are shipped on time?
(b) What is the probability that exactly one is not shipped on

time?
(c) What is the probability that two or more orders are not

shipped on time?

2-105. Let E1, E2, and E3 denote the samples that conform
to a percentage of solids specification, a molecular weight
specification, and a color specification, respectively. A total of
240 samples are classified by the E1, E2, and E3 specifications,
where yes indicates that the sample conforms.

E3 yes

E2

yes no Total

E1 yes 200 1 201

no 5 4 9

Total 205 5 210

E3 no

E2

yes no

E1 yes 20 4 24

no 6 0 6

Total 26 4 30

(a) Are E1, E2, and E3 mutually exclusive events?
(b) Are E�1, E�2, and E�3 mutually exclusive events?
(c) What is P(E�1 or E�2 or E�3)?
(d) What is the probability that a sample conforms to all three

specifications?
(e) What is the probability that a sample conforms to the E1 or

E3 specification?
(f) What is the probability that a sample conforms to the E1 or

E2 or E3 specification?

2-106. Transactions to a computer database are either new
items or changes to previous items. The addition of an item can
be completed less than 100 milliseconds 90% of the time, but
only 20% of changes to a previous item can be completed in
less than this time. If 30% of transactions are changes, what is
the probability that a transaction can be completed in less than
100 milliseconds?

2-107. A steel plate contains 20 bolts. Assume that 5 bolts
are not torqued to the proper limit. Four bolts are selected at
random, without replacement, to be checked for torque.
(a) What is the probability that all four of the selected bolts

are torqued to the proper limit?
(b) What is the probability that at least one of the selected

bolts is not torqued to the proper limit?

2-108. The following circuit operates if and only if there is
a path of functional devices from left to right. Assume devices
fail independently and that the probability of failure of each

P1A ƒ B2
P1A¿ ¨ B2P1A ´ B2
P1A ¨ B2P 1A2
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56 CHAPTER 2 PROBABILITY

device is as shown. What is the probability that the circuit
operates?

2-109. The probability of getting through by telephone to
buy concert tickets is 0.92. For the same event, the probability
of accessing the vendor’s Web site is 0.95. Assume that these
two ways to buy tickets are independent. What is the proba-
bility that someone who tries to buy tickets through the
Internet and by phone will obtain tickets?

2-110. The British government has stepped up its information
campaign regarding foot and mouth disease by mailing
brochures to farmers around the country. It is estimated that 99%
of Scottish farmers who receive the brochure possess enough in-
formation to deal with an outbreak of the disease, but only 90%
of those without the brochure can deal with an outbreak. After
the first three months of mailing, 95% of the farmers in
Scotland received the informative brochure. Compute the prob-
ability that a randomly selected farmer will have enough infor-
mation to deal effectively with an outbreak of the disease.

2-111. In an automated filling operation, the probability of
an incorrect fill when the process is operated at a low speed is
0.001. When the process is operated at a high speed, the prob-
ability of an incorrect fill is 0.01. Assume that 30% of the
containers are filled when the process is operated at a high
speed and the remainder are filled when the process is
operated at a low speed.
(a) What is the probability of an incorrectly filled container?
(b) If an incorrectly filled container is found, what is the proba-

bility that it was filled during the high-speed operation?

2-112. An encryption-decryption system consists of three
elements: encode, transmit, and decode. A faulty encode
occurs in 0.5% of the messages processed, transmission errors
occur in 1% of the messages, and a decode error occurs in
0.1% of the messages. Assume the errors are independent.
(a) What is the probability of a completely defect-free

message?
(b) What is the probability of a message that has either an

encode or a decode error?

2-113. It is known that two defective copies of a commercial
software program were erroneously sent to a shipping lot that
has now a total of 75 copies of the program. A sample of copies
will be selected from the lot without replacement.
(a) If three copies of the software are inspected, determine the

probability that exactly one of the defective copies will be
found.

(b) If three copies of the software are inspected, determine the
probability that both defective copies will be found.

(c) If 73 copies are inspected, determine the probability that
both copies will be found. Hint: Work with the copies that
remain in the lot.

2-114. A robotic insertion tool contains 10 primary compo-
nents. The probability that any component fails during the
warranty period is 0.01. Assume that the components fail
independently and that the tool fails if any component fails.
What is the probability that the tool fails during the warranty
period?

2-115. An e-mail message can travel through one of two
server routes. The probability of transmission error in each of
the servers and the proportion of messages that travel each
route are shown in the following table. Assume that the
servers are independent.

probability of error

percentage 
of messages server 1 server 2 server 3 server 4

route 1 30 0.01 0.015

route 2 70 0.02 0.003

(a) What is the probability that a message will arrive without
error?

(b) If a message arrives in error, what is the probability it was
sent through route 1?

2-116. A machine tool is idle 15% of the time. You request
immediate use of the tool on five different occasions during
the year. Assume that your requests represent independent
events.

(a) What is the probability that the tool is idle at the time of all
of your requests?

(b) What is the probability that the machine is idle at the time
of exactly four of your requests?

(c) What is the probability that the tool is idle at the time of at
least three of your requests?

2-117. A lot of 50 spacing washers contains 30 washers that
are thicker than the target dimension. Suppose that three wash-
ers are selected at random, without replacement, from the lot.
(a) What is the probability that all three washers are thicker

than the target?
(b) What is the probability that the third washer selected is

thicker than the target if the first two washers selected are
thinner than the target?

(c) What is the probability that the third washer selected is
thicker than the target?

2-118. Continuation of Exercise 2-117. Washers are se-
lected from the lot at random, without replacement.
(a) What is the minimum number of washers that need to be

selected so that the probability that all the washers are
thinner than the target is less than 0.10?

(b) What is the minimum number of washers that need to be
selected so that the probability that one or more washers
are thicker than the target is at least 0.90?

0.1

0.1

0.1

0.010.01
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2-8 RANDOM VARIABLES 57

2-119. The following table lists the history of 940 orders for
features in an entry-level computer product.

extra memory

no yes

optional high- no 514 68

speed processor yes 112 246

Let A be the event that an order requests the optional high-
speed processor, and let B be the event that an order requests
extra memory. Determine the following probabilities:
(a) (b)
(c) (d)
(e) What is the probability that an order requests an optional

high-speed processor given that the order requests extra
memory?

(f) What is the probability that an order requests extra mem-
ory given that the order requests an optional high-speed
processor?

2-120. The alignment between the magnetic tape and head
in a magnetic tape storage system affects the performance of
the system. Suppose that 10% of the read operations are de-
graded by skewed alignments, 5% of the read operations are
degraded by off-center alignments, and the remaining read op-
erations are properly aligned. The probability of a read error is
0.01 from a skewed alignment, 0.02 from an off-center align-
ment, and 0.001 from a proper alignment.
(a) What is the probability of a read error?
(b) If a read error occurs, what is the probability that it is due

to a skewed alignment?

2-121. The following circuit operates if and only if there is
a path of functional devices from left to right. Assume that de-
vices fail independently and that the probability of failure of

each device is as shown. What is the probability that the
circuit does not operate?

2-122. A company that tracks the use of its web site deter-
mined that the more pages a visitor views, the more likely the
visitor is to provide contact information. Use the following ta-
bles to answer the questions:

Number of 
pages viewed: 1 2 3 4 or more

Percentage of
visitors: 40 30 20 10

Percentage of visitors 
in each page-view 
catgory that provide
contact information: 10 10 20 40

(a) What is the probability that a visitor to the web site
provides contact information?

(b) If a visitor provides contact information, what is the
probability that the visitor viewed four or more pages?

0.02

0.02

0.010.01

0.010.01

P1A¿ ¨ B¿ 2P1A¿ ´ B2
P1A ¨ B2P1A ´ B2
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58 CHAPTER 2 PROBABILITY

2-123. The alignment between the magnetic tape and
head in a magnetic tape storage system affects the per-
formance of the system. Suppose that 10% of the read
operations are degraded by skewed alignments, 5% by
off-center alignments, 1% by both skewness and off-
center, and the remaining read operations are properly
aligned. The probability of a read error is 0.01 from a
skewed alignment, 0.02 from an off-center alignment,
0.06 from both conditions, and 0.001 from a proper
alignment. What is the probability of a read error.

2-124. Suppose that a lot of washers is large enough
that it can be assumed that the sampling is done with re-
placement. Assume that 60% of the washers exceed the
target thickness.
(a) What is the minimum number of washers that need

to be selected so that the probability that all the
washers are thinner than the target is less than 0.10?

(b) What is the minimum number of washers that need to
be selected so that the probability that one or more
washers are thicker than the target is at least 0.90?

2-125. A biotechnology manufacturing firm can pro-
duce diagnostic test kits at a cost of $20. Each kit for
which there is a demand in the week of production can be
sold for $100. However, the half-life of components in
the kit requires the kit to be scrapped if it is not sold in
the week of production. The cost of scrapping the kit is
$5. The weekly demand is summarized as follows:

weekly demand

Number of 
units 0 50 100 200

Probability of
demand 0.05 0.4 0.3 0.25

How many kits should be produced each week to maxi-
mize the mean earnings of the firm?

2-126. Assume the following characteristics of the
inspection process in Exercise 2-107. If an operator
checks a bolt, the probability that an incorrectly
torqued bolt is identified is 0.95. If a checked bolt is
correctly torqued, the operator’s conclusion is always
correct. What is the probability that at least one bolt in
the sample of four is identified as being incorrectly
torqued?

2-127. If the events A and B are independent, show
that and are independent.

2-128. Suppose that a table of part counts is generalized
as follows:

conforms

yes no

supplier 1 ka kb

2 a b

where a, b, and k are positive integers. Let A denote the
event that a part is from supplier 1 and let B denote the
event that a part conforms to specifications. Show that
A and B are independent events.

This exercise illustrates the result that whenever the
rows of a table (with r rows and c columns) are propor-
tional, an event defined by a row category and an event
defined by a column category are independent.

B¿A¿

MIND-EXPANDING EXERCISES

In the E-book, click on any
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2-1.4 Counting Techniques (CD Only)

In many of the examples in Chapter 2, it is easy to determine the number of outcomes in each
event. In more complicated examples, determining the number of outcomes that comprise the
sample space (or an event) becomes more difficult. To associate probabilities with events, it is
important to know the number of outcomes both in an event and in the sample space. Some
simple rules can be used to simplify the calculations.

In Example 2-4, an automobile manufacturer provides vehicles equipped with selected
options. Each vehicle is ordered

With or without an automatic transmission

With or without air conditioning

With one of three choices of a stereo system

With one of four exterior colors

The tree diagram in Fig. 2-6 describes the sample space of all possible vehicle types. The size
of the sample space equals the number of branches in the last level of the tree and this quantity
equals 2 � 2 � 3 � 4 = 48. This leads to the following useful result.

2-1

If an operation can be described as a sequence of k steps, and

if the number of ways of completing step 1 is n1, and

if the number of ways of completing step 2 is n2 for each way of completing
step 1, and

if the number of ways of completing step 3 is n3 for each way of completing
step 2, and so forth,

the total number of ways of completing the operation is

n1 � n2 � p � nk

Multiplication
Rule (for
counting

techniques)

EXAMPLE S2-1 In the design of a casing for a gear housing, we can use four different types of fasteners,
three different bolt lengths, and three different bolt locations. From the multiplication rule,
4 � 3 � 3 � 36 different designs are possible.

Permutations
Another useful calculation is the number of ordered sequences of the elements of a set.
Consider a set of elements, such as S � {a, b, c}. A permutation of the elements is an ordered
sequence of the elements. For example, abc, acb, bac, bca, cab, and cba are all of the permu-
tations of the elements of S.

The number of permutations of n different elements is where

(S2-1)n! � n � 1n � 12 � 1n � 22 � p � 2 � 1

n!
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2-2

This result follows from the multiplication rule. A permutation can be constructed by select-
ing the element to be placed in the first position of the sequence from the n elements, then
selecting the element for the second position from the n � 1 remaining elements, then select-
ing the element for the third position from the remaining n � 2 elements, and so forth.
Permutations such as these are sometimes referred to as linear permutations.

In some situations, we are interested in the number of arrangements of only some of the
elements of a set. The following result also follows from the multiplication rule.

The number of permutations of a subset of r elements selected from a set of n differ-
ent elements is

(S2-2)Pr
n � n � 1n � 12 � 1n � 22 � p � 1n � r � 12 �

n!

1n � r2!

The number of permutations of objects of which n1 are of
one type, n2 are of a second type, , and nr are of an rth type is

(S2-3)
n!

n1! n2! n3! p nr!

p
n � n1 � n2 � p �  nr

EXAMPLE S2-2 A printed circuit board has eight different locations in which a component can be placed. If four
different components are to be placed on the board, how many different designs are possible?

Each design consists of selecting a location from the eight locations for the first compo-
nent, a location from the remaining seven for the second component, a location from the re-
maining six for the third component, and a location from the remaining five for the fourth
component. Therefore,

Sometimes we are interested in counting the number of ordered sequences for objects that
are not all different. The following result is a useful, general calculation.

P4
8 � 8 � 7 � 6 � 5 �

8!
4!

� 1680 different designs are possible.

EXAMPLE S2-3 Consider a machining operation in which a piece of sheet metal needs two identical diameter
holes drilled and two identical size notches cut. We denote a drilling operation as d and a
notching operation as n. In determining a schedule for a machine shop, we might be interested
in the number of different possible sequences of the four operations. The number of possible
sequences for two drilling operations and two notching operations is

The six sequences are easily summarized: ddnn, dndn, dnnd, nddn, ndnd, nndd.

4!
2! 2!

� 6
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EXAMPLE S2-4 A part is labeled by printing with four thick lines, three medium lines, and two thin lines. If
each ordering of the nine lines represents a different label, how many different labels can be
generated by using this scheme?

From Equation S2-3, the number of possible part labels is

Combinations
Another counting problem of interest is the number of subsets of r elements that can be se-
lected from a set of n elements. Here, order is not important. Every subset of r elements can
be indicated by listing the elements in the set and marking each element with a “*” if it is to
be included in the subset. Therefore, each permutation of r *’s and n � r blanks indicate a dif-
ferent subset and the number of these are obtained from Equation S2-3.

For example, if the set is S = {a, b, c, d} the subset {a, c} can be indicated as

a b c d
* *

9!
4! 3! 2!

� 2520

The number of subsets of size r that can be selected from a set of n elements is
denoted as or and

(S2-4)an
r
b �

n!

r!1n � r2!

Cn
r1nr 2

EXAMPLE S2-5 A printed circuit board has eight different locations in which a component can be placed. If
five identical components are to be placed on the board, how many different designs are pos-
sible?

Each design is a subset of the eight locations that are to contain the components. From
Equation S2-4, the number of possible designs is

The following example uses the multiplication rule in combination with Equation S2-4 to an-
swer a more difficult, but common, question.

EXAMPLE S2-6 A bin of 50 manufactured parts contains three defective parts and 47 nondefective parts. A
sample of six parts is selected from the 50 parts. Selected parts are not replaced. That is, each
part can only be selected once and the sample is a subset of the 50 parts. How many different
samples are there of size six that contain exactly two defective parts?

A subset containing exactly two defective parts can be formed by first choosing the
two defective parts from the three defective parts. Using Equation S2-4, this step can be
completed in

a3
2
b �

3!
2! 1!

� 3 different ways

8!
5! 3!

� 56
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S2-1. An order for a personal digital assistant can specify
any one of five memory sizes, any one of three types of dis-
plays, any one of four sizes of a hard disk, and can either in-
clude or not include a pen tablet. How many different systems
can be ordered?

S2-2. In a manufacturing operation, a part is produced by
machining, polishing, and painting. If there are three machine
tools, four polishing tools, and three painting tools, how many
different routings (consisting of machining, followed by pol-
ishing, and followed by painting) for a part are possible?
S2-3. New designs for a wastewater treatment tank have
proposed three possible shapes, four possible sizes, three loca-
tions for input valves, and four locations for output valves.
How many different product designs are possible?
S2-4. A manufacturing process consists of 10 operations
that can be completed in any order. How many different pro-
duction sequences are possible?
S2-5. A manufacturing operations consists of 10 opera-
tions. However, five machining operations must be com-
pleted before any of the remaining five assembly operations

can begin. Within each set of five, operations can be com-
pleted in any order. How many different production se-
quences are possible?

S2-6. In a sheet metal operation, three notches and four
bends are required. If the operations can be done in any order,
how many different ways of completing the manufacturing are
possible?

S2-7. A lot of 140 semiconductor chips is inspected by
choosing a sample of five chips. Assume 10 of the chips do not
conform to customer requirements.
(a) How many different samples are possible?
(b) How many samples of five contain exactly one noncon-

forming chip?
(c) How many samples of five contain at least one noncon-

forming chip?

S2-8. In the layout of a printed circuit board for an elec-
tronic product, there are 12 different locations that can accom-
modate chips.
(a) If five different types of chips are to be placed on the

board, how many different layouts are possible?

2-4

Then, the second step is to select the remaining four parts from the 47 acceptable parts in the
bin. The second step can be completed in

Therefore, from the multiplication rule, the number of subsets of size six that contain exactly
two defective items is

As an additional computation, the total number of different subsets of size six is found
to be

When probability is discussed in this chapter, the probability of an event is determined as
the ratio of the number of outcomes in the event to the number of outcomes in the sample
space (for equally likely outcomes). Therefore, the probability that a sample contains exactly
two defective parts is

Note that Example S2-7 illustrates the hypergeometric distribution.

EXERCISES FOR SECTION 2-1.4

535,095

15,890,700
� 0.034

a50

6
b �

50!
6! 44!

� 15,890,700

3 � 178,365 � 535,095

a47

4
b �

47!
4! 43!

� 178,365 different ways
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(b) If the five chips that are placed on the board are of the
same type, how many different layouts are possible?

S2-9. In the laboratory analysis of samples from a chemical
process, five samples from the process are analyzed daily. In
addition, a control sample is analyzed two times each day to
check the calibration of the laboratory instruments.
(a) How many different sequences of process and control

samples are possible each day? Assume that the five
process samples are considered identical and that the two
control samples are considered identical.

(b) How many different sequences of process and control sam-
ples are possible if we consider the five process samples to
be different and the two control samples to be identical.

(c) For the same situation as part (b), how many sequences
are possible if the first test of each day must be a control
sample?

S2-10. In the design of an electromechanical product, seven
different components are to be stacked into a cylindrical cas-
ing that holds 12 components in a manner that minimizes the
impact of shocks. One end of the casing is designated as the
bottom and the other end is the top.
(a) How many different designs are possible?
(b) If the seven components are all identical, how many dif-

ferent designs are possible?
(c) If the seven components consist of three of one type of

component and four of another type, how many different
designs are possible? (more difficult)

S2-11. The design of a communication system considered
the following questions:
(a) How many three-digit phone prefixes that are used to rep-

resent a particular geographic area (such as an area code)
can be created from the digits 0 through 9?

(b) As in part (a), how many three-digit phone prefixes are
possible that do not start with 0 or 1, but contain 0 or 1 as
the middle digit?

(c) How many three-digit phone prefixes are possible in
which no digit appears more than once in each prefix?

S2-12. A byte is a sequence of eight bits and each bit is ei-
ther 0 or 1.
(a) How many different bytes are possible?
(b) If the first bit of a byte is a parity check, that is, the first

byte is determined from the other seven bits, how many
different bytes are possible?

S2-13. In a chemical plant, 24 holding tanks are used for fi-
nal product storage. Four tanks are selected at random and
without replacement. Suppose that six of the tanks contain
material in which the viscosity exceeds the customer require-
ments.
(a) What is the probability that exactly one tank in the sample

contains high viscosity material?
(b) What is the probability that at least one tank in the sample

contains high viscosity material?
(c) In addition to the six tanks with high viscosity levels, four

different tanks contain material with high impurities.
What is the probability that exactly one tank in the sample
contains high viscosity material and exactly one tank in
the sample contains material with high impurities?

S2-14. Plastic parts produced by an injection-molding oper-
ation are checked for conformance to specifications. Each tool
contains 12 cavities in which parts are produced, and these
parts fall into a conveyor when the press opens. An inspector
chooses 3 parts from among the 12 at random. Two cavities
are affected by a temperature malfunction that results in parts
that do not conform to specifications.
(a) What is the probability that the inspector finds exactly one

nonconforming part?
(b) What is the probability that the inspector finds at least one

nonconforming part?

S2-15. A bin of 50 parts contains five that are defective. A
sample of two is selected at random, without replacement.
(a) Determine the probability that both parts in the sample are

defective by computing a conditional probability.
(b) Determine the answer to part (a) by using the subset ap-

proach that was described in this section.

2-5
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3Discrete Random 
Variables and
Probability
Distributions

CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Determine probabilities from probability mass functions and the reverse
2. Determine probabilities from cumulative distribution functions and cumulative distribution func-

tions from probability mass functions, and the reverse
3. Calculate means and variances for discrete random variables
4. Understand the assumptions for each of the discrete probability distributions presented
5. Select an appropriate discrete probability distribution to calculate probabilities in specific

applications
6. Calculate probabilities, determine means and variances for each of the discrete probability

distributions presented

Answers for most odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for the text sections that appear on CD only. These exercises may be found within the e-Text
immediately following the section they accompany.

3-1 DISCRETE RANDOM VARIABLES

3-2 PROBABILITY DISTRIBUTIONS
AND PROBABILITY MASS
FUNCTIONS

3-3 CUMULATIVE DISTRIBUTION
FUNCTIONS

3-4 MEAN AND VARIANCE OF A
DISCRETE RANDOM VARIABLE

3-5 DISCRETE UNIFORM
DISTRIBUTION

3-6 BINOMIAL DISTRIBUTION

3-7 GEOMETRIC AND NEGATIVE
BINOMIAL DISTRIBUTIONS

3-7.1 Geometric Distribution

3-7.2 Negative Binomial Distribution

3-8 HYPERGEOMETRIC DISTRIBUTION

3-9 POISSON DISTRIBUTION
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60 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

3-1 DISCRETE RANDOM VARIABLES

Many physical systems can be modeled by the same or similar random experiments and ran-
dom variables. The distribution of the random variables involved in each of these common
systems can be analyzed, and the results of that analysis can be used in different applications
and examples. In this chapter, we present the analysis of several random experiments and
discrete random variables that frequently arise in applications. We often omit a discussion of
the underlying sample space of the random experiment and directly describe the distribution
of a particular random variable.

EXAMPLE 3-1 A voice communication system for a business contains 48 external lines. At a particular time,
the system is observed, and some of the lines are being used. Let the random variable X denote
the number of lines in use. Then, X can assume any of the integer values 0 through 48. When
the system is observed, if 10 lines are in use, x = 10.

EXAMPLE 3-2 In a semiconductor manufacturing process, two wafers from a lot are tested. Each wafer is
classified as pass or fail. Assume that the probability that a wafer passes the test is 0.8 and that
wafers are independent. The sample space for the experiment and associated probabilities are
shown in Table 3-1. For example, because of the independence, the probability of the outcome
that the first wafer tested passes and the second wafer tested fails, denoted as pf, is

The random variable X is defined to be equal to the number of wafers that pass. The
last column of the table shows the values of X that are assigned to each outcome in the
experiment.

EXAMPLE 3-3 Define the random variable X to be the number of contamination particles on a wafer in semi-
conductor manufacturing. Although wafers possess a number of characteristics, the random
variable X summarizes the wafer only in terms of the number of particles.

The possible values of X are integers from zero up to some large value that represents the
maximum number of particles that can be found on one of the wafers. If this maximum num-
ber is very large, we might simply assume that the range of X is the set of integers from zero
to infinity.

Note that more than one random variable can be defined on a sample space. In Example
3-3, we might define the random variable Y to be the number of chips from a wafer that fail
the final test.

P1pf 2 � 0.810.22 � 0.16

Table 3-1 Wafer Tests

Outcome

Wafer 1 Wafer 2 Probability x

Pass Pass 0.64 2
Fail Pass 0.16 1
Pass Fail 0.16 1
Fail Fail 0.04 0
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3-2 PROBABILITY DISTRIBUTIONS AND PROBABILITY MASS FUNCTIONS 61

For each of the following exercises, determine the range (pos-
sible values) of the random variable.

3-1. The random variable is the number of nonconforming
solder connections on a printed circuit board with 1000 con-
nections.

3-2. In a voice communication system with 50 lines, the ran-
dom variable is the number of lines in use at a particular time.

3-3. An electronic scale that displays weights to the nearest
pound is used to weigh packages. The display shows only five
digits. Any weight greater than the display can indicate is
shown as 99999. The random variable is the displayed weight.

3-4. A batch of 500 machined parts contains 10 that do not
conform to customer requirements. The random variable is the
number of parts in a sample of 5 parts that do not conform to
customer requirements.

3-5. A batch of 500 machined parts contains 10 that do not
conform to customer requirements. Parts are selected succes-
sively, without replacement, until a nonconforming part is
obtained. The random variable is the number of parts selected.

EXERCISES FOR SECTION 3-1

3-2 PROBABILITY DISTRIBUTIONS AND 
PROBABILITY MASS FUNCTIONS

Random variables are so important in random experiments that sometimes we essentially ig-
nore the original sample space of the experiment and focus on the probability distribution of
the random variable. For example, in Example 3-1, our analysis might focus exclusively on
the integers {0, 1, . . . , 48} in the range of X. In Example 3-2, we might summarize the ran-
dom experiment in terms of the three possible values of X, namely {0, 1, 2}. In this manner, a
random variable can simplify the description and analysis of a random experiment.

The probability distribution of a random variable X is a description of the probabilities
associated with the possible values of X. For a discrete random variable, the distribution is
often specified by just a list of the possible values along with the probability of each. In some
cases, it is convenient to express the probability in terms of a formula.

EXAMPLE 3-4 There is a chance that a bit transmitted through a digital transmission channel is received in
error. Let X equal the number of bits in error in the next four bits transmitted. The possible val-
ues for X are {0, 1, 2, 3, 4}. Based on a model for the errors that is presented in the following
section, probabilities for these values will be determined. Suppose that the probabilities are

The probability distribution of X is specified by the possible values along with the probability
of each. A graphical description of the probability distribution of X is shown in Fig. 3-1.

Suppose a loading on a long, thin beam places mass only at discrete points. See Fig. 3-2.
The loading can be described by a function that specifies the mass at each of the discrete
points. Similarly, for a discrete random variable X, its distribution can be described by a func-
tion that specifies the probability at each of the possible discrete values for X.

 P1X � 32 � 0.0036  P1X � 42 � 0.0001

 P1X � 02 � 0.6561  P1X � 12 � 0.2916  P1X � 22 � 0.0486

3-6. The random variable is the moisture content of a lot of
raw material, measured to the nearest percentage point.

3-7. The random variable is the number of surface flaws in
a large coil of galvanized steel.

3-8. The random variable is the number of computer clock
cycles required to complete a selected arithmetic calculation.

3-9. An order for an automobile can select the base model or
add any number of 15 options. The random variable is the
number of options selected in an order.

3-10. Wood paneling can be ordered in thicknesses of 1�8,
1�4, or 3�8 inch. The random variable is the total thickness of
paneling in two orders.

3-11. A group of 10,000 people are tested for a gene
called Ifi202 that has been found to increase the risk for lupus.
The random variable is the number of people who carry the
gene.

3-12. A software program has 5000 lines of code. The ran-
dom variable is the number of lines with a fatal error.
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62 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

For example, in Example 3-4, 
and Check that the sum of the probabilities in Example 3-4 is 1.

EXAMPLE 3-5 Let the random variable X denote the number of semiconductor wafers that need to be ana-
lyzed in order to detect a large particle of contamination. Assume that the probability that a
wafer contains a large particle is 0.01 and that the wafers are independent. Determine the
probability distribution of X.

Let p denote a wafer in which a large particle is present, and let a denote a wafer in which
it is absent. The sample space of the experiment is infinite, and it can be represented as all pos-
sible sequences that start with a string of a’s and end with p. That is,

Consider a few special cases. We have Also, using the inde-
pendence assumption

A general formula is

Describing the probabilities associated with X in terms of this formula is the simplest method
of describing the distribution of X in this example. Clearly . The fact that the sum of
the probabilities is 1 is left as an exercise. This is an example of a geometric random variable,
and details are provided later in this chapter.

f 1x2 � 0

1x � 12a’s

P1X � x2 � P1aa p ap2 � 0.99x�1 10.012,  for x � 1, 2, 3, p

P1X � 22 � P1ap2 � 0.9910.012 � 0.0099

P1X � 12 � P1p2 � 0.01.

s � 5p, ap, aap, aaap, aaaap, aaaaap, and so forth6

f 142 � 0.0001.
f 102 � 0.6561, f 112 � 0.2916, f 122 � 0.0486, f 132 � 0.0036,

For a discrete random variable X with possible values , a probability
mass function is a function such that

(1)

(2)

(3) (3-1)f 1xi2 � P1X � xi2
a

n

i�1
 f 1xi2 � 1

f 1xi2 � 0

x1, x2, p , xn

Definition

x0 1 2 3 4

0.2916 0.0036
0.0001

0.0486

0.6561
f (x)

Figure 3-1 Probability distribution
for bits in error.

Figure 3-2 Loadings at discrete points on a
long, thin beam.

Loading

x

µ
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3-3 CUMULATIVE DISTRIBUTION FUNCTIONS 63

3-13. The sample space of a random experiment is {a, b, c,
d, e, f }, and each outcome is equally likely. A random variable
is defined as follows:

outcome a b c d e f

x 0 0 1.5 1.5 2 3

Determine the probability mass function of X.

3-14. Use the probability mass function in Exercise 3-11 to
determine the following probabilities:
(a) (b)
(c) (d)
(e)

Verify that the following functions are probability mass func-
tions, and determine the requested probabilities.

3-15. x �2 �1 0 1 2

1�8 2�8 2�8 2�8 1�8

(a) (b)
(c) (d)

3-16.
(a) (b)
(c) (d)

3-17.

(a) (b)
(c) (d)

3-18.
(a) (b)
(c) (d)

3-19. Marketing estimates that a new instrument for the
analysis of soil samples will be very successful, moderately
successful, or unsuccessful, with probabilities 0.3, 0.6,
and 0.1, respectively. The yearly revenue associated with
a very successful, moderately successful, or unsuccessful
product is $10 million, $5 million, and $1 million, respec-
tively. Let the random variable X denote the yearly revenue of
the product. Determine the probability mass function of X.

3-20. A disk drive manufacturer estimates that in five years
a storage device with 1 terabyte of capacity will sell with

P1X � 12P1X � 22
P1X � 22P1X � 22

f 1x2 � 13�42 11�42x, x � 0, 1, 2, p
P1X � �102P12 � X � 42
P1X � 12P1X � 42

f 1x2 �
2x 	 1

25
, x � 0, 1, 2, 3, 4

P1X � 1 or X � 12P12 � X � 62
P1X � 12P1X � 12

f 1x2 � 18�72 11�22x, x � 1, 2, 3
P1X � �1 or X � 22P1�1 � X � 12
P1X � �22P1X � 22

f 1x2

P1X � 0 or X � 22
P10 � X � 22P1X � 32
P10.5 � X � 2.72P1X � 1.52

EXERCISES FOR SECTION 3-2

3-3 CUMULATIVE DISTRIBUTION FUNCTIONS

EXAMPLE 3-6 In Example 3-4, we might be interested in the probability of three or fewer bits being in error.
This question can be expressed as 

The event that is the union of the events 5X � 06, 5X � 16, 5X � 26, and5X � 36 P1X � 32.

probability 0.5, a storage device with 500 gigabytes capacity
will sell with a probability 0.3, and a storage device with 100
gigabytes capacity will sell with probability 0.2. The revenue
associated with the sales in that year are estimated to be $50
million, $25 million, and $10 million, respectively. Let X be
the revenue of storage devices during that year. Determine the
probability mass function of X.

3-21. An optical inspection system is to distinguish
among different part types. The probability of a correct
classification of any part is 0.98. Suppose that three parts
are inspected and that the classifications are independent.
Let the random variable X denote the number of parts that
are correctly classified. Determine the probability mass
function of X.

3-22. In a semiconductor manufacturing process, three
wafers from a lot are tested. Each wafer is classified as pass or
fail. Assume that the probability that a wafer passes the test is
0.8 and that wafers are independent. Determine the probabil-
ity mass function of the number of wafers from a lot that pass
the test.

3-23. The distributor of a machine for cytogenics has
developed a new model. The company estimates that when it
is introduced into the market, it will be very successful with a
probability 0.6, moderately successful with a probability 0.3,
and not successful with probability 0.1. The estimated yearly
profit associated with the model being very successful is $15
million and being moderately successful is $5 million; not
successful would result in a loss of $500,000. Let X be the
yearly profit of the new model. Determine the probability
mass function of X.

3-24. An assembly consists of two mechanical components.
Suppose that the probabilities that the first and second compo-
nents meet specifications are 0.95 and 0.98. Assume that the
components are independent. Determine the probability mass
function of the number of components in the assembly that
meet specifications.

3-25. An assembly consists of three mechanical compo-
nents. Suppose that the probabilities that the first, second, and
third components meet specifications are 0.95, 0.98, and 0.99.
Assume that the components are independent. Determine the
probability mass function of the number of components in the
assembly that meet specifications.
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64 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Clearly, these three events are mutually exclusive. Therefore,

This approach can also be used to determine

Example 3-6 shows that it is sometimes useful to be able to provide cumulative proba-
bilities such as and that such probabilities can be used to find the probability mass
function of a random variable. Therefore, using cumulative probabilities is an alternate
method of describing the probability distribution of a random variable.

In general, for any discrete random variable with possible values 
the events are mutually exclusive. Therefore, 

.P1X � x2 � g xi�x f 1xi2
5X � x12,  5X � x22, p ,  5X � xn2

x1, x2, p , xn,

P1X � x2

P1X � 32 � P1X � 32 � P1X � 22 � 0.0036

 � 0.6561 	 0.2916 	 0.0486 	 0.0036 � 0.9999

P1X � 32 � P1X � 02 	 P1X � 12 	 P1X � 22 	 P1X � 32
5X � 36.

The cumulative distribution function of a discrete random variable X, denoted as
is

For a discrete random variable X, satisfies the following properties.

(1)

(2)

(3) (3-2)If x � y, then F1x2 � F1y2
0 � F1x2 � 1

F1x2 � P1X � x2 � g xi�x f 1xi2
F1x2

F1x2 � P1X � x2 � a
xi�x

 f  1xi2
F1x2,

Definition

Like a probability mass function, a cumulative distribution function provides proba-
bilities. Notice that even if the random variable X can only assume integer values, the
cumulative distribution function can be defined at noninteger values. In Example 3-6,
F(1.5) � P(X � 1.5) � P{X � 0} 	 P(X � 1) � 0.6561 	 0.2916 � 0.9477. Properties (1)
and (2) of a cumulative distribution function follow from the definition. Property (3) follows
from the fact that if , the event that is contained in the event .

The next example shows how the cumulative distribution function can be used to deter-
mine the probability mass function of a discrete random variable.

EXAMPLE 3-7 Determine the probability mass function of X from the following cumulative distribution
function:

F1x2 � µ
0 x � �2
0.2 �2 � x � 0
0.7 0 � x � 2
1 2 � x

5X � y65X � x6x � y
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3-3 CUMULATIVE DISTRIBUTION FUNCTIONS 65

Figure 3-3 displays a plot of From the plot, the only points that receive nonzero
probability are �2, 0, and 2. The probability mass function at each point is the change in the
cumulative distribution function at the point. Therefore,

EXAMPLE 3-8 Suppose that a day’s production of 850 manufactured parts contains 50 parts that do not con-
form to customer requirements. Two parts are selected at random, without replacement, from
the batch. Let the random variable X equal the number of nonconforming parts in the sample.
What is the cumulative distribution function of X?

The question can be answered by first finding the probability mass function of X.

Therefore,

The cumulative distribution function for this example is graphed in Fig. 3-4. Note that
is defined for all x from and not only for 0, 1, and 2.

EXERCISES FOR SECTION 3-3

�
 � x � 
F1x2

F122 � P1X � 22 � 1

F112 � P1X � 12 � 0.886 	 0.111 � 0.997

F102 � P1X � 02 � 0.886

P1X � 22 �
50

850
�

49

849
� 0.003

P1X � 12 � 2 �
800

850
�

50

849
� 0.111

P1X � 02 �
800

850
�

799

849
� 0.886

f 1�22 � 0.2 � 0 � 0.2  f 102 � 0.7 � 0.2 � 0.5  f 122 � 1.0 � 0.7 � 0.3

F1x2.

0

0.2

2–2

0.7

1.0

x

F(x)

Figure 3-3 Cumulative distribution function for
Example 3-7.

Figure 3-4 Cumulative distribution
function for Example 3-8.

0 2

0.997
1.000

x

0.886

1

F(x)

3-26. Determine the cumulative distribution function of the
random variable in Exercise 3-13.

3-27. Determine the cumulative distribution function for
the random variable in Exercise 3-15; also determine the fol-
lowing probabilities:
(a) (b) P1X � 2.22P1X � 1.252

(c) (d)
3-28. Determine the cumulative distribution function for the
random variable in Exercise 3-17; also determine the following
probabilities:
(a) (b)
(c) (d) P11 � X � 22P1X � 22

P1X � 32P1X � 1.52

P1X � 02P1�1.1 � X � 12
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66 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

3-29. Determine the cumulative distribution function for
the random variable in Exercise 3-19.

3-30. Determine the cumulative distribution function for
the random variable in Exercise 3-20.

3-31. Determine the cumulative distribution function for
the random variable in Exercise 3-22.

3-32. Determine the cumulative distribution function for
the variable in Exercise 3-23.

Verify that the following functions are cumulative distribution
functions, and determine the probability mass function and the
requested probabilities.

3-33.

(a) (b)
(c) (d)

3-34. Errors in an experimental transmission channel are
found when the transmission is checked by a certifier that de-
tects missing pulses. The number of errors found in an eight-
bit byte is a random variable with the following distribution:

F1x2 � µ
0 x � 1
0.7 1 � x � 4
0.9 4 � x � 7
1 7 � x

P1X � 22P11 � X � 22
P1X � 22P1X � 32

F1x2 � •0 x � 1
0.5 1 � x � 3
1 3 � x

3-4 MEAN AND VARIANCE OF A DISCRETE RANDOM VARIABLE

Two numbers are often used to summarize a probability distribution for a random variable X.
The mean is a measure of the center or middle of the probability distribution, and the variance
is a measure of the dispersion, or variability in the distribution. These two measures do not
uniquely identify a probability distribution. That is, two different distributions can have the
same mean and variance. Still, these measures are simple, useful summaries of the probabil-
ity distribution of X.

The mean or expected value of the discrete random variable X, denoted as � or is

(3-3)

The variance of X, denoted as or is

The standard deviation of X is .� � 2�2

�2 � V1X 2 � E1X � �22 � a
x

1x � �22f 1x2 � a
x

x2f 1x2 � �2

V1X 2,�2

� � E1X 2 � a
x

xf 1x2
E1X 2,

Definition

Determine each of the following probabilities:
(a) (b)
(c) (d)
(e)

3-35.

(a) (b)
(c) (d)
(e) (f)

3-36. The thickness of wood paneling (in inches) that a cus-
tomer orders is a random variable with the following cumula-
tive distribution function:

Determine the following probabilities:
(a) (b)
(c) (d)
(e) P1X � 1�22

P1X � 1�42P1X � 5�162
P1X � 1�42P1X � 1�182

F1x2 � µ
0 x � 1�8
0.2 1�8 � x � 1�4
0.9 1�4 � x � 3�8
1 3�8 � x

P1�10 � X � 102P10 � X � 102
P1X � 02P140 � X � 602
P1X � 402P1X � 502

F1x2 � µ
0 x � �10
0.25 �10 � x � 30
0.75 30 � x � 50
1 50 � x

P1X � 22
P1X � 42P1X � 52
P1X � 72P1X � 42
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3-4 MEAN AND VARIANCE OF A DISCRETE RANDOM VARIABLE 67

The mean of a discrete random variable X is a weighted average of the possible values of
X, with weights equal to the probabilities. If is the probability mass function of a loading
on a long, thin beam, is the point at which the beam balances. Consequently, 
describes the “center’’ of the distribution of X in a manner similar to the balance point of a
loading. See Fig. 3-5.

The variance of a random variable X is a measure of dispersion or scatter in the possible
values for X. The variance of X uses weight as the multiplier of each possible squared
deviation . Figure 3-5 illustrates probability distributions with equal means but dif-
ferent variances. Properties of summations and the definition of � can be used to show the
equality of the formulas for variance.

Either formula for can be used. Figure 3-6 illustrates that two probability distributions
can differ even though they have identical means and variances.

EXAMPLE 3-9 In Example 3-4, there is a chance that a bit transmitted through a digital transmission channel
is received in error. Let X equal the number of bits in error in the next four bits transmitted.
The possible values for X are . Based on a model for the errors that is presented
in the following section, probabilities for these values will be determined. Suppose that the
probabilities are

 P1X � 12 � 0.2916  P1X � 32 � 0.0036

 P1X � 02 � 0.6561  P1X � 22 � 0.0486  P1X � 42 � 0.0001

50, 1, 2, 3, 46

V1x2
 � a

x

x2f 1x2 � 2�2 	 �2 � a
x

x2f 1x2 � �2

 V1X 2 �a
x

1x � �22f 1x2 �a
x

x2f 1x2 � 2�a
x

xf 1x2 	 �2a
x

f 1x2

1x � �22 f 1x2

E1X 2E1X 2 f 1x2

0 8642 10

(a)

0 8642 10

(b)

Figure 3-5 A probability distribution can be viewed as a loading with the mean equal
to the balance point. Parts (a) and (b) illustrate equal means, but Part (a) illustrates a 
larger variance.

0 8642 10

(a)

0 8642 10

(b)

Figure 3-6 The probability distributions illustrated in Parts (a) and (b) differ even
though they have equal means and equal variances.
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68 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Now

Although X never assumes the value 0.4, the weighted average of the possible values is 0.4.
To calculate a table is convenient.V1X 2,

 � 0.4
 � 010.65612 	 110.29162 	 210.04862 	 310.00362 	 410.00012 � � E1X2 � 0f 102 	 1f 112 	 2f 122 	 3f 132 	 4f 142

0 �0.4 0.16 0.6561 0.104976
1 0.6 0.36 0.2916 0.104976
2 1.6 2.56 0.0486 0.124416
3 2.6 6.76 0.0036 0.024336
4 3.6 12.96 0.0001 0.001296

f 1x2 1x � 0.422f 1x21x � 0.422x � 0.4x

The alternative formula for variance could also be used to obtain the same result.

EXAMPLE 3-10 Two new product designs are to be compared on the basis of revenue potential. Marketing
feels that the revenue from design A can be predicted quite accurately to be $3 million. The
revenue potential of design B is more difficult to assess. Marketing concludes that there is a
probability of 0.3 that the revenue from design B will be $7 million, but there is a 0.7 proba-
bility that the revenue will be only $2 million. Which design do you prefer?

Let X denote the revenue from design A. Because there is no uncertainty in the revenue
from design A, we can model the distribution of the random variable X as $3 million with
probability 1. Therefore, million.

Let Y denote the revenue from design B. The expected value of Y in millions of dollars is

Because E(Y) exceeds E(X), we might prefer design B. However, the variability of the result
from design B is larger. That is,

Because the units of the variables in this example are millions of dollars, and because the vari-
ance of a random variable squares the deviations from the mean, the units of are millions
of dollars squared. These units make interpretation difficult.

Because the units of standard deviation are the same as the units of the random variable,
the standard deviation is easier to interpret. In this example, we can summarize our results
as “the average deviation of Y from its mean is $2.29 million.’’

�

�2

 � 5.25 millions of dollars squared

 �2 � 17 � 3.52210.32 	 12 � 3.52210.72

E1Y 2 � $710.32 	 $210.72 � $3.5

E1X 2 � $3

V1X 2 � �2 � a
5

i�1
 f 1xi2 1xi � 0.422 � 0.36
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3-4 MEAN AND VARIANCE OF A DISCRETE RANDOM VARIABLE 69

EXAMPLE 3-11 The number of messages sent per hour over a computer network has the following distribution:

x � number of messages 10 11 12 13 14 15

0.08 0.15 0.30 0.20 0.20 0.07

Determine the mean and standard deviation of the number of messages sent per hour.

The variance of a random variable X can be considered to be the expected value of a specific
function of X, namely, . In general, the expected value of any function 
of a discrete random variable is defined in a similar manner.

h1X 2h1X 2 � 1X � �22

 � � 2V1X 2 � 21.85 � 1.36

V1X 2 � 10210.082 	 11210.152 	 p 	 15210.072 � 12.52 � 1.85

E1X 2 � 1010.082 	 1110.152 	 p 	 1510.072 � 12.5

f 1x2

If X is a discrete random variable with probability mass function 

(3-4)E 3h1X 2 4 � a
x

xh1x 2 f 1x 2
f 1x2,

Expected Value of a
Function of a

Discrete Random
Variable

EXAMPLE 3-12 In Example 3-9, X is the number of bits in error in the next four bits transmitted. What is the
expected value of the square of the number of bits in error? Now, . Therefore,

In the previous example, the expected value of does not equal squared. However, in
the special case that for any constants a and b, This
can be shown from the properties of sums in the definition in Equation 3-4.

EXERCISES FOR SECTION 3-4

E 3h1X 2 4 � aE1X 2 	 b.h1X 2 � aX 	 b
E1X 2X 2

	 32 
 0.0036 	 42 
 0.0001 � 0.52
E 3h1X 2 4 � 02 
 0.6561 	 12 
 0.2916 	 22 
 0.0486

h1X 2 � X 2

3-37. If the range of X is the set {0, 1, 2, 3, 4} and P(X � 
x) � 0.2 determine the mean and variance of the random variable.

3-38. Determine the mean and variance of the random vari-
able in Exercise 3-13.

3-39. Determine the mean and variance of the random vari-
able in Exercise 3-15.

3-40. Determine the mean and variance of the random vari-
able in Exercise 3-17.

3-41. Determine the mean and variance of the random vari-
able in Exercise 3-19.

3-42. Determine the mean and variance of the random vari-
able in Exercise 3-20.

3-43. Determine the mean and variance of the random vari-
able in Exercise 3-22.

3-44. Determine the mean and variance of the random vari-
able in Exercise 3-23.

3-45. The range of the random variable X is 
where x is unknown. If each value is equally likely and the
mean of X is 6, determine x.

30, 1, 2, 3, x 4 ,
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70 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Suppose X is a discrete uniform random variable on the consecutive integers
for The mean of X is

The variance of X is

(3-6)�2 �
1b � a 	 122 � 1

12

� � E1X2 �
b 	 a

2

a � b.a, a 	 1, a 	 2, p , b,

3-5 DISCRETE UNIFORM DISTRIBUTION

The simplest discrete random variable is one that assumes only a finite number of possible
values, each with equal probability. A random variable X that assumes each of the values

with equal probability is frequently of interest.1�n,x1, x2, p , xn,

EXAMPLE 3-13 The first digit of a part’s serial number is equally likely to be any one of the digits 0 through 9.
If one part is selected from a large batch and X is the first digit of the serial number, X has a dis-
crete uniform distribution with probability 0.1 for each value in . That is,

for each value in R. The probability mass function of X is shown in Fig. 3-7.

Suppose the range of the discrete random variable X is the consecutive integers a,
for The range of X contains b � a 	 1 values each with proba-

bility . Now,

The algebraic identity can be used to simplify the result to

. The derivation of the variance is left as an exercise.� � 1b 	 a2�2
a

b

k�a
 k �

b1b 	 12 � 1a � 12a
2

� � a
b

k�a
 k  a 1

b � a 	 1
b

1� 1b � a 	 12 a � b.a 	 1, a 	 2, p , b,

f 1x2 � 0.1

R � 50, 1, 2, p , 96

A random variable X has a discrete uniform distribution if each of the n values in
its range, say, has equal probability. Then,

(3-5)f 1xi2 � 1�n

x1, x2, p , xn,

Definition

f(x)

x0 1 2 3 4 5 6 7 8 9

0.1
Figure 3-7 Probability
mass function for a 
discrete uniform ran-
dom variable.
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3-5 DISCRETE UNIFORM DISTRIBUTION 71

EXAMPLE 3-14 As in Example 3-1, let the random variable X denote the number of the 48 voice lines that are
in use at a particular time. Assume that X is a discrete uniform random variable with a range
of 0 to 48. Then,

and

Equation 3-6 is more useful than it might first appear. If all the values in the range of a
random variable X are multiplied by a constant (without changing any probabilities), the mean
and standard deviation of X are multiplied by the constant. You are asked to verify this result
in an exercise. Because the variance of a random variable is the square of the standard devia-
tion, the variance of X is multiplied by the constant squared. More general results of this type
are discussed in Chapter 5.

EXAMPLE 3-15 Let the random variable Y denote the proportion of the 48 voice lines that are in use at a par-
ticular time, and X denotes the number of lines that are in use at a particular time. Then,

. Therefore,

and

EXERCISES FOR SECTION 3-5

V1Y2 � V1X2�482 � 0.087

E1Y 2 � E1X 2�48 � 0.5

Y � X�48

� � 5 3 148 � 0 � 122 � 1 4 �1261�2 � 14.14

E1X 2 � 148 � 02�2 � 24

3-46. Let the random variable X have a discrete uniform
distribution on the integers . Determine the mean
and variance of X.

3-47. Let the random variable X have a discrete uniform
distribution on the integers . Determine the mean
and variance of X.

3-48. Let the random variable X be equally likely to assume
any of the values , , or . Determine the mean and
variance of X.

3-49. Thickness measurements of a coating process are
made to the nearest hundredth of a millimeter. The thickness
measurements are uniformly distributed with values 0.15,
0.16, 0.17, 0.18, and 0.19. Determine the mean and variance
of the coating thickness for this process.

3-50. Product codes of 2, 3, or 4 letters are equally likely.
What is the mean and standard deviation of the number of
letters in 100 codes?

3-51. The lengths of plate glass parts are measured to the
nearest tenth of a millimeter. The lengths are uniformly dis-
tributed, with values at every tenth of a millimeter starting at

3�81�41�8

1 � x � 3

0 � x � 100
590.0 and continuing through 590.9. Determine the mean and
variance of lengths.

3-52. Suppose that X has a discrete uniform distribution on
the integers 0 through 9. Determine the mean, variance, and
standard deviation of the random variable Y � 5X and com-
pare to the corresponding results for X.

3-53. Show that for a discrete uniform random variable X,
if each of the values in the range of X is multiplied by the
constant c, the effect is to multiply the mean of X by c and
the variance of X by . That is, show that 
and .

3-54. The probability of an operator entering alphanu-
meric data incorrectly into a field in a database is equally
likely. The random variable X is the number of fields on a
data entry form with an error. The data entry form has
28 fields. Is X a discrete uniform random variable? Why or
why not.

V1cX 2 � c2V1X 2
E1cX 2 � cE1X 2c2
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72 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

3-6 BINOMIAL DISTRIBUTION

Consider the following random experiments and random variables:

1. Flip a coin 10 times. Let X � number of heads obtained.

2. A worn machine tool produces 1% defective parts. Let X � number of defective parts
in the next 25 parts produced.

3. Each sample of air has a 10% chance of containing a particular rare molecule. Let
X � the number of air samples that contain the rare molecule in the next 18 samples
analyzed.

4. Of all bits transmitted through a digital transmission channel, 10% are received in
error. Let X � the number of bits in error in the next five bits transmitted.

5. A multiple choice test contains 10 questions, each with four choices, and you guess
at each question. Let X � the number of questions answered correctly.

6. In the next 20 births at a hospital, let X � the number of female births.

7. Of all patients suffering a particular illness, 35% experience improvement from a
particular medication. In the next 100 patients administered the medication, let X �
the number of patients who experience improvement.

These examples illustrate that a general probability model that includes these experiments as
particular cases would be very useful.

Each of these random experiments can be thought of as consisting of a series of repeated,
random trials: 10 flips of the coin in experiment 1, the production of 25 parts in experiment 2,
and so forth. The random variable in each case is a count of the number of trials that meet a
specified criterion. The outcome from each trial either meets the criterion that X counts or it
does not; consequently, each trial can be summarized as resulting in either a success or a fail-
ure. For example, in the multiple choice experiment, for each question, only the choice that is
correct is considered a success. Choosing any one of the three incorrect choices results in the
trial being summarized as a failure.

The terms success and failure are just labels. We can just as well use A and B or 0 or 1.
Unfortunately, the usual labels can sometimes be misleading. In experiment 2, because X
counts defective parts, the production of a defective part is called a success.

A trial with only two possible outcomes is used so frequently as a building block of a
random experiment that it is called a Bernoulli trial. It is usually assumed that the trials that
constitute the random experiment are independent. This implies that the outcome from one
trial has no effect on the outcome to be obtained from any other trial. Furthermore, it is
often reasonable to assume that the probability of a success in each trial is constant. In
the multiple choice experiment, if the test taker has no knowledge of the material and just
guesses at each question, we might assume that the probability of a correct answer is 
for each question.

Factorial notation is used in this section. Recall that denotes the product of the integers
less than or equal to n:

For example,

5! � 152 142 132 122 112 � 120  1! � 1

n! � n1n � 12 1n � 22 p 122 112

n!

1�4
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The event that X � 2 consists of the six outcomes:

Using the assumption that the trials are independent, the probability of {EEOO} is

Also, any one of the six mutually exclusive outcomes for which X � 2 has the same proba-
bility of occurring. Therefore,

In general,

(number of outcomes that result in x errors) times 10.12x10.924�xP1X � x2 �

P1X � 22 � 610.00812 � 0.0486

P1EEOO2 � P1E2P1E2P1O2P1O2 � 10.12210.922 � 0.0081

5EEOO, EOEO, EOOE, OEEO, OEOE, OOEE6
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and by definition . We also use the combinatorial notation

For example,

See Section 2-1.4, CD material for Chapter 2, for further comments.

EXAMPLE 3-16 The chance that a bit transmitted through a digital transmission channel is received in error is
0.1. Also, assume that the transmission trials are independent. Let X � the number of bits in
error in the next four bits transmitted. Determine .

Let the letter E denote a bit in error, and let the letter O denote that the bit is okay, that is,
received without error. We can represent the outcomes of this experiment as a list of four let-
ters that indicate the bits that are in error and those that are okay. For example, the outcome
OEOE indicates that the second and fourth bits are in error and the other two bits are okay. The
corresponding values for x are

P1X � 22

a5
2
b �

5!

2! 3!
�

120

2 � 6
� 10

an
x
b �

n!

x! 1n � x2!

0! � 1

Outcome x Outcome x

OOOO 0 EOOO 1
OOOE 1 EOOE 2
OOEO 1 EOEO 2
OOEE 2 EOEE 3
OEOO 1 EEOO 2
OEOE 2 EEOE 3
OEEO 2 EEEO 3
OEEE 3 EEEE 4
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As in Example 3-16, equals the total number of different sequences of trials that 

contain x successes and n � x failures. The total number of different sequences that contain x
successes and n � x failures times the probability of each sequence equals 

The probability expression above is a very useful formula that can be applied in a num-
ber of examples. The name of the distribution is obtained from the binomial expansion. For
constants a and b, the binomial expansion is

Let p denote the probability of success on a single trial. Then, by using the binomial
expansion with a � p and b � 1 � p, we see that the sum of the probabilities for a bino-
mial random variable is 1. Furthermore, because each trial in the experiment is classified
into two outcomes, {success, failure}, the distribution is called a “bi’’-nomial. A more

1a 	 b2n � a
n

k�0
an

k
b akbn�k

P1X � x2.
an

x
b
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A random experiment consists of n Bernoulli trials such that

(1) The trials are independent

(2) Each trial results in only two possible outcomes, labeled as “success’’ and
“failure’’

(3) The probability of a success in each trial, denoted as p, remains constant

The random variable X that equals the number of trials that result in a success
has a binomial random variable with parameters and The
probability mass function of X is

(3-7)f 1x2 � an
x
b px11 � p2n�x  x � 0, 1, p , n

n � 1, 2, p .0 � p � 1

Definition

To complete a general probability formula, only an expression for the number of outcomes
that contain x errors is needed. An outcome that contains x errors can be constructed by parti-
tioning the four trials (letters) in the outcome into two groups. One group is of size x and
contains the errors, and the other group is of size n � x and consists of the trials that are okay.
The number of ways of partitioning four objects into two groups, one of which is of size x, is

. Therefore, in this example

Notice that , as found above. The probability mass function of X

was shown in Example 3-4 and Fig. 3-1.

The previous example motivates the following result.

a4
2
b � 4!� 32! 2! 4 � 6

P1X � x2 � a4
x
b 10.12x10.924�x

a4
x
b �

4!
x!14 � x2!
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3-6 BINOMIAL DISTRIBUTION 75

general distribution, which includes the binomial as a special case, is the multinomial
distribution.

Examples of binomial distributions are shown in Fig. 3-8. For a fixed n, the distribution
becomes more symmetric as p increases from 0 to 0.5 or decreases from 1 to 0.5. For a fixed
p, the distribution becomes more symmetric as n increases.

EXAMPLE 3-17 Several examples using the binomial coefficient follow.

EXAMPLE 3-18 Each sample of water has a 10% chance of containing a particular organic pollutant. Assume
that the samples are independent with regard to the presence of the pollutant. Find the proba-
bility that in the next 18 samples, exactly 2 contain the pollutant.

Let X � the number of samples that contain the pollutant in the next 18 samples analyzed.
Then X is a binomial random variable with p � 0.1 and n � 18.
Therefore,

P1X � 22 � a18
2
b 10.12210.9216

 a100
4
b � 100!� 34! 96! 4 � 1100 � 99 � 98 � 972� 14 � 3 � 22 � 3,921,225

 a15
10
b � 15!� 310! 5! 4 � 115 � 14 � 13 � 12 � 112� 15 � 4 � 3 � 22 � 3003

 a10
3
b � 10!� 33! 7! 4 � 110 � 9 � 82� 13 � 22 � 120

an
x
b

Figure 3-8 Binomial distributions for selected values of n and p.
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76 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

If X is a binomial random variable with parameters p and n,

(3-8)� � E1X 2 � np  and  �2 � V1X 2 � np11 � p2

Definition

Now Therefore,

Determine the probability that at least four samples contain the pollutant. The requested
probability is

However, it is easier to use the complementary event,

Determine the probability that 3 � X � 7. Now

The mean and variance of a binomial random variable depend only on the parameters p
and n. Formulas can be developed from moment generating functions, and details are pro-
vided in Section 5-8, part of the CD material for Chapter 5. The results are simply stated here.

 � 0.265
 � 0.168 	 0.070 	 0.022 	 0.005

P13 � X � 72 � a
6

x�3
a18

x
b 10.12x10.9218�x

 � 1 � 30.150 	 0.300 	 0.284 	 0.168 4 � 0.098

 P1X � 42 � 1 � P1X � 42 � 1 � a
3

x�0
 a18

x
b 10.12x10.9218�x

P1X � 42 � a
18

x�4
 a18

x
b 10.12x10.9218�x

P1X � 22 � 15310.12210.9216 � 0.284

a18
2
b � 18!� 32! 16! 4 � 181172�2 � 153.

EXAMPLE 3-19 For the number of transmitted bits received in error in Example 3-16, n � 4 and p � 0.1, so

and these results match those obtained from a direct calculation in Example 3-9.

EXERCISES FOR SECTION 3-6

E1X 2 � 410.12 � 0.4  and  V1X 2 � 410.12 10.92 � 0.36

3-55. For each scenario described below, state whether or
not the binomial distribution is a reasonable model for the ran-
dom variable and why. State any assumptions you make.
(a) A production process produces thousands of temperature

transducers. Let X denote the number of nonconforming

transducers in a sample of size 30 selected at random from
the process.

(b) From a batch of 50 temperature transducers, a sample of
size 30 is selected without replacement. Let X denote the
number of nonconforming transducers in the sample.
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mial random variable with p � 0.001. If 1000 bits are trans-
mitted, determine the following:
(a) (b)
(c) (d) mean and variance of X

3-64. The phone lines to an airline reservation system are
occupied 40% of the time. Assume that the events that the lines
are occupied on successive calls are independent. Assume that
10 calls are placed to the airline.
(a) What is the probability that for exactly three calls the lines

are occupied?
(b) What is the probability that for at least one call the lines

are not occupied?
(c) What is the expected number of calls in which the lines

are all occupied?

3-65. Batches that consist of 50 coil springs from a production
process are checked for conformance to customer requirements.
The mean number of nonconforming coil springs in a batch is 5.
Assume that the number of nonconforming springs in a batch,
denoted as X, is a binomial random variable.
(a) What are n and p?
(b) What is ?
(c) What is ?

3-66. A statistical process control chart example. Samples
of 20 parts from a metal punching process are selected every
hour. Typically, 1% of the parts require rework. Let X denote
the number of parts in the sample of 20 that require rework. A
process problem is suspected if X exceeds its mean by more
than three standard deviations.
(a) If the percentage of parts that require rework remains at

1%, what is the probability that X exceeds its mean by
more than three standard deviations?

(b) If the rework percentage increases to 4%, what is the
probability that X exceeds 1?

(c) If the rework percentage increases to 4%, what is the
probability that X exceeds 1 in at least one of the next five
hours of samples?

3-67. Because not all airline passengers show up for their
reserved seat, an airline sells 125 tickets for a flight that holds
only 120 passengers. The probability that a passenger does not
show up is 0.10, and the passengers behave independently.
(a) What is the probability that every passenger who shows

up can take the flight?
(b) What is the probability that the flight departs with empty

seats?

3-68. This exercise illustrates that poor quality can affect
schedules and costs. A manufacturing process has 100 cus-
tomer orders to fill. Each order requires one component part
that is purchased from a supplier. However, typically, 2% of
the components are identified as defective, and the compo-
nents can be assumed to be independent.
(a) If the manufacturer stocks 100 components, what is the

probability that the 100 orders can be filled without
reordering components?

P1X � 492
P1X � 22

P1X � 22
P1X � 12P1X � 12

3-6 BINOMIAL DISTRIBUTION 77

(c) Four identical electronic components are wired to a con-
troller that can switch from a failed component to one of
the remaining spares. Let X denote the number of compo-
nents that have failed after a specified period of operation.

(d) Let X denote the number of accidents that occur along the
federal highways in Arizona during a one-month period.

(e) Let X denote the number of correct answers by a student
taking a multiple choice exam in which a student can elim-
inate some of the choices as being incorrect in some ques-
tions and all of the incorrect choices in other questions.

(f) Defects occur randomly over the surface of a semiconduc-
tor chip. However, only 80% of defects can be found by
testing. A sample of 40 chips with one defect each is
tested. Let X denote the number of chips in which the test
finds a defect.

(g) Reconsider the situation in part (f). Now, suppose the sam-
ple of 40 chips consists of chips with 1 and with 0 defects.

(h) A filling operation attempts to fill detergent packages to
the advertised weight. Let X denote the number of deter-
gent packages that are underfilled.

(i) Errors in a digital communication channel occur in bursts
that affect several consecutive bits. Let X denote the num-
ber of bits in error in a transmission of 100,000 bits.

(j) Let X denote the number of surface flaws in a large coil of
galvanized steel.

3-56. The random variable X has a binomial distribution with
n � 10 and p � 0.5. Sketch the probability mass function of X.
(a) What value of X is most likely?
(b) What value(s) of X is(are) least likely?

3-57. The random variable X has a binomial distribution with
n � 10 and p � 0.5. Determine the following probabilities:
(a) (b)
(c) (d)

3-58. Sketch the probability mass function of a binomial
distribution with n � 10 and p � 0.01 and comment on the
shape of the distribution.
(a) What value of X is most likely?
(b) What value of X is least likely?

3-59. The random variable X has a binomial distribution with
n � 10 and p � 0.01. Determine the following probabilities.
(a) (b)
(c) (d)

3-60. Determine the cumulative distribution function of a
binomial random variable with n � 3 and p � 1�2.

3-61. Determine the cumulative distribution function of a
binomial random variable with n � 3 and p � 1�4.

3-62. An electronic product contains 40 integrated circuits.
The probability that any integrated circuit is defective is 0.01,
and the integrated circuits are independent. The product oper-
ates only if there are no defective integrated circuits. What is
the probability that the product operates?

3-63. Let X denote the number of bits received in error in a
digital communication channel, and assume that X is a bino-

P13 � X � 52P1X � 92
P1X � 22P1X � 52

P13 � X � 52P1X � 92
P1X � 22P1X � 52
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3-7 GEOMETRIC AND NEGATIVE BINOMIAL DISTRIBUTIONS

3-7.1 Geometric Distribution

Consider a random experiment that is closely related to the one used in the definition of a
binomial distribution. Again, assume a series of Bernoulli trials (independent trials with con-
stant probability p of a success on each trial). However, instead of a fixed number of trials,
trials are conducted until a success is obtained. Let the random variable X denote the number
of trials until the first success. In Example 3-5, successive wafers are analyzed until a large
particle is detected. Then, X is the number of wafers analyzed. In the transmission of bits, X
might be the number of bits transmitted until an error occurs.

EXAMPLE 3-20 The probability that a bit transmitted through a digital transmission channel is received in
error is 0.1. Assume the transmissions are independent events, and let the random variable X
denote the number of bits transmitted until the first error.

Then, P(X � 5) is the probability that the first four bits are transmitted correctly and the
fifth bit is in error. This event can be denoted as {OOOOE}, where O denotes an okay bit.
Because the trials are independent and the probability of a correct transmission is 0.9,

Note that there is some probability that X will equal any integer value. Also, if the first trial is
a success, X � 1. Therefore, the range of X is that is, all positive integers.51, 2, 3, p 6,

P1X � 52 � P1OOOOE2 � 0.940.1 � 0.066

78 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

In a series of Bernoulli trials (independent trials with constant probability p of a suc-
cess), let the random variable X denote the number of trials until the first success.
Then X is a geometric random variable with parameter and

(3-9)f 1x2 � 11 � p2x�1p  x � 1, 2, p

0 � p � 1

Definition

(b) If the manufacturer stocks 102 components, what is the
probability that the 100 orders can be filled without
reordering components?

(c) If the manufacturer stocks 105 components, what is the
probability that the 100 orders can be filled without
reordering components?

3-69. A multiple choice test contains 25 questions, each
with four answers. Assume a student just guesses on each
question.
(a) What is the probability that the student answers more than

20 questions correctly?

(b) What is the probability the student answers less than 5
questions correctly?

3-70. A particularly long traffic light on your morning com-
mute is green 20% of the time that you approach it. Assume
that each morning represents an independent trial.
(a) Over five mornings, what is the probability that the light is

green on exactly one day?
(b) Over 20 mornings, what is the probability that the light is

green on exactly four days?
(c) Over 20 mornings, what is the probability that the light is

green on more than four days?

Examples of the probability mass functions for geometric random variables are shown in
Fig. 3-9. Note that the height of the line at x is (1 � p) times the height of the line at x � 1.
That is, the probabilities decrease in a geometric progression. The distribution acquires its
name from this result.
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EXAMPLE 3-21 The probability that a wafer contains a large particle of contamination is 0.01. If it is assumed
that the wafers are independent, what is the probability that exactly 125 wafers need to be
analyzed before a large particle is detected?

Let X denote the number of samples analyzed until a large particle is detected. Then X is
a geometric random variable with p � 0.01. The requested probability is

The derivation of the mean and variance of a geometric random variable is left as an exercise.
Note that can be shown to equal . The results are as follows.1�pg


k�1 k 11 � p2k�1p

P1X � 1252 � 10.9921240.01 � 0.0029
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Figure 3-9 Geometric
distributions for
selected values of the
parameter p.

EXAMPLE 3-22 Consider the transmission of bits in Example 3-20. Here, p � 0.1. The mean number of
transmissions until the first error is 1�0.1 � 10. The standard deviation of the number
of transmissions before the first error is

Lack of Memory Property
A geometric random variable has been defined as the number of trials until the first success.
However, because the trials are independent, the count of the number of trials until the next

� � 3 11 � 0.12�0.12 4 1�2 � 9.49

If X is a geometric random variable with parameter p,

(3-10)� � E1X 2 � 1�p  and  �2 � V1X 2 � 11 � p2�p2
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80 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

success can be started at any trial without changing the probability distribution of the random
variable. For example, in the transmission of bits, if 100 bits are transmitted, the probability
that the first error, after bit 100, occurs on bit 106 is the probability that the next six outcomes
are OOOOOE. This probability is , which is identical to the probability
that the initial error occurs on bit 6.

The implication of using a geometric model is that the system presumably will not wear
out. The probability of an error remains constant for all transmissions. In this sense, the geo-
metric distribution is said to lack any memory. The lack of memory property will be dis-
cussed again in the context of an exponential random variable in Chapter 4.

EXAMPLE 3-23 In Example 3-20, the probability that a bit is transmitted in error is equal to 0.1. Suppose
50 bits have been transmitted. The mean number of bits until the next error is 1�0.1 � 10—
the same result as the mean number of bits until the first error.

3-7.2 Negative Binomial Distribution

A generalization of a geometric distribution in which the random variable is the number of
Bernoulli trials required to obtain r successes results in the negative binomial distribution.

EXAMPLE 3-24 As in Example 3-20, suppose the probability that a bit transmitted through a digital transmis-
sion channel is received in error is 0.1. Assume the transmissions are independent events, and
let the random variable X denote the number of bits transmitted until the fourth error.

Then, X has a negative binomial distribution with r � 4. Probabilities involving X can be
found as follows. The P(X � 10) is the probability that exactly three errors occur in the first
nine trials and then trial 10 results in the fourth error. The probability that exactly three errors
occur in the first nine trials is determined from the binomial distribution to be

Because the trials are independent, the probability that exactly three errors occur in the first
9 trials and trial 10 results in the fourth error is the product of the probabilities of these two
events, namely,

The previous result can be generalized as follows.

a9
3
b 10.12310.92610.12 � a9

3
b 10.12410.926

a9
3
b 10.12310.926

10.92510.12 � 0.059

In a series of Bernoulli trials (independent trials with constant probability p of a suc-
cess), let the random variable X denote the number of trials until r successes occur.
Then X is a negative binomial random variable with parameters and
r � 1, 2 3, p , and

(3-11)f 1x2 � ax �  1
r �  1

b 11 � p2x�rpr  x � r, r 	 1, r 	 2, p .

0 � p � 1

Definition
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3-7 GEOMETRIC AND NEGATIVE BINOMIAL DISTRIBUTIONS 81

Because at least r trials are required to obtain r successes, the range of X is from r to . In the
special case that r � 1, a negative binomial random variable is a geometric random variable.
Selected negative binomial distributions are illustrated in Fig. 3-10.

The lack of memory property of a geometric random variable implies the following. Let
X denote the total number of trials required to obtain r successes. Let denote the number of
trials required to obtain the first success, let denote the number of extra trials required to
obtain the second success, let denote the number of extra trials to obtain the third success,
and so forth. Then, the total number of trials required to obtain r successes is

. Because of the lack of memory property, each of the random vari-
ables has a geometric distribution with the same value of p. Consequently, a
negative binomial random variable can be interpreted as the sum of r geometric random vari-
ables. This concept is illustrated in Fig. 3-11.

Recall that a binomial random variable is a count of the number of successes in n
Bernoulli trials. That is, the number of trials is predetermined, and the number of successes is
random. A negative binomial random variable is a count of the number of trials required to

X1, X2, p , Xr

X � X1 	 X2 	 p 	 Xr

X3

X2

X1
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Figure 3-10 Negative
binomial distributions
for selected values of the
parameters r and p.
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Figure 3-11 Negative
binomial random 
variable represented as
a sum of geometric 
random variables.
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82 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

obtain r successes. That is, the number of successes is predetermined, and the number of trials
is random. In this sense, a negative binomial random variable can be considered the opposite,
or negative, of a binomial random variable.

The description of a negative binomial random variable as a sum of geometric random
variables leads to the following results for the mean and variance. Sums of random variables
are studied in Chapter 5.

EXAMPLE 3-25 A Web site contains three identical computer servers. Only one is used to operate the site, and
the other two are spares that can be activated in case the primary system fails. The probability
of a failure in the primary computer (or any activated spare system) from a request for service
is 0.0005. Assuming that each request represents an independent trial, what is the mean num-
ber of requests until failure of all three servers?

Let X denote the number of requests until all three servers fail, and let , , and 
denote the number of requests before a failure of the first, second, and third servers used,
respectively. Now, . Also, the requests are assumed to comprise independ-
ent trials with constant probability of failure p � 0.0005. Furthermore, a spare server is not
affected by the number of requests before it is activated. Therefore, X has a negative binomial
distribution with p � 0.0005 and r � 3. Consequently,

What is the probability that all three servers fail within five requests? The probability is
and

EXERCISES FOR SECTION 3-7

 � 1.249 
 10�9

 � 1.25 
 10�10 	 3.75 
 10�10 	 7.49 
 10�10

 � 0.00053 	 a3
2
b  0.0005310.99952 	 a4

2
b  0.0005310.999522

P1X � 52 � P1X � 32 	 P1X � 42 	 P1X � 52
P1X � 52

E1X 2 � 3�0.0005 � 6000 requests

X � X1 	 X2 	 X3

X3X2X1

If X is a negative binomial random variable with parameters p and r,

(3-12)� � E1X 2 � r�p  and  �2 � V1X 2 � r11 � p2�p2

3-71. Suppose the random variable X has a geometric
distribution with p � 0.5. Determine the following proba-
bilities:
(a) (b)
(c) (d)
(e) P1X � 22

P1X � 22P1X � 82
P1X � 42P1X � 12

3-72. Suppose the random variable X has a geometric
distribution with a mean of 2.5. Determine the following
probabilities:
(a) (b)
(c) (d)
(e) P1X � 32

P1X � 32P1X � 52
P1X � 42P1X � 12
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3-7 GEOMETRIC AND NEGATIVE BINOMIAL DISTRIBUTIONS 83

3-73. The probability of a successful optical alignment in
the assembly of an optical data storage product is 0.8. Assume
the trials are independent.
(a) What is the probability that the first successful alignment

requires exactly four trials?
(b) What is the probability that the first successful alignment

requires at most four trials?
(c) What is the probability that the first successful alignment

requires at least four trials?

3-74. In a clinical study, volunteers are tested for a gene
that has been found to increase the risk for a disease. The
probability that a person carries the gene is 0.1.
(a) What is the probability 4 or more people will have to be

tested before 2 with the gene are detected?
(b) How many people are expected to be tested before 2 with

the gene are detected?

3-75. Assume that each of your calls to a popular radio station
has a probability of 0.02 of connecting, that is, of not obtaining a
busy signal. Assume that your calls are independent.
(a) What is the probability that your first call that connects is

your tenth call?
(b) What is the probability that it requires more than five calls

for you to connect?
(c) What is the mean number of calls needed to connect?

3-76. In Exercise 3-70, recall that a particularly long traffic
light on your morning commute is green 20% of the time that
you approach it. Assume that each morning represents an
independent trial.
(a) What is the probability that the first morning that the light

is green is the fourth morning that you approach it?
(b) What is the probability that the light is not green for 10

consecutive mornings?

3-77. A trading company has eight computers that it uses to
trade on the New York Stock Exchange (NYSE). The proba-
bility of a computer failing in a day is 0.005, and the comput-
ers fail independently. Computers are repaired in the evening
and each day is an independent trial.
(a) What is the probability that all eight computers fail in a

day?

(b) What is the mean number of days until a specific com-
puter fails?

(c) What is the mean number of days until all eight computers
fail in the same day?

3-78. In Exercise 3-66, recall that 20 parts are checked each
hour and that X denotes the number of parts in the sample of
20 that require rework.
(a) If the percentage of parts that require rework remains at

1%, what is the probability that hour 10 is the first sample
at which X exceeds 1?

(b) If the rework percentage increases to 4%, what is the
probability that hour 10 is the first sample at which X
exceeds 1?

(c) If the rework percentage increases to 4%, what is the
expected number of hours until X exceeds 1?

3-79. Consider a sequence of independent Bernoulli trials
with p � 0.2.
(a) What is the expected number of trials to obtain the first

success?
(b) After the eighth success occurs, what is the expected num-

ber of trials to obtain the ninth success?

3-80. Show that the probability density function of a nega-
tive binomial random variable equals the probability density
function of a geometric random variable when r � 1. Show
that the formulas for the mean and variance of a negative bi-
nomial random variable equal the corresponding results for
geometric random variable when r � 1.

3-81. Suppose that X is a negative binomial random variable
with p � 0.2 and r � 4. Determine the following:
(a) (b)
(c) (d)
(e) The most likely value for X

3-82. The probability is 0.6 that a calibration of a transducer
in an electronic instrument conforms to specifications for the
measurement system. Assume the calibration attempts are
independent. What is the probability that at most three
calibration attempts are required to meet the specifications for
the measurement system?

3-83. An electronic scale in an automated filling operation
stops the manufacturing line after three underweight packages
are detected. Suppose that the probability of an underweight
package is 0.001 and each fill is independent.
(a) What is the mean number of fills before the line is

stopped?
(b) What is the standard deviation of the number of fills

before the line is stopped?

3-84. A fault-tolerant system that processes transactions for
a financial services firm uses three separate computers. If the
operating computer fails, one of the two spares can be imme-
diately switched online. After the second computer fails, the
last computer can be immediately switched online. Assume
that the probability of a failure during any transaction is 
and that the transactions can be considered to be independent
events.
(a) What is the mean number of transactions before all com-

puters have failed?

(b) What is the variance of the number of transactions before
all computers have failed?

3-85. Derive the expressions for the mean and variance of a
geometric random variable with parameter p. (Formulas for
infinite series are required.)

10�8

P1X � 212P1X � 192
P1X � 202E1X 2
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84 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

A set of N objects contains
K objects classified as successes

N � K objects classified as failures

A sample of size n objects is selected randomly (without replacement) from the N
objects, where and .

Let the random variable X denote the number of successes in the sample. Then
X is a hypergeometric random variable and

(3-13)f 1x2 �

aK
x
b aN � K

n � x
b

aN
n
b

  x � max50, n 	 K � N6 to min5K, n6

n � NK � N

Definition

3-8 HYPERGEOMETRIC DISTRIBUTION

In Example 3-8, a day’s production of 850 manufactured parts contains 50 parts that do not
conform to customer requirements. Two parts are selected at random, without replacement
from the day’s production. That is, selected units are not replaced before the next selection is
made. Let A and B denote the events that the first and second parts are nonconforming, re-
spectively. In Chapter 2, we found and . Consequently,
knowledge that the first part is nonconforming suggests that it is less likely that the second
part selected is nonconforming.

This experiment is fundamentally different from the examples based on the binomial dis-
tribution. In this experiment, the trials are not independent. Note that, in the unusual case that
each unit selected is replaced before the next selection, the trials are independent and there is
a constant probability of a nonconforming part on each trial. Then, the number of noncon-
forming parts in the sample is a binomial random variable.

Let X equal the number of nonconforming parts in the sample. Then

does not, or the first part selected does not and the second part 
selected conforms)

As in this example, samples are often selected without replacement. Although probabili-
ties can be determined by the reasoning used in the example above, a general formula for
computing probabilities when samples are selected without replacement is quite useful. The
counting rules presented in Section 2-1.4, part of the CD material for Chapter 2, can be used
to justify the formula given below.

 P1X � 22 � P1both parts do not conform2 � 150�8502 149�8492 � 0.003

 � 1800�8502 150�8492 	 150�8502 1800�8492 � 0.111

 P1X � 12 � P1first part selected conforms and the second part selected

 P1X � 02 � P1both parts conform2 � 1800�8502 1799�8492 � 0.886

P1A2 � 50�850P1B ƒ A2 � 49�849

The expression min is used in the definition of the range of X because the maximum
number of successes that can occur in the sample is the smaller of the sample size, n,

5K, n6
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Figure 3-12 Hypergeometric distributions for
selected values of parameters N, K, and n.

and the number of successes available, K. Also, if at least suc-
cesses must occur in the sample. Selected hypergeometric distributions are illustrated in
Fig. 3-12.

EXAMPLE 3-26 The example at the start of this section can be reanalyzed by using the general expression in
the definition of a hypergeometric random variable. That is,

EXAMPLE 3-27 A batch of parts contains 100 parts from a local supplier of tubing and 200 parts from a sup-
plier of tubing in the next state. If four parts are selected randomly and without replacement,
what is the probability they are all from the local supplier?

P1X � 22 �

a50
2
b a800

0
b

a850
2
b

�
1225

360825
� 0.003

P1X � 12 �

a50
1
b a800

1
b

a850
2
b

�
40000
360825

� 0.111

P1X � 02 �

a50
0
b a800

2
b

a850
2
b

�
319600
360825

� 0.886

n 	 K � Nn 	 K � N,
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86 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Let X equal the number of parts in the sample from the local supplier. Then, X has a
hypergeometric distribution and the requested probability is Consequently,

What is the probability that two or more parts in the sample are from the local supplier?

What is the probability that at least one part in the sample is from the local supplier?

The mean and variance of a hypergeometric random variable can be determined from
the trials that comprise the experiment. However, the trials are not independent, and so the
calculations are more difficult than for a binomial distribution. The results are stated as
follows.

P1X � 12 � 1 � P1X � 02 � 1 �

a100
0
b a200

4
b

a300
4
b

� 0.804

 � 0.298 	 0.098 	 0.0119 � 0.408

P1X � 22 �

a100
2
b a200

2
b

a300
4
b

	

a100
3
b a200

1
b

a300
4
b

	

a100
4
b a200

0
b

a300
4
b

P1X � 42 �

a100
4
b a200

0
b

a300
4
b

� 0.0119

P1X � 42.

If X is a hypergeometric random variable with parameters then

(3-14)

where .p � K�N

� � E1X 2 � np  and  �2 � V1X 2 � np11 � p2   aN � n

N � 1
b

N, K, and n,

Here p is interpreted as the proportion of successes in the set of N objects.

EXAMPLE 3-28 In the previous example, the sample size is 4. The random variable X is the number of parts in
the sample from the local supplier. Then, . Therefore,

E1X 2 � 41100�3002 � 1.33

p � 100�300 � 1�3
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3-8 HYPERGEOMETRIC DISTRIBUTION 87

and

For a hypergeometric random variable, is similar to the mean a binomial random
variable. Also, differs from the result for a binomial random variable only by the term
shown below.

V1X 2 E1X 2
V1X2 � 411�32 12�32 3 1300 �  42�299 4 � 0.88

Sampling with replacement is equivalent to sampling from an infinite set because the propor-
tion of success remains constant for every trial in the experiment. As mentioned previously, if
sampling were done with replacement, X would be a binomial random variable and its vari-
ance would be np(1 � p). Consequently, the finite population correction represents the cor-
rection to the binomial variance that results because the sampling is without replacement from
the finite set of size N.

If n is small relative to N, the correction is small and the hypergeometric distribution is sim-
ilar to the binomial. In this case, a binomial distribution can effectively approximate the distribu-
tion of the number of units of a specified type in the sample. A case is illustrated in Fig. 3-13.

EXAMPLE 3-29 A listing of customer accounts at a large corporation contains 1000 customers. Of these, 700
have purchased at least one of the corporation’s products in the last three months. To evaluate
a new product design, 50 customers are sampled at random from the corporate listing. What is

0.0
0

Hypergeometric N = 50, n = 5, K = 25

Hypergeometric probability
Binomial probability

0

0.025
0.031

1

0.149
0.156

2

0.326
0.321

3

0.326
0.312

4

0.149
0.156

5

0.025

0.031

Binomial n = 5, p = 0.5

(x)

0.1

0.2

0.3

1 2 3 4 5

x

Figure 3-13
Comparison of hyper-
geometric and binomial
distributions.

The term in the variance of a hypergeometric random variable

is called the finite population correction factor.

N � n

N � 1

Finite
Population
Correction

Factor
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88 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

the probability that more than 45 of the sampled customers have purchased from the corpora-
tion in the last three months?

The sampling is without replacement. However, because the sample size of 50 is small
relative to the number of customer accounts, 1000, the probability of selecting a customer who
has purchased from the corporation in the last three months remains approximately constant
as the customers are chosen.

For example, let A denote the event that the first customer selected has purchased
from the corporation in the last three months, and let B denote the event that the second
customer selected has purchased from the corporation in the last three months. Then,

and . That is, the trials are approxi-
mately independent.

Let X denote the number of customers in the sample who have purchased from the cor-
poration in the last three months. Then, X is a hypergeometric random variable with N �
1000, n � 50, and K � 700. Consequently, . The requested probability is

. Because the sample size is small relative to the batch size, the distribution of X
can be approximated as binomial with n � 50 and p � 0.7. Using the binomial approximation
to the distribution of X results in

The probability from the hypergeometric distribution is 0.000166, but this requires computer
software. The result agrees well with the binomial approximation.

EXERCISES FOR SECTION 3-8

P1X � 452 � a
50

x�46
 a50

x
b 0.7x11 � 0.7250�x � 0.00017

P1X � 452 p � K�N � 0.7

P1B ƒ A2 � 699�999 � 0.6997P1A2 � 700�1000 � 0.7

3-86. Suppose X has a hypergeometric distribution with
N � 100, n � 4, and K � 20. Determine the following:
(a) (b)
(c) (d) Determine the mean and variance of X.

3-87. Suppose X has a hypergeometric distribution with
N � 20, n � 4, and K � 4. Determine the following:
(a) (b)
(c) (d) Determine the mean and variance of X.

3-88. Suppose X has a hypergeometric distribution with
N � 10, n � 3, and K � 4. Sketch the probability mass func-
tion of X.

3-89. Determine the cumulative distribution function for X
in Exercise 3-88.

3-90. A lot of 75 washers contains 5 in which the variability
in thickness around the circumference of the washer is unac-
ceptable. A sample of 10 washers is selected at random,
without replacement.
(a) What is the probability that none of the unacceptable

washers is in the sample?
(b) What is the probability that at least one unacceptable

washer is in the sample?
(c) What is the probability that exactly one unacceptable

washer is in the sample?

P1X � 22
P1X � 42P1X � 12

P1X � 42
P1X � 62P1X � 12

(d) What is the mean number of unacceptable washers in the
sample?

3-91. A company employs 800 men under the age of 55.
Suppose that 30% carry a marker on the male chromosome
that indicates an increased risk for high blood pressure.
(a) If 10 men in the company are tested for the marker in this

chromosome, what is the probability that exactly 1 man
has the marker?

(b) If 10 men in the company are tested for the marker in this
chromosome, what is the probability that more than 1 has
the marker?

3-92. Printed circuit cards are placed in a functional test
after being populated with semiconductor chips. A lot contains
140 cards, and 20 are selected without replacement for func-
tional testing.
(a) If 20 cards are defective, what is the probability that at

least 1 defective card is in the sample?
(b) If 5 cards are defective, what is the probability that at least

1 defective card appears in the sample?

3-93. Magnetic tape is slit into half-inch widths that are
wound into cartridges. A slitter assembly contains 48 blades.
Five blades are selected at random and evaluated each day for

PQ220 6234F.Ch 03  13/04/2002  03:19 PM  Page 88



3-9 POISSON DISTRIBUTION 89

sharpness. If any dull blade is found, the assembly is replaced
with a newly sharpened set of blades.
(a) If 10 of the blades in an assembly are dull, what is the

probability that the assembly is replaced the first day it is
evaluated?

(b) If 10 of the blades in an assembly are dull, what is the
probability that the assembly is not replaced until the third
day of evaluation? [Hint: Assume the daily decisions are
independent, and use the geometric distribution.]

(c) Suppose on the first day of evaluation, two of the blades
are dull, on the second day of evaluation six are dull, and
on the third day of evaluation, ten are dull. What is the
probability that the assembly is not replaced until the third
day of evaluation? [Hint: Assume the daily decisions are
independent. However, the probability of replacement
changes every day.]

3-94. A state runs a lottery in which 6 numbers are ran-
domly selected from 40, without replacement. A player
chooses 6 numbers before the state’s sample is selected.
(a) What is the probability that the 6 numbers chosen by a

player match all 6 numbers in the state’s sample?
(b) What is the probability that 5 of the 6 numbers chosen by

a player appear in the state’s sample?

(c) What is the probability that 4 of the 6 numbers chosen by
a player appear in the state’s sample?

(d) If a player enters one lottery each week, what is the
expected number of weeks until a player matches all 6
numbers in the state’s sample?

3-95. Continuation of Exercises 3-86 and 3-87.
(a) Calculate the finite population corrections for Exercises 

3-86 and 3-87. For which exercise should the binomial
approximation to the distribution of X be better?

(b) For Exercise 3-86, calculate and as-
suming that X has a binomial distribution and compare
these results to results derived from the hypergeometric
distribution.

(c) For Exercise 3-87, calculate and 
assuming that X has a binomial distribution and compare
these results to the results derived from the hypergeometric
distribution.

3-96. Use the binomial approximation to the hypergeo-
metric distribution to approximate the probabilities in
Exercise 3-92. What is the finite population correction in this
exercise?

P1X � 42P1X � 12

P1X � 42P1X � 12

3-9 POISSON DISTRIBUTION

We introduce the Poisson distribution with an example.

EXAMPLE 3-30 Consider the transmission of n bits over a digital communication channel. Let the random
variable X equal the number of bits in error. When the probability that a bit is in error is con-
stant and the transmissions are independent, X has a binomial distribution. Let p denote the
probability that a bit is in error. Let . Then, and

Now, suppose that the number of bits transmitted increases and the probability of an error
decreases exactly enough that pn remains equal to a constant. That is, n increases and p de-
creases accordingly, such that E(X) � remains constant. Then, with some work, it can be
shown that

Also, because the number of bits transmitted tends to infinity, the number of errors can equal
any nonnegative integer. Therefore, the range of X is the integers from zero to infinity.

The distribution obtained as the limit in the above example is more useful than the deri-
vation above implies. The following example illustrates the broader applicability.

limnS� P1X � x2 �
e���x

x!
,  x � 0, 1, 2, p

�

P1X � x2 � an
x
b  Px11 � p2n�x � an

x
b a�

nb
xa1 �

�
nb

n�x

E1x2 � pn � �� � pn
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90 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

EXAMPLE 3-31 Flaws occur at random along the length of a thin copper wire. Let X denote the random vari-
able that counts the number of flaws in a length of L millimeters of wire and suppose that the
average number of flaws in L millimeters is .

The probability distribution of X can be found by reasoning in a manner similar to the pre-
vious example. Partition the length of wire into n subintervals of small length, say, 1 microm-
eter each. If the subinterval chosen is small enough, the probability that more than one flaw
occurs in the subinterval is negligible. Furthermore, we can interpret the assumption that
flaws occur at random to imply that every subinterval has the same probability of containing
a flaw, say, p. Finally, if we assume that the probability that a subinterval contains a flaw is in-
dependent of other subintervals, we can model the distribution of X as approximately a bino-
mial random variable. Because

we obtain

That is, the probability that a subinterval contains a flaw is . With small enough subinter-
vals, n is very large and p is very small. Therefore, the distribution of X is obtained as in the
previous example.

Example 3-31 can be generalized to include a broad array of random experiments. The
interval that was partitioned was a length of wire. However, the same reasoning can be
applied to any interval, including an interval of time, an area, or a volume. For example,
counts of (1) particles of contamination in semiconductor manufacturing, (2) flaws in rolls
of textiles, (3) calls to a telephone exchange, (4) power outages, and (5) atomic particles
emitted from a specimen have all been successfully modeled by the probability mass func-
tion in the following definition.

��n

p � ��n

E1X2 � � � np

�

Given an interval of real numbers, assume counts occur at random throughout the in-
terval. If the interval can be partitioned into subintervals of small enough length such
that

(1) the probability of more than one count in a subinterval is zero,

(2) the probability of one count in a subinterval is the same for all subintervals
and proportional to the length of the subinterval, and

(3) the count in each subinterval is independent of other subintervals, the ran-
dom experiment is called a Poisson process.

The random variable X that equals the number of counts in the interval is a Poisson
random variable with parameter , and the probability mass function of X is

(3-15)f 1x2 �
e���x

x!
  x � 0, 1, 2, p

0 � �

Definition
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3-9 POISSON DISTRIBUTION 91

Historically, the term process has been used to suggest the observation of a system over
time. In our example with the copper wire, we showed that the Poisson distribution could
also apply to intervals such as lengths. Figure 3-14 provides graphs of selected Poisson
distributions.

It is important to use consistent units in the calculation of probabilities, means, and vari-
ances involving Poisson random variables. The following example illustrates unit conversions.
For example, if the

average number of flaws per millimeter of wire is 3.4, then the

average number of flaws in 10 millimeters of wire is 34, and the

average number of flaws in 100 millimeters of wire is 340.

If a Poisson random variable represents the number of counts in some interval, the mean of the
random variable must equal the expected number of counts in the same length of interval.

0

0.2

0.6

λ
0.1

0.4

1.0

0

2 4 8 10 121 3 5 7 9 11

0.8

f(x)

0

0.2

0.6

λ

0.4

1.0

0

2

2 4 8 10 121 3 5 7 9 11

0.8

0.2

0.6

λ

0.4

1.0

0

5
0.8

6
x 
(a)

6
x

(b)

f(x)

f(x)

Figure 3-14 Poisson distributions for selected values of the parameters.
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EXAMPLE 3-32 For the case of the thin copper wire, suppose that the number of flaws follows a Poisson dis-
tribution with a mean of 2.3 flaws per millimeter. Determine the probability of exactly 2 flaws
in 1 millimeter of wire.

Let X denote the number of flaws in 1 millimeter of wire. Then, E(X) � 2.3 flaws and

Determine the probability of 10 flaws in 5 millimeters of wire. Let X denote the number
of flaws in 5 millimeters of wire. Then, X has a Poisson distribution with

Therefore,

Determine the probability of at least 1 flaw in 2 millimeters of wire. Let X denote the
number of flaws in 2 millimeters of wire. Then, X has a Poisson distribution with

Therefore,

EXAMPLE 3-33 Contamination is a problem in the manufacture of optical storage disks. The number of particles
of contamination that occur on an optical disk has a Poisson distribution, and the average number
of particles per centimeter squared of media surface is 0.1. The area of a disk under study is 100
squared centimeters. Find the probability that 12 particles occur in the area of a disk under study.

Let X denote the number of particles in the area of a disk under study. Because the mean
number of particles is 0.1 particles per cm2

Therefore,

The probability that zero particles occur in the area of the disk under study is

Determine the probability that 12 or fewer particles occur in the area of the disk under
study. The probability is

P1X � 122 � P1X � 02 	 P1X � 12 	 # # # 	 P1X � 122 � a  
12

i�0

e�1010i

i!

P1X � 02 � e�10 � 4.54 
 10�5

P1X � 122 �
e�101012

12!
� 0.095

E1X 2 � 100 cm2 
 0.1 particles/cm2 � 10 particles

P1X � 12 � 1 � P1X � 02 � 1 � e�4.6 � 0.9899

E1X 2 � 2 mm 
 2.3 flaws/mm � 4.6 flaws

P1X � 102 � e�11.5  11.510

10!
� 0.113

E1X 2 � 5 mm 
 2.3 flaws/mm � 11.5 flaws

P1X � 22 �
e�2.32.32

2!
� 0.265

92 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS
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(c) What is the probability that there are no flaws in 20 square
meters of cloth?

(d) What is the probability that there are at least two flaws in
10 square meters of cloth?

3-102. When a computer disk manufacturer tests a disk, it
writes to the disk and then tests it using a certifier. The certi-
fier counts the number of missing pulses or errors. The num-
ber of errors on a test area on a disk has a Poisson distribution
with � � 0.2.
(a) What is the expected number of errors per test area?
(b) What percentage of test areas have two or fewer errors?

3-103. The number of cracks in a section of interstate high-
way that are significant enough to require repair is assumed
to follow a Poisson distribution with a mean of two cracks
per mile.
(a) What is the probability that there are no cracks that require

repair in 5 miles of highway?
(b) What is the probability that at least one crack requires

repair in mile of highway?
(c) If the number of cracks is related to the vehicle load on

the highway and some sections of the highway have a
heavy load of vehicles whereas other sections carry
a light load, how do you feel about the assumption of a
Poisson distribution for the number of cracks that
require repair?

3-104. The number of failures for a cytogenics machine
from contamination in biological samples is a Poisson random
variable with a mean of 0.01 per 100 samples.
(a) If the lab usually processes 500 samples per day, what is

the expected number of failures per day?

1�2

3-9 POISSON DISTRIBUTION 93

3-97. Suppose X has a Poisson distribution with a mean of
4. Determine the following probabilities:
(a) (b)
(c) (d)

3-98. Suppose X has a Poisson distribution with a mean of
0.4. Determine the following probabilities:
(a) (b)
(c) (d)

3-99. Suppose that the number of customers that enter
a bank in an hour is a Poisson random variable, and sup-
pose that Determine the mean and
variance of X.

3-100. The number of telephone calls that arrive at a phone
exchange is often modeled as a Poisson random variable.
Assume that on the average there are 10 calls per hour.
(a) What is the probability that there are exactly 5 calls in one

hour?
(b) What is the probability that there are 3 or less calls in one

hour?
(c) What is the probability that there are exactly 15 calls in

two hours?
(d) What is the probability that there are exactly 5 calls in

30 minutes?

3-101. The number of flaws in bolts of cloth in textile man-
ufacturing is assumed to be Poisson distributed with a mean of
0.1 flaw per square meter.
(a) What is the probability that there are two flaws in 1 square

meter of cloth?
(b) What is the probability that there is one flaw in 10 square

meters of cloth?

P1X � 02 � 0.05.

P1X � 82P1X � 42
P1X � 22P1X � 02

P1X � 82P1X � 42
P1X � 22P1X � 02

If X is a Poisson random variable with parameter , then

(3-16)� � E1X 2 � �  and  �2 � V1X 2 � �

�

Because this sum is tedious to compute, many computer programs calculate cumulative
Poisson probabilities. From one such program, .

The derivation of the mean and variance of a Poisson random variable is left as an exer-
cise. The results are as follows.

P1X � 122 � 0.791

The mean and variance of a Poisson random variable are equal. For example, if particle counts
follow a Poisson distribution with a mean of 25 particles per square centimeter, the variance
is also 25 and the standard deviation of the counts is 5 per square centimeter. Consequently,
information on the variability is very easily obtained. Conversely, if the variance of count data
is much greater than the mean of the same data, the Poisson distribution is not a good model
for the distribution of the random variable.

EXERCISES FOR SECTION 3-9
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(b) What is the probability that the machine will not fail dur-
ing a study that includes 500 participants? (Assume one
sample per participant.)

3-105. The number of surface flaws in plastic panels used
in the interior of automobiles has a Poisson distribution with
a mean of 0.05 flaw per square foot of plastic panel. Assume
an automobile interior contains 10 square feet of plastic
panel.
(a) What is the probability that there are no surface flaws in

an auto’s interior?
(b) If 10 cars are sold to a rental company, what is the proba-

bility that none of the 10 cars has any surface flaws?
(c) If 10 cars are sold to a rental company, what is the proba-

bility that at most one car has any surface flaws?

3-106. The number of failures of a testing instrument from
contamination particles on the product is a Poisson random
variable with a mean of 0.02 failure per hour.
(a) What is the probability that the instrument does not fail in

an 8-hour shift?
(b) What is the probability of at least one failure in a 24-hour

day?

Supplemental Exercises

3-107. A shipment of chemicals arrives in 15 totes. Three of
the totes are selected at random, without replacement, for an
inspection of purity. If two of the totes do not conform to
purity requirements, what is the probability that at least one of
the nonconforming totes is selected in the sample?

3-108. The probability that your call to a service line is an-
swered in less than 30 seconds is 0.75. Assume that your calls
are independent.
(a) If you call 10 times, what is the probability that exactly 9

of your calls are answered within 30 seconds?
(b) If you call 20 times, what is the probability that at least 16

calls are answered in less than 30 seconds?
(c) If you call 20 times, what is the mean number of calls that

are answered in less than 30 seconds?

3-109. Continuation of Exercise 3-108.
(a) What is the probability that you must call four times to

obtain the first answer in less than 30 seconds?
(b) What is the mean number of calls until you are answered

in less than 30 seconds?

3-110. Continuation of Exercise 3-109.
(a) What is the probability that you must call six times in

order for two of your calls to be answered in less than 30
seconds?

(b) What is the mean number of calls to obtain two answers in
less than 30 seconds?

3-111. The number of messages sent to a computer bulletin
board is a Poisson random variable with a mean of 5 messages
per hour.
(a) What is the probability that 5 messages are received in

1 hour?

(b) What is the probability that 10 messages are received in
1.5 hours?

(c) What is the probability that less than two messages are
received in one-half hour?

3-112. A Web site is operated by four identical computer
servers. Only one is used to operate the site; the others are
spares that can be activated in case the active server fails. The
probability that a request to the Web site generates a failure in
the active server is 0.0001. Assume that each request is an in-
dependent trial. What is the mean time until failure of all four
computers?

3-113. The number of errors in a textbook follow a Poisson
distribution with a mean of 0.01 error per page. What is the
probability that there are three or less errors in 100 pages?

3-114. The probability that an individual recovers from an
illness in a one-week time period without treatment is 0.1.
Suppose that 20 independent individuals suffering from this
illness are treated with a drug and 4 recover in a one-week
time period. If the drug has no effect, what is the probability
that 4 or more people recover in a one-week time period?

3-115. Patient response to a generic drug to control pain is
scored on a 5-point scale, where a 5 indicates complete relief.
Historically the distribution of scores is

1 2 3 4 5
0.05 0.1 0.2 0.25 0.4

Two patients, assumed to be independent, are each scored.
(a) What is the probability mass function of the total score?
(b) What is the probability mass function of the average score?

3-116. In a manufacturing process that laminates several
ceramic layers, 1% of the assemblies are defective. Assume
that the assemblies are independent.
(a) What is the mean number of assemblies that need to be

checked to obtain five defective assemblies?
(b) What is the standard deviation of the number of assemblies

that need to be checked to obtain five defective assemblies?

3-117. Continuation of Exercise 3-116. Determine the mini-
mum number of assemblies that need to be checked so that the
probability of at least one defective assembly exceeds 0.95.

3-118. Determine the constant c so that the following func-
tion is a probability mass function: for x � 1, 2, 3, 4.

3-119. A manufacturer of a consumer electronics product ex-
pects 2% of units to fail during the warranty period. A sample of
500 independent units is tracked for warranty performance.
(a) What is the probability that none fails during the warranty

period?
(b) What is the expected number of failures during the

warranty period?
(c) What is the probability that more than two units fail

during the warranty period?

3-120. Messages that arrive at a service center for an infor-
mation systems manufacturer have been classified on the basis

f 1x2 � cx
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of the number of keywords (used to help route messages) and
the type of message, either email or voice. Also, 70% of the
messages arrive via email and the rest are voice.

number of keywords 0 1 2 3 4
email 0.1 0.1 0.2 0.4 0.2
voice 0.3 0.4 0.2 0.1 0

Determine the probability mass function of the number of
keywords in a message.

3-121. The random variable X has the following probability
distribution:

x 2 3 5 8
probability 0.2 0.4 0.3 0.1

Determine the following:
(a) (b)
(c) (d)
(e)

3-122. Determine the probability mass function for the ran-
dom variable with the following cumulative distribution
function:

3-123. Each main bearing cap in an engine contains four
bolts. The bolts are selected at random, without replacement,
from a parts bin that contains 30 bolts from one supplier and
70 bolts from another.
(a) What is the probability that a main bearing cap contains

all bolts from the same supplier?
(b) What is the probability that exactly three bolts are from

the same supplier?

3-124. Assume the number of errors along a magnetic
recording surface is a Poisson random variable with a mean of
one error every bits. A sector of data consists of 4096
eight-bit bytes.
(a) What is the probability of more than one error in a sector?
(b) What is the mean number of sectors until an error is found?

3-125. An installation technician for a specialized commu-
nication system is dispatched to a city only when three or
more orders have been placed. Suppose orders follow a
Poisson distribution with a mean of 0.25 per week for a city
with a population of 100,000 and suppose your city contains a
population of 800,000.
(a) What is the probability that a technician is required after a

one-week period?
(b) If you are the first one in the city to place an order, what is

the probability that you have to wait more than two weeks
from the time you place your order until a technician is
dispatched?

3-126. From 500 customers, a major appliance manufac-
turer will randomly select a sample without replacement. The
company estimates that 25% of the customers will provide
useful data. If this estimate is correct, what is the probability
mass function of the number of customers that will provide
useful data?
(a) Assume that the company samples 5 customers.
(b) Assume that the company samples 10 customers.

3-127. It is suspected that some of the totes containing
chemicals purchased from a supplier exceed the moisture con-
tent target. Samples from 30 totes are to be tested for moisture
content. Assume that the totes are independent. Determine the
proportion of totes from the supplier that must exceed the
moisture content target so that the probability is 0.90 that at
least one tote in the sample of 30 fails the test.

3-128. Messages arrive to a computer server according
to a Poisson distribution with a mean rate of 10 per
hour. Determine the length of an interval of time such that
the probability that no messages arrive during this interval
is 0.90.

3-129. Flaws occur in the interior of plastic used for auto-
mobiles according to a Poisson distribution with a mean of
0.02 flaw per panel.
(a) If 50 panels are inspected, what is the probability that

there are no flaws?
(b) What is the expected number of panels that need to be

inspected before a flaw is found?

(c) If 50 panels are inspected, what is the probability that the
number of panels that have one or more flaws is less than
or equal to 2?

105

F1x2 � µ
0            x � 2
0.2    2 � x � 5.7
0.5 5.7 � x � 6.5
0.8 6.5 � x � 8.5
1 8.5 � x

V1X2 E1X2P12.7 � X � 5.12
P1X � 2.52P1X � 32

PQ220 6234F.Ch 03  13/04/2002  03:19 PM  Page 95



96 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

3-130. Derive the mean and variance of a hypergeo-
metric random variable (difficult exercise).

3-131. Show that the function f (x) in Example 3-5
satisfies the properties of a probability mass function by
summing the infinite series.

3-132. Derive the formula for the mean and standard
deviation of a discrete uniform random variable over the
range of integers .

3-133. A company performs inspection on shipments
from suppliers in order to defect nonconforming prod-
ucts. Assume a lot contains 1000 items and 1% are
nonconforming. What sample size is needed so that the
probability of choosing at least one nonconforming item
in the sample is at least 0.90? Assume the binomial
approximation to the hypergeometric distribution is
adequate.

3-134. A company performs inspection on shipments
from suppliers in order to detect nonconforming prod-
ucts. The company’s policy is to use a sample size that is
always 10% of the lot size. Comment on the effective-
ness of this policy as a general rule for all sizes of lots.

3-135. Surface flaws in automobile exterior panels
follow a Poisson distribution with a mean of 0.1 flaw per
panel. If 100 panels are checked, what is the probability
that fewer than five panels have any flaws?

3-136. A large bakery can produce rolls in lots of ei-
ther 0, 1000, 2000, or 3000 per day. The production cost
per item is $0.10. The demand varies randomly accord-
ing to the following distribution:

demand for rolls 0 1000 2000 3000 
probability of demand 0.3 0.2 0.3 0.2

Every roll for which there is a demand is sold for $0.30.
Every roll for which there is no demand is sold in a sec-
ondary market for $0.05. How many rolls should the
bakery produce each day to maximize the mean profit?

3-137. A manufacturer stocks components obtained
from a supplier. Suppose that 2% of the components are
defective and that the defective components occur inde-
pendently. How many components must the manufacturer
have in stock so that the probability that 100 orders can be
completed without reordering components is at least 0.95?

a, a 	 1, p , b

MIND-EXPANDING EXERCISES

In the E-book, click on any
term or concept below to
go to that subject.
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distribution function-
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function of a random
variable
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correction factor 

Geometric distribution 
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bution
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random variable
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Poisson process
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Standard deviation-
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4Continuous Random
Variables and 
Probability 
Distributions

CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Determine probabilities from probability density functions.
2. Determine probabilities from cumulative distribution functions and cumulative distribution func-

tions from probability density functions, and the reverse.
3. Calculate means and variances for continuous random variables.
4. Understand the assumptions for each of the continuous probability distributions presented.
5. Select an appropriate continuous probability distribution to calculate probabilities in specific

applications.
6. Calculate probabilities, determine means and variances for each of the continuous probability

distributions presented.
7. Standardize normal random variables.

4-1 CONTINUOUS RANDOM
VARIABLES

4-2 PROBABILITY DISTRIBUTIONS
AND PROBABILITY DENSITY
FUNCTIONS

4-3 CUMULATIVE DISTRIBUTION
FUNCTIONS

4-4 MEAN AND VARIANCE OF A
CONTINUOUS RANDOM 
VARIABLE

4-5 CONTINUOUS UNIFORM 
DISTRIBUTION

4-6 NORMAL DISTRIBUTION

4-7 NORMAL APPROXIMATION TO
THE BINOMIAL AND POISSON
DISTRIBUTIONS

4-8 CONTINUITY CORRECTION TO
IMPROVE THE APPROXIMATION 
(CD ONLY)

4-9 EXPONENTIAL DISTRIBUTION

4-10 ERLANG AND GAMMA 
DISTRIBUTIONS

4-10.1 Erlang Distribution

4-10.2 Gamma Distribution

4-11 WEIBULL DISTRIBUTION

4-12 LOGNORMAL DISTRIBUTION
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98 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

8. Use the table for the cumulative distribution function of a standard normal distribution to calcu-
late probabilities.

9. Approximate probabilities for some binomial and Poisson distributions.

CD MATERIAL
10. Use continuity corrections to improve the normal approximation to those binomial and Poisson

distributions.

Answers for most odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

4-1 CONTINUOUS RANDOM VARIABLES

Previously, we discussed the measurement of the current in a thin copper wire. We noted that
the results might differ slightly in day-to-day replications because of small variations in vari-
ables that are not controlled in our experiment—changes in ambient temperatures, small im-
purities in the chemical composition of the wire, current source drifts, and so forth.

Another example is the selection of one part from a day’s production and very accurately
measuring a dimensional length. In practice, there can be small variations in the actual
measured lengths due to many causes, such as vibrations, temperature fluctuations, operator
differences, calibrations, cutting tool wear, bearing wear, and raw material changes. Even the
measurement procedure can produce variations in the final results.

In these types of experiments, the measurement of interest—current in a copper wire ex-
periment, length of a machined part—can be represented by a random variable. It is reason-
able to model the range of possible values of the random variable by an interval (finite or
infinite) of real numbers. For example, for the length of a machined part, our model enables
the measurement from the experiment to result in any value within an interval of real numbers.
Because the range is any value in an interval, the model provides for any precision in length
measurements. However, because the number of possible values of the random variable X is
uncountably infinite, X has a distinctly different distribution from the discrete random vari-
ables studied previously. The range of X includes all values in an interval of real numbers; that
is, the range of X can be thought of as a continuum.

A number of continuous distributions frequently arise in applications. These distributions
are described, and example computations of probabilities, means, and variances are provided
in the remaining sections of this chapter.

4-2 PROBABILITY DISTRIBUTIONS AND PROBABILITY
DENSITY FUNCTIONS

Density functions are commonly used in engineering to describe physical systems. For exam-
ple, consider the density of a loading on a long, thin beam as shown in Fig. 4-1. For any point
x along the beam, the density can be described by a function (in grams/cm). Intervals with
large loadings correspond to large values for the function. The total loading between points a
and b is determined as the integral of the density function from a to b. This integral is the area
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4-2 PROBABILITY DISTRIBUTIONS AND PROBABILITY DENSITY FUNCTIONS 99

under the density function over this interval, and it can be loosely interpreted as the sum of all
the loadings over this interval.

Similarly, a probability density function f(x) can be used to describe the probability dis-
tribution of a continuous random variable X. If an interval is likely to contain a value for X,
its probability is large and it corresponds to large values for f(x). The probability that X is be-
tween a and b is determined as the integral of f(x) from a to b. See Fig. 4-2.

For a continuous random variable X, a probability density function is a function
such that

(1)

(2)

(3) area under from a to b

for any a and b (4-1)

f 1x2P1a � X � b2 � �
b

a
 
f 1x2 dx �

�
�

��

 f 1x2 dx � 1

f 1x2 � 0

Definition

Lo
ad

in
g

x

P(a < X < b)

a b x

f (x)

Figure 4-1 Density
function of a loading on a
long, thin beam.

Figure 4-2 Probability determined from the area
under f(x).

A probability density function provides a simple description of the probabilities associ-
ated with a random variable. As long as f(x) is nonnegative and 

so that the probabilities are properly restricted. A probability density
function is zero for x values that cannot occur and it is assumed to be zero wherever it is not
specifically defined.

A histogram is an approximation to a probability density function. See Fig. 4-3. For each
interval of the histogram, the area of the bar equals the relative frequency (proportion) of the
measurements in the interval. The relative frequency is an estimate of the probability that a
measurement falls in the interval. Similarly, the area under f(x) over any interval equals the
true probability that a measurement falls in the interval.

The important point is that f(x) is used to calculate an area that represents the prob-
ability that X assumes a value in [a, b]. For the current measurement example, the proba-
bility that X results in [14 mA, 15 mA] is the integral of the probability density function of
X over this interval. The probability that X results in [14.5 mA, 14.6 mA] is the integral of

0 � P1a � X � b2 � 1
��

��   
f 1x2 dx � 1,
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100 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

the same function, f(x), over the smaller interval. By appropriate choice of the shape of f(x),
we can represent the probabilities associated with any continuous random variable X. The
shape of f(x) determines how the probability that X assumes a value in [14.5 mA, 14.6 mA]
compares to the probability of any other interval of equal or different length.

For the density function of a loading on a long thin beam, because every point has zero
width, the loading at any point is zero. Similarly, for a continuous random variable X and any
value x.

Based on this result, it might appear that our model of a continuous random variable is use-
less. However, in practice, when a particular current measurement is observed, such as 14.47
milliamperes, this result can be interpreted as the rounded value of a current measurement that
is actually in a range such as Therefore, the probability that the
rounded value 14.47 is observed as the value for X is the probability that X assumes a value in
the interval [14.465, 14.475], which is not zero. Similarly, because each point has zero
probability, one need not distinguish between inequalities such as � or � for continuous
random variables.

14.465 � x � 14.475.

 P1X � x2 � 0

If X is a continuous random variable, for any and 

(4-2)P1x1 � X � x22 � P1x1 � X � x22 � P1x1 � X � x22 � P1x1 � X � x22
x2,x1

EXAMPLE 4-1 Let the continuous random variable X denote the current measured in a thin copper wire in
milliamperes. Assume that the range of X is [0, 20 mA], and assume that the probability den-
sity function of X is for What is the probability that a current meas-
urement is less than 10 milliamperes?

The probability density function is shown in Fig. 4-4. It is assumed that wherever
it is not specifically defined. The probability requested is indicated by the shaded area in Fig. 4-4.

P1X � 102 � �
10

0
 
f 1x2 dx � �  

10

0

0.05 dx � 0.5

f 1x2 � 0

0 � x � 20.f 1x2 � 0.05

Figure 4-4 Probability density
function for Example 4-1.

0 10 20 x

0.05

f (x)

Figure 4-3 Histogram approximates a probability density
function.

 x

f (x)

c04.qxd  5/10/02  5:19 PM  Page 100 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



4-2 PROBABILITY DISTRIBUTIONS AND PROBABILITY DENSITY FUNCTIONS 101

As another example,

EXAMPLE 4-2 Let the continuous random variable X denote the diameter of a hole drilled in a sheet metal
component. The target diameter is 12.5 millimeters. Most random disturbances to the process
result in larger diameters. Historical data show that the distribution of X can be modeled by a
probability density function 

If a part with a diameter larger than 12.60 millimeters is scrapped, what proportion of
parts is scrapped? The density function and the requested probability are shown in Fig. 4-5. A
part is scrapped if Now,

What proportion of parts is between 12.5 and 12.6 millimeters? Now,

Because the total area under f(x) equals 1, we can also calculate 

EXERCISES FOR SECTION 4-2

1 � P1X � 12.62 � 1 � 0.135 � 0.865.
P112.5 � X � 12.62 �

P112.5 � X � 12.62 � �
12.6

12.5
 
f 1x2 dx � �e�201x�12.52 ` 12.6

12.5
� 0.865

P1X � 12.602 � �
�

12.6
 
f 1x2 dx � �

�

12.6
 

20e�201x�12.52 dx � �e�201x�12.52 ` �
12.6

� 0.135

X � 12.60.

f 1x2 � 20e�201x�12.52, x � 12.5.

P15 � X � 202 � �
20

5
 
f 1x2 dx � 0.75

Figure 4-5 Probability density function for
Example 4-2.

12.5

f (x)

x12.6

4-1. Suppose that for Determine the fol-
lowing probabilities:
(a) (b)
(c) (d)
(e)

4-2. Suppose that for 
(a) Determine x such that 
(b) Determine x such that P1X � x2 � 0.10.

P1x � X 2 � 0.10.
0 � x.f 1x2 � e�x

P13 � X 2
P1X � 42P1X � 32
P11 � X � 2.52P11 � X 2

0 � x.f 1x2 � e�x 4-3. Suppose that for Determine the
following probabilities:
(a) (b)
(c) (d)
(e)

4-4. Suppose that Determine the
following probabilities:
(a) (b) P12 � X � 52P11 � X 2

f 1x2 � e�1x�42 for 4 � x.

P1X � 3.5 or X � 4.52
P1X � 4.52P14 � X � 52
P1X � 3.52P1X � 42
3 � x � 5.f 1x2 � x	8
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Extending the definition of f(x) to the entire real line enables us to define the cumulative dis-
tribution function for all real numbers. The following example illustrates the definition.

EXAMPLE 4-3 For the copper current measurement in Example 4-1, the cumulative distribution function of
the random variable X consists of three expressions. If Therefore,

F1x2 � 0, for x � 0

x � 0, f 1x2 � 0.

102 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

4-3 CUMULATIVE DISTRIBUTION FUNCTIONS

An alternative method to describe the distribution of a discrete random variable can also be
used for continuous random variables.

The cumulative distribution function of a continuous random variable X is

(4-3)

for �� � x � �.

F1x2 � P1X � x2 � �
x

��
 
f 1u2 du

Definition

(c) (d)
(e) Determine x such that P(X � x) � 0.90.

4-5. Suppose that for Determine
the following probabilities:
(a) (b)
(c) (d)
(e)
(f) Determine x such that 

4-6. The probability density function of the time to failure
of an electronic component in a copier (in hours) is f(x) � 

for Determine the probability that

(a) A component lasts more than 3000 hours before failure.
(b) A component fails in the interval from 1000 to 2000 hours.
(c) A component fails before 1000 hours.
(d) Determine the number of hours at which 10% of all com-

ponents have failed.

4-7. The probability density function of the net weight in
pounds of a packaged chemical herbicide is for

pounds.
(a) Determine the probability that a package weighs more

than 50 pounds.

49.75 � x � 50.25
f 1x2 � 2.0

x � 0.
e�x	1000

1000

P1x � X 2 � 0.05.
P1X � 0 or X � �0.52

P1X � �22P1�0.5 � X � 0.52
P10.5 � X 2P10 � X 2

�1 � x � 1.f 1x2 � 1.5x2

P18 � X � 122P15 � X 2 (b) How much chemical is contained in 90% of all packages?

4-8. The probability density function of the length of a
hinge for fastening a door is for 
millimeters. Determine the following:
(a)
(b)
(c) If the specifications for this process are from 74.7

to 75.3 millimeters, what proportion of hinges meets
specifications?

4-9. The probability density function of the length of a
metal rod is for 2.3 � x � 2.8 meters.
(a) If the specifications for this process are from 2.25 to 2.75

meters, what proportion of the bars fail to meet the speci-
fications?

(b) Assume that the probability density function is 
for an interval of length 0.5 meters. Over what value
should the density be centered to achieve the greatest pro-
portion of bars within specifications?

4-10. If X is a continuous random variable, argue that P(x1 �
X � x2) � P(x1 � X � x2) � P(x1 � X � x2) � P(x1 � X � x2).

f 1x2 � 2

f 1x2 � 2

P1X � 74.8 or X � 75.22
P1X � 74.82

74.6 � x � 75.4f 1x2 � 1.25
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4-3 CUMULATIVE DISTRIBUTION FUNCTIONS 103

and

Finally,

Therefore,

The plot of F(x) is shown in Fig. 4-6.

Notice that in the definition of F(x) any can be changed to and vice versa. That is,
F(x) can be defined as either 0.05x or 0 at the end-point and F(x) can be defined as
either 0.05x or 1 at the end-point In other words, F(x) is a continuous function. For a
discrete random variable, F(x) is not a continuous function. Sometimes, a continuous random
variable is defined as one that has a continuous cumulative distribution function.

EXAMPLE 4-4 For the drilling operation in Example 4-2, F(x) consists of two expressions.

for

and for 

Therefore,

Figure 4-7 displays a graph of F(x).

F1x2 � e0 x � 12.5

1 � e�201x�12.52 12.5 � x

 � 1 � e�201x�12.52

 F1x2 � �
x

12.5

20e�201u�12.52  du

12.5 � x

x � 12.5F1x2 � 0

x � 20.
x � 0,

��

F1x2 � •
0 x � 0

0.05x 0 � x � 20

1 20 � x

F1x2 � �
x

0
 
f 1u2 du � 1, for 20 � x

F1x2 � �
x

0
 
f 1u2 du � 0.05x, for 0 � x � 20

Figure 4-6 Cumulative distribution
function for Example 4-3.

20

1

x0

F(x)

Figure 4-7 Cumulative distribution
function for Example 4-4.

12.5

1

x0

F(x)
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104 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

The probability density function of a continuous random variable can be determined from
the cumulative distribution function by differentiating. Recall that the fundamental theorem of
calculus states that 

Then, given F(x)

as long as the derivative exists.

EXAMPLE 4-5 The time until a chemical reaction is complete (in milliseconds) is approximated by the
cumulative distribution function

Determine the probability density function of X. What proportion of reactions is complete
within 200 milliseconds? Using the result that the probability density function is the deriva-
tive of the F(x), we obtain

The probability that a reaction completes within 200 milliseconds is

EXERCISES FOR SECTION 4-3

P1X � 2002 � F12002 � 1 � e�2 � 0.8647.

f 1x2 � e0 x � 0

0.01e�0.01x 0 � x

F1x2 � e0 x � 0

1 � e�0.01x 0 � x

f 1x2 �
dF1x2

dx

d

dx
 �

x

��

f 1u2 du � f 1x2

4-11. Suppose the cumulative distribution function of the
random variable X is

Determine the following:
(a) (b)
(c) (d)

4-12. Suppose the cumulative distribution function of the
random variable X is

F1x2 � •
0 x � �2

0.25x � 0.5 �2 � x � 2

1 2 � x

P1X � 62P1X � �22
P1X � 1.52P1X � 2.82

F1x2 � •
0 x � 0

0.2x 0 � x � 5

1 5 � x

Determine the following:
(a) (b)
(c) (d)

4-13. Determine the cumulative distribution function for
the distribution in Exercise 4-1.

4-14. Determine the cumulative distribution function for
the distribution in Exercise 4-3.

4-15. Determine the cumulative distribution function for
the distribution in Exercise 4-4.

4-16. Determine the cumulative distribution function for
the distribution in Exercise 4-6. Use the cumulative distribu-
tion function to determine the probability that a component
lasts more than 3000 hours before failure.

4-17. Determine the cumulative distribution function for
the distribution in Exercise 4-8. Use the cumulative distribu-
tion function to determine the probability that a length
exceeds 75 millimeters. 

P1�1 � X � 12P1X � �22
P1X � �1.52P1X � 1.82
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4-4 MEAN AND VARIANCE OF A CONTINUOUS
RANDOM VARIABLE

The mean and variance of a continuous random variable are defined similarly to a discrete
random variable. Integration replaces summation in the definitions. If a probability density
function is viewed as a loading on a beam as in Fig. 4-1, the mean is the balance point.

4-4 MEAN AND VARIANCE OF A CONTINUOUS RANDOM VARIABLE 105

Determine the probability density function for each of the fol-
lowing cumulative distribution functions.

4-18.
4-19.

4-20.

4-21. The gap width is an important property of a magnetic
recording head. In coded units, if the width is a continuous ran-
dom variable over the range from 0 � x � 2 with f(x) � 0.5x,
determine the cumulative distribution function of the gap width.

F1x2 � µ
0 x � �2

0.25x � 0.5 �2 � x � 1

0.5x � 0.25 1 � x � 1.5

1 1.5 � x

F1x2 � µ
0 x � 0

0.2x 0 � x � 4

0.04x � 0.64 4 � x � 9

1 9 � x

F1x2 � 1 � e�2x  x � 0

Suppose X is a continuous random variable with probability density function f(x).
The mean or expected value of X, denoted as or E(X), is

(4-4)

The variance of X, denoted as V(X) or is

The standard deviation of X is .	 � 2	2

	2 � V1X 2 � �
�

��

 1x � 
22f 1x2 dx � �
�

��

 x2f 1x2 dx � 
2

	2,


 � E1X 2 � �
�

��

 xf 1x2 dx




Definition

The equivalence of the two formulas for variance can be derived as one, as was done for dis-
crete random variables.

EXAMPLE 4-6 For the copper current measurement in Example 4-1, the mean of X is

The variance of X is

V1X 2 � �
20

0

 1x � 1022f 1x2 dx � 0.051x � 1023�3 ` 20

0
� 33.33

E1X 2 � �
20

0

 xf 1x2 dx � 0.05x2�2 ` 20

0
� 10

c04.qxd  5/13/02  11:16 M  Page 105 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



106 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

EXAMPLE 4-7 In Example 4-1, X is the current measured in milliamperes. What is the expected value of the
squared current? Now, Therefore,

In the previous example, the expected value of X 2 does not equal E(X) squared. However, in
the special case that for any constants a and b, This
can be shown from the properties of integrals.

EXAMPLE 4-8 For the drilling operation in Example 4-2, the mean of X is

Integration by parts can be used to show that

The variance of X is

Although more difficult, integration by parts can be used two times to show that V(X) � 0.0025.

EXERCISES FOR SECTION 4-4

V1X 2 � �
�

12.5

 1x � 12.5522f 1x2 dx

E1X 2 � �xe�201x�12.52 � e�201x�12.52
20

 ` �
12.5

� 12.5 � 0.05 � 12.55

E1X 2 � �
�

12.5

 xf 1x2 dx � �
�

12.5

 x 20e�201x�12.52 dx

E 3h1X 2 4 � aE1X 2 � b.h1X 2 � aX � b

E 3h1X 2 4 � �
�

��

 x2f 1x2 dx � �
20

0

 0.05x2 dx � 0.05 
x3

3
 ` 20

0
� 133.33

h1X 2 � X 2.

If X is a continuous random variable with probability density function f(x),

(4-5)E 3h1X 2 4 � �
�

��

 h1x2  f 1x2 dx

Expected Value
of a Function of

a Continuous
Random
Variable

4-22. Suppose for Determine the
mean and variance of X.

4-23. Suppose for Determine the
mean and variance of X.

4-24. Suppose for Determine
the mean and variance of X.

�1 � x � 1.f 1x2 � 1.5x2

0 � x � 4.f 1x2 � 0.125x

0 � x � 4.f 1x2 � 0.25 4-25. Suppose that for Determine
the mean and variance for x.

4-26. Determine the mean and variance of the weight of
packages in Exercise 4.7.

4-27. The thickness of a conductive coating in micrometers
has a density function of 600x�2 for 100 
m � x � 120 
m.

3 � x � 5.f 1x2 � x�8

The expected value of a function h(X ) of a continuous random variable is defined similarly to
a function of a discrete random variable.
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4-5 CONTINUOUS UNIFORM DISTRIBUTION

The simplest continuous distribution is analogous to its discrete counterpart.

4-5 CONTINUOUS UNIFORM DISTRIBUTION 107

A continuous random variable X with probability density function

(4-6)

is a continuous uniform random variable.

f 1x2 � 1	 1b � a2,  a � x � b

Definition

The probability density function of a continuous uniform random variable is shown in Fig. 4-8.
The mean of the continuous uniform random variable X is

The variance of X is

These results are summarized as follows.

V1X 2 � �  

b

a

ax � aa 
 b

2
bb2

b � a
 dx �

ax �
a 
 b

2
b3

31b � a2  
†
b

a
�
1b � a22

12

E1X 2 � �  

b

a

x

b � a
 dx �

0.5x2

b � a
 ` b

a
�
1a 
 b2

2

(a) Determine the mean and variance of the coating thickness.
(b) If the coating costs $0.50 per micrometer of thickness on

each part, what is the average cost of the coating per
part?

4-28. Suppose that contamination particle size (in microm-
eters) can be modeled as for Determine
the mean of X.

4-29. Integration by parts is required. The probability den-
sity function for the diameter of a drilled hole in millimeters is

for mm. Although the target diameter is 5
millimeters, vibrations, tool wear, and other nuisances pro-
duce diameters larger than 5 millimeters.

x � 510e�101x�52

1 � x.f 1x2 � 2x�3

(a) Determine the mean and variance of the diameter of the
holes.

(b) Determine the probability that a diameter exceeds 5.1 mil-
limeters.

4-30. Suppose the probability density function of the length
of computer cables is f(x) � 0.1 from 1200 to 1210 millime-
ters.
(a) Determine the mean and standard deviation of the cable

length.
(b) If the length specifications are 1195 � x � 1205

millimeters, what proportion of cables are within specifi-
cations?

If X is a continuous uniform random variable over a � x � b,

(4-7)� � E1X 2 �
1a 
 b2

2
 and �2 � V1X 2 �

1b � a22
12
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108 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

EXAMPLE 4-9 Let the continuous random variable X denote the current measured in a thin copper wire in
milliamperes. Assume that the range of X is [0, 20 mA], and assume that the probability den-
sity function of X is 

What is the probability that a measurement of current is between 5 and 10 milliamperes?
The requested probability is shown as the shaded area in Fig. 4-9.

The mean and variance formulas can be applied with and Therefore,

Consequently, the standard deviation of X is 5.77 mA.

The cumulative distribution function of a continuous uniform random variable is ob-
tained by integration. If 

Therefore, the complete description of the cumulative distribution function of a continuous
uniform random variable is

An example of F(x) for a continuous uniform random variable is shown in Fig. 4-6.

EXERCISES FOR SECTION 4-5

F1x2 � •
0 x � a

1x � a2	 1b � a2 a � x � b

1 b � x

F1x2 � �
x

a

1	 1b � a2  du � x	 1b � a2 � a	 1b � a2

a � x � b,

E1X 2 � 10 mA and V1X 2 � 202	12 � 33.33 mA2

b � 20.a � 0

 � 510.052 � 0.25

 P15 � X � 102 � �
10

5
 
f 1x2 dx

f 1x2 � 0.05, 0 � x � 20.

Figure 4-9 Probability for Example 4-9.

x

f(x)

0 5 10 15 20

0.05

Figure 4-8 Continuous uniform
probability density function.

a

1
b – a

x

f(x)

b

4-31. Suppose X has a continuous uniform distribution over
the interval [1.5, 5.5].
(a) Determine the mean, variance, and standard deviation of X.
(b) What is ?

4-32. Suppose X has a continuous uniform distribution over
the interval 3�1, 1 4 .

P1X � 2.52

(a) Determine the mean, variance, and standard deviation of X.
(b) Determine the value for x such that P(�x � X � x) � 0.90.

4-33. The net weight in pounds of a packaged chemical her-
bicide is uniform for pounds.
(a) Determine the mean and variance of the weight of pack-

ages.

49.75 � x � 50.25
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4-6 NORMAL DISTRIBUTION 109

4-6 NORMAL DISTRIBUTION

Undoubtedly, the most widely used model for the distribution of a random variable is a normal
distribution. Whenever a random experiment is replicated, the random variable that equals the
average (or total) result over the replicates tends to have a normal distribution as the number of
replicates becomes large. De Moivre presented this fundamental result, known as the central
limit theorem, in 1733. Unfortunately, his work was lost for some time, and Gauss independ-
ently developed a normal distribution nearly 100 years later. Although De Moivre was later
credited with the derivation, a normal distribution is also referred to as a Gaussian distribution.

When do we average (or total) results? Almost always. For example, an automotive engi-
neer may plan a study to average pull-off force measurements from several connectors. If we
assume that each measurement results from a replicate of a random experiment, the normal
distribution can be used to make approximate conclusions about this average. These conclu-
sions are the primary topics in the subsequent chapters of this book.

Furthermore, sometimes the central limit theorem is less obvious. For example, assume that
the deviation (or error) in the length of a machined part is the sum of a large number of in-
finitesimal effects, such as temperature and humidity drifts, vibrations, cutting angle variations,
cutting tool wear, bearing wear, rotational speed variations, mounting and fixturing variations,
variations in numerous raw material characteristics, and variation in levels of contamination. If
the component errors are independent and equally likely to be positive or negative, the total error
can be shown to have an approximate normal distribution. Furthermore, the normal distribution
arises in the study of numerous basic physical phenomena. For example, the physicist Maxwell
developed a normal distribution from simple assumptions regarding the velocities of molecules.

The theoretical basis of a normal distribution is mentioned to justify the somewhat com-
plex form of the probability density function. Our objective now is to calculate probabilities
for a normal random variable. The central limit theorem will be stated more carefully later.

(b) Determine the cumulative distribution function of the
weight of packages.

(c) Determine 

4-34. The thickness of a flange on an aircraft component is
uniformly distributed between 0.95 and 1.05 millimeters.
(a) Determine the cumulative distribution function of flange

thickness.
(b) Determine the proportion of flanges that exceeds 1.02

millimeters.
(c) What thickness is exceeded by 90% of the flanges?
(d) Determine the mean and variance of flange thickness.

4-35. Suppose the time it takes a data collection operator to
fill out an electronic form for a database is uniformly between
1.5 and 2.2 minutes.
(a) What is the mean and variance of the time it takes an op-

erator to fill out the form?
(b) What is the probability that it will take less than two min-

utes to fill out the form?
(c) Determine the cumulative distribution function of the time

it takes to fill out the form.

4-36. The probability density function of the time it takes a
hematology cell counter to complete a test on a blood sample
is seconds.f 1x2 � 0.2 for 50 � x � 75

P1X � 50.12.
(a) What percentage of tests require more than 70 seconds to

complete.
(b) What percentage of tests require less than one minute to

complete.
(c) Determine the mean and variance of the time to complete

a test on a sample. 

4-37. The thickness of photoresist applied to wafers in
semiconductor manufacturing at a particular location on the
wafer is uniformly distributed between 0.2050 and 0.2150
micrometers.
(a) Determine the cumulative distribution function of pho-

toresist thickness.
(b) Determine the proportion of wafers that exceeds 0.2125

micrometers in photoresist thickness.
(c) What thickness is exceeded by 10% of the wafers?
(d) Determine the mean and variance of photoresist thickness.

4-38. The probability density function of the time required
to complete an assembly operation is for

seconds.
(a) Determine the proportion of assemblies that requires more

than 35 seconds to complete.
(b) What time is exceeded by 90% of the assemblies?
(c) Determine the mean and variance of time of assembly.

30 � x � 40
f 1x2 � 0.1
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110 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Figure 4-10 Normal probability density functions for
selected values of the parameters and �2.�

A random variable X with probability density function

(4-8)

is a normal random variable with parameters �, where and � � 0.
Also,

(4-9)

and the notation is used to denote the distribution. The mean and variance
of X are shown to equal � and respectively, at the end of this Section 5-6.�2,

N1�, �22

E1X 2 � � and V1X2 � �2

�� � � � �,

f 1x2 �
112	�

 e

�1x��22

2�2   
�� � x � �

Definition

� = 5 x� = 15

σ2 = 1

σ2 = 4

σ2 = 1
f (x)

Random variables with different means and variances can be modeled by normal proba-
bility density functions with appropriate choices of the center and width of the curve. The
value of determines the center of the probability density function and the value of

determines the width. Figure 4-10 illustrates several normal probability density
functions with selected values of � and �2. Each has the characteristic symmetric bell-shaped
curve, but the centers and dispersions differ. The following definition provides the formula for
normal probability density functions.

V1X 2 � �2
E1X 2 � �

EXAMPLE 4-10 Assume that the current measurements in a strip of wire follow a normal distribution with a
mean of 10 milliamperes and a variance of 4 (milliamperes)2. What is the probability that a
measurement exceeds 13 milliamperes?

Let X denote the current in milliamperes. The requested probability can be represented as
This probability is shown as the shaded area under the normal probability density

function in Fig. 4-11. Unfortunately, there is no closed-form expression for the integral of a
normal probability density function, and probabilities based on the normal distribution are
typically found numerically or from a table (that we will later introduce).

Some useful results concerning a normal distribution are summarized below and in
Fig. 4-12. For any normal random variable,

Also, from the symmetry of Because f(x) is positive for
all x, this model assigns some probability to each interval of the real line. However, the

f 1x2, P1X � �2 � P1X � �2 � 0.5.

 P1� � 3� � X � � 
 3�2 � 0.9973
 P1� � 2� � X � � 
 2�2 � 0.9545

 P1� � � � X � � 
 �2 � 0.6827

P1X � 132.

c04.qxd  5/13/02  11:17 M  Page 110 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



4-6 NORMAL DISTRIBUTION 111

probability density function decreases as x moves farther from �. Consequently, the probability
that a measurement falls far from � is small, and at some distance from � the probability of an
interval can be approximated as zero.

The area under a normal probability density function beyond 3� from the mean is quite
small. This fact is convenient for quick, rough sketches of a normal probability density func-
tion. The sketches help us determine probabilities. Because more than 0.9973 of the probabil-
ity of a normal distribution is within the interval , 6� is often referred to as
the width of a normal distribution. Advanced integration methods can be used to show that the
area under the normal probability density function from is 1.�� � x � �

1� � 3�, � 
 3�2

Figure 4-11 Probability that X � 13 for a normal ran-
dom variable with and �2 � 4.� � 10

10 x13

f (x)

Figure 4-12 Probabilities associated with a normal
distribution.

– 3 x� � – 2µ � – � � � +� � + 2� � + 3� �

68%

95%

99.7%

f (x)

A normal random variable with 

is called a standard normal random variable and is denoted as Z.
The cumulative distribution function of a standard normal random variable is

denoted as

�1z2 � P1Z � z2

� � 0 and �2 � 1

Definition

Appendix Table II provides cumulative probability values for , for a standard normal
random variable. Cumulative distribution functions for normal random variables are also
widely available in computer packages. They can be used in the same manner as Appendix
Table II to obtain probabilities for these random variables. The use of Table II is illustrated by
the following example.

EXAMPLE 4-11 Assume Z is a standard normal random variable. Appendix Table II provides probabilities of
the form The use of Table II to find is illustrated in Fig. 4-13. Read
down the z column to the row that equals 1.5. The probability is read from the adjacent col-
umn, labeled 0.00, to be 0.93319.

The column headings refer to the hundredth’s digit of the value of z in For ex-
ample, is found by reading down the z column to the row 1.5 and then selecting
the probability from the column labeled 0.03 to be 0.93699.

P1Z � 1.532
P1Z � z2.

P1Z � 1.52P1Z �  z2.

�1z2
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112 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Probabilities that are not of the form P(Z � z ) are found by using the basic rules of prob-
ability and the symmetry of the normal distribution along with Appendix Table II. The fol-
lowing examples illustrate the method.

EXAMPLE 4-12 The following calculations are shown pictorially in Fig. 4-14. In practice, a probability is of-
ten rounded to one or two significant digits.

(1)

(2)

(3)

(4) . This probability can be found from the difference of two
areas, . Now,

Therefore,

P 1�1.25 � Z � 0.372 � 0.64431 � 0.10565 � 0.53866

P1Z � 0.372 � 0.64431 and P1Z � �1.252 � 0.10565

P1Z � 0.372 � P1Z � �1.252P1�1.25 � Z � 0.372
P1Z � �1.372 � P1Z � 1.372 � 0.91465

P1Z � �0.862 � 0.19490.

P1Z � 1.262 � 1 �  P1Z � 1.262 � 1 � 0.89616 � 0.10384

(1) (5)

0 –3.99

(2)

0 0

(3) (7)

0 0 0

0 0 0

1.26 0 1.26

–0.86

0.05

z ≅ 1.65

z ≅ 2.58

0.0050.005

– z

0.99

–1.37

=

1.37

=

0.37–1.25 –1.250.37

–

= –

(4)

–4.6 0

(6)

1

Figure 4-14 Graphical displays for standard normal distributions.

Figure 4-13 Standard
normal probability den-
sity function. z0

= shaded area
P(Z ≤ 1.5) = Φ (1.5)

1.5

0.00 0.01 0.02

0

1.5

z

0.93319

. 
. 

.

. 
. 

.

0.93448 0.93574

0.50000 0.50399 0.50398

0.03

0.93699

0.51197
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(5) cannot be found exactly from Appendix Table II. However, the last
entry in the table can be used to find that . Because

is nearly zero.

(6) Find the value z such that This probability expression can be writ-
ten as . Now, Table II is used in reverse. We search through the
probabilities to find the value that corresponds to 0.95. The solution is illustrated in
Fig. 4-14. We do not find 0.95 exactly; the nearest value is 0.95053, corresponding
to z = 1.65.

(7) Find the value of z such that . Because of the symmetry of
the normal distribution, if the area of the shaded region in Fig. 4-14(7) is to equal
0.99, the area in each tail of the distribution must equal 0.005. Therefore, the value
for z corresponds to a probability of 0.995 in Table II. The nearest probability in
Table II is 0.99506, when z = 2.58.

The preceding examples show how to calculate probabilities for standard normal random
variables. To use the same approach for an arbitrary normal random variable would require a
separate table for every possible pair of values for � and �. Fortunately, all normal probability
distributions are related algebraically, and Appendix Table II can be used to find the probabili-
ties associated with an arbitrary normal random variable by first using a simple transformation.

P1�z � Z � z2 � 0.99

P1Z � z2 � 0.95
P1Z � z2 � 0.05.

P1Z � �4.62 � P1Z � �3.992, P1Z � �4.62P1Z � �3.992 �  0.00003
P1Z � �4.62

4-6 NORMAL DISTRIBUTION 113

If X is a normal random variable with E(X ) � � and V(X ) � �2, the random variable

(4-10)

is a normal random variable with E(Z) � 0 and V(Z) � 1. That is, Z is a standard
normal random variable.

Z �
X � �

�

Creating a new random variable by this transformation is referred to as standardizing.
The random variable Z represents the distance of X from its mean in terms of standard devia-
tions. It is the key step to calculate a probability for an arbitrary normal random variable.

EXAMPLE 4-13 Suppose the current measurements in a strip of wire are assumed to follow a normal distribu-
tion with a mean of 10 milliamperes and a variance of 4 (milliamperes)2. What is the proba-
bility that a measurement will exceed 13 milliamperes?

Let X denote the current in milliamperes. The requested probability can be represented as
P(X � 13). Let Z � (X � 10)�2. The relationship between the several values of X and the
transformed values of Z are shown in Fig. 4-15. We note that X � 13 corresponds to Z � 1.5.
Therefore, from Appendix Table II,

Rather than using Fig. 4-15, the probability can be found from the inequality That is,

P1X � 132 � P  a 1X � 102
2

�
113 � 102

2
b � P1Z � 1.52 � 0.06681

X � 13.

P1X � 132 � P1Z � 1.52 � 1 � P1Z � 1.52 � 1 � 0.93319 � 0.06681
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114 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Figure 4-15 Standardizing a normal random variable.

4 x7 9 10 13 16

–3 z–1.5 –0.5 0 1.5 3

11

0.5

0 1.5

Distribution of Z =
X – µ

σ

Distribution of X

10 13 x

z

Suppose X is a normal random variable with mean � and variance �2. Then,

(4-11)

where Z is a standard normal random variable, and is the z-value
obtained by standardizing X.

The probability is obtained by entering Appendix Table II with .z � 1x � �2	�
z �
1x � �2

�

P 1X � x2 � P  aX � �
� �

x � �
� b � P1Z � z2

EXAMPLE 4-14 Continuing the previous example, what is the probability that a current measurement is be-
tween 9 and 11 milliamperes? From Fig. 4-15, or by proceeding algebraically, we have

Determine the value for which the probability that a current measurement is below
this value is 0.98. The requested value is shown graphically in Fig. 4-16. We need the value of
x such that P(X � x) � 0.98. By standardizing, this probability expression can be written as

Appendix Table II is used to find the z-value such that P(Z � z) � 0.98. The nearest proba-
bility from Table II results in

P1Z � 2.052 � 0.97982

� 0.98
� P1Z � 1x � 102	22

P1X � x2 � P1 1X � 102	2 � 1x � 102	22

 � 0.69146 � 0.30854 � 0.38292
 � P1�0.5 � Z � 0.52 � P1Z � 0.52 � P1Z � �0.52

 P19 � X � 112 � P1 19 � 102	2 � 1X � 102	2 � 111 � 102	22

In the preceding example, the value 13 is transformed to 1.5 by standardizing, and 1.5 is
often referred to as the z-value associated with a probability. The following summarizes the
calculation of probabilities derived from normal random variables.
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Therefore, (x � 10)�2 � 2.05, and the standardizing transformation is used in reverse to solve
for x. The result is

EXAMPLE 4-15 Assume that in the detection of a digital signal the background noise follows a normal distri-
bution with a mean of 0 volt and standard deviation of 0.45 volt. The system assumes a digi-
tal 1 has been transmitted when the voltage exceeds 0.9. What is the probability of detecting
a digital 1 when none was sent?

Let the random variable N denote the voltage of noise. The requested probability is

This probability can be described as the probability of a false detection.
Determine symmetric bounds about 0 that include 99% of all noise readings. The question

requires us to find x such that . A graph is shown in Fig. 4-17. Now,

From Appendix Table II

P 1�2.58 � Z � 2.582 � 0.99

 � P1�x	0.45 � Z � x	0.452 � 0.99
 P1�x � N � x2 � P1�x	0.45 � N	0.45 � x	0.452

P1�x � N � x2 � 0.99

P1N � 0.92 � P  a N

0.45
�

0.9
0.45
b � P1Z � 22 � 1 � 0.97725 � 0.02275

x � 212.052 
 10 � 14.1 milliamperes

4-6 NORMAL DISTRIBUTION 115

10 x

z = = 2.05
x – 10

2

0.98Figure 4-16 Deter-
mining the value of x
to meet a specified
probability.

Standardized distribution of
N

0.45

z– z 0 0 x– x

Distribution of N

Figure 4-17 Deter-
mining the value of x
to meet a specified
probability.
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116 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Therefore,

and

Suppose a digital 1 is represented as a shift in the mean of the noise distribution to 1.8
volts. What is the probability that a digital 1 is not detected? Let the random variable S denote
the voltage when a digital 1 is transmitted. Then,

This probability can be interpreted as the probability of a missed signal.

EXAMPLE 4-16 The diameter of a shaft in an optical storage drive is normally distributed with mean 0.2508
inch and standard deviation 0.0005 inch. The specifications on the shaft are 0.2500 � 0.0015
inch. What proportion of shafts conforms to specifications?

Let X denote the shaft diameter in inches. The requested probability is shown in Fig. 4-18 and

Most of the nonconforming shafts are too large, because the process mean is located very near
to the upper specification limit. If the process is centered so that the process mean is equal to
the target value of 0.2500,

By recentering the process, the yield is increased to approximately 99.73%.
� 0.9973
� 0.99865 � 0.00135
� P1Z � 32 � P1Z � �32
� P1�3 � Z � 32

 P10.2485 � X � 0.25152 � P  a0.2485 � 0.2500
0.0005

� Z �
0.2515 � 0.2500

0.0005
b

 � 0.91924 � 0.0000 � 0.91924
� P1�4.6 � Z � 1.42 � P1Z � 1.42 � P1Z � �4.62

 P10.2485 � X � 0.25152 � P  a0.2485 � 0.2508
0.0005

� Z �
0.2515 � 0.2508

0.0005
b

P1S � 0.92 � P  aS � 1.8
0.45

�
0.9 � 1.8

0.45
b � P1Z � �22 � 0.02275

x � 2.5810.452 � 1.16

x	0.45 � 2.58

0.2515

f (x)

0.2508
0.25

0.2485 x

Specifications

Figure 4-18
Distribution for
Example 4-16.
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4-6 NORMAL DISTRIBUTION 117

Mean and Variance of the Normal Distribution (CD Only)

EXERCISES FOR SECTION 4-6

4-39. Use Appendix Table II to determine the following
probabilities for the standard normal random variable Z:
(a) P(Z � 1.32) (b) P(Z � 3.0)
(c) P(Z � 1.45) (d) P(Z � �2.15)
(e) P(�2.34 � Z � 1.76)

4-40. Use Appendix Table II to determine the following
probabilities for the standard normal random variable Z:
(a) P(�1 � Z � 1) (b) P(�2 � Z � 2)
(c) P(�3 � Z � 3) (d) P(Z � 3)
(e) P(0 � Z � 1)

4-41. Assume Z has a standard normal distribution. Use
Appendix Table II to determine the value for z that solves each
of the following:
(a) P( Z � z) � 0.9 (b) P(Z � z) � 0.5
(c) P( Z � z) � 0.1 (d) P(Z � z) � 0.9
(e) P(�1.24 � Z � z) � 0.8

4-42. Assume Z has a standard normal distribution. Use
Appendix Table II to determine the value for z that solves each
of the following:
(a) P(�z � Z � z) � 0.95 (b) P(�z � Z � z) � 0.99
(c) P(�z � Z � z) � 0.68 (d) P(�z � Z � z) � 0.9973

4-43. Assume X is normally distributed with a mean of 10
and a standard deviation of 2. Determine the following:
(a) P(X � 13) (b) P(X � 9)
(c) P(6 � X � 14) (d) P(2 � X � 4)
(e) P(�2 � X � 8)

4-44. Assume X is normally distributed with a mean of 10
and a standard deviation of 2. Determine the value for x that
solves each of the following:
(a) P(X � x) � 0.5
(b) P(X � x) � 0.95
(c) P(x � X � 10) � 0.2
(d) P(�x � X � 10 � x) � 0.95
(e) P(�x � X � 10 � x) � 0.99

4-45. Assume X is normally distributed with a mean of 5
and a standard deviation of 4. Determine the following:
(a) P(X � 11) (b) P(X � 0)
(c) P(3 � X � 7) (d) P(�2 � X � 9)
(e) P(2 � X � 8)

4-46. Assume X is normally distributed with a mean of 5
and a standard deviation of 4. Determine the value for x that
solves each of the following:
(a) P(X � x) � 0.5 (b) P(X � x) � 0.95
(c) P(x � X � 9) � 0.2 (d) P(3 � X � x) � 0.95
(e) P(�x � X � x) � 0.99

4-47. The compressive strength of samples of cement can
be modeled by a normal distribution with a mean of 6000 kilo-
grams per square centimeter and a standard deviation of 100
kilograms per square centimeter.

(a) What is the probability that a sample’s strength is less than
6250 Kg/cm2?

(b) What is the probability that a sample’s strength is between
5800 and 5900 Kg/cm2?

(c) What strength is exceeded by 95% of the samples?

4-48. The tensile strength of paper is modeled by a normal
distribution with a mean of 35 pounds per square inch and a
standard deviation of 2 pounds per square inch.
(a) What is the probability that the strength of a sample is less

than 40 lb/in2?
(b) If the specifications require the tensile strength to

exceed 30 lb/in2, what proportion of the samples is
scrapped?

4-49. The line width of for semiconductor manufacturing is
assumed to be normally distributed with a mean of 0.5 mi-
crometer and a standard deviation of 0.05 micrometer.
(a) What is the probability that a line width is greater than

0.62 micrometer?
(b) What is the probability that a line width is between 0.47

and 0.63 micrometer?
(c) The line width of 90% of samples is below what value?

4-50. The fill volume of an automated filling machine used
for filling cans of carbonated beverage is normally distributed
with a mean of 12.4 fluid ounces and a standard deviation of
0.1 fluid ounce.
(a) What is the probability a fill volume is less than 12 fluid

ounces?
(b) If all cans less than 12.1 or greater than 12.6 ounces are

scrapped, what proportion of cans is scrapped?
(c) Determine specifications that are symmetric about the

mean that include 99% of all cans.

4-51. The time it takes a cell to divide (called mitosis) is
normally distributed with an average time of one hour and a
standard deviation of 5 minutes.
(a) What is the probability that a cell divides in less than

45 minutes?
(b) What is the probability that it takes a cell more than

65 minutes to divide?
(c) What is the time that it takes approximately 99% of all

cells to complete mitosis?

4-52. In the previous exercise, suppose that the mean of the
filling operation can be adjusted easily, but the standard devi-
ation remains at 0.1 ounce.
(a) At what value should the mean be set so that 99.9% of all

cans exceed 12 ounces?
(b) At what value should the mean be set so that 99.9% of all

cans exceed 12 ounces if the standard deviation can be re-
duced to 0.05 fluid ounce?
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118 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

4-53. The reaction time of a driver to visual stimulus is nor-
mally distributed with a mean of 0.4 seconds and a standard
deviation of 0.05 seconds.
(a) What is the probability that a reaction requires more than

0.5 seconds?
(b) What is the probability that a reaction requires between

0.4 and 0.5 seconds?
(c) What is the reaction time that is exceeded 90% of the

time?

4-54. The speed of a file transfer from a server on campus to
a personal computer at a student’s home on a weekday
evening is normally distributed with a mean of 60 kilobits per
second and a standard deviation of 4 kilobits per second.
(a) What is the probability that the file will transfer at a speed

of 70 kilobits per second or more?
(b) What is the probability that the file will transfer at a speed

of less than 58 kilobits per second?
(c) If the file is 1 megabyte, what is the average time it will

take to transfer the file? (Assume eight bits per byte.)

4-55. The length of an injection-molded plastic case that
holds magnetic tape is normally distributed with a length of
90.2 millimeters and a standard deviation of 0.1 millimeter.
(a) What is the probability that a part is longer than 90.3 mil-

limeters or shorter than 89.7 millimeters?
(b) What should the process mean be set at to obtain the great-

est number of parts between 89.7 and 90.3 millimeters?
(c) If parts that are not between 89.7 and 90.3 millimeters are

scrapped, what is the yield for the process mean that you
selected in part (b)?

4-56. In the previous exercise assume that the process is
centered so that the mean is 90 millimeters and the standard
deviation is 0.1 millimeter. Suppose that 10 cases are meas-
ured, and they are assumed to be independent.
(a) What is the probability that all 10 cases are between 89.7

and 90.3 millimeters?
(b) What is the expected number of the 10 cases that are be-

tween 89.7 and 90.3 millimeters?

4-57. The sick-leave time of employees in a firm in a month
is normally distributed with a mean of 100 hours and a stan-
dard deviation of 20 hours.
(a) What is the probability that the sick-leave time for next

month will be between 50 and 80 hours?
(b) How much time should be budgeted for sick leave if the

budgeted amount should be exceeded with a probability
of only 10%?

4-58. The life of a semiconductor laser at a constant power
is normally distributed with a mean of 7000 hours and a stan-
dard deviation of 600 hours.
(a) What is the probability that a laser fails before 5000

hours?
(b) What is the life in hours that 95% of the lasers exceed?
(c) If three lasers are used in a product and they are assumed

to fail independently, what is the probability that all three
are still operating after 7000 hours?

4-59. The diameter of the dot produced by a printer is nor-
mally distributed with a mean diameter of 0.002 inch and a
standard deviation of 0.0004 inch.
(a) What is the probability that the diameter of a dot exceeds

0.0026 inch?
(b) What is the probability that a diameter is between 0.0014

and 0.0026 inch?
(c) What standard deviation of diameters is needed so that the

probability in part (b) is 0.995?

4-60. The weight of a sophisticated running shoe is nor-
mally distributed with a mean of 12 ounces and a standard de-
viation of 0.5 ounce.
(a) What is the probability that a shoe weighs more than 13

ounces?
(b) What must the standard deviation of weight be in order for

the company to state that 99.9% of its shoes are less than
13 ounces?

(c) If the standard deviation remains at 0.5 ounce, what must
the mean weight be in order for the company to state that
99.9% of its shoes are less than 13 ounces?

4-7 NORMAL APPROXIMATION TO THE BINOMIAL
AND POISSON DISTRIBUTIONS

We began our section on the normal distribution with the central limit theorem and the nor-
mal distribution as an approximation to a random variable with a large number of trials.
Consequently, it should not be a surprise to learn that the normal distribution can be used
to approximate binomial probabilities for cases in which n is large. The following example
illustrates that for many physical systems the binomial model is appropriate with an ex-
tremely large value for n. In these cases, it is difficult to calculate probabilities by using the
binomial distribution. Fortunately, the normal approximation is most effective in these
cases. An illustration is provided in Fig. 4-19. The area of each bar equals the binomial
probability of x. Notice that the area of bars can be approximated by areas under the nor-
mal density function.
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4-7 NORMAL APPROXIMATION TO THE BINOMIAL AND POISSON DISTRIBUTIONS 119

EXAMPLE 4-17 In a digital communication channel, assume that the number of bits received in error can be
modeled by a binomial random variable, and assume that the probability that a bit is received
in error is . If 16 million bits are transmitted, what is the probability that more than
150 errors occur?

Let the random variable X denote the number of errors. Then X is a binomial random vari-
able and

Clearly, the probability in Example 4-17 is difficult to compute. Fortunately, the normal
distribution can be used to provide an excellent approximation in this example.

P 1X � 1502 � 1 � P1x � 1502 � 1 � a
150

x�0
a16,000,000

x
b 110�52x11 � 10�5216,000,000�x

1 � 10�5

Figure 4-19 Normal
approximation to the
binomial distribution.
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p = 0.5

If X is a binomial random variable,

(4-12)

is approximately a standard normal random variable. The approximation is good for

np � 5 and n11 � p2 � 5

Z �
X � np1np11 � p2

Normal
Approximation to

the Binomial
Distribution

Recall that for a binomial variable X, E(X) � np and V(X) � np(1 � p). Consequently, the ex-
pression in Equation 4-12 is nothing more than the formula for standardizing the random vari-
able X. Probabilities involving X can be approximated by using a standard normal distribution.
The approximation is good when n is large relative to p.
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120 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

EXAMPLE 4-18 The digital communication problem in the previous example is solved as follows:

Because and n(1 � p) is much larger, the approximation
is expected to work well in this case.

EXAMPLE 4-19 Again consider the transmission of bits in Example 4-18. To judge how well the normal
approximation works, assume only n � 50 bits are to be transmitted and that the probability
of an error is p � 0.1. The exact probability that 2 or less errors occur is

Based on the normal approximation

Even for a sample as small as 50 bits, the normal approximation is reasonable.

If np or n(1 � p) is small, the binomial distribution is quite skewed and the symmetric
normal distribution is not a good approximation. Two cases are illustrated in Fig. 4-20.
However, a correction factor can be used that will further improve the approximation. This
factor is called a continuity correction and it is discussed in Section 4-8 on the CD.

P1X � 22 � P  aX � 5
2.12

�
2 � 5
2.12

b � P1Z � �1.422 � 0.08

P1X � 22 � a50
0
b  0.950 
 a50

1
b  0.110.9492 
 a50

2 b 0.1210.9482 � 0.112

np � 116 � 1062 11 � 10�52 � 160

 � P1Z � �0.792 � P1Z � 0.792 � 0.785

P1X � 1502 � P  a X � 160216011 � 10�52 �
150 � 160216011 � 10�52 b

Figure 4-20 Binomial
distribution is not
symmetrical if p is near
0 or 1.
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4-7 NORMAL APPROXIMATION TO THE BIOMIAL AND POISSON DISTRIBUTIONS 121

Recall that the binomial distribution is a satisfactory approximation to the hypergeomet-
ric distribution when n, the sample size, is small relative to N, the size of the population from
which the sample is selected. A rule of thumb is that the binomial approximation is effective
if . Recall that for a hypergeometric distribution p is defined as That is,
p is interpreted as the number of successes in the population. Therefore, the normal distribu-
tion can provide an effective approximation of hypergeometric probabilities when n�N � 0.1,
np � 5 and n(1 � p) � 5. Figure 4-21 provides a summary of these guidelines.

Recall that the Poisson distribution was developed as the limit of a binomial distribution as
the number of trials increased to infinity. Consequently, it should not be surprising to find that the
normal distribution can also be used to approximate probabilities of a Poisson random variable.

p � K	N.n	N � 0.1

If X is a Poisson random variable with and 

(4-13)

is approximately a standard normal random variable. The approximation is good for

� � 5

Z �
X � �2�

V1X 2 � �,E1X 2 � �

Normal
Approximation to

the Poisson
Distribution

hypergometric � binomial � normal 
distribution distribution distributionnp � 5n

N
� 0.1

Figure 4-21 Conditions for approximating hypergeometric and binomial probabilities.

n11 � p2 � 5

EXAMPLE 4-20 Assume that the number of asbestos particles in a squared meter of dust on a surface follows
a Poisson distribution with a mean of 1000. If a squared meter of dust is analyzed, what is the
probability that less than 950 particles are found?

This probability can be expressed exactly as

The computational difficulty is clear. The probability can be approximated as

EXERCISES FOR SECTION 4-7

P1X � x2 � P  aZ �
950 � 100011000

b � P1Z � �1.582 � 0.057

P1X � 9502 � a
950

x�0

e�1000x1000

x!

4-61. Suppose that X is a binomial random variable with
and 

(a) Approximate the probability that X is less than or equal
to 70.

(b) Approximate the probability that X is greater than 70 and
less than 90.

p � 0.4.n � 200
4-62. Suppose that X is a binomial random variable with
n � 100 and p � 0.1.
(a) Compute the exact probability that X is less than 4.
(b) Approximate the probability that X is less than 4 and com-

pare to the result in part (a).
(c) Approximate the probability that .8 � X � 12
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122 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

4-63. The manufacturing of semiconductor chips produces
2% defective chips. Assume the chips are independent and
that a lot contains 1000 chips.
(a) Approximate the probability that more than 25 chips are

defective.
(b) Approximate the probability that between 20 and 30 chips

are defective.

4-64. A supplier ships a lot of 1000 electrical connectors. A
sample of 25 is selected at random, without replacement.
Assume the lot contains 100 defective connectors.
(a) Using a binomial approximation, what is the probability

that there are no defective connectors in the sample?
(b) Use the normal approximation to answer the result in part

(a). Is the approximation satisfactory?
(c) Redo parts (a) and (b) assuming the lot size is 500. Is the nor-

mal approximation to the probability that there are no defec-
tive connectors in the sample satisfactory in this case?

4-65. An electronic office product contains 5000 elec-
tronic components. Assume that the probability that each
component operates without failure during the useful life of
the product is 0.999, and assume that the components fail
independently. Approximate the probability that 10 or more
of the original 5000 components fail during the useful life of
the product.

4-66. Suppose that the number of asbestos particles in a sam-
ple of 1 squared centimeter of dust is a Poisson random variable
with a mean of 1000. What is the probability that 10 squared cen-
timeters of dust contains more than 10,000 particles?

4-67. A corporate Web site contains errors on 50 of 1000
pages. If 100 pages are sampled randomly, without replace-

ment, approximate the probability that at least 1 of the pages
in error are in the sample.

4-68. Hits to a high-volume Web site are assumed to follow
a Poisson distribution with a mean of 10,000 per day.
Approximate each of the following:
(a) The probability of more than 20,000 hits in a day
(b) The probability of less than 9900 hits in a day
(c) The value such that the probability that the number of hits

in a day exceed the value is 0.01

4-69. Continuation of Exercise 4-68.
(a) Approximate the expected number of days in a year (365

days) that exceed 10,200 hits.
(b) Approximate the probability that over a year (365 days)

more than 15 days each have more than 10,200 hits.

4-70. The percentage of people exposed to a bacteria who
become ill is 20%. Assume that people are independent. Assume
that 1000 people are exposed to the bacteria. Approximate each
of the following:
(a) The probability that more than 225 become ill
(b) The probability that between 175 and 225 become ill
(c) The value such that the probability that the number of peo-

ple that become ill exceeds the value is 0.01

4-71. A high-volume printer produces minor print-quality
errors on a test pattern of 1000 pages of text according to a
Poisson distribution with a mean of 0.4 per page.
(a) Why are the number of errors on each page independent

random variables?
(b) What is the mean number of pages with errors (one or more)?
(c) Approximate the probability that more than 350 pages

contain errors (one or more).

4-8 CONTINUITY CORRECTION TO IMPROVE
THE APPROXIMATION (CD ONLY)

4-9 EXPONENTIAL DISTRIBUTION

The discussion of the Poisson distribution defined a random variable to be the number of
flaws along a length of copper wire. The distance between flaws is another random variable
that is often of interest. Let the random variable X denote the length from any starting point on
the wire until a flaw is detected.

As you might expect, the distribution of X can be obtained from knowledge of the
distribution of the number of flaws. The key to the relationship is the following concept. The
distance to the first flaw exceeds 3 millimeters if and only if there are no flaws within a length
of 3 millimeters—simple, but sufficient for an analysis of the distribution of X.

In general, let the random variable N denote the number of flaws in x millimeters of wire.
If the mean number of flaws is per millimeter, N has a Poisson distribution with mean .
We assume that the wire is longer than the value of x. Now,

P1X � x2 � P1N � 02 �
e��x1�x20

0!
� e��x

�x�
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4-9 EXPONENTIAL DISTRIBUTION 123

Therefore,

is the cumulative distribution function of X. By differentiating F(x), the probability density
function of X is calculated to be

The derivation of the distribution of X depends only on the assumption that the flaws in
the wire follow a Poisson process. Also, the starting point for measuring X doesn’t matter
because the probability of the number of flaws in an interval of a Poisson process depends
only on the length of the interval, not on the location. For any Poisson process, the following
general result applies.

f 1x2 � �e��x, x � 0

F1x2 � P1X � x2 � 1 � e��x,  x � 0

The exponential distribution obtains its name from the exponential function in the proba-
bility density function. Plots of the exponential distribution for selected values of are shown
in Fig. 4-22. For any value of , the exponential distribution is quite skewed. The following
results are easily obtained and are left as an exercise.

�
�

The random variable X that equals the distance between successive counts of a
Poisson process with mean is an exponential random variable with parame-
ter The probability density function of X is

(4-14)f 1x2 � �e��x for 0 � x � �

�.
� � 0

Definition

If the random variable X has an exponential distribution with parameter ,

(4-15)� � E1X 2 �
1
�
 and �2 � V1X 2 �

1

�2

�

It is important to use consistent units in the calculation of probabilities, means, and variances
involving exponential random variables. The following example illustrates unit conversions.

EXAMPLE 4-21 In a large corporate computer network, user log-ons to the system can be modeled as a Pois-
son process with a mean of 25 log-ons per hour. What is the probability that there are no log-
ons in an interval of 6 minutes?

Let X denote the time in hours from the start of the interval until the first log-on. Then, X
has an exponential distribution with log-ons per hour. We are interested in the proba-
bility that X exceeds 6 minutes. Because is given in log-ons per hour, we express all time
units in hours. That is, 6 minutes � 0.1 hour. The probability requested is shown as the shaded
area under the probability density function in Fig. 4-23. Therefore,

P1X � 0.12 � �  

�

0.1

25e�25x dx � e�2510.12 � 0.082

�
� � 25

c04.qxd  5/10/02  5:19 PM  Page 123 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



124 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Also, the cumulative distribution function can be used to obtain the same result as follows:

An identical answer is obtained by expressing the mean number of log-ons as 0.417 log-
ons per minute and computing the probability that the time until the next log-on exceeds 6
minutes. Try it.

What is the probability that the time until the next log-on is between 2 and 3 minutes?
Upon converting all units to hours,

An alternative solution is

Determine the interval of time such that the probability that no log-on occurs in the inter-
val is 0.90. The question asks for the length of time x such that . Now,

Take the (natural) log of both sides to obtain . Therefore,

x � 0.00421 hour � 0.25 minute

�25x � ln10.902 � �0.1054

P1X � x2 � e�25x � 0.90

P1X � x2 � 0.90

P10.033 � X � 0.052 � F10.052 � F10.0332 � 0.152

P10.033 � X � 0.052 � �
0.05

0.033
 
25e�25x dx � �e�25x ` 0.05

0.033
� 0.152

P1X � 0.12 � 1 � F10.12 � e�2510.12

0

0.0
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1.6
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x

f (x)

2
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0.1

λ

Figure 4-22 Probability density function of expo-
nential random variables for selected values of .�

0.1 x

f (x)

Figure 4-23 Probability for the expo-
nential distribution in Example 4-21.
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4-9 EXPONENTIAL DISTRIBUTION 125

Furthermore, the mean time until the next log-on is

The standard deviation of the time until the next log-on is

In the previous example, the probability that there are no log-ons in a 6-minute interval is
0.082 regardless of the starting time of the interval. A Poisson process assumes that events oc-
cur uniformly throughout the interval of observation; that is, there is no clustering of events.
If the log-ons are well modeled by a Poisson process, the probability that the first log-on after
noon occurs after 12:06 P.M. is the same as the probability that the first log-on after 3:00 P.M.
occurs after 3:06 P.M. And if someone logs on at 2:22 P.M., the probability the next log-on
occurs after 2:28 P.M. is still 0.082.

Our starting point for observing the system does not matter. However, if there are
high-use periods during the day, such as right after 8:00 A.M., followed by a period of low
use, a Poisson process is not an appropriate model for log-ons and the distribution is not
appropriate for computing probabilities. It might be reasonable to model each of the high-
and low-use periods by a separate Poisson process, employing a larger value for during
the high-use periods and a smaller value otherwise. Then, an exponential distribution with
the corresponding value of can be used to calculate log-on probabilities for the high- and
low-use periods.

Lack of Memory Property
An even more interesting property of an exponential random variable is concerned with con-
ditional probabilities.

EXAMPLE 4-22 Let X denote the time between detections of a particle with a geiger counter and assume that
X has an exponential distribution with minutes. The probability that we detect a par-
ticle within 30 seconds of starting the counter is

In this calculation, all units are converted to minutes. Now, suppose we turn on the geiger
counter and wait 3 minutes without detecting a particle. What is the probability that a particle
is detected in the next 30 seconds?

Because we have already been waiting for 3 minutes, we feel that we are “due.’’ That
is, the probability of a detection in the next 30 seconds should be greater than 0.3. However,
for an exponential distribution, this is not true. The requested probability can be expressed
as the conditional probability that From the definition of conditional
probability,

where

P13 � X � 3.52 � F13.52 � F132 � 31 � e�3.5	1.4 4 � 31 � e�3	1.4 4 � 0.0035

P1X � 3.5 ƒ X � 32 � P13 � X � 3.52	P1X � 32

P1X � 3.5 ƒ X � 32.

P1X � 0.5 minute2 � F10.52 � 1 � e�0.5	1.4 � 0.30

� � 1.4

�

�

� � 1	25 hours � 2.4 minutes

� � 1	25 � 0.04 hour � 2.4 minutes
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126 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

and

Therefore,

After waiting for 3 minutes without a detection, the probability of a detection in the next 30
seconds is the same as the probability of a detection in the 30 seconds immediately after start-
ing the counter. The fact that you have waited 3 minutes without a detection does not change
the probability of a detection in the next 30 seconds.

Example 4-22 illustrates the lack of memory property of an exponential random vari-
able and a general statement of the property follows. In fact, the exponential distribution is the
only continuous distribution with this property.

P1X � 3.5 ƒ X � 32 � 0.035	0.117 � 0.30

P1X � 32 � 1 � F132 � e�3/1.4 � 0.117

For an exponential random variable X,

(4-16)P1X � t1 
 t2 0 X � t12 � P1X � t22

Lack of
Memory
Property

Figure 4-24 graphically illustrates the lack of memory property. The area of region A divided
by the total area under the probability density function equals

. The area of region C divided by the area equals The
lack of memory property implies that the proportion of the total area that is in A equals the
proportion of the area in C and D that is in C. The mathematical verification of the lack of
memory property is left as a mind-expanding exercise.

The lack of memory property is not that surprising when you consider the development
of a Poisson process. In that development, we assumed that an interval could be partitioned
into small intervals that were independent. These subintervals are similar to independent
Bernoulli trials that comprise a binomial process; knowledge of previous results does not af-
fect the probabilities of events in future subintervals. An exponential random variable is the
continuous analog of a geometric random variable, and they share a similar lack of memory
property.

The exponential distribution is often used in reliability studies as the model for the
time until failure of a device. For example, the lifetime of a semiconductor chip might be
modeled as an exponential random variable with a mean of 40,000 hours. The lack of

P1X � t1 
 t2 0  X � t12.C 
 DP1X � t22
1A 
 B 
 C 
 D � 12

Figure 4-24 Lack of
memory property of
an exponential
distribution. t2 x

C D
B

A

t1 t1 + t2

f (x)
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4-9 EXPONENTIAL DISTRIBUTION 127

memory property of the exponential distribution implies that the device does not wear out.
That is, regardless of how long the device has been operating, the probability of a failure
in the next 1000 hours is the same as the probability of a failure in the first 1000 hours of
operation. The lifetime L of a device with failures caused by random shocks might be ap-
propriately modeled as an exponential random variable. However, the lifetime L of a
device that suffers slow mechanical wear, such as bearing wear, is better modeled by a dis-
tribution such that increases with t. Distributions such as the Weibull
distribution are often used, in practice, to model the failure time of this type of device. The
Weibull distribution is presented in a later section.

EXERCISES FOR SECTION 4-9

P1L � t 
 �t 0 L � t2

4-72. Suppose X has an exponential distribution with � � 2.
Determine the following:
(a) (b)
(c) (d)

(e) Find the value of x such that 

4-73. Suppose X has an exponential distribution with mean
equal to 10. Determine the following:
(a)
(b)
(c)

(d) Find the value of x such that 

4-74. Suppose the counts recorded by a geiger counter follow
a Poisson process with an average of two counts per minute.
(a) What is the probability that there are no counts in a 30-

second interval?
(b) What is the probability that the first count occurs in less

than 10 seconds?
(c) What is the probability that the first count occurs between

1 and 2 minutes after start-up?

4-75. Suppose that the log-ons to a computer network fol-
low a Poisson process with an average of 3 counts per minute.
(a) What is the mean time between counts?
(b) What is the standard deviation of the time between counts?
(c) Determine x such that the probability that at least one

count occurs before time x minutes is 0.95.

4-76. The time to failure (in hours) for a laser in a cytome-
try machine is modeled by an exponential distribution with

(a) What is the probability that the laser will last at least
20,000 hours?

(b) What is the probability that the laser will last at most
30,000 hours?

(c) What is the probability that the laser will last between
20,000 and 30,000 hours?

4-77. The time between calls to a plumbing supply business
is exponentially distributed with a mean time between calls of
15 minutes.
(a) What is the probability that there are no calls within a 30-

minute interval?

� � 0.00004.

P1X � x2 � 0.95.

P1X � 302
P1X � 202
P1X � 102

P1X � x2 � 0.05.

P11 � X � 22P1X � 12
P1X � 22P1X � 02

(b) What is the probability that at least one call arrives within
a 10-minute interval?

(c) What is the probability that the first call arrives within 5
and 10 minutes after opening?

(d) Determine the length of an interval of time such that the
probability of at least one call in the interval is 0.90.

4-78. The life of automobile voltage regulators has an expo-
nential distribution with a mean life of six years. You purchase
an automobile that is six years old, with a working voltage
regulator, and plan to own it for six years.
(a) What is the probability that the voltage regulator fails dur-

ing your ownership?
(b) If your regulator fails after you own the automobile three

years and it is replaced, what is the mean time until the
next failure?

4-79. The time to failure (in hours) of fans in a personal com-
puter can be modeled by an exponential distribution with

(a) What proportion of the fans will last at least 10,000 hours?
(b) What proportion of the fans will last at most 7000 hours?

4-80. The time between the arrival of electronic messages at
your computer is exponentially distributed with a mean of two
hours.
(a) What is the probability that you do not receive a message

during a two-hour period?
(b) If you have not had a message in the last four hours, what

is the probability that you do not receive a message in the
next two hours?

(c) What is the expected time between your fifth and sixth
messages?

4-81. The time between arrivals of taxis at a busy intersec-
tion is exponentially distributed with a mean of 10 minutes.
(a) What is the probability that you wait longer than one hour

for a taxi?
(b) Suppose you have already been waiting for one hour for a

taxi, what is the probability that one arrives within the
next 10 minutes?

4-82. Continuation of Exercise 4-81.
(a) Determine x such that the probability that you wait more

than x minutes is 0.10.

� � 0.0003.
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128 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

(b) Determine x such that the probability that you wait less
than x minutes is 0.90.

(c) Determine x such that the probability that you wait less
than x minutes is 0.50.

4-83. The distance between major cracks in a highway fol-
lows an exponential distribution with a mean of 5 miles.
(a) What is the probability that there are no major cracks in a

10-mile stretch of the highway?
(b) What is the probability that there are two major cracks in

a 10-mile stretch of the highway?
(c) What is the standard deviation of the distance between

major cracks?

4-84. Continuation of Exercise 4-83.
(a) What is the probability that the first major crack occurs

between 12 and 15 miles of the start of inspection?
(b) What is the probability that there are no major cracks in

two separate 5-mile stretches of the highway?
(c) Given that there are no cracks in the first 5 miles in-

spected, what is the probability that there are no major
cracks in the next 10 miles inspected?

4-85. The lifetime of a mechanical assembly in a vibration
test is exponentially distributed with a mean of 400 hours.
(a) What is the probability that an assembly on test fails in

less than 100 hours?
(b) What is the probability that an assembly operates for more

than 500 hours before failure?
(c) If an assembly has been on test for 400 hours without a fail-

ure, what is the probability of a failure in the next 100 hours?

4-86. Continuation of Exercise 4-85.
(a) If 10 assemblies are tested, what is the probability that at

least one fails in less than 100 hours? Assume that the as-
semblies fail independently.

(b) If 10 assemblies are tested, what is the probability that all
have failed by 800 hours? Assume the assemblies fail
independently.

4-87. When a bus service reduces fares, a particular trip
from New York City to Albany, New York, is very popular.
A small bus can carry four passengers. The time between calls
for tickets is exponentially distributed with a mean of 30 min-
utes. Assume that each call orders one ticket. What is the prob-
ability that the bus is filled in less than 3 hours from the time
of the fare reduction?

4-88. The time between arrivals of small aircraft at a county
airport is exponentially distributed with a mean of one hour.
What is the probability that more than three aircraft arrive
within an hour?

4-89. Continuation of Exercise 4-88.
(a) If 30 separate one-hour intervals are chosen, what is the

probability that no interval contains more than three arrivals?
(b) Determine the length of an interval of time (in hours) such

that the probability that no arrivals occur during the inter-
val is 0.10.

4-90. The time between calls to a corporate office is expo-
nentially distributed with a mean of 10 minutes.
(a) What is the probability that there are more than three calls

in one-half hour?
(b) What is the probability that there are no calls within one-

half hour?
(c) Determine x such that the probability that there are no

calls within x hours is 0.01.

4-91. Continuation of Exercise 4-90.
(a) What is the probability that there are no calls within a two-

hour interval?
(b) If four nonoverlapping one-half hour intervals are se-

lected, what is the probability that none of these intervals
contains any call?

(c) Explain the relationship between the results in part (a)
and (b).

4-92. If the random variable X has an exponential distribu-
tion with mean , determine the following:
(a) (b)

(c)
(d) How do the results depend on ?

4-93. Assume that the flaws along a magnetic tape follow a
Poisson distribution with a mean of 0.2 flaw per meter. Let X
denote the distance between two successive flaws.
(a) What is the mean of X ?
(b) What is the probability that there are no flaws in 10 con-

secutive meters of tape?
(c) Does your answer to part (b) change if the 10 meters are

not consecutive?
(d) How many meters of tape need to be inspected so that the

probability that at least one flaw is found is 90%?

4-94. Continuation of Exercise 4-93. (More diff icult ques-
tions.)
(a) What is the probability that the first time the distance be-

tween two flaws exceeds 8 meters is at the fifth flaw?
(b) What is the mean number of flaws before a distance be-

tween two flaws exceeds 8 meters?

4-95. Derive the formula for the mean and variance of an
exponential random variable.

�
P1X � 3�2

P1X � 2�2P1X � �2 �

4-10 ERLANG AND GAMMA DISTRIBUTIONS

4-10.1 Erlang Distribution

An exponential random variable describes the length until the first count is obtained in a
Poisson process. A generalization of the exponential distribution is the length until r counts
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4-10 ERLANG AND GAMMA DISTRIBUTIONS 129

occur in a Poisson process. The random variable that equals the interval length until r counts
occur in a Poisson process has an Erlang random variable.

EXAMPLE 4-23 The failures of the central processor units of large computer systems are often modeled as a
Poisson process. Typically, failures are not caused by components wearing out, but by more
random failures of the large number of semiconductor circuits in the units. Assume that the
units that fail are immediately repaired, and assume that the mean number of failures per hour
is 0.0001. Let X denote the time until four failures occur in a system. Determine the probabil-
ity that X exceeds 40,000 hours.

Let the random variable N denote the number of failures in 40,000 hours of operation.
The time until four failures occur exceeds 40,000 hours if and only if the number of failures
in 40,000 hours is three or less. Therefore, 

The assumption that the failures follow a Poisson process implies that N has a Poisson distri-
bution with

Therefore,

The cumulative distribution function of a general Erlang random variable X can be obtained
from and can be determined as in the previous exam-
ple. Then, the probability density function of X can be obtained by differentiating the cumula-
tive distribution function and using a great deal of algebraic simplification. The details are left
as an exercise. In general, we can obtain the following result.

P1X � x2P1X � x2 � 1 � P1X � x2,

P1X � 40,0002 � P1N � 32 � a
3

k�0

e�44k

k!
� 0.433

E1N 2 � 40,00010.00012 � 4 failures per 40,000 hours

P1X � 40,0002 � P1N � 32

The random variable X that equals the interval length until r counts occur in a
Poisson process with mean has an Erlang random variable with parameters

and r. The probability density function of X is

(4-17)f 1x2 �
�rxr�1e��x

1r � 12!
, for x � 0 and r � 1, 2, p

�
� � 0

Definition

Sketches of the Erlang probability density function for several values of r and are
shown in Fig. 4-25. Clearly, an Erlang random variable with is an exponential
random variable. Probabilities involving Erlang random variables are often determined by
computing a summation of Poisson random variables as in Example 4-23. The probability
density function of an Erlang random variable can be used to determine probabilities;
however, integrating by parts is often necessary. As was the case for the exponential
distribution, one must be careful to define the random variable and the parameter in
consistent units.

r � 1
�
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130 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

EXAMPLE 4-24 An alternative approach to computing the probability requested in Example 4-24 is to inte-
grate the probability density function of X. That is,

where Integration by parts can be used to verify the result obtained
previously.

An Erlang random variable can be thought of as the continuous analog of a negative
binomial random variable. A negative binomial random variable can be expressed as the sum
of r geometric random variables. Similarly, an Erlang random variable can be represented as
the sum of r exponential random variables. Using this conclusion, we can obtain the follow-
ing plausible result. Sums of random variables are studied in Chapter 5.

r � 4 and � � 0.0001.

P1X � 40,0002 � �
�

40,000
 
f 1x2 dx � �

�

40,000

 
�rxr�1e��x

1r � 12!
 dx

0

0.0

0.4

0.8

1.2

1.6

2.0

2 4 6 8 10 12
x

f (x)

1
5
5

1
1
2

λr

Figure 4-25 Erlang probability density functions
for selected values of r and .�

If X is an Erlang random variable with parameters and r,

(4-18)� � E1X 2 � r�� and �2 � V1X2 � r��2

�

4-10.2 Gamma Distribution

The Erlang distribution is a special case of the gamma distribution. If the parameter r of
an Erlang random variable is not an integer, but , the random variable has a gamma
distribution. However, in the Erlang density function, the parameter r appears as r factorial.

r � 0
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4-10 ERLANG AND GAMMA DISTRIBUTIONS 131

It can be shown that the integral in the definition of is finite. Furthermore, by using inte-
gration by parts it can be shown that

This result is left as an exercise. Therefore, if r is a positive integer (as in the Erlang distribution),

Also, and it can be shown that . The gamma function can be in-
terpreted as a generalization to noninteger values of r of the term that is used in the
Erlang probability density function.

Now the gamma probability density function can be stated.

1r � 12!�11	22 � 
1	2�112 � 0! � 1

�1r2 � 1r � 12!

�1r2 � 1r � 12�1r � 12

�1r2

Sketches of the gamma distribution for several values of and r are shown in Fig. 4-26. It can
be shown that f(x) satisfies the properties of a probability density function, and the following
result can be obtained. Repeated integration by parts can be used, but the details are lengthy.

�

Although the gamma distribution is not frequently used as a model for a physical system,
the special case of the Erlang distribution is very useful for modeling random experiments. The
exercises provide illustrations. Furthermore, the chi-squared distribution is a special case of

The gamma function is

(4-19)�1r2 � �
�

0
 
xr�1e�x dx, for r � 0

Definition

The random variable X with probability density function

(4-20)

has a gamma random variable with parameters . If r is an integer,
X has an Erlang distribution.

� � 0 and r � 0

f 1x2 �
�rxr�1e 

��x

�1r2 , for x � 0

Definition

If X is a gamma random variable with parameters and r,

(4-21)� � E1X 2 � r	� and �2 � V1X 2 � r	�2

�

Therefore, to define a gamma random variable, we require a generalization of the factorial
function.
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132 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

the gamma distribution in which and r equals one of the values 1�2, 1, 3�2, 2, p . This
distribution is used extensively in interval estimation and tests of hypotheses that are discussed
in subsequent chapters.

EXERCISES FOR SECTION 4-10

� � 1	2

Figure 4-26 Gamma probability density functions
for selected values of and r.�
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4-96. Calls to a telephone system follow a Poisson distribu-
tion with a mean of five calls per minute.
(a) What is the name applied to the distribution and parame-

ter values of the time until the tenth call?
(b) What is the mean time until the tenth call?
(c) What is the mean time between the ninth and tenth calls?

4-97. Continuation of Exercise 4-96.
(a) What is the probability that exactly four calls occur within

one minute?
(b) If 10 separate one-minute intervals are chosen, what is the

probability that all intervals contain more than two calls?

4-98. Raw materials are studied for contamination. Suppose
that the number of particles of contamination per pound of
material is a Poisson random variable with a mean of 0.01 par-
ticle per pound.
(a) What is the expected number of pounds of material re-

quired to obtain 15 particles of contamination?
(b) What is the standard deviation of the pounds of materials

required to obtain 15 particles of contamination?

4-99. The time between failures of a laser in a cytogenics ma-
chine is exponentially distributed with a mean of 25,000 hours.
(a) What is the expected time until the second failure? 

(b) What is the probability that the time until the third failure
exceeds 50,000 hours?

4-100. In a data communication system, several messages
that arrive at a node are bundled into a packet before they
are transmitted over the network. Assume the messages ar-
rive at the node according to a Poisson process with 
messages per minute. Five messages are used to form a
packet.
(a) What is the mean time until a packet is formed, that is, un-

til five messages arrived at the node?
(b) What is the standard deviation of the time until a packet is

formed?
(c) What is the probability that a packet is formed in less than

10 seconds?
(d) What is the probability that a packet is formed in less than

5 seconds?

4-101. Errors caused by contamination on optical disks oc-
cur at the rate of one error every bits. Assume the errors
follow a Poisson distribution.
(a) What is the mean number of bits until five errors occur?
(b) What is the standard deviation of the number of bits until

five errors occur?

105

� � 30
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4-11 WEIBULL DISTRIBUTION 133

(c) The error-correcting code might be ineffective if there are
three or more errors within bits. What is the probabil-
ity of this event?

4-102. Calls to the help line of a large computer distributor
follow a Possion distribution with a mean of 20 calls per minute.
(a) What is the mean time until the one-hundredth call?
(b) What is the mean time between call numbers 50 and 80?
(c) What is the probability that three or more calls occur

within 15 seconds?

4-103. The time between arrivals of customers at an auto-
matic teller machine is an exponential random variable with a
mean of 5 minutes.
(a) What is the probability that more than three customers

arrive in 10 minutes?
(b) What is the probability that the time until the fifth cus-

tomer arrives is less than 15 minutes?

105
4-104. The time between process problems in a manufac-
turing line is exponentially distributed with a mean of 30 days.
(a) What is the expected time until the fourth problem?
(b) What is the probability that the time until the fourth prob-

lem exceeds 120 days?

4-105. Use the properties of the gamma function to evaluate
the following:
(a) (b)
(c)

4-106. Use integration by parts to show that 

4-107. Show that the gamma density function in-
tegrates to 1.

4-108. Use the result for the gamma distribution to determine
the mean and variance of a chi-square distribution with r � 7�2.

f 1x, �, r2
�1r � 12.

�1r2 �  1r � 12
�19�22

�15�22�162

4-11 WEIBULL DISTRIBUTION

As mentioned previously, the Weibull distribution is often used to model the time until failure
of many different physical systems. The parameters in the distribution provide a great deal of
flexibility to model systems in which the number of failures increases with time (bearing
wear), decreases with time (some semiconductors), or remains constant with time (failures
caused by external shocks to the system).

The flexibility of the Weibull distribution is illustrated by the graphs of selected probability
density functions in Fig. 4-27. By inspecting the probability density function, it is seen that
when , the Weibull distribution is identical to the exponential distribution.

The cumulative distribution function is often used to compute probabilities. The follow-
ing result can be obtained.

� � 1

The random variable X with probability density function

(4-22)

is a Weibull random variable with scale parameter and shape parameter � � 0.� � 0

f 1x2 �
�

�
 ax

�
b��1

 exp c�ax

�
b� d ,  for x � 0

Definition

If X has a Weibull distribution with parameters and , then the cumulative distri-
bution function of X is

(4-23)F1x2 � 1 � e
�ax

�
b
�

��

c04.qxd  5/13/02  11:19 M  Page 133 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:
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If X has a Weibull distribution with parameters and ,

(4-24)

	 � E1x2 � ��  a1 

1
�
b and �2 � V 1x2 � �2� 

 

 a1 

2
�
b � �2 c� 

 a1 

1
�
b d 2

��

EXAMPLE 4-25 The time to failure (in hours) of a bearing in a mechanical shaft is satisfactorily modeled as a
Weibull random variable with Determine the mean time until
failure.

From the expression for the mean,

Determine the probability that a bearing lasts at least 6000 hours. Now 

Consequently, only 33.4% of all bearings last at least 6000 hours.

P1x � 60002 � 1 � F160002 � exp� c a6000
5000

b1�2 d � e�1.095 � 0.334

E1X 2 � 5000� 31 
 11�0.52 4 � 5000� 33 4 � 5000 � 2! � 10,000 hours

� � 1�2, and � � 5000 hours.

Figure 4-27 Weibull probability density functions
for selected values of and .��
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4-12 LOGNORMAL DISTRIBUTION 135

4-109. Suppose that X has a Weibull distribution with
and hours. Determine the mean and vari-

ance of X.

4-110. Suppose that X has a Weibull distribution 
and hours. Determine the following:
(a) (b)

4-111. Assume that the life of a roller bearing follows a
Weibull distribution with parameters and 
hours.
(a) Determine the probability that a bearing lasts at least 8000

hours.
(b) Determine the mean time until failure of a bearing.
(c) If 10 bearings are in use and failures occur independently,

what is the probability that all 10 bearings last at least
8000 hours?

4-112. The life (in hours) of a computer processing unit
(CPU) is modeled by a Weibull distribution with parameters

and hours.
(a) Determine the mean life of the CPU.
(b) Determine the variance of the life of the CPU.
(c) What is the probability that the CPU fails before 500

hours?

� � 900� � 3

� � 10,000� � 2

P1X � 50002P1X � 10,0002
� � 100

� � 0.2

� � 100� � 0.2
4-113. Assume the life of a packaged magnetic disk exposed
to corrosive gases has a Weibull distribution with and
the mean life is 600 hours.
(a) Determine the probability that a packaged disk lasts at

least 500 hours.
(b) Determine the probability that a packaged disk fails be-

fore 400 hours.

4-114. The life of a recirculating pump follows a Weibull
distribution with parameters , and hours.
(a) Determine the mean life of a pump.
(b) Determine the variance of the life of a pump.
(c) What is the probability that a pump will last longer than its

mean?

4-115. The life (in hours) of a magnetic resonance imagin-
ing machine (MRI) is modeled by a Weibull distribution with
parameters and hours.
(a) Determine the mean life of the MRI.
(b) Determine the variance of the life of the MRI.
(c) What is the probability that the MRI fails before 250 hours?

4-116. If X is a Weibull random variable with � � 1, and
� � 1000, what is another name for the distribution of X and
what is the mean of X ?

� � 500� � 2

� � 700� � 2

� � 0.5

4-12 LOGNORMAL DISTRIBUTION

Variables in a system sometimes follow an exponential relationship as . If the
exponent is a random variable, say is a random variable and the distribu-
tion of X is of interest. An important special case occurs when W has a normal distribution.
In that case, the distribution of X is called a lognormal distribution. The name follows
from the transformation ln . That is, the natural logarithm of X is normally dis-
tributed.

Probabilities for X are obtained from the transformation to W, but we need to recognize
that the range of X is . Suppose that W is normally distributed with mean and variance

; then the cumulative distribution function for X is

for , where Z is a standard normal random variable. Therefore, Appendix Table II can be
used to determine the probability. Also, 

The probability density function of X can be obtained from the derivative of F(x).
This derivative is applied to the last term in the expression for F(x), the integral of the stan-
dard normal density function. Furthermore, from the probability density function, the
mean and variance of X can be derived. The details are omitted, but a summary of results
follows.

F1x2 � 0, for x � 0.
x � 0

� P cZ �
ln 1x2 � �

� d � � c ln 1x2 � �
� d

F1x2 � P 3X � x 4 � P 3exp1W 2 � x 4 � P 3W � ln 1x2 4
�2

�10, �2

1X 2 � W

W, X � exp 1W 2 x � exp1w2

EXERCISES FOR SECTION 4-11
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136 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

The parameters of a lognormal distribution are and , but care is needed to interpret that
these are the mean and variance of the normal random variable W. The mean and variance of
X are the functions of these parameters shown in (4-25). Figure 4-28 illustrates lognormal dis-
tributions for selected values of the parameters.

The lifetime of a product that degrades over time is often modeled by a lognormal ran-
dom variable. For example, this is a common distribution for the lifetime of a semiconductor
laser. A Weibull distribution can also be used in this type of application, and with an appro-
priate choice for parameters, it can approximate a selected lognormal distribution. However,
a lognormal distribution is derived from a simple exponential function of a normal random
variable, so it is easy to understand and easy to evaluate probabilities.

EXAMPLE 4-26 The lifetime of a semiconductor laser has a lognormal distribution with hours and
hours. What is the probability the lifetime exceeds 10,000 hours?

From the cumulative distribution function for X

� �  a ln 110,0002 � 10

1.5
b � 1 � � 1�0.522 � 1 � 0.30 � 0.70

P1X � 10,0002 � 1 � P 3exp 1W 2 � 10,000 4 � 1 � P 3W � ln 110,0002 4

� � 1.5
� � 10

�2�

Let W have a normal distribution mean and variance ; then is a log-
normal random variable with probability density function

The mean and variance of X are

(4-25)E1X 2 � e�
�2	2  and  V1X 2 � e2�
�2

 1e�2

� 12

f 1x2 �
1

x� 12

 exp c� 1ln x � �22

2�2 d  0 � x � �

X � exp1W2�2�

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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f (x)
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2 = 2.25ω

ω
ω

Figure 4-28 Lognormal probability density functions with
for selected values of .�2� � 0
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4-12 LOGNORMAL DISTRIBUTION 137

What lifetime is exceeded by 99% of lasers? The question is to determine x such that
. Therefore, 

From Appendix Table II, when . Therefore, 

Determine the mean and standard deviation of lifetime. Now,

so the standard deviation of X is 197,661.5 hours. Notice that the standard deviation of life-
time is large relative to the mean.

EXERCISES FOR SECTION 4-12

V1X 2 � e2�
�21e�2

� 12 � exp 120 
 2.252 3exp 12.252 � 1 4 � 39,070,059,886.6

E1X 2 � e�
�2	2 � exp 110 
 1.1252 � 67,846.3

ln 1x2 � 10

1.5
� �2.33 and x � exp 16.5052 � 668.48 hours.

z � �2.33 1 � �1z2 � 0.99

P1X � x2 � P 3exp 1W 2 � x 4 � P 3W � ln 1x2 4 � 1 � � a ln 1x2 � 10

1.5
b � 0.99

P1X � x2 � 0.99

4-117. Suppose that X has a lognormal distribution with
parameters and . Determine the following:
(a)
(b) The value for x such that 
(c) The mean and variance of X

4-118. Suppose that X has a lognormal distribution with
parameters and . Determine the following:
(a)
(b) The value for x such that 
(c) The mean and variance of X

4-119. Suppose that X has a lognormal distribution with pa-
rameters and . Determine the following:
(a)
(b) The conditional probability that given that

(c) What does the difference between the probabilities in
parts (a) and (b) imply about lifetimes of lognormal ran-
dom variables?

4-120. The length of time (in seconds) that a user views a
page on a Web site before moving to another page is a lognor-
mal random variable with parameters and .
(a) What is the probability that a page is viewed for more than

10 seconds?
(b) What is the length of time that 50% of users view the page?
(c) What is the mean and standard deviation of the time until

a user moves from the page?

4-121. Suppose that X has a lognormal distribution and that
the mean and variance of X are 100 and 85,000, respectively.

�2 � 1� � 0.5

X � 1000
X � 1500

P1X � 5002
�2 � 4� � 2

P1X � x2 � 0.1
P1500 � X � 10002

�2 � 9� � �2

P1X � x2 � 0.95
P1X � 13,3002

�2 � 9� � 5
Determine the parameters and of the lognormal distribu-
tion. (Hint: define and and write two
equations in terms of x and y.)

4-122. The lifetime of a semiconductor laser has a log-
normal distribution, and it is known that the mean and stan-
dard deviation of lifetime are 10,000 and 20,000, respec-
tively.
(a) Calculate the parameters of the lognormal distribution
(b) Determine the probability that a lifetime exceeds 10,000

hours
(c) Determine the lifetime that is exceeded by 90% of lasers

4-123. Derive the probability density function of a lognor-
mal random variable from the derivative of the cumulative
distribution function.

Supplemental Exercises

4-124. Suppose that for 
Determine the following:
(a)
(b)

(c)

4-125. Continuation of Exercise 4-124. Determine the
cumulative distribution function of the random variable.

4-126. Continuation of Exercise 4-124. Determine the
mean and variance of the random variable.

P12.5 � X � 3.52
P1X � 32
P1X � 2.52

2 � x � 4.f 1x2 � 0.5x � 1

y � exp 1�22x � exp 1�2 �2�
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138 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

4-127. The time between calls is exponentially distributed
with a mean time between calls of 10 minutes.
(a) What is the probability that the time until the first call is

less than 5 minutes?
(b) What is the probability that the time until the first call is

between 5 and 15 minutes?
(c) Determine the length of an interval of time such that the

probability of at least one call in the interval is 0.90.

4-128. Continuation of Exercise 4-127.
(a) If there has not been a call in 10 minutes, what is the proba-

bility that the time until the next call is less than 5 minutes?
(b) What is the probability that there are no calls in the inter-

vals from 10:00 to 10:05, from 11:30 to 11:35, and from
2:00 to 2:05?

4-129. Continuation of Exercise 4-127.
(a) What is the probability that the time until the third call is

greater than 30 minutes?
(b) What is the mean time until the fifth call?

4-130. The CPU of a personal computer has a lifetime that
is exponentially distributed with a mean lifetime of six years.
You have owned this CPU for three years. What is the proba-
bility that the CPU fails in the next three years?

4-131. Continuation of Exercise 4-130. Assume that your
corporation has owned 10 CPUs for three years, and assume
that the CPUs fail independently. What is the probability that
at least one fails within the next three years?

4-132. Suppose that X has a lognormal distribution with
parameters and . Determine the following:
(a)
(b) The value for x such that 
(c) The mean and variance of X

4-133. Suppose that X has a lognormal distribution and that
the mean and variance of X are 50 and 4000, respectively.
Determine the following:

(a) The parameters and of the lognormal distribution
(b) The probability that X is less than 150

4-134. Asbestos fibers in a dust sample are identified by an
electron microscope after sample preparation. Suppose that
the number of fibers is a Poisson random variable and the
mean number of fibers per squared centimeter of surface dust
is 100. A sample of 800 square centimeters of dust is analyzed.
Assume a particular grid cell under the microscope represents
1/160,000 of the sample.
(a) What is the probability that at least one fiber is visible in

the grid cell?
(b) What is the mean of the number of grid cells that need to

be viewed to observe 10 that contain fibers?
(c) What is the standard deviation of the number of grid cells

that need to be viewed to observe 10 that contain fibers?

4-135. Without an automated irrigation system, the height
of plants two weeks after germination is normally distributed
with a mean of 2.5 centimeters and a standard deviation of 0.5
centimeters.

�2�

P1X � x2 � 0.05
P110 � X � 502

�2 � 4� � 0

(a) What is the probability that a plant’s height is greater than
2.25 centimeters?

(b) What is the probability that a plant’s height is between 2.0
and 3.0 centimeters?

(c) What height is exceeded by 90% of the plants?

4-136. Continuation of Exercise 4-135. With an automated
irrigation system, a plant grows to a height of 3.5 centimeters
two weeks after germination.
(a) What is the probability of obtaining a plant of this height or

greater from the distribution of heights in Exercise 4-135.
(b) Do you think the automated irrigation system increases

the plant height at two weeks after germination?

4-137. The thickness of a laminated covering for a wood
surface is normally distributed with a mean of 5 millimeters
and a standard deviation of 0.2 millimeter.
(a) What is the probability that a covering thickness is greater

than 5.5 millimeters?
(b) If the specifications require the thickness to be between

4.5 and 5.5 millimeters, what proportion of coverings do
not meet specifications?

(c) The covering thickness of 95% of samples is below what
value?

4-138. The diameter of the dot produced by a printer is nor-
mally distributed with a mean diameter of 0.002 inch.
Suppose that the specifications require the dot diameter to be
between 0.0014 and 0.0026 inch. If the probability that a dot
meets specifications is to be 0.9973, what standard deviation
is needed?

4-139. Continuation of Exercise 4-138. Assume that the stan-
dard deviation of the size of a dot is 0.0004 inch. If the proba-
bility that a dot meets specifications is to be 0.9973, what spec-
ifications are needed? Assume that the specifications are to be
chosen symmetrically around the mean of 0.002.

4-140. The life of a semiconductor laser at a constant power
is normally distributed with a mean of 7000 hours and a stan-
dard deviation of 600 hours.
(a) What is the probability that a laser fails before 5,800

hours?
(b) What is the life in hours that 90% of the lasers exceed?

4-141. Continuation of Exercise 4-140. What should the
mean life equal in order for 99% of the lasers to exceed 10,000
hours before failure?

4-142. Continuation of Exercise 4-140. A product contains
three lasers, and the product fails if any of the lasers fails.
Assume the lasers fail independently. What should the mean
life equal in order for 99% of the products to exceed 10,000
hours before failure?

4-143. Continuation of Exercise 140. Rework parts (a) and
(b). Assume that the lifetime is an exponential random vari-
able with the same mean.

4-144. Continuation of Exercise 4-140. Rework parts (a)
and (b). Assume that the lifetime is a lognormal random vari-
able with the same mean and standard deviation.
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4-12 LOGNORMAL DISTRIBUTION 139

4-145. A square inch of carpeting contains 50 carpet fibers.
The probability of a damaged fiber is 0.0001. Assume the
damaged fibers occur independently.
(a) Approximate the probability of one or more damaged

fibers in 1  square yard of carpeting.
(b) Approximate the probability of four or more damaged

fibers in 1 square yard of carpeting.

4-146. An airline makes 200 reservations for a flight that
holds 185 passengers. The probability that a passenger arrives

for the flight is 0.9 and the passengers are assumed to be inde-
pendent.
(a) Approximate the probability that all the passengers that

arrive can be seated.
(b) Approximate the probability that there are empty seats.
(c) Approximate the number of reservations that the airline

should make so that the probability that everyone who ar-
rives can be seated is 0.95. [Hint: Successively try values
for the number of reservations.]

4-147. The steps in this exercise lead to the probabil-
ity density function of an Erlang random variable X with
parameters and 

(a) Use the Poisson distribution to express .
(b) Use the result from part (a) to determine the cumu-

lative distribution function of X.
(c) Differentiate the cumulative distribution function in

part (b) and simplify to obtain the probability den-
sity function of X.

4-148. A bearing assembly contains 10 bearings. The
bearing diameters are assumed to be independent and
normally distributed with a mean of 1.5 millimeters and
a standard deviation of 0.025 millimeter. What is the
probability that the maximum diameter bearing in the
assembly exceeds 1.6 millimeters?

4-149. Let the random variable X denote a measure-
ment from a manufactured product. Suppose the target
value for the measurement is m. For example, X could
denote a dimensional length, and the target might be 10
millimeters. The quality loss of the process producing
the product is defined to be the expected value of

, where k is a constant that relates a devia-
tion from target to a loss measured in dollars.
(a) Suppose X is a continuous random variable with

and . What is the quality loss
of the process?

(b) Suppose X is a continuous random variable with
and . What is the quality loss

of the process?

4-150. The lifetime of an electronic amplifier is mod-
eled as an exponential random variable. If 10% of the

amplifiers have a mean of 20,000 hours and the remain-
ing amplifiers have a mean of 50,000 hours, what pro-
portion of the amplifiers fail before 60,000 hours?

4-151. Lack of Memory Property. Show that for
an exponential random variable X, 

4-152. A process is said to be of six-sigma quality if
the process mean is at least six standard deviations from
the nearest specification. Assume a normally distributed
measurement.
(a) If a process mean is centered between the upper and

lower specifications at a distance of six standard de-
viations from each, what is the probability that a
product does not meet specifications? Using the
result that 0.000001 equals one part per million,
express the answer in parts per million.

(b) Because it is difficult to maintain a process mean
centered between the specifications, the probability
of a product not meeting specifications is often cal-
culated after assuming the process shifts. If the
process mean positioned as in part (a) shifts upward
by 1.5 standard deviations, what is the probability
that a product does not meet specifications? Express
the answer in parts per million.

(c) Rework part (a). Assume that the process mean is
at a distance of three standard deviations.

(d) Rework part (b). Assume that the process mean is at
a distance of three standard deviations and then
shifts upward by 1.5 standard deviations.

(e) Compare the results in parts (b) and (d) and comment.

X � t12 � P1X � t22
P1X � t1 
 t2 0

V1X2 � �2E1X2 � �

V1X2 � �2E1X2 � m

$k1X � m22

P1X � x2
r � 1, 2, p .

r, f 1x2 � �rxr�1e��x	 1r � 12!, x � 0,�

MIND-EXPANDING EXERCISES
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In the E-book, click on any
term or concept below to
go to that subject.

Chi-squared 
distribution

Continuous uniform
distribution

Cumulative probability
distribution function-
continuous random
variable

Erlang distribution
Exponential distribution

Gamma distribution
Lack of memory 

property-continuous
random variable

Lognormal 
distribution

Mean-continuous
random variable

Mean-function of a
continuous random
variable

Normal approximation to
binomial and Poisson
probabilities

Normal distribution
Probability density

function
Probability distribution-

continuous random
variable

Standard deviation-
continuous random
variable

Standard normal
distribution

Standardizing
Variance-continuous 

random variable
Weibull distribution

CD MATERIAL
Continuity correction

IMPORTANT TERMS AND CONCEPTS
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4-1

Mean and Variance of the Normal Distribution (CD Only)
In the derivations below, the mean and variance of a normal random variable are shown

to be � and �2, respectively. The mean of x is

By making the change of variable , the integral becomes

The first integral in the expression above equals 1 because is a probability density

function and the second integral is found to be 0 by either formally making the change of vari-
able u � �y2�2 or noticing the symmetry of the integrand about y � 0. Therefore, E(X) � �. 

The variance of X is

By making the change of variable , the integral becomes

Upon integrating by parts with and V(X) is found to be .

4-8 CONTINUITY CORRECTIONS TO IMPROVE
THE APPROXIMATION

From Fig. 4-19 it can be seen that a probability such as P(3 � X � 7) is better approximated
by the area under the normal curve from 2.5 to 7.5. This observation provides a method to im-
prove the approximation of binomial probabilities. Because a continuous normal distribution
is used to approximate a discrete binomial distribution, the modification is referred to as a
continuity correction.

�2dv � y  
e�y2�222�

 dy,u � y

V1X2 � �2 �
	

�	
 
y2

 
e�y2�222�

 dy

y � 1x � �2��
V1X2 � �

	

�	
 
1x � �22 

e�1x��22�2�222��
 dx

e�y2�222�

 E1X2 � � �
	

�	

e�y2�222�
 dy 
 � �

	

�	

y  
e�y2�222�

 dy

y � 1x � �2��
E1X2 � �

	

�	

 

x 
e�1x��22�2�222��

 dx

If X is a binomial random variable with parameters n and p, and if x � 0, 1, 2, p , n,
the continuity correction to improve approximations obtained from the normal dis-
tribution is

and

P1x � X 2 � P 1x � 0.5 � X 2 � P ° x � 0.5 � np2np 11 � p2 � Z¢

P1X � x2 � P1X � x 
 0.52 � P °Z �
x 
 0.5 � np2np 11 � p2 ¢
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4-2 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

A way to remember the approximation is to write the probability in terms of and
then add or subtract the 0.5 correction factor to make the probability greater.

EXAMPLE S4-1 Consider the situation in Example 4-20 with and . The probability 
is better approximated as

and this result is closer to the exact probability of 0.112 than the previous result of 0.08.
As another example, and this is better approximated as

We can even approximate as

and this compares well with the exact answer of 0.1849.

EXERCISES FOR SECTION 4-8

P15 � X � 52 � P  a5 � 0.5 � 5
2.12

� Z �
5 
 0.5 � 5

2.12
b � P1�0.24 � Z � 0.242 � 0.19

P1X � 52 � P15 � X � 52
P19 � X2 � P18.5 � X2 � P  a9 � 0.5 � 5

2.12
� Zb � P11.65 � Z2 � 0.05

P18 � X 2 � P19 � X 2

P1X � 22 � P1X � 2.52 � P  aZ �
2 
 0.5 � 5

2.12
b � P1Z � �1.182 � 0.119

P1X � 22p � 0.1n � 50

� or �

S4-1. Continuity correction. The normal approximation of
a binomial probability is sometimes modified by a correction
factor of 0.5 that improves the approximation. Suppose that X
is binomial with and . Because X is a discrete
random variable, P(X � 2) � P(X � 2.5). However, the nor-
mal approximation to P(X � 2) can be improved by applying
the approximation to P(X � 2.5).
(a) Approximate P(X � 2) by computing the z-value corre-

sponding to x � 2.5.
(b) Approximate P(X � 2) by computing the z-value corre-

sponding to x � 2.
(c) Compare the results in parts (a) and (b) to the exact value

of P(X � 2) to evaluate the effectiveness of the continuity
correction.

(d) Use the continuity correction to approximate P(X � 10).

S4-2. Continuity correction. Suppose that X is binomial
with n � 50 and p � 0.1. Because X is a discrete random vari-
able, P(X � 2) � P(X � 1.5). However, the normal approxi-
mation to P(X � 2) can be improved by applying the approxi-
mation to P(X � 1.5). The continuity correction of 0.5 is either
added or subtracted. The easy rule to remember is that the con-
tinuity correction is always applied to make the approximating
normal probability greatest.
(a) Approximate P(X � 2) by computing the z-value corre-

sponding to 1.5.
(b) Approximate P(X � 2) by computing the z-value corre-

sponding to 2.
(c) Compare the results in parts (a) and (b) to the exact value

of P(X � 2) to evaluate the effectiveness of the continuity
correction.

p � 0.1n � 50

(d) Use the continuity correction to approximate P(X 
 6).

S4-3. Continuity correction. Suppose that X is binomial
with n � 50 and p � 0.1. Because X is a discrete random vari-
able, P(2 � X � 5) � P(1.5 � X � 5.5). However, the normal
approximation to P(2 � X � 5) can be improved by applying
the approximation to P(1.5 � X � 5.5).
(a) Approximate P(2 � X � 5) by computing the z-values

corresponding to 1.5 and 5.5.
(b) Approximate P(2 � X � 5) by computing the z-values

corresponding to 2 and 5.

S4-4. Continuity correction. Suppose that X is binomial
with n � 50 and p � 0.1. Then, P(X � 10) � P(10 � X � 10).
Using the results for the continuity corrections, we can ap-
proximate P(10 � X � 10) by applying the normal standardi-
zation to P(9.5 � X � 10.5).
(a) Approximate P(X � 10) by computing the z-values corre-

sponding to 9.5 and 10.5.
(b) Approximate P(X � 5).

S4-5. Continuity correction. The manufacturing of
semiconductor chips produces 2% defective chips. Assume
that the chips are independent and that a lot contains 1000
chips.
(a) Use the continuity correction to approximate the probabil-

ity that 20 to 30 chips in the lot are defective.
(b) Use the continuity correction to approximate the probabil-

ity that exactly 20 chips are defective.
(c) Determine the number of defective chips, x, such that the

normal approximation for the probability of obtaining x
defective chips is greatest.
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5Joint Probability
Distributions

CHAPTER OUTLINE

LEARNING OBJECTIVES 

After careful study of this chapter you should be able to do the following:
1. Use joint probability mass functions and joint probability density functions to calculate probabilities
2. Calculate marginal and conditional probability distributions from joint probability distributions
3. Use the multinomial distribution to determine probabilities
4. Interpret and calculate covariances and correlations between random variables
5. Understand properties of a bivariate normal distribution and be able to draw contour plots for the

probability density function
6. Calculate means and variance for linear combinations of random variables and calculate proba-

bilities for linear combinations of normally distributed random variables

5-1 TWO DISCRETE RANDOM
VARIABLES

5-1.1 Joint Probability Distributions

5-1.2 Marginal Probability Distributions

5-1.3 Conditional Probability
Distributions

5-1.4 Independence

5-2 MULTIPLE DISCRETE RANDOM
VARIABLES

5-2.1 Joint Probability Distributions

5-2.2 Multinomial Probability
Distribution

5-3 TWO CONTINUOUS RANDOM
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142 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

CD MATERIAL
7. Determine the distribution of a function of one or more random variables
8. Calculate moment generating functions and use them to determine moments for random variables

and use the uniqueness property to determine the distribution of a random variable
9. Provide bounds on probabilities for arbitrary distributions based on Chebyshev’s inequality

Answers for most odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for the text sections that appear on CD only. These exercises may be found within the 
e-Text immediately following the section they accompany.

In Chapters 3 and 4 we studied probability distributions for a single random variable. However,
it is often useful to have more than one random variable defined in a random experiment. For ex-
ample, in the classification of transmitted and received signals, each signal can be classified as
high, medium, or low quality. We might define the random variable X to be the number of high-
quality signals received and the random variable Y to be the number of low-quality signals
received. In another example, the continuous random variable X can denote the length of one di-
mension of an injection-molded part, and the continuous random variable Y might denote the
length of another dimension. We might be interested in probabilities that can be expressed in
terms of both X and Y. For example, if the specifications for X and Y are (2.95 to 3.05) and (7.60
to 7.80) millimeters, respectively, we might be interested in the probability that a part satisfies
both specifications; that is, P(2.95 � X � 3.05 and 7.60 � Y � 7.80).

In general, if X and Y are two random variables, the probability distribution that defines
their simultaneous behavior is called a joint probability distribution. In this chapter, we
investigate some important properties of these joint distributions.

5-1 TWO DISCRETE RANDOM VARIABLES

5-1.1 Joint Probability Distributions

For simplicity, we begin by considering random experiments in which only two random vari-
ables are studied. In later sections, we generalize the presentation to the joint probability
distribution of more than two random variables.

EXAMPLE 5-1 In the development of a new receiver for the transmission of digital information, each re-
ceived bit is rated as acceptable, suspect, or unacceptable, depending on the quality of the
received signal, with probabilities 0.9, 0.08, and 0.02, respectively. Assume that the ratings of
each bit are independent.

In the first four bits transmitted, let

X denote the number of acceptable bits

Y denote the number of suspect bits

Then, the distribution of X is binomial with n � 4 and p � 0.9, and the distribution of Y is
binomial with n � 4 and p � 0.08. However, because only four bits are being rated, the possible
values of X and Y are restricted to the points shown in the graph in Fig. 5-1. Although the possi-
ble values of X are 0, 1, 2, 3, or 4, if y � 3, x � 0 or 1. By specifying the probability of each of
the points in Fig. 5-1, we specify the joint probability distribution of X and Y. Similarly to an in-
dividual random variable, we define the range of the random variables (X, Y ) to be the set of
points (x, y) in two-dimensional space for which the probability that X � x and Y � y is positive.
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5-1 TWO DISCRETE RANDOM VARIABLES 143

If X and Y are discrete random variables, the joint probability distribution of X and Y is a
description of the set of points (x, y) in the range of (X, Y ) along with the probability of each point.
The joint probability distribution of two random variables is sometimes referred to as the bivari-
ate probability distribution or bivariate distribution of the random variables. One way to
describe the joint probability distribution of two discrete random variables is through a joint
probability mass function. Also, P(X � x and Y � y) is usually written as P(X � x, Y � y).

Subscripts are used to indicate the random variables in the bivariate probability distribution.
Just as the probability mass function of a single random variable X is assumed to be zero at all
values outside the range of X, so the joint probability mass function of X and Y is assumed to
be zero at values for which a probability is not specified.

EXAMPLE 5-2 Probabilities for each point in Fig. 5-1 are determined as follows. For example, P(X � 2, Y � 1)
is the probability that exactly two acceptable bits and exactly one suspect bit are received among
the four bits transferred. Let a, s, and u denote acceptable, suspect, and unacceptable bits, respec-
tively. By the assumption of independence,

The number of possible sequences consisting of two a’s, one s, and one u is shown in the CD
material for Chapter 2:

Therefore,

P1aasu2 � 1210.00132 � 0.0156

4!
2!1!1!

� 12

P1aasu2 � 0.910.92 10.082 10.022 � 0.0013

The joint probability mass function of the discrete random variables X and Y,
denoted as fXY (x, y), satisfies

(1)

(2)

(3) (5-1)fXY 1x, y2 � P1X � x, Y � y2
a

x
 a

y
 fXY 1x, y2 � 1

fXY 
1x, y2 � 0

Definition

x

y

2.88 × 10–5 1.94 × 10–3 5.83 × 10–2 0.6561

3.46 × 10–4 1.56 × 10–2 0.2333

1.38 × 10–3 3.11 × 10–2

1.84 × 10–3

43210
0

1

2

3

4
fXY (x, y)

1.6 × 10–7

2.56 × 10–6

1.54 × 10–5

4.10 × 10–5

4.10 × 10–5

Figure 5-1 Joint
probability distribution
of X and Y in Example
5-1.
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144 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

and

The probabilities for all points in Fig. 5-1 are shown next to the point and the figure describes
the joint probability distribution of X and Y.

5-1.2 Marginal Probability Distributions

If more than one random variable is defined in a random experiment, it is important to distin-
guish between the joint probability distribution of X and Y and the probability distribution of
each variable individually. The individual probability distribution of a random variable is re-
ferred to as its marginal probability distribution. In Example 5-1, we mentioned that the
marginal probability distribution of X is binomial with n � 4 and p � 0.9 and the marginal
probability distribution of Y is binomial with n � 4 and p � 0.08.

In general, the marginal probability distribution of X can be determined from the joint
probability distribution of X and other random variables. For example, to determine P(X � x),
we sum P(X � x, Y � y) over all points in the range of (X, Y ) for which X � x. Subscripts on
the probability mass functions distinguish between the random variables.

EXAMPLE 5-3 The joint probability distribution of X and Y in Fig. 5-1 can be used to find the marginal prob-
ability distribution of X. For example,

As expected, this probability matches the result obtained from the binomial probability distribu-
tion for X; that is, . The marginal probability distribution for X
is found by summing the probabilities in each column, whereas the marginal probability distribu-
tion for Y is found by summing the probabilities in each row. The results are shown in Fig. 5-2.

Although the marginal probability distribution of X in the previous example can be
determined directly from the description of the experiment, in some problems the marginal
probability distribution is determined from the joint probability distribution.

P1X � 32 � 143 20.930.11 � 0.292

 � 0.0583 � 0.2333 � 0.292
P1X � 32 � P1X � 3, Y � 02 � P1X � 3, Y � 12

 fXY 12, 12 � P1X � 2, Y � 12 � 0.0156

fX (x) = 0.65610.29160.04860.00360.0001

0.71637

0.24925

0.03250

0.00188

0.00004

fY (y) =

x

y

43210
0

1

2

3

4

Figure 5-2 Marginal
probability distribu-
tions of X and Y from
Fig. 5-1.
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5-1 TWO DISCRETE RANDOM VARIABLES 145

Given a joint probability mass function for random variables X and Y, E(X ) and V(X ) can
be obtained directly from the joint probability distribution of X and Y or by first calculating the
marginal probability distribution of X and then determining E(X ) and V(X ) by the usual
method. This is shown in the following equation.

If the marginal probability distribution of X has the probability mass function fX(x),
then

(5-3)

and

where Rx denotes the set of all points in the range of (X, Y) for which X � x and R
denotes the set of all points in the range of (X, Y)

� a
x
a
Rx

1x � �X22 fXY 1x, y2 � a
R
1x � �X22 fXY 1x, y2

 V1X 2 � �2
X � a

x
1x � �X22 fX 1x2 � a

x
1x � �X22 a

Rx

 fXY 1x, y2

 � a
R

x fXY 
1x, y2

 E1X 2 � �X � a
x

x fX 1x2 � a
x

x  aa
Rx

 fXY 1x, y2b � a
x
a
Rx

x fXY 1x, y2

Mean and
Variance from

Joint
Distribution

EXAMPLE 5-4 In Example 5-1, E(X ) can be found as

Alternatively, because the marginal probability distribution of X is binomial,

E1X 2 � np � 410.92 � 3.6

 � 0 30.0001 4 � 1 30.0036 4 � 2 30.0486 4 � 3 30.02916 4 � 4 30.6561 4 � 3.6
� 4 3 fXY 14, 02 4
� 3 3 fXY 13, 02 � fXY 13, 12 4
� 2 3 fXY 12, 02 � fXY 12, 12 � fXY 12, 22 4
� 1 3 fXY 11, 02 � fXY 11, 12 � fXY 11, 22 � fXY 11, 32 4

E1X 2 � 0 3 fXY 10, 02 � fXY 10, 12 � fXY 10, 22 � fXY 10, 32 � fXY 10, 42 4

If X and Y are discrete random variables with joint probability mass function fXY (x, y),
then the marginal probability mass functions of X and Y are

(5-2)

where Rx denotes the set of all points in the range of (X, Y) for which X � x and
Ry denotes the set of all points in the range of (X, Y) for which Y � y

fX 
1x2 � P1X � x2 � a

Rx

 fXY 
1x, y2 and fY 1 y2 � P1Y � y2 � a

Ry

 fXY 1x, y2

Definition
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146 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

The calculation using the joint probability distribution can be used to determine E(X ) even in
cases in which the marginal probability distribution of X is not known. As practice, you can
use the joint probability distribution to verify that E(Y ) � 0.32 in Example 5-1.

Also,

Verify that the same result can be obtained from the joint probability distribution of X and Y.

5-1.3 Conditional Probability Distributions

When two random variables are defined in a random experiment, knowledge of one can change
the probabilities that we associate with the values of the other. Recall that in Example 5-1, X
denotes the number of acceptable bits and Y denotes the number of suspect bits received by a
receiver. Because only four bits are transmitted, if X � 4, Y must equal 0. Using the notation for
conditional probabilities from Chapter 2, we can write this result as P(Y � 0 �X � 4) � 1. If 
X � 3, Y can only equal 0 or 1. Consequently, the random variables X and Y can be considered
to be dependent. Knowledge of the value obtained for X changes the probabilities associated
with the values of Y.

Recall that the definition of conditional probability for events A and B is �
. This definition can be applied with the event A defined to be X � x and event

B defined to be Y � y.

EXAMPLE 5-5 For Example 5-1, X and Y denote the number of acceptable and suspect bits received, respec-
tively. The remaining bits are unacceptable.

The probability that Y � 1 given that X � 3 is

Given that X � 3, the only possible values for Y are 0 and 1. Notice that P(Y � 0� X � 3) �
P(Y � 1� X � 3) � 1. The values 0 and 1 for Y along with the probabilities 0.200 and 0.800
define the conditional probability distribution of Y given that X � 3.

Example 5-5 illustrates that the conditional probabilities that Y � y given that X � x can be
thought of as a new probability distribution. The following definition generalizes these ideas.

 � fXY 13, 12	fX 132 � 0.2333	0.2916 � 0.800
P1Y � 1 ƒ X � 32 � P1X � 3, Y � 12	P1X � 32

 � fXY 13, 02	fX 132 � 0.05832	0.2916 � 0.200
 P1Y � 0 ƒ X � 32 � P1X � 3, Y � 02	P1X � 32

P1A ¨ B2	P1A2
P1B ƒ A2

V1X 2 � np11 � p2 � 410.92 11 � 0.92 � 0.36

Definition
Given discrete random variables X and Y with joint probability mass function fXY(x, y)
the conditional probability mass function of Y given X � x is

(5-4)fY 0 x 
1y2 � fXY 1x, y2	fX 1x2  for fX 1x2 
 0
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5-1 TWO DISCRETE RANDOM VARIABLES 147

The function fY �x( y) is used to find the probabilities of the possible values for Y given that X � x.
That is, it is the probability mass function for the possible values of Y given that X � x. More pre-
cisely, let Rx denote the set of all points in the range of (X, Y ) for which X � x. The conditional
probability mass function provides the conditional probabilities for the values of Y in the set Rx.

EXAMPLE 5-6 For the joint probability distribution in Fig. 5-1, is found by dividing each fXY (x, y) by
fX(x). Here, fX(x) is simply the sum of the probabilities in each column of Fig. 5-1. The func-
tion is shown in Fig. 5-3. In Fig. 5-3, each column sums to one because it is a proba-
bility distribution.

Properties of random variables can be extended to a conditional probability distribution
of Y given X � x. The usual formulas for mean and variance can be applied to a conditional
probability mass function.

fY ƒ x1 y2
fY ƒ x1 y2

Because a conditional probability mass function is a probability mass func-
tion for all y in Rx, the following properties are satisfied:

(1)

(2)

(3) (5-5)P1Y � y 0  X � x2 � fY ƒ x1 y2
a
Rx

 fY ƒ x1 y2 � 1

fY ƒ x1 y2 � 0

fY ƒ x1 y2

x

y

0.008 0.040 0.200 1.0

0.096 0.320 0.800

0.383 0.640

0.511

43210
0

1

2

3

4

0.0016

0.0256

0.154

0.410

0.410

Figure 5-3
Conditional probability
distributions of Y given
X � x, in
Example 5-6.

fY  ƒ x 1 y2

Let Rx denote the set of all points in the range of (X, Y ) for which X � x. The
conditional mean of Y given X � x, denoted as or , is

(5-6)

and the conditional variance of Y given X � x, denoted as or , is

V1Y 0 x2 � a
Rx

1 y � �Y ƒ x22 fY ƒ x1 y2 � a
Rx

 y2 fY ƒ x1 y2 � �2
Y ƒ x

�2
Y ƒ xV1Y 0  x2

E1Y 0 x2 � a
Rx

 y fY ƒ x1y2
�Y ƒ xE1Y 0 x2

Definition
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EXAMPLE 5-7 For the random variables in Example 5-1, the conditional mean of Y given X � 2 is obtained
from the conditional distribution in Fig. 5-3:

The conditional mean is interpreted as the expected number of acceptable bits given that two
of the four bits transmitted are suspect. The conditional variance of Y given X � 2 is

5-1.4 Independence

In some random experiments, knowledge of the values of X does not change any of the prob-
abilities associated with the values for Y.

EXAMPLE 5-8 In a plastic molding operation, each part is classified as to whether it conforms to color and
length specifications. Define the random variable X and Y as

Assume the joint probability distribution of X and Y is defined by fXY (x, y) in Fig. 5-4(a).
The marginal probability distributions of X and Y are also shown in Fig. 5-4(a). Note that
fXY (x, y) � fX(x) fY ( y). The conditional probability mass function is shown in Fig. 
5-4(b). Notice that for any x, fY � x( y) � fY( y). That is, knowledge of whether or not the part meets
color specifications does not change the probability that it meets length specifications.

By analogy with independent events, we define two random variables to be independent
whenever fXY (x, y) � fX (x) fY ( y) for all x and y. Notice that independence implies that 
fXY (x, y) � fX(x) fY ( y) for all x and y. If we find one pair of x and y in which the equality fails,
X and Y are not independent. If two random variables are independent, then

With similar calculations, the following equivalent statements can be shown.

fY ƒ x1 y2 �
fXY 
1x, y2

fX 
1x2 �

fX 
1x2 fY 

1 y2
fX 
1x2 � fY 

1 y2

fY ƒ x 
1 y2

 Y � e1 if the part conforms to length specifications

0 otherwise

 X � e1 if the part conforms to color specifications

0 otherwise

V1Y  0 22 � 10 � �Y ƒ 22210.0402 � 11 � �Y ƒ 22210.3202 � 12 � �Y ƒ 22210.6402 � 0.32

E1Y 0 22 � �Y ƒ 2 � 010.0402 � 110.3202 � 210.6402 � 1.6

148 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

x

y

0.0198

0.9702

10
0

1

0.0002

0.0098

(a)

0.02

0.98

0.990.01

x

y

0.02

0.98

10
0

1

0.02

0.98

(b)

fX (x) =

fY (y) =Figure 5-4 (a) Joint
and marginal probabil-
ity distributions of X
and Y in Example 5-8.
(b) Conditional proba-
bility distribution of Y
given X � x in
Example 5-8.
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5-1 TWO DISCRETE RANDOM VARIABLES 149

Rectangular Range for (X, Y)!
If the set of points in two-dimensional space that receive positive probability under 
fXY (x, y) does not form a rectangle, X and Y are not independent because knowledge of X
can restrict the range of values of Y that receive positive probability. In Example 5-1
knowledge that X � 3 implies that Y can equal only 0 or 1. Consequently, the marginal 
probability distribution of Y does not equal the conditional probability distribution 
for X � 3. Using this idea, we know immediately that the random variables X and Y with
joint probability mass function in Fig. 5-1 are not independent. If the set of points in two-
dimensional space that receives positive probability under fXY(x, y) forms a rectangle,
independence is possible but not demonstrated. One of the conditions in Equation 5-7 must
still be verified.

Rather than verifying independence from a joint probability distribution, knowledge of
the random experiment is often used to assume that two random variables are independent.
Then, the joint probability mass function of X and Y is computed from the product of the
marginal probability mass functions.

EXAMPLE 5-9 In a large shipment of parts, 1% of the parts do not conform to specifications. The supplier
inspects a random sample of 30 parts, and the random variable X denotes the number of parts
in the sample that do not conform to specifications. The purchaser inspects another random
sample of 20 parts, and the random variable Y denotes the number of parts in this sample that
do not conform to specifications. What is the probability that and ?

Although the samples are typically selected without replacement, if the shipment is large,
relative to the sample sizes being used, approximate probabilities can be computed by assum-
ing the sampling is with replacement and that X and Y are independent. With this assumption,
the marginal probability distribution of X is binomial with n � 30 and p � 0.01, and the mar-
ginal probability distribution of Y is binomial with n � 20 and p � 0.01.

If independence between X and Y were not assumed, the solution would have to proceed
as follows:

However, with independence, property (4) of Equation 5-7 can be used as

P1X � 1, Y � 12 � P1X � 12 P1Y � 12

 � fXY 
10, 02 � fXY 

11, 02 � fXY 
10, 12 � fXY 

11, 12� P1X � 0, Y � 12 � P1X � 1, Y � 12P1X � 1, Y � 12 � P1X � 0, Y � 02 � P1X � 1, Y � 02

Y � 1X � 1

fY 031 y2

For discrete random variables X and Y, if any one of the following properties is true,
the others are also true, and X and Y are independent.

(1)

(2)

(3)

(4) for any sets A and B in the range
of X and Y, respectively. (5-7)
P1X � A, Y � B2 � P1X � A2  P1Y � B2
f X ƒ y 

 1x2 � fX 
 
1x2 for all x and y with fY 1 y2 
 0

f Y ƒ x 
1 y2 � fY 1 y2 for all x and y with f

 
 X 1x2 
 0

fXY 1x, y2 � fX 
1x2 fY 1 y2 for all x and y
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150 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

and the binomial distributions for X and Y can be used to determine these probabilities as
and . Therefore, .

Consequently, the probability that the shipment is accepted for use in manufacturing is
0.948 even if 1% of the parts do not conform to specifications. If the supplier and the pur-
chaser change their policies so that the shipment is acceptable only if zero nonconforming
parts are found in the sample, the probability that the shipment is accepted for production is
still quite high. That is,

This example shows that inspection is not an effective means of achieving quality.

EXERCISES FOR SECTION 5-1

P1X � 0, Y � 02 � P1X � 02P1Y � 02 � 0.605

P1X � 1, Y � 12 � 0.948P1Y � 12 � 0.9831P1X � 12 � 0.9639

5-1. Show that the following function satisfies the proper-
ties of a joint probability mass function.

x y fXY (x, y)

1 1 1�4

1.5 2 1�8

1.5 3 1�4

2.5 4 1�4

3 5 1�8

5-2. Continuation of Exercise 5-1. Determine the following
probabilities:
(a) (b)
(c) (d)

5-3. Continuation of Exercise 5-1. Determine and 

5-4. Continuation of Exercise 5-1. Determine
(a) The marginal probability distribution of the random

variable X.
(b) The conditional probability distribution of Y given that

X � 1.5.
(c) The conditional probability distribution of X given that

Y � 2.
(d)
(e) Are X and Y independent?

5-5. Determine the value of c that makes the function
a joint probability mass function over the

nine points with x � 1, 2, 3 and y � 1, 2, 3.

5-6. Continuation of Exercise 5-5. Determine the following
probabilities:
(a) (b)
(c) (d)

5-7. Continuation of Exercise 5-5. Determine 
and 

5-8. Continuation of Exercise 5-5. Determine
(a) The marginal probability distribution of the random

variable X.

V1Y 2.V1X 2, E1Y 2,E1X 2,
P1X � 2, Y � 22P1Y � 22
P1X � 12P1X � 1, Y � 42

f 1x, y2 � c 1x � y2

E1Y 0 X � 1.52

E1Y 2.E1X 2
P1X 
 1.8, Y 
 4.72P1Y � 32
P1X � 2.52P1X � 2.5, Y � 32

(b) The conditional probability distribution of Y given that
X � 1.

(c) The conditional probability distribution of X given that
Y � 2.

(d)
(e) Are X and Y independent?

5-9. Show that the following function satisfies the proper-
ties of a joint probability mass function.

x y fXY (x, y)

�1 �2 1�8

�0.5 �1 1�4

0.5 1 1�2

1 2 1�8

5-10. Continuation of Exercise 5-9. Determine the follow-
ing probabilities:
(a) (b)
(c) (d)

5-11. Continuation of Exercise 5-9. Determine E(X ) and
E(Y ).

5-12. Continuation of Exercise 5-9. Determine
(a) The marginal probability distribution of the random

variable X.
(b) The conditional probability distribution of Y given that

X � 1.
(c) The conditional probability distribution of X given that

Y � 1.

(d)
(e) Are X and Y independent?

5-13. Four electronic printers are selected from a large lot
of damaged printers. Each printer is inspected and classified
as containing either a major or a minor defect. Let the random
variables X and Y denote the number of printers with major
and minor defects, respectively. Determine the range of the
joint probability distribution of X and Y.

E1X 0 y � 12

P1X 
 0.25, Y � 4.52P1Y � 1.52
P1X � 0.52P1X � 0.5, Y � 1.52

E1Y 0 X � 12
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5-2 MULTIPLE DISCRETE RANDOM VARIABLES 151

5-14. In the transmission of digital information, the probabil-
ity that a bit has high, moderate, and low distortion is 0.01, 0.10,
and 0.95, respectively. Suppose that three bits are transmitted
and that the amount of distortion of each bit is assumed to be in-
dependent. Let X and Y denote the number of bits with high and
moderate distortion out of the three, respectively. Determine
(a) (b)
(c) (d)
(e) (f) Are X and Y independent?

5-15. A small-business Web site contains 100 pages and
60%, 30%, and 10% of the pages contain low, moderate, and
high graphic content, respectively. A sample of four pages is
selected without replacement, and X and Y denote the number
of pages with moderate and high graphics output in the
sample. Determine
(a) (b) fX 1x2fXY 1x, y2

E1Y ƒ X � 12
fY ƒ 11 y2E1X 2 fX 1x2fXY 1x, y2

(c) (d)
(e) (f)
(g) Are X and Y independent?

5-16. A manufacturing company employs two inspecting
devices to sample a fraction of their output for quality control
purposes. The first inspection monitor is able to accurately
detect 99.3% of the defective items it receives, whereas the
second is able to do so in 99.7% of the cases. Assume that four
defective items are produced and sent out for inspection. Let X
and Y denote the number of items that will be identified as
defective by inspecting devices 1 and 2, respectively. Assume
the devices are independent. Determine
(a) (b)
(c) (d)
(e) (f)
(g) Are X and Y independent?

V1Y ƒ X � 22E1Y ƒ X � 22
fY ƒ 2 1y2E1X 2
fX 1x2fXY 1x, y 2

V1Y 0 X � 32E1Y 0 X � 32
fY ƒ 3 1 y2E1X 2

5-2 MULTIPLE DISCRETE RANDOM VARIABLES

5-2.1 Joint Probability Distributions

EXAMPLE 5-10 In some cases, more than two random variables are defined in a random experiment, and
the concepts presented earlier in the chapter can easily be extended. The notation can be
cumbersome and if doubts arise, it is helpful to refer to the equivalent concept for two ran-
dom variables. Suppose that the quality of each bit received in Example 5-1 is categorized
even more finely into one of the four classes, excellent, good, fair, or poor, denoted by
E, G, F, and P, respectively. Also, let the random variables X1, X2, X3, and X4 denote the
number of bits that are E, G, F, and P, respectively, in a transmission of 20 bits. In this
example, we are interested in the joint probability distribution of four random variables.
Because each of the 20 bits is categorized into one of the four classes, only values for
x1, x2, x3, and x4 such that x1 � x2 � x3 � x4 � 20 receive positive probability in the prob-
ability distribution.

In general, given discrete random variables the joint probability dis-
tribution of is a description of the set of points in the
range of along with the probability of each point. A joint probability mass
function is a simple extension of a bivariate probability mass function.

X1, X2, X3, p , Xp,
1x1, x2, x3, p , xp2X1, X2, X3, p ,  Xp

X1, X2, X3, p , Xp,

The joint probability mass function of is

(5-8)

for all points in the range of .X1, X2, p ,  Xp1x1, x2, p , xp2
fX1 X2

 p   Xp
1x1, x2, p ,  xp2 � P1X1 � x1, X2 � x2, p ,  Xp � xp2

X1, X2, p , Xp

Definition

A marginal probability distribution is a simple extension of the result for two random
variables.
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152 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

EXAMPLE 5-11 Points that have positive probability in the joint probability distribution of three random variables
X1, X2, X3 are shown in Fig. 5-5. The range is the nonnegative integers with x1 � x2 � x3 � 3. 
The marginal probability distribution of X2 is found as follows.

Furthermore, E(Xi) and V(Xi) for can be determined from the marginal
probability distribution of Xi or from the joint probability distribution of as
follows.

X1, X2, p , Xp

i � 1, 2, p , p

 P 1X2 � 32 � fX1X2X3
 10, 3, 02

 P 1X2 � 22 � fX1X2X3
 11, 2, 02 � fX1X2X3

 10, 2, 12
 P 1X2 � 12 � fX1X2X3

 12, 1, 02 � fX1X2X3
 10, 1, 22 � fX1X2X3

 11, 1, 12
 P 1X2 � 02 � fX1X2X3

 13, 0, 02 � fX1X2X3
 10, 0, 32 � fX1X2X3

 11, 0, 22 � fX1X2X3
 12, 0, 12

If are discrete random variables with joint probability mass func-
tion the marginal probability mass function of any Xi is

(5-9)

where denotes the set of points in the range of (X1, X2, , Xp) for which Xi � xi.pRxi

fXi
1xi2 � P1Xi � xi2 � a

Rxi

 fX1 X2
 p   Xp
1x1, x2, p ,  xp2

fX1 X2
 p   Xp
1x1, x2, p , xp2,

X1, X2, X3, p ,  Xp

Definition

1
0

0 2 3 x1

1

2

3

x3

x2

2
3

1Figure 5-5 Joint
probability distribution
of X1, X2, and X3.

and

(5-10)

where R is the set of all points in the range of X1, X2, p , Xp.

V1Xi2 � a
R
1xi � �Xi

22 fX1 X2
 p   Xp

 1x1, x2, p , xp2

E1Xi2 � a
R

xi fX1 X2
 p   Xp

 1x1, x2, p , xp2
Mean and

Variance from
Joint

Distribution

With several random variables, we might be interested in the probability distribution of some
subset of the collection of variables. The probability distribution of k � p can
be obtained from the joint probability distribution of as follows.X1, X2, p , Xp

X1, X2, p , Xk,
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5-2 MULTIPLE DISCRETE RANDOM VARIABLES 153

That is, is the sum of the probabilities over all points in the
range of for which X1 � x1, X2 � x2, , and Xk � xk. An example is
presented in the next section. Any k random variables can be used in the definition. The first k
simplifies the notation.

Conditional Probability Distributions
Conditional probability distributions can be developed for multiple discrete random variables
by an extension of the ideas used for two discrete random variables. For example, the condi-
tional joint probability mass function of X1, X2, X3 given X4, X5 is

for The conditional joint probability mass function of X1, X2, X3 given X4, X5

provides the conditional probabilities at all points in the range of X1, X2, X3, X4, X5 for which
X4 � x4 and X5 � x5.

The concept of independence can be extended to multiple discrete random variables.

fX4 X5
1x4, x52 
 0.

fX1 X2 X 3
 0  x4 x5
1x1, x2, x32 �

fX1 X2 X3 X4 X5
1x1, x2, x3, x4, x52

fX4 X5
1x4, x52

pX1, X2, X3, p , Xp

P 1X1 � x1, X2 � x2, p , Xk � xk2

If are discrete random variables with joint probability mass function
the joint probability mass function of X1, X2, , Xk,

k � p, is

(5-11)

where denotes the set of all points in the range of for which
X1 � x1, X2 � x2, p , Xk � xk.

X1, X2, p , XpRx1x2p xk

 � a
Rx1x2 

p xk

P 1X1 � x1, X2 � x2, p , Xk � xk2
 fX1 X2 p Xk

 1x1, x2, p , xk2 � P1X1 � x1, X2 � x2, p , Xk � xk2

pfX1X2  
p

  
Xp
1x1, x2, p , xp2,

X1, X2, X3, p , Xp

Distribution of
a Subset of

Random
Variables

Discrete variables are independent if and only if

(5-12)

for all x1, x2, p , xp.

fX1X2 p Xp
1x1, x2, p , xp2 � fX1

 1x12 fX2
 1x22 p fXp

 1xp2
X1, X2, p , Xp

Definition

Similar to the result for bivariate random variables, independence implies that Equation 5-12
holds for all If we find one point for which the equality fails, 
are not independent. It can be shown that if are independent,

for any sets A1, A2, , Ap.p

P1X1 � A1, X2 � A2, p , Xp � Ap2 � P1X1 � A12  P 1X2 � A22 p
 
P1Xp � Ap2

X1, X2, p , Xp

X1, X2, p , Xpx1, x2, p , xp.
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154 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

5-2.2 Multinomial Probability Distribution

A joint probability distribution for multiple discrete random variables that is quite useful is an
extension of the binomial. The random experiment that generates the probability distribution
consists of a series of independent trials. However, the results from each trial can be catego-
rized into one of k classes.

EXAMPLE 5-12 We might be interested in a probability such as the following. Of the 20 bits received, what is
the probability that 14 are excellent, 3 are good, 2 are fair, and 1 is poor? Assume that the clas-
sifications of individual bits are independent events and that the probabilities of E, G, F, and
P are 0.6, 0.3, 0.08, and 0.02, respectively. One sequence of 20 bits that produces the speci-
fied numbers of bits in each class can be represented as

Using independence, we find that the probability of this sequence is

Clearly, all sequences that consist of the same numbers of E’s, G’s, F’s, and P’s have the same
probability. Consequently, the requested probability can be found by multiplying 2.708 �
10�9 by the number of sequences with 14 E’s, three G’s, two F’s, and one P. The number of
sequences is found from the CD material for Chapter 2 to be

Therefore, the requested probability is

Example 5-12 leads to the following generalization of a binomial experiment and a bino-
mial distribution.

P114E
,
s, three G

,
s, two F

,
s, and one P2 � 232560012.708 � 10�92 � 0.0063

20!
14!3!2!1!

� 2325600

P1EEEEEEEEEEEEEEGGGFFP2 � 0.6140.330.0820.021 � 2.708 � 10�9

EEEEEEEEEEEEEEGGGFFP

Multinomial
Distribution Suppose a random experiment consists of a series of n trials. Assume that

(1) The result of each trial is classified into one of k classes.

(2) The probability of a trial generating a result in class 1, class 2, , class k
is constant over the trials and equal to p1, p2, , pk, respectively.

(3) The trials are independent.

The random variables X1, X2, , Xk that denote the number of trials that result in
class 1, class 2, , class k, respectively, have a multinomial distribution and the
joint probability mass function is

(5-13)

for and .p1 � p2 � p � pk � 1x1 � x2 � p � xk � n

P1X1 � x1, X2 � x2, p , Xk � xk2 �
n!

x1!x2 ! 
p xk!

  px1
1  px2

2 p pxk
k

p
p

p
p
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5-2 MULTIPLE DISCRETE RANDOM VARIABLES 155

The multinomial distribution is considered a multivariable extension of the binomial
distribution.

EXAMPLE 5-13 In Example 5-12, let the random variables X1, X2, X3, and X4 denote the number of bits that are
E, G, F, and P, respectively, in a transmission of 20 bits. The probability that 12 of the bits
received are E, 6 are G, 2 are F, and 0 are P is

Each trial in a multinomial random experiment can be regarded as either generating or not
generating a result in class i, for each i � 1, 2, . . . , k. Because the random variable Xi is the
number of trials that result in class i, Xi has a binomial distribution.

P1X1 � 12, X2 � 6, X3 � 2, X4 � 02 �
20!

12!6!2!0!
  0.6120.360.0820.020 � 0.0358

If X1, X2, . . . , Xk have a multinomial distribution, the marginal probability distribu-
tion of Xi is binomial with

(5-14)E1Xi2 � npi and V 1Xi2 � npi 11 � pi2

EXAMPLE 5-14 In Example 5-13, the marginal probability distribution of X2 is binomial with n � 20 and
p � 0.3. Furthermore, the joint marginal probability distribution of X2 and X3 is found as
follows. The P(X2 � x2, X3 � x3) is the probability that exactly x2 trials result in G and that x3

result in F. The remaining n � x2 � x3 trials must result in either E or P. Consequently, we can
consider each trial in the experiment to result in one of three classes, {G}, {F}, or {E, P}, with
probabilities 0.3, 0.08, and 0.6 � 0.02 � 0.62, respectively. With these new classes, we can
consider the trials to comprise a new multinomial experiment. Therefore,

The joint probability distribution of other sets of variables can be found similarly.

EXERCISES FOR SECTION 5-2

 �
n!

x2!x3! 1n � x2 � x32!  10.32x210.082x310.622n�x2�x3

 fX2 X3
 1x2, x32 � P1X2 � x2, X3 � x32

5-17. Suppose the random variables X, Y, and Z have the
following joint probability distribution

x y z f (x, y, z)

1 1 1 0.05
1 1 2 0.10
1 2 1 0.15
1 2 2 0.20
2 1 1 0.20
2 1 2 0.15
2 2 1 0.10
2 2 2 0.05

Determine the following:
(a) (b)
(c) (d)
(e)

5-18. Continuation of Exercise 5-17. Determine the follow-
ing:
(a) ( b )
(c)

5-19. Continuation of Exercise 5-17. Determine the condi-
tional probability distribution of X given that Y � 1 and Z � 2.

5-20. Based on the number of voids, a ferrite slab is classi-
fied as either high, medium, or low. Historically, 5% of the
slabs are classified as high, 85% as medium, and 10% as low.

P 1X � 1 ƒ Y � 1,  Z � 22
P 1X � 1, Y � 1 ƒ Z � 22P 1X � 1 ƒ Y � 12

E 1X 2 P 1X � 1 or Z � 22P 1Z � 1.52
P 1X � 1, Y � 22P 1X � 22
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156 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

A sample of 20 slabs is selected for testing. Let X, Y, and Z
denote the number of slabs that are independently classified as
high, medium, and low, respectively.
(a) What is the name and the values of the parameters of the

joint probability distribution of X, Y, and Z?
(b) What is the range of the joint probability distribution of

X, Y, Z?
(c) What is the name and the values of the parameters of the

marginal probability distribution of X?
(d) Determine and .

5-21. Continuation of Exercise 5-20. Determine the
following:
(a)
(b)
(c)
(d)

5-22. Continuation of Exercise 5-20. Determine the
following:
(a) (b)
(c)

5-23. An order of 15 printers contains four with a graphics-
enhancement feature, five with extra memory, and six with
both features. Four printers are selected at random, without
replacement, from this set. Let the random variables X, Y,
and Z denote the number of printers in the sample
with graphics enhancement only, extra memory only, and
both, respectively.
(a) Describe the range of the joint probability distribution of

X, Y, and Z.
(b) Is the probability distribution of X, Y, and Z multinomial?

Why or why not?

5-24. Continuation of Exercise 5-23. Determine the condi-
tional probability distribution of X given that Y � 2.

5-25. Continuation of Exercise 5-23. Determine the follow-
ing:
(a) (b)
(c) and 

5-26. Continuation of Exercise 5-23. Determine the
following:
(a) (b)
(c) The conditional probability distribution of X given that

Y � 0 and Z � 3.

5-27. Four electronic ovens that were dropped during ship-
ment are inspected and classified as containing either a major,
a minor, or no defect. In the past, 60% of dropped ovens had
a major defect, 30% had a minor defect, and 10% had no
defect. Assume that the defects on the four ovens occur
independently.
(a) Is the probability distribution of the count of ovens in each

category multinomial? Why or why not?
(b) What is the probability that, of the four dropped ovens, two

have a major defect and two have a minor defect?
(c) What is the probability that no oven has a defect?

P1X � 2 ƒ Y � 22P1X � 1, Y � 2 ƒ Z � 12

V1X 2E1X 2
P1X � 1, Y � 12P1X � 1, Y � 2, Z � 12

E 1X 0Y � 172
P 1X � 2 ƒ Y � 172P 1X � 2, Z � 3 ƒ Y � 172

E 1X2
P 1X � 12
P 1X � 1, Y � 17, Z � 32
P 1X � 1, Y � 17, Z � 32

V 1X 2E1X 2

5-28. Continuation of Exercise 5-27. Determine the
following:
(a) The joint probability mass function of the number of ovens

with a major defect and the number with a minor defect.
(b) The expected number of ovens with a major defect.
(c) The expected number of ovens with a minor defect.

5-29. Continuation of Exercise 5-27. Determine the follow-
ing:
(a) The conditional probability that two ovens have major

defects given that two ovens have minor defects
(b) The conditional probability that three ovens have major

defects given that two ovens have minor defects
(c) The conditional probability distribution of the number of

ovens with major defects given that two ovens have minor
defects

(d) The conditional mean of the number of ovens with major
defects given that two ovens have minor defects

5-30. In the transmission of digital information, the proba-
bility that a bit has high, moderate, or low distortion is 0.01,
0.04, and 0.95, respectively. Suppose that three bits are trans-
mitted and that the amount of distortion of each bit is assumed
to be independent.
(a) What is the probability that two bits have high distortion

and one has moderate distortion?
(b) What is the probability that all three bits have low

distortion?

5-31. Continuation of Exercise 5-30. Let X and Y denote the
number of bits with high and moderate distortion out of the
three transmitted, respectively. Determine the following:
(a) The probability distribution, mean and variance of X.
(b) The conditional probability distribution, conditional mean

and conditional variance of X given that Y � 2.

5-32. A marketing company performed a risk analysis for a
manufacturer of synthetic fibers and concluded that new com-
petitors present no risk 13% of the time (due mostly to the di-
versity of fibers manufactured), moderate risk 72% of the time
(some overlapping of products), and very high risk (competi-
tor manufactures the exact same products) 15% of the time. It
is known that 12 international companies are planning to open
new facilities for the manufacture of synthetic fibers within
the next three years. Assume the companies are independent.
Let X, Y, and Z denote the number of new competitors that will
pose no, moderate, and very high risk for the interested com-
pany, respectively.
(a) What is the range of the joint probability distribution of

X, Y, and Z?
(b) Determine P(X � 1, Y � 3, Z � 1)
(c) Determine 

5-33. Continuation of Exercise 5-32. Determine the
following:
(a) (b)
(c) (d) E 1Z ƒ X � 102P 1Y � 1, Z � 1 ƒ X � 102

P 1Z � 1 ƒ X � 102P 1Z � 2 ƒ Y � 1, X � 102

P1Z � 22
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5-3 TWO CONTINUOUS RANDOM VARIABLES 157

5-3 TWO CONTINUOUS RANDOM VARIABLES

5-3.1 Joint Probability Distributions

Our presentation of the joint probability distribution of two continuous random variables is
similar to our discussion of two discrete random variables. As an example, let the continuous
random variable X denote the length of one dimenson of an injection-molded part, and let the
continuous random variable Y denote the length of another dimension. The sample space of
the random experiment consists of points in two dimensions.

We can study each random variable separately. However, because the two random vari-
ables are measurements from the same part, small disturbances in the injection-molding
process, such as pressure and temperature variations, might be more likely to generate values
for X and Y in specific regions of two-dimensional space. For example, a small pressure in-
crease might generate parts such that both X and Y are greater than their respective targets and
a small pressure decrease might generate parts such that X and Y are both less than their re-
spective targets. Therefore, based on pressure variations, we expect that the probability of a
part with X much greater than its target and Y much less than its target is small. Knowledge of
the joint probability distribution of X and Y provides information that is not obvious from the
marginal probability distributions.

The joint probability distribution of two continuous random variables X and Y can be
specified by providing a method for calculating the probability that X and Y assume a value in
any region R of two-dimensional space. Analogous to the probability density function of a sin-
gle continuous random variable, a joint probability density function can be defined over
two-dimensional space. The double integral of over a region R provides the proba-
bility that assumes a value in R. This integral can be interpreted as the volume under the
surface over the region R.

A joint probability density function for X and Y is shown in Fig. 5-6. The probability
that assumes a value in the region R equals the volume of the shaded region in 
Fig. 5-6. In this manner, a joint probability density function is used to determine probabil-
ities for X and Y.

1X, Y 2
fXY 1x, y21X, Y 2 fXY 

1x, y2

A joint probability density function for the continuous random variables X and Y,
denoted as satisfies the following properties:

(1)

(2)

(3) For any region R of two-dimensional space

(5-15)P1 3X, Y 4 � R2 � ��
R

  
fXY 1x, y2 dx dy

�



�


 �



�


 fXY 1x, y2 dx dy � 1

fXY 1x, y2 � 0 for all x, y

fXY 1x, y2,
Definition

Typically, is defined over all of two-dimensional space by assuming that
for all points for which is not specified.fXY 1x, y2fXY 1x, y2 � 0

fXY 1x, y2
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158 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

At the start of this chapter, the lengths of different dimensions of an injection-molded part
were presented as an example of two random variables. Each length might be modeled by a
normal distribution. However, because the measurements are from the same part, the random
variables are typically not independent. A probability distribution for two normal random vari-
ables that are not independent is important in many applications and it is presented later in this
chapter. If the specifications for X and Y are 2.95 to 3.05 and 7.60 to 7.80 millimeters, respec-
tively, we might be interested in the probability that a part satisfies both specifications; that is,

Suppose that is shown in Fig. 5-7. The re-
quired probability is the volume of within the specifications. Often a probability such
as this must be determined from a numerical integration.

EXAMPLE 5-15 Let the random variable X denote the time until a computer server connects to your machine
(in milliseconds), and let Y denote the time until the server authorizes you as a valid user (in
milliseconds). Each of these random variables measures the wait from a common starting time
and X � Y. Assume that the joint probability density function for X and Y is

Reasonable assumptions can be used to develop such a distribution, but for now, our focus is
only on the joint probability density function.

The region with nonzero probability is shaded in Fig. 5-8. The property that this joint
probability density function integrates to 1 can be verified by the integral of fXY (x, y) over this
region as follows:

 � 0.003 ° �



0

e�0.003x dx¢ � 0.003 a 1
0.003

b � 1

 � 6 � 10�6�



0

° e�0.002x

0.002
¢  e�0.001x dx

 � 6 � 10�6�



0

° �



x

e�0.002y dy¢  e�0.001x dx

 �



�


 �



�


fXY 1x, y2 dy dx � �



0

° �



x

6 � 10�6e�0.001x�0.002y dy¢  dx

fXY 
1x, y2 � 6 � 10�6 exp1�0.001x � 0.002y2 for x � y

fXY 1x, y2 fXY 1x, y2P12.95 � X � 3.05, 7.60 � Y � 7.802.

Figure 5-6 Joint probability density function for
random variables X and Y.

fXY (x, y)

x

y

R

Probability that (X, Y) is in the region R is determined
by the volume of fXY(x, y) over the region R.

fXY(x, y)

y
x

3.0

2.95

3.05
7.70

7.80

7.60

Figure 5-7 Joint probability density function for the lengths
of different dimensions of an injection-molded part.
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5-3 TWO CONTINUOUS RANDOM VARIABLES 159

The probability that is determined as the integral over the
darkly shaded region in Fig. 5-9.

5-3.2 Marginal Probability Distributions

Similar to joint discrete random variables, we can find the marginal probability distributions
of X and Y from the joint probability distribution.

 � 0.003 1316.738 � 11.5782 � 0.915

 � 0.003 c a1 � e�3

0.003
b � e�4 a1 � e�1

0.001
b d

 � 0.003 �
1000

0

e�0.003x � e�4 e�0.001x dx

 � 6 � 10�6 �
1000

0

ae�0.002x � e�4

0.002
b e�0.001x dx

 � 6 � 10�6 �
1000

0

° �
2000

x
 
e�0.002y dy¢  e�0.001x dx

 P1X � 1000, Y � 20002 � �
1000

 

0

�
2000

x

fXY 1x, y2 dy dx

X � 1000 and Y � 2000

y

x0

y

x0
0

2000

1000

Figure 5-8 The joint probability
density function of X and Y is
nonzero over the shaded region.

Figure 5-9 Region of integration for
the probability that X � 1000 and Y �
2000 is darkly shaded.

If the joint probability density function of continuous random variables X and Y is 
fXY (x, y), the marginal probability density functions of X and Y are

(5-16)

where Rx denotes the set of all points in the range of (X, Y) for which X � x and
Ry denotes the set of all points in the range of (X, Y) for which Y � y

fX 1x2 � �  

Rx

fXY 1x, y2 dy and fY 1 y2 � �  

Ry

fXY 
1x, y2 dx

Definition
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160 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

(5-17)

and

where RX denotes the set of all points in the range of (X, Y) for which X � x and
RY denotes the set of all points in the range of (X, Y)

 � ��
R

1x � �X22  fXY 1x, y2 dx dy

 V1X 2 � � 
2
x �




�


1x � �X22 fX 1x2 dx � �



�


1x � �X22 £ �
Rx

 

fXY 
 1x, y2  dy §  dx

 � ��
R

xfXY 1x, y2 dx dy

 E1X 2 � �X � �



�

 
xfX 1x2 dx � �




�


x £ �
Rx

 
fXY 1x, y2 dy §  dx

Mean and
Variance from

Joint
Distribution

A probability involving only one random variable, say, for example, 
can be found from the marginal probability distribution of X or from the joint probability
distribution of X and Y. For example, P(a � X � b) equals P(a � X � b, � � Y � ).
Therefore,

Similarly, E(X ) and V(X ) can be obtained directly from the joint probability distribution of X
and Y or by first calculating the marginal probability distribution of X. The details, shown in
the following equations, are similar to those used for discrete random variables.

P 1a � X � b2 � �
b

a

�
Rx

 
fXY 
1x, y2 dy dx � �

b

a

° �
Rx

 
fXY 1x, y2 dy¢ dx � �

b

a
 
fX 1x2  dx





P 1a � X � b2,

EXAMPLE 5-16 For the random variables that denote times in Example 5-15, calculate the probability that Y
exceeds 2000 milliseconds.

This probability is determined as the integral of fXY (x, y) over the darkly shaded region
in Fig. 5-10. The region is partitioned into two parts and different limits of integration are de-
termined for each part.

 � �



2000

° �



x

6 � 10�6e�0.001x�0.002y dy¢  dx

 P 1Y 
 20002 � �
2000

0

° �



2000

6 � 10�6e�0.001x�0.002y dy¢  dx

c05.qxd  5/13/02  1:49 PM  Page 160 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



5-3 TWO CONTINUOUS RANDOM VARIABLES 161

The first integral is

The second integral is

Therefore,

Alternatively, the probability can be calculated from the marginal probability distribution of Y
as follows. For 

 � 6 � 10�3
 e�0.002y 11 � e�0.001y2 for y 
 0

 � 6 � 10�6e�0.002y
  a e�0.001x

�0.001
` y
0
b � 6 � 10�6e�0.002y

  a1 � e�0.001y

0.001
b

 fY 1 y2 � �
y

0
 

6 � 10�6e�0.001x�0.002y
 

 dx � 6 � 10�6e�0.002y �  

y

0

e�0.001x dx

y 
 0

P 1Y 
 20002 � 0.0475 � 0.0025 � 0.05.

 �
6 � 10�6

0.002
 a e�6

0.003
b � 0.0025

 6 � 10�6 �



2000

° e�0.002y

�0.002
` 

x
¢   e�0.001x dx �

6 � 10�6

0.002
  �




2000

e�0.003x dx

 �
6 � 10�6

0.002
 e�4 a1 � e�2

0.001
b � 0.0475

 6 � 10�6 �
2000

0

° e�0.002y

�0.002
` 

2000
¢   e�0.001x dx �

6 � 10�6

0.002
  e�4 �

2000

0

e�0.001x dx

Figure 5-10 Region of integration
for the probability that is
darkly shaded and it is partitioned
into two regions with x � 2000 and
x 
 2000.

Y � 2000

y

x0
0

2000

2000
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162 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

We have obtained the marginal probability density function of Y. Now,

5-3.3 Conditional Probability Distributions

Analogous to discrete random variables, we can define the conditional probability distribution
of Y given X � x.

 � 6 � 10�3
 c e�4

0.002
�

e�6

0.003
d � 0.05

 � 6 � 10�3
 c a e�0.002y

�0.002
` 

2000
b � a e�0.003y

�0.003
` 

2000
b d

 P1Y 
 20002 � 6 � 10�3 �



2000

e�0.002y 11 � e�0.001y 2 dy

Given continuous random variables X and Y with joint probability density function
fXY (x, y), the conditional probability density function of Y given X � x is

(5-18)fY |x 1 y2 �
fXY 1x, y2

fX 1x2  for  fX 1x2 
 0

Definition

The function fY |x(y) is used to find the probabilities of the possible values for Y given
that X � x. Let Rx denote the set of all points in the range of (X, Y) for which X � x. The
conditional probability density function provides the conditional probabilities for the values
of Y in the set Rx.

Because the conditional probability density function is a probability density
function for all y in Rx, the following properties are satisfied:

(1)

(2)

(3)

(5-19)

P 1Y � B 0 X � x2 � �
B

 
fY  0 x 
1 y2 dy for any set B in the range of Y

�
Rx

 
fY 0 x 1 y2  dy � 1

fY 0 x1 y2 � 0

fY | x1 y2

It is important to state the region in which a joint, marginal, or conditional probability
density function is not zero. The following example illustrates this.

EXAMPLE 5-17 For the random variables that denote times in Example 5-15, determine the conditional prob-
ability density function for Y given that X � x.

First the marginal density function of x is determined. For x 
 0
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5-3 TWO CONTINUOUS RANDOM VARIABLES 163

This is an exponential distribution with � � 0.003. Now, for the conditional
probability density function is

The conditional probability density function of Y, given that x � 1500, is nonzero on the solid
line in Fig. 5-11.

Determine the probability that Y exceeds 2000, given that x � 1500. That is, determine
The conditional probability density function is integrated as follows:

 � 0.002e3 a e�0.002y

�0.002
` 

2000
b � 0.002e3

  a e�4

0.002
b � 0.368

 P 1Y 
 2000|x � 15002 � �



2000

fY  |15001 y2 dy � �



2000

0.002e0.002115002�0.002y dy

P 1Y 
 2000 0  x � 15002.

 � 0.002e0.002x�0.002y for 0 � x  and  x � y

 fY |x 1 y2 � fXY 1x, y2	fx 1x2 �
6 � 10�6e�0.001x�0.002y

0.003e�0.003x

0 � x and x � y

 � 6 � 10�6e�0.001x
  

 ae�0.002x

0.002
b � 0.003e�0.003x for  x 
 0

 fX 1x2 � �



x

6 � 10�6e�0.001x�0.002y
 dy � 6 � 10�6e�0.001x

 
  a e�0.002y

�0.002
` 

x
b

Let Rx denote the set of all points in the range of (X, Y) for which X � x. The condi-
tional mean of Y given X � x, denoted as 

and the conditional variance of Y given X � x, denoted as is

(5-20)V1Y 0  x2 � �
Rx

1 y � �Y  | x22 fY  | x 1 y2 dy � �
Rx

 
y2 fY  | x 1 y2 dy � �2

Y |x

V 1Y 0  x2 or �2
Y 0 x,

E1Y  | x2 � �
Rx

 y fY |x 1 y2 dy

E1Y 0 x2 or �Y 0  x, is

Definition

y

x0
0

1500

1500

Figure 5-11 The
conditional probability
density function for Y,
given that x � 1500, is
nonzero over the solid
line.
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164 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

EXAMPLE 5-18 For the random variables that denote times in Example 5-15, determine the conditional mean
for Y given that x � 1500.

The conditional probability density function for Y was determined in Example 5-17.
Because fY �1500(y) is nonzero for y 
 1500,

Integrate by parts as follows:

With the constant 0.002e3 reapplied

5-3.4 Independence

The definition of independence for continuous random variables is similar to the definition for
discrete random variables. If fXY (x, y) � fX(x) fY (y) for all x and y, X and Y are independent.
Independence implies that fXY (x, y) � fX(x) fY (y) for all x and y. If we find one pair of x and y
in which the equality fails, X and Y are not independent.

E1Y 0 x � 15002 � 2000

 �
1500
0.002

 e�3 �
e�3

10.0022 10.0022 �
e�3

0.002
  120002

 �
1500
0.002

 e�3 � a e�0.002y

1�0.0022 1�0.0022 `



1500
b

 �



1500

ye�0.002y
 dy � y 

e�0.002y

�0.002
` 

1500

�  �



1500

a e�0.002y

�0.002
b dy

E1Y � x � 15002 � �



1500

y 10.002e0.002115002�0.002y2 dy � 0.002e3 �



1500

ye�0.002y dy

For continuous random variables X and Y, if any one of the following properties is
true, the others are also true, and X and Y are said to be independent.

(1)

(2)

(3)

(4) for any sets A and B in the range
of X and Y, respectively. (5-21)
P1X � A, Y � B2 � P1X � A2P1Y � B2
fX 0  y1x2 � fX 

1x2 for all x and y with fY 
1 y2 
 0

fY  0  x1 y2 � fY 
1 y2 for all x and y with fX 

1x2 
 0

fXY 
1x, y2 � fX 

1x2 fY 
1 y2 for all x and y

Definition

EXAMPLE 5-19 For the joint distribution of times in Example 5-15, the

Marginal distribution of Y was determined in Example 5-16.

Conditional distribution of Y given X � x was determined in Example 5-17.

Because the marginal and conditional probability densities are not the same for all values of
x, property (2) of Equation 5-20 implies that the random variables are not independent. The
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5-3 TWO CONTINUOUS RANDOM VARIABLES 165

5-34. Determine the value of c such that the function
f (x, y) � cxy for 0 � x � 3 and 0 � y � 3 satisfies the
properties of a joint probability density function.

5-35. Continuation of Exercise 5-34. Determine the
following:

(a) (b)
(c) (d)
(e) E(X) (f) P1X � 0, Y � 42

P1X � 1.8, 1 � Y � 2.52P11 � Y � 2.52
P1X � 2.52P1X � 2, Y � 32

fact that these variables are not independent can be determined quickly by noticing that the
range of (X, Y), shown in Fig. 5-8, is not rectangular. Consequently, knowledge of X changes
the interval of values for Y that receives nonzero probability.

EXAMPLE 5-20 Suppose that Example 5-15 is modified so that the joint probability density function of X and Y
is Show that X and Y are independ-
ent and determine 

The marginal probability density function of X is

The marginal probability density function of y is

Therefore, fXY (x, y) � fX(x) fY ( y) for all x and y and X and Y are independent.
To determine the probability requested, property (4) of Equation 5-21 and the fact that

each random variable has an exponential distribution can be applied.

Often, based on knowledge of the system under study, random variables are assumed to be in-
dependent. Then, probabilities involving both variables can be determined from the marginal
probability distributions.

EXAMPLE 5-21 Let the random variables X and Y denote the lengths of two dimensions of a machined part, re-
spectively. Assume that X and Y are independent random variables, and further assume that the
distribution of X is normal with mean 10.5 millimeters and variance 0.0025 (millimeter)2 and
that the distribution of Y is normal with mean 3.2 millimeters and variance 0.0036 (millime-
ter)2. Determine the probability that 10.4 � X � 10.6 and 3.15 � Y � 3.25.

Because X and Y are independent,

where Z denotes a standard normal random variable.

EXERCISES FOR SECTION 5-3

� P1�2 � Z � 22P1�0.833 � Z � 0.8332 � 0.566

� P  a10.4 � 10.5
0.05

� Z �
10.6 � 10.5

0.05
b  P  a3.15 � 3.2

0.06
� Z �

3.25 � 3.2
0.06

b
 P110.4 � X � 10.6, 3.15 � Y � 3.252 � P110.4 � X � 10.62P13.15 � Y � 3.252

P1X � 1000, Y � 10002 � P1X � 10002P1Y � 10002 � e�1
 11 � e�22 � 0.318

fY 1 y2 � �
�

0

 2 � 10�6
 e�0.001x�0.002y dx � 0.002 e�0.002y for y � 0

fX 
 1x2 � �

�

0

 2 � 10�6
 e�0.001x�0.002y dy � 0.001 e�0.001x for x � 0

P1X � 1000, Y � 10002.fXY 1x, y2 � 2 � 10�6e�0.001x�0.002y for x � 0 and y � 0.
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166 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

5-36. Continuation of Exercise 5-34. Determine the
following:
(a) Marginal probability distribution of the random variable X
(b) Conditional probability distribution of Y given that X � 1.5
(c)
(d)
(e) Conditional probability distribution of X given that Y � 2

5-37. Determine the value of c that makes the function 
f(x, y) � c(x � y) a joint probability density function over the
range 0 � x � 3 and x � y � x � 2.

5-38. Continuation of Exercise 5-37. Determine the
following:
(a) (b)
(c) (d)
(e) E(X)

5-39. Continuation of Exercise 5-37. Determine the
following:
(a) Marginal probability distribution of X
(b) Conditional probability distribution of Y given that X � 1
(c)

(d)
(e) Conditional probability distribution of X given that

Y � 2

5-40. Determine the value of c that makes the function 
f(x, y) � cxy a joint probability density function over the range
0 � x � 3 and 0 � y � x.

5-41. Continuation of Exercise 5-40. Determine the
following:

(a) (b)

(c) (d)
(e) E(X ) (f) E(Y )

5-42. Continuation of Exercise 5-40. Determine the
following:
(a) Marginal probability distribution of X
(b) Conditional probability distribution of Y given X � 1
(c)
(d)
(e) Conditional probability distribution of X given Y � 2

5-43. Determine the value of c that makes the function
a joint probability density function over

the range 0 � x and 0 � y � x.

5-44. Continuation of Exercise 5-43. Determine the
following:
(a) (b)
(c) (d)
(e) E(X) (f) E(Y )

5-45. Continuation of Exercise 5-43. Determine the
following:
(a) Marginal probability distribution of X
(b) Conditional probability distribution of Y given X � 1
(c)
(d) Conditional probability distribution of X given Y � 2

E1Y ƒ X � 12

P1X � 2, Y � 22P1Y 
 32
P11 � X � 22P1X � 1, Y � 22

f 1x, y2 � ce�2x�3y

P1Y 
 2 ƒ X � 12
E1Y ƒ X � 12

P1X � 2, Y � 22P1Y 
 12
P11 � X � 22P1X � 1, Y � 22

P1Y 
 2 ƒ X � 12
E1Y ƒ X � 12

P1X � 2, Y � 22P1Y 
 12
P11 � X � 22P1X � 1, Y � 22

P1Y � 2 ƒ X � 1.52
E1Y ƒ X 2 � 1.52

5-46. Determine the value of c that makes the function
a joint probability density function over

the range 0 � x and x � y.

5-47. Continuation of Exercise 5-46. Determine the
following:
(a) (b)
(c) (d)
(e) (f)

5-48. Continuation of Exercise 5-46. Determine the
following:
(a) Marginal probability distribution of X
(b) Conditional probability distribution of Y given X � 1
(c)
(d)
(e) Conditional probability distribution of X given Y � 2

5-49. Two methods of measuring surface smoothness are
used to evaluate a paper product. The measurements are
recorded as deviations from the nominal surface smoothness
in coded units. The joint probability distribution of the
two measurements is a uniform distribution over the re-
gion 0 � x � 4, 0 � y, and x � 1 � y � x � 1. That is,
fXY (x, y) � c for x and y in the region. Determine the value for
c such that fXY (x, y) is a joint probability density function.

5-50. Continuation of Exercise 5-49. Determine the
following:
(a) (b)
(c) (d)

5-51. Continuation of Exercise 5-49. Determine the follow-
ing:
(a) Marginal probability distribution of X
(b) Conditional probability distribution of Y given X � 1
(c)
(d)

5-52. The time between surface finish problems in a galva-
nizing process is exponentially distributed with a mean of
40 hours. A single plant operates three galvanizing lines that
are assumed to operate independently.
(a) What is the probability that none of the lines experiences

a surface finish problem in 40 hours of operation?
(b) What is the probability that all three lines experience a sur-

face finish problem between 20 and 40 hours of operation?
(c) Why is the joint probability density function not needed to

answer the previous questions?

5-53. A popular clothing manufacturer receives Internet
orders via two different routing systems. The time between
orders for each routing system in a typical day is known to be
exponentially distributed with a mean of 3.2 minutes. Both
systems operate independently.
(a) What is the probability that no orders will be received in a

5 minute period? In a 10 minute period?
(b) What is the probability that both systems receive two

orders between 10 and 15 minutes after the site is offi-
cially open for business?

P1Y � 0.5 ƒ X � 12
E1Y ƒ X � 12

E1Y 2E1X 2 P1X � 0.52P1X � 0.5, Y � 0.52

P1Y � 2 ƒ X � 12
E1Y ƒ X � 12

E1Y 2E1X 2 P1X � 2, Y � 22P1Y 
 32
P11 � X � 22P1X � 1, Y � 22

f 1x, y2 � ce�2x�3y
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5-4 MULTIPLE CONTINUOUS RANDOM VARIABLES

As for discrete random variables, in some cases, more than two continuous random variables
are defined in a random experiment.

EXAMPLE 5-22 Many dimensions of a machined part are routinely measured during production. Let the ran-
dom variables, X1, X2, X3, and X4 denote the lengths of four dimensions of a part. Then, at least
four random variables are of interest in this study.

The joint probability distribution of continuous random variables, 
can be specified by providing a method of calculating the probability that 
assume a value in a region R of p-dimensional space. A joint probability density function

is used to determine the probability that assume a
value in a region R by the multiple integral of over the region R.fX1 X2p

 
Xp 

1x1, x2, p , xp2
1X1, X2, X3, p , Xp2fX1 X2 p Xp

 1x1, x2, p , xp2
X1, X2, X3, p , Xp

X1, X2, X3 p , Xp

(c) Why is the joint probability distribution not needed to
answer the previous questions?

5-54. The conditional probability distribution of Y given
X � x is for y 
 0 and the marginal probabil-
ity distribution of X is a continuous uniform distribution over
0 to 10.

(a) Graph for y 
 0 for several values of x.
Determine

(b) (c)
(d) (e)
(f) fY 1 y2 fXY 1x, y2E1Y ƒ X � x2 E1Y ƒ X � 22P1Y � 2 ƒ X � 22

fY ƒ  X 1 y2 � xe�xy

fY ƒ  x 1 y2 � xe�xy

A joint probability density function for the continuous random variables 
denoted as satisfies the following properties:

(1)

(2)

(3) For any region B of p-dimensional space

(5-22)P 3 1X1, X2, p , Xp2 � B 4 � � �
B

p �  fX1 X2 
p  Xp

 1x1, x2, p , xp2 dx1 dx2 p dxp

�



�


�



�


p �



�

 
fX1 X2 p

 
Xp

 1x1, x2, p , xp2 dx1 dx2 p dxp � 1

fX1 X2 p
 
Xp

 1x1, x2, p , xp2 � 0

fX1 X2 p
 
Xp

 1x1, x2, p , xp2,X3, p , Xp,
X1, X2,

Definition

Typically, is defined over all of p-dimensional space by assum-
ing that for all points for which is not
specified.

EXAMPLE 5-23 In an electronic assembly, let the random variables denote the lifetimes of four
components in hours. Suppose that the joint probability density function of these variables is

What is the probability that the device operates for more than 1000 hours without any failures?

 for x1 � 0, x2 � 0, x3 � 0, x4 � 0
 fX1X2X3X4 

1x1, x2, x3, x42 � 9 � 10�2e�0.001x1�0.002x2�0.0015x3�0.003x4

X1, X2, X3, X4

fX1 X2p
 
Xp

 1x1, x2, p , xp2fX1 X2p
 
Xp

 1x1, x2, p , xp2 � 0
fX1 X2p

 
Xp

 1x1, x2, p , xp2
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168 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

The requested probability is P(X1 
 1000, X2 
 1000, X3 
 1000, X4 
 1000), which
equals the multiple integral of over the region x1 
 1000, x2 
 1000,
x3 
 1000, x4 
 1000. The joint probability density function can be written as a product of
exponential functions, and each integral is the simple integral of an exponential function.
Therefore,

Suppose that the joint probability density function of several continuous random vari-
ables is a constant, say c over a region R (and zero elsewhere). In this special case,

by property (2) of Equation 5-22. Therefore, (R). Furthermore, by property (3)
of Equation 5-22.

When the joint probability density function is constant, the probability that the random vari-
ables assume a value in the region B is just the ratio of the volume of the region to the
volume of the region R for which the probability is positive.

EXAMPLE 5-24 Suppose the joint probability density function of the continuous random variables X and Y is
constant over the region Determine the probability that 

The region that receives positive probability is a circle of radius 2. Therefore, the area of
this region is 4�. The area of the region is �. Consequently, the requested prob-
ability is �	 14�2 � 1	4.

x2 � y2 � 1

X2 � Y2 � 1.x2 � y2 � 4.

B ¨ R

 �
volume 1B ¨ R2

volume 1R2

 � � �
B

p � fX1 X2 p  Xp 

1x1, x2, p , xp2 dx1 dx2 p dxp � c � volume 1B ¨ R2
P 3 1X1, X2, p , Xp2 � B 4

c � 1	volume

�



�


 �



�


p �



�


 fX1 X2 p  Xp 

1x1, x2, p , xp2 dx1 dx2 p dxp � c � 1volume of region R2 � 1

P1X1 
 1000, X2 
 1000, X3 
 1000, X4 
 10002 � e�1�2�1.5�3 � 0.00055

fX1 X2 X3 X4 
1x1, x2, x3, x42

If the joint probability density function of continuous random variables 
is the marginal probability density function of is

(5-23)

where denotes the set of all points in the range of for which
Xi � xi.

X1, X2, p , XpRxi

fXi
1xi2 � � �

Rxi

p �  fX1 X2p Xp 

1x1, x2, p , xp2 dx1 dx2 p dxi�1 dxi�1 p dxp

XifX1X2 p Xp 

1x1, x2 p , xp2  
X2, p , XpX1,

Definition
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5-4 MULTIPLE CONTINUOUS RANDOM VARIABLES 169

As for two random variables, a probability involving only one random variable, say, for
example can be determined from the marginal probability distribution of 
or from the joint probability distribution of That is,

Furthermore, and for can be determined from the marginal prob-
ability distribution of or from the joint probability distribution of as follows.X1, X2, p , XpXi

i � 1, 2, p , p,V1Xi2,E1Xi2
�
 � Xi�1 � 
, p , �
 � Xp � 
2

 P1a � Xi � b2 � P1�
 � X1 � 
, p , �
 � Xi�1 � 
, a � Xi � b,

X1, X2, p , Xp.
XiP1a � Xi �  b2,

and (5-24)

V1Xi2 � �



�

 

 �



�


p �



�


 1xi � �Xi
22 fX1 X2 p

 
Xp

 1x1, x2, p , xp2 dx1 dx2 p dxp

E1Xi2 � �



�


 �



�


p �



�


xi  fX1 X2p
 
Xp
1x1, x2, p , xp2 dx1 dx2 p dxp

Mean and
Variance from

Joint
Distribution

If the joint probability density function of continuous random variables X1, X2, , Xp

is the probability density function of X1, X2, , Xk, k � p,
is

(5-25)

where denotes the set of all points in the range of for which
X1 � x1, X2 � x2, p , Xk � xk.

X1, X2, p , XkRx1x2 p xk

� � �
Rx1x2 p xk

p � fX1 X2 p Xp
 1x1, x2, p , xp2 dxk�1 dxk�2 p dxp

fX1 X2p Xk
 1x1, x2, p , xk2

pfX1 X2p Xp
 1x1, x2, p , xp2,

p
Distribution of

a Subset of
Random

Variables

The probability distribution of a subset of variables such as can be
obtained from the joint probability distribution of as follows.X1, X2, X3, p , Xp

X1, X2, p , Xk, k � p,

Conditional Probability Distribution
Conditional probability distributions can be developed for multiple continuous random vari-
ables by an extension of the ideas used for two continuous random variables.

for fX4 X5
 1x4, x52 
 0.

fX1X2 X3| x4 x5
1x1, x2, x32 �

fX1 X2 X3 X4 X5
1x1, x2, x3, x4, x52

fX4 X5
1x4, x52
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170 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

The concept of independence can be extended to multiple continuous random variables.

Continuous random variables are independent if and only if

(5-26)fX1 X2 p
 
Xp
1x1, x2 p , xp2 � fX1

1x12  fX2
1x22 p fXp

1xp2 for all x1, x2, p , xp

X1, X2, p , Xp

Definition

Similar to the result for only two random variables, independence implies that Equation 5-26
holds for all If we find one point for which the equality fails, are
not independent. It is left as an exercise to show that if are independent, 

for any regions in the range of respectively.

EXAMPLE 5-25 In Chapter 3, we showed that a negative binomial random variable with parameters p and r
can be represented as a sum of r geometric random variables Each geometric
random variable represents the additional trials required to obtain the next success. Because
the trials in a binomial experiment are independent, are independent random
variables.

EXAMPLE 5-26 Suppose and represent the thickness in micrometers of a substrate, an active layer,
and a coating layer of a chemical product. Assume that and are independent
and normally distributed with and

respectively. The specifications for the thickness of the substrate, active layer, and
coating layer are and respectively.
What proportion of chemical products meets all thickness specifications? Which one of the
three thicknesses has the least probability of meeting specifications?

The requested probability is 
Because the random variables are independent,

After standardizing, the above equals

where Z is a standard normal random variable. From the table of the standard normal distri-
bution, the above equals

The thickness of the coating layer has the least probability of meeting specifications.
Consequently, a priority should be to reduce variability in this part of the process.

10.998622 10.987582 10.788702 � 0.7778

P1�3.2 � Z � 3.22P1�2.5 � Z � 2.52P1�1.25 � Z � 1.252

� P19200 � X1 � 108002P1950 � X2 � 10502P175 � X3 � 852
P19200 � X1 � 10800, 950 � X2 � 1050, 75 � X3 � 852

P19200 � X1 � 10800, 950 � X2 � 1050, 75 � X3 � 85.

75 � x3 � 85,9200 � x1 � 10800, 950 � x2 � 1050,
�3 � 4,

�1 � 10000, �2 � 1000, �3 � 80, �1 � 250, �2 � 20,
X3X1, X2,

X3X1, X2,

X1, X2, p , Xr

X1, X2, p , Xr.

X1, X2, p , Xp,A1, A2, p , Ap

P1X1 � A1, X2 � A2, p , Xp � Ap2 � P1X1 � A12P1X2 � A22 p P1Xp � Ap2
X1, X2, p , Xp

X1, X2, p , Xpx1, x2, p , xp.
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5-5 COVARIANCE AND CORRELATION 171

EXERCISES FOR SECTION 5–4

5-55. Suppose the random variables X, Y, and Z have the joint
probability density function for 0 � x � 1,
0 � y � 1, and 0 � z � 1. Determine the following:
(a) (b)
(c) (d)
(e)

5-56. Continuation of Exercise 5-55. Determine the following:
(a)
(b)

5-57. Continuation of Exercise 5-55. Determine the following:
(a) Conditional probability distribution of X given that Y �

0.5 and Z � 0.8
(b)

5-58. Suppose the random variables X, Y, and Z have
the joint probability density function fXYZ (x, y, z) � c over
the cylinder x2 � y2 � 4 and 0 � z � 4. Determine the
following.
(a) The constant c so that fXYZ (x, y, z) is a probability density

function
(b)
(c)

(d)

5-59. Continuation of Exercise 5-58. Determine the
following:
(a) (b)

5-60. Continuation of Exercise 5-58. Determine the condi-
tional probability distribution of Z given that X � 1 and
Y � 1.

5-61. Determine the value of c that makes fXYZ(x, y, z) � c
a joint probability density function over the region x 
 0,
y 
 0, z 
 0, and x � y � z � 1.

5-62. Continuation of Exercise 5-61. Determine the following:
(a)
(b)
(c)
(d)

5-63. Continuation of Exercise 5-61. Determine the following:
(a) Marginal distribution of X
(b) Joint distribution of X and Y

E1X 2P1X � 0.52
P1X � 0.5, Y � 0.52
P1X � 0.5, Y � 0.5, Z � 0.52

P1X 2 � Y 2 � 1 ƒ Z � 12P1X � 1 ƒ Y � 12

E1X 2
P1Z � 22
P1X 2 � Y 2 � 22

P1X � 0.5 ƒ Y � 0.5, Z � 0.82

P1X � 0.5, Y � 0.5 ƒ Z � 0.82
P1X � 0.5 ƒ Y � 0.52
E1X 2 P1X � 0.5 or Z � 22P1Z � 22

P1X � 0.5, Y � 0.52P1X � 0.52
f 1x, y, z2 � 8xyz

5-5 COVARIANCE AND CORRELATION

When two or more random variables are defined on a probability space, it is useful to describe
how they vary together; that is, it is useful to measure the relationship between the variables.
A common measure of the relationship between two random variables is the covariance. To
define the covariance, we need to describe the expected value of a function of two random
variables h(X, Y ). The definition simply extends that used for a function of a single random
variable.

(c) Conditional probability distribution of X given that Y �
0.5 and Z � 0.5

(d) Conditional probability distribution of X given that
Y � 0.5

5-64. The yield in pounds from a day’s production is nor-
mally distributed with a mean of 1500 pounds and standard
deviation of 100 pounds. Assume that the yields on different
days are independent random variables.
(a) What is the probability that the production yield exceeds

1400 pounds on each of five days next week?
(b) What is the probability that the production yield exceeds

1400 pounds on at least four of the five days next week?

5-65. The weights of adobe bricks used for construction are
normally distributed with a mean of 3 pounds and a standard
deviation of 0.25 pound. Assume that the weights of the bricks
are independent and that a random sample of 20 bricks is
selected.
(a) What is the probability that all the bricks in the sample

exceed 2.75 pounds?
(b) What is the probability that the heaviest brick in the sam-

ple exceeds 3.75 pounds?

5-66. A manufacturer of electroluminescent lamps knows
that the amount of luminescent ink deposited on one of
its products is normally distributed with a mean of 1.2
grams and a standard deviation of 0.03 grams. Any lamp
with less than 1.14 grams of luminescent ink will fail
to meet customer’s specifications. A random sample of
25 lamps is collected and the mass of luminescent ink on
each is measured.
(a) What is the probability that at least 1 lamp fails to meet

specifications?
(b) What is the probability that 5 lamps or fewer fail to meet

specifications?
(c) What is the probability that all lamps conform to specifi-

cations?
(d) Why is the joint probability distribution of the 25 lamps

not needed to answer the previous questions?
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172 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

That is, E[h(X, Y)] can be thought of as the weighted average of h(x, y) for each point in the
range of (X, Y). The value of E[h(X, Y)] represents the average value of h(X, Y) that is expected
in a long sequence of repeated trials of the random experiment.

EXAMPLE 5-27 For the joint probability distribution of the two random variables in Fig. 5-12, calculate

The result is obtained by multiplying x � �X times y � �Y, times fXY(x, y) for each point
in the range of (X, Y). First, �X and �Y are determined from Equation 5-3 as

and

Therefore,

The covariance is defined for both continuous and discrete random variables by the same formula.

 � 13 � 2.42 12 � 2.02 � 0.2 � 13 � 2.42 13 � 2.02 � 0.3 � 0.2
 � 11 � 2.42 12 � 2.02 � 0.2 � 13 � 2.42 11 � 2.02 � 0.2

E 3 1X � �X2 1Y � �Y2 4 � 11 � 2.42 11 � 2.02 � 0.1

�Y � 1 � 0.3 � 2 � 0.4 � 3 � 0.3 � 2.0

�X � 1 � 0.3 � 3 � 0.7 � 2.4

1Y � �Y2 4 .E 3 1X � �X2

(5-27)E 3h1X, Y2 4 � µbR
 h1x, y2   fXY 1x, y2 X, Y discrete

��
R

 h1x, y2   fXY 
1x, y2  dx dy X, Y continuous

Definition

The covariance between the random variables X and Y, denoted as cov(X, Y ) or is

(5-28)�XY � E 3 1X � �X2 1Y � �Y2 4 � E1XY2 � �X�Y

�XY,
Definition

Figure 5-12 Joint
distribution of X and Y
for Example 5-27. 1

1

2 3

3

y

2

x

0.1

0.2

0.2

0.2

0.3
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5-5 COVARIANCE AND CORRELATION 173

If the points in the joint probability distribution of X and Y that receive positive probabil-
ity tend to fall along a line of positive (or negative) slope, �XY is positive (or negative). If the
points tend to fall along a line of positive slope, X tends to be greater than �X when Y is greater
than �Y. Therefore, the product of the two terms x � �X and y � �Y tends to be positive.
However, if the points tend to fall along a line of negative slope, x � �X tends to be positive
when y � �Y is negative, and vice versa. Therefore, the product of x � �X and y � �Y tends
to be negative. In this sense, the covariance between X and Y describes the variation between
the two random variables. Figure 5-13 shows examples of pairs of random variables with
positive, negative, and zero covariance.

Covariance is a measure of linear relationship between the random variables. If the re-
lationship between the random variables is nonlinear, the covariance might not be sensitive to
the relationship. This is illustrated in Fig. 5-13(d). The only points with nonzero probability
are the points on the circle. There is an identifiable relationship between the variables. Still,
the covariance is zero.

The equality of the two expressions for covariance in Equation 5-28 is shown for contin-
uous random variables as follows. By writing the expectations as integrals,

 � �



�


  �



�


 3xy � �X 
y � x�Y � �X�Y 4    fXY 1x, y2 dx dy

E 3 1Y � �Y2 1X � �X2 4 � �



�


 �



�


 1x � �X2 1y � �Y2  fXY 1x, y2 dx dy

x

y

x

y

x

y

x

y

(a) Positive covariance (b) Zero covariance

(c) Negative covariance (d) Zero covariance

All points are of
equal probability

Figure 5-13 Joint probability distributions and the sign of covariance between X and Y.
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174 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

Now

Therefore,

EXAMPLE 5-28 In Example 5-1, the random variables X and Y are the number of acceptable and suspect bits
among four bits received during a digital communication, respectively. Is the covariance
between X and Y positive or negative?

Because X and Y are the number of acceptable and suspect bits out of the four received,
X � Y � 4. If X is near 4, Y must be near 0. Therefore, X and Y have a negative covariance.
This can be verified from the joint probability distribution in Fig. 5-1.

There is another measure of the relationship between two random variables that is often
easier to interpret than the covariance.

 � �
�

��

 �
�

��

 xyfXY 1x, y2 dx dy � �X�Y � E1XY 2 � �X�Y

E 3 1X � �X2 1Y � �Y2 4 � �
�

��

 �
�

��

 xyfXY 1x, y2 dx dy � �X�Y � �X�Y � �X�Y

�
�

��

 �
�

��

 �X y  fXY 1x, y2 dx dy � �X £ �
�

��

 �
�

��

 yfXY 1x, y2 dx dy § � �X�Y

The correlation between random variables X and Y, denoted as is

(5-29)�XY �
cov 1X, Y 21V1X 2  V1Y 2 �

	XY

	X 
	Y

�XY,
Definition

Because 	X 
 0 and 	Y 
 0, if the covariance between X and Y is positive, negative, or zero,
the correlation between X and Y is positive, negative, or zero, respectively. The following
result can be shown.

For any two random variables X and Y

(5-30)�1 � �XY � �1

The correlation just scales the covariance by the standard deviation of each variable.
Consequently, the correlation is a dimensionless quantity that can be used to compare the
linear relationships between pairs of variables in different units.
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5-5 COVARIANCE AND CORRELATION 175

If the points in the joint probability distribution of X and Y that receive positive probabil-
ity tend to fall along a line of positive (or negative) slope, is near �1 (or �1). If 
equals �1 or �1, it can be shown that the points in the joint probability distribution that
receive positive probability fall exactly along a straight line. Two random variables with
nonzero correlation are said to be correlated. Similar to covariance, the correlation is a meas-
ure of the linear relationship between random variables.

EXAMPLE 5-29 For the discrete random variables X and Y with the joint distribution shown in Fig. 5-14,
determine �XY and �XY.

The calculations for E(XY ), E(X), and V(X) are as follows.

Because the marginal probability distribution of Y is the same as for X, E(Y ) � 1.8 and
V(Y ) � 1.36. Consequently,

Furthermore,

EXAMPLE 5-30 Suppose that the random variable X has the following distribution: P(X � 1) � 0.2, 
P(X � 2) � 0.6, P(X � 3) � 0.2. Let Y � 2X � 5. That is, P(Y � 7) � 0.2, P(Y � 9) � 0.6,
P(Y � 11) � 0.2. Determine the correlation between X and Y. Refer to Fig. 5-15.

Because X and Y are linearly related, � � 1. This can be verified by direct calculations:
Try it.

For independent random variables, we do not expect any relationship in their joint prob-
ability distribution. The following result is left as an exercise.

�XY �
�XY

�X�Y
�

1.26

111.362 111.362 � 0.926

�XY � E1XY 2 � E1X 2E1Y 2 � 4.5 � 11.82 11.82 � 1.26

� 13 � 1.822 � 0.4 � 1.36
 V1X 2 � 10 � 1.822 � 0.2 � 11 � 1.822 � 0.2 � 12 � 1.822 � 0.2
 E1X 2 � 0 � 0.2 � 1 � 0.2 � 2 � 0.2 � 3 � 0.4 � 1.8

� 2 � 2 � 0.1 � 3 � 3 � 0.4 � 4.5
E1XY 2 � 0 � 0 � 0.2 � 1 � 1 � 0.1 � 1 � 2 � 0.1 � 2 � 1 � 0.1

�XY�XY

Figure 5-14 Joint distribution for
Example 5-29.

Figure 5-15 Joint distribution for
Example 5-30.
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176 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

If X and Y are independent random variables,

(5-31)�XY � �XY � 0

EXAMPLE 5-31 For the two random variables in Fig. 5-16, show that �XY � 0.
The two random variables in this example are continuous random variables. In this case

E(XY ) is defined as the double integral over the range of (X, Y ). That is,

Also,

 �
2
16

 £ y3	3 ` 4
0
§ �

1
8

 364	3 4 � 8	3

E1Y 2 � �
4

0

�
2

0

 y fXY 1x, y2  dx dy �
1
16

 �
4

0

 y2
 £ �

2

0

 x dx §  dy �
1
16

 �
4

0

 y2
 £ x2	2 ` 2

0
§  dy

 �
1

16
 £ y2	2 ` 4

0
§  38	3 4 �

1
6

 316	2 4 � 4	3

E1X 2 � �
4

0

�
2

0

 x fXY 1x, y2  dx dy �
1
16

 �
4

0

 £ �
2

0

 x2
 dx §  dy �

1
16

 �
4

0

 £ x3	3 ` 2
0
§  dy

 �
1
16

 �
4

0

 y2
 38	3 4  dy �

1
6

 £ y3	3 ` 4
0
§ �

1
6

 364	3 4 � 32	9

E1XY 2 � �
4

0

�
2

0

 xy fXY 1x, y2  dx dy �
1
16

 �
4

0

 £ �
2

0

 x2y2
 dx §  dy �

1
16

 �
4

0

 y2
 £ x3	3 ` 2

0
§

Figure 5-16 Random variables
with zero covariance from Example
5-31.
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5-6 BIVARIATE NORMAL DISTRIBUTION 177

Thus,

It can be shown that these two random variables are independent. You can check that
fXY (x, y) � fX (x) fY (y) for all x and y.

However, if the correlation between two random variables is zero, we cannot immediately
conclude that the random variables are independent. Figure 5-13(d) provides an example.

EXERCISES FOR SECTION 5-5

E1XY 2 � E1X 2E1Y 2 � 32	9 � 14	32 18	32 � 0

5-67. Determine the covariance and correlation for the
following joint probability distribution:

x 1 1 2 4
y 3 4 5 6
fXY (x, y) 1�8 1�4 1�2 1�8

5-68. Determine the covariance and correlation for the
following joint probability distribution:

x �1 �0.5 0.5 1
y �2 �1 1 2

fXY (x, y)

5-69. Determine the value for c and the covariance and
correlation for the joint probability mass function fXY (x, y) �
c(x � y) for x � 1, 2, 3 and y � 1, 2, 3.

5-70. Determine the covariance and correlation for the joint
probability distribution shown in Fig. 5-4(a) and described in
Example 5-8.

5-71. Determine the covariance and correlation for X1 and
X2 in the joint distribution of the multinomial random vari-
ables X1, X2 and X3 in with p1 � p2 � p3 � 1�3 and n � 3. What
can you conclude about the sign of the correlation between
two random variables in a multinomial distribution?

5-72. Determine the value for c and the covariance and cor-
relation for the joint probability density function fXY (x, y) �
cxy over the range 0 � x � 3 and 0 � y � x.

1	81	21	41	8

5-6 BIVARIATE NORMAL DISTRIBUTION

An extension of a normal distribution to two random variables is an important bivariate prob-
ability distribution.

EXAMPLE 5-32 At the start of this chapter, the length of different dimensions of an injection-molded part was
presented as an example of two random variables. Each length might be modeled by a normal
distribution. However, because the measurements are from the same part, the random
variables are typically not independent. A probability distribution for two normal random vari-
ables that are not independent is important in many applications. As stated at the start of the

5-73. Determine the value for c and the covariance and cor-
relation for the joint probability density function fXY (x, y) � c
over the range 0 � x � 5, 0 � y, and x � 1 � y � x � 1.

5-74. Determine the covariance and correlation for the joint
probability density function fXY (x, y) � 6 � 10�6e�0.001x�0.002y

over the range 0 � x and x � y from Example 5-15.

5-75. Determine the covariance and correlation for the joint
probability density function over the range
0 � x and 0 � y.

5-76. Suppose that the correlation between X and Y is �. For
constants a, b, c, and d, what is the correlation between the
random variables U � aX � b and V � cY � d?

5-77. The joint probability distribution is

x �1 0 1
y �1 1 0

fXY (x, y)

Show that the correlation between X and Y is zero, but X and Y
are not independent.

5-78. Suppose X and Y are independent continuous random
variables. Show that �XY � 0.

1	41	41	41	4
0

0

fXY 
 1x, y2 � e�x�y
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178 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

chapter, if the specifications for X and Y are 2.95 to 3.05 and 7.60 to 7.80 millimeters, respec-
tively, we might be interested in the probability that a part satisfies both specifications; that is,
P(2.95 � X � 3.05, 7.60 � Y � 7.80).

The probability density function of a bivariate normal distribution is 

(5-32)

for and , with parameters �X 
 0, �Y 
 0, �
 � �X � 
,
�
 � �Y � 
, and �1 � � � 1.

�
 � y � 
�
 � x � 


�  
2�1x � �X2 1y � �Y2

�X �Y
�
1y � �Y22

�2
Y

d f

fXY 
1x, y; �X, �Y, �X, �Y, �2 �

1

2��X 
�Y21 � �2

  exp  e �1

211 � �22 c
1x � �X22

�2
X

Definition

Figure 5-17 Examples of bivariate normal distributions.

The result that fXY (x, y; �X, �Y, �X, �Y, �) integrates to 1 is left as an exercise. Also, the bivari-
ate normal probability density function is positive over the entire plane of real numbers.

Two examples of bivariate normal distributions are illustrated in Fig. 5-17 along with
corresponding contour plots. Each curve on the contour plots is a set of points for which the
probability density function is constant. As seen in the contour plots, the bivariate normal
probability density function is constant on ellipses in the (x, y) plane. (We can consider a circle
to be a special case of an ellipse.) The center of each ellipse is at the point (�X, �Y). If � 
 0
(� � 0), the major axis of each ellipse has positive (negative) slope, respectively. If � � 0, the
major axis of the ellipse is aligned with either the x or y coordinate axis.

EXAMPLE 5-33 The joint probability density function is a special case of a bivariate

normal distribution with �X � 1, �Y � 1, �X � 0, �Y � 0, and � � 0. This probability density
function is illustrated in Fig. 5-18. Notice that the contour plot consists of concentric circles about
the origin.

By completing the square in the exponent, the following results can be shown. The details
are left as an exercise.

fXY 1x, y2 �
112�

 e�0.51x2�y22

x

y
fXY(x, y)

fXY(x, y)

y

x

0
x

y

y
x

�X �X �X�X
�Y

�Y �Y

�Y

fXY(x, y)

c05.qxd  5/13/02  1:50 PM  Page 178 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



5-6 BIVARIATE NORMAL DISTRIBUTION 179

Figure 5-18 Bivariate normal probability density
function with �X � 1, �Y � 1, � � 0, �X � 0, and
�Y � 0.

0

0

x

y
fXY(x, y)

x
0

y

0

If X and Y have a bivariate normal distribution with joint probability density fXY (x, y;
�X, �Y, �X, �Y, �), the marginal probability distributions of X and Y are normal
with means �X and �Y and standard deviations �X and �Y, respectively. (5-33)

Marginal
Distributions of

Bivariate Normal
Random Variables

If X and Y have a bivariate normal distribution with joint probability density function
fXY (x, y; �X, �Y, �X, �Y, �), the correlation between X and Y is �. (5-34)

x

z
y

Figure 5-19 Marginal probability
density functions of a bivariate
normal distribution.

Figure 5-19 illustrates that the marginal probability distributions of X and Y are normal.
Furthermore, as the notation suggests, � represents the correlation between X and Y. The
following result is left as an exercise.

The contour plots in Fig. 5-17 illustrate that as � moves from zero (left graph) to 0.9 (right
graph), the ellipses narrow around the major axis. The probability is more concentrated about
a line in the (x, y) plane and graphically displays greater correlation between the variables. If
� � �1 or �1, all the probability is concentrated on a line in the (x, y) plane. That is, the
probability that X and Y assume a value that is not on the line is zero. In this case, the bivari-
ate normal probability density is not defined.

In general, zero correlation does not imply independence. But in the special case that X
and Y have a bivariate normal distribution, if � � 0, X and Y are independent. The details are
left as an exercise.

If X and Y have a bivariate normal distribution with � � 0, X and Y are independent.
(5-35)
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180 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

An important use of the bivariate normal distribution is to calculate probabilities involving
two correlated normal random variables.

EXAMPLE 5-34 Suppose that the X and Y dimensions of an injection-molded part have a bivariate normal
distribution with �X � 0.04, �Y � 0.08. �X � 3.00. �Y � 7.70, and � � 0.8. Then, the prob-
ability that a part satisfies both specifications is

This probability can be obtained by integrating fXY (x, y; �X, �Y, �X �Y, �) over the region
2.95 � x � 3.05 and 7.60 � y � 7.80, as shown in Fig. 5-7. Unfortunately, there is often no
closed-form solution to probabilities involving bivariate normal distributions. In this case, the
integration must be done numerically.

EXERCISES FOR SECTION 5-6

P12.95 � X � 3.05, 7.60 � Y � 7.802

5-79. Let X and Y represent concentration and viscosity of a
chemical product. Suppose X and Y have a bivariate normal
distribution with �X � 4, �Y � 1, �X � 2, and �Y � 1. Draw
a rough contour plot of the joint probability density function
for each of the following values for �:
(a) � � 0 (b) � � 0.8
(c) � � �0.8

5-80. Let X and Y represent two dimensions of an injec-
tion molded part. Suppose X and Y have a bivariate normal
distribution with �X � 0.04, �Y � 0.08, �X � 3.00, 
�Y � 7.70, and �Y � 0. Determine P(2.95 � X � 3.05,
7.60 � Y � 7.80).

5-81. In the manufacture of electroluminescent lamps,
several different layers of ink are deposited onto a plastic
substrate. The thickness of these layers is critical if specifi-
cations regarding the final color and intensity of light of
the lamp are to be met. Let X and Y denote the thickness
of two different layers of ink. It is known that X is nor-
mally distributed with a mean of 0.1 millimeter and a
standard deviation of 0.00031 millimeter, and Y is also
normally distributed with a mean of 0.23 millimeter and a
standard deviation of 0.00017 millimeter. The value of � for
these variables is equal to zero. Specifications call for a
lamp to have a thickness of the ink corresponding to X in
the range of 0.099535 to 0.100465 millimeters and Y in
the range of 0.22966 to 0.23034 millimeters. What is the
probability that a randomly selected lamp will conform to
specifications?

5-7 LINEAR COMBINATIONS OF RANDOM VARIABLES

A random variable is sometimes defined as a function of one or more random variables.
The CD material presents methods to determine the distributions of general functions of
random variables. Furthermore, moment-generating functions are introduced on the CD

5-82. Suppose that X and Y have a bivariate normal distri-
bution with joint probability density function fXY (x, y; �X, �Y,
�X, �Y, �).
(a) Show that the conditional distribution of Y, given that

X � x is normal.
(b) Determine .
(c) Determine .

5-83. If X and Y have a bivariate normal distribution with
� � 0, show that X and Y are independent.

5-84. Show that the probability density function fXY (x, y;
�X, �Y, �X, �Y, �) of a bivariate normal distribution integrates
to one. [Hint: Complete the square in the exponent and use the
fact that the integral of a normal probability density function
for a single variable is 1.]

5-85. If X and Y have a bivariate normal distribution with
joint probability density fXY (x, y; �X, �Y, �X, �Y, �), show
that the marginal probability distribution of X is normal
with mean �X and standard deviation �X. [Hint: Complete
the square in the exponent and use the fact that the integral
of a normal probability density function for a single variable
is 1.]

5-86. If X and Y have a bivariate normal distribution with
joint probability density fXY (x, y; �X, �Y, �X, �Y, �), show that
the correlation between X and Y is �. [Hint: Complete the
square in the exponent].

V1Y 0X � x2
E1Y 0X � x2

c05.qxd  9/6/02  11:36 M  Page 180



5-7 LINEAR COMBINATIONS OF RANDOM VARIABLES 181

and used to determine the distribution of a sum of random variables. In this section, results
for linear functions are highlighted because of their importance in the remainder of the
book. References are made to the CD material as needed. For example, if the random vari-
ables X1 and X2 denote the length and width, respectively, of a manufactured part, Y � 2X1

� 2X2 is a random variable that represents the perimeter of the part. As another example,
recall that the negative binomial random variable was represented as the sum of several
geometric random variables.

In this section, we develop results for random variables that are linear combinations of
random variables.

Given random variables X1, X2, , Xp and constants c1, c2, , cp,

(5-36)

is a linear combination of  X1, X2, p , Xp.

Y � c1X1 � c2X2 � p � cp Xp

pp
Definition

Now, E(Y) can be found from the joint probability distribution of X1, X2, , Xp as follows.
Assume X1, X2, , Xp are continuous random variables. An analogous calculation can be used
for discrete random variables.

By using Equation 5-24 for each of the terms in this expression, we obtain the following.

 � cp �



�

 

 �



�


p �



�


 xp fX1 X2 p  Xp
 1x1, x2, p , xp2 dx1 dx2 p dxp

� c2 �



�


 �



�


p �



�


 x2 fX1 X2 p  Xp
 1x1, x2, p , xp2 dx1 dx2 p dxp � , p ,

 � c1 �



�

 

 �



�


p �



�


 x1  fX1 X2 p  Xp
 1x1, x2, p , xp2 dx1 dx2 p dxp

E1Y2 � �



�

 

 �



�


p �



�


 1c1x1 � c2x2 � p � cp xp2  fX1 X2 p  Xp
 1x1, x2, p , xp2 dx1 dx2 p dxp

p
p

If 

(5-37)E1Y2 � c1E 1X12 � c2E 1X22 � p � cp E 1Xp2
Y � c1 

X1 � c2 
X2 � p � cp 

Xp,
Mean of a

Linear
Combination

Furthermore, it is left as an exercise to show the following.
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182 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

Note that the result for the variance in Equation 5-39 requires the random variables to be
independent. To see why the independence is important, consider the following simple exam-
ple. Let X1 denote any random variable and define X2 � �X1. Clearly, X1 and X2 are not inde-
pendent. In fact, �XY � �1. Now, Y � X1 � X2 is 0 with probability 1. Therefore, V(Y) � 0,
regardless of the variances of X1 and X2.

EXAMPLE 5-35 In Chapter 3, we found that if Y is a negative binomial random variable with parameters p and
r, where each Xi is a geometric random variable with parameter
p and they are independent. Therefore, and . From Equation
5-37, and from Equation 5-39, .

An approach similar to the one applied in the above example can be used to verify the
formulas for the mean and variance of an Erlang random variable in Chapter 4.

EXAMPLE 5-36 Suppose the random variables X1 and X2 denote the length and width, respectively, of a man-
ufactured part. Assume E(X1) � 2 centimeters with standard deviation 0.1 centimeter and
E(X2) � 5 centimeters with standard deviation 0.2 centimeter. Also, assume that the covari-
ance between X1 and X2 is �0.005. Then, Y � 2X1 � 2X2 is a random variable that represents
the perimeter of the part. From Equation 5-36,

and from Equation 5-38

Therefore, the standard deviation of Y is 

The particular linear combination that represents the average of p random variables, with
identical means and variances, is used quite often in the subsequent chapters. We highlight the
results for this special case.

0.161	2 � 0.4 centimeters.

� 0.04 � 0.16 � 0.04 � 0.16 centimeters squared
V1Y2 � 2210.122 � 2210.222 � 2 � 2 � 21�0.0052

E1Y 2 � 2122 � 2152 � 14 centimeters

V 1Y 2 � r11 � p2	p2E1Y 2 � r	p
E1Xi2 � 11 � p2	p2E1Xi2 � 1	p

Y � X1 � X2 � p � Xr,

If X1, X2, , Xp are random variables, and then in
general

(5-38)

If X1, X2, , Xp are independent,

(5-39)V1Y 2 � c2
1V1X12 � c2

2V1X22 � p � c2
pV1Xp2

p

V1Y 2 � c2
1V1X12 � c2

2V1X22 � p � c2
pV1Xp2 � 2 a

i� j
 a  cicj  cov1Xi, Xj2

Y � c1X1 � c2X2 � p � cp Xp,p
Variance of a

Linear
Combination
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5-7 LINEAR COMBINATIONS OF RANDOM VARIABLES 183

The conclusion for is obtained as follows. Using Equation 5-39, with and
V(Xi) � �2, yields

Another useful result concerning linear combinations of random variables is a reproduc-
tive property that holds for independent, normal random variables.

p terms

V1X 2 � 11	p22�2 � p � 11	p22�2 � �2	p

ci � 1	pV1X 2

If with E(Xi) � � for i � 1, 2, , p

(5-40a)

if X1, X2, , Xp are also independent with V(Xi) � �2 for i � 1, 2, , p,

(5-40b)V1X 2 �
�2

p

pp

E1X 2 � �

pX � 1X1 � X2 � p � Xp2	p
Mean and

Variance of an
Average

w

If X1, X2, , Xp are independent, normal random variables with E(Xi) � �i and
, for i � 1, 2, , p,

is a normal random variable with

and

(5-41)V1Y 2 � c2
1�

2
1 � c2

2�
2
2 � p � c2

p�
2
p

E1Y 2 � c1�1 � c2�2 � p � cp�p

Y � c1X1 � c2X2 � p � cp Xp

pV1Xi2 � �2
i

p
Reproductive

Property of the
Normal

Distribution

The mean and variance of Y follow from Equations 5-37 and 5-39. The fact that Y has a nor-
mal distribution can be obtained from moment-generating functions discussed in Section 5-9
in the CD material.

EXAMPLE 5-37 Let the random variables X1 and X2 denote the length and width, respectively, of a manufac-
tured part. Assume that X1 is normal with E(X1) � 2 centimeters and standard deviation
0.1 centimeter and that X2 is normal with E(X2) � 5 centimeters and standard deviation 0.2
centimeter. Also, assume that X1 and X2 are independent. Determine the probability that the
perimeter exceeds 14.5 centimeters.
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184 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

Then, Y � 2X1 � 2X2 is a normal random variable that represents the perimeter of the
part. We obtain, E(Y) � 14 centimeters and the variance of Y is

Now,

EXAMPLE 5-38 Soft-drink cans are filled by an automated filling machine. The mean fill volume is 12.1 fluid
ounces, and the standard deviation is 0.1 fluid ounce. Assume that the fill volumes of the cans
are independent, normal random variables. What is the probability that the average volume of
10 cans selected from this process is less than 12 fluid ounces?

Let X1, X2, , X10 denote the fill volumes of the 10 cans. The average fill volume
(denoted as ) is a normal random variable with

Consequently,

EXERCISES FOR SECTION 5-7

 � P1Z � �3.162 � 0.00079

P1X � 122 � P c X � �X

�X
�

12 � 12.110.001
d

E1X 2 � 12.1 and V1X 2 �
0.12

10
 � 0.001

X
p

 � P1Z � 1.122 � 0.13
P1Y � 14.52 � P 3 1Y � �Y2	�Y � 114.5 � 142	10.0416 4

V1Y 2 � 4 
 0.12 � 4 
 0.22 � 0.0416

to be met. Let X and Y denote the thickness of two different
layers of ink. It is known that X is normally distributed with a
mean of 0.1 millimeter and a standard deviation of 0.00031
millimeter and Y is also normally distributed with a mean of
0.23 millimeter and a standard deviation of 0.00017 millime-

c05.qxd  9/6/02  11:21 M  Page 184
5-87. If X and Y are independent, normal random variables
with E(X ) � 0, V(X) � 4, E(Y ) � 10, and V(Y ) � 9.
Determine the following:
(a) (b)
(c) (d) P12 X � 3Y � 402P12X � 3Y � 302

V12X � 3Y 2E12X � 3Y 2

5-88. Suppose that the random variable X represents the
length of a punched part in centimeters. Let Y be the length
of the part in millimeters. If E(X ) � 5 and V(X ) � 0.25, what
are the mean and variance of Y?

5-89. A plastic casing for a magnetic disk is composed of
two halves. The thickness of each half is normally distributed
with a mean of 2 millimeters and a standard deviation of
0.1 millimeter and the halves are independent.
(a) Determine the mean and standard deviation of the total

thickness of the two halves.
(b) What is the probability that the total thickness exceeds

4.3 millimeters?

5-90. In the manufacture of electroluminescent lamps, sev-
eral different layers of ink are deposited onto a plastic sub-
strate. The thickness of these layers is critical if specifications
regarding the final color and intensity of light of the lamp are

ter. Assume that these variables are independent.
(a) If a particular lamp is made up of these two inks only,

what is the probability that the total ink thickness is less
than 0.2337 millimeter?

(b) A lamp with a total ink thickness exceeding 0.2405 mil-
limeters lacks the uniformity of color demanded by the
customer. Find the probability that a randomly selected
lamp fails to meet customer specifications.

5-91. The width of a casing for a door is normally distrib-
uted with a mean of 24 inches and a standard deviation of
1�8 inch. The width of a door is normally distributed with a
mean of 23 and 7�8 inches and a standard deviation of 1�16
inch. Assume independence.
(a) Determine the mean and standard deviation of the differ-

ence between the width of the casing and the width of the
door.



(b) What is the probability that the width of the casing minus
the width of the door exceeds 1�4 inch?

(c) What is the probability that the door does not fit in the
casing?

5-92. A U-shaped component is to be formed from the three
parts A, B, and C. The picture is shown in Fig. 5-20. The length
of A is normally distributed with a mean of 10 millimeters and
a standard deviation of 0.1 millimeter. The thickness of parts B
and C is normally distributed with a mean of 2 millimeters and
a standard deviation of 0.05 millimeter. Assume all dimensions
are independent.
(a) Determine the mean and standard deviation of the length

of the gap D.
(b) What is the probability that the gap D is less than 5.9 mil-

limeters?

5-93. Soft-drink cans are filled by an automated filling ma-
chine and the standard deviation is 0.5 fluid ounce. Assume
that the fill volumes of the cans are independent, normal ran-
dom variables.
(a) What is the standard deviation of the average fill volume

of 100 cans?
(b) If the mean fill volume is 12.1 ounces, what is the proba-

bility that the average fill volume of the 100 cans is below
12 fluid ounces?

(c) What should the mean fill volume equal so that the proba-
bility that the average of 100 cans is below 12 fluid ounces
is 0.005?

(d) If the mean fill volume is 12.1 fluid ounces, what should
the standard deviation of fill volume equal so that the
probability that the average of 100 cans is below 12 fluid
ounces is 0.005?

(e) Determine the number of cans that need to be measured
such that the probability that the average fill volume is
less than 12 fluid ounces is 0.01.

5-94. The photoresist thickness in semiconductor manufac-
turing has a mean of 10 micrometers and a standard deviation of
1 micrometer. Assume that the thickness is normally distributed
and that the thicknesses of different wafers are independent.
(a) Determine the probability that the average thickness of 10

wafers is either greater than 11 or less than 9 micrometers.

5-7 LINEAR COMBINATIONS OF RANDOM VARIABLES 185

(b) Determine the number of wafers that needs to be meas-
ured such that the probability that the average thickness
exceeds 11 micrometers is 0.01.

(c) If the mean thickness is 10 micrometers, what should the
standard deviation of thickness equal so that the probabil-
ity that the average of 10 wafers is either greater than 11 or
less than 9 micrometers is 0.001?

5-95. Assume that the weights of individuals are independ-
ent and normally distributed with a mean of 160 pounds and a
standard deviation of 30 pounds. Suppose that 25 people
squeeze into an elevator that is designed to hold 4300 pounds.
(a) What is the probability that the load (total weight) exceeds

the design limit?
(b) What design limit is exceeded by 25 occupants with prob-

ability 0.0001?

5-8 FUNCTIONS OF RANDOM
VARIABLES (CD ONLY)

5-9 MOMENT GENERATING
FUNCTION (CD ONLY)

5-10 CHEBYSHEV’S INEQUALITY
(CD ONLY)

Supplemental Exercises

5-96. Show that the following function satisfies the proper-
ties of a joint probability mass function:

x y f(x, y)

0 0 1�4

0 1 1�8

1 0 1�8

1 1 1�4

2 2 1�4

5-97. Continuation of Exercise 5-96. Determine the follow-
ing probabilities:
(a) (b)
(c) (d)
(e) Determine E(X ), E(Y ), V(X ), and V(Y).

5-98. Continuation of Exercise 5-96. Determine the following:
(a) Marginal probability distribution of the random variable X
(b) Conditional probability distribution of Y given that X � 1
(c)
(d) Are X and Y independent? Why or why not?
(e) Calculate the correlation between X and Y.

5-99. The percentage of people given an antirheumatoid
medication who suffer severe, moderate, or minor side effects

E1Y 0  X � 12

P1X 
 0.5, Y � 1.52P1X � 1.52
P1X � 12P1X � 0.5, Y � 1.52

CB

B C

A

A

D

Figure 5-20 Figure for the
U-shaped component.
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186 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

are 10, 20, and 70%, respectively. Assume that people react
independently and that 20 people are given the medication.
Determine the following:
(a) The probability that 2, 4, and 14 people will suffer severe,

moderate, or minor side effects, respectively
(b) The probability that no one will suffer severe side effects
(c) The mean and variance of the number of people that will

suffer severe side effects
(d) What is the conditional probability distribution of the

number of people who suffer severe side effects given that
19 suffer minor side effects?

(e) What is the conditional mean of the number of people who
suffer severe side effects given that 19 suffer minor side
effects?

5-100. The backoff torque required to remove bolts in a
steel plate is rated as high, moderate, or low. Historically, the
probability of a high, moderate, or low rating is 0.6, 0.3, or
0.1, respectively. Suppose that 20 bolts are evaluated and that
the torque ratings are independent.
(a) What is the probability that 12, 6, and 2 bolts are rated as

high, moderate, and low, respectively?
(b) What is the marginal distribution of the number of bolts

rated low?
(c) What is the expected number of bolts rated low?
(d) What is the probability that the number of bolts rated low

is greater than two?

5-101. Continuation of Exercise 5-100
(a) What is the conditional distribution of the number of bolts

rated low given that 16 bolts are rated high?
(b) What is the conditional expected number of bolts rated

low given that 16 bolts are rated high?
(c) Are the numbers of bolts rated high and low independent

random variables?

5-102. To evaluate the technical support from a computer
manufacturer, the number of rings before a call is answered by
a service representative is tracked. Historically, 70% of the
calls are answered in two rings or less, 25% are answered in
three or four rings, and the remaining calls require five rings
or more. Suppose you call this manufacturer 10 times and
assume that the calls are independent.
(a) What is the probability that eight calls are answered in two

rings or less, one call is answered in three or four rings,
and one call requires five rings or more?

(b) What is the probability that all 10 calls are answered in
four rings or less?

(c) What is the expected number of calls answered in four
rings or less?

5-103. Continuation of Exercise 5-102
(a) What is the conditional distribution of the number of calls

requiring five rings or more given that eight calls are
answered in two rings or less?

(b) What is the conditional expected number of calls requir-
ing five rings or more given that eight calls are answered
in two rings or less?

(c) Are the number of calls answered in two rings or less and
the number of calls requiring five rings or more independ-
ent random variables?

5-104. Determine the value of c such that the function
f (x, y) � cx2y for 0 � x � 3 and 0 � y � 2 satisfies the
properties of a joint probability density function.

5-105. Continuation of Exercise 5-104. Determine the
following:
(a) (b)
(c) (d)
(e) (f)

5-106. Continuation of Exercise 5-104.
(a) Determine the marginal probability distribution of the

random variable X.
(b) Determine the conditional probability distribution of Y

given that X � 1.
(c) Determine the conditional probability distribution of X

given that Y � 1.

5-107. The joint distribution of the continuous random
variables X, Y, and Z is constant over the region 

(a) Determine 
(b) Determine 
(c) What is the joint conditional probability density function

of X and Y given that Z � 1?
(d) What is the marginal probability density function of X?

5-108. Continuation of Exercise 5-107.
(a) Determine the conditional mean of Z given that X � 0 and

Y � 0.
(b) In general, determine the conditional mean of Z given that

X � x and Y � y.

5-109. Suppose that X and Y are independent, continuous
uniform random variables for 0 � x � 1 and 0 � y � 1. Use
the joint probability density function to determine the proba-
bility that 

5-110. The lifetimes of six major components in a copier are
independent exponential random variables with means of 8000,
10,000, 10,000, 20,000, 20,000, and 25,000 hours, respectively.
(a) What is the probability that the lifetimes of all the compo-

nents exceed 5000 hours?
(b) What is the probability that at least one component life-

time exceeds 25,000 hours?

5-111. Contamination problems in semiconductor manu-
facturing can result in a functional defect, a minor defect, or
no defect in the final product. Suppose that 20, 50, and 30% of
the contamination problems result in functional, minor, and no
defects, respectively. Assume that the effects of 10 contamina-
tion problems are independent.
(a) What is the probability that the 10 contamination problems

result in two functional defects and five minor defects?
(b) What is the distribution of the number of contamination

problems that result in no defects?

0 X � Y 0 � 0.5.

P1X 2 � Y 2 � 0.5, Z � 22
P1X 2 � Y 2 � 0.52 0 � z � 4.

x2 � y2 � 1,

E1Y 2E1X 2 P1X 
 2, 1 � Y � 1.52P11 � Y � 2.52
P1X � 2.52P1X � 1, Y � 12
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5-7 LINEAR COMBINATIONS OF RANDOM VARIABLES 187

(c) What is the expected number of contamination problems
that result in no defects?

5-112. The weight of adobe bricks for construction is
normally distributed with a mean of 3 pounds and a standard
deviation of 0.25 pound. Assume that the weights of the bricks
are independent and that a random sample of 25 bricks is
chosen.
(a) What is the probability that the mean weight of the sample

is less than 2.95 pounds?
(b) What value will the mean weight exceed with probability

0.99?

5-113. The length and width of panels used for interior doors
(in inches) are denoted as X and Y, respectively. Suppose that X
and Y are independent, continuous uniform random variables for
17.75 � x � 18.25 and 4.75 � y � 5.25, respectively.
(a) By integrating the joint probability density function over

the appropriate region, determine the probability that the
area of a panel exceeds 90 squared inches.

(b) What is the probability that the perimeter of a panel
exceeds 46 inches?

5-114. The weight of a small candy is normally distributed
with a mean of 0.1 ounce and a standard deviation of 0.01
ounce. Suppose that 16 candies are placed in a package and
that the weights are independent.
(a) What are the mean and variance of package net weight?
(b) What is the probability that the net weight of a package is

less than 1.6 ounces?
(c) If 17 candies are placed in each package, what is the

probability that the net weight of a package is less than
1.6 ounces?

5-115. The time for an automated system in a warehouse to
locate a part is normally distributed with a mean of 45 seconds
and a standard deviation of 30 seconds. Suppose that inde-
pendent requests are made for 10 parts.
(a) What is the probability that the average time to locate 10

parts exceeds 60 seconds?
(b) What is the probability that the total time to locate 10

parts exceeds 600 seconds?

5-116. A mechanical assembly used in an automobile en-
gine contains four major components. The weights of the
components are independent and normally distributed with
the following means and standard deviations (in ounces):

Standard
Component Mean Deviation

Left case 4 0.4
Right case 5.5 0.5
Bearing assembly 10 0.2
Bolt assembly 8 0.5

(a) What is the probability that the weight of an assembly
exceeds 29.5 ounces?

(b) What is the probability that the mean weight of eight
independent assemblies exceeds 29 ounces?

5-117. Suppose X and Y have a bivariate normal distribution
with , , , , and . Draw
a rough contour plot of the joint probability density function.

5-118. If 

determine E(X ), E(Y ), V(X ), V(Y ), and � by recorganizing the
parameters in the joint probability density function.

5-119. The permeability of a membrane used as a moisture
barrier in a biological application depends on the thickness of
two integrated layers. The layers are normally distributed with
means of 0.5 and 1 millimeters, respectively. The standard
deviations of layer thickness are 0.1 and 0.2 millimeters,
respectively. The correlation between layers is 0.7.
(a) Determine the mean and variance of the total thickness of

the two layers.
(b) What is the probability that the total thickness is less than

1 millimeter?
(c) Let X1 and X2 denote the thickness of layers 1 and 2, re-

spectively. A measure of performance of the membrane is
a function 2X1 � 3X2 of the thickness. Determine the
mean and variance of this performance measure.

5-120. The permeability of a membrane used as a moisture
barrier in a biological application depends on the thickness of
three integrated layers. Layers 1, 2, and 3 are normally dis-
tributed with means of 0.5, 1, and 1.5 millimeters, respec-
tively. The standard deviations of layer thickness are 0.1, 0.2,
and 0.3, respectively. Also, the correlation between layers 1
and 2 is 0.7, between layers 2 and 3 is 0.5, and between layers
1 and 3 is 0.3.
(a) Determine the mean and variance of the total thickness of

the three layers.
(b) What is the probability that the total thickness is less than

1.5 millimeters?

5-121. A small company is to decide what investments to
use for cash generated from operations. Each investment has a
mean and standard deviation associated with the percentage
gain. The first security has a mean percentage gain of 5% with
a standard deviation of 2%, and the second security provides
the same mean of 5% with a standard deviation of 4%. The
securities have a correlation of �0.5, so there is a negative
correlation between the percentage returns. If the company
invests two million dollars with half in each security, what is
the mean and standard deviation of the percentage return?
Compare the standard deviation of this strategy to one that
invests the two million dollars into the first security only.

� 1.61x � 12 1y � 22 � 1y � 222 4 f
fXY 
1x, y2 �

1

1.2�
 exp e �1

0.72
  3 1x � 122

� � �0.2�Y � 4�X � 4�Y � 1�X � 4
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188 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

5-122. Show that if X1, X2, p , Xp are independent,
continuous random variables, P(X1 � A1, X2 � A2, p ,
Xp � Ap) � P(X1 � A1)P(X2 � A2) p P(Xp � Ap) for any
regions A1, A2, p , Ap in the range of X1, X2, p , Xp

respectively.

5-123. Show that if X1, X2, p , Xp are independent
random variables and Y � c1X1 � c2X2 � � cpXp,

You can assume that the random variables are continuous.

5-124. Suppose that the joint probability function of
the continuous random variables X and Y is constant on
the rectangle 0 � x � a, 0 � y � b. Show that X and Y
are independent.

5-125. Suppose that the range of the continuous
variables X and Y is 0 � x � a and 0 � y � b. Also
suppose that the joint probability density function
fXY (x, y) � g (x)h( y), where g (x) is a function only of
x and h( y) is a function only of y. Show that X and Y
are independent.

V1Y 2 � c2
1V1X12 � c2

2V1X22 � p � c2
pV1Xp2

p
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5-8 FUNCTIONS OF RANDOM VARIABLES (CD ONLY)

In many situations in statistics, it is necessary to derive the probability distribution of a func-
tion of one or more random variables. In this section, we present some results that are helpful
in solving this problem.

Suppose that X is a discrete random variable with probability distribution fX(x). Let Y � h(X )
be a function of X that defines a one-to-one transformation between the values of X and Y, and we
wish to find the probability distribution of Y. By a one-to-one transformation, we mean that each
value x is related to one and only one value of y � h(x) and that each value of y is related to one
and only one value of x, say, x � u( y), where u( y) is found by solving y � h(x) for x in terms of y.

Now, the random variable Y takes on the value y when X takes on the value u( y).
Therefore, the probability distribution of Y is

We may state this result as follows.

fY 
1 y2 � P1Y � y2 � P 3X � u1 y2 4 � fX 

3u1 y2 4

EXAMPLE S5-1 Let X be a geometric random variable with probability distribution

Find the probability distribution of Y � X 2.
Since X � 0, the transformation is one to one; that is, y � x2 and Therefore,

Equation S5-1 indicates that the distribution of the random variable Y is

Now suppose that we have two discrete random variables X1 and X2 with joint probability
distribution and we wish to find the joint probability distribution of
two new random variables Y1 � h1(X1, X2) and Y2 � h2(X1, X2). We assume that the functions
h1 and h2 define a one-to-one transformation between (x1, x2) and ( y1, y2). Solving the equa-
tions y1 � h1(x1, x2) and y2 � h2(x1, x2) simultaneously, we obtain the unique solution
x1 � u1( y1, y2) and x2 � u2( y1, y2). Therefore, the random variables Y1 and Y2 take on the
values y1 and y2 when X1 takes on the value u1( y1, y2) and X2 takes the value u2( y1, y2). The
joint probability distribution of Y1 and Y2 is

 � fX1X2
3u11 y1,  y22, u21 y1,  y22 4

 � P 3X1 � u11 y1,  y22, X2 � u21 y1,  y22 4
 fY1Y2
1 y1, y22 � P1Y1 � y1, Y2 � y22

fY1
 Y2
1y1, y22fX1

 X2 

1x1, x22

fY 1 y2 � f 11y2 � p 11 � p21y�1,  y � 1, 4, 9, 16, p

x � 1y.

fX 1x2 � p 11 � p2 x�1,  x � 1, 2, p

5-1

Suppose that X is a discrete random variable with probability distribution fX(x). Let
Y � h(X ) define a one-to-one transformation between the values of X and Y so that
the equation y � h(x) can be solved uniquely for x in terms of y. Let this solution be
x � u( y). Then the probability distribution of the random variable Y is

(S5-1)fY 
1 y2 � fX 

3u1 y2 4
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5-2

We will also state this result as follows.

A very important application of Equation S5-2 is in finding the distribution of a random vari-
able Y1 that is a function of two other random variables X1 and X2. That is, let Y1 � h1(X1, X2)
where X1 and X2 are discrete random variables with joint distribution We want to
find the probability distribution of  Y1, say, To do this, we define a second function Y2 �
h2(X1, X2) so that the one-to-one correspondence between the points (x1, x2) and (y1, y2) is main-
tained, and we use the result in Equation S5-2 to find the joint probability distribution of Y1 and
Y2. Then the distribution of Y1 alone is found by summing over the y2 values in this joint distribu-
tion. That is, is just the marginal probability distribution of Y1, or

EXAMPLE S5-2 Consider the case where X1 and X2 are independent Poisson random variables with parameters
�1 and �2, respectively. We will find the distribution of the random variable Y1 � X1 � X2.

The joint distribution of X1 and X2 is

because X1 and X2 are independent. Now to use Equation S5-2 we need to define a second func-
tion Y2 � h2(X1, X2). Let this function be Y2 � X2. Now the solutions for x1 and x2 are x1 � y1 � y2

and x2 � y2. Thus, from Equation S5-2 the joint probability distribution of Y1 and Y2 is

Because x1 � 0, the transformation x1 � y1 � y2 requires that x2 � y2 must always be less than
or equal to y1. Thus, the values of y2 are 0, 1, . . . , y1, and the marginal probability distribution
of Y1 is obtained as follows:

 fY1
1 y12 � a

y1

y2�0
 fY1Y2
1 y1, y22 � a

y1

y2�0
 
e�1�1��22�1

1 y1�y22�2
y2

1y1 � y22! y2!

fY1Y2
1 y1, y22 �

e�1�1��22�1
1 y1�y22�2

y2

1 y1 � y22! y2!
,  y1 � 0, 1, 2, p ,  y2 � 0, 1, p , y1

 �
e�1�1��22�x1

1 �x2
2

x1! x2!
,  x1 � 0, 1, p ,  x2 � 0, 1, p

 �
e��1�x1

1

x1!
 

e��2�x2
2

x2!

 fX1X2
1x1, x22 � fX1

1x12 fX2
1x22

fY1
1 y12 � a

y2

 fY1Y2
1 y1,  y22

fY1
1 y12

fY1
1 y12.

fX1
 X2
1x1, x22.

Suppose that X1 and X2 are discrete random variables with joint probability distribu-
tion and let Y1 � h1(X1, X2) and Y2 � h2(X1, X2) define one-to-one trans-
formations between the points (x1, x2) and (y1, y2) so that the equations y1 � h1(x1, x2)
and y2 � h2(x1, x2) can be solved uniquely for x1 and x2 in terms of y1 and y2. Let this
solution be x1 � u1(y1, y2) and x2 � u2(y1, y2). Then the joint probability distribution
of Y1 and Y2 is

(S5-2)fY1Y2
1y1, y22 � fX1

 X2
3u11 y1, y22, u21 y1, y22 4

fX1
 X2
1x1,  x22,
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The summation in this last expression is the binomial expansion of so

We recognize this as a Poisson distribution with parameter �1 � �2. Therefore, we have shown
that the sum of two independent Poisson random variables with parameters �1 and �2 has a
Poisson distribution with parameter �1 � �2.

We now consider the situation where the random variables are continuous. Let Y � h(X),
with X continuous and the transformation is one to one.

fY1
1 y12 �

e�1�1��22 1�1 � �22y1

y1!
,  y1 � 0, 1, p

1�1 � �22y1,

 �
e�1�1��22

y1!
 a

y1

y2�0
 
y1! �1

1 y1�y22�2
y2

1 y1 � y22! y2!
�

e�1�1��22
y1!

 a
y1

y2�0
ay1

y2
b  �1

1 y1�y22 �2
y2

Suppose that X is a continuous random variable with probability distribution fX(x).
The function Y � h(X) is a one-to-one transformation between the values of Y and X
so that the equation y � h(x) can be uniquely solved for x in terms of y. Let this
solution be x � u(y). The probability distribution of Y is

(S5-3)

where ( y) is called the Jacobian of the transformation and the absolute value
of J is used.

J � u¿

fY 1 y2 � fX 3u1 y2 4 0 J 0

Equation S5-3 is shown as follows. Let the function y � h(x) be an increasing function of x.
Now

If we change the variable of integration from x to y by using x � u( y), we obtain dx � u�( y) dy
and then

Since the integral gives the probability that Y � a for all values of a contained in the feasible
set of values for y, must be the probability density of Y. Therefore, the proba-
bility distribution of Y is

If the function y � h(x) is a decreasing function of x, a similar argument holds.

fY 
1 y2 � fX 

3u 1 y2 4u¿ 1 y2 � fX 3u1 y2 4J

fX 
3u1 y2 4u¿ 1 y2

P1Y � a2 � �
a

�	

 fX 
3u1 y2 4u¿1 y2 dy

 � �
u 1a2

�	

 fX 
1x2 dx

 P1Y � a2 � P 3X � u1a2 4

PQ220 6234F.CD(05)  5/13/02  4:51 PM  Page 3 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark F



5-4

EXAMPLE S5-3 Let X be a continuous random variable with probability distribution

Find the probability distribution of Y � h(X ) � 2X � 4.
Note that y � h(x) � 2x � 4 is an increasing function of x. The inverse solution is x �

u( y) � ( y � 4)�2, and from this we find the Jacobian to be 
Therefore, from S5-3 the probability distribution of Y is

We now consider the case where X1 and X2 are continuous random variables and we wish
to find the joint probability distribution of Y1 � h1(X1, X2) and Y2 � h2(X1, X2) where the trans-
formation is one to one. The application of this will typically be in finding the probability dis-
tribution of Y1 � h1(X1, X2), analogous to the discrete case discussed above. We will need the
following result.

fY 1 y2 �
1 y � 42
2

8
 a1

2
b �

y � 4

32
,  4 � y � 12

J � u¿1 y2 � dx
dy � 1
2.

fX 
1x2 �

x

8
, 0 � x � 4

Suppose that X1 and X2 are continuous random variables with joint probability distri-
bution and let Y1 � h1(X1, X2) and Y2 � h2(X1, X2) define a one-to-one
transformation between the points (x1, x2) and (y1, y2). Let the equations y1 � h1(x1,
x2) and y2 � h2(x1, x2) be uniquely solved for x1 and x2 in terms of y1 and y2 as x1 �
u1(y1, y2) and x2 � u2(y1, y2). Then the joint probability of Y1 and Y2 is

(S5-4)

where J is the Jacobian and is given by the following determinant:

and the absolute value of the determinant is used.

J � ` �x1
�y1, �x1
�y2

�x2
�y1, �x2
�y2
`

fY1Y2
1 y1, y22 � fX1X2

 3u11 y1, y22, u21 y1, y22 4 0 J 0

fX1 
X2
1x1, x22,

This result can be used to find the joint probability distribution of Y1 and Y2. Then
the probability distribution of Y1 is

That is, ( y1) is the marginal probability distribution of Y1.

EXAMPLE S5-4 Suppose that X1 and X2 are independent exponential random variables with 
and Find the probability distribution of .Y � X1
X2fX2

1x22 � 2e�2x2.
fX1
1x12 � 2e�2x1

fY1

fY1
1 y12 � �

	

�	

 fY1Y2
 1 y1, y22 dy2

fY1Y2
1 y1, y22,
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The joint probability distribution of X1 and X2 is

because X1 and X2 are independent. Let Y1 � h1(X1, X2) � and Y2 � h2(X1, X2) �
X1 � X2. The inverse solutions of y1 � and y2 � x1 � x2 are and

, and it follows that

Therefore

and from Equation S5-4 the joint probability distribution of Y1 and Y2 is

for y1 
 0, y2 
 0. We need to find the distribution of . This is the marginal prob-
ability distribution of Y1, or

An important application of Equation S5-4 is to obtain the distribution of the sum of two
independent random variables X1 and X2. Let Y1 � X1 � X2 and let Y2 � X2. The inverse so-
lutions are x1 � y1 � y2 and x2 � y2. Therefore,

 
�x2

�y1
� 0  

�x2

�y2
� 1

 
�x1

�y1
� 1  

�x1

�y2
� �1

 �
1

11 � y122,  y1 
 0

 � �
	

0

 4e�2y2 3y2
 11 � y122 4  dy2

fY1
1 y12 � �

	

0

 fY1Y2
1y1, y22 dy2

Y1 � X1
X2

 � 4e�2y2 y2
 11 � y122
 � 4e�23y1y2 
11�y12�y2
11�y124 ` y2

11 � y122 `
fY1Y2

 1 y1, y22 � fX1X2
 3u11 y1, y22, u21 y1, y22 4 0 J 0

J � ∞
y2

11 � y122
y1

11 � y12
�y2

11 � y122
1

11 � y12
∞ � y2

11 � y122

�x2

�y1
� y2 c �1

11 � y122 d ,  
�x2

�y2
� c 1

11 � y12 d

�x1

�y1
� y2 c 1

11 � y122 d ,  
�x1

�y2
� c y1

11 � y12 d
x2 � y2
 11 � y12

x1 � y1 y2
 11 � y12x1
x2

X1
X2

fX1X2
 1x1, x22 � 4e�21x1�x22,  x1 � 0,  x2 � 0
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and . From Equation S5-4, the joint probability density function of Y1 and Y2 is

Therefore, the marginal probability density function of Y1 is

The notation is simpler if the variable of integration y2 is replaced with x and y1 is replaced
with y. Then the following result is obtained.

fY1
1 y12 � �

	

�	

  fX1 

1 y1 � y22  fX2 

1 y22 dy2

fY1Y2
1 y1, y22 � f X1

1 y1 � y22  f X2
1 y22

ƒ J ƒ � 1

If X1 and X2 are independent random variables with probability density functions
(x1) and (x2), respectively, the probability density function of Y � X1 � X2 is

(S5-5)fY 1 y2 � �
	

�	

 fX1
 1 y � x2  f X2

 1x2 dx

fX2
fX1

Convolution 
of X1 and X2

The probability density function of Y in Equation S5-5 is referred to as the convolution of the
probability density functions for X1 and X2. This concept is commonly used for transforma-
tions (such as Fourier transformations) in mathematics. This integral may be evaluated nu-
merically to obtain the probability density function of Y, even for complex probability density
functions for X1 and X2. A similar result can be obtained for discrete random variables with the
integral replaced with a sum.

In some problems involving transformations, we need to find the probability distribution
of the random variable Y � h(X) when X is a continuous random variable, but the transforma-
tion is not one to one. The following result is helpful.

Suppose that X is a continuous random variable with probability distribution fX(x),
and Y � h(X) is a transformation that is not one to one. If the interval over which X
is defined can be partitioned into m mutually exclusive disjoint sets such that each of
the inverse functions x1 � u1( y), x2 � u2( y), , xm � um( y) of y � u(x) is one to
one, the probability distribution of Y is

(S5-6)

where Ji � , i � 1, 2, , m and the absolute values are used.pu¿i 1 y2
fY 1 y2 � a

m

i�1
 fX 3ui 1 y2 4  0 Ji 0

p

To illustrate how this equation is used, suppose that X is a normal random variable with
mean � and variance �2, and we wish to show that the distribution of is aY � 1X � �22
�2
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5-7

chi-squared distribution with one degree of freedom. Let , and Y � Z 2. The
probability distribution of Z is the standard normal; that is,

The inverse solutions of y � z2 are so the transformation is not one to one. Define
and so that and . Then by Equation

S5-6, the probability distribution of Y is

Now it can be shown that , so we may write f( y) as

which is the chi-squared distribution with 1 degree of freedom.

EXERCISES FOR SECTION 5-8

fY 1 y2 �
1

21
2 �  a1
2
b

 y1
2�1 e�y
2,  y 
 0

1� � � 11
22

 �
1

21
21�
 y1
2�1 e�y
2,  y 
 0

 fY 
1 y2 �

112�
  e�y
2 ` �1

21y
` � 112�

  e�y
2 ` 1

21y
`

J2 � 11
22
1yJ1 � �11
22
1yz2 � �1yz1 � �1y
z � �1y,

f  1z2 �
112�

 e�z2
2,  �	 � z � 	

Z � 1X � �2
�

S5-1. Suppose that X is a random variable with probability
distribution

Find the probability distribution of the random Y � 2X � 1.

S5-2. Let X be a binomial random variable with p � 0.25
and n � 3. Find the probability distribution of the random
variable Y � X 2.

S5-3. Suppose that X is a continuous random variable with
probability distribution

(a) Find the probability distribution of the random variable
Y � 2X � 10.

(b) Find the expected value of Y.

S5-4. Suppose that X has a uniform probability distribution

Show that the probability distribution of the random variable
Y � �2 ln X is chi-squared with two degrees of freedom.

fX 1x2 � 1,  0 � x � 1

fX 1x2 �
x

18
,  0 � x � 6

fX 1x2 � 1
4,  x � 1, 2, 3, 4

S5-5. A current of I amperes flows through a resistance of R
ohms according to the probability distribution

Suppose that the resistance is also a random variable with
probability distribution

Assume that I and R are independent.
(a) Find the probability distribution for the power (in watts)

P � I 2R.
(b) Find E(P).

S5-6. A random variable X has the following probability
distribution:

(a) Find the probability distribution for Y � X 2.
(b) Find the probability distribution for Y � .
(c) Find the probability distribution for Y � ln X.

X 
1
2

fX 1x2 � e�x,  x � 0

fR 1r2 � 1,  0 � r � 1

fI 1i2 � 2i,  0 � i � 1
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5-8

S5-7. The velocity of a particle in a gas is a random variable
V with probability distribution

where b is a constant that depends on the temperature of the
gas and the mass of the particle.
(a) Find the value of the constant a.
(b) The kinetic energy of the particle is . Find the

probability distribution of W.

S5-8. Suppose that X has the probability distribution

Find the probability distribution of the random variable Y � eX.

S5-9. Prove that Equation S5-3 holds when y � h(x) is a
decreasing function of x.

S5-10. The random variable X has the probability distribution

Find the probability distribution of Y � (X � 2)2.

S5-11. Consider a rectangle with sides of length S1 and S2,
where S1 and S2 are independent random variables. The prob-

fX 1x2 �
x
8 ,  0 � x � 4

fX 1x2 � 1,  1 � x � 2

W � mV 
2�2

fV 1v2 � av2e�bv  v � 0

ability distributions of S1 and S2 are

and

(a) Find the joint distribution of the area of the rectangle A �
S1 S2 and the random variable Y � S1.

(b) Find the probability distribution of the area A of the rec-
tangle.

S5-12. Suppose we have a simple electrical circuit in
which Ohm’s law V � IR holds. We are interested in the
probability distribution of the resistance R given that V and
I are independent random variables with the following dis-
tributions:

and

Find the probability distribution of R.

fI 1i2 � 1,  1 � i � 2

fV 1v2 � e�v,  v � 0

fS2
 1s22 �

s2

8
,  0 � s2 � 4

fS1
 1s12 � 2s1,  0 � s1 � 1

5-9 MOMENT GENERATING FUNCTIONS (CD ONLY)

Suppose that X is a random variable with mean �. Throughout this book we have used the idea of
the expected value of the random variable X, and in fact E(X) � �. Now suppose that we are in-
terested in the expected value of a particular function of X, say, g(X) � X r. The expected value of
this function, or E[g(X)] � E(X r), is called the rth moment about the origin of the random variable
X, which we will denote by .�¿r

The rth moment about the origin of the random variable X is

(S5-7)�¿r � E1X r 2 � µ
a

x
  x

r
 f 1x2, X discrete

�
	

�	

  x
r f 1x2 dx, X continuous

Definition

Notice that the first moment about the origin is just the mean, that is, .
Furthermore, since the second moment about the origin is , we can write the vari-
ance of a random variable in terms of origin moments as follows:


2 � E1X22 � 3E1X2 42 � �¿2 � �2

E1X 22 � �¿2
E1X2 � �¿1 � �
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5-9

The moments of a random variable can often be determined directly from the definition
in Equation S5-7, but there is an alternative procedure that is frequently useful that makes use
of a special function.

The moment generating function MX(t) will exist only if the sum or integral in the above def-
inition converges. If the moment generating function of a random variable does exist, it can be
used to obtain all the origin moments of the random variable.

Assuming that we can differentiate inside the summation and integral signs,

Now if we set t � 0 in this expression, we find that

EXAMPLE S5-5 Suppose that X has a binomial distribution, that is

Determine the moment generating function and use it to verify that the mean and variance of
the binomial random variable are � � np and �2 � np(1 � p).

From the definition of a moment generating function, we have

MX 
1t2 � a

n

x�0
 etx

  an
x
b  px11 � p2n�x � a

n

x�0
 an

x
b  1pet2x 11 � p2n�x

f 1x2 � an
x

 b  px11 � p2n�x,  x � 0, 1, p , n

drMX 1t2
dt r `

t�0
� E1Xr2

dr
 MX 1t2
dt r � µ

a
x

  x
retx f 1x2, X discrete

�
	

�	

  x
retx f 1x2 dx, X continuous

The moment generating function of the random variable X is the expected value of
e tX and is denoted by MX (t). That is,

(S5-8)MX 1t2 � E1etX2 � µ
a

x
  e

tx
 f 1x2, X discrete

�
	

�	

  e
tx f 1x2 dx, X continuous

Definition

Let X be a random variable with moment generating function MX(t). Then

(S5-9)�¿r �
dr

 MX 1t2
dt r `

t�0
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5-10

This last summation is the binomial expansion of [pet � (1 � p)]n, so

Taking the first and second derivatives, we obtain

and

If we set t � 0 in , we obtain

which is the mean of the binomial random variable X. Now if we set t � 0 in 

Therefore, the variance of the binomial random variable is

EXAMPLE S5-6 Find the moment generating function of the normal random variable and use it to show that
the mean and variance of this random variable are � and �2, respectively.

The moment generating function is

If we complete the square in the exponent, we have

and then

 � e�t��2t2
2 �
	

�	

 
1

�12�
  e�11
223x� 1�� t�2242
�2

dx

MX 1t2 � �
	

�	

 
1

�12�
  e�53x� 1�� t�2242�2�t�2� t2�46
12�22 dx

x2 � 21� � t�22x � �2 � 3x � 1� � t�22 42 � 2�t�2 � t2�4

 � �
	

�	

 
1

�12�
  e�3x2�21�� t�22x��24 
 12�22 dx

 MX1t2 � �
	

�	

 etx 1

�12�
  e�1x��22
12�22 dx

�2 � �¿2 � �2 � np11 � p � np2 � 1np22 � np � np2 � np11 � p2

M–X 
1t2 0 t�0 � �¿2 � np11 � p � np2

M–X 
1t2,

M¿X 
1t2 0 t�0 � �¿1 � � � np

M¿X  
1t2

M–X 
1t2 �

d2MX 
1t2

dt2 � npet 11 � p � npet2 31 � p1et � 12 4n�2

M¿X  
1t2 �

dMX 
1t2

dt
� npet 31 � p1et � 12 4n�1

MX 
1t2 � 3pet � 11 � p2 4n
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Let . Then dx � � du, and this last expression above becomes

Now the integral is just the total area under a standard normal density, which is 1, so the mo-
ment generating function of a normal random variable is

Differentiating this function twice with respect to t and setting t � 0 in the result, we find

Therefore, the variance of the normal random variable is

Moment generating functions have many important and useful properties. One of the
most important of these is the uniqueness property. That is, the moment generating function
of a random variable is unique when it exists, so if we have two random variables X and Y, say,
with moment generating functions MX(t) and MY (t), then if MX(t) � MY (t) for all values of t,
both X and Y have the same probability distribution. Some of the other useful properties of the
moment generating function are summarized as follows.

�2 � �¿2 � �2 � �2 � �2 � �2 � �2

dMX 1t2
dt

 `
t�0

� �¿1 � �  and  
d2MX 1t2

dt2  `
t�0

� �¿2 � �2 � �2

MX 
1t2 � e�t��2t2
2

MX 
1t2 � e�t��2t2
2 �

	

�	

 

112�
 e�u2
2 du

u � 3x � 1� � t�22 4 
�

If X is a random variable and a is a constant, then

(1)

(2)

If X1, X2, , Xn are independent random variables with moment generating functions
(t), (t), . . . , (t), respectively, and if Y � X1 � X2 � � Xn, then the mo-

ment generating function of Y is

(3) (S5-10)MY 
1t2 � MX1

1t2 � MX2
1t2 � p � MXn

1t2

pMXn
MX2

MX1

p

MaX 1t2 � MX 1at2
MX�a1t2 � eatMX 

1t2

Properties of
Moment

Generating
Functions

Property (1) follows from . Property (2)
follows from . Consider property (3) for the case
where the X’s are continuous random variables:

 � �
	

�	

�
	

�	

 
p �

	

�	

 
et 1x1�x2�p�xn2 f 1x1, x2, p , xn2 dx1 dx2 p dxn

 MY 
1t2 � E1etY2 � E 3et 1X1�X2�p�Xn2 4

MaX 
1t2 � E 3et 1aX2 4 � E 3e1at2X 4 � MX 

1at2MX�a1t2 � E 3et 1X�a2 4 � eatE1etX2 � eatMX 
1t2
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Since the X’s are independent,

and one may write

For the case when the X’s are discrete, we would use the same approach replacing integrals
with summations.

Equation S5-10 is particularly useful. In many situations we need to find the distribution
of the sum of two or more independent random variables, and often this result makes the prob-
lem very easy. This is illustrated in the following example.

EXAMPLE S5-7 Suppose that X1 and X2 are two independent Poisson random variables with parameters �1 and
�2, respectively. Find the probability distribution of Y � X1 � X2.

The moment generating function of a Poisson random variable with parameter � is

so the moment generating functions of X1 and X2 are and 
respectively. Using Equation S5-10, we find that the moment generating function of 
Y � X1 � X2 is

which is recognized as the moment generating function of a Poisson random variable with pa-
rameter �1 � �2. Therefore, we have shown that the sum of two independent Poisson random
variables with parameters �1 and �2 is a Poisson random variable with parameters equal to the
sum of the two parameters �1 � �2.

EXERCISES FOR SECTION 5-9

MY 1t2 � MX1
1t2  MX2

1t2 � e�11e
t�12e�21e

t�12 � e 
1�1��221e

t�12

MX2
1t2 � e�21e

t�12,MX1
1t2 � e�11e

t�12

MX 
1t2 � e�1et�12

 � MX1 
1t2 �  MX2

1t2  � p � MXn
1t2

MY 
1t2 � �

�

��

etx1 fX1
1x12 dx1 �

�

��

 
etx2 fX2

1x22 dx2 
p �

�

��

 
etxn fXn

1xn2 dxn

f  1x1, x2, p , xn2 � fX1
1x12 � fX2

1x22 � p � fXn
1xn2

S5-13. A random variable X has the discrete uniform distri-
bution

(a) Show that the moment generating function is

(b) Use MX(t) to find the mean and variance of X.

S5-14. A random variable X has the Poisson distribution

MX 
1t 2 �

et 11 � e 
tm2

m11 � et2

f 1x2 �
1
m,  x � 1, 2, p , m (a) Show that the moment generating function is

(b) Use MX(t) to find the mean and variance of the Poisson
random variable.

S5-15. The geometric random variable X has probability
distribution

f 1x2 � 11 � p2 x�1p, x � 1, 2, p

MX 
1t 2 � e�1et�12

f 1x2 �
e���x

x !
,  x � 0, 1, p
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5-13

(a) Show that the moment generating function is

(b) Use MX(t) to find the mean and variance of X.

S5-16. The chi-squared random variable with k degrees of
freedom has moment generating function MX(t) � (1 � 2t)�k�2.
Suppose that X1 and X2 are independent chi-squared random
variables with k1 and k2 degrees of freedom, respectively.
What is the distribution of Y � X1 � X2?

S5-17. A continuous random variable X has the following
probability distribution:

(a) Find the moment generating function for X.
(b) Find the mean and variance of X.

S5-18. The continuous uniform random variable X has den-
sity function

(a) Show that the moment generating function is

(b) Use MX(t) to find the mean and variance of X.

S5-19. A random variable X has the exponential distribution

(a) Show that the moment generating function of X is

(b) Find the mean and variance of X.

S5-20. A random variable X has the gamma distribution

MX 
1t 2 � a1 �

t

�
b�1

f 1x2 � �e��x,  x 
 0

MX 
1t 2 �

et � � et �

t1� � �2

f 1x2 �
1

� � �
,  � � x � �

f 1x2 � 4xe�2x,  x 
 0

MX 
1t2 �

pe 
t

1 � 11 � p2e 
t (a) Show that the moment generating function of X is

(b) Find the mean and variance of X.

S5-21. Let X1, X2, . . . , Xr be independent exponential ran-
dom variables with parameter �.
(a) Find the moment generating function of Y � X1 �

X2 � � Xr.
(b) What is the distribution of the random variable Y?
[Hint: Use the results of Exercise S5-20].

S5-22. Suppose that Xi has a normal distribution with mean
�i and variance Let X1 and X2 be independent.
(a) Find the moment generating function of Y � X1 � X2.
(b) What is the distribution of the random variable Y?

S5-23. Show that the moment generating function of the
chi-squared random variable with k degrees of freedom is
MX(t) � (1 � 2t)�k�2. Show that the mean and variance of this
random variable are k and 2k, respectively.

S5-24. Continuation of Exercise S5-20. 
(a) Show that by expanding etX in a power series and taking

expectations term by term we may write the moment gen-
erating function as

Thus, the coefficient of tr�r! in this expansion is the rth
origin moment.
(b) Continuation of Exercise S5-20. Write the power series

expansion for MX(t), the gamma random variable.
(c) Continuation of Exercise S5-20. Find and using the

results of parts (a) and (b). Does this approach give the
same answers that you found for the mean and variance of
the gamma random variable in Exercise S5-20?

�¿2�¿1

�¿r 
,

 � �¿r 

t 
r

r!
� p

 � 1 � �¿1 
t � �¿2  

t 
2

2!
� p

 MX 
1t 2 � E 1etX2

�2
i , i � 1, 2.

p

MX 
1t2 � a1 �

t

�
b�r

f  1x2 �
�

�1r2   1� x2r�1
 e��x,  x 
 0

5-10 CHEBYSHEV’S INEQUALITY (CD ONLY)

In Chapter 3 we showed that if X is a normal random variable with mean � and standard
deviation �, P(� � 1.96� < X < � � 1.96�) � 0.95. This result relates the probability of a
normal random variable to the magnitude of the standard deviation. An interesting, similar re-
sult that applies to any discrete or continuous random variable was developed by the mathe-
matician Chebyshev in 1867.

PQ220 6234F.CD(05)  5/13/02  4:51 PM  Page 13 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark 
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This result is interpreted as follows. The probability that a random variable differs from its
mean by at least c standard deviations is less than or equal to 1�c2. Note that the rule is useful
only for c > 1.

For example, using c = 2 implies that the probability that any random variable differs
from its mean by at least two standard deviations is no greater than 1�4. We know that for a
normal random variable, this probability is less than 0.05. Also, using c � 3 implies that the
probability that any random variable differs from its mean by at least three standard deviations
is no greater than 1�9. Chebyshev’s inequality provides a relationship between the standard
deviation and the dispersion of the probability distribution of any random variable. The proof
is left as an exercise.

Table S5-1 compares probabilities computed by Chebyshev’s rule to probabilities com-
puted for a normal random variable.

EXAMPLE S5-8 The process of drilling holes in printed circuit boards produces diameters with a standard
deviation of 0.01 millimeter. How many diameters must be measured so that the probability is
at least 8�9 that the average of the measured diameters is within 0.005 of the process mean
diameter �?

Let X1, X2, . . . , Xn be the random variables that denote the diameters of n holes. The aver-
age measured diameter is Assume that the X’s are independent
random variables. From Equation 5-40, Consequently, the
standard deviation of is (0.012�n)1�2. By applying Chebyshev’s inequality to ,

Let c = 3. Then,

Therefore,

P1 0 X � � 0 � 310.012
n21
22 � 8
9

P1 0 X � � 0 � 310.012
n21
22 � 1
9

P1 0 X � � 0 � c10.012
n21
22 � 1
c2

XX
E1X 2 � � and V1X 2 � 0.012
n.

X � 1X1 � X2 � p �  Xn2
n.

For any random variable X with mean � and variance �2,

for c > 0.

P1 0 X � � 0 �  c�2 � 1
c2

Chebyshev's
Inequality

Table S5-1 Percentage of Distribution Greater than c Standard
Deviations from the Mean

Chebyshev’s Rule Normal 
c for any Probability Distribution Distribution

1.5 less than 44.4% 13.4%
2 less than 25.0% 4.6%
3 less than 11.1% 0.27%
4 less than 6.3% 0.01%
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Thus, the probability that is within 3(0.012�n)1�2 of � is at least 8�9. Finally, n is chosen
such that 3(0.012�n)1�2 � 0.005. That is,

EXERCISES FOR SECTION 5-10

n � 32 30.012�0.0052 4 � 36

X

S5-25. The photoresist thickness in semiconductor manu-
facturing has a mean of 10 micrometers and a standard devia-
tion of 1 micrometer. Bound the probability that the thickness
is less than 6 or greater than 14 micrometers.

S5-26. Suppose X has a continuous uniform distribution
with range 0 � x � 10. Use Chebyshev’s rule to bound the
probability that X differs from its mean by more than two stan-
dard deviations and compare to the actual probability.

S5-27. Suppose X has an exponential distribution with
mean 20. Use Chebyshev’s rule to bound the probability that
X differs from its mean by more than two standard deviations
and by more than three standard deviations and compare to the
actual probabilities.

S5-28. Suppose X has a Poisson distribution with mean � � 4.
Use Chebyshev’s rule to bound the probability that X differs from
its mean by more than two standard deviations and by more than
three standard deviations and compare to the actual probabilities.

S5-29. Consider the process of drilling holes in printed cir-
cuits boards. Assume that the standard deviation of the diame-
ters is 0.01 and that the diameters are independent. Suppose

that the average of 500 diameters is used to estimate the
process mean.
(a) The probability is at least 15�16 that the measured aver-

age is within some bound of the process mean. What is the
bound?

(b) If it is assumed that the diameters are normally distrib-
uted, determine the bound such that the probability is
15�16 that the measured average is closer to the process
mean than the bound.

S5-30. Prove Chebyshev’s rule from the following steps.
Define the random variable Y as follows:

(a) Determine E(Y)
(b) Show that 
(c) Using part (b), show that 
(d) Using part (c), complete the derivation of Chebyshev’s

inequality.

E 3 1X � �22 4 � c2	2 E 3Y 4
1X � �22 � 1X � �22 Y � c2	2Y

Y � e1 if 0X � � 0 � c	

0 otherwise
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6Random Sampling and
Data Description

CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Compute and interpret the sample mean, sample variance, sample standard deviation, sample me-

dian, and sample range
2. Explain the concepts of sample mean, sample variance, population mean, and population variance
3. Construct and interpret visual data displays, including the stem-and-leaf display, the histogram,

and the box plot 
4. Explain the concept of random sampling 
5. Construct and interpret normal probability plots 
6. Explain how to use box plots and other data displays to visually compare two or more samples of data 
7. Know how to use simple time series plots to visually display the important features of time-

oriented data.

CD MATERIAL
8. Interpret probability plots for distributions other than normal.

Answers for most odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

6-1 DATA SUMMARY AND DISPLAY

6-2 RANDOM SAMPLING

6-3 STEM-AND-LEAF DIAGRAMS

6-4 FREQUENCY DISTRIBUTIONS 
AND HISTOGRAMS

6-5 BOX PLOTS

6-6 TIME SEQUENCE PLOTS

6-7 PROBABILITY PLOTS

6-8 MORE ABOUT PROBABILITY
PLOTTING (CD ONLY)
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190 CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

6-1 DATA SUMMARY AND DISPLAY

Well-constructed data summaries and displays are essential to good statistical thinking, be-
cause they can focus the engineer on important features of the data or provide insight about
the type of model that should be used in solving the problem. The computer has become an
important tool in the presentation and analysis of data. While many statistical techniques re-
quire only a hand-held calculator, much time and effort may be required by this approach, and
a computer will perform the tasks much more efficiently.

Most statistical analysis is done using a prewritten library of statistical programs. The
user enters the data and then selects the types of analysis and output displays that are of
interest. Statistical software packages are available for both mainframe machines and
personal computers. We will present examples of output from Minitab (one of the most
widely-used PC packages), throughout the book. We will not discuss the hands-on use of
Minitab for entering and editing data or using commands. This information is found in the
software documentation. 

We often find it useful to describe data features numerically. For example, we can char-
acterize the location or central tendency in the data by the ordinary arithmetic average or
mean. Because we almost always think of our data as a sample, we will refer to the arithmetic
mean as the sample mean.

If the n observations in a sample are denoted by the sample mean is

(6-1)x �
x1 � x2 � p � xn

n �
a

n

i�1
xi

n

x1, x2, p , xn,
Definition

EXAMPLE 6-1 Let’s consider the eight observations collected from the prototype engine connectors from
Chapter 1. The eight observations are x1 � 12.6, x2 � 12.9, x3 � 13.4, x4 � 12.3, x5 � 13.6,
x6 � 13.5, x7 � 12.6, and x8 � 13.1. The sample mean is

A physical interpretation of the sample mean as a measure of location is shown in the dot
diagram of the pull-off force data. See Figure 6-1. Notice that the sample mean can be
thought of as a “balance point.” That is, if each observation represents 1 pound of mass placed
at the point on the x-axis, a fulcrum located at would exactly balance this system of weights.

The sample mean is the average value of all the observations in the data set. Usually,
these data are a sample of observations that have been selected from some larger population
of observations. Here the population might consist of all the connectors that will be manufac-
tured and sold to customers. Recall that this type of population is called a conceptual or

x

x � 13.0

 �
104
8

� 13.0 pounds

x �
x1 � x2 � p � xn

n �
a

8

i�1
xi

8
�

12.6 � 12.9 � p � 13.1
8
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6-1 DATA SUMMARY AND DISPLAY 191

hypothetical population, because it does not physically exist. Sometimes there is an actual
physical population, such as a lot of silicon wafers produced in a semiconductor factory. 

In previous chapters we have introduced the mean of a probability distribution, denoted
. If we think of a probability distribution as a model for the population, one way to think

of the mean is as the average of all the measurements in the population. For a finite popula-
tion with N measurements, the mean is

(6-2)

The sample mean, , is a reasonable estimate of the population mean, �. Therefore, the engi-
neer designing the connector using a 3�32-inch wall thickness would conclude, on the basis
of the data, that an estimate of the mean pull-off force is 13.0 pounds.

Although the sample mean is useful, it does not convey all of the information about a
sample of data. The variability or scatter in the data may be described by the sample variance
or the sample standard deviation.

x

� �
a
N

i�1
xi

N

�

x = 13

12 14 15

Pull-off force

Figure 6-1 The 
sample mean as a
balance point for a
system of weights.

If is a sample of n observations, the sample variance is

(6-3)

The sample standard deviation, s, is the positive square root of the sample variance.

s2 �
a

n

i�1
1xi � x22

n � 1

x1, x2, p , xn

Definition

The units of measurements for the sample variance are the square of the original units of
the variable. Thus, if x is measured in pounds, the units for the sample variance are (pounds)2.
The standard deviation has the desirable property of measuring variability in the original units
of the variable of interest, x.

How Does the Sample Variance Measure Variability?
To see how the sample variance measures dispersion or variability, refer to Fig. 6-2, which
shows the deviations for the connector pull-off force data. The greater the amount of
variability in the pull-off force data, the larger in absolute magnitude some of the deviations

will be. Since the deviations always sum to zero, we must use a measure of vari-
ability that changes the negative deviations to nonnegative quantities. Squaring the deviations
is the approach used in the sample variance. Consequently, if is small, there is relatively
little variability in the data, but if is large, the variability is relatively large.s2

s2

xi � xxi � x

xi � x
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192 CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

EXAMPLE 6-2 Table 6-1 displays the quantities needed for calculating the sample variance and sample
standard deviation for the pull-off force data. These data are plotted in Fig. 6-2. The
numerator of is

so the sample variance is

and the sample standard deviation is

Computation of s2

The computation of requires calculation of , n subtractions, and n squaring and adding op-
erations. If the original observations or the deviations are not integers, the deviations

may be tedious to work with, and several decimals may have to be carried to ensurexi � x
xi � x

xs2

s � 10.2286 � 0.48 pounds

s2 �
1.60

8 � 1
�

1.60
7

� 0.2286 1pounds22

a
8

i�1
1xi � x22 � 1.60

s2

x5x4

x7

x

x6

x1 x3

x2 x8

12 13 14 15

Figure 6-2 How the
sample variance meas-
ures variability through
the deviations .xi � x

Table 6-1 Calculation of Terms for the Sample Variance and Sample
Standard Deviation

i

1 12.6 �0.4 0.16
2 12.9 �0.1 0.01
3 13.4 0.4 0.16
4 12.3 �0.7 0.49
5 13.6 0.6 0.36
6 13.5 0.5 0.25
7 12.6 �0.4 0.16
8 13.1 0.1 0.01

104.0 0.0 1.60

1xi � x22xi � xxi
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numerical accuracy. A more efficient computational formula for the sample variance is
obtained as follows:

and since this last equation reduces to

(6-4)

Note that Equation 6-4 requires squaring each individual then squaring the sum of the 
subtracting from and finally dividing by n � 1. Sometimes this is called the
shortcut method for calculating (or s).

EXAMPLE 6-3 We will calculate the sample variance and standard deviation using the shortcut method,
Equation 6-4. The formula gives

and

These results agree exactly with those obtained previously.

Analogous to the sample variance , the variability in the population is defined by the
population variance (�2). As in earlier chapters, the positive square root of , or , will
denote the population standard deviation. When the population is finite and consists of N
values, we may define the population variance as

(6-5)

We observed previously that the sample mean could be used as an estimate of the population
mean. Similarly, the sample variance is an estimate of the population variance. In Chapter 7,
we will discuss estimation of parameters more formally.

Note that the divisor for the sample variance is the sample size minus one while
for the population variance it is the population size N. If we knew the true value of the popu-
lation mean �, we could find the sample variance as the average squared deviation of the sam-
ple observations about �. In practice, the value of � is almost never known, and so the sum of

1n � 12,

�2 �
a
N

i�1
1xi � �22

N

��2
s2

s � 10.2286 � 0.48 pounds

s2 �
a

n

i�1
x2

i �

aa
n

i�1
xib

2

n

n � 1
�

1353.6 �
110422

8

7
�

1.60
7

� 0.2286 1pounds22

s2
g  x2

i ,1 g  xi22�n
xi,xi,

s2 �
a

n

i�1
x2

i �

aa
n

i�1
xib

2

n

n � 1

x � 11�n2 g n
i�1  xi,

s2 �
a

n

i�1
1xi � x22

n � 1
�
a

n

i�1
1x2

i � x2 � 2xxi2
n � 1

�
a

n

i�1
x2

i � nx2 � 2xa
n

i�1
xi

n � 1
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194 CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

the squared deviations about the sample average must be used instead. However, the obser-
vations tend to be closer to their average, , than to the population mean, Therefore, to
compensate for this we use n � 1 as the divisor rather than n. If we used n as the divisor in the
sample variance, we would obtain a measure of variability that is, on the average, consistently
smaller than the true population variance .

Another way to think about this is to consider the sample variance as being based on
degrees of freedom. The term degrees of freedom results from the fact that the n devi-

ations always sum to zero, and so specifying the values of any
of these quantities automatically determines the remaining one. This was illustrated in

Table 6-1. Thus, only of the n deviations, are freely determined.
In addition to the sample variance and sample standard deviation, the sample range, or

the difference between the largest and smallest observations, is a useful measure of variabil-
ity. The sample range is defined as follows.

xi � x,n � 1
n � 1

x1 � x, x2 � x, p , xn � x
n � 1

s2
�2

�.xxi

x

If the n observations in a sample are denoted by the sample range is

(6-6)r � max1xi2 � min1xi2
x1, x2, p , xn,

Definition

For the pull-off force data, the sample range is Generally, as the vari-
ability in sample data increases, the sample range increases.

The sample range is easy to calculate, but it ignores all of the information in the sample
data between the largest and smallest values. For example, the two samples 1, 3, 5, 8, and 9
and 1, 5, 5, 5, and 9, both have the same range (r � 8). However, the standard deviation of the
first sample is while the standard deviation of the second sample is The
variability is actually less in the second sample.

Sometimes, when the sample size is small, say the information loss associ-
ated with the range is not too serious. For example, the range is used widely in statistical qual-
ity control where sample sizes of 4 or 5 are fairly common. We will discuss some of these
applications in Chapter 16.

EXERCISES FOR SECTIONS 6-1 AND 6-2

n � 8 or 10,

s2 � 2.83.s1 � 3.35,

r � 13.6 � 12.3 � 1.3.

6-1. Eight measurements were made on the inside diameter
of forged piston rings used in an automobile engine. The data
(in millimeters) are 74.001, 74.003, 74.015, 74.000, 74.005,
74.002, 74.005, and 74.004. Calculate the sample mean and
sample standard deviation, construct a dot diagram, and com-
ment on the data.

6-2. In Applied Life Data Analysis (Wiley, 1982), Wayne
Nelson presents the breakdown time of an insulating fluid be-
tween electrodes at 34 kV. The times, in minutes, are as fol-
lows: 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50,
7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71, and 72.89.
Calculate the sample mean and sample standard deviation.

6-3. The January 1990 issue of Arizona Trend contains a
supplement describing the 12 “best” golf courses in the state.
The yardages (lengths) of these courses are as follows: 6981,
7099, 6930, 6992, 7518, 7100, 6935, 7518, 7013, 6800, 7041,

and 6890. Calculate the sample mean and sample standard de-
viation. Construct a dot diagram of the data.

6-4. An article in the Journal of Structural Engineering
(Vol. 115, 1989) describes an experiment to test the yield
strength of circular tubes with caps welded to the ends. The
first yields (in kN) are 96, 96, 102, 102, 102, 104, 104, 108,
126, 126, 128, 128, 140, 156, 160, 160, 164, and 170.
Calculate the sample mean and sample standard deviation.
Construct a dot diagram of the data.

6-5. An article in Human Factors (June 1989) presented
data on visual accommodation (a function of eye movement)
when recognizing a speckle pattern on a high-resolution CRT
screen. The data are as follows: 36.45, 67.90, 38.77, 42.18,
26.72, 50.77, 39.30, and 49.71. Calculate the sample mean
and sample standard deviation. Construct a dot diagram of the
data.
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6-2 RANDOM SAMPLING 

In most statistics problems, we work with a sample of observations selected from the popula-
tion that we are interested in studying. Figure 6-3 illustrates the relationship between the pop-
ulation and the sample. We have informally discussed these concepts before; however, we
now give the formal definitions of some of these terms.

6-6. The following data are direct solar intensity measure-
ments (watts/m2) on different days at a location in southern
Spain: 562, 869, 708, 775, 775, 704, 809, 856, 655, 806,
878, 909, 918, 558, 768, 870, 918, 940, 946, 661, 820, 898,
935, 952, 957, 693, 835, 905, 939, 955, 960, 498, 653, 730,
and 753. Calculate the sample mean and sample standard
deviation.

6-7. The April 22, 1991 issue of Aviation Week and Space
Technology reports that during Operation Desert Storm, U.S.
Air Force F-117A pilots flew 1270 combat sorties for a total of
6905 hours. What is the mean duration of an F-117A mission
during this operation? Why is the parameter you have calcu-
lated a population mean?

6-8. Preventing fatigue crack propagation in aircraft struc-
tures is an important element of aircraft safety. An engineering
study to investigate fatigue crack in n � 9 cyclically loaded
wing boxes reported the following crack lengths (in mm):
2.13, 2.96, 3.02, 1.82, 1.15, 1.37, 2.04, 2.47, 2.60.
(a) Calculate the sample mean.
(b) Calculate the sample variance and sample standard

deviation.
(c) Prepare a dot diagram of the data.

6-9. Consider the solar intensity data in Exercise 6-6.
Prepare a dot diagram of this data. Indicate where the sample
mean falls on this diagram. Give a practical interpretation of
the sample mean.

6-10. Exercise 6-5 describes data from an article in Human
Factors on visual accommodation from an experiment involv-
ing a high-resolution CRT screen.
(a) Construct a dot diagram of this data.
(b) Data from a second experiment using a low-resolution

screen were also reported in the article. They are 8.85,

35.80, 26.53, 64.63, 9.00, 15.38, 8.14, and 8.24. Prepare a
dot diagram for this second sample and compare it to the
one for the first sample. What can you conclude about
CRT resolution in this situation?

6-11. The pH of a solution is measured eight times by one
operator using the same instrument. She obtains the following
data: 7.15, 7.20, 7.18, 7.19, 7.21, 7.20, 7.16, and 7.18.
(a) Calculate the sample mean.
(b) Calculate the sample variance and sample standard

deviation.
(c) What are the major sources of variability in this experiment?

6-12. An article in the Journal of Aircraft (1988) describes
the computation of drag coefficients for the NASA 0012 air-
foil. Different computational algorithms were used at

with the following results (drag coefficients are in
units of drag counts; that is, one count is equivalent to a drag
coefficient of 0.0001): 79, 100, 74, 83, 81, 85, 82, 80, and 84.
Compute the sample mean, sample variance, and sample stan-
dard deviation, and construct a dot diagram.

6-13. The following data are the joint temperatures of the
O-rings (°F) for each test firing or actual launch of the space
shuttle rocket motor (from Presidential Commission on the
Space Shuttle Challenger Accident, Vol. 1, pp. 129–131):
84, 49, 61, 40, 83, 67, 45, 66, 70, 69, 80, 58, 68, 60, 67, 72,
73, 70, 57, 63, 70, 78, 52, 67, 53, 67, 75, 61, 70, 81, 76, 79,
75, 76, 58, 31.
(a) Compute the sample mean and sample standard deviation.
(b) Construct a dot diagram of the temperature data.
(c) Set aside the smallest observation and recompute

the quantities in part (a). Comment on your findings.
How “different” are the other temperatures from this
last value?

131	F2

M
 � 0.7

A population consists of the totality of the observations with which we are concerned.
Definition

In any particular problem, the population may be small, large but finite, or infinite. The
number of observations in the population is called the size of the population. For example, the
number of underfilled bottles produced on one day by a soft-drink company is a population of
finite size. The observations obtained by measuring the carbon monoxide level every day is a
population of infinite size. We often use a probability distribution as a model for a popula-
tion. For example, a structural engineer might consider the population of tensile strengths of a

6-2 RANDOM SAMPLING 195
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196 CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

chassis structural element to be normally distributed with mean � and variance . We could
refer to this as a normal population or a normally distributed population.

In most situations, it is impossible or impractical to observe the entire population. For ex-
ample, we could not test the tensile strength of all the chassis structural elements because it
would be too time consuming and expensive. Furthermore, some (perhaps many) of these
structural elements do not yet exist at the time a decision is to be made, so to a large extent,
we must view the population as conceptual. Therefore, we depend on a subset of observations
from the population to help make decisions about the population.

�2

A sample is a subset of observations selected from a population.
Definition

For statistical methods to be valid, the sample must be representative of the population. It
is often tempting to select the observations that are most convenient as the sample or to exer-
cise judgment in sample selection. These procedures can frequently introduce bias into the
sample, and as a result the parameter of interest will be consistently underestimated (or over-
estimated) by such a sample. Furthermore, the behavior of a judgment sample cannot be statis-
tically described. To avoid these difficulties, it is desirable to select a random sample as the
result of some chance mechanism. Consequently, the selection of a sample is a random exper-
iment and each observation in the sample is the observed value of a random variable. The
observations in the population determine the probability distribution of the random variable.

To define a random sample, let X be a random variable that represents the result of one se-
lection of an observation from the population. Let f(x) denote the probability density function
of X. Suppose that each observation in the sample is obtained independently, under unchanging
conditions. That is, the observations for the sample are obtained by observing X independently
under unchanging conditions, say, n times. Let denote the random variable that represents
the ith replicate. Then, is a random sample and the numerical values obtained
are denoted as The random variables in a random sample are independent with
the same probability distribution f(x) because of the identical conditions under which each
observation is obtained. That is, the marginal probability density function of isX1, X2, p , Xn

x1, x2, p , xn.
X1, X2, p , Xn

Xi

µ

Population

Sample (x1, x2, x3,…, xn)

Histogram

x x
s

x, sample average
s, sample standard

deviation

σ

Figure 6-3 Relation-
ship between a popula-
tion and a sample.
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6-3 STEM-AND-LEAF DIAGRAMS 197

We have encountered statistics before. For example, if is a random sample of
size n, the sample mean the sample variance , and the sample standard deviation S are
statistics.

Although numerical summary statistics are very useful, graphical displays of sample data
are a very powerful and extremely useful way to visually examine the data. We now present a few
of the techniques that are most relevant to engineering applications of probability and statistics.

6-3 STEM-AND-LEAF DIAGRAMS

The dot diagram is a useful data display for small samples, up to (say) about 20 observations.
However, when the number of observations is moderately large, other graphical displays may
be more useful.

For example, consider the data in Table 6-2. These data are the compressive strengths in
pounds per square inch (psi) of 80 specimens of a new aluminum-lithium alloy undergoing eval-
uation as a possible material for aircraft structural elements. The data were recorded in the order
of testing, and in this format they do not convey much information about compressive strength.
Questions such as “What percent of the specimens fail below 120 psi?” are not easy to answer.

S2X,
X, X2, p , Xn

respectively, and by independence the joint probability density function
of the random sample is fX1X2 p Xn

 1x1, x2, p , xn2 � f 1x12  f 1x22 p f 1xn2.
f 1x12, f 1x22, p , f 1xn2,

The random variables are a random sample of size n if (a) the Xi’s are
independent random variables, and (b) every Xi has the same probability distribution.

X1, X2, p , Xn

Definition

To illustrate this definition, suppose that we are investigating the effective service life of
an electronic component used in a cardiac pacemaker and that component life is normally dis-
tributed. Then we would expect each of the observations on component life in
a random sample of n components to be independent random variables with exactly the same
normal distribution. After the data are collected, the numerical values of the observed life-
times are denoted as 

The primary purpose in taking a random sample is to obtain information about the unknown
population parameters. Suppose, for example, that we wish to reach a conclusion about the pro-
portion of people in the United States who prefer a particular brand of soft drink. Let p represent
the unknown value of this proportion. It is impractical to question every individual in the popula-
tion to determine the true value of p. In order to make an inference regarding the true proportion
p, a more reasonable procedure would be to select a random sample (of an appropriate size) and
use the observed proportion p̂ of people in this sample favoring the brand of soft drink.

The sample proportion, p̂ is computed by dividing the number of individuals in the sam-
ple who prefer the brand of soft drink by the total sample size n. Thus, p̂ is a function of the
observed values in the random sample. Since many random samples are possible from a pop-
ulation, the value of p̂ will vary from sample to sample. That is, p̂ is a random variable. Such
a random variable is called a statistic.

x1, x2, p , xn.

X1, X2, p , Xn

A statistic is any function of the observations in a random sample.
Definition
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198 CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

Table 6-2 Compressive Strength (in psi) of 80 Aluminum-Lithium Alloy Specimens

105 221 183 186 121 181 180 143
97 154 153 174 120 168 167 141

245 228 174 199 181 158 176 110
163 131 154 115 160 208 158 133
207 180 190 193 194 133 156 123
134 178 76 167 184 135 229 146
218 157 101 171 165 172 158 169
199 151 142 163 145 171 148 158
160 175 149 87 160 237 150 135
196 201 200 176 150 170 118 149

Because there are many observations, constructing a dot diagram of these data would be rela-
tively inefficient; more effective displays are available for large data sets.

A stem-and-leaf diagram is a good way to obtain an informative visual display of a data
set where each number xi consists of at least two digits. To construct a stem-
and-leaf diagram, use the following steps.

x1, x2, p , xn,

(1) Divide each number xi into two parts: a stem, consisting of one or more of the
leading digits and a leaf, consisting of the remaining digit.

(2) List the stem values in a vertical column.

(3) Record the leaf for each observation beside its stem.

(4) Write the units for stems and leaves on the display.

Steps for
Constructing a Stem-

and-Leaf Diagram

To illustrate, if the data consist of percent defective information between 0 and 100 on
lots of semiconductor wafers, we can divide the value 76 into the stem 7 and the leaf 6. In gen-
eral, we should choose relatively few stems in comparison with the number of observations.
It is usually best to choose between 5 and 20 stems.

EXAMPLE 6-4 To illustrate the construction of a stem-and-leaf diagram, consider the alloy compressive
strength data in Table 6-2. We will select as stem values the numbers The
resulting stem-and-leaf diagram is presented in Fig. 6-4. The last column in the diagram is a
frequency count of the number of leaves associated with each stem. Inspection of this display
immediately reveals that most of the compressive strengths lie between 110 and 200 psi and
that a central value is somewhere between 150 and 160 psi. Furthermore, the strengths are dis-
tributed approximately symmetrically about the central value. The stem-and-leaf diagram
enables us to determine quickly some important features of the data that were not immediately
obvious in the original display in Table 6-2.

In some data sets, it may be desirable to provide more classes or stems. One way to do this
would be to modify the original stems as follows: Divide the stem 5 (say) into two new stems,
5L and 5U. The stem 5L has leaves 0, 1, 2, 3, and 4, and stem 5U has leaves 5, 6, 7, 8, and 9.
This will double the number of original stems. We could increase the number of original stems
by four by defining five new stems: 5z with leaves 0 and 1, 5t (for twos and three) with leaves
2 and 3, 5f (for fours and fives) with leaves 4 and 5, 5s (for six and seven) with leaves 6 and
7, and 5e with leaves 8 and 9.

7, 8, 9, p , 24.
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6-3 STEM-AND-LEAF DIAGRAMS 199

Stem Leaf Frequency

7 6 1
8 7 1
9 7 1

10 5 1 2
11 5 8 0 3
12 1 0 3 3
13 4 1 3 5 3 5 6
14 2 9 5 8 3 1 6 9 8
15 4 7 1 3 4 0 8 8 6 8 0 8 12
16 3 0 7 3 0 5 0 8 7 9 10
17 8 5 4 4 1 6 2 1 0 6 10
18 0 3 6 1 4 1 0 7
19 9 6 0 9 3 4 6
20 7 1 0 8 4
21 8 1
22 1 8 9 3
23 7 1
24 5 1

Stem : Tens and hundreds digits (psi); Leaf: Ones digits (psi)

Stem Leaf

6 1 3 4 5 5 6
7 0 1 1 3 5 7 8 8 9
8 1 3 4 4 7 8 8
9 2 3 5

(a)

Stem Leaf

6z 1
6t 3
6f 4 5 5
6s 6
6e
7z 0 1 1
7t 3
7f 5
7s 7
7e 8 8 9
8z 1
8t 3
8f 4 4
8s 7
8e 8 8
9z
9t 2 3
9f 5
9s
9e

(c)

Stem Leaf

6L 1 3 4
6U 5 5 6
7L 0 1 1 3
7U 5 7 8 8 9
8L 1 3 4 4
8U 7 8 8
9L 2 3
9U 5

(b)

Figure 6-5 Stem-
and-leaf displays for
Example 6-5. Stem:
Tens digits. Leaf: 
Ones digits.

EXAMPLE 6-5 Figure 6-5 illustrates the stem-and-leaf diagram for 25 observations on batch yields from a
chemical process. In Fig. 6-5(a) we have used 6, 7, 8, and 9 as the stems. This results in too
few stems, and the stem-and-leaf diagram does not provide much information about the data.
In Fig. 6-5(b) we have divided each stem into two parts, resulting in a display that more

Figure 6-4 Stem-
and-leaf diagram for
the compressive
strength data in Table
6-2.
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200 CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

adequately displays the data. Figure 6-5(c) illustrates a stem-and-leaf display with each stem
divided into five parts. There are too many stems in this plot, resulting in a display that does
not tell us much about the shape of the data.

Figure 6-6 shows a stem-and-leaf display of the compressive strength data in Table 6-2
produced by Minitab. The software uses the same stems as in Fig. 6-4. Note also that the com-
puter orders the leaves from smallest to largest on each stem. This form of the plot is usually
called an ordered stem-and-leaf diagram. This is not usually done when the plot is con-
structed manually because it can be time consuming. The computer adds a column to the left of
the stems that provides a count of the observations at and above each stem in the upper half of
the display and a count of the observations at and below each stem in the lower half of the dis-
play. At the middle stem of 16, the column indicates the number of observations at this stem.

The ordered stem-and-leaf display makes it relatively easy to find data features such as per-
centiles, quartiles, and the median. The sample median is a measure of central tendency that
divides the data into two equal parts, half below the median and half above. If the number of
observations is even, the median is halfway between the two central values. From Fig. 6-6
we find the 40th and 41st values of strength as 160 and 163, so the median is

If the number of observations is odd, the median is the central value.
The sample mode is the most frequently occurring data value. Figure 6-6 indicates that the mode
is 158; this value occurs four times, and no other value occurs as frequently in the sample.

We can also divide data into more than two parts. When an ordered set of data is divided
into four equal parts, the division points are called quartiles. The first or lower quartile, q1, is
a value that has approximately 25% of the observations below it and approximately 75% of
the observations above. The second quartile, q2, has approximately 50% of the observations
below its value. The second quartile is exactly equal to the median. The third or upper quar-
tile, q3, has approximately 75% of the observations below its value. As in the case of the
median, the quartiles may not be unique. The compressive strength data in Fig. 6-6 contains

observations. Minitab software calculates the first and third quartiles as the 1n � 12�4n � 80

1160 � 1632�2 � 161.5.

Character Stem-and-Leaf Display

Stem-and-leaf of Strength
N = 80 Leaf Unit = 1.0
1 7 6
2 8 7
3 9 7
5 10 1 5
8 11 0 5 8
11 12 0 1 3
17 13 1 3 3 4 5 5
25 14 1 2 3 5 6 8 9 9
37 15 0 0 1 3 4 4 6 7 8 8 8 8
(10) 16 0 0 0 3 3 5 7 7 8 9
33 17 0 1 1 2 4 4 5 6 6 8
23 18 0 0 1 1 3 4 6
16 19 0 3 4 6 9 9
10 20 0 1 7 8
6 21 8
5 22 1 8 9
2 23 7
1 24 5

Figure 6-6 A stem-
and-leaf diagram from
Minitab.
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and ordered observations and interpolates as needed. For example,
and Therefore, Minitab interpolates between the

20th and 21st ordered observation to obtain and between the 60th and 61st ob-
servation to obtain In general, the 100kth percentile is a data value such that ap-
proximately of the observations are at or below this value and approximately

of them are above it. Finally, we may use the interquartile range, defined as
as a measure of variability. The interquartile range is less sensitive to the ex-

treme values in the sample than is the ordinary sample range.
Many statistics software packages provide data summaries that include these quantities.

The output obtained for the compressive strength data in Table 6-2 from Minitab is shown in
Table 6-3.

EXERCISES FOR SECTION 6-3

IQR � q3 � q1,
10011 � k2%100k%

q3 � 181.00.
q1 � 143.50

3180 � 12�4 � 60.75.180 � 12�4 � 20.25
31n � 12�4

6-3 STEM-AND-LEAF DIAGRAMS 201

6-14. An article in Technometrics (Vol. 19, 1977, p. 425)
presents the following data on the motor fuel octane ratings of
several blends of gasoline: 

6-17. The following data represent the yield on 90 consecu-
tive batches of ceramic substrate to which a metal coating has
been applied by a vapor-deposition process. Construct a stem-
and-leaf display for these data.

34.2
33.1
34.5
35.6
36.3
35.1
34.7
33.6

37.8
36.6
35.4
34.6
33.8
37.1
34.0
34.1

33.6
34.7
35.0
35.4
36.2
36.8
35.1
35.3

32.6
33.1
34.6
35.9
34.7
33.6
32.9
33.5

33.8
34.2
33.4
34.7
34.6
35.2
35.0
34.9

35.8
37.6
37.3
34.6
35.5
32.8
32.1
34.5

34.7
33.6
32.5
34.1
35.1
36.8
37.9
36.4

34.6
33.6
34.1
34.7
35.7
36.8
34.3
32.7

1115
1310
1540
1502
1258
1315
1085
798

1020

865
2130
1421
1109
1481
1567
1883
1203
1270

1015
845

1674
1016
1102
1605
706

2215
785

885
1223
375

2265
1910
1018
1452
1890
2100

1594
2023
1315
1269
1260
1888
1782
1522
1792

1000
1820
1940
1120
910

1730
1102
1578
758

1416
1560
1055
1764
1330
1608
1535
1781
1750

1501
1238
990

1468
1512
1750
1642

88.5
94.7
84.3
90.1
89.0
89.8
91.6
90.3
90.0
91.5
89.9

98.8
88.3
90.4
91.2
90.6
92.2
87.7
91.1
86.7
93.4
96.1

89.6
90.4
91.6
90.7
88.6
88.3
94.2
85.3
90.1
89.3
91.1

92.2
83.4
91.0
88.2
88.5
93.3
87.4
91.1
90.5

100.3
87.6

92.7
87.9
93.0
94.4
90.4
91.2
86.7
94.2
90.8
90.1
91.8

88.4
92.6
93.7
96.5
84.3
93.2
88.6
88.7
92.7
89.3
91.0

87.5
87.8
88.3
89.2
92.3
88.9
89.8
92.7
93.3
86.7
91.0

90.9
89.9
91.8
89.7
92.2

Construct a stem-and-leaf display for these data.

6-15. The following data are the numbers of cycles to fail-
ure of aluminum test coupons subjected to repeated alternat-
ing stress at 21,000 psi, 18 cycles per second: 

(b) Does it appear likely that a coupon will “survive” beyond
2000 cycles? Justify your answer.

6-16. The percentage of cotton in material used to manufac-
ture men’s shirts follows. Construct a stem-and-leaf display
for the data.

94.1
93.2
90.6
91.4
88.2
86.1
95.1
90.0
92.4
87.3
86.6
91.2

86.1
90.4
89.1
87.3
84.1
90.1
95.2
86.1
94.3
93.2
86.7
83.0

95.3
94.1
97.8
93.1
86.4
87.6
94.1
92.1
96.4
88.2
86.4
85.0

84.9
78.3
89.6
90.3
93.1
94.6
96.3
94.7
91.1
92.4
90.6
89.1

88.8
86.4
85.1
84.0
93.7
87.7
90.6
89.4
88.6
84.1
82.6
83.1

84.6
83.6
85.4
89.7
87.6
85.1
89.6
90.0
90.1
94.3
97.3
96.8

94.4
96.1
98.0
85.4
86.6
91.7
87.5
84.2
85.1
90.5
95.6
88.3

84.1
83.7
82.9
87.3
86.4
84.5

Table 6-3 Summary Statistics for the Compressive Strength Data from Minitab

Variable N Mean Median StDev SE Mean
80 162.66 161.50 33.77 3.78

Min Max Q1 Q3
76.00 245.00 143.50 181.00

(a) Construct a stem-and-leaf display for these data.

c06.qxd  5/14/02  9:54 M  Page 201 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



6-24. An important quality characteristic of water is the con-
centration of suspended solid material. Following are 60 meas-
urements on suspended solids from a certain lake. Construct a
stem-and-leaf diagram for this data and comment on any im-
portant features that you notice. Compute the sample mean,
sample standard deviation, and the sample median.

6-25. The United States Golf Association tests golf balls to
ensure that they conform to the rules of golf. Balls are tested for
weight, diameter, roundness, and overall distance. The overall

202 CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

6-18. Find the median and the quartiles for the motor fuel
octane data in Exercise 6-14.

6-19. Find the median and the quartiles for the failure data
in Exercise 6-15.

6-20. Find the median, mode, and sample average of the
data in Exercise 6-16. Explain how these three measures of
location describe different features in the data.

6-21. Find the median and the quartiles for the yield data in
Exercise 6-19.

6-22. The female students in an undergraduate engineering
core course at ASU self-reported their heights to the nearest
inch. The data are

62 64 66 67 65 68 61 65 67 65 64 63 67
68 64 66 68 69 65 67 62 66 68 67 66 65
69 65 70 65 67 68 65 63 64 67 67

(a) Calculate the sample mean and standard deviation of
height.

(b) Construct a stem-and-leaf diagram for the height data and
comment on any important features that you notice.

(c) What is the median height of this group of female engi-
neering students?

6-23. The shear strengths of 100 spot welds in a titanium
alloy follow. Construct a stem-and-leaf diagram for the weld
strength data and comment on any important features that you
notice.

5408 5431 5475 5442 5376 5388 5459 5422 5416 5435
5420 5429 5401 5446 5487 5416 5382 5357 5388 5457
5407 5469 5416 5377 5454 5375 5409 5459 5445 5429
5463 5408 5481 5453 5422 5354 5421 5406 5444 5466
5399 5391 5477 5447 5329 5473 5423 5441 5412 5384
5445 5436 5454 5453 5428 5418 5465 5427 5421 5396
5381 5425 5388 5388 5378 5481 5387 5440 5482 5406
5401 5411 5399 5431 5440 5413 5406 5342 5452 5420
5458 5485 5431 5416 5431 5390 5399 5435 5387 5462
5383 5401 5407 5385 5440 5422 5448 5366 5430 5418

42.4 65.7 29.8 58.7 52.1 55.8 57.0 68.7 67.3 67.3
54.3 54.0 73.1 81.3 59.9 56.9 62.2 69.9 66.9 59.0
56.3 43.3 57.4 45.3 80.1 49.7 42.8 42.4 59.6 65.8
61.4 64.0 64.2 72.6 72.5 46.1 53.1 56.1 67.2 70.7
42.6 77.4 54.7 57.1 77.3 39.3 76.4 59.3 51.1 73.8
61.4 73.1 77.3 48.5 89.8 50.7 52.0 59.6 66.1 31.6

261.3
258.1
254.2
257.7
237.9
255.8
241.4
244.3
241.2
254.4
256.8
255.3
255.0

259.4
270.5
270.7
272.6
274.0
260.7
260.6
272.2
251.1
232.1
273.0
266.6
273.2

265.7
255.1
233.7
253.7
264.5
245.5
280.3
248.3
267.0
271.5
240.8
250.2
251.4

270.6
268.9
263.5
262.2
244.8
279.6
272.7
278.7
273.4
242.9
276.6
255.8
276.1

274.2
267.4
244.5
252.0
264.0
237.8
261.0
236.0
247.7
273.6
264.5
285.3
277.8

261.4
253.6
251.8
280.3
268.3
278.5
260.0
271.2
254.8
256.1
264.5
255.4
266.8

254.5
234.3
259.5
274.9
272.1
273.3
279.3
279.8
272.8
251.6
226.8
240.5
268.5

283.7
263.2
257.5
233.7
260.2
263.7
252.1
245.6
270.5

6-26. A semiconductor manufacturer produces devices used
as central processing units in personal computers. The speed of
the device (in megahertz) is important because it determines the
price that the manufacturer can charge for the devices. The fol-
lowing table contains measurements on 120 devices. Construct a
stem-and-leaf diagram for this data and comment on any impor-
tant features that you notice. Compute the sample mean, sample
standard deviation, and the sample median. What percentage of
the devices has a speed exceeding 700 megahertz?

680 669 719 699 670 710 722 663 658 634 720 690
677 669 700 718 690 681 702 696 692 690 694 660
649 675 701 721 683 735 688 763 672 698 659 704
681 679 691 683 705 746 706 649 668 672 690 724
652 720 660 695 701 724 668 698 668 660 680 739
717 727 653 637 660 693 679 682 724 642 704 695
704 652 664 702 661 720 695 670 656 718 660 648
683 723 710 680 684 705 681 748 697 703 660 722
662 644 683 695 678 674 656 667 683 691 680 685
681 715 665 676 665 675 655 659 720 675 697 663

6-27. A group of wine enthusiasts taste-tested a pinot noir
wine from Oregon. The evaluation was to grade the wine on a
0 to 100 point scale. The results follow:

distance test is conducted by hitting balls with a driver swung
by a mechanical device nicknamed “Iron Byron” after the
legendary great Byron Nelson, whose swing the machine is said
to emulate. Following are 100 distances (in yards) achieved by
a particular brand of golf ball in the overall distance test.
Construct a stem-and-leaf diagram for this data and comment
on any important features that you notice. Compute the sample
mean, sample standard deviation, and the sample median.

94 90 92 91 91 86 89 91 91 90
90 93 87 90 91 92 89 86 89 90
88 95 91 88 89 92 87 89 95 92
85 91 85 89 88 84 85 90 90 83

(a) Construct a stem-and-leaf diagram for this data and com-
ment on any important features that you notice.
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6-4 FREQUENCY DISTRIBUTIOINS AND HISTOGRAMS 203

(b) Compute the sample mean, sample standard deviation,
and the sample median.

(c) A wine rated above 90 is considered truly exceptional.
What proportion of the taste-tasters considered this partic-
ular pinot noir truly exceptional?

6-28. In their book Introduction to Linear Regression
Analysis (3rd edition, Wiley, 2001) Montgomery, Peck, and
Vining present measurements on NbOCl3 concentration from
a tube-flow reactor experiment. The data, in gram�mole per
liter � 10�3, are as follows:

450 450 473 507 457 452 453 1215 1256
1145 1085 1066 1111 1364 1254 1396 1575 1617
1733 2753 3186 3227 3469 1911 2588 2635 2725

(a) Construct a stem-and-leaf diagram for this data and com-
ment on any important features that you notice.

6-4 FREQUENCY DISTRIBUTIONS AND HISTOGRAMS

A frequency distribution is a more compact summary of data than a stem-and-leaf diagram.
To construct a frequency distribution, we must divide the range of the data into intervals, which
are usually called class intervals, cells, or bins. If possible, the bins should be of equal width
in order to enhance the visual information in the frequency distribution. Some judgment must
be used in selecting the number of bins so that a reasonable display can be developed. The num-
ber of bins depends on the number of observations and the amount of scatter or dispersion in
the data. A frequency distribution that uses either too few or too many bins will not be inform-
ative. We usually find that between 5 and 20 bins is satisfactory in most cases and that the num-
ber of bins should increase with n. Choosing the number of bins approximately equal to the
square root of the number of observations often works well in practice.

A frequency distribution for the comprehensive strength data in Table 6-2 is shown in
Table 6-4. Since the data set contains 80 observations, and since , we suspect that
about eight to nine bins will provide a satisfactory frequency distribution. The largest and
smallest data values are 245 and 76, respectively, so the bins must cover a range of at least
245 � 76 � 169 units on the psi scale. If we want the lower limit for the first bin to begin
slightly below the smallest data value and the upper limit for the last bin to be slightly above
the largest data value, we might start the frequency distribution at 70 and end it at 250. This is 
an interval or range of 180 psi units. Nine bins, each of width 20 psi, give a reasonable
frequency distribution, so the frequency distribution in Table 6-4 is based on nine bins.

The second row of Table 6-4 contains a relative frequency distribution. The relative
frequencies are found by dividing the observed frequency in each bin by the total number of

180 � 9

Table 6-4 Frequency Distribution for the Compressive Strength Data in Table 6-2

Class 70 � x � 90 90 � x � 110 110 � x � 130 130 � x � 150 150 � x � 170 170 � x � 190 190 � x � 210 210 � x � 230 230 � x � 250

Frequency 2 3 6 14 22 17 10 4 2

Relative 

frequency 0.0250 0.0375 0.0750 0.1750 0.2750 0.2125 0.1250 0.0500 0.0250

Cumulative

relative 

frequency 0.0250 0.0625 0.1375 0.3125 0.5875 0.8000 0.9250 0.9750 1.0000

(b) Compute the sample mean, sample standard deviation,
and the sample median.

6-29. A Comparative Stem-and-Leaf Diagram. In
Exercise 6-22, we presented height data that was self-reported
by female undergraduate engineering students in a core course
at ASU. In the same class, the male students self-reported their
heights as follows:

69 67 69 70 65 68 69 70 71 69 66 67 69 75 68 67 68
69 70 71 72 68 69 69 70 71 68 72 69 69 68 69 73 70
73 68 69 71 67 68 65 68 68 69 70 74 71 69 70 69

(a) Construct a comparative stem-and-leaf diagram by listing
the stems in the center of the display and then placing the
female leaves on the left and the male leaves on the right.

(b) Comment on any important features that you notice in this
display.
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204 CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

(1) Label the bin (class interval) boundaries on a horizontal scale.
(2) Mark and label the vertical scale with the frequencies or the relative

frequencies.
(3) Above each bin, draw a rectangle where height is equal to the frequency (or rel-

ative frequency) corresponding to that bin.

Constructing a
Histogram (Equal

Bin Widths)

observations. The last row of Table 6-4 expresses the relative frequencies on a cumulative ba-
sis. Frequency distributions are often easier to interpret than tables of data. For example, from
Table 6-4 it is very easy to see that most of the specimens have compressive strengths between
130 and 190 psi and that 97.5 percent of the specimens fail below 230 psi.

The histogram is a visual display of the frequency distribution. The stages for construct-
ing a histogram follow.

70
00

90 110 130 150 170 190 210 230 250

Compressive strength (psi)

5
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Figure 6-7 Histogram
of compressive strength
for 80 aluminum-
lithium alloy
specimens.

Figure 6-7 is the histogram for the compression strength data. The histogram, like the stem-
and-leaf diagram, provides a visual impression of the shape of the distribution of the meas-
urements and information about the central tendency and scatter or dispersion in the data.
Notice the symmetric, bell-shaped distribution of the strength measurements in Fig. 6-7. This
display often gives insight about possible choices of probability distribution to use as a model
for the population. For example, here we would likely conclude that the normal distribution
is a reasonable model for the population of compression strength measurements.

Sometimes a histogram with unequal bin widths will be employed. For example, if the
data have several extreme observations or outliers, using a few equal-width bins will result
in nearly all observations falling in just of few of the bins. Using many equal-width bins will
result in many bins with zero frequency. A better choice is to use shorter intervals in the region
where most of the data falls and a few wide intervals near the extreme observations. When the
bins are of unequal width, the rectangle’s area (not its height) should be proportional to the
bin frequency. This implies that the rectangle height should be 

In passing from either the original data or stem-and-leaf diagram to a frequency distribu-
tion or histogram, we have lost some information because we no longer have the individual
observations. However, this information loss is often small compared with the conciseness
and ease of interpretation gained in using the frequency distribution and histogram.

Rectangle height �
bin frequency

bin width
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Figure 6-10 A
cumulative distribution
plot of the compressive
strength data from
Minitab.
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Figure 6-9 A histogram of the compressive strength
data from Minitab with nine bins.

Figure 6-8 shows a histogram of the compressive strength data from Minitab. The “de-
fault” settings were used in this histogram, leading to 17 bins. We have noted that histograms
may be relatively sensitive to the number of bins and their width. For small data sets, his-
tograms may change dramatically in appearance if the number and/or width of the bins
changes. Histograms are more stable for larger data sets, preferably of size 75 to 100 or more.
Figure 6-9 shows the Minitab histogram for the compressive strength data with nine bins. This
is similar to the original histogram shown in Fig. 6-7. Since the number of observations is
moderately large (n � 80), the choice of the number of bins is not especially important, and
both Figs. 6-8 and 6-9 convey similar information.

Figure 6-10 shows a variation of the histogram available in Minitab, the cumulative fre-
quency plot. In this plot, the height of each bar is the total number of observations that are less
than or equal to the upper limit of the bin. Cumulative distributions are also useful in data in-
terpretation; for example, we can read directly from Fig. 6-10 that there are approximately 70
observations less than or equal to 200 psi.

When the sample size is large, the histogram can provide a reasonably reliable indicator of
the general shape of the distribution or population of measurements from which the sample
was drawn. Figure 6-11 presents three cases. The median is denoted as . Generally, if the data
are symmetric, as in Fig. 6-11(b), the mean and median coincide. If, in addition, the data have
only one mode (we say the data are unimodal), the mean, median, and mode all coincide. If the
data are skewed (asymmetric, with a long tail to one side), as in Fig. 6-11(a) and (c), the mean,
median, and mode do not coincide. Usually, we find that if themode � median � mean

x~

Figure 6-8 A histogram of the compressive strength
data from Minitab with 17 bins.
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distribution is skewed to the right, whereas if the distribution is
skewed to the left.

Frequency distributions and histograms can also be used with qualitative or categorical
data. In some applications there will be a natural ordering of the categories (such as freshman,
sophomore, junior, and senior), whereas in others the order of the categories will be arbitrary
(such as male and female). When using categorical data, the bins should have equal width.

EXAMPLE 6-6 Figure 6-12 presents the production of transport aircraft by the Boeing Company in 1985. No-
tice that the 737 was the most popular model, followed by the 757, 747, 767, and 707.

A chart of occurrences by category (in which the categories are ordered by the number of
occurrences) is sometimes referred to as a Pareto chart. See Exercise 6-41.

In this section we have concentrated on descriptive methods for the situation in which each
observation in a data set is a single number or belongs to one category. In many cases, we work
with data in which each observation consists of several measurements. For example, in a gasoline
mileage study, each observation might consist of a measurement of miles per gallon, the size of
the engine in the vehicle, engine horsepower, vehicle weight, and vehicle length. This is an ex-
ample of multivariate data. In later chapters, we will discuss analyzing this type of data.

EXERCISES FOR SECTION 6-4

mode 
 median 
 mean
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Figure 6-12
Airplane production in
1985. (Source: Boeing
Company.)

x x

Negative or left skew
(a)

Symmetric
(b)

Positive or right skew
(c)

�

x�
x�x xFigure 6-11

Histograms for sym-
metric and skewed dis-
tributions.

6-30. Construct a frequency distribution and histogram for
the motor fuel octane data from Exercise 6-14. Use eight bins.

6-31. Construct a frequency distribution and histogram us-
ing the failure data from Exercise 6-15.

6-32. Construct a frequency distribution and histogram for
the cotton content data in Exercise 6-16.

6-33. Construct a frequency distribution and histogram for
the yield data in Exercise 6-17.
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6-5 BOX PLOTS 207

6-34. Construct a frequency distribution and histogram with
16 bins for the motor fuel octane data in Exercise 6-14. Compare
its shape with that of the histogram with eight bins from Exercise
6-30. Do both histograms display similar information?

6-35. Construct a histogram for the female student height
data in Exercise 6-22.

6-36. Construct a histogram with 10 bins for the spot weld
shear strength data in Exercise 6-23. Comment on the shape of
the histogram. Does it convey the same information as the
stem-and-leaf display?

6-37. Construct a histogram for the water quality data in
Exercise 6-24. Comment on the shape of the histogram. Does
it convey the same information as the stem-and-leaf display?

6-38. Construct a histogram with 10 bins for the overall dis-
tance data in Exercise 6-25. Comment on the shape of the his-
togram. Does it convey the same information as the stem-and-
leaf display?

6-39. Construct a histogram for the semiconductor speed
data in Exercise 6-26. Comment on the shape of the his-

togram. Does it convey the same information as the stem-and-
leaf display?

6-40. Construct a histogram for the pinot noir wine rating data
in Exercise 6-27. Comment on the shape of the histogram. Does
it convey the same information as the stem-and-leaf display?

6-41. The Pareto Chart. An important variation of a his-
togram for categorical data is the Pareto chart. This chart is
widely used in quality improvement efforts, and the categories
usually represent different types of defects, failure modes, or
product/process problems. The categories are ordered so that
the category with the largest frequency is on the left, followed
by the category with the second largest frequency and so forth.
These charts are named after the Italian economist V. Pareto,
and they usually exhibit “Pareto’s law”; that is, most of the de-
fects can be accounted for by only a few categories. Suppose
that the following information on structural defects in auto-
mobile doors is obtained: dents, 4; pits, 4; parts assembled out
of sequence, 6; parts undertrimmed, 21; missing holes/slots, 8;
parts not lubricated, 5; parts out of contour, 30; and parts not
deburred, 3. Construct and interpret a Pareto chart.

6-5 BOX PLOTS

The stem-and-leaf display and the histogram provide general visual impressions about a data
set, while numerical quantities such as or s provide information about only one feature of
the data. The box plot is a graphical display that simultaneously describes several important
features of a data set, such as center, spread, departure from symmetry, and identification of
unusual observations or outliers.

A box plot displays the three quartiles, the minimum, and the maximum of the data on a rec-
tangular box, aligned either horizontally or vertically. The box encloses the interquartile range with
the left (or lower) edge at the first quartile, q1, and the right (or upper) edge at the third quartile, q3.
A line is drawn through the box at the second quartile (which is the 50th percentile or the median),

A line, or whisker, extends from each end of the box. The lower whisker is a line from the
first quartile to the smallest data point within 1.5 interquartile ranges from the first quartile. The
upper whisker is a line from the third quartile to the largest data point within 1.5 interquartile
ranges from the third quartile. Data farther from the box than the whiskers are plotted as individ-
ual points. A point beyond a whisker, but less than 3 interquartile ranges from the box edge, is
called an outlier. A point more than 3 interquartile ranges from the box edge is called an extreme
outlier. See Fig. 6-13. Occasionally, different symbols, such as open and filled circles, are used to
identify the two types of outliers. Sometimes box plots are called box-and-whisker plots.

q2 � x.

x�

Whisker extends to
smallest data point within
1.5 interquartile ranges from 
first quartile

First quartile Second quartile Third quartile

Whisker extends to
largest data point within
1.5 interquartile ranges 
from third quartile

IIQR1.5 IIQR 1.5 IIQR 1.5 IIQR 1.5 IIQR

Outliers Outliers Extreme outlier
Figure 6-13 Descrip-
tion of a box plot.
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208 CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

6-42. Exercise 6-13 presented the joint temperatures of
the O-rings (°F) for each test firing or actual launch of the
space shuttle rocket motor. In that exercise you were asked
to find the sample mean and sample standard deviation of
temperature.
(a) Find the upper and lower quartiles of temperature.
(b) Find the median.
(c) Set aside the smallest observation ( and recompute

the quantities in parts (a) and (b). Comment on your find-
ings. How “different” are the other temperatures from this
smallest value?

(d) Construct a box plot of the data and comment on the pos-
sible presence of outliers.

6-43. An article in the Transactions of the Institution of
Chemical Engineers (Vol. 34, 1956, pp. 280–293) reported
data from an experiment investigating the effect of several

31	F2

process variables on the vapor phase oxidation of naphtha-
lene. A sample of the percentage mole conversion of naphtha-
lene to maleic anhydride follows: 4.2, 4.7, 4.7, 5.0, 3.8, 3.6,
3.0, 5.1, 3.1, 3.8, 4.8, 4.0, 5.2, 4.3, 2.8, 2.0, 2.8, 3.3, 4.8, 5.0.
(a) Calculate the sample mean.
(b) Calculate the sample variance and sample standard

deviation.
(c) Construct a box plot of the data.

6-44. The “cold start ignition time” of an automobile engine
is being investigated by a gasoline manufacturer. The follow-
ing times (in seconds) were obtained for a test vehicle: 1.75,
1.92, 2.62, 2.35, 3.09, 3.15, 2.53, 1.91.
(a) Calculate the sample mean and sample standard deviation.
(b) Construct a box plot of the data.

6-45. The nine measurements that follow are furnace tem-
peratures recorded on successive batches in a semiconductor

Figure 6-14 presents the box plot from Minitab for the alloy compressive strength data
shown in Table 6-2. This box plot indicates that the distribution of compressive strengths is
fairly symmetric around the central value, because the left and right whiskers and the lengths
of the left and right boxes around the median are about the same. There are also two mild out-
liers on either end of the data.

Box plots are very useful in graphical comparisons among data sets, because they have
high visual impact and are easy to understand. For example, Fig. 6-15 shows the comparative
box plots for a manufacturing quality index on semiconductor devices at three manufacturing
plants. Inspection of this display reveals that there is too much variability at plant 2 and that
plants 2 and 3 need to raise their quality index performance.

EXERCISES FOR SECTION 6-5

100 150
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200 250

Figure 6-14 Box plot for compressive
strength data in Table 6-2.

Figure 6-15 Comparative box plots of a
quality index at three plants.
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6-6 TIME SEQUENCE PLOTS

The graphical displays that we have considered thus far such as histograms, stem-and-leaf
plots, and box plots are very useful visual methods for showing the variability in data.
However, we noted in Section 1-2.2 that time is an important factor that contributes to vari-
ability in data, and those graphical methods do not take this into account. A time series or
time sequence is a data set in which the observations are recorded in the order in which they
occur. A time series plot is a graph in which the vertical axis denotes the observed value of
the variable (say x) and the horizontal axis denotes the time (which could be minutes, days,
years, etc.) When measurements are plotted as a time series, we often see trends, cycles, or
other broad features of the data that could not be seen otherwise.

6-6 TIME SEQUENCE PLOTS 209

manufacturing process (units are ): 953, 950, 948, 955, 951,
949, 957, 954, 955.
(a) Calculate the sample mean, sample variance, and standard

deviation.
(b) Find the median. How much could the largest temperature

measurement increase without changing the median value?
(c) Construct a box plot of the data.

6-46. Exercise 6-12 presents drag coefficients for the
NASA 0012 airfoil. You were asked to calculate the sample
mean, sample variance, and sample standard deviation of
those coefficients.
(a) Find the upper and lower quartiles of the drag coefficients.
(b) Construct a box plot of the data.
(c) Set aside the largest observation (100) and rework parts a

and b. Comment on your findings.

6-47. The following data are the temperatures of effluent at
discharge from a sewage treatment facility on consecutive
days:

43 47 51 48 52 50 46 49
45 52 46 51 44 49 46 51
49 45 44 50 48 50 49 50

(a) Calculate the sample mean and median.
(b) Calculate the sample variance and sample standard

deviation.
(c) Construct a box plot of the data and comment on the in-

formation in this display.

6-48. Reconsider the golf course yardage data in Exercise 6-3.
Construct a box plot of the yardages and write an interpreta-
tion of the plot.

6-49. Reconsider the motor fuel octane rating data in
Exercise 6-14. Construct a box plot of the yardages and write
an interpretation of the plot. How does the box plot compare
in interpretive value to the original stem-and-leaf diagram in
Exercise 6-14?

	F 6-50. Reconsider the spot weld shear strength data in
Exercise 6-23. Construct a box plot of the strengths and write
an interpretation of the plot. How does the box plot compare
in interpretive value to the original stem-and-leaf diagram in
Exercise 6-23?

6-51. Reconsider the female engineering student height
data in Exercise 6-22. Construct a box plot of the heights and
write an interpretation of the plot. How does the box plot com-
pare in interpretive value to the original stem-and-leaf dia-
gram in Exercise 6-22?

6-52. Reconsider the water quality data in Exercise 6-24.
Construct a box plot of the concentrations and write an interpre-
tation of the plot. How does the box plot compare in interpretive
value to the original stem-and-leaf diagram in Exercise 6-24?

6-53. Reconsider the golf ball overall distance data in
Exercise 6-25. Construct a box plot of the yardage distance
and write an interpretation of the plot. How does the box plot
compare in interpretive value to the original stem-and-leaf di-
agram in Exercise 6-25?

6-54. Reconsider the wine rating data in Exercise 6-27.
Construct a box plot of the wine ratings and write an interpreta-
tion of the plot. How does the box plot compare in interpretive
value to the original stem-and-leaf diagram in Exercise 6-27?

6-55. Use the data on heights of female and male engineer-
ing students from Exercises 6-22 and 6-29 to construct
comparative box plots. Write an interpretation of the informa-
tion that you see in these plots.

6-56. In Exercise 6-44, data was presented on the cold start
ignition time of a particular gasoline used in a test vehicle. A
second formulation of the gasoline was tested in the same ve-
hicle, with the following times (in seconds): 1.83, 1.99, 3.13,
3.29, 2.65, 2.87, 3.40, 2.46, 1.89, and 3.35. Use this new data
along with the cold start times reported in Exercise 6-44 to
construct comparative box plots. Write an interpretation of the
information that you see in these plots.
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210 CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

Figure 6-17 A digidot plot of the compressive strength data in Table 6-2.
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For example, consider Fig. 6-16(a), which presents a time series plot of the annual sales
of a company for the last 10 years. The general impression from this display is that sales show
an upward trend. There is some variability about this trend, with some years’ sales increasing
over those of the last year and some years’ sales decreasing. Figure 6-16(b) shows the last
three years of sales reported by quarter. This plot clearly shows that the annual sales in this
business exhibit a cyclic variability by quarter, with the first- and second-quarter sales being
generally greater than sales during the third and fourth quarters.

Sometimes it can be very helpful to combine a time series plot with some of the other
graphical displays that we have considered previously. J. Stuart Hunter (The American
Statistician, Vol. 42, 1988, p. 54) has suggested combining the stem-and-leaf plot with a time
series plot to form a digidot plot.

Figure 6-17 shows a digidot plot for the observations on compressive strength from
Table 6-2, assuming that these observations are recorded in the order in which they

19821983 1984 1985 1986 19871988 1989 1990 1991 Years

S
al

es
, 

x

S
al

es
, 

x

(a) (b)

1 2 3 4 1 2 3 4 1 2 3 4 Quarters
1989 1990 1991

Figure 6-16 Company sales by year (a) and by quarter (b).
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occurred. This plot effectively displays the overall variability in the compressive strength
data and simultaneously shows the variability in these measurements over time. The general
impression is that compressive strength varies around the mean value of 162.67, and there
is no strong obvious pattern in this variability over time.

The digidot plot in Fig. 6-18 tells a different story. This plot summarizes 30 observations
on concentration of the output product from a chemical process, where the observations are
recorded at one-hour time intervals. This plot indicates that during the first 20 hours of oper-
ation this process produced concentrations generally above 85 grams per liter, but that
following sample 20, something may have occurred in the process that results in lower con-
centrations. If this variability in output product concentration can be reduced, operation of this
process can be improved.

EXERCISES FOR SECTION 6-6

6-6 TIME SEQUENCE PLOTS 211

6-57. The College of Engineering and Applied Science at
Arizona State University had a VAX computer system.
Response times for 20 consecutive jobs were recorded and are
as follows: (read across)

Figure 6-18 A digi-
dot plot of chemical
process concentration
readings, observed
hourly.

Time series plotStemLeaf
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(b) Specifications on product viscosity are at 48 � 2. What
conclusions can you make about process performance?

6-59. The pull-off force for a connector is measured in a
laboratory test. Data for 40 test specimens follow (read down,
then left to right).5.3

5.0
9.5

10.1
5.8
6.2

5.9
7.2

10.0

12.2
8.5
4.7

11.2
7.3
6.4

12.4
3.9
8.1

9.2 
10.5

Construct and interpret a time series plot of these data.

6-58. The following data are the viscosity measurements
for a chemical product observed hourly (read down, then left
to right).

47.9
47.9
48.6
48.0
48.4
48.1
48.0

48.6
48.8
48.1
48.3
47.2
48.9
48.6

48.0
47.5
48.6
48.0
47.9
48.3
48.5

48.1
48.0
48.3
43.2
43.0
43.5
43.1

43.0
42.9
43.6
43.3
43.0
42.8
43.1

43.2
43.6
43.2
43.5
43.0

(a) Construct and interpret either a digidot plot or a separate
stem-and-leaf and time series plot of these data.

241
258
237
210
194
225
248

203
195
249
220
194
245
209

201
195
255
245
235
220
249

251
238
210
198
199
183
213

236
245
209
212
185
187
218

190
175
178
175
190

(a) Construct a time series plot of the data.
(b) Construct and interpret either a digidot plot or a stem-and-

leaf plot of the data.

6-60. In their book Time Series Analysis, Forecasting, and
Control (Prentice Hall, 1994), G. E. P. Box, G. M. Jenkins,
and G. C. Reinsel present chemical process concentration
readings made every two hours. Some of these data follow
(read down, then left to right).
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212 CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

17.0 16.7 17.1 17.5 17.6
16.6 17.4 17.4 18.1 17.5
16.3 17.2 17.4 17.5 16.5
16.1 17.4 17.5 17.4 17.8
17.1 17.4 17.4 17.4 17.3
16.9 17.0 17.6 17.1 17.3
16.8 17.3 17.4 17.6 17.1
17.4 17.2 17.3 17.7 17.4
17.1 17.4 17.0 17.4 16.9
17.0 16.8 17.8 17.8 17.3

6-61. Construct and interpret either a digidot plot or a stem-
and-leaf plot of these data. The 100 annual Wolfer sunspot
numbers from 1770 to 1869 follow. (For an interesting analy-
sis and interpretation of these numbers, see the book by 
Box, Jenkins, and Reinsel referenced in Exercise 6-60. Their
analysis requires some advanced knowledge of statistics and
statistical model building.) (read down, then left to right)
(a) Construct a time series plot of these data.
(b) Construct and interpret either a digidot plot or a stem-and-

leaf plot of these data.

6-62. In their book Forecasting and Time Series Analysis,
2nd edition (McGraw-Hill, 1990), D. C. Montgomery, L. A.
Johnson, and J. S. Gardiner analyze the data in Table 6-5,
which are the monthly total passenger airline miles flown in
the United Kingdom, 1964–1970 (in millions of miles).
(a) Draw a time series plot of the data and comment on any

features of the data that are apparent. 
(b) Construct and interpret either a digidot plot or a stem-and-

leaf plot of these data.

Table 6-5 United Kingdom Passenger Airline Miles Flown

Month 1964 1965 1966 1967 1968 1969 1970

Jan. 7.269 8.350 8.186 8.334 8.639 9.491 10.840
Feb. 6.775 7.829 7.444 7.899 8.772 8.919 10.436
Mar. 7.819 8.829 8.484 9.994 10.894 11.607 13.589
Apr. 8.371 9.948 9.864 10.078 10.455 8.852 13.402
May 9.069 10.638 10.252 10.801 11.179 12.537 13.103
June 10.248 11.253 12.282 12.953 10.588 14.759 14.933
July 11.030 11.424 11.637 12.222 10.794 13.667 14.147
Aug. 10.882 11.391 11.577 12.246 12.770 13.731 14.057
Sept. 10.333 10.665 12.417 13.281 13.812 15.110 16.234
Oct. 9.109 9.396 9.637 10.366 10.857 12.185 12.389
Nov. 7.685 7.775 8.094 8.730 9.290 10.645 11.594
Dec. 7.682 7.933 9.280 9.614 10.925 12.161 12.772
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82
66
35

31
7

20
92
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125
85
68
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23
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24
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132
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16
6
4
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34
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1
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12
14
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17
36
50
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67
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8
13
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103
86
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37
24
11
15
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4
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94
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77
59
44
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30
16
7
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6-7 PROBABILITY PLOTS

How do we know if a particular probability distribution is a reasonable model for data?
Sometimes, this is an important question because many of the statistical techniques
presented in subsequent chapters are based on an assumption that the population distribution
is of a specific type. Thus, we can think of determining whether data come from a specific
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6-7 PROBABILITY PLOTS 213

probability distribution as verifying assumptions. In other cases, the form of the distribution
can give insight into the underlying physical mechanism generating the data. For example, in
reliability engineering, verifying that time-to-failure data come from an exponential distri-
bution identifies the failure mechanism in the sense that the failure rate is constant with
respect to time.

Some of the visual displays we have used earlier, such as the histogram, can provide
insight about the form of the underlying distribution. However, histograms are usually not
really reliable indicators of the distribution form unless the sample size is very large.
Probability plotting is a graphical method for determining whether sample data conform
to a hypothesized distribution based on a subjective visual examination of the data. The gen-
eral procedure is very simple and can be performed quickly. It is also more reliable than the
histogram for small to moderate size samples. Probability plotting typically uses special
graph paper, known as probability paper, that has been designed for the hypothesized
distribution. Probability paper is widely available for the normal, lognormal, Weibull, and
various chi-square and gamma distributions. We focus primarily on normal probability plots
because many statistical techniques are appropriate only when the population is (at least ap-
proximately) normal.

To construct a probability plot, the observations in the sample are first ranked from
smallest to largest. That is, the sample is arranged as where 

is the smallest observation, x(2) is the second smallest observation, and so forth, with x(n)

the largest. The ordered observations x( j) are then plotted against their observed cumulative
frequency ( j � 0.5)�n on the appropriate probability paper. If the hypothesized distribution
adequately describes the data, the plotted points will fall approximately along a straight line;
if the plotted points deviate significantly from a straight line, the hypothesized model is not
appropriate. Usually, the determination of whether or not the data plot as a straight line is
subjective. The procedure is illustrated in the following example.

EXAMPLE 6-7 Ten observations on the effective service life in minutes of batteries used in a portable
personal computer are as follows: 176, 191, 214, 220, 205, 192, 201, 190, 183, 185. We
hypothesize that battery life is adequately modeled by a normal distribution. To use probabil-
ity plotting to investigate this hypothesis, first arrange the observations in ascending order and
calculate their cumulative frequencies as shown in Table 6-6.

The pairs of values and are now plotted on normal probability paper. 
This plot is shown in Fig. 6-19. Most normal probability paper plots on the left
vertical scale and on the right vertical scale, with the variable value  plot-
ted on the horizontal scale. A straight line, chosen subjectively, has been drawn through the plot-
ted points. In drawing the straight line, you should be influenced more by the points near the
middle of the plot than by the extreme points. A good rule of thumb is to draw the line approxi-
mately between the 25th and 75th percentile points. This is how the line in Fig. 6-19 was deter-
mined. In assessing the “closeness” of the points to the straight line, imagine a “fat pencil” lying
along the line. If all the points are covered by this imaginary pencil, a normal distribution ade-
quately describes the data. Since the points in Fig. 6-19 would pass the “fat pencil” test, we con-
clude that the normal distribution is an appropriate model.

A normal probability plot can also be constructed on ordinary graph paper by plotting
the standardized normal scores zj against x( j), where the standardized normal scores satisfy

j � 0.5
n � P1Z � zj2 � �1zj2

100 31 � 1 j � 0.52�n 4
1001j � 0.52�n

1 j � 0.52�10x1 j2
1 j � 0.52�10

x112
x112, x122, p , x1n2,x1, x2, p , xn
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214 CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

For example, if implies that To illustrate,
consider the data from Example 6-4. In the last column of Table 6-6 we show the standarized
normal scores. Figure 6-20 presents the plot of versus This normal probability plot is
equivalent to the one in Fig. 6-19.

We have constructed our probability plots with the probability scale (or the z-scale) on the
vertical axis. Some computer packages “flip” the axis and put the probability scale on the hor-
izontal axis.

The normal probability plot can be useful in identifying distributions that are symmetric
but that have tails that are “heavier” or “lighter” than the normal. They can also be useful in
identifying skewed distributions. When a sample is selected from a light-tailed distribution
(such as the uniform distribution), the smallest and largest observations will not be as extreme
as would be expected in a sample from a normal distribution. Thus if we consider the straight
line drawn through the observations at the center of the normal probability plot, observations
on the left side will tend to fall below the line, whereas observations on the right side will tend
to fall above the line. This will produce an S-shaped normal probability plot such as shown in

x1 j2.zj

zj � �1.64.1 j � 0.52�n � 0.05, �1zj2 � 0.05

Table 6-6 Calculation for Constracting a Normal 
Probability Plot

j zj

1 176 0.05 �1.64
2 183 0.15 �1.04
3 185 0.25 �0.67
4 190 0.35 �0.39
5 191 0.45 �0.13
6 192 0.55 0.13
7 201 0.65 0.39
8 205 0.75 0.67
9 214 0.85 1.04

10 220 0.95 1.64

1 j � 0.52�10x1 j 2
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Figure 6-19 Normal probability plot for battery life.
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Figure 6-20 Normal
probability plot
obtained from
standardized normal
scores.
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6-7 PROBABILITY PLOTS 215

Fig. 6-21(a). A heavy-tailed distribution will result in data that also produces an S-shaped
normal probability plot, but now the observations on the left will be above the straight line and
the observations on the right will lie below the line. See Fig. 6-19(b). A positively skewed dis-
tribution will tend to produce a pattern such as shown in Fig. 6-19(c), where points on both
ends of the plot tend to fall below the line, giving a curved shape to the plot. This occurs be-
cause both the smallest and the largest observations from this type of distribution are larger
than expected in a sample from a normal distribution.

Even when the underlying population is exactly normal, the sample data will not plot
exactly on a straight line. Some judgment and experience are required to evaluate the plot.
Generally, if the sample size is n � 30, there can be a lot of deviation from linearity in normal
plots, so in these cases only a very severe departure from linearity should be interpreted as a
strong indication of nonnormality. As n increases, the linear pattern will tend to become
stronger, and the normal probability plot will be easier to interpret and more reliable as an
indicator of the form of the distribution.

EXERCISES FOR SECTION 6-7

(a)
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(b) (c)

Figure 6-21 Normal probability plots indicating a nonnormal distrubution. (a) Light-tailed distribution. (b) Heavy-tailed
distribution. (c) A distribution with positive (or right) skew.

6-63. Construct a normal probability plot of the piston ring
diameter data in Exercise 6-1. Does it seem reasonable to
assume that piston ring diameter is normally distributed?

6-64. Construct a normal probability plot of the insulating
fluid breakdown time data in Exercise 6-2. Does it seem
reasonable to assume that breakdown time is normally
distributed?

6-65. Construct a normal probability plot of the visual
accommodation data in Exercise 6-5. Does it seem reason-
able to assume that visual accommodation is normally
distributed?

6-66. Construct a normal probability plot of the O-ring joint
temperature data in Exercise 6-13. Does it seem reasonable to
assume that O-ring joint temperature is normally distributed?
Discuss any interesting features that you see on the plot.

6-67. Construct a normal probability plot of the octane rat-
ing data in Exercise 6-14. Does it seem reasonable to assume
that octane rating is normally distributed?

6-68. Construct a normal probability plot of the cycles to
failure data in Exercise 6-15. Does it seem reasonable to as-
sume that cycles to failure is normally distributed?

6-69. Construct a normal probability plot of the wine qual-
ity rating data in Exercise 6-27. Does it seem reasonable to
assume that this variable is normally distributed?

6-70. Construct a normal probability plot of the sus-
pended solids concentration data in Exercise 6-24. Does it
seem reasonable to assume that the concentration of
suspended solids in water from this particular lake is
normally distributed?
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216 CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

6-71. Construct two normal probability plots for the height
data in Exercises 6-22 and 6-29. Plot the data for female and
male students on the same axes. Does height seem to be
normally distributed for either group of students? If both pop-
ulations have the same variance, the two normal probability
plots should have identical slopes. What conclusions would
you draw about the heights of the two groups of students from
visual examination of the normal probability plots?

6-72. It is possible to obtain a “quick and dirty” estimate of
the mean of a normal distribution from the fiftieth percentile
value on a normal probability plot. Provide an argument why
this is so. It is also possible to obtain an estimate of the stan-
dard deviation of a normal distribution by subtracting the
sixty-fourth percentile value from the fiftieth percentile value.
Provide an argument why this is so.

6-8 MORE ABOUT PROBABILITY
PLOTTING (CD ONLY)

Supplemental Exercises

6-73. The concentration of a solution is measured six times
by one operator using the same instrument. She obtains the
following data: 63.2, 67.1, 65.8, 64.0, 65.1, and 65.3 (grams
per liter).
(a) Calculate the sample mean. Suppose that the desirable

value for this solution has been specified to be 65.0
grams per liter. Do you think that the sample mean
value computed here is close enough to the target value
to accept the solution as conforming to target? Explain
your reasoning.

(b) Calculate the sample variance and sample standard
deviation.

(c) Suppose that in measuring the concentration, the operator
must set up an apparatus and use a reagent material. What
do you think the major sources of variability are in this ex-
periment? Why is it desirable to have a small variance of
these measurements?

6-74. A sample of six resistors yielded the following resist-
ances (ohms): 
and 
(a) Compute the sample variance and sample standard

deviation.
(b) Subtract 35 from each of the original resistance measure-

ments and compute and s. Compare your results with
those obtained in part (a) and explain your findings.

(c) If the resistances were 450, 380, 470, 410, 350, and 430
ohms, could you use the results of previous parts of this
problem to find s2 and s?

6-75. Consider the following two samples:

Sample 1: 10, 9, 8, 7, 8, 6, 10, 6

Sample 2: 10, 6, 10, 6, 8, 10, 8, 6

s2

x6 � 43.
x1 � 45, x2 � 38, x3 � 47, x4 � 41, x5 � 35,

(a) Calculate the sample range for both samples. Would you
conclude that both samples exhibit the same variability?
Explain.

(b) Calculate the sample standard deviations for both sam-
ples. Do these quantities indicate that both samples have
the same variability? Explain.

(c) Write a short statement contrasting the sample range
versus the sample standard deviation as a measure of vari-
ability.

6-76. An article in Quality Engineering (Vol. 4, 1992, pp.
487–495) presents viscosity data from a batch chemical
process. A sample of these data follows:

13.3
14.5
15.3
15.3
14.3
14.8
15.2
14.5
14.6
14.1

14.3
16.1
13.1
15.5
12.6
14.6
14.3
15.4
15.2
16.8

14.9
13.7
15.2
14.5
15.3
15.6
15.8
13.3
14.1
15.4

15.2
15.2
15.9
16.5
14.8
15.1
17.0
14.9
14.8
14.0

15.8
13.7
15.1
13.4
14.1
14.8
14.3
14.3
16.4
16.9

14.2
16.9
14.9
15.2
14.4
15.2
14.6
16.4
14.2
15.7

16.0
14.9
13.6
15.3
14.3
15.6
16.1
13.9
15.2
14.4

14.0
14.4
13.7
13.8
15.6
14.5
12.8
16.1
16.6
15.6

(a) Reading down and left to right, draw a time series plot of
all the data and comment on any features of the data that
are revealed by this plot.

(b) Consider the notion that the first 40 observations were
generated from a specific process, whereas the last 40 ob-
servations were generated from a different process. Does
the plot indicate that the two processes generate similar
results?

(c) Compute the sample mean and sample variance of the first
40 observations; then compute these values for the second
40 observations. Do these quantities indicate that both
processes yield the same mean level? The same variabil-
ity? Explain.

6-77. Reconsider the data from Exercise 6-76. Prepare
comparative box plots for two groups of observations: the
first 40 and the last 40. Comment on the information in the
box plots.

6-78. The data shown in Table 6-7 are monthly champagne
sales in France (1962-1969) in thousands of bottles.
(a) Construct a time series plot of the data and comment on

any features of the data that are revealed by this plot. 
(b) Speculate on how you would use a graphical proce-

dure to forecast monthly champagne sales for the year
1970.

6-79. A manufacturer of coil springs is interested in imple-
menting a quality control system to monitor his production
process. As part of this quality system, it is decided to record
the number of nonconforming coil springs in each production
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6-7 PROBABILITY PLOTS 217

batch of size 50. During 40 days of production, 40 batches of
data were collected as follows:

Read data across.
9 12 6 9 7 14 12 4 6 7
8 5 9 7 8 11 3 6 7 7

11 4 4 8 7 5 6 4 5 8
19 19 18 12 11 17 15 17 13 13

(a) Construct a stem-and-leaf plot of the data.
(b) Find the sample average and standard deviation.
(c) Construct a time series plot of the data. Is there evidence

that there was an increase or decrease in the average
number of nonconforming springs made during the 40
days? Explain.

6-80. A communication channel is being monitored by
recording the number of errors in a string of 1000 bits. Data
for 20 of these strings follow:

Read data across.
3 1 0 1 3 2 4 1 3 1
1 1 2 3 3 2 0 2 0 1 

(a) Construct a stem-and-leaf plot of the data.
(b) Find the sample average and standard deviation.
(c) Construct a time series plot of the data. Is there evidence

that there was an increase or decrease in the number of
errors in a string? Explain.

6-81. Reconsider the data in Exercise 6-76. Construct normal
probability plots for two groups of the data: the first 40  and the
last 40 observations. Construct both plots on the same axes.
What tentative conclusions can you draw?

6-82. Construct a normal probability plot of the effluent dis-
charge temperature data from Exercise 6-47. Based on the
plot, what tentative conclusions can you draw?

6-83. Construct normal probability plots of the cold start
ignition time data presented in Exercises 6-44 and 6-56.

Construct a separate plot for each gasoline formulation, but
arrange the plots on the same axes. What tentative conclusions
can you draw?

6-84. Transformations. In some data sets, a transformation
by some mathematical function applied to the original data,
such as or log y, can result in data that are simpler to work
with statistically than the original data. To illustrate the effect
of a transformation, consider the following data, which repre-
sent cycles to failure for a yarn product: 675, 3650, 175, 1150,
290, 2000, 100, 375.
(a) Construct a normal probability plot and comment on the

shape of the data distribution.
(b) Transform the data using logarithms; that is, let y* (new

value) = log y (old value). Construct a normal probability
plot of the transformed data and comment on the effect of
the transformation.

6-85. In 1879, A. A. Michelson made 100 determinations of
the velocity of light in air using a modification of a method
proposed by the French physicist Foucault. He made the
measurements in five trials of 20 measurements each. The ob-
servations (in kilometers per second) follow. Each value has
299,000 substracted from it.

Trial 1

1y

Table 6-7 Champagne Sales in France

Month 1962 1963 1964 1965 1966 1967 1968 1969

Jan. 2.851 2.541 3.113 5.375 3.633 4.016 2.639 3.934
Feb. 2.672 2.475 3.006 3.088 4.292 3.957 2.899 3.162
Mar. 2.755 3.031 4.047 3.718 4.154 4.510 3.370 4.286
Apr. 2.721 3.266 3.523 4.514 4.121 4.276 3.740 4.676
May 2.946 3.776 3.937 4.520 4.647 4.968 2.927 5.010
June 3.036 3.230 3.986 4.539 4.753 4.677 3.986 4.874
July 2.282 3.028 3.260 3.663 3.965 3.523 4.217 4.633
Aug. 2.212 1.759 1.573 1.643 1.723 1.821 1.738 1.659
Sept. 2.922 3.595 3.528 4.739 5.048 5.222 5.221 5.591
Oct. 4.301 4.474 5.211 5.428 6.922 6.873 6.424 6.981
Nov. 5.764 6.838 7.614 8.314 9.858 10.803 9.842 9.851
Dec. 7.132 8.357 9.254 10.651 11.331 13.916 13.076 12.670

850
1000

740
980

900
930

1070
650

930
760
850
810

950
1000
980

1000

980
960
880
960

Trial 2

960
830
940
790

960
810
940
880

880
880
800
830

850
800
880
790

900
760
840
800
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218 CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

Trial 3 sistent with respect to the variability of the measurements?
Are all five trials centered on the same value? How does each
group of trials compare to the true value? Could there have
been “startup” effects in the experiment that Michelson
performed? Could there have been bias in the measuring
instrument?

6-86. In 1789, Henry Cavendish estimated the density of
the earth by using a torsion balance. His 29 measurements
follow, expressed as a multiple of the density of water.

5.50
5.55
5.57
5.34
5.42

5.30
5.61
5.36
5.53
5.79

5.47
5.75
4.88
5.29
5.62

5.10
5.63
5.86
4.07
5.58

5.29
5.27
5.34
5.85
5.26

5.65
5.44
5.39
5.46

880
880
880
910

880
850
860
870

720
840
720
840

620
850
860
840

970
840
950
840

Trial 4

890
910
810
920

810
890
820
860

800
880
770
720

760
840
740
850

750
850
760
780

Trial 5

890
870
840
870

780
810
810
740

760
810
810
940

790
950
810
800

820
810
850
870

The currently accepted true velocity of light in a vacuum is
299, 792.5 kilometers per second. Stigler (1977, The Annals of
Statistics) reports that the “true” value for comparison to these
measurements is 734.5. Construct comparative box plots of
these measurements. Does it seem that all five trials are con-

(a) Calculate the sample mean, sample standard deviation,
and median of the Cavendish density data.

(b) Construct a normal probability plot of the data. Comment
on the plot. Does there seem to be a “low” outlier in the
data?

(c) Would the sample median be a better estimate of the
density of the earth than the sample mean? Why?
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6-7 PROBABILITY PLOTS 219

MIND-EXPANDING EXERCISES

IMPORTANT TERMS AND CONCEPTS

In the E-book, click on any
term or concept below to
go to that subject.

Box plot
Frequency distribution

and histogram
Median, quartiles and

percentiles

Normal probability plot
Population mean
Population standard

deviation
Population variance
Random sample

Sample mean
Sample standard

deviation
Sample variance
Stem-and-leaf diagram
Time series plots

CD MATERIAL
Exponential probability

plot
Goodness of fit
Weibull probability plot

6-87. Consider the airfoil data in Exercise 6-12.
Subtract 30 from each value and then multiply the re-
sulting quantities by 10. Now compute s2 for the new
data. How is this quantity related to s2 for the original
data? Explain why.

6-88. Consider the quantity . For what
value of a is this quantity minimized?

6-89 Using the results of Exercise 6-87, which of the
two quantities and 
will be smaller, provided that ?

6-90. Coding the Data. Let i �
1, 2, . . . , n, where a and b are nonzero constants. Find the
relationship between and , and between  and 

6-91. A sample of temperature measurements in a fur-
nace yielded a sample average ( ) of 835.00 and a sam-
ple standard deviation of 10.5. Using the results from
Exercise 6-90, what are the sample average and sample
standard deviations expressed in ?

6-92. Consider the sample with sample
mean and sample standard deviation s. Let

What are the values of
the sample mean and sample standard deviation of the ?

6-93. An experiment to investigate the survival time
in hours of an electronic component consists of placing
the parts in a test cell and running them for 100 hours
under elevated temperature conditions. (This is called an
“accelerated” life test.) Eight components were tested
with the following resulting failure times:

75, 63, 100�, 36, 51, 45, 80, 90

The observation 100� indicates that the unit still func-
tioned at 100 hours. Is there any meaningful measure of
location that can be calculated for these data? What is its
numerical value?

6-94. Suppose that we have a sample x1, x2, p , xn and
we have calculated and for the  sample. Now an 
(n � 1)st observation becomes available. Let and

be the sample mean and sample variance for the
sample using all n � 1 observations.
(a) Show how can be computed using and xn�1.

(b) Show that

(c) Use the results of parts (a) and (b) to calculate the
new sample average and standard deviation for the
data of Exercise 6-22, when the new observation is

.

6-95. The Trimmed Mean. Suppose that the data are
arranged in increasing order, T% of the observations are
removed from each end and the sample mean of the re-
maining numbers is calculated. The resulting quantity is
called a trimmed mean. The trimmed mean generally
lies between the sample mean and the sample median

. Why?
(a) Calculate the 10% trimmed mean for the yield data

in Exercise 6-17.
(b) Calculate the 20% trimmed mean for the yield data

in Exercise 6-17 and compare it with the quantity
found in part (a).

(c) Compare the values calculated in parts (a) and (b)
with the sample mean and median for the yield
data. Is there much difference in these quantities?
Why?

6-96. The Trimmed Mean. Suppose that the sample
size n is such that the quantity nT�100 is not an integer.
Develop a procedure for obtaining a trimmed mean in
this case.

x
x

x38 � 64

ns2
n�1 � 1n � 12s2

n �
n1xn�1 � xn2

2

n � 1

xnxn�1

s2
n�1

xn�1

s2
nxn

zi

zi � 1xi � x� 2�s, i � 1, 2, . . . , n.
x

x1, x2, . . . , xn

�C

�F

sy.sxyx

yi � a � bxi,
x � �

g n
i�1 1xi � �22g n

i�1 1xi � x22

g n
i�1 1xi � a22
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6-8 MORE ABOUT PROBABILITY PLOTTING (CD ONLY)

Probability plots are extremely useful and are often the first technique used in an effort to
determine which probability distribution is likely to provide a reasonable model for the data.

We give a simple illustration of how a normal probability plot can be useful in distin-
guishing between normal and nonnormal data. Table S6-1 contains 50 observations gener-
ated at random from an exponential distribution with mean 20 (or ). These data
were generated using the random number generation capability in Minitab. Figure S6-1
presents a normal probability plot of these data, constructed using Minitab. The observa-
tions do not even approximately lie along a straight line, giving a clear indication that the
data do not follow a normal distribution. The strong curvature at both ends of the plot sug-
gests that the data come from a distribution with right or positive skew. Compare Fig. S6-1
with Fig. 6-19c.

Minitab also provides estimates of the mean and standard deviation of the distribution us-
ing the method of maximum likelihood (abbreviated ML on the graph in Figure S6-1). We
will discuss maximum likelihood estimation in Chapter 7. For the normal distribution, this is
the familiar sample mean and sample standard deviation that we first presented in Chapter 1.
Minitab also presents a quantitative measure of how well the data are described by a normal
distribution. This goodness-of-fit measure is called the Anderson-Darling statistic (abbrevi-
ated AD on the Minitab probability plot). The Anderson-Darling statistic is based on the prob-
ability integral transformation

that can be used to convert the data to a uniform distribution if the hypothesized distribution
is correct. Thus, if are independent and identically distributed random variables
whose cumulative distribution function is F(x), then are independent
uniform (0, 1) random variables. The Anderson-Darling statistic essentially compares how
close the values are to values from a uniform (0, 1) distribution. ForF1x12, F1x22, . . . , F1xn2

F1x12, F1x22, . . . , F1xn2
x1, x2, . . . , xn

F1x2 � �
x

��

 f 1u2 du

� � 0.05
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ML estimates

ML estimates
Mean      20.7362
St. Dev.  19.2616

Goodness of fit
AD*          1.904

Figure S6-1. Normal
probability plot (from
Minitab) of the data
from Table S6-1.
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Figure S6-2.
Exponential probabil-
ity plot (from Minitab)
of the data from Table
S6-1.

this reason, the Anderson-Darling test is sometimes called a “distance” test. The test is upper-
tailed; that is, if the computed value exceeds a critical value, the hypothesis of normality is
rejected. The 5% critical value of the Anderson-Darling statistic is 0.752 and the 1% value is
1.035. Because the Anderson-Darling statistic in Figure S6-1 is 1.904, and this exceeds the 1%
critical value, we conclude that the assumption of normality would be inappropriate.

Minitab can construct several other types of probability plots. An exponential probability
plot of the data in Table S6-1 is shown in Figure S6-2. Notice that the data lies very close to
the straight line in this plot, implying that the exponential is a good model for the data.
Minitab also provides an estimate of the mean of the exponential distribution. This estimate is
just the sample mean.

Figure S6-3 is a Weibull probability plot of the data from Table S6-1, constructed using
Minitab. The data lies approximately along a straight line, suggesting that the Weibull
distribution is also a reasonable model for the data. Notice that Minitab provides maximum
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Weibull probability plot
ML estimates

ML estimates
Shape      1.01967
Scale     20.8955

Goodness of fit
AD*         0.679

Figure S6-3. Weibull
probability plot (from
Minitab) of the data
from Table S6-1.
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6-3

likelihood estimates of the shape parameter and the scale parameter . The shape parameter
estimate is very close to unity, and we know that a Weibull distribution with is the
exponential distribution.

� � 1
��

Table S6-1 50 Observations Drawn at Random from an Exponential Distribution with 
Mean 20 1� � 0.052

1.2934
2.4330

15.8770
21.9606
47.4481
34.8720
27.0908
17.5253
6.8290

14.1968
13.1818
9.0942

21.1336
0.3389

39.2494
0.6731

68.7876
37.9023

13.2798
5.7511

31.3655
26.8364
1.0999

12.1621
14.2467
57.8919
1.8219

16.1154
39.9558
1.3104
9.3134

19.8350
18.8295
49.9397
1.0882
6.4967

14.8891
97.8874
12.0008
31.0346
1.5191

35.3307
6.0479

22.4244
12.8239

31.6489
21.1057
11.2846
29.0222
2.5623
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7-1 INTRODUCTION

7-2 GENERAL CONCEPTS OF POINT
ESTIMATION

7-2.1 Unbiased Estimators

7-2.2 Proof that S is a Biased Estimator
of � (CD Only)

7-2.3 Variance of a Point Estimator

7-2.4 Standard Error: Reporting a 
Point Estimate

7-2.5 Bootstrap Estimate of the Standard
Error (CD Only)

7-2.6 Mean Square Error of an Estimator

7-3 METHODS OF POINT ESTIMATION

7-3.1 Method of Moments

7-3.2 Method of Maximum Likelihood

7-3.3 Bayesian Estimation of 
Parameters (CD Only)

7-4 SAMPLING DISTRIBUTIONS

7-5 SAMPLING DISTRIBUTIONS 
OF MEANS

220

7Point Estimation 
of Parameters

CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Explain the general concepts of estimating the parameters of a population or a probability distribution
2. Explain important properties of point estimators, including bias, variance, and mean square error
3. Know how to construct point estimators using the method of moments and the method of maxi-

mum likelihood
4. Know how to compute and explain the precision with which a parameter is estimated
5. Understand the central limit theorem
6. Explain the important role of the normal distribution as a sampling distribution

CD MATERIAL
7. Use bootstrapping to find the standard error of a point estimate
8. Know how to construct a point estimator using the Bayesian approach
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7-1 INTRODUCTION 221

Answers for most odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

7-1 INTRODUCTION

The field of statistical inference consists of those methods used to make decisions or to draw
conclusions about a population. These methods utilize the information contained in a sample
from the population in drawing conclusions. This chapter begins our study of the statistical
methods used for inference and decision making.

Statistical inference may be divided into two major areas: parameter estimation and
hypothesis testing. As an example of a parameter estimation problem, suppose that a structural
engineer is analyzing the tensile strength of a component used in an automobile chassis. Since
variability in tensile strength is naturally present between the individual components because of
differences in raw material batches, manufacturing processes, and measurement procedures (for
example), the engineer is interested in estimating the mean tensile strength of the components.
In practice, the engineer will use sample data to compute a number that is in some sense a rea-
sonable value (or guess) of the true mean. This number is called a point estimate. We will see
that it is possible to establish the precision of the estimate.

Now consider a situation in which two different reaction temperatures can be used in a
chemical process, say and . The engineer conjectures that results in higher yields than
does . Statistical hypothesis testing is a framework for solving problems of this type. In this
case, the hypothesis would be that the mean yield using temperature is greater than the mean
yield using temperature Notice that there is no emphasis on estimating yields; instead, the
focus is on drawing conclusions about a stated hypothesis.

Suppose that we want to obtain a point estimate of a population parameter. We know that
before the data is collected, the observations are considered to be random variables, say

Therefore, any function of the observation, or any statistic, is also a random
variable. For example, the sample mean and the sample variance are statistics and they
are also random variables.

Since a statistic is a random variable, it has a probability distribution. We call the proba-
bility distribution of a statistic a sampling distribution. The notion of a sampling distribution
is very important and will be discussed and illustrated later in the chapter.

When discussing inference problems, it is convenient to have a general symbol to represent
the parameter of interest. We will use the Greek symbol (theta) to represent the parameter. The
objective of point estimation is to select a single number, based on sample data, that is the most
plausible value for . A numerical value of a sample statistic will be used as the point estimate.

In general, if X is a random variable with probability distribution , characterized by
the unknown parameter , and if is a random sample of size n from X, the
statistic is called a point estimator of . Note that is a random vari-
able because it is a function of random variables. After the sample has been selected, takes
on a particular numerical value called the point estimate of .��̂

�̂
�̂��̂ � h1X1, X2, p , Xn2

X1, X2, p , Xn�
f 1x2

�

�

S2X
X1, X2, p , Xn.

t2.
t1

t2

t1t2t1

A point estimate of some population parameter is a single numerical value of a
statistic . The statistic is called the point estimator.�̂�̂

�̂�
Definition
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222 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

As an example, suppose that the random variable X is normally distributed with an un-
known mean . The sample mean is a point estimator of the unknown population mean .
That is, . After the sample has been selected, the numerical value is the point estimate
of . Thus, if , and , the point estimate of is

Similarly, if the population variance is also unknown, a point estimator for is the sample
variance , and the numerical value calculated from the sample data is called the
point estimate of .

Estimation problems occur frequently in engineering. We often need to estimate

The mean � of a single population

The variance �2 (or standard deviation �) of a single population

The proportion p of items in a population that belong to a class of interest

The difference in means of two populations, 

The difference in two population proportions, 

Reasonable point estimates of these parameters are as follows:

For �, the estimate is the sample mean.

For �2, the estimate is , the sample variance.

For p, the estimate is , the sample proportion, where x is the number of items
in a random sample of size n that belong to the class of interest.

For , the estimate is , the difference between the sample
means of two independent random samples.

For , the estimate is , the difference between two sample proportions
computed from two independent random samples.

We may have several different choices for the point estimator of a parameter. For ex-
ample, if we wish to estimate the mean of a population, we might consider the sample
mean, the sample median, or perhaps the average of the smallest and largest observations
in the sample as point estimators. In order to decide which point estimator of a particular
parameter is the best one to use, we need to examine their statistical properties and develop
some criteria for comparing estimators.

7-2 GENERAL CONCEPTS OF POINT ESTIMATION

7-2.1 Unbiased Estimators

An estimator should be “close” in some sense to the true value of the unknown parameter.
Formally, we say that is an unbiased estimator of � if the expected value of is equal to �.
This is equivalent to saying that the mean of the probability distribution of (or the mean of
the sampling distribution of ) is equal to �.�̂

�̂
�̂�̂

p̂1 � p̂2p1 � p2

�̂1 � �̂2 � x1 � x2�1 � �2

p̂ � x�n
�̂2 � s2

�̂ � x,

p1 � p2

�1 � �2

�2
s2 � 6.9S2

�2�2

x �
25 � 30 � 29 � 31

4
� 28.75

�x4 � 31x1 � 25, x2 � 30, x3 � 29�
x�̂ � X

��
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When an estimator is unbiased, the bias is zero; that is, 

EXAMPLE 7-1 Suppose that X is a random variable with mean � and variance . Let be a
random sample of size n from the population represented by X. Show that the sample mean 
and sample variance are unbiased estimators of � and , respectively.

First consider the sample mean. In Equation 5.40a in Chapter 5, we showed that 
Therefore, the sample mean is an unbiased estimator of the population mean �.

Now consider the sample variance. We have

The last equality follows from Equation 5-37 in Chapter 5. However, since 
and we have

Therefore, the sample variance is an unbiased estimator of the population variance 

Although is unbiased for �2, S is a biased estimator of �. For large samples, the bias is very
small. However, there are good reasons for using S as an estimator of � in samples from  nor-
mal distributions, as we will see in the next three chapters when are discuss confidence
intervals and hypothesis testing.

S2

�2.S2

 � �2

 �
1

n � 1
  1n�2 � n�2 � n�2 � �22

E1S22 �
1

n � 1
  c a

n

i�1
 1�2 � �22 � n1�2 � �2�n2 d

E1X 22 � �2 � �2�n,
E1X2

i 2 � �2 � �2

 �
1

n � 1
  c a

n

i�1
 E 1X 2

i 2 � nE1X 22 d

 �
1

n � 1
 E a

n

i�1
 1X 2

i � X 2 � 2X Xi2 �
1

n � 1
  E  aa

n

i�1
 X 2

i � nX 2b

 E1S22 � E  £ a
n

i�1
 1Xi � X 22
n � 1

§ �
1

n � 1
  E a

n

i�1
 1Xi � X 22

X
E1X 2 � �.

�2S2
X

X1, X2, p , Xn�2

E1�̂2 � � � 0.

The point estimator is an unbiased estimator for the parameter � if

(7-1)

If the estimator is not unbiased, then the difference

(7-2)

is called the bias of the estimator .�̂

E1�̂2 � �

E1�̂2 � �

�̂
Definition
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224 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

Sometimes there are several unbiased estimators of the sample population parameter. For
example, suppose we take a random sample of size from a normal population and
obtain the data x1 � 12.8, x2 � 9.4, x3 � 8.7, x4 � 11.6, x5 � 13.1, x6 � 9.8, x7 � 14.1,
x8 � 8.5, x9 � 12.1, x10 � 10.3. Now the sample mean is

the sample median is

and a 10% trimmed mean (obtained by discarding the smallest and largest 10% of the sample
before averaging) is

We can show that all of these are unbiased estimates of �. Since there is not a unique unbiased
estimator, we cannot rely on the property of unbiasedness alone to select our estimator. We
need a method to select among unbiased estimators. We suggest a method in Section 7-2.3.

7-2.2 Proof That S is a Biased Estimator of � (CD Only)

7-2.3 Variance of a Point Estimator

Suppose that and are unbiased estimators of �. This indicates that the distribution of
each estimator is centered at the true value of �. However, the variance of these distributions
may be different. Figure 7-1 illustrates the situation. Since has a smaller variance than 
the estimator is more likely to produce an estimate close to the true value �. A logical prin-
ciple of estimation, when selecting among several estimators, is to choose the estimator that
has minimum variance.

�̂1

�̂2,�̂1

�̂2�̂1

 � 10.98

 xtr1102 �
8.7 � 9.4 � 9.8 � 10.3 � 11.6 � 12.1 � 12.8 � 13.1

8

x~ �
10.3 � 11.6

2
� 10.95

 � 11.04

x �
12.8 � 9.4 � 8.7 � 11.6 � 13.1 � 9.8 � 14.1 � 8.5 � 12.1 � 10.3

10

n � 10

If we consider all unbiased estimators of �, the one with the smallest variance is
called the minimum variance unbiased estimator (MVUE).

Definition

θ

Distribution of    1Θ̂

Distribution of    2Θ̂
Figure 7-1 The
sampling distributions
of two unbiased estima-
tors and .	̂2	̂1
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In a sense, the MVUE is most likely among all unbiased estimators to produce an estimate 
that is close to the true value of . It has been possible to develop methodology to identify the
MVUE in many practical situations. While this methodology is beyond the scope of this book,
we give one very important result concerning the normal distribution.

�
�̂

If is a random sample of size n from a normal distribution with mean
and variance , the sample mean is the MVUE for .�X�2�
X1, X2, p , Xn

Theorem 7-1

In situations in which we do not know whether an MVUE exists, we could still use a minimum
variance principle to choose among competing estimators. Suppose, for example, we wish to es-
timate the mean of a population (not necessarily a normal population). We have a random sample
of n observations and we wish to compare two possible estimators for : the sam-
ple mean and a single observation from the sample, say, . Note that both and Xi are unbi-
ased estimators of ; for the sample mean, we have from Equation 5-40b and the
variance of any observation is . Since for sample sizes we
would conclude that the sample mean is a better estimator of � than a single observation .

7-2.4 Standard Error: Reporting a Point Estimate

When the numerical value or point estimate of a parameter is reported, it is usually desirable
to give some idea of the precision of estimation. The measure of precision usually employed
is the standard error of the estimator that has been used.

Xi

n 
 2,V1X 2 � V1Xi2V1Xi2 � �2
V1X 2 � �2�n�

XXiX
�X1, X2, p , Xn

The standard error of an estimator is its standard deviation, given by
. If the standard error involves unknown parameters that can be esti-

mated, substitution of those values into produces an estimated standard error,
denoted by .�̂

�̂

��̂

��̂ � 2V1�̂2 �̂

Definition

Sometimes the estimated standard error is denoted by or .
Suppose we are sampling from a normal distribution with mean and variance . Now

the distribution of is normal with mean and variance , so the standard error of is

If we did not know � but substituted the sample standard deviation S into the above equation,
the estimated standard error of would be

When the estimator follows a normal distribution, as in the above situation, we can be rea-
sonably confident that the true value of the parameter lies within two standard errors of the

�̂X �
S1n

 

X

�X �
�1n

X�2�n�X
�2�

se1�̂2s�̂
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226 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

estimate. Since many point estimators are normally distributed (or approximately so) for large
n, this is a very useful result. Even in cases in which the point estimator is not normally
distributed, we can state that so long as the estimator is unbiased, the estimate of the parameter
will deviate from the true value by as much as four standard errors at most 6 percent of the time.
Thus a very conservative statement is that the true value of the parameter differs from the point
estimate by at most four standard errors. See Chebyshev’s inequality in the CD only material.

EXAMPLE 7-2 An article in the Journal of Heat Transfer (Trans. ASME, Sec. C, 96, 1974, p. 59) described
a new method of measuring the thermal conductivity of Armco iron. Using a temperature of
100�F and a power input of 550 watts, the following 10 measurements of thermal conductiv-
ity (in Btu/hr-ft-�F) were obtained:

A point estimate of the mean thermal conductivity at and 550 watts is the sample mean or

The standard error of the sample mean is , and since is unknown, we may replace
it by the sample standard deviation to obtain the estimated standard error of as

Notice that the standard error is about 0.2 percent of the sample mean, implying that we have ob-
tained a relatively precise point estimate of thermal conductivity. If we can assume that thermal
conductivity is normally distributed, 2 times the standard error is � 0.1796,
and we are highly confident that the true mean thermal conductivity is with the interval

, or between 41.744 and 42.104.

7-2.5 Bootstrap Estimate of the Standard Error (CD Only)

7-2.6 Mean Square Error of an Estimator

Sometimes it is necessary to use a biased estimator. In such cases, the mean square error of the
estimator can be important. The mean square error of an estimator is the expected squared
difference between and �.�̂

�̂

41.924 
 0.1756

2�̂X � 210.08982

�̂X �
s1n

�
0.284110

� 0.0898

Xs � 0.284
��X � ��1n

x � 41.924 Btu/hr-ft-�F

100�F

41.60, 41.48, 42.34, 41.95, 41.86,

42.18, 41.72, 42.26, 41.81, 42.04

The mean square error of an estimator of the parameter � is defined as

(7-3)MSE1�̂2 � E1�̂ � �22
�̂

Definition

The mean square error can be rewritten as follows:

 � V 1�̂2 � 1bias22
 MSE1�̂2 � E 3�̂ � E1�̂2 42 � 3� � E1�̂2 42
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That is, the mean square error of is equal to the variance of the estimator plus the squared bias.
If is an unbiased estimator of �, the mean square error of is equal to the variance of .

The mean square error is an important criterion for comparing two estimators. Let
and be two estimators of the parameter �, and let MSE ( ) and MSE ( ) be the mean
square errors of and . Then the relative efficiency of to is defined as

(7-4)

If this relative efficiency is less than 1, we would conclude that is a more efficient estima-
tor of � than , in the sense that it has a smaller mean square error.

Sometimes we find that biased estimators are preferable to unbiased estimators because they
have smaller mean square error. That is, we may be able to reduce the variance of the estimator
considerably by introducing a relatively small amount of bias. As long as the reduction in variance
is greater than the squared bias, an improved estimator from a mean square error viewpoint will
result. For example, Fig. 7-2 shows the probability distribution of a biased estimator that has
a smaller variance than the unbiased estimator . An estimate based on would more likely
be close to the true value of � than would an estimate based on . Linear regression analysis
(Chapters 11 and 12) is an area in which biased estimators are occasionally used.

An estimator that has a mean square error that is less than or equal to the mean square
error of any other estimator, for all values of the parameter �, is called an optimal estimator
of �. Optimal estimators rarely exist.

EXERCISES FOR SECTION 7-2

�̂

�̂2

�̂1�̂2

�̂1

�̂2

�̂1

MSE1�̂12
MSE1�̂22

�̂1�̂2�̂2�̂1

�̂2�̂1�̂2

�̂1

�̂�̂�̂
�̂

θ

Distribution of    1Θ̂

Distribution of    2Θ

Θ

^

E(   1)^

Figure 7-2 A biased
estimator that has
smaller variance than
the unbiased estimator

.	̂2

	̂1

7-1. Suppose we have a random sample of size 2n from a
population denoted by X, and and . Let

be two estimators of �. Which is the better estimator of �?
Explain your choice.

7-2. Let denote a random sample from a
population having mean and variance . Consider the
following estimators of :

 �̂2 �
2X1 � X6 � X4

2

 �̂1 �
X1 � X2 � p � X7

7

�
�2�

X1, X2, p , X7

X1 �
1

2n
  a

2n

i�1
 Xi and X2 �

1
n   a

n

i�1
 Xi

V1X 2 � �2E1X 2 � �

7-2 GENERAL CONCEPTS OF POINT ESTIMATION 227

(a) Is either estimator unbiased?
(b) Which estimator is best? In what sense is it best?

7-3. Suppose that and are unbiased estimators of the
parameter . We know that and .
Which estimator is best and in what sense is it best?

7-4. Calculate the relative efficiency of the two estimators
in Exercise 7-2.

7-5. Calculate the relative efficiency of the two estimators
in Exercise 7-3.

7-6. Suppose that and are estimators of the parame-
ter �. We know that 

. Which estimator is best? In what sense is it best?

7-7. Suppose that , , and are estimators of �. We
know that 

, and . Compare these three esti-
mators. Which do you prefer? Why?

E1�̂3 � �22 � 6V 1�̂22 � 10
E1�̂12 � E1�̂22 � �, E 1�̂32 � �, V 1�̂12 � 12,

�̂3�̂2�̂1

V 1�̂22 � 4
E1�̂12 � �, E1�̂22 � ��2, V 1�̂12 � 10,

�̂2�̂1

V1�̂22 � 4V1�̂12 � 10�
�̂2�̂1
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228 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

7-8. Let three random samples of sizes n1 � 20, n2 � 10,
and n3 � 8 be taken from a population with mean � and
variance �2. Let , , and be the sample variances.
Show that is an unbiased
estimator of �2.

7-9. (a) Show that is a biased estimator
of .

(b) Find the amount of bias in the estimator.
(c) What happens to the bias as the sample size n increases?

7-10. Let be a random sample of size n from
a population with mean � and variance .
(a) Show that is a biased estimator for .
(b) Find the amount of bias in this estimator.
(c) What happens to the bias as the sample size n increases?

7-11. Data on pull-off force (pounds) for connectors used in
an automobile engine application are as follows: 79.3, 75.1,
78.2, 74.1, 73.9, 75.0, 77.6, 77.3, 73.8, 74.6, 75.5, 74.0, 74.7,
75.9, 72.9, 73.8, 74.2, 78.1, 75.4, 76.3, 75.3, 76.2, 74.9, 78.0,
75.1, 76.8.
(a) Calculate a point estimate of the mean pull-off force of all

connectors in the population. State which estimator you
used and why.

(b) Calculate a point estimate of the pull-off force value that
separates the weakest 50% of the connectors in the popu-
lation from the strongest 50%.

(c) Calculate point estimates of the population variance and
the population standard deviation.

(d) Calculate the standard error of the point estimate found in
part (a). Provide an interpretation of the standard error.

(e) Calculate a point estimate of the proportion of all connec-
tors in the population whose pull-off force is less than
73 pounds.

7-12. Data on oxide thickness of semiconductors are as
follows: 425, 431, 416, 419, 421, 436, 418, 410, 431, 433,
423, 426, 410, 435, 436, 428, 411, 426, 409, 437, 422, 428,
413, 416.
(a) Calculate a point estimate of the mean oxide thickness for

all wafers in the population.
(b) Calculate a point estimate of the standard deviation of

oxide thickness for all wafers in the population.
(c) Calculate the standard error of the point estimate from

part (a).
(d) Calculate a point estimate of the median oxide thickness

for all wafers in the population.
(e) Calculate a point estimate of the proportion of wafers in

the population that have oxide thickness greater than 430
angstrom.

7-13. is a random sample from a normal
distribution with mean and variance . Let and 
be the smallest and largest observations in the sample.
(a) Is an unbiased estimate for �?
(b) What is the standard error of this estimate?
(c) Would this estimate be preferable to the sample mean ?X

1Xmin � Xmax2�2
XmaxXmin�2�

X1, X2, p , Xn

�2X 2
�2

X1, X2, p , Xn

�2
g n

i�1 1Xi � X 22�n
S2 � 120S2

1 � 10S2
2 � 8S2

32�38
S2

3S2
2S2

1

7-14. Suppose that X is the number of observed “successes”
in a sample of n observations where p is the probability of
success on each observation.
(a) Show that is an unbiased estimator of p.
(b) Show that the standard error of is 

How would you estimate the standard error?

7-15. and are the sample mean and sample variance
from a population with mean and variance Similarly, 
and are the sample mean and sample variance from a sec-
ond independent population with mean and variance .
The sample sizes are and , respectively.
(a) Show that 1 � 2 is an unbiased estimator of .
(b) Find the standard error of . How could you

estimate the standard error?

7-16. Continuation of Exercise 7-15. Suppose that both pop-
ulations have the same variance; that is, . Show
that

is an unbiased estimator of 

7-17. Two different plasma etchers in a semiconductor fac-
tory have the same mean etch rate . However, machine 1 is
newer than machine 2 and consequently has smaller variability
in etch rate. We know that the variance of etch rate for machine
1 is and for machine 2 it is . Suppose that we have

independent observations on etch rate from machine 1 and 
independent observations on etch rate from machine 2.
(a) Show that �̂ � � 1 � (1 � �) 2 is an unbiased estima-

tor of � for any value of � between 0 and 1.
(b) Find the standard error of the point estimate of in part (a).
(c) What value of would minimize the standard error of the

point estimate of ?
(d) Suppose that and n1 � 2n2. What value of � would

you select to minimize the standard error of the point esti-
mate of . How “bad” would it be to arbitrarily choose

in this case?

7-18. Of randomly selected engineering students at ASU,
owned an HP calculator, and of randomly selected

engineering students at Virginia Tech owned an HP calculator.
Let p1 and p2 be the probability that randomly selected ASU and
Va. Tech engineering students, respectively, own HP calculators.
(a) Show that an unbiased estimate for is (X1�n1) �

(X2�n2).
(b) What is the standard error of the point estimate in

part (a)?
(c) How would you compute an estimate of the standard error

found in part (b)?
(d) Suppose that n1 � 200, X1 � 150, n2 � 250, and X2 � 185.

Use the results of part (a) to compute an estimate of p1 � p2.
(e) Use the results in parts (b) through (d) to compute an

estimate of the standard error of the estimate.

p1 � p2

X2

n2X1

n1

� � 0.5
�

a � 4
�

�
�

XX

n2n1

�2
2 � a�2

1�2
1

�

�2.

S 2
p �
1n1 � 12  S2

1 � 1n2 � 12  S 2
2

n1 � n2 � 2

� 2
1 � � 2

2 � �2

X1 � X2

�1 � �2XX
n2n1

�2
2�1

S 2
2

X2�2
2.�

S 2
1X1

1p11 � p2�n.P̂
P̂ � X�n
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7-3 METHODS OF POINT ESTIMATION

The definitions of unbiasness and other properties of estimators do not provide any guidance
about how good estimators can be obtained. In this section, we discuss two methods for ob-
taining point estimators: the method of moments and the method of maximum likelihood.
Maximum likelihood estimates are generally preferable to moment estimators because they
have better efficiency properties. However, moment estimators are sometimes easier to com-
pute. Both methods can produce unbiased point estimators.

7-3.1 Method of Moments

The general idea behind the method of moments is to equate population moments, which are
defined in terms of expected values, to the corresponding sample moments. The population
moments will be functions of the unknown parameters. Then these equations are solved to
yield estimators of the unknown parameters.

Let be a random sample from the probability distribution f(x), where
f(x) can be a discrete probability mass function or a continuous probability density
function. The k th population moment (or distribution moment) is E(Xk ), k �
1, 2, . The corresponding k th sample moment is 11�n2 g n

i�1 X
k
i , k � 1, 2, p .p

X1, X2, p , Xn

Definition

To illustrate, the first population moment is E(X ) � �, and the first sample moment is
. Thus by equating the population and sample moments, we find that 

�̂ � X . That is, the sample mean is the moment estimator of the population mean. In the
general case, the population moments will be functions of the unknown parameters of the dis-
tribution, say, �1, �2, p , �m.

11�n2 g n
i�1 Xi � X

7-3 METHODS OF POINT ESTIMATION 229

Let be a random sample from either a probability mass function
or probability density function with m unknown parameters The
moment estimators are found by equating the first m population
moments to the first m sample moments and solving the resulting equations for the
unknown parameters.

	̂1, 	̂2, p , 	̂m

�1, �2, p , �m.
X1, X2, p , Xn

Definition

EXAMPLE 7-3 Suppose that is a random sample from an exponential distribution with param-
eter . Now there is only one parameter to estimate, so we must equate E(X) to . For the
exponential, Therefore results in so is the
moment estimator of .

As an example, suppose that the time to failure of an electronic module used in an automobile
engine controller is tested at an elevated temperature to accelerate the failure mechanism.

�
�̂ � 1�X1�� � X,E1X 2 � XE1X 2 � 1��.

X�
X1, X2, p , Xn
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230 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

The time to failure is exponentially distributed. Eight units are randomly selected and
tested, resulting in the following failure time (in hours): x1 � 11.96, x2 � 5.03, x3 � 67.40, x4

� 16.07, x5 � 31.50, x6 � 7.73, x7 � 11.10, and x8 � 22.38. Because , the moment
estimate of is 

EXAMPLE 7-4 Suppose that X1, X2, , Xn is a random sample from a normal distribution with parameters �
and �2. For the normal distribution E(X) � � and E(X 2) � �2 � �2. Equating E(X ) to and
E(X 2) to gives

Solving these equations gives the moment estimators

Notice that the moment estimator of �2 is not an unbiased estimator.

EXAMPLE 7-5 Suppose that X1, X2, , Xn is a random sample from a gamma distribution with parameters r
and �. For the gamma distribution and The moment esti-
mators are found by solving

The resulting estimators are

To illustrate, consider the time to failure data introduced following Example 7-3. For this data,
and , so the moment estimates are

When r � 1, the gamma reduces to the exponential distribution. Because slightly exceeds
unity, it is quite possible that either the gamma or the exponential distribution would provide
a reasonable model for the data.

7-3.2 Method of Maximum Likelihood

One of the best methods of obtaining a point estimator of a parameter is the method of maxi-
mum likelihood. This technique was developed in the 1920s by a famous British statistician,
Sir R. A. Fisher. As the name implies, the estimator will be the value of the parameter that
maximizes the likelihood function.

r̂

r̂ �
121.6522

11�82  6639.40 � 121.6522 � 1.30,  �̂ �
21.65

11�82  6639.40 � 121.6522 � 0.0599

g 8
i�1x

2
i � 6639.40x � 21.65

r̂ �
X 2

11�n2a
n

i�1
X2

i � X 2
i

  �̂ �
X

11�n2a
n

i�1
X2

i � X 2

r�� � X, r 1r � 12��2 �
1
n a

n

i�1
 X

2
i  

E1X22 � r 1r � 12 ��2.E1X 2 � r��
p

�̂ � X,  �̂2 �
a

n

i�1
 X2

i � a1
n a

n

i�1
 X2

i b
2

n �
a

n

i�1
 1Xi � X 22

n

� � X,  �2 � �2 �
1
n a

n

i�1
 X2

i

1
n g n

i�1 X
2
i

X
p

� � 1�  x � 1�21.65 � 0.0462.�
x� � 21.65
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In the case of a discrete random variable, the interpretation of the likelihood function is
clear. The likelihood function of the sample L( ) is just the probability

That is, L( ) is just the probability of obtaining the sample values x1, x2, , xn.  Therefore, in
the discrete case, the maximum likelihood estimator is an estimator that maximizes the prob-
ability of occurrence of the sample values.

EXAMPLE 7-6 Let X be a Bernoulli random variable. The probability mass function is

where p is the parameter to be estimated. The likelihood function of a random sample of size
n is

We observe that if maximizes L( p), also maximizes ln L( p). Therefore,

Now

Equating this to zero and solving for p yields . Therefore, the maximum
likelihood estimator of p is

P̂ �
1
n a

n

i�1
 Xi

p̂ � 11�n2  g n
i�1 xi

d ln L1  p2
dp

�
a

n

i�1
 xi

p �

an � a
n

i�1
 xib

1 � p

ln L1  p2 � aa
n

i�1
 xib ln p � an � a

n

i�1
 xib ln 11 � p2

p̂p̂

 � q
n

i�1
 pxi 11 � p21�xi � pa

n

i�1
xi 11 � p2n�a

n

i�1
xi

 L 1 p2 � px1 11 � p21�x1 px2 11 � p21�x2  p pxn 11 � p21�xn

f 1x; p2 � epx 11 � p21�x, x � 0, 1

0, otherwise

p�

P 1X1 � x1, X2 � x2, p , Xn � xn2
�
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Suppose that X is a random variable with probability distribution f (x; ), where is
a single unknown parameter. Let x1, x2, , xn be the observed values in a random
sample of size n. Then the likelihood function of the sample is

(7-5)

Note that the likelihood function is now a function of only the unknown parameter 
The maximum likelihood estimator of is the value of that maximizes the like-
lihood function L( ).�

��
�.

L1�2 � f 1x1; �2 � f 1x2; �2 � p � f 1xn; �2

p
��

Definition
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232 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

Suppose that this estimator was applied to the following situation: n items are selected
at random from a production line, and each item is judged as either defective (in which case
we set xi � 1) or nondefective (in which case we set xi � 0). Then is the number of
defective units in the sample, and is the sample proportion defective. The parameter p is
the population proportion defective; and it seems intuitively quite reasonable to use as
an estimate of p.

Although the interpretation of the likelihood function given above is confined to the dis-
crete random variable case, the method of maximum likelihood can easily be extended to a
continuous distribution. We now give two examples of maximum likelihood estimation for
continuous distributions.

EXAMPLE 7-7 Let X be normally distributed with unknown and known variance . The likelihood
function of a random sample of size n, say X1, X2, , Xn, is

Now

and

Equating this last result to zero and solving for � yields

Thus the sample mean is the maximum likelihood estimator of �. Notice that this is identical
to the moment estimator.

EXAMPLE 7-8 Let X be exponentially distributed with parameter �. The likelihood function of a random
sample of size n, say X1, X2, , Xn, is

The log likelihood is

ln L1�2 � n ln � � � a
n

i�1
 xi

L1�2 � q
n

i�1
 �e��xi � �n

 e�� a
n

i�1
 xi

p

�̂ �
a

n

i�1
 Xi

n � X

d ln L1�2
d�

� 1�22�1 a
n

i�1
 1xi � �2

ln L1�2 � �1n�22 ln12��22 � 12�22�1 a
n

i�1
 1xi � �22

L1�2 � q
n

i�1
 

1

�12�
  e�1xi��22�12�22 � 1

12��22n�2   e�11�2�22 an
i�1

 1xi��22

p
�2�

p̂
p̂

g n
i�1 xi
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7-3 METHODS OF POINT ESTIMATION 233

Now

and upon equating this last result to zero we obtain

Thus the maximum likelihood estimator of � is the reciprocal of the sample mean. Notice that
this is the same as the moment estimator.

It is easy to illustrate graphically just how the method of maximum likelihood works.
Figure 7-3(a) plots the log of the likelihood function for the exponential parameter from
Example 7-8, using the n � 8 observations on failure time given following Example 7-3. We
found that the estimate of � was . From Example 7-8, we know that this is a
maximum likelihood estimate. Figure 7-3(a) shows clearly that the log likelihood function is
maximized at a value of � that is approximately equal to 0.0462. Notice that the log likelihood
function is relatively flat in the region of the maximum. This implies that the parameter is not
estimated very precisely. If the parameter were estimated precisely, the log likelihood function
would be very peaked at the maximum value. The sample size here is relatively small, and this
has led to the imprecision in estimation. This is illustrated in Fig. 7-3(b) where we have plot-
ted the difference in log likelihoods for the maximum value, assuming that the sample sizes
were n � 8, 20, and 40 but that the sample average time to failure remained constant at

. Notice how much steeper the log likelihood is for n � 20 in comparsion to n � 8,
and for n � 40 in comparison to both smaller sample sizes.

The method of maximum likelihood can be used in situations where there are several un-
known parameters, say, �1, �2, , �k to estimate. In such cases, the likelihood function is a func-
tion of the k unknown parameters �1, �2, , �k, and the maximum likelihood estimators 
would be found by equating the k partial derivatives to
zero and solving the resulting system of equations.

�L1�1, �2, p , �k2���i, i � 1, 2, p , k
5�̂i6p

p

x � 21.65

�̂ � 0.0462

�̂ � n�a
n

i�1
 Xi � 1� X

d ln L1�2
d�

�
n
�

� a
n

i�1
 xi

(a)
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Figure 7-3 Log likelihood for the exponential distribution, using the failure time data. (a) Log likelihood with n � 8 (original
data). (b) Log likelihood if n � 8, 20, and 40.
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234 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

EXAMPLE 7-9 Let X be normally distributed with mean � and variance � 2, where both � and � 2 are
unknown. The likelihood function for a random sample of size n is

and

Now

The solutions to the above equation yield the maximum likelihood estimators

Once again, the maximum likelihood estimators are equal to the moment estimators.

Properties of the Maximum Likelihood Estimator
The method of maximum likelihood is often the estimation method that mathematical statisti-
cians prefer, because it is usually easy to use and produces estimators with good statistical
properties. We summarize these properties as follows.

�̂ � X  �̂2 �
1
n a

n

i�1
 1Xi � X 22

 � ln L1�, �22
�1�22 � �

n

2�2 �
1

2�4 a
n

i�1
 1xi � �22 � 0

� ln L1�, �22
��

�
1

�2 a
n

i�1
 1xi � �2 � 0

ln L1�, �22 � �
n

2
  ln12��22 �

1

2�2 a
n

i�1
 1xi � �22

L1�, �22 � q
n

i�1
 

1

�12�
  e�1xi��22�12�22 � 1

12��22n�2   e�11�2�22 an
i�1

 1xi��22

Under very general and not restrictive conditions, when the sample size n is large and
if is the maximum likelihood estimator of the parameter �,

(1) is an approximately unbiased estimator for ,

(2) the variance of is nearly as small as the variance that could be obtained
with any other estimator, and

(3) has an approximate normal distribution.�̂

�̂

� 3E1�̂2 � � 4�̂

�̂

Properties of
the Maximum

Likelihood
Estimator

Properties 1 and 2 essentially state that the maximum likelihood estimator is approxi-
mately an MVUE. This is a very desirable result and, coupled with the fact that it is fairly easy
to obtain in many situations and has an asymptotic normal distribution (the “asymptotic”
means “when n is large”), explains why the maximum likelihood estimation technique is
widely used. To use maximum likelihood estimation, remember that the distribution of the
population must be either known or assumed.
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7-3 METHODS OF POINT ESTIMATION 235

EXAMPLE 7-10 In the normal distribution case, the maximum likelihood estimators of � and �2 were 
and . To obtain the maximum likelihood estimator of the function  

, substitute the estimators and into the function h, which yields

Thus, the maximum likelihood estimator of the standard deviation � is not the sample
standard deviation S.

Complications in Using Maximum Likelihood Estimation
While the method of maximum likelihood is an excellent technique, sometimes complications
arise in its use. For example, it is not always easy to maximize the likelihood function because
the equation(s) obtained from may be difficult to solve. Furthermore, it may
not always be possible to use calculus methods directly to determine the maximum of L(�).
These points are illustrated in the following two examples.

EXAMPLE 7-11 Let X be uniformly distributed on the interval 0 to a. Since the density function is 
for 0 � x � a and zero otherwise, the likelihood function of a random sample of size n is

L1a2 � q
n

i�1
 
1
a �

1

an

f  1x2 � 1�a

dL 1�2�d� � 0

�̂ � 2�̂2 � c 1n a
n

i�1
 1Xi � X 22 d 1� 2

�̂2�̂h1�, �22 � 2�2 � �

�̂2 � g n
i�1 1Xi � X 22�n

�̂ � X

To illustrate the “large-sample” or asymptotic nature of the above properties, consider the
maximum likelihood estimator for �2, the variance of the normal distribution, in Example 7-9.
It is easy to show that

The bias is

Because the bias is negative, tends to underestimate the true variance � 2. Note that the
bias approaches zero as n increases. Therefore, is an asymptotically unbiased estimator
for � 2.

We now give another very important and useful property of maximum likelihood
estimators.

�̂2
�̂2

E1�̂22 � �2 �
n � 1

n  �2 � �2 �
��2

n

E1�̂22 �
n � 1

n  �2

Let be the maximum likelihood estimators of the parameters �1,
�2, , �k. Then the maximum likelihood estimator of any function h(�1, �2, , �k)
of these parameters is the same function of the estimators

.�̂1, �̂2, p , �̂k

h1�̂1, �̂2, p , �̂k2
pp

�̂1, �̂2, p , �̂k

The Invariance
Property
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236 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

if 0 � x1 � a, 0 � x2 � a, , 0 � xn � a. Note that the slope of this function is not zero
anywhere. That is, as long as max(xi) � a, the likelihood is , which is positive, but when
a � max(xi), the likelihood goes to zero, as illustrated in Fig. 7-4. Therefore, calculus meth-
ods cannot be used directly because the maximum value of the likelihood function occurs at
a point of discontinuity. However, since is less than zero for all val-
ues of a � 0, a�n is a decreasing function of a. This implies that the maximum of the likeli-
hood function L(a) occurs at the lower boundary point. The figure clearly shows that we
could maximize L(a) by setting equal to the smallest value that it could logically take on,
which is max(xi). Clearly, a cannot be smaller than the largest sample observation, so setting

equal to the largest sample value is reasonable.

EXAMPLE 7-12 Let X1, X2, , Xn be a random sample from the gamma distribution. The log of the likelihood
function is

The derivatives of the log likelihood are

When the derivatives are equated to zero, we obtain the equations that must be solved to find
the maximum likelihood estimators of r and �:

There is no closed form solution to these equations.
Figure 7-5 shows a graph of the log likelihood for the gamma distribution using the n � 8

observations on failure time introduced previously. Figure 7-5(a) shows the log likelihood

 n ln 1�̂2 � a
n

i�1
 ln 1xi2 � n 

�¿  1r̂2
� 1r̂2

�̂ �
r̂

x

 � ln L1r, �2
��

�
nr
�

� a
n

i�1
 xi

 � ln L1r, �2
�r

� n ln 1�2 � a
n

i�1
 ln 1xi2 � n 

�¿  1r2
� 1r2

 � nr ln 1�2 � 1r � 12 a
n

i�1
 ln 1xi2 � n ln 3� 1r2 4 � � a

n

i�1
 xi

ln L1r, �2 � ln  aq
n

i�1
 
�r X r�1

i  e��xi

� 1r2 b

p

â

â

d�da 1a�n2 � �n�a 
n�1

1�an
p

Max (xi )0

L(a)

a

Figure 7-4 The like-
lihood function for the
uniform distribution in
Example 7-10.
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7-3 METHODS OF POINT ESTIMATION 237

7-19. Consider the Poisson distribution

Find the maximum likelihood estimator of , based on a
random sample of size n.

7-20. Consider the shifted exponential distribution

When � 0, this density reduces to the usual exponential
distribution. When , there is only positive probability to
the right of �.
(a) Find the maximum likelihood estimator of and , based

on a random sample of size n.
(b) Describe a practical situation in which one would suspect

that the shifted exponential distribution is a plausible
model.

��

� � 0
�

f  1x2 � �e��1x��2,  x 
 �

�

f  1x2 �
e���x

x!
,   x � 0, 1, 2, . . .

7-21. Let X be a geometric random variable with parameter
p. Find the maximum likelihood estimator of p, based on a
random sample of size n.
7-22. Let X be a random variable with the following proba-
bility distribution:

Find the maximum likelihood estimator of �, based on a random
sample of size n.

7-23. Consider the Weibull distribution

(a) Find the likelihood function based on a random sample of
size n. Find the log likelihood.

f 1x2 � •
�

�
 ax

�
b��1

e
�ax

�
b�

, 0 � x

   0 , otherwise

f  1x2 � e 1� � 12  x�, 0 � x � 1

    0 , otherwise

surface as a function of r and �, and Figure 7-5(b) is a contour plot. These plots reveal that the
log likelihood is maximized at approximately and . Many statistics com-
puter programs use numerical techniques to solve for the maximum likelihood estimates when
no simple solution exists.

7-3.3 Bayesian Estimation of Parameters (CD Only)

EXERCISES FOR SECTION 7-3

�̂ � 0.08r̂ � 1.75
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Figure 7-5 Log likelihood for the gamma distribution using the failure time data. (a) Log likelihood surface. (b) Contour plot.
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238 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

(b) Show that the log likelihood is maximized by solving the
equations

(c) What complications are involved in solving the two equa-
tions in part (b)?

7-24. Consider the probability distribution in Exercise 7-22.
Find the moment estimator of �.

7-25. Let X1, X2, , Xn be uniformly distributed on the in-
terval 0 to a. Show that the moment estimator of a is 
Is this an unbiased estimator? Discuss the reasonableness of
this estimator.

7-26. Let X1, X2, , Xn be uniformly distributed on the
interval 0 to a. Recall that the maximum likelihood estimator
of a is .
(a) Argue intuitively why cannot be an unbiased estimator

for a.
(b) Suppose that . Is it reasonable that 

consistently underestimates a? Show that the bias in the
estimator approaches zero as n gets large.

(c) Propose an unbiased estimator for a.
(d) Let Y � max(Xi ). Use the fact that if and only

if each to derive the cumulative distribution func-
tion of Y. Then show that the probability density function
of Y is

Use this result to show that the maximum likelihood esti-
mator for a is biased.

7-27. For the continuous distribution of the interval 0 to a,
we have two unbiased estimators for a: the moment estimator

and , where max(Xi ) is
the largest observation in a random sample of size n (see
Exercise 7-26). It can be shown that and that V1â12 � a2� 13n2

â2 � 3 1n � 12�n 4  max1Xi2â1 � 2X

f  1 y2 � •
ny 

n�1

an , 0 � y � a

0    , otherwise

Xi � y
Y � y

âE1â2 � na� 1n � 12
â

â � max 1Xi2
p

â � 2X.
p

 � �
£ a

n

i�1
x�

i

n
§

1��

 � � ≥ a
n

i�1
xi

� ln1xi2

a
n

i�1
xi

�

�
a

n

i�1
ln1xi2
n ¥

�1

. Show that if n � 1, is a better
estimator than . In what sense is it a better estimator of a?

7-28. Consider the probability density function

Find the maximum likelihood estimator for �.

7-29. The Rayleigh distribution has probability density
function

(a) It can be shown that Use this information to
construct an unbiased estimator for �.

(b) Find the maximum likelihood estimator of �. Compare
your answer to part (a).

(c) Use the invariance property of the maximum likelihood
estimator to find the maximum likelihood estimator of the
median of the Raleigh distribution.

7-30. Consider the probability density function

(a) Find the value of the constant c.
(b) What is the moment estimator for �?
(c) Show that is an unbiased estimator for �.
(d) Find the maximum likelihood estimator for �.

7-31. Reconsider the oxide thickness data in Exercise 7-12
and suppose that it is reasonable to assume that oxide thick-
ness is normally distributed.
(a) Use the results of Example 7-9 to compute the maximum

likelihood estimates of � and �2.
(b) Graph the likelihood function in the vicinity of and ,

the maximum likelihood estimates, and comment on its
shape.

7-32. Continuation of Exercise 7-31. Suppose that for the
situation of Exercise 7-12, the sample size was larger (n � 40)
but the maximum likelihood estimates were numerically
equal to the values obtained in Exercise 7-31. Graph the
likelihood function for n � 40, compare it to the one from
Exercise 7-31 (b), and comment on the effect of the larger
sample size.

�̂2�̂

�̂ � 3X

f  1x2 � c 11 � �x2, �1 � x � 1

E1X 
22 � 2�.

f  1x2 �
x

�
  e�x2�2�,  x � 0,  0 � � � �

f  1x2 �
1

�2  
 xe�x��,  0 � x � �, 0 � � � �

â
â2V 1â22 � a2� 3n1n � 22 4

7-4 SAMPLING DISTRIBUTIONS

Statistical inference is concerned with making decisions about a population based on the
information contained in a random sample from that population. For instance, we may be
interested in the mean fill volume of a can of soft drink. The mean fill volume in the
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7-5 SAMPLING DISTRIBUTIONS OF MEANS 239

population is required to be 300 milliliters. An engineer takes a random sample of 25 cans and
computes the sample average fill volume to be milliliters. The engineer will probably
decide that the population mean is � � 300 milliliters, even though the sample mean was
298 milliliters because he or she knows that the sample mean is a reasonable estimate of � and
that a sample mean of 298 milliliters is very likely to occur, even if the true population mean is
� � 300  milliliters. In fact, if the true mean is 300 milliliters, tests of 25 cans made repeatedly,
perhaps every five minutes, would produce values of that vary both above and below � �
300 milliliters.

The sample mean is a statistic; that is, it is a random variable that depends on the results
obtained in each particular sample. Since a statistic is a random variable, it has a probability
distribution.

x

x � 298

For example, the probability distribution of is called the sampling distribution of the
mean.

The sampling distribution of a statistic depends on the distribution of the population, the
size of the sample, and the method of sample selection. The next section presents perhaps the
most important sampling distribution. Other sampling distributions and their applications will
be illustrated extensively in the following two chapters.

7-5 SAMPLING DISTRIBUTIONS OF MEANS

Consider determining the sampling distribution of the sample mean . Suppose that a random
sample of size n is taken from a normal population with mean � and variance �2. Now each
observation in this sample, say, X1, X2, , Xn, is a normally and independently distributed
random variable with mean � and variance �2. Then by the reproductive property of the
normal distribution, Equation 5-41 in Chapter 5, we conclude that the sample mean

has a normal distribution with mean

and variance

If we are sampling from a population that has an unknown probability distribution, the
sampling distribution of the sample mean will still be approximately normal with mean � and

�
X 
2 �

�2 � �2 � p � �2

n2 �
�2

n

�X �
� � � � p � �

n � �

X �
X1 � X2 � p � Xn

n

p

X

X

The probability distribution of a statistic is called a sampling distribution.
Definition
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240 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

If X1, X2, , Xn is a random sample of size n taken from a population (either finite
or infinite) with mean � and finite variance �2, and if is the sample mean, the lim-
iting form of the distribution of

(7-6)

as , is the standard normal distribution.n S �

Z �
X � �

��1n

X
p

Theorem 7-2:
The Central

Limit Theorem

The normal approximation for depends on the sample size n. Figure 7-6(a) shows the
distribution obtained for throws of a single, six-sided true die. The probabilities are equal
(1�6) for all the values obtained, 1, 2, 3, 4, 5, or 6. Figure 7-6(b) shows the distribution of the
average score obtained when tossing two dice, and Fig. 7-6(c), 7-6(d), and 7-6(e) show the
distributions of average scores obtained when tossing three, five, and ten dice, respectively.
Notice that, while the population (one die) is relatively far from normal, the distribution of
averages is approximated reasonably well by the normal distribution for sample sizes as small
as five. (The dice throw distributions are discrete, however, while the normal is continuous).
Although the central limit theorem will work well for small samples (n � 4, 5) in most cases,
particularly where the population is continuous, unimodal, and symmetric, larger samples will
be required in other situations, depending on the shape of the population. In many cases of
practical interest, if n 
 30, the normal approximation will be satisfactory regardless of the

X

x1 2 3 4 5 6
(a) One die

x1 2 3 4 5 6
(b) Two dice

x1 2 3 4 5 6
(c) Three dice

x1 2 3 4 5 6
(d) Five dice

x1 2 3 4 5 6
(e) Ten dice

Figure 7-6
Distributions of average
scores from throwing
dice. [Adapted with
permission from Box,
Hunter, and Hunter
(1978).]

variance , if the sample size n is large. This is one of the most useful theorems in statis-
tics, called the central limit theorem. The statement is as follows:

�2�n
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7-5 SAMPLING DISTRIBUTIONS OF MEANS 241

shape of the population. If n � 30, the central limit theorem will work if the distribution of the
population is not severely nonnormal.

EXAMPLE 7-13 An electronics company manufactures resistors that have a mean resistance of 100 ohms and
a standard deviation of 10 ohms. The distribution of resistance is normal. Find the probability
that a random sample of n � 25 resistors will have an average resistance less than 95 ohms.

Note that the sampling distribution of is normal, with mean and a
standard deviation of

Therefore, the desired probability corresponds to the shaded area in Fig. 7-7. Standardizing
the point in Fig. 7-7, we find that

and therefore,

The following example makes use of the central limit theorem.

EXAMPLE 7-14 Suppose that a random variable X has a continuous uniform distribution

Find the distribution of the sample mean of a random sample of size n � 40.
The mean and variance of X are � � 5 and . The central limit

theorem indicates that the distribution of is approximately normal with mean and
variance . The distributions of X and are shown in Fig. 7-8.

Now consider the case in which we have two independent populations. Let the first pop-
ulation have mean �1 and variance and the second population have mean �2 and variance
� 2

2. Suppose that both populations are normally distributed. Then, using the fact that linear
�2

1

X� �2�n � 1� 331402 4 � 1�120� 2
X

�X � 5X
�2 � 16 � 422�12 � 1�3

f  1x2 � e1�2, 4 � x � 6

0, otherwise

 � 0.0062
P 1X � 952 � P1Z � �2.52

z �
95 � 100

2
� �2.5

X � 95

�X �
�1n

�
10125

� 2

�X � 100 ohmsX

x10095

X = 2σ

Figure 7-8 The distributions of X and
X for Example 7-14.

Figure 7-7 Probability for Example 7-13.

x5 64

X = 1/120σ

x54 6

2
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242 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

combinations of independent normal random variables follow a normal distribution (see
Equation 5-41), we can say that the sampling distribution of is normal with mean

(7-7)

and variance

(7-8)

If the two populations are not normally distributed and if both sample sizes n1 and n2 are
greater than 30, we may use the central limit theorem and assume that and follow
approximately independent normal distributions. Therefore, the sampling distribution of

is approximately normal with mean and variance given by Equations 7-7 and 7-8,
respectively. If either n1 or n2 is less than 30, the sampling distribution of will still be
approximately normal with mean and variance given by Equations 7-7 and 7-8, provided that
the population from which the small sample is taken is not dramatically different from the nor-
mal. We may summarize this with the following definition.

X1 � X2

X1 � X2

X2X1

 �
2
X1�X2

� �
2
X1

� �
2
X2

�
�2

1

n1
�

�2
2

n2

�X1�X2
� �X1

� �X2
� �1 � �2

X1 � X2

EXAMPLE 7-15 The effective life of a component used in a jet-turbine aircraft engine is a random variable
with mean 5000 hours and standard deviation 40 hours. The distribution of effective life is
fairly close to a normal distribution. The engine manufacturer introduces an improvement
into the manufacturing process for this component that increases the mean life to 5050 hours
and decreases the standard deviation to 30 hours. Suppose that a random sample of n1 � 16
components is selected from the “old” process and a random sample of n2 � 25 components
is selected from the “improved” process. What is the probability that the difference in the two
sample means is at least 25 hours? Assume that the old and improved processes can
be regarded as independent populations.

To solve this problem, we first note that the distribution of is normal with mean 
�1 � 5000 hours and standard deviation hours, and the distribution
of is normal with mean �2 � 5050 hours and standard deviation �
6 hours. Now the distribution of is normal with mean �
50 hours and variance hours2. This sampling distribu-
tion is shown in Fig. 7-9. The probability that is the shaded portion of the
normal distribution in this figure.

X2 � X1 � 25
�2

2�n2 � �2
1�n1 � 1622 � 11022 � 136

�2 � �1 � 5050 � 5000X2 � X1

�2�1n2 � 30�125X2

�1�1n1 � 40�116 � 10
X1

X2 � X1

If we have two independent populations with means and and variances �2
2 and

�2
2 and if and are the sample means of two independent random samples of

sizes n1 and n2 from these populations, then the sampling distribution of

(7-9)

is approximately standard normal, if the conditions of the central limit theorem
apply. If the two populations are normal, the sampling distribution of Z is exactly
standard normal.

Z �
X1 � X2 � 1�1 � �222�2

1�n1 � �2
2�n2

X2X1

�2�1

Definition
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7-5 SAMPLING DISTRIBUTIONS OF MEANS 243

7-33. PVC pipe is manufactured with a mean diameter of
1.01 inch and a standard deviation of 0.003 inch. Find the
probability that a random sample of n � 9 sections of pipe
will have a sample mean diameter greater than 1.009 inch and
less than 1.012 inch.

7-34. Suppose that samples of size n � 25 are selected at
random from a normal population with mean 100 and standard
deviation 10. What is the probability that the sample mean falls
in the interval from

7-35. A synthetic fiber used in manufacturing carpet has
tensile strength that is normally distributed with mean 75.5 psi
and standard deviation 3.5 psi. Find the probability that a ran-
dom sample of n � 6 fiber specimens will have sample mean
tensile strength that exceeds 75.75 psi.

7-36. Consider the synthetic fiber in the previous exercise.
How is the standard deviation of the sample mean changed
when the sample size is increased from n � 6 to n � 49?

7-37. The compressive strength of concrete is normally dis-
tributed with � � 2500 psi and � � 50 psi. Find the probability
that a random sample of n � 5 specimens will have a sample
mean diameter that falls in the interval from 2499 psi to 2510 psi.

7-38. Consider the concrete specimens in the previous
example. What is the standard error of the sample mean?

7-39. A normal population has mean 100 and variance 25.
How large must the random sample be if we want the standard
error of the sample average to be 1.5?

7-40. Suppose that the random variable X has the continu-
ous uniform distribution

f  1x2 � e1, 0 � x � 1

0, otherwise

�X � 1.8�
 X  to �X � 1.0�

 X ?

Suppose that a random sample of n � 12 observations is
selected from this distribution. What is the probability distribu-
tion of Find the mean and variance of this quantity.

7-41. Suppose that X has a discrete uniform distribution

A random sample of n � 36 is selected from this population.
Find the probability that the sample mean is greater than 2.1
but less than 2.5, assuming that the sample mean would be
measured to the nearest tenth.

7-42. The amount of time that a customer spends waiting at an
airport check-in counter is a random variable with mean 8.2 min-
utes and standard deviation 1.5 minutes. Suppose that a random
sample of n � 49 customers is observed. Find the probability
that the average time waiting in line for these customers is
(a) Less than 10 minutes
(b) Between 5 and 10 minutes
(c) Less than 6 minutes

7-43. A random sample of size n1 � 16 is selected from a
normal population with a mean of 75 and a standard deviation
of 8. A second random sample of size n2 � 9 is taken from an-
other normal population with mean 70 and standard deviation
12. Let and be the two sample means. Find
(a) The probability that exceeds 4
(b) The probability that 

7-44. A consumer electronics company is comparing the
brightness of two different types of picture tubes for use in its
television sets. Tube type A has mean brightness of 100 and
standard deviation of 16, while tube type B has unknown

3.5 � X1 � X2 � 5.5
X1 � X2

X2X1

f 1x2 � e 1�3, x � 1, 2, 3

0, otherwise

X � 6?

Corresponding to the value in Fig. 7-9, we find that

and we find that

EXERCISES FOR SECTION 7-5

 � 0.9838
 P1X2 � X1 
 252 � P 1Z 
 �2.142

z �
25 � 502136

� �2.14

x2 � x1 � 25

x2 – x11007550250

Figure 7-9 The 
sampling distribution
of in 
Example 7-15.

X2 � X1
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244 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

mean brightness, but the standard deviation is assumed to be
identical to that for type A. A random sample of n � 25 tubes
of each type is selected, and is computed. If �B

equals or exceeds �A, the manufacturer would like to adopt
type B for use. The observed difference is 
What decision would you make, and why?

7-45. The elasticity of a polymer is affected by the concen-
tration of a reactant. When low concentration is used, the true
mean elasticity is 55, and when high concentration is used the
mean elasticity is 60. The standard deviation of elasticity is 4,
regardless of concentration. If two random samples of size 16
are taken, find the probability that .

Supplemental Exercises

7-46. Suppose that a random variable is normally distrib-
uted with mean � and variance �2, and we draw a random
sample of five observations from this distribution. What is the
joint probability density function of the sample?

7-47. Transistors have a life that is exponentially distributed
with parameter �. A random sample of n transistors is taken.
What is the joint probability density function of the sample?

7-48. Suppose that X is uniformly distributed on the interval
from 0 to 1. Consider a random sample of size 4 from X. What
is the joint probability density function of the sample?

7-49. A procurement specialist has purchased 25 resistors
from vendor 1 and 30 resistors from vendor 2. Let X1,1,
X1,2, , X1,25 represent the vendor 1 observed resistances,
which are assumed to be normally and independently distrib-
uted with mean 100 ohms and standard deviation 1.5 ohms.
Similarly, let X2,1, X2,2, , X2,30 represent the vendor 2 ob-
served resistances, which are assumed to be normally and in-
dependently distributed with mean 105 ohms and standard
deviation of 2.0 ohms. What is the sampling distribution of

?

7-50. Consider the resistor problem in Exercise 7-49. What
is the standard error of ?

7-51. A random sample of 36 observations has been drawn
from a normal distribution with mean 50 and standard devia-
tion 12. Find the probability that the sample mean is in the
interval .

7-52. Is the assumption of normality important in Exercise
7-51? Why?

7-53. A random sample of n � 9 structural elements is
tested for compressive strength. We know that the true mean

47 � X � 53

X1 � X2

X1 � X2

p

p

X high � X low 
 2

xB � xA � 3.5.

XB � XA

compressive strength � � 5500 psi and the standard deviation
is � � 100 psi. Find the probability that the sample mean
compressive strength exceeds 4985 psi.

7-54. A normal population has a known mean 50 and
known variance �2 � 2. A random sample of n � 16 is se-
lected from this population, and the sample mean is 
How unusual is this result?

7-55. A random sample of size n � 16 is taken from a nor-
mal population with � � 40 and �2 � 5. Find the probability
that the sample mean is less than or equal to 37.

7-56. A manufacturer of semiconductor devices takes a
random sample of 100 chips and tests them, classifying each
chip as defective or nondefective. Let Xi � 0 if the chip is
nondefective and Xi � 1 if the chip is defective. The sample
fraction defective is

What is the sampling distribution of the random variable ?

7-57. Let X be a random variable with mean � and variance
�2. Given two independent random samples of sizes n1 and n2,
with sample means and , show that

is an unbiased estimator for . If and are independent,
find the value of a that minimizes the standard error of .

7-58. A random variable x has probability density function

Find the maximum likelihood estimator for �.

7-59. Let 
Show that is the maximum likelihood 
estimator for �.

7-60. Let 0 � � 1, and 0 � �
Show that is the maximum likelihood
estimator for � and that is an unbiased estimator for �.	̂

	̂ � �11�n2 g n
i�1 ln1Xi2

�.�xf  1x2 � 11��2x 
11��2��,

	̂ � �n� 1ln wn
i�1 Xi2

f  1x2 � �x��1, 0 � � � �, and 0 � x � 1.

f  1x2 �
1

2�3 x2e�x��,  0 � x � �, 0 � � � �

X
X2X1�

X � aX1 � 11 � a2X2, 0 � a � 1

X2X1

P̂

P̂ �
X1 � X2 � p � X100

100

x � 52.
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7-5 SAMPLING DISTRIBUTIONS OF MEANS 245

MIND-EXPANDING EXERCISES

7-61. A lot consists of N transistors, and of these M
(M � N) are defective. We randomly select two transis-
tors without replacement from this lot and determine
whether they are defective or nondefective. The ran-
dom variable

Determine the joint probability function for X1 and X2.
What are the marginal probability functions for X1 and
X2? Are X1 and X2 independent random variables?

7-62. When the sample standard deviation is based on
a random sample of size n from a normal population, it
can be shown that S is a biased estimator for �. Spe-
cifically,

(a) Use this result to obtain an unbiased estimator for �
of the form cnS, when the constant cn depends on the
sample size n.

(b) Find the value of cn for n � 10 and n � 25.
Generally, how well does S perform as an estimator
of for large n with respect to bias?

7-63. A collection of n randomly selected parts is
measured twice by an operator using a gauge. Let Xi and
Yi denote the measured values for the ith part. Assume
that these two random variables are independent and
normally distributed and that both have true mean �i and
variance �2.

(a) Show that the maximum likelihood estimator of �2

is .

(b) Show that is a biased estimator for �2. What
happens to the bias as n becomes large?

(c) Find an unbiased estimator for �2.

7-64. Consistent Estimator. Another way to measure
the closeness of an estimator to the parameter � is in
terms of consistency. If is an estimator of � based on
a random sample of n observations, is consistent for
� if

Thus, consistency is a large-sample property, describing
the limiting behavior of as n tends to infinity. It is
usually difficult to prove consistency using the above
definition, although it can be done from other ap-
proaches. To illustrate, show that is a consistent esti-
mator of � (when ) by using Chebyshev’s
inequality. See Section 5-10 (CD Only).

7-65. Order Statistics. Let X1, X2, , Xn be a
random sample of size n from X, a random variable hav-
ing distribution function F(x). Rank the elements in or-
der of increasing numerical magnitude, resulting in X(1),
X(2), , X(n), where X(1) is the smallest sample element
(X(1) � min{X1, X2, , Xn}) and X(n) is the largest sam-
ple element (X(n) � max{X1, X2, , Xn}). X(i) is called
the ith order statistic. Often the distribution of some of
the order statistics is of interest, particularly the mini-
mum and maximum sample values. X(1) and X(n), respec-
tively. Prove that the cumulative distribution functions
of these two order statistics, denoted respectively by

and are

Prove that if X is continuous with probability density
function f (x), the probability distributions of X(1) and
X(n) are

7-66. Continuation of Exercise 7-65. Let X1, X2, ,
Xn be a random sample of a Bernoulli random variable
with parameter p. Show that

Use the results of Exercise 7-65.

7-67. Continuation of Exercise 7-65. Let X1, X2, ,
Xn be a random sample of a normal random variable
with mean � and variance �2. Using the results of
Exercise 7-65, derive the probability density functions
of X(1) and X(n).

p

 P1X112 � 02 � 1 � pn

 P1X1n2 � 12 � 1 � 11 � p2n

p

 fX1n2 1t2 � n 3F1t2 4n�1f  1t2
 fX11 2 1t2 � n 31 � F1t2 4n�1f  1t2

 FX1n2 1t2 � 3F1t2 4n
 FX112 1t2 � 1 � 31 � F1t2 4n

FX1n2 1t2FX112 1t2

p
p

p

p

�2 � 	
X


̂n

lim
nS	

 P 1 0
̂n � � 0 � �2 � 1


̂n


̂n


̂

�̂2

�̂2 � 11�4n2 g n
i�1 1Xi � Yi22

�

E1S 2 � �12� 1n � 12 
1n�22� 
 3 1n � 12�2 4

Xi � µ
1, if the ith transistor

is nondefective
0, if the ith transistor

is defective

 i � 1, 2
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246 CHAPTER 7 POINT ESTIMATION OF PARAMETERS

In the E-book, click on any
term or concept below to
go to that subject.

Bias in parameter 
estimation

Central limit theorem
Estimator versus 

estimate
Likelihood function
Maximum likelihood

estimator

Mean square error of an
estimator

Minimum variance 
unbiased estimator

Moment estimator
Normal distribution as

the sampling distribu-
tion of a sample mean

Normal distribution as
the sampling distri-
bution of the differ-

ence in two sample
means

Parameter estimation
Point estimator
Population or distribu-

tion moments
Sample moments
Sampling distribution
Standard error and 

estimated standard
error of an estimator

Statistic
Statistical inference
Unbiased estimator

CD MATERIAL

Bayes estimator
Bootstrap
Posterior distribution
Prior distribution

IMPORTANT TERMS AND CONCEPTS

MIND-EXPANDING EXERCISES

7-68. Continuation of Exercise 7-65. Let X1, X2, ,
Xn be a random sample of an exponential random vari-
able of parameter �. Derive the cumulative distribution
functions and probability density functions for X(1) and
X(n). Use the result of Exercise 7-65.

7-69. Let X1, X2, , Xn be a random sample of a
continuous random variable with cumulative distribu-
tion function F(x). Find

and

7-70. Let X be a random variable with mean � and
variance �2, and let X1, X2, , Xn be a random sample
of size n from X. Show that the statistic 

is an unbiased estimator for �2 for an
appropriate choice for the constant k. Find this value 
for k.

7-71. When the population has a normal distribution,
the estimator

is sometimes used to estimate the population standard
deviation. This estimator is more robust to outliers than
the usual sample standard deviation and usually does

not differ much from S when there are no unusual
observations.
(a) Calculate and S for the data 10, 12, 9, 14, 18, 15,

and 16.
(b) Replace the first observation in the sample (10) with

50 and recalculate both S and .

7-72. Censored Data. A common problem in indus-
try is life testing of components and systems. In this
problem, we will assume that lifetime has an exponen-
tial distribution with parameter �, so is 
an unbiased estimate of �. When n components are tested
until failure and the data X1, X2, , Xn represent actual
lifetimes, we have a complete sample, and is indeed an
unbiased estimator of �. However, in many situations, the
components are only left under test until r � n failures
have occurred. Let Y1 be the time of the first failure, Y2 be
the time of the second failure, , and Yr be the time of the
last failure. This type of test results in censored data.
There are n � r units still running when the test is termi-
nated. The total accumulated test time at termination is

(a) Show that is an unbiased estimator for �.
[Hint: You will need to use the memoryless property
of the exponential distribution and the results of
Exercise 7-68 for the distribution of the minimum of
a sample from an exponential distribution with
parameter �.]

(b) It can be shown that How does
this compare to in the uncensored experiment?V1X 2 V1Tr�r2 � 1� 1�2r2.

�̂ � Tr�r

Tr � a
r

i�1
 Yi � 1n � r2Yr

p

X
p

�̂ � 1��̂ � X

�̂

�̂

p, 0 Xn � X 0 2�0.6745

�̂ � median 1 0 X1 � X 0 , 0 X2 � X 0 ,

1Xi�1 � Xi22
V � kg n�1

i�1

p

E 3F 1X 1122 4

E 3F 1X 1n22 4

p

p
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7-2.2 Proof That S is a Biased Estimator of � (CD Only)

We proved that the sample variance is an unbiased estimator of the population variance, that
is, E(S2) � �2, and that this result does not depend on the form of the distribution. However,
the sample standard deviation is not an unbiased estimator of the population standard devia-
tion. This is easy to demonstrate for the case where the random variable X follows a normal
distribution.

Let X1, X2, p , Xn be a random sample of size n from a normal population with mean �
and variance �2. Now it can be shown that the distribution of the random variable

is chi-square with n � 1 degrees of freedom, denoted (the chi-squared distribution
was introduced in our discussion of the gamma distribution in Chapter 4, and the above re-
sult will be presented formally in Chapter 8). Therefore the distribution of S2 is 
times a random variable. So when sampling from a normal distribution, the expected
value of S2 is

because the mean of a chi-squared random variable with n � 1 degrees of freedom is n � 1.
Now it follows that the distribution of

is a chi distribution with n � 1 degrees of freedom, denoted . The expected value of S can
be written as

The mean of the chi distribution with n � 1 degrees of freedom is

where the gamma function Then

Although S is a biased estimator of �, the bias gets small fairly quickly as the sample size
n increases. For example, note that cn � 0.94 for a sample of n � 5, cn � 0.9727 for a sample
of n � 10, and cn � 0.9896 or very nearly unity for a sample of n � 25.

 � cn �

 E 1S 2 � B 2
n � 1

  

� 1n�22
� 3 1n � 12 �2 4   �

�1r2 � �
�

0

yr�1e�y dy.

E 1	n�12 � 22 
� 1n�22

� 3 1n � 12�2 4

E1S 2 � E   a �1n � 1
 	 n�1b �

�1n � 1
  E1	n�12

	n�1

11n � 12S
�

E1S22 � E   a �2

n � 1
 	2 

n�1b �
�2

n � 1
 E 1	2 

n�12 �
�2

n � 1
  1n � 12 � �2

	2
n�1

�2� 1n � 12
	2

n�1

1n � 12  S 2

�2

7-1
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7-2

Usually B � 100 or 200 of these bootstrap samples are taken. Let be the
sample mean of the bootstrap estimates. The bootstrap estimate of the standard error of is
just the sample standard deviation of the , or

(S7-1)

In the bootstrap literature, B � 1 in Equation S7-1 is often replaced by B. However, for
the large values usually employed for B, there is little difference in the estimate produced
for .

EXAMPLE S7-1 The time to failure of an electronic module used in an automobile engine controller is tested
at an elevated temperature in order to accelerate the failure mechanism. The time to failure
is exponentially distributed with unknown parameter 
. Eight units are selected at random
and tested, with the resulting failure times (in hours): x1 � 11.96, x2 � 5.03, x3 � 67.40,
x4 � 16.07, x5 � 31.50, x6 � 7.73, x7 � 11.10, and x8 � 22.38. Now the mean of an expo-
nential distribution is � � 1�
, so E(X ) � 1�
, and the expected value of the sample average
is . Therefore, a reasonable way to estimate 
 is with . For our sample,

, so our estimate of � is . To find the bootstrap standard error
we would now obtain B � 200 (say) samples of n � 8 observations each from an exponential
distribution with parameter 
 � 0.0462. The following table shows some of these results:

�̂ � 1�21.65 � 0.0462x � 21.65
�̂ � 1�XE1X2 � 1��

s�̂

s�̂ �R a
B

i�1
 1�̂*

i � �*22
B � 1

�̂*
i

�̂

�* � 11�B2  gB
i�1 �̂*i

7-2.5 Bootstrap Estimate of the Standard Error (CD Only)

There are situations in which the standard error of the point estimator is unknown. Usually,
these are cases where the form of is complicated, and the standard expectation and variance
operators are difficult to apply. A computer-intensive technique called the bootstrap that was
developed in recent years can be used for this problem.

Suppose that we are sampling from a population that can be modeled by the probability
distribution . The random sample results in data values and we obtain as
the point estimate of . We would now use a computer to obtain bootstrap samples from the
distribution , and for each of these samples we calculate the bootstrap estimate of �.
This results in

�̂*f 1x; �̂2 �
�̂x1, x2, p , xnf 1x; �2

�̂

Bootstrap Sample Observations Bootstrap Estimate

1

2

B �̂*
Bx*

1, x
*
2, p , x*

n

ooo
�̂*

2x*
1, x

*
2, p , x*

n

�̂*
1x*

1, x
*
2, p , x*

n

Bootstrap Sample Observations Bootstrap Estimate

1 8.01, 28.85, 14.14, 59.12, 3.11, 32.19, 5.26, 14.17

2 33.27, 2.10, 40.17, 32.43, 6.94, 30.66, 18.99, 5.61

200 40.26, 39.26, 19.59, 43.53, 9.55, 7.07, 6.03, 8.94  �̂*
200 � 0.0459

ooo
 �̂*

2 � 0.0470

 �̂*
1 � 0.0485
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7-3

The sample average of the (the bootstrap estimates) is 0.0513, and the standard deviation
of these bootstrap estimates is 0.020. Therefore, the bootstrap standard error of is 0.020. In
this case, estimating the parameter � in an exponential distribution, the variance of the esti-
mator we used, , is known. When n is large, Therefore the estimated standard
error of is . Notice that this result agrees reasonably
closely with the bootstrap standard error.

Sometimes we want to use the bootstrap in situations in which the form of the probabil-
ity distribution is unknown. In these cases, we take the n observations in the sample as the
population and select B random samples each of size n, with replacement, from this popula-
tion. Then Equation S7-1 can be applied as described above. The book by Efron and
Tibshirani (1993) is an excellent introduction to the bootstrap.

7-3.3 Bayesian Estimation of Parameters (CD Only)

This book uses methods of statistical inference based on the information in the sample data.
In effect, these methods interpret probabilities as relative frequencies. Sometimes we call
probabilities that are interpreted in this manner objective probabilities. There is another ap-
proach to statistical inference, called the Bayesian approach, that combines sample informa-
tion with other information that may be available prior to collecting the sample. In this section
we briefly illustrate how this approach may be used in parameter estimation.

Suppose that the random variable X has a probability distribution that is a function of one
parameter �. We will write this probability distribution as This notation implies that
the exact form of the distribution of X is conditional on the value assigned to �. The classical ap-
proach to estimation would consist of taking a random sample of size n from this distribution
and then substituting the sample values xi into the estimator for �. This estimator could have
been developed using the maximum likelihood approach, for example.

Suppose that we have some additional information about � and that we can summarize
that information in the form of a probability distribution for �, say, f(�). This probability dis-
tribution is often called the prior distribution for �, and suppose that the mean of the prior is
�0 and the variance is . This is a very novel concept insofar as the rest of this book is con-
cerned because we are now viewing the parameter � as a random variable. The probabilities
associated with the prior distribution are often called subjective probabilities, in that they
usually reflect the analyst’s degree of belief regarding the true value of �. The Bayesian
approach to estimation uses the prior distribution for �, f(�), and the joint probability distri-
bution of the sample, say to find a posterior distribution for �, say,

This posterior distribution contains information both from the sample and
the prior distribution for �. In a sense, it expresses our degree of belief regarding the true value
of � after observing the sample data. It is easy conceptually to find the posterior distribution.
The joint probability distribution of the sample X1, X2, p , Xn and the parameter � (remember
that � is a random variable) is 

and the marginal distribution of X1, X2, p , Xn is

f  1x1, x2, p , xn2 � µ a�  f 1x1, x2, p , xn, �2, � discrete

�
�

��
 
f 1x1, x2, p , xn, �2 d�, � continuous

f 1x1, x2, p , xn, �2 � f 1x1, x2, p , xn 
0

 
�2 f 1�2

f 1� 0  x1, x2, p , xn2.
f  1x1, x2, p , xn  0  �2,

�2
0

f 1x 0 �2.

2�̂2�n � 210.046222�8 � 0.016�̂

V 1�̂2 � �2�n.�̂

�̂
�̂*

i
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7-4

Therefore, the desired distribution is 

We define the Bayes estimator of � as the value that corresponds to the mean of the poste-
rior distribution 

Sometimes, the mean of the posterior distribution of � can be determined easily. As a
function of �, is a probability density function and are just con-
stants. Because � enters into only through if 
as a function of � is recognized as a well-known probability function, the posterior mean of �
can be deduced from the well-known distribution without integration or even calculation of

EXAMPLE S7-2 Let X1, X2, p , Xn be a random sample from the normal distribution with mean � and variance
�2, where � is unknown and �2 is known. Assume that the prior distribution for � is normal
with mean �0 and variance ; that is

The joint probability distribution of the sample is

Thus, the joint probability distribution of the sample and � is

Upon completing the square in the exponent

where hi(x1, p , xn, �
2, �0, ) is a function of the observed values, �2, �0, and .

Now, because f(x1, p , xn) does not depend on �,

f 1� 0  x1, p , xn2 � e
� 11�22  a 1

�0
2

 	  

1

�2�n
b  c�2 �  a1�2�n2�0	�2

0 x
 

�2
0 	�2�n

bd h31x1, p , xn, �
2, �0, �

2
02

�2
0�2

0

f 1x1, x2, p , xn, �2 � e
� 11�22 a 1

�0
2

  	  

1

�2�n
b  c�2�a 1�

2�n2�0

�2
0	�2�n

 	  

x�2
0

�2
0	�2�n

bd
2

 h21x1, p , xn, �
2, �0, �

2
02

 � e
� 11�22 ca 1

�0
2

  	  

1

�2�n
b �2�2 a�0

�0
2

 	  

x

�2�n
b �d h11x1, p , xn, �

2, �0, �
2
02

 f 1x1, x2, p , xn, �2 �
1

12
�22n�212
�0
 e�11�22 311��2

0	n��22�2� 12�0��2
0	2a  xi��22�	a  x2

i ��2	�2
0 ��2

04

 �
1

12
�22n�2 e�11�2�221ax2
i �2�a xi	n�22

 f 1x1, x2, p , xn 
0  �2 �

1

12
�22n�2 e�11�2�22 an
i�1
1xi��22

f  1�2 �
112
�0

 e� 1���022�12�2
02 � 112
�2

0
 e�1�2�2�0�	�2

02�12�2
02

�2
0

f 1x1, p , xn2.

f 1x1, p , xn, �2,f 1x1, p , xn, �2f 1� 0 x1, p , xn2
x1, p , xnf  1� 0  x1, p , xn2

f  1� 0  x1, x2, p , xn2.
�
�

f 1� 0  x1, x2, p , xn2 �
f 1x1, x2, p , xn, �2
f 1x1, x2, p , xn2
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7-5

This is recognized as a normal probability density function with posterior mean

and posterior variance

Consequently, the Bayes estimate of � is a weighted average of �0 and . For purposes of
comparison, note that the maximum likelihood estimate of � is .

To illustrate, suppose that we have a sample of size n � 10 from a normal distribution
with unknown mean � and variance �2 � 4. Assume that the prior distribution for � is nor-
mal with mean �0 � 0 and variance . If the sample mean is 0.75, the Bayes estimate
of � is

Note that the maximum likelihood estimate of � is .

There is a relationship between the Bayes estimator for a parameter and the maximum
likelihood estimator of the same parameter. For large sample sizes, the two are nearly
equivalent. In general, the difference between the two estimators is small compared to

In practical problems, a moderate sample size will produce approximately the same
estimate by either the Bayes or maximum likelihood method, if the sample results are con-
sistent with the assumed prior information. If the sample results are inconsistent with the
prior assumptions, the Bayes estimate may differ considerably from the maximum likeli-
hood estimate. In these circumstances, if the sample results are accepted as being correct,
the prior information must be incorrect. The maximum likelihood estimate would then be
the better estimate to use.

If the sample results are very different from the prior information, the Bayes estimator
will always tend to produce an estimate that is between the maximum likelihood estimate and
the prior assumptions. If there is more inconsistency between the prior information and the
sample, there will be more difference between the two estimates.

EXERCISES FOR SECTION 7-3.3

1�1n.

x � 0.75

14�1020 
 110.752
1 
 14�102 �

0.75
1.4

� 0.536

�2
0 � 1

�̂ � x
x

a 1

�2
0



1

�2�n
b�1

�
�2

0 1�2�n2
�2

0 
 �2�n

1�2�n2�0 
 �2
0 x

�2
0 
 �2�n

S7-1. Suppose that X is a normal random variable
with unknown mean � and known variance �2. The prior
distribution for � is a normal distribution with mean �0 and
variance . Show that the Bayes estimator for � becomes
the maximum likelihood estimator when the sample size n is
large.
S7-2. Suppose that X is a normal random variable with un-
known mean � and known variance �2. The prior distribution
for � is a uniform distribution defined over the interval [a, b].

�2
0

(a) Find the posterior distribution for �.
(b) Find the Bayes estimator for �.

S7-3. Suppose that X is a Poisson random variable with pa-
rameter 
. Let the prior distribution for 
 be a gamma distri-
bution with parameters m 
 1 and .
(a) Find the posterior distribution for 
.
(b) Find the Bayes estimator for 
.

S7-4. Suppose that X is a normal random variable with un-
known mean and known variance �2 � 9. The prior distribution

1m 
 12��0
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for � is normal with �0 � 4 and � 1. A random sample of 
n � 25 observations is taken, and the sample mean is
(a) Find the Bayes estimate of �.
(b) Compare the Bayes estimate with the maximum likeli-

hood estimate.

S7-5. The weight of boxes of candy is a normal random
variable with mean � and variance pound. The prior dis-
tribution for � is normal with mean 5.03 pound. and variance

pound. A random sample of 10 boxes gives a sample
mean of pound.
(a) Find the Bayes estimate of �.

x � 5.05
1�25

1�10

x � 4.85.
�2

0 (b) Compare the Bayes estimate with the maximum likeli-
hood estimate.

S7-6. The time between failures of a machine has an expo-
nential distribution with parameter 
. Suppose that the prior
distribution for 
 is exponential with mean 100 hours. Two
machines are observed, and the average time between failures
is hours.
(a) Find the Bayes estimate for 
.
(b) What proportion of the machines do you think will fail be-

fore 1000 hours?

x � 1125
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8Statistical Intervals 
for a Single Sample

CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
1. Construct confidence intervals on the mean of a normal distribution, using either the normal

distribution or the t distribution method
2. Construct confidence intervals on the variance and standard deviation of a normal distribution
3. Construct confidence intervals on a population proportion
4. Construct prediction intervals for a future observation
5. Construct a tolerance interval for a normal population

8-1 INTRODUCTION

8-2 CONFIDENCE INTERVAL ON THE
MEAN OF A NORMAL DISTRIBU-
TION, VARIANCE KNOWN

8-2.1 Development of the Confidence
Interval and its Basic Properties

8-2.2 Choice of Sample Size

8-2.3 One-Sided Confidence Bounds

8-2.4 General Method to Derive a
Confidence Interval

8-2.5 A Large-Sample Confidence
Interval for �

8-2.6 Bootstrap Confidence Intervals
(CD Only)

8-3 CONFIDENCE INTERVAL ON THE
MEAN OF A NORMAL DISTRIBU-
TION, VARIANCE UNKNOWN

8-3.1 The t Distribution

8-3.2 Development of the t Distribution
(CD Only)

8-3.3 The t Confidence Interval on �

8-4 CONFIDENCE INTERVAL ON THE
VARIANCE AND STANDARD
DEVIATION OF A NORMAL 
POPULATION

8-5 A LARGE-SAMPLE CONFIDENCE
INTERVAL FOR A POPULATION
PROPORTION

8-6 A PREDICTION INTERVAL FOR A
FUTURE OBSERVATION

8-7 TOLERANCE INTERVALS FOR A
NORMAL DISTRIBUTION
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248 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

6. Explain the three types of interval estimates: confidence intervals, prediction intervals, and
tolerance intervals

7. Use the general method for constructing a confidence interval

CD MATERIAL

8. Use the bootstrap technique to construct a confidence interval

Answers for many odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

8-1 INTRODUCTION

In the previous chapter we illustrated how a parameter can be estimated from sample data.
However, it is important to understand how good is the estimate obtained. For example, sup-
pose that we estimate the mean viscosity of a chemical product to be Now
because of sampling variability, it is almost never the case that . The point estimate says
nothing about how close is to �. Is the process mean likely to be between 900 and 1100? Or
is it likely to be between 990 and 1010? The answer to these questions affects our decisions
regarding this process. Bounds that represent an interval of plausible values for a parameter
are an example of an interval estimate. Surprisingly, it is easy to determine such intervals in
many cases, and the same data that provided the point estimate are typically used.

An interval estimate for a population parameter is called a confidence interval. We can-
not be certain that the interval contains the true, unknown population parameter—we only use
a sample from the full population to compute the point estimate and the interval. However,
the confidence interval is constructed so that we have high confidence that it does contain the
unknown population parameter. Confidence intervals are widely used in engineering
and the sciences.

A tolerance interval is another important type of interval estimate. For example, the
chemical product viscosity data might be assumed to be normally distributed. We might like
to calculate limits that bound 95% of the viscosity values. For a normal distribution, we know
that 95% of the distribution is in the interval

(8-1)

However, this is not a useful tolerance interval because the parameters � and � are unknown.
Point estimates such as and s can be used in Equation 8-1 for � and �. However, we need to
account for the potential error in each point estimate to form a tolerance interval for the
distribution. The result is an interval of the form

(8-2)

where k is an appropriate constant (that is larger than 1.96 to account for the estimation
error). As for a confidence interval, it is not certain that Equation 8-2 bounds 95% of the dis-
tribution, but the interval is constructed so that we have high confidence that it does.
Tolerance intervals are widely used and, as we will subsequently see, they are easy to cal-
culate for normal distributions.

x � ks, x � ks

x

� � 1.96�, � � 1.96�

�̂
� � x

�̂ � x � 1000.
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8-2 CONFIDENCE INTERVAL ON THE MEAN OF A NORMAL DISTRIBUTION, VARIANCE KNOWN 249

Confidence and tolerance intervals bound unknown elements of a distribution. In this
chapter you will learn to appreciate the value of these intervals. A prediction interval pro-
vides bounds on one (or more) future observations from the population. For example, a
prediction interval could be used to bound a single, new measurement of viscosity—another
useful interval. With a large sample size, the prediction interval for normally distributed data
tends to the tolerance interval in Equation 8-1, but for more modest sample sizes the predic-
tion and tolerance intervals are different.

Keep the purpose of the three types of interval estimates clear:

A confidence interval bounds population or distribution parameters (such as the mean
viscosity).

A tolerance interval bounds a selected proportion of a distribution.

A prediction interval bounds future observations from the population or distribution.

8-2 CONFIDENCE INTERVAL ON THE MEAN OF A NORMAL
DISTRIBUTION, VARIANCE KNOWN

The basic ideas of a confidence interval (CI) are most easily understood by initially consider-
ing a simple situation. Suppose that we have a normal population with unknown mean � and
known variance �2. This is a somewhat unrealistic scenario because typically we know the
distribution mean before we know the variance. However, in subsequent sections we will
present confidence intervals for more general situations.

8-2.1 Development of the Confidence Interval and its Basic Properties

Suppose that X1, X2, , Xn is a random sample from a normal distribution with unknown
mean � and known variance �2. From the results of Chapter 5 we know that the sample
mean is normally distributed with mean � and variance . We may standardize
by subtracting the mean and dividing by the standard deviation, which results in the
variable

(8-3)

Now Z has a standard normal distribution.
A confidence interval estimate for � is an interval of the form l � � � u, where the end-

points l and u are computed from the sample data. Because different samples will produce
different values of l and u, these end-points are values of random variables L and U, respec-
tively. Suppose that we can determine values of L and U such that the following probability
statement is true:

(8-4)

where 0 � � � 1. There is a probability of 1 � � of selecting a sample for which the CI will
contain the true value of �. Once we have selected the sample, so that X1 � x1, X2 � x2, ,
Xn � xn, and computed l and u, the resulting confidence interval for � is

(8-5)l � � � u

p

P 5L � � � U6 � 1 � �

Z �
X � �

�	1n

X�2	nX

p
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250 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

The end-points or bounds l and u are called the lower- and upper-confidence limits, respec-
tively, and 1 � � is called the confidence coefficient.

In our problem situation, because has a standard normal distribu-
tion, we may write

Now manipulate the quantities inside the brackets by (1) multiplying through by , (2)
subtracting from each term, and (3) multiplying through by �1. This results in

(8-6)

From consideration of Equation 8-4, the lower and upper limits of the inequalities in Equation
8-6 are the lower- and upper-confidence limits L and U, respectively. This leads to the fol-
lowing definition.

P eX � z�	2 
�1n

� � � X � z�	2 
�1n
f � 1 � �

X
�	1n

P e�z�	2 �
X � �

�	1n
� z�	2 f � 1 � �

Z � 1X � �2	 1�	1n2

EXAMPLE 8-1 ASTM Standard E23 defines standard test methods for notched bar impact testing of metallic
materials. The Charpy V-notch (CVN) technique measures impact energy and is often used to
determine whether or not a material experiences a ductile-to-brittle transition with decreasing
temperature. Ten measurements of impact energy (J) on specimens of A238 steel cut at 60ºC
are as follows: 64.1, 64.7, 64.5, 64.6, 64.5, 64.3, 64.6, 64.8, 64.2, and 64.3. Assume that
impact energy is normally distributed with � � 1J. We want to find a 95% CI for �, the mean
impact energy. The required quantities are z��2 � z0.025 � 1.96, n � 10, � � 1, and 

� 64.46. The resulting 95% CI is found from Equation 8-7 as follows:

That is, based on the sample data, a range of highly plausible vaules for mean impact energy
for A238 steel at 60°C is 63.84J � � � 65.08J.

Interpreting a Confidence Interval
How does one interpret a confidence interval? In the impact energy estimation problem in
Example 8-1 the 95% CI is 63.84 65.08, so it is tempting to conclude that � is within� � �

 63.84 � � � 65.08

 64.46 � 1.96  

1110
� � � 64.46 � 1.96  

1110

 x � z�	2 
�1n

� � � x � z�	2 
�1n

x

If is the sample mean of a random sample of size n from a normal population with
known variance �2, a 100(1 � �)% CI on � is given by

(8-7)

where is the upper percentage point of the standard normal distribution.100�	2z�	2

x � z�	2 �	1n � � � x � z�	2 �	1n

x
Definition
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8-2 CONFIDENCE INTERVAL ON THE MEAN OF A NORMAL DISTRIBUTION, VARIANCE KNOWN 251

Interval number

µ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 8-1 Repeated
construction of a con-
fidence interval for �.

this interval with probability 0.95. However, with a little reflection, it’s easy to see that this can-
not be correct; the true value of � is unknown and the statement 63.84 65.08 is either
correct (true with probability 1) or incorrect (false with probability 1). The correct interpretation
lies in the realization that a CI is a random interval because in the probability statement defin-
ing the end-points of the interval (Equation 8-4), L and U are random variables. Consequently,
the correct interpretation of a 100(1 � �)% CI depends on the relative frequency view of prob-
ability. Specifically, if an infinite number of random samples are collected and a 100(1 � �)%
confidence interval for � is computed from each sample, 100(1 � �)% of these intervals will
contain the true value of �.

The situation is illustrated in Fig. 8-1, which shows several 100(1 � �)% confidence
intervals for the mean � of a normal distribution. The dots at the center of the intervals indi-
cate the point estimate of � (that is, ). Notice that one of the intervals fails to contain the true
value of �. If this were a 95% confidence interval, in the long run only 5% of the intervals
would fail to contain �.

Now in practice, we obtain only one random sample and calculate one confidence interval.
Since this interval either will or will not contain the true value of �, it is not reasonable to attach
a probability level to this specific event. The appropriate statement is the observed interval [l, u]
brackets the true value of � with confidence 100(1 � �). This statement has a frequency inter-
pretation; that is, we don’t know if the statement is true for this specific sample, but the method
used to obtain the interval [l, u] yields correct statements 100(1 � �)% of the time.

Confidence Level and Precision of Estimation
Notice in Example 8-1 that our choice of the 95% level of confidence was essentially
arbitrary. What would have happened if we had chosen a higher level of confidence, say, 99%?
In fact, doesn’t it seem reasonable that we would want the higher level of confidence? At � �
0.01, we find while for . Thus, the
length of the 95% confidence interval is

whereas the length of the 99% CI is

Thus, the 99% CI is longer than the 95% CI. This is why we have a higher level of confidence
in the 99% confidence interval. Generally, for a fixed sample size n and standard deviation �,
the higher the confidence level, the longer the resulting CI.

212.58�	2n2 � 5.16�	2n

211.96�	2n2 � 3.92�	2n

� � 0.05, z0.025 � 1.96z�	2 � z0.01	2 � z0.005 � 2.58,

x

� � �
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252 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

The length of a confidence interval is a measure of the precision of estimation. From the
preceeding discussion, we see that precision is inversely related to the confidence level. It is de-
sirable to obtain a confidence interval that is short enough for decision-making purposes and
that also has adequate confidence. One way to achieve this is by choosing the sample size n to
be large enough to give a CI of specified length or precision with prescribed confidence.

8-2.2 Choice of Sample Size

The precision of the confidence interval in Equation 8-7 is This means that in
using to estimate �, the error is less than or equal to with
confidence 100(1 � �). This is shown graphically in Fig. 8-2. In situations  where the sam-
ple size can be controlled, we can choose n so that we are 100(1 � �) percent confident that
the error in estimating � is less than a specified bound on the error E. The appropriate sam-
ple size is found by choosing n such that Solving this equation gives the fol-
lowing formula for n.

z��2��1n � E.

z��2��1nE � 0 x � � 0x
2z�� 2��1n.

If the right-hand side of Equation 8-8 is not an integer, it must be rounded up. This will ensure
that the level of confidence does not fall below 100(1 � �)%. Notice that 2E is the length of
the resulting confidence interval.

EXAMPLE 8-2 To illustrate the use of this procedure, consider the CVN test described in Example 8-1, and
suppose that we wanted to determine how many specimens must be tested to ensure that the
95% CI on � for A238 steel cut at 60°C has a length of at most 1.0J. Since the bound on error
in estimation E is one-half of the length of the CI, to determine n we use Equation 8-8 with 
E � 0.5, � � 1, and The required sample size is 16

and because n must be an integer, the required sample size is n � 16.

Notice the general relationship between sample size, desired length of the confidence
interval 2E, confidence level 100(1 � �), and standard deviation �:

As the desired length of the interval 2E decreases, the required sample size n increases
for a fixed value of � and specified confidence.

n � az��2 
�

E
b2

� c 11.9621
0.5

d 2 � 15.37

z��2 � 0.025.

If is used as an estimate of �, we can be 100(1 � �)% confident that the error
will not exceed a specified amount E when the sample size is

(8-8)n � az��2�

E
b2

0 x � � 0x
Definition

x µ

E = error = x –  µ

u = x + z  /2 / nα σl = x – z  /2 / nα σ
Figure 8-2 Error in
estimating � with .x
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8-2 CONFIDENCE INTERVAL ON THE MEAN OF A NORMAL DISTRIBUTION, VARIANCE KNOWN 253

As � increases, the required sample size n increases for a fixed desired length 2E and
specified confidence.

As the level of confidence increases, the required sample size n increases for fixed
desired length 2E and standard deviation �.

8-2.3 One-Sided Confidence Bounds

The confidence interval in Equation 8-7 gives both a lower confidence bound and an upper
confidence bound for �. Thus it provides a two-sided CI. It is also possible to obtain one-sided
confidence bounds for � by setting either and replacing by z�.z�	2l � �
 or u � 


8-2.4 General Method to Derive a Confidence Interval

It is easy to give a general method for finding a confidence interval for an unknown parame-
ter �. Let X1, X2, p , Xn be a random sample of n observations. Suppose we can find a statistic
g (X1, X2, p , Xn; �) with the following properties:

1. g (X1, X2, p , Xn; �) depends on both the sample and �.

2. The probability distribution of g(X1, X2, p , Xn; �) does not depend on � or any other
unknown parameter.

In the case considered in this section, the parameter � � �. The random variable g (X1, X2, p ,
Xn; �) � and satisfies both conditions above; it depends on the sample and
on �, and it has a standard normal distribution since � is known. Now one must find constants
CL and CU so that

(8-11)

Because of property 2, CL and CU do not depend on �. In our example, and
Finally, you must manipulate the inequalities in the probability statement so that

(8-12)

This gives L(X1, X2, , Xn) and U(X1, X2, p , Xn) as the lower and upper confidence limits
defining the 100(1 � �)% confidence interval for �. The quantity g(X1, X2, p , Xn; �) is
often called a “pivotal quantity’’ because we pivot on this quantity in Equation 8-11 to pro-
duce Equation 8-12. In our example, we manipulated the pivotal quantity 
to obtain L 1X1, X2, p , Xn2 � X � z�	2 �	1n and U 1X1, X2, p , Xn2 � X � z�	2 �	1n.

1X � �2	 1�	1n2

p

P 3L1X1, X2, p , Xn2 � � � U1X1, X2, p , Xn2 4 � 1 � �

CU � z�	2.
CL � �z�	2

P 3CL � g 1X1, X2, p , Xn; �2 � CU 4 � 1 � �

1X � �2	 1�	1n2

A 100(1 � �)% upper-confidence bound for � is

(8-9)

and a 100(1 � �)% lower-confidence bound for � is

(8-10)x � z� �	1n � l � �

� � u � x � z��	1n

Definition

c08.qxd  5/15/02  6:13 PM  Page 253 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



254 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

8-2.5 A Large-Sample Confidence Interval for �

We have assumed that the population distribution is normal with unknown mean and known
standard deviation �. We now present a large-sample CI and � that does not require these as-
sumptions. Let X1, X2, p , Xn be a random sample from a population with unknown mean
� and variance . Now if the sample size n is large, the central limit theorem implies that 
has approximately a normal distribution with mean � and variance �2�n. Therefore

has approximately a standard normal distribution. This ratio could be
used as a pivotal quantity and manipulated as in Section 8-2.1 to produce an approximate CI
for �. However, the standard deviation � is unknown. It turns out that when n is large, replac-
ing � by the sample standard deviation S has little effect on the distribution of Z. This leads to
the following useful result.

Z � 1X � �2	 1�	1n2
X�2

When n is large, the quantity

has an approximate standard normal distribution. Consequently,

(8-13)

is a large sample confidence interval for �, with confidence level of approximately
100(1 � �)%.

x � z�	2 
s1n

� � � x � z�	2 
s1n

X � �

S	1n

Definition

1.230
1.330
0.040
0.044
1.200
0.270

0.490
0.190
0.830
0.810
0.710
0.500

0.490
1.160
0.050
0.150
0.190
0.770

1.080
0.980
0.630
0.560
0.410
0.730

0.590
0.340
0.340
0.840
0.500
0.340

0.280
0.340
0.750
0.870
0.560
0.170

0.180
0.190
0.040
0.490
1.100
0.160

0.100
0.210
0.860
0.520
0.650
0.270

0.940
0.400
0.430
0.250
0.270

Equation 8-13 holds regardless of the shape of the population distribution. Generally n should
be at least 40 to use this result reliably. The central limit theorem generally holds for n � 30,
but the larger sample size is recommended here because replacing � by S in Z results in addi-
tional variability.

EXAMPLE 8-3 An article in the 1993 volume of the Transactions of the American Fisheries Society reports
the results of a study to investigate the mercury contamination in largemouth bass. A sample
of fish was selected from 53 Florida lakes and mercury concentration in the muscle tissue was
measured (ppm). The mercury concentration values are 
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Figure 8-3(a) and (b) presents the histogram and normal probability plot of the mercury
concentration data. Both plots indicate that the distribution of mercury concentration is not nor-
mal and is positively skewed. We want to find an approximate 95% CI on �. Because n 
 40,
the assumption of normality is not necessary to use Equation 8-13. The required quantities are
n � 53, , and The approximate 95% CI on � is

This interval is fairly wide because there is a lot of variability in the mercury concentration
measurements.

A General Large Sample Confidence Interval
The large-sample confidence interval for � in Equation 8-13 is a special case of a more
general result. Suppose that � is a parameter of a probability distribution and let be an
estimator of �. If (1) has an approximate normal distribution, (2) is approximately unbiased�̂

�̂

0.4311 � � � 0.6189

0.5250 � 1.96 
0.3486253

� � � 0.5250 � 1.96 
0.3486253

x � z0.025 
s1n

� � � x � z0.025 
s1n

z0.025 � 1.96.x � 0.5250, s � 0.3486
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Figure 8-3 Mercury concentration in largemouth bass (a) Histogram. (b) Normal probability plot.

Descriptive Statistics: Concentration 

Variable N Mean Median TrMean StDev SE Mean
Concentration 53 0.5250 0.4900 0.5094 0.3486 0.0479
Variable Minimum Maximum Q1 Q3
Concentration 0.0400 1.3300 0.2300 0.7900

The summary statistics from Minitab are displayed below:
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Maximum likelihood estimators usually satisfy the three conditions listed above, so Equation
8-14 is often used when is the maximum likelihood estimator of �. Finally, note that
Equation 8-14 can be used even when is a function of other unknown parameters (or of �).
Essentially, all one does is to use the sample data to compute estimates of the unknown
parameters and substitute those estimates into the expression for .

8-2.6 Bootstrap Confidence Intervals (CD Only)

EXERCISES FOR SECTION 8-2

��̂

��̂

�̂

256 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

for �, and (3) has standard deviation that can be estimated from the sample data, then the
quantity has an approximate standard normal distribution. Then a large-sample
approximate CI for � is given by

	��̂1�̂ � �2 ��̂

8-1. For a normal population with known variance �2,
answer the following questions:
(a) What is the confidence level for the interval

?
(b) What is the confidence level for the interval

?
(c) What is the confidence level for the interval 

?

8-2. For a normal population with known variance �2:
(a) What value of in Equation 8-7 gives 98% confidence?
(b) What value of in Equation 8-7 gives 80% confidence?
(c) What value of in Equation 8-7 gives 75% confidence?

8-3. Consider the one-sided confidence interval expres-
sions, Equations 8-9 and 8-10.
(a) What value of z� would result in a 90% CI?
(b) What value of z� would result in a 95% CI?
(c) What value of z� would result in a 99% CI?

8-4. A confidence interval estimate is desired for the gain in
a circuit on a semiconductor device. Assume that gain is nor-
mally distributed with standard deviation � � 20.
(a) Find a 95% CI for � when n � 10 and 
(b) Find a 95% CI for � when n � 25 and 
(c) Find a 99% CI for � when n � 10 and 
(d) Find a 99% CI for � when n � 25 and 

8-5. Consider the gain estimation problem in Exercise 8-4.
How large must n be if the length of the 95% CI is to be 40?

8-6. Following are two confidence interval estimates of the
mean � of the cycles to failure of an automotive door latch
mechanism (the test was conducted at an elevated stress level
to accelerate the failure).

3124.9 � � � 3215.7  3110.5 � � � 3230.1

x � 1000.
x � 1000.
x � 1000.
x � 1000.

z�	2

z�	2

z�	2

� � � x � 1.85�	1n
x � 1.85�	1n

� � � x � 2.49�	1n
x � 2.49�	1n

� � � x � 2.14�	1n
x � 2.14�	1n

(a) What is the value of the sample mean cycles to failure?
(b) The confidence level for one of these CIs is 95% and the

confidence level for the other is 99%. Both CIs are calcu-
lated from the same sample data. Which is the 95% CI?
Explain why.

8-7. n � 100 random samples of water from a fresh water
lake were taken and the calcium concentration (milligrams
per liter) measured. A 95% CI on the mean calcium concen-
tration is 0.49 � � � 0.82.
(a) Would a 99% CI calculated from the same sample data

been longer or shorter?
(b) Consider the following statement: There is a 95% chance

that � is between 0.49 and 0.82. Is this statement correct?
Explain your answer.

(c) Consider the following statement: If n � 100 random
samples of water from the lake were taken and the 95% CI
on � computed, and this process was repeated 1000 times,
950 of the CIs will contain the true value of �. Is this state-
ment correct? Explain your answer.

8-8. The breaking strength of yarn used in manufacturing
drapery material is required to be at least 100 psi. Past experi-
ence has indicated that breaking strength is normally distrib-
uted and that � � 2 psi. A random sample of nine specimens
is tested, and the average breaking strength is found to be 98
psi. Find a 95% two-sided confidence interval on the true
mean breaking strength.

8-9. The yield of a chemical process is being studied. From
previous experience yield is known to be normally distributed
and � � 3. The past five days of plant operation have resulted
in the following percent yields: 91.6, 88.75, 90.8, 89.95, and
91.3. Find a 95% two-sided confidence interval on the true
mean yield.

(8-14)�̂ � z�	2 ��̂ � � � �̂ � z�	2 ��̂
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8-3 CONFIDENCE INTERVAL ON THE MEAN OF A NORMAL DISTRIBUTION, VARIANCE UNKNOWN 257

8-10. The diameter of holes for cable harness is known to
have a normal distribution with � � 0.01 inch. A random
sample of size 10 yields an average diameter of 1.5045 inch.
Find a 99% two-sided confidence interval on the mean hole
diameter.

8-11. A manufacturer produces piston rings for an auto-
mobile engine. It is known that ring diameter is normally dis-
tributed with � � 0.001 millimeters. A random sample of 15
rings has a mean diameter of millimeters.
(a) Construct a 99% two-sided confidence interval on the

mean piston ring diameter.
(b) Construct a 95% lower-confidence bound on the mean

piston ring diameter.

8-12. The life in hours of a 75-watt light bulb is known to be
normally distributed with � � 25 hours. A random sample of
20 bulbs has a mean life of hours.
(a) Construct a 95% two-sided confidence interval on the

mean life.
(b) Construct a 95% lower-confidence bound on the mean

life.

8-13. A civil engineer is analyzing the compressive strength
of concrete. Compressive strength is normally distributed with
�2 � 1000(psi)2. A random sample of 12 specimens has a
mean compressive strength of psi.x � 3250

x � 1014

x � 74.036

(a) Construct a 95% two-sided confidence interval on mean
compressive strength.

(b) Construct a 99% two-sided confidence interval on mean
compressive strength. Compare the width of this confi-
dence interval with the width of the one found in part (a).

8-14. Suppose that in Exercise 8-12 we wanted to be 95%
confident that the error in estimating the mean life is less than
five hours. What sample size should be used?

8-15. Suppose that in Exercise 8-12 we wanted the total
width of the two-sided confidence interval on mean life to be
six hours at 95% confidence. What sample size should be
used?

8-16. Suppose that in Exercise 8-13 it is desired to estimate
the compressive strength with an error that is less than 15 psi
at 99% confidence. What sample size is required?

8-17. By how much must the sample size n be increased if
the length of the CI on � in Equation 8-7 is to be halved?

8-18. If the sample size n is doubled, by how much is the
length of the CI on � in Equation 8-7 reduced? What happens
to the length of the interval if the sample size is increased by a
factor of four?

8-3 CONFIDENCE INTERVAL ON THE MEAN OF A NORMAL
DISTRIBUTION, VARIANCE UNKNOWN

When we are constructing confidence intervals on the mean � of a normal population when
�2 is known, we can use the procedure in Section 8-2.1. This CI is also approximately valid
(because of the central limit theorem) regardless of whether or not the underlying population
is normal, so long as n is reasonably large (n � 40, say). As noted in Section 8-2.5, we can
even handle the case of unknown variance for the large-sample-size situation. However, when
the sample is small and �2 is unknown, we must make an assumption about the form of the un-
derlying distribution to obtain a valid CI procedure. A reasonable assumption in many cases is
that the underlying distribution is normal.

Many populations encountered in practice are well approximated by the normal distribu-
tion, so this assumption will lead to confidence interval procedures of wide applicability. In
fact, moderate departure from normality will have little effect on validity. When the assump-
tion is unreasonable, an alternate is to use the nonparametric procedures in Chapter 15 that are
valid for any underlying distribution.

Suppose that the population of interest has a normal distribution with unknown mean �
and unknown variance �2. Assume that a random sample of size n, say X1, X2, p , Xn, is avail-
able, and let and S2 be the sample mean and variance, respectively.

We wish to construct a two-sided CI on �. If the variance �2 is known, we know that
has a standard normal distribution. When �2 is unknown, a logical pro-

cedure is to replace � with the sample standard deviation S. The random variable Z now be-
comes . A logical question is what effect does replacing � by S have on the
distribution of the random variable T ? If n is large, the answer to this question is “very little,”
and we can proceed to use the confidence interval based on the normal distribution from

T � 1X � �2	 1S	1n2
Z � 1X � �2	 1�	1n2

X
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258 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

t0kα,t kα,t1 – kα, – t=

αα

Section 8-2.5. However, n is usually small in most engineering problems, and in this situation
a different distribution must be employed to construct the CI.

8-3.1 The t Distribution

Let X1, X2, p , Xn be a random sample from a normal distribution with unknown
mean � and unknown variance �2. The random variable

(8-15)

has a t distribution with n � 1 degrees of freedom.

T �
X � �

S	1n

Definition

The t probability density function is

(8-16)

where k is the number of degrees of freedom. The mean and variance of the t distribution are
zero and k/(k � 2) (for k 
 2), respectively.

Several t distributions are shown in Fig. 8-4. The general appearance of the t distribution is
similar to the standard normal distribution in that both distributions are symmetric and
unimodal, and the maximum ordinate value is reached when the mean � � 0. However, the t
distribution has heavier tails than the normal; that is, it has more probability in the tails than the
normal distribution. As the number of degrees of freedom , the limiting form of the t dis-
tribution is the standard normal distribution. Generally, the number of degrees of freedom for t
are the number of degrees of freedom associated with the estimated standard deviation.

Appendix Table IV provides percentage points of the t distribution. We will let t�,k be the
value of the random variable T with k degrees of freedom above which we find an area
(or probability) �. Thus, t�,k is an upper-tail 100� percentage point of the t distribution with k
degrees of freedom. This percentage point is shown in Fig. 8-5. In the Appendix Table IV the
� values are the column headings, and the degrees of freedom are listed in the left column. To

k S 


f 1x2 �
� 3 1k � 12	2 42�k�1k	22 �

1

3 1x2	k2 � 1 4 1k�12	2 �
 � x � 


Figure 8-4 Probability density functions of several t
distributions.

Figure 8-5 Percentage points of the t
distribution.

0

k = ∞ [N (0, 1)]

x

k = 10

k = 1
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One-sided confidence bounds on the mean of a normal distribution are also of interest
and are easy to find. Simply use only the appropriate lower or upper confidence limit from
Equation 8-18 and replace t�	2,n�1 by t�,n�1.

8-3 CONFIDENCE INTERVAL ON THE MEAN OF A NORMAL DISTRIBUTION, VARIANCE UNKNOWN 259

illustrate the use of the table, note that the t-value with 10 degrees of freedom having an area
of 0.05 to the right is t0.05,10 � 1.812. That is,

Since the t distribution is symmetric about zero, we have t1�� � �t�; that is, the t-value hav-
ing an area of 1 � � to the right (and therefore an area of � to the left) is equal to the nega-
tive of the t-value that has area � in the right tail of the distribution. Therefore, t0.95,10 �
�t0.05,10 � �1.812. Finally, because t
 is the standard normal distribution, the familiar z� val-
ues appear in the last row of Appendix Table IV.

8-3.2 Development of the t Distribution (CD Only)

8-3.3 The t Confidence Interval on �

It is easy to find a 100(1 � �) percent confidence interval on the mean of a normal distribu-
tion with unknown variance by proceeding essentially as we did in Section 8-2.1. We know
that the distribution of is t with n � 1 degrees of freedom. Letting

be the upper 100��2 percentage point of the t distribution with n � 1 degrees of
freedom, we may write:

or

Rearranging this last equation yields

(8-17)

This leads to the following definition of the 100(1 � �) percent two-sided confidence inter-
val on �.

P 1X � t�	2,n�1 
S	1n � � � X � t�	2,n�1 

S	1n2 � 1 � �

P  a�t�	2,n�1 �
X � �

S	1n
� t�	2,n�1b � 1 � �

P 1�t�	2,n�1 � T � t�	2,n�12 � 1 � �

t�	2,n�1

T � 1X � �2	 1S	1n2

P1T10 
 t0.05,102 � P1T10 
 1.8122 � 0.05

If and s are the mean and standard deviation of a random sample from a normal
distribution with unknown variance �2, a 100(1 � �) percent confidence interval
on � is given by

(8-18)

where is the upper 100��2 percentage point of the t distribution with n � 1
degrees of freedom.

t�	2,n�1

x � t�	2,n�1s	1n � � � x � t�	2,n�1s	1n

x
Definition

c08.qxd  5/15/02  6:13 PM  Page 259 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



8-19. Find the values of the following percentiles: t0.025,15,
t0.05,10, t0.10,20, t0.005,25, and t0.001,30.

8-20. Determine the t-percentile that is required to construct
each of the following two-sided confidence intervals:
(a) Confidence level � 95%, degrees of freedom � 12
(b) Confidence level � 95%, degrees of freedom � 24
(c) Confidence level � 99%, degrees of freedom � 13
(d) Confidence level � 99.9%, degrees of freedom � 15

8-21. Determine the t-percentile that is required to construct
each of the following one-sided confidence intervals:
(a) Confidence level � 95%, degrees of freedom � 14
(b) Confidence level � 99%, degrees of freedom � 19
(c) Confidence level � 99.9%, degrees of freedom � 24

8-22. A research engineer for a tire manufacturer is investi-
gating tire life for a new rubber compound and has built 16 tires
and tested them to end-of-life in a road test. The sample mean

260 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE
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Figure 8-7 Normal probability
plot of the load at failure data from
Example 8-4.

EXAMPLE 8-4 An article in the journal Materials Engineering (1989, Vol. II, No. 4, pp. 275–281) describes
the results of tensile adhesion tests on 22 U-700 alloy specimens. The load at specimen failure
is as follows (in megapascals):

19.8 10.1 14.9 7.5 15.4 15.4
15.4 18.5 7.9 12.7 11.9 11.4
11.4 14.1 17.6 16.7 15.8
19.5 8.8 13.6 11.9 11.4

The sample mean is � 13.71, and the sample standard deviation is s � 3.55. Figures 8-6
and 8-7 show a box plot and a normal probability plot of the tensile adhesion test data, re-
spectively. These displays provide good support for the assumption that the population is nor-
mally distributed. We want to find a 95% CI on �. Since n � 22, we have n � 1 � 21 degrees
of freedom for t, so t0.025,21 � 2.080. The resulting CI is

The CI is fairly wide because there is a lot of variability in the tensile adhesion test measurements.

It is not as easy to select a sample size n to obtain a specified length (or precision of estima-
tion) for this CI as it was in the known-� case because the length of the interval involves s (which
is unknown before the data are collected), n, and . Note that the t-percentile depends on the
sample size n. Consequently, an appropriate n can only be obtained through trial and error. The re-
sults of this will, of course, also depend on the reliability of our prior “guess” for �.

EXERCISES FOR SECTION 8-3

t��2,n�1

 12.14 � � � 15.28

 13.71 � 1.57 � � � 13.71 	 1.57

13.71 � 2.08013.552�122 � � � 13.71 	 2.08013.552�122

 x � t��2,n�1s�1n � � � x 	 t��2,n�1s�1n

x

20.5

18.0

15.5

13.0

10.5

8.0

Lo
ad

 a
t 

fa
ilu

re

Figure 8-6 Box and whisker plot for the
load at failure data in Example 8-4.
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8-4 CONFIDENCE INTERVAL ON THE VARIANCE AND STANDARD DEVIATION OF A NORMAL POPULATION 261

and standard deviation are 60,139.7 and 3645.94 kilometers.
Find a 95% confidence interval on mean tire life.

8-23. An Izod impact test was performed on 20 specimens of
PVC pipe. The sample mean is � 1.25 and the sample stan-
dard deviation is s � 0.25. Find a 99% lower confidence
bound on Izod impact strength.

8-24. The brightness of a television picture tube can be eval-
uated by measuring the amount of current required to achieve a
particular brightness level. A sample of 10 tubes results in

and s � 15.7. Find (in microamps) a 99% confi-
dence interval on mean current required. State any necessary
assumptions about the underlying distribution of the data.

8-25. A particular brand of diet margarine was analyzed to
determine the level of polyunsaturated fatty acid (in percent-
ages). A sample of six packages resulted in the following data:
16.8, 17.2, 17.4, 16.9, 16.5, 17.1.
(a) Is there evidence to support the assumption that the level

of polyunsaturated fatty acid is normally distributed?
(b) Find a 99% confidence interval on the mean �. Provide a

practical interpretation of this interval.

8-26. The compressive strength of concrete is being tested
by a civil engineer. He tests 12 specimens and obtains the
following data.

2216 2237 2249 2204

2225 2301 2281 2263

2318 2255 2275 2295

(a) Is there evidence to support the assumption that compres-
sive strength is normally distributed? Does this data set
support your point of view? Include a graphical display in
your answer.

(b) Construct a 95% two-sided confidence interval on the
mean strength.

(c) Construct a 95% lower-confidence bound on the mean
strength.

8-27. A machine produces metal rods used in an automobile
suspension system. A random sample of 15 rods is selected,
and the diameter is measured. The resulting data (in millime-
ters) are as follows:

8.24 8.25 8.20 8.23 8.24

8.21 8.26 8.26 8.20 8.25

8.23 8.23 8.19 8.28 8.24

(a) Check the assumption of normality for rod diameter.
(b) Find a 95% two-sided confidence interval on mean rod

diameter.

8-28. Rework Exercise 8-27 to compute a 95% lower con-
fidence bound on rod diameter. Compare this bound with the
lower limit of the two-sided confidence limit from Exercise 
8-27. Discuss why they are different.

8-29. The wall thickness of 25 glass 2-liter bottles was meas-
ured by a quality-control engineer. The sample mean was

millimeters, and the sample standard deviation was
s � 0.08 millimeter. Find a 95% lower confidence bound for
mean wall thickness. Interpret the interval you have obtained.

8-30. An article in Nuclear Engineering International
(February 1988, p. 33) describes several characteristics of fuel
rods used in a reactor owned by an electric utility in Norway.
Measurements on the percentage of enrichment of 12 rods
were reported as follows:

2.94 3.00 2.90 2.75 3.00 2.95

2.90 2.75 2.95 2.82 2.81 3.05

(a) Use a normal probability plot to check the normality as-
sumption.

(b) Find a 99% two-sided confidence interval on the mean
percentage of enrichment. Are you comfortable with the
statement that the mean percentage of enrichment is 2.95
percent? Why?

8-31. A postmix beverage machine is adjusted to release a
certain amount of syrup into a chamber where it is mixed with
carbonated water. A random sample of 25 beverages was
found to have a mean syrup content of fluid ounces
and a standard deviation of s � 0.015 fluid ounces. Find a
95% CI on the mean volume of syrup dispensed.

8-32. An article in the Journal of Composite Materials
(December 1989, Vol 23, p. 1200) describes the effect of delam-
ination on the natural frequency of beams made from composite
laminates. Five such delaminated beams were subjected to loads,
and the resulting frequencies were as follows (in hertz):

230.66, 233.05, 232.58, 229.48, 232.58

Find a 90% two-sided confidence interval on mean natural
frequency. Is there evidence to support the assumption of nor-
mality in the population?

x � 1.10

x � 4.05x � 317.2

x

8-4 CONFIDENCE INTERVAL ON THE VARIANCE AND
STANDARD DEVIATION OF A NORMAL POPULATION

Sometimes confidence intervals on the population variance or standard deviation are needed.
When the population is modeled by a normal distribution, the tests and intervals described in
this section are applicable. The following result provides the basis of constructing these con-
fidence intervals.
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0 5 10 15 20 25 x

k = 10

k = 5

k = 2

f (x)

Figure 8-8 Proba-
bility density functions
of several �2 distribu-
tions.

The probability density function of a �2 random variable is

(8-20)

where k is the number of degrees of freedom. The mean and variance of the �2 distribution are
k and 2k, respectively. Several chi-square distributions are shown in Fig. 8-8. Note that the 
chi-square random variable is nonnegative and that the probability distribution is skewed to
the right. However, as k increases, the distribution becomes more symmetric. As the
limiting form of the chi-square distribution is the normal distribution.

The percentage points of the �2 distribution are given in Table III of the Appendix.
Define as the percentage point or value of the chi-square random variable with k degrees
of freedom such that the probability that X 2 exceeds this value is �. That is,

This probability is shown as the shaded area in Fig. 8-9(a). To illustrate the use of Table III,
note that the areas � are the column headings and the degrees of freedom k are given in the left
column. Therefore, the value with 10 degrees of freedom having an area (probability) of 0.05
to the right is This value is often called an upper 5% point of chi-square with�2

0.05,10 � 18.31.

P 1X2 
 �2
�,k2 � �




�2
�,k

 f 1u2 du � �

�2
�,k

k S 
,

f 1x2 �
1

2k	2 �1k	22  x1k	22�1e�x	2  x 
 0

Let X1, X2, p , Xn be a random sample from a normal distribution with mean � and
variance �2,  and let S2 be the sample variance. Then the random variable

(8-19)

has a chi-square (�2) distribution with n � 1 degrees of freedom.

X2 �
1n � 12 S2

�2

Definition
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8-4 CONFIDENCE INTERVAL ON THE VARIANCE AND STANDARD DEVIATION OF A NORMAL POPULATION 263

10 degrees of freedom. We may write this as a probability statement as follows:

Conversely, a lower 5% point of chi-square with 10 degrees of freedom would be �2
0.95,10 � 3.94

(from Appendix Table III). Both of these percentage points are shown in Figure 8-9(b).
The construction of the 100(1 � �)% CI for �2 is straightforward. Because

is chi-square with n � 1 degrees of freedom, we may write

so that

This last equation can be rearranged as

This leads to the following definition of the confidence interval for �2.

P  a 1n � 12S2

�2
�	2,n�1

� �2 �
1n � 12S 

2

�2
1��	2,n�1

b � 1 � �

P  a�2
1��	2,n�1 �

1n � 12S 
2

�2 � �2
�	2,n�1b � 1 � �

P 1�2
1��	2,n�1 � X2 � �2

�	2,n�12 � 1 � �

X 
2 �
1n � 12S 

2

�2

P 1X 
2 
 �2

0.05,102 � P 1X 
2 
 18.312 � 0.05

(a)

k    α,

α

�20

f (x) f (x)

x

(b)

�20

0.05 0.05

0.95, 10

= 3.94

�2
0.05, 10

= 18.31

Figure 8-9 Percentage point of the �2 distribution. (a) The percentage point �2
�,k. (b) The upper

percentage point �2
0.05,10 � 18.31 and the lower percentage point �2

0.95,10 � 3.94.

If s2 is the sample variance from a random sample of n observations from a normal dis-
tribution with unknown variance �2, then a 100(1 � �)% confidence interval on �2 is

(8-21)

where and are the upper and lower 100��2 percentage points of 
the chi-square distribution with n � 1 degrees of freedom, respectively. A confidence
interval for � has lower and upper limits that are the square roots of the correspon-
ding limits in Equation 8-21.

�2
1��	2,n�1�2

�	2,n�1

1n � 12s2

�2
�	2,n�1

� �2 �
1n � 12s2

�2
1��	2,n�1

Definition
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EXAMPLE 8-5 An automatic filling machine is used to fill bottles with liquid detergent. A random sample of
20 bottles results in a sample variance of fill volume of s2 � 0.0153 (fluid ounces)2. If the
variance of fill volume is too large, an unacceptable proportion of bottles will be under- or
overfilled. We will assume that the fill volume is approximately normally distributed. A 95%
upper-confidence interval is found from Equation 8-22 as follows:

or

This last expression may be converted into a confidence interval on the standard deviation �
by taking the square root of both sides, resulting in

Therefore, at the 95% level of confidence, the data indicate that the process standard deviation
could be as large as 0.17 fluid ounce.

EXERCISES FOR SECTION 8-4

� � 0.17

�2 �
11920.0153

10.117
� 0.0287 1fluid ounce22

�2 �
1n � 12s2

�2
0.95,˛19

264 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

It is also possible to find a 100(1 � �)% lower confidence bound or upper confidence bound
on �2.

8-33. Determine the values of the following percentiles:
�2

0.05,10, �
2
0.025,15, �

2
0.01,12, �

2
0.95,20, �

2
0.99,18, �

2
0.995,16, and �2

0.005,25.

8-34. Determine the �2 percentile that is required to
construct each of the following CIs:
(a) Confidence level � 95%, degrees of freedom � 24,

one-sided (upper)
(b) Confidence level � 99%, degrees of freedom � 9, one-

sided (lower)
(c) Confidence level � 90%, degrees of freedom � 19, two-

sided.

8-35. A rivet is to be inserted into a hole. A random sample
of n � 15 parts is selected, and the hole diameter is measured.

The sample standard deviation of the hole diameter measure-
ments is s � 0.008 millimeters. Construct a 99% lower confi-
dence bound for �2.

8-36. The sugar content of the syrup in canned peaches is
normally distributed. A random sample of n � 10 cans yields
a sample standard deviation of s � 4.8 milligrams. Find a
95% two-sided confidence interval for �.

8-37. Consider the tire life data in Exercise 8-22. Find a
95% lower confidence bound for �2.

8-38. Consider the Izod impact test data in Exercise 8-23.
Find a 99% two-sided confidence interval for �2.

The 100(1 � �)% lower and upper confidence bounds on �2 are

(8-22)

respectively.

1n � 12s 
2

�2
�,n�1

� �2  and  �2 �
1n � 12s2

�2
1��,n�1
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8-40. Consider the hole diameter data in Exercise 8-35.
Construct a 99% two-sided confidence interval for �.

8-41. Consider the sugar content data in Exercise 8-37. Find
a 90% lower confidence bound for �.

8-5 A LARGE-SAMPLE CONFIDENCE INTERVAL FOR A POPULATION PROPORTION 265

8-39. The percentage of titanium in an alloy used in aero-
space castings is measured in 51 randomly selected parts. The
sample standard deviation is s � 0.37. Construct a 95% two-
sided confidence interval for �.

To construct the confidence interval on p, note that

so 

This may be rearranged as

(8-23)

The quantity in Equation 8-23 is called the standard error of the point esti-
mator Unfortunately, the upper and lower limits of the confidence interval obtained fromP̂.

1p11 � p2	n

P q  P̂ � z�	2 Bp 11 � p2
n � p � P̂ � z�	2 Bp 11 � p2

n
r � 1 � �

P °�z�	2 �
P̂ � pBp11 � p2

n

� z�	2¢ � 1 � �

P 1�z�	2 � Z � z�	22 � 1 � �

8-5 A LARGE-SAMPLE CONFIDENCE INTERVAL FOR A
POPULATION PROPORTION

It is often necessary to construct confidence intervals on a population proportion. For exam-
ple, suppose that a random sample of size n has been taken from a large (possibly infinite)
population and that X(� n) observations in this sample belong to a class of interest. Then

is a point estimator of the proportion of the population p that belongs to this class.
Note that n and p are the parameters of a binomial distribution. Furthermore, from Chapter 4
we know that the sampling distribution of is approximately normal with mean p and vari-
ance if p is not too close to either 0 or 1 and if n is relatively large. Typically, to
apply this approximation we require that np and n(1 � p) be greater than or equal to 5. We
will make use of the normal approximation in this section.

p 11 � p2	n,
P̂

P̂ � X	n

If n is large, the distribution of

is approximately standard normal.

Z �
X � np1np 11 � p2 �

P̂ � pBp 11 � p2
n

Definition
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Equation 8-23 contain the unknown parameter p. However, as suggested at the end of Section
8-2.5, a satisfactory solution is to replace p by in the standard error, which results in

(8-24)

This leads to the approximate 100(1 � �)% confidence interval on p.

P qP̂ � z�	2 ˛B P̂11 � P̂2
n � p � P̂ � z�	2  B P̂11 � P̂2

n
r � 1 � �

P̂

266 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

This procedure depends on the adequacy of the normal approximation to the binomial. To
be reasonably conservative, this requires that np and n(1 � p) be greater than or equal to 5. In
situations where this approximation is inappropriate, particularly in cases where n is small,
other methods must be used. Tables of the binomial distribution could be used to obtain a con-
fidence interval for p. However, we could also use numerical methods based on the binomial
probability mass function that are implemented in computer programs.

EXAMPLE 8-6 In a random sample of 85 automobile engine crankshaft bearings, 10 have a surface finish that
is rougher than the specifications allow. Therefore, a point estimate of the proportion of bear-
ings in the population that exceeds the roughness specification is 
A 95% two-sided confidence interval for p is computed from Equation 8-25 as

or

which simplifies to

Choice of Sample Size
Since is the point estimator of p, we can define the error in estimating p by as

Note that we are approximately 100(1 � �)% confident that this error is less
than For instance, in Example 8-6, we are 95% confident that the sample
proportion differs from the true proportion p by an amount not exceeding 0.07.

In situations where the sample size can be selected, we may choose n to be 100 (1 � �)%
confident that the error is less than some specified value E. If we set 
and solve for n, the appropriate sample size is

E � z�	2˛1p11 � p2	n
p̂ � 0.12

z�	2˛1p11 � p2	n.
E � 0 p � P̂ 0. P̂P̂

0.05 � p � 0.19

0.12 � 1.96  B0.1210.882
85

� p � 0.12 � 1.96  B0.1210.882
85

p̂ � z0.025 
 B p̂11 � p̂2

n � p � p̂ � z0.025  
˛B p̂ 11 � p̂2

n

p̂ � x	n � 10	85 � 0.12.

If is the proportion of observations in a random sample of size n that belongs to a
class of interest, an approximate 100(1 � �)% confidence interval on the proportion
p of the population that belongs to this class is

(8-25)

where is the upper ��2 percentage point of the standard normal distribution.z�	2

p̂ � z�	2 B p̂ 11 � p̂2
n � p � p̂ � z�	2 

˛B p̂ 11 � p̂2
n

p̂
Definition
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8-5 A LARGE-SAMPLE CONFIDENCE INTERVAL FOR A POPULATION PROPORTION 267

An estimate of p is required to use Equation 8-26. If an estimate from a previous sam-
ple is available, it can be substituted for p in Equation 8-26, or perhaps a subjective estimate
can be made. If these alternatives are unsatisfactory, a preliminary sample can be taken, 
computed, and then Equation 8-26 used to determine how many additional observations are
required to estimate p with the desired accuracy. Another approach to choosing n uses the fact
that the sample size from Equation 8-26 will always be a maximum for p � 0.5 [that is,
p(1 � p) � 0.25 with equality for p � 0.5], and this can be used to obtain an upper bound on
n. In other words, we are at least 100(1 � �)% confident that the error in estimating p by 
is less than E if the sample size is

p̂

p̂

p̂

(8-27)n � az�	2

E
b2 10.252

The approximate 100(1 � �)% lower and upper confidence bounds are

(8-28)

respectively.

p̂ � z� B p̂ 11 � p̂2
n � p  and  p � p̂ � z� B p̂ 11 � p̂2

n

(8-26)n � az�	2

E
b2

˛

 p11 � p2

EXAMPLE 8-7 Consider the situation in Example 8-6. How large a sample is required if we want to be 95%
confident that the error in using to estimate p is less than 0.05? Using � 0.12 as an initial
estimate of p, we find from Equation 8-26 that the required sample size is

If we wanted to be at least 95% confident that our estimate of the true proportion p was
within 0.05 regardless of the value of p, we would use Equation 8-27 to find the sample size

Notice that if we have information concerning the value of p, either from a preliminary sam-
ple or from past experience, we could use a smaller sample while maintaining both the desired
precision of estimation and the level of confidence.

One-Sided Confidence Bounds
We may find approximate one-sided confidence bounds on p by a simple modification of
Equation 8-25.

n � az0.025

E
b2

 10.252 � a1.96
0.05
b2

 10.252 � 385

p̂

n � az0.025

E
b2

 p̂ 11 � p̂2 � a1.96
0.05
b2

 0.1210.882 � 163

p̂p̂

c08.qxd  5/15/02  6:13 PM  Page 267 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



268 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

EXERCISES FOR SECTION 8-5

8-42. Of 1000 randomly selected cases of lung cancer, 823
resulted in death within 10 years. Construct a 95% two-sided
confidence interval on the death rate from lung cancer.

8-43. How large a sample would be required in Exercise
8-42 to be at least 95% confident that the error in estimating
the 10-year death rate from lung cancer is less than 0.03?

8-44. A random sample of 50 suspension helmets used by
motorcycle riders and automobile race-car drivers was sub-
jected to an impact test, and on 18 of these helmets some dam-
age was observed.
(a) Find a 95% two-sided confidence interval on the true pro-

portion of helmets of this type that would show damage
from this test.

(b) Using the point estimate of p obtained from the prelimi-
nary sample of 50 helmets, how many helmets must be
tested to be 95% confident that the error in estimating the
true value of p is less than 0.02?

(c) How large must the sample be if we wish to be at least
95% confident that the error in estimating p is less than
0.02, regardless of the true value of p?

8-45. The Arizona Department of Transportation wishes to
survey state residents to determine what proportion of the
population would like to increase statewide highway speed
limits to 75 mph from 65 mph. How many residents do they
need to survey if they want to be at least 99% confident that
the sample proportion is within 0.05 of the true proportion?

8-46. A manufacturer of electronic calculators is interested
in estimating the fraction of defective units produced. A ran-
dom sample of 800 calculators contains 10 defectives.
Compute a 99% upper-confidence bound on the fraction
defective.

8-47. A study is to be conducted of the percentage of home-
owners who own at least two television sets. How large a
sample is required if we wish to be 99% confident that the
error in estimating this quantity is less than 0.017?

8-48. The fraction of defective integrated circuits produced
in a photolithography process is being studied. A random sam-
ple of 300 circuits is tested, revealing 13 defectives. Find a
95% two-sided CI on the fraction of defective circuits pro-
duced by this particular tool.

8-6 A PREDICTION INTERVAL FOR A FUTURE OBSERVATION

In some problem situations, we may be interested in predicting a future observation of a
variable. This is a different problem than estimating the mean of that variable, so a confidence
interval is not appropriate. In this section we show how to obtain a 100(1 � �)% prediction
interval on a future value of a normal random variable.

Suppose that X1, X2, p , Xn is a random sample from a normal population. We wish to
predict the value Xn�1, a single future observation. A point prediction of Xn�1 is 
the sample mean. The prediction error is The expected value of the prediction
error is

and the variance of the prediction error is

because the future observation, Xn�1 is independent of the mean of the current sample . The
prediction error Xn�1 � is normally distributed. Therefore 

Z �
Xn�1 � X

�B1 �
1
n

X
X

V 1Xn�1 � X 2 � �2 �
�2

n � �2
 a1 �

1
nb

E 1Xn�1 � X 2 � � � � � 0

Xn�1 � X.
X,
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8-6 A PREDICTION INTERVAL FOR A FUTURE OBSERVATION 269

has a standard normal distribution. Replacing � with S results in 

which has a t distribution with n � 1 degrees of freedom. Manipulating T as we have done previ-
ously in the development of a CI leads to a prediction interval on the future observation Xn�1.

T �
Xn�1 � X

S B1 �
1
n

The prediction interval for Xn�1 will always be longer than the confidence interval for �
because there is more variability associated with the prediction error than with the error of es-
timation. This is easy to see because the prediction error is the difference between two random
variables (Xn�1 � ), and the estimation error in the CI is the difference between one random
variable and a constant ( � �). As n gets larger ( ), the length of the CI decreases to
zero, essentially becoming the single value �, but the length of the prediction interval
approaches 2z��2�. So as n increases, the uncertainty in estimating � goes to zero, although
there will always be uncertainty about the future value Xn�1 even when there is no need to
estimate any of the distribution parameters.

EXAMPLE 8-8 Reconsider the tensile adhesion tests on specimens of U-700 alloy described in Example 8-4.
The load at failure for n � 22 specimens was observed, and we found that � 13.71 and
s � 3.55. The 95% confidence interval on � was 12.14 � � � 15.28. We plan to test 
a twenty-third specimen. A 95% prediction interval on the load at failure for this specimen is 

Notice that the prediction interval is considerably longer than the CI.

EXERCISES FOR SECTION 8-6

6.16 � X23 � 21.26

13.71 � 12.08023.55  B1 �
1
22

� X23 � 13.71 � 12.08023.55  B1 �
1
22

x � t�	2, n�1 s B1 �
1
n � Xn�1 � x � t�	2,n�1 s B1 �

1
n

x

n S 
X
X

A 100(1 � �)% prediction interval on a single future observation from a normal
distribution is given by

(8-29)x � t�	2,n�1 s B1 �
1
n � Xn�1 �  x � t�	2,n�1 s B1 �

1
n

Definition

8-49. Consider the tire-testing data described in Exercise 8-22.
Compute a 95% prediction interval on the life of the next tire of
this type tested under conditions that are similar to those em-
ployed in the original test. Compare the length of the prediction
interval with the length of the 95% CI on the population mean.

8-50. Consider the Izod impact test described in Exercise 8-23.
Compute a 99% prediction interval on the impact strength of
the next specimen of PVC pipe tested. Compare the length of
the prediction interval with the length of the 99% CI on the
population mean.
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270 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

8-7 TOLERANCE INTERVALS FOR A NORMAL DISTRIBUTION

Consider a population of semiconductor processors. Suppose that the speed of these processors
has a normal distribution with mean � � 600 megahertz and standard deviation � � 30 mega-
hertz. Then the interval from 600 � 1.96(30) � 541.2 to 600 � 1.96(30) � 658.8 megahertz
captures the speed of 95% of the processors in this population because the interval from
�1.96 to 1.96 captures 95% of the area under the standard normal curve. The interval from
� � z��2 to � � z��2� is called a tolerance interval.

If � and � are unknown, we can use the data from a random sample of size n to compute
and s, and then form the interval . However, because of sampling

variability in and s, it is likely that this interval will contain less than 95% of the values in
the population. The solution to this problem is to replace 1.96 by some value that will make
the proportion of the distribution contained in the interval 95% with some level of confidence.
Fortunately, it is easy to do this.

x
1x � 1.96 s, x � 1.96 s2x

A tolerance interval for capturing at least �% of the values in a normal distribution
with confidence level 100(1 � �)% is

where k is a tolerance interval factor found in Appendix Table XI. Values are given
for � � 90%, 95%, and 95% and for 95% and 99% confidence.

x � ks,  x � ks

Definition

8-51. Consider the television tube brightness test described
in Exercise 8-24. Compute a 99% prediction interval on the
brightness of the next tube tested. Compare the length of the
prediction interval with the length of the 99% CI on the popu-
lation mean.

8-52. Consider the margarine test described in Exercise 8-25.
Compute a 99% prediction interval on the polyunsaturated
fatty acid in the next package of margarine that is tested.
Compare the length of the prediction interval with the length
of the 99% CI on the population mean.

8-53. Consider the test on the compressive strength of con-
crete described in Exercise 8-26. Compute a 90% prediction
interval on the next specimen of concrete tested.

8-54. Consider the suspension rod diameter measurements
described in Exercise 8-27. Compute a 95% prediction inter-
val on the diameter of the next rod tested. Compare the length
of the prediction interval with the length of the 95% CI on the
population mean.

8-55. Consider the bottle wall thickness measurements
described in Exercise 8-29. Compute a 90% prediction interval
on the wall thickness of the next bottle tested.

8-56. How would you obtain a one-sided prediction bound
on a future observation? Apply this procedure to obtain a 95%
one-sided prediction bound on the wall thickness of the next
bottle for the situation described in Exercise 8-29.

8-57. Consider the fuel rod enrichment data described
in Exercise 8-30. Compute a 99% prediction interval on the
enrichment of the next rod tested. Compare the length of the
prediction interval with the length of the 95% CI on the
population mean.

8-58. Consider the syrup dispensing measurements de-
scribed in Exercise 8-31. Compute a 95% prediction interval
on the syrup volume in the next beverage dispensed. Compare
the length of the prediction interval with the length of the 95%
CI on the population mean.

8-59. Consider the natural frequency of beams described
in Exercise 8-32. Compute a 90% prediction interval on the
diameter of the natural frequency of the next beam of this
type that will be tested. Compare the length of the prediction
interval with the length of the 95% CI on the population
mean.
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8-7 TOLERABLE INTERVALS FOR A NORMAL DISTRIBUTION 271

One-sided tolerance bounds can also be computed. The tolerance factors for these bounds are
also given in Appendix Table XI.

EXAMPLE 8-9 Let’s reconsider the tensile adhesion tests originally described in Example 8-4. The load
at failure for n � 22 specimens was observed, and we found that � 31.71 and s � 3.55.
We want to find a tolerance interval for the load at failure that includes 90% of the 
values in the population with 95% confidence. From Appendix Table XI the tolerance 
factor k for n � 22, � � 0.90, and 95% confidence is k � 2.264. The desired tolerance
interval is

which reduces to (23.67, 39.75). We can be 95% confident that at least 90% of the values of
load at failure for this particular alloy lie between 23.67 and 39.75 megapascals.

From Appendix Table XI, we note that as , the value of k goes to the z-value associated
with the desired level of containment for the normal distribution. For example, if we want
90% of the population to fall in the two-sided tolerance interval, k approaches z0.05 � 1.645 as

. Note that as , a 100(1 � �)% prediction interval on a future value approaches a
tolerance interval that contains 100(1 � �)% of the distribution.

EXERCISES FOR SECTION 8-7

n S 
n S 


n S 


1x � ks, x � ks2 or 331.71 � 12.26423.55, 31.71 � 12.26423.55 4

x

8-60. Compute a 95% tolerance interval on the life of the
tires described in Exercise 8-22, that has confidence level
95%. Compare the length of the tolerance interval with the
length of the 95% CI on the population mean. Which interval
is shorter? Discuss the difference in interpretation of these
two intervals.

8-61. Consider the Izod impact test described in Exercise
8-23. Compute a 99% tolerance interval on the impact
strength of PVC pipe that has confidence level 90%.
Compare the length of the tolerance interval with the length
of the 99% CI on the population mean. Which interval is
shorter? Discuss the difference in interpretation of these two
intervals.

8-62. Compute a 99% tolerance interval on the brightness
of the television tubes in Exercise 8-24 that has confidence
level 95%. Compare the length of the prediction interval with
the length of the 99% CI on the population mean. Which
interval is shorter? Discuss the difference in interpretation of
these two intervals.

8-63. Consider the margarine test described in Exercise 8-25.
Compute a 99% tolerance interval on the polyunsaturated
fatty acid in this particular type of margarine that has confi-
dence level 95%. Compare the length of the prediction in-
terval with the length of the 99% CI on the population mean.
Which interval is shorter? Discuss the difference in inter-
pretation of these two intervals.

8-64. Compute a 90% tolerance interval on the compres-
sive strength of the concrete described in Exercise 8-26 that
has 90% confidence.

8-65. Compute a 95% tolerance interval on the diameter of
the rods described in Exercise 8-27 that has 90% confidence.
Compare the length of the prediction interval with the length
of the 95% CI on the population mean. Which interval is
shorter? Discuss the difference in interpretation of these two
intervals.

8-66. Consider the bottle wall thickness measurements
described in Exercise 8-29. Compute a 90% tolerance interval
on bottle wall thickness that has confidence level 90%.

8-67. Consider the bottle wall thickness measurements
described in Exercise 8-29. Compute a 90% lower tolerance
bound on bottle wall thickness that has confidence level
90%. Why would a lower tolerance bound likely be of
interest here?

8-68. Consider the fuel rod enrichment data described in
Exercise 8-30. Compute a 99% tolerance interval on rod
enrichment that has confidence level 95%. Compare the
length of the prediction interval with the length of the 95%
CI on the population mean. 

8-69. Compute a 95% tolerance interval on the syrup vol-
ume described in Exercise 8-31 that has confidence level 90%.
Compare the length of the prediction interval with the length
of the 95% CI on the population mean. 
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272 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

Supplemental Exercises

8-70. Consider the confidence interval for � with known
standard deviation �:

where �1 � �2 � �. Let � � 0.05 and find the interval for
�1 � �2 � ��2 � 0.025. Now find the interval for the case
�1 � 0.01 and �2 � 0.04. Which interval is shorter? Is there
any advantage to a “symmetric” confidence interval?

8-71. A normal population has a known mean 50 and
unknown variance.
(a) A random sample of n � 16 is selected from this popula-

tion, and the sample results are � 52 and s � 8. How
unusual are these results? That is, what is the probability
of observing a sample average as large as 52 (or larger) if
the known, underlying mean is actually 50?

(b) A random sample of n � 30 is selected from this popula-
tion, and the sample results are � 52 and s � 8. How
unusual are these results?

(c) A random sample of n � 100 is selected from this popula-
tion, and the sample results are � 52 and s � 8. How
unusual are these results?

(d) Compare your answers to parts (a)–(c) and explain why
they are the same or differ.

8-72. A normal population has known mean � � 50 and
variance �2 � 5. What is the approximate probability that the
sample variance is greater than or equal to 7.44? less than or
equal to 2.56?
(a) For a random sample of n � 16.
(b) For a random sample of n � 30.
(c) For a random sample of n � 71.
(d) Compare your answers to parts (a)–(c) for the approxi-

mate probability that the sample variance is greater than
or equal to 7.44. Explain why this tail probability is
increasing or decreasing with increased sample size.

(e) Compare your answers to parts (a)–(c) for the approxi-
mate probability that the sample variance is less than or
equal to 2.56. Explain why this tail probability is increas-
ing or decreasing with increased sample size.

8-73. An article in the Journal of Sports Science (1987, Vol.
5, pp. 261–271) presents the results of an investigation of the
hemoglobin level of Canadian Olympic ice hockey players.
The data reported are as follows (in g/dl):

15.3 16.0 14.4 16.2 16.2

14.9 15.7 15.3 14.6 15.7

16.0 15.0 15.7 16.2 14.7

14.8 14.6 15.6 14.5 15.2

(a) Given the following probability plot of the data, what is a
logical assumption about the underlying distribution of
the data?

(b) Explain why this check of the distribution underlying the
sample data is important if we want to construct a confi-
dence interval on the mean.

(c) Based on this sample data, a 95% confidence interval for
the mean is (15.04, 15.62). Is it reasonable to infer that the
true mean could be 14.5? Explain your answer.

(d) Explain why this check of the distribution underlying the
sample data is important if we want to construct a confi-
dence interval on the variance.

(e) Based on this sample data, a 95% confidence interval
for the variance is (0.22, 0.82). Is it reasonable to infer
that the true variance could be 0.35? Explain your
answer.

(f) Is it reasonable to use these confidence intervals to draw
an inference about the mean and variance of hemoglobin
levels

(i) of Canadian doctors? Explain your answer.
(ii) of Canadian children ages 6–12? Explain your answer.

8-74. The article “Mix Design for Optimal Strength
Development of Fly Ash Concrete” (Cement and Concrete
Research, 1989, Vol. 19, No. 4, pp. 634–640) investigates
the compressive strength of concrete when mixed with fly
ash (a mixture of silica, alumina, iron, magnesium oxide,
and other ingredients). The compressive strength for nine
samples in dry conditions on the twenty-eighth day are as
follows (in megapascals):

40.2 30.4 28.9 30.5 22.4

25.8 18.4 14.2 15.3

(a) Given the following probability plot of the data, what is a
logical assumption about the underlying distribution of
the data?
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8-7 TOLERABLE INTERVALS FOR A NORMAL DISTRIBUTION 273

8-75. An operating system for a personal computer has been
studied extensively, and it is known that the standard deviation
of the response time following a particular command is � � 8
milliseconds. A new version of the operating system is
installed, and we wish to estimate the mean response time for
the new system to ensure that a 95% confidence interval for �
has length at most 5 milliseconds.
(a) If we can assume that response time is normally distributed

and that � � 8 for the new system, what sample size would
you recommend?

(b) Suppose that we are told by the vendor that the standard
deviation of the response time of the new system is
smaller, say � � 6; give the sample size that you recom-
mend and comment on the effect the smaller standard
deviation has on this calculation.

8-76. Consider the hemoglobin data in Exercise 8-73. Find
the following:
(a) An interval that contains 95% of the hemoglobin values

with 90% confidence.
(b) An interval that contains 99% of the hemoglobin values

with 90% confidence.

8-77. Consider the compressive strength of concrete data
from Exercise 8-74. Find a 95% prediction interval on the
next sample that will be tested.

8-78. The maker of a shampoo knows that customers like
this product to have a lot of foam. Ten sample bottles of the
product are selected at random and the foam heights observed
are as follows (in millimeters): 210, 215, 194, 195, 211, 201,
198, 204, 208, and 196.
(a) Is there evidence to support the assumption that foam

height is normally distributed?
(b) Find a 95% CI on the mean foam height.
(c) Find a 95% prediction interval on the next bottle of sham-

poo that will be tested.
(d) Find an interval that contains 95% of the shampoo foam

heights with 99% confidence.
(e) Explain the difference in the intervals computed in parts

(b), (c), and (d).

8-79. During the 1999 and 2000 baseball seasons, there was
much speculation that the unusually large number of home
runs that were hit was due at least in part to a livelier ball. One
way to test the “liveliness” of a baseball is to launch the ball at
a vertical surface with a known velocity VL and measure the
ratio of the outgoing velocity VO of the ball to VL. The ratio
R � VO�VL is called the coefficient of restitution. Following
are measurements of the coefficient of restitution for 40
randomly selected baseballs. The balls were thrown from a
pitching machine at an oak surface.

(b) Find a 99% lower one-sided confidence interval on mean
compressive strength. Provide a practical interpretation of
this interval.

(c) Find a 98% two-sided confidence interval on mean com-
pressive strength. Provide a practical interpretation of this
interval and explain why the lower end-point of the inter-
val is or is not the same as in part (b).

(d) Find a 99% upper one-sided confidence interval on the
variance of compressive strength. Provide a practical in-
terpretation of this interval.

(e) Find a 98% two-sided confidence interval on the variance
of compression strength. Provide a practical interpretation
of this interval and explain why the upper end-point of the
interval is or is not the same as in part (d).

(f ) Suppose that it was discovered that the largest observation
40.2 was misrecorded and should actually be 20.4. Now
the sample mean � 23 and the sample variance
s2 � 36.9. Use these new values and repeat parts (c)
and (e). Compare the original computed intervals and the
newly computed intervals with the corrected observation
value. How does this mistake affect the values of the sam-
ple mean, sample variance, and the width of the two-sided
confidence intervals?

(g) Suppose, instead, that it was discovered that the largest
observation 40.2 is correct, but that the observation 25.8 is
incorrect and should actually be 24.8. Now the sample
mean � 25 and the sample variance s2 � 8.41. Use these
new values and repeat parts (c) and (e). Compare the origi-
nal computed intervals and the newly computed intervals
with the corrected observation value. How does this mis-
take affect the values of the sample mean, sample variance,
and the width of the two-sided confidence intervals?

(h) Use the results from parts (f) and (g) to explain the effect
of mistakenly recorded values on sample estimates.
Comment on the effect when the mistaken values are near
the sample mean and when they are not.
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(c) Find a 99% prediction interval on the tar content for the
next observation that will be taken on this particular type
of tobacco.

(d) Find an interval that will contain 99% of the values of the
tar content with 95% confidence.

(e) Explain the difference in the three intervals computed in
parts (b), (c), and (d).

8-83. A manufacturer of electronic calculators takes a
random sample of 1200 calculators and finds that there are
eight defective units.
(a) Construct a 95% confidence interval on the population

proportion.
(b) Is there evidence to support a claim that the fraction of

defective units produced is 1% or less?

8-84. An article in The Engineer (“Redesign for Suspect
Wiring,” June 1990) reported the results of an investigation
into wiring errors on commercial transport aircraft that may
produce faulty information to the flight crew. Such a wiring
error may have been responsible for the crash of a British
Midland Airways aircraft in January 1989 by causing the pilot
to shut down the wrong engine. Of 1600 randomly selected
aircraft, eight were found to have wiring errors that could
display incorrect information to the flight crew.
(a) Find a 99% confidence interval on the proportion of air-

craft that have such wiring errors.
(b) Suppose we use the information in this example to

provide a preliminary estimate of p. How large a sample
would be required to produce an estimate of p that we are
99% confident differs from the true value by at most
0.008?

(c) Suppose we did not have a preliminary estimate of p. How
large a sample would be required if we wanted to be at
least 99% confident that the sample proportion differs
from the true proportion by at most 0.008 regardless of the
true value of p?

(d) Comment on the usefulness of preliminary information in
computing the needed sample size.

8-85. An article in Engineering Horizons (Spring 1990,
p. 26) reported that 117 of 484 new engineering graduates
were planning to continue studying for an advanced degree.
Consider this as a random sample of the 1990 graduating
class.
(a) Find a 90% confidence interval on the proportion of such

graduates planning to continue their education.
(b) Find a 95% confidence interval on the proportion of such

graduates planning to continue their education.
(c) Compare your answers to parts (a) and (b) and explain

why they are the same or different.
(d) Could you use either of these confidence intervals to

determine whether the proportion is actually 0.25?
Explain your answer. Hint: Use the normal approximation
to the binomial.

(a) Is there evidence to support the assumption that the coef-
ficient of restitution is normally distributed?

(b) Find a 99% CI on the mean coefficient of restitution.
(c) Find a 99% prediction interval on the coefficient of resti-

tution for the next baseball that will be tested.
(d) Find an interval that will contain 99% of the values of the

coefficient of restitution with 95% confidence.
(e) Explain the difference in the three intervals computed in

parts (b), (c), and (d).

8-80. Consider the baseball coefficient of restitution data in
Exercise 8-79. Suppose that any baseball that has a coefficient
of restitution that exceeds 0.635 is considered too lively.
Based on the available data, what proportion of the baseballs
in the sampled population are too lively? Find a 95% lower
confidence bound on this proportion.

8-81. An article in the ASCE Journal of Energy Engineering
(“Overview of Reservoir Release Improvements at 20 TVA
Dams,” Vol. 125, April 1999, pp. 1–17) presents data on
dissolved oxygen concentrations in streams below 20 dams in
the Tennessee Valley Authority system. The observations are (in
milligrams per liter): 5.0, 3.4, 3.9, 1.3, 0.2, 0.9, 2.7, 3.7, 3.8, 4.1,
1.0, 1.0, 0.8, 0.4, 3.8, 4.5, 5.3, 6.1, 6.9, and 6.5.
(a) Is there evidence to support the assumption that the

dissolved oxygen concentration is normally distributed?
(b) Find a 95% CI on the mean dissolved oxygen concentra-

tion.
(c) Find a 95% prediction interval on the dissolved oxygen

concentration for the next stream in the system that will be
tested.

(d) Find an interval that will contain 95% of the values of the
dissolved oxygen concentration with 99% confidence.

(e) Explain the difference in the three intervals computed in
parts (b), (c), and (d).

8-82. The tar content in 30 samples of cigar tobacco
follows:

(a) Is there evidence to support the assumption that the tar
content is normally distributed?

(b) Find a 99% CI on the mean tar content.
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MIND-EXPANDING EXERCISES

8-86. An electrical component has a time-to-failure
(or lifetime) distribution that is exponential with param-
eter �, so the mean lifetime is � � 1��. Suppose that a
sample of n of these components is put on test, and let
Xi be the observed lifetime of component i. The test con-
tinues only until the rth unit fails, where r � n. This re-
sults in a censored life test. Let X1 denote the time at
which the first failure occurred, X2 denote the time at
which the second failure occurred, and so on. Then the
total lifetime that has been accumulated at test termina-
tion is

We have previously shown in Exercise 7-72 that Tr�r is
an unbiased estimator for �.
(a) It can be shown that 2�Tr has a chi-square distribution

with 2r degrees of freedom. Use this fact to develop a
100(1 � �)% confidence interval for mean lifetime
� � 1��.

(b) Suppose 20 units were put on test, and the test
terminated after 10 failures occurred. The failure
times (in hours) are 15, 18, 19, 20, 21, 21, 22, 27,
28, 29. Find a 95% confidence interval on mean
lifetime.

8-87. Consider a two-sided confidence interval for
the mean � when � is known;

where �1 � �2 � �. If �1 � �2 � ��2, we have the usual
100(1 � �)% confidence interval for �. In the above,
when , the interval is not symmetric about �.
The length of the interval is 
Prove that the length of the interval L is minimized when
�1 � �2 � ��2. Hint: Remember that ,
so and the relationship between the
derivative of a function y � f (x) and the inverse

is 
8-88. It is possible to construct a nonparametric tol-
erance interval that is based on the extreme values in a
random sample of size n from any continuous population.
If p is the minimum proportion of the population con-
tained between the smallest and largest sample observa-
tions with confidence 1 � �, it can be shown that

and n is approximately

(a) In order to be 95% confident that at least 90% of the
population will be included between the extreme
values of the sample, what sample size will be re-
quired?

(b) A random sample of 10 transistors gave the follow-
ing measurements on saturation current (in mil-
liamps): 10.25, 10.41, 10.30, 10.26, 10.19, 10.37,
10.29, 10.34, 10.23, 10.38. Find the limits that con-
tain a proportion p of the saturation current meas-
urements at 95% confidence. What is the proportion
p contained by these limits?

8-89. Suppose that X1, X2, p , Xn is a random
sample from a continuous probability distribution
with median 
(a) Show that

Hint: The complement of the event 
� is but
max if and only if for all i.

(b) Write down a 100(1 � �)% confidence interval for
the median , where

.

8-90. Students in the industrial statistics lab at ASU
calculate a lot of confidence intervals on �. Suppose all
these CIs are independent of each other. Consider the
next one thousand 95% confidence intervals that will be
calculated. How many of these CIs do you expect to
capture the true value of �? What is the probability that
between 930 and 970 of these intervals contain the true
value of �?
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8-1

8-2.6 Bootstrap Confidence Intervals (CD Only)

In Section 7-2.5 we showed how a technique called the bootstrap could be used to estimate
the standard error where is an estimate of a parameter �. We can also use the bootstrap
to find a confidence interval on the parameter �. To illustrate, consider the case where � is the
mean � of a normal distribution with � known. Now the estimator of � is Also notice that

is the 100(1 � �/2) percentile of the distribution of , and is 

the 100(��2) percentile of this distribution. Therefore, we can write the probability statement
associated with the 100(1 � �)% confidence interval as

or

This last probability statement implies that the lower and upper 100(1 � �)% confidence lim-
its for � are

We may generalize this to an arbitrary parameter �. The 100(1 � �)% confidence limits
for � are

Unfortunately, the percentiles of may not be as easy to find as in the case of the normal
distribution mean. However, they could be estimated from bootstrap samples. Suppose we
find B bootstrap samples and calculate , , p , and and then calculate 

, p , . The required percentiles can be obtained directly from the differences.
For example, if B � 200 and a 95% confidence interval on � is desired, the fifth smallest and
fifth largest of the differences are the estimates of the necessary percentiles.

We will illustrate this procedure using the situation first described in Example 7-3,
involving the parameter � of an exponential distribution. Following that example, a random
sample of n � 8 engine controller modules were tested to failure, and the estimate of �
obtained was � 0.0462, where is a maximum likelihood estimator. We used 200
bootstrap samples to obtain an estimate of the standard error for .

Figure S8-1(a) is a histogram of the 200 bootstrap estimates , i � 1, 2, p , 200. Notice
that the histogram is not symmetrical and is skewed to the right, indicating that the sam-
pling distribution of also has this same shape. We subtracted the sample average of these
bootstrap estimates � 0.5013 from each . The histogram of the differences , i
� 1, 2, p , 200, is shown in Figure S8-1(b). Suppose we wish to find a 90% confidence inter-
val for �. Now the fifth percentile of the bootstrap samples is �0.0228 and the ninety-
fifth percentile is 0.03135. Therefore the lower and upper 90% bootstrap confidence limits are

 U � �̂� 5 percentile of �̂*
i � �*  � 0.0462 � 1�0.02282 � 0.0690

 L � �̂ � 95 percentile of �̂*
i � �* � 0.0462 � 0.03135 � 0.0149
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*The confidence interval is where and are the lower and 
upper ��2 percentage points of the chi-square distribution (which was introduced briefly in Chapter 4 and discussed
further in Section 8-4), and the are the sample observations.nxi
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8-2

Therefore, our 90% bootstrap confidence interval for � is 0.0149 
 � 
 0.0690. There is an
exact confidence interval for the parameter � in an exponential distribution. For the engine
controller failure data following Example 7-3, the exact 90% confidence interval* for � is
0.0230 
 � 
 0.0759. Notice that the two confidence intervals are very similar. The length of
the exact confidence interval is 0.0759 � 0.0230 � 0.0529, while the length of the bootstrap
confidence interval is 0.0690 � 0.0149 � 0.0541, which is only slightly longer. The per-
centile method for bootstrap confidence intervals works well when the estimator is unbiased
and the standard error of is approximately constant (as a function of �). An improvement,
known as the bias-corrected and accelerated method, adjusts the percentiles in more general
cases. It could be applied in this example (because is a biased estimator), but at the cost of
additional complexity.

8-3.2 Development of the t-Distribution (CD Only)

We will give a formal development of the t-distribution using the techniques presented in
Section 5-8. It will be helpful to review that material before reading this section.

First consider the random variable

This quantity can be written as

(S8-1)
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Figure S8-1 Histograms of the bootstrap estimates of and the differences used in finding the bootstrap
confidence interval.
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8-3

Now the numerator of Equation S8-1 is a standard normal random variable. The ratio in
the denominator is a chi-square random variable with n � 1 degrees of freedom, divided by
the number of degrees of freedom*. Furthermore, the two random variables in Equation
S8-1, and , are independent. We are now ready to state and prove the main result.SX

S2��2

Let Z be a standard normal random variable and V be a chi-square random variable with
k degrees of freedom. If Z and V are independent, the distribution of the random variable

is the t-distribution with k degrees of freedom. The probability density function is

f  1t2 �

 3 1k 	 12�2 42�k 
 1k�22  

1

3 1t2�k2 	 1 4 1k	12�2 , �� � t � �

T �
Z2V�k

Theorem S8-1:
The 

t-Distribution

Proof Since Z and V are independent, their probability distribution is

Define a new random variable U � V. Thus, the inverse solutions of

and 

are 

and

The Jacobian is

J � †Au

k

t

2uk

0 1

† � Au

k

v � u

 z � t  Au

k

 u � v
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1z, v2 �

v 1k�22�122� 2k�2 
   ak

2
b

 e�
 
1z2	�2�2,  �� � z � �, 0 � � � �

*We use the fact that follows a chi-square distribution with n � 1 degrees of freedom in Section 8-4
to find a confidence interval on the variance and standard deviation of a normal distribution.

1n � 12S 2��2
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8-4

Thus,

and the joint probability distribution of T and U is

Now, since V � 0, we must require that U � 0, and since On
rearranging this last equation, we have

The probability distribution of T is found by

This is the distribution given in Theorem S8-1.
The probability distribution of the random variable T was first published by W. S. Gosset

in a famous 1908 paper. Gosset was employed by the Guiness Brewers in Ireland. Since his
employer discouraged publication of employee research, Gosset published these results under
the pseudonym “Student.” As a result, this probability distribution is sometimes called the
Student t-distribution.
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LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
1. Structure engineering decision-making problems as hypothesis tests
2. Test hypotheses on the mean of a normal distribution using either a Z-test or a t-test procedure
3. Test hypotheses on the variance or standard deviation of a normal distribution
4. Test hypotheses on a population proportion
5. Use the P-value approach for making decisions in hypotheses tests
6. Compute power, type II error probability, and make sample size selection decisions for tests on

means, variances, and proportions
7. Explain and use the relationship between confidence intervals and hypothesis tests
8. Use the chi-square goodness of fit test to check distributional assumptions
9. Use contingency table tests

CD MATERIAL
10. Appreciate the likelihood ratio approach to construction of test statistics
11. Conduct small sample tests on a population proportion

Answers for many odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

9-1 HYPOTHESIS TESTING

9-1.1 Statistical Hypotheses

In the previous chapter we illustrated how to construct a confidence interval estimate of a pa-
rameter from sample data. However, many problems in engineering require that we decide
whether to accept or reject a statement about some parameter. The statement is called a
hypothesis, and the decision-making procedure about the hypothesis is called hypothesis
testing. This is one of the most useful aspects of statistical inference, since many types of
decision-making problems, tests, or experiments in the engineering world can be formulated
as hypothesis-testing problems. Furthermore, as we will see, there is a very close connection
between hypothesis testing and confidence intervals.

Statistical hypothesis testing and confidence interval estimation of parameters are the funda-
mental methods used at the data analysis stage of a comparative experiment, in which the engi-
neer is interested, for example, in comparing the mean of a population to a specified value. These
simple comparative experiments are frequently encountered in practice and provide a good foun-
dation for the more complex experimental design problems that we will discuss in Chapters 13
and 14. In this chapter we discuss comparative experiments involving a single population, and our
focus is on testing hypotheses concerning the parameters of the population.

We now give a formal definition of a statistical hypothesis.

278 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

A statistical hypothesis is a statement about the parameters of one or more populations.
Definition
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Since we use probability distributions to represent populations, a statistical hypothesis
may also be thought of as a statement about the probability distribution of a random variable.
The hypothesis will usually involve one or more parameters of this distribution.

For example, suppose that we are interested in the burning rate of a solid propellant used
to power aircrew escape systems. Now burning rate is a random variable that can be described
by a probability distribution. Suppose that our interest focuses on the mean burning rate (a
parameter of this distribution). Specifically, we are interested in deciding whether or not the
mean burning rate is 50 centimeters per second. We may express this formally as

(9-1)

The statement centimeters per second in Equation 9-1 is called the null
hypothesis, and the statement centimeters per second is called the alternative
hypothesis. Since the alternative hypothesis specifies values of that could be either greater
or less than 50 centimeters per second, it is called a two-sided alternative hypothesis. In some
situations, we may wish to formulate a one-sided alternative hypothesis, as in

or (9-2)

It is important to remember that hypotheses are always statements about the population or
distribution under study, not statements about the sample. The value of the population param-
eter specified in the null hypothesis (50 centimeters per second in the above example) is usu-
ally determined in one of three ways. First, it may result from past experience or knowledge
of the process, or even from previous tests or experiments. The objective of hypothesis testing
then is usually to determine whether the parameter value has changed. Second, this value may
be determined from some theory or model regarding the process under study. Here the objec-
tive of hypothesis testing is to verify the theory or model. A third situation arises when the
value of the population parameter results from external considerations, such as design or en-
gineering specifications, or from contractual obligations. In this situation, the usual objective
of hypothesis testing is conformance testing.

A procedure leading to a decision about a particular hypothesis is called a test of a
hypothesis. Hypothesis-testing procedures rely on using the information in a random sample
from the population of interest. If this information is consistent with the hypothesis, we will con-
clude that the hypothesis is true; however, if this information is inconsistent with the hypothesis,
we will conclude that the hypothesis is false. We emphasize that the truth or falsity of a particu-
lar hypothesis can never be known with certainty, unless we can examine the entire population.
This is usually impossible in most practical situations. Therefore, a hypothesis-testing procedure
should be developed with the probability of reaching a wrong conclusion in mind.

The structure of hypothesis-testing problems is identical in all the applications that we
will consider. The null hypothesis is the hypothesis we wish to test. Rejection of the null
hypothesis always leads to accepting the alternative hypothesis. In our treatment of hypothe-
sis testing, the null hypothesis will always be stated so that it specifies an exact value of the
parameter (as in the statement in Equation 9-1). The
alternate hypothesis will allow the parameter to take on several values (as in the statement

in Equation 9-1). Testing the hypothesis involves taking
a random sample, computing a test statistic from the sample data, and then using the test
statistic to make a decision about the null hypothesis.

H1: � � 50 centimeters per second

H0: � � 50 centimeters per second

H1: � � 50 centimeters per second  H1: � � 50 centimeters per second

H0: � � 50 centimeters per second  H0: � � 50 centimeters per second

�
H1: � � 50

H0: � � 50

H1: � � 50 centimeters per second

H0: � � 50 centimeters per second

9-1 HYPOTHESIS TESTING 279
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9-1.2 Tests of Statistical Hypotheses

To illustrate the general concepts, consider the propellant burning rate problem introduced
earlier. The null hypothesis is that the mean burning rate is 50 centimeters per second, and the
alternate is that it is not equal to 50 centimeters per second. That is, we wish to test

Suppose that a sample of specimens is tested and that the sample mean burning
rate is observed. The sample mean is an estimate of the true population mean . A value of
the sample mean that falls close to the hypothesized value of centimeters per second
is evidence that the true mean is really 50 centimeters per second; that is, such evidence sup-
ports the null hypothesis H0. On the other hand, a sample mean that is considerably different
from 50 centimeters per second is evidence in support of the alternative hypothesis . Thus,
the sample mean is the test statistic in this case.

The sample mean can take on many different values. Suppose that if we
will not reject the null hypothesis , and if either or , we will
reject the null hypothesis in favor of the alternative hypothesis . This is illustrated
in Fig. 9-1. The values of that are less than 48.5 and greater than 51.5 constitute the critical
region for the test, while all values that are in the interval form a region for
which we will fail to reject the null hypothesis. By convention, this is usually called the
acceptance region. The boundaries between the critical regions and the acceptance region are
called the critical values. In our example the critical values are 48.5 and 51.5. It is customary
to state conclusions relative to the null hypothesis H0. Therefore, we reject H0 in favor of 
if the test statistic falls in the critical region and fail to reject H0 otherwise.

This decision procedure can lead to either of two wrong conclusions. For example, the
true mean burning rate of the propellant could be equal to 50 centimeters per second.
However, for the randomly selected propellant specimens that are tested, we could observe a
value of the test statistic that falls into the critical region. We would then reject the null
hypothesis H0 in favor of the alternate when, in fact, H0 is really true. This type of wrong
conclusion is called a type I error.

H1

x

H1

48.5 � x � 51.5
x

H1: � � 50
x � 51.5x � 48.5H0: � � 50

48.5 � x � 51.5,

H1

�
� � 50x

�x
n � 10

H1: � � 50 centimeters per second

H0: � � 50 centimeters per second

280 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

Rejecting the null hypothesis H0 when it is true is defined as a type I error.
Definition

Failing to reject the null hypothesis when it is false is defined as a type II error.
Definition

Now suppose that the true mean burning rate is different from 50 centimeters per second, yet
the sample mean falls in the acceptance region. In this case we would fail to reject H0 when
it is false. This type of wrong conclusion is called a type II error.

x

Thus, in testing any statistical hypothesis, four different situations determine whether the final
decision is correct or in error. These situations are presented in Table 9-1.
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9-1 HYPOTHESIS TESTING 281

50 51.548.5

Reject H0

µ ≠ 50 cm/s

Fail to Reject H0

µ = 50 cm/s

Reject H0

µ ≠ 50 cm/s

x

Table 9-1 Decisions in Hypothesis Testing

Decision H0 Is True H0 Is False

Fail to reject H0 no error type II error
Reject H0 type I error no errorFigure 9-1 Decision criteria for testing H0: � �

50 centimeters per second versus H1: � � 50 centime-
ters per second.

α /2 = 0.0287 α /2 = 0.0287

48.5 51.5= 50µ X

Figure 9-2 The critical region for H0: � � 50
versus H1: � � 50 and n � 10.

Because our decision is based on random variables, probabilities can be associated with
the type I and type II errors in Table 9-1. The probability of making a type I error is denoted
by the Greek letter 	. That is,

	 � P(type I error) � P(reject H0 when H0 is true) (9-3)

Sometimes the type I error probability is called the significance level, or the �-error, or the
size of the test. In the propellant burning rate example, a type I error will occur when either

or when the true mean burning rate is centimeters per second.
Suppose that the standard deviation of burning rate is centimeters per second and that
the burning rate has a distribution for which the conditions of the central limit theorem apply,
so the distribution of the sample mean is approximately normal with mean and stan-
dard deviation . The probability of making a type I error (or the
significance level of our test) is equal to the sum of the areas that have been shaded in the tails
of the normal distribution in Fig. 9-2. We may find this probability as

The z-values that correspond to the critical values 48.5 and 51.5 are

Therefore

This implies that 5.76% of all random samples would lead to rejection of the hypothesis
when the true mean burning rate is really 50 centimeters

per second.
H0: � � 50 centimeters per second

	 � P1Z � 
1.902 � P1Z � 1.902 � 0.028717 � 0.028717 � 0.057434

z1 �
48.5 
 50

0.79
� 
1.90  and  z2 �

51.5 
 50
0.79

� 1.90

	 � P1X � 48.5 when � � 502 � P1X � 51.5 when � � 502

�
1n � 2.5
110 � 0.79
� � 50

� � 2.5
� � 50x � 48.5x � 51.5
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From inspection of Fig. 9-2, notice that we can reduce by widening the acceptance
region. For example, if we make the critical values 48 and 52, the value of is

We could also reduce 	 by increasing the sample size. If �

0.625, and using the original critical region from Fig. 9-1, we find

Therefore

In evaluating a hypothesis-testing procedure, it is also important to examine the proba-
bility of a type II error, which we will denote by �. That is,

	 � P1Z � 
2.402 � P1Z � 2.402 � 0.0082 � 0.0082 � 0.0164

z1 �
48.5 
 50

0.625
� 
2.40  and  z2 �

51.5 
 50
0.625

� 2.40

n � 16, �
1n � 2.5
116

 � 0.0057 � 0.0057 � 0.0114

 	 � P  aZ �
48 
 50

0.79
b � P   aZ �

52 
 50
0.79

b � P 1Z � 
2.532 � P 1Z � 2.532
	

	

282 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

To calculate � (sometimes called the �-error), we must have a specific alternative hypothe-
sis; that is, we must have a particular value of �. For example, suppose that it is important to
reject the null hypothesis H0: � � 50 whenever the mean burning rate � is greater than 52
centimeters per second or less than 48 centimeters per second. We could calculate the proba-
bility of a type II error � for the values � � 52 and � � 48 and use this result to tell us some-
thing about how the test procedure would perform. Specifically, how will the test procedure
work if we wish to detect, that is, reject H0, for a mean value of � � 52 or � � 48? Because
of symmetry, it is necessary only to evaluate one of the two cases—say, find the probability of
accepting the null hypothesis H0: � � 50 centimeters per second when the true mean is � �
52 centimeters per second.

Figure 9-3 will help us calculate the probability of type II error �. The normal distribution
on the left in Fig. 9-3 is the distribution of the test statistic when the null hypothesis 
H0: � � 50 is true (this is what is meant by the expression “under H0: � � 50”), and the nor-
mal distribution on the right is the distribution of when the alternative hypothesis is true and
the value of the mean is 52 (or “under H1: � � 52”). Now a type II error will be committed if
the sample mean falls between 48.5 and 51.5 (the critical region boundaries) when � � 52.
As seen in Fig. 9-3, this is just the probability that when the true mean is 
� � 52, or the shaded area under the normal distribution on the right. Therefore, referring to
Fig. 9-3, we find that

� � P 148.5 � X � 51.5 when � � 522

48.5 � X � 51.5
X

X

X

� � P(type II error) � P(fail to reject H0 when H0 is false) (9-4)
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The z-values corresponding to 48.5 and 51.5 when � � 52 are

Therefore

Thus, if we are testing H0: � � 50 against H1: � � 50 with n � 10, and the true value of the
mean is � � 52, the probability that we will fail to reject the false null hypothesis is 0.2643. By
symmetry, if the true value of the mean is � � 48, the value of � will also be 0.2643.

The probability of making a type II error � increases rapidly as the true value of 
approaches the hypothesized value. For example, see Fig. 9-4, where the true value of the
mean is � � 50.5 and the hypothesized value is H0: � � 50. The true value of � is very close
to 50, and the value for � is

As shown in Fig. 9-4, the z-values corresponding to 48.5 and 51.5 when � � 50.5 are

Therefore

� 0.8980 
 0.0057 � 0.8923

Thus, the type II error probability is much higher for the case where the true mean is 50.5
centimeters per second than for the case where the mean is 52 centimeters per second. Of course,

� � P1
2.53 � Z � 1.272 � P1Z � 1.272 
 P1Z � 
2.532

z1 �
48.5 
 50.5

0.79
� 
2.53  and  z2 �

51.5 
 50.5
0.79

� 1.27

� � P 148.5 � X � 51.5 when � � 50.52

�

 � 0.2643 
 0.0000 � 0.2643
 � � P 1
4.43 � Z � 
0.632 � P 1Z � 
0.632 
 P 1Z � 
4.432

z1 �
48.5 
 52

0.79
� 
4.43  and  z2 �

51.5 
 52
0.79

� 
0.63
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Figure 9-3 The probability of type II error
when � � 52 and n � 10.
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when � � 50.5 and n � 10.
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in many practical situations we would not be as concerned with making a type II error if the mean
were “close” to the hypothesized value. We would be much more interested in detecting large
differences between the true mean and the value specified in the null hypothesis.

The type II error probability also depends on the sample size n. Suppose that the null
hypothesis is centimeters per second and that the true value of the mean is

If the sample size is increased from n � 10 to n � 16, the situation of Fig. 9-5 results.
The normal distribution on the left is the distribution of when the mean , and the
normal distribution on the right is the distribution of when . As shown in Fig. 9-5,
the type II error probability is

When , the standard deviation of is , and the z-values
corresponding to 48.5 and 51.5 when are

Therefore

� 0.2119 
 0.0000 � 0.2119

Recall that when and , we found that ; therefore, increasing the
sample size results in a decrease in the probability of type II error.

The results from this section and a few other similar calculations are summarized in the
following table:

� � 0.2643� � 52n � 10

� � P1
5.60 � Z � 
0.802 � P1Z � 
0.802 
 P1Z � 
5.602

z1 �
48.5 
 52

0.625
� 
5.60 and z2 �

51.5 
 52
0.625

� 
0.80

� � 52
�
1n � 2.5
116 � 0.625Xn � 16

� � P 148.5 � X � 51.5 when � � 522

� � 52X
� � 50X

� � 52.
H0: � � 50
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Acceptance Sample
Region Size 	 � at � � 52 � at � � 50.5

10 0.0576 0.2643 0.8923

10 0.0114 0.5000 0.9705

16 0.0164 0.2119 0.9445

16 0.0014 0.5000 0.991848 � x � 52

48.5 � x � 51.5

48 � x � 52

48.5 � x � 51.5
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The results in boxes were not calculated in the text but can easily be verified by the
reader. This display and the discussion above reveal four important points:

1. The size of the critical region, and consequently the probability of a type I error ,
can always be reduced by appropriate selection of the critical values.

2. Type I and type II errors are related. A decrease in the probability of one type of error
always results in an increase in the probability of the other, provided that the sample
size n does not change.

3. An increase in sample size will generally reduce both and �, provided that the
critical values are held constant.

4. When the null hypothesis is false, � increases as the true value of the parameter
approaches the value hypothesized in the null hypothesis. The value of � decreases
as the difference between the true mean and the hypothesized value increases.

Generally, the analyst controls the type I error probability 	 when he or she selects the
critical values. Thus, it is usually easy for the analyst to set the type I error probability at
(or near) any desired value. Since the analyst can directly control the probability of
wrongly rejecting H0, we always think of rejection of the null hypothesis H0 as a strong
conclusion.

On the other hand, the probability of type II error � is not a constant, but depends on
the true value of the parameter. It also depends on the sample size that we have selected.
Because the type II error probability � is a function of both the sample size and the extent to
which the null hypothesis H0 is false, it is customary to think of the decision to accept H0 as a
weak conclusion, unless we know that � is acceptably small. Therefore, rather than saying we
“accept H0”, we prefer the terminology “fail to reject H0”. Failing to reject H0 implies that we
have not found sufficient evidence to reject H0, that is, to make a strong statement. Failing to
reject H0 does not necessarily mean that there is a high probability that H0 is true. It may
simply mean that more data are required to reach a strong conclusion. This can have impor-
tant implications for the formulation of hypotheses.

An important concept that we will make use of is the power of a statistical test.
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The power of a statistical test is the probability of rejecting the null hypothesis H0

when the alternative hypothesis is true.

Definition

The power is computed as , and power can be interpreted as the probability of
correctly rejecting a false null hypothesis. We often compare statistical tests by comparing
their power properties. For example, consider the propellant burning rate problem when we
are testing centimeters per second against centimeters per second.
Suppose that the true value of the mean is . When n � 10, we found that 
so the power of this test is when .

Power is a very descriptive and concise measure of the sensitivity of a statistical test,
where by sensitivity we mean the ability of the test to detect differences. In this case, the
sensitivity of the test for detecting the difference between a mean burning rate of 50 centime-
ters per second and 52 centimeters per second is 0.7357. That is, if the true mean is really 
52 centimeters per second, this test will correctly reject and “detect” this differ-
ence 73.57% of the time. If this value of power is judged to be too low, the analyst can increase
either 	 or the sample size n.

H0: � � 50

� � 521 
 � � 1 
 0.2643 � 0.7357
� � 0.2643,� � 52

H1: � � 50H0: � � 50

1 
 �
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9-1.3 One-Sided and Two-Sided Hypotheses

A test of any hypothesis such as

is called a two-sided test, because it is important to detect differences from the hypothesized value
of the mean that lie on either side of . In such a test, the critical region is split into two parts,
with (usually) equal probability placed in each tail of the distribution of the test statistic.

Many hypothesis-testing problems naturally involve a one-sided alternative hypothesis,
such as

If the alternative hypothesis is , the critical region should lie in the upper tail
of the distribution of the test statistic, whereas if the alternative hypothesis is 
the critical region should lie in the lower tail of the distribution. Consequently, these tests
are sometimes called one-tailed tests. The location of the critical region for one-sided tests
is usually easy to determine. Simply visualize the behavior of the test statistic if the null
hypothesis is true and place the critical region in the appropriate end or tail of the distri-
bution. Generally, the inequality in the alternative hypothesis “points” in the direction of
the critical region.

In constructing hypotheses, we will always state the null hypothesis as an equality so that
the probability of type I error 	 can be controlled at a specific value. The alternative hypoth-
esis might be either one-sided or two-sided, depending on the conclusion to be drawn if H0 is
rejected. If the objective is to make a claim involving statements such as greater than, less
than, superior to, exceeds, at least, and so forth, a one-sided alternative is appropriate. If no
direction is implied by the claim, or if the claim not equal to is to be made, a two-sided alter-
native should be used.

EXAMPLE 9-1 Consider the propellant burning rate problem. Suppose that if the burning rate is less than
50 centimeters per second, we wish to show this with a strong conclusion. The hypotheses
should be stated as

Here the critical region lies in the lower tail of the distribution of . Since the rejection of H0

is always a strong conclusion, this statement of the hypotheses will produce the desired out-
come if H0 is rejected. Notice that, although the null hypothesis is stated with an equal sign, it
is understood to include any value of not specified by the alternative hypothesis. Therefore,
failing to reject H0 does not mean that centimeters per second exactly, but only that we
do not have strong evidence in support of .

In some real-world problems where one-sided test procedures are indicated, it is
occasionally difficult to choose an appropriate formulation of the alternative hypothesis. For
example, suppose that a soft-drink beverage bottler purchases 10-ounce bottles from a glass

H1

� � 50
�

X

H1: � � 50 centimeters per second

H0: � � 50 centimeters per second

H1: � � �0,
H1: � � �0

H0: � � �0  or
 H0: � � �0

H1: � � �0 H1: � � �0

�0�0

 H1: � � �0

 H0: � � �0
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company. The bottler wants to be sure that the bottles meet the specification on mean internal
pressure or bursting strength, which for 10-ounce bottles is a minimum strength of 200 psi.
The bottler has decided to formulate the decision procedure for a specific lot of bottles as a
hypothesis testing problem. There are two possible formulations for this problem, either

(9-5)

or

(9-6)

Consider the formulation in Equation 9-5. If the null hypothesis is rejected, the bottles will be
judged satisfactory; if H0 is not rejected, the implication is that the bottles do not conform to
specifications and should not be used. Because rejecting H0 is a strong conclusion, this for-
mulation forces the bottle manufacturer to “demonstrate” that the mean bursting strength of
the bottles exceeds the specification. Now consider the formulation in Equation 9-6. In this
situation, the bottles will be judged satisfactory unless H0 is rejected. That is, we conclude that
the bottles are satisfactory unless there is strong evidence to the contrary.

Which formulation is correct, the one of Equation 9-5 or Equation 9-6? The answer is it
depends. For Equation 9-5, there is some probability that H0 will not be rejected (i.e., we
would decide that the bottles are not satisfactory), even though the true mean is slightly
greater than 200 psi. This formulation implies that we want the bottle manufacturer to demon-
strate that the product meets or exceeds our specifications. Such a formulation could be
appropriate if the manufacturer has experienced difficulty in meeting specifications in the past
or if product safety considerations force us to hold tightly to the 200 psi specification. On the
other hand, for the formulation of Equation 9-6 there is some probability that H0 will be ac-
cepted and the bottles judged satisfactory, even though the true mean is slightly less than
200 psi. We would conclude that the bottles are unsatisfactory only when there is strong evi-
dence that the mean does not exceed 200 psi, that is, when psi is rejected. This
formulation assumes that we are relatively happy with the bottle manufacturer’s past per-
formance and that small deviations from the specification of psi are not harmful.

In formulating one-sided alternative hypotheses, we should remember that rejecting H0 is
always a strong conclusion. Consequently, we should put the statement about which it is im-
portant to make a strong conclusion in the alternative hypothesis. In real-world problems, this
will often depend on our point of view and experience with the situation.

9-1.4 General Procedure for Hypothesis Tests

This chapter develops hypothesis-testing procedures for many practical problems. Use of the
following sequence of steps in applying hypothesis-testing methodology is recommended.

1. From the problem context, identify the parameter of interest.

2. State the null hypothesis, H0.

3. Specify an appropriate alternative hypothesis, .

4. Choose a significance level �.

H1

� � 200

H0: � � 200

H1: � � 200 psi

H0: � � 200 psi

H1: � � 200 psi

H0: � � 200 psi
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5. Determine an appropriate test statistic.

6. State the rejection region for the statistic.

7. Compute any necessary sample quantities, substitute these into the equation for the
test statistic, and compute that value.

8. Decide whether or not H0 should be rejected and report that in the problem context.

Steps 1–4 should be completed prior to examination of the sample data. This sequence of
steps will be illustrated in subsequent sections.

EXERCISES FOR SECTION 9-1

288 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

9-1. In each of the following situations, state whether it is a
correctly stated hypothesis testing problem and why.
(a)
(b)
(c)
(d)
(e)

9-2. A textile fiber manufacturer is investigating a new
drapery yarn, which the company claims has a mean thread
elongation of 12 kilograms with a standard deviation of 0.5
kilograms. The company wishes to test the hypothesis

against using a random sample of
four specimens.
(a) What is the type I error probability if the critical region is

defined as kilograms? 
(b) Find � for the case where the true mean elongation is

11.25 kilograms.

9-3. Repeat Exercise 9-2 using a sample size of n = 16 and
the same critical region.

9-4. In Exercise 9-2, find the boundary of the critical region
if the type I error probability is specified to be .

9-5. In Exercise 9-2, find the boundary of the critical region
if the type I error probability is specified to be 0.05.

9-6. The heat evolved in calories per gram of a cement mix-
ture is approximately normally distributed. The mean is
thought to be 100 and the standard deviation is 2. We wish to
test versus with a sample of 
n = 9 specimens.
(a) If the acceptance region is defined as ,

find the type I error probability 	.
(b) Find � for the case where the true mean heat evolved is 103.
(c) Find � for the case where the true mean heat evolved is

105. This value of � is smaller than the one found in part
(b) above. Why?

9-7. Repeat Exercise 9-6 using a sample size of and
the same acceptance region.

9-8. A consumer products company is formulating a new
shampoo and is interested in foam height (in millimeters).
Foam height is approximately normally distributed and has a
standard deviation of 20 millimeters. The company wishes to

n � 5

98.5 � x � 101.5

H1: � � 100H0: � � 100

	 � 0.01

x � 11.5

H1: � � 12,H0: � � 12

H0: s � 30, H1: s � 30
H0: p � 0.1, H1: p � 0.5
H0: x � 50, H1: x � 50
H0: � � 10, H1: � � 10
H0: � � 25, H1: � � 25

test millimeters versus millime-
ters, using the results of samples.
(a) Find the type I error probability if the critical region is

.
(b) What is the probability of type II error if the true mean

foam height is 195 millimeters?

9-9. In Exercise 9-8, suppose that the sample data result in
millimeters.

(a) What conclusion would you reach?
(b) How “unusual” is the sample value millimeters

if the true mean is really 175 millimeters? That is, what is
the probability that you would observe a sample average
as large as 190 millimeters (or larger), if the true mean
foam height was really 175 millimeters?

9-10. Repeat Exercise 9-8 assuming that the sample size is
n � 16 and the boundary of the critical region is the same.

9-11. Consider Exercise 9-8, and suppose that the sample
size is increased to n � 16.
(a) Where would the boundary of the critical region be placed

if the type I error probability were to remain equal to the
value that it took on when n � 10?

(b) Using n � 16 and the new critical region found in part (a),
find the type II error probability � if the true mean foam
height is 195 millimeters.

(c) Compare the value of � obtained in part (b) with the value
from Exercise 9-8 (b). What conclusions can you draw?

9-12. A manufacturer is interested in the output voltage of a
power supply used in a PC. Output voltage is assumed to be
normally distributed, with standard deviation 0.25 Volts, and
the manufacturer wishes to test H0: � � 5 Volts against 
H1: Volts, using n � 8 units.
(a) The acceptance region is Find the value

of .
(b) Find the power of the test for detecting a true mean output

voltage of 5.1 Volts.

9-13. Rework Exercise 9-12 when the sample size is 16 and
the boundaries of the acceptance region do not change.

9-14. Consider Exercise 9-12, and suppose that the manu-
facturer wants the type I error probability for the test to be
	 � 0.05. Where should the acceptance region be located?

	
4.85 � x � 5.15.

� � 5

x � 190

x � 190

x � 185
	

n � 10
H1: � � 175H0: � � 175
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9-2 TESTS ON THE MEAN OF A NORMAL DISTRIBUTION,
VARIANCE KNOWN

In this section, we consider hypothesis testing about the mean � of a single, normal population
where the variance of the population �2 is known. We will assume that a random sample X1,
X2, p , Xn has been taken from the population. Based on our previous discussion, the sample
mean is an unbiased point estimator of � with variance .

9-2.1 Hypothesis Tests on the Mean

Suppose that we wish to test the hypotheses

(9-7)

where �0 is a specified constant. We have a random sample X1, X2, p , Xn from a normal pop-
ulation. Since has a normal distribution (i.e., the sampling distribution of is normal)
with mean �0 and standard deviation if the null hypothesis is true, we could construct
a critical region based on the computed value of the sample mean , as in Section 9-1.2.

It is usually more convenient to standardize the sample mean and use a test statistic based on
the standard normal distribution. That is, the test procedure for H0: � � �0 uses the test statistic

X
��1n

XX

H1: � � �0

H0: � � �0

�2�nX
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9-15. If we plot the probability of accepting H0: � � �0

versus various values of � and connect the points with a
smooth curve, we obtain the operating characteristic curve
(or the OC curve) of the test procedure. These curves are used
extensively in industrial applications of hypothesis testing to
display the sensitivity and relative performance of the test.
When the true mean is really equal to �0, the probability of ac-
cepting H0 is 1 � �. Construct an OC curve for Exercise 9-8,
using values of the true mean � of 178, 181, 184, 187, 190,
193, 196, and 199.

9-16. Convert the OC curve in Exercise 9-15 into a plot of
the power function of the test.

9-17. A random sample of 500 registered voters in Phoenix
is asked if they favor the use of oxygenated fuels year-round
to reduce air pollution. If more than 400 voters respond posi-
tively, we will conclude that at least 60% of the voters favor
the use of these fuels.
(a) Find the probability of type I error if exactly 60% of the

voters favor the use of these fuels.
(b) What is the type II error probability 	 if 75% of the voters

favor this action?
Hint: use the normal approximation to the binomial.

9-18. The proportion of residents in Phoenix favoring the
building of toll roads to complete the freeway system is be-
lieved to be p � 0.3. If a random sample of 10 residents
shows that 1 or fewer favor this proposal, we will conclude
that p 
 0.3.
(a) Find the probability of type I error if the true proportion is

p � 0.3.
(b) Find the probability of committing a type II error with this

procedure if p � 0.2.
(c) What is the power of this procedure if the true proportion

is p � 0.2?

9-19. The proportion of adults living in Tempe, Arizona,
who are college graduates is estimated to be p � 0.4. To test
this hypothesis, a random sample of 15 Tempe adults is
selected. If the number of college graduates is between 4 and
8, the hypothesis will be accepted; otherwise, we will
conclude that .
(a) Find the type I error probability for this procedure, assum-

ing that p � 0.4.
(b) Find the probability of committing a type II error if the

true proportion is really p � 0.2.

p � 0.4

(9-8)
Z0 �

X � �0

��1n
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If the null hypothesis H0: � � �0 is true, , and it follows that the distribution of Z0

is the standard normal distribution [denoted N(0, 1)]. Consequently, if H0: � � �0 is true, the
probability is 1 
 	 that the test statistic Z0 falls between and , where is the

percentage point of the standard normal distribution. The regions associated with
and are illustrated in Fig. 9-6(a). Note that the probability is 	 that the test statistic Z0

will fall in the region or when H0: � � �0 is true. Clearly, a sample
producing a value of the test statistic that falls in the tails of the distribution of Z0 would be
unusual if H0: � � �0 is true; therefore, it is an indication that H0 is false. Thus, we should
reject H0 if the observed value of the test statistic z0 is either

(9-9)

and we should fail to reject H0 if

(9-10)

The inequalities in Equation 9-10 defines the acceptance region for H0, and the two inequali-
ties in Equation 9-9 define the critical region or rejection region. The type I error probability
for this test procedure is 	.

It is easier to understand the critical region and the test procedure, in general, when the
test statistic is Z0 rather than . However, the same critical region can always be written in
terms of the computed value of the sample mean . A procedure identical to the above is as
follows:

where

EXAMPLE 9-2 Aircrew escape systems are powered by a solid propellant. The burning rate of this pro-
pellant is an important product characteristic. Specifications require that the mean burning
rate must be 50 centimeters per second. We know that the standard deviation of burning
rate is � � 2 centimeters per second. The experimenter decides to specify a type I error
probability or significance level of 	 � 0.05 and selects a random sample of n � 25 and
obtains a sample average burning rate of centimeters per second. What conclu-
sions should be drawn?

x � 51.3

a � �0 � z	
2�
1n and b � �0 
 z	
2�
1n

Reject H0: � � �0 if either x � a or x � b

x
X


z	
2 � z0 � z	
2

z0 � z	
2 or z0 � 
z	
2

Z0 � 
z	
2Z0 � z	
2


z	
2z	
2

100	
2
z	
2z	
2
z	
2

E1X 2 � �0
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Figure 9-6 The distribution of Z0 when H0: � � �0 is true, with critical region for (a) the two-sided alternative H1 : � � �0,
(b) the one-sided alternative H1 : � � �0, and (c) the one-sided alternative H1 : � � �0.

(a)

0

N(0,1)

   z   /2α  –z   /2α  Z0

   /2α     /2α  Acceptance
region

Critical region

(c)

0

N(0,1)

–z   α Z0

α Acceptance
region

(b)

0

N(0,1)

   z   α  Z0

α

Critical region

Acceptance
region

Critical region
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We may solve this problem by following the eight-step procedure outlined in Section 9-1.4.
This results in

1. The parameter of interest is �, the mean burning rate.

2. H0: � � 50 centimeters per second

3. H1: � � 50 centimeters per second

4.

5. The test statistic is

6. Reject H0 if z0 � 1.96 or if z0 � 
1.96. Note that this results from step 4, where we
specified , and so the boundaries of the critical region are at z0.025 � 1.96
and 
z0.025 � 
1.96.

7. Computations: Since and � � 2,

8. Conclusion: Since z0 � 3.25 � 1.96, we reject H0: � � 50 at the 0.05 level of
significance. Stated more completely, we conclude that the mean burning rate dif-
fers from 50 centimeters per second, based on a sample of 25 measurements. In
fact, there is strong evidence that the mean burning rate exceeds 50 centimeters
per second.

We may also develop procedures for testing hypotheses on the mean � where the alter-
native hypothesis is one-sided. Suppose that we specify the hypotheses as

(9-11)

In defining the critical region for this test, we observe that a negative value of the test statistic
Z0 would never lead us to conclude that H0: � � �0 is false. Therefore, we would place the
critical region in the upper tail of the standard normal distribution and reject H0 if the com-
puted value of z0 is too large. That is, we would reject H0 if

(9-12)

as shown in Figure 9-6(b). Similarly, to test

(9-13)

we would calculate the test statistic Z0 and reject H0 if the value of z0 is too small. That is, the
critical region is in the lower tail of the standard normal distribution as shown in Figure 
9-6(c), and we reject H0 if

(9-14)z0 � 
z	

H1: � � �0

H0: � � �0

z0 � z	

H1: � � �0

H0: � � �0

z0 �
51.3 
 50

2
225
� 3.25

x � 51.3

	 �  0.05

z0 �
x 
 �0

�
1n

	 �  0.05
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9-2.2 P-Values in Hypothesis Tests

One way to report the results of a hypothesis test is to state that the null hypothesis was or was
not rejected at a specified 	-value or level of significance. For example, in the propellant
problem above, we can say that H0: � � 50 was rejected at the 0.05 level of significance. This
statement of conclusions is often inadequate because it gives the decision maker no idea about
whether the computed value of the test statistic was just barely in the rejection region or
whether it was very far into this region. Furthermore, stating the results this way imposes the
predefined level of significance on other users of the information. This approach may be un-
satisfactory because some decision makers might be uncomfortable with the risks implied by
	 � 0.05.

To avoid these difficulties the P-value approach has been adopted widely in practice.
The P-value is the probability that the test statistic will take on a value that is at least as
extreme as the observed value of the statistic when the null hypothesis H0 is true. Thus, a 
P-value conveys much information about the weight of evidence against H0, and so a deci-
sion maker can draw a conclusion at any specified level of significance. We now give a
formal definition of a P-value.
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The P-value is the smallest level of significance that would lead to rejection of the
null hypothesis H0 with the given data.

Definition

It is customary to call the test statistic (and the data) significant when the null hypoth-
esis H0 is rejected; therefore, we may think of the P-value as the smallest level 	 at which
the data are significant. Once the P-value is known, the decision maker can determine how
significant the data are without the data analyst formally imposing a preselected level of
significance.

For the foregoing normal distribution tests it is relatively easy to compute the P-value. If
z0 is the computed value of the test statistic, the P-value is

(9-15)

Here, is the standard normal cumulative distribution function defined in Chapter 4.
Recall that , where Z is N(0, 1). To illustrate this, consider the propellant
problem in Example 9-2. The computed value of the test statistic is z0 � 3.25 and since the
alternative hypothesis is two-tailed, the P-value is

Thus, H0: � � 50 would be rejected at any level of significance For
example, H0 would be rejected if , but it would not be rejected if .

It is not always easy to compute the exact P-value for a test. However, most modern
computer programs for statistical analysis report P-values, and they can be obtained on some
hand-held calculators. We will also show how to approximate the P-value. Finally, if the 

	 � 0.001	 � 0.01
	 � P-value � 0.0012.

P-value � 2 31 
 �13.252 4 � 0.0012

�1z2 � P1Z � z2�1z2

P � •
2 31 
 �1|z0|2 4 for a two-tailed test: H0: � � �0    H1: � � �0

1 
 �1z02 for a upper-tailed test: H0: � � �0  H1: � � �0

�1z02 for a lower-tailed test: H0: � � �0  H1: � � �0
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P-value approach is used, step 6 of the hypothesis-testing procedure can be modified.
Specifically, it is not necessary to state explicitly the critical region.

9-2.3 Connection between Hypothesis Tests and Confidence Intervals

There is a close relationship between the test of a hypothesis about any parameter, say �, and
the confidence interval for �. If [l, u] is a % confidence interval for the parameter
�, the test of size of the hypothesis

will lead to rejection of H0 if and only if �0 is not in the % CI [l, u]. As an illus-
tration, consider the escape system propellant problem discussed above. The null hypothesis
H0: � � 50 was rejected, using . The 95% two-sided CI on � can be calculated using
Equation 8-7. This CI is 50.52 � � � 52.08. Because the value �0 � 50 is not included in this
interval, the null hypothesis H0: � � 50 is rejected.

Although hypothesis tests and CIs are equivalent procedures insofar as decision mak-
ing or inference about � is concerned, each provides somewhat different insights. For
instance, the confidence interval provides a range of likely values for � at a stated confi-
dence level, whereas hypothesis testing is an easy framework for displaying the risk levels
such as the P-value associated with a specific decision. We will continue to illustrate the
connection between the two procedures throughout the text.

9-2.4 Type II Error and Choice of Sample Size

In testing hypotheses, the analyst directly selects the type I error probability. However, the
probability of type II error � depends on the choice of sample size. In this section, we will
show how to calculate the probability of type II error �. We will also show how to select the
sample size to obtain a specified value of �.

Finding the Probability of Type II Error �
Consider the two-sided hypothesis

Suppose that the null hypothesis is false and that the true value of the mean is ,
say, where . The test statistic Z0 is

Therefore, the distribution of Z0 when H1 is true is

(9-16)Z0 � N  a�1n
� , 1b

Z0 �
X 
 �0

�
1n
�

X 
 1�0 � �2
�
1n

�
�1n

�

� � 0
� � �0 � �

H1: � � �0

H0: � � �0

	 �  0.05

100 11 
 	2
H1: � � �0

H0: � � �0

	
10011 
 	2
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where denotes the probability to the left of z in the standard normal distribution. Note
that Equation 9-17 was obtained by evaluating the probability that Z0 falls in the interval

when H1 is true. Furthermore, note that Equation 9-17 also holds if , due
to the symmetry of the normal distribution. It is also possible to derive an equation similar to
Equation 9-17 for a one-sided alternative hypothesis.

Sample Size Formulas
One may easily obtain formulas that determine the appropriate sample size to obtain a partic-
ular value of � for a given � and 	. For the two-sided alternative hypothesis, we know from
Equation 9-17 that

or if  � � 0,

(9-18)

since when � is positive. Let z� be the 100� upper percentile of the
standard normal distribution. Then, . From Equation 9-18

or


z� � z	
2 

�1n

�

� � �1
z�2
�1
z	
2 
 �1n
�2 � 0

� � �  az	
2 

�1n

� b

� � �  az	
2 

�1n

� b 
 �  a
z	
2 

�1n

� b

� � 03
z	
2,  z	
2 4
�1z2

The distribution of the test statistic Z0 under both the null hypothesis H0 and the alternate
hypothesis H1 is shown in Fig. 9-7. From examining this figure, we note that if H1 is true, a
type II error will be made only if where . That is, the
probability of the type II error � is the probability that Z0 falls between and given
that H1 is true. This probability is shown as the shaded portion of Fig. 9-7. Expressed mathe-
matically, this probability is

z	
2
z	
2

Z0 � N1�1n
�, 12
z	
2 � Z0 � z	
2
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(9-17)� � �  az	
2 

�1n

� b 
 �  a
z	
2 

�1n

� b

Under H0:    =   0µ µ Under H1:    ≠    0µ µ

N(0,1)

–z   /2α 0 z   /2α     √nδ
σ

   √nδ
σ , 1N ( (

β

Z0

Figure 9-7 The
distribution of Z0

under H0 and H1.
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This approximation is good when is small compared to �. For either of
the one-sided alternative hypotheses the sample size required to produce a specified type II
error with probability � given � and 	 is

�1
z	
2 
 �1n
�2

EXAMPLE 9-3 Consider the rocket propellant problem of Example 9-2. Suppose that the analyst wishes to
design the test so that if the true mean burning rate differs from 50 centimeters per second by
as much as 1 centimeter per second, the test will detect this (i.e., reject H0: � � 50) with a high
probability, say 0.90. Now, we note that � � 2, � � 51 
 50 � 1, 	 � 0.05, and � � 0.10.
Since and the sample size required to detect this 
departure from H0: � � 50 is found by Equation 9-19 as

The approximation is good here, since �

which is small relative to �.

Using Operating Characteristic Curves
When performing sample size or type II error calculations, it is sometimes more convenient to
use the operating characteristic curves in Appendix Charts VIa and VIb. These curves plot
� as calculated from Equation 9-17 against a parameter d for various sample sizes n. Curves
are provided for both 	 � 0.05 and 	 � 0.01. The parameter d is defined as

(9-21)d �
0� 
 �0 0

� �
0� 0
�

�1
5.202 � 0,
� 1
z	
2 
 �1n
�2 � � 1
1.96 
 112142
22

n �
1z	
2 � z�22 �2

�2 �
11.96 � 1.2822 22

1122 � 42

z� � z0.10 � 1.28,z	
2 � z0.025 � 1.96
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(9-19)

where

� � � 
 �0

n �
1z	
2 � z�22 �2

�2

(9-20)

where

� � � 
 �0

n �
1z	 � z�22 �2

�2
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so one set of operating characteristic curves can be used for all problems regardless of the
values of �0 and 	. From examining the operating characteristic curves or Equation 9-17 and
Fig. 9-7, we note that

1. The further the true value of the mean � is from �0, the smaller the probability of
type II error 
 for a given n and �. That is, we see that for a specified sample size and
�, large differences in the mean are easier to detect than small ones.

2. For a given � and �, the probability of type II error 
 decreases as n increases. That
is, to detect a specified difference � in the mean, we may make the test more power-
ful by increasing the sample size.

EXAMPLE 9-4 Consider the propellant problem in Example 9-2. Suppose that the analyst is concerned about
the probability of type II error if the true mean burning rate is � � 51 centimeters per second.
We may use the operating characteristic curves to find 
. Note that � � 51 � 50 � 1, n � 25,
	 � 2, and � � 0.05. Then using Equation 9-21 gives

and from Appendix Chart VIa, with n � 25, we find that 
 � 0.30. That is, if the true mean
burning rate is � � 51 centimeters per second, there is approximately a 30% chance that this
will not be detected by the test with n � 25.

EXAMPLE 9-5 Once again, consider the propellant problem in Example 9-2. Suppose that the analyst would
like to design the test so that if the true mean burning rate differs from 50 centimeters per sec-
ond by as much as 1 centimeter per second, the test will detect this (i.e., reject H0: � � 50)
with a high probability, say, 0.90. This is exactly the same requirement as in Example 9-3,
where we used Equation 9-19 to find the required sample size to be n � 42. The operating
characteristic curves can also be used to find the sample size for this test. Since

, and 
 � 0.10, we find from Appendix Chart VIa that the
required sample size is approximately n � 40. This closely agrees with the sample size calcu-
lated from Equation 9-19.

In general, the operating characteristic curves involve three parameters: 
, d, and n.
Given any two of these parameters, the value of the third can be determined. There are two
typical applications of these curves:

1. For a given n and d, find 
 (as illustrated in Example 9-3). This kind of problem is often
encountered when the analyst is concerned about the sensitivity of an experiment
already performed, or when sample size is restricted by economic or other factors.

2. For a given 
 and d, find n. This was illustrated in Example 9-4. This kind of problem
is usually encountered when the analyst has the opportunity to select the sample size
at the outset of the experiment.

Operating characteristic curves are given in Appendix Charts VIc and VId for the one-
sided alternatives. If the alternative hypothesis is either H1: � � �0 or H1: � � �0, the abscissa
scale on these charts is

(9-22)d �
0� � �0 0

	

d � 0� � �0 0 
	 � 1
2, � � 0.05

d �
0� � �0 0

	 �
0� 0
	 �

1
2
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Using the Computer
Many statistics software packages will calculate sample sizes and type II error probabilities. To
illustrate, here are some computations from Minitab for the propellant burning rate problem.

9-2 TESTS ON THE MEAN OF A NORMAL DISTRIBUTION, VARIANCE KNOWN 297

Power and Sample Size

1-Sample Z Test
Testing mean � null (versus not � null)
Calculating power for mean � null + difference
Alpha � 0.05 Sigma � 2

Sample Target Actual
Difference Size Power Power

1 43 0.9000 0.9064

Power and Sample Size

1-Sample Z Test
Testing mean � null (versus not � null)
Calculating power for mean � null � difference
Alpha � 0.05 Sigma � 2

Sample Target Actual
Difference Size Power Power

1 28 0.7500 0.7536

Power and Sample Size

1-Sample Z Test
Testing mean � null (versus not � null)
Calculating power for mean � null � difference
Alpha � 0.05 Sigma � 2

Sample
Difference Size Power

1 25 0.7054

In the first part of the boxed display, we asked Minitab to work Example 9-3, that is, to find
the sample size n that would allow detection of a difference from �0 � 50 of 1 centimeter per
second with power of 0.9 and 	 � 0.05. The answer, n � 43, agrees closely with the calcu-
lated value from Equation 9-19 in Example 9-3, which was n � 42. The difference is due to
Minitab using a value of z� that has more than two decimal places. The second part of the com-
puter output relaxes the power requirement to 0.75. Note that the effect is to reduce the
required sample size to n � 28. The third part of the output is the solution to Example 9-4,
where we wish to determine the type II error probability of (�) or the power � 1 
 � for the
sample size n � 25. Note that Minitab computes the power to be 0.7054, which agrees closely
with the answer obtained from the O.C. curve in Example 9-4. Generally, however, the com-
puter calculations will be more accurate than visually reading values from an O.C. curve. 

9-2.5 Large-Sample Test

We have developed the test procedure for the null hypothesis H0: � � �0 assuming that the pop-
ulation is normally distributed and that �2 is known. In many if not most practical situations �2
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will be unknown. Furthermore, we may not be certain that the population is well modeled by a
normal distribution. In these situations if n is large (say n � 40) the sample standard deviation s
can be substituted for � in the test procedures with little effect. Thus, while we have given a test
for the mean of a normal distribution with known �2, it can be easily converted into a large-
sample test procedure for unknown �2 that is valid regardless of the form of the distribution
of the population. This large-sample test relies on the central limit theorem just as the large-
sample confidence interval on � that was presented in the previous chapter did. Exact treatment
of the case where the population is normal, �2 is unknown, and n is small involves use of the 
t distribution and will be deferred until Section 9-3.

9-2.6 Some Practical Comments on Hypothesis Tests

The Eight-Step Procedure
In Section 9-1.4 we described an eight-step procedure for statistical hypothesis testing. This
procedure was illustrated in Example 9-2 and will be encountered many times in both this
chapter and Chapter 10. In practice, such a formal and (seemingly) rigid procedure is not
always necessary. Generally, once the experimenter (or decision maker) has decided on
the question of interest and has determined the design of the experiment (that is, how the data
are to be collected, how the measurements are to be made, and how many observations are
required), only three steps are really required:

1. Specify the test statistic to be used (such as Z0).

2. Specify the location of the critical region (two-tailed, upper-tailed, or lower-tailed).

3. Specify the criteria for rejection (typically, the value of 	, or the P-value at which
rejection should occur).

These steps are often completed almost simultaneously in solving real-world problems,
although we emphasize that it is important to think carefully about each step. That is why we
present and use the eight-step process: it seems to reinforce the essentials of the correct
approach. While you may not use it every time in solving real problems, it is a helpful frame-
work when you are first learning about hypothesis testing.

Statistical versus Practical Significance
We noted previously that reporting the results of a hypothesis test in terms of a P-value is very
useful because it conveys more information than just the simple statement “reject H0” or “fail
to reject H0”. That is, rejection of H0 at the 0.05 level of significance is much more meaning-
ful if the value of the test statistic is well into the critical region, greatly exceeding the 5% crit-
ical value, than if it barely exceeds that value.

Even a very small P-value can be difficult to interpret from a practical viewpoint when
we are making decisions because, while a small P-value indicates statistical significance in
the sense that H0 should be rejected in favor of H1, the actual departure from H0 that has been
detected may have little (if any) practical significance (engineers like to say “engineering
significance”). This is particularly true when the sample size n is large.

For example, consider the propellant burning rate problem of Example 9-3 where we are
testing H0: � � 50 centimeters per second versus H1: � � 50 centimeters per second with �
� 2. If we suppose that the mean rate is really 50.5 centimeters per second, this is not a seri-
ous departure from H0: � � 50 centimeters per second in the sense that if the mean really is
50.5 centimeters per second there is no practical observable effect on the performance of the
aircrew escape system. In other words, concluding that � � 50 centimeters per second when
it is really 50.5 centimeters per second is an inexpensive error and has no practical signifi-
cance. For a reasonably large sample size, a true value of � � 50.5 will lead to a sample thatx
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The P-value column in this display indicates that for large sample sizes the observed
sample value of would strongly suggest that H0: � � 50 should be rejected, even
though the observed sample results imply that from a practical viewpoint the true mean does
not differ much at all from the hypothesized value �0 � 50. The power column indicates that
if we test a hypothesis at a fixed significance level 	 and even if there is little practical differ-
ence between the true mean and the hypothesized value, a large sample size will almost
always lead to rejection of H0.  The moral of this demonstration is clear:

x � 50.5

is close to 50.5 centimeters per second, and we would not want this value of from the sam-
ple to result in rejection of H0. The following display shows the P-value for testing H0: � � 50
when we observe centimeters per second and the power of the test at 	 � 0.05 when
the true mean is 50.5 for various sample sizes n:

x � 50.5

x
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Sample Size P-value Power (at 	 � 0.05)
n When When True � � 50.5

10 0.4295 0.1241
25 0.2113 0.2396
50 0.0767 0.4239

100 0.0124 0.7054
400 5.73 � 10
7 0.9988

1000 2.57 � 10
15 1.0000

x � 50.5

Be careful when interpreting the results from hypothesis testing when the sample size
is large, because any small departure from the hypothesized value �0 will probably be
detected, even when the difference is of little or no practical significance.

EXERCISES FOR SECTION 9-2

9-20. The mean water temperature downstream from a
power plant cooling tower discharge pipe should be no more
than 100°F. Past experience has indicated that the standard
deviation of temperature is 2°F. The water temperature is
measured on nine randomly chosen days, and the average
temperature is found to be 98°F.
(a) Should the water temperature be judged acceptable with

	 � 0.05?
(b) What is the P-value for this test?
(c) What is the probability of accepting the null hypothesis

at 	 � 0.05 if the water has a true mean temperature of
104 °F?

9-21. Reconsider the chemical process yield data from
Exercise 8-9. Recall that � � 3, yield is normally distributed
and that n � 5 observations on yield are 91.6%, 88.75%, 90.8%,
89.95%, and 91.3%. Use 	 � 0.05.
(a) Is there evidence that the mean yield is not 90%?
(b) What is the P-value for this test?
(c) What sample size would be required to detect a true mean

yield of 85% with probability 0.95?

(d) What is the type II error probability if the true mean yield
is 92%?

(e) Compare the decision you made in part (c) with the 95%
CI on mean yield that you constructed in Exercise 8-7.

9-22. A manufacturer produces crankshafts for an automo-
bile engine. The wear of the crankshaft after 100,000 miles
(0.0001 inch) is of interest because it is likely to have an
impact on warranty claims. A random sample of n � 15 shafts
is tested and � 2.78. It is known that � � 0.9 and that wear
is normally distributed.
(a) Test H0: � � 3 versus using 	 � 0.05.
(b) What is the power of this test if � � 3.25?
(c) What sample size would be required to detect a true mean

of 3.75 if we wanted the power to be at least 0.9?

9-23. A melting point test of n � 10 samples of a binder
used in manufacturing a rocket propellant resulted in

Assume that melting point is normally distrib-
uted with . 
(a) Test H0: � � 155 versus H0: � � 155 using 	 � 0.01.
(b) What is the P-value for this test?

� � 1.5� F
x � 154.2� F.

H0: � Z 3

x
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(c) What is the �-error if the true mean is � � 150?
(d) What value of n would be required if we want � � 0.1

when � � 150? Assume that 	 � 0.01.

9-24. The life in hours of a battery is known to be approxi-
mately normally distributed, with standard deviation � � 1.25
hours. A random sample of 10 batteries has a mean life of

hours.
(a) Is there evidence to support the claim that battery life

exceeds 40 hours? Use 	 � 0.05.
(b) What is the P-value for the test in part (a)?
(c) What is the �-error for the test in part (a) if the true mean

life is 42 hours?
(d) What sample size would be required to ensure that � does

not exceed 0.10 if the true mean life is 44 hours?
(e) Explain how you could answer the question in part (a) 

by calculating an appropriate confidence bound on life.

9-25. An engineer who is studying the tensile strength of a
steel alloy intended for use in golf club shafts knows that 
tensile strength is approximately normally distributed with 
� � 60 psi. A random sample of 12 specimens has a mean
tensile strength of psi.
(a) Test the hypothesis that mean strength is 3500 psi. Use

	 � 0.01.
(b) What is the smallest level of significance at which you

would be willing to reject the null hypothesis?
(c) Explain how you could answer the question in part (a)

with a two-sided confidence interval on mean tensile
strength.

9-26. Suppose that in Exercise 9-25 we wanted to reject the
null hypothesis with probability at least 0.8 if mean strength
� � 3500. What sample size should be used? 

9-27. Supercavitation is a propulsion technology for under-
sea vehicles that can greatly increase their speed. It occurs
above approximately 50 meters per second, when pressure
drops sufficiently to allow the water to dissociate into water
vapor, forming a gas bubble behind the vehicle. When the gas
bubble completely encloses the vehicle, supercavitation is
said to occur. Eight tests were conducted on a scale model of
an undersea vehicle in a towing basin with the average ob-
served speed meters per second. Assume that speed
is normally distributed with known standard deviation � �
4 meters per second.

(a) Test the hypotheses H0: � � 100 versus H1: � � 100 us-
ing 	 � 0.05.

(b) Compute the power of the test if the true mean speed is as
low as 95 meters per second.

(c) What sample size would be required to detect a true mean
speed as low as 95 meters per second if we wanted the
power of the test to be at least 0.85?

(d) Explain how the question in part (a) could be answered by
constructing a one-sided confidence bound on the mean
speed.

9-28. A bearing used in an automotive application is suppose
to have a nominal inside diameter of 1.5 inches. A random sam-
ple of 25 bearings is selected and the average inside diameter of
these bearings is 1.4975 inches. Bearing diameter is known to be
normally distributed with standard deviation � � 0.01 inch.
(a) Test the hypotheses H0: � � 1.5 versus H1: � � 1.5 using

	 � 0.01.
(b) Compute the power of the test if the true mean diameter is

1.495 inches.
(c) What sample size would be required to detect a true mean

diameter as low as 1.495 inches if we wanted the power of
the test to be at least 0.9?

(d) Explain how the question in part (a) could be answered by
constructing a two-sided confidence interval on the mean
diameter.

9-29. Medical researchers have developed a new artificial
heart constructed primarily of titanium and plastic. The heart
will last and operate almost indefinitely once it is implanted in
the patient’s body, but the battery pack needs to be recharged
about every four hours. A random sample of 50 battery packs
is selected and subjected to a life test. The average life of these
batteries is 4.05 hours. Assume that battery life is normally
distributed with standard deviation � � 0.2 hour.
(a) Is there evidence to support the claim that mean battery

life exceeds 4 hours? Use 	 � 0.05.
(b) Compute the power of the test if the true mean battery life

is 4.5 hours.
(c) What sample size would be required to detect a true mean

battery life of 4.5 hours if we wanted the power of the test
to be at least 0.9?

(d) Explain how the question in part (a) could be answered by
constructing a one-sided confidence bound on the mean life.

x � 102.2

x � 3250

x � 40.5

9-3 TESTS ON THE MEAN OF A NORMAL DISTRIBUTION,
VARIANCE UNKNOWN

9-3.1 Hypothesis Tests on the Mean

We now consider the case of hypothesis testing on the mean of a population with unknown
variance �2. The situation is analogous to Section 8-3, where we considered a confidence
interval on the mean for the same situation. As in that section, the validity of the test procedure
we will describe rests on the assumption that the population distribution is at least approximately
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normal. The important result upon which the test procedure relies is that if X1, X2, p , Xn is a
random sample from a normal distribution with mean � and variance �2, the random variable

has a t distribution with n 
 1 degrees of freedom. Recall that we used this result in Section
8-3 to devise the t-confidence interval for �. Now consider testing the hypotheses

We will use the test statistic

(9-23)

If the null hypothesis is true, T0 has a t distribution with n 
 1 degrees of freedom. When we
know the distribution of the test statistic when H0 is true (this is often called the reference
distribution or the null distribution), we can locate the critical region to control the type I
error probability at the desired level. In this case we would use the t percentage points 
t	�2,n
1

and as the boundaries of the critical region so that we would reject H0: � � �0 if

where t0 is the observed value of the test statistic T0. The test procedure is very similar to the
test on the mean with known variance described in Section 9-2, except that T0 is used as the
test statistic instead of Z0 and the tn
1 distribution is used to define the critical region instead
of the standard normal distribution. A summary of the test procedures for both two- and one-
sided alternative hypotheses follows:

t0 � t	
2,n
1  or if t0 � 
t	
2,n
1

t	
2,n
1

T0 �
X 
 �0

S
1n

H1: � � �0

H0: � � �0

T �
X 
 �

S
1n
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Figure 9-8 The reference distribution for H0: � � �0 with critical region for (a) (b) and 
(c) H1: � � �0.

H1: � � �0,H1: � Z �0,

(a)

0

tn – 1

–t   /2, n – 1α  –t   , n – 1α  T0t   /2, n – 1α  t   , n – 1α  

   /2α     /2α  

(c)

0

α  

(b)

0

α  

tn – 1 tn – 1

Null hypothesis: H0: � � �0

Test statistic:

Alternative hypothesis Rejection criteria

t0 � 
t	,n
1H1: � � �0

t0 � t	,n
1H1: � � �0

t0 � t	/2,n
1 or t0 � 
t	/2,n
1H1: � Z �0

T0 �
X 
 �0

S
1n

The One-
Sample t-Test

Figure 9-8 shows the location of the critical region for these situations.
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EXAMPLE 9-6 The increased availability of light materials with high strength has revolutionized the design and
manufacture of golf clubs, particularly drivers. Clubs with hollow heads and very thin faces can
result in much longer tee shots, especially for players of modest skills. This is due partly to the
“spring-like effect” that the thin face imparts to the ball. Firing a golf ball at the head of the club
and measuring the ratio of the outgoing velocity of the ball to the incoming velocity can quantify
this spring-like effect. The ratio of velocities is called the coefficient of restitution of the club. An
experiment was performed in which 15 drivers produced by a particular club maker were selected
at random and their coefficients of restitution measured. In the experiment the golf balls were
fired from an air cannon so that the incoming velocity and spin rate of the ball could be precisely
controlled. It is of interest to determine if there is evidence (with 	 � 0.05) to support a claim that
the mean coefficient of restitution exceeds 0.82. The observations follow:

0.8411 0.8191 0.8182 0.8125 0.8750
0.8580 0.8532 0.8483 0.8276 0.7983
0.8042 0.8730 0.8282 0.8359 0.8660

The sample mean and sample standard deviation are and s � 0.02456. The normal
probability plot of the data in Fig. 9-9 supports the assumption that the coefficient of restitution is
normally distributed. Since the objective of the experimenter is to demonstrate that the mean co-
efficient of restitution exceeds 0.82, a one-sided alternative hypothesis is appropriate.

The solution using the eight-step procedure for hypothesis testing is as follows:

1. The parameter of interest is the mean coefficient of restitution, �.

2. H0: � � 0.82

3. . We want to reject H0 if the mean coefficient of restitution exceeds 0.82.

4. 	 � 0.05

5. The test statistic is

6. Reject H0 if t0 � t0.05,14 � 1.761

t0 �
x 
 �0

s
1n

H1: � � 0.82

x � 0.83725
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Figure 9-9. Normal
probability plot of the
coefficient of restitu-
tion data from
Example 9-6.
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7. Computations: Since , s � 0.02456, �0 � 0.82, and n � 15, we have

8. Conclusions: Since , we reject H0 and conclude at the 0.05 level of
significance that the mean coefficient of restitution exceeds 0.82.

Minitab will conduct the one-sample t-test. The output from this software package is in the
following display:

t0 � 2.72 � 1.761

t0 �
0.83725 � 0.82

0.02456
115
� 2.72

x � 0.83725
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Notice that Minitab computes both the test statistic T0 and a 95% lower confidence bound for
the coefficient of restitution. Because the 95% lower confidence bound exceeds 0.82, we
would reject the hypothesis that H0: � � 0.82 and conclude that the alternative hypothesis

is true. Minitab also calculates a P-value for the test statistic T0. In the next
section we explain how this is done.

9-3.2 P-Value for a t-Test

The P-value for a t-test is just the smallest level of significance at which the null hypothesis
would be rejected. That is, it is the tail area beyond the value of the test statistic t0 for a one-
sided test or twice this area for a two-sided test. Because the t-table in Appendix Table IV
contains only 10 critical values for each t distribution, computation of the exact P-value
directly from the table is usually impossible. However, it is easy to find upper and lower
bounds on the P-value from this table.

To illustrate, consider the t-test based on 14 degrees of freedom in Example 9-6. The
relevant critical values from Appendix Table IV are as follows:

Critical Value: 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

Tail Area: 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

Notice that t0 � 2.72 in Example 9-6, and that this is between two tabulated values, 2.624 and
2.977. Therefore, the P-value must be between 0.01 and 0.005. These are effectively the up-
per and lower bounds on the P-value.

Example 9-6 is an upper-tailed test. If the test is lower-tailed, just change the sign of t0 and
proceed as above. Remember that for a two-tailed test the level of significance associated with a
particular critical value is twice the corresponding tail area in the column heading. This consider-
ation must be taken into account when we compute the bound on the P-value. For example, sup-
pose that t0 � 2.72 for a two-tailed alternate based on 14 degrees of freedom. The value

(corresponding to � � 0.02) and (corresponding to � � 0.01), so the
lower and upper bounds on the P-value would be for this case.0.01 � P � 0.02

t0 � 2.977t0 � 2.624

H1: � � 0.82

One-Sample T: COR

Test of mu � 0.82 vs mu � 0.82

Variable N Mean StDev SE Mean
COR 15 0.83725 0.02456 0.00634

Variable 95.0% Lower Bound T P
COR 0.82608 2.72 0.008

c09.qxd  5/16/02  4:15 PM  Page 303 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



304 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

Finally, most computer programs report P-values along with the computed value of the
test statistic. Some hand-held calculators also have this capability. In Example 9-6, Minitab
gave the P-value for the value t0 � 2.72 in Example 9-6 as 0.008.

9-3.3 Choice of Sample Size

The type II error probability for tests on the mean of a normal distribution with unknown vari-
ance depends on the distribution of the test statistic in Equation 9-23 when the null hypothe-
sis H0: � � �0 is false. When the true value of the mean is � � �0 � �, the distribution for T0

is called the noncentral t distribution with n 
 1 degrees of freedom and noncentrality pa-
rameter . Note that if � � 0, the noncentral t distribution reduces to the usual central
t distribution. Therefore, the type II error of the two-sided alternative (for example) would be

where denotes the noncentral t random variable. Finding the type II error probability � for
the t-test involves finding the probability contained between two points of the noncentral t
distribution. Because the noncentral t-random variable has a messy density function, this in-
tegration must be done numerically.

Fortunately, this ugly task has already been done, and the results are summarized in a se-
ries of O.C. curves in Appendix Charts VIe, VIf, VIg, and VIh that plot � for the t-test against
a parameter d for various sample sizes n. Curves are provided for two-sided alternatives on
Charts VIe and VIf. The abscissa scale factor d on these charts is defined as

(9-24)

For the one-sided alternative or , we use charts VIg and VIh with

(9-25)

We note that d depends on the unknown parameter �2. We can avoid this difficulty in sev-
eral ways. In some cases, we may use the results of a previous experiment or prior information
to make a rough initial estimate of �2. If we are interested in evaluating test performance after
the data have been collected, we could use the sample variance s2 to estimate �2. If there is no
previous experience on which to draw in estimating �2, we then define the difference in the
mean d that we wish to detect relative to �. For example, if we wish to detect a small difference
in the mean, we might use a value of (for example), whereas if we are interested
in detecting only moderately large differences in the mean, we might select (for
example). That is, it is the value of the ratio that is important in determining sample size,
and if it is possible to specify the relative size of the difference in means that we are interested in
detecting, then a proper value of d can usually be selected.

EXAMPLE 9-7 Consider the golf club testing problem from Example 9-6. If the mean coefficient of restitu-
tion exceeds 0.82 by as much as 0.02, is the sample size n � 15 adequate to ensure that H0: �
� 0.82 will be rejected with probability at least 0.8?

To solve this problem, we will use the sample standard deviation s � 0.02456 to estimate
�. Then . By referring to the operating characteristic
curves in Appendix Chart VIg (for 	 � 0.05) with d � 0.81 and n � 15, we find that � � 0.10,

d � 0� 0 
� � 0.02
0.02456 � 0.81

0� 0 
�
d � 0� 0 
� � 2

d � 0� 0 
� � 1

d �
0� 
 �0 0

� �
0� 0
�

� � �0� � �0

d �
0� 
 �0 0

� �
0� 0
�

T ¿0

 � P5
t	
2,n
1 � T ¿0 � t	
2,n
16
 � � P5
t	
2,n
1 � T0 � t	
2,n
1 0  � � 06

�1n
�
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approximately. Thus, the probability of rejecting H0: � � 0.82 if the true mean exceeds this
by 0.02 is approximately 1 
 � � 1 
 0.10 � 0.90, and we conclude that a sample size of
n � 15 is adequate to provide the desired sensitivity.

Minitab will also perform power and sample size computations for the one-sample t-test.
Below are several calculations based on the golf club testing problem:
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In the first portion of the computer output, Minitab reproduces the solution to Example 9-7, veri-
fying that a sample size of n � 15 is adequate to give power of at least 0.8 if the mean coefficient
of restitution exceeds 0.82 by at least 0.02. In the middle section of the output, we asked Minitab
to compute the power if the difference in � and we wanted to detect was 0.01. Notice
that with n � 15, the power drops considerably to 0.4425. The final portion of the output is the
sample size required to give a power of at least 0.8 if the difference between � and �0 of interest
is actually 0.01. A much larger n is required to detect this smaller difference.

9-3.4 Likelihood Ratio Approach to Development of Test Procedures
(CD Only)

EXERCISES FOR SECTION 9-3

�0 � 0.82

Power and Sample Size

1-Sample t Test
Testing mean � null (versus � null)
Calculating power for mean � null � difference
Alpha � 0.05 Sigma � 0.02456

Sample
Difference Size Power

0.02 15 0.9117

Power and Sample Size

1-Sample t Test
Testing mean � null (versus � null)
Calculating power for mean � null � difference
Alpha � 0.05 Sigma � 0.02456

Sample
Difference Size Power

0.01 15 0.4425

Power and Sample Size

1-Sample t Test
Testing mean � null (versus � null)
Calculating power for mean � null � difference
Alpha � 0.05 Sigma � 0.02456

Sample Target Actual
Difference Size Power Power

0.01 39 0.8000 0.8029

9-30. An article in the ASCE Journal of Energy Engineer-
ing (1999, Vol. 125, pp. 59–75) describes a study of the ther-
mal inertia properties of autoclaved aerated concrete used as a

building material. Five samples of the material were tested in
a structure, and the average interior temperature (°C) reported
was as follows: 23.01, 22.22, 22.04, 22.62, and 22.59.
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(a) Test the hypotheses H0: � � 22.5 versus H1: � � 22.5, 
using � � 0.05. Find the P-value.

(b) Is there evidence to support the assumption that interior
temperature is normally distributed?

(c) Compute the power of the test if the true mean interior
temperature is as high as 22.75.

(d) What sample size would be required to detect a true mean
interior temperature as high as 22.75 if we wanted the
power of the test to be at least 0.9?

(e) Explain how the question in part (a) could be answered by
constructing a two-sided confidence interval on the mean
interior temperature.

9-31. A 1992 article in the Journal of the American Medical
Association (“A Critical Appraisal of 98.6 Degrees F, the Upper
Limit of the Normal Body Temperature, and Other Legacies of
Carl Reinhold August Wundrlich”) reported body temperature,
gender, and heart rate for a number of subjects. The body tem-
peratures for 25 female subjects follow: 97.8, 97.2, 97.4, 97.6,
97.8, 97.9, 98.0, 98.0, 98.0, 98.1, 98.2, 98.3, 98.3, 98.4, 98.4,
98.4, 98.5, 98.6, 98.6, 98.7, 98.8, 98.8, 98.9, 98.9, and 99.0.
(a) Test the hypotheses H0: � � 98.6 versus ,

using � � 0.05. Find the P-value.
(b) Compute the power of the test if the true mean female

body temperature is as low as 98.0.
(c) What sample size would be required to detect a true mean

female body temperature as low as 98.2 if we wanted the
power of the test to be at least 0.9?

(d) Explain how the question in part (a) could be answered by
constructing a two-sided confidence interval on the mean
female body temperature.

(e) Is there evidence to support the assumption that female
body temperature is normally distributed?

9-32. Cloud seeding has been studied for many decades as
a weather modification procedure (for an interesting study of
this subject, see the article in Technometrics by Simpson,
Alsen, and Eden, “A Bayesian Analysis of a Multiplicative
Treatment Effect in Weather Modification”, Vol. 17, pp. 161–
166). The rainfall in acre-feet from 20 clouds that were se-
lected at random and seeded with silver nitrate follows: 18.0,
30.7, 19.8, 27.1, 22.3, 18.8, 31.8, 23.4, 21.2, 27.9, 31.9, 27.1,
25.0, 24.7, 26.9, 21.8, 29.2, 34.8, 26.7, and 31.6.
(a) Can you support a claim that mean rainfall from seeded

clouds exceeds 25 acre-feet? Use � � 0.01.
(b) Is there evidence that rainfall is normally distributed?
(c) Compute the power of the test if the true mean rainfall is

27 acre-feet.
(d) What sample size would be required to detect a true mean

rainfall of 27.5 acre-feet if we wanted the power of the test
to be at least 0.9?

(e) Explain how the question in part (a) could be answered by
constructing a one-sided confidence bound on the mean
diameter.

9-33. The sodium content of thirty 300-gram boxes of organic
corn flakes was determined. The data (in milligrams) are as

H1: � � 98.6

follows: 131.15, 130.69, 130.91, 129.54, 129.64, 128.77, 130.72,
128.33, 128.24, 129.65, 130.14, 129.29, 128.71, 129.00, 129.39,
130.42, 129.53, 130.12, 129.78, 130.92, 131.15, 130.69, 130.91,
129.54, 129.64, 128.77, 130.72, 128.33, 128.24, and 129.65.
(a) Can you support a claim that mean sodium content of this

brand of cornflakes is 130 milligrams? Use � � 0.05.
(b) Is there evidence that sodium content is normally distrib-

uted?
(c) Compute the power of the test if the true mean sodium

content is 130.5 miligrams.
(d) What sample size would be required to detect a true mean

sodium content of 130.1 milligrams if we wanted the
power of the test to be at least 0.75?

(e) Explain how the question in part (a) could be answered by
constructing a two-sided confidence interval on the mean
sodium content.

9-34. Reconsider the tire testing experiment described in
Exercise 8-22.
(a) The engineer would like to demonstrate that the mean life

of this new tire is in excess of 60,000 kilometers. Formu-
late and test appropriate hypotheses, and draw conclu-
sions using � � 0.05.

(b) Suppose that if the mean life is as long as 61,000 kilome-
ters, the engineer would like to detect this difference with
probability at least 0.90. Was the sample size n � 16 used
in part (a) adequate? Use the sample standard deviation s
as an estimate of � in reaching your decision.

9-35. Reconsider the Izod impact test on PVC pipe described
in Exercise 8-23. Suppose that you want to use the data from this
experiment to support a claim that the mean impact strength
exceeds the ASTM standard (foot-pounds per inch). Formulate
and test the appropriate hypotheses using � � 0.05.

9-36. Reconsider the television tube brightness experiment
in Exercise 8-24. Suppose that the design engineer believes
that this tube will require 300 microamps of current to pro-
duce the desired brightness level. Formulate and test an
appropriate hypothesis using � � 0.05. Find the P-value for
this test. State any necessary assumptions about the underly-
ing distribution of the data.

9-37. Consider the baseball coefficient of restitution data
first presented in Exercise 8-79.
(a) Does the data support the claim that the mean coefficient

of restitution of baseballs exceeds 0.635? Use � � 0.05.
(b) What is the P-value of the test statistic computed in part (a)?
(c) Compute the power of the test if the true mean coefficient

of restitution is as high as 0.64.
(d) What sample size would be required to detect a true mean

coefficient of restitution as high as 0.64 if we wanted the
power of the test to be at least 0.75?

9-38. Consider the dissolved oxygen concentration at TVA
dams first presented in Exercise 8-81.
(a) Test the hypotheses H0: � � 4 versus . Use

� � 0.01.
H1: � � 4
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9-4 HYPOTHESIS TESTS ON THE VARIANCE AND STANDARD
DEVIATION OF A NORMAL POPULATION

Sometimes hypothesis tests on the population variance or standard deviation are needed.
When the population is modeled by a normal distribution, the tests and intervals described in
this section are applicable.

9-4.1 The Hypothesis Testing Procedures

Suppose that we wish to test the hypothesis that the variance of a normal population �2 equals
a specified value, say or equivalently, that the standard deviation � is equal to �0. Let X1,
X2, p , Xn be a random sample of n observations from this population. To test

(9-26)

we will use the test statistic:

H1: �
2 � �2

0

H0: �
2 � �2

0

�2
0,

(b) What is the P-value of the test statistic computed in part (a)?
(c) Compute the power of the test if the true mean dissolved

oxygen concentration is as low as 3.
(d) What sample size would be required to detect a true mean

dissolved oxygen concentration as low as 2.5 if we
wanted the power of the test to be at least 0.9?

9-39. Consider the cigar tar content data first presented in
Exercise 8-82.
(a) Can you support a claim that mean tar content exceeds

1.5? Use 	 � 0.05
(b) What is the P-value of the test statistic computed in part (a)?
(c) Compute the power of the test if the true mean tar content

is 1.6.
(d) What sample size would be required to detect a true mean

tar content of 1.6 if we wanted the power of the test to be
at least 0.8?

9-40. Exercise 6-22 gave data on the heights of female
engineering students at ASU.
(a) Can you support a claim that mean height of female engi-

neering students at ASU is 65 inches? Use 	 � 0.05
(b) What is the P-value of the test statistic computed in part (a)?
(c) Compute the power of the test if the true mean height is

62 inches.

(d) What sample size would be required to detect a true mean
height of 64 inches if we wanted the power of the test to be
at least 0.8?

9-41. Exercise 6-24 presented data on the concentration of
suspended solids in lake water.
(a) Test the hypotheses H0: � � 55 versus , use

	 � 0.05.
(b) What is the P-value of the test statistic computed in part (a)?
(c) Compute the power of the test if the true mean concentra-

tion is as low as 50.
(d) What sample size would be required to detect a true mean

concentration as low as 50 if we wanted the power of the
test to be at least 0.9?

9-42. Exercise 6-25 describes testing golf balls for an over-
all distance standard.
(a) Can you support a claim that mean distance achieved by

this particular golf ball exceeds 280 yards? Use 	 � 0.05.
(b) What is the P-value of the test statistic computed in part (a)?
(c) Compute the power of the test if the true mean distance is

290 yards.
(e) What sample size would be required to detect a true mean

distance of 290 yards if we wanted the power of the test to
be at least 0.8?

H1: � � 55

(9-27)X2
0 �
1n 
 12S2

�2
0

If the null hypothesis is true, the test statistic defined in Equation 9-27
follows the chi-square distribution with n 
 1 degrees of freedom. This is the reference

X2
0H0: �

2 � �2
0
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distribution for this test procedure. Therefore, we calculate , the value of the test statistic 
and the null hypothesis would be rejected if

where and are the upper and lower 100��2 percentage points of the chi-
square distribution with n � 1 degrees of freedom, respectively. Figure 9-10(a) shows the
critical region.

The same test statistic is used for one-sided alternative hypotheses. For the one-sided
hypothesis

(9-28)

we would reject H0 if whereas for the other one-sided hypothesis

(9-29)

we would reject H0 if The one-sided critical regions are shown in Figure 
9-10(b) and (c).

EXAMPLE 9-8 An automatic filling machine is used to fill bottles with liquid detergent. A random sample of
20 bottles results in a sample variance of fill volume of s2 � 0.0153 (fluid ounces)2. If the
variance of fill volume exceeds 0.01 (fluid ounces)2, an unacceptable proportion of bottles
will be underfilled or overfilled. Is there evidence in the sample data to suggest that the man-
ufacturer has a problem with underfilled or overfilled bottles? Use � � 0.05, and assume that
fill volume has a normal distribution.

Using the eight-step procedure results in the following:

1. The parameter of interest is the population variance 	2.

2. H0: 	
2 � 0.01

3. H1: 	
2 � 0.01

4. � � 0.05

5. The test statistic is

�2
0 �
1n � 12s2

	2
0

�2
0 � �2

1��,n�1.

H1: 	
2 � 	2

0

H0: 	
2 � 	2

0

�2
0 � �2

�,n�1,

H1: 	
2 � 	2

0

H0: 	
2 � 	2

0

�2
1��
2,n�1�2

�
2,n�1

�2
0 � �2

�
2, n�1  or if �2
0 � �2

1��
2,n�1

H0: 	
2 � 	2

0

X2
0,�2

0

(a)

/2, n – 1    α

α

�2

n – 1�2

/2, n – 1    α�20

f (x)

x
1 –

/2
α /2

(b)

, n – 1    α�2

n – 1�2

0

f (x)

x

(c)

n – 1�2

, n – 1    α�20

f (x)

x
1 –

α
α

Figure 9-10 Reference distribution for the test of with critical region values for (a) ,
(b) , and (c) .H1: 	

2 � 	2
0H1: 	

2 � 	2
0

H1: 	
2 � 	2

0H0: 	
2 � 	2

0
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6. Reject H0 if 

7. Computations:

8. Conclusions: Since we conclude that there is no
strong evidence that the variance of fill volume exceeds 0.01 (fluid ounces)2.

Using Appendix Table III, it is easy to place bounds on the P-value of a chi-square test.
From inspection of the table, we find that and Since 

we conclude that the P-value for the test in Example 9-8 is in the
interval The actual P-value is P � 0.0649. (This value was obtained from
a calculator.)

9-4.2 �-Error and Choice of Sample Size

Operating characteristic curves for the chi-square tests in Section 9-4.1 are provided in
Appendix Charts VIi through VIn for 	 � 0.05 and 	 � 0.01. For the two-sided alternative
hypothesis of Equation 9-26, Charts VIi and VIj plot � against an abscissa parameter

(9-30)

for various sample sizes n, where � denotes the true value of the standard deviation. Charts
VIk and VIl are for the one-sided alternative while Charts VIm and VIn are for
the other one-sided alternative In using these charts, we think of � as the value
of the standard deviation that we want to detect.

These curves can be used to evaluate the �-error (or power) associated with a particu-
lar test. Alternatively, they can be used to design a test—that is, to determine what sample
size is necessary to detect a particular value of � that differs from the hypothesized
value �0.

EXAMPLE 9-9 Consider the bottle-filling problem from Example 9-8. If the variance of the filling process
exceeds 0.01 (fluid ounces)2, too many bottles will be underfilled. Thus, the hypothesized
value of the standard deviation is �0 � 0.10. Suppose that if the true standard deviation of the
filling process exceeds this value by 25%, we would like to detect this with probability at least
0.8. Is the sample size of n � 20 adequate?

To solve this problem, note that we require

This is the abscissa parameter for Chart VIk. From this chart, with n � 20 and � � 1.25, we
find that � � 0.6. Therefore, there is only about a 40% chance that the null hypothesis will be
rejected if the true standard deviation is really as large as � � 0.125 fluid ounce.

To reduce the �-error, a larger sample size must be used. From the operating characteris-
tic curve with � � 0.20 and � � 1.25, we find that n � 75, approximately. Thus, if we want
the test to perform as required above, the sample size must be at least 75 bottles.

� �
�
�0

�
0.125
0.10

� 1.25

H1: �
2 � �2

0.
H1: �

2 � �2
0,

� �
�
�0

0.05 � P � 0.10.
27.20 � 29.07 � 30.14,

�2
0.05,19 � 30.14.�2

0.10,19 � 27.20

�2
0 � 29.07 � �2

0.05,19 � 30.14,

�2
0 �

1910.01532
0.01

� 29.07

�2
0 � �2

0.05,19 � 30.14.

c09.qxd  5/15/02  8:02 PM  Page 309 RK UL 9 RK UL 9:Desktop Folder:
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310 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

9-43. Consider the rivet holes from Exercise 8-35. If the
standard deviation of hole diameter exceeds 0.01 millimeters,
there is an unacceptably high probability that the rivet will not
fit. Recall that n � 15 and s � 0.008 millimeters.
(a) Is there strong evidence to indicate that the standard devi-

ation of hole diameter exceeds 0.01 millimeters? Use 	 �
0.01. State any necessary assumptions about the underly-
ing distribution of the data.

(b) Find the P-value for this test.
(c) If � is really as large as 0.0125 millimeters, what sample size

will be required to defect this with power of at least 0.8?

9-44. Recall the sugar content of the syrup in canned peaches
from Exercise 8-36. Suppose that the variance is thought to be
�2 � 18 (milligrams)2. A random sample of n � 10 cans yields
a sample standard deviation of s � 4.8 milligrams.
(a) Test the hypothesis H0: �

2 � 18 versus H1: �
2 � 18 using

	 � 0.05.
(b) What is the P-value for this test?
(c) Discuss how part (a) could be answered by constructing a

95% two-sided confidence interval for �.

9-45. Consider the tire life data in Exercise 8-22.
(a) Can you conclude, using 	 � 0.05, that the standard devia-

tion of tire life exceeds 200 kilometers? State any necessary
assumptions about the underlying distribution of the data.

(b) Find the P-value for this test.

9-46. Consider the Izod impact test data in Exercise 8-23.
(a) Test the hypothesis that � � 0.10 against an alternative

specifying that � � 0.10, using 	 � 0.01, and draw a
conclusion. State any necessary assumptions about the
underlying distribution of the data.

(b) What is the P-value for this test?
(c) Could the question in part (a) have been answered by

constructing a 99% two-sided confidence interval for �2?

9-47. Reconsider the percentage of titanium in an alloy used
in aerospace castings from Exercise 8-39. Recall that s � 0.37
and n � 51.
(a) Test the hypothesis H0: � � 0.25 versus H1: � � 0.25

using 	 � 0.05. State any necessary assumptions about
the underlying distribution of the data.

(b) Explain how you could answer the question in part (a) by
constructing a 95% two-sided confidence interval for �.

9-48. Consider the hole diameter data in Exercise 8-35.
Suppose that the actual standard deviation of hole diameter
exceeds the hypothesized value by 50%. What is the probabil-
ity that this difference will be detected by the test described in
Exercise 9-43?

9-49. Consider the sugar content in Exercise 9-44. Suppose
that the true variance is �2 � 40. How large a sample would be
required to detect this difference with probability at least 0.90?

9-5 TESTS ON A POPULATION PROPORTION

It is often necessary to test hypotheses on a population proportion. For example, suppose that
a random sample of size n has been taken from a large (possibly infinite) population and that
X(� n) observations in this sample belong to a class of interest. Then is a point esti-
mator of the proportion of the population p that belongs to this class. Note that n and p are the
parameters of a binomial distribution. Furthermore, from Chapter 7 we know that the sam-
pling distribution of is approximately normal with mean p and variance p(1 
 p)�n, if p is
not too close to either 0 or 1 and if n is relatively large. Typically, to apply this approximation
we require that np and n(1 
 p) be greater than or equal to 5. We will give a large-sample test
that makes use of the normal approximation to the binomial distribution.

9-5.1 Large-Sample Tests on a Proportion

In many engineering problems, we are concerned with a random variable that follows the
binomial distribution. For example, consider a production process that manufactures items
that are classified as either acceptable or defective. It is usually reasonable to model the oc-
currence of defectives with the binomial distribution, where the binomial parameter p repre-
sents the proportion of defective items produced. Consequently, many engineering decision
problems include hypothesis testing about p.

We will consider testing

(9-31)
H1: p � p0

H0: p � p0

P̂

P̂ � X
n
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9-5 TESTS ON A POPULATION PROPORTION 311

An approximate test based on the normal approximation to the binomial will be given. As
noted above, this approximate procedure will be valid as long as p is not extremely close to
zero or one, and if the sample size is relatively large. Let X be the number of observations in
a random sample of size n that belongs to the class associated with p. Then, if the null
hypothesis H0: p � p0 is true, we have X � N[np0, np0(1 � p0)], approximately. To test
H0: p � p0, calculate the test statistic

(9-32)
Z0 �

X � np01np011 � p02

and reject H0: p � p0 if

Note that the standard normal distribution is the reference distribution for this test statistic.
Critical regions for the one-sided alternative hypotheses would be constructed in the usual manner.

EXAMPLE 9-10 A semiconductor manufacturer produces controllers used in automobile engine applications.
The customer requires that the process fallout or fraction defective at a critical manufacturing
step not exceed 0.05 and that the manufacturer demonstrate process capability at this level of
quality using � � 0.05. The semiconductor manufacturer takes a random sample of 200
devices and finds that four of them are defective. Can the manufacturer demonstrate process
capability for the customer?

We may solve this problem using the eight-step hypothesis-testing procedure as follows:

1. The parameter of interest is the process fraction defective p.

2. H0: p � 0.05

3. H1: p � 0.05
This formulation of the problem will allow the manufacturer to make a strong claim
about process capability if the null hypothesis H0: p � 0.05 is rejected.

4. � � 0.05

5. The test statistic is (from Equation 9-32)

where x � 4, n � 200, and p0 � 0.05.

6. Reject H0: p � 0.05 if z0 � �z0.05 � �1.645

7. Computations: The test statistic is

8. Conclusions: Since z0 � �1.95 � �z0.05 � �1.645, we reject H0 and conclude that the
process fraction defective p is less than 0.05. The P-value for this value of the test statistic
z0 is P � 0.0256, which is less than � � 0.05. We conclude that the process is capable.

z0 �
4 � 20010.052120010.052 10.952 � �1.95

z0 �
x � np01np011 � p02

z0 � z�
2 or z0 � �z�
2
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312 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

Another form of the test statistic Z0 in Equation 9-32 is occasionally encountered. Note
that if X is the number of observations in a random sample of size n that belongs to a class of
interest, then is the sample proportion that belongs to that class. Now divide both
numerator and denominator of Z0 in Equation 9-32 by n, giving

or

(9-33)

This presents the test statistic in terms of the sample proportion instead of the number of items
X in the sample that belongs to the class of interest. 

Statistical software packages usually provide the one sample Z-test for a proportion. The
Minitab output for Example 9-10 follows.

Z0 �
P̂ � p01p011 � p02
n

Z0 �
X
n � p01p011 � p02
n

P̂ � X
n

Notice that both the test statistic (and accompanying P-value) and the 95% one-sided upper
confidence bound are displayed. The 95% upper confidence bound is 0.036283, which is less
than 0.05. This is consistent with rejection of the null hypothesis Ho: p � 0.05.

9-5.2 Small-Sample Tests on a Proportion (CD Only)

9-5.3 Type II Error and Choice of Sample Size

It is possible to obtain closed-form equations for the approximate 
-error for the tests in
Section 9-5.1. Suppose that p is the true value of the population proportion. The approximate

-error for the two-sided alternative H1: p � p0 is

(9-34)

If the alternative is H1: p � p0,

(9-35)
 � 1 � � ap0 � p � z�1p011 � p02
n1p11 � p2
n b


 � � ap0 � p � z�
21p011 � p02
n1p11 � p2
n b � � ap0 � p � z�
21p011 � p02
n1p11 � p2
n b

Test and CI for One Proportion

Test of p � 0.05 vs p � 0.05
Sample X N Sample p 95.0% Upper Bound Z-Value P-Value
1 4 200 0.020000 0.036283 �1.95 0.026
* NOTE * The normal approximation may be inaccurate for small samples.
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9-5 TESTS ON A POPULATION PROPORTION 313

whereas if the alternative is H1: p � p0,

(9-36)

These equations can be solved to find the approximate sample size n that gives a test of level
	 that has a specified � risk. The sample size equations are

� � � ap0 
 p � z	1p011 
 p02
n1p11 
 p2
n b

for the two-sided alternative and

for a one-sided alternative.

EXAMPLE 9-11 Consider the semiconductor manufacturer from Example 9-10. Suppose that its process fall-
out is really p � 0.03. What is the �-error for a test of process capability that uses n � 200
and 	 � 0.05?

The �-error can be computed using Equation 9-35 as follows:

Thus, the probability is about 0.7 that the semiconductor manufacturer will fail to con-
clude that the process is capable if the true process fraction defective is p � 0.03 (3%). That
is, the power of the test against this particular alternative is only about 0.3. This appears to be
a large �-error (or small power), but the difference between p � 0.05 and p � 0.03 is fairly
small, and the sample size n � 200 is not particularly large.

Suppose that the semiconductor manufacturer was willing to accept a �-error as large as
0.10 if the true value of the process fraction defective was p � 0.03. If the manufacturer con-
tinues to use 	 � 0.05, what sample size would be required?

The required sample size can be computed from Equation 9-38 as follows:

where we have used p � 0.03 in Equation 9-38. Note that n � 832 is a very large sample size.
However, we are trying to detect a fairly small deviation from the null value p0 � 0.05.

� 832

n � c 1.64510.0510.952 � 1.2810.0310.972
0.03 
 0.05

d 2

� � 1 
 � c 0.05 
 0.03 
 11.645210.0510.952
20010.0311 
 0.032
200
d � 1 
 �1
0.442 � 0.67

(9-37)n � c z	
21p011 
 p02 � z�1p11 
 p2
p 
 p0

d 2

(9-38)n � c z	1p011 
 p02 � z�1p11 
 p2
p 
 p0

d 2

c09.qxd  5/15/02  8:02 PM  Page 313 RK UL 9 RK UL 9:Desktop Folder:



314 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

The first part of the output shows the power calculation based on the situation described in
Example 9-11, where the true proportion is really 0.03. The power calculation from Minitab
agrees with the results from Equation 9-35 in Example 9-11. The second part of the output
computes the sample size necessary to give a power of 0.9 (� � 0.1) if p � 0.03. Again, the
results agree closely with those obtained from Equation 9-38. The final portion of the display
shows the sample size that would be required if p � 0.03 and the power requirement is re-
laxed to 0.75. Notice that the sample size of n � 561 is still quite large because the difference
between p � 0.05 and p � 0.03 is fairly small.

EXERCISES FOR SECTION 9-5

Power and Sample Size

Test for One Proportion
Testing proportion � 0.05 (versus � 0.05)
Alpha � 0.05

Alternative Sample
Proportion Size Power
3.00E-02 200 0.3287

Power and Sample Size

Test for One Proportion
Testing proportion � 0.05 (versus � 0.05)
Alpha � 0.05

Alternative Sample Target Actual
Proportion Size Power Power
3.00E-02 833 0.9000 0.9001

Power and Sample Size

Test for One Proportion
Testing proportion � 0.05 (versus � 0.05)
Alpha � 0.05

Alternative Sample Target Actual
Proportion Size Power Power
3.00E-02 561 0.7500 0.7503

9-50. In a random sample of 85 automobile engine crank-
shaft bearings, 10 have a surface finish roughness that exceeds
the specifications. Does this data present strong evidence that
the proportion of crankshaft bearings exhibiting excess sur-
face roughness exceeds 0.10? State and test the appropriate
hypotheses using 	 � 0.05.

9-51. Continuation of Exercise 9-50. If it is really the
situation that p � 0.15, how likely is it that the test proce-
dure in Exercise 9-50 will not reject the null hypothesis? If

p � 0.15, how large would the sample size have to be for us
to have a probability of correctly rejecting the null hypothe-
sis of 0.9?

9-52. Reconsider the integrated circuits described in
Exercise 8-48.
(a) Use the data to test H0: p � 0.05 versus H1: p � 0.05. Use

	 � 0.05.
(b) Find the P-value for the test.

Minitab will also perform power and sample size calculations for the one-sample Z-test on a
proportion. Output from Minitab for the engine controllers tested in Example 9-10 follows.
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9-7 TESTING FOR GOODNESS OF FIT 315

9-6 SUMMARY TABLE OF INFERENCE PROCEDURES 
FOR A SINGLE SAMPLE

The table in the end papers of this book (inside front cover) presents a summary of all the
single-sample inference procedures from Chapters 8 and 9. The table contains the null
hypothesis statement, the test statistic, the various alternative hypotheses and the criteria
for rejecting H0, and the formulas for constructing the 100(1 � �)% two-sided confidence
interval.

9-7 TESTING FOR GOODNESS OF FIT

The hypothesis-testing procedures that we have discussed in previous sections are designed
for problems in which the population or probability distribution is known and the hypotheses
involve the parameters of the distribution. Another kind of hypothesis is often encountered:
we do not know the underlying distribution of the population, and we wish to test the hypoth-
esis that a particular distribution will be satisfactory as a population model. For example, we
might wish to test the hypothesis that the population is normal.

We have previously discussed a very useful graphical technique for this problem called
probability plotting and illustrated how it was applied in the case of a normal distribution.
In this section, we describe a formal goodness-of-fit test procedure based on the chi-square
distribution.

9-53. Consider the defective circuit data in Exercise 8-48.
(a) Do the data support the claim that the fraction of defective

units produced is less than 0.05, using � � 0.05?
(b) Find the P-value for the test.

9-54. An article in Fortune (September 21, 1992) claimed
that nearly one-half of all engineers continue academic studies
beyond the B.S. degree, ultimately receiving either an M.S. or
a Ph.D. degree. Data from an article in Engineering Horizons
(Spring 1990) indicated that 117 of 484 new engineering
graduates were planning graduate study.
(a) Are the data from Engineering Horizons consistent with

the claim reported by Fortune? Use � � 0.05 in reaching
your conclusions.

(b) Find the P-value for this test.
(c) Discuss how you could have answered the question in part

(a) by constructing a two-sided confidence interval on p.

9-55. A manufacturer of interocular lenses is qualifying a
new grinding machine and will qualify the machine if the per-
centage of polished lenses that contain surface defects does
not exceed 2%. A random sample of 250 lenses contains six
defective lenses.
(a) Formulate and test an appropriate set of hypotheses to de-

termine if the machine can be qualified. Use � � 0.05.
(b) Find the P-value for the test in part (a).

9-56. A researcher claims that at least 10% of all football
helmets have manufacturing flaws that could potentially cause
injury to the wearer. A sample of 200 helmets revealed that 16
helmets contained such defects.
(a) Does this finding support the researcher’s claim? Use 

� � 0.01.
(b) Find the P-value for this test.

9-57. A random sample of 500 registered voters in Phoenix
is asked if they favor the use of oxygenated fuels year-round
to reduce air pollution. If more than 315 voters respond posi-
tively, we will conclude that at least 60% of the voters favor
the use of these fuels.
(a) Find the probability of type I error if exactly 60% of the

voters favor the use of these fuels.
(b) What is the type II error probability 
 if 75% of the voters

favor this action?

9-58. The advertized claim for batteries for cell phones is set
at 48 operating hours, with proper charging procedures. A study
of 5000 batteries is carried out and 15 stop operating prior to 48
hours. Do these experimental results support the claim that less
than 0.2 percent of the company’s batteries will fail during the
advertized time period, with proper charging procedures? Use a
hypothesis-testing procedure with � � 0.01.
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316 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

The test procedure requires a random sample of size n from the population whose proba-
bility distribution is unknown. These n observations are arranged in a frequency histogram,
having k bins or class intervals. Let Oi be the observed frequency in the ith class interval. From
the hypothesized probability distribution, we compute the expected frequency in the ith class
interval, denoted Ei. The test statistic is

Number of Observed
Defects Frequency

0 32
1 15
2 9
3 4

It can be shown that, if the population follows the hypothesized distribution, has, approx-
imately, a chi-square distribution with k 
 p 
 1 degrees of freedom, where p represents the
number of parameters of the hypothesized distribution estimated by sample statistics. This ap-
proximation improves as n increases. We would reject the hypothesis that the distribution of
the population is the hypothesized distribution if the calculated value of the test statistic

One point to be noted in the application of this test procedure concerns the magnitude
of the expected frequencies. If these expected frequencies are too small, the test statistic 
will not reflect the departure of observed from expected, but only the small magnitude of
the expected frequencies. There is no general agreement regarding the minimum value of
expected frequencies, but values of 3, 4, and 5 are widely used as minimal. Some writers
suggest that an expected frequency could be as small as 1 or 2, so long as most of them ex-
ceed 5. Should an expected frequency be too small, it can be combined with the expected
frequency in an adjacent class interval. The corresponding observed frequencies would then
also be combined, and k would be reduced by 1. Class intervals are not required to be of
equal width.

We now give two examples of the test procedure.

EXAMPLE 9-12 A Poisson Distribution
The number of defects in printed circuit boards is hypothesized to follow a Poisson distribu-
tion. A random sample of n � 60 printed boards has been collected, and the following num-
ber of defects observed.

X0
2

�2
0 � �2

	,k
p
1.

X2
0

(9-39)X 2
0 �a

k

i�1

1Oi 
 Ei22
Ei

The mean of the assumed Poisson distribution in this example is unknown and must be
estimated from the sample data. The estimate of the mean number of defects per board is the
sample average, that is, (32 � 0 � 15 � 1 � 9 � 2 � 4 � 3)�60 � 0.75. From the Poisson
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9-7 TESTING FOR GOODNESS OF FIT 317

distribution with parameter 0.75, we may compute pi, the theoretical, hypothesized probabil-
ity associated with the ith class interval. Since each class interval corresponds to a particular
number of defects, we may find the pi as follows:

The expected frequencies are computed by multiplying the sample size n � 60 times the
probabilities pi. That is, Ei � npi. The expected frequencies follow:

 p4 � P1X � 32 � 1 
 1p1 � p2 � p32 � 0.041

 p3 � P1X � 22 �
e
0.7510.7522

2!
� 0.133

 p2 � P1X � 12 �
e
0.7510.7521

1!
� 0.354

 p1 � P1X � 02 �
e
0.7510.7520

0!
� 0.472

Since the expected frequency in the last cell is less than 3, we combine the last two cells:

The chi-square test statistic in Equation 9-39 will have k 
 p 
 1 � 3 
 1 
 1 � 1 degree
of freedom, because the mean of the Poisson distribution was estimated from the data.

The eight-step hypothesis-testing procedure may now be applied, using 	 � 0.05, as
follows:

1. The variable of interest is the form of the distribution of defects in printed circuit boards.

2. H0: The form of the distribution of defects is Poisson.

3. H1: The form of the distribution of defects is not Poisson.

4. 	 � 0.05

5. The test statistic is

�2
0 �a

k

i�1

1oi 
 Ei22
Ei

Number of Expected
Defects Probability Frequency

0 0.472 28.32
1 0.354 21.24
2 0.133 7.98
3 (or more) 0.041 2.46

Number of Observed Expected
Defects Frequency Frequency

0 32 28.32
1 15 21.24
2 (or more) 13 10.44
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318 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

6. Reject H0 if 

7. Computations:

8. Conclusions: Since �2
0 � 2.94 � �2

0.05,1 � 3.84, we are unable to reject the null hypothesis
that the distribution of defects in printed circuit boards is Poisson. The P-value for the
test is P � 0.0864. (This value was computed using an HP-48 calculator.)

EXAMPLE 9-13 A Continuous Distribution
A manufacturing engineer is testing a power supply used in a notebook computer and, using 
	 � 0.05, wishes to determine whether output voltage is adequately described by a normal dis-
tribution. Sample estimates of the mean and standard deviation of V and s � 0.08 V
are obtained from a random sample of n � 100 units.

A common practice in constructing the class intervals for the frequency distribution used
in the chi-square goodness-of-fit test is to choose the cell boundaries so that the expected fre-
quencies Ei � npi are equal for all cells. To use this method, we want to choose the cell bound-
aries a0, a1, p , ak for the k cells so that all the probabilities

are equal. Suppose we decide to use k � 8 cells. For the standard normal distribution, the inter-
vals that divide the scale into eight equally likely segments are [0, 0.32), [0.32, 0.675) [0.675,
1.15), [1.15, �) and their four “mirror image” intervals on the other side of zero. For each inter-
val pi � 1�8 � 0.125, so the expected cell frequencies are Ei � npi� 100(0.125) � 12.5. The
complete table of observed and expected frequencies is as follows:

pi � P1ai
1 � X � ai2 � �
ai

ai
1

 f  1x2 dx

x � 5.04

�2
0 �
132 
 28.3222

28.32
�
115 
 21.2422

21.24
�
113 
 10.4422

10.44
� 2.94

�2
0 � �2

0.05,1 � 3.84.

Class Observed Expected
Interval Frequency oi Frequency Ei

x � 4.948 12 12.5
4.948 � x � 4.986 14 12.5
4.986 � x � 5.014 12 12.5
5.014 � x � 5.040 13 12.5
5.040 � x � 5.066 12 12.5
5.066 � x � 5.094 11 12.5
5.094 � x � 5.132 12 12.5
5.132 � x 14 12.5

Totals 100 100

The boundary of the first class interval is . The second class interval is
and so forth. We may apply the eight-step hypothesis-testing proce-

dure to this problem.

1. The variable of interest is the form of the distribution of power supply voltage.

2. H0: The form of the distribution is normal.

3x 
 1.15s, x 
 0.675s2 x 
 1.15s � 4.948
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9-7 TESTING FOR GOODNESS OF FIT 319

3. H1: The form of the distribution is nonnormal.

4. 	 � 0.05

5. The test statistic is

6. Since two parameters in the normal distribution have been estimated, the chi-square
statistic above will have k 
 p 
 1 � 8 
 2 
 1 � 5 degrees of freedom.
Therefore, we will reject H0 if �2

0 � �2
0.05,5 � 11.07.

7. Computations:

8. Conclusions: Since �2
0 � 0.64 � �2

0.05,5 � 11.07, we are unable to reject H0, and there
is no strong evidence to indicate that output voltage is not normally distributed. The
P-value for the chi-square statistic �2

0 � 0.64 is P � 0.9861.

EXERCISES FOR SECTION 9-7

 � 0.64

 �
112 
 12.522

12.5
�
114 
 12.522

12.5
� p �

114 
 12.522
12.5

 �2
0 � a

8

i�1

1oi 
 Ei22
Ei

�2
0 � a

k

i�1

1oi 
 Ei22
Ei

defined as the number of calls during that one-hour period.
The relative frequency of calls was recorded and reported as

Value 5 6 8 9 10
Relative
Frequency 0.067 0.067 0.100 0.133 0.200

Value 11 12 13 14 15
Relative
Frequency 0.133 0.133 0.067 0.033 0.067

(a) Does the assumption of a Poisson distribution seem appro-
priate as a probability model for this data? Use 	 � 0.05.

(b) Calculate the P-value for this test.

9-62. Consider the following frequency table of observa-
tions on the random variable X:

Values 0 1 2 3 4
Frequency 4 21 10 13 2

(a) Based on these 50 observations, is a binomial distribution
with n � 6 and p � 0.25 an appropriate model? Perform
a goodness-of-fit procedure with 	 � 0.05.

(b) Calculate the P-value for this test.

9-59. Consider the following frequency table of observa-
tions on the random variable X.

Values 0 1 2 3 4
Observed Frequency 24 30 31 11 4

(a) Based on these 100 observations, is a Poisson distribution
with a mean of 1.2 an appropriate model? Perform a good-
ness-of-fit procedure with 	 � 0.05.

(b) Calculate the P-value for this test.

9-60. Let X denote the number of flaws observed on a
large coil of galvanized steel. Seventy-five coils are in-
spected and the following data were observed for the values
of X:

Values 1 2 3 4 5 6 7 8
Observed
Frequency 1 11 8 13 11 12 10 9

(a) Does the assumption of the Poisson distribution seem ap-
propriate as a probability model for this data? Use 	 � 0.01.

(b) Calculate the P-value for this test.

9-61. The number of calls arriving at a switchboard
from noon to 1 PM during the business days Monday through
Friday is monitored for six weeks (i.e., 30 days). Let X be
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320 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

9-63. Define X as the number of underfilled bottles from a
filling operation in a carton of 24 bottles. Sixty cartons are
inspected and the following observations on X are recorded:

Values 0 1 2 3
Frequency 39 23 12 1

(a) Based on these 75 observations, is a binomial distribution
an appropriate model? Perform a goodness-of-fit proce-
dure with � � 0.05.

(b) Calculate the P-value for this test.

9-64. The number of cars passing eastbound through the in-
tersection of Mill and University Avenues has been tabulated
by a group of civil engineering students. They have obtained
the data in the adjacent table:
(a) Does the assumption of a Poisson distribution seem

appropriate as a probability model for this process? Use
� � 0.05.

(b) Calculate the P-value for this test.

Vehicles Vehicles
per Observed per Observed

Minute Frequency Minute Frequency

40 14 53 102

41 24 54 96

42 57 55 90

43 111 56 81

44 194 57 73

45 256 58 64

46 296 59 61

47 378 60 59

48 250 61 50

49 185 62 42

50 171 63 29

51 150 64 18

52 110 65 15

9-8 CONTINGENCY TABLE TESTS

Many times, the n elements of a sample from a population may be classified according to two
different criteria. It is then of interest to know whether the two methods of classification are
statistically independent; for example, we may consider the population of graduating engi-
neers, and we may wish to determine whether starting salary is independent of academic dis-
ciplines. Assume that the first method of classification has r levels and that the second method
has c levels. We will let Oij be the observed frequency for level i of the first classification
method and level j on the second classification method. The data would, in general, appear as
shown in Table 9-2. Such a table is usually called an r � c contingency table.

We are interested in testing the hypothesis that the row-and-column methods of classifi-
cation are independent. If we reject this hypothesis, we conclude there is some interaction be-
tween the two criteria of classification. The exact test procedures are difficult to obtain, but an
approximate test statistic is valid for large n. Let pij be the probability that a randomly selected
element falls in the ijth cell, given that the two classifications are independent. Then pij � uivj,

Table 9-2 An r � c Contingency Table

Columns

1 2 p c

1 O11 O12 p O1c

Rows
2 O21 O22 p O2c

r Or1 Or2 p Orc

ooooo
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9-8 CONTINGENCY TABLE TESTS 321

where ui is the probability that a randomly selected element falls in row class i and vj is the
probability that a randomly selected element falls in column class j. Now, assuming inde-
pendence, the estimators of ui and vj are

(9-40)

Therefore, the expected frequency of each cell is

(9-41)

Then, for large n, the statistic

(9-42)

has an approximate chi-square distribution with (r � 1)(c � 1) degrees of freedom if the null
hypothesis is true. Therefore, we would reject the hypothesis of independence if the observed
value of the test statistic �2

0 exceeded �2
�,(r�1)(c�1).

EXAMPLE 9-14 A company has to choose among three pension plans. Management wishes to know whether
the preference for plans is independent of job classification and wants to use � � 0.05. The
opinions of a random sample of 500 employees are shown in Table 9-3.

To find the expected frequencies, we must first compute � (340�500) � 0.68, �
(160�500) � 0.32, � (200�500) � 0.40, � (200�500) � 0.40, and � (100�500) �
0.20. The expected frequencies may now be computed from Equation 9-41. For example, the
expected number of salaried workers favoring pension plan 1 is

The expected frequencies are shown in Table 9-4.
The eight-step hypothesis-testing procedure may now be applied to this problem.

1. The variable of interest is employee preference among pension plans.

2. H0: Preference is independent of salaried versus hourly job classification.

E11 � nû1v̂1 � 50010.682 10.402 � 136

v̂3v̂2v̂1

û2û1

�2
0 � a

r

i�1
a

c

j�1

1Oij � Eij22
Eij

Eij � nûiv̂j �
1
na

c

j�1
Oija

r

i�1
Oij

 vjˆ �
1
n  a

r

i�1
Oij

 uiˆ �
1
n a

c

j�1
Oij

Table 9-3 Observed Data for Example 9-14

Pension Plan

Job Classification 1 2 3 Totals

Salaried workers 160 140 40 340
Hourly workers 40 60 60 160

Totals 200 200 100 500

Table 9-4 Expected Frequencies for Example 9-14

Pension Plan

Job Classification 1 2 3 Totals

Salaried workers 136 136 68 340
Hourly workers 64 64 32 160

Totals 200 200 100 500
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322 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

3. H1: Preference is not independent of salaried versus hourly job classification.

4. 	 � 0.05

5. The test statistic is

6. Since r � 2 and c � 3, the degrees of freedom for chi-square are (r 
 1)(c 
 1) �
(1)(2) � 2, and we would reject H0 if �2

0 � �2
0.05,2 � 5.99.

7. Computations:

8. Conclusions: Since , we reject the hypothesis of inde-
pendence and conclude that the preference for pension plans is not independent of
job classification. The P-value for is . (This value
was computed using a hand-held calculator.) Further analysis would be necessary to
explore the nature of the association between these factors. It might be helpful to
examine the table of observed minus expected frequencies.

Using the two-way contingency table to test independence between two variables of
classification in a sample from a single population of interest is only one application of con-
tingency table methods. Another common situation occurs when there are r populations of
interest and each population is divided into the same c categories. A sample is then taken from
the ith population, and the counts are entered in the appropriate columns of the ith row. In this
situation we want to investigate whether or not the proportions in the c categories are the same
for all populations. The null hypothesis in this problem states that the populations are homo-
geneous with respect to the categories. For example, when there are only two categories, such
as success and failure, defective and nondefective, and so on, the test for homogeneity is really
a test of the equality of r binomial parameters. Calculation of expected frequencies, determi-
nation of degrees of freedom, and computation of the chi-square statistic for the test for ho-
mogeneity are identical to the test for independence.

EXERCISES FOR SECTION 9-8

P � 1.671 � 10
11�2
0 � 49.63

�2
0 � 49.63 � �2

0.05,2 � 5.99

�
160 
 6422

64
�
160 
 3222

32
� 49.63

 �
1160 
 13622

136
�
1140 
 13622

136
�
140 
 6822

68
�
140 
 6422

64

 �2
0 � a

2

i�1
a

3

j�1

1oij 
 Eij22
Eij

�2
0 � a

r

i�1
a

c

j�1

1oij 
 Eij22
Eij

Machines

Shift A B C D

1 41 20 12 16
2 31 11 9 14
3 15 17 16 10

9-65. A company operates four machines three shifts each
day. From production records, the following data on the num-
ber of breakdowns are collected:
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9-8 CONTINGENCY TABLE TESTS 323

Test the hypothesis (using 	 � 0.05) that breakdowns are
independent of the shift. Find the P-value for this test.

9-66. Patients in a hospital are classified as surgical or med-
ical. A record is kept of the number of times patients require
nursing service during the night and whether or not these
patients are on Medicare. The data are presented here:

Would you conclude that the type of failure is independent of the
mounting position? Use 	 � 0.01. Find the P-value for this test.

9-70. A random sample of students is asked their opinions on
a proposed core curriculum change. The results are as follows.

Operation Research Grade

Statistics Grade A B C Other

A 25 6 17 13
B 17 16 15 6
C 18 4 18 10

Other 10 8 11 20

Lateral Deflection

Range (yards) Left Normal Right

0–1,999 6 14 8
2,000–5,999 9 11 4
6,000–11,999 8 17 6

Failure Type

Mounting Position A B C D

1 22 46 18 9
2 4 17 6 12

Opinion

Class Favoring Opposing

Freshman 120 80
Sophomore 70 130
Junior 60 70
Senior 40 60

Test the hypothesis (using 	 � 0.01) that calls by surgical-
medical patients are independent of whether the patients are
receiving Medicare. Find the P-value for this test.

9-67. Grades in a statistics course and an operations re-
search course taken simultaneously were as follows for a
group of students.

Are the grades in statistics and operations research related?
Use 	 � 0.01 in reaching your conclusion. What is the 
P-value for this test?

9-68. An experiment with artillery shells yields the follow-
ing data on the characteristics of lateral deflections and
ranges. Would you conclude that deflection and range are in-
dependent? Use 	 � 0.05. What is the P-value for this test?

9-69. A study is being made of the failures of an electronic
component. There are four types of failures possible and two
mounting positions for the device. The following data have
been taken:

Test the hypothesis that opinion on the change is independent of
class standing. Use 	 � 0.05. What is the P-value for this test?

Supplemental Exercises

9-71. A manufacturer of semiconductor devices takes a ran-
dom sample of size n of chips and tests them, classifying each
chip as defective or nondefective. Let Xi � 0 if the chip is non-
defective and Xi � 1 if the chip is defective. The sample frac-
tion defective is

What are the sampling distribution, the sample mean, and
sample variance estimates of p̂ when
(a) The sample size is n � 50?
(b) The sample size is n � 80?
(c) The sample size is n � 100?
(d) Compare your answers to parts (a)–(c) and comment on

the effect of sample size on the variance of the sampling
distribution.

9-72. Consider the situation of Exercise 9-76. After collecting
a sample, we are interested in testing H0: p � 0.10 versus

with 	 � 0.05. For each of the following situa-
tions, compute the p-value for this test:
(a) n � 50, p̂ � 0.095
(b) n � 100, p̂ � 0.095
(c) n � 500, p̂ � 0.095
(d) n � 1000, p̂ � 0.095
(e) Comment on the effect of sample size on the observed 

P-value of the test.

H1: p � 0.10

p̂i �
X1 � X2 � p � Xn

n

Patient Category

Medicare Surgical Medical

Yes 46 52
No 36 43
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9-73. An inspector of flow metering devices used to admin-
ister fluid intravenously will perform a hypothesis test to
determine whether the mean flow rate is different from the flow
rate setting of 200 milliliters per hour. Based on prior
information the standard deviation of the flow rate is assumed
to be known and equal to 12 milliliters per hour. For each of the
following sample sizes, and a fixed � � 0.05, find the probabil-
ity of a type II error if the true mean is 205 milliliters per hour.
(a) n � 20
(b) n � 50
(c) n � 100
(d) Does the probability of a type II error increase or decrease

as the sample size increases? Explain your answer.

9-74. Suppose that in Exercise 9-73, the experimenter had
believed that � � 14. For each of the following sample sizes,
and a fixed � � 0.05, find the probability of a type II error if
the true mean is 205 milliliters per hour. 
(a) n � 20
(b) n � 50
(c) n � 100
(d) Comparing your answers to those in Exercise 9-73, does

the probability of a type II error increase or decrease with
the increase in standard deviation? Explain your answer.

9-75. The marketers of shampoo products know that cus-
tomers like their product to have a lot of foam. A manufacturer
of shampoo claims that the foam height of his product exceeds
200 millimeters. It is known from prior experience that the
standard deviation of foam height is 8 millimeters. For each of
the following sample sizes, and a fixed � � 0.05, find the
power of the test if the true mean is 204 millimeters.
(a) n � 20
(b) n � 50
(c) n � 100
(d) Does the power of the test increase or decrease as the sam-

ple size increases? Explain your answer.

9-76. Suppose we wish to test the hypothesis H0: � � 85
versus the alternative H1: � � 85 where � � 16. Suppose that
the true mean is � � 86 and that in the practical context of the
problem this is not a departure from �0 � 85 that has practical
significance.
(a) For a test with � � 0.01, compute � for the sample sizes 

n � 25, 100, 400, and 2500 assuming that � � 86.
(b) Suppose the sample average is . Find the P-value

for the test statistic for the different sample sizes speci-
fied in part (a). Would the data be statistically significant
at � � 0.01?

(c) Comment on the use of a large sample size in this problem.

9-77. The cooling system in a nuclear submarine consists of
an assembly of welded pipes through which a coolant is circu-
lated. Specifications require that weld strength must meet or
exceed 150 psi.
(a) Suppose that the design engineers decide to test the

hypothesis H0: � � 150 versus H1: � � 150. Explain

x � 86

why this choice of alternative hypothesis is better than 
H1: � � 150.

(b) A random sample of 20 welds results in psi and
s � 11.3 psi. What conclusions can you draw about the
hypothesis in part (a)? State any necessary assumptions
about the underlying distribution of the data.

9-78. Suppose we are testing H0: p � 0.5 versus H0: p 	 0.5.
Suppose that p is the true value of the population proportion.
(a) Using � � 0.05, find the power of the test for n � 100,

150, and 300 assuming that p � 0.6. Comment on the
effect of sample size on the power of the test.

(b) Using � � 0.01, find the power of the test for n � 100,
150, and 300 assuming that p � 0.6. Compare your an-
swers to those from part (a) and comment on the effect of
� on the power of the test for different sample sizes.

(c) Using � � 0.05, find the power of the test for n � 100, as-
suming p � 0.08. Compare your answer to part (a) and
comment on the effect of the true value of p on the power
of the test for the same sample size and � level.

(d) Using � � 0.01, what sample size is required if p � 0.6
and we want � � 0.05? What sample is required if 
p � 0.8 and we want � � 0.05? Compare the two sam-
ple sizes and comment on the effect of the true value of
p on sample size required when � is held approximately
constant.

9-79. Consider the television picture tube brightness exper-
iment described in Exercise 8-24.
(a) For the sample size n � 10, do the data support the

claim that the standard deviation of current is less than
20 microamps?

(b) Suppose instead of n � 10, the sample size was 51.
Repeat the analysis performed in part (a) using n � 51.

(c) Compare your answers and comment on how sample size
affects your conclusions drawn in parts (a) and (b).

9-80. Consider the fatty acid measurements for the diet
margarine described in Exercise 8-25.
(a) For the sample size n � 6, using a two-sided alternative

hypothesis and � � 0.01, test H0: �
2 � 1.0.

(b) Suppose instead of n � 6, the sample size was n � 51.
Repeat the analysis performed in part (a) using n � 51.

(c) Compare your answers and comment on how sample size
affects your conclusions drawn in parts (a) and (b).

9-81. A manufacturer of precision measuring instruments
claims that the standard deviation in the use of the instruments
is at most 0.00002 millimeter. An analyst, who is unaware of
the claim, uses the instrument eight times and obtains a sam-
ple standard deviation of 0.00001 millimeter.
(a) Confirm using a test procedure and an � level of 0.01 that

there is insufficient evidence to support the claim that the
standard deviation of the instruments is at most 0.00002.
State any necessary assumptions about the underlying dis-
tribution of the data.

x � 153.7
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(b) Explain why the sample standard deviation, s � 0.00001,
is less than 0.00002, yet the statistical test procedure re-
sults do not support the claim.

9-82. A biotechnology company produces a therapeutic
drug whose concentration has a standard deviation of 4 grams
per liter. A new method of producing this drug has been pro-
posed, although some additional cost is involved. Management
will authorize a change in production technique only if the
standard deviation of the concentration in the new process is
less than 4 grams per liter. The researchers chose n � 10 and
obtained the following data in grams per liter. Perform the nec-
essary analysis to determine whether a change in production
technique should be implemented.

16.628 16.630
16.622 16.631
16.627 16.624
16.623 16.622
16.618 16.626

9-83. Consider the 40 observations collected on the number
of nonconforming coil springs in production batches of size
50 given in Exercise 6-79.
(a) Based on the description of the random variable and these

40 observations, is a binomial distribution an appropriate
model? Perform a goodness-of-fit procedure with 	 � 0.05.

(b) Calculate the P-value for this test.

9-84. Consider the 20 observations collected on the number
of errors in a string of 1000 bits of a communication channel
given in Exercise 6-80.
(a) Based on the description of the random variable and these

20 observations, is a binomial distribution an appropriate
model? Perform a goodness-of-fit procedure with 	 � 0.05.

(b) Calculate the P-value for this test.

9-85. Consider the spot weld shear strength data in Exercise
6-23. Does the normal distribution seem to be a reasonable
model for these data? Perform an appropriate goodness-of-fit
test to answer this question.

9-86. Consider the water quality data in Exercise 6-24.
(a) Do these data support the claim that mean concentration

of suspended solids does not exceed 50 parts per million?
Use 	 � 0.05.

(b) What is the P-value for the test in part (a)?
(c) Does the normal distribution seem to be a reasonable

model for these data? Perform an appropriate goodness-
of-fit test to answer this question.

9-87. Consider the golf ball overall distance data in
Exercise 6-25.
(a) Do these data support the claim that the mean overall dis-

tance for this brand of ball does not exceed 270 yards?
Use 	 � 0.05.

(b) What is the P-value for the test in part (a)?

(c) Do these data appear to be well modeled by a normal dis-
tribution? Use a formal goodness-of-fit test in answering
this question.

9-88. Consider the baseball coefficient of restitution data
in Exercise 8-79. If the mean coefficient of restitution ex-
ceeds 0.635, the population of balls from which the sample
has been taken will be too “lively” and considered unaccept-
able for play.
(a) Formulate an appropriate hypothesis testing procedure to

answer this question.
(b) Test these hypotheses using the data in Exercise 8-79 and

draw conclusions, using 	 � 0.01.
(c) Find the P-value for this test.
(d) In Exercise 8-79(b), you found a 99% confidence interval

on the mean coefficient of restitution. Does this interval,
or a one-sided CI, provide additional useful information to
the decision maker? Explain why or why not.

9-89. Consider the dissolved oxygen data in Exercise 8-81.
Water quality engineers are interested in knowing whether
these data support a claim that mean dissolved oxygen con-
centration is 2.5 milligrams per liter.
(a) Formulate an appropriate hypothesis testing procedure to

investigate this claim.
(b) Test these hypotheses, using 	 � 0.05, and the data from

Exercise 8-81.
(c) Find the P-value for this test.
(d) In Exercise 8-81(b) you found a 95% CI on the mean dis-

solved oxygen concentration. Does this interval provide
useful additional information beyond that of the hypothe-
sis testing results? Explain your answer.

9-90. The mean pull-off force of an adhesive used in man-
ufacturing a connector for an automotive engine application
should be at least 75 pounds. This adhesive will be used un-
less there is strong evidence that the pull-off force does not
meet this requirement. A test of an appropriate hypothesis is
to be conducted with sample size n � 10 and 	 � 0.05.
Assume that the pull-off force is normally distributed, and �
is not known.
(a) If the true standard deviation is � � 1, what is the risk that

the adhesive will be judged acceptable when the true mean
pull-off force is only 73 pounds? Only 72 pounds?

(b) What sample size is required to give a 90% chance of
detecting that the true mean is only 72 pounds when � � 1?

(c) Rework parts (a) and (b) assuming that � � 2. How much
impact does increasing the value of � have on the answers
you obtain?

c09.qxd  5/15/02  8:02 PM  Page 325 RK UL 9 RK UL 9:Desktop Folder:



326 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

MIND-EXPANDING EXERCISES

In the E-book, click on any
term or concept below to
go to that subject.

Connection between
hypothesis tests 
and confidence 
intervals

Critical region for a test
statistic

Null hypothesis
One- and two-sided

alternative hypotheses
Operating characteristic

curves
Power of the test
P-value
Reference distribution

for a test statistic

Sample size determina-
tion for hypothesis
tests

Significance level of a
test

Statistical hypotheses
Statistical versus practi-

cal significance
Test for goodness of fit

Test for homogeneity
Test for independence
Test statistic
Type I and type II 

errors

CD MATERIAL

Likelihood ratio test

IMPORTANT TERMS AND CONCEPTS

9-91. Suppose that we wish to test H0: � � �0 versus
, where the population is normal with

known �. Let , and define the critical region
so that we will reject H0 if or if 
where z0 is the value of the usual test statistic for these
hypotheses.
(a) Show that the probability of type I error for this test

is �.
(b) Suppose that the true mean is . Derive

an expression for � for the above test.

9-92. Derive an expression for � for the test on the
variance of a normal distribution. Assume that the two-
sided alternative is specified.

9-93. When X1, X2, p , Xn are independent Poisson
random variables, each with parameter �, and n is large,
the sample mean has an approximate normal distribu-
tion with mean � and variance . Therefore,

has approximately a standard normal distribution. Thus
we can test H0: � � �0 by replacing � in Z by �0. When Xi

are Poisson variables, this test is preferable to the large-
sample test of Section 9-2.5, which would use in
the denominator, because it is designed just for the
Poisson distribution. Suppose that the number of open cir-
cuits on a semiconductor wafer has a Poisson distribution.
Test data for 500 wafers indicate a total of 1038 opens.
Using � � 0.05, does this suggest that the mean number
of open circuits per wafer exceeds 2.0?

S�1n

Z �
X 	 �1��n

��n
X

�1 � �0 
 �

z0 � 	z�	
,z0 � z


0 � 
 � �
H1: � � �0

9-94. When X1, X2, p , Xn is a random sample from a
normal distribution and n is large, the sample standard
deviation has approximately a normal distribution with
mean � and variance . Therefore, a large-sample
test for H0: � � �0 can be based on the statistic

Use this result to test H0: � � 10 versus H1: � � 10 for
the golf ball overall distance data in Exercise 6-25.

9-95. Continuation of Exercise 9-94. Using the
results of the previous exercise, find an approximately
unbiased estimator of the 95 percentile � � � 
 1.645�.
From the fact that and S are independent random
variables, find the standard error of �. How would you
estimate the standard error?

9-96. Continuation of Exercises 9-94 and 9-95.
Consider the golf ball overall distance data in Exercise
6-25. We wish to investigate a claim that the 95 per-
centile of overall distance does not exceed 285 yards.
Construct a test statistic that can be used for testing the
appropriate hypotheses. Apply this procedure to the data
from Exercise 6-25. What are your conclusions?

9-97. Let X1, X2, p , Xn be a sample from an exponen-
tial distribution with parameter �. It can be shown that

has a chi-square distribution with 2n degrees
of freedom. Use this fact to devise a test statistic and
critical region for H0: � � �0 versus the three usual
alternatives.

2� �
n
i�1 Xi

X

Z �
S 	 �02�2

0� 12n2

�2� 12n2
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9-3.4 Likelihood Ratio Approach to Development of Test Procedures
(CD Only)

Hypothesis testing is one of the most important techniques of statistical inference. Throughout
this book we present many applications of hypothesis testing. While we have emphasized a
heuristic development, many of these hypothesis-testing procedures can be developed using a
general principle called the likelihood ratio principle. Tests developed by this method often
turn out to be “best” test procedures in the sense that they minimize the type II error probabil-
ity � among all tests that have the same type I error probability �.

The likelihood ratio principle is easy to illustrate. Suppose that the random variable X has
a probability distribution that is described by an unknown parameter �, say, f (x, �). We wish
to test the hypothesis H0: � is in �0 versus H1: � is in �1, where �0 and �1 are disjoint sets of
values (such as H0: � � 0 versus H1: � � 0). Let X1, X2, p , Xn be the observations in a ran-
dom sample. The joint distribution of these sample observations is

Recall from our discussion of maximum likelihood estimation in Chapter 7 that the likeli-
hood function, say L(�), is just this joint distribution considered as a function of the parameter
�. The likelihood ratio principle for test construction consists of the following steps:

1. Find the largest value of the likelihood for any � in �0. This is done by finding the
maximum likelihood estimator of � restricted to values within �0 and by substituting
this value of � back into the likelihood function. This results in a value of the likeli-
hood function that we will call L(�0).

2. Find the largest value of the likelihood for any � in �1. Call this the value of the like-
lihood function L(�1).

3. Form the ratio

This ratio 	 is called the likelihood ratio test statistic.
The test procedure calls for rejecting the null hypothesis H0 when the value of this ratio 	

is small, say, whenever 	 � k, where k is a constant. Thus, the likelihood ratio principle re-
quires rejecting H0 when L(�1) is much larger than L(�0), which would indicate that the sam-
ple data are more compatible with the alternative hypothesis H1 than with the null hypothesis
H0. Usually, the constant k would be selected to give a specified value for �, the type I error
probability.

These ideas can be illustrated by a hypothesis-testing problem that we have studied
before—that of testing whether the mean of a normal population has a specified value �0.
This is the one-sample t-test of Section 9-3. Suppose that we have a sample of n observations
from a normal population with unknown mean � and unknown variance 
2, say, X1, X2, p , Xn.
We wish to test the hypothesis H0: � � �0 versus H1: � � �0. The likelihood function of the
sample is

e
gn
i�1 1xi 
 �22� 12
22L � a 1


12�
bn

� �
L1�02
L1�12

f 1x1, x2, p , xn, �2 � f 1x1, �2 � f 1x2, �2 � p � f 1xn, �2

9-1
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9-2

and the values of �0 and �1 are �0 � �0 and �1 � {�: 
 �� � � �}, respectively. The values
of � and 
2 that maximize L in �1 are the usual maximum likelihood estimates for � and 
2:

Substituting these values in L, we have

To maximize L in �0 we simply set � � �0 and then find the value of 
2 that maximizes L.
This value is found to be

which gives

The likelihood ratio is

Now since

we may write 	 as

 � c 1

1 � a 1
n 
 1

b c 1x 
 �022
s2�n

d sn�2

 � d 1

1 � c n 1x 
 �022
g 1xi 
 x22 d a

n 
 1
n 
 1

bt
n�2

 
� � d 1

1 �
n1x 
 �022
g 1xi 
 x22t

n�2

a
n

i�1
1xi 
 �022 � a

n

i�1
1xi 
 x22 � n1x 
 �022

� �
L1�02
L1�12 � c g 1xi 
 x22

g 1xi 
 �022 d
n�2

L1�02 � c 1

12��n2 g 1xi 
 �022 d
n�2

e
 1n�22


̂2 �
1
n  a

n

i�1
1xi 
 �022

L1�12 � c 1

12��n2 g 1xi 
 x22 d
n�2

e
 1n�22

 
2ˆ �
1
n  a

n

i�1
1xi 
 x22

 �̂�
1
n  a

n

i�1
xi � x
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9-3

Notice that is the square of the value of a random variable that has the 

t-distribution with n 
 1 degrees of freedom when the null hypothesis H0: � � �0 is true. So
we may write the value of the likelihood ratio 	 as

It is easy to find the value for the constant k that would lead to rejection of the null hypothe-
sis H0. Since we reject H0 if 	 � k, this implies that small values of 	 support the alternative
hypothesis. Clearly, 	 will be small when t2 is large. So instead of specifying k we can spec-
ify a constant c and reject H0: � � �0 if t2 � c. The critical values of t would be the extreme
values, either positive or negative, and if we wish to control the type I error probability at �,
the critical region in terms of t would be

or, equivalently, we would reject H0: � � �0 if t2 � c � . Therefore, the likelihood
ratio test for H0: � � �0 versus H1: � � �0 is the familiar single-sample t-test.

The procedure employed in this example to find the critical region for the likelihood ratio
	 is used often. That is, typically, we can manipulate 	 to produce a condition that is equiva-
lent to 	 � k, but one that is simpler to use.

The likelihood ratio principle is a very general procedure. Most of the tests presented in
this book that utilize the t, chi-square, and F-distributions for testing means and variances of
normal distributions are likelihood ratio tests. The principle can also be used in cases where
the observations are dependent, or even in cases where their distributions are different.
However, the likelihood function can be very complicated in some of these situations. To use
the likelihood principle we must specify the form of the distribution. Without such a specifi-
cation, it is impossible to write the likelihood function, and so if we are unwilling to assume a
particular probability distribution, the likelihood ratio principle cannot be used. This could
lead to the use of the nonparametric test procedures discussed in Chapter 15.

9-5.2 Small-Sample Tests on a Proportion (CD Only)

Tests on a proportion when the sample size n is small are based on the binomial distribution,
not the normal approximation to the binomial. To illustrate, suppose we wish to test

Let X be the number of successes in the sample. A lower-tail rejection region would be used.
That is, we would reject H0 if x � c, where c is the critical value. When H0 is true, X has a
binomial distribution with parameters n and p0; therefore,

 � B 1c; n, p02
 � P 3X � c when X is Bin 1n, p02 4

P 1Type I error2 � P 1reject H0 when H0 is true2

H1: p � p0

H0: p � p0

t2
��2,n
1

t � 
t��2,n
1 and t � t��2,n
1

� � c 1

1 � 3 t2� 1n 
 12 4sn�2

c 1x 
 �022
s2�n

d � t2
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where B(c; n1, p0) is the cumulative binomial distribution. To find the critical value for a given
�, we would select the largest c satisfying B(c; n1, p0) � �. The type II error calculation is
straightforward. Let p1 be an alternative value of p, with p1 � p0. If p � p1, X is Bin (n, p1).
Therefore

where B(c; n, p1) is the cumulative binomial distribution.
Test procedures for the other one-sided alternative H1: p � p0 and the two-sided alternative

H0: p � p0 are constructed in a similar fashion. For H1: p � p0 the critical region has the form 
x � c, where we would choose the smallest value of c satisfying 1 
 B(c 
 1, n, p0) � �. For the
two-sided case, the critical region consists of both large and small values. Because c is an integer,
it usually isn’t possible to define the critical region to obtain exactly the desired value of �.

To illustrate the procedure, let’s reconsider the situation of Example 9-10, where we wish
to test H0: p � 0.05 verses H1: p � 0.05. Suppose now that the sample size is n � 100 and
we wish to use � � 0.05. Now from the cumulative binomial distribution with n � 50 and
p � 0.05, we find that B(0; 100, 0.05) � 0.0059, B(1; 100, 0.05) � 0.0371, and B(2; 100,
0.05) � 0.1183 (Minitab will generate these cumulative binomial probabilities). Since B(1;
100, 0.05) � 0.0371 � 0.05 and B(2; 100, 0.05) � 0.1183 � 0.05, we would select c � 1.
Therefore the null hypothesis will be rejected if x � 1. The exact significance level for this
test is � � 0.0371. To calculate the power of the test, suppose that p1 � 0.03. Now

and the power of the test is only 0.1946. This is a fairly small power because p1 is close to p0.

 � 0.8054
 � 1 
 0.1946
 � 1 
 B 11; 100, 0.032� � 1 
 B 1c; n, p12

 � 1 
 B 1c; n, p12
 � P 3X � c when X is Bin 1n, p12 4

 � � P 1Type II error when p � p12
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10Statistical Inference
for Two Samples

CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
1. Structure comparative experiments involving two samples as hypothesis tests
2. Test hypotheses and construct confidence intervals on the difference in means of two normal

distributions

10-1 INTRODUCTION

10-2 INFERENCE FOR A DIFFERENCE IN
MEANS OF TWO NORMAL DISTRI-
BUTIONS, VARIANCES KNOWN

10-2.1 Hypothesis Tests for a Difference
in Means, Variances Known

10-2.2 Choice of Sample Size

10-2.3 Identifying Cause and Effect

10-2.4 Confidence Interval on a
Difference in Means, Variances
Known

10-3 INFERENCE FOR A DIFFERENCE
IN MEANS OF TWO NORMAL 
DISTRIBUTIONS, VARIANCES
UNKNOWN

10-3.1 Hypothesis Tests for a Difference
in Means, Variances Unknown

10-3.2 More about the Equal Variance
Assumption (CD Only)

10-3.3 Choice of Sample Size

10-3.4 Confidence Interval on the
Difference in Means

10-4 PAIRED t-TEST

10-5 INFERENCES ON THE VARIANCES
OF TWO NORMAL POPULATIONS

10-5.1 The F Distribution

10-5.2 Development of the F
Distribution (CD Only)

10-5.3 Hypothesis Tests on the Ratio
of Two Variances

10-5.4 �-Error and Choice of Sample
Size

10-5.5 Confidence Interval on the Ratio
of Two Variances

10-6 INFERENCE ON TWO 
POPULATION PROPORTIONS

10-6.1 Large-Sample Test for H0: p1 � p2

10-6.2 Small-Sample Test for H0: p1 �
p2 (CD Only)

10-6.3 �-Error and Choice of Sample Size

10-6.4 Confidence Interval for p1 � p2

10-7 SUMMARY TABLE FOR INFERENCE
PROCEDURES FOR TWO SAMPLES
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328 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

3. Test hypotheses and construct confidence intervals on the ratio of the variances or standard
deviations of two normal distributions

4. Test hypotheses and construct confidence intervals on the difference in two population proportions
5. Use the P-value approach for making decisions in hypotheses tests
6. Compute power, type II error probability, and make sample size decisions for two-sample tests on

means, variances, and proportions
7. Explain and use the relationship between confidence intervals and hypothesis tests

CD MATERIAL
8. Use the Fisher-Irwin test to compare two population proportions when the normal approxima-

tion to the binomial distribution does not apply

Answers for many odd numbered exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

10-1 INTRODUCTION

The previous chapter presented hypothesis tests and confidence intervals for a single popula-
tion parameter (the mean �, the variance �2, or a proportion p). This chapter extends those
results to the case of two independent populations.

The general situation is shown in Fig. 10-1. Population 1 has mean and variance ,
while population 2 has mean and variance . Inferences will be based on two random
samples of sizes n1 and n2, respectively. That is, X11, X12, p , is a random sample of n1
observations from population 1, and X21, X22, p , is a random sample of n2 observations
from population 2. Most of the practical applications of the procedures in this chapter arise in
the context of simple comparative experiments in which the objective is to study the differ-
ence in the parameters of the two populations.

10-2 INFERENCE FOR A DIFFERENCE IN MEANS OF TWO
NORMAL DISTRIBUTIONS, VARIANCES KNOWN

In this section we consider statistical inferences on the difference in means of two
normal distributions, where the variances and are known. The assumptions for this sec-
tion are summarized as follows.

� 
2
2� 

2
1

�1 � �2

X2n2

X1n1

� 
2
2�2

� 
2
1�1

Figure 10-1 Two 
independent popula-
tions.

�1 �2

Population 1 Population 2

Sample 1:
x11, x12,…, x1n1

 
Sample 2:

x21, x22,…, x2n2
 

�1 �2
2 2
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10-2 INFERENCE FOR A DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES KNOWN 329

This result will be used to form tests of hypotheses and confidence intervals on �1 � �2.
Essentially, we may think of �1 � �2 as a parameter �, and its estimator is 
with variance If �0 is the null hypothesis value specified for �, the test 
statistic will be Notice how similar this is to the test statistic for a single mean
used in Equation 9-8 of Chapter 9.

10-2.1 Hypothesis Tests for a Difference in Means, Variances Known

We now consider hypothesis testing on the difference in the means �1 � �2 of two normal
populations. Suppose that we are interested in testing that the difference in means �1 � �2 is
equal to a specified value �0. Thus, the null hypothesis will be stated as H0: �1 � �2 � �0.
Obviously, in many cases, we will specify �0 � 0 so that we are testing the equality of two
means (i.e., H0: �1 � �2). The appropriate test statistic would be found by replacing �1 � �2

in Equation 10-1 by �0, and this test statistic would have a standard normal distribution under
H0. That is, the standard normal distribution is the reference distribution for the test statistic.
Suppose that the alternative hypothesis is H1: �1 � �2 � �0. Now, a sample value of 
that is considerably different from �0 is evidence that H1 is true. Because Z0 has the N(0, 1)

x1 � x2

1	̂ � �02
�	̂ .
�

2
	̂ � �2

1
n1 � �2
2 
n2.

�̂ � X1 � X2

A logical point estimator of �1 � �2 is the difference in sample means Based
on the properties of expected values

and the variance of is

Based on the assumptions and the preceding results, we may state the following.

V1X1 � X22 � V1X12 � V1X22 �
�2

1

n1
�

�2
2

n2

X1 � X2

E1X1 � X22 � E1X12 � E1X22 � �1 � �2

X1 � X2.

1. X11, X12, p , is a random sample from population 1.

2. X21, X22, p , is a random sample from population 2.

3. The two populations represented by X1 and X2 are independent.

4. Both populations are normal.

X2n2

X1n1

Assumptions

The quantity

(10-1)

has a N(0, 1) distribution.

Z �
X1 � X2 � 1�1 � �22B�2

1

n1
�

�2
2

n2
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330 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

EXAMPLE 10-1 A product developer is interested in reducing the drying time of a primer paint. Two formula-
tions of the paint are tested; formulation 1 is the standard chemistry, and formulation 2 has a
new drying ingredient that should reduce the drying time. From experience, it is known that
the standard deviation of drying time is 8 minutes, and this inherent variability should be un-
affected by the addition of the new ingredient. Ten specimens are painted with formulation 1,
and another 10 specimens are painted with formulation 2; the 20 specimens are painted in
random order. The two sample average drying times are minutes and 
minutes, respectively. What conclusions can the product developer draw about the effective-
ness of the new ingredient, using � � 0.05?

We apply the eight-step procedure to this problem as follows:

1. The quantity of interest is the difference in mean drying times, �1 � �2, and �0 � 0.

2.

3. We want to reject H0 if the new ingredient reduces mean drying time.

4. � � 0.05

5. The test statistic is

where �2
1 � �2

2 � � 64 and n1 � n2 � 10.

6. Reject H0: �1 � �2 if z0 
 1.645 � z0.05.

7. Computations: Since minutes and minutes, the test statistic is

z0 �
121 � 112B 182210

�
1822
10

� 2.52

x2 � 112x1 � 121

1822

z˛0 �
x1 � x2 � 0B�2

1

n1
�

�2
2

n2

H˛1: �1 
 �2.

H˛0: �1 � �2 � 0, or H˛0:˛  �1 � �2.

x˛2 � 112x˛1 � 121

distribution when H0 is true, we would take �z and z as the boundaries of the critical re-
gion just as we did in the single-sample hypothesis-testing problem of Section 9-2.1. This
would give a test with level of significance �. Critical regions for the one-sided alternatives
would be located similarly. Formally, we summarize these results below.

�
2�
2

Null hypothesis:

Test statistic: (10-2)

Alternative Hypotheses Rejection Criterion

z0 � �z�H˛1: �1 � �2 � �0

z0 
 z�H˛1: �1 � �2 
 �0

z0 
 z�
2 or z0 � �z�
2H˛1: �1 � �2 � �0

Z0 �
X1 � X2 � �0B�2

1

n1
�

�2
2

n2

H0: �1 � �2 � �0
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10-2 INFERENCE FOR A DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES KNOWN 331

8. Conclusion: Since z0 � 2.52 � 1.645, we reject H0: �1 � �2 at the � � 0.05 level
and conclude that adding the new ingredient to the paint significantly reduces the
drying time. Alternatively, we can find the P-value for this test as 

P-value � 1 �

Therefore, H0: �1 � �2 would be rejected at any significance level � � 0.0059.

When the population variances are unknown, the sample variances and can be substituted
into the test statistic Equation 10-2 to produce a large-sample test for the difference in means.
This procedure will also work well when the populations are not necessarily normally distrib-
uted. However, both n1 and n2 should exceed 40 for this large-sample test to be valid.

10-2.2 Choice of Sample Size

Use of Operating Characteristic Curves
The operating characteristic curves in Appendix Charts VIa, VIb, VIc, and VId may be used
to evaluate the type II error probability for the hypotheses in the display (10-2). These curves
are also useful in determining sample size. Curves are provided for � � 0.05 and � � 0.01.
For the two-sided alternative hypothesis, the abscissa scale of the operating characteristic
curve in charts VIa and VIb is d, where

(10-3)

and one must choose equal sample sizes, say, n � n1 � n2. The one-sided alternative hypothe-
ses require the use of Charts VIc and VId. For the one-sided alternatives H1: �1 � �2 � �0 or
H1: �1 � �2 	 �0, the abscissa scale is also given by

It is not unusual to encounter problems where the costs of collecting data differ substantially
between the two populations, or where one population variance is much greater than the other.
In those cases, we often use unequal sample sizes. If n1 
 n2, the operating characteristic curves
may be entered with an equivalent value of n computed from

(10-4)

If n1 
 n2, and their values are fixed in advance, Equation 10-4 is used directly to calculate n,
and the operating characteristic curves are entered with a specified d to obtain �. If we are
given d and it is necessary to determine n1 and n2 to obtain a specified �, say, �*, we guess at
trial values of n1 and n2, calculate n in Equation 10-4, and enter the curves with the specified
value of d to find �. If � � �*, the trial values of n1 and n2 are satisfactory. If � 
 �*,
adjustments to n1 and n2 are made and the process is repeated.

n �
�2

1 
 �2
2

�2
1�n1 
 �2

2�n2

d �
ƒ �1 � �2 � �0 ƒ2�1

2 
 �2
2

�
ƒ � � �0 ƒ2�1

2 
 �2
2

d �
ƒ �1 � �2 � �0 ƒ2�2

1 
 �2
2

�
ƒ � � �0 ƒ2�2

1 
 �2
2

s2
2s2

1

�12.522 � 0.0059
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332 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

EXAMPLE 10-2 Consider the paint drying time experiment from Example 10-1. If the true difference in mean
drying times is as much as 10 minutes, find the sample sizes required to detect this difference
with probability at least 0.90.

The appropriate value of the abscissa parameter is (since �0 � 0, and � � 10)

and since the detection probability or power of the test must be at least 0.9, with � � 0.05, we
find from Appendix Chart VIc that n � n1 � n2 11.

Sample Size Formulas
It is also possible to obtain formulas for calculating the sample sizes directly. Suppose that the null
hypothesis H0: �1 � �2 � �0 is false and that the true difference in means is �1 � �2 � �,
where � � �0. One may find formulas for the sample size required to obtain a specific value
of the type II error probability � for a given difference in means � and level of significance �.

�

d �
ƒ �1 � �2 ƒ2�2

1 
 �2
2

�
10282 
 82

� 0.88

For the two-sided alternative hypothesis with significance level �, the sample size
n1 � n2 � n required to detect a true difference in means of � with power at least
1 � � is

(10-5)n �
1z��2 
 z�221�2

1 
 �2
22

1� � �022

This approximation is valid when is small compared to �.�1�z��2 � 1� � �021n�1�2
1 
 �2

22

For a one-sided alternative hypothesis with significance level �, the sample size
n1 � n2 � n required to detect a true difference in means of �(��0) with power
at least 1 � � is

(10-6)n �
1z� 
 z�221�2

1 
 �2
22

1� � �022

The derivation of Equations 10-5 and 10-6 closely follows the single-sample case in Section
9-2.3. For example, to obtain Equation 10-6, we first write the expression for the �-error for
the two-sided alternate, which is

� � � ± z��2 �
� � �0B�2

1

n1



�2
2

n2

≤ � �  ±�z��2 �
� � �0B�2

1

n1



�2
2

n2

≤
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10-2 INFERENCE FOR A DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES KNOWN 333

where � is the true difference in means of interest. Then by following a procedure similar
to that used to obtain Equation 9-17, the expression for � can be obtained for the case
where n � n1 � n2.

EXAMPLE 10-3 To illustrate the use of these sample size equations, consider the situation described in
Example 10-1, and suppose that if the true difference in drying times is as much as 10 min-
utes, we want to detect this with probability at least 0.90. Under the null hypothesis, �0 � 0.
We have a one-sided alternative hypothesis with � � 10, � � 0.05 (so z� � z0.05 � 1.645),
and since the power is 0.9, � � 0.10 (so z� � z0.10 � 1.28). Therefore we may find the re-
quired sample size from Equation 10-6 as follows:

This is exactly the same as the result obtained from using the O.C. curves.

10-2.3 Identifying Cause and Effect

Engineers and scientists are often interested in comparing two different conditions to deter-
mine whether either condition produces a significant effect on the response that is observed.
These conditions are sometimes called treatments. Example 10-1 illustrates such a situation;
the two different treatments are the two paint formulations, and the response is the drying
time. The purpose of the study is to determine whether the new formulation results in a
significant effect—reducing drying time. In this situation, the product developer (the experi-
menter) randomly assigned 10 test specimens to one formulation and 10 test specimens to the
other formulation. Then the paints were applied to the test specimens in random order until all
20 specimens were painted. This is an example of a completely randomized experiment.

When statistical significance is observed in a randomized experiment, the experimenter can
be confident in the conclusion that it was the difference in treatments that resulted in the differ-
ence in response. That is, we can be confident that a cause-and-effect relationship has been found.

Sometimes the objects to be used in the comparison are not assigned at random to the
treatments. For example, the September 1992 issue of Circulation (a medical journal pub-
lished by the American Heart Association) reports a study linking high iron levels in the body
with increased risk of heart attack. The study, done in Finland, tracked 1931 men for five years
and showed a statistically significant effect of increasing iron levels on the incidence of heart
attacks. In this study, the comparison was not performed by randomly selecting a sample of
men and then assigning some to a “low iron level” treatment and the others to a “high iron
level” treatment. The researchers just tracked the subjects over time. Recall from Chapter 1
that this type of study is called an observational study.

It is difficult to identify causality in observational studies, because the observed statisti-
cally significant difference in response between the two groups may be due to some other
underlying factor (or group of factors) that was not equalized by randomization and not due to
the treatments. For example, the difference in heart attack risk could be attributable to the dif-
ference in iron levels, or to other underlying factors that form a reasonable explanation for the
observed results—such as cholesterol levels or hypertension.

The difficulty of establishing causality from observational studies is also seen in the
smoking and health controversy. Numerous studies show that the incidence of lung cancer and
other respiratory disorders is higher among smokers than nonsmokers. However, establishing

n �
1z� � z�221�2

1 � �2
22

1� � �022 �
11.645 � 1.2822 3 1822 � 1822 4

110 � 022 � 11
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334 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

cause and effect here has proven enormously difficult. Many individuals had decided to
smoke long before the start of the research studies, and many factors other than smoking could
have a role in contracting lung cancer.

10-2.4 Confidence Interval on a Difference in Means, 
Variances Known   

The 100(1 � �)% confidence interval on the difference in two means �1 � �2 when the vari-
ances are known can be found directly from results given previously in this section. Recall
that X11, X12, p , is a random sample of n1 observations from the first population and X21,
X22, p , is a random sample of n2 observations from the second population. The difference
in sample means is a point estimator of �1 � �2, and

has a standard normal distribution if the two populations are normal or is approximately stan-
dard normal if the conditions of the central limit theorem apply, respectively. This implies that

, or

This can be rearranged as

Therefore, the 100(1 � �)% confidence interval for �1 � �2 is defined as follows.

P aX1 � X2 � z�
2B�2
1

n1
�

�2
2

n2
� �1 � �2 � X1 � X2 � z�
2B�2

1

n1
�

�2
2

n2
b � 1 � �

P ≥�z�
2 �
X1 � X2 � 1�1 � �22B�2

1

n1
�

�2
2

n2

� z�
2 ¥ � 1 � �

P1�z�
2 � Z � z�
22 � 1 � �

Z �
X1 � X2 � 1�1 � �22B�2

1

n1
�

�2
2

n2

X1 � X2

X2n2

X1n1

If and are the means of independent random samples of sizes n1 and n2 from
two independent normal populations with known variances �2

1 and �2
2, respectively,

a 100(1 � �)% confidence interval for �1 � �2 is

(10-7)

where z��2 is the upper ��2 percentage point of the standard normal distribution.

x1 � x2 � z�
2B�2
1

n1
�

�2
2

n2
� �1 � �2 � x1 � x2 � z�
2B�2

1

n1
�

�2
2

n2

x2x1

Definition

The confidence level 1 � � is exact when the populations are normal. For nonnormal popu-
lations, the confidence level is approximately valid for large sample sizes.
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EXAMPLE 10-4 Tensile strength tests were performed on two different grades of aluminum spars used in
manufacturing the wing of a commercial transport aircraft. From past experience with the spar
manufacturing process and the testing procedure, the standard deviations of tensile strengths
are assumed to be known. The data obtained are as follows: n1 � 10, � 87.6, �1 � 1,
n2 � 12, � 74.5, and �2 � 1.5. If �1 and �2 denote the true mean tensile strengths for the
two grades of spars, we may find a 90% confidence interval on the difference in mean strength
�1 � �2 as follows:

Therefore, the 90% confidence interval on the difference in mean tensile strength (in kilo-
grams per square millimeter) is

(in kilograms per square millimeter)

Notice that the confidence interval does not include zero, implying that the mean
strength of aluminum grade 1 (�1) exceeds the mean strength of aluminum grade 2 (�2). In
fact, we can state that we are 90% confident that the mean tensile strength of aluminum
grade 1 exceeds that of aluminum grade 2 by between 12.22 and 13.98 kilograms per
square millimeter.

Choice of Sample Size
If the standard deviations �1 and �2 are known (at least approximately) and the two sample
sizes n1 and n2 are equal (n1 � n2 � n, say), we can determine the sample size required so that
the error in estimating �1 � �2 by will be less than E at 100(1 � �)% confidence. The
required sample size from each population is

x1 � x2

12.22 � �1 � �2 � 13.98

87.6 � 74.5 � 1.645 ˛B 112210
�
11.523

12
� �1 � �2 � 87.6 � 74.5 � 1.645 B 1122

10
�
11.522

12

x1 � x2 � z�
2 ˛B�2
1

n1
�

�2
2

n2
 � �1 � �2 � x1 � x2 � z�
2 ˛B�2

1

n1
�

�2
2

n2

x2

x1

(10-8)n � az�
2

E
b2

 1�2
1 � �2

22

Remember to round up if n is not an integer. This will ensure that the level of confidence does
not drop below 100(1 � �)%.

One-Sided Confidence Bounds
One-sided confidence bounds on �1 � �2 may also be obtained. A 100(1 � �)% upper-
confidence bound on �1 � �2 is

(10-9)�1 � �2 � x1 � x2 � z�  B�2
1

n1
�

�2
2

n2
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(10-10)x1 � x2 � z� B�2
1

n1
�

�2
2

n2
� �1 � �2

EXERCISES FOR SECTION 10-2

and a 100(1 � �)% lower-confidence bound is

10-1. Two machines are used for filling plastic bottles with
a net volume of 16.0 ounces. The fill volume can be assumed
normal, with standard deviation �1 � 0.020 and �2 � 0.025
ounces. A member of the quality engineering staff suspects
that both machines fill to the same mean net volume, whether
or not this volume is 16.0 ounces. A random sample of 10 bot-
tles is taken from the output of each machine.

Machine 1 Machine 2

16.03 16.01 16.02 16.03

16.04 15.96 15.97 16.04

16.05 15.98 15.96 16.02

16.05 16.02 16.01 16.01

16.02 15.99 15.99 16.00

(a) Do you think the engineer is correct? Use � � 0.05.
(b) What is the P-value for this test?
(c) What is the power of the test in part (a) for a true differ-

ence in means of 0.04?
(d) Find a 95% confidence interval on the difference in

means. Provide a practical interpretation of this interval.
(e) Assuming equal sample sizes, what sample size should be

used to assure that � � 0.05 if the true difference in
means is 0.04? Assume that � � 0.05.

10-2. Two types of plastic are suitable for use by an elec-
tronics component manufacturer. The breaking strength of this
plastic is important. It is known that �1 � �2 � 1.0 psi. From
a random sample of size n1 � 10 and n2 � 12, we obtain

and . The company will not adopt plas-
tic 1 unless its mean breaking strength exceeds that of plastic
2 by at least 10 psi. Based on the sample information, should
it use plastic 1? Use � � 0.05 in reaching a decision.

10-3. Reconsider the situation in Exercise 10-2. Suppose
that the true difference in means is really 12 psi. Find the
power of the test assuming that � � 0.05. If it is really impor-
tant to detect this difference, are the sample sizes employed in
Exercise 10-2 adequate, in your opinion?

10-4. The burning rates of two different solid-fuel propel-
lants used in aircrew escape systems are being studied. It is
known that both propellants have approximately the same
standard deviation of burning rate; that is �1 � �2 � 3
centimeters per second. Two random samples of n1 � 20

x2 � 155.0x1 � 162.5

and n2 � 20 specimens are tested; the sample mean burn-
ing rates are � 18 centimeters per second and � 24
centimeters per second.
(a) Test the hypothesis that both propellants have the same

mean burning rate. Use � � 0.05.
(b) What is the P-value of the test in part (a)?
(c) What is the �-error of the test in part (a) if the true differ-

ence in mean burning rate is 2.5 centimeters per second?
(d) Construct a 95% confidence interval on the difference in

means �1 � �2. What is the practical meaning of this
interval?

10-5. Two machines are used to fill plastic bottles with
dishwashing detergent. The standard deviations of fill volume
are known to be �1 � 0.10 fluid ounces and �2 � 0.15 fluid
ounces for the two machines, respectively. Two random sam-
ples of n1 � 12 bottles from machine 1 and n2 � 10 bottles
from machine 2 are selected, and the sample mean fill vol-
umes are � 30.87 fluid ounces and � 30.68 fluid
ounces. Assume normality.
(a) Construct a 90% two-sided confidence interval on the

mean difference in fill volume. Interpret this interval.
(b) Construct a 95% two-sided confidence interval on the mean

difference in fill volume. Compare and comment on the
width of this interval to the width of the interval in part (a).

(c) Construct a 95% upper-confidence interval on the mean
difference in fill volume. Interpret this interval.

10-6. Reconsider the situation described in Exercise 10-5.
(a) Test the hypothesis that both machines fill to the same

mean volume. Use � � 0.05.
(b) What is the P-value of the test in part (a)?
(c) If the �-error of the test when the true difference in fill

volume is 0.2 fluid ounces should not exceed 0.1, what
sample sizes must be used? Use � � 0.05.

10-7. Two different formulations of an oxygenated motor fuel
are being tested to study their road octane numbers. The variance
of road octane number for formulation 1 is � 1.5, and for
formulation 2 it is �2

2 � 1.2. Two random samples of size n1 � 15
and n2 � 20 are tested, and the mean road octane numbers
observed are � 89.6 and � 92.5. Assume normality.
(a) Construct a 95% two-sided confidence interval on the

difference in mean road octane number.
(b) If formulation 2 produces a higher road octane number

than formulation 1, the manufacturer would like to detect

x2x1

�2
1

x2x1

x2x1
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10-3 INFERENCE FOR THE DIFFERENCE IN MEANS OF TWO
NORMAL DISTRIBUTIONS, VARIANCES UNKNOWN

We now extend the results of the previous section to the difference in means of the two distribu-
tions in Fig. 10-1 when the variances of both distributions and are unknown. If the sam-
ple sizes n1 and n2 exceed 40, the normal distribution procedures in Section 10-2 could be used.
However, when small samples are taken, we will assume that the populations are normally dis-
tributed and base our hypotheses tests and confidence intervals on the t distribution. This nicely
parallels the case of inference on the mean of a single sample with unknown variance.

10-3.1 Hypotheses Tests for a Difference in Means, Variances Unknown

We now consider tests of hypotheses on the difference in means �1 � �2 of two normal
distributions where the variances and are unknown. A t-statistic will be used to test these
hypotheses. As noted above and in Section 9-3, the normality assumption is required to

�2
2�2

1

�2
2�2

1

it. Formulate and test an appropriate hypothesis, using 
� � 0.05.

(c) What is the P-value for the test you conducted in part (b)?

10-8. Consider the situation described in Exercise 10-4. What
sample size would be required in each population if we wanted
the error in estimating the difference in mean burning rates to be
less than 4 centimeters per second with 99% confidence?

10-9. Consider the road octane test situation described in
Exercise 10-7. What sample size would be required in each pop-
ulation if we wanted to be 95% confident that the error in esti-
mating the difference in mean road octane number is less than 1?

10-10. A polymer is manufactured in a batch chemical
process. Viscosity measurements are normally made on each
batch, and long experience with the process has indicated that
the variability in the process is fairly stable with � � 20.
Fifteen batch viscosity measurements are given as follows:
724, 718, 776, 760, 745, 759, 795, 756, 742, 740, 761, 749,
739, 747, 742. A process change is made which involves
switching the type of catalyst used in the process. Following
the process change, eight batch viscosity measurements are
taken: 735, 775, 729, 755, 783, 760, 738, 780. Assume that
process variability is unaffected by the catalyst change. Find a
90% confidence interval on the difference in mean batch vis-
cosity resulting from the process change.

10-11. The concentration of active ingredient in a liquid
laundry detergent is thought to be affected by the type of cata-
lyst used in the process. The standard deviation of active con-
centration is known to be 3 grams per liter, regardless of the
catalyst type. Ten observations on concentration are taken
with each catalyst, and the data follow:

Catalyst 1: 57.9, 66.2, 65.4, 65.4, 65.2, 62.6, 67.6, 63.7,
67.2, 71.0

Catalyst 2: 66.4, 71.7, 70.3, 69.3, 64.8, 69.6, 68.6, 69.4, 65.3,
68.8

(a) Find a 95% confidence interval on the difference in mean
active concentrations for the two catalysts.

(b) Is there any evidence to indicate that the mean active con-
centrations depend on the choice of catalyst? Base your
answer on the results of part (a).

10-12. Consider the polymer batch viscosity data in
Exercise 10-10. If the difference in mean batch viscosity is
10 or less, the manufacturer would like to detect it with a
high probability.
(a) Formulate and test an appropriate hypothesis using � �

0.10. What are your conclusions?
(b) Calculate the P-value for this test.
(c) Compare the results of parts (a) and (b) to the length of the

90% confidence interval obtained in Exercise 10-10 and
discuss your findings.

10-13. For the laundry detergent problem in Exercise 10-11,
test the hypothesis that the mean active concentrations are the
same for both types of catalyst. Use � � 0.05. What is the 
P-value for this test? Compare your answer to that found in
part (b) of Exercise 10-11, and comment on why they are the
same or different.

10-14. Reconsider the laundry detergent problem in
Exercise 10-11. Suppose that the true mean difference in ac-
tive concentration is 5 grams per liter. What is the power of the
test to detect this difference if � � 0.05? If this difference is
really important, do you consider the sample sizes used by the
experimenter to be adequate?

10-15. Consider the polymer viscosity data in Exercise 10-
10. Does the assumption of normality seem reasonable for
both samples?

10-16. Consider the concentration data in Exercise 10-11.
Does the assumption of normality seem reasonable?
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338 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

develop the test procedure, but moderate departures from normality do not adversely affect
the procedure. Two different situations must be treated. In the first case, we assume that the
variances of the two normal distributions are unknown but equal; that is, � � �2. In the
second, we assume that and are unknown and not necessarily equal.

Case 1: �1
2 � �2

2 � �2

Suppose we have two independent normal populations with unknown means �1 and �2, and
unknown but equal variances, � � �2. We wish to test

(10-11)

Let X11, X12, p , be a random sample of n1 observations from the first population and
X21, X22, p , be a random sample of n2 observations from the second population. 
Let , , S2

1, and S2
2 be the sample means and sample variances, respectively. Now the ex-

pected value of the difference in sample means is � �1 � �2, so
is an unbiased estimator of the difference in means. The variance of is

It seems reasonable to combine the two sample variances and to form an estimator
of �2. The pooled estimator of �2 is defined as follows.

S2
2S2

1

V1X1 � X22 �
�2

n1



�2

n2
� �2 a 1

n1



1
n2
b

X1 � X2X1 � X2

E1X1 � X22X1 � X2

X2X1

X2n2

X1n1

H1 
: �1 � �2 
 �0

H0 
: �1 � �2 � �0

�2
2�2

1

�2
2�2

1

�2
2�2

1

The pooled estimator of �2, denoted by S2
p, is defined by

(10-12)Sp
2 �
1n1 � 12S2

1 
 1n2 � 12S2
2

n1 
 n2 � 2

It is easy to see that the pooled estimator can be written as

where 0 	 w � 1. Thus Sp
2 is a weighted average of the two sample variances S1

2 and S2
2,

where the weights w and 1 � w depend on the two sample sizes n1 and n2. Obviously, if n1 �
n2 � n, w � 0.5 and Sp

2 is just the arithmetic average of S1
2 and S2

2. If n1 � 10 and n2 � 20
(say), w � 0.32 and 1 � w � 0.68. The first sample contributes n1 � 1 degrees of freedom
to Sp

2 and the second sample contributes n2 � 1 degrees of freedom. Therefore, Sp
2 has 

n1 
 n2 � 2 degrees of freedom.
Now we know that

has a N(0, 1) distribution. Replacing � by Sp gives the following.

Z �
X1 � X2 � 1�1 � �22

�B 1
n1



1
n2

S2
p �

n1 � 1

n1 
 n2 � 2
S2

1 

n2 � 1

n1 
 n2 � 2
S2

2 � wS2
1 
 11 � w2S2

2

S2
p

c10.qxd  5/17/02  1:58 PM  Page 338 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



10-3 INFERENCE FOR THE DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES UNKNOWN 339

Given the assumptions of this section, the quantity

(10-13)

has a t distribution with n1 � n2 � 2 degrees of freedom.

T �
X1 � X2 � 1�1 � �22

Sp  B 1
n1

�
1
n2

The use of this information to test the hypotheses in Equation 10-11 is now straightfor-
ward: simply replace �1 � �2 by and the resulting test statistic has a t distribution with
n1 � n2 � 2 degrees of freedom under H0: �1 � �2 � . Therefore, the reference distribu-
tion for the test statistic is the t distribution with n1 � n2 � 2 degrees of freedom. The location
of the critical region for both two- and one-sided alternatives parallels those in the one-sample
case. Because a pooled estimate of variance is used, the procedure is often called the pooled 
t-test.

�0

�0,

Null hypothesis: H0: �1 � �2 �

Test statistic: (10-14)

Alternative Hypothesis Rejection Criterion

t0 � �t�,n1�n2�2H1: �1 � �2 � �0

t0 
 t�,n1�n2�2H1: �1 � �2 
 �0

t0 � �t�
2,n1�n2�2

t0 
 t�
2,n1�n2�2 orH1: �1 � �2 � �0

T0 �
X1 � X2 � �0

Sp B 1
n1

�
1
n2

�0

Definition:
The Two-Sample
or Pooled t-Test*

*While we have given the development of this procedure for the case where the sample sizes could be different, there
is an advantage to using equal sample sizes n1 � n2 � n. When the sample sizes are the same from both populations,
the t-test is more robust to the assumption of equal variances. Please see Section 10-3.2 on the CD.

EXAMPLE 10-5 Two catalysts are being analyzed to determine how they affect the mean yield of a chemical
process. Specifically, catalyst 1 is currently in use, but catalyst 2 is acceptable. Since catalyst
2 is cheaper, it should be adopted, providing it does not change the process yield. A test is run
in the pilot plant and results in the data shown in Table 10-1. Is there any difference between
the mean yields? Use � � 0.05, and assume equal variances.

The solution using the eight-step hypothesis-testing procedure is as follows:

1. The parameters of interest are �1 and �2, the mean process yield using catalysts 
1 and 2, respectively, and we want to know if �1 � �2 � 0.

2. H0: �1 � �2 � 0, or H0: �1 � �2
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340 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

3. H1: �1 �2

4. � � 0.05

5. The test statistic is

6. Reject H0 if t0 
 t0.025,14 � 2.145 or if t0 � �t0.025,14 � �2.145.

7. Computations: From Table 10-1 we have � 92.255, s1 � 2.39, n1 � 8, � 92.733,
s2 � 2.98, and n2 � 8. Therefore

and

8. Conclusions: Since �2.145 � t0 � �0.35 � 2.145, the null hypothesis cannot be
rejected. That is, at the 0.05 level of significance, we do not have strong evidence to
conclude that catalyst 2 results in a mean yield that differs from the mean yield when
catalyst 1 is used.

A P-value could also be used for decision making in this example. From Appendix Table IV
we find that t0.40,14 � 0.258 and t0.25,14 � 0.692. Therefore, since 0.258 � 0.35 � 0.692, we
conclude that lower and upper bounds on the P-value are 0.50 � P � 0.80. Therefore, since
the P-value exceeds � � 0.05, the null hypothesis cannot be rejected.

t0 �
x1 � x2

2.70˛B 1
n1

�
1
n2

�
92.255 � 92.733

2.70B1
8

�
1
8

� �0.35

sp � 27.30 � 2.70

s2
p �
1n1 � 12s2

1 � 1n2 � 12s2
2

n1 � n2 � 2
�
172 12.3922 � 712.9822

8 � 8 � 2
� 7.30

x2x1

t0 �
x1 � x2 � 0

sp B 1
n1

�
1
n2

�

Table 10-1 Catalyst Yield Data, Example 10-5

Observation
Number Catalyst 1 Catalyst 2

1 91.50 89.19
2 94.18 90.95
3 92.18 90.46
4 95.39 93.21
5 91.79 97.19
6 89.07 97.04
7 94.72 91.07
8 89.21 92.75

� 92.255 � 92.733
s1 � 2.39 s2 � 2.98

x2x1
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The Minitab two-sample t-test and confidence interval procedure for Example 10-5
follows:

Notice that the numerical results are essentially the same as the manual computations in
Example 10-5. The P-value is reported as P � 0.73. The two-sided CI on �1 � �2 is also
reported. We will give the computing formula for the CI in Section 10-3.3. Figure 10-2 shows
the normal probability plot of the two samples of yield data and comparative box plots. The
normal probability plots indicate that there is no problem with the normality assumption.
Furthermore, both straight lines have similar slopes, providing some verification of the as-
sumption of equal variances. The comparative box plots indicate that there is no obvious dif-
ference in the two catalysts, although catalyst 2 has slightly greater sample variability.

Case 2: �2
1 � �2

2

In some situations, we cannot reasonably assume that the unknown variances �2
1 and �2

2 are
equal. There is not an exact t-statistic available for testing H0: �1 � �2 � �0 in this case.
However, if H0: �1 � �2 � �0 is true, the statistic

Two-Sample T-Test and CI: Cat 1, Cat 2

Two-sample T for Cat 1 vs Cat 2

N Mean StDev SE Mean
Cat 1 8 92.26 2.39 0.84
Cat 2 8 92.73 2.99 1.1

Difference � mu Cat 1 � mu Cat 2
Estimate for difference: �0.48
95% CI for difference: (�3.37, 2.42)
T-Test of difference � 0 (vs not � ): T-Value � �0.35 P-Value � 0.730 DF � 14
Both use Pooled StDev � 2.70
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Figure 10-2 Normal probability plot and comparative box plot for the catalyst yield data in Example 10-5. 
(a) Normal probability plot, (b) Box plots.

c10.qxd  5/16/02  1:31 PM  Page 341 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



342 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

Therefore, if �2
1 � �2

2, the hypotheses on differences in the means of two normal distributions are
tested as in the equal variances case, except that T*

0 is used as the test statistic and n1 � n2 � 2 is
replaced by v in determining the degrees of freedom for the test.

EXAMPLE 10-6 Arsenic concentration in public drinking water supplies is a potential health risk. An article in
the Arizona Republic (Sunday, May 27, 2001) reported drinking water arsenic concentrations
in parts per billion (ppb) for 10 methropolitan Phoenix communities and 10 communities in
rural Arizona. The data follow:

Metro Phoenix Rural Arizona 

Phoenix, 3 Rimrock, 48
Chandler, 7 Goodyear, 44
Gilbert, 25 New River, 40
Glendale, 10 Apachie Junction, 38
Mesa, 15 Buckeye, 33
Paradise Valley, 6 Nogales, 21
Peoria, 12 Black Canyon City, 20
Scottsdale, 25 Sedona, 12
Tempe, 15 Payson, 1
Sun City, 7 Casa Grande, 18

We wish to determine it there is any difference in mean arsenic concentrations between met-
ropolitan Phoenix communities and communities in rural Arizona. Figure 10-3 shows a nor-
mal probability plot for the two samples of arsenic concentration. The assumption of normal-
ity appears quite reasonable, but since the slopes of the two straight lines are very different, it
is unlikely that the population variances are the same.

Applying the eight-step procedure gives the following:

1. The parameters of interest are the mean arsenic concentrations for the two geographic
regions, say, �1 and �2, and we are interested in determining whether �1 � �2 � 0.

2. H0: �1 � �2 � 0, or H0: �1 � �2

1x2 � 27.5, s2 � 15.321x1 � 12.5, s1 � 7.632

(10-15)T 
*
0 �

X1 � X2 � �0BS1
2

n1
�

S2
2

n2

(10-16)v �

aS1
2

n1
�

S2
2

n2
b2

1S1
2
n122

n1 � 1
�
1S2

2
n222
n2 � 1

is distributed approximately as t with degrees of freedom given by
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10-3 INFERENCE FOR THE DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES UNKNOWN 343

3. H1: �1 � �2

4. � � 0.05 (say)

5. The test statistic is

6. The degrees of freedom on are found from Equation 10-16 as

Therefore, using � � 0.05, we would reject H0: �1 � �2 if 
 t0.025,13 � 2.160 or if
� �t0.025,13 � �2.160

7. Computations: Using the sample data we find

8. Conclusions: Because � �2.77 � t0.025,13 � �2.160, we reject the null hypoth-
esis. Therefore, there is evidence to conclude that mean arsenic concentration in the
drinking water in rural Arizona is different from the mean arsenic concentration in
metropolitan Phoenix drinking water. Furthermore, the mean arsenic concentration
is higher in rural Arizona communities. The P-value for this test is approximately
P � 0.016.

t*0

t*0 �
x1 � x2B s2

1

n1
�

s2
2

n2

�
12.5 � 27.5B 17.6322
10

�
115.322

10

� �2.77

t*0

t*0

v �

a s1
2

n1
�

s2
2

n2
b2

1s1
2
n122

n1 � 1
�
1s2

2
n222
n2 � 1

�

c 17.6322
10

�
115.322

10
d 2

3 17.6322
10 42
9

�
3 115.322
10 42

9

� 13.2 � 13

t*0

t*0 �
x1 � x2 � 0B s2

1
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2
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Figure 10-3 Normal
probability plot of the 
arsenic concentration
data from Example
10-6.
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344 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

The numerical results from Minitab exactly match the calculations from Example 10-6. Note
that a two-sided 95% CI on �1 � �2 is also reported. We will discuss its computation in
Section 10-3.4; however, note that the interval does not include zero. Indeed, the upper 95%
of confidence limit is �3.29 ppb, well below zero, and the mean observed difference is

.

10-3.2 More about the Equal Variance Assumption (CD Only)

10-3.3 Choice of Sample Size

The operating characteristic curves in Appendix Charts VIe, VIf, VIg, and VIh are used to
evaluate the type II error for the case where �2

1 � �2
2 � �2. Unfortunately, when �2

1 � �2
2, the

distribution of is unknown if the null hypothesis is false, and no operating characteristic
curves are available for this case.

For the two-sided alternative H1: �1 � �2 � � � �0, when �2
1 � �2

2 � �2 and n1 � n2 �
n, Charts VIe and VIf are used with

(10-17)

where � is the true difference in means that is of interest. To use these curves, they must be
entered with the sample size � 2n � 1. For the one-sided alternative hypothesis, we use
Charts VIg and VIh and define d and � as in Equation 10-17. It is noted that the parameter d
is a function of �, which is unknown. As in the single-sample t-test, we may have to rely on a
prior estimate of � or use a subjective estimate. Alternatively, we could define the differences
in the mean that we wish to detect relative to �.

EXAMPLE 10-7 Consider the catalyst experiment in Example 10-5. Suppose that, if catalyst 2 produces a mean
yield that differs from the mean yield of catalyst 1 by 4.0%, we would like to reject the null
hypothesis with probability at least 0.85. What sample size is required?

Using sp � 2.70 as a rough estimate of the common standard deviation �, we have
From Appendix Chart VIe with d � 0.74 and � �

0.15, we find n* � 20, approximately. Therefore, since n* � 2n � 1,

and we would use sample sizes of n1 � n2 � n � 11.

n �
n* � 1

2
�

20 � 1
2

� 10.5 � 111say2

d � ƒ � ƒ 
2� � ƒ 4.0 ƒ 
 3 122 12.702 4 � 0.74.

n*

d �
ƒ � � �0 ƒ

2�

T*
0

x1 � x2 � 12 � 5 � 17.5 � �15 ppb

Two-Sample T-Test and CI: PHX, RuralAZ

Two-sample T for PHX vs RuralAZ

N Mean StDev SE Mean
PHX 10 12.50 7.63 2.4
RuralAZ 10 27.5 15.3 4.9

Difference � mu PHX � mu RuralAZ
Estimate for difference: �15.00
95% CI for difference: (�26.71, �3.29)
T-Test of difference � 0 (vs not � ): T-Value � �2.77 P-Value � 0.016 DF � 13

The Minitab output for this example follows:
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10-3 INFERENCE FOR THE DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES UNKNOWN 345

Minitab will also perform power and sample size calculations for the two-sample t-test (equal
variances). The output from Example 10-7 is as follows:

Power and Sample Size

2-Sample t Test
Testing mean 1 � mean 2 (versus not �)
Calculating power for mean 1 � mean 2 � difference
Alpha � 0.05 Sigma � 2.7

Sample Target Actual
Difference Size Power Power

4 10 0.8500 0.8793

The results agree fairly closely with the results obtained from the O.C. curve.

10-3.4 Confidence Interval on the Difference in Means

Case 1: �2
1 � �2

2 � �2

To develop the confidence interval for the difference in means �1 � �2 when both variances
are equal, note that the distribution of the statistic

(10-18)

is the t distribution with n1 � n2 � 2 degrees of freedom. Therefore P(�t��2, �2 � T �

t��2, �2) � 1 � �. Now substituting Equation 10-18 for T and manipulating the quan-
tities inside the probability statement will lead to the 100(1 � �)% confidence interval on
�1 � �2.

n1�n2

n1�n2

T �
X1 � X2 � 1�1 � �22

Sp B 1
n1

�
1
n2

If , s2
1 and s2

2 are the sample means and variances of two random samples of
sizes n1 and n2, respectively, from two independent normal populations with un-
known but equal variances, then a 100(1 � �)% confidence interval on the differ-
ence in means �1 � �2 is

(10-19)

where is the pooled estimate 
of the common population standard deviation, and is the upper ��2 
percentage point of the t distribution with n1 � n2 � 2 degrees of freedom.

t�
2, n1�n2�2

sp � 2 3 1n1 � 12  s2
1 � 1n2 � 12  s2

2 4 
 1n1 � n2 � 22
� �1 � �2 � x1 � x2 � t�
2, n1�n2�2˛ sp B 1

n1
�

1
n2

x1 � x2 � t�
2, n1�n2�2˛ sp 
 B 1

n1
�

1
n2

x1, x2

Definition
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346 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

EXAMPLE 10-8 An article in the journal Hazardous Waste and Hazardous Materials (Vol. 6, 1989) reported
the results of an analysis of the weight of calcium in standard cement and cement doped
with lead. Reduced levels of calcium would indicate that the hydration mechanism in the
cement is blocked and would allow water to attack various locations in the cement struc-
ture. Ten samples of standard cement had an average weight percent calcium of 
with a sample standard deviation of s1 � 5.0, while 15 samples of the lead-doped cement
had an average weight percent calcium of with a sample standard deviation of
s2 � 4.0.

We will assume that weight percent calcium is normally distributed and find a 95% con-
fidence interval on the difference in means, �1 � �2, for the two types of cement. Furthermore,
we will assume that both normal populations have the same standard deviation.

The pooled estimate of the common standard deviation is found using Equation 10-12 as
follows:

Therefore, the pooled standard deviation estimate is The 95% confi-
dence interval is found using Equation 10-19:

or upon substituting the sample values and using t0.025,23 � 2.069,

which reduces to

Notice that the 95% confidence interval includes zero; therefore, at this level of confidence we
cannot conclude that there is a difference in the means. Put another way, there is no evidence
that doping the cement with lead affected the mean weight percent of calcium; therefore, we
cannot claim that the presence of lead affects this aspect of the hydration mechanism at the
95% level of confidence.

Case 2: �2
1 � �2

2

In many situations it is not reasonable to assume that �2
1 � �2

2. When this assumption is un-
warranted, we may still find a 100(1 � �)% confidence interval on �1 � �2 using the fact
that is distributed approximately as t with
degrees of freedom v given by Equation 10-16. The CI expression follows.

T* � 3X1 � X2 � 1�1 � �22 4 
 ˛2S2
1
n1 � S2

2
n2

�0.72 � �1 � �2 � 6.72

� 90.0 � 87.0 � 2.0691442  B 1
10

�
1
15

90.0 � 87.0 � 2.06914.42  B 1
10

�
1
15

� �1 � �2

x1 � x2 � t0.025,23 sp B 1
n1

�
1
n2

� �1 � �2 � x1 � x2 � t0.025,23 sp B 1
n1

�
1
n2

sp � 119.52 � 4.4.

 � 19.52

 �
915.022 � 1414.022

10 � 15 � 2

 s2
p �
1n1 � 12  s2

1 � 1n2 � 12  s2
2

n1 � n2 � 2

x2 � 87.0,

x1 � 90.0,
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10-3 INFERENCE FOR THE DIFFERENCE IN MEANS OF TWO NORMAL DISTRIBUTIONS, VARIANCES UNKNOWN 347

If and s2
2 are the means and variances of two random samples of sizes n1 and

n2, respectively, from two independent normal populations with unknown and unequal
variances, an approximate 100(1 � �)% confidence interval on the difference in
means �1 � �2 is

(10-20)

where v is given by Equation 10-16 and is the upper percentage point of the
t distribution with v degrees of freedom.

�
2t�
2,˛�

x1 � x2 � t�
2, � 
˛B s2

1

n1
�

s2
2

n2
� �1 � �2 � x1 � x2 � t�
2, � 

˛B s2
1

n1
�

s2
2

n2

x1, ˛x2, s
2
1,

Definition

10-20. The deflection temperature under load for two dif-
ferent types of plastic pipe is being investigated. Two random
samples of 15 pipe specimens are tested, and the deflection
temperatures observed are as follows (in �F):

Type 1: 206, 188, 205, 187, 194, 193, 207, 185, 189, 213,
192, 210, 194, 178, 205.

Type 2: 177, 197, 206, 201, 180, 176, 185, 200, 197, 192,
198, 188, 189, 203, 192.

(a) Construct box plots and normal probability plots for the
two samples. Do these plots provide support of the as-
sumptions of normality and equal variances? Write a prac-
tical interpretation for these plots.

(b) Do the data support the claim that the deflection tempera-
ture under load for type 2 pipe exceeds that of type 1? In
reaching your conclusions, use � � 0.05.

(c) Calculate a P-value for the test in part (b).
(d) Suppose that if the mean deflection temperature for type 2

pipe exceeds that of type 1 by as much as 5�F, it is important
to detect this difference with probability at least 0.90. Is the
choice of n1 � n2 � 15 in part (a) of this problem adequate?

10-21. In semiconductor manufacturing, wet chemical etch-
ing is often used to remove silicon from the backs of wafers
prior to metalization. The etch rate is an important characteris-
tic in this process and known to follow a normal distribution.
Two different etching solutions have been compared, using two
random samples of 10 wafers for each solution. The observed
etch rates are as follows (in mils per minute):

Solution 1 Solution 2

9.9 10.6 10.2 10.0

9.4 10.3 10.6 10.2

9.3 10.0 10.7 10.7

9.6 10.3 10.4 10.4

10.2 10.1 10.5 10.3

10-17. The diameter of steel rods manufactured on two dif-
ferent extrusion machines is being investigated. Two random
samples of sizes n1 � 15 and n2 � 17 are selected, and the
sample means and sample variances are � 8.73, s2

1 � 0.35,
� 8.68, and s2

2 � 0.40, respectively. Assume that �2
1 � �2

2

and that the data are drawn from a normal distribution.
(a) Is there evidence to support the claim that the two ma-

chines produce rods with different mean diameters? Use
� � 0.05 in arriving at this conclusion.

(b) Find the P-value for the t-statistic you calculated in
part (a).

(c) Construct a 95% confidence interval for the difference in
mean rod diameter. Interpret this interval.

10-18. An article in Fire Technology investigated two dif-
ferent foam expanding agents that can be used in the nozzles
of fire-fighting spray equipment. A random sample of five ob-
servations with an aqueous film-forming foam (AFFF) had a
sample mean of 4.7 and a standard deviation of 0.6. A random
sample of five observations with alcohol-type concentrates
(ATC) had a sample mean of 6.9 and a standard deviation 0.8.
Find a 95% confidence interval on the difference in mean
foam expansion of these two agents. Can you draw any con-
clusions about which agent produces the greatest mean foam
expansion? Assume that both populations are well represented
by normal distributions with the same standard deviations.

10-19. Two catalysts may be used in a batch chemical
process. Twelve batches were prepared using catalyst 1, re-
sulting in an average yield of 86 and a sample standard devia-
tion of 3. Fifteen batches were prepared using catalyst 2, and
they resulted in an average yield of 89 with a standard devia-
tion of 2. Assume that yield measurements are approximately
normally distributed with the same standard deviation.
(a) Is there evidence to support a claim that catalyst 2 pro-

duces a higher mean yield than catalyst 1? Use � � 0.01.
(b) Find a 95% confidence interval on the difference in mean

yields.

x2

x1

EXERCISES FOR SECTION 10-3
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348 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

and s2 � 3�F. Do the sample data support the claim
that both alloys have the same melting point? Use � � 0.05 and
assume that both populations are normally distributed and have
the same standard deviation. Find the P-value for the test.

10-26. Referring to the melting point experiment in
Exercise 10-25, suppose that the true mean difference in
melting points is 3�F. How large a sample would be required
to detect this difference using an � � 0.05 level test with
probability at least 0.9? Use �1 � �2 � 4 as an initial esti-
mate of the common standard deviation.

10-27. Two companies manufacture a rubber material in-
tended for use in an automotive application. The part will be
subjected to abrasive wear in the field application, so we
decide to compare the material produced by each company in
a test. Twenty-five samples of material from each company
are tested in an abrasion test, and the amount of wear after
1000 cycles is observed. For company 1, the sample mean and
standard deviation of wear are milligrams/1000
cycles and s1 � 2 milligrams/1000 cycles, while for company
2 we obtain milligrams/1000 cycles and s2 � 8 mil-
ligrams/1000 cycles.
(a) Do the data support the claim that the two companies pro-

duce material with different mean wear? Use � � 0.05,
and assume each population is normally distributed but
that their variances are not equal.

(b) What is the P-value for this test?
(c) Do the data support a claim that the material from com-

pany 1 has higher mean wear than the material from com-
pany 2? Use the same assumptions as in part (a).

10-28. The thickness of a plastic film (in mils) on a sub-
strate material is thought to be influenced by the temperature
at which the coating is applied. A completely randomized ex-
periment is carried out. Eleven substrates are coated at 125�F,
resulting in a sample mean coating thickness of 
and a sample standard deviation of s1 � 10.2. Another 13 sub-
strates are coated at 150�F, for which and s2 � 20.1
are observed. It was originally suspected that raising the
process temperature would reduce mean coating thickness. Do
the data support this claim? Use � � 0.01 and assume that the
two population standard deviations are not equal. Calculate an
approximate P-value for this test.

10-29. Reconsider the coating thickness experiment in
Exercise 10-28. How could you have answered the question
posed regarding the effect of temperature on coating thickness
by using a confidence interval? Explain your answer.

10-30. Reconsider the abrasive wear test in Exercise 10-27.
Construct a confidence interval that will address the questions
in parts (a) and (c) in that exercise.

10-31. The overall distance traveled by a golf ball is tested
by hitting the ball with Iron Byron, a mechanical golfer with a
swing that is said to emulate the legendary champion, Byron
Nelson. Ten randomly selected balls of two different brands
are tested and the overall distance measured. The data follow:

x2 � 99.7

x1 � 103.5

x2 � 15

x1 � 20

x2 � 426�F,(a) Do the data support the claim that the mean etch rate is the
same for both solutions? In reaching your conclusions, use
� � 0.05 and assume that both population variances are
equal.

(b) Calculate a P-value for the test in part (a).
(c) Find a 95% confidence interval on the difference in mean

etch rates.
(d) Construct normal probability plots for the two samples.

Do these plots provide support for the assumptions of nor-
mality and equal variances? Write a practical interpreta-
tion for these plots.

10-22. Two suppliers manufacture a plastic gear used in a
laser printer. The impact strength of these gears measured in
foot-pounds is an important characteristic. A random sample
of 10 gears from supplier 1 results in and s1 � 12,
while another random sample of 16 gears from the second
supplier results in and s2 � 22.
(a) Is there evidence to support the claim that supplier 2 pro-

vides gears with higher mean impact strength? Use � �
0.05, and assume that both populations are normally dis-
tributed but the variances are not equal.

(b) What is the P-value for this test?
(c) Do the data support the claim that the mean impact

strength of gears from supplier 2 is at least 25 foot-pounds
higher than that of supplier 1? Make the same assump-
tions as in part (a).

10-23. Reconsider the situation in Exercise 10-22, part (a).
Construct a confidence interval estimate for the difference in
mean impact strength, and explain how this interval could
be used to answer the question posed regarding supplier-
to-supplier differences.
10-24. A photoconductor film is manufactured at a nominal
thickness of 25 mils. The product engineer wishes to increase
the mean speed of the film, and believes that this can be
achieved by reducing the thickness of the film to 20 mils.
Eight samples of each film thickness are manufactured in a pi-
lot production process, and the film speed (in microjoules per
square inch) is measured. For the 25-mil film the sample data
result is and s1 � 0.11, while for the 20-mil film,
the data yield and s2 � 0.09. Note that an increase
in film speed would lower the value of the observation in mi-
crojoules per square inch.
(a) Do the data support the claim that reducing the film thick-

ness increases the mean speed of the film? Use � � 0.10
and assume that the two population variances are equal
and the underlying population of film speed is normally
distributed.

(b) What is the P-value for this test?
(c) Find a 95% confidence interval on the difference in the

two means.
10-25. The melting points of two alloys used in formulating
solder were investigated by melting 21 samples of each material.
The sample mean and standard deviation for alloy 1 was

and s1 � 4�F, while for alloy 2 they werex1 � 420�F

x2 � 1.06
x1 � 1.15

x2 � 321

x1 � 290
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10-4 PAIRED t-TEST

A special case of the two-sample t-tests of Section 10-3 occurs when the observations on
the two populations of interest are collected in pairs. Each pair of observations, say (X1j,
X2j), is taken under homogeneous conditions, but these conditions may change from one
pair to another. For example, suppose that we are interested in comparing two different
types of tips for a hardness-testing machine. This machine presses the tip into a metal spec-
imen with a known force. By measuring the depth of the depression caused by the tip, the
hardness of the specimen can be determined. If several specimens were selected at random,
half tested with tip 1, half tested with tip 2, and the pooled or independent t-test in Section
10-3 was applied, the results of the test could be erroneous. The metal specimens could
have been cut from bar stock that was produced in different heats, or they might not
be homogeneous in some other way that might affect hardness. Then the observed differ-
ence between mean hardness readings for the two tip types also includes hardness differ-
ences between specimens.

A more powerful experimental procedure is to collect the data in pairs—that is, to make
two hardness readings on each specimen, one with each tip. The test procedure would then
consist of analyzing the differences between hardness readings on each specimen. If there is
no difference between tips, the mean of the differences should be zero. This test procedure is
called the paired t-test.

Let (X11, X21), (X12, X22), p , (X1n, X2n) be a set of n paired observations where we assume
that the mean and variance of the population represented by X1 are �1 and �2

1, and the mean
and variance of the population represented by X2 are �2 and �2

2. Define the differences be-
tween each pair of observations as Dj � X1j � X2j, j � 1, 2, p , n. The Dj’s are assumed to be
normally distributed with mean

�D � E1X1 � X22 � E1X12 � E1X22 � �1 � �2

10-4 PAIRED t-TEST 349

Brand 1: 275, 286, 287, 271, 283, 271, 279, 275, 263, 267

Brand 2: 258, 244, 260, 265, 273, 281, 271, 270, 263, 268

(a) Is there evidence that overall distance is approximately
normally distributed? Is an assumption of equal variances
justified?

(b) Test the hypothesis that both brands of ball have equal
mean overall distance. Use � � 0.05.

(c) What is the P-value of the test statistic in part (b)?
(d) What is the power of the statistical test in part (b) to detect

a true difference in mean overall distance of 5 yards?
(e) What sample size would be required to detect a true dif-

ference in mean overall distance of 3 yards with power of
approximately 0.75?

(f) Construct a 95% two-sided CI on the mean difference in
overall distance between the two brands of golf balls.

10-32. In Example 9-6 we described how the “spring-like
effect” in a golf club could be determined by measuring the
coefficient of restitution (the ratio of the outbound velocity to
the inbound velocity of a golf ball fired at the clubhead).
Twelve randomly selected drivers produced by two

clubmakers are tested and the coefficient of restitution meas-
ured. The data follow:

Club 1: 0.8406, 0.8104, 0.8234, 0.8198, 0.8235, 0.8562,
0.8123, 0.7976, 0.8184, 0.8265, 0.7773, 0.7871

Club 2: 0.8305, 0.7905, 0.8352, 0.8380, 0.8145, 0.8465,
0.8244, 0.8014, 0.8309, 0.8405, 0.8256, 0.8476

(a) Is there evidence that coefficient of restitution is approxi-
mately normally distributed? Is an assumption of equal
variances justified?

(b) Test the hypothesis that both brands of ball have equal
mean coefficient of restitution. Use � � 0.05.

(c) What is the P-value of the test statistic in part (b)?
(d) What is the power of the statistical test in part (b) to detect

a true difference in mean coefficient of restitution of 0.2?
(e) What sample size would be required to detect a true dif-

ference in mean coefficient of restitution of 0.1 with
power of approximately 0.8?

(f) Construct a 95% two-sided CI on the mean difference in co-
efficient of restitution between the two brands of golf clubs.
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In Equation 10-22, is the sample average of the n differences D1, D2, p , Dn, and SD is the
sample standard deviation of these differences.

EXAMPLE 10-9 An article in the Journal of Strain Analysis (1983, Vol. 18, No. 2) compares several methods
for predicting the shear strength for steel plate girders. Data for two of these methods, the
Karlsruhe and Lehigh procedures, when applied to nine specific girders, are shown in Table
10-2. We wish to determine whether there is any difference (on the average) between the two
methods.

The eight-step procedure is applied as follows:

1. The parameter of interest is the difference in mean shear strength between the two
methods, say, �D � �1 � �2 � 0.

2. H0: �D � 0

D

350 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

Null hypothesis: H0: �D � �0

Test statistic: (10-22)

Alternative Hypothesis Rejection Region

t0 � �t�, n�1H1: �D � �0

t0 
 t�, n�1H1: �D 
 �0

t0 
 t�
2, n�1 or t0 � �t�
2, n�1H1: �D � �0

T0 �
D � �0

SD
1n

The Paired 
t-Test

and variance �2
D, so testing hypotheses about the difference between �1 and �2 can be

accomplished by performing a one-sample t-test on �D. Specifically, testing H0: �1 � �2 �
�0 against H1: �1 � �2 �0 is equivalent to testing

(10-21)

The test statistic is given below.

H1: �D � �0

H0: �D � �0

�

Table 10-2 Strength Predictions for Nine Steel Plate Girders 
(Predicted Load/Observed Load)

Girder Karlsruhe Method Lehigh Method Difference dj

S1�1 1.186 1.061 0.119
S2�1 1.151 0.992 0.159
S3�1 1.322 1.063 0.259
S4�1 1.339 1.062 0.277
S5�1 1.200 1.065 0.138
S2�1 1.402 1.178 0.224
S2�2 1.365 1.037 0.328
S2�3 1.537 1.086 0.451
S2�4 1.559 1.052 0.507
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10-4 PAIRED t-TEST 351

3.

4.

5. The test statistic is

6. Reject H0 if t0 
 t0.025,8 � 2.306 or if t0 � �t0.025,8 � �2.306.

7. Computations: The sample average and standard deviation of the differences dj are 
� 0.2736 and sD � 0.1356, so the test statistic is

8. Conclusions: Since t0 � 6.05 
 2.306, we conclude that the strength prediction
methods yield different results. Specifically, the data indicate that the Karlsruhe
method produces, on the average, higher strength predictions than does the Lehigh
method. The P-value for t0 � 6.05 is P � 0.0002, so the test statistic is well into the
critical region.

Paired Versus Unpaired Comparisons
In performing a comparative experiment, the investigator can sometimes choose between the
paired experiment and the two-sample (or unpaired) experiment. If n measurements are to be
made on each population, the two-sample t-statistic is

which would be compared to t2n�2, and of course, the paired t-statistic is

which is compared to tn�1. Notice that since

the numerators of both statistics are identical. However, the denominator of the two-sample 
t-test is based on the assumption that X1 and X2 are independent. In many paired experiments,
a strong positive correlation � exists between X1 and X2. Then it can be shown that

  �
2�211 � �2

n

  � V1X12 � V1X22 � 2 cov 1X1, X22
 V 1D2 � V1X1 � X2 � �02

D � a
n

j�1
 
Dj

n � a
n

j�1
 
1X1j � X2j2

n �  a
n

j�1
 
X1j

n � a
n

j�1
 
X2j

n � X1 � X2

T0 �
D � �0

SD
1n

T0 �
X1 � X2 � �0

Sp B1
n �

1
n

t0 �
d

sD
1n
�

0.2736

0.1356
19
� 6.05

d

t0 �
d

sD
1n

� � 0.05

H1: �D � 0
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352 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

assuming that both populations X1 and X2 have identical variances �2. Furthermore, S2
D�n

estimates the variance of . Whenever there is positive correlation within the pairs, the de-
nominator for the paired t-test will be smaller than the denominator of the two-sample t-test.
This can cause the two-sample t-test to considerably understate the significance of the data if
it is incorrectly applied to paired samples.

Although pairing will often lead to a smaller value of the variance of , it does
have a disadvantage—namely, the paired t-test leads to a loss of n � 1 degrees of freedom in
comparison to the two-sample t-test. Generally, we know that increasing the degrees of free-
dom of a test increases the power against any fixed alternative values of the parameter.

So how do we decide to conduct the experiment? Should we pair the observations or not?
Although there is no general answer to this question, we can give some guidelines based on
the above discussion.

1. If the experimental units are relatively homogeneous (small �) and the correlation
within pairs is small, the gain in precision attributable to pairing will be offset by the
loss of degrees of freedom, so an independent-sample experiment should be used.

2. If the experimental units are relatively heterogeneous (large �) and there is large pos-
itive correlation within pairs, the paired experiment should be used. Typically, this
case occurs when the experimental units are the same for both treatments; as in
Example 10-9, the same girders were used to test the two methods.

Implementing the rules still requires judgment, because � and � are never known precisely.
Furthermore, if the number of degrees of freedom is large (say, 40 or 50), the loss of n � 1 of
them for pairing may not be serious. However, if the number of degrees of freedom is small
(say, 10 or 20), losing half of them is potentially serious if not compensated for by increased
precision from pairing.

A Confidence Interval for �D

To construct the confidence interval for �D � �1 � �2, note that

follows a t distribution with n � 1 degrees of freedom. Then, since P(�t��2,n�1 � T �
t��2,n�1) � 1 � �, we can substitute for T in the above expression and perform the necessary
steps to isolate �D � �1 � �2 between the inequalities. This leads to the following 100(1 � �)%
confidence interval on �1 � �2.

T �
D � �D

SD
1n

X1 � X2

D

If and sD are the sample mean and standard deviation of the difference of n random
pairs of normally distributed measurements, a 100(1 � �)% confidence interval on
the difference in means �D � �1 � �2 is

(10-23)

where t�/2,n�1 is the upper ��2% point of the t-distribution with n � 1 degrees of
freedom.

d � t�
2, n�1 sD
1n � �D � d � t�
2, n�1 sD
1n

d
Definition
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10-4 PAIRED t-TEST 353

This confidence interval is also valid for the case where , because s2
D estimates �2

D �
V(X1 � X2). Also, for large samples (say, n � 30 pairs), the explicit assumption of normality
is unnecessary because of the central limit theorem.

EXAMPLE 10-10 The journal Human Factors (1962, pp. 375-380) reports a study in which n � 14 subjects
were asked to parallel park two cars having very different wheel bases and turning radii. The
time in seconds for each subject was recorded and is given in Table 10-3. From the column of
observed differences we calculate and sD � 12.68. The 90% confidence interval for
�D � �1 � �2 is found from Equation 9-24 as follows:

Notice that the confidence interval on �D includes zero. This implies that, at the 90% level of con-
fidence, the data do not support the claim that the two cars have different mean parking times �1

and �2. That is, the value �D � �1 � �2 � 0 is not inconsistent with the observed data.

EXERCISES FOR SECTION 10-4

 �4.79 � �D � 7.21

1.21 � 1.771112.682
114 � �D � 1.21 � 1.771112.682
114

 d � t0.05,13 
sD
1n � �D � d � t0.05,13 

sD
1n

d � 1.21

�2
1 � �2

2

Table 10-3 Time in Seconds to Parallel Park Two 
Automobiles

Automobile Difference

Subject 1(x1j) 2(x2j) (dj)

1 37.0 17.8 19.2
2 25.8 20.2 5.6
3 16.2 16.8 �0.6
4 24.2 41.4 �17.2
5 22.0 21.4 0.6
6 33.4 38.4 �5.0
7 23.8 16.8 7.0
8 58.2 32.2 26.0
9 33.6 27.8 5.8

10 24.4 23.2 1.2
11 23.4 29.6 �6.2
12 21.2 20.6 0.6
13 36.2 32.2 4.0
14 29.8 53.8 �24.0

must be normal? Use a normal probability plot to investigate
the normality assumption.

10-35. Consider the parking data in Example 10-10. Use
the paired t-test to investigate the claim that the two types of
cars have different levels of difficulty to parallel park. Use
� � 0.10. Compare your results with the confidence interval
constructed in Example 10-10 and comment on why they are
the same or different.

10-33. Consider the shear strength experiment described in
Example 10-9. Construct a 95% confidence interval on the
difference in mean shear strength for the two methods. Is the
result you obtained consistent with the findings in Example
10-9? Explain why.

10-34. Reconsider the shear strength experiment described
in Example 10-9. Do each of the individual shear strengths
have to be normally distributed for the paired t-test to be ap-
propriate, or is it only the difference in shear strengths that
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10-38. A computer scientist is investigating the usefulness
of two different design languages in improving programming
tasks. Twelve expert programmers, familiar with both lan-
guages, are asked to code a standard function in both lan-
guages, and the time (in minutes) is recorded. The data follow:

354 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

Car Brand 1 Brand 2

1 36,925 34,318

2 45,300 42,280

3 36,240 35,500

4 32,100 31,950

5 37,210 38,015

6 48,360 47,800

7 38,200 37,810

8 33,500 33,215

Time

Design Design
Language Language

Programmer 1 2

1 17 18
2 16 14
3 21 19
4 14 11
5 18 23
6 24 21
7 16 10
8 14 13
9 21 19

10 23 24
11 13 15
12 18 20

Blood Cholesterol Level

Subject Before After

1 265 229

2 240 231

3 258 227

4 295 240

5 251 238

6 245 241

7 287 234

8 314 256

9 260 247

10 279 239

11 283 246

12 240 218

13 238 219

14 225 226

15 247 233

(a) Find a 95% confidence interval on the difference in mean
coding times. Is there any indication that one design lan-
guage is preferable?

(b) Is the assumption that the difference in coding time is nor-
mally distributed reasonable? Show evidence to support
your answer.

10-40. An article in the Journal of Aircraft (Vol. 23, 1986,
pp. 859–864) describes a new equivalent plate analysis
method formulation that is capable of modeling aircraft
structures such as cranked wing boxes and that produces
results similar to the more computationally intensive finite
element analysis method. Natural vibration frequencies for
the cranked wing box structure are calculated using both
methods, and results for the first seven natural frequencies
follow:

Finite Equivalent
Element Plate,

Freq. Cycle/s Cycle/s

1 14.58 14.76

2 48.52 49.10

3 97.22 99.99

4 113.99 117.53

5 174.73 181.22

6 212.72 220.14

7 277.38 294.80

10-36. Reconsider the parking data in Example 10-10.
Investigate the assumption that the differences in parking
times are normally distributed.

10-37. The manager of a fleet of automobiles is testing two
brands of radial tires and assigns one tire of each brand at ran-
dom to the two rear wheels of eight cars and runs the cars un-
til the tires wear out. The data (in kilometers) follow. Find a
99% confidence interval on the difference in mean life. Which
brand would you prefer, based on this calculation?

10-39. Fifteen adult males between the ages of 35 and 50
participated in a study to evaluate the effect of diet and ex-
ercise on blood cholesterol levels. The total cholesterol was
measured in each subject initially and then three months af-
ter participating in an aerobic exercise program and switch-
ing to a low-fat diet. The data are shown in the accompany-
ing table. Do the data support the claim that low-fat diet and
aerobic exercise are of value in producing a mean reduction
in blood cholesterol levels? Use � � 0.05.
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10-42. Two different analytical tests can be used to deter-
mine the impurity level in steel alloys. Eight specimens

Subject Before After

1 195 187
2 213 195
3 247 221
4 201 190
5 187 175
6 210 197
7 215 199
8 246 221
9 294 278

10 310 285

are tested using both procedures, and the results are shown in
the following tabulation. Is there sufficient evidence to con-
clude that both tests give the same mean impurity level,
using � � 0.01?

10-5 INFERENCES ON THE VARIANCES 
OF TWO NORMAL POPULATIONS

We now introduce tests and confidence intervals for the two population variances shown in
Fig. 10-1. We will assume that both populations are normal. Both the hypothesis-testing and
confidence interval procedures are relatively sensitive to the normality assumption.

10-5.1 The F Distribution

Suppose that two independent normal populations are of interest, where the population means
and variances, say, �1, �

2
1, �2, and �2

2, are unknown. We wish to test hypotheses about the
equality of the two variances, say, H0: �

2
1 � �2

2. Assume that two random samples of size n1

from population 1 and of size n2 from population 2 are available, and let S 2
1 and S 2

2 be the sam-
ple variances. We wish to test the hypotheses

(10-24)

The development of a test procedure for these hypotheses requires a new probability
distribution, the F distribution. The random variable F is defined to be the ratio of two

H1: �
2
1 � �2

2

H0: �
2
1 � �2

2

(a) Do the data suggest that the two methods prove the same
mean value for natural vibration frequency? Use � �
0.05.

(b) Find a 95% confidence interval on the mean difference
between the two methods.

10-41. Ten individuals have participated in a diet-modifica-
tion program to stimulate weight loss. Their weight both be-
fore and after participation in the program is shown in the fol-
lowing list. Is there evidence to support the claim that this
particular diet-modification program is effective in producing
a mean weight reduction? Use � � 0.05.

10-43. Consider the weight-loss data in Exercise 10-41. Is
there evidence to support the claim that this particular diet-
modification program will result in a mean weight loss of at
least 10 pounds? Use � � 0.05.

10-44. Consider the weight-loss experiment in Exercise 
10-41. Suppose that, if the diet-modification program results
in mean weight loss of at least 10 pounds, it is important to de-
tect this with probability of at least 0.90. Was the use of 10
subjects an adequate sample size? If not, how many subjects
should have been used?

Specimen Test 1 Test 2

1 1.2 1.4
2 1.3 1.7
3 1.5 1.5
4 1.4 1.3
5 1.7 2.0
6 1.8 2.1
7 1.4 1.7
8 1.3 1.6
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356 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

independent chi-square random variables, each divided by its number of degrees of free-
dom. That is,

(10-25)

where W and Y are independent chi-square random variables with u and v degrees of freedom,
respectively. We now formally state the sampling distribution of F.

F �
W
u
Y
v

Let W and Y be independent chi-square random variables with u and v degrees of
freedom, respectively. Then the ratio

(10-26)

has the probability density function

(10-27)

and is said to follow the F distribution with u degrees of freedom in the numerator
and v degrees of freedom in the denominator. It is usually abbreviated as Fu,v.

f 1x2 �

�  au � v

2
b au

vb
u
2

 x 1u
22�1

� au

2
b � av

2
b c  au

vb x � 1 d 1u�v2
2,  0 � x � �

F �
W
u
Y
v

Definition

The mean and variance of the F distribution are � � v�(v � 2) for v 
 2, and

Two F distributions are shown in Fig. 10-4. The F random variable is nonnegative, and the
distribution is skewed to the right. The F distribution looks very similar to the chi-square dis-
tribution; however, the two parameters u and v provide extra flexibility regarding shape.

The percentage points of the F distribution are given in Table V of the Appendix. Let
f�,u,v be the percentage point of the F distribution, with numerator degrees of freedom u and
denominator degrees of freedom v such that the probability that the random variable F ex-
ceeds this value is

This is illustrated in Fig. 10-5. For example, if u � 5 and v � 10, we find from Table V of the
Appendix that

P1F 
 f0.05,5,102 � P1F5,10 
 3.332 � 0.05

P1F 
 f�, u, v2 � �
�

f�,u,v

  f 1x2  dx � �

�2 �
2v21u � v � 22

u1v � 2221v � 42 ,  v 
 4
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That is, the upper 5 percentage point of F5,10 is f0.05,5,10 � 3.33.
Table V contains only upper-tail percentage points (for selected values of f�,u,v for � �

0.25) of the F distribution. The lower-tail percentage points f1��,u,v can be found as follows.
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0 2 4 6 8 10 x

u = 5, v = 15

f (x)

u = 5, v = 5

Figure 10-4 Probability density functions of
two F distributions.

Figure 10-5 Upper and lower percentage
points of the F distribution.

x

α α

f1 – α, , f α, ,u v u v

f (x)

(10-28)f1��,u,v �
1

f�,v,u

For example, to find the lower-tail percentage point f0.95,5,10, note that

10-5.2 Development of the F Distribution (CD Only)

10-5.3 Hypothesis Tests on the Ratio of Two Variances

A hypothesis-testing procedure for the equality of two variances is based on the following result.

f0.95, 5,10 �
1

f0.05,10, 5
�

1
4.74

� 0.211

Let X11, X12, p , X1n1
be a random sample from a normal population with mean �1 and

variance �2
1, and let X21, X22, p , X2n2

be a random sample from a second normal pop-
ulation with mean �2 and variance �2

2. Assume that both normal populations are
independent. Let and be the sample variances. Then the ratio

has an F distribution with n1 � 1 numerator degrees of freedom and n2 � 1 denom-
inator degrees of freedom.

F �
S2

1
�2
1

S2
2
�2

2

S2
2S2

1
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This result is based on the fact that (n1 � 1)S 2
1/�

2
1 is a chi-square random variable with n1 � 1

degrees of freedom, that (n2 � 1)S 2
2��2

2 is a chi-square random variable with n2 � 1 degrees
of freedom, and that the two normal populations are independent. Clearly under the null
hypothesis H0: �

2
1 � �2

2 the ratio has an distribution. This is the basis of
the following test procedure.

Fn1�1,n2�1F0 � S2
1
S 

2
2
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Null hypothesis: 

Test statistic: (10-29)

Alternative Hypotheses Rejection Criterion

f0 � f1��, n1�1,n2�1H1: �
2
1 � �2

2

f0 
 f�,n1�1,n2�1H1: �
2
1 
 �2

2

f0 
 f�
2,n1�1,n2�1 or f0 � f1��
2,n1�1,n2�1H1: �
2
1 � �2

2

F0 �
S2

1

S2
2

H0: �
2
1 � �2

2

EXAMPLE 10-11 Oxide layers on semiconductor wafers are etched in a mixture of gases to achieve the proper
thickness. The variability in the thickness of these oxide layers is a critical characteristic of the
wafer, and low variability is desirable for subsequent processing steps. Two different mixtures
of gases are being studied to determine whether one is superior in reducing the variability of
the oxide thickness. Twenty wafers are etched in each gas. The sample standard deviations of
oxide thickness are s1 � 1.96 angstroms and s2 � 2.13 angstroms, respectively. Is there any
evidence to indicate that either gas is preferable? Use � � 0.05.

The eight-step hypothesis-testing procedure may be applied to this problem as follows:

1. The parameters of interest are the variances of oxide thickness �2
1 and �2

2. We will
assume that oxide thickness is a normal random variable for both gas mixtures.

2.

3.

4.

5. The test statistic is given by Equation 10-29:

6. Since n1 � n2 � 20, we will reject 
.

7. Computations: Since s2
1 � (1.96)2 � 3.84 and s2

2 � (2.13)2 � 4.54, the test statistic is

8. Conclusions: Since f0.975,19,19 � 0.40 � f0 � 0.85 � f0.025,19,19 � 2.53, we cannot
reject the null hypothesis H0: �

2
1 � �2

2 at the 0.05 level of significance. Therefore,
there is no strong evidence to indicate that either gas results in a smaller variance of
oxide thickness.

f0 �
s2

1

s2
2

�
3.84
4.54

� 0.85

if f0 � f0.975,19,19 � 1
f0.025,19,19 � 1
2.53 � 0.40
H0: �

2
1 � �2

2 if f0 
 f0.025,19,19 � 2.53 or

f0 �
s2

1

s2
2

� � 0.05

H1: �
2
1 � �2

2

H0: �
2
1 � �2

2
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We may also find a P-value for the F-statistic in Example 10-11. Since f0.50,19,19 � 1.00,
the computed value of the test statistic f0 � � 3.84�4.54 � 0.85 is nearer the lower
tail of the F distribution than the upper tail. The probability that an F-random variable with
19 numerator and denominator degrees of freedom is less than 0.85 is 0.3634. Since it is ar-
bitrary which population is identified as “one,” we could have computed the test statistic as
f0 � 4.54�3.84 � 1.18. The probability that an F-random variable with 19 numerator and
denominator degrees of freedom exceeds 1.18 is 0.3610. Therefore, the P-value for the test
statistic f0 � 0.85 is the sum of these two probabilities, or P � 0.3634 � 0.3610 � 0.7244.
Since the P-value exceeds 0.05, the null hypothesis H0: �

2
1 � �2

2 cannot be rejected. (The
probabilities given above were computed using a hand-held calculator.)

10-5.4 	-Error and Choice of Sample Size

Appendix Charts VIo, VIp, VIq, and VIr provide operating characteristic curves for the F-test
given in Section 10-5.1 for � � 0.05 and � � 0.01, assuming that n1 � n2 � n. Charts VIo
and VIp are used with the two-sided alternate hypothesis. They plot � against the abscissa
parameter

(10-30)

for various n1 � n2 � n. Charts VIq and VIr are used for the one-sided alternative hypotheses.

EXAMPLE 10-12 For the semiconductor wafer oxide etching problem in Example 10-11, suppose that one gas
resulted in a standard deviation of oxide thickness that is half the standard deviation of oxide
thickness of the other gas. If we wish to detect such a situation with probability at least 0.80,
is the sample size n1 � n2 � 20 adequate?

Note that if one standard deviation is half the other,

By referring to Appendix Chart VIo with n1 � n2 � n � 20 and � � 2, we find that 
Therefore, if � � 0.20, the power of the test (which is the probability that the difference in
standard deviations will be detected by the test) is 0.80, and we conclude that the sample sizes
n1 � n2 � 20 are adequate.

10-5.5 Confidence Interval on the Ratio of Two Variances

To find the confidence interval on recall that the sampling distribution of

is an F with n2 � 1 and n1 � 1 degrees of freedom. Therefore, �

Substitution for F and manipulation of the inequalities will lead to
the 100(1 � �)% confidence interval for �2

1
�2
2.

f�
2,n2�1, n1�12 � 1 � �.
P1  f1��
2, n2�1, n1�1 � F

F �
S2

2
�2
2

S2
1
�2

1

�2
1
�2

2,

� � 0.20.

� �
�1

�2
� 2

� �
�1

�2

s2
1
s2

2
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EXAMPLE 10-13 A company manufactures impellers for use in jet-turbine engines. One of the operations
involves grinding a particular surface finish on a titanium alloy component. Two different
grinding processes can be used, and both processes can produce parts at identical mean sur-
face roughness. The manufacturing engineer would like to select the process having the
least variability in surface roughness. A random sample of n1 � 11 parts from the first
process results in a sample standard deviation s1 � 5.1 microinches, and a random sample
of n2 � 16 parts from the second process results in a sample standard deviation of s2 � 4.7
microinches. We will find a 90% confidence interval on the ratio of the two standard devi-
ations, 

Assuming that the two processes are independent and that surface roughness is normally
distributed, we can use Equation 10-31 as follows:

or upon completing the implied calculations and taking square roots,

Notice that we have used Equation 10-28 to find f0.95,15,10 � 1�f0.05,10,15 � 1�2.54 � 0.39.
Since this confidence interval includes unity, we cannot claim that the standard deviations of
surface roughness for the two processes are different at the 90% level of confidence.

EXERCISES FOR SECTION 10-5

0.678 �
�1

�2
� 1.887

 
15.122
14.722 0.39 �

�2
1

�2
2

�
15.122
14.722 2.85

s2
1

s2
2
  f0.95,15,10 �

�2
1

�2
2

�
s2

1

s2
2
  f0.05,15,10

�1
�2.
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If and are the sample variances of random samples of sizes n1 and n2, respec-
tively, from two independent normal populations with unknown variances and 
then a 100(1 � �)% confidence interval on the ratio is 

(10-31)

where and are the upper and lower ��2 percentage
points of the F distribution with n2 � 1 numerator and n1 � 1 denominator degrees
of freedom, respectively. A confidence interval on the ratio of the standard deviations
can be obtained by taking square roots in Equation 10-31.

f1��
2,n2�1,n1�1f�
2,n2�1,n1�1

s2
1

s2
2
  f1��
2,n2�1,n1�1 �

�2
1

�2
2

�
s2

1

s2
2
  f�
2,n2�1,n1�1

�2
1
�2

2

�2
2,�2

1

s2
2s2

1

Definition

10-45. For an F distribution, find the following:
(a) f0.25,5,10 (b) f0.10,24,9

(c) f0.05,8,15 (d) f0.75,5,10

(e) f0.90,24,9 (f ) f0.95,8,15

10-46. For an F distribution, find the following:
(a) f0.25,7,15 (b) f0.10,10,12

(c) f0.01,20,10 (d) f0.75,7,15

(e) f0.90,10,12 (f) f0.99,20,10

10-47. Two chemical companies can supply a raw material.
The concentration of a particular element in this material is
important. The mean concentration for both suppliers is the
same, but we suspect that the variability in concentration may
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10-6 INFERENCE ON TWO POPULATION PROPORTIONS

We now consider the case where there are two binomial parameters of interest, say, p1 and p2,
and we wish to draw inferences about these proportions. We will present large-sample
hypothesis testing and confidence interval procedures based on the normal approximation to
the binomial.

10-6.1 Large-Sample Test for H0: p1 � p2

Suppose that two independent random samples of sizes n1 and n2 are taken from two pop-
ulations, and let X1 and X2 represent the number of observations that belong to the class of in-
terest in samples 1 and 2, respectively. Furthermore, suppose that the normal approximation
to the binomial is applied to each population, so the estimators of the population proportions

differ between the two companies. The standard deviation of
concentration in a random sample of n1 � 10 batches pro-
duced by company 1 is s1 � 4.7 grams per liter, while for
company 2, a random sample of n2 � 16 batches yields s2 �
5.8 grams per liter. Is there sufficient evidence to conclude
that the two population variances differ? Use � � 0.05.

10-48. Consider the etch rate data in Exercise 10-21. Test
the hypothesis H0: �

2
1 � �2

2 against H1: �
2
1 �2

2 using � �
0.05, and draw conclusions.

10-49. Consider the etch rate data in Exercise 10-21.
Suppose that if one population variance is twice as large as the
other, we want to detect this with probability at least 0.90
(using � � 0.05). Are the sample sizes n1 � n2 � 10 adequate?

10-50. Consider the diameter data in Exercise 10-17. Con-
struct the following:
(a) A 90% two-sided confidence interval on �1��2.
(b) A 95% two-sided confidence interval on �1��2. Comment

on the comparison of the width of this interval with the
width of the interval in part (a).

(c) A 90% lower-confidence bound on �1��2.

10-51. Consider the foam data in Exercise 10-18. Construct
the following:
(a) A 90% two-sided confidence interval on �2

1��2
2.

(b) A 95% two-sided confidence interval on �2
1��2

2. Comment
on the comparison of the width of this interval with the
width of the interval in part (a).

(c) A 90% lower-confidence bound on �1��2.

10-52. Consider the film speed data in Exercise 10-24. Test
H0: �

2
1 � �2

2 versus using � � 0.02.

10-53. Consider the gear impact strength data in Exercise
10-22. Is there sufficient evidence to conclude that the vari-
ance of impact strength is different for the two suppliers?
Use � � 0.05.

10-54. Consider the melting point data in Exercise 10-25.
Do the sample data support a claim that both alloys have the

H1: �
2
1 � �2

2

�

same variance of melting point? Use � � 0.05 in reaching
your conclusion.

10-55. Exercise 10-28 presented measurements of plastic
coating thickness at two different application temperatures.
Test H0: �

2
1 � �2

2 against using � � 0.01.

10-56. A study was performed to determine whether men
and women differ in their repeatability in assembling compo-
nents on printed circuit boards. Random samples of 25 men
and 21 women were selected, and each subject assembled the
units. The two sample standard deviations of assembly time
were smen � 0.98 minutes and swomen � 1.02 minutes. Is there
evidence to support the claim that men and women differ in
repeatability for this assembly task? Use � � 0.02 and state
any necessary assumptions about the underlying distribution
of the data.

10-57. Reconsider the assembly repeatability experiment
described in Exercise 10-56. Find a 98% confidence interval
on the ratio of the two variances. Provide an interpretation of
the interval.

10-58. Reconsider the film speed experiment in Exercise
10-24. Suppose that one population standard deviation is 50%
larger than the other. Is the sample size n1 � n2 � 8 adequate
to detect this difference with high probability? Use � � 0.01
in answering this question.

10-59. Reconsider the overall distance data for golf balls in
Exercise 10-31. Is there evidence to support the claim that the
standard deviation of overall distance is the same for both
brands of balls (use � � 0.05)? Explain how this question can
be answered with a 95% confidence interval on .

10-60. Reconsider the coefficient of restitution data in
Exercise 10-32. Do the data suggest that the standard devia-
tion is the same for both brands of drivers (use � � 0.05)?
Explain how to answer this question with a confidence inter-
val on .�1
�2

�1
�2

H1: �
2
1 � �2

2
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and have approximate normal distributions. We are interested in
testing the hypotheses

The statistic

H1: p1 � p2

H0: p1 � p2

P̂2 � X2
n2P̂1 � X1
n1

362 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

(10-32)Z �
P̂1 � P̂2 � 1 p1 � p22Bp111 � p12

n1
�

p211 � p22
n2

is distributed approximately as standard normal and is the basis of a test for H0: p1 � p2.
Specifically, if the null hypothesis H0: p1 � p2 is true, using the fact that p1 � p2 � p, the
random variable

is distributed approximately N(0, 1). An estimator of the common parameter p is

The test statistic for H0: p1 � p2 is then

This leads to the test procedures described below.

Z0 �
P̂1 � P̂2BP̂11 � P̂2

 
a 1

n1
�

1
n2
b

P̂ �
X1 � X2

n1 � n2

Z �
P̂1 � P̂2Bp11 � p2  a 1

n1
�

1
n2
b

Null hypothesis: H0: p1 � p2

Test statistic: (10-33)

Alternative Hypotheses Rejection Criterion

H1: p1 
 p2 z0 
 z�

H1: p1 � p2 z0 � �z�

z0 
 z�
2 or z0 � �z�
2H1: p1 � p2

Z0 �
P̂1 � P̂2BP̂11 � P̂2

 
a 1

n1
�

1
n2
b
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EXAMPLE 10-14 Extracts of St. John’s Wort are widely used to treat depression. An article in the April 18, 2001
issue of the Journal of the American Medical Association (“Effectiveness of St. John’s Wort
on Major Depression: A Randomized Controlled Trial”) compared the efficacy of a standard
extract of St. John’s Wort with a placebo in 200 outpatients diagnosed with major depression.
Patients were randomly assigned to two groups; one group received the St. John’s Wort, and
the other received the placebo. After eight weeks, 19 of the placebo-treated patients showed
improvement, whereas 27 of those treated with St. John’s Wort improved. Is there any reason
to believe that St. John’s Wort is effective in treating major depression? Use � � 0.05.
The eight-step hypothesis testing procedure leads to the following results:

1. The parameters of interest are p1 and p2, the proportion of patients who improve
following treatment with St. John’s Wort ( p1) or the placebo ( p2).

2. H0: p1 � p2

3. H1: p1 � p2

4. � � 0.05

5. The test statistic is

where and

6. Reject H0: p1 � p2 if z0 
 z0.025 � 1.96 or if z0 � �z0.025 � �1.96.

7. Computations: The value of the test statistic is

8. Conclusions: Since z0 � 1.35 does not exceed z0.025, we cannot reject the null hy-
pothesis. Note that the P-value is . There is insufficient evidence to
support the claim that St. John’s Wort is effective in treating major depression.

The following box shows the Minitab two-sample hypothesis test and CI procedure for
proportions. Notice that the 95% CI on p1 � p2 includes zero. The equation for constructing
the CI will be given in Section 10-6.4.

P � 0.177

z0 �
0.27 � 0.19B0.2310.772  a 1

100
�

1
100
b

� 1.35

p̂ �
x1 � x2

n1 � n2
�

19 � 27
100 � 100

� 0.23

p̂1 � 27
100 � 0.27, p̂2 � 19
100 � 0.19, n1 � n2 � 100, 

z0 �
p̂1 � p̂2B p̂11 � p̂2

  
a 1

n1
�

1
n2
b
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Test and CI for Two Proportions

Sample X N Sample p
1 27 100 0.270000
2 19 100 0.190000

Estimate for p(1) � p(2): 0.08
95% CI for p(1) � p(2): (�0.0361186, 0.196119)
Test for p(1) � p(2) � 0 (vs not � 0): Z � 1.35 P-Value � 0.177
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10-6.2 Small-Sample Test for H0: p1 � p2 (CD Only)

10-6.3 �-Error and Choice of Sample Size

The computation of the �-error for the large-sample test of H0: p1 � p2 is somewhat more
involved than in the single-sample case. The problem is that the denominator of the test
statistic Z0 is an estimate of the standard deviation of under the assumption that p1 �
p2 � p. When H0: p1 � p2 is false, the standard deviation of is

(10-34)�P̂1�P̂2
� Bp111 � p12

n1



p211 � p22
n2

P̂1 � P̂2

P̂1 � P̂2

364 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

If the alternative hypothesis is two sided, the �-error is

(10-35)� � c�z��22pq 11�n1 
 1�n22 � 1p1 � p22
�P̂1�P̂2

d

� � � c z��22pq 11�n1 
 1�n22 � 1p1 � p22
�P̂1�P̂2

d

If the alternative hypothesis is H1: p1 � p2,

(10-36)

and if the alternative hypothesis is H1: p1 	 p2,

(10-37)� � 1 � � c�z�2pq 11�n1 
 1�n22 � 1p1 � p22
�P̂1�P̂2

d

� � � c z�2pq 11�n1 
 1�n22 � 1 p1 � p22
�P̂1�P̂2

d

where

and is given by Equation 10-34.�P̂1�P̂2

p �  

n1p1 
 n2 p2

n1 
 n2
  and  q �

n111 � p12 
 n211 � p22
n1 
 n2

For a specified pair of values p1 and p2, we can find the sample sizes n1 � n2 � n required to
give the test of size � that has specified type II error �.
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For a one-sided alternative, replace in Equation 10-38 by z�.

10-6.4 Confidence Interval for p1 � p2

The confidence interval for p1 � p2 can be found directly, since we know that

is a standard normal random variable. Thus P(�z��2 � Z � z��2) � 1 � �, so we can substi-
tute for Z in this last expression and use an approach similar to the one employed previously
to find an approximate 100(1 � �)% two-sided confidence interval for p1 � p2.

Z �
P̂1 � P̂2 � 1 p1 � p22Bp111 � p12

n1



p211 � p22
n2

z��2
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For the two-sided alternative, the common sample size is

(10-38)

where q1 � 1 � p1 and q2 � 1 � p2.

n �
3z��211 p1 
 p22 1q1 
 q22�2 
 z�1p1q1 
 p2q2 42

1 p1 � p222

If and are the sample proportions of observation in two independent random
samples of sizes n1 and n2 that belong to a class of interest, an approximate two-
sided 100(1 � �)% confidence interval on the difference in the true proportions
p1 � p2 is

(10-39)

where z��2 is the upper ��2 percentage point of the standard normal distribution.

� p1 � p2 � p̂1 � p̂2 
 z��2B p̂111 � p̂12
n1



p̂211 � p̂22

n2

p̂1 � p̂2 � z��2B p̂111 � p̂12
n1



p̂211 � p̂22

n2

p̂2p̂1

Definition

EXAMPLE 10-15 Consider the process manufacturing crankshaft bearings described in Example 8-6.
Suppose that a modification is made in the surface finishing process and that, subse-
quently, a second random sample of 85 axle shafts is obtained. The number of defective
shafts in this second sample is 8. Therefore, since n1 � 85, n2 � 85, and

we can obtain an approximate 95% confidence interval on thep̂2 � 8�85 � 0.09,
p̂1 � 0.12,
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difference in the proportion of defective bearings produced under the two processes from
Equation 10-39 as follows:

or

This simplifies to

This confidence interval includes zero, so, based on the sample data, it seems unlikely that the
changes made in the surface finish process have reduced the proportion of defective crank-
shaft bearings being produced.

EXERCISES FOR SECTION 10-6

�0.06 � p1 � p2 � 0.12

� p1 � p2 � 0.12 � 0.09 � 1.96 B0.1210.882
85

�
0.0910.912

85

0.12 � 0.09 � 1.96 B0.1210.882
85

�
0.0910.912

85

� p1 � p2 � p̂1 � p̂2 � z0.025 B p̂111 � p̂12
n1

�
p̂211 � p̂22

n2

p̂1 � p̂2 � z0.025 B p̂111 � p̂12
n1

�
p̂211 � p̂22

n2
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10-61. Two different types of injection-molding machines
are used to form plastic parts. A part is considered defective
if it has excessive shrinkage or is discolored. Two random
samples, each of size 300, are selected, and 15 defective
parts are found in the sample from machine 1 while 8 defec-
tive parts are found in the sample from machine 2. Is it rea-
sonable to conclude that both machines produce the same
fraction of defective parts, using � � 0.05? Find the P-value
for this test.

10-62. Two different types of polishing solution are being
evaluated for possible use in a tumble-polish operation for
manufacturing interocular lenses used in the human eye fol-
lowing cataract surgery. Three hundred lenses were tumble-
polished using the first polishing solution, and of this number
253 had no polishing-induced defects. Another 300 lenses
were tumble-polished using the second polishing solution, and
196 lenses were satisfactory upon completion. Is there any
reason to believe that the two polishing solutions differ? Use
� � 0.01. Discuss how this question could be answered with a
confidence interval on p1 � p2.

10-63. Consider the situation described in Exercise 10-61.
Suppose that p1 � 0.05 and p2 � 0.01.
(a) With the sample sizes given here, what is the power of the

test for this two-sided alternate?

(b) Determine the sample size needed to detect this difference
with a probability of at least 0.9. Use � � 0.05.

10-64. Consider the situation described in Exercise 10-61.
Suppose that p1 � 0.05 and p2 � 0.02.
(a) With the sample sizes given here, what is the power of the

test for this two-sided alternate?
(b) Determine the sample size needed to detect this difference

with a probability of at least 0.9. Use � � 0.05.

10-65. A random sample of 500 adult residents of Maricopa
County found that 385 were in favor of increasing the high-
way speed limit to 75 mph, while another sample of 400 adult
residents of Pima County found that 267 were in favor of the
increased speed limit. Do these data indicate that there is a dif-
ference in the support for increasing the speed limit between
the residents of the two counties? Use � � 0.05. What is the 
P-value for this test?

10-66. Construct a 95% confidence interval on the differ-
ence in the two fractions defective for Exercise 10-61.

10-67. Construct a 95% confidence interval on the differ-
ence in the two proportions for Exercise 10-65. Provide a
practical interpretation of this interval.
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10-7 SUMMARY TABLE FOR INFERENCE PROCEDURES 
FOR TWO SAMPLES

The table in the end papers of the book summarizes all of the two-sample inference procedures
given in this chapter. The table contains the null hypothesis statements, the test statistics, the
criteria for rejection of the various alternative hypotheses, and the formulas for constructing the
100(1 � �)% confidence intervals.
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Supplemental Exercises

10-68. A procurement specialist has purchased 25 resistors
from vendor 1 and 35 resistors from vendor 2. Each resistor’s
resistance is measured with the following results:

Vendor 1

96.8 100.0 100.3 98.5 98.3 98.2

99.6 99.4 99.9 101.1 103.7 97.7

99.7 101.1 97.7 98.6 101.9 101.0

99.4 99.8 99.1 99.6 101.2 98.2

98.6

Vendor 2

106.8 106.8 104.7 104.7 108.0 102.2

103.2 103.7 106.8 105.1 104.0 106.2

102.6 100.3 104.0 107.0 104.3 105.8

104.0 106.3 102.2 102.8 104.2 103.4

104.6 103.5 106.3 109.2 107.2 105.4

106.4 106.8 104.1 107.1 107.7

(a) What distributional assumption is needed to test the claim
that the variance of resistance of product from vendor 1 is
not significantly different from the variance of resistance
of product from vendor 2? Perform a graphical procedure
to check this assumption.

(b) Perform an appropriate statistical hypothesis-testing pro-
cedure to determine whether the procurement specialist
can claim that the variance of resistance of product from
vendor 1 is significantly different from the variance of re-
sistance of product from vendor 2.

10-69. An article in the Journal of Materials Engineering
(1989, Vol. 11, No. 4, pp. 275–282) reported the results of an
experiment to determine failure mechanisms for plasma-
sprayed thermal barrier coatings. The failure stress for one
particular coating (NiCrAlZr) under two different test condi-
tions is as follows:

Failure stress (� 106 Pa) after nine 1-hour cycles: 19.8,
18.5, 17.6, 16.7, 16.7, 14.8, 15.4, 14.1, 13.6

Failure stress (� 106 Pa) after six 1-hour cycles: 14.9,
12.7, 11.9, 11.4, 10.1, 7.9

(a) What assumptions are needed to construct confidence in-
tervals for the difference in mean failure stress under the

two different test conditions? Use normal probability plots
of the data to check these assumptions.

(b) Find a 99% confidence interval on the difference in mean
failure stress under the two different test conditions.

(c) Using the confidence interval constructed in part (b), does
the evidence support the claim that the first test conditions
yield higher results, on the average, than the second?
Explain your answer.

10-70. Consider Supplemental Exercise 10-69.
(a) Construct a 95% confidence interval on the ratio of the

variances, of failure stress under the two different
test conditions.

(b) Use your answer in part (b) to determine whether there is
a significant difference in variances of the two different
test conditions. Explain your answer.

10-71. A liquid dietary product implies in its advertising
that use of the product for one month results in an average
weight loss of at least 3 pounds. Eight subjects use the product
for one month, and the resulting weight loss data are reported
below. Use hypothesis-testing procedures to answer the fol-
lowing questions.

�1
�2,

Initial Final
Subject Weight (lb) Weight (lb)

1 165 161

2 201 195

3 195 192

4 198 193

5 155 150

6 143 141

7 150 146

8 187 183

(a) Do the data support the claim of the producer of the dietary
product with the probability of a type I error set to 0.05?

(b) Do the data support the claim of the producer of the dietary
product with the probability of a type I error set to 0.01?

(c) In an effort to improve sales, the producer is considering
changing its claim from “at least 3 pounds” to “at least 5
pounds.” Repeat parts (a) and (b) to test this new claim.

10-72. The breaking strength of yarn supplied by two man-
ufacturers is being investigated. We know from experience
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368 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

with the manufacturers’ processes that �1 � 5 psi and �2 �
4 psi. A random sample of 20 test specimens from each manu-
facturer results in psi and psi, respectively.
(a) Using a 90% confidence interval on the difference in

mean breaking strength, comment on whether or not there
is evidence to support the claim that manufacturer 2 pro-
duces yarn with higher mean breaking strength.

(b) Using a 98% confidence interval on the difference in mean
breaking strength, comment on whether or not there is ev-
idence to support the claim that manufacturer 2 produces
yarn with higher mean breaking strength.

(c) Comment on why the results from parts (a) and (b) are dif-
ferent or the same. Which would you choose to make your
decision and why?

10-73. The Salk polio vaccine experiment in 1954 focused
on the effectiveness of the vaccine in combatting paralytic
polio. Because it was felt that without a control group of
children there would be no sound basis for evaluating the
efficacy of the Salk vaccine, the vaccine was administered to
one group, and a placebo (visually identical to the vaccine
but known to have no effect) was administered to a second
group. For ethical reasons, and because it was suspected that
knowledge of vaccine administration would affect subse-
quent diagnoses, the experiment was conducted in a double-
blind fashion. That is, neither the subjects nor the
administrators knew who received the vaccine and who
received the placebo. The actual data for this experiment are
as follows:

Placebo group: n � 201,299: 110 cases of polio observed

Vaccine group: n � 200,745: 33 cases of polio observed

(a) Use a hypothesis-testing procedure to determine if the
proportion of children in the two groups who contracted
paralytic polio is statistically different. Use a probability
of a type I error equal to 0.05.

(b) Repeat part (a) using a probability of a type I error equal
to 0.01.

(c) Compare your conclusions from parts (a) and (b) and ex-
plain why they are the same or different.

10-74. Consider Supplemental Exercise 10-72. Suppose that
prior to collecting the data, you decide that you want the error in
estimating �1 � �2 by x1 � x2 to be less than 1.5 psi. Specify the
sample size for the following percentage confidence:
(a) 90%
(b) 98%
(c) Comment on the effect of increasing the percentage confi-

dence on the sample size needed.
(d) Repeat parts (a)–(c) with an error of less than 0.75 psi

instead of 1.5 psi.
(e) Comment on the effect of decreasing the error on the sam-

ple size needed.

10-75. A random sample of 1500 residential telephones in
Phoenix in 1990 found that 387 of the numbers were unlisted.

x2 � 91x1 � 88

A random sample in the same year of 1200 telephones in
Scottsdale found that 310 were unlisted.
(a) Find a 95% confidence interval on the difference in the

two proportions and use this confidence interval to deter-
mine if there is a statistically significant difference in
proportions of unlisted numbers between the two cities.

(b) Find a 90% confidence interval on the difference in the
two proportions and use this confidence interval to deter-
mine if there is a statistically significant difference in pro-
portions of unlisted numbers between the two cities.

(c) Suppose that all the numbers in the problem description
were doubled. That is, 774 residents out of 3000 sampled
in Phoenix and 620 residents out of 2400 in Scottsdale had
unlisted phone numbers. Repeat parts (a) and (b) and
comment on the effect of increasing the sample size with-
out changing the proportions on your results.

10-76. In a random sample of 200 Phoenix residents who
drive a domestic car, 165 reported wearing their seat belt regu-
larly, while another sample of 250 Phoenix residents who drive
a foreign car revealed 198 who regularly wore their seat belt.
(a) Perform a hypothesis-testing procedure to determine if

there is a statistically significant difference in seat belt us-
age between domestic and foreign car drivers. Set your
probability of a type I error to 0.05.

(b) Perform a hypothesis-testing procedure to determine if
there is a statistically significant difference in seat belt
usage between domestic and foreign car drivers. Set your
probability of a type I error to 0.1.

(c) Compare your answers for parts (a) and (b) and explain
why they are the same or different.

(d) Suppose that all the numbers in the problem description
were doubled. That is, in a random sample of 400
Phoenix residents who drive a domestic car, 330 re-
ported wearing their seat belt regularly, while another
sample of 500 Phoenix residents who drive a foreign car
revealed 396 who regularly wore their seat belt. Repeat
parts (a) and (b) and comment on the effect of increasing
the sample size without changing the proportions on
your results.

10-77. Consider the previous exercise, which summarized
data collected from drivers about their seat belt usage.
(a) Do you think there is a reason not to believe these data?

Explain your answer.
(b) Is it reasonable to use the hypothesis-testing results from

the previous problem to draw an inference about the dif-
ference in proportion of seat belt usage
(i) of the spouses of these drivers of domestic and foreign

cars? Explain your answer.
(ii) of the children of these drivers of domestic and foreign

cars? Explain your answer.
(iii) of all drivers of domestic and foreign cars? Explain

your answer.
(iv) of all drivers of domestic and foreign trucks? Explain

your answer.
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10-78. Consider the situation described in Exercise 10-62.
(a) Redefine the parameters of interest to be the proportion of

lenses that are unsatisfactory following tumble polishing
with polishing fluids 1 or 2. Test the hypothesis that the two
polishing solutions give different results using � � 0.01.

(b) Compare your answer in part (a) with that for Exercise 10-
62. Explain why they are the same or different.

10-79. Consider the situation of Exercise 10-62, and recall
that the hypotheses of interest are H0: p1 � p2 versus H1: p1 � p2.
We wish to use � � 0.01. Suppose that if p1 � 0.9 and p2 � 0.6,
we wish to detect this with a high probability, say, at least 0.9.
What sample sizes are required to meet this objective?

10-80. A manufacturer of a new pain relief tablet would
like to demonstrate that its product works twice as fast as the
competitor’s product. Specifically, the manufacturer would
like to test

where �1 is the mean absorption time of the competitive prod-
uct and �2 is the mean absorption time of the new product.
Assuming that the variances �2

1 and �2
2 are known, develop a

procedure for testing this hypothesis.

10-81. Suppose that we are testing H0: �1 � �2 versus H1:
�1 � �2, and we plan to use equal sample sizes from the two
populations. Both populations are assumed to be normal with
unknown but equal variances. If we use � � 0.05 and if the
true mean �1 � �2 � �, what sample size must be used for the
power of this test to be at least 0.90?

10-82. Consider the fire-fighting foam expanding agents
investigated in Exercise 10-18, in which five observations of
each agent were recorded. Suppose that, if agent 1 produces a
mean expansion that differs from the mean expansion of agent
1 by 1.5, we would like to reject the null hypothesis with prob-
ability at least 0.95.
(a) What sample size is required?
(b) Do you think that the original sample size in Exercise 

10-18 was appropriate to detect this difference? Explain
your answer.

10-83. A fuel-economy study was conducted for two German
automobiles, Mercedes and Volkswagen. One vehicle of each
brand was selected, and the mileage performance was observed
for 10 tanks of fuel in each car. The data are as follows (in miles
per gallon):

H1: �1 
 2�2

H0: �1 � 2�2

(a) Construct a normal probability plot of each of the data
sets. Based on these plots, is it reasonable to assume that
they are each drawn from a normal population?

(b) Suppose that it was determined that the lowest observa-
tion of the Mercedes data was erroneously recorded and
should be 24.6. Furthermore, the lowest observation of the
Volkswagen data was also mistaken and should be 39.6.
Again construct normal probability plots of each of the
data sets with the corrected values. Based on these new
plots, is it reasonable to assume that they are each drawn
from a normal population?

(c) Compare your answers from parts (a) and (b) and com-
ment on the effect of these mistaken observations on the
normality assumption.

(d) Using the corrected data from part (b) and a 95% confi-
dence interval, is there evidence to support the claim that
the variability in mileage performance is greater for a
Volkswagen than for a Mercedes?

10-84. Reconsider the fuel-economy study in Supplemental
Exercise 10-83. Rework part (d) of this problem using an ap-
propriate hypothesis-testing procedure. Did you get the same
answer as you did originally? Why?

10-85. An experiment was conducted to compare the filling
capability of packaging equipment at two different wineries.
Ten bottles of pinot noir from Ridgecrest Vineyards were ran-
domly selected and measured, along with 10 bottles of pinot
noir from Valley View Vineyards. The data are as follows (fill
volume is in milliliters):

Mercedes Volkswagen

24.7 24.9 41.7 42.8

24.8 24.6 42.3 42.4

24.9 23.9 41.6 39.9

24.7 24.9 39.5 40.8

24.5 24.8 41.9 29.6

Ridgecrest Valley View

755 751 752 753 756 754 757 756

753 753 753 754 755 756 756 755

752 751 755 756

(a) What assumptions are necessary to perform a hypothesis-
testing procedure for equality of means of these data?
Check these assumptions.

(b) Perform the appropriate hypothesis-testing procedure to
determine whether the data support the claim that both
wineries will fill bottles to the same mean volume.

10-86. Consider Supplemental Exercise 10-85. Suppose
that the true difference in mean fill volume is as much as 2
fluid ounces; did the sample sizes of 10 from each vineyard
provide good detection capability when � � 0.05? Explain
your answer.

10-87. A Rockwell hardness-testing machine presses a tip
into a test coupon and uses the depth of the resulting depres-
sion to indicate hardness. Two different tips are being com-
pared to determine whether they provide the same Rockwell
C-scale hardness readings. Nine coupons are tested, with both
tips being tested on each coupon. The data are shown in the
accompanying table.
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(a) State any assumptions necessary to test the claim that both
tips produce the same Rockwell C-scale hardness readings.
Check those assumptions for which you have the information.

(b) Apply an appropriate statistical method to determine if the
data support the claim that the difference in Rockwell 
C-scale hardness readings of the two tips is significantly
different from zero

(c) Suppose that if the two tips differ in mean hardness read-
ings by as much as 1.0, we want the power of the test to be
at least 0.9. For an � � 0.01, how many coupons should
have been used in the test?

10-88. Two different gauges can be used to measure the depth
of bath material in a Hall cell used in smelting aluminum. Each
gauge is used once in 15 cells by the same operator.

(a) State any assumptions necessary to test the claim that
both gauges produce the same mean bath depth read-
ings. Check those assumptions for which you have the
information.

(b) Apply an appropriate statistical procedure to determine if
the data support the claim that the two gauges produce dif-
ferent mean bath depth readings.

(c) Suppose that if the two gauges differ in mean bath depth
readings by as much as 1.65 inch, we want the power of
the test to be at least 0.8. For � � 0.01, how many cells
should have been used?

10-89. An article in the Journal of the Environmental
Engineering Division (“Distribution of Toxic Substances in
Rivers,” 1982, Vol. 108, pp. 639–649) investigates the con-
centration of several hydrophobic organic substances in the
Wolf River in Tennessee. Measurements on hexachloroben-
zene (HCB) in nanograms per liter were taken at different
depth downstream of an abandoned dump site. Data for two
depths follow:
Surface: 3.74, 4.61, 4.00, 4.67, 4.87, 5.12, 4.52, 5.29, 5.74, 5.48
Bottom: 5.44, 6.88, 5.37, 5.44, 5.03, 6.48, 3.89, 5.85, 6.85, 7.16

(a) What assumptions are required to test the claim that
mean HCB concentration is the same at both depths?
Check those assumptions for which you have the infor-
mation.

(b) Apply an appropriate procedure to determine if the data
support the claim in part a.

(c) Suppose that the true difference in mean concentrations is
2.0 nanograms per liter. For � � 0.05, what is the power
of a statistical test for H0: �1 � �2 versus H1: �1 � �2?

(d) What sample size would be required to detect a difference
of 1.0 nanograms per liter at � � 0.05 if the power must
be at least 0.9?

Coupon Tip 1 Tip 2 Coupon Tip 1 Tip 2

1 47 46 6 41 41

2 42 40 7 45 46

3 43 45 8 45 46

4 40 41 9 49 48

5 42 43

Cell Gauge 1 Gauge 2 Cell Gauge 1 Gauge 2

1 46 in. 47 in. 9 52 51
2 50 53 10 47 45
3 47 45 11 49 51
4 53 50 12 45 45
5 49 51 13 47 49
6 48 48 14 46 43
7 53 54 15 50 51
8 56 53

MIND-EXPANDING EXERCISES

10-90. Three different pesticides can be used to control
infestation of grapes. It is suspected that pesticide 3 is
more effective than the other two. In a particular vineyard,
three different plantings of pinot noir grapes are selected
for study. The following results on yield are obtained:

ni

(Bushels/ (Number of
Pesticide Plant) si Plants)

1 4.6 0.7 100

2 5.2 0.6 120

3 6.1 0.8 130

If �i is the true mean yield after treatment with the i th
pesticide, we are interested in the quantity

which measures the difference in mean yields between
pesticides 1 and 2 and pesticide 3. If the sample sizes ni

are large, the estimator (say, ) obtained by replacing
each individual �i by is approximately normal.
(a) Find an approximate 100(1 � �)% large-sample

confidence interval for �.

Xi

�̂

� �
1

2
 1�1 � �22 � �3

xi
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IMPORTANT TERMS AND CONCEPTS

In the E-book, click on any
term or concept below to
go to that subject.

Comparative experi-
ments

Critical region for a test
statistic

Identifying cause and
effect

Null and alternative 
hypotheses

One-sided and two-
sided alternative 
hypotheses

Operating characteristic
curves

Paired t-test
Pooled t-test

P-value
Reference distribution

for a test statistic
Sample size determina-

tion for hypothesis
tests and confidence
intervals

Statistical hypotheses
Test statistic

CD MATERIAL
Fisher-Irwin test on two

proportions

MIND-EXPANDING EXERCISES

(b) Do these data support the claim that pesticide 3 is
more effective than the other two? Use � � 0.05 in
determining your answer.

10-91. Suppose that we wish to test H0: �1 � �2

versus H1: �1 � �2, where �2
1 and �2

2 are known. The
total sample size N is to be determined, and the alloca-
tion of observations to the two populations such that 
n1 � n2 � N is to be made on the basis of cost. If the
cost of sampling for populations 1 and 2 are C1 and C2,
respectively, find the minimum cost sample sizes that
provide a specified variance for the difference in sam-
ple means.

10-92. Suppose that we wish to test the hypothesis H0:
�1 � �2 versus H1: �1 � �2, where both variances �2

1 and
�2

2 are known. A total of n1 � n2 � N observations can be
taken. How should these observations be allocated to the
two populations to maximize the probability that H0 will
be rejected if H1 is true and �1 � �2 � � � 0?

10-93. Suppose that we wish to test H0: � � �0 ver-
sus H1: � � �0, where the population is normal with
known �. Let 0 � � � �, and define the critical region
so that we will reject H0 if z0 
 z� or if z0 � �z���,
where z0 is the value of the usual test statistic for these
hypotheses.

(a) Show that the probability of type I error for this test
is �.

(b) Suppose that the true mean is �1 � �0 � �. Derive
an expression for � for the above test.

10-94. Construct a data set for which the paired t-test
statistic is very large, indicating that when this analysis
is used the two population means are different, but t0 for
the two-sample t-test is very small so that the incorrect
analysis would indicate that there is no significant dif-
ference between the means.

10-95. In some situations involving proportions, we
are interested in the ratio � � p1�p2 rather than the differ-
ence p1 � p2. Let � � . We can show that ln( ) has
an approximate normal distribution with the mean (n��)
and variance 
(a) Use the information above to derive a large-sample

confidence interval for ln �.
(b) Show how to find a large-sample CI for �.
(c) Use the data from the St. John’s Wort study in

Example 10-14, and find a 95% CI on � � p1�p2.
Provide a practical interpretation for this CI.

10-96. Derive an expression for � for the test of the
equality of the variances of two normal distributions.
Assume that the two-sided alternative is specified.

3 1n1 � x12
 1n1x12 � 1n2 � x22
 1n2x22 41
2.

�̂p̂2p̂1�̂
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10-3.2 More About the Equal Variance Assumption (CD Only)

In practice, one often has to choose between case 1 and case 2 of the two-sample t-test. In case
1, we assume that � and use the pooled t-test. On the surface this test would seem to have
some advantages. It is a likelihood ratio test, whereas the case 2 test with is not.
Furthermore, it is an exact test (if the assumptions of normality, independence, and equal vari-
ances are correct), whereas the case 2 test is an approximate procedure. However, the pooled 
t-test can be very sensitive to the assumption of equal variances, especially when the sample sizes
are not equal. To help see this, consider the denominator of the test statistic for the pooled t-test:

Because the variances are divided (approximately) by the wrong sample sizes, use of the
pooled t-test when the variances are unequal and when can lead to very frequent er-
roneous conclusions. This is why using n1 � n2 is a good idea in general, and especially when
we are in doubt about the validity of the equal variance assumption.

It would, of course, be possible to perform a test of H0: �1
2 � �2

2 versus and
then use the pooled t-test if the null hypothesis is not rejected. This test is discussed in Section 10-
5. However, the test on variances is much more sensitive to the normality assumption than are 
t-tests. A conservative approach would be to always use the case 2 procedure. Alternatively, one
can use the normal probability plot both as a check of the normality assumption and as a check for
equality of variance. If there is a noticable difference in the slopes of the two straight lines on the
normal probability plot, the case 2 procedure would be preferred, especially when 

10-5.2 Development of the F Distribution (CD Only)

We now give a formal development of the F distribution. The development makes use of the
material in Section 5-8 (CD Only).

n1 � n2.

H1: �
2
1 � �2

2

n1 � n2

Sp B 1
n1

�
1
n2

� B 1n1 � 12S2
1 � 1n2 � 12S2

2

n1 � n2 � 2
 
n1 � n2

n1n2
� BS2

1

n2
�

S2
2

n1

�2
1 � �2

2

�2
2�2

1

Let U1 and U2 be independent chi-square random variables with v1 and v2 degrees of
freedom, respectively. Then the ratio

has the probability density function

This is the F-distribution with v1 degrees of freedom in the numerator and v2 degrees
of freedom in the denominator.

f 1x2 �

� a�1 � �2

2
b a�1

�2
b�1	2

 x�1	2�1

� a�1

2
b � a�2

2
b c a�1

�2
b x � 1 d 1�1��22	2 ,  0 
 x 
 �

F �
U1	�1

U2	�2

Theorem: The
F-Distribution
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Proof Since U1 and U2 are independent chi-square random variables, their joint probability
distribution is

Using the method in Equation S5-4, define the new random variable M � U2. The inverse
solutions of

are

Therefore, the Jacobian is

Thus, the joint probability density function of X and M is

The probability density function of F is

Substituting and , we obtain

f 1x2 �

a�1

�2
b�1	2

x�1	2�1

21�1��22	2 � 
 a�1

2
b �  a�2

2
b

 �
�

0

° 2z
�1

�2
  x � 1

¢
1�1��22	2�1

e�z 2  a�1

�2 
  x � 1b�1 

dz

dm � 2 a�1

�2
  x � 1b�1

 dzz �
m
z   a�1

�2
  x � 1b

 �

a�1

�2
 xb�1	2�1a�1

�2
b

21�1��22	2� a�1

2
b �  a�2

2
b

 �
�

0

m1�1��22	2�1e�1m	2231�1	�22x�14 dm

 f 1x2 � �
�

0

 f 1x, m2 dm

f 1x, m2 �

a�1

�2
 mxb�1	2�1

 m�2	2�1 e� 11	22 31�1	�22mx�m4 a�1

�2
b m

2�1	2�  a�1

2
b 2�2	2 � a�2

2
b

,  0 
 x, m 
 �

J �
†
�1

�2
 m

0

�1

�2
x

1

†
�

�1

�2
 m

u1 �
�1

�2
 mx and u2 � m

x � au1

�1
b^au2

�2
b and m � u2

f 1u1, u22 �
u�1	2�1

1  u�2	2�1
2

2�1	2� 
 a�1

2
b 2�2	2� 

 a�2

2
b

  e�1u1�u22	2,  0 
 u1, u2 
 �
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which is the probability density function in the theorem on page 10-1.

10-6.2 Small-Sample Test for H0: p1 � p2 (CD Only)

Many problems involving the comparison of proportions p1 and p2 have relatively large sam-
ple sizes, so the procedure based on the normal approximation to the binomial is widely used
in practice. However, occasionally, a small-sample-size problem is encountered. In such
cases, the Z-tests are inappropriate and an alternative procedure is required. In this section we
describe a procedure based on the hypergeometric distribution.

Suppose that X1 and X2 are the number of successes in two random samples of size n1 and
n2, respectively. The test procedure requires that we view the total number of successes as
fixed at the value X1 � X2 � Y. Now consider the hypotheses

Given that X1 � X2 � Y, large values of X1 support H1, and small moderate values of X1 sup-
port H0. Therefore, we will reject H0 whenever X1 is sufficiently large.

Since the combined sample of n1 � n2 observations contains X1 � X2 � Y total suc-
cesses, if H0: p1 � p2 the successes are no more likely to be concentrated in the first sample
than in the second. That is, all the ways in which the n1 � n2 responses can be divided into one
sample of n1 responses and a second sample of n2 responses are equally likely. The number of
ways of selecting X1 successes for the first sample leaving Y � X1 successes for the second is

Because outcomes are equally likely, the probability of exactly X1 successes in sample 1 is the
ratio of the number of sample 1 outcomes having X1 successes to the total number of outcomes, or

(S10-1)

given that H0: p1 � p2 is true. We recognize Equation S10-1 as a hypergeometric distribution.
To use Equation S10-1 for hypothesis testing, we would compute the probability of find-

ing a value of X1 at least as extreme as the observed value of X1. Note that this probability is a

P 1X1 � x1 
|  Y success in n1 � n2 responses2 �

a Y

x1
b an1 � n2 � Y

n1 � x1
b

an1 � n2

n1
b

a Y

X1
b an1 � n2 � Y

n1 � X1
b

H1: p1 � p2

H0: p1 � p2

 �

�  a�1 � �2

2
b a�1

�2
b�1	2

 x�1	2�1

�  a�1

2
b �  a�2

2
b a�1

�2
 x � 1b1�1��22	2,  0 
 x 
 �

 �

a�1

�2
b�1	2

 x�1	2�1

�  a�1

2
b �  a�2

2
b a�1

�2
 x � 1b1�1��22	2 �

�

0

z1�1��22	2�1e�z dz
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P-value. If this P-value is sufficiently small, the null hypothesis is rejected. This approach
could also be applied to lower-tailed and two-tailed alternatives.

EXAMPLE S10-1 Insulating cloth used in printed circuit boards is manufactured in large rolls. The manufacturer
is trying to improve the process yield, that is, the number of defect-free rolls produced. A sam-
ple of 10 rolls contains exactly 4 defect-free rolls. From analysis of the defect types, process
engineers suggest several changes in the process. Following implementation of these changes,
another sample of 10 rolls yields 8 defect-free rolls. Do the data support the claim that the new
process is better than the old one, using 
 � 0.10?

To answer this question, we compute the P-value. In our example, n1 � n2 � 10, y �
8 � 4 � 12, and the observed value of x1 � 8. The values of x1 that are more extreme than 8
are 9 and 10. Therefore

The P-value is P � .0750 � .0095 � .0003 � .0848. Thus, at the level 
 � 0.10, the null
hypothesis is rejected and we conclude that the engineering changes have improved the
process yield.

This test procedure is sometimes called the Fisher-Irwin test. Because the test depends
on the assumption that X1 � X2 is fixed at some value, some statisticians argue against use of
the test when X1 � X2 is not actually fixed. Clearly X1 � X2 is not fixed by the sampling pro-
cedure in our example. However, because there are no other better competing procedures, the
Fisher-Irwin test is often used whether or not X1 � X2 is actually fixed in advance.

 P 1X1 � 10|12 successes2 �

a12

10
b a8

0
b

a20

10
b

� .0003

 P 1X1 � 9|12 successes2 �

a12

9
b a8

1
b

a20

10
b

� .0095

 P 1X1 � 8|12 successes2 �

a12

8
b a2

2
b

a20

10
b

� .0750
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11Simple Linear
Regression and
Correlation

CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
1. Use simple linear regression for building empirical models to engineering and scientific data
2. Understand how the method of least squares is used to estimate the parameters in a linear

regression model
3. Analyze residuals to determine if the regression model is an adequate fit to the data or to see if

any underlying assumptions are violated
4. Test statistical hypotheses and construct confidence intervals on regression model parameters
5. Use the regression model to make a prediction of a future observation and construct an

appropriate prediction interval on the future observation
6. Use simple transformations to achieve a linear regression model
7. Apply the correlation model

11-1 EMPIRICAL MODELS

11-2 SIMPLE LINEAR REGRESSION

11-3 PROPERTIES OF THE LEAST
SQUARES ESTIMATORS

11-4 SOME COMMENTS ON USES OF
REGRESSION (CD ONLY)

11-5 HYPOTHESIS TESTS IN SIMPLE
LINEAR REGRESSION

11-5.1 Use of t-Tests

11-5.2 Analysis of Variance Approach
to Test Significance of Regression

11-6 CONFIDENCE INTERVALS

11-6.1 Confidence Intervals on the
Slope and Intercept

11-6.2 Confidence Interval on the
Mean Response

11-7 PREDICTION OF NEW
OBSERVATIONS

11-8 ADEQUACY OF THE REGRESSION
MODEL

11-8.1 Residual Analysis

11-8.2 Coefficient of Determination (R2)

11-8.3 Lack-of-Fit Test (CD Only)

11-9 TRANSFORMATIONS TO A
STRAIGHT LINE

11-10 MORE ABOUT
TRANSFORMATIONS (CD ONLY)

11-11 CORRELATION
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11-1 EMPIRICAL MODELS 373

CD MATERIAL
8. Conduct a lack-of-fit test in a regression model where there are replicated observations.

Answers for many odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

11-1 EMPIRICAL MODELS

Many problems in engineering and science involve exploring the relationships between two
or more variables. Regression analysis is a statistical technique that is very useful for these
types of problems. For example, in a chemical process, suppose that the yield of the product
is related to the process-operating temperature. Regression analysis can be used to build a
model to predict yield at a given temperature level. This model can also be used for process
optimization, such as finding the level of temperature that maximizes yield, or for process
control purposes.

As an illustration, consider the data in Table 11-1. In this table y is the purity of oxygen
produced in a chemical distillation process, and x is the percentage of hydrocarbons that are
present in the main condenser of the distillation unit. Figure 11-1 presents a scatter diagram

Table 11-1 Oxygen and Hydrocarbon Levels

Observation Hydrocarbon Level Purity
Number x (%) y (%)

1 0.99 90.01
2 1.02 89.05
3 1.15 91.43
4 1.29 93.74
5 1.46 96.73
6 1.36 94.45
7 0.87 87.59
8 1.23 91.77
9 1.55 99.42

10 1.40 93.65
11 1.19 93.54
12 1.15 92.52
13 0.98 90.56
14 1.01 89.54
15 1.11 89.85
16 1.20 90.39
17 1.26 93.25
18 1.32 93.41
19 1.43 94.98
20 0.95 87.33 Figure 11-1 Scatter diagram of oxygen purity versus hydrocarbon

level from Table 11-1.
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374 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

of the data in Table 11-1. This is just a graph on which each (xi, yi) pair is represented as a point
plotted in a two-dimensional coordinate system. This scatter diagram was produced by
Minitab, and we selected an option that shows dot diagrams of the x and y variables along the
top and right margins of the graph, respectively, making it easy to see the distributions of the
individual variables (box plots or histograms could also be selected). Inspection of this scatter
diagram indicates that, although no simple curve will pass exactly through all the points, there
is a strong indication that the points lie scattered randomly around a straight line. Therefore, it
is probably reasonable to assume that the mean of the random variable Y is related to x by the
following straight-line relationship:

where the slope and intercept of the line are called regression coefficients. While the mean
of Y is a linear function of x, the actual observed value y does not fall exactly on a straight
line. The appropriate way to generalize this to a probabilistic linear model is to assume
that the expected value of Y is a linear function of x, but that for a fixed value of x the actual
value of Y is determined by the mean value function (the linear model) plus a random error
term, say,

(11-1)

where � is the random error term. We will call this model the simple linear regression model,
because it has only one independent variable or regressor. Sometimes a model like this will
arise from a theoretical relationship. At other times, we will have no theoretical knowledge of
the relationship between x and y, and the choice of the model is based on inspection of a scat-
ter diagram, such as we did with the oxygen purity data. We then think of the regression model
as an empirical model.

To gain more insight into this model, suppose that we can fix the value of x and observe
the value of the random variable Y. Now if x is fixed, the random component � on the right-
hand side of the model in Equation 11-1 determines the properties of Y. Suppose that the mean
and variance of � are 0 and �2, respectively. Then

Notice that this is the same relationship that we initially wrote down empirically from inspec-
tion of the scatter diagram in Fig. 11-1. The variance of Y given x is

Thus, the true regression model is a line of mean values; that is, the height
of the regression line at any value of x is just the expected value of Y for that x. The slope, 
can be interpreted as the change in the mean of Y for a unit change in x. Furthermore, the vari-
ability of Y at a particular value of x is determined by the error variance �2. This implies that
there is a distribution of Y-values at each x and that the variance of this distribution is the same
at each x.

For example, suppose that the true regression model relating oxygen purity to hydrocarbon
level is and suppose that the variance is �2 � 2. Figure 11-2 illustrates this 
situation. Notice that we have used a normal distribution to describe the random variation
in �. Since Y is the sum of a constant �0 � �1x (the mean) and a normally distributed ran-
dom variable, Y is a normally distributed random variable. The variance �2 determines the

�Y  0  x � 75 � 15x,

�1,
�Y  0  x � �0 � �1x

V 1Y 0  x2 � V 1�0 � �1x � �2 � V 1�0 � �1x2 � V 1�2 � 0 � �2 � �2

E1Y 0  x2 � E1�0 � �1x � �2 � �0 � �1x � E1�2 � �0 � �1x

Y � �0 � �1x � �

E1Y 0  x2 � �Y 
 0  x � �0 � �1x
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11-2 SIMPLE LINEAR REGRESSION 375

variability in the observations Y on oxygen purity. Thus, when �2 is small, the observed
values of Y will fall close to the line, and when �2 is large, the observed values of Y may de-
viate considerably from the line. Because �2 is constant, the variability in Y at any value of
x is the same.

The regression model describes the relationship between oxygen purity Y and hydrocar-
bon level x. Thus, for any value of hydrocarbon level, oxygen purity has a normal distribution
with mean 75 � 15x and variance 2. For example, if x � 1.25, Y has mean value �Y � x � 75 �
15(1.25) � 93.75 and variance 2.

In most real-world problems, the values of the intercept and slope (�0, �1) and the error
variance �2 will not be known, and they must be estimated from sample data. Then this fitted
regression equation or model is typically used in prediction of future observations of Y, or for
estimating the mean response at a particular level of x. To illustrate, a chemical engineer might
be interested in estimating the mean purity of oxygen produced when the hydrocarbon level is
x � 1.25%. This chapter discusses such procedures and applications for the simple linear re-
gression model. Chapter 12 will discuss multiple linear regression models that involve more
than one regressor.

11-2 SIMPLE LINEAR REGRESSION

The case of simple linear regression considers a single regressor or predictor x and a de-
pendent or response variable Y. Suppose that the true relationship between Y and x is a
straight line and that the observation Y at each level of x is a random variable. As noted previ-
ously, the expected value of Y for each value of x is

where the intercept �0 and the slope �1 are unknown regression coefficients. We assume that
each observation, Y, can be described by the model

(11-2)

where � is a random error with mean zero and (unknown) variance �2. The random errors
corresponding to different observations are also assumed to be uncorrelated random
variables.

Y � �0 � �1 x � �

E1Y 0  x2 � �0 � �1 x

 0 +   1 (1.25)

x = 1.25x = 100

ββ

  0 +   1 (1.00)ββ

 True regression line
   Yx =   0 +   1x
         = 75 + 15x

β βµ

          y
(Oxygen
  purity)

  x (Hydrocarbon level)

Figure 11-2 The distribution of Y for a given value of x for the
oxygen purity-hydrocarbon data.
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376 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

Suppose that we have n pairs of observations (x1, y1), (x2, y2), p (xn, yn). Figure 11-3
shows a typical scatter plot of observed data and a candidate for the estimated regression line.
The estimates of �0 and �1 should result in a line that is (in some sense) a “best fit” to the data.
The German scientist Karl Gauss (1777–1855) proposed estimating the parameters �0 and �1

in Equation 11-2 to minimize the sum of the squares of the vertical deviations in Fig. 11-3.
We call this criterion for estimating the regression coefficients the method of least

squares. Using Equation 11-2, we may express the n observations in the sample as

(11-3)

and the sum of the squares of the deviations of the observations from the true regression line
is

(11-4)

The least squares estimators of �0 and �1, say, and must satisfy

(11-5)

Simplifying these two equations yields

(11-6)

Equations 11-6 are called the least squares normal equations. The solution to the normal
equations results in the least squares estimators and �̂1.�̂0

�̂0 a
n

i�1
 xi � �̂1 a

n

i�1
 x i

2 � a
n

i�1
 yi 

xi

 n�̂0 � �̂1 a
n

i�1
 xi � a

n

i�1
 yi

 
�L

��1
`
�̂  0,�̂1

� 	2 a
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i�1
1

 
yi 	 �̂0 	 �̂1xi2  xi � 0
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yi 	 �̂0 	 �̂1xi2 � 0
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L � a
n

i�1
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yi 	 �0 	 �1xi22

yi � �0 � �1 xi � �i,  i � 1, 2, p , n
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Data (y)

Estimated
regression line

Figure 11-3 Deviations of the data from the
estimated regression model.
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The fitted or estimated regression line is therefore

(11-9)

Note that each pair of observations satisfies the relationship

where ei � yi 	 is called the residual. The residual describes the error in the fit of the
model to the ith observation yi. Later in this chapter we will use the residuals to provide in-
formation about the adequacy of the fitted model.

Notationally, it is occasionally convenient to give special symbols to the numerator and
denominator of Equation 11-8. Given data (x1, y1), (x2, y2), p , (xn, yn), let

(11-10)

and

(11-11)

EXAMPLE 11-1 We will fit a simple linear regression model to the oxygen purity data in Table 11-1. The
following quantities may be computed:

 a
20

i�1
 yi

2 � 170,044.5321 a
20

i�1
xi

2 � 29.2892 a
20

i�1
xi yi � 2,214.6566

 n � 20 a
20

i�1
xi � 23.92 a

20

i�1
 yi � 1,843.21 x � 1.1960 y � 92.1605

Sx y � a
n

i�1
yi1xi 	 x22 � a

n

i�1
xiyi 	

aa
n

i�1
xib

 
aa

n

i�1
 yib

n

Sx x � a
n

i�1
 1xi 	 x22 � a

n

i�1
x 

2
i 	

aa
n

i�1
xib

2

n

ŷi

yi � �̂0 � �̂1xi � ei,  i � 1, 2, p , n

ŷ � �̂0 � �̂1x

The least squares estimates of the intercept and slope in the simple linear regression
model are

(11-7)

(11-8)

where y � 11
n2 g n
i�1 yi and  x � 11
n2 g n

i�1 xi.

�̂1 �
a

n

i�1
yi  

xi 	

aa
n

i�1
yib aa

n

i�1
xib

n

a
n

i�1
x 

2
i 	

aa
n

i�1
xib

2

n

�̂0 � y 	 �̂1x

Definition
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378 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

and

Therefore, the least squares estimates of the slope and intercept are

and

The fitted simple linear regression model (with the coefficients reported to three decimal places) is

This model is plotted in Fig. 11-4, along with the sample data.
Computer software programs are widely used in regression modeling. These programs

typically carry more decimal places in the calculations. Table 11-2 shows a portion of the out-
put from Minitab for this problem. The estimates and are highlighted. In subsequent sec-
tions we will provide explanations for the information provided in this computer output.

Using the regression model of Example 11-1, we would predict oxygen purity of �
89.23% when the hydrocarbon level is x � 1.00%. The purity 89.23% may be interpreted as

ŷ

�̂1�̂0

ŷ � 74.283 � 14.947 x

�̂0 � y � �̂1x � 92.1605 � 114.9474821.196 � 74.28331

�̂1 �
Sx y

Sx x
�

10.17744
0.68088

� 14.94748

Sx y � a
20

i�1
xiyi �

aa
20

i�1
xib aa

20

i�1
 yib

20
� 2,214.6566 �

123.922 11,843.212
20

� 10.17744

 Sx x � a
20

i�1
x i

2 �

aa
20

i�1
xib

2

20
� 29.2892 �

123.9222
20

� 0.68088
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Figure 11-4 Scatter
plot of oxygen 
purity y versus
hydrocarbon level x
and regression model

.ŷ � 74.20 � 14.97x
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an estimate of the true population mean purity when x � 1.00%, or as an estimate of a new
observation when x = 1.00%. These estimates are, of course, subject to error; that is, it is un-
likely that a future observation on purity would be exactly 89.23% when the hydrocarbon
level is 1.00%. In subsequent sections we will see how to use confidence intervals and pre-
diction intervals to describe the error in estimation from a regression model.

Estimating �2

There is actually another unknown parameter in our regression model, �2 (the variance of the
error term �). The residuals are used to obtain an estimate of �2. The sum of
squares of the residuals, often called the error sum of squares, is

(11-12)

We can show that the expected value of the error sum of squares is E(SSE) � (n � 2)�2.
Therefore an unbiased estimator of �2 is

SSE � a
n

i�1
 ei

2 � a
n

i�1
1 yi � ŷi22

ei � yi � ŷi

Computing SSE using Equation 11-12 would be fairly tedious. A more convenient computing
formula can be obtained by substituting into Equation 11-12 and simplifying.ŷi � �̂0 � �̂1xi

(11-13)�̂2 �
SSE

n � 2

11-2 SIMPLE LINEAR REGRESSION 379

Table 11-2 Minitab Output for the Oxygen Purity Data in Example 11-1

Regression Analysis

The regression equation is 

Purity � 74.3 � 14.9 HC Level

Predictor Coef SE Coef T P
Constant 74.283 1.593 46.62 0.000
HC Level 14.947 1.317 11.35 0.000

S � 1.087 R-Sq � 87.7% R-Sq (adj) � 87.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 152.13 152.13 128.86 0.000
Residual Error 18 21.25 SSE 1.18
Total 19 173.38

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 89.231 0.354 (88.486, 89.975) (86.830, 91.632)

Values of Predictors for New Observations

New Obs HC Level
1 1.00

�̂ 2

�̂1

�̂0
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380 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

11-1. An article in Concrete Research (“Near Surface
Characteristics of Concrete: Intrinsic Permeability,” Vol. 41,
1989), presented data on compressive strength x and intrinsic
permeability y of various concrete mixes and cures. Summary
quantities are n � 14, gyi � 572, g � 23,530, g xi � 43,

� 157.42, and g xiyi � 1697.80. Assume that the two vari-
ables are related according to the simple linear regression model.
(a) Calculate the least squares estimates of the slope and intercept.
(b) Use the equation of the fitted line to predict what perme-

ability would be observed when the compressive strength
is x � 4.3.

(c) Give a point estimate of the mean permeability when
compressive strength is x � 3.7.

(d) Suppose that the observed value of permeability at x � 3.7 is
y � 46.1. Calculate the value of the corresponding residual.

11-2. Regression methods were used to analyze the data
from a study investigating the relationship between roadway
surface temperature (x) and pavement deflection ( y). Summary
quantities were n � 20, g yi � 12.75, � 8.86, g xi �
1478, � 143,215.8, and g xiyi � 1083.67.gx2

i

g yi
2

g xi
2

y2
i

(a) Calculate the least squares estimates of the slope and in-
tercept. Graph the regression line.

(b) Use the equation of the fitted line to predict what pave-
ment deflection would be observed when the surface
temperature is 85�F.

(c) What is the mean pavement deflection when the surface
temperature is 90�F?

(d) What change in mean pavement deflection would be ex-
pected for a 1�F change in surface temperature?

11-3. Consider the regression model developed in Exercise
11-2.
(a) Suppose that temperature is measured in �C rather than �F.

Write the new regression model that results.
(b) What change in expected pavement deflection is associ-

ated with a 1�C change in surface temperature?
11-4. Montgomery, Peck, and Vining (2001) present data
concerning the performance of the 28 National Football
League teams in 1976. It is suspected that the number of games
won (y) is related to the number of yards gained rushing by an
opponent (x). The data are shown in the following table.

Yards
Games Rushing by

Teams Won (y) Opponent (x)

Washington 10 2205

Minnesota 11 2096

New England 11 1847

Oakland 13 1903

Pittsburgh 10 1457

Baltimore 11 1848

Los Angeles 10 1564

Dallas 11 1821

Atlanta 4 2577

Buffalo 2 2476

Chicago 7 1984

Cincinnati 10 1917

Cleveland 9 1761

Denver 9 1709

Yards
Games Rushing by

Teams Won (y) Opponent (x)

Detroit 6 1901

Green Bay 5 2288

Houston 5 2072

Kansas City 5 2861

Miami 6 2411

New Orleans 4 2289

New York Giants 3 2203

New York Jets 3 2592

Philadelphia 4 2053

St. Louis 10 1979

San Diego 6 2048

San Francisco 8 1786

Seattle 2 2876

Tampa Bay 0 2560

(11-14)SSE � SST 	 �̂1Sxy

where is the total sum of squares of the response 

variable y. The error sum of squares and the estimate of �2 for the oxygen purity data, 
are highlighted in the Minitab output in Table 11-2.

EXERCISES FOR SECTION 11-2

�̂2 � 1.18,

SST � g n
i�1 1 ŷi 	 y 22 � g n

i�1 yi
2 	 ny	2

The resulting computing formula is
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(a) Calculate the least squares estimates of the slope and inter-
cept. What is the estimate of �2? Graph the regression model.

(b) Find an estimate of the mean number of games won if the
opponents can be limited to 1800 yards rushing.

(c) What change in the expected number of games won is asso-
ciated with a decrease of 100 yards rushing by an opponent?

(d) To increase by 1 the mean number of games won, how much
decrease in rushing yards must be generated by the defense?

(e) Given that x � 1917 yards (Cincinnati), find the fitted
value of y and the corresponding residual.

11-5. An article in Technometrics by S. C. Narula and J. F.
Wellington (“Prediction, Linear Regression, and a Minimum
Sum of Relative Errors,” Vol. 19, 1977) presents data on the
selling price and annual taxes for 24 houses. The data are
shown in the following table.
(a) Assuming that a simple linear regression model is appro-

priate, obtain the least squares fit relating selling price to
taxes paid. What is the estimate of �2?

(b) Find the mean selling price given that the taxes paid are
x � 7.50.

(c) Calculate the fitted value of y corresponding to x �
5.8980. Find the corresponding residual.

(d) Calculate the fitted for each value of xi used to fit the
model. Then construct a graph of versus the correspon-
ding observed value yi and comment on what this plot
would look like if the relationship between y and x was a
deterministic (no random error) straight line. Does the
plot actually obtained indicate that taxes paid is an effec-
tive regressor variable in predicting selling price?

11-6. The number of pounds of steam used per month by a
chemical plant is thought to be related to the average ambient
temperature (in� F) for that month. The past year’s usage and
temperature are shown in the following table:

ŷi

ŷi

Taxes
Sale (Local, School),

Price/1000 County)/1000

25.9 4.9176

29.5 5.0208

27.9 4.5429

25.9 4.5573

29.9 5.0597

29.9 3.8910

30.9 5.8980

28.9 5.6039

35.9 5.8282

31.5 5.3003

31.0 6.2712

30.9 5.9592

Taxes
Sale (Local, School),

Price/1000 County)/1000

30.0 5.0500

36.9 8.2464

41.9 6.6969

40.5 7.7841

43.9 9.0384

37.5 5.9894

37.9 7.5422

44.5 8.7951

37.9 6.0831

38.9 8.3607

36.9 8.1400

45.8 9.1416

11-2 SIMPLE LINEAR REGRESSION 381

Month Temp. Usage/1000

Jan. 21 185.79

Feb. 24 214.47

Mar. 32 288.03

Apr. 47 424.84

May 50 454.58

June 59 539.03

Month Temp. Usage/1000

July 68 621.55

Aug. 74 675.06

Sept. 62 562.03

Oct. 50 452.93

Nov. 41 369.95

Dec. 30 273.98

(a) Assuming that a simple linear regression model is appro-
priate, fit the regression model relating steam usage (y) to
the average temperature (x). What is the estimate of �2?

(b) What is the estimate of expected steam usage when the
average temperature is 55�F?

(c) What change in mean steam usage is expected when the
monthly average temperature changes by 1�F?

(d) Suppose the monthly average temperature is 47�F. Calculate
the fitted value of y and the corresponding residual.

11-7. The data shown in the following table are highway
gasoline mileage performance and engine displacement for a
sample of 20 cars.

Engine
MPG Displacement

Make Model (highway) (in3)

Acura Legend 30 97

BMW 735i 19 209

Buick Regal 29 173

Chevrolet Cavalier 32 121

Chevrolet Celebrity 30 151

Chrysler Conquest 24 156

Dodge Aries 30 135

Dodge Dynasty 28 181

Ford Escort 31 114

Ford Mustang 25 302

Engine
MPG Displacement

Make Model (highway) (in3)

Ford Taurus 27 153

Ford Tempo 33 90

Honda Accord 30 119

Mazda RX-7 23 80

Mercedes 260E 24 159

Mercury Tracer 29 97

Nissan Maxima 26 181

Oldsmobile Cutlass 29 173

Plymouth Laser 37 122

Pontiac Grand Prix 29 173
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382 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

(a) Fit a simple linear model relating highway miles per gal-
lon ( y) to engine displacement (x) using least squares.

(b) Find an estimate of the mean highway gasoline mileage
performance for a car with 150 cubic inches engine dis-
placement.

(c) Obtain the fitted value of y and the corresponding residual
for a car, the Ford Escort, with engine displacement of 114
cubic inches.

11-8. An article in the Tappi Journal (March, 1986) pre-
sented data on green liquor Na2S concentration (in grams per
liter) and paper machine production (in tons per day). The data
(read from a graph) are shown as follows:

y 40 42 49 46 44 48

x 825 830 890 895 890 910

y 46 43 53 52 54 57 58

x 915 960 990 1010 1012 1030 1050

(a) Fit a simple linear regression model with y � green liquor
Na2S concentration and x � production. Find an estimate
of �2. Draw a scatter diagram of the data and the resulting
least squares fitted model.

(b) Find the fitted value of y corresponding to x � 910 and
the associated residual.

(c) Find the mean green liquor Na2S concentration when the
production rate is 950 tons per day.

11-9. An article in the Journal of Sound and Vibration
(Vol. 151, 1991, pp. 383–394) described a study investigating
the relationship between noise exposure and hypertension.
The following data are representative of those reported in the
article.

y 1 0 1 2 5 1 4 6 2 3

x 60 63 65 70 70 70 80 90 80 80

y 5 4 6 8 4 5 7 9 7 6

x 85 89 90 90 90 90 94 100 100 100

(a) Draw a scatter diagram of y (blood pressure rise in
millimeters of mercury) versus x (sound pressure level in
decibels). Does a simple linear regression model seem
reasonable in this situation?

(b) Fit the simple linear regression model using least squares.
Find an estimate of �2.

(c) Find the predicted mean rise in blood pressure level asso-
ciated with a sound pressure level of 85 decibals.

11-10. An article in Wear (Vol. 152, 1992, pp. 171–181)
presents data on the fretting wear of mild steel and oil viscos-
ity. Representative data follow, with x � oil viscosity and y �
wear volume ( cubic millimeters).10	4

(a) Construct a scatter plot of the data. Does a simple linear
regression model appear to be plausible?

(b) Fit the simple linear regression model using least squares.
Find an estimate of �2.

(c) Predict fretting wear when viscosity x � 30.
(d) Obtain the fitted value of y when x � 22.0 and calculate

the corresponding residual.

11-11. An article in the Journal of Environmental
Engineering (Vol. 115, No. 3, 1989, pp. 608–619) reported the
results of a study on the occurrence of sodium and chloride in
surface streams in central Rhode Island. The following data
are chloride concentration y (in milligrams per liter) and road-
way area in the watershed x (in percentage).

y 4.4 6.6 9.7 10.6 10.8 10.9

x 0.19 0.15 0.57 0.70 0.67 0.63

y 11.8 12.1 14.3 14.7 15.0 17.3

x 0.47 0.70 0.60 0.78 0.81 0.78

y 19.2 23.1 27.4 27.7 31.8 39.5

x 0.69 1.30 1.05 1.06 1.74 1.62

(a) Draw a scatter diagram of the data. Does a simple linear
regression model seem appropriate here?

(b) Fit the simple linear regression model using the method of
least squares. Find an estimate of �2.

(c) Estimate the mean chloride concentration for a watershed
that has 1% roadway area.

(d) Find the fitted value corresponding to x � 0.47 and the
associated residual.

11-12. A rocket motor is manufactured by bonding together
two types of propellants, an igniter and a sustainer. The shear
strength of the bond y is thought to be a linear function of the
age of the propellant x when the motor is cast. Twenty obser-
vations are shown in the table on the next page.
(a) Draw a scatter diagram of the data. Does the straight-line

regression model seem to be plausible?
(b) Find the least squares estimates of the slope and inter-

cept in the simple linear regression model. Find an
estimate of �2.

(c) Estimate the mean shear strength of a motor made from
propellant that is 20 weeks old.

(d) Obtain the fitted values that correspond to each ob-
served value yi. Plot versus yi, and comment on what
this plot would look like if the linear relationship between

ŷi

ŷi

y 110 113 75 94

x 35.5 43.0 40.5 33.0

y 240 181 193 155 172

x 1.6 9.4 15.5 20.0 22.0
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shear strength and age were perfectly deterministic (no er-
ror). Does this plot indicate that age is a reasonable choice
of regressor variable in this model?

11-13. Show that in a simple linear regression model
the point ( ) lies exactly on the least squares regression
line.

11-14. Consider the simple linear regression model Y � �0 �
�1x � �. Suppose that the analyst wants to use z � x 	 as the
regressor variable.
(a) Using the data in Exercise 11-12, construct one scatter

plot of the ( ) points and then another of the
( ) points. Use the two plots to intuitively
explain how the two models, Y � �0 � �1x � � and

, are related.

(b) Find the least squares estimates of and in the model

. How do they relate to the least

squares estimates and ?�̂1�̂0

Y � �*0 � �*1z � �

�*1�*0

Y � �*0 � �*1z � �

zi � xi 	 x, yi

xi, yi

x

x, y

11-15. Suppose we wish to fit the model �
, where (i � 1, 2, p , n). Find

the least squares estimates of and . How do they relate
to and ?
11-16. Suppose we wish to fit a regression model for which
the true regression line passes through the point (0, 0). The ap-
propriate model is Y � �x � �. Assume that we have n pairs
of data (x1, y1), (x2, y2), p , (xn, yn). Find the least squares esti-
mate of �.

11-17. Using the results of Exercise 11-16, fit the model
Y � �x � � to the chloride concentration-roadway area
data in Exercise 11-11. Plot the fitted model on a scatter
diagram of the data and comment on the appropriateness of
the model.

�̂1�̂0

�*1�*0

y*i � yi 	 y�*11xi 	 x 2 � �i

y*i � �*0
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Observation Strength y Age x
Number (psi) (weeks)

1 2158.70 15.50
2 1678.15 23.75
3 2316.00 8.00
4 2061.30 17.00
5 2207.50 5.00
6 1708.30 19.00
7 1784.70 24.00
8 2575.00 2.50
9 2357.90 7.50

10 2277.70 11.00

Observation Strength y Age x
Number (psi) (weeks)

11 2165.20 13.00
12 2399.55 3.75
13 1779.80 25.00
14 2336.75 9.75
15 1765.30 22.00
16 2053.50 18.00
17 2414.40 6.00
18 2200.50 12.50
19 2654.20 2.00
20 1753.70 21.50

11-3 PROPERTIES OF THE LEAST SQUARES ESTIMATORS

The statistical properties of the least squares estimators and may be easily described.
Recall that we have assumed that the error term � in the model Y � �0 � �1x � � is a random
variable with mean zero and variance �2. Since the values of x are fixed, Y is a random vari-
able with mean � �0 � �1x and variance �2. Therefore, the values of and depend
on the observed y’s; thus, the least squares estimators of the regression coefficients may be
viewed as random variables. We will investigate the bias and variance properties of the least
squares estimators and .

Consider first . Because is a linear combination of the observations Yi, we can use
properties of expectation to show that expected value of is

(11-15)

Thus, is an unbiased estimator of the true slope �1.�̂1

E1�̂12 � �1

�̂1

�̂1�̂1

�̂1�̂0

�̂1�̂0�Y 0 x

�̂1�̂0
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384 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

Now consider the variance of . Since we have assumed that V(�i) � �2, it follows that
V(Yi) � �2, and it can be shown that

(11-16)

For the intercept, we can show that

(11-17)

Thus, is an unbiased estimator of the intercept �0. The covariance of the random variables
and is not zero. It can be shown (see Exercise 11-69) that cov( ) � 	�2 .

The estimate of �2 could be used in Equations 11-16 and 11-17 to provide estimates of the
variance of the slope and the intercept. We call the square roots of the resulting variance esti-
mators the estimated standard errors of the slope and intercept, respectively.

x
Sxx�̂0, �̂1�̂1�̂0

�̂0

E1�̂02 � �0 and V1�̂02 � �2 c 1n �
x2

Sxx
d

V1�̂12 �
�2

Sxx

�̂1

In simple linear regression the estimated standard error of the slope and the 
estimated standard error of the intercept are 

respectively, where is computed from Equation 11-13.�̂2

se1�̂12 � B �̂2

Sxx
  and  se1�̂02 � B�̂2 c 1n �

x2

Sxx
d

Definition

The Minitab computer output in Table 11-2 reports the estimated standard errors of the slope
and intercept under the column heading “SE coeff.”

11-4 SOME COMMENTS ON USES OF REGRESSION (CD ONLY)

11-5 HYPOTHESIS TESTS IN SIMPLE LINEAR REGRESSION

An important part of assessing the adequacy of a linear regression model is testing statistical hy-
potheses about the model parameters and constructing certain confidence intervals. Hypothesis
testing in simple linear regression is discussed in this section, and Section 11-6 presents meth-
ods for constructing confidence intervals. To test hypotheses about the slope and intercept of the
regression model, we must make the additional assumption that the error component in the
model, �, is normally distributed. Thus, the complete assumptions are that the errors are nor-
mally and independently distributed with mean zero and variance �2, abbreviated NID(0, �2).

11-5.1 Use of t-Tests

Suppose we wish to test the hypothesis that the slope equals a constant, say, �1,0. The appro-
priate hypotheses are

(11-18)H1: �1 � �1,0

H0: �1 � �1,0
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11-5 HYPOTHESIS TESTS IN SIMPLE LINEAR REGRESSION 385

where we have assumed a two-sided alternative. Since the errors �i are NID(0, �2), it follows
directly that the observations Yi are NID(�0 � �1xi, �

2). Now is a linear combination of 
independent normal random variables, and consequently, is N(�1, �

2�Sxx), using the bias
and variance properties of the slope discussed in Section 11-3. In addition, has
a chi-square distribution with n 	 2 degrees of freedom, and is independent of . As a
result of those properties, the statistic

(11-19)

follows the t distribution with n 	 2 degrees of freedom under H0: �1 � �1,0. We would reject
H0: �1 � �1,0 if

(11-20)

where t0 is computed from Equation 11-19. The denominator of Equation 11-19 is the standard
error of the slope, so we could write the test statistic as

A similar procedure can be used to test hypotheses about the intercept. To test

(11-21)

we would use the statistic

(11-22)

and reject the null hypothesis if the computed value of this test statistic, t0, is such that
. Note that the denominator of the test statistic in Equation 11-22 is just the stan-

dard error of the intercept.
A very important special case of the hypotheses of Equation 11-18 is

(11-23)

These hypotheses relate to the significance of regression. Failure to reject H0: �1 � 0 is
equivalent to concluding that there is no linear relationship between x and Y. This situation is
illustrated in Fig. 11-5. Note that this may imply either that x is of little value in explaining the
variation in Y and that the best estimator of Y for any x is (Fig. 11-5a) or that the true
relationship between x and Y is not linear (Fig. 11-5b). Alternatively, if H0: �1 � 0 is rejected,
this implies that x is of value in explaining the variability in Y (see Fig. 11-6). Rejecting H0:
�1 � 0 could mean either that the straight-line model is adequate (Fig. 11-6a) or that,

ŷ � Y

H1: �1 � 0

H0: �1 � 0

0 t0 0 
 t�
2,n	2

T0 �
�̂0 	 �0,0B�̂2 c 1n �

x2

Sxx
d

�
�̂0 	 �0,0

se1�̂02

H1: �0 � �0,0

H0: �0 � �0,0

T0 �
�̂1 	 �1,0

se1�̂12

0 t0 0 
 t�
2,n	2

T0 �
�̂1 	 �1,02�̂2
Sxx

�̂2�̂1

1n 	 22�̂2
�2
�̂1

�̂1
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386 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

although there is a linear effect of x, better results could be obtained with the addition of
higher order polynomial terms in x (Fig. 11-6b).

EXAMPLE 11-2 We will test for significance of regression using the model for the oxygen purity data from
Example 11-1. The hypotheses are

and we will use � � 0.01. From Example 11-1 and Table 11-2 we have

so the t-statistic in Equation 10-20 becomes

Since the reference value of t is t0.005,18 � 2.88, the value of the test statistic is very far
into the critical region, implying that H0: �1 � 0 should be rejected. The P-value for this test
is . This was obtained manually with a calculator.

Table 11-2 presents the Minitab output for this problem. Notice that the t-statistic value
for the slope is computed as 11.35 and that the reported P-value is P � 0.000. Minitab also
reports the t-statistic for testing the hypothesis H0: �0 � 0. This statistic is computed from
Equation 11-22, with �0,0 � 0, as t0 � 46.62. Clearly, then, the hypothesis that the intercept is
zero is rejected.

P � 1.23 � 10	9

t0 �
�̂12�̂2
Sxx

�
�̂1

se1�̂12 �
14.94721.18
0.68088

� 11.35

�̂1 � 14.97 n � 20, Sxx � 0.68088, �̂2 � 1.18

H1: �1 � 0

H0: �1 � 0

x

y

(a)
x

y

(b)

Figure 11-5 The
hypothesis H0: �1 � 0
is not rejected.

Figure 11-6 The
hypothesis H0: �1 � 0
is rejected.

x

y

(a)
x

y

(b)
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11-5.2 Analysis of Variance Approach to Test Significance of Regression

A method called the analysis of variance can be used to test for significance of regression.
The procedure partitions the total variability in the response variable into meaningful compo-
nents as the basis for the test. The analysis of variance identity is as follows:

11-5 HYPOTHESIS TESTS IN SIMPLE LINEAR REGRESSION 387

The two components on the right-hand-side of Equation 11-24 measure, respectively, the
amount of variability in yi accounted for by the regression line and the residual variation left
unexplained by the regression line. We usually call the error sum of 
squares and the regression sum of squares. Symbolically, Equation
11-24 may be written as

SSR � g n
i�1 1 ŷi � y 22

SSE � g n
i�1 1yi � ŷ i22

where SST � gn
i�1 is the total corrected sum of squares of y. In Section 11-2 we

noted that SSE � SST � �1Sxy (see Equation 11-14), so since SST � �1Sxy � SSE, we note that the
regression sum of squares in Equation 10-26 is SSR � �1Sxy. The total sum of squares SST has 
n � 1 degrees of freedom, and SSR and SSE have 1 and n � 2 degrees of freedom, respectively.

We may show that and that and
are independent chi-square random variables with n � 2 and 1 degrees of freedom, re-

spectively. Thus, if the null hypothesis H0: �1 � 0 is true, the statistic
SSR��2

SSE��2E 3SSE� 1n � 22 4 � �2, E1SSR2 � �2 � �2
1Sx x

ˆ
ˆˆ

1 yi � y22

follows the F1,n�2 distribution, and we would reject H0 if f0 	 f
,1,n�2. The quantities MSR �
SSR�1 and MSE � SSE�(n � 2) are called mean squares. In general, a mean square is always
computed by dividing a sum of squares by its number of degrees of freedom. The test proce-
dure is usually arranged in an analysis of variance table, such as Table 11-3.

(11-24)a
n

i�1
1 yi � y 22 � a

n

i�1
1ŷi � y 22 � a

n

i�1
1yi � ŷi22

(11-25)SST � SSR � SSE

(11-26)F0 �
SSR�1

SSE� 1n � 22 �
MSR

MSE

Table 11-3 Analysis of Variance for Testing Significance of Regression

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Regression 1 MSR MSR�MSE

Error SSE � SST �  Sxy n � 2 MSE

Total SST n � 1

Note that MSE � .�̂2

�̂1

SSR � �̂1Sx y
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388 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

EXAMPLE 11-3 We will use the analysis of variance approach to test for significance of regression using the
oxygen purity data model from Example 11-1. Recall that SST � 173.38, 
Sxy � 10.17744, and n � 20. The regression sum of squares is

and the error sum of squares is

The analysis of variance for testing H0: �1 � 0 is summarized in the Minitab output in
Table 11-2. The test statistic is f0 � MSR�MSE � 152.13�1.18 � 128.86, for which we find
that the P-value is P � 1.23 � 10	9, so we conclude that �1 is not zero.

There are frequently minor differences in terminology among computer packages. For
example, sometimes the regression sum of squares is called the “model” sum of squares, and
the error sum of squares is called the “residual” sum of squares.

Note that the analysis of variance procedure for testing for significance of regression is
equivalent to the t-test in Section 11-5.1. That is, either procedure will lead to the same conclusions.
This is easy to demonstrate by starting with the t-test statistic in Equation 11-19 with �1,0 � 0, say

(11-27)

Squaring both sides of Equation 11-27 and using the fact that results in

(11-28)

Note that T 2
0 in Equation 11-28 is identical to F0 in Equation 11-26 It is true, in general, that

the square of a t random variable with v degrees of freedom is an F random variable, with one
and v degrees of freedom in the numerator and denominator, respectively. Thus, the test using
T0 is equivalent to the test based on F0. Note, however, that the t-test is somewhat more flexi-
ble in that it would allow testing against a one-sided alternative hypothesis, while the F-test is
restricted to a two-sided alternative.

T2
0 �

�̂2
1Sx x

MSE
�

�̂1SxY

MSE
�

MSR

MSE

�̂2 � MSE

T0 �
�̂12�̂2
Sx x

� 21.25� 173.38 	 152.13SSE � SST 	 SSR

SSR � �̂1Sx y � 114.947210.17744 � 152.13

�̂1 � 14.947,

11-18. Consider the data from Exercise 11-1 on x � com-
pressive strength and y � intrinsic permeability of concrete.
(a) Test for significance of regression using � � 0.05. Find

the P-value for this test. Can you conclude that the model
specifies a useful linear relationship between these two
variables?

(b) Estimate �2 and the standard deviation of 
(c) What is the standard error of the intercept in this model?

11-19. Consider the data from Exercise 11-2 on x � road-
way surface temperature and y � pavement deflection.

�̂1.

(a) Test for significance of regression using � � 0.05. Find
the P-value for this test. What conclusions can you draw?

(b) Estimate the standard errors of the slope and intercept.

11-20. Consider the National Football League data in
Exercise 11-4.
(a) Test for significance of regression using � � 0.01. Find

the P-value for this test. What conclusions can you draw?
(b) Estimate the standard errors of the slope and intercept.
(c) Test (using � � 0.01) H0: �1 � 	0.01 versus H1: �1 �

	0.01. Would you agree with the statement that this is a test

EXERCISES FOR SECTION 11-5
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11-6 CONFIDENCE INTERVALS 389

of the claim that if you can decrease the opponent’s rushing
yardage by 100 yards the team will win one more game?

11-21. Consider the data from Exercise 11-5 on y � sales
price and x � taxes paid.
(a) Test H0: �1 � 0 using the t-test; use � � 0.05.
(b) Test H0: �1 � 0 using the analysis of variance with � �

0.05. Discuss the relationship of this test to the test from
part (a).

(c) Estimate the standard errors of the slope and intercept.
(d) Test the hypothesis that �0 � 0.

11-22. Consider the data from Exercise 11-6 on y � steam
usage and x � average temperature.
(a) Test for significance of regression using � � 0.01. What

is the P-value for this test? State the conclusions that re-
sult from this test.

(b) Estimate the standard errors of the slope and intercept.
(c) Test the hypothesis H0: �1 � 10 versus H1: �1 � 10 using

� � 0.01. Find the P-value for this test.
(d) Test H0: �0 � 0 versus H1: �0 � 0 using � � 0.01. Find

the P-value for this test and draw conclusions.

11-23. Exercise 11-7 gave 20 observations on y � highway
gasoline mileage and x � engine displacement.
(a) Test for significance of regression using � � 0.01. Find

the P-value for this test. What conclusions can you reach?
(b) Estimate the standard errors of the slope and intercept.
(c) Test H0: �1 � 	0.05 versus H1: �1 � 	0.05 using � �

0.01 and draw conclusions. What is the P-value for this test?
(d) Test the hypothesis H0: �0 � 0 versus H1: �0 � 0 using 

� � 0.01. What is the P-value for this test?

11-24. Exercise 11-8 gave 13 observations on y � green
liquor Na2S concentration and x � production in a paper mill.
(a) Test for significance of regression using � � 0.05. Find

the P-value for this test.
(b) Estimate the standard errors of the slope and intercept.
(c) Test H0: �0 � 0 versus H1: �0 � 0 using � � 0.05. What

is the P-value for this test?

11-25. Exercise 11-9 presented data on y � blood pressure
rise and x � sound pressure level.
(a) Test for significance of regression using � � 0.05. What

is the P-value for this test?
(b) Estimate the standard errors of the slope and intercept.
(c) Test H0: �0 � 0 versus H1: �0 � 0 using � � 0.05. Find

the P-value for this test.

11-26. Exercise 11-11 presented data on y � chloride con-
centration in surface streams and x � roadway area.
(a) Test the hypothesis H0: �1 � 0 versus H1: �1 � 0 using

the analysis of variance procedure with � � 0.01.
(b) Find the P-value for the test in part (a).
(c) Estimate the standard errors of and 
(d) Test H0: �0 � 0 versus H1: �0 � 0 using � � 0.01. What

conclusions can you draw? Does it seem that the model
might be a better fit to the data if the intercept were re-
moved?

11-27. Refer to Exercise 11-12, which gives 20 observations
on y � shear strength of a propellant and x � propellant age.

(a) Test for significance of regression with � � 0.01. Find the
P-value for this test.

(b) Estimate the standard errors of and 
(c) Test H0: �1 � 	30 versus H1: �1 � 	30 using � � 0.01.

What is the P-value for this test?
(d) Test H0: �0 � 0 versus H1: �0 � 0 using � � 0.01. What

is the P-value for this test?
(e) Test H0: �0 � 2500 versus H1: �0 
 2500 using � �

0.01. What is the P-value for this test?

11-28. Suppose that each value of xi is multiplied by a pos-
itive constant a, and each value of yi is multiplied by another
positive constant b. Show that the t-statistic for testing H0: 
�1 � 0 versus H1: �1 � 0 is unchanged in value.

11-29. Consider the no-intercept model Y � �x � �

with the �’s NID(0, �2). The estimate of �2 is s2 �

gn
i�1 and V � �2�gn

i�1

(a) Devise a test statistic for H0: � � 0 versus H1: � � 0.
(b) Apply the test in (a) to the model from Exercise 11-17.

11-30. The type II error probability for the t-test for H0: 
�1 � �1,0 can be computed in a similar manner to the t-tests 
of Chapter 9. If the true value of �1 is �œ

1, the value
is calculated and used as

the horizontal scale factor on the operating characteristic
curves for the t-test, (Appendix Charts VIe through VIh) and
the type II error probability is read from the vertical scale us-
ing the curve for n 	 2 degrees of freedom. Apply this proce-
dure to the football data of Exercise 11-4, using � � 2.4 and
�œ

1 � 	0.005, where the hypotheses are H0: �1 � 	0.01 ver-
sus H1: �1 � 	0.01.

d � 0�1,0 	 �¿1 0 
 1�11n 	 12
Sxx

x 2
i .1�̂21 yi 	 �̂xi22
 1n 	 12

�̂1.�̂0

�̂0.�̂1

11-6 CONFIDENCE INTERVALS

11-6.1 Confidence Intervals on the Slope and Intercept

In addition to point estimates of the slope and intercept, it is possible to obtain confidence in-
terval estimates of these parameters. The width of these confidence intervals is a measure of
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390 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

EXAMPLE 11-4 We will find a 95% confidence interval on the slope of the regression line using the data in
Example 11-1. Recall that Sxx � 0.68088, and (see Table 11-2).
Then, from Equation 10-31 we find

or

This simplifies to

11-6.2 Confidence Interval on the Mean Response

A confidence interval may be constructed on the mean response at a specified value of x, say,
x0. This is a confidence interval about E(Y �x0) � �Y �x0

and is often called a confidence interval
about the regression line. Since E(Y �x0) � �Y �x0

� �0 � �1x0, we may obtain a point estimate
of the mean of Y at x � x0(�Y �x0

) from the fitted model as

�̂Y  0  x0
� �̂0 � �̂1x0

12.197 � �1 � 17.697

14.947 	 2.101 A 1.18
0.68088

� �1 � 14.947 � 2.101 A 1.18
0.68088

�̂1 	 t0.025,18  B �̂2

Sx x
� �1 � �̂1 � t0.025,18  B �̂2

Sx x

�̂2 � 1.18�̂1 � 14.947,

the overall quality of the regression line. If the error terms, �i, in the regression model are nor-
mally and independently distributed,

are both distributed as t random variables with n 	 2 degrees of freedom. This leads to the fol-
lowing definition of 100(1 	 �)% confidence intervals on the slope and intercept.

1�̂1 	 �12
2�̂2
Sx x and 1�̂0 	 �02
B�̂2 c 1n �
x2

Sx x
d

Under the assumption that the observations are normally and independently distributed,
a 100(1 	 �)% confidence interval on the slope �1 in simple linear regression is

(11-29)

Similarly, a 100(1 	 �)% confidence interval on the intercept �0 is

(11-30)� �0 � �̂0 �  t�
2, n	2 B�̂2 c 1n �
x 

2

Sx x
d

�̂0 	 t�
2, n	2  B�̂2 c 1n �
x2

Sx x
d

�̂1 	 t�
2, n	2  B �̂2

Sx x
� �1 � �̂1 � t�
2, n	2  B �̂2

Sx x

Definition
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11-6 CONFIDENCE INTERVALS 391

Now is an unbiased point estimator of �Y �x0
, since and are unbiased estimators of

�0 and �1. The variance of is

This last result follows from the fact that cov (Refer to Exercise 11-71). Also, 
is normally distributed, because 1 and 0 are normally distributed, and if we use as an
estimate of �2, it is easy to show that

has a t distribution with n 	 2 degrees of freedom. This leads to the following confidence in-
terval definition.

�̂Y 0  x0
	 �Y 0  x0B�̂2 c 1n �
1x0 	 x 22

Sx x
d

�̂2�̂�̂

�̂Y 0 x0
1Y, �̂12 � 0

V 1�̂Y 0  x0
2 � �2 c 1n �

1x0 	 x22
Sx x

d

�̂Y 0  x0

�̂1�̂0�̂Y 0  x0

A 100(1 	 �)% confidence interval about the mean response at the value of 
x � x0, say , is given by

(11-31)

where is computed from the fitted regression model.�̂Y  0  x0
� �̂0 � �̂1x0

� �Y 0  x0
� �̂Y  0  x0

� t�
2, n	2 B�̂2 c 1n �
1x0 	 x 22

Sx x
d

�̂Y  0x0
	 t�
2, n	2 B�̂2

 c 1n �
1x0 	 x 22

Sx x
d

�Y 0  x0

Definition

Note that the width of the confidence interval for is a function of the value specified for
x0. The interval width is a minimum for and widens as increases.

EXAMPLE 11-5 We will construct a 95% confidence interval about the mean response for the data in Example
11-1. The fitted model is and the 95% confidence interval on

is found from Equation 11-31 as

Suppose that we are interested in predicting mean oxygen purity when x0 � 1.00%. Then

and the 95% confidence interval is

e89.23 � 2.101 B1.18 c 1
20

�
11.00 	 1.196022

0.68088
d f

�̂Y  0  x1.00
� 74.283 � 14.94711.002 � 89.23

�̂Y 0  x0
� 2.101B1.18 c 1

20
�
1x0 	 1.196022

0.68088
d

�Y 0  x0

�̂Y 0  x0
� 74.283 � 14.947x0,

0 x0 	 x 0x0 � x
�Y 0  x0
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392 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

or

Therefore, the 95% confidence interval on is

Minitab will also perform these calculations. Refer to Table 11-2. The predicted value of y at
x � 1.00 is shown along with the 95% CI on the mean of y at this level of x.

By repeating these calculations for several different values for x0 we can obtain confi-
dence limits for each corresponding value of . Figure 11-7 displays the scatter diagram
with the fitted model and the corresponding 95% confidence limits plotted as the upper and
lower lines. The 95% confidence level applies only to the interval obtained at one value of x
and not to the entire set of x-levels. Notice that the width of the confidence interval on 
increases as increases.

11-7 PREDICTION OF NEW OBSERVATIONS

An important application of a regression model is predicting new or future observations Y
corresponding to a specified level of the regressor variable x. If x0 is the value of the regressor
variable of interest,

(11-32)

is the point estimator of the new or future value of the response Y0.
Now consider obtaining an interval estimate for this future observation Y0. This new

observation is independent of the observations used to develop the regression model.
Therefore, the confidence interval for in Equation 11-31 is inappropriate, since it is based
only on the data used to fit the regression model. The confidence interval about refers to 
the true mean response at x � x0 (that is, a population parameter), not to future observations.

�Y 0  x0

�Y 0  x0

Ŷ0 � �̂0 � �̂1x0

0 x0 	 x 0 �Y 0  x0

�Y 0  x0

88.48 � �Y 0  1.00 � 89.98

�Y  0  1.00

89.23 � 0.75

90

87

93

96

99

102

0.87 1.07 1.27 1.47 1.67

Hydrocarbon level (%)

O
xy

ge
n 

pu
ri

ty
 y

 (
%

)

x

Figure 11-7 Scatter
diagram of oxygen 
purity data from
Example 11-1 with 
fitted regression line
and 95 percent 
confidence limits on

.�Y 0  x0
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11-7 PREDICTION OF NEW OBSERVATIONS 393

Let Y0 be the future observation at x � x0, and let given by Equation 11-32 be the es-
timator of Y0. Note that the error in prediction

is a normally distributed random variable with mean zero and variance

because Y0 is independent of If we use to estimate �2, we can show that

has a t distribution with n 	 2 degrees of freedom. From this we can develop the following
prediction interval definition.

Y0 	 Ŷ0B�̂2 c1 �
1
n �

1x0 	 x 22
Sx x

d

�̂2Ŷ0.

V 1ep̂2 � V1Y0 	 Ŷ02 � �2 c1 �
1
n �

1x0 	 x 22
Sx x

d

ep̂ � Y0 	 Ŷ0

Ŷ0

A 100(1 	 �) % prediction interval on a future observation at the value x0 is
given by

(11-33)

The value is computed from the regression model ŷ0 � �̂0 � �̂1x0.ŷ0

� Y0 � ŷ0 � t�
 2, n	2 B�̂2 c1 �
1
n �

1x0 	 x 22
Sx x

d

ŷ0 	 t�
2, n	2 B�̂2 c1 �
1
n �

1x0 	 x 22
Sx x

d

Y0

Definition

Notice that the prediction interval is of minimum width at and widens as 
increases. By comparing Equation 11-33 with Equation 11-31, we observe that the prediction
interval at the point x0 is always wider than the confidence interval at x0. This results because
the prediction interval depends on both the error from the fitted model and the error associated
with future observations.

EXAMPLE 11-6 To illustrate the construction of a prediction interval, suppose we use the data in Example 11-1
and find a 95% prediction interval on the next observation of oxygen purity at x0 � 1.00%.
Using Equation 11-33 and recalling from Example 11-5 that , we find that the
prediction interval is

� Y0 � 89.23 � 2.101 B1.18 c1 �
1
20

�
11.00 	 1.196022

0.68088
d

89.23 	 2.101B1.18 c1 �
1
20

�
11.00 	 1.196022

0.68088
d

ŷ0 � 89.23

0  x0 	 x 0x0 � x
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394 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

which simplifies to 

Minitab will also calculate prediction intervals. Refer to the output in Table 11-2. The 95% PI
on the future observation at x0 � 1.00 is shown in the display.

By repeating the foregoing calculations at different levels of x0, we may obtain the 95%
prediction intervals shown graphically as the lower and upper lines about the fitted regression
model in Fig. 11-8. Notice that this graph also shows the 95% confidence limits on 
calculated in Example 11-5. It illustrates that the prediction limits are always wider than the
confidence limits.

�Y  0  x0

86.83 � y0 � 91.63

Figure 11-8 Scatter
diagram of oxygen
purity data from
Example 11-1 with
fitted regression line,
95% prediction limits
(outer lines) and 95%
confidence limits on

.�Y  0  x0
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EXERCISES FOR SECTIONS 11-6 AND 11-7

11-31. Refer to the data in Exercise 11-1 on y � intrinsic
permeability of concrete and x � compressive strength. Find
a 95% confidence interval on each of the following:
(a) Slope (b) Intercept
(c) Mean permeability when x � 2.5
(d) Find a 95% prediction interval on permeability when 

x � 2.5. Explain why this interval is wider than the
interval in part (c).

11-32. Exercise 11-2 presented data on roadway surface
temperature x and pavement deflection y. Find a 99% confi-
dence interval on each of the following:
(a) Slope (b) Intercept
(c) Mean deflection when temperature 
(d) Find a 99% prediction interval on pavement deflection

when the temperature is .

11-33. Exercise 11-4 presented data on the number of
games won by NFL teams in 1976. Find a 95% confidence in-
terval on each of the following:

90�F

x � 85�F

(a) Slope (b) Intercept
(c) Mean number of games won when opponents rushing

yardage is limited to x � 1800
(d) Find a 95% prediction interval on the number of games

won when opponents rushing yards is 1800.

11-34. Refer to the data on y � house selling price and 
x � taxes paid in Exercise 11-5. Find a 95% confidence inter-
val on each of the following:
(a) �1 (b) �0

(c) Mean selling price when the taxes paid are x � 7.50
(d) Compute the 95% prediction interval for selling price

when the taxes paid are x � 7.50.

11-35. Exercise 11-6 presented data on y � steam usage
and x � monthly average temperature.
(a) Find a 99% confidence interval for �1.
(b) Find a 99% confidence interval for �0.
(c) Find a 95% confidence interval on mean steam usage

when the average temperature is .55�F
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11-8 ADEQUACY OF THE REGRESSION MODEL 395

(d) Find a 95% prediction interval on steam usage when tem-
perature is . Explain why this interval is wider than
the interval in part (c).

11-36. Exercise 11-7 presented gasoline mileage perform-
ance for 20 cars, along with information about the engine
displacement. Find a 95% confidence interval on each of the
following:
(a) Slope (b) Intercept
(c) Mean highway gasoline mileage when the engine dis-

placement is x � 150 in3

(d) Construct a 95% prediction interval on highway gasoline
mileage when the engine displacement is x � 150 in3.

11-37. Consider the data in Exercise 11-8 on y � green
liquor Na2S concentration and x � production in a paper mill.
Find a 99% confidence interval on each of the following:
(a) �1 (b) �0

(c) Mean Na2S concentration when production x � 910 
tons �day

(d) Find a 99% prediction interval on Na2S concentration
when x � 910 tons�day.

11-38. Exercise 11-9 presented data on y � blood pressure
rise and x � sound pressure level. Find a 95% confidence
interval on each of the following:
(a) �1 (b) �0

55�F
(c) Mean blood pressure rise when the sound pressure level is

85 decibals
(d) Find a 95% prediction interval on blood pressure rise

when the sound pressure level is 85 decibals.

11-39. Refer to the data in Exercise 11-10 on y � wear
volume of mild steel and x � oil viscosity. Find a 95% confi-
dence interval on each of the following:
(a) Intercept (b) Slope
(c) Mean wear when oil viscosity x � 30

11-40. Exercise 11-11 presented data on chloride concentra-
tion y and roadway area x on watersheds in central Rhode Island.
Find a 99% confidence interval on each of the following:
(a) �1 (b) �0

(c) Mean chloride concentration when roadway area x � 1.0%
(d) Find a 99% prediction interval on chloride concentration

when roadway area x � 1.0%.

11-41. Refer to the data in Exercise 11-12 on rocket motor
shear strength y and propellant age x. Find a 95% confidence
interval on each of the following:
(a) Slope �1 (b) Intercept �0

(c) Mean shear strength when age x � 20 weeks
(d) Find a 95% prediction interval on shear strength when age

x � 20 weeks.

11-8 ADEQUACY OF THE REGRESSION MODEL

Fitting a regression model requires several assumptions. Estimation of the model parameters
requires the assumption that the errors are uncorrelated random variables with mean zero and
constant variance. Tests of hypotheses and interval estimation require that the errors be nor-
mally distributed. In addition, we assume that the order of the model is correct; that is, if we
fit a simple linear regression model, we are assuming that the phenomenon actually behaves in
a linear or first-order manner.

The analyst should always consider the validity of these assumptions to be doubtful and
conduct analyses to examine the adequacy of the model that has been tentatively entertained.
In this section we discuss methods useful in this respect.

11-8.1 Residual Analysis

The residuals from a regression model are , where yi is an actual
observation and is the corresponding fitted value from the regression model. Analysis of the
residuals is frequently helpful in checking the assumption that the errors are approximately
normally distributed with constant variance, and in determining whether additional terms in
the model would be useful.

As an approximate check of normality, the experimenter can construct a frequency his-
togram of the residuals or a normal probability plot of residuals. Many computer programs
will produce a normal probability plot of residuals, and since the sample sizes in regression
are often too small for a histogram to be meaningful, the normal probability plotting method

ŷi

ei � yi 	 ŷi, i � 1, 2, p , n
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396 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

is preferred. It requires judgment to assess the abnormality of such plots. (Refer to the discus-
sion of the “fat pencil” method in Section 6-7).

We may also standardize the residuals by computing , . If
the errors are normally distributed, approximately 95% of the standardized residuals should
fall in the interval (	2, �2). Residuals that are far outside this interval may indicate the
presence of an outlier, that is, an observation that is not typical of the rest of the data. Various
rules have been proposed for discarding outliers. However, outliers sometimes provide im-
portant information about unusual circumstances of interest to experimenters and should not
be automatically discarded. For further discussion of outliers, see Montgomery, Peck and
Vining (2001).

It is frequently helpful to plot the residuals (1) in time sequence (if known), (2), against the
, and (3) against the independent variable x. These graphs will usually look like one of the four

general patterns shown in Fig. 11-9. Pattern (a) in Fig. 11-9 represents the ideal situation, while
patterns (b), (c), and (d ) represent anomalies. If the residuals appear as in (b), the variance of the
observations may be increasing with time or with the magnitude of yi or xi. Data transformation
on the response y is often used to eliminate this problem. Widely used variance-stabilizing trans-
formations include the use of , ln y, or 1�y as the response. See Montgomery, Peck, and
Vining (2001) for more details regarding methods for selecting an appropriate transformation. If
a plot of the residuals against time has the appearance of (b), the variance of the observations is
increasing with time. Plots of residuals against and xi that look like (c) also indicate inequal-
ity of variance. Residual plots that look like (d) indicate model inadequacy; that is, higher order
terms should be added to the model, a transformation on the x-variable or the y-variable (or both)
should be considered, or other regressors should be considered.

EXAMPLE 11-7 The regression model for the oxygen purity data in Example 11-1 is � 74.283 � 14.947x.
Table 11-4 presents the observed and predicted values of y at each value of x from this data set,
along with the corresponding residual. These values were computed using Minitab and show

ŷ

ŷi

1y

ŷi

i � 1,  2 p , ndi � ei
2�̂2

Figure 11-9 Patterns
for residual plots. 
(a) satisfactory, 
(b) funnel, (c) double
bow, (d) nonlinear.
[Adapted from
Montgomery, Peck,
and Vining (2001).]
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11-8 ADEQUACY OF THE REGRESSION MODEL 397

the number of decimal places typical of computer output. A normal probability plot of the
residuals is shown in Fig. 11-10. Since the residuals fall approximately along a straight line in
the figure, we conclude that there is no severe departure from normality. The residuals are also
plotted against the predicted value in Fig. 11-11 and against the hydrocarbon levels xi in 
Fig. 11-12. These plots do not indicate any serious model inadequacies.

11-8.2 Coefficient of Determination(R2)

The quantity

(11-34)

is called the coefficient of determination and is often used to judge the adequacy of a
regression model. Subsequently, we will see that in the case where X and Y are jointly distrib-
uted random variables, R2 is the square of the correlation coefficient between X and Y. From

R2 �
SSR

SST
� 1 	

SSE

SST

ŷi

Figure 11-10 Normal probability plot of residuals,
Example 11-7.

Figure 11-11 Plot of residuals versus predicted oxygen
purity , Example 11-7.ŷ
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Table 11-4 Oxygen Purity Data from Example 11-1, Predicted Values, and Residuals

Hydrocarbon Oxygen Predicted Residual
Level, x Purity, y Value, e � y 	

1 0.99 90.01 89.069009 0.940991
2 1.02 89.05 89.518136 	0.468136
3 1.15 91.43 91.464353 	0.034353
4 1.29 93.74 93.560279 0.179721
5 1.46 96.73 96.105332 0.624668
6 1.36 94.45 94.608242 	0.158242
7 0.87 87.59 87.272501 0.317499
8 1.23 91.77 92.662025 	0.892025
9 1.55 99.42 97.452713 1.967287

10 1.40 93.65 95.207078 	1.557078

ŷŷ
Hydrocarbon Oxygen Predicted Residual

Level, x Purity, y Value, e � y 	

11 1.19 93.54 92.063189 1.476811
12 1.15 92.52 91.614062 0.905938
13 0.98 90.56 88.919300 1.640700
14 1.01 89.54 89.368427 0.171573
15 1.11 89.85 90.865517 	1.015517
16 1.20 90.39 92.212898 	1.822898
17 1.26 93.25 93.111152 0.138848
18 1.32 93.41 94.009406 	0.599406
19 1.43 94.98 95.656205 	0.676205
20 0.95 87.33 88.470173 	1.140173

ŷŷ
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398 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

the analysis of variance identity in Equations 11-24 and 11-25, 0 � R2 � 1. We often refer
loosely to R2 as the amount of variability in the data explained or accounted for by the regres-
sion model. For the oxygen purity regression model, we have R2 � SSR SST � 152.13
173.38 � 0.877; that is, the model accounts for 87.7% of the variability in the data.

The statistic R2 should be used with caution, because it is always possible to make R2

unity by simply adding enough terms to the model. For example, we can obtain a “perfect” fit
to n data points with a polynomial of degree n 	 1. In addition, R2 will always increase if we
add a variable to the model, but this does not necessarily imply that the new model is superior
to the old one. Unless the error sum of squares in the new model is reduced by an amount
equal to the original error mean square, the new model will have a larger error mean square
than the old one, because of the loss of one error degree of freedom. Thus, the new model will
actually be worse than the old one.

There are several misconceptions about R2. In general, R2 does not measure the magni-
tude of the slope of the regression line. A large value of R2 does not imply a steep slope.
Furthermore, R2 does not measure the appropriateness of the model, since it can be artificially
inflated by adding higher order polynomial terms in x to the model. Even if y and x are related
in a nonlinear fashion, R2 will often be large. For example, R2 for the regression equation in
Fig. 11-6(b) will be relatively large, even though the linear approximation is poor. Finally,
even though R2 is large, this does not necessarily imply that the regression model will provide
accurate predictions of future observations.

11-8.3 Lack-of-Fit Test (CD Only)

EXERCISES FOR SECTION 11-8





Figure 11-12 Plot of
residuals versus hydro-
carbon level x,
Example 11-8.
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11-42. Refer to the NFL team performance data in
Exercise 11-4.
(a) Calculate R2 for this model and provide a practical inter-

pretation of this quantity.
(b) Prepare a normal probability plot of the residuals from the

least squares model. Does the normality assumption seem
to be satisfied?

(c) Plot the residuals versus and against x. Interpret these
graphs.

11-43. Refer to the data in Exercise 11-5 on house selling
price y and taxes paid x.

ŷ

(a) Find the residuals for the least squares model.
(b) Prepare a normal probability plot of the residuals and in-

terpret this display.
(c) Plot the residuals versus and versus x. Does the assump-

tion of constant variance seem to be satisfied?
(d) What proportion of total variability is explained by the

regression model?

11-44. Exercise 11-6 presents data on y � steam usage and
x � average monthly temperature.
(a) What proportion of total variability is accounted for by the

simple linear regression model?

ŷ
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11-8 ADEQUACY OF THE REGRESSION MODEL 399

(b) Prepare a normal probability plot of the residuals and
interpret this graph.

(c) Plot residuals versus and x. Do the regression assump-
tions appear to be satisfied?

11-45. Refer to the gasoline mileage data in Exercise 11-7.
(a) What proportion of total variability in highway gaso-

line mileage performance is accounted for by engine
displacement?

(b) Plot the residuals versus and x, and comment on the graphs.
(c) Prepare a normal probability plot of the residuals. Does

the normality assumption appear to be satisfied?

11-46. Consider the data in Exercise 11-8 on y � green
liquor Na2S concentration and x � paper machine production.
Suppose that a 14th sample point is added to the original data,
where y14 � 59 and x14 � 855.
(a) Prepare a scatter diagram of y versus x. Fit the simple lin-

ear regression model to all 14 observations.
(b) Test for significance of regression with � � 0.05.
(c) Estimate �2 for this model.
(d) Compare the estimate of �2 obtained in part (c) above with

the estimate of �2 obtained from the original 13 points.
Which estimate is larger and why?

(e) Compute the residuals for this model. Does the value of
e14 appear unusual?

(f ) Prepare and interpret a normal probability plot of the
residuals.

(g) Plot the residuals versus and versus x. Comment on
these graphs.

11-47. Refer to Exercise 11-9, which presented data on
blood pressure rise y and sound pressure level x.
(a) What proportion of total variability in blood pressure rise

is accounted for by sound pressure level?
(b) Prepare a normal probability plot of the residuals from

this least squares model. Interpret this plot.
(c) Plot residuals versus and versus x. Comment on these plots.

11-48. Exercise 11-10 presents data on wear volume y and
oil viscosity x.
(a) Calculate R2 for this model. Provide an interpretation of

this quantity.
(b) Plot the residuals from this model versus and versus x.

Interpret these plots.
(c) Prepare a normal probability plot of the residuals. Does

the normality assumption appear to be satisfied?

11-49. Refer to Exercise 11-11, which presented data on
chloride concentration y and roadway area x.
(a) What proportion of the total variability in chloride con-

centration is accounted for by the regression model?
(b) Plot the residuals versus and versus x. Interpret these plots.
(c) Prepare a normal probability plot of the residuals. Does

the normality assumption appear to be satisfied?

11-50. Consider the rocket propellant data in Exercise 11-12.
(a) Calculate R2 for this model. Provide an interpretation of

this quantity.

ŷ

ŷ

ŷ

ŷ

ŷ

ŷ

(b) Plot the residuals on a normal probability scale. Do any
points seem unusual on this plot?

(c) Delete the two points identified in part (b) from the
sample and fit the simple linear regression model to the
remaining 18 points. Calculate the value of R2 for the new
model. Is it larger or smaller than the value of R2 com-
puted in part (a)? Why?

(d) Did the value of change dramatically when the two
points identified above were deleted and the model fit to
the remaining points? Why?

11-51. Show that an equivalent way to define the test for
significance of regression in simple linear regression is to base
the test on R2 as follows: to test H0: �1 � 0 versus H1: �1 � 0,
calculate

and to reject H0: �1 � 0 if the computed value f0 
 f�,1,n	2.

11-52. Suppose that a simple linear regression model has
been fit to n � 25 observations and R2 � 0.90.
(a) Test for significance of regression at � � 0.05. Use the

results of Exercise 11-51.
(b) What is the smallest value of R2 that would lead to the

conclusion of a significant regression if � � 0.05?

11-53. Consider the rocket propellant data in Exercise 11-
12. Calculate the standardized residuals for these data. Does
this provide any helpful information about the magnitude of
the residuals?

11-54. Studentized Residuals. Show that the variance
of the ith residual is

Hint:

The ith studentized residual is defined as

(a) Explain why ri has unit standard deviation.
(b) Do the standardized residuals have unit standard deviation?
(c) Discuss the behavior of the studentized residual when the

sample value xi is very close to the middle of the range of x.
(d) Discuss the behavior of the studentized residual when the

sample value xi is very near one end of the range of x.

ri �
eiB�̂2 c1 	 a1

n �
1xi 	 x 22

Sxx
b d

cov1Yi, Ŷi2 � �2 c 1n �
1xi 	 x 22

Sxx
d .

V1ei2 � �2 c1 	 a1
n �

1xi 	 x22
Sxx

b d

F0 �
R21n 	 22

1 	 R2

�̂2
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400 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

11-9 TRANSFORMATIONS TO A STRAIGHT LINE

We occasionally find that the straight-line regression model Y � �0 � �1x � � is inappropri-
ate because the true regression function is nonlinear. Sometimes nonlinearity is visually de-
termined from the scatter diagram, and sometimes, because of prior experience or underlying
theory, we know in advance that the model is nonlinear. Occasionally, a scatter diagram will
exhibit an apparent nonlinear relationship between Y and x. In some of these situations, a non-
linear function can be expressed as a straight line by using a suitable transformation. Such
nonlinear models are called intrinsically linear.

As an example of a nonlinear model that is intrinsically linear, consider the exponential
function

This function is intrinsically linear, since it can be transformed to a straight line by a logarith-
mic transformation

This transformation requires that the transformed error terms ln � are normally and independ-
ently distributed with mean 0 and variance �2.

Another intrinsically linear function is

By using the reciprocal transformation z � 1�x, the model is linearized to

Sometimes several transformations can be employed jointly to linearize a function. For ex-
ample, consider the function

letting , we have the linearized form

For examples of fitting these models, refer to Montgomery, Peck, and Vining (2001) or
Myers (1990).

11-10 MORE ABOUT TRANSFORMATIONS (CD ONLY)

11-11 CORRELATION

Our development of regression analysis has assumed that x is a mathematical variable, meas-
ured with negligible error, and that Y is a random variable. Many applications of regression
analysis involve situations in which both X and Y are random variables. In these situations, it

ln Y* � �0 � �1x � �

Y* � 1
Y

Y �
1

exp 1�0 � �
1
x � �2

Y � �0 � �1z � �

Y � �0 � �1 
a1

xb � �

ln Y � ln �0 � �1 x � ln �

Y � �0e�1x�
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11-11 CORRELATION 401

is usually assumed that the observations (Xi, Yi), i � 1, 2, p , n are jointly distributed random
variables obtained from the distribution f (x, y).

For example, suppose we wish to develop a regression model relating the shear strength
of spot welds to the weld diameter. In this example, weld diameter cannot be controlled. We
would randomly select n spot welds and observe a diameter (Xi) and a shear strength (Yi) for
each. Therefore (Xi, Yi) are jointly distributed random variables.

We assume that the joint distribution of Xi and Yi is the bivariate normal distribution pre-
sented in Chapter 5, and �Y and �2

Y are the mean and variance of Y, �X and are the mean
and variance of X, and � is the correlation coefficient between Y and X. Recall that the corre-
lation coefficient is defined as

(11-35)

where �XY is the covariance between Y and X.
The conditional distribution of Y for a given value of X � x is

(11-36)

where

(11-37)

(11-38)

and the variance of the conditional distribution of Y given X � x is

(11-39)

That is, the conditional distribution of Y given X � x is normal with mean

(11-40)

and variance Thus, the mean of the conditional distribution of Y given X � x is a
simple linear regression model. Furthermore, there is a relationship between the correlation
coefficient � and the slope �1. From Equation 11-38 we see that if � � 0, then �1 � 0, which
implies that there is no regression of Y on X. That is, knowledge of X does not assist us in
predicting Y.

The method of maximum likelihood may be used to estimate the parameters �0 and �1. It
can be shown that the maximum likelihood estimators of those parameters are

(11-41)

and

(11-42)�̂1 �
a

n

i�1
Yi 1Xi 	 X 2

a
n

i�1
1Xi 	 X 22

�
SXY

SX X

�̂0 � Y 	 �̂1X 

�2
Y 0 x 

.

E1Y 0  x2 � �0 � �1x

�2
Y 0  x � �2

Y 11 	 �22

 �1 �
�Y

�X
 �

 �0 � �Y 	 �X�
�Y

�X

fY 0  x 1 y2 �
112��Y 0  x

  exp c	1
2

 ay 	 �0 	 �1x
�Y 0  x b2d

� �
�XY

�X �Y

�2
X
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402 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

We note that the estimators of the intercept and slope in Equations 11-41 and 11-42 are
identical to those given by the method of least squares in the case where X was assumed to be
a mathematical variable. That is, the regression model with Y and X jointly normally distrib-
uted is equivalent to the model with X considered as a mathematical variable. This follows
because the random variables Y given X � x are independently and normally distributed with
mean �0 � �1x and constant variance These results will also hold for any joint distribu-
tion of Y and X such that the conditional distribution of Y given X is normal.

It is possible to draw inferences about the correlation coefficient � in this model. The
estimator of � is the sample correlation coefficient

(11-43)

Note that

(11-44)

so the slope is just the sample correlation coefficient R multiplied by a scale factor that is
the square root of the “spread” of the Y values divided by the “spread” of the X values.Thus,

and R are closely related, although they provide somewhat different information. The
sample correlation coefficient R measures the linear association between Y and X, while 
measures the predicted change in the mean of Y for a unit change in X. In the case of a math-
ematical variable x, R has no meaning because the magnitude of R depends on the choice of
spacing of x. We may also write, from Equation 11-44,

which is just the coefficient of determination. That is, the coefficient of determination R2 is
just the square of the correlation coefficient between Y and X.

It is often useful to test the hypotheses

(11-45)

The appropriate test statistic for these hypotheses is

H1: � � 0

H0: � � 0

R2 � �̂2
1  

SX X

SY Y
�

�̂1SX Y

SST
�

SSR

SST

�̂1

�̂1

�̂1

�̂1 � aSST

SX X
b1� 2

 R

R �
a

n

i�1
Yi 1Xi � X 2

c a
n

i�1
1Xi � X 22 a

n

i�1
1Yi � Y 22 d 1�2 �

SX Y

1SX XSST21�2

�2
Y 0 x 

.

which has the t distribution with n � 2 degrees of freedom if H0: � � 0 is true. Therefore, we
would reject the null hypothesis if �t0� 	 t
�2,n�2. This test is equivalent to the test of the

(11-46)T0 �
R1n � 221 � R2
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11-11 CORRELATION 403

and reject H0: � � �0 if the value of the test statistic in Equation 11-49 is such that �z0� 
 z��2.
It is also possible to construct an approximate 100(1 	 �)% confidence interval for �, using

the transformation in Equation 10-55. The approximate 100(1 	 �)% confidence interval is

hypothesis H0: �1 � 0 given in Section 11-6.1. This equivalence follows directly from
Equation 10-51.

The test procedure for the hypothesis is

(11-47)

where �0 � 0 is somewhat more complicated. For moderately large samples (say, n � 25) the
statistic

(11-48)

is approximately normally distributed with mean and variance

respectively. Therefore, to test the hypothesis H0: � � �0, we may use the test statistic 

�Z � arctanh � �
1
2

 ln 
1 � �

1 	 �
  and  �2

Z �
1

n 	 3

Z � arctanh R �
1
2

  ln  
1 � R

1 	 R

H1: � � �0

H0: � � �0

(11-49)Z0 � 1arctanh R 	 arctanh �02 1n 	 321
2

(11-50)tanh aarctanh r 	
z�
21n 	 3

b � � � tanh aarctanh r �
z�
21n 	 3

b

EXAMPLE 11-8 In Chapter 1 (Section 1-3) an application of regression analysis is described in which an engineer
at a semiconductor assembly plant is investigating the relationship between pull strength of a wire
bond and two factors: wire length and die height. In this example, we will consider only one of
the factors, the wire length. A random sample of 25 units is selected and tested, and the wire bond
pull strength and wire length are observed for each unit. The data are shown in Table 1-2. We as-
sume that pull strength and wire length are jointly normally distributed.

Figure 11-13 shows a scatter diagram of wire bond strength versus wire length. We have
used the Minitab option of displaying box plots of each individual variable on the scatter
diagram. There is evidence of a linear relationship between the two variables.

The Minitab output for fitting a simple linear regression model to the data is shown on the
following page.

where tanh u � (eu 	 e	u )�(eu � e	u ).
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404 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

Now Sxx � 698.56 and Sxy � 2027.7132, and the sample correlation coefficient is

Note that r 2 � (0.9818)2 � 0.9640 (which is reported in the Minitab output), or that approx-
imately 96.40% of the variability in pull strength is explained by the linear relationship to wire
length.

Now suppose that we wish to test the hypothesis

H1: � � 0

H0: � � 0

r �
Sxy

3Sx xSST 41
2 �
2027.7132

3 1698.5602 16105.92 41
2 � 0.9818

Figure 11-13 Scatter plot of wire bond strength versus wire length,
Example 11-8.
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Regression Analysis: Strength versus Length

The regression equation is
Strength � 5.11 � 2.90 Length

Predictor Coef SE Coef T P
Constant 5.115 1.146 4.46 0.000
Length 2.9027 0.1170 24.80 0.000

S � 3.093 R-Sq � 96.4% R-Sq(adj) � 96.2%
PRESS � 272.144 R-Sq(pred) � 95.54%

Analysis of Variance

Source DF SS MS F P
Regression 1 5885.9 5885.9 615.08 0.000
Residual Error 23 220.1 9.6
Total 24 6105.9
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11-11 CORRELATION 405

with � � 0.05. We can compute the t-statistic of Equation 11-46 as

This statistic is also reported in the Minitab output as a test of H0: �1 � 0. Because t0.025,23 �
2.069, we reject H0 and conclude that the correlation coefficient � � 0.

Finally, we may construct an approximate 95% confidence interval on � from Equation
10-57. Since arctanh r � arctanh 0.9818 � 2.3452, Equation 11-50 becomes

which reduces to

EXERCISES FOR SECTION 11–10

0.9585 � � � 0.9921

tanh a2.3452 	
1.96122
b � � � tanh a2.3452 �

1.96122
b

t0 �
r1n 	 221 	 r2

�
0.981812311 	 0.9640

� 24.8

11-55. The final test and exam averages for 20 randomly
selected students taking a course in engineering statistics and a
course in operations research follow. Assume that the final av-
erages are jointly normally distributed.
(a) Find the regression line relating the statistics final average

to the OR final average.
(b) Test for significance of regression using � � 0.05.

Statistics 86 75 69 75 90

OR 80 81 75 81 92

Statistics 94 83 86 71 65

OR 95 80 81 76 72

Statistics 84 71 62 90 83

OR 85 72 65 93 81

Statistics 75 71 76 84 97

OR 70 73 72 80 98

(c) Estimate the correlation coefficient.
(d) Test the hypothesis that � � 0, using � � 0.05.
(e) Test the hypothesis that � � 0.5, using � � 0.05.
(f) Construct a 95% confidence interval for the correlation

coefficient.

11-56. The weight and systolic blood pressure of 26 ran-
domly selected males in the age group 25 to 30 are shown in
the following table. Assume that weight and blood pressure
are jointly normally distributed.
(a) Find a regression line relating systolic blood pressure to

weight.
(b) Test for significance of regression using � � 0.05.

(c) Estimate the correlation coefficient.
(d) Test the hypothesis that � � 0, using � � 0.05.
(e) Test the hypothesis that � � 0.6, using � � 0.05.
(f) Construct a 95% confidence interval for the correlation

coefficient.

11-57. Consider the NFL data introduced in Exercise 11-4.
(a) Estimate the correlation coefficient between the number of

games won and the yards rushing by the opponents.
(b) Test the hypothesis H0: � � 0 versus H1: � � 0 using 

� � 0.05. What is the P-value for this test?
(c) Construct a 95% confidence interval for �.
(d) Test the hypothesis H0: � � 	0.7 versus H1: � � 	0.7

using � � 0.05. Find the P-value for this test.

Systolic
Subject Weight BP

1 165 130

2 167 133

3 180 150

4 155 128

5 212 151

6 175 146

7 190 150

8 210 140

9 200 148

10 149 125

11 158 133

12 169 135

13 170 150

Systolic
Subject Weight BP

14 172 153

15 159 128

16 168 132

17 174 149

18 183 158

19 215 150

20 195 163

21 180 156

22 143 124

23 240 170

24 235 165

25 192 160

26 187 159
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406 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

11-58. Show that the t-statistic in Equation 11-46 for testing
H0: � � 0 is identical to the t-statistic for testing H0: �1 � 0.

11-59. A random sample of 50 observations was made on
the diameter of spot welds and the corresponding weld shear
strength.
(a) Given that r � 0.62, test the hypothesis that � � 0, using

� � 0.01. What is the P-value for this test?
(b) Find a 99% confidence interval for �.
(c) Based on the confidence interval in part (b), can you con-

clude that � � 0.5 at the 0.01 level of significance?

11-60. Suppose that a random sample of 10,000 (X, Y )
pairs yielded a sample correlation coefficient of r � 0.02.
(a) What is the conclusion that you would reach if you tested

H0: � � 0 using � � 0.05? What is the P-value for this test?
(b) Comment on the practical significance versus the statisti-

cal significance of your answer.

11-61. The following data gave X � the water content of
snow on April 1 and Y � the yield from April to July 
(in inches) on the Snake River watershed in Wyoming for
1919 to 1935. (The data were taken from an article in
Research Notes, Vol. 61, 1950, Pacific Northwest Forest
Range Experiment Station, Oregon)

(a) Draw a scatter diagram of these data. Does a straight-line
relationship seem plausible?

(b) Fit a simple linear regression model to these data.
(c) Test for significance of regression using � � 0.05. What

is the P-value for this test?
(d) Find a 95% confidence interval estimate on the slope.
(e) Test the hypothesis H0: �0 � 0 versus H1: �0 � 0 using 

� � 0.05. What conclusions can you draw?

11-65. The strength of paper used in the manufacture of
cardboard boxes ( y) is related to the percentage of hardwood
concentration in the original pulp (x). Under controlled condi-
tions, a pilot plant manufactures 16 samples, each from a dif-
ferent batch of pulp, and measures the tensile strength. The
data are shown in the table that follows:

(a) Fit a simple linear regression model to the data.
(b) Test for significance of regression using � � 0.05.
(c) Construct a 90% confidence interval on the slope �1.
(d) Construct a 90% confidence interval on the intercept �0.
(e) Construct a 95% confidence interval on the mean strength

at x � 2.5.
(f) Analyze the residuals and comment on model adequacy.

(c) Test the hypothesis H0: � � 0.8 versus H1: � � 0.8, using
� � 0.05. Find the P-value for this test.

Supplemental Exercises

11-63. Show that, for the simple linear regression model,
the following statements are true:

(a) (b)

(c)

11-64. An article in the IEEE Transactions on
Instrumentation and Measurement (“Direct, Fast, and
Accurate Measurement of VT and K of MOS Transistor Using
VT-Sift Circuit,” Vol. 40, 1991, pp. 951–955) described the
use of a simple linear regression model to express drain cur-
rent y (in milliamperes) as a function of ground-to-source
voltage x (in volts). The data are as follows:

1
n  a

n

i�1
 ŷi � y

a
n

i�1
1 yi 	 ŷi2 xi � 0a

n

i�1
1 yi 	 ŷi2 � 0

y x y x

0.734 1.1 1.50 1.6

0.886 1.2 1.66 1.7

1.04 1.3 1.81 1.8

1.19 1.4 1.97 1.9

1.35 1.5 2.12 2.0

(a) Estimate the correlation between Y and X.
(b) Test the hypothesis that � � 0, using � � 0.05.
(c) Fit a simple linear regression model and test for signifi-

cance of regression using � � 0.05. What conclusions
can you draw? How is the test for significance of regres-
sion related to the test on � in part (b)?

(d) Test the hypothesis H0: �0 � 0 versus H1: �0 � 0 and
draw conclusions. Use � � 0.05.

(e) Analyze the residuals and comment on model adequacy.

11-62. A random sample of n � 25 observations was made
on the time to failure of an electronic component and the tem-
perature in the application environment in which the compo-
nent was used.
(a) Given that r � 0.83, test the hypothesis that � � 0, using

� � 0.05. What is the P-value for this test?
(b) Find a 95% confidence interval on �.

x y x y

23.1 10.5 37.9 22.8

32.8 16.7 30.5 14.1

31.8 18.2 25.1 12.9

32.0 17.0 12.4 8.8

30.4 16.3 35.1 17.4

24.0 10.5 31.5 14.9

39.5 23.1 21.1 10.5

24.2 12.4 27.6 16.1

52.5 24.9
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11-11 CORRELATION 407

11-66. The vapor pressure of water at various temperatures
follows:

11-68. Consider the following data. Suppose that the rela-
tionship between Y and x is hypothesized to be Y � (�0 �
�1x � �)	1. Fit an appropriate model to the data. Does the as-
sumed model form seem reasonable?

Observation Vapor pressure
Number, i Temperature (K) (mm Hg)

1 273 4.6
2 283 9.2
3 293 17.5
4 303 31.8
5 313 55.3
6 323 92.5
7 333 149.4
8 343 233.7
9 353 355.1

10 363 525.8
11 373 760.0

(a) Draw a scatter diagram of these data. What type of rela-
tionship seems appropriate in relating y to x?

(b) Fit a simple linear regression model to these data.
(c) Test for significance of regression using � � 0.05. What

conclusions can you draw?
(d) Plot the residuals from the simple linear regression model

versus . What do you conclude about model adequacy?

(e) The Clausis-Clapeyron equation states that ln
where is the vapor pressure of water. Repeat parts 
(a)–(d ). using an appropriate transformation.

11-67. An electric utility is interested in developing a model
relating peak hour demand ( y in kilowatts) to total monthly en-
ergy usage during the month (x, in kilowatt hours). Data for 50
residential customers are shown in the following table.
(a) Draw a scatter diagram of y versus x.
(b) Fit the simple linear regression model.
(c) Test for significance of regression using � � 0.05.
(d) Plot the residuals versus and comment on the underly-

ing regression assumptions. Specifically, does it seem that
the equality of variance assumption is satisfied?

(e) Find a simple linear regression model using as the
response. Does this transformation on y stabilize the in-
equality of variance problem noted in part (d) above?

1y

ŷi

Pv

1Pv2�	   
1
T ,

ŷi

Customer x y Customer x y

1 679 0.79 26 1434 0.31
2 292 0.44 27 837 4.20
3 1012 0.56 28 1748 4.88
4 493 0.79 29 1381 3.48
5 582 2.70 30 1428 7.58
6 1156 3.64 31 1255 2.63
7 997 4.73 32 1777 4.99
8 2189 9.50 33 370 0.59
9 1097 5.34 34 2316 8.19

10 2078 6.85 35 1130 4.79
11 1818 5.84 36 463 0.51
12 1700 5.21 37 770 1.74
13 747 3.25 38 724 4.10
14 2030 4.43 39 808 3.94
15 1643 3.16 40 790 0.96
16 414 0.50 41 783 3.29
17 354 0.17 42 406 0.44
18 1276 1.88 43 1242 3.24
19 745 0.77 44 658 2.14
20 795 3.70 45 1746 5.71
21 540 0.56 46 895 4.12
22 874 1.56 47 1114 1.90
23 1543 5.28 48 413 0.51
24 1029 0.64 49 1787 8.33
25 710 4.00 50 3560 14.94

x 10 15 18 12

y 0.1 0.13 0.09 0.15

x 9 8 11 6

y 0.20 0.21 0.18 0.24

11-69. Consider the weight and blood pressure data in
Exercise 11-56. Fit a no-intercept model to the data, and com-
pare it to the model obtained in Exercise 11-56. Which model
is superior?

11-70. The following data, adapted from Montgomery,
Peck, and Vining (2001), present the number of certified men-
tal defectives per 10,000 of estimated population in the United
Kingdom ( y) and the number of radio receiver licenses issued
(x) by the BBC (in millions) for the years 1924 through 1937.
Fit a regression model relating y and x. Comment on the
model. Specifically, does the existence of a strong correlation
imply a cause-and-effect relationship?

y 101.4 117.4 117.1 106.2

x 1.0 1.5 1.5 1.5

y 131.9 146.9 146.8 133.9

x 2.0 2.0 2.2 2.4

y 111.0 123.0 125.1 145.2

x 2.5 2.5 2.8 2.8

y 134.3 144.5 143.7 146.9

x 3.0 3.0 3.2 3.3
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408 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

(a) Construct a scatter diagram of the data.
(b) Fit a simple linear regression model to the data. Test for

significance of regression.
(c) Find a 95% CI on the slope 
(d) Analyze the residuals and comment on model adequacy.

11-72. An article in the Journal of Applied Polymer Science
(Vol. 56, pp. 471–476, 1995) studied the effect of the mole
ratio of sebacic acid on the intrinsic viscosity of copolyesters.
The data follow:

�1.

11-73. Suppose that we have n pairs of observations (xi, yi)
such that the sample correlation coefficient r is unity (approx-
imately). Now let zi � y2

i and consider the sample correlation
coefficient for the n-pairs of data (xi, zi). Will this sample cor-
relation coefficient be approximately unity? Explain why or
why not.

11-74. The grams of solids removed from a material ( y) is
thought to be related to the drying time. Ten observations
obtained from an experimental study follow:

(a) Construct a scatter diagram for these data.
(b) Fit a simple linear regression model.
(c) Test for significance of regression.
(d) Based on these data, what is your estimate of the mean

grams of solids removed at 4.25 hours? Find a 95% confi-
dence interval on the mean.

(e) Analyze the residuals and comment on model adequacy.

11-75. Two different methods can be used for measuring
the temperature of the solution in a Hall cell used in aluminum
smelting, a thermocouples implanted in the cell and an indi-
rect measurement produced from an IR device. The indirect
method is preferable became the thermocouples are eventually
destroyed by the solution. Consider the following 10 measure-
ments:

Year Days Index Year Days Index

1976 91 16.7 1984 81 18.0

1977 105 17.1 1985 65 17.2

1978 106 18.2 1986 61 16.9

1979 108 18.1 1987 48 17.1

1980 88 17.2 1988 61 18.2

1981 91 18.2 1989 43 17.3

1982 58 16.0 1990 33 17.5

1983 82 17.2 1991 36 16.6

Year y x Year y x

1924 8 1.350 1931 16 4.620

1925 8 1.960 1932 18 5.497

1926 9 2.270 1933 19 6.260

1927 10 2.483 1934 20 7.012

1928 11 2.730 1935 21 7.618

1929 11 3.091 1936 22 8.131

1930 12 3.674 1937 23 8.593

11-71. An article in Air and Waste (“Update on Ozone
Trends in California’s South Coast Air Basin,” Vol. 43, 1993)
studied the ozone levels on the South Coast air basin of
California for the years 1976–1991. The author believes that the
number of days that the ozone level exceeds 0.20 parts per mil-
lion depends on the seasonal meteorological index (the seasonal
average 850 millibar temperature). The data follow:

Mole ratio
x 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

Viscosity
y 0.45 0.20 0.34 0.58 0.70 0.57 0.55 0.44

(a) Construct a scatter diagram of the data.
(b) Fit a simple linear repression module.
(c) Test for significance of regression. Calculate R2 for the

model.
(d) Analyze the residuals and comment on model adequacy.

y 4.3 1.5 1.8 4.9 4.2 4.8 5.8 6.2 7.0 7.9

x 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Thermocouple 921 935 916 920 940

IR 918 934 924 921 945

Thermocouple 936 925 940 933 927

IR 930 919 943 932 935

(a) Construct a scatter diagram for these data, letting x �
thermocouple measurement and y � IR measurement.

(b) Fit a simple linear regression model.
(c) Test for significance a regression and calculate R2. What

conclusions can you draw?
(d) Is there evidence to support a claim that both

devices produce equivalent temperature measurements?
Formulate and test an appropriate hypothesis to support
this claim.

(e) Analyze the residuals and comment on model adequacy.
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11-11 CORRELATION 409

IMPORTANT TERMS AND CONCEPTS

In the E-book, click on any
term or concept below to
go to that subject.

Analysis of variance
test in regression

Confidence interval on
mean response

Correlation coefficient
Empirical models

Confidence intervals on
model parameters

Least squares estimation
of regression model 
parameters

Model adequacy 
checking

Prediction interval on a
future observation

Residual plots
Residuals
Scatter diagram
Significance of 

regression
Statistical tests on

model parameters
Transformations

CD MATERIAL
Lack of fit test
Logistic regression

MIND-EXPANDING EXERCISES

11-76. Consider the simple linear regression model 
Y � �0 � �1x � �, with E(�) � 0, V(�) � �2, and the
errors � uncorrelated.
(a) Show that cov
(b) Show that cov .

11-77. Consider the simple linear regression model 
Y � �0 � �1x � �, with E(�) � 0, V(�) � �2, and the
errors � uncorrelated.
(a) Show that E( ) � E(MSE) � �2.
(b) Show that E(MSR) � �2 � �1

2Sx x.

11-78. Suppose that we have assumed the straight-line
regression model

but the response is affected by a second variable x2 such
that the true regression function is

Is the estimator of the slope in the simple linear regres-
sion model unbiased?

11-79. Suppose that we are fitting a line and we wish
to make the variance of the regression coefficient as
small as possible. Where should the observations xi, 
i � 1, 2, p , n, be taken so as to minimize V( )? Discuss
the practical implications of this allocation of the xi.

11-80. Weighted Least Squares. Suppose that we
are fitting the line Y � �0 � �1x � �, but the variance
of Y depends on the level of x; that is,

where the wi are constants, often called weights. Show
that for an objective function in whole each squared
residual is multiplied by the reciprocal of the variance of
the corresponding observation, the resulting weighted
least squares normal equations are

Find the solution to these normal equations. The solutions
are weighted least squares estimators of �0 and �1.

11-81. Consider a situation where both Y and X are
random variables. Let sx and sy be the sample standard
deviations of the observed x’s and y’s, respectively.
Show that an alternative expression for the fitted simple
linear regression model is

11-82. Suppose that we are interested in fitting a
simple linear regression model Y � �0 � �1x � �,
where the intercept, �0, is known.

(a) Find the least squares estimator of �1.
(b) What is the variance of the estimator of the slope in

part (a)?
(c) Find an expression for a 100(1 	 �)% confidence

interval for the slope �1. Is this interval longer than
the corresponding interval for the case where both
the intercept and slope are unknown? Justify your
answer.

ŷ � y � r 
sy

sx
 1x 	 x 2

ŷ � �̂0 � �̂1x

�̂0a
n

i�1
wixi � �̂1a

n

i�1
wixi

2 � a
n

i�1
wixi 

yi

 �̂0a
n

i�1
wi � �̂1a

n

i�1
wixi � a

n

i�1
wi 

yi

V1Yi 0  xi2 � �2
i �

�2

wi
  i � 1, 2, p , n

�̂1

�̂1

E1Y 2 � �0 � �1x1 � �2x2

Y � �0 � �1x1 � �

�̂2

1Y, �̂12 � 0
1�̂0, �̂12 � 	x�2
Sx x.
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11-4 SOME COMMENTS ON USES OF REGRESSION (CD ONLY)

Historical Note
Sir Francis Galton first used the term regression analysis in a study of the heights of fathers (x)
and sons ( y). Galton fit a least squares line and used it to predict the son’s height from the
fathers height. He found that if a father’s height was above average, the son’s height would also
be above average, but not by as much as the father’s height was. A similar effect was observed
for short heights. That is, the son’s height “regressed” toward the average. Consequently,
Galton referred to the least squares line as a regression line.

Abuses of Regression.
Regression is widely used and frequently misused; several common abuses of regression are
briefly mentioned here. Care should be taken in selecting variables with which to construct re-
gression equations and in determining the form of the model. It is possible to develop statisti-
cally significant relationships among variables that are completely unrelated in a causal sense.
For example, we might attempt to relate the shear strength of spot welds with the number of
empty parking spaces in the visitor parking lot. A straight line may even appear to provide a
good fit to the data, but the relationship is an unreasonable one on which to rely. You can’t
increase the weld strength by blocking off parking spaces. A strong observed association be-
tween variables does not necessarily imply that a causal relationship exists between those
variables. This type of effect is encountered fairly often in retrospective data analysis, and
even in observational studies. Designed experiments are the only way to determine cause-
and-effect relationships.

Regression relationships are valid only for values of the regressor variable within the
range of the original data. The linear relationship that we have tentatively assumed may be
valid over the original range of x, but it may be unlikely to remain so as we extrapolate—that
is, if we use values of x beyond that range. In other words, as we move beyond the range of
values of x for which data were collected, we become less certain about the validity of the
assumed model. Regression models are not necessarily valid for extrapolation purposes.

Now this does not mean don’t ever extrapolate. There are many problem situations in
science and engineering where extrapolation of a regression model is the only way to even
approach the problem. However, there is a strong warning to be careful. A modest extrapola-
tion may be perfectly all right in many cases, but a large extrapolation will almost never
produce acceptable results.

11-8.3 Lack-of-Fit Test (CD Only)

Regression models are often fit to data to provide an empirical model when the true relation-
ship between the variables Y and x is unknown. Naturally, we would like to know whether the
order of the model tentatively assumed is correct. This section describes a test for the validity
of this assumption.

The danger of using a regression model that is a poor approximation of the true functional
relationship is illustrated in Fig. S11-1. Obviously, a polynomial of degree two or greater in x
should have been used in this situation.

We present a test for the “goodness of fit” of the regression model. Specifically, the hy-
potheses we wish to test are

H0: The simple linear regression model is correct.

H1: The simple linear regression model is not correct.

11-1
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The test involves partitioning the error or residual sum of squares into the following
components:

(S11-1)

where SSPE is the sum of squares attributable to pure error, and SSLOF is the sum of squares at-
tributable to the lack of fit of the model. To compute SSPE, we must have repeated observations
on the response Y for at least one level of x. Suppose we have n total observations such that

Note that there are m distinct levels of x. The contribution to the pure-error sum of squares at
x1 (say) would be

(S11-2)

where represents the average of all n1 repeat observations on the response y at x1. The total sum
of squares for pure error would be obtained by summing Equation S11-2 over all levels of x as

(S11-3)

There are degrees of freedom associated with the pure-error
sum of squares. The sum of squares for lack of fit is simply

(S11-4)

with n � 2 � npe � m � 2 degrees of freedom. The test statistic for lack of fit would then be

(S11-5)

and we would reject the hypothesis that the model adequately fits the data if f0 � f�,m�2,n�m.

F0 �
SSLOF� 1m � 22
SSPE� 1n � m2 �

MSLOF

MSPE

SSLOF � SSE � SSPE

npe � gm
i�1 1ni � 12 � n � m

SSPE � a
m

i�1
a
ni

u�1
1 yiu � yi22

y1

a
n1

u�1
 1 y1u � y122

y11, y12, p , y1n1
repeated observations at x1

y21, y22, p , y2n2
repeated observations at x2

#
#
#

ym1, ym2, p , ymnm
repeated observations at xm

SSE � SSPE � SSLOF

11-2

Figure S11-1 A 
regression model 
displaying lack of fit. x

y

y =   0 +   1x^^ ��̂
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This test procedure may be easily introduced into the analysis of variance conducted for
the significance of regression. If the null hypothesis of model adequacy is rejected, the model
must be abandoned and attempts must be made to find a more appropriate model. If H0 is not
rejected, there is no apparent reason to doubt the adequacy of the model, and MSPE and MSLOF

are often combined to estimate �2.

EXAMPLE S11-1 Consider the data on two variables y and x shown below. Fit a simple linear regression model
and test for lack of fit, using � � 0.05.

x y x y

1.0 2.3, 1.8 5.6 3.5, 2.8, 2.1
2.0 2.8 6.0 3.4, 3.2
3.3 1.8, 3.7 6.5 3.4
4.0 2.6, 2.6, 2.2 6.9 5.0
5.0 2.0

The regression model is � 1.697 � 0.259x, and the regression sum of squares is SSR � 3.4930.
The pure-error sum of squares is computed as follows:

ŷ

11-3

Level of x Degrees of Freedom

1.0 0.1250 1
3.3 1.8050 1
4.0 0.0166 2
5.6 0.9800 2
6.0 0.0200 1

Total 3.0366 7

a
ni

u�1
1 yiu � yi22

The analysis of variance is summarized in Table S11-1. Since the lack-of-fit F-statistic is
f0 � 1.42, which has a P-value of P � 0.3276, we cannot reject the hypothesis that the tentative
model adequately describes the data. We will pool lack-of-fit and pure-error mean squares to form
the residual mean square that is the denominator mean square in the test for significance of
regression. In addition, since the P-value for the statistic f0 � 6.66 with 1 and 14 degrees of free-
dom associated with significance of regression is P � 0.0216, we conclude that 	1 
 0.

In fitting a regression model to experimental data, a good practice is to use the lowest
degree model that adequately describes the data. The lack-of-fit test may be useful in this

Table S11-1 Analysis of Variance for Example S11-1

Source of Sum of Degrees of Mean
Variation Squares Freedom Square f0 P-value

Regression 3.4930 1 3.4930 6.66 0.0218
Residual 7.3372 14 0.5241

(Lack of fit) 4.3005 7 0.6144 1.42 0.3276
(Pure error) 3.0366 7 0.4338

Total 10.8300 15
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respect. However, it is always possible to fit a polynomial of degree n � 1 to n data points,
and the experimenter should not consider using a model that is “saturated”—that is, that has
very nearly as many independent variables as observations on y.

11-10 MORE ABOUT TRANSFORMATIONS (CD ONLY)

An Example
As noted earlier in Section 11-9, transformations can be very useful in many situations where
the true relationship between the response Y and the regressor x is not well approximated by a
straight line. The utility of a transformation is illustrated in the following example.

EXAMPLE S11-2 A research engineer is investigating the use of a windmill to generate electricity and has col-
lected data on the DC output from this windmill and the corresponding wind velocity. The
data are plotted in Figure S11-2 and listed in Table S11-2.

Inspection of the scatter diagram indicates that the relationship between DC output Y and
wind velocity (x) may be nonlinear. However, we initially fit a straight-line model to the data.
The regression model is

ŷ � 0.1309 � 0.2411 x

11-4
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Figure S11-2 Plot of
DC output y versus
wind velocity x for the
windmill data.
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Figure S11-3 Plot of
residuals ei versus fit-
ted values for the
windmill data.

ŷi
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11-5

Table S11-2 Observed Values yi and Regressor Variable xi for
Example S11-2

Observation Wind Velocity DC Output,
Number, i (mph), xi yi

1 5.00 1.582
2 6.00 1.822
3 3.40 1.057
4 2.70 0.500
5 10.00 2.236
6 9.70 2.386
7 9.55 2.294
8 3.05 0.558
9 8.15 2.166

10 6.20 1.866
11 2.90 0.653
12 6.35 1.930
13 4.60 1.562
14 5.80 1.737
15 7.40 2.088
16 3.60 1.137
17 7.85 2.179
18 8.80 2.112
19 7.00 1.800
20 5.45 1.501
21 9.10 2.303
22 10.20 2.310
23 4.10 1.194
24 3.95 1.144
25 2.45 0.123

The summary statistics for this model are R2 � 0.8745, and F0 �
160.26 (the P value is �0.0001).

A plot of the residuals versus is shown in Figure S11-3. This residual plot indicates
model inadequacy and implies that the linear relationship has not captured all of the infor-
mation in the wind speed variable. Note that the curvature that was apparent in the scatter
diagram of Figure S11-2 is greatly amplified in the residual plots. Clearly some other model
form must be considered.

We might initially consider using a quadratic model such as

to account for the apparent curvature. However, the scatter diagram Figure S11-2 suggests that
as wind speed increases, DC output approaches an upper limit of approximately 2.5. This is
also consistent with the theory of windmill operation. Since the quadratic model will eventu-
ally bend downward as wind speed increases, it would not be appropriate for these data. A more
reasonable model for the windmill data that incorporates an upper asymptote would be

y � 	0 � 	1 
 
a1

xb � �

y � 	0 � 	1 x � 	2 
 
x2 � �

ŷi

MSE � �̂2 � 0.0557
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Figure S11-4 is a scatter diagram with the transformed variable . This plot appears lin-
ear, indicating that the reciprocal transformation is appropriate. The fitted regression model is

The summary statistics for this model are R2 � 0.9800, , and F0 � 1128.43
(the P value is �0.0001).

A plot of the residuals from the transformed model versus is shown in Figure S11-5.
This plot does not reveal any serious problem with inequality of variance. The normal proba-
bility plot, shown in Figure S11-6, gives a mild indication that the errors come from a distri-
bution with heavier tails than the normal (notice the slight upward and downward curve at the
extremes). This normal probability plot has the z-score value plotted on the horizontal axis.
Since there is no strong signal of model inadequacy, we conclude that the transformed model
is satisfactory.

Logistic Regression
Linear regression often works very well when the response variable is quantitative. We now
consider the situation where the response variable takes on only two possible values, 0 and 1.
These could be arbitrary assignments resulting from observing a qualitative response. For

ŷ

MSE � �̂2 � 0.0089

ŷ � 2.9789 � 6.9345 x¿

x¿ � 1�x

11-6
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example, the response could be the outcome of a functional electrical test on a semiconductor
device for which the results are either a “success,” which means the device works properly, or
a “failure,” which could be due to a short, an open, or some other functional problem.

Suppose that the model has the form

(S11-6)

and the response variable Yi takes on the values either 0 or 1. We will assume that the response
variable Yi is a Bernoulli random variable with probability distribution as follows:

Yi � 	0 � 	1xi � �i

Now since the expected value of the response variable is

This implies that

This means that the expected response given by the response function E(Yi) � 	0 � 	1xi is
just the probability that the response variable takes on the value 1.

There are some substantive problems with the regression model in Equation S11-6. First,
note that if the response is binary, the error terms �i can only take on two values, namely,

Consequently, the errors in this model cannot possibly be normal. Second, the error variance
is not constant, since

Notice that this last expression is just

since . This indicates that the variance of the observations (which is
the same as the variance of the errors because � Yi � 
i, and 
i is a constant) is a function
of the mean. Finally, there is a constraint on the response function, because

0 � E 1Yi2 � 
i � 1

�i

E1Yi2 � 	0 � 	1xi � 
i

�2
yi

� E1Yi2 31 � E1Yi2 4

 � 
i11 � 
i2
 � 11 � 
i22
i � 10 � 
i2211 � 
i2

 �2
yi

� E5Yi � E1Yi2 62

 �i � �1	0 � 	1 xi2    when Yi � 0

 �i � 1 � 1	0 � 	1 xi2   when Yi � 1

E 1Yi2 � 	0 � 	1xi � 
i

 � 
i

E 1Yi2 � 1 1
i2 � 0 11 � 
i2
E 1�i2 � 0,

11-7

Yi Probability

1
0 P1 yi � 02 � 1 � 
i

P1 yi � 12 � 
i

PQ220 6234F.CD(11)  5/17/02  3:49 PM  Page 7 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark F



This restriction can cause serious problems with the choice of a linear response function, as
we have initially assumed in Equation S11-6. It would be possible to fit a model to the data for
which the predicted values of the response lie outside the 0, 1 interval.

Generally, when the response variable is binary, there is considerable empirical evidence
indicating that the shape of the response function should be nonlinear. A monotonically
increasing (or decreasing) S-shaped (or reverse S-shaped) function, such as shown in
Figure S11-7, is usually employed. This function is called the logit response function, and has
the form

(S11-7)

or equivalently,

(S11-8)

In logistic regression we assume that E(Y) is related to x by the logit function. It is easy to
show that

(S11-9)

The quantity exp( ) on the right-hand side of Equation S11-9 is called the odds ra-
tio. It has a straightforward interpretation: If the odds ratio is 2 for a particular value of x, it
means that a success is twice as likely as a failure at that value of the regressor x. Notice that
the natural logarithm of the odds ratio is a linear function of the regressor variable. Therefore
the slope is the change in the log odds that results from a one-unit increase in x. This means
that the odds ratio changes by when x increases by one unit.

The parameters in this logistic regression model are usually estimated by the method of
maximum likelihood. For details of the procedure, see Montgomery, Peck, and Vining
(2001). Minitab will fit logistic regression models and provide useful information on the
quality of the fit.

e�1

�1

 �0 � �1x

E1Y 2

1 � E1Y 2
� exp�0��1x

E1Y 2 �
1

1 � exp 3�1�0 � �1x2 4

E1Y 2 �
exp 1�0 � �1x2

1 � exp 1�0 � �1x2
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Figure S11-7 Examples of the logistic response function. (a) (b) ,E1Y 2 � 1� 11 � e�6.0�1.0x2E1Y 2 � 1� 11 � e�6.0�1.0x2,
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11-9

O-Ring O-Ring O-Ring 
Temperature Failure Temperature Failure Temperature Failure

53 1 68 0 75 0
56 1 69 0 75 1
57 1 70 0 76 0
63 0 70 1 76 0
66 0 70 1 78 0
67 0 70 1 79 0
67 0 72 0 80 0
67 0 73 0 81 0

Binary Logistic Regression: O-Ring Failure versus Temperature

Link Function: Logit
Response Information

Variable Value Count
O-Ring F 1 7 (Event)

0 17
Total 24

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 10.875 5.703 1.91 0.057
Temperat �0.17132 0.08344 �2.05 0.040 0.84 0.72 0.99

Log-Likelihood � �11.515
Test that all slopes are zero: G � 5.944, DF � 1, P-Value � 0.015

We will illustrate logistic regression using the data on launch temperature and O-ring fail-
ure for the 24 space shuttle launches prior to the Challenger disaster of January 1986. There
are six O-rings used on the rocket motor assembly to seal field joints. The table below presents
the launch temperatures. A 1 in the “O-Ring Failure” column indicates that at least one O-ring
failure had occurred on that launch.

The fitted logistic regression model is

The standard error of the slope 	̂1 is se(	̂1) � 0.08344. For large samples, 	̂1 has an  approximate
normal distribution, and so 	̂1�se(	̂1) can be compared to the standard normal distribution to 

ŷ �
1

1 � exp 3�110.875 � 0.17132x2 4

Figure S11-8 is a scatter plot of the data. Note that failures tend to occur at lower temperatures.
The logistic regression model fit to this data from Minitab is shown in the following boxed
display.
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test H0: 	1 � 0. Minitab performs this test. The P-value is 0.04, indicating that temperature
has a significant effect on the probability of O-ring failure. The odds ratio is 0.84, so every one
degree increase in temperature reduces the odds of failure by 0.84. Figure S11-9 shows the
fitted logistic regression model. The sharp increase in the probability of O-ring failure is very
evident in this graph. The actual temperature at the Challenger launch was . This is well
outside the range of other launch temperatures, so our logistic regression model is not likely
to provide highly accurate predictions at that temperature, but it is clear that a launch at 
is almost certainly going to result in O-ring failure.

It is interesting to note that all of these data were available prior to launch. However, en-
gineers were unable to effectively analyze the data and use them to provide a convincing ar-
gument against launching Challenger to NASA managers. Yet a simple regression analysis of
the data would have provided a strong quantitative basis for this argument. This is one of the
more dramatic instances that points out why engineers and scientists need a strong back-
ground in basic statistical techniques.

31�F

31�F
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Figure S11-8 Scatter plot of O-ring failures 
versus launch temperature for 24 space shuttle
flights.

Figure S11-9 Probability of O-ring failure
versus launch temperature (based on a 
logistic regression model).
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12Multiple Linear 
Regression

CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
1. Use multiple regression techniques to build empirical models to engineering and scientific data
2. Understand how the method of least squares extends to fitting multiple regression models

12-1 MULTIPLE LINEAR REGRESSION
MODEL

12-1.1 Introduction

12-1.2 Least Squares Estimation of 
the Parameters

12-1.3 Matrix Approach to Multiple
Linear Regression

12-1.4 Properties of the Least Squares
Estimators

12-2 HYPOTHESIS TESTS IN MULTIPLE
LINEAR REGRESSION

12-2.1 Test for Significance of
Regression

12-2.2 Tests on Individual Regression
Coefficients and Subsets of
Coefficients

12-2.3 More About the Extra Sum of
Squares Method (CD Only)

12-3 CONFIDENCE INTERVALS IN
MULTIPLE LINEAR REGRESSION

12-3.1 Confidence Intervals on
Individual Regression
Coefficients

12-3.2 Confidence Interval on 
the Mean Response

12-4 PREDICTION OF NEW
OBSERVATIONS

12-5 MODEL ADEQUACY CHECKING

12-5.1 Residual Analysis

12-5.2 Influential Observations

12-6 ASPECTS OF MULTIPLE
REGRESSION MODELING

12-6.1 Polynomial Regression Models

12-6.2 Categorical Regressors and
Indicator Variables

12-6.3 Selection of Variables and
Model Building

12-6.4 Multicollinearity

12-6.5 Ridge Regression (CD Only)

12-6.6 Nonlinear Regression Models
(CD Only)
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12-1 MULTIPLE LINEAR REGRESSION MODEL 411

3. Assess regression model adequacy
4. Test hypotheses and construct confidence intervals on the regression coefficients
5. Use the regression model to estimate the mean response and to make predictions and to construct

confidence intervals and prediction intervals
6. Build regression models with polynomial terms
7. Use indicator variables to model categorical regressors
8. Use stepwise regression and other model building techniques to select the appropriate set of vari-

ables for a regression model

CD MATERIAL
9. Understand how ridge regression provides an effective way to estimate model parameters where

there is multicollinearity.
10. Understand the basic concepts of fitting a nonlinear regression model.

Answers for many odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

12-1 MULTIPLE LINEAR REGRESSION MODEL

12-1.1 Introduction

Many applications of regression analysis involve situations in which there are more than one
regressor variable. A regression model that contains more than one regressor variable is called
a multiple regression model.

As an example, suppose that the effective life of a cutting tool depends on the cutting speed
and the tool angle. A multiple regression model that might describe this relationship is

(12-1)

where Y represents the tool life, x1 represents the cutting speed, x2 represents the tool angle,
and � is a random error term. This is a multiple linear regression model with two regressors.
The term linear is used because Equation 12-1 is a linear function of the unknown parameters
�0, �1, and �2.

The regression model in Equation 12-1 describes a plane in the three-dimensional space
of Y, x1, and x2. Figure 12-1(a) shows this plane for the regression model

where we have assumed that the expected value of the error term is zero; that is E(�) � 0.
The parameter �0 is the intercept of the plane. We sometimes call �1 and �2 partial regres-
sion coefficients, because �1 measures the expected change in Y per unit change in x1 when
x2 is held constant, and �2 measures the expected change in Y per unit change in x2 when x1

is held constant. Figure 12-1(b) shows a contour plot of the regression model—that is, lines
of constant E(Y ) as a function of x1 and x2. Notice that the contour lines in this plot are
straight lines.

E1Y 2 � 50 � 10x1 � 7x2

Y � �0 � �1x1 � �2x2 � �
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412 CHAPTER 12 MULTIPLE LINEAR REGRESSION

In general, the dependent variable or response Y may be related to k independent or
regressor variables. The model

(12-2)

is called a multiple linear regression model with k regressor variables. The parameters �j, j � 0,
1, p , k, are called the regression coefficients. This model describes a hyperplane in the k-
dimensional space of the regressor variables {xj}. The parameter�j represents the expected change
in response Y per unit change in xj when all the remaining regressors xi (i � j) are held constant.

Multiple linear regression models are often used as approximating functions. That is, the
true functional relationship between Y and x1, x2, p , xk is unknown, but over certain ranges of
the independent variables the linear regression model is an adequate approximation.

Models that are more complex in structure than Equation 12-2 may often still be analyzed
by multiple linear regression techniques. For example, consider the cubic polynomial model
in one regressor variable.

(12-3)

If we let x1 � x, x2 � x2, x3 � x3, Equation 12-3 can be written as

(12-4)

which is a multiple linear regression model with three regressor variables.
Models that include interaction effects may also be analyzed by multiple linear regres-

sion methods. An interaction between two variables can be represented by a cross-product
term in the model, such as

(12-5)

If we let x3 � x1x2 and �3 � �12, Equation 12-5 can be written as

which is a linear regression model.
Figure 12-2(a) and (b) shows the three-dimensional plot of the regression model 

Y � 50 � 10x1 � 7x2 � 5x1x2

Y � �0 � �1x1 � �2x2 � �3x3 � �

Y � �0 � �1x1 � �2x2 � �12x1x2 � �

Y � �0 � �1x1 � �2x2 � �3x3 � �

Y � �0 � �1x � �2x
2 � �3x3 � �

Y � �0 � �1x1 � �2x2 � p � �˛kx˛k � �

Figure 12-1 (a) The regression plane for the model E(Y ) � 50 � 10x1 � 7x2. (b) The contour plot.
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12-1 MULTIPLE LINEAR REGRESSION MODEL 413

and the corresponding two-dimensional contour plot. Notice that, although this model is a lin-
ear regression model, the shape of the surface that is generated by the model is not linear. In
general, any regression model that is linear in parameters (the �’s) is a linear regression
model, regardless of the shape of the surface that it generates.

Figure 12-2 provides a nice graphical interpretation of an interaction. Generally, interac-
tion implies that the effect produced by changing one variable (x1, say) depends on the level
of the other variable (x2). For example, Fig. 12-2 shows that changing x1 from 2 to 8 produces
a much smaller change in E(Y ) when x2 � 2 than when x2 � 10. Interaction effects occur fre-
quently in the study and analysis of real-world systems, and regression methods are one of the
techniques that we can use to describe them.

As a final example, consider the second-order model with interaction

(12-6)

If we let x3 � x2
1, x4 � x2

2, x5 � x1x2, �3 � �11, �4 � �22, and �5 � �12, Equation 12-6 can be
written as a multiple linear regression model as follows:

Figure 12-3(a) and (b) show the three-dimensional plot and the corresponding contour plot for

E1Y 2 � 800 � 10x1 � 7x2 � 8.5x2
1 � 5x2

2 � 4x˛1x2

Y � �0 � �1x1 � �2x2 � �3x3 � �4x4 � �5x5 � �

Y � �0 � �1x1 � �2x2 � �11x
2
1 � �22x2

2 � �12x1x2 � �
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Figure 12-2 (a) Three-dimensional plot of the regression
model E(Y ) � 50 � 10x1 � 7x2 � 5x1x2. (b) The contour
plot.

Figure 12-3 (a) Three-dimensional plot of the regression
model E(Y ) � 800 � 10x1 � 7x2 � 8.5x2

1 � 5x2
2 � 4x1x2. 

(b) The contour plot.
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414 CHAPTER 12 MULTIPLE LINEAR REGRESSION

These plots indicate that the expected change in Y when x1 is changed by one unit (say) is a
function of both x1 and x2. The quadratic and interaction terms in this model produce a mound-
shaped function. Depending on the values of the regression coefficients, the second-order
model with interaction is capable of assuming a wide variety of shapes; thus, it is a very flex-
ible regression model.

12-1.2 Least Squares Estimation of the Parameters

The method of least squares may be used to estimate the regression coefficients in the mul-
tiple regression model, Equation 12-2. Suppose that n � k observations are available, and let
xij denote the ith observation or level of variable xj. The observations are

It is customary to present the data for multiple regression in a table such as Table 12-1.
Each observation (xi1, xi2, p , xik, yi), satisfies the model in Equation 12-2, or

(12-7)

The least squares function is

(12-8)

We want to minimize  L with respect to �0, �1, p , �k. The least squares estimates of �0, 
�1, p , �k must satisfy

(12-9a)

and

(12-9b)

Simplifying Equation 12-9, we obtain the least squares normal Equations

(12-10)

Note that there are p � k � 1 normal Equations, one for each of the unknown regression
coefficients. The solution to the normal Equations will be the least squares estimators of the
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12-1 MULTIPLE LINEAR REGRESSION MODEL 415

regression coefficients, The normal Equations can be solved by any method
appropriate for solving a system of linear Equations.

EXAMPLE 12-1 In Chapter 1, we used data on pull strength of a wire bond in a semiconductor manufacturing
process, wire length, and die height to illustrate building an empirical model. We will use the
same data, repeated for convenience in Table 12-2, and show the details of estimating the
model parameters. A three-dimensional scatter plot of the data is presented in Fig. 1-13. Fig-
ure 12-4 shows a matrix of two-dimensional scatter plots of the data. These displays can be
helpful in visualizing the relationships among variables in a multivariable data set.

Specifically, we will fit the multiple linear regression model

where Y � pull strength, x1 � wire length, and x2 � die height. From the data in Table 12-2
we calculate

 a
25

i�1
˛xi1xi2 � 77,177, a

25

i�1
˛xi1 

yi � 8,008.37, a
25

i�1
xi2 yi � 274,811.31

a
25

i�1
 
x 

2
i1 � 2,396, a

25

i�1
˛x 

2 

i2 � 3,531,848

a
25

i�1
xi1 � 206, a

25

i�1
˛xi 2 � 8,294

n � 25, a
25

i�1
˛yi � 725.82

Y � �0 � �1x1 � �2x2 � �

�̂0, �̂1, p , �̂k.

Table 12-1 Data for Multiple Linear Regression

y x1 x2 . . . xk

y1 x11 x12 . . . x1k

y2 x21 x22 . . . x2k

yn xn1 xn2 . . . xnk

oooo

Table 12-2 Wire Bond Data for Example 11-1

Observation Pull Strength Wire Length Die Height Observation Pull Strength Wire Length Die Height
Number y x1 x2 Number y x1 x2

1 9.95 2 50 14 11.66 2 360
2 24.45 8 110 15 21.65 4 205
3 31.75 11 120 16 17.89 4 400
4 35.00 10 550 17 69.00 20 600
5 25.02 8 295 18 10.30 1 585
6 16.86 4 200 19 34.93 10 540
7 14.38 2 375 20 46.59 15 250
8 9.60 2 52 21 44.88 15 290
9 24.35 9 100 22 54.12 16 510

10 27.50 8 300 23 56.63 17 590
11 17.08 4 412 24 22.13 6 100
12 37.00 11 400 25 21.15 5 400
13 41.95 12 500
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416 CHAPTER 12 MULTIPLE LINEAR REGRESSION

For the model Y � �0 � �1x1 � �2x2 � �, the normal Equations 12-10 are

Inserting the computed summations into the normal equations, we obtain

The solution to this set of equations is

Therefore, the fitted regression equation is

This equation can be used to predict pull strength for pairs of values of the regressor variables
wire length (x1) and die height (x2). This is essentially the same regression model given in
Equation 1-7, Section 1-3. Figure 1-14 shows a three-dimentional plot of the plane of predicted
values generated from this equation.ŷ

ŷ � 2.26379 � 2.74427x1 � 0.01253x2

 �̂0 � 2.26379, �̂1 � 2.74427, �̂2 � 0.01253

 8294�̂0 � 77,177�̂1 � 3,531,848�̂2 � 274,811.31

  206�̂0 �  2396�̂1 �  77,177�̂2 � 8,008.37

  25�̂0 �  206�̂1 �   8294�̂2 � 725.82
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Figure 12-4 Matrix of scatter plots (from Minitab) for the wire bond pull
strength data in Table 12-2.

c12 .qxd  5/20/02  2:58 PM  Page 416 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



12-1 MULTIPLE LINEAR REGRESSION MODEL 417

12-1.3 Matrix Approach to Multiple Linear Regression

In fitting a multiple regression model, it is much more convenient to express the mathe-
matical operations using matrix notation. Suppose that there are k regressor variables and
n observations, (xi1, xi2, p , xik, yi), i � 1, 2, p , n and that the model relating the regres-
sors to the response is

This model is a system of n equations that can be expressed in matrix notation as

y � X� � � (12-11)

where

and �

In general, y is an (n 
 1) vector of the observations, X is an (n 
 p) matrix of the levels
of the independent variables, � is a ( p 
 1) vector of the regression coefficients, and � is a
(n 
 1) vector of random errors.

We wish to find the vector of least squares estimators, �̂, that minimizes

The least squares estimator �̂ is the solution for � in the equations

We will not give the details of taking the derivatives above; however, the resulting equations
that must be solved are

	L

	�
� 0

L � a
n

i�1
˛�2

i � �¿� � 1y � X�2 ¿ 1y � X�2

� ≥
�1

�2

o
�n

¥� � ≥
�0

�1

o
�k

¥X � ≥
1 x11 x12 p x1k

1 x21 x22 p x2k

o o o o
1 xn1 xn2 p xnk

¥y � ≥
y1

y2

o
yn

¥

yi � �0 � �1xi1 � �2xi 2 � p � �kxik � �i  i � 1, 2, p , n

X�X�̂ � X�y (12-12)

Equations 12-12 are the least squares normal equations in matrix form. They are identical to
the scalar form of the normal equations given earlier in Equations 12-10. To solve the normal
equations, multiply both sides of Equations 12-12 by the inverse of Therefore, the least
squares estimate of � is

X¿X.

�̂ � (X�X)�1 X�y (12-13)
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418 CHAPTER 12 MULTIPLE LINEAR REGRESSION

Note that there are p � k � 1 normal equations in p � k � 1 unknowns (the values of
Furthermore, the matrix X�X is always nonsingular, as was assumed above,

so the methods described in textbooks on determinants and matrices for inverting these matri-
ces can be used to find . In practice, multiple regression calculations are almost al-
ways performed using a computer.

It is easy to see that the matrix form of the normal equations is identical to the scalar form.
Writing out Equation 12-12 in detail, we obtain

If the indicated matrix multiplication is performed, the scalar form of the normal equations
(that is, Equation 12-10) will result. In this form it is easy to see that is a ( p � p) sym-
metric matrix and is a ( p � 1) column vector. Note the special structure of the ma-
trix. The diagonal elements of are the sums of squares of the elements in the columns of
X, and the off-diagonal elements are the sums of cross-products of the elements in the
columns of X. Furthermore, note that the elements of are the sums of cross-products of
the columns of X and the observations 

The fitted regression model is

(12-14)

In matrix notation, the fitted model is

The difference between the observation yi and the fitted value is a residual, say,
The (n � 1) vector of residuals is denoted by

(12-15)

EXAMPLE 12-2 In Example 12-1, we illustrated fitting the multiple regression model

where y is the observed pull strength for a wire bond, x1 is the wire length, and x2 is the
die height. The 25 observations are in Table 12-2. We will now use the matrix approach

y � �0 � �1˛x1 � �2x2 � �

e � y � ŷ

ei � yi � ŷi.
ŷi

ŷ � X�̂

ŷi � �̂0 � a
k

j�1
˛�̂j ˛xi j  i � 1, ˛2, p ,˛ n

5yi6.
X�y

X�X
X�XX�y

X�X

H
�̂0

�̂1

o

�̂k

X � H
a

n

i�1
yi

a
n

i�1
xi1yi

o

a
n

i�1
xik˛ yi

XH
n a

n

i�1
xi1 a

n

i�1
xi2

p a
n

i�1
xik

a
n

i�1
xi1 a

n

i�1
x2

i1 a
n

i�1
xi1xi2

p a
n

i�1
xi1xik

o o o o

a
n

i�1
xik a

n

i�1
xik xi1 a

n

i�1
xik xi2

p a
n

i�1
x2

ik

X

1X¿X2�1

�̂0, �̂1, p , �̂k2.
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12-1 MULTIPLE LINEAR REGRESSION MODEL 419

to fit the regression model above to these data. The X matrix and y vector for this
model are

X � y �

The matrix is

and the vector is

The least squares estimates are found from Equation 12-13 as

�̂ � 1X¿X2�1X¿y

X¿y � £
1 1 p 1

2 8 p 5

50 110 p 400

§ ≥
9.95

24.45

o
21.15

¥ � £
725.82

8,008.37

274,811.31

§

X¿y

X¿X � £
1 1 p 1

2 8 p 5

50 110 p 400

§ ˛ ≥
1 2 50

1 8 110

o o o
1 5 400

¥ � £
25 206 8,294

206 2,396 77,177

8,294 77,177 3,531,848

§

X¿X

9.95

24.45

31.75

35.00

25.02

16.86

14.38

9.60

24.35

27.50

17.08

37.00

41.95

11.66

21.65

17.89

69.00

10.30

34.93

46.59

44.88

54.12

56.63

22.13

21.15

1 2 50

1 8 110

1 11 120

1 10 550

1 8 295

1 4 200

1 2 375

1 2 52

1 9 100

1 8 300

1 4 412

1 11 400

1 12 500

1 2 360

1 4 205

1 4 400

1 20 600

1 1 585

1 10 540

1 15 250

1 15 290

1 16 510

1 17 590

1 6 100

1 5 400
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420 CHAPTER 12 MULTIPLE LINEAR REGRESSION

or

Therefore, the fitted regression model with the regression coefficients rounded to five decimal
places is

This is identical to the results obtained in Example 12-1.
This regression model can be used to predict values of pull strength for various values of

wire length (x1) and die height (x2). We can also obtain the fitted values by substituting each
observation (xi1, xi2), i � 1, 2, . . . , n, into the equation. For example, the first observation has
x11 � 2 and x12 � 50, and the fitted value is

The corresponding observed value is y1 � 9.95. The residual corresponding to the first obser-
vation is

Table 12-3 displays all 25 fitted values and the corresponding residuals. The fitted values
and residuals are calculated to the same accuracy as the original data.

ŷi

 � 1.57

 � 9.95 � 8.38
  e1 � y1 � ŷ1

 � 8.38
 � 2.26379 � 2.74427122 � 0.012531502 ŷ1 � 2.26379 � 2.74427x11 � 0.01253x12

ŷi

ŷ � 2.26379 � 2.74427x1 � 0.01253x2

£
725.82

8,008.47

274,811.31

§ � £
2.26379143

2.74426964

0.01252781

§� £
0.214653 �0.007491 �0.000340

�0.007491 0.001671 �0.000019

�0.000340 �0.000019 �0.0000015

§

 £
�̂0

�̂1

�̂2

§ � £
25 206 8,294

206 2,396 77,177

8,294 77,177 3,531,848

§
�1

£
725.82

8,008.37

274,811.31

§

Table 12-3 Observations, Fitted Values, and Residuals for Example 12-2

Observation 
Number

1 9.95 8.38 1.57
2 24.45 25.60 �1.15
3 31.75 33.95 �2.20
4 35.00 36.60 �1.60
5 25.02 27.91 �2.89
6 16.86 15.75 1.11
7 14.38 12.45 1.93
8 9.60 8.40 1.20
9 24.35 28.21 �3.86

10 27.50 27.98 �0.48
11 17.08 18.40 �1.32
12 37.00 37.46 �0.46
13 41.95 41.46 0.49

ei � yi � ŷiŷiyi

14 11.66 12.26 �0.60
15 21.65 15.81 5.84
16 17.89 18.25 �0.36
17 69.00 64.67 4.33
18 10.30 12.34 �2.04
19 34.93 36.47 �1.54
20 46.59 46.56 �0.03
21 44.88 47.06 �2.18
22 54.12 52.56 1.56
23 56.63 56.31 0.32
24 22.13 19.98 2.15
25 21.15 21.00 0.15

Observation 
Number ei � yi � ŷiŷiyi

c12 .qxd  5/20/02  2:58 PM  Page 420 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



12-1 MULTIPLE LINEAR REGRESSION MODEL 421

Computers are almost always used in fitting multiple regression models. Table 12-4 pre-
sents some annotated output from Minitab for the least squares regression model for wire bond
pull strength data. The upper part of the table contains the numerical estimates of the regres-
sion coefficients. The computer also calculates several other quantities that reflect important
information about the regression model. In subsequent sections, we will define and explain the
quantities in this output.

Estimating �2

Just as in simple linear regression, it is important to estimate �2, the variance of the error term
�, in a multiple regression model. Recall that in simple linear regression the estimate of �2 was
obtained by dividing the sum of the squared residuals by n � 2. Now there are two parame-
ters in the simple linear regression model, so in multiple linear regression with p parameters a
logical estimator for �2 is

(12-16)�̂2 �
a

n

i�1
˛e2

i

n � p �
SSE

n � p

This is an unbiased estimator of �2. Just as in simple linear regression, the estimate of �2 is
usually obtained from the analysis of variance for the regression model. The numerator of
Equation 12-16 is called the error or residual sum of squares, and the denominator n � p is
called the error or residual degrees of freedom. Table 12-4 shows that the estimate of �2 for
the wire bond pull strength regression model is �̂2 � 115.2�22 � 5.2364. The Minitab output
rounds the estimate to �̂2 � 5.2.

12-1.4 Properties of the Least Squares Estimators

The statistical properties of the least squares estimators may be easily found,
under certain assumptions on the error terms �1, �2, p , �n, in the regression model. Paralleling
the assumptions made in Chapter 11, we assume that the errors �i are statistically independent
with mean zero and variance �2. Under these assumptions, the least squares estimators

are unbiased estimators of the regression coefficients �0, �1, p , �k. This
property may be shown as follows:

since E(�) � 0 and (X�X)�1X�X � I, the identity matrix. Thus, is an unbiased estimator of �.
The variances of the ’s are expressed in terms of the elements of the inverse of the 

matrix. The inverse of times the constant �2 represents the covariance matrix of the
regression coefficients . The diagonal elements of are the variances of 

and the off-diagonal elements of this matrix are the covariances. For example, if
we have k � 2 regressors, such as in the pull-strength problem,

C � 1X¿X2�1 � £
C00 C01 C02

C10 C11 C12

C20 C21 C22

§

�̂1, p , �̂k,
�̂0,�2 1X¿X2�1�̂

X¿X
X¿X�̂

�̂

 � �
 � E 3 1X¿X2�1X¿X� � 1X¿X2�1X¿� 4 � E 3 1X¿X2�1X¿ 1X� � �2 4

 E1�̂2 � E 3 1X¿X2�1X¿Y 4

�̂0, �̂1, p ,˛ �̂k

�̂0, �̂1, p , �̂k
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422 CHAPTER 12 MULTIPLE LINEAR REGRESSION

which is symmetric (C10 � C01, C20 � C02, and C21 � C12) because (X�X)�1 is symmetric,
and we have

In general, the covariance matrix of is a ( p � p) symmetric matrix whose jjth element is the 
variance of and whose i, jth element is the covariance between and that is,

The estimates of the variances of these regression coefficients are obtained by replacing
�2 with an estimate. When �2 is replaced by it’s estimate , the square root of the estimated 
variance of the jth regression coefficient is called the estimated standard error of or

These standard errors are a useful measure of the precision of estimation
for the regression coefficients; small standard errors imply good precision.

Multiple regression computer programs usually display these standard errors. For
example, the Minitab output in Table 12-4 reports andse 1�̂02 � 1.060, se 1�̂12 � 0.09352,

se 1�̂j2 � 2�̂2Cjj.
�̂j

�̂2

cov1�̂2 � �21X¿X2�1 � �2
 C

�̂j,�̂i�̂j

�̂

 cov1�̂i, �̂j2 � �2C˛ij,  i � j

 V 1�̂˛j2 � �2C˛jj,  j � 0, 1, 2

The regression equation is
Strength � 2.26 	 2.74 Length 	 0.0125 Height

Predictor Coef SE Coef T P VIF
Constant �̂0 2.264 1.060 2.14 0.044
Length �̂1 2.74427 0.09352 29.34 0.000 1.2
Height �̂2 0.012528 0.002798 4.48 0.000 1.2

S � 2.288 R-Sq � 98.1% R-Sq (adj) � 97.9%
PRESS � 156.163 R-Sq (pred) � 97.44%

Analysis of Variance

Source DF SS MS F P
Regression 2 5990.8 2995.4 572.17 0.000
Residual Error 22 115.2 5.2
Total 24 6105.9

Source DF Seq SS
Length 1 5885.9
Height 1 104.9

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 27.663 0.482 (26.663, 28.663) (22.814, 32.512)

Values of Predictors for New Observations

New Obs Length Height
1 8.00 275

�̂2

Table 12-4 Minitab Multiple Regression Output for the Wire Bond Pull Strength Data

Regression Analysis: Strength versus Length, Height
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12-1 MULTIPLE LINEAR REGRESSION MODEL 423

The slope estimate is about twice the magnitude of its standard error, and  
are considerably larger than and This implies reasonable precision

of estimation, although the parameters �1 and �2 are much more precisely estimated than the
intercept (this is not unusual in multiple regression).

EXERCISES FOR SECTION 12-1

se 1�̂22.se 1�̂12�̂1 and �2
ˆ

se1�̂12 � 0.002798.

12-1. A study was performed to investigate the shear
strength of soil ( y) as it related to depth in feet (x1) and mois-
ture content (x2). Ten observations were collected, and the fol-
lowing summary quantities obtained: n � 10, 

and 
(a) Set up the least squares normal equations for the model

Y � �0 � �1x1 � �2x2 � �.
(b) Estimate the parameters in the model in part (a).
(c) What is the predicted strength when x1 � 18 feet and

x2 � 43%?

12-2. A regression model is to be developed for predicting
the ability of soil to absorb chemical contaminants. Ten obser-
vations have been taken on a soil absorption index ( y) and two
regressors: x1 � amount of extractable iron ore and x2 �
amount of bauxite. We wish to fit the model Y � �0 � �1x1 �
�2x2 � �. Some necessary quantities are:

gy2
i � 371,595.6.

gxi2 yi � 104,736.8,gxi1 yi � 43,550.8,gxi1xi2 � 12,352,
gx2

i2 � 31,729,gx2
i1 � 5,200.9,gyi � 1,916,gxi2 � 553,

gxi1 � 223,

12-4. The data in Table 12-5 are the 1976 team performance
statistics for the teams in the National Football League
(Source: The Sporting News).
(a) Fit a multiple regression model relating the number

of games won to the teams’passing yardage (x2), the percent
rushing plays (x7), and the opponents’ yards rushing (x8).

(b) Estimate 	2. 2
(c) What are the standard errors of the regression coefficients?
(d) Use the model to predict the number of games won when

x2 � 2000 yards, x7 � 60%, and x8 � 1800.

12-5. Table 12-6 presents gasoline mileage performance for
25 automobiles (Source: Motor Trend, 1975).
(a) Fit a multiple regression model relating gasoline mileage

to engine displacement (x1) and number of carburetor
barrels (x6).

(b) Estimate 	2.
(c) Use the model developed in part (a) to predict mileage per-

formance for a car with displacement x1 � 300 and x6 � 2.

(a) Estimate the regression coefficients in the model specified
above.

(b) What is the predicted value of the absorption index y
when x1 � 200 and x2 � 50?

12-3. A chemical engineer is investigating how the amount
of conversion of a product from a raw material (y) depends on
reaction temperature (x1) and the reaction time (x2). He has
developed the following regression models:

1.

2.

Both models have been built over the range 0.5 � x2 � 10.
(a) What is the predicted value of conversion when x2 � 2?

Repeat this calculation for x2 � 8. Draw a graph of the
predicted values for both conversion models. Comment
on the effect of the interaction term in model 2.

(b) Find the expected change in the mean conversion for a
unit change in temperature x1 for model 1 when x2 � 5.
Does this quantity depend on the specific value of reac-
tion time selected? Why?

(c) Find the expected change in the mean conversion for a
unit change in temperature x1 for model 2 when x2 � 5.
Repeat this calculation for x2 � 2 and x2 � 8. Does the
result depend on the value selected for x2? Why?

ŷ � 95 � 1.5x1 � 3x2 � 2x1x2

ŷ � 100 � 2x1 � 4x2

12-6. The electric power consumed each month by a chem-
ical plant is thought to be related to the average ambient
temperature (x1), the number of days in the month (x2), the
average product purity (x3), and the tons of product produced
(x4). The past year’s historical data are available and are pre-
sented in the following table:

y x1 x2 x3 x4

240 25 24 91 100

236 31 21 90 95

270 45 24 88 110

274 60 25 87 88

301 65 25 91 94

316 72 26 94 99

300 80 25 87 97

296 84 25 86 96

267 75 24 88 110

276 60 25 91 105

288 50 25 90 100

261 38 23 89 98

(a) Fit a multiple linear regression model to these data.
(b) Estimate 	2.

1�¿�2�1 � £
1.17991 �7.30982 E-3 7.3006 E-4

�7.30982 E-3 7.9799 E-5 �1.23713 E-4

7.3006 E-4 1.23713 E-4 4.6576 E-4

§ , �¿y � £
220

36,768

9,965

§
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424 CHAPTER 12 MULTIPLE LINEAR REGRESSION

Table 12-5 National Football League 1976 Team Performance

Team y x1 x2 x3 x4 x5 x6 x7 x8 x9

Washington 10 2113 1985 38.9 64.7 �4 868 59.7 2205 1917

Minnesota 11 2003 2855 38.8 61.3 �3 615 55.0 2096 1575

New England 11 2957 1737 40.1 60.0 �14 914 65.6 1847 2175

Oakland 13 2285 2905 41.6 45.3 �4 957 61.4 1903 2476

Pittsburgh 10 2971 1666 39.2 53.8 �15 836 66.1 1457 1866

Baltimore 11 2309 2927 39.7 74.1 �8 786 61.0 1848 2339

Los Angeles 10 2528 2341 38.1 65.4 �12 754 66.1 1564 2092

Dallas 11 2147 2737 37.0 78.3 �1 797 58.9 2476 2254

Atlanta 4 1689 1414 42.1 47.6 �3 714 57.0 2577 2001

Buffalo 2 2566 1838 42.3 54.2 �1 797 58.9 2476 2254

Chicago 7 2363 1480 37.3 48.0 �19 984 68.5 1984 2217

Cincinnati 10 2109 2191 39.5 51.9 �6 819 59.2 1901 1686

Cleveland 9 2295 2229 37.4 53.6 �5 1037 58.8 1761 2032

Denver 9 1932 2204 35.1 71.4 �3 986 58.6 1709 2025

Detroit 6 2213 2140 38.8 58.3 �6 819 59.2 1901 1686

Green Bay 5 1722 1730 36.6 52.6 �19 791 54.4 2288 1835

Houston 5 1498 2072 35.3 59.3 �5 776 49.6 2072 1914

Kansas City 5 1873 2929 41.1 55.3 �10 789 54.3 2861 2496

Miami 6 2118 2268 38.6 69.6 �6 582 58.7 2411 2670

New Orleans 4 1775 1983 39.3 78.3 �7 901 51.7 2289 2202

New York Giants 3 1904 1792 39.7 38.1 �9 734 61.9 2203 1988

New York Jets 3 1929 1606 39.7 68.8 �21 627 52.7 2592 2324

Philadelphia 4 2080 1492 35.5 68.8 �8 722 57.8 2053 2550

St. Louis 10 2301 2835 35.3 74.1 �2 683 59.7 1979 2110

San Diego 6 2040 2416 38.7 50.0 0 576 54.9 2048 2628

San Francisco 8 2447 1638 39.9 57.1 �8 848 65.3 1786 1776

Seattle 2 1416 2649 37.4 56.3 �22 684 43.8 2876 2524

Tampa Bay 0 1503 1503 39.3 47.0 �9 875 53.5 2560 2241

y: Games won (per 14 game season)
x1: Rushing yards (season)
x2: Passing yards (season)
x3: Punting yards (yds/punt)
x4: Field goal percentage (Field goals made/Field goals attempted—season)
x5: Turnover differential (turnovers acquired—turnovers lost)
x6: Penalty yards (season)
x7: Percent rushing (rushing plays/total plays)
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12-1 MULTIPLE LINEAR REGRESSION MODEL 425

Table 12-6 Gasoline Mileage Performance for 25 Automobiles

Automobile y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

Apollo 18.90 350 165 260 8.0:1 2.56:1 4 3 200.3 69.9 3910 A

Nova 20.00 250 105 185 8.25:1 2.73:1 1 3 196.7 72.2 3510 A

Monarch 18.25 351 143 255 8.0:1 3.00:1 2 3 199.9 74.0 3890 A

Duster 20.07 225 95 170 8.4:1 2.76:1 1 3 194.1 71.8 3365 M

Jenson Conv. 11.2 440 215 330 8.2:1 2.88:1 4 3 184.5 69 4215 A

Skyhawk 22.12 231 110 175 8.0:1 2.56:1 2 3 179.3 65.4 3020 A

Scirocco 34.70 89.7 70 81 8.2:1 3.90:1 2 4 155.7 64 1905 M

Corolla SR-5 30.40 96.9 75 83 9.0:1 4.30:1 2 5 165.2 65 2320 M

Camaro 16.50 350 155 250 8.5:1 3.08:1 4 3 195.4 74.4 3885 A

Datsun B210 36.50 85.3 80 83 8.5:1 3.89:1 2 4 160.6 62.2 2009 M

Capri II 21.50 171 109 146 8.2:1 3.22:1 2 4 170.4 66.9 2655 M

Pacer 19.70 258 110 195 8.0:1 3.08:1 1 3 171.5 77 3375 A

Granada 17.80 302 129 220 8.0:1 3.0:1 2 3 199.9 74 3890 A

Eldorado 14.39 500 190 360 8.5:1 2.73:1 4 3 224.1 79.8 5290 A

Imperial 14.89 440 215 330 8.2:1 2.71:1 4 3 231.0 79.7 5185 A

Nova LN 17.80 350 155 250 8.5:1 3.08:1 4 3 196.7 72.2 3910 A

Starfire 23.54 231 110 175 8.0:1 2.56:1 2 3 179.3 65.4 3050 A

Cordoba 21.47 360 180 290 8.4:1 2.45:1 2 3 214.2 76.3 4250 A

Trans Am 16.59 400 185 NA 7.6:1 3.08:1 4 3 196 73 3850 A

Corolla E-5 31.90 96.9 75 83 9.0:1 4.30:1 2 5 165.2 61.8 2275 M

Mark IV 13.27 460 223 366 8.0:1 3.00:1 4 3 228 79.8 5430 A

Celica GT 23.90 133.6 96 120 8.4:1 3.91:1 2 5 171.5 63.4 2535 M

Charger SE 19.73 318 140 255 8.5:1 2.71:1 2 3 215.3 76.3 4370 A

Cougar 13.90 351 148 243 8.0:1 3.25:1 2 3 215.5 78.5 4540 A

Corvette 16.50 350 165 255 8.5:1 2.73:1 4 3 185.2 69 3660 A

y: Miles/gallon
x1: Displacement (cubic inches)
x2: Horsepower (foot-pounds)
x3: Torque (foot-pounds)
x4: Compression ratio
x5: Rear axle ratio
x6: Carburetor (barrels)
x7: No. of transmission speeds
x8: Overall length (inches)
x9: Width (inches)
x10: Weight (pounds)
x11: Type of transmission (A—automatic, M—manual)
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426 CHAPTER 12 MULTIPLE LINEAR REGRESSION

(c) Compute the standard errors of the regression coefficients.
(d) Predict power consumption for a month in which

x2 � 24 days, x3 � 90%, and x4 � 98 tons.

12-7. A study was performed on wear of a bearing y and its
relationship to x1 � oil viscosity and x2 � load. The follow-
ing data were obtained.

x1 � 75�F,

(a) Fit a multiple linear regression model to these data.
(b) Estimate �2 and the standard errors of the regression 

coefficients.
(c) Use the model to predict wear when x1 � 25 and x2 � 1000.
(d) Fit a multiple linear regression model with an interaction

term to these data.
(e) Estimate �2 and se( ) for this new model. How did these

quantities change. Does this tell you anything about the
value of adding the interaction term to the model?

(f) Use the model in (d) to predict when x1 � 25 and x2 �
1000. Compare this prediction with the predicted value
from part (b) above.

12-8. The pull strength of a wire bond is an important charac-
teristic. The following table gives information on pull strength
( y), die height (x1), post height (x2), loop height (x3), wire length
(x4), bond width on the die (x5), and bond width on the post (x6).

�j
ˆ

(a) Fit a multiple linear regression model using x2, x3, x4, and
x5 as the regressors.

(b) Estimate �2.
(c) Find the se( ). How precisely are the regression coeffi-

cients estimated, in your opinion?
(d) Use the model from part (a) to predict pull strength when

x2 = 20, x3 = 30, x4 = 90, and x5 = 2.0.

12-9. An engineer at a semiconductor company wants to
model the relationship between the device HFE ( y) and three
parameters: Emitter-RS (x1), Base-RS (x2), and Emitter-to-Base
RS (x3). The data are shown in the following table.

�j
ˆ

y x1 x2 x3 x4 x5 x6

8.0 5.2 19.6 29.6 94.9 2.1 2.3

8.3 5.2 19.8 32.4 89.7 2.1 1.8

8.5 5.8 19.6 31.0 96.2 2.0 2.0

8.8 6.4 19.4 32.4 95.6 2.2 2.1

9.0 5.8 18.6 28.6 86.5 2.0 1.8

9.3 5.2 18.8 30.6 84.5 2.1 2.1

9.3 5.6 20.4 32.4 88.8 2.2 1.9

9.5 6.0 19.0 32.6 85.7 2.1 1.9

9.8 5.2 20.8 32.2 93.6 2.3 2.1

10.0 5.8 19.9 31.8 86.0 2.1 1.8

10.3 6.4 18.0 32.6 87.1 2.0 1.6

10.5 6.0 20.6 33.4 93.1 2.1 2.1

10.8 6.2 20.2 31.8 83.4 2.2 2.1

11.0 6.2 20.2 32.4 94.5 2.1 1.9

11.3 6.2 19.2 31.4 83.4 1.9 1.8

11.5 5.6 17.0 33.2 85.2 2.1 2.1

11.8 6.0 19.8 35.4 84.1 2.0 1.8

12.3 5.8 18.8 34.0 86.9 2.1 1.8

12.5 5.6 18.6 34.2 83.0 1.9 2.0

x1 x2 x3 y
Emitter-RS Base-RS E-B-RS HFE-1M-5V

14.620 226.00 7.000 128.40

15.630 220.00 3.375 52.62

14.620 217.40 6.375 113.90

15.000 220.00 6.000 98.01

14.500 226.50 7.625 139.90

15.250 224.10 6.000 102.60

16.120 220.50 3.375 48.14

15.130 223.50 6.125 109.60

15.500 217.60 5.000 82.68

15.130 228.50 6.625 112.60

15.500 230.20 5.750 97.52

16.120 226.50 3.750 59.06

15.130 226.60 6.125 111.80

15.630 225.60 5.375 89.09

15.380 229.70 5.875 101.00

14.380 234.00 8.875 171.90

15.500 230.00 4.000 66.80

14.250 224.30 8.000 157.10

14.500 240.50 10.870 208.40

14.620 223.70 7.375 133.40

y x1 x2

293 1.6 851

230 15.5 816

172 22.0 1058

91 43.0 1201

113 33.0 1357

125 40.0 1115

(a) Fit a multiple linear regression model to the data.
(b) Estimate �2.
(c) Find the standard errors se
(d) Predict HFE when x1 � 14.5, x2 � 220, and x3 � 5.0.

12-10. Heat treating is often used to carburize metal parts,
such as gears. The thickness of the carburized layer is consid-
ered a crucial feature of the gear and contributes to the overall
reliability of the part. Because of the critical nature of this fea-
ture, two different lab tests are performed on each furnace
load. One test is run on a sample pin that accompanies each
load. The other test is a destructive test, where an actual part is
cross-sectioned. This test involves running a carbon analysis
on the surface of both the gear pitch (top of the gear tooth) and
the gear root (between the gear teeth). Table 12-7 shows the
results of the pitch carbon analysis test for 32 parts.

The regressors are furnace temperature (TEMP), carbon
concentration and duration of the carburizing cycle

1�j
ˆ 2.
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12-1 MULTIPLE LINEAR REGRESSION MODEL 427

(SOAKPCT, SOAKTIME), and carbon concentration and
duration of the diffuse cycle (DIFFPCT, DIFFTIME).
(a) Fit a linear regression model relating the results of the pitch

carbon analysis test (PITCH) to the five regressor variables.
(b) Estimate �2.
(c) Find the standard errors 
(d) Use the model in part (a) to predict PITCH when 

TEMP � 1650, SOAKTIME � 1.00, SOAKPCT � 1.10,
DIFFTIME � 1.00, and DIFFPCT � 0.80.

12-11. Statistics for 21 National Hockey League teams
were obtained from the Hockey Encyclopedia and are shown
in Table 12-8.

se 1�j
ˆ 2.

The variables and definitions are as follows:
Wins Number of games won in a season.
Pts Points awarded in a season. Two points for win-

ning a game, one point for losing in overtime,
zero points for losing in regular time.

GF Goals for. Total goals scored during the season.
GA Goals against. Goals scored against the team dur-

ing the season.
PPG Power play goals. Points scored while on power

play.
PPcT Power play percentage. The number of power

play goals divided by the number of power play
opportunities.

Table 12-7

TEMP SOAKTIME SOAKPCT DIFFTIME DIFFPCT PITCH

1650 0.58 1.10 0.25 0.90 0.013

1650 0.66 1.10 0.33 0.90 0.016

1650 0.66 1.10 0.33 0.90 0.015

1650 0.66 1.10 0.33 0.95 0.016

1600 0.66 1.15 0.33 1.00 0.015

1600 0.66 1.15 0.33 1.00 0.016

1650 1.00 1.10 0.50 0.80 0.014

1650 1.17 1.10 0.58 0.80 0.021

1650 1.17 1.10 0.58 0.80 0.018

1650 1.17 1.10 0.58 0.80 0.019

1650 1.17 1.10 0.58 0.90 0.021

1650 1.17 1.10 0.58 0.90 0.019

1650 1.17 1.15 0.58 0.90 0.021

1650 1.20 1.15 1.10 0.80 0.025

1650 2.00 1.15 1.00 0.80 0.025

1650 2.00 1.10 1.10 0.80 0.026

1650 2.20 1.10 1.10 0.80 0.024

1650 2.20 1.10 1.10 0.80 0.025

1650 2.20 1.15 1.10 0.80 0.024

1650 2.20 1.10 1.10 0.90 0.025

1650 2.20 1.10 1.10 0.90 0.027

1650 2.20 1.10 1.50 0.90 0.026

1650 3.00 1.15 1.50 0.80 0.029

1650 3.00 1.10 1.50 0.70 0.030

1650 3.00 1.10 1.50 0.75 0.028

1650 3.00 1.15 1.66 0.85 0.032

1650 3.33 1.10 1.50 0.80 0.033

1700 4.00 1.10 1.50 0.70 0.039

1650 4.00 1.10 1.50 0.70 0.040

1650 4.00 1.15 1.50 0.85 0.035

1700 12.50 1.00 1.50 0.70 0.056

1700 18.50 1.00 1.50 0.70 0.068
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428 CHAPTER 12 MULTIPLE LINEAR REGRESSION

12-2 HYPOTHESIS TESTS IN MULTIPLE LINEAR REGRESSION

In multiple linear regression problems, certain tests of hypotheses about the model parameters
are useful in measuring model adequacy. In this section, we describe several important
hypothesis-testing procedures. As in the simple linear regression case, hypothesis testing
requires that the error terms �i in the regression model are normally and independently dis-
tributed with mean zero and variance �2.

12-2.1 Test for Significance of Regression

The test for significance of regression is a test to determine whether a linear relationship exists
between the response variable y and a subset of the regressor variables x1, x2, p , xk. The

SHG Short-handed goals scored during the season.
PPGA Power play goals against.
PKPcT Penalty killing percentage. Measures a team’s

ability to prevent goals while its opponent is on a
power play. Opponent power play goals divided
by opponent’s opportunities.

SHGA Short-handed goals against. Fit a multiple linear
regression model relating wins to the other vari-
ables. Estimate �2 and find the standard errors of
the regression coefficients.

12-12. Consider the linear regression model

where and 
(a) Write out the least squares normal equations for this model.

(b) Verify that the least squares estimate of the intercept in

this model is 
(c) Suppose that we use as the response variable in the

model above. What effect will this have on the least
squares estimate of the intercept?

yi � y
�̂¿0 � g  yi�n � y.

x2 �g  
xi2�n.x1 � g

 
xi1�n

Yi � �¿0 � �11xi1 � x1 2 � �2 
1xi2 � x22 � �i

Table 12-8

Team Wins Pts GF GA PPG PPcT SHG PPGA PKPcT SHGA

Chicago 47 104 338 268 86 27.2 4 71 76.6 6

Minnesota 40 96 321 290 91 26.4 17 67 80.7 20

Toronto 28 68 23 330 79 22.3 13 83 75 9

St. Louis 25 65 285 316 67 21.2 9 63 81.3 12

Detroit 21 57 263 344 37 19.3 7 80 72.6 9

Edmonton 47 106 424 315 86 29.3 22 89 77.5 6

Calgary 32 78 321 317 90 27 7 59 77.1 6

Vancouver 30 75 303 309 65 23.8 5 56 80.8 13

Winnipeg 33 74 311 333 78 23.6 10 67 72.8 7

Los Angeles 27 66 308 365 81 23.8 10 94 68.2 14

Philadelphia 49 106 326 240 60 21.6 15 61 82 7

NY Islanders 42 96 302 226 69 25.8 10 55 83.4 3

Washington 39 94 306 283 75 20.9 3 53 81.6 11

NY Rangers 35 80 306 287 71 22.4 12 75 76 8

New Jersey 17 48 230 338 66 21.9 74 78 73.5 10

Pittsburgh 18 45 257 394 81 22.6 3 110 72.2 15

Boston 50 110 327 228 67 22.2 8 53 80.7 6

Montreal 42 98 350 286 64 22.2 8 68 73.8 8

Buffalo 38 89 318 285 67 21.5 12 48 82.5 9

Quebec 34 80 343 336 61 20.7 6 92 73.6 6

Hartford 19 45 261 403 51 19.3 6 70 76.1 9
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12-2 HYPOTHESIS TESTS IN MULTIPLE LINEAR REGRESSION 429

We should reject H0 if the computed value of the test statistic in Equation 12-18,  f0, is greater than
f
,k,n�p. The procedure is usually summarized in an analysis of variance table such as Table 12-9.

We can find a computing formula for SSE as follows:

Substituting into the above, we obtain

(12-19)SSE � y¿y � �̂¿X¿y

e � y � ŷ � y � X�̂

SSE � a
n

i�1
1 yi � ŷi22 � a

n

i�1
ei

2 � e¿e

(12-17) H1: �j Z 0 for at least one j

 H0: �1 � �2 � #
 
#
 
# � �k � 0

(12-18)F0 �
SSR�k

SSE� 1n � p2 �
MSR

MSE

Rejection of implies that at least one of the regressor variables
x1, x2, p , xk contributes significantly to the model.

The test for significance of regression is a generalization of the procedure used in simple
linear regression. The total sum of squares SST is partitioned into a sum of squares due to re-
gression and a sum of squares due to error, say,

SST � SSR � SSE

Now if is true, is a chi-square random variable with k
degrees of freedom. Note that the number of degrees of freedom for this chi-square random
variable is equal to the number of regressor variables in the model. We can also show the
SSE�	2 is a chi-square random variable with n � p degrees of freedom, and that SSE and SSR

are independent. The test statistic for isH0: �1 � �2 � p � �k � 0

SSR�	2H0: �1 � �2 � p � �k � 0

H0: �1 � �2 � p � �k � 0

Table 12-9 Analysis of Variance for Testing Significance of Regression in Multiple Regression

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Regression SSR k MSR MSR�MSE

Error or residual SSE n � p MSE

Total SST n � 1

appropriate hypotheses are
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430 CHAPTER 12 MULTIPLE LINEAR REGRESSION

A computational formula for SSR may be found easily. Now since 
we may rewrite Equation 12-19 as

or

SSE � SST � SSR

Therefore, the regression sum of squares is

(12-20)

EXAMPLE 12-3 We will test for significance of regression (with 
 � 0.05) using the wire bond pull strength
data from Example 12-1. The total sum of squares is

The regression sum of squares is computed from Equation 12-20 as follows:

and by subtraction

The analysis of variance is shown in Table 12-10. To test we calculate the
statistic

Since f0 � f0.05,2,22 � 3.44 (or since the P-value is considerably smaller than 
 = 0.05), 
we reject the null hypothesis and conclude that pull strength is linearly related to either wire
length or die height, or both. However, we note that this does not necessarily imply that the

f0 �
MSR

MSE
�

2995.3856
5.2352

� 572.17

H0: �1 � �2 � 0,

 � y¿y � �̂¿X¿y � 115.1735

 SSE � SST � SSR

 � 27,062.7775 �
1725.8222

25
� 5990.7712

 SSR � �̂¿X¿y �

aa
n

i�1
yib

2

n

 � 27,177.9510 �
1725.8222

25
� 6105.9447

 SST � y¿y �

aa
n

i�1
yib

2

n

SSR � �̂¿�¿y �

aa
n

i�1
 yib

2

n

SSE � y¿y �

aa
n

i�1
yib

2

n �≥ �̂¿�¿y �

aa
n

i�1
yib

2

n
¥

1 g n
i�1 yi22�n,1g n

i�1 yi22�n � y¿y �
SST � gn

i�1 y
2
i �
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12-2 HYPOTHESIS TESTS IN MULTIPLE LINEAR REGRESSION 431

relationship found is an appropriate model for predicting pull strength as a function of wire
length and die height. Further tests of model adequacy are required before we can be
comfortable using this model in practice.

Most multiple regression computer programs provide the test for significance of regression
in their output display. The middle portion of Table 12-4 is the Minitab output for this example.
Compare Tables 12-4 and 12-10 and note their equivalence apart from rounding. The P-value is
rounded to zero in the computer output.

R2 and Adjusted R2

We may also use the coefficient of multiple determination R2 as a global statistic to assess
the fit of the model. Computationally,

(12-21)

For the wire bond pull strength data, we find that R2 � SSR�SST � 5990.7712�6105.9447 �
0.9811. Thus the model accounts for about 98% of the variability in the pull strength response
(refer to the Minitab output in Table 12-4). The R2 statistic is somewhat problematic as a
measure of the quality of the fit for a multiple regression model because it always increases
when a variable is added to a model.

To illustrate, consider the model fit to wire bond pull strength data in Example 11-8. This
was a simple linear regression model with x1 � wire length as the regressor. The value of R2

for this model is R2 � 0.9640. Therefore, adding xy � die height to the model increases R2 by
0.9811 � 0.9640 � 0.0171, a very small amount. Since R2 always increases when a regressor
is added, it can be difficult to judge whether the increase is telling us anything useful about the
new regressor. It is particularly hard to interpret a small increase, such as observed in the pull
strength data.

Many regression users prefer to use an adjusted R2 statistic:

R2 �
SSR

SST
� 1 �

SSE

SST

Because is the error or residual mean square and is a constant, R2
adj will

only increase when a variable is added to the model if the new variable reduces the error mean
square. Note that for the multiple regression model for the pull strength data R2

adj � 0.979 (see the
Minitab output in Table 12-4), whereas in Example 11-8 the adjusted R2 for the one-variable
model is R2

adj � 0.962. Therefore, we would conclude that adding x2 � die height to the model
does result in a meaningful reduction in unexplained variability in the response.

SST� 1n � 12SSE� 1n � p2

Table 12-10 Test for Significance of Regression for Example 12-3

Source of Degrees of 
Variation Sum of Squares Freedom Mean Square f0 P-value

Regression 5990.7712 2 2995.3856 572.17 1.08E-19
Error or residual 115.1735 22 5.2352
Total 6105.9447 24

(12-22)R2
adj � 1 �

SSE� 1n � p2
SST� 1n � 12
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432 CHAPTER 12 MULTIPLE LINEAR REGRESSION

If H0: �j � 0 is not rejected, this indicates that the regressor xj can be deleted from the model.
The test statistic for this hypothesis is

The adjusted R2 statistic essentially penalizes the analyst for adding terms to the model. It is
an easy way to guard against overfitting, that is, including regressors that are not really useful.
Consequently, it is very useful in comparing and evaluating competing regression models. We
will use R2

adj for this when we discuss variable selection in regression in Section 12-6.3.

12-2.2 Tests on Individual Regression Coefficients 
and Subsets of Coefficients

We are frequently interested in testing hypotheses on the individual regression coefficients. Such
tests would be useful in determining the potential value of each of the regressor variables in the re-
gression model. For example, the model might be more effective with the inclusion of additional
variables or perhaps with the deletion of one or more of the regressors presently in the model.

Adding a variable to a regression model always causes the sum of squares for regression
to increase and the error sum of squares to decrease (this is why R2 always increases when a
variable is added). We must decide whether the increase in the regression sum of squares is
large enough to justify using the additional variable in the model. Furthermore, adding an
unimportant variable to the model can actually increase the error mean square, indicating that
adding such a variable has actually made the model a poorer fit to the data (this is why R2

adj is
a better measure of global model fit then the ordinary R2).

The hypotheses for testing the significance of any individual regression coefficient, say
�j, are

where Cjj is the diagonal element of corresponding to Notice that the denominator 
of Equation 12-24 is the standard error of the regression coefficient . The null hypothesis H0: 

�j � 0 is rejected if This is called a partial or marginal test because the 

regression coefficient depends on all the other regressor variables xi(i 
 j) that are in the
model. More will be said about this in the following example.

EXAMPLE 12-4 Consider the wire bond pull strength data, and suppose that we want to test the hypothesis that
the regression coefficient for x2 (die height) is zero. The hypotheses are

H1: �2 
 0

H0: �2 � 0

�̂j

0 t0 0 � t
�2,n�p.

�̂j

�̂j.1X¿X2�1

(12-23)H1: �j 
 0

H0: �j � 0

(12-24)T0 �
�̂j2	̂2

 Cjj

�
�̂j

se1�̂j2
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12-2 HYPOTHESIS TESTS IN MULTIPLE LINEAR REGRESSION 433

The main diagonal element of the matrix corresponding to is C22 � 0.0000015,
so the t-statistic in Equation 12-24 is

Note that we have used the estimate of �2 reported to four decimal places in Table 12-10. Since
t0.025,22 � 2.074, we reject H0: �2 � 0 and conclude that the variable x2 (die height) con-
tributes significantly to the model. We could also have used a P-value to draw conclusions.
The P-value for t0 � 4.4767 is P � 0.0002, so with � = 0.05 we would reject the null hy-
pothesis. Note that this test measures the marginal or partial contribution of x2 given that x1 is
in the model. That is, the t-test measures the contribution of adding the variable x2 � die
height to a model that already contains x1 � wire length. Table 12-4 shows the value of the 
t-test computed by Minitab. The Minitab t-test statistic is reported to two decimal places. Note
that the computer produces a t-test for each regression coefficient in the model. These t-tests
indicate that both regressors contribute to the model.

There is another way to test the contribution of an individual regressor variable to the
model. This approach determines the increase in the regression sum of squares obtained by
adding a variable xj (say) to the model, given that other variables xi(i � j) are already included
in the regression equation.

The procedure used to do this is called the general regression significance test, or the
extra sum of squares method. This procedure can also be used to investigate the contribution
of a subset of the regressor variables to the model. Consider the regression model with k
regressor variables

(12-25)

where y is (n 
 1), X is (n 
 p), � is (p 
 1), � is (n 
 1), and p � k � 1. We would like to
determine if the subset of regressor variables x1, x2, . . . , xr (r � k) as a whole contributes sig-
nificantly to the regression model. Let the vector of regression coefficients be partitioned as
follows:

(12-26)

where �1 is (r 
 1) and �2 is [(p � r) 
 1]. We wish to test the hypotheses

� � c�1

�2
d

y � X� � �

t0 �
�̂22�̂2C22

�
0.01253215.23522 10.00000152 � 4.4767

�̂21X¿X2�1

where 0 denotes a vector of zeroes. The model may be written as

(12-28)

where X1 represents the columns of X associated with �1 and X2 represents the columns of X
associated with �2.

y � X� � � � X1�1 � X2�2 � �

(12-27)H1: �1 � 0

H0: �1 � 0
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434 CHAPTER 12 MULTIPLE LINEAR REGRESSION

For the full model (including both �1 and �2), we know that In
addition, the regression sum of squares for all variables including the intercept is

and

SSR(�) is called the regression sum of squares due to �. To find the contribution of the terms
in �1 to the regression, fit the model assuming the null hypothesis H0: �1 � 0 to be true. The
reduced model is found from Equation 12-28 as

(12-29)

The least squares estimate of �2 is and

(12-30)

The regression sum of squares due to �1 given that �2 is already in the model is

(12-31)

This sum of squares has r degrees of freedom. It is sometimes called the extra sum of squares
due to �1. Note that is the increase in the regression sum of squares due to
including the variables x1, x2, p , xr in the model. Now is independent of MSE, and
the null hypothesis �1 � 0 may be tested by the statistic

SSR1�1 0�22
SSR1�1 0�22

SSR1�1 0�22 � SSR1�2 � SSR1�22

SSR1�22 � �̂¿2X¿2y  1p � r degrees of freedom2
�̂2 � 1X¿2X22�1X¿2y,

y � X2�2 � �

MSE �
y¿y � �̂X¿y

n � p

SSR1�2 � �̂¿X¿y  1   p � k � 1 degrees of freedom2

�̂ � 1X¿X2�1 X¿y.

If the computed value of the test statistic f0 � f
,r,n�p, we reject H0, concluding that at least one
of the parameters in �1 is not zero and, consequently, at least one of the variables x1, x2, p , xr

in X1 contributes significantly to the regression model. Some authors call the test in Equation
12-32 a partial F-test.

The partial F-test is very useful. We can use it to measure the contribution of each indi-
vidual regressor xj as if it were the last variable added to the model by computing

This is the increase in the regression sum of squares due to adding xj to a model that already
includes x1, . . . , xj�1, xj�1, . . . , xk. The partial F-test is a more general procedure in that we
can measure the effect of sets of variables. In Section 12-6.3 we show how the partial F-test
plays a major role in model building—that is, in searching for the best set of regressor vari-
ables to use in the model.

SSR1�j 0�0, �1, p , �j�1, �j�1, p , �k2,  j � 1, 2, p , k

(12-32)F0 �
SSR1�1 | �22�r

MSE
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12-2 HYPOTHESIS TESTS IN MULTIPLE LINEAR REGRESSION 435

EXAMPLE 12-5 Consider the wire bond pull strength data in Example 12-1. We will investigate the contribution of
the variable x2 (die height) to the model using the partial F-test approach. That is, we wish to test

To test this hypothesis, we need the extra sum of squares due to �2, or

In Example 12-3 we have calculated

and from Example 11-8, where we fit the model Y � �0 � �1x1 � �, we can calculate

Therefore,

This is the increase in the regression sum of squares due to adding x2 to a model already con-
taining x1. To test H0: �2 � 0, calculate the test statistic

Note that the MSE from the full model, using both x1 and x2, is used in the denominator of the
test statistic. Since f0.05,1,22 � 4.30, we reject H0: �2 � 0 and conclude that the regressor die
height (x2) contributes significantly to the model.

Table 12-4 shows the Minitab regression output for the wire bond pull strength data. Just
below the analysis of variance summary in this table the quantity labeled “Seq SS” shows the
sum of squares obtained by fitting x1 alone (5885.9) and the sum of squares obtained by fitting
x2 after x1. Notationally, these are referred to above as and .

Since the partial F-test in the above example involves a single variable, it is equivalent to
the t-test. To see this, recall from Example 12-5 that the t-test on H0: �2 � 0 resulted in the test
statistic t0 � 4.4767. Furthermore, the square of a t-random variable with � degrees of free-
dom is an F-random variable with one and � degrees of freedom, and we note that �
(4.4767)2 � 20.04 � f0.

12-2.3 More About the Extra Sum of Squares Method (CD Only) 

t2
0

SSR1�2 0  �1,�02SSR1�1 0  �02

f0 �
SSR 
1�2 0  �1,�02�1

MSE
�

104.9191�1
5.2352

� 20.04

 � 104.9191 1one degree of freedom2 SSR1�2 0  �1,�02 � 5990.7712 � 5885.8521

 � 5885.8521 1one degree of freedom2
SSR1�1 0  �02 � �̂1Sxy � 12.90272 12027.71322

SSR1�1,�2 0  �02 � �̂¿X¿y �

aa
n

i�1
yib

n � 5990.7712 1two degrees of freedom2

 � SSR1�1,�2 0  �02 � SSR1�1 0  �02
 SSR1�2 0  �1,�02 � SSR1�1,�2,�02 � SSR1�1,�02

H1: �2 
 0

H0: �2 � 0
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436 CHAPTER 12 MULTIPLE LINEAR REGRESSION

12-13. Consider the regression model fit to the soil shear
strength data in Exercise 12-1.
(a) Test for significance of regression using � � 0.05. What

is the P-value for this test?
(b) Construct the t-test on each regression coefficient. What

are your conclusions, using � � 0.05?

12-14. Consider the absorption index data in Exercise 12-2.
The total sum of squares for y is SST � 742.00.
(a) Test for significance of regression using � � 0.01. What

is the P-value for this test?
(b) Test the hypothesis H0: �1 � 0 versus H1: �1 � 0 using 

� � 0.01. What is the P-value for this test?
What conclusion can you draw about the usefulness of x1 as a
regressor in this model?

12-15. Consider the NFL data in Exercise 12-4.
(a) Test for significance of regression using � � 0.05. What

is the P-value for this test?
(b) Conduct the t-test for each regression coefficient �2, �7,

and �8. Using � � 0.05, what conclusions can you draw
about the variables in this model?

12-16. Reconsider the NFL data in Exercise 12-4.
(a) Find the amount by which the regressor x8 (opponents’

yards rushing) increases the regression sum of squares.
(b) Use the results from part (a) above and Exercise 12-14 to

conduct an F-test for H0: �8 � 0 versus H1: �8 � 0 using
� � 0.05. What is the P-value for this test? What conclu-
sions can you draw?

12-17. Consider the gasoline mileage data in Exercise 12-5.
(a) Test for significance of regression using � � 0.05. What

conclusions can you draw?
(b) Find the t-test statistic for both regressors. Using � �

0.05, what conclusions can you draw? Do both regressors
contribute to the model?

12-18. A regression model Y � �0 � �1x1 � �2x2 � �3x3 �
� has been fit to a sample of n � 25 observations. The calcu-
lated t-ratios are as follows: for �1, 
t0 � 4.82, for �2, t0 � 8.21 and for �3, t0 � 0.98.
(a) Find P-values for each of the t-statistics.
(b) Using � � 0.05, what conclusions can you draw about

the regressor x3? Does it seem likely that this regressor
contributes significantly to the model?

12-19. Consider the electric power consumption data in
Exercise 12-6.
(a) Test for significance of regression using � � 0.05. What

is the P-value for this test?
(b) Use the t-test to assess the contribution of each regressor

to the model. Using � � 0.05, what conclusions can you
draw?

12-20. Consider the bearing wear data in Exercise 12-7
with no interaction.

�̂j �se 1�̂j2, j � 1, 2, 3

(a) Test for significance of regression using � � 0.05. What
is the P-value for this test? What are your conclusions?

(b) Compute the t-statistics for each regression coefficient.
Using � � 0.05, what conclusions can you draw?

(c) Use the extra sum of squares method to investigate the
usefulness of adding x2 � load to a model that already
contains x1 � oil viscosity. Use � � 0.05.

12-21. Reconsider the bearing wear data from Exercises
12-7 and 12-20.
(a) Refit the model with an interaction term. Test for signifi-

cance of regression using � � 0.05.
(b) Use the extra sum of squares method to determine

whether the interaction term contributes significantly to
the model. Use � � 0.05.

(c) Estimate �2 for the interaction model. Compare this to the
estimate of �2 from the model in Exercise 12-20.

12-22. Consider the wire bond pull strength data in
Exercise 12-8.
(a) Test for significance of regression using � � 0.05. Find

the P-value for this test. What conclusions can you draw?
(b) Calculate the t-test statistic for each regression coeffi-

cient. Using � � 0.05, what conclusions can you draw?
Do all variables contribute to the model?

12-23. Reconsider the semiconductor data in Exercise 
12-9.
(a) Test for significance of regression using � � 0.05. What

conclusions can you draw?
(b) Calcuate the t-test statistic for each regression coefficient.

Using � � 0.05, what conclusions can you draw?

12-24. Exercise 12-10 presents data on heat treating gears.
(a) Test the regression model for significance of regression.

Using � � 0.05, find the P-value for the test and draw
conclusions.

(b) Evaluate the contribution of each regressor to the model
using the t-test with � � 0.05.

(c) Fit a new model to the response PITCH using new
regressors x1 � SOAKTIME 
 SOAKPCT and x2 �
DIFFTIME 
 DIFFPCT.

(d) Test the model in part (c) for significance of regression
using � � 0.05. Also calculate the t-test for each regres-
sor and draw conclusions.

(e) Estimate �2 for the model from part (c) and compare this
to the estimate of �2 for the model in part (a). Which
estimate is smaller? Does this offer any insight regarding
which model might be preferable?

12-25. Data on National Hockey League team performance
was presented in Exercise 12-11.
(a) Test the model from this exercise for significance of

regression using � � 0.05. What conclusions can you
draw?

EXERCISES FOR SECTION 12-2
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12-3 CONFIDENCE INTERVALS IN MULTIPLE LINEAR REGRESSION 437

12-3 CONFIDENCE INTERVALS IN MULTIPLE LINEAR REGRESSION

12-3.1 Confidence Intervals on Individual Regression Coefficients

In multiple regression models, it is often useful to construct confidence interval estimates for
the regression coefficients The development of a procedure for obtaining these confi-
dence intervals requires that the errors are normally and independently distributed with
mean zero and variance �2. This is the same assumption required in hypothesis testing.
Therefore, the observations {Yi} are normally and independently distributed with mean �0 �gk

j�1 �jxij and variance �2. Since the least squares estimator is a linear combination of the
observations, it follows that is normally distributed with mean vector � and covariance 
matrix . Then each of the statistics

(12-33)

has a t distribution with n � p degrees of freedom, where Cjj is the jjth element of the 
matrix, and is the estimate of the error variance, obtained from Equation 12-16. This 
leads to the following 100(1 � �)% confidence interval for the regression coefficient 
�j, j � 0, 1, p , k.

�̂2
1X¿X2�1

T �
�̂j � �j2�̂2Cjj

  j � 0, 1, p , k

�21X¿X2�1
�̂

�̂

5�i6
5  �j 
6.

Because is the standard error of the regression coefficient , we would also write the 

CI formula as 

EXAMPLE 12-6 We will construct a 95% confidence interval on the parameter �1 in the wire bond pull strength
problem. The point estimate of �1 is and the diagonal element of 
corresponding to �1 is C11 � 0.001671. The estimate of �2 is and t0.025,22 � 2.074.
Therefore, the 95% CI on �1 is computed from Equation 12-34 as

which reduces to

2.55029 
 �1 
 2.93825

2.74427 � 12.0742215.23522 1.0016712 
 �1 
 2.74427 � 12.0742215.23522 1.0016712

�̂2 � 5.2352,
1X¿X2�1�̂1 � 2.74427

�̂j � t��2,n�p  se1�̂j2 
 �j 
 �̂j � t��2,n�p  se1�̂j2.
�̂j2�̂2Cjj

(b) Use the t-test to evaluate the contribution of each
regressor to the model. Does it seem that all regressors are
necessary? Use � � 0.05.

(c) Fit a regression model relating the number of games won
to the number of points scored and the number of power

play goals. Does this seem to be a logical choice of
regressors, considering your answer to part (b)? Test this
new model for significance of regression and evaluate the
contribution of each regressor to the model using the 
t-test. Use � � 0.05.

A 100(1 � �) % confidence interval on the regression coefficient �j,  j � 0, 1, p ,
k in the multiple linear regression model is given by

(12-34)�̂j � t��2,n�p2�̂2Cjj 
 �j 
 �̂j � t��2,n�p2�̂2Cjj

Definition
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438 CHAPTER 12 MULTIPLE LINEAR REGRESSION

12-3.2 Confidence Interval on the Mean Response

We may also obtain a confidence interval on the mean response at a particular point, say,
x01, x02, p , x0k. To estimate the mean response at this point, define the vector

The mean response at this point is which is estimated by

(12-35)

This estimator is unbiased, since and the variance of
is

(12-36)

A 100(1 � �) % CI on can be constructed from the statistic

(12-37)
�̂Y  0   x0

� �Y  0   x02�̂2
˛x¿0 1X¿X2 �1

 x0

�Y 0  x0

V1�̂Y 0  x0
2 � �2x¿01X¿X2�1x0

�̂Y 0  x0

E1x¿0�̂2 � x¿0� �  E1Y 0 x02 � �Y 0  x0

�̂Y  0  x0
� x¿0�̂

E1Y 0 x02 � �Y 0  x0
� x¿0�,

x0 �

1

x01Ex02U
o

x0k

Equation 12-38 is a CI about the regression plane (or hyperplane). It is the multiple regression
generalization of Equation 11-31.

EXAMPLE 12-7 The engineer in Example 12-1 would like to construct a 95% CI on the mean pull strength for
a wire bond with wire length x1 � 8 and die height x2 � 275. Therefore,

x0 � £
1

8

275

§

For the multiple linear regression model, a 100(1 � �)% confidence interval on the
mean response at the point x01, x02, . . . , x0k is

(12-38)
 �Y  0  x0

 �̂Y  0  x0

� t��2,n�p2�̂2
˛x¿0 1�¿�2 �1

 x0

�̂Y  0  x0
� t��2,n�p2�̂2

˛x¿0 1X¿X2�1
 x0

Definition
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12-4 PREDICTION OF NEW OBSERVATIONS 439

The estimated mean response at this point is found from Equation 12-35 as

The variance of is estimated by

Therefore, a 95% CI on the mean pull strength at this point is found from Equation 12-38 as

which reduces to

Some computer software packages will provide estimates of the mean for a point of interest x0

and the associated CI. Table 12-4 shows the Minitab output for Example 12-7. Both the esti-
mate of the mean and the 95% CI are provided.

12-4 PREDICTION OF NEW OBSERVATIONS

A regression model can be used to predict new or future observations on the response
variable Y corresponding to particular values of the independent variables, say, x01, x02, p , x0k.
If , a point estimate of the future observation Y0 at the point x01, 
x02, p , x0k is

(12-39)

A 100(1 � �)% prediction interval for this future observation is

ŷ0 � x¿0 ˛�̂

x¿0 � 31, x01, x02, p , x0k 4

26.66 
 �Y |x0

 28.66

27.66 � 2.074 10.23266 
 �Y 0  x0

 27.66 � 2.074 10.23266

� 5.2352 10.044442 � 0.23266


 £
.214653 �.007491 �.000340

�.007491 .001671 �.000019

�.000340 �.000019 .0000015

§ £
1

8

275

§ �̂2x0
¿ 1�¿�2�1x0 � 5.2352 31 8 275 4

�̂Y 0x0

�̂Y |x0
� x0

¿ �̂ � 31 8 275 4  £
2.26379

2.74427

0.01253

§ � 27.66

This prediction interval is a generalization of the prediction interval given in Equation 11-33
for a future observation in simple linear regression. If you compare the prediction interval
Equation 12-40 with the expression for the confidence interval on the mean, Equation 12-38,
you will observe that the prediction interval is always wider than the confidence interval. The
confidence interval expresses the error in estimating the mean of a distribution, while the pre-
diction interval expresses the error in predicting a future observation from the distribution at

(12-40)
 Y0 
 ŷ0 � t��2,n�p2�̂2
˛11 � x¿0  1�¿�2�1

 x02
ŷ0 � t��2,n�p2�̂2

˛11 � x¿0  1�¿�2�1
 x02
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440 CHAPTER 12 MULTIPLE LINEAR REGRESSION

the point x0. This must include the error in estimating the mean at that point, as well as the in-
herent variability in the random variable Y at the same value x � x0.

In predicting new observations and in estimating the mean response at a given point
x01, x02, . . . , x0k, we must be careful about extrapolating beyond the region containing the
original observations. It is very possible that a model that fits well in the region of the origi-
nal data will no longer fit well outside of that region. In multiple regression it is often easy to
inadvertently extrapolate, since the levels of the variables (xi1, xi2, . . . , xik), i � 1, 2, . . . , n,
jointly define the region containing the data. As an example, consider Fig. 12-5, which illus-
trates the region containing the observations for a two-variable regression model. Note that
the point (x01, x02) lies within the ranges of both regressor variables x1 and x2, but it is outside
the region that is actually spanned by the original observations. Thus, either predicting the
value of a new observation or estimating the mean response at this point is an extrapolation of
the original regression model.

EXAMPLE 12-8 Suppose that the engineer in Example 12-1 wishes to construct a 95% prediction interval on
the wire bond pull strength when the wire length is x1 � 8 and the die height is x2 � 275. Note
that � [1 8 275], and the point estimate of the pull strength is
Also, in Example 12-7 we calculated Therefore, from Equation
12-40 we have

and the 95% prediction interval is

Notice that the prediction interval is wider than the confidence interval on the mean response
at the same point, calculated in Example 12-7. The Minitab output in Table 12-4 also displays
this prediction interval.

22.81 
 Y0 
 32.51

27.66 � 2.074˛25.235211 � 0.044442 
 Y0 
 27.66 � 2.074 25.235211 � 0.044442

x¿0 1�¿�2�1x0 � 0.04444.
ŷ0 � x¿0 �̂ � 27.66.x¿0

x01

x01

x2

Joint region
of original area

Original range for x1

x1

O
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Figure 12-5 An example of extrapolation in 
multiple regression.
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12-5 MODEL ADEQUACY CHECKING 441

EXERCISES FOR SECTIONS 12-3 AND 12-4

12-26. Consider the soil absorption data in Exercise 12-2.
(a) Find a 95% confidence interval on the regression coeffi-

cient �1.
(b) Find a 95% confidence interval on mean soil absorption

index when x1 � 200 and x2 � 50.
(c) Find a 95% prediction interval on the soil absorption in-

dex when x1 � 200 and x2 � 50.

12-27. Consider the NFL data in Exercise 12-4.
(a) Find a 95% confidence interval on �8.
(b) What is the estimated standard error of when x2 � 

2000 yards, x7 � 60%, and x8 � 1800 yards?
(c) Find a 95% confidence interval on the mean number of

games won when x2 � 2000, x7 � 60, and x8 � 1800.

12-28. Consider the gasoline mileage data in Exercise 12-5.
(a) Find 99% confidence intervals on �1 and �6.
(b) Find a 99% confidence interval on the mean of Y when 

x1 � 300 and x6 � 4.
(c) Fit a new regression model to these data using x1, x2, x6,

and x10 as the regressors. Find 99% confidence intervals
on the regression coefficients in this new model.

(d) Compare the lengths of the confidence intervals on �1 and
�6 from part (c) with those found in part (a). Which inter-
vals are longer? Does this offer any insight about adding
the variables x2 and x10 to the model?

12-29. Consider the electric power consumption data in
Exercise 12-6.
(a) Find 95% confidence intervals on �1, �2, �3, and �4.
(b) Find a 95% confidence interval on the mean of Y when 

x1 � 75, x2 � 24, x3 � 90, and x4 � 98.
(c) Find a 95% prediction interval on the power consumption

when x1 � 75, x2 � 24, x3 � 90, and x4 � 98.

12-30. Consider the bearing wear data in Exercise 12-7.
(a) Find 99% confidence intervals on �1 and �2.
(b) Recompute the confidence intervals in part (a) after the in-

teraction term x1x2 is added to the model. Compare the
lengths of these confidence intervals with those computed
in part (a). Do the lengths of these intervals provide any
information about the contribution of the interaction term
in the model?

12-31. Consider the wire bond pull strength data in Exercise
12-8.
(a) Find 95% confidence interval on the regression coeffi-

cients.

�̂Y |x0

(b) Find a 95% confidence interval on mean pull strength
when x2 � 20, x3 � 30, x4 � 90 and x5 � 2.0.

(c) Find a 95% prediction interval on pull strength when x2 �
20, x3 � 30, x4 � 90, and x5 � 2.0.

12-32. Consider the semiconductor data in Exercise 12-9.
(a) Find 99% confidence intervals on the regression coeffi-

cients.
(b) Find a 99% prediction interval on HFE when x1 � 14.5,

x2 � 220, and x3 � 5.0.
(c) Find a 99% confidence interval on mean HFE when x1 �

14.5, x2 � 220, and x3 � 5.0.

12-33. Consider the heat treating data from Exercise 12-10.
(a) Find 95% confidence intervals on the regression coeffi-

cients.
(b) Find a 95% confidence interval on mean PITCH when

TEMP � 1650, SOAKTIME � 1.00, SOAKPCT �
1.10, DIFFTIME � 1.00, and DIFFPCT � 0.80.

12-34. Reconsider the heat treating data in Exercises 
12-10 and 12-24, where we fit a model to PITCH using 
regressors x1 � SOAKTIME 
 SOAKPCT and x2 �
DIFFTIME  
 DIFFPCT.
(a) Using the model with regressors x1 and x2, find a 95%

confidence interval on mean PITCH when SOAK-
TIME � 1.00, SOAKPCT � 1.10, DIFFTIME � 1.00,
and DIFFPCT � 0.80.

(b) Compare the length of this confidence interval with the
length of the confidence interval on mean PITCH at
the same point from Exercise 12-33 part (b), where an
additive model in SOAKTIME, SOAKPCT, DIFFTIME,
and DIFFPCT was used. Which confidence interval is
shorter? Does this tell you anything about which model
is preferable?

12-35. Consider the NHL data in Exercise 12-11.
(a) Find a 95% confidence interval on the regression coeffi-

cient for the variable “Pts.”
(b) Fit a simple linear regression model relating the response

variable “wins” to the regressor “Pts.”
(c) Find a 95% confidence interval on the slope for the simple

linear regression model from part (b).
(d) Compare the lengths of the two confidence intervals com-

puted in parts (a) and (c). Which interval is shorter? Does
this tell you anything about which model is preferable?

12-5 MODEL ADEQUACY CHECKING

12-5.1 Residual Analysis

The residuals from the multiple regression model, defined by , play an important
role in judging model adequacy just as they do in simple linear regression. As noted in Section
11-7.1, several residual plots are often useful; these are illustrated in Example 12-9. It is also

ei � yi � ŷi
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442 CHAPTER 12 MULTIPLE LINEAR REGRESSION

Figure 12-7 Plot of residuals against ŷ.

helpful to plot the residuals against variables not presently in the model that are possible
candidates for inclusion. Patterns in these plots may indicate that the model may be improved
by adding the candidate variable.

EXAMPLE 12-9 The residuals for the model from Example 12-1 are shown in Table 12-3. A normal probabil-
ity plot of these residuals is shown in Fig. 12-6. No severe deviations from normality are ob-
viously apparent, although the two largest residuals (e15 � 5.88 and e17 � 4.33) do not fall
extremely close to a straight line drawn through the remaining residuals.

The standardized residuals

Figure 12-6 Normal probability plot of residuals.

are often more useful than the ordinary residuals when assessing residual magnitude. The
standardized residuals corresponding to e15 and e17 are and

, and they do not seem unusually large. Inspection of the data
does not reveal any error in collecting observations 15 and 17, nor does it produce any other
reason to discard or modify these two points.

The residuals are plotted against in Fig. 12-7, and against x1 and x2 in Figs. 12-8 and
12-9, respectively.* The two largest residuals, e15 and e17, are apparent. Figure 12-8 gives
some indication that the model underpredicts the pull strength for assemblies with short wire
length and long wire length and overpredicts the strength for assemblies
with intermediate wire length . The same impression is obtained from Fig. 12-7.17 � x1 � 142

1x1 � 1521x1 � 62

ŷ

d17 � 4.33�14.2352 � 1.89
d15 � 5.88�15.2352 � 2.57

*There are other methods, described in Montgomery, Peck, and Vining (2001) and Myers (1990), that plot a modified
version of the residual, called a partial residual, against each regressor. These partial residual plots are useful in dis-
playing the relationship between the response y and each individual regressor.

(12-41)di �
ei2MSE

�
ei2�̂2
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12-5 MODEL ADEQUACY CHECKING 443

Either the relationship between strength and wire length is not linear (requiring that a term
involving x2

1, say, be added to the model), or other regressor variables not presently in the
model affected the response.

In Example 12-9 we used the standardized residuals as a measure of
residual magnitude. Some analysts prefer to plot standardized residuals instead of ordinary
residuals, because the standardized residuals are scaled so that their standard deviation is
approximately unity. Consequently, large residuals (that may indicate possible outliers or un-
usual observations) will be more obvious from inspection of the residual plots.

Many regression computer programs compute other types of scaled residuals. One of the
most popular is the studentized residual

di � ei�2	̂2

Figure 12-8 Plot of residuals against x1.

where hii is the ith diagonal element of the matrix

The H matrix is sometimes called the “hat” matrix, since

Thus H transforms the observed values of y into a vector of fitted values .
Since each row of the matrix X corresponds to a vector, say ,

another way to write the diagonal elements of the hat matrix is
x¿i � 31, xi1, xi2, p , xik 4

ŷ

ŷ � X�̂ � X˛1X¿X2�1
˛X¿y � Hy

H � � 1�¿�2�1
 �¿

(12-42)ri �
ei2	̂211 � hii2  i � 1, 2, p , n
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Figure 12-9 Plot of residuals against x2.

(12-43)hii � x¿i 1X¿X2�1xi

Note that apart from 	2, hii is the variance of the fitted value . The quantities hii were used in
the computation of the confidence interval on the mean response in Section 12-3.2.

ŷi

c12 .qxd  5/20/02  2:59 PM  Page 443 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



444 CHAPTER 12 MULTIPLE LINEAR REGRESSION

Under the usual assumptions that the model errors are independently distributed with
mean zero and variance �2, we can show that the variance of the ith residual ei is

Furthermore, the hii elements must fall in the interval 0 � hii 
 1. This implies that the stan-
dardized residuals understate the true residual magnitude; thus, the studentized residuals
would be a better statistic to examine in evaluating potential outliers.

To illustrate, consider the two observations identified in Example 12-9 as having residu-
als that might be unusually large, observations 15 and 17. The standardized residuals are

Now h15,15 � 0.0737 and h17,17 � 0.2593, so the studentized residuals are 

and

Notice that the studentized residuals are larger than the corresponding standardized residuals.
However, the studentized residuals are still not so large as to cause us serious concern about
possible outliers.

12-5.2 Influential Observations

When using multiple regression, we occasionally find that some subset of the observations is
unusually influential. Sometimes these influential observations are relatively far away from
the vicinity where the rest of the data were collected. A hypothetical situation for two variables
is depicted in Fig. 12-10, where one observation in x-space is remote from the rest of the data.
The disposition of points in the x-space is important in determining the properties of the
model. For example, point (xi1, xi2) in Fig. 12-10 may be very influential in determining R2, the
estimates of the regression coefficients, and the magnitude of the error mean square.

r17 �
e172�̂211 � h17,172 �

4.3325.235211 � 0.25932 � 2.20

r15 �
e152�̂211 � h15,152 �

5.8825.235211 � 0.07372 � 2.67

d15 �
e152�̂2

�
5.8825.2352

� 2.57  and  d17 �
e172MSE

�
4.3325.2352

� 1.89

V˛1ei2 � �211 � hii2,  i � 1, 2, p , n

 x i1 x1

xi2

x2

Region containing
all observations
except the ith

Figure 12-10 A
point that is remote in
x-space.
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12-5 MODEL ADEQUACY CHECKING 445

We would like to examine the influential points to determine whether they control many
model properties. If these influential points are “bad” points, or erroneous in any way, they should
be eliminated. On the other hand, there may be nothing wrong with these points, but at least we
would like to determine whether or not they produce results consistent with the rest of the data. In
any event, even if an influential point is a valid one, if it controls important model properties, we
would like to know this, since it could have an impact on the use of the model.

Montgomery, Peck, and Vining (2001) and Myers (1990) describe several methods for
detecting influential observations. An excellent diagnostic is the distance measure developed
by Dennis R. Cook. This is a measure of the squared distance between the usual least squares
estimate of � based on all n observations and the estimate obtained when the ith point is re-
moved, say, . The Cook distance measure is�̂1i2

Clearly, if the ith point is influential, its removal will result in changing considerably from 

the value . Thus, a large value of Di implies that the ith point is influential. The statistic Di is
actually computed using

�̂

�̂1i2

Di �
1�̂ 1i2 � �̂2 ¿X¿X1�̂ 1i2 � �̂2

p�̂2   i � 1, 2, p , n

(12-44)Di �
ri

2

p  
hii

11 � hii2  i � 1, 2, p , n

From Equation 12-44 we see that Di consists of the squared studentized residual, which 
reflects how well the model fits the ith observation yi [recall that and a
component that measures how far that point is from the rest of the data is a
measure of the distance of the ith point from the centroid of the remaining n � 1 points]. A
value of Di � 1 would indicate that the point is influential. Either component of Di (or both)
may contribute to a large value.

EXAMPLE 12-10 Table 12-11 lists the values of the hat matrix diagonals hii and Cook’s distance measure Di for
the wire bond pull strength data in Example 12-1. To illustrate the calculations, consider the
first observation:

The Cook distance measure Di does not identify any potentially influential observations in the
data, for no value of Di exceeds unity.

 � 0.035

 �
31.57�25.235211 � 0.15732 42

3
˛ 	 ˛

0.1573

11 � 0.15732

 � �
3e1�2MSE 11 � h112 42

p ˛ 	
h1111 � h112

 D1 �
r2

1

p ˛ 	 ˛

h1111 � h112

3hii� 11 � hii2
ri � ei�2�̂211 � hii2 4
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446 CHAPTER 12 MULTIPLE LINEAR REGRESSION

EXERCISES FOR SECTION 12-5

12-36. Consider the regression model for the NFL data in
Exercise 12-4.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?
(c) Plot the residuals versus and versus each regressor, and

comment on model adequacy.
(d) Are there any influential points in these data?

12-37. Consider the gasoline mileage data in Exercise 12-5.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals and

comment on the normality assumption.
(c) Plot residuals versus and versus each regressor. Discuss

these residual plots.
(d) Calculate Cook’s distance for the observations in this data

set. Are any observations influential?

12-38. Consider the electric power consumption data in
Exercise 12-6.

(a) Calculate R2 for this model. Interpret this quantity.
(b) Plot the residuals versus . Interpret this plot.
(c) Construct a normal probability plot of the residuals and

comment on the normality assumption.

12-39. Consider the wear data in Exercise 12-7.
(a) Find the value of R2 when the model uses the regressors x1

and x2.
(b) What happens to the value of R2 when an interaction term

x1x2 is added to the model? Does this necessarily imply
that adding the interaction term is a good idea?

ŷ

ŷ

ŷ

12-40. For the regression model for the wire bond pull
strength data in Exercise 12-8.
(a) Plot the residuals versus and versus the regressors used in

the model. What information do these plots provide?
(b) Construct a normal probability plot of the residuals. Are

there reasons to doubt the normality assumption for this
model?

(c) Are there any indications of influential observations in the
data?

12-41. Consider the semiconductor HFE data in Exercise
12-9.
(a) Plot the residuals from this model versus . Comment on

the information in this plot.
(b) What is the value of R2 for this model?
(c) Refit the model using log HFE as the response variable.
(d) Plot the residuals versus predicted log HFE for the model

in part (c). Does this give any information about which
model is preferable?

(e) Plot the residuals from the model in part (d) versus the re-
gressor x3. Comment on this plot.

(f ) Refit the model to log HFE using x1, x2, and 1�x3, as the re-
gressors. Comment on the effect of this change in the model.

12-42. Consider the regression model for the heat treating
data in Exercise 12-10.
(a) Calculate the percent of variability explained by this model.
(b) Construct a normal probability plot for the residuals.

Comment on the normality assumption.
(c) Plot the residuals versus and interpret the display.
(d) Calculate Cook’s distance for each observation and pro-

vide an interpretation of this statistic.

ŷ

ŷ

ŷ

Table 12-11 Influence Diagnostics for the Wire Bond Pull Strength Data 2

Observations Cook’s Distance Measure Observations Cook’s Distance Measure
i hii Di i hii Di

1 0.1573 0.035 14 0.1129 0.003
2 0.1116 0.012 15 0.0737 0.187
3 0.1419 0.060 16 0.0879 0.001
4 0.1019 0.021 17 0.2593 0.565
5 0.0418 0.024 18 0.2929 0.155
6 0.0749 0.007 19 0.0962 0.018
7 0.1181 0.036 20 0.1473 0.000
8 0.1561 0.020 21 0.1296 0.052
9 0.1280 0.160 22 0.1358 0.028

10 0.0413 0.001 23 0.1824 0.002
11 0.0925 0.013 24 0.1091 0.040
12 0.0526 0.001 25 0.0729 0.000
13 0.0820 0.001
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12-6 ASPECTS OF MULTIPLE REGRESSION MODELING 447

12-43. In Exercise 12-24 we fit a model to the response
PITCH in the heat treating data of Exercise 12-10 using new
regressors x1 � SOAKTIME 
 SOAKPCT and x2 � DIFF-
TIME 
 DIFFPCT.
(a) Calculate the R2 for this model and compare it to the

value of R2 from the original model in Exercise 12-10.
Does this provide some information about which model
is preferable?

(b) Plot the residuals from this model versus and on a
normal probability scale. Comment on model adequacy.

(c) Find the values of Cook’s distance measure. Are any ob-
servations unusually influential?

12-44. Consider the regression model for the NHL data
from Exercise 12-11.
(a) Fit a model using “pts” as the only regressor.
(b) How much variability is explained by this model?

ŷ

(c) Plot the residuals versus and comment on model
adequacy.

(d) Plot the residuals versus “PPG,” the points scored while in
power play. Does this indicate that the model would be
better if this variable were included?

12-45. The diagonal elements of the hat matrix are often
used to denote leverage—that is, a point that is unusual in its
location in the x-space and that may be influential. Generally,
the ith point is called a leverage point if its hat diagonal 
hii exceeds 2p/n, which is twice the average size of all the hat
diagonals. Recall that p � k � 1.

(a) Table 12-11 contains the hat diagonal for the wire bond
pull strength data used in Example 12-1. Find the average
size of these elements.

(b) Based on the criterion above, are there any observations
that are leverage points in the data set?

ŷ

12-6 ASPECTS OF MULTIPLE REGRESSION MODELING

In this section we briefly discuss several other aspects of building multiple regression models.
For more extensive presentations of these topics and additional examples refer to Montgomery,
Peck, and Vining (2001) and Myers (1990).

12-6.1 Polynomial Regression Models

The linear model is a general model that can be used to fit any relationship that
is linear in the unknown parameters �. This includes the important class of polynomial
regression models. For example, the second-degree polynomial in one variable

(12-45)

and the second-degree polynomial in two variables

(12-46)

are linear regression models.
Polynomial regression models are widely used when the response is curvilinear, because

the general principles of multiple regression can be applied. The following example illustrates
some of the types of analyses that can be performed.

EXAMPLE 12-11 Sidewall panels for the interior of an airplane are formed in a 1500-ton press. The unit man-
ufacturing cost varies with the production lot size. The data shown below give the average
cost per unit (in hundreds of dollars) for this product ( y) and the production lot size (x). The
scatter diagram, shown in Fig. 12-11, indicates that a second-order polynomial may be
appropriate.

y 1.81 1.70 1.65 1.55 1.48 1.40 1.30 1.26 1.24 1.21 1.20 1.18

x 20 25 30 35 40 50 60 65 70 75 80 90

Y � �0 � �1x1 � �2x2 � �11x2
1 � �22x2

2 � �12x1x2 � �

Y � �0 � �1x � �11x
2 � �

y � X� � �
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448 CHAPTER 12 MULTIPLE LINEAR REGRESSION

We will fit the model

The y vector, X matrix, and � vector are as follows:

Solving the normal equations gives the fitted model

The test for significance of regression is shown in Table 12-12. Since f0 � 2171.07 is signifi-
cant at 1%, we conclude that at least one of the parameters �1 and �11 is not zero. Furthermore,
the standard tests for model adequacy do not reveal any unusual behavior, and we would con-
clude that this is a reasonable model for the sidewall panel cost data.

ŷ � 2.19826629 � 0.02252236x � 0.00012507˛x2

X¿X�̂ � X¿y

y �  

1.81

1.70

1.65

1.55

1.48

1.40

1.30

1.26

1.24

1.21

1.20

1.18

   X �  

1 20 400

1 25 625

1 30 900

1 35 1225

1 40 1600

1 50 2500

1 60 3600

1 65 4225

1 70 4900

1 75 5625

1 80 6400

1 90 8100

   � � £
�0

�1

�11

§

Y � �0 � �1x � �11x
2 � �

Figure 12-11 Data for Example 12-11.
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12-6 ASPECTS OF MULTIPLE REGRESSION MODELING 449

In fitting polynomials, we generally like to use the lowest-degree model consistent with
the data. In this example, it would seem logical to investigate the possibility of dropping the
quadratic term from the model. That is, we would like to test

The general regression significance test can be used to test this hypothesis. We need to deter-
mine the “extra sum of squares” due to �11, or

The sum of squares from Table 12-12. To find , we fit a
simple linear regression model to the original data, yielding

It can be easily verified that the regression sum of squares for this model is

Therefore, the extra sum of the squares due to �11, given that �1 and �0 are in the model, is

The analysis of variance, with the test of H0: �11 � 0 incorporated into the procedure, is
displayed in Table 12-13. Note that the quadratic term contributes significantly to the model.

 � 0.0312
 � 0.5254 � 0.4942

SSR 
1�11 0 �1,�02 � SSR 

1�1,�11 0 �02 � SSR 
1�1 0 �02

SSR1�1 0  �02 � 0.4942

ŷ � 1.90036320 � 0.00910056x

SSR1�1 0  �02SSR1�1,�11 0 �02 � 0.5254

SSR1�11 0  �1,�02 � SSR1�1,�11 0 �02 � SSR1�1 0 �02

H1: �11 
 0

H0: �11 � 0

Table 12-12 Test for Significance of Regression for the Second-Order Model in Example 12-11

Source of Sum of Degrees of Mean
Variation Squares Freedom Square f0 P-value

Regression 0.5254 2 0.262700 2171.07 5.18E-15
Error 0.0011 9 0.000121
Total 0.5265 11

Table 12-13 Analysis of Variance for Example 12-11, Showing the Test for H0: �11 � 0

Source of Degrees of Mean
Variation Sum of Squares Freedom Square f0 P-value

Regression 2 0.262700 2171.07 5.18E-15
Linear 1 0.494200 4084.30 1.17E-15
Quadratic 1 0.031200 258.18 5.51E-9

Error 0.0011 9 0.00121
Total 0.5265 11

SSR1�11 0  �0,�12 � 0.0312
SSR1�1 0  �02 � 0.4942

SSR1�1,�11 0  �02 � 0.5254
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450 CHAPTER 12 MULTIPLE LINEAR REGRESSION

12-6.2 Categorical Regressors and Indicator Variables

The regression models presented in previous sections have been based on quantitative vari-
ables, that is, variables that are measured on a numerical scale. For example, variables such as
temperature, pressure, distance, and voltage are quantitative variables. Occasionally, we need
to incorporate categorical, or qualitative, variables in a regression model. For example, sup-
pose that one of the variables in a regression model is the operator who is associated with each
observation yi. Assume that only two operators are involved. We may wish to assign different
levels to the two operators to account for the possibility that each operator may have a differ-
ent effect on the response.

The usual method of accounting for the different levels of a qualitative variable is to use
indicator variables. For example, to introduce the effect of two different operators into a
regression model, we could define an indicator variable as follows:

In general, a qualitative variable with r-levels can be modeled by r � 1 indicator variables,
which are assigned the value of either zero or one. Thus, if there are three operators, the
different levels will be accounted for by the two indicator variables defined as follows:

x1 x2

if the observation is from operator 1

if the observation is from operator 2

if the observation is from operator 3

Indicator variables are also referred to as dummy variables. The following example [from
Montgomery, Peck, and Vining (2001)] illustrates some of the uses of indicator variables; for
other applications, see Montgomery, Peck, and Vining (2001).

EXAMPLE 12-12 A mechanical engineer is investigating the surface finish of metal parts produced on a lathe
and its relationship to the speed (in revolutions per minute) of the lathe. The data are shown in
Table 12-14. Note that the data have been collected using two different types of cutting tools.
Since the type of cutting tool likely affects the surface finish, we will fit the model

where Y is the surface finish, x1 is the lathe speed in revolutions per minute, and x2 is an
indicator variable denoting the type of cutting tool used; that is,

The parameters in this model may be easily interpreted. If x2 � 0, the model becomes

which is a straight-line model with slope �1 and intercept �0. However, if x2 � 1, the model
becomes

Y � �0 � �1x1 � �2112 � � � 1�0 � �22 � �1x1 � �

Y � �0 � �1x1 � �

x2 � e0, for tool type 302

1, for tool type 416

Y � �0 � �1x1 � �2x2 � �

0  1

1  0

0  0

x � e0 if the observation is from operator 1

1 if the observation is from operator 2
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12-6 ASPECTS OF MULTIPLE REGRESSION MODELING 451

which is a straight-line model with slope �1 and intercept . Thus, the model
implies that surface finish is linearly related to lathe speed and

that the slope �1 does not depend on the type of cutting tool used. However, the type of cut-
ting tool does affect the intercept, and �2 indicates the change in the intercept associated with
a change in tool type from 302 to 416.

The X matrix and y vector for this problem are as follows:

The fitted model is

ŷ � 14.27620 � 0.14115x1 � 13.28020x2

X �  

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

225

200

250

245

235

237

265

259

221

218

224

212

248

260

243

238

224

251

232

216

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

  y �  

45.44

42.03

50.10

48.75

47.92

47.79

52.26

50.52

45.58

44.78

33.50

31.23

37.52

37.13

34.70

33.92

32.13

35.47

33.49

32.29

Y � �0 � �1x � �2 x2 � �
�0 � �2

Table 12-14 Surface Finish Data for Example 12-13

Observation Surface Finish Type of Cutting Observation Surface Finish Type of Cutting
Number, i yi RPM Tool Number, i yi RPM Tool

1 45.44 225 302 11 33.50 224 416
2 42.03 200 302 12 31.23 212 416
3 50.10 250 302 13 37.52 248 416
4 48.75 245 302 14 37.13 260 416
5 47.92 235 302 15 34.70 243 416
6 47.79 237 302 16 33.92 238 416
7 52.26 265 302 17 32.13 224 416
8 50.52 259 302 18 35.47 251 416
9 45.58 221 302 19 33.49 232 416

10 44.78 218 302 20 32.29 216 416
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452 CHAPTER 12 MULTIPLE LINEAR REGRESSION

The analysis of variance for this model is shown in Table 12-15. Note that the hypothesis
(significance of regression) would be rejected at any reasonable level of 

significance because the P-value is very small. This table also contains the sums of squares

so a test of the hypothesis can be made. Since this hypothesis is also rejected, we
conclude that tool type has an effect on surface finish.

It is also possible to use indicator variables to investigate whether tool type affects both
the slope and intercept. Let the model be

where x2 is the indicator variable. Now if tool type 302 is used, x2 � 0, and the model is

If tool type 416 is used, x2 � 1, and the model becomes

Note that �2 is the change in the intercept and that �3 is the change in slope produced by a
change in tool type.

Another method of analyzing these data is to fit separate regression models to the data
for each tool type. However, the indicator variable approach has several advantages. First,
only one regression model must be fit. Second, by pooling the data on both tool types,
more degrees of freedom for error are obtained. Third, tests of both hypotheses on the
parameters �2 and �3 are just special cases of the extra sum of squares method.

12-6.3 Selection of Variables and Model Building

An important problem in many applications of regression analysis involves selecting the set of
regressor variables to be used in the model. Sometimes previous experience or underlying
theoretical considerations can help the analyst specify the set or regressor variables to use in a
particular situation. Usually, however, the problem consists of selecting an appropriate set of

 � 1�0 � �22 � 1�1 � �32  x1 � �
  Y � �0 � �1 x1 � �2 � �3 x1 � �

 Y � �0 � �1x1 � �

Y � �0 � �1 
x1 � �2 

x2 � �3 x1 x2 � �

H0: �2 � 0

 � SSR 
1�1 0�02 � SSR 

1�2 0�1,�02
 SSR � SSR 

1�1,�2 0 �02

H0: �1 � �2 � 0

Table 12-15 Analysis of Variance of Example 12-12

Source of Degrees of Mean
Variation Sum of Squares Freedom Square f0 P-value

Regression 1012.0595 2 506.0297 1103.69 1.02E-18
130.6091 1 130.6091 284.87 4.70E-12
881.4504 1 881.4504 1922.52 6.24E-19

Error 7.7943 17 0.4508
Total 1019.8538 19

SSR1�2 0  �1,�02

SSR1�1 0  �02
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12-6 ASPECTS OF MULTIPLE REGRESSION MODELING 453

regressors from a set that quite likely includes all the important variables, but we are sure that
not all these candidate regressors are necessary to adequately model the response Y.

In such a situation, we are interested in variable selection; that is, screening the candidate
variables to obtain a regression model that contains the “best” subset of regressor variables. We
would like the final model to contain enough regressor variables so that in the intended use of the
model (prediction, for example) it will perform satisfactorily. On the other hand, to keep model
maintenance costs to a minimum and to make the model easy to use, we would like the model to
use as few regressor variables as possible. The compromise between these conflicting objectives
is often called finding the “best” regression equation. However, in most problems, no single
regression model is “best” in terms of the various evaluation criteria that have been proposed. A
great deal of judgment and experience with the system being modeled is usually necessary to
select an appropriate set of regressor variables for a regression equation.

No single algorithm will always produce a good solution to the variable selection problem.
Most of the currently available procedures are search techniques, and to perform satisfactorily,
they require interaction with judgment by the analyst. We now briefly discuss some of the more
popular variable selection techniques. We assume that there are K candidate regressors, x1, x2,
p , xK, and a single response variable y. All models will include an intercept term �0, so the
model with all variables included would have K � 1 terms. Furthermore, the functional form of
each candidate variable (for example, x1 � 1�x, x2 � ln x, etc.) is correct.

All Possible Regressions
This approach requires that the analyst fit all the regression equations involving one candidate
variable, all regression equations involving two candidate variables, and so on. Then these
equations are evaluated according to some suitable criteria to select the “best” regression
model. If there are K candidate regressors, there are 2K total equations to be examined. For
example, if K � 4, there are 24 � 16 possible regression equations; while if K � 10, there are
210 � 1024 possible regression equations. Hence, the number of equations to be examined
increases rapidly as the number of candidate variables increases. However, there are some
very efficient computing algorithms for all possible regressions available and they are widely
implemented in statistical software, so it is a very practical procedure unless the number of
candidate regressors is fairly large.

Several criteria may be used for evaluating and comparing the different regression mod-
els obtained. A commonly used criterion is based on the value of R2 or the value of the
adjusted R2, R2

adj. Basically, the analyst continues to increase the number of variables in the
model until the increase in R2 or the adjusted R2

adj is small. Often, we will find that the R2
adj will

stabilize and actually begin to decrease as the number of variables in the model increases.
Usually, the model that maximizes R2

adj is considered to be a good candidate for the best re-
gression equation. Because we can write R2

adj � 1 � {MSE� [SSE�(n � 1)]} and SSE�(n � 1)
is a constant, the model that maximizes the R2

adj value also minimizes the mean square error,
so this is a very attractive criterion.

Another criterion used to evaluate regression models is the Cp statistic, which is a meas-
ure of the total mean square error for the regression model. We define the total standardized
mean square error for the regression model as

 �
1

�2  3 1bias22 � variance 4
 �

1

�2 e a
n

i�1
3E1Yi2 � E 1Ŷi2 42 � a

n

i�1
V 1Ŷi2 f

 �p �
1

�2 a
n

i�1
E 3 Ŷi � E 1Yi2 42
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454 CHAPTER 12 MULTIPLE LINEAR REGRESSION

We use the mean square error from the full K � 1 term model as an estimate of � 2; that is,
Then an estimator of �p is [see Montgomery, Peck, and Vining (2001) or

Myers (1990) for the details]:
�̂2 � MSE 

1K � 12.

If the p-term model has negligible bias, it can be shown that

Therefore, the values of Cp for each regression model under consideration should be evaluated
relative to p. The regression equations that have negligible bias will have values of Cp that are
close to p, while those with significant bias will have values of Cp that are significantly greater
than p. We then choose as the “best” regression equation either a model with minimum Cp or
a model with a slightly larger Cp, that does not contain as much bias (i.e., ).

The PRESS statistic can also be used to evaluate competing regression models. PRESS is
an acronym for Prediction Error Sum of Squares, and it is defined as the sum of the squares of
the differences between each observation yi and the corresponding predicted value based on a
model fit to the remaining n � 1 points, say . So PRESS provides a measure of how well
the model is likely to perform when predicting new data, or data that was not used to fit the
regression model. The computing formula for PRESS is

ŷ1i2

Cp � p

E 1Cp 0  zero bias2 � p

where is the usual residual. Thus PRESS is easy to calculate from the standard
least squares regression results. Models that have small values of PRESS are preferred.

EXAMPLE 12-13 Table 12-16 presents data on taste-testing 38 brands of pinot noir wine (the data were first
reported in an article by Kwan, Kowalski, and Skogenboe in an article in the Journal of Agri-
cultural and Food Chemistry, Vol. 27, 1979, and it also appears as one of the default data sets
in Minitab). The response variable is y � quality, and we wish to find the “best” regression
equation that relates quality to the other five parameters.

Figure 12-12 is the matrix of scatter plots for the wine quality data, as constructed by
Minitab. We notice that there are some indications of possible linear relationships between
quality and the regressors, but there is no obvious visual impression of which regressors
would be appropriate. Table 12-16 lists the all possible regressions output from Minitab. In
this analysis, we asked Minitab to present the best three equations for each subset size. Note
that Minitab reports the values of R2, R2

adj, Cp, and for each model. From Table
12-17 we see that the three-variable equation with x2 � aroma, x4 � flavor, and x5 � oaki-
ness produces the minimum Cp equation, whereas the four-variable model, which adds

S � 1MSE

ei � yi � ŷi

(12-47)Cp �
SSE 1p2

�̂2 � n � 2p

PRESS � a
n

i�1
1 yi � ŷ1i222 � a

n

i�1
a ei

1 � hii
b2
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12-6 ASPECTS OF MULTIPLE REGRESSION MODELING 455

x1 � clarity to the previous three regressors, results in maximum R2
adj (or minimum MSE). The

three-variable model is

and the four-variable model is

ŷ � 4.99 � 1.79 x1 � 0.530 x2 � 1.26 x4 � 0.659 x5

ŷ � 6.47 � 0.580 x2 � 1.20 x4 � 0.602 x5

Table 12-16 Wine Quality Data

x1 x2 x3 x4 x5 y
Clarity Aroma Body Flavor Oakiness Quality

1 1.0 3.3 2.8 3.1 4.1 9.8
2 1.0 4.4 4.9 3.5 3.9 12.6
3 1.0 3.9 5.3 4.8 4.7 11.9
4 1.0 3.9 2.6 3.1 3.6 11.1
5 1.0 5.6 5.1 5.5 5.1 13.3
6 1.0 4.6 4.7 5.0 4.1 12.8
7 1.0 4.8 4.8 4.8 3.3 12.8
8 1.0 5.3 4.5 4.3 5.2 12.0
9 1.0 4.3 4.3 3.9 2.9 13.6

10 1.0 4.3 3.9 4.7 3.9 13.9
11 1.0 5.1 4.3 4.5 3.6 14.4
12 0.5 3.3 5.4 4.3 3.6 12.3
13 0.8 5.9 5.7 7.0 4.1 16.1
14 0.7 7.7 6.6 6.7 3.7 16.1
15 1.0 7.1 4.4 5.8 4.1 15.5
16 0.9 5.5 5.6 5.6 4.4 15.5
17 1.0 6.3 5.4 4.8 4.6 13.8
18 1.0 5.0 5.5 5.5 4.1 13.8
19 1.0 4.6 4.1 4.3 3.1 11.3
20 0.9 3.4 5.0 3.4 3.4 7.9
21 0.9 6.4 5.4 6.6 4.8 15.1
22 1.0 5.5 5.3 5.3 3.8 13.5
23 0.7 4.7 4.1 5.0 3.7 10.8
24 0.7 4.1 4.0 4.1 4.0 9.5
25 1.0 6.0 5.4 5.7 4.7 12.7
26 1.0 4.3 4.6 4.7 4.9 11.6
27 1.0 3.9 4.0 5.1 5.1 11.7
28 1.0 5.1 4.9 5.0 5.1 11.9
29 1.0 3.9 4.4 5.0 4.4 10.8
30 1.0 4.5 3.7 2.9 3.9 8.5
31 1.0 5.2 4.3 5.0 6.0 10.7
32 0.8 4.2 3.8 3.0 4.7 9.1
33 1.0 3.3 3.5 4.3 4.5 12.1
34 1.0 6.8 5.0 6.0 5.2 14.9
35 0.8 5.0 5.7 5.5 4.8 13.5
36 0.8 3.5 4.7 4.2 3.3 12.2
37 0.8 4.3 5.5 3.5 5.8 10.3
38 0.8 5.2 4.8 5.7 3.5 13.2
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456 CHAPTER 12 MULTIPLE LINEAR REGRESSION

Table 12-17 Minitab All Possible Regressions Output for the Wine Quality Data

Best Subsets Regression: Quality versus Clarity, Aroma, . . .

Response is Quality

O
C  a
l F k
a A l i
r r B a n
i o o v e
t m d o s

Vars R-Sq R-Sq (adj) C–p S y a y r s
1 62.4 61.4 9.0 1.2712 X X X X X
1 50.0 48.6 23.2 1.4658 X X X X X
1 30.1 28.2 46.0 1.7335 X X X X X
2 66.1 64.2 6.8 1.2242 X X X X X
2 65.9 63.9 7.1 1.2288 X X X X X
2 63.3 61.2 10.0 1.2733 X X X X X
3 70.4 67.8 3.9 1.1613 X X X X X
3 68.0 65.2 6.6 1.2068 X X X X X
3 66.5 63.5 8.4 1.2357 X X X X X
4 71.5 68.0 4.7 1.1568 X X X X X
4 70.5 66.9 5.8 1.1769 X X X X X
4 69.3 65.6 7.1 1.1996 X X X X X
5 72.1 67.7 6.0 1.1625 X X X X X

3.675

9.95
14.05

5.225

3.925

5.975

3.6

5.6

4.4

6.6

0.625

Quality
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Flavor

Oakiness

0.875

9.95

14.05

0.625
0.875 4.4 6.6 3.6 5.6

3.925
5.975

3.675
5.225

Figure 12-12
A Matrix of Scatter
Plots from Minitab for
the Wine Quality Data.
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12-6 ASPECTS OF MULTIPLE REGRESSION MODELING 457

These models should now be evaluated further using residuals plots and the other tech-
niques discussed earlier in the chapter, to see if either model is satisfactory with respect to the
underlying assumptions and to determine if one of them is preferable. It turns out that the
residual plots do not reveal any major problems with either model. The value of PRESS for
the three-variable model is 56.0525 and for the four-variable model it is 60.3927. Since
PRESS is smaller in the model with three regressors, and since it is the model with the fewest
predictors, it would likely be the preferred choice.

Stepwise Regression
Stepwise regression is probably the most widely used variable selection technique. The pro-
cedure iteratively constructs a sequence of regression models by adding or removing variables
at each step. The criterion for adding or removing a variable at any step is usually expressed
in terms of a partial F-test. Let fin be the value of the F-random variable for adding a variable
to the model, and let fout be the value of the F-random variable for removing a variable from
the model. We must have fin � fout, and usually fin � fout.

Stepwise regression begins by forming a one-variable model using the regressor variable
that has the highest correlation with the response variable Y. This will also be the regressor
producing the largest F-statistic. For example, suppose that at this step, x1 is selected. At the
second step, the remaining K � 1 candidate variables are examined, and the variable for
which the partial F-statistic

(12-48)

is a maximum is added to the equation, provided that fj � fin. In equation 12-48, MSE (xj, x1)
denotes the mean square for error for the model containing both x1 and xj. Suppose that this
procedure indicates that x2 should be added to the model. Now the stepwise regression algo-
rithm determines whether the variable x1 added at the first step should be removed. This is
done by calculating the F-statistic

(12-49)

If the calculated value f1 	 fout, the variable x1 is removed; otherwise it is retained, and we
would attempt to add a regressor to the model containing both x1 and x2.

In general, at each step the set of remaining candidate regressors is examined, and the
regressor with the largest partial F-statistic is entered, provided that the observed value of 
f exceeds fin. Then the partial F-statistic for each regressor in the model is calculated, and the
regressor with the smallest observed value of F is deleted if the observed f 	 fout. The
procedure continues until no other regressors can be added to or removed from the model.

Stepwise regression is almost always performed using a computer program. The analyst
exercises control over the procedure by the choice of fin and fout. Some stepwise regression
computer programs require that numerical values be specified for fin and fout. Since the num-
ber of degrees of freedom on MSE depends on the number of variables in the model, which
changes from step to step, a fixed value of fin and fout causes the type I and type II error rates
to vary. Some computer programs allow the analyst to specify the type I error levels for fin and
fout. However, the “advertised” significance level is not the true level, because the variable
selected is the one that maximizes (or minimizes) the partial F-statistic at that stage.
Sometimes it is useful to experiment with different values of fin and fout (or different advertised

F1 �
SSR 
1�1 0�2,�02

MSE 
1x1, x22

Fj �
SSR 
1�j 0�1,�02

MSE 
1xj, x12
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458 CHAPTER 12 MULTIPLE LINEAR REGRESSION

type I error rates) in several different runs to see if this substantially affects the choice of the
final model.

EXAMPLE 12-14 Table 12-18 gives the Minitab stepwise regression output for the wine quality data. Minitab uses
fixed values of � for entering and removing variables. The default level is � � 0.15 for both de-
cisions. The output in Table 12-18 uses the default value. Notice that the variables were entered in
the order Flavor (step 1), Oakiness (step 2), and Aroma (step 3) and that no variables were re-
moved. No other variable could be entered, so the algorithm terminated. This is the three-variable
model found by all possible regressions that results in a minimum value of Cp.

Forward Selection
The forward selection procedure is a variation of stepwise regression and is based on the
principle that regressors should be added to the model one at a time until there are no remain-
ing candidate regressors that produce a significant increase in the regression sum of squares.
That is, variables are added one at a time as long as their partial F-value exceeds fin. Forward
selection is a simplification of stepwise regression that omits the partial F-test for deleting
variables from the model that have been added at previous steps. This is a potential weakness
of forward selection; that is, the procedure does not explore the effect that adding a regressor
at the current step has on regressor variables added at earlier steps. Notice that if we were to
apply forward selection to the wine quality data, we would obtain exactly the same results as
we did with stepwise regression in Example 12-14, since stepwise regression terminated
without deleting a variable.

Table 12-18 Minitab Stepwise Regression Output for the
Wine Quality Data

Stepwise Regression: Quality versus Clarity, Aroma, . . .

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15

Response is Quality on 5 predictors, with N � 38

Step 1 2 3
Constant 4.941 6.912 6.467

Flavor 1.57 1.64 1.20
T-Value 7.73 8.25 4.36
P-Value 0.000 0.000 0.000

Oakiness �0.54 �0.60
T-Value �1.95 �2.28
P-Value 0.059 0.029

Aroma 0.58
T-Value 2.21
P-Value 0.034

S 1.27 1.22 1.16
R-Sq 62.42 66.11 70.38
R-Sq(adj) 61.37 64.17 67.76
C–p 9.0 6.8 3.9
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12-6 ASPECTS OF MULTIPLE REGRESSION MODELING 459

Backward Elimination
The backward elimination algorithm begins with all K candidate regressors in the model. Then
the regressor with the smallest partial F-statistic is deleted if this F-statistic is insignificant, that
is, if f � fout. Next, the model with K � 1 regressors is fit, and the next regressor for potential
elimination is found. The algorithm terminates when no further regressor can be deleted.

Table 12-19 shows the Minitab output for backward elimination applied to the wine quality
data. The � value for removing a variable is � � 0.10. Notice that this procedure removes Body at
step 1 and then Clarity at step 2, terminating with the three-variable model found previously.

Some Comments on Final Model Selection
We have illustrated several different approaches to the selection of variables in multiple linear
regression. The final model obtained from any model-building procedure should be subjected
to the usual adequacy checks, such as residual analysis, lack-of-fit testing, and examination of
the effects of influential points. The analyst may also consider augmenting the original set of
candidate variables with cross-products, polynomial terms, or other transformations of the
original variables that might improve the model. A major criticism of variable selection meth-
ods such as stepwise regression is that the analyst may conclude there is one “best” regression
equation. Generally, this is not the case, because several equally good regression models can

Table 12-19 Minitab Backward Elimination Output for the
Wine Quality Data

Stepwise Regression: Quality versus Clarity, Aroma, . . .

Backward elimination. Alpha-to-Remove: 0.1

Response is Quality on 5 predictors, with N = 38

Step 1 2 3
Constant 3.997 4.986 6.467

Clarity 2.3 1.8
T-Value 1.35 1.12
P-Value 0.187 0.269

Aroma 0.48 0.53 0.58
T-Value 1.77 2.00 2.21
P-Value 0.086 0.054 0.034

Body 0.27
T-Value 0.82
P-Value 0.418

Flavor 1.17 1.26 1.20
T-Value 3.84 4.52 4.36
P-Value 0.001 0.000 0.000

Oakiness �0.68 �0.66 �0.60
T-Value �2.52 �2.46 �2.28
P-Value 0.017 0.019 0.029

S 1.16 1.16 1.16
R-Sq 72.06 71.47 70.38
R-Sq(adj) 67.69 68.01 67.76
C–p 6.0 4.7 3.9
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460 CHAPTER 12 MULTIPLE LINEAR REGRESSION

often be used. One way to avoid this problem is to use several different model-building tech-
niques and see if different models result. For example, we have found the same model for the
wine quality data using stepwise regression, forward selection, and backward elimination. The
same model was also one of the two best found from all possible regressions. The results from
variable selection methods frequently do not agree, so this is a good indication that the three-
variable model is the best regression equation.

If the number of candidate regressors is not too large, the all-possible regressions method
is recommended. We usually recommend using the minimum MSE and Cp evaluation criteria
in conjunction with this procedure. The all-possible regressions approach can find the “best”
regression equation with respect to these criteria, while stepwise-type methods offer no such
assurance. Furthermore, the all-possible regressions procedure is not distorted by dependen-
cies among the regressors, as stepwise-type methods are.

12-6.4 Multicollinearity

In multiple regression problems, we expect to find dependencies between the response
variable Y and the regressors xj. In most regression problems, however, we find that there
are also dependencies among the regressor variables xj. In situations where these depend-
encies are strong, we say that multicollinearity exists. Multicollinearity can have serious
effects on the estimates of the regression coefficients and on the general applicability of
the estimated model.

The effects of multicollinearity may be easily demonstrated. The diagonal elements of the
matrix C � (X
X)�1 can be written as 

where R2
j is the coefficient of multiple determination resulting from regressing xj on the

other k � 1 regressor variables. Clearly, the stronger the linear dependency of xj on the re-
maining regressor variables, and hence the stronger the multicollinearity, the larger the
value of R2

j will be. Recall that Therefore, we say that the variance of is
“inflated’’ by the quantity . Consequently, we define the variance inflation
factor for as�j

11 � R2
j 2

�1
�̂jV 1�̂j2 � �2 Cjj.

Cjj �
1

11 � R2
j 2
  j � 1, 2, p , k

These factors are an important measure of the extent to which multicollinearity is present.
Although the estimates of the regression coefficients are very imprecise when multi-

collinearity is present, the fitted model equation may still be useful. For example, suppose we
wish to predict new observations on the response. If these predictions are interpolations in the
original region of the x-space where the multicollinearity is in effect, satisfactory predictions
will often be obtained, because while individual �j may be poorly estimated, the function

may be estimated quite well. On the other hand, if the prediction of new obseva-
tions requires extrapolation beyond the original region of the x-space where the data were col-
lected, generally we would expect to obtain poor results. Extrapolation usually requires good
estimates of the individual model parameters.

g k
j�1 �j xij

(12-50)VIF 1�j2 �
1

11 � R2
j 2
  j � 1, 2, . . . , k
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12-6 ASPECTS OF MULTIPLE REGRESSION MODELING 461

Multicollinearity arises for several reasons. It will occur when the analyst collects data
such that a linear constraint holds approximately among the columns of the X matrix. For ex-
ample, if four regressor variables are the components of a mixture, such a constraint will
always exist because the sum of the components is always constant. Usually, these constraints
do not hold exactly, and the analyst might not know that they exist.

The presence of multicollinearity can be detected in several ways. Two of the more easily
understood of these will be discussed briefly.

1. The variance inflation factors, defined in equation 12-50, are very useful measures
of multicollinearity. The larger the variance inflation factor, the more severe the mul-
ticollinearity. Some authors have suggested that if any variance inflation factor ex-
ceeds 10, multicollinearity is a problem. Other authors consider this value too liberal
and suggest that the variance inflation factors should not exceed 4 or 5. Minitab will
calculate the variance inflation factors. Table 12-4 presents the Minitab multiple re-
gression output for the wire bond pull strength data. Since both VIF1 and VIF2 are
small, there is no problem with multicollinearity.

2. If the F-test for significance of regression is significant, but tests on the individual
regression coefficients are not significant, multicollinearity may be present.

Several remedial measures have been proposed for solving the problem of multi-
collinearity. Augmenting the data with new observations specifically designed to break up the
approximate linear dependencies that currently exist is often suggested. However, this is
sometimes impossible because of economic reasons or because of the physical constraints that
relate the xj. Another possibility is to delete certain variables from the model, but this approach
has the disadvantage of discarding the information contained in the deleted variables.

Since multicollinearity primarily affects the stability of the regression coefficients, it would
seem that estimating these parameters by some method that is less sensitive to multicollinearity
than ordinary least squares would be helpful. Several methods have been suggested. One alterna-
tive to ordinary least squares, ridge regression, can be useful in combating multicollinearity. For
more details on ridge regression, see Section 12-6.5 on the CD material or the more extensive pre-
sentations in Montgomery, Peck, and Vining (2001) and Myers (1990).

12-6.5 Ridge Regression (CD Only)

12-6.6 Nonlinear Regression (CD Only)

EXERCISES FOR SECTION 12-6

12-46. An article entitled “A Method for Improving the
Accuracy of Polynomial Regression Analysis’’ in the Journal
of Quality Technology (1971, pp. 149–155) reported the fol-
lowing data on y � ultimate shear strength of a rubber com-
pound (psi) and x � cure temperature (°F).

(d) Compute the residuals from part (a) and use them to eval-
uate model adequacy.

12-47. Consider the following data, which result from an
experiment to determine the effect of x � test time in hours at
a particular temperature on y � change in oil viscosity:

(a) Fit a second-order polynomial to these data.
(b) Test for significance of regression using � � 0.05.
(c) Test the hypothesis that �11 � 0 using � � 0.05.

(a) Fit a second-order polynomial to the data.
(b) Test for significance of regression using � � 0.05.
(c) Test the hypothesis that �11 � 0 using � � 0.05.

y 770 800 840 810

x 280 284 292 295

y 735 640 590 560

x 298 305 308 315

y �1.42 �1.39 �1.55 �1.89 �2.43

x .25 .50 .75 1.00 1.25

y �3.15 �4.05 �5.15 �6.43 �7.89

x 1.50 1.75 2.00 2.25 2.50
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462 CHAPTER 12 MULTIPLE LINEAR REGRESSION

(d) Compute the residuals from part (a) and use them to eval-
uate model adequacy.

12-48. When fitting polynomial regression models, we
often subtract from each x value to produce a “centered’’
regressor . This reduces the effects of dependencies
among the model terms and often leads to more accurate esti-
mates of the regression coefficients. Using the data from
Exercise 12-46, fit the model 
Use the results to estimate the coefficients in the uncentered
model .

12-49. Suppose that we use a standardized variable
, where sx is the standard deviation of x, in

constructing a polynomial regression model. Using the data in
Exercise 12-46 and the standardized variable approach, fit the
model .
(a) What value of y do you predict when ?
(b) Estimate the regression coefficients in the unstandardized

model .
(c) What can you say about the relationship between SSE and

R2 for the standardized and unstandardized models?
(d) Suppose that is used in the model along

with . Fit the model and comment on the relationship
between SSE and R2 in the standardized model and the
unstandardized model.

12-50. The following data shown were collected during an
experiment to determine the change in thrust efficiency (y, in
percent) as the divergence angle of a rocket nozzle (x) changes:

x¿
y ¿ � 1 y � y 2�sy

Y � �0 � �1x � �11x
2 � �

x � 285�F
Y � �*

0 � �*
1x¿ � �*

111x¿ 2 2 � �

x¿ � 1x � x 2�sx

Y � �0 � �1x � �11x2 � �

Y � �*
0 � �*

1x¿ � �*
11 1x¿ 2 2 � �.

x¿ � x � x
x

(a) Fit a second-order model to the data.
(b) Test for significance of regression and lack of fit using

� � 0.05.
(c) Test the hypothesis that �11 � 0, using � � 0.05.
(d) Plot the residuals and comment on model adequacy.
(e) Fit a cubic model, and test for the significance of the cubic

term using � � 0.05.

12-51. An article in the Journal of Pharmaceuticals
Sciences (Vol. 80, 1991, pp. 971–977) presents data on the ob-
served mole fraction solubility of a solute at a constant tem-
perature and the dispersion, dipolar, and hydrogen bonding
Hansen partial solubility parameters. The data are as shown in
the following table, where y is the negative logarithm of the
mole fraction solubility, x1 is the dispersion partial solubility,
x2 is the dipolar partial solubility, and x3 is the hydrogen
bonding partial solubility.
(a) Fit the model 

(b) Test for significance of regression using � � 0.05.
(c) Plot the residuals and comment on model adequacy.

�12x1x2��13x1x3� �23x2x3 � �11x 2
1 � �22x2

2 � �33x
2
3 � �.

Y � �0 � �1x1 � �2x2 � �3 x3 �

(d) Use the extra sum of squares method to test the contribu-
tion of the second-order terms using � � 0.05.

12-52. Consider the gasoline mileage data in Exercise 12-5.
(a) Discuss how you would model the information about the

type of transmission in the car.
(b) Fit a regression model to the gasoline mileage using

engine displacement, horsepower, and the type of trans-
mission in the car as the regressors.

(c) Is there evidence that the type of transmission affects
gasoline mileage performance?

12-53. Consider the tool life data in Example 12-12. Test
the hypothesis that two different regression models (with dif-
ferent slopes and intercepts) are required to adequately model
the data. Use indicator variables in answering this question.
12-54. Use the National Football League Team Performance
data in Exercise 12-4 to build regression models using the
following techniques:
(a) All possible regressions. Find the equations that minimize

MSE and that minimize Cp.
(b) Stepwise regression.

y 24.60 24.71 23.90 39.50 39.60 57.12

x 4.0 4.0 4.0 5.0 5.0 6.0

y 67.11 67.24 67.15 77.87 80.11 84.67

x 6.5 6.5 6.75 7.0 7.1 7.3

Observation 
Number y x1 x2 x3

1 0.22200 7.3 0.0 0.0

2 0.39500 8.7 0.0 0.3

3 0.42200 8.8 0.7 1.0

4 0.43700 8.1 4.0 0.2

5 0.42800 9.0 0.5 1.0

6 0.46700 8.7 1.5 2.8

7 0.44400 9.3 2.1 1.0

8 0.37800 7.6 5.1 3.4

9 0.49400 10.0 0.0 0.3

10 0.45600 8.4 3.7 4.1

11 0.45200 9.3 3.6 2.0

12 0.11200 7.7 2.8 7.1

13 0.43200 9.8 4.2 2.0

14 0.10100 7.3 2.5 6.8

15 0.23200 8.5 2.0 6.6

16 0.30600 9.5 2.5 5.0

17 0.09230 7.4 2.8 7.8

18 0.11600 7.8 2.8 7.7

19 0.07640 7.7 3.0 8.0

20 0.43900 10.3 1.7 4.2

21 0.09440 7.8 3.3 8.5

22 0.11700 7.1 3.9 6.6

23 0.07260 7.7 4.3 9.5

24 0.04120 7.4 6.0 10.9

25 0.25100 7.3 2.0 5.2

26 0.00002 7.6 7.8 20.7
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12-6 ASPECTS OF MULTIPLE REGRESSION MODELING 463

(c) Forward selection.
(d) Backward elimination.
(e) Comment on the various models obtained. Which model

seems “best,’’ and why?

12-55. Use the gasoline mileage data in Exercise 12-5 to
build regression models using the following techniques:
(a) All possible regressions. Find the minimum Cp and mini-

mum MSE equations.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the various models obtained.

12-56. Consider the electric power data in Exercise 12-6.
Build regression models for the data using the following
techniques:
(a) All possible regressions.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer?

12-57. Consider the wire bond pull strength data in
Exercise 12-8. Build regression models for the data using the
following methods:
(a) Stepwise regression.
(b) Forward selection.
(c) Backward elimination.
(d) Comment on the models obtained. Which model would

you prefer?

12-58. Consider the NHL data in Exercise 12-11. Build
regression models for these data using the following methods:
(a) Stepwise regression.
(b) Forward selection.
(c) Backward elimination.
(d) Which model would you prefer?

12-59. Consider the data in Exercise 12-51. Use all the terms
in the full quadratic model as the candidate regressors.
(a) Use forward selection to identify a model.
(b) Use backward elimination to identify a model.
(c) Compare the two models obtained in parts (a) and (b).

Which model would you prefer and why?

12-60. Find the minimum Cp equation and the equation that
maximizes the adjusted R2 statistic for the wire bond pull
strength data in Exercise 12-8. Does the same equation satisfy
both criteria?

12-61. For the NHL data in Exercise 12-11.
(a) Find the equation that minimizes Cp.
(b) Find the equation that minimizes MSE.
(c) Find the equation that maximizes the adjusted R2. Is this

the same equation you found in part (b)?

12-62. We have used a sample of 30 observations to fit a
regression model. The full model has nine regressors, the vari-
ance estimate is and .R2 � 0.92�̂2 � MSE � 100,

(a) Calculate the F-statistic for testing significance of regres-
sion. Using � = 0.05, what would you conclude?

(b) Suppose that we fit another model using only four of the
original regressors and that the error sum of squares for
this new model is 2200. Find the estimate of �2 for this
new reduced model. Would you conclude that the reduced
model is superior to the old one? Why?

(c) Find the value of Cp for the reduced model in part (b).
Would you conclude that the reduced model is better than
the old model?

12-63. A sample of 25 observations is used to fit a regres-
sion model in seven variables. The estimate of �2 for this full
model is MSE � 10.
(a) A forward selection algorithm has put three of the original

seven regressors in the model. The error sum of squares
for the three-variable model is SSE � 300. Based on Cp,
would you conclude that the three-variable model has any
remaining bias?

(b) After looking at the forward selection model in part (a),
suppose you could add one more regressor to the model.
This regressor will reduce the error sum of squares to
275. Will the addition of this variable improve the
model? Why?

Supplemental Exercises

12-64. The data shown in the table on page 464 represent
the thrust of a jet-turbine engine (y) and six candidate
regressors: x1 = primary speed of rotation, x2 � secondary
speed of rotation, x3 � fuel flow rate, x4 � pressure, x5 �
exhaust temperature, and x6 � ambient temperature at time
of test.
(a) Fit a multiple linear regression model using x3 � fuel flow

rate, x4 � pressure, and x5 � exhaust temperature as the
regressors.

(b) Test for significance of regression using � � 0.01. Find
the P-value for this test. What are your conclusions?

(c) Find the t-test statistic for each regressor. Using � � 0.01,
explain carefully the conclusion you can draw from these
statistics.

(d) Find R2 and the adjusted statistic for this model.
(e) Construct a normal probability plot of the residuals and

interpret this graph.
(f) Plot the residuals versus Are there any indications of

inequality of variance or nonlinearity?
(g) Plot the residuals versus x3. Is there any indication of 

nonlinearity?
(h) Predict the thrust for an engine for which x3 � 1670, 

x4 � 170, and x5 � 1589.

12-65. Consider the engine thrust data in Exercise 12-64.
Refit the model using as the response variable and

� ln x3 as the regressor (along with x4 and x5).
(a) Test for significance of regression using � � 0.01. Find

the P-value for this test and state your conclusions.

x*3

y* � ln y

ŷ.
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464 CHAPTER 12 MULTIPLE LINEAR REGRESSION

(b) Use the t-statistic to test H0: �j � 0 versus H1: �j � 0 for
each variable in the model. If � � 0.01, what conclusions
can you draw?

(c) Plot the residuals versus and versus . Comment on
these plots. How do they compare with their counterparts
obtained in Exercise 12-64 parts (f ) and (g)?

12-66. The transient points of an electronic inverter are
influenced by many factors. Table 12-20 gives data on the
transient point (y, in volts) of PMOS-NMOS inverters and five
candidate regressors:, x1 � width of the NMOS device, x2 �
length of the NMOS device, x3 � width of the PMOS device,
x4 � length of the PMOS device, and x5 � temperature (°C).
(a) Fit the multiple linear regression model to these data. Test

for significance of regression using � � 0.01. Find the 
P-value for this test and use it to draw your conclusions.

(b) Test the contribution of each variable to the model using
the t-test with � � 0.05. What are your conclusions?

(c) Delete x5 from the model. Test the new model for signifi-
cance of regression. Also test the relative contribution of
each regressor to the new model with the t-test. Using 
� � 0.05, what are your conclusions?

x*3ŷ*

(d) Notice that the MSE for the model in part (c) is smaller
than the MSE for the full model in part (a). Explain why
this has occurred.

(e) Calculate the studentized residuals. Do any of these seem
unusually large?

(f) Suppose that you learn that the second observation was in-
correctly recorded. Delete this observation and refit the
model using x1, x2, x3, and x4 as the regressors. Notice that
the R2 for this model is considerably higher than the R2 for
either of the models fitted previously. Explain why the R2

for this model has increased.
(g) Test the model from part (f ) for significance of regression

using � � 0.05. Also investigate the contribution of each
regressor to the model using the t-test with � � 0.05.
What conclusions can you draw?

(h) Plot the residuals from the model in part (f ) versus and
versus each of the regressors x1, x2, x3, and x4. Comment
on the plots.

12-67. Consider the inverter data in Exercise 12-66. Delete
observation 2 from the original data. Define new variables as fol-
lows: 
and 
(a) Fit a regression model using these transformed regressors

(do not use x5).

(b) Test the model for significance of regression using � �
0.05. Use the t-test to investigate the contribution of
each variable to the model (� � 0.05). What are your
conclusions?

(c) Plot the residuals versus and versus each of the trans-
formed regressors. Comment on the plots.

12-68. Following are data on y � green liquor (g/l) and x �
paper machine speed (feet per minute) from a Kraft paper
machine. (The data were read from a graph in an article in the
Tappi Journal, March 1986.)

ŷ*

x*4 � 1x4.
x2* � 1x2, x 3* � 1�1x3,y* � ln y, x1* � 1�1x1,

ŷ

(a) Fit the model using least
squares.

(b) Test for significance of regression using � � 0.05. What
are your conclusions?

(c) Test the contribution of the quadratic term to the model,
over the contribution of the linear term, using an F-statistic.
If � � 0.05, what conclusion can you draw?

(d) Plot the residuals from the model in part (a) versus .
Does the plot reveal any inadequacies?

(e) Construct a normal probability plot of the residuals.
Comment on the normality assumption.

ŷ

Y � �0 � �1x � �2x2 � �

Observation 
Number x1 x2 x3 x4 x5 y

1 3 3 3 3 0 0.787

2 8 30 8 8 0 0.293

3 3 6 6 6 0 1.710

4 4 4 4 12 0 0.203

5 8 7 6 5 0 0.806

6 10 20 5 5 0 4.713

7 8 6 3 3 25 0.607

8 6 24 4 4 25 9.107

9 4 10 12 4 25 9.210

10 16 12 8 4 25 1.365

11 3 10 8 8 25 4.554

12 8 3 3 3 25 0.293

13 3 6 3 3 50 2.252

14 3 8 8 3 50 9.167

15 4 8 4 8 50 0.694

16 5 2 2 2 50 0.379

17 2 2 2 3 50 0.485

18 10 15 3 3 50 3.345

19 15 6 2 3 50 0.208

20 15 6 2 3 75 0.201

21 10 4 3 3 75 0.329

22 3 8 2 2 75 4.966

23 6 6 6 4 75 1.362

24 2 3 8 6 75 1.515

25 3 3 8 8 75 0.751

y 16.0 15.8 15.6 15.5 14.8

x 1700 1720 1730 1740 1750

y 14.0 13.5 13.0 12.0 11.0

x 1760 1770 1780 1790 1795
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12-6 ASPECTS OF MULTIPLE REGRESSION MODELING 465

Table 12-20

Observation 
Number y x1 x2 x3 x4 x5 x6

1 4540 2140 20640 30250 205 1732 99

2 4315 2016 20280 30010 195 1697 100

3 4095 1905 19860 29780 184 1662 97

4 3650 1675 18980 29330 164 1598 97

5 3200 1474 18100 28960 144 1541 97

6 4833 2239 20740 30083 216 1709 87

7 4617 2120 20305 29831 206 1669 87

8 4340 1990 19961 29604 196 1640 87

9 3820 1702 18916 29088 171 1572 85

10 3368 1487 18012 28675 149 1522 85

11 4445 2107 20520 30120 195 1740 101

12 4188 1973 20130 29920 190 1711 100

13 3981 1864 19780 29720 180 1682 100

14 3622 1674 19020 29370 161 1630 100

15 3125 1440 18030 28940 139 1572 101

16 4560 2165 20680 30160 208 1704 98

17 4340 2048 20340 29960 199 1679 96

18 4115 1916 19860 29710 187 1642 94

19 3630 1658 18950 29250 164 1576 94

20 3210 1489 18700 28890 145 1528 94

21 4330 2062 20500 30190 193 1748 101

22 4119 1929 20050 29960 183 1713 100

23 3891 1815 19680 29770 173 1684 100

24 3467 1595 18890 29360 153 1624 99

25 3045 1400 17870 28960 134 1569 100

26 4411 2047 20540 30160 193 1746 99

27 4203 1935 20160 29940 184 1714 99

28 3968 1807 19750 29760 173 1679 99

29 3531 1591 18890 29350 153 1621 99

30 3074 1388 17870 28910 133 1561 99

31 4350 2071 20460 30180 198 1729 102

32 4128 1944 20010 29940 186 1692 101

33 3940 1831 19640 29750 178 1667 101

34 3480 1612 18710 29360 156 1609 101

35 3064 1410 17780 28900 136 1552 101

36 4402 2066 20520 30170 197 1758 100

37 4180 1954 20150 29950 188 1729 99

38 3973 1835 19750 29740 178 1690 99

39 3530 1616 18850 29320 156 1616 99

40 3080 1407 17910 28910 137 1569 100
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466 CHAPTER 12 MULTIPLE LINEAR REGRESSION

12-69. Consider the jet engine thrust data in Exercise 12-64.
(a) Use all possible regressions to select the best regression

equation, where the model with the minimum value of
MSE is to be selected as “best.’’

(b) Repeat part (a) using the CP criterion to identify the best
equation.

(c) Use stepwise regression to select a subset regression model.
(d) Compare the models obtained in parts (a), (b), and (c)

above.

12-70. Consider the electronic inverter data in Exercise 12-66
and 12-67. Define the response and regressors variables as in
Exercise 12-67, and delete the second observation in the sample.
(a) Use all possible regressions to find the equation that mini-

mizes Cp.
(b) Use all possible regressions to find the equation that

minimizes MSE.
(c) Use stepwise regression to select a subset regression model.
(d) Compare the models you have obtained.

12-71. Consider the three-variable regression model for the
jet engine thrust data in Exercise 12-65. Calculate the variance
inflation factors for this model. Would you conclude that mul-
ticollinearity is a problem in this model?

12-72. A multiple regression model was used to relate y �
viscosity of a chemical product to x1 � temperature and x2 �
reaction time. The data set consisted of n � 15 observations.
(a) The estimated regression coefficients were 

and . Calculate an estimate of
mean viscosity when x1 � 100°F and x2 � 2 hours.

(b) The sums of squares were SST � 1230.50 and SSE �
120.30. Test for significance of regression using � �
0.05. What conclusion can you draw?

�̂2 � 10.40�̂1 � 0.85,
�̂0 � 300.00,

(c) What proportion of total variability in viscosity is
accounted for by the variables in this model?

(d) Suppose that another regressor, x3 � stirring rate, is added
to the model. The new value of the error sum of squares is
SSE � 117.20. Has adding the new variable resulted in a
smaller value of MSE? Discuss the significance of this
result.

(e) Calculate an F-statistic to assess the contribution of x3 to
the model. Using � � 0.05, what conclusions do you
reach?

12-73. An article in the Journal of the American Ceramics
Society (Vol. 75, 1992, pp. 112–116) describes a process for
immobilizing chemical or nuclear wastes in soil by dissolving
the contaminated soil into a glass block. The authors mix CaO
and Na2O with soil and model viscosity and electrical conduc-
tivity. The electrical conductivity model involves six regres-
sors, and the sample consists of n � 14 observations.
(a) For the six-regressor model, suppose that SST � 0.50 and

R2 � 0.94. Find SSE and SSR, and use this information to
test for significance of regression with � � 0.05. What are
your conclusions?

(b) Suppose that one of the original regressors is deleted from
the model, resulting in R2 � 0.92. What can you conclude
about the contribution of the variable that was removed?
Answer this question by calculating an F-statistic.

(c) Does deletion of the regressor variable in part (b) result in
a smaller value of MSE for the five-variable model, in
comparison to the original six-variable model? Comment
on the significance of your answer.
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12-6 ASPECTS OF MULTIPLE REGRESSION MODELING 467

MIND-EXPANDING EXERCISES

IMPORTANT TERMS AND CONCEPTS

In the E-book, click on any
term or concept below to
go to that subject.

All possible regressions
Analysis of variance

test in multiple
regression

Categorical variables as
regressors

Confidence interval on
the mean response

Extra sum of squares
method

Inference (test and
intervals) on individ-
ual model parameters

Influential observations
Model parameters and

their interpretation

in multiple 
regression

Outliers
Polynomial terms in a

regression model
Prediction interval on a

future observation
Residual analysis and

model adequacy
checking

Significance of 
regression

Stepwise regression and
related methods

CD MATERIAL
Ridge regression
Nonlinear regression

models

12-74. Consider a multiple regression model with k re-
gressors. Show that the test statistic for significance of
regression can be written as

Suppose that n � 20, k � 4, and R2 � 0.90. If � � 0.05,
what conclusion would you draw about the relationship
between y and the four regressors?

12-75. A regression model is used to relate a response
y to k � 4 regressors with n � 20. What is the smallest
value of R2 that will result in a significant regression if
� � 0.05? Use the results of the previous exercise. Are
you surprised by how small the value of R2 is?

12-76. Show that we can express the residuals from a
multiple regression model as e � (I � H)y, where H �
X(X X)�1X .

12-77. Show that the variance of the ith residual ei in
a multiple regression model is and that the
covariance between ei and ej is ��2hij, where the h’s are
the elements of H � X(X X)�1X .
12-78. Consider the multiple linear regression model
y � X� � �. If denotes the least squares estimator of
�, show that where  .

12-79. Constrained Least Squares. Suppose we wish
to find the least squares estimator of � in the model y �
X� � � subject to a set of equality constraints, say, 
T� � c.

(a) Show that the estimator is


 T�[T(X�X)–1T�]–1(c � T )

where � (X�X)–1X�y.

(b) Discuss situations where this model might be appro-
priate.

12-80. Piecewise Linear Regression (I). Suppose
that y is piecewise linearly related to x. That is, different
linear relationships are appropriate over the intervals

and . Show how indicator
variables can be used to fit such a piecewise linear re-
gression model, assuming that the point is known.

12-81. Piecewise Linear Regression (II). Consider
the piecewise linear regression model described in
Exercise 12-79. Suppose that at the point a disconti-
nuity occurs in the regression function. Show how
indicator variables can be used to incorporate the dis-
continuity into the model.

12-82. Piecewise Linear Regression (III). Consider
the piecewise linear regression model described in
Exercise 12-79. Suppose that the point x* is not known
with certainty and must be estimated. Suggest an ap-
proach that could be used to fit the piecewise linear
regression model.

x*

x*

x* 	 x 	 ��� 	 x � x*

�̂

�̂

�̂c � �̂ � 1X¿X2�1

R � 1X¿X2�1X¿�̂ � � � R�,
�̂

¿

� 11 � hii2

¿¿

F0 �
R2�k

11 � R2 2 � 1n � k � 12
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12-2.3 More about the Extra Sum of Squares Method (CD Only)

The extra sum of squares method for evaluating the contribution of one or more terms to a
model is a very useful technique. Basically, one considers how much the regression or model
sum of squares increases upon adding terms to a basic model. The expanded model is called
the full model, and the basic model is called the reduced model. Although the development in
the text is quite general, Example 12-5 illustrates the simplest case, one in which there is only
one additional parameter in the full model. In this case, the partial F-test based on the extra
sum of squares is equivalent to a t-test. When there is more than one additional parameter in
the full model, the partial F-test is not equivalent to a t-test.

The extra sum of squares method is often used sequentially when fitting a polynomial
model, such as

Here would measure the contribution of the linear term over and above a model
containing only a mean would measure the contribution of the quadratic
terms over and above the linear, and would measure the contribution of the
cubic terms over and above the linear and the quadratic. This can be very useful in selecting
the order of the polynomial to fit. Notice from Table 12-4 that Minitab automatically pro-
duces this sequential computation. Also, note that in a sequential partition of the model or re-
gression sum of squares,

However, if we consider each variable as if it were the last to be added,

As another illustration of the extra sum of squares method, consider the model

Suppose that we are uncertain about the contribution of the second-order terms. We could
evaluate this with a partial F-test by fitting the reduced model

and computing

Finally, note that we have expressed the extra sum of squares as the difference in the regres-
sion sum of squares between the full model and the reduced model:

Some authors write SSR(Extra) as the difference between error or residual sums of squares for
the two model.

SSR1Extra2 � SSR1Full Model2 � SSR1Reduced Model2

SSR1�12,�11,�22 0  �0,�1,�22 � SSR1�1,�2,�12,�11,�22 0  �02 � SSR1�1,�2 | �02

y � �0 � �1x1 � �2x2 � �

y � �0 � �1x1 � �2x2 � �12x1x2 � �11x
2
1 � �22x2

2 � �

SSR1�1,�2,�3 0  �02 � SSR1�1 0  �0,�2,�32 � SSR1�2 0  �0,�1,�32 SSR1�3 0  �0,�1,�22

SSR 
1�1,�2,�3, 0  �02 � SSR1�1 0  �02 � SSR1�2 0  �0,�12 � SSR1�3 0  �0,�1,�22.

SSR1�3 0 �0,�1,�22
1�02, SSR1�2 0 �0,�12

SSR1�1 0 �02
y � �0 � �1x1 � �2x2 � �3x3 � �

12-1
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12-2

Now

and

so

Therefore, this is an equivalent way to write the extra sum of squares.

12-6.5 Ridge Regression (CD Only)

Since multicollinearity primarily affects the stability of the regression coefficients, it would
seem that estimating these parameters by some method that is less sensitive to multicollinear-
ity than ordinary least squares would be helpful. Several methods have been suggested. One
alternative to ordinary least squares, ridge regression, can be useful in combating multi-
collinearity. In ridge regression, the parameter estimates are obtained from

(S12-1)

where � � 0 is a constant. Generally, values of � in the interval 0 � � � 1 are appropriate.
The ridge estimator �*(�) is not an unbiased estimator of �, as is the ordinary least squares
estimator . Thus, ridge regression seeks to find a set of regression coefficients that are more
“stable,” in the sense that they have a small mean square error. Since multicollinearity usually
results in ordinary least squares estimators that may have extremely large variances, ridge
regression is suitable for situations where the multicollinearity problem exists.

To obtain the ridge regression estimator from Equation S12-1, we must specify a value
for the constant �. Generally, there is an “optimum” � for any problem, but the simplest ap-
proach is to solve Equation S12-1 for several values of � in the interval 0 � � � 1. Then a
plot of the value of �*(�) is constructed. This display is called a ridge trace. The approximate
value for � is chosen subjectively by inspection of the ridge trace. Typically, its value is cho-
sen to obtain stable parameter estimates. Generally, the variance of �*(�) is a decreasing func-
tion of �, while the squared bias [� � E(�*(�))]2 is an increasing function of �. Choosing the
value of � involves trading off these two properties of �*(�).

Extensive practical discussions of the use of ridge regression are in Montgomery,
Peck, and Vining (2001) and Myers (1990). In addition, several other biased estimation
techniques have been proposed for dealing with multicollinearity. Many regression com-
puter packages incorporate ridge regression capability. SAS PROC REG will fit ridge
regression models.

To illustrate ridge regression, consider the data in Table S12-1, which shows the heat gen-
erated in calories per gram for a particular type of cement as a function of the quantities of four
additives (w1, w2, w3, and w4). We wish to fit a multiple linear regression model to these data.
This is some very “classical” regression data, first analyzed by Anders Hald. Refer to
Montgomery, Peck, and Vining (2001) for sources and more details.

�̂

�*1�2 � 1�¿� � ��2�1�¿y

 � SSE1Reduced Model2 � SSE1Full Model2
  � SST � SSE1Full Model2 � 3SST � SSE1Reduced Model2 4
 SSR1Extra2 � SSR1Full Model2 � SSR1Reduced Model2

 SST � SSR1Reduced Model2 � SSE1Reduced Model2

 SST � SSR1Full Model2 � SSE 
1Full Model2
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The data will be coded by defining a new set of scaled regressor variables as

where is the corrected sum of squares of the levels of wj. The coded data
are shown in Table S12-2. This transformation makes the column of ones in X orthogonal to the

Sjj � g n
i�11wij � wj22

xij �
wij � wj1Sjj

  i � 1, 2, p , 15  j � 1, 2, 3, 4

Table S12-1 Cement Data

Observation 
Number y w1 w2 w3 w4

1 28.25 10 31 5 45
2 24.80 12 35 5 52
3 11.86 5 15 3 24
4 36.60 17 42 9 65
5 15.80 8 6 5 19
6 16.23 6 17 3 25
7 29.50 12 36 6 55
8 28.75 10 34 5 50
9 43.20 18 40 10 70

10 38.47 23 50 10 80
11 10.14 16 37 5 61
12 38.92 20 40 11 70
13 36.70 15 45 8 68
14 15.31 7 22 2 30
15 8.40 9 12 3 24

Table S12-2 Coded Cement Data

Observation 
Number y x1 x2 x3 x4

1 28.25 �.12515 .00405 �.09206 �.05538
2 24.80 �.02635 .08495 �.09206 .03692
3 11.86 �.37217 �.31957 �.27614 �.03692
4 36.60 .22066 .22653 .27617 �.33226
5 15.80 �.22396 �.50161 �.09206 �.39819
6 16.23 �.32276 �.27912 �.27617 �.31907
7 29.50 �.02635 .10518 .00000 .07647
8 28.75 �.12515 .06472 �.09206 .01055
9 43.20 .27007 .18608 .36823 .27425

10 38.47 .51709 .38834 .36823 .40609
11 10.14 .17126 .12500 �.09206 .15558
12 38.92 .36887 .18608 .46029 .27425
13 36.70 .12186 .28721 .18411 .24788
14 15.31 �.27336 �.17799 �.36823 �.25315
15 8.40 �.17456 �.38025 �.27617 �.33226
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other columns, so the intercept in this model will always be estimated by . The (4 � 4) 
matrix for the four coded variables is the correlation matrix

This matrix contains several large correlation coefficients, and this may indicate significant
multicollinearity. The inverse of is

The variance inflation factors are the main diagonal elements of this matrix. Note that three of
the variance inflation factors exceed 10, a good indication that multicollinearity is present.

Equation S12-1 was solved for various values of �, and the results are summarized in
Table S12-3. The ridge trace is shown in Fig. S12-1. The instability of the least squares estimates

is evident from inspection of the ridge trace. It is often difficult to choose a value of
� from the ridge trace that simultaneously stabilizes the estimates of all regression coefficients.
Because the bias in the coefficients increases as � increases, it is usually best to choose � as small
as possible; yet we want � to be large enough to provide reasonable stability in the coefficients.
In our example, most of the change in the regression coefficients has occurred when 0.05 � �
� 0.1. We will choose � � 0.064, which implies that the regression model is

using . Converting the model to the original variables wj, we have

This is the ridge regression model for the cement data.

ŷ � 2.9913 � 0.8920w1 � 0.3483w2 � 3.3209w3 � 0.0623w4

�̂0 � y � 25.53

ŷ � 25.53 � 18.0566x1 � 17.2202x2 � 36.0743x3 � 4.7242x4

�j*1� � 02

1�¿�2�1 � D 20.769 25.813 �0.608 �44.042

25.813 74.486 12.597 �107.710

�0.608 12.597 8.274 �18.903

�44.042 �107.710 �18.903 163.620

T
X¿X

X¿X � D1.00000

0.84894

0.91412

0.93367

0.84894

1.00000

0.76899

0.97567

0.91412

0.76899

1.00000

0.86784

0.93367

0.97567

0.86784

1.00000

T
X¿Xy

12-4

Table S12-3 Ridge Regression Estimates for the Cement Data

� �1*(�) �2*(�) �3*(�) �4*(�)

.000 �28.3318 65.9996 64.0479 �57.2491

.001 �31.0360 57.0244 61.9645 �44.0901

.002 �32.6441 50.9649 60.3899 �35.3088

.004 �34.1071 43.2358 58.0266 �24.3241

.008 �34.3195 35.1426 54.7018 �13.3348

.016 �31.9710 27.9534 50.0949 �4.5489

.032 �26.3451 22.0347 43.8309 1.2950

.064 �18.0566 17.2202 36.0743 4.7242

.128 �9.1786 13.4944 27.9363 6.5914

.256 �1.9896 10.9160 20.8028 7.5076

.512 2.4922 9.2014 15.3197 7.7224
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12-6.6 Nonlinear Regression

Linear regression models provide a rich and flexible framework that work extremely well in
many problems in engineering and science. However, linear regression models are not appro-
priate for all situations. There are many problems where the response variable and the predic-
tor variables are related through a known nonlinear function. This leads to a nonlinear
regression model. When the method of least squares is applied to such models, the resulting
normal equations are nonlinear and, in general, difficult to solve. The usual approach is to
directly minimize the residual sum of squares by an iterative procedure. We now give a very
brief introduction to nonlinear regression models.

Linear or Nonlinear Models
We have focused in Chapter 12 on the linear regression model

(S12-2)

These models can include not only the first-order relationships, such as Equation S12-2, but
polynomial models, and other more complex relationships as well. In fact, we could write the
linear regression model as

(S12-3)

where zi represents any function of the original regressors x1, x2, p , xk, including trans-
formations such as exp(xi), , and sin(xi). These models are called linear regression models
because they are linear in the unknown parameters, the �j, j � 1, 2, p , k.

We may write the linear regression model (Equation S12-2) in a general form as

(S12-4) � f 1x, �2 � �
 Y � x¿� � �

1xi

Y � �0 � �1z1 � �2z2 � p � �r 
zr � �

Y � �0 � �1x1 � �2x2 � p � �k 
xk � �

12-5

Figure S12-1 Ridge trace for the cement data.
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where x
 � [1, x1, x2, p , xk]. Since the expected value of the model errors is zero, the ex-
pected value of the response variable is

We usually refer to f (x, �) as the expectation function for the model. Obviously, the expec-
tation function here is just a linear function of the unknown parameters.

Any model that is not linear in the unknown parameters is a nonlinear regression model.
For example, the model

(S12-5)

is not linear in the unknown parameters �1 and �2. We will use the symbol � to represent a pa-
rameter in a nonlinear model to emphasize the difference between the linear and the nonlinear
case. Nonlinear models often arise in cases where the relationship between the response and
the regressors is a differential equation or the solution to a differential equation.

In general, we will write the nonlinear regression model as

(S12-6)

where � is a p � 1 vector of unknown parameters, and � is an uncorrelated random error term
with E(�) � 0 and Var(�) � �2. We also typically assume that the errors are normally distrib-
uted, as in linear regression. Since

(S12-7)

we call f (x, �) the expectation function for the nonlinear regression model. This is very sim-
ilar to the linear regression case, except that now the expectation function is a nonlinear func-
tion of the parameters.

In a nonlinear regression model, at least one of the derivatives of the expectation function
with respect to the parameters depends on at least one of the parameters. In linear regression,
these derivatives are not functions of the unknown parameters. To illustrate these points, con-
sider a linear regression model

with expectation function Now

where . Notice that in the linear case the derivatives are not functions of the �’s.
Now consider the nonlinear model

 � �1e
�2 x � �

 y � f 1x, �2 � �

x0 � 1

�f 1x, �2
��j

� xj,  j � 0, 1, p , k

f 1x, �2 � �0 �g k
j�1�j xj.

Y � �0 � �1x1 � �2x2 � p � �k xk � �

 � f 1x, �2 E1Y 2 � E 3 f 1x, �2 � � 4

Y � f  1x, �2 � �

Y � �1e
�2x � �

 � f  1x, �2 E1Y 2 � E 3 f  1x, �2 � � 4

12-6
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12-7

The derivatives of the expectation function with respect to �1 and �2 are

and

Since the derivatives are a function of the unknown parameters �1 and �2, the model is nonlinear.

Parameter Estimation in a Nonlinear Model
Suppose that we have a sample of n observations on the response and the regressors, say yi,
xi1, xi2, p , xik, for i � 1, 2, p , n. We have observed previously that the method of least squares
in linear regression involves minimizing the least-squares function

Because this is a linear regression model, when we differentiate S(�) with respect to the
unknown parameters and equate the derivatives to zero, the resulting normal equations are
linear equations, and consequently, they are easy to solve.

Now consider the nonlinear regression situation. The model is

where now x�i � [1, xi1, xi2, p , xik] for i � 1, 2, p , n. The least squares function is

(S12-8)

To find the least squares estimates we must differentiate Equation S12-8 with respect to each
element of �. This will provide a set of p normal equations for the nonlinear regression situa-
tion. The normal equations are

(S12-9)

In a nonlinear regression model the derivatives in the large square brackets will be functions
of the unknown parameters. Furthermore, the expectation function is also a nonlinear func-
tion, so the normal equations can be very difficult to solve.

To illustrate this point, consider the nonlinear regression model in Equation S12-5:

The least squares normal equations for this model are

a
n

i�1
3yi � �̂1e

�̂2 xi 4 �̂1xie
�̂2 xi � 0

a
n

i�1
3yi � �̂1e

�̂2xi 4 �̂2xi � 0

Y � �1e
�2 x � 	

a
n

i�1
3 yi � f 1xi, �2 4 c 
f 1xi, �2


�j
d

���̂

� 0  for j � 1, 2, p , p

L1�2 � a
n

i�1
3 yi � f 1xi, �2 42

Yi � f 1xi, �2 � 	i  i � 1, 2, p , n

L1�2 � a
n

i�1
c yi � a�0 � a

k

j�1
�j xijb d

2


f 1x, �2

�2

� �1xe�2x


f 1x, �2

�1

� e�2 x
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12-8

After simplification, the normal equations are

These equations are not linear in and , and no simple closed-form solution exists. In gen-
eral, iterative methods must be used to find the values of and . To further complicate the
problem, sometimes there are multiple solutions to the normal equations. That is, there are
multiple stationary values for the residual sum of squares function L(�).

A widely used method for nonlinear regression is linearization of the nonlinear function
followed by the Gauss-Newton iteration method of parameter estimation. Linearization is ac-
complished by a Taylor series expansion of f (xi, �) about the point �
0 � [�10, �20, p , �p0]
with only the linear terms retained. This yields

(S12-10)

If we set

we note that the nonlinear regression model can be written as

(S12-11)

That is, we now have a linear regression model. We usually call �0 the starting values for the
parameters.

We may write Equation S12-10 as

(S12-12)

so the estimate of �0 is

Now since �0 � � � �0, we could define

as revised estimates of �. Sometimes is called the vector of increments. We may now
replace the revised estimates in Equation S12-10 (in the same roles played by the initial
estimates �0) and then produce another set of revised estimates, say and so forth.�̂2

�̂1

�̂0

�̂1 � �̂0 � �0

 � 1Z¿0Z02�1Z¿01y � f02
 �̂0 � 1Z ¿0Z02�1Z¿0y0

y0 � Z0�0 � �

yi � f 0
i � a

p

j�1
�0

j Z0
ij � �i,  i � 1, 2, p , n

 Z 
0
ij � c �f 1xi, �2

��j
d

���0

 �0
j � �j � �j0

 fi
0 � f 1xi, �02

f 1xi, �2 � f 1xi, �02 � a
p

j�1
c �f 1xi, �2

��j
d

���0

1�j � �j02

�̂2�̂1

�̂2�̂1

a
n

i�1
yixie

�̂2xi � �̂1a
n

i�1
xie

2�̂2 xi � 0

a
n

i�1
yie

�̂2 xi � �̂1a
n

i�1
e2�̂2 xi � 0
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12-9

In general, we have at the k th iteration

where

This iterative process continues until convergence, that is, until

where � is some small number, say, 1.0 
 10�6. At each iteration the residual sum of squares
should be evaluated to ensure that a reduction in its value has been obtained. This

scheme is available in many software packages. The SAS procedure is PROC NLIN. There
are also several widely used variations of this procedure. For details and examples refer to
Montgomery, Peck, and Vining (2001) and Myers (1990).

L1�̂k2

0  1�̂j,k�1 � �̂jk2��̂jk 0  � �,  j � 1, 2, p , p

 �̂k � 3�1k, �2k, p , �pk 4 ¿
 fk � 3fk

1, f
k
2, p , fk

n 4 ¿
 Zk � 3Zk

ij 4

 � �̂k � 1Z¿kZk2�1Z¿k 1y � fk2
 �̂k�1 � �̂k � �̂k
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13
CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
1. Design and conduct engineering experiments involving a single factor with an arbitrary number

of levels
2. Understand how the analysis of variance is used to analyze the data from these experiments
3. Assess model adequacy with residual plots
4. Use multiple comparison procedures to identify specific differences between means
5. Make decisions about sample size in single-factor experiments
6. Understand the difference between fixed and random factors
7. Estimate variance components in an experiment involving random factors

Design and Analysis
of Single-Factor
Experiments: The
Analysis of Variance
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13-1 DESIGNIING ENGINEERING EXPERIMENTS 469

8. Understand the blocking principle and how it is used to isolate the effect of nuisance factors
9. Design and conduct experiments involving the randomized complete block design

CD MATERIAL
10. Use operating characteristic curves to make sample size decisions in single-factor random effects

experiment
11. Use Tukey’s test, orthogonal contrasts and graphical methods to identify specific differences

between means.

Answers for most odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within 
the e-Text immediately following the section they accompany.

13-1 DESIGNING ENGINEERING EXPERIMENTS

Experiments are a natural part of the engineering and scientific decision-making process.
Suppose, for example, that a civil engineer is investigating the effects of different curing methods
on the mean compressive strength of concrete. The experiment would consist of making up sev-
eral test specimens of concrete using each of the proposed curing methods and then testing the
compressive strength of each specimen. The data from this experiment could be used to determine
which curing method should be used to provide maximum mean compressive strength.

If there are only two curing methods of interest, this experiment could be designed and
analyzed using the statistical hypothesis methods for two samples introduced in Chapter 10.
That is, the experimenter has a single factor of interest—curing methods—and there are only
two levels of the factor. If the experimenter is interested in determining which curing method
produces the maximum compressive strength, the number of specimens to test can be deter-
mined from the operating characteristic curves in Appendix Chart VI, and the t-test can be
used to decide if the two means differ.

Many single-factor experiments require that more than two levels of the factor be con-
sidered. For example, the civil engineer may want to investigate five different curing methods.
In this chapter we show how the analysis of variance (frequently abbreviated ANOVA) can
be used for comparing means when there are more than two levels of a single factor. We will
also discuss randomization of the experimental runs and the important role this concept plays
in the overall experimentation strategy. In the next chapter, we will show how to design and
analyze experiments with several factors.

Statistically based experimental design techniques are particularly useful in the engineering
world for improving the performance of a manufacturing process. They also have extensive
application in the development of new processes. Most processes can be described in terms of
several controllable variables, such as temperature, pressure, and feed rate. By using designed
experiments, engineers can determine which subset of the process variables has the greatest
influence on process performance. The results of such an experiment can lead to

1. Improved process yield

2. Reduced variability in the process and closer conformance to nominal or target
requirements

3. Reduced design and development time

4. Reduced cost of operation
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470 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

Experimental design methods are also useful in engineering design activities, where new
products are developed and existing ones are improved. Some typical applications of statisti-
cally designed experiments in engineering design include

1. Evaluation and comparison of basic design configurations

2. Evaluation of different materials

3. Selection of design parameters so that the product will work well under a wide vari-
ety of field conditions (or so that the design will be robust)

4. Determination of key product design parameters that affect product performance

The use of experimental design in the engineering design process can result in products that
are easier to manufacture, products that have better field performance and reliability than their
competitors, and products that can be designed, developed, and produced in less time.

Designed experiments are usually employed sequentially. That is, the first experiment 
with a complex system (perhaps a manufacturing process) that has many controllable variables
is often a screening experiment designed to determine which variables are most important.
Subsequent experiments are used to refine this information and determine which adjustments
to these critical variables are required to improve the process. Finally, the objective of the ex-
perimenter is optimization, that is, to determine which levels of the critical variables result in
the best process performance.

Every experiment involves a sequence of activities:

1. Conjecture—the original hypothesis that motivates the experiment.

2. Experiment—the test performed to investigate the conjecture.

3. Analysis—the statistical analysis of the data from the experiment.

4. Conclusion—what has been learned about the original conjecture from the experi-
ment. Often the experiment will lead to a revised conjecture, and a new experiment,
and so forth.

The statistical methods introduced in this chapter and Chapter 14 are essential to good
experimentation. All experiments are designed experiments; unfortunately, some of them
are poorly designed, and as a result, valuable resources are used ineffectively. Statistically
designed experiments permit efficiency and economy in the experimental process, and the
use of statistical methods in examining the data results in scientific objectivity when draw-
ing conclusions.

13-2 THE COMPLETELY RANDOMIZED SINGLE-FACTOR
EXPERIMENT

13-2.1 An Example

A manufacturer of paper used for making grocery bags is interested in improving the tensile
strength of the product. Product engineering thinks that tensile strength is a function of the
hardwood concentration in the pulp and that the range of hardwood concentrations of practi-
cal interest is between 5 and 20%. A team of engineers responsible for the study decides to in-
vestigate four levels of hardwood concentration: 5%, 10%, 15%, and 20%. They decide to
make up six test specimens at each concentration level, using a pilot plant. All 24 specimens
are tested on a laboratory tensile tester, in random order. The data from this experiment are
shown in Table 13-1.
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13-2 THE COMPLETELY RANDOMIZED SINGLE-FACTOR EXPERIMENT 471

This is an example of a completely randomized single-factor experiment with four levels
of the factor. The levels of the factor are sometimes called treatments, and each treatment has
six observations or replicates. The role of randomization in this experiment is extremely im-
portant. By randomizing the order of the 24 runs, the effect of any nuisance variable that may
influence the observed tensile strength is approximately balanced out. For example, suppose
that there is a warm-up effect on the tensile testing machine; that is, the longer the machine is
on, the greater the observed tensile strength. If all 24 runs are made in order of increasing
hardwood concentration (that is, all six 5% concentration specimens are tested first, followed
by all six 10% concentration specimens, etc.), any observed differences in tensile strength
could also be due to the warm-up effect.

It is important to graphically analyze the data from a designed experiment. Figure 13-1(a)
presents box plots of tensile strength at the four hardwood concentration levels. This figure
indicates that changing the hardwood concentration has an effect on tensile strength; specif-
ically, higher hardwood concentrations produce higher observed tensile strength.
Furthermore, the distribution of tensile strength at a particular hardwood level is reasonably
symmetric, and the variability in tensile strength does not change dramatically as the hard-
wood concentration changes.
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Figure 13-1 (a) Box plots of hardwood concentration data. (b) Display of the model in Equation 13-1 for the completely ran-
domized single-factor experiment.

Table 13-1 Tensile Strength of Paper (psi)

ObservationsHardwood 
Concentration (%) 1 2 3 4 5 6 Totals Averages

5 7 8 15 11 9 10 60 10.00
10 12 17 13 18 19 15 94 15.67
15 14 18 19 17 16 18 102 17.00
20 19 25 22 23 18 20 127 21.17

383 15.96
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472 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

Graphical interpretation of the data is always useful. Box plots show the variability
of the observations within a treatment (factor level) and the variability between treatments.
We now discuss how the data from a single-factor randomized experiment can be analyzed
statistically.

13-2.2 The Analysis of Variance

Suppose we have a different levels of a single factor that we wish to compare. Sometimes,
each factor level is called a treatment, a very general term that can be traced to the early
applications of experimental design methodology in the agricultural sciences. The response
for each of the a treatments is a random variable. The observed data would appear as shown 
in Table 13-2. An entry in Table 13-2, say yij, represents the jth observation taken under treat-
ment i. We initially consider the case in which there are an equal number of observations, n,
on each treatment.

We may describe the observations in Table 13-2 by the linear statistical model

(13-1)

where Yij is a random variable denoting the (ij)th observation, � is a parameter common to all
treatments called the overall mean, �i is a parameter associated with the ith treatment called
the ith treatment effect, and �ij is a random error component. Notice that the model could
have been written as

where �i � � � �i is the mean of the ith treatment. In this form of the model, we see
that each treatment defines a population that has mean �i, consisting of the overall mean �
plus an effect �i that is due to that particular treatment. We will assume that the errors �ij

are normally and independently distributed with mean zero and variance �2. Therefore,
each treatment can be thought of as a normal population with mean �i and variance �2. See
Fig. 13-1(b).

Equation 13-1 is the underlying model for a single-factor experiment. Furthermore, since
we require that the observations are taken in random order and that the environment (often
called the experimental units) in which the treatments are used is as uniform as possible, this
experimental design is called a completely randomized design.

Yij � �i � �ij e i � 1, 2, p , a

j � 1, 2, p , n

Yij � � � �i � �ij e i � 1, 2, p , a

j � 1, 2, p , n

Table 13-2 Typical Data for a Single-Factor Experiment

Treatment Observations Totals Averages

1 y11 y12 p y1n y1.
2 y21 y22 p y2n y2.

a ya1 ya2 p yan ya.

y.. y..

ya.

oo�oooooo
y2.
y1.
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The a factor levels in the experiment could have been chosen in two different ways.
First, the experimenter could have specifically chosen the a treatments. In this situation, we
wish to test hypotheses about the treatment means, and conclusions cannot be extended to
similar treatments that were not considered. In addition, we may wish to estimate the treat-
ment effects. This is called the fixed-effects model. Alternatively, the a treatments could be
a random sample from a larger population of treatments. In this situation, we would like to
be able to extend the conclusions (which are based on the sample of treatments) to all treat-
ments in the population, whether or not they were explicitly considered in the experiment.
Here the treatment effects �i are random variables, and knowledge about the particular ones
investigated is relatively unimportant. Instead, we test hypotheses about the variability of
the �i and try to estimate this variability. This is called the random effects, or components
of variance, model.

In this section we develop the analysis of variance for the fixed-effects model. The 
analysis of variance is not new to us; it was used previously in the presentation of regression
analysis. However, in this section we show how it can be used to test for equality of treatment
effects. In the fixed-effects model, the treatment effects �i are usually defined as deviations
from the overall mean �, so that

(13-2)

Let yi. represent the total of the observations under the ith treatment and represent the average
of the observations under the ith treatment. Similarly, let represent the grand total of all obser-
vations and represent the grand mean of all observations. Expressed mathematically,

(13-3)

where N � an is the total number of observations. Thus, the “dot” subscript notation implies
summation over the subscript that it replaces.

We are interested in testing the equality of the a treatment means �1, �2, . . . , �a. Using
Equation 13-2, we find that this is equivalent to testing the hypotheses

(13-4)

Thus, if the null hypothesis is true, each observation consists of the overall mean � plus a
realization of the random error component �ij. This is equivalent to saying that all N
observations are taken from a normal distribution with mean � and variance �2. Therefore,
if the null hypothesis is true, changing the levels of the factor has no effect on the mean
response.

The ANOVA partitions the total variability in the sample data into two component parts.
Then, the test of the hypothesis in Equation 13-4 is based on a comparison of two independ-
ent estimates of the population variance. The total variability in the data is described by the to-
tal sum of squares

SST � a
a

i�1
a

n

j�1
 1 yij � y..22

 H1: �i 	 0 for at least one i

 H0: �1 � �2 � p � �a � 0

 y.. � a
a

i�1
 a

n

j�1
 yij   y.. � y..
N

 yi. � a
n

j�1
 yij  yi. � yi.
n  i � 1, 2, . . . , a

y..
y..

yi.

a
a

i�1
 �i � 0
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474 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

The sum of squares identity is

(13-5)

or symbolically

(13-6)SST � SSTreatments � SSE

a
a

i�1
 a

n

j�1
 1 yij � y..22 � n a

a

i�1
 1  yi. � y..22 � a

a

i�1
 a

n

j�1
 1 yij � yi.22

The expected value of the treatment sum of squares is 

and the expected value of the error sum of squares is

E1SSE2 � a1n � 12�2

E1SS Treatments2 � 1a � 12�2 � n a
a

i�1
 
�i

2

The identity in Equation 13-5 (which is developed in Section 13-4.4 on the CD) shows
that the total variability in the data, measured by the total corrected sum of squares SST, can be
partitioned into a sum of squares of differences between treatment means and the grand mean
denoted SSTreatments and a sum of squares of differences of observations within a treatment from
the treatment mean denoted SSE. Differences between observed treatment means and the
grand mean measure the differences between treatments, while differences of observations
within a treatment from the treatment mean can be due only to random error. 

We can gain considerable insight into how the analysis of variance works by examining
the expected values of SSTreatments and SSE. This will lead us to an appropriate statistic for test-
ing the hypothesis of no differences among treatment means (or all ).�i � 0

There is also a partition of the number of degrees of freedom that corresponds to the sum
of squares identity in Equation 13-5. That is, there are an � N observations; thus, SST has
an � 1 degrees of freedom. There are a levels of the factor, so SSTreatments has a � 1 degrees of
freedom. Finally, within any treatment there are n replicates providing n � 1 degrees of free-
dom with which to estimate the experimental error. Since there are a treatments, we have
a(n � 1) degrees of freedom for error. Therefore, the degrees of freedom partition is

The ratio

is called the mean square for treatments. Now if the null hypothesis �
is true, MSTreatments is an unbiased estimator of �2 because . However,

if H1 is true, MSTreatments estimates �2 plus a positive term that incorporates variation due to the
systematic difference in treatment means.

g a
i�1 �i � 0p � �a � 0

H0: �1 � �2

MSTreatments � SSTreatments 
 1a � 12

an � 1 � a � 1 � a1n � 12

The partition of the total sum of squares is given in the following definition.

Definition
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13-2 THE COMPLETELY RANDOMIZED SINGLE-FACTOR EXPERIMENT 475

Note that the error mean square

is an unbiased estimator of �2 regardless of whether or not H0 is true. We can also show that
MSTreatments and MSE are independent. Consequently, we can show that if the null hypothesis H0

is true, the ratio

MSE � SSE
 3a1n � 12 4

(13-7)F0 �
SS Treatments 
 1a � 12

SSE 
 3a 1n � 12 4 �
MS Treatments

MSE

The sums of squares computing formulas for the ANOVA with equal sample sizes in
each treatment are

(13-8)

and

(13-9)

The error sum of squares is obtained by subtraction as

(13-10)SSE � SST � SSTreatments

SS Treatments � a
a

i�1
  

y2
i

n �
y..2

N

SS T � a
a

i�1
 a

n

j�1
 y2

ij �
y..2

N

Definition

has an F-distribution with a � 1 and a (n � 1) degrees of freedom. Furthermore, from the ex-
pected mean squares, we know that MSE is an unbiased estimator of �2. Also, under the null
hypothesis, MSTreatments is an unbiased estimator of �2. However, if the null hypothesis is false,
the expected value of MSTreatments is greater than �2. Therefore, under the alternative hypothe-
sis, the expected value of the numerator of the test statistic (Equation 13-7) is greater than the
expected value of the denominator. Consequently, we should reject H0 if the statistic is large.
This implies an upper-tail, one-tail critical region. Therefore, we would reject H0 if

where f0 is the computed value of F0 from Equation 13-7.
Efficient computational formulas for the sums of squares may be obtained by expanding

and simplifying the definitions of SSTreatments and SST. This yields the following results.

f0 � f�, a�1, a 1n�12

The computations for this test procedure are usually summarized in tabular form as shown in
Table 13-3. This is called an analysis of variance (or ANOVA) table.

Table 13-3 The Analysis of Variance for a Single-Factor Experiment, Fixed-Effects Model

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Treatments SSTreatments a � 1 MSTreatments

Error SSE a(n � 1) MSE

Total SST an � 1

MS Treatments

MSE

c13.qxd  5/8/02  9:20 PM  Page 475 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:PQ220 MONT 8/5/2002:Ch 13:



476 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

EXAMPLE 13-1 Consider the paper tensile strength experiment described in Section 13-2.1. We can use the
analysis of variance to test the hypothesis that different hardwood concentrations do not affect
the mean tensile strength of the paper.

The hypotheses are

.

We will use � � 0.01. The sums of squares for the analysis of variance are computed from
Equations 13-8, 13-9, and 13-10 as follows:

The ANOVA is summarized in Table 13-4. Since f0.01,3,20 � 4.94, we reject H0 and conclude
that hardwood concentration in the pulp significantly affects the mean strength of the paper.
We can also find a P-value for this test statistic as follows:

Since is considerably smaller than � � 0.01, we have strong evidence to
conclude that H0 is not true.

Minitab Output
Many software packages have the capability to analyze data from designed experiments using
the analysis of variance. Table 13-5 presents the output from the Minitab one-way analysis of
variance routine for the paper tensile strength experiment in Example 13-1. The results agree
closely with the manual calculations reported previously in Table 13-4.

P � 3.59 
 10�6

P � P1F3,20 � 19.602 � 3.59 
 10�6

 � 512.96 � 382.79 � 130.17
 SSE � SST � SSTreatments

 �
16022 � 19422 � 110222 � 112722

6
�
138322

24
� 382.79

 SSTreatments � a
4

i�1
 
y2

i .
n �

y2..

N

 � 1722 � 1822 � p � 12022 �
138322

24
� 512.96

 SST � a
4

i�1
 a

6

j�1
 y2

ij �
y..2

N

 H1: �i 	 0 for at least one i

 H0: �1 � �2 � �3 � �4 � 0

Table 13-4 ANOVA for the Tensile Strength Data

Source of Degrees of
Variation Sum of Squares Freedom Mean Square f0 P-value

Hardwood
concentration 382.79 3 127.60 19.60 3.59 E-6
Error 130.17 20 6.51
Total 512.96 23
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13-2 THE COMPLETELY RANDOMIZED SINGLE-FACTOR EXPERIMENT 477

The Minitab output also presents 95% confidence intervals on each individual treatment
mean. The mean of the ith treatment is defined as

A point estimator of �i is . Now, if we assume that the errors are normally distributed,
each treatment average is normally distributed with mean �i and variance �2�n. Thus, if �2

were known, we could use the normal distribution to construct a CI. Using MSE as an estima-
tor of �2 (The square root of MSE is the “Pooled StDev” referred to in the Minitab output), we
would base the CI on the t-distribution, since

has a t-distribution with a(n � 1) degrees of freedom. This leads to the following definition 
of the confidence interval.

T �
Yi. � �i1MSE
n

�̂i � Yi.

�i � � � �i  i � 1, 2, p , a

Table 13-5 Minitab Analysis of Variance Output for Example 13-1

One-Way ANOVA: Strength versus CONC

Analysis of Variance for Strength

Source DF SS MS F P
Conc 3 382.79 127.60 19.61 0.000
Error 20 130.17 6.51
Total 23 512.96 Individual 95% CIs For Mean

Based on Pooled StDev
Level N Mean StDev —- � ——- � ——- � ——- ��

5 6 10.000 2.828 (— —)
10 6 15.667 2.805 (— —)
15 6 17.000 1.789 (— —)
20 6 21.167 2.639 (— —)

—- � ———- � ———- � ———- � -
Pooled StDev � 2.551 10.0 15.0 20.0 25.0

Fisher’s pairwise comparisons

Family error rate � 0.192
Individual error rate � 0.0500

Critical value � 2.086

Intervals for (column level mean) � (row level mean)
5 10 15

10 �8.739
�2.594

15 �10.072 �4.406
�3.928 1.739

20 �14.239 �8.572 �7.239
�8.094 �2.428 �1.094

*
*

*
*
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478 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

A 95% CI on the difference in means �3 � �2 is computed from Equation 13-12 as follows:

or

�1.74 � �3 � �2 � 4.40

317.00 � 15.67 � 12.0862 ˛1216.512
6 4
3y3. � y2. � t0.025,20 12MSE
n 4

A 100(1 � �) percent confidence interval on the difference in two treatment means
�i � �j is

(13-12)

yi. � yj. � t�
2,a1n�12 B2MSE

n � �i � �j � yi. � yj. � t�
 2,a1n�12 B2MSE

n

Definition

Equation 13-11 is used to calculate the 95% CIs shown graphically in the Minitab output of
Table 13-5. For example, at 20% hardwood the point estimate of the mean is ,
MSE � 6.51, and t0.025,20 � 2.086, so the 95% CI is

or

It can also be interesting to find confidence intervals on the difference in two treatment means,
say, �i � �j. The point estimator of �i � �j is , and the variance of this estimator is

Now if we use MSE to estimate �2,

has a t-distribution with a(n � 1) degrees of freedom. Therefore, a CI on �i � �j may be
based on the t-distribution.

T �
Yi. � Yj. � 1�i � �j212MSE
n

V1Yi. � Yj.2 �
�2

n �
�2

n �
2�2

n

Yi. � Yj.

19.00 psi � �4 � 23.34 psi

321.167 � 12.0862 ˛16.51
6 4
3y4. � t0.025,20˛1MSE
n 4

y4. � 21.167

A 100(1 � �) percent confidence interval on the mean of the ith treatment �i is

(13-11)yi. � t�
 2,a 1n�12 BMSE

n � �i � yi. � t�
2,a1n�12 BMSE

n

Definition
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13-2 THE COMPLETELY RANDOMIZED SINGLE-FACTOR EXPERIMENT 479

Since the CI includes zero, we would conclude that there is no difference in mean tensile
strength at these two particular hardwood levels.

The bottom portion of the computer output in Table 13-5 provides additional information con-
cerning which specific means are different. We will discuss this in more detail in Section 13-2.3.

An Unbalanced Experiment
In some single-factor experiments, the number of observations taken under each treatment
may be different. We then say that the design is unbalanced. In this situation, slight
modifications must be made in the sums of squares formulas. Let ni observations be taken
under treatment i (i � 1, 2, . . . , a), and let the total number of observations The
computational formulas for SST and SSTreatments are as shown in the following definition.

N � g a
i�1 ni.

Choosing a balanced design has two important advantages. First, the ANOVA is relatively
insensitive to small departures from the assumption of equality of variances if the sample sizes
are equal. This is not the case for unequal sample sizes. Second, the power of the test is max-
imized if the samples are of equal size.

13-2.3 Multiple Comparisons Following the ANOVA

When the null hypothesis is rejected in the ANOVA, we know
that some of the treatment or factor level means are different. However, the ANOVA doesn’t
identify which means are different. Methods for investigating this issue are called multiple
comparisons methods. Many of these procedures are available. Here we describe a very
simple one, Fisher’s least significant difference (LSD) method. In Section 13-2.4 on the 
CD, we describe three other procedures. Montgomery (2001) presents these and other methods
and provides a comparative discussion.

The Fisher LSD method compares all pairs of means with the null hypotheses H0: �i � �j

(for all i 	 j) using the t-statistic

Assuming a two-sided alternative hypothesis, the pair of means �i and �j would be declared
significantly different if

0 yi. � yj. 0 � LSD

t0 �
yi. � yj.B2MSE

n

H0: �1 � �2 � p � �a � 0

The sums of squares computing formulas for the ANOVA with unequal sample sizes
ni in each treatment are

(13-13)

(13-14)

and

(13-15) SSE � SST � SSTreatments

 SS
 Treatments � a

a

i�1
 
y2

i .
ni

�
y2..

N

 SST � a
a

i�1
 a

ni

j�1
 y2

ij �
y2..

N

Definition
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480 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

where LSD, the least significant difference, is

Figure 13-2 Results of Fisher’s LSD method in Example 13-2.

(13-16)LSD � t�
2,a 1n�12 B2MSE

n

If the sample sizes are different in each treatment, the LSD is defined as

EXAMPLE 13-2 We will apply the Fisher LSD method to the hardwood concentration experiment. There are
a � 4 means, n � 6, MSE � 6.51, and t0.025,20 � 2.086. The treatment means are

The value of LSD is . Therefore, any
pair of treatment averages that differs by more than 3.07 implies that the corresponding pair
of treatment means are different.

The comparisons among the observed treatment averages are as follows:

From this analysis, we see that there are significant differences between all pairs of means
except 2 and 3. This implies that 10 and 15% hardwood concentration produce approximately
the same tensile strength and that all other concentration levels tested produce different tensile
strengths. It is often helpful to draw a graph of the treatment means, such as in Fig. 13-2, with
the means that are not different underlined. This graph clearly reveals the results of the exper-
iment and shows that 20% hardwood produces the maximum tensile strength.

The Minitab output in Table 13-5 shows the Fisher LSD method under the heading
“Fisher’s pairwise comparisons.” The critical value reported is actually the value of t0.025,20 �

2 vs. 1 � 15.67 � 10.00 �   5.67 � 3.07

3 vs. 2 � 17.00 � 15.67 �   1.33 � 3.07

3 vs. 1 � 17.00 � 10.00 �   7.00 � 3.07

4 vs. 3 � 21.17 � 17.00 �   4.17 � 3.07

4 vs. 2 � 21.17 � 15.67 �   5.50 � 3.07

4 vs. 1 � 21.17 � 10.00 � 11.17 � 3.07

LSD � t0.025,2012MSE 
n � 2.08612 16.512 
6 � 3.07

y4. � 21.17 psi

y3. � 17.00 psi

y2. � 15.67 psi

y1. � 10.00 psi

LSD � t�
2,N�a BMSE 
a 1

ni
�

1
nj
b
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2.086. Minitab implements Fisher’s LSD method by computing confidence intervals on all
pairs of treatment means using Equation 13-12. The lower and upper 95% confidence limits
are shown at the bottom of the table. Notice that the only pair of means for which the
confidence interval includes zero is for �10 and �15. This implies that �10 and �15 are not
significantly different, the same result found in Example 13-2.

Table 13-5 also provides a “family error rate,” equal to 0.192 in this example. When all
possible pairs of means are tested, the probability of at least one type I error can be much
greater than for a single test. We can interpret the family error rate as follows. The probability
is 1 � 0.192 � 0.808 that there are no type I errors in the six comparisons. The family error
rate in Table 13-5 is based on the distribution of the range of the sample means. See
Montgomery (2001) for details. Alternatively, Minitab permits you to specify a family error
rate and will then calculate an individual error rate for each comparison.

13-2.4 More About Multiple Comparisons (CD Only)

13-2.5 Residual Analysis and Model Checking

The analysis of variance assumes that the observations are normally and independently dis-
tributed with the same variance for each treatment or factor level. These assumptions should
be checked by examining the residuals. A residual is the difference between an observation yij

and its estimated (or fitted) value from the statistical model being studied, denoted as . For
the completely randomized design and each residual is , that is, the dif-
ference between an observation and the corresponding observed treatment mean. The residuals
for the paper tensile strength experiment are shown in Table 13-6. Using to calculate each
residual essentially removes the effect of hardwood concentration from the data; consequently,
the residuals contain information about unexplained variability.

The normality assumption can be checked by constructing a normal probability plot of
the residuals. To check the assumption of equal variances at each factor level, plot the residu-
als against the factor levels and compare the spread in the residuals. It is also useful to plot the
residuals against (sometimes called the fitted value); the variability in the residuals should
not depend in any way on the value of . Most statistics software packages will construct
these plots on request. When a pattern appears in these plots, it usually suggests the need for
a transformation, that is, analyzing the data in a different metric. For example, if the variabil-
ity in the residuals increases with , a transformation such as log y or should be consid-
ered. In some problems, the dependency of residual scatter on the observed mean is very
important information. It may be desirable to select the factor level that results in maximum
response; however, this level may also cause more variation in response from run to run.

The independence assumption can be checked by plotting the residuals against the time
or run order in which the experiment was performed. A pattern in this plot, such as sequences
of positive and negative residuals, may indicate that the observations are not independent.

yi.
1yyi.

yi

yi.

yi.

eij � yij � yi.ŷij � yi.
ŷij
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Table 13-6 Residuals for the Tensile Strength Experiment

Hardwood
Concentration (%) Residuals

5 �3.00 �2.00 5.00 1.00 �1.00 0.00
10 �3.67 1.33 �2.67 2.33 3.33 �0.67
15 �3.00 1.00 2.00 0.00 �1.00 1.00
20 �2.17 3.83 0.83 1.83 �3.17 �1.17
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This suggests that time or run order is important or that variables that change over time are
important and have not been included in the experimental design.

A normal probability plot of the residuals from the paper tensile strength experiment is
shown in Fig. 13-3. Figures 13-4 and 13-5 present the residuals plotted against the factor
levels and the fitted value respectively. These plots do not reveal any model inadequacy or
unusual problem with the assumptions.

13-2.6 Determining Sample Size

In any experimental design problem, the choice of the sample size or number of replicates to
use is important. Operating characteristic curves can be used to provide guidance in mak-
ing this selection. Recall that the operating characteristic curve is a plot of the probability of a

yi.
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Figure 13-3 Normal probability plot of residuals from
the hardwood concentration experiment.
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Figure 13-5 Plot of residuals versus .yi
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13-2 THE COMPLETELY RANDOMIZED SINGLE-FACTOR EXPERIMENT 483

type II error (�) for various sample sizes against a measure of the difference in means that it
is important to detect. Thus, if the experimenter knows the magnitude of the difference in
means that is of potential importance, the operating characteristic curves can be used to deter-
mine how many replicates are required to achieve adequate sensitivity.

The power of the ANOVA test is

(13-17)

To evaluate this probability statement, we need to know the distribution of the test statistic F0

if the null hypothesis is false. It can be shown that, if H0 is false, the statistic F0 �
MSTreatments�MSE is distributed as a noncentral F random variable, with a � 1 and a(n � 1)
degrees of freedom and a noncentrality parameter �. If � � 0, the noncentral F-distribution
becomes the usual or central F-distribution.

Operating characteristic curves are used to evaluate � defined in Equation 13-17. These
curves plot � against a parameter �, where

(13-18)

The parameter �2 is (apart from n) the noncentrality parameter �. Curves are available for 
� � 0.05 and � � 0.01 and for several values of the number of degrees of freedom for nu-
merator (denoted v1) and denominator (denoted v2). Figure 13-6 gives representative O.C.
curves, one for  a � 4 (v1 � 3) and one for a � 5 (v1 � 4) treatments. Notice that for each
value of a there are curves for � � 0.05 and � � 0.01. O.C. curves for other values of a are
in Section 13-2.7 on the CD.

In using the operating curves, we must define the difference in means that we wish to
detect in terms of . Also, the error variance �2 is usually unknown. In such cases, we
must choose ratios of that we wish to detect. Alternatively, if an estimate of �2

is available, one may replace �2 with this estimate. For example, if we were interested in
the sensitivity of an experiment that has already been performed, we might use MSE as the
estimate of �2.

EXAMPLE 13-3 Suppose that five means are being compared in a completely randomized experiment with 
� � 0.01. The experimenter would like to know how many replicates to run if it is impor-
tant to reject H0 with probability at least 0.90 if . The parameter �2 is, in
this case,

and for the operating characteristic curve with v1 � a � 1 � 5 � 1 � 4, and v2 � a(n � 1) �
5(n � 1) error degrees of freedom refer to the lower curve in Figure 13-6. As a first guess, try
n � 4 replicates. This yields �2 � 4, � � 2, and v2 � 5(3) � 15 error degrees of freedom.
Consequently, from Figure 13-6, we find that � � 0.38. Therefore, the power of the test is
approximately 1 � � � 1 � 0.38 � 0.62, which is less than the required 0.90, and so we

�2 �

na
a

i�1
�2

i

a�2 �
n
5

 152 � n

g 5
i�1 �

2
i 
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g a
i�1 �

2
i 
�2

g a
i�1 �

2
i

�2 �

na
a

i�1
 �

2
i

a�2

 � P5F0 � f�,a�1, a 1n�12   0   
 H0 is false6

 1 � � � P5Reject H0 
  
0

  
 H0 is false6
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Figure 13-6 Two Operating characteristic curves for the fixed-effects model analysis of variance.
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conclude that n � 4 replicates is not sufficient. Proceeding in a similar manner, we can con-
struct the following table:

n �2 � a(n � 1) � Power � (1 � �)

4 4 2.00 15 0.38 0.62
5 5 2.24 20 0.18 0.82
6 6 2.45 25 0.06 0.94

13-1. In Design and Analysis of Experiments, 5th edition
(John Wiley & Sons, 2001) D. C. Montgomery describes an
experiment in which the tensile strength of a synthetic fiber is
of interest to the manufacturer. It is suspected that strength is
related to the percentage of cotton in the fiber. Five levels of
cotton percentage are used, and five replicates are run in
random order, resulting in the data below.

Cotton
Percentage

Observations

1 2 3 4 5

15 7 7 15 11 9

20 12 17 12 18 18

25 14 18 18 19 19

30 19 25 22 19 23

35 7 10 11 15 11

Observations

1 2 3 4 5 6

125 2.7 4.6 2.6 3.0 3.2 3.8

160 4.9 4.6 5.0 4.2 3.6 4.2

200 4.6 3.4 2.9 3.5 4.1 5.1

C2F6 Flow
(SCCM)

(a) Does C2F6 flow rate affect etch uniformity? Construct box
plots to compare the factor levels and perform the analysis
of variance. Use � � 0.05.

(b) Do the residuals indicate any problems with the underly-
ing assumptions?

13-3. The compressive strength of concrete is being stud-
ied, and four different mixing techniques are being investi-
gated. The following data have been collected.

(a) Test the hypothesis that mixing techniques affect the
strength of the concrete. Use � � 0.05.

(b) Find the P-value for the F-statistic computed in part (a).
(c) Analyze the residuals from this experiment.

13-4. An experiment was run to determine whether four
specific firing temperatures affect the density of a certain type
of brick. The experiment led to the following data.

(a) Does cotton percentage affect breaking strength? Draw
comparative box plots and perform an analysis of vari-
ance. Use � � 0.05.

(b) Plot average tensile strength against cotton percentage
and interpret the results.

(c) Analyze the residuals and comment on model adequacy.

13-2. In “Orthogonal Design for Process Optimization and Its
Application to Plasma Etching” (Solid State Technology, May
1987), G. Z. Yin and D. W. Jillie describe an experiment to de-
termine the effect of C2F6 flow rate on the uniformity of the etch
on a silicon wafer used in integrated circuit manufacturing.
Three flow rates are used in the experiment, and the resulting
uniformity (in percent) for six replicates is shown below.

13-2 THE COMPLETELY RANDOMIZED SINGLE-FACTOR EXPERIMENT 485

Thus, at least n � 6 replicates must be run in order to obtain a test with the required power.

13-2.7 Technical Details about the Analysis of Variance (CD Only)

EXERCISES FOR SECTION 13-2

Mixing
Technique Compressive Strength (psi)

1 3129 3000 2865 2890

2 3200 3300 2975 3150

3 2800 2900 2985 3050

4 2600 2700 2600 2765

(a) Does the firing temperature affect the density of the
bricks? Use � � 0.05.

(b) Find the P-value for the F-statistic computed in part (a).
(c) Analyze the residuals from the experiment.

Temperature
(°F) Density

100 21.8 21.9 21.7 21.6 21.7 21.5 21.8

125 21.7 21.4 21.5 21.5 — — —

150 21.9 21.8 21.8 21.6 21.5 — —

175 21.9 21.7 21.8 21.7 21.6 21.8 —

c13.qxd  5/8/02  9:20 PM  Page 485 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:PQ220 MONT 8/5/2002:Ch 13:



486 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

13-5. An electronics engineer is interested in the effect on
tube conductivity of five different types of coating for cathode
ray tubes in a telecommunications system display device. The
following conductivity data are obtained.

(b) Find the P-value for the F-statistic in part (a).
(c) Analyze the residuals from this experiment. What con-

clusions can you draw about the underlying model
assumptions?

13-8. An article in Environment International (Vol. 18,
No. 4, 1992) describes an experiment in which the amount of
radon released in showers was investigated. Radon-enriched
water was used in the experiment, and six different orifice
diameters were tested in shower heads. The data from the
experiment are shown in the following table.

(a) Using � � 0.01, test the hypothesis that the three circuit
types have the same response time.

(b) Analyze the residuals from this experiment.
(c) Find a 95% confidence interval on the response time for

circuit three.

13-7. An article in the ACI Materials Journal (Vol. 84,
1987, pp. 213–216) describes several experiments investi-
gating the rodding of concrete to remove entrapped air. A 
3-inch 
 6-inch cylinder was used, and the number of times
this rod was used is the design variable. The resulting com-
pressive strength of the concrete specimen is the response.
The data are shown in the following table.

(a) Does the size of the orifice affect the mean percentage of
radon released? Use � � 0.05.

(b) Find the P-value for the F-statistic in part (a).
(c) Analyze the residuals from this experiment.
(d) Find a 95% confidence interval on the mean percent of

radon released when the orifice diameter is 1.40.

13-9. A paper in the Journal of the Association of Asphalt
Paving Technologists (Vol. 59, 1990) describes an experi-
ment to determine the effect of air voids on percentage
retained strength of asphalt. For purposes of the experiment,
air voids are controlled at three levels; low (2–4%), medium
(4–6%), and high (6–8%). The data are shown in the follow-
ing table.

Coating
Type Conductivity

1 143 141 150 146

2 152 149 137 143

3 134 133 132 127

4 129 127 132 129

5 147 148 144 142

Circuit
Type Response

1 19 22 20 18 25

2 20 21 33 27 40

3 16 15 18 26 17

Rodding
Level Compressive Strength

10 1530 1530 1440

15 1610 1650 1500

20 1560 1730 1530

25 1500 1490 1510

Orifice
Diameter Radon Released (%)

0.37 80 83 83 85

0.51 75 75 79 79

0.71 74 73 76 77

1.02 67 72 74 74

1.40 62 62 67 69

1.99 60 61 64 66

Air Voids Retained Strength (%)

Low 106 90 103 90 79 88 92 95

Medium 80 69 94 91 70 83 87 83

High 78 80 62 69 76 85 69 85

(a) Is there any difference in conductivity due to coating
type? Use � � 0.01.

(b) Analyze the residuals from this experiment.
(c) Construct a 95% interval estimate of the coating type 1

mean. Construct a 99% interval estimate of the mean dif-
ference between coating types 1 and 4.

13-6. The response time in milliseconds was determined for
three different types of circuits in an electronic calculator. The
results are recorded here.

(a) Is there any difference in compressive strength due to the
rodding level?

(a) Do the different levels of air voids significantly affect
mean retained strength? Use � � 0.01.

(b) Find the P-value for the F-statistic in part (a).
(c) Analyze the residuals from this experiment.
(d) Find a 95% confidence interval on mean retained strength

where there is a high level of air voids.

(e) Find a 95% confidence interval on the difference
in mean retained strength at the low and high levels of
air voids.

13-10. An article in the Materials Research Bulletin (Vol. 26,
No. 11, 1991) investigated four different methods of preparing
the superconducting compound PbMo6S8. The authors contend
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Preparation
Method Transition Temperature Tc(�K)

1 14.8 14.8 14.7 14.8 14.9

2 14.6 15.0 14.9 14.8 14.7

3 12.7 11.6 12.4 12.7 12.1

4 14.2 14.4 14.4 12.2 11.7

that the presence of oxygen during the preparation process
affects the material’s superconducting transition temperature Tc.
Preparation methods 1 and 2 use techniques that are designed to
eliminate the presence of oxygen, while methods 3 and 4 allow
oxygen to be present. Five observations on Tc (in °K) were made
for each method, and the results are as follows:

13-13. Use Fisher’s LSD method with � � 0.05 to analyze
the mean compressive strength of the four mixing techniques
in Exercise 13-3.

13-14. Use Fisher’s LSD method to analyze the five means
for the coating types described in Exercise 13-5. Use � � 0.01.

13-15. Use Fisher’s LSD method to analyze the mean
response times for the three circuits described in Exercise 
13-6. Use � � 0.01.

13-16. Use Fisher’s LSD method to analyze the mean
amounts of radon released in the experiment described in
Exercise 13-8. Use � � 0.05.

13-17. Apply Fisher’s LSD method to the air void experi-
ment described in Exercise 13-9. Using � � 0.05, which
treatment means are different?

13-18. Apply Fisher’s LSD method to the superconducting
material experiment described in Exercise 13-10. Which
preparation methods differ, if � � 0.05?

13-19. Suppose that four normal populations have common
variance �2 � 25 and means �1 � 50, �2 � 60, �3 � 50, and
�4 � 60. How many observations should be taken on each
population so that the probability of rejecting the hypothesis
of equality of means is at least 0.90? Use � � 0.05.

13-20. Suppose that five normal populations have common
variance �2 � 100 and means �1 � 175, �2 � 190, �3 � 160,
�4 � 200, and �5 � 215. How many observations per popula-
tion must be taken so that the probability of rejecting the
hypothesis of equality of means is at least 0.95? Use � � 0.01.

(a) Is there evidence to support the claim that the presence of
oxygen during preparation affects the mean transition
temperature? Use � � 0.05.

(b) What is the P-value for the F-test in part (a)?
(c) Analyze the residuals from this experiment.
(d) Find a 95% confidence interval on mean Tc when method

1 is used to prepare the material.

13-11. Use Fisher’s LSD method with � � 0.05 to analyze
the means of the five different levels of cotton content in
Exercise 13-1.

13-12. Use Fisher’s LSD method with � � 0.05 test to
analyze the means of the three flow rates in Exercise 13-2.

13-3 THE RANDOM-EFFECTS MODEL 487

13-3 THE RANDOM-EFFECTS MODEL

13-3.1 Fixed versus Random Factors

In many situations, the factor of interest has a large number of possible levels. The analyst is
interested in drawing conclusions about the entire population of factor levels. If the experimenter
randomly selects a of these levels from the population of factor levels, we say that the factor is a
random factor. Because the levels of the factor actually used in the experiment were chosen ran-
domly, the conclusions reached will be valid for the entire population of factor levels. We will
assume that the population of factor levels is either of infinite size or is large enough to be con-
sidered infinite. Notice that this is a very different situation than we encountered in the fixed
effects case, where the conclusions apply only for the factor levels used in the experiment.

13-3.2 ANOVA and Variance Components

The linear statistical model is

(13-19)

where the treatment effects �i and the errors �ij are independent random variables. Note that
the model is identical in structure to the fixed-effects case, but the parameters have a different

Yij � � � �i � �ij e i � 1, 2, p , a

j � 1, 2, p , n
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interpretation. If the variance of the treatment effects �i is by independence the variance of
the response is

The variances and �2 are called variance components, and the model, Equation 13-19, is
called the components of variance model or the random-effects model. To test hypotheses
in this model, we assume that the errors �ij are normally and independently distributed with
mean 0 and variance �2 and that the treatment effects �i are normally and independently dis-
tributed with mean zero and variance .*

For the random-effects model, testing the hypothesis that the individual treatment effects
are zero is meaningless. It is more appropriate to test hypotheses about . Specifically,

If � 0, all treatments are identical; but if � 0, there is variability between treatments.
The ANOVA decomposition of total variability is still valid; that is,

(13-20)

However, the expected values of the mean squares for treatments and error are somewhat
different than in the fixed-effect case.

SST � SSTreatments � SSE

�2
��2

�

H1: �
2
� � 0

H0: �
2
� � 0

�2
�

�2
�

�2
�

V1Yij2 � �2
� � �2

�2
�,

In the random-effects model for a single-factor, completely randomized experiment,
the expected mean square for treatments is

(13-21)

and the expected mean square for error is

(13-22) � �2

 E1MSE2 � E c SSE

a1n � 12 d

 � �2 � n�2
�

 E 1MS Treatments2 � E aSSTreatments

a � 1
b

*The assumption that the {�i} are independent random variables implies that the usual assumption of 
from the fixed-effects model does not apply to the random-effects model.

g a
i�1 �i � 0

From examining the expected mean squares, it is clear that both MSE and MSTreatments

estimate �2 when H0: � 0 is true. Furthermore, MSE and MSTreatments are independent.
Consequently, the ratio

(13-23)F0 �
MSTreatments

MSE

�2
�
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is an F random variable with a � 1 and a(n � 1) degrees of freedom when H0 is true. The null
hypothesis would be rejected at the �-level of significance if the computed value of the test
statistic f0 � f�,a�1,a(n�1).

The computational procedure and construction of the ANOVA table for the random-
effects model are identical to the fixed-effects case. The conclusions, however, are quite dif-
ferent because they apply to the entire population of treatments.

Usually, we also want to estimate the variance components (�2 and ) in the model. The
procedure that we will use to estimate �2 and is called the analysis of variance method
because it uses the information in the analysis of variance table. It does not require the nor-
mality assumption on the observations. The procedure consists of equating the expected mean
squares to their observed values in the ANOVA table and solving for the variance components.
When equating observed and expected mean squares in the one-way classification random-
effects model, we obtain

Therefore, the estimators of the variance components are

MS Treatments � �2 � n�2
� and MSE � �2

�2
�

�2
�

(13-24)

and

(13-25)�̂2
� �

MSTreatments � MSE

n

�̂2 � MSE

Sometimes the analysis of variance method produces a negative estimate of a variance
component. Since variance components are by definition nonnegative, a negative estimate of a
variance component is disturbing. One course of action is to accept the estimate and use it as
evidence that the true value of the variance component is zero, assuming that sampling variation
led to the negative estimate. While this approach has intuitive appeal, it will disturb the statisti-
cal properties of other estimates. Another alternative is to reestimate the negative variance com-
ponent with a method that always yields nonnegative estimates. Still another possibility is to
consider the negative estimate as evidence that the assumed linear model is incorrect, requiring
that a study of the model and its assumptions be made to find a more appropriate model.

EXAMPLE 13-4 In Design and Analysis of Experiments, 5th edition (John Wiley, 2001), D. C. Montgomery de-
scribes a single-factor experiment involving the random-effects model in which a textile man-
ufacturing company weaves a fabric on a large number of looms. The company is interested
in loom-to-loom variability in tensile strength. To investigate this variability, a manufacturing
engineer selects four looms at random and makes four strength determinations on fabric sam-
ples chosen at random from each loom. The data are shown in Table 13-7 and the ANOVA is
summarized in Table 13-8.

From the analysis of variance, we conclude that the looms in the plant differ significantly
in their ability to produce fabric of uniform strength. The variance components are estimated
by and

�̂2
� �

29.73 � 1.90
4

� 6.96

�̂2 � 1.90
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490 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

Therefore, the variance of strength in the manufacturing process is estimated by

Most of this variability is attributable to differences between looms.

This example illustrates an important application of the analysis of variance—the iso-
lation of different sources of variability in a manufacturing process. Problems of excessive
variability in critical functional parameters or properties frequently arise in quality-
improvement programs. For example, in the previous fabric strength example, the process
mean is estimated by psi, and the process standard deviation is estimated by

� psi. If strength is approximately normally distributed, the
distribution of strength in the outgoing product would look like the normal distribution
shown in Fig. 13-7(a). If the lower specification limit (LSL) on strength is at 90 psi, a sub-
stantial proportion of the process output is fallout—that is, scrap or defective material that
must be sold as second quality, and so on. This fallout is directly related to the excess vari-
ability resulting from differences between looms. Variability in loom performance could be
caused by faulty setup, poor maintenance, inadequate supervision, poorly trained operators,
and so forth. The engineer or manager responsible for quality improvement must identify
and remove these sources of variability from the process. If this can be done, strength vari-
ability will be greatly reduced, perhaps as low as psi, as
shown in Fig. 13-7(b). In this improved process, reducing the variability in strength has
greatly reduced the fallout, resulting in lower cost, higher quality, a more satisfied cus-
tomer, and enhanced competitive position for the company.

13-3.3 Determining Sample Size in the Random Model (CD Only)

�̂Y � 2�̂2 � 21.90 � 1.38

18.86 � 2.98�̂y � 2V̂1Yij2
y � 95.45

V1Yij2 � �̂2
� � �̂2 � 6.96 � 1.90 � 8.86

Table 13-8 Analysis of Variance for the Strength Data

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square f0 P-value

Looms 89.19 3 29.73 15.68 1.88 E-4
Error 22.75 12 1.90
Total 111.94 15

Table 13-7 Strength Data for Example 13-4

Observations

Loom 1 2 3 4 Total Average

1 98 97 99 96 390 97.5
2 91 90 93 92 366 91.5
3 96 95 97 95 383 95.8
4 95 96 99 98 388 97.0

1527 95.45

80 85 90 95 100 105 110    psi
LSL

(a)

Process
fallout

80 85 90 95 100 105 110     psi
LSL

(b)

Figure 13-7 The distribution of fabric strength. (a) Current process, (b) improved process.

I
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(a) Is there a difference in the wafer positions? Use � � 0.05.
(b) Estimate the variability due to wafer positions.
(c) Estimate the random error component.
(d) Analyze the residuals from this experiment and comment

on model adequacy.

13-23. An article in the Journal of Quality Technology
(Vol. 13, No. 2, 1981, pp. 111–114) describes an experiment
that investigates the effects of four bleaching chemicals on
pulp brightness. These four chemicals were selected at ran-
dom from a large population of potential bleaching agents.
The data are as follows:

13-4 RANDOMIZED COMPLETE BLOCK DESIGN 491

13-21. A textile mill has a large number of looms. Each
loom is supposed to provide the same output of cloth per
minute. To investigate this assumption, five looms are chosen
at random, and their output is measured at different times. The
following data are obtained:

Loom Output (lb/min)

1 4.0 4.1 4.2 4.0 4.1

2 3.9 3.8 3.9 4.0 4.0

3 4.1 4.2 4.1 4.0 3.9

4 3.6 3.8 4.0 3.9 3.7

5 3.8 3.6 3.9 3.8 4.0

(a) Are the looms similar in output? Use � � 0.05.
(b) Estimate the variability between looms.
(c) Estimate the experimental error variance.
(d) Analyze the residuals from this experiment and check for

model adequacy.

13-22. An article in the Journal of the Electrochemical Society
(Vol. 139, No. 2, 1992, pp. 524–532) describes an experiment to
investigate the low-pressure vapor deposition of polysilicon. The
experiment was carried out in a large-capacity reactor at
Sematech in Austin, Texas. The reactor has several wafer posi-
tions, and four of these positions are selected at random. The
response variable is film thickness uniformity. Three replicates of
the experiment were run, and the data are as follows:

Water
Position Uniformity

1 2.76 5.67 4.49

2 1.43 1.70 2.19

3 2.34 1.97 1.47

4 0.94 1.36 1.65

Chemical Pulp Brightness

1 77.199 74.466 92.746 76.208 82.876

2 80.522 79.306 81.914 80.346 73.385

3 79.417 78.017 91.596 80.802 80.626

4 78.001 78.358 77.544 77.364 77.386

(a) Is there a difference in the chemical types? Use � � 0.05.
(b) Estimate the variability due to chemical types.
(c) Estimate the variability due to random error.
(d) Analyze the residuals from this experiment and comment

on model adequacy.

13-24. Consider the vapor-deposition experiment described
in Exercise 13-22.
(a) Estimate the total variability in the uniformity response.
(b) How much of the total variability in the uniformity

response is due to the difference between positions in the
reactor?

(c) To what level could the variability in the uniformity re-
sponse be reduced, if the position-to-position variability
in the reactor could be eliminated? Do you believe this is
a significant reduction?

13-4 RANDOMIZED COMPLETE BLOCK DESIGN

13-4.1 Design and Statistical Analysis

In many experimental design problems, it is necessary to design the experiment so that the
variability arising from a nuisance factor can be controlled. For example, consider the sit-
uation of Example 10-9, where two different methods were used to predict the shear
strength of steel plate girders. Because each girder has different strength (potentially), and
this variability in strength was not of direct interest, we designed the experiment by using
the two test methods on each girder and then comparing the average difference in strength
readings on each girder to zero using the paired t-test. The paired t-test is a procedure for
comparing two treatment means when all experimental runs cannot be made under

EXERCISES FOR SECTION 13-3
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homogeneous conditions. Alternatively, we can view the paired t-test as a method for re-
ducing the background noise in the experiment by blocking out a nuisance factor effect.
The block is the nuisance factor, and in this case, the nuisance factor is the actual experi-
mental unit—the steel girder specimens used in the experiment.

The randomized block design is an extension of the paired t-test to situations where
the factor of interest has more than two levels; that is, more than two treatments must be
compared. For example, suppose that three methods could be used to evaluate the strength
readings on steel plate girders. We may think of these as three treatments, say t1, t2, and t3.
If we use four girders as the experimental units, a randomized complete block design
would appear as shown in Fig. 13-8. The design is called a randomized complete block
design because each block is large enough to hold all the treatments and because the actual
assignment of each of the three treatments within each block is done randomly. Once the
experiment has been conducted, the data are recorded in a table, such as is shown in
Table 13-9. The observations in this table, say yij, represent the response obtained when
method i is used on girder j.

The general procedure for a randomized complete block design consists of selecting b
blocks and running a complete replicate of the experiment in each block. The data that re-
sult from running a randomized complete block design for investigating a single factor
with a levels and b blocks are shown in Table 13-10. There will be a observations (one per
factor level) in each block, and the order in which these observations are run is randomly
assigned within the block.

We will now describe the statistical analysis for a randomized complete block design.
Suppose that a single factor with a levels is of interest and that the experiment is run in b
blocks. The observations may be represented by the linear statistical model

(13-26)Yij � � � �i � �j � �ij 
e i � 1, 2, p , a

 j � 1, 2, p , b
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Block 1

t1

t2

t3

Block 2

t1

t2

t3

Block 3

t1

t2

t3

Block 4

t1

t2

t3

Figure 13-8 A randomized complete
block design.

Table 13-9 A Randomized Complete Block Design 

Block (Girder)

1 2 3 4

1 y11 y12 y13 y14

2 y21 y22 y23 y24

3 y31 y32 y33 y34

Treatments
(Method)

Table 13-10 A Randomized Complete Block Design with a Treatments and b Blocks

Blocks

Treatments 1 2 p b Totals Averages

1 y11 y12 p y1b

2 y21 y22 p y2b

a ya1 ya2 p yab ya.

Totals p y..
Averages p y..y.by.2y.1

y.by.2y.1

ya.
oooooo

y2.y2.
y1.y1.
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where � is an overall mean, �i is the effect of the ith treatment, �j is the effect of the jth
block, and �ij is the random error term, which is assumed to be normally and independently
distributed with mean zero and variance �2. Treatments and blocks will initially be consid-
ered as fixed factors. Furthermore, the treatment and block effects are defined as deviations
from the overall mean, so and . We also assume that treatments and
blocks do not interact. That is, the effect of treatment i is the same regardless of which block
(or blocks) it is tested in. We are interested in testing the equality of the treatment effects.
That is

Testing the hypothesis that all the treatment effects �i are equal to zero is equivalent to
testing the hypothesis that the treatment means are equal. To see this, note that the mean of the
ith treatment is �i, defined as

and since , we have the mean of the ith treatment defined as

Therefore, testing the hypothesis that the a treatment means are equal is equivalent to testing
that all the treatment effects �i are equal to zero.

The analysis of variance can be extended to the randomized complete block design. The
procedure uses a sum of squares identity that partitions the total sum of squares into three
components.

�i � � � �i, i � 1, 2, p , a

g b
j�1 �j � 0

 �
1

ba
b

j�1
 E1� � �i � �j2 � � � �i �

1

ba
b

j�1
 �j

 �i � E 

° a
b

j�1
 Yij

b

¢
�

1

ba
b

j�1
  
E1Yij2 �

1

ba
b

j�1
 E1� � �i � �j � �ij2

 H1: �i 	 0 at least one i

 H0: �1 � �2 � p � �a � 0

g b
j�1 �j � 0g a

i�1 �i � 0
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The sum of squares identity for the randomized complete block design is

(13-27)

or symbolically

SST � SSTreatments � SSBlocks � SSE

� a
a

i�1
a

b

j�1
 1 yij � y.j � yi. � y..22

a
a

i�1
a

b

j�1
 1 yij � y..22 � b a

a

i�1
 1 yi. � y..22 � a a

b

j�1
 1 y.j � y..22

Furthermore, the degrees of freedom corresponding to these sums of squares are

ab � 1 � 1a � 12 � 1b � 12 � 1a � 12 1b � 12
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For the randomized block design, the relevant mean squares are

The expected values of these mean squares can be shown to be as follows:

 MSE �
SSE1a � 12 1b � 12

 MSBlocks �
SSBlocks

b � 1

 MSTreatments �
SSTreatments

a � 1
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 E1MSE2 � �2

 E1MSBlocks2 � �2 �

aa
b

j�1
�2

j

b � 1

 E1MSTreatments2 � �2 �

ba
a

i�1
�2

i

a � 1

The computing formulas for the sums of squares in the analysis of variance for a ran-
domized complete block design are

(13-29)

(13-30)

(13-31)

and

(13-32)SSE � SST � SSTreatments � SSBlocks

 SSBlocks �
1
a  a

b

j�1
 y

2.j �
y2..

ab

 SSTreatments �
1

b
 a

a

i�1
 y

2
i . �

y2..

ab

 SST � a
a

i�1
a

b

j�1
 y

2
ij �

y2..

ab

Definition

Therefore, if the null hypothesis H0 is true so that all treatment effects �i � 0, MSTreatments is an
unbiased estimator of �2, while if H0 is false, MSTreatments overestimates �2. The mean square
for error is always an unbiased estimate of �2. To test the null hypothesis that the treatment ef-
fects are all zero, we use the ratio

(13-28)

which has an F-distribution with a � 1 and (a � 1)(b � 1) degrees of freedom if the null
hypothesis is true. We would reject the null hypothesis at the �-level of significance if the
computed value of the test statistic in Equation 13-28 is f0 � f�,a�1,(a�1)(b�1).

In practice, we compute SST, SSTreatments and SSBlocks and then obtain the error sum of
squares SSE by subtraction. The appropriate computing formulas are as follows.

F0 �
MSTreatments

MSE
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The computations are usually arranged in an ANOVA table, such as is shown in Table 13-11.
Generally, a computer software package will be used to perform the analysis of variance for
the randomized complete block design.

EXAMPLE 13-5 An experiment was performed to determine the effect of four different chemicals on the
strength of a fabric. These chemicals are used as part of the permanent press finishing
process. Five fabric samples were selected, and a randomized complete block design
was run by testing each chemical type once in random order on each fabric sample. The
data are shown in Table 13-12. We will test for differences in means using an ANOVA with
� � 0.01.

The sums of squares for the analysis of variance are computed as follows:

 �
15.722 � 18.822 � 16.922 � 117.822

5
�
139.222

20
� 18.04

 SSTreatments � a
4

i�1
 
y2

i.

b
�

y2..

ab

 � 11.322 � 11.622 � p � 13.422 �
139.222

20
� 25.69

 SST � a
4

i�1
a

5

j�1
 y

2
ij �

y2..

ab
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Table 13-11 ANOVA for a Randomized Complete Block Design

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Treatments SSTreatments a � 1

Blocks SSBlocks b � 1

Error SSE (by subtraction) (a � 1)(b � 1)

Total SST ab � 1

SSE1a � 12 1b � 12

SSBlocks

b � 1

MSTreatments

MSE

SSTreatments

a � 1

Table 13-12 Fabric Strength Data—Randomized Complete Block Design

Treatment Treatment
Fabric Sample Totals Averages

Chemical Type 1 2 3 4 5

1 1.3 1.6 0.5 1.2 1.1 5.7 1.14
2 2.2 2.4 0.4 2.0 1.8 8.8 1.76
3 1.8 1.7 0.6 1.5 1.3 6.9 1.38
4 3.9 4.4 2.0 4.1 3.4 17.8 3.56

Block totals 9.2 10.1 3.5 8.8 7.6 39.2(y..)
Block averages 2.30 2.53 0.88 2.20 1.90 1.96( )y..y.j

y.j

yi.yi.
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The ANOVA is summarized in Table 13-13. Since f0 � 75.13 � f0.01,3,12 � 5.95 (the P-value
is 4.79 
 10�8), we conclude that there is a significant difference in the chemical types so far
as their effect on strength is concerned.

When Is Blocking Necessary?
Suppose an experiment is conducted as a randomized block design, and blocking was not
really necessary. There are ab observations and (a � 1)(b � 1) degrees of freedom for error.
If the experiment had been run as a completely randomized single-factor design with b repli-
cates, we would have had a(b � 1) degrees of freedom for error. Therefore, blocking has cost
a(b � 1) � (a � 1)(b � 1) � b � 1 degrees of freedom for error. Thus, since the loss in
error degrees of freedom is usually small, if there is a reasonable chance that block effects may
be important, the experimenter should use the randomized block design.

For example, consider the experiment described in Example 13-5 as a single-factor experi-
ment with no blocking. We would then have 16 degrees of freedom for error. In the randomized
block design, there are 12 degrees of freedom for error. Therefore, blocking has cost only 4
degrees of freedom, which is a very small loss considering the possible gain in information that
would be achieved if block effects are really important. The block effect in Example 13-5 is
large, and if we had not blocked, SSBlocks would have been included in the error sum of squares
for the completely randomized analysis. This would have resulted in a much larger MSE, making
it more difficult to detect treatment differences. As a general rule, when in doubt as to the
importance of block effects, the experimenter should block and gamble that the block effect does
exist. If the experimenter is wrong, the slight loss in the degrees of freedom for error will have a
negligible effect, unless the number of degrees of freedom is very small.

Computer Solution
Table 13-14 presents the computer output from Minitab for the randomized complete block
design in Example 13-5. We used the analysis of variance menu for balanced designs to solve
this problem. The results agree closely with the hand calculations from Table 13-13. Notice
that Minitab computes an F-statistic for the blocks (the fabric samples). The validity of this ra-
tio as a test statistic for the null hypothesis of no block effects is doubtful because the blocks
represent a restriction on randomization; that is, we have only randomized within the
blocks. If the blocks are not chosen at random, or if they are not run in random order, the 

 � 25.69 � 6.69 � 18.04 � 0.96
 SSE � SST � SSBlocks � SSTreatments

 �
19.222 � 110.122 � 13.522 � 18.822 � 17.622

4
�
139.222

20
� 6.69

 SSBlocks � a
5

j�1
 
y.2j
a �

y2..

ab
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Table 13-13 Analysis of Variance for the Randomized Complete Block Experiment

Source of Degrees of
Variation Sum of Squares Freedom Mean Square f0 P-value

Chemical types 
(treatments) 18.04 3 6.01 75.13 4.79 E-8
Fabric samples 
(blocks) 6.69 4 1.67
Error 0.96 12 0.08
Total 25.69 19
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F-ratio for blocks may not provide reliable information about block effects. For more discus-
sion see Montgomery (2001, Chapter 4).

13-4.2 Multiple Comparisons

When the ANOVA indicates that a difference exists between the treatment means, we may
need to perform some follow-up tests to isolate the specific differences. Any multiple com-
parison method, such as Fisher’s LSD method, could be used for this purpose.

We will illustrate Fisher’s LSD method. The four chemical type averages from
Example 13-5 are:

Each treatment average uses b � 5 observations (one from each block). We will use � �
0.05, so t0.025,12 � 2.179. Therefore the value of the LSD is

Any pair of treatment averages that differ by 0.39 or more indicates that this pair of treatment
means is significantly different. The comparisons are shown below:

 3 vs. 1 � y3. � y1. � 1.38 � 1.14 � 0.24 � 0.39

 2 vs. 3 � y2. � y3. � 1.76 � 1.38 � 0.38 � 0.39

 2 vs. 1 � y2. � y1. � 1.76 � 1.14 � 0.62 � 0.39

 4 vs. 2 � y4. � y2. � 3.56 � 1.76 � 1.80 � 0.39

 4 vs. 3 � y4. � y3. � 3.56 � 1.38 � 2.18 � 0.39

 4 vs. 1 � y4. � y1. � 3.56 � 1.14 � 2.42 � 0.39

LSD � t0.025,12B2MSE

b
� 2.179B210.082

5
� 0.39

y1. � 1.14  y2. � 1.76  y3. � 1.38  y4. � 3.56
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Table 13-14 Minitab Analysis of Variance for the Randomized Complete 
Block Design in Example 13-5

Analysis of Variance (Balanced Designs)

Factor Type Levels Values
Chemical fixed 4 1 2 3 4
Fabric S fixed 5 1 2 3 4 5

Analysis of Variance for strength

Source DF SS MS F P
Chemical 3 18.0440 6.0147 75.89 0.000
Fabric S 4 6.6930 1.6733 21.11 0.000
Error 12 0.9510 0.0792
Total 19 25.6880

F-test with denominator: Error
Denominator MS � 0.079250 with 12 degrees of freedom

Numerator DF MS F P
Chemical 3 6.015 75.89 0.000
Fabric S 4 1.673 21.11 0.000

c13.qxd  5/17/02  10:58 M  Page 497 RK UL 6 RK UL 6:Desktop Folder:untitled folder:



498 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

Figure 13-9 presents the results graphically. The underlined pairs of means are not different.
The LSD procedure indicates that chemical type 4 results in significantly different strengths
than the other three types do. Chemical types 2 and 3 do not differ, and types 1 and 3 do not
differ. There may be a small difference in strength between types 1 and 2.

13-4.3 Residual Analysis and Model Checking

In any designed experiment, it is always important to examine the residuals and to check for
violation of basic assumptions that could invalidate the results. As usual, the residuals for the
randomized complete block design are just the difference between the observed and estimated
(or fitted) values from the statistical model, say,

(13-33)

and the fitted values are

The fitted value represents the estimate of the mean response when the ith treatment is run in
the jth block. The residuals from the chemical type experiment are shown in Table 13-15.

Figures 13-10, 13-11, 13-12, and 13-13 present the important residual plots for the ex-
periment. These residual plots are usually constructed by computer software packages. There
is some indication that fabric sample (block) 3 has greater variability in strength when treated
with the four chemicals than the other samples. Chemical type 4, which provides the greatest
strength, also has somewhat more variability in strength. Followup experiments may be nec-
essary to confirm these findings, if they are potentially important.

13-4.4 Randomized Complete Block Design with Random Factors 
(CD Only) 

ŷij � yi. � y.j � y..

eij � yij � ŷij

0 1 2 3 4 6

2 41 3

5

Chemical type

Figure 13-9 Results of Fisher’s LSD method.

Table 13-15 Residuals from the Randomized Complete Block Design

Chemical Fabric Sample

Type 1 2 3 4 5

1 �0.18 �0.10 0.44 �0.18 0.02
2 0.10 0.08 �0.28 0.00 0.10
3 0.08 �0.24 0.30 �0.12 �0.02
4 0.00 0.28 �0.48 0.30 �0.10
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13-25. In “The Effect of Nozzle Design on the Stability and
Performance of Turbulent Water Jets” (Fire Safety Journal,
Vol. 4, August 1981), C. Theobald describes an experiment in
which a shape measurement was determined for several differ-
ent nozzle types at different levels of jet efflux velocity.
Interest in this experiment focuses primarily on nozzle type,
and velocity is a nuisance factor. The data are as follows:

Jet Efflux Velocity (m/s)Nozzle
Type 11.73 14.37 16.59 20.43 23.46 28.74

1 0.78 0.80 0.81 0.75 0.77 0.78

2 0.85 0.85 0.92 0.86 0.81 0.83

3 0.93 0.92 0.95 0.89 0.89 0.83

4 1.14 0.97 0.98 0.88 0.86 0.83

5 0.97 0.86 0.78 0.76 0.76 0.75

(a) Does nozzle type affect shape measurement? Compare the
nozzles with box plots and the analysis of variance.

(b) Use Fisher’s LSD method to determine specific differ-
ences between the nozzles. Does a graph of the average
(or standard deviation) of the shape measurements versus
nozzle type assist with the conclusions?

(c) Analyze the residuals from this experiment.

13-26. In Design and Analysis of Experiments, 5th edition
(John Wiley & Sons, 2001), D. C. Montgomery describes an
experiment that determined the effect of four different types
of tips in a hardness tester on the observed hardness of a
metal alloy. Four specimens of the alloy were obtained, and
each tip was tested once on each specimen, producing the
following data:

(a) Is there any difference in hardness measurements between
the tips?
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N
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Figure 13-10 Normal probability plot of
residuals from the randomized complete
block design.

1

0.5

0

–0.5

2 3 4

eij

Figure 13-11 Residuals by treatment.
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642
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Figure 13-12 Residuals by block. Figure 13-13 Residuals versus .ŷij

EXERCISES FOR SECTION 13-4
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SpecimenType of 
Tip 1 2 3 4

1 9.3 9.4 9.6 10.0

2 9.4 9.3 9.8 9.9

3 9.2 9.4 9.5 9.7

4 9.7 9.6 10.0 10.2

(b) Use Fisher’s LSD method to investigate specific differ-
ences between the tips.

(c) Analyze the residuals from this experiment.

13-27. An article in the American Industrial Hygiene
Association Journal (Vol. 37, 1976, pp. 418–422) describes
a field test for detecting the presence of arsenic in urine sam-
ples. The test has been proposed for use among forestry
workers because of the increasing use of organic arsenics in
that industry. The experiment compared the test as per-
formed by both a trainee and an experienced trainer to an
analysis at a remote laboratory. Four subjects were selected
for testing and are considered as blocks. The response vari-
able is arsenic content (in ppm) in the subject’s urine. The
data are as follows:

Subject

Test 1 2 3 4

Trainee 0.05 0.05 0.04 0.15

Trainer 0.05 0.05 0.04 0.17

Lab 0.04 0.04 0.03 0.10

(a) Is there any difference in the arsenic test procedure?
(b) Analyze the residuals from this experiment.

13-28. An article in the Food Technology Journal (Vol. 10,
1956, pp. 39–42) describes a study on the protopectin content
of tomatoes during storage. Four storage times were selected,
and samples from nine lots of tomatoes were analyzed. The
protopectin content (expressed as hydrochloric acid soluble
fraction mg/kg) is in the following table.

(a) The researchers in this study hypothesized that mean pro-
topectin content would be different at different storage
times. Can you confirm this hypothesis with a statistical
test using � � 0.05?

(b) Find the P-value for the test in part (a).
(c) Which specific storage times are different? Would you

agree with the statement that protopectin content de-
creases as storage time increases?

(d) Analyze the residuals from this experiment.

13-29. An experiment was conducted to investigate leak-
ing current in a SOS MOSFETS device. The purpose of the
experiment was to investigate how leakage current varies as
the channel length changes. Four channel lengths were se-
lected. For each channel length, five different widths were
also used, and width is to be considered a nuisance factor.
The data are as follows:

WidthChannel 
Length 1 2 3 4 5

1 0.7 0.8 0.8 0.9 1.0

2 0.8 0.8 0.9 0.9 1.0

3 0.9 1.0 1.7 2.0 4.0

4 1.0 1.5 2.0 3.0 20.0

(a) Test the hypothesis that mean leakage voltage does not
depend on the channel length, using � � 0.05.

(b) Analyze the residuals from this experiment. Comment on
the residual plots.

13-30. Consider the leakage voltage experiment described
in Exercise 13-29. The observed leakage voltage for channel
length 4 and width 5 was erroneously recorded. The correct
observation is 4.0. Analyze the corrected data from this exper-
iment. Is there evidence to conclude that mean leakage voltage
increases with channel length?

Supplemental Exercises

13-31. An article in the IEEE Transactions on
Components, Hybrids, and Manufacturing Technology (Vol.
15, No. 2, 1992, pp. 146–153) describes an experiment in
which the contact resistance of a brake-only relay was studied

LotStorage 
Time 1 2 3 4 5 6 7 8 9

0 days 1694.0 989.0 917.3 346.1 1260.0 965.6 1123.0 1106.0 1116.0

7 days 1802.0 1074.0 278.8 1375.0 544.0 672.2 818.0 406.8 461.6

14 days 1568.0 646.2 1820.0 1150.0 983.7 395.3 422.3 420.0 409.5

21 days 415.5 845.4 377.6 279.4 447.8 272.1 394.1 356.4 351.2
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Method Score

1 24.4 23.2 25.0 19.7

22.2 24.4 23.8 18.0

2 22.1 19.5 17.3 19.7

22.3 23.2 21.4 22.6

3 23.3 22.8 22.4 23.7

20.4 23.5 20.8 24.1
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(a) Does the type of alloy affect mean contact resistance? Use
� � 0.01.

(b) Use Fisher’s LSD method to determine which means differ.
(c) Find a 99% confidence interval on the mean contact

resistance for alloy 3.
(d) Analyze the residuals for this experiment.

13-32. An article in Lubrication Engineering (December
1990) describes the results of an experiment designed to
investigate the effects of carbon material properties on
the progression of blisters on carbon face seals. The carbon
face seals are used extensively in equipment such as air
turbine starters. Five different carbon materials were tested,
and the surface roughness was measured. The data are as
follows:

Carbon 
Material 
Type Surface Roughness

EC10 0.50 0.55 0.55 0.36

EC10A 0.31 0.07 0.25 0.18 0.56 0.20

EC4 0.20 0.28 0.12

EC1 0.10 0.16

(a) Does carbon material type have an effect on mean surface
roughness? Use � � 0.05.

(b) Find the residuals for this experiment. Does a normal
probability plot of the residuals indicate any problem with
the normality assumption?

(c) Plot the residuals versus . Comment on the plot.
(d) Find a 95% confidence interval on the difference between

the mean surface roughness between the EC10 and the
EC1 carbon grades.

13-33. Apply the Fisher LSD method to the experiment in
Exercise 13-32. Summarize your conclusions regarding the
effect of material type on surface roughness.

13-34. An article in the Journal of Quality Technology
(Vol. 14, No. 2, 1982, pp. 80–89) describes an experiment in

ŷij

Alloy Contact Resistance

1 95 97 99 98 99

99 99 94 95 98

2 104 102 102 105 99

102 111 103 100 103

3 119 130 132 136 141

172 145 150 144 135

(a) Is there any difference in preparation methods? Use 
� � 0.05.

(b) Calculate the P-value for the F-statistic in part (a).
(c) Analyze the residuals from this experiment and comment

on model adequacy.
(d) Estimate the components of variance.

13-35. An article in the Journal of Agricultural
Engineering Research (Vol. 52, 1992, pp. 53–76) describes
an experiment to investigate the effect of drying temperature
of wheat grain on the baking quality of bread. Three temper-
ature levels were used, and the response variable measured
was the volume of the loaf of bread produced. The data are
as follows:

Temperature (°C) Volume (CC)

70.0 1245 1235 1285 1245 1235

75.0 1235 1240 1200 1220 1210

80.0 1225 1200 1170 1155 1095

(a) Does drying temperature affect mean bread volume? Use
� � 0.01.

(b) Find the P-value for this test.
(c) Use the Fisher’s LSD method to determine which means

are different.
(d) Analyze the residuals from this experiment and comment

on model adequacy.

13-36. An article in Agricultural Engineering (December
1964, pp. 672–673) describes an experiment in which
the daily weight gain of swine is evaluated at different
levels of housing temperature. The mean weight of each
group of swine at the start of the experiment is considered to
be a nuisance factor. The data from this experiment are as
follows:

for three different materials (all were silver-based alloys).
The data are as follows.

which three different methods of preparing fish are evalu-
ated on the basis of sensory criteria and a quality score is
assigned. Assume that these methods have been randomly
selected from a large population of preparation methods.
The data are in the following table:
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Mean
Weight

(lbs)

502 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

Housing Air Temperatures 
(degrees F) 

50 60 70 80 90 100

100 1.37 1.58 2.00 1.97 1.40 0.39

150 1.47 1.75 2.16 1.82 1.14 �0.19

200 1.19 1.91 2.22 1.67 0.88 �0.77

(a) Does housing air temperature affect mean weight gain?
Use � � 0.05.

(b) Use Fisher’s LSD method to determine which tempera-
ture levels are different.

(c) Analyze the residuals from this experiment and comment
on model adequacy.

13-37. An article in Communications of the ACM (Vol. 30,
No. 5, 1987) studied different algorithms for estimating
software development costs. Six algorithms were applied to
eight software development projects and the percent error in
estimating the development cost was observed. The data are in
the table at the bottom of the page.

(a) Do the algorithms differ in their mean cost estimation
accuracy? Use � � 0.05.

(b) Analyze the residuals from this experiment.
(c) Which algorithm would you recommend for use in

practice?

13-38. Consider an ANOVA situation with a � 4 means 
�1 � 1, �2 � 5, �3 � 8, and �4 � 4. Suppose that �2 � 4, 
n � 4, and � � 0.05.
(a) Find the power of the ANOVA F-test.
(b) How large would the sample size have to be if we want the

power of the F-test for detecting this difference in means
to be at least 0.90?

13-39. Consider an ANOVA situation with a � 5 treat-
ments. Let �2 � 9 and � � 0.05, and suppose that n � 4.
(a) Find the power of the ANOVA F-test when �1 � �2 �

�3 � 1, �4 � 3, and �5 � 2.
(b) What sample size is required if we want the power of the

F-test in this situation to be at least 0.90?

Project

Algorithm 1 2 3 4 5 6 7 8

1(SLIM) 1244 21 82 2221 905 839 527 122
2(COCOMO-A) 281 129 396 1306 336 910 473 199
3(COCOMO-R) 220 84 458 543 300 794 488 142
4(COCOMO-C) 225 83 425 552 291 826 509 153
5(FUNCTION POINTS) 19 11 �34 121 15 103 87 �17
6(ESTIMALS) �20 35 �53 170 104 199 142 41
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13-4 RANDOMIZED COMPLETE BLOCK DESIGN 503

MIND-EXPANDING EXERCISES

13-40. Show that in the fixed-effects model analysis
of variance E(MSE) � �2. How would your develop-
ment change if the random-effects model had been
specified?

13-41. Consider testing the equality of the means of
two normal populations where the variances are
unknown but are assumed equal. The appropriate test
procedure is the two-sample t-test. Show that the two-
sample t-test is equivalent to the single-factor analysis of
variance F-test.

13-42. Consider the ANOVA with a � 2 treatments.
Show that the MSE in this analysis is equal to the
pooled variance estimate used in the two-sample 
t-test.

13-43. Show that the variance of the linear combina-
tion

13-44. In a fixed-effects model, suppose that there are
n observations for each of four treatments. Let Q2

1, Q
2
2,

and Q2
3 be single-degree-of-freedom sums of squares for

the orthogonal contrasts. Prove that SSTreatments � Q2
1 �

Q2
2 � Q2

3.

13-45. Consider the single-factor completely ran-
domized design with a treatments and n replicates.
Show that if the difference between any two treatment
means is as large as D, the minimum value that the OC
curve parameter �2 can take on is

13-46. Consider the single-factor completely ran-
domized design. Show that a 100(1 � �) percent confi-
dence interval for �2 is

where N is the total number of observations in the
experimental design.

13-47. Consider the random-effect model for the
single-factor completely randomized design. Show that

1N � a2MSE

�2
�
2, N�a

� �2 �
1N � a2MSE

�2
1��
2, N�a

�2 �
nD2

2a�2

a
a

i�1
ciYi. is �2a

a

i�1
nic

2
i .

a 100(1 � �)% confidence interval on the ratio of vari-
ance components �2

���2 is given by

where

and

13-48. Consider a random-effects model for the
single-factor completely randomized design. Show that
a 100(1 � �)% confidence interval on the ratio �2

� �
(�2 � �2

�) is

where L and U are as defined in Exercise 13-47.

13-49. Continuation of Exercise 13-48. Use the
results of Exercise 13-48 to find a 100(1 � �)% confi-
dence interval for �2�(�2 � �2

�).

13-50. Consider the fixed-effect model of the com-
pletely randomized single-factor design. The model
parameters are restricted by the constraint .
(Actually, other restrictions could be used, but this one is
simple and results in intuitively pleasing estimates for
the model parameters.) For the case of unequal sample
size n1, n2, p , na, the restriction is . Use
this to show that

Does this suggest that the null hypothesis in this model
is H0: n1�1 � n2�2 � p � na�a � 0?

13-51. Sample Size Determination. In the single-
factor completely randomized design, the accuracy of a

E1MSTreatments2 � �2 �
a

a

i�1
 ni�

2
i

a � 1

g a
i�1 ni�i � 0

g a
i�1 �i � 0

L

1 � L
�

�2
�

�2 � �2
�

�
U

1 � U

U �
1
n  cMSTreatments

MSE

 a 1

f1��
2,a�1,N�a
b � 1 d

L �
1
n  cMSTreatments

MSE

 a 1

f�
2,a�1,N�a
b � 1 d

L �
�2

�

�2 � U
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MIND-EXPANDING EXERCISES

100(1 � �)% confidence interval on the difference in
any two treatment means is 

(a) Show that if A is the desired accuracy of the interval,
the sample size required is 

n �
2F�
2,1,a1n�12 MSE

A2

t�
2,a1n�1212MSE
n.
(b) Suppose that in comparing a � 5 means we have a

preliminary estimate of �2 of 4. If we want the 95%
confidence interval on the difference in means to
have an accuracy of 2, how many replicates should
we use?

In the E-book, click on any
term or concept below to
go to that subject.

Analysis of variance
Blocking
Complete randomized

experiment
Expected mean squares

Fisher’s least significant
difference method

Fixed factor
Multiple comparisons
Nuisance factors
Random factor
Randomization

Randomized complete
block design

Residual analysis and
model adequacy
checking

Sample size and replica-
tion in an experiment

Variance component

CD MATERIAL
Graphical comparison

of means
Orthogonal contrasts
Tukey’s test

IMPORTANT TERMS AND CONCEPTS
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13-2.4 More About Multiple Comparisons 

As noted in the previous section, there are many ways to investigate the treatment means
following rejection of the null hypothesis with an ANOVA. The Fisher LSD method is easy
and very widely used. It is consider to be a very “liberal” procedure in that although each
test is at significance level �, the type I error for the entire set of comparisons (called the
experimentwise error rate) is much greater than �. In this section we briefly describe three
other approaches.

Graphical Comparison of Means
It is easy to compare treatment means graphically, following the analysis of variance. Suppose
that the factor has a levels and that are the observed averages for these factor
levels. Each treatment average has standard deviation , where � is the standard devia-
tion of an individual observation. If all treatment means are equal, the observed means 
would behave as if they were a set of observations drawn at random from a normal distribu-
tion with mean � and standard deviation .

Visualize this normal distribution capable of being slid along an axis below which the
treatment means are plotted. If all treatment means are equal, there should
be some position for this distribution that makes it obvious that the values were drawn
from the same distribution. If this is not the case, the values that do not appear to have
been drawn from this distribution are associated with treatments that produce different
mean responses.

The only flaw in this logic is that � is unknown. However, we can use from
the analysis of variance to estimate �. This implies that a t-distribution should be used
instead of the normal in making the plot, but since the t looks so much like the normal,
sketching a normal curve that is approximately units wide will usually work
very well.

Figure S13-1 shows this arrangement for the hardwood concentration experiment in
Example 13-1. The standard deviation of this normal distribution is

If we visualize sliding this distribution along the horizontal axis, we note that there is no lo-
cation for the distribution that would suggest that all four observations (the plotted means) are
typical, randomly selected values from that distribution. This, of course, should be expected,
because the analysis of variance has indicated that the means differ, and the display in 
Fig. S13-1 is just a graphical representation of the analysis of variance results. The figure does

1MSE�n � 16.51�6 � 1.04

61MSE�n

1MSE

yi.
yi.

y1., y2., p , ya.

��1n

yi.
��1n

y1., y2., p , ya.

0 5 10 15 20 25 30

σ /√n = 1.04

1 2 3 4

∧

Figure S13-1 Tensile strength averages from the hardwood concentration 
experiment in relation to a normal distribution with standard deviation

.1MSE�n � 16.51�6 � 1.04

13-1
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indicate that treatment 4 (20% hardwood) produces paper with higher mean tensile strength
than do the other treatments, and treatment 1 (5% hardwood) results in lower mean tensile
strength than do the other treatments. The means of treatments 2 and 3 (10 and 15% hard-
wood, respectively) do not differ.

This simple procedure is a rough but very effective multiple comparison technique. We
now briefly describe two other procedures: orthogonal contrasts and Tukey’s method.

Orthogonal Contrasts
Many multiple comparison procedures use the idea of a contrast. Consider the hardwood con-
centration experiment presented in Example 13-1. Since the hypothesis H0: �1 � �2 � �3 �
�4 � 0 was rejected, we know that some hardwood concentrations produce different tensile
strengths than others, but which ones actually cause this difference? At the outset of the
experiment, we might suspect that hardwood concentrations 3 and 4 produce the same tensile
strength. This implies that we would like to test the hypothesis

This hypothesis could be tested by using a linear combination of treatment totals, say,

If we had suspected that the average of hardwood concentrations 1 and 3 did not differ from
the average of hardwood concentrations 2 and 4, the hypothesis would have been

which implies using the linear combination of treatment totals

In general, the comparison of treatment means of interest will imply a linear combination
of treatment totals such as

with the restriction that These linear combinations are called contrasts. The sum
of squares for any contrast is

g a
i�1 ci � 0.

c � a
a

i�1
ciyi.

y1. � y3. 	 y2. 	 y4.

H1: �1 � �3 
 �2 � �4

H0: �1 � �3 � �2 � �4

y3. 	 y4.

H1: �3 
 �4

H0: �3 � �4

13-2

(S13-1)SSc �

aa
a

i�1
 
ci yi.b

2

na
a

i�1
 
c2

i
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and has a single degree of freedom. If the design is unbalanced, the comparison of treatment
means requires that and Equation S13-1 becomes

(S13-2)

A contrast is tested by comparing its sum of squares to the mean square error. The resulting
statistic is distributed as F, with 1 and N 	 a degrees of freedom.

A very important special case of the above procedure is that of orthogonal contrasts.
Two contrasts with coefficients and  are orthogonal if

or for an unbalanced design if

For a treatments a set of a 	 1 orthogonal contrasts will partition the sum of squares due to
treatments into a 	 1 independent single-degree-of-freedom sums of squares. Thus, tests
performed on orthogonal contrasts are independent.

There are many ways to choose the orthogonal contrast coefficients for a set of treat-
ments. Usually, something in the context of the experiment should suggest which comparisons
will be of interest. For example, if there are a � 3 treatments, with treatment 1 a control and
treatments 2 and 3 actual levels of the factor of interest to the experimenter, appropriate
orthogonal contrasts might be as follows:

Note that contrast 1 with ci � 	2, 1, 1 compares the average effect of the factor with the con-
trol, while contrast 2 with di � 0, 1, 	1 compares the two levels of the factor of interest.

Contrast coefficients must be chosen prior to running the experiment, because if these
comparisons are selected after examining the data, most experimenters would construct tests that
compare large observed differences in means. These large differences could be due to the presence
of real effects, or they could be due to random error. If experimenters always pick the largest dif-
ferences to compare, they will inflate the type I error of the test, since it is likely that in an unusu-
ally high percentage of the comparisons selected, the observed differences will be due to error.

EXAMPLE S13-1 Consider the hardwood concentration experiment. There are four levels of hardwood concen-
tration, and possible sets of comparisons between these means and the associated orthogonal
comparisons are

H0: �1 � �3 � �2 � �4  e � 	y1. � y2. 	 y3. � y4.

H0: �1 � �2 � �3 � �4  d � 	y1. 	 y2. � y3. � y4.

H0: �1 � �4 � �2 � �3  c � y1. 	 y2. 	 y3. � y4.

H0:    �2 	 �3 � 0

H0: 	2�1 � �2 � �3 � 0

a
a

i�1
 
nicidi � 0

a
a

i�1
 
cidi � 0

5di65ci6

SSc �

aa
a

i�1
ci yi.b

2

a
a

i�1
nic

2
i

g a
i�1 nici � 0,

13-3
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Notice that the contrast constants are orthogonal. Using the data from Table S13-1, we find the
numerical values of the contrasts and the sums of squares as follows:

These contrast sums of squares completely partition the treatment sum of squares; that is,
SSTreatments � SSc � SSd � SSe. These tests on the contrasts are usually incorporated in the
analysis of variance, such as is shown in Table S13-1. From this analysis, we conclude that
there are significant differences between hardwood concentration 3 and 4, and 1 and 2, but 
that the average of 1 and 4 does not differ from the average of 2 and 3. Also, the average of 1
and 3 differs from the average of 2 and 4.

Tukey’s Method
The Tukey procedure for comparing pairs of means makes use of the studentized range
statistic

where and are the largest and smallest sample means, respectively, out of a group
of  p sample means. For equal sample sizes, the Tukey procedure would indicate that the
two means �i and �j are different if the absolute value of the observed difference 
exceeds

where g�(a, f ) is the upper � percentage point of the studentized range statistic, a is the num-
ber of treatments, and f is the number of even degrees of freedom. Tables of g�(a, f ) are 

T� � g�1a, f 2BMSE

n

0  yi. 	 yj. 0
YminYmax

Q �
Ymax 	 Ymin1MSE�n

e � 	60 � 94 	 102 � 127 � 59  SSe �
15922
6142 � 145.04

d � 	60 	 94 � 102 � 127 � 75  SSd �
17522
6142 � 234.38

c � 60 	 94 	 102 � 127 � 	9   SSc �
1	922
6142 � 3.38

13-4

Table S13-1 Analysis of Variance for the Tensile Strength Data

Sum of Degrees of Mean
Source of Variation Squares Freedom Square f0

Hardwood concentration 382.79 3 127.60 19.61
c (1, 4 vs. 2, 3) 3.38 1 3.38 0.52
d (1, 2 vs. 3, 4) 234.38 1 234.38 36.00
e (1, 3 vs. 2, 4) 145.04 1 145.04 22.28

Error 130.17 20 6.51
Total 512.96 23
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13-5

Table S13-2 Minitab Output Illustrating Tukey’s Method

One-way ANOVA: Tensile Str versus Conc

Analysis of Variance for Tensile
Source DF SS MS F P
Conc 3 382.79 127.60 19.61 0.000
Error 20 130.17 6.51
Total 23 512.96

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev -----+----------+----------+----------+-

5 6 10.000 2.828 (---*---)

10 6 15.667 2.805 (---*----)

15 6 17.000 1.789 (---*----)

20 6 21.167 2.639 (---*----)
-----+----------+----------+----------+-

Pooled StDev � 2.551 10.0 15.0 20.0 25.0

Tukey’s pairwise comparisons

Family error rate � 0.0500
Individual error rate � 0.0111

Critical value � 3.96

Intervals for (column level mean) 	 (row level mean)
5 10 15

10 	9.791
	1.542

15 	11.124 	5.458
	2.876 2.791

20 	15.291 	9.624 	8.291
	7.042 	1.376 	0.042

widely available; for example, see Montgomery (2001). Equivalently, we could construct a set
of 100(1 	 �)% confidence intervals for all pairs of mean using

For unequal sample sizes, use

The Tukey confidence intervals are a set of simultaneous confidence intervals that hold with prob-
ability 1 	 �. Tukey’s method is a very conservative procedure relative to Fisher’s LSD because 
it requires a larger observed difference in treatment averages to declair the pair of means different.

Minitab implements the Tukey procedure and reports the results in terms of the confi-
dence interval. Table S13-2 is the Minitab output for the hardwood concentration experiment
of Example S13-1. Notice that, like Fisher’s LSD, Tukey’s method indicates that all pairs of
means are different except at 10% and 15% concentrations.

T� �
g�1a, f 212

 BMSE 
 
a 1

ni
�

1
nj
b

yi. 	 yj. 	 T� � �i 	 �j � yi. 	 yj. � T�
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13-2.7 Technical Details about the Analysis of Variance (CD Only) 

Derivation of the ANOVA Identity
The proof of the fundamental ANOVA identity in Equation 13-5 is straightforward. Note that
we may write

or

Note that the cross-product term in the previous equation is zero, since

Therefore, we have shown that Equation 13-5 is correct.

Expected Mean Squares
In the text we state that

We can prove this directly by apply the expected value operator. Since

we will initially work with the treatment sum of squares. Now

and from the model Yij � � � �i � �ij we have

and

since . Substituting for and in the expression for SSTreatments yields

� E cn a
a

i�1
�2

i � n a
a

i�1
�2

i . � an�2.. � 2n a
a

i�1
�i�i. 	 2n�.. a

a

i�1
�i 	 2n�.. a

a

i�1
�i. d

E1SSTreatments2 � E cn a
a

i�1
1�i � �i. 	 �..22 d

Y..Yi.g a
i�1 

�i � 0

Y.. � � � �..

Yi. � � � �i � �i.

E1SSTreatments2 � E cn a
a

i�1
1Yi. 	 Y..22 d

MSTreatments �
SSTreatments

a 	 1

E1MSTreatments2 � �2 �

n a
a

i �1
 �

2
i

a 	 1

a
n

j�1
 1yij 	 yi.2 � yi. 	 nyi. � yi. 	 n1yi.�n2 � 0

 � 2 a
a

i�1
a

n

j�1
1 yi. 	 y..2 1 yij 	 yi.2

a
a

i�1
 a

n

j�1
1yij 	 y..22 � na

a

i�1
 1 yi. 	 y..22 � a

a

i�1
a

n

j�1
1 yij 	 yi.22

a
a

i�1
a

n

j�1
1 yij 	 y..22 � a

a

i�1
a

n

j�1
3 1 yi. 	 y..2 � 1yij 	 yi.2 42
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However, since the �ij’s are independent random variables with mean zero and variance �2, we
find that

Therefore

As a result,

Now if the null hypothesis of equal treatment means is true, each �i is equal to zero and

If the alternative hypothesis is true,

A similar approach will show that

so that

O.C. Curves
In the text, we give O.C. curves for the fixed effects ANOVA for the case of a � 4 and 
a � 5 treatments. A collection of additional curves for a � 2, 3, 6, 7, 8, and 9 are on pages
13-8 through 13-10. In using the curves, remember that v1 � the number of numerator
degrees of freedom and v2 � the number of denominator degrees of freedom. The sample
size calculation routine in Minitab will also determine sample sizes for the single-factor
ANOVA.

E1MSE2 � E  a SSE

a1n 	 12 b � �2

E1SSE2 � a1n 	 12�2

E  aSSTreatments

a 	 1
b � �2 �

n a
a

i�1
�2

i

a 	 1

E  aSSTreatments

a 	 1
b � �2

 � �2 �

n a
a

i�1
�2

i

a 	 1

 �
1

a 	 1
 E1SSTreatments2

E1MSTreatments2 � E  aSSTreatments

a 	 1
b

 � 1a 	 12�2 � n a
a

i�1
�2

i

E1SSTreatments2 � na
a

i�1
�2

i � a�2 	 �2

E1�2
i .2 �

�2

n , E1�2..2 �
�2

an, and E1�i.2 � 0
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Source: These curves are adapted with permission from Biometrika Tables for Statisticians, Vol.
2, by E. S. Pearson and H. O. Hartley, Cambridge University Press, Cambridge, 1972.
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13-3.3 Determining Sample Size in the Random Model (CD Only)

The power of the test for the random-effects model is

It can be shown that if H1 is true (��
2 
 0) the power can be computed using the central F

distribution, with a 	 1 and a(n 	 1) degrees of freedom. In fact, the ratio

has the F-distribution with a 	 1 and a(n 	 1) degrees of freedom. Then,

(S13-3)

This probability statement may be easily evaluated using certain hand-held calculators, or it
may be evaluated using tables of the F-distribution.

EXAMPLE S13-2 Consider a completely randomized design with five treatments selected at random and six
observations per treatment. If � � 0.05, what is the power of the test if ��

2 � �2?
From Equation S13-3, we have the power as

since if ��
2 � �2 the ratio ��

2��2 � 1. Now f0.05,4,25 � 2.76, so

This probability was evaluated using a calculator that provided F-distribution probabilities.
Since the power of the test is 0.81, this implies that the null hypothesis H0: ��

2 � 0 will be
rejected with probability 0.81 in this experimental situation.

It is also possible to evaluate the power of the test using the operating characteristic
curves on page 13-12 through 13-15. These curves plot the probability of the type II error �
against �, where

(S13-4)� � B1 �
n�2

�

�2

 � P5F4,25 
 0.396 � 0.81

1 	 � � F eF4,25 

2.7631 � 6112 4 f � P eF4,25 


2.76
7
f

1 	 � � P eF4,25 

f0.05,4,25

31 � 6112 4 f

 � P eFa	1,a1n	12 

f�,a	1,a1n	12
11 � n�2

���22 f

 � P e MSTreatments

MSE 11 � n�2
���22 


f�,a	1,a 1n	12
11 � n�2

���22 f
1 	 � � P eMSTreatments

MSE

 f�,a	1,a 1n	12 0 �2

� 
 06

MSTreatments � 1�2 � n�2
� 2

MSE��2

 � P5F0 
 f�,a	1,a1n	12 0 �2
� 
 06

1 	 � � P5Reject H0 0H0 is false6
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13-16

In the randomized block design, replace n by b, the number of blocks. Since �2 is usually un-
known, we may either use a prior estimate or define the value of ��

2 that we are interested in
detecting in terms of the ratio ��

2��2.

EXAMPLE S13-3 Consider the situation described in Example S13-2. Since � � 0.05, a � 5, n � 6, and ��
2 �

�2, we may find � from Equation S13-4 as

From the operating characteristic curve with v1 � a 	 1 � 4, v2 � a(n 	 1) � 25 degrees
of freedom and � � 0.05, we find that

Therefore, the power is approximately 0.80. This agrees with the results obtained in 
Example S13-2.

13-4.4 Randomized Complete Block Design with Random Factors (CD Only)

In the preceding sections, we have assumed that the treatments and blocks are fixed factors. In
many randomized complete block designs, these assumptions may be too restrictive. For
example, in the chemical type experiment, Example 13-5, we might like to view the fabric
samples as a random sample of material to which the chemicals may be applied so that the
conclusions from the experiment will extend to the entire population of material.

It turns out that, if either treatments or blocks (or both) are random effects, the F-test in
the analysis of variance is still formed as

This can be shown by using the methods presented previously to evaluate the expected mean
squares. If the treatments are random, the treatment effects �i are considered to be normally
and independently distributed random variables with mean zero and variance ��

2. The null
hypothesis of zero treatment effects is

When both treatments and blocks are random, the block effects �j are also assumed to be
normally and independently distributed random variables with mean zero and variance �2

�. In
this case the expected values of the mean squares for treatments, blocks, and error are

The unbiased estimates of the variance components are

 �̂2
� �

MSBlocks 	 MSE

a

 �̂2
� �

MSTreatments 	 MSE

b

 �̂2 � MSE

E1MSE2 � �2

E1MSBlocks2 � �2 � a�2
�

E1MSTreatments2 � �2 � b�2
�

H1: �
2
� 
 0

H0: �
2
� � 0

F0 �
MSTreatments

MSE

� � 0.20

� � 11 � 6112 � 2.646
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14
CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
1. Design and conduct engineering experiments involving several factors using the factorial 

design approach
2. Know how to analyze and interpret main effects and interactions
3. Understand how the ANOVA is used to analyze the data from these experiments
4. Assess model adequacy with residual plots
5. Know how to use the two-level series of factorial designs

Design of Experiments
with Several Factors
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506 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

6. Understand how two-level factorial designs can be run in blocks
7. Design and conduct two-level fractional factorial designs

CD MATERIAL
8. Incorporate random factors in factorial experiments.
9. Test for curvature in two-level factorial designs by using center points.
10. Use response surface methodology for process optimization experiments.

Answers for most odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found in the
Mind-Expanding Exercises at the end of the chapter.

14-1 INTRODUCTION

An experiment is just a test or series of tests. Experiments are performed in all engineering and
scientific disciplines and are an important part of the way we learn about how systems and
processes work. The validity of the conclusions that are drawn from an experiment depends to a
large extent on how the experiment was conducted. Therefore, the design of the experiment
plays a major role in the eventual solution of the problem that initially motivated the experiment.

In this chapter we focus on experiments that include two or more factors that the experi-
menter thinks may be important. The factorial experimental design will be introduced as a
powerful technique for this type of problem. Generally, in a factorial experimental design, ex-
perimental trials (or runs) are performed at all combinations of factor levels. For example, if
a chemical engineer is interested in investigating the effects of reaction time and reaction tem-
perature on the yield of a process, and if two levels of time (1 and 1.5 hours) and two levels of
temperature (125 and 150�F) are considered important, a factorial experiment would consist
of making experimental runs at each of the four possible combinations of these levels of reac-
tion time and reaction temperature.

Most of the statistical concepts introduced in Chapter 13 for single-factor experiments
can be extended to the factorial experiments of this chapter. The analysis of variance
(ANOVA), in particular, will continue to be used as one of the primary tools for statistical data
analysis. We will also introduce several graphical methods that are useful in analyzing the data
from designed experiments.

14-2 SOME APPLICATIONS OF DESIGNED EXPERIMENTS 
(CD ONLY)

14-3 FACTORIAL EXPERIMENTS

When several factors are of interest in an experiment, a factorial experimental design should
be used. As noted previously, in these experiments factors are varied together.

By a factorial experiment we mean that in each complete trial or replicate of the
experiment all possible combinations of the levels of the factors are investigated.

Definition
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14-3 FACTORIAL EXPERIMENTS 507

Table 14-1 A Factorial Experiment with
Two Factors

Factor B

Factor A B low B high

Alow 10 20
Ahigh 30 40

Table 14-2 A Factorial Experiment with
Interaction

Factor B

Factor A B low B high

Alow 10 20
Ahigh 30 40

Thus, if there are two factors A and B with a levels of factor A and b levels of factor B, each
replicate contains all ab treatment combinations.

The effect of a factor is defined as the change in response produced by a change in the level
of the factor. It is called a main effect because it refers to the primary factors in the study. For ex-
ample, consider the data in Table 14-1. This is a factorial experiment with two factors, A and B,
each at two levels (Alow, Ahigh, and Blow, Bhigh). The main effect of factor A is the difference between
the average response at the high level of A and the average response at the low level of A, or

That is, changing factor A from the low level to the high level causes an average response in-
crease of 20 units. Similarly, the main effect of B is

In some experiments, the difference in response between the levels of one factor is not the
same at all levels of the other factors. When this occurs, there is an interaction between the fac-
tors. For example, consider the data in Table 14-2. At the low level of factor B, the A effect is

and at the high level of factor B, the A effect is

Since the effect of A depends on the level chosen for factor B, there is interaction between A and B.
When an interaction is large, the corresponding main effects have very little practical

meaning. For example, by using the data in Table 14-2, we find the main effect of A as 

and we would be tempted to conclude that there is no factor A effect. However, when we ex-
amined the effects of A at different levels of factor B, we saw that this was not the case. The
effect of factor A depends on the levels of factor B. Thus, knowledge of the AB interaction is
more useful than knowledge of the main effect. A significant interaction can mask the signif-
icance of main effects. Consequently, when interaction is present, the main effects of the
factors involved in the interaction may not have much meaning.

A �
30 � 0

2
�

10 � 20
2

� 0

A � 0 � 20 � �20

A � 30 � 10 � 20

B �
20 � 40

2
�

10 � 30
2

� 10

A �
30 � 40

2
�

10 � 20
2

� 20
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508 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

It is easy to estimate the interaction effect in factorial experiments such as those illus-
trated in Tables 14-1 and 14-2. In this type of experiment, when both factors have two
levels, the AB interaction effect is the difference in the diagonal averages. This represents
one-half the difference between the A effects at the two levels of B. For example, in
Table 14-1, we find the AB interaction effect to be

Thus, there is no interaction between A and B. In Table 14-2, the AB interaction effect is

As we noted before, the interaction effect in these data is very large.
The concept of interaction can be illustrated graphically in several ways. Figure 14-1

plots the data in Table 14-1 against the levels of A for both levels of B. Note that the Blow and
Bhigh lines are approximately parallel, indicating that factors A and B do not interact signifi-
cantly. Figure 14-2 presents a similar plot for the data in Table 14-2. In this graph, the Blow and
Bhigh lines are not parallel, indicating the interaction between factors A and B. Such graphical
displays are called two-factor interaction plots. They are often useful in presenting the re-
sults of experiments, and many computer software programs used for analyzing data from de-
signed experiments will construct these graphs automatically.

Figures 14-3 and 14-4 present another graphical illustration of the data from Tables 14-1
and 14-2. In Fig. 14-3 we have shown a three-dimensional surface plot of the data from
Table 14-1. These data contain no interaction, and the surface plot is a plane lying above the
A-B space. The slope of the plane in the A and B directions is proportional to the main effects
of factors A and B, respectively. Figure 14-4 is a surface plot of the data from Table 14-2.
Notice that the effect of the interaction in these data is to “twist” the plane, so that there is
curvature in the response function. Factorial experiments are the only way to discover
interactions between variables.

An alternative to the factorial design that is (unfortunately) used in practice is to change
the factors one at a time rather than to vary them simultaneously. To illustrate this one-factor-
at-a-time procedure, suppose that an engineer is interested in finding the values of temperature
and pressure that maximize yield in a chemical process. Suppose that we fix temperature
at 155�F (the current operating level) and perform five runs at different levels of time, say,
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Figure 14-1 Factorial experiment, no 
interaction.

Figure 14-2 Factorial experiment, with 
interaction.
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14-3 FACTORIAL EXPERIMENTS 509

0.5, 1.0, 1.5, 2.0, and 2.5 hours. The results of this series of runs are shown in Fig. 14-5. This
figure indicates that maximum yield is achieved at about 1.7 hours of reaction time. To opti-
mize temperature, the engineer then fixes time at 1.7 hours (the apparent optimum) and per-
forms five runs at different temperatures, say, 140, 150, 160, 170, and 180�F. The results of this
set of runs are plotted in Fig. 14-6. Maximum yield occurs at about 155�F. Therefore, we would
conclude that running the process at 155�F and 1.7 hours is the best set of operating conditions,
resulting in yields of around 75%.

Figure 14-7 displays the contour plot of actual process yield as a function of temperature
and time with the one-factor-at-a-time experiments superimposed on the contours. Clearly,
this one-factor-at-a-time approach has failed dramatically here, as the true optimum is at least
20 yield points higher and occurs at much lower reaction times and higher temperatures. The
failure to discover the importance of the shorter reaction times is particularly important be-
cause this could have significant impact on production volume or capacity, production plan-
ning, manufacturing cost, and total productivity.

The one-factor-at-a-time approach has failed here because it cannot detect the interac-
tion between temperature and time. Factorial experiments are the only way to detect inter-
actions. Furthermore, the one-factor-at-a-time method is inefficient. It will require more

Figure 14-5 Yield versus reaction time with
temperature constant at 155 �F.
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Figure 14-6 Yield versus temperature with reaction
time constant at 1.7 hours.
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Figure 14-3 Three-dimensional surface plot of the data from
Table 14-1, showing main effects of the two factors A and B.

Figure 14-4 Three-dimensional surface plot of the data from
Table 14-2 showing the effect of the A and B interaction.
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510 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

experimentation than a factorial, and as we have just seen, there is no assurance that it will
produce the correct results.

14-4 TWO-FACTOR FACTORIAL EXPERIMENTS

The simplest type of factorial experiment involves only two factors, say, A and B. There are
a levels of factor A and b levels of factor B. This two-factor factorial is shown in Table 14-3.
The experiment has n replicates, and each replicate contains all ab treatment combinations.

Figure 14-7
Optimization 
experiment using the
one-factor-at-a-
time method.
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Table 14-3 Data Arrangement for a Two-Factor Factorial Design

Factor B

1 2 b Totals Averages

1
y111, y112, y121, y122, y1b1, y1b2,
p , y11n p , y12n p , y1bn y1..

2
y211, y212, y221, y222, y2b1, y2b2,

Factor A p , y21n p , y22n p , y2bn y2..

ya11, ya12, ya21, ya22, yab1, yab2,
a p , ya1n p , ya2n p , yabn

Totals 
Averages y...y.b.y.2.y.1.

ypy.b.y.2.y.1.

ya..ya..

o

y2..

y1..

p

c14.qxd  5/9/02  7:53 PM  Page 510 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 12 FIN L:



14-4 TWO-FACTOR FACTORIAL EXPERIMENTS 511

The observation in the ij th cell for the kth replicate is denoted by yijk. In performing the 
experiment, the abn observations would be run in random order. Thus, like the single-
factor experiment studied in Chapter 13, the two-factor factorial is a completely random-
ized design.

The observations may be described by the linear statistical model

(14-1)

where � is the overall mean effect, �i is the effect of the i th level of factor A, �j is the ef-
fect of the jth level of factor B, (��)ij is the effect of the interaction between A and B, and
	ijk is a random error component having a normal distribution with mean zero and variance

2. We are interested in testing the hypotheses of no main effect for factor A, no main effect
for B, and no AB interaction effect. As with the single-factor experiments of Chapter 13,
the analysis of variance (ANOVA) will be used to test these hypotheses. Since there are
two factors in the experiment, the test procedure is sometimes called the two-way analysis
of variance.

14-4.1 Statistical Analysis of the Fixed-Effects Model

Suppose that A and B are fixed factors. That is, the a levels of factor A and the b levels of fac-
tor B are specifically chosen by the experimenter, and inferences are confined to these levels
only. In this model, it is customary to define the effects �i, �j, and (��)ij as deviations from the
mean, so that and 

The analysis of variance can be used to test hypotheses about the main factor effects of
A and B and the AB interaction. To present the ANOVA, we will need some symbols, some of
which are illustrated in Table 14-3. Let yi.. denote the total of the observations taken at the ith
level of factor A; y.j. denote the total of the observations taken at the jth level of factor B; yij.
denote the total of the observations in the ij th cell of Table 14-3; and y... denote the grand total
of all the observations. Define and as the corresponding row, column, cell,
and grand averages. That is,

y...yi.., y.j., yij.,

g b
j�1 1��2ij � 0.g a

i�1 1��2ij � 0,g b
j�1 �j � 0,g a

i�1 �i � 0,

Yijk � � � �i � �j � 1��2ij � 	ijk •
i � 1, 2, p , a
j � 1, 2, p , b
k � 1, 2, p , n

y... �
y...

abn
y... � a

a

i�1
  a

b

j�1
  a

n

k�1
 yijk

j � 1, 2, p , b
i � 1, 2, p , ayij. �

yij.
nyij. � a

n

k�1
 
yijk

j � 1, 2, p , by.j. �
y.j.
any.j. � a

a

i�1
 a

n

k�1
yijk

i � 1, 2, p , ayi.. �
yi..

bn
yi.. � a

b

j�1
 a

n

k�1
yijk
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512 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

The hypotheses that we will test are as follows:

1. H0: �1 � �2 � � �a � 0 (no main effect of factor A)
H1: at least one �i � 0

2. H0: �1 � �2 � � �b � 0 (no main effect of factor B) (14-2)
H1: at least one �j � 0

3. H0: (��)11 � (��)12 � � (��)ab � 0 (no interaction)
H1: at least one (��)ij � 0

As before, the ANOVA tests these hypotheses by decomposing the total variability in the data
into component parts and then comparing the various elements in this decomposition. Total
variability is measured by the total sum of squares of the observations

and the sum of squares decomposition is defined below.

SST � a
a

i�1
a

b

j�1
a

n

k�1
1  yijk � y...22

p

p

p

Equations 14-3 and 14-4 state that the total sum of squares SST is partitioned into a sum of squares
for the row factor A (SSA), a sum of squares for the column factor B (SSB), a sum of squares for the
interaction between A and B (SSAB), and an error sum of squares (SSE). There are abn � 1 total 
degrees of freedom. The main effects A and B have a � 1 and b � 1 degrees of freedom, while
the interaction effect AB has (a � 1)(b � 1) degrees of freedom. Within each of the ab cells in
Table 14-3, there are n � 1 degrees of freedom between the n replicates, and observations in the
same cell can differ only because of random error. Therefore, there are ab(n � 1) degrees of free-
dom for error. Therefore, the degrees of freedom are partitioned according to

If we divide each of the sum of squares on the right-hand side of Equation 14-4 by the
corresponding number of degrees of freedom, we obtain the mean squares for A, B, the

abn � 1 � 1a � 12 � 1b � 12 � 1a � 12 1b � 12 � ab1n � 12

The sum of squares identity for a two-factor ANOVA is

(14-3)

or symbolically,

(14-4)SST � SSA � SSB � SSAB � SSE

� a
a

i�1
 a

b

j�1
 a

n

k�1
1 yijk � yij.22

� na
a

i�1
  a

b

j�1
 1 yij. � yi.. � y.j. � y...22

� ana
b

j�1
1 y.j. � yp22

a
a

i�1
a

b

j�1
a

n

k�1
1 yijk � y...22 � bna

a

i�1
1 yi.. � y...22
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14-4 TWO-FACTOR FACTORIAL EXPERIMENTS 513

interaction, and error:

Assuming that factors A and B are fixed factors, it is not difficult to show that the expected
values of these mean squares are

From examining these expected mean squares, it is clear that if the null hypotheses about main
effects H0: �i � 0, H0: �j � 0, and the interaction hypothesis H0: (��)ij � 0 are all true, all four
mean squares are unbiased estimates of 
2.

To test that the row factor effects are all equal to zero (H0: �i � 0), we would use the ratio

E1MSE2 � E  a SSE

ab1n � 12 b � 
2

E1MSAB2 � E  a SSAB1a � 12 1b � 12 b � 
2 �

n ga
i�1

  gb
j�1

 1��22ij
1a � 12 1b � 12

E1MSB2 � E   a SSB

b � 1
b � 
2 �

an gb
j�1

 �
2
j

b � 1
E1MSA2 � E  a SSA

a � 1
b � 
2 �

bn ga
i�1

 �i
2

a � 1

MSA �
SSA

a � 1
  MSB �

SSB

b � 1
  MSAB �

SSAB1a � 12 1b � 12  MSE �
SSE

ab1n � 12

F0 �
MSA

MSE

F0 �
MSB

MSE

F0 �
MSAB

MSE

which has an F-distribution with a � 1 and ab(n � 1) degrees of freedom if H0: �i � 0 is true.
This null hypothesis is rejected at the � level of significance if f0 
 f�,a�1,ab(n�1). Similarly, to
test the hypothesis that all the column factor effects are equal to zero (H0: �j � 0), we would
use the ratio

which has an F-distribution with b � 1 and ab(n � 1) degrees of freedom if H0: �j � 0 is true.
This null hypothesis is rejected at the � level of significance if f0 
 f�,b�1,ab(n�1). Finally, to test
the hypothesis H0: (��)ij � 0, which is the hypothesis that all interaction effects are zero, we use
the ratio
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514 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

which has an F-distribution with (a � 1)(b � 1) and ab(n � 1) degrees of freedom if the null
hypothesis H0: (��)ij � 0. This hypothesis is rejected at the � level of significance if 
f0 
 f�,(a�1)(b�1),ab(n�1).

It is usually best to conduct the test for interaction first and then to evaluate the main
effects. If interaction is not significant, interpretation of the tests on the main effects is
straightforward. However, as noted in Section 14-4, when interaction is significant, the main
effects of the factors involved in the interaction may not have much practical interpretative
value. Knowledge of the interaction is usually more important than knowledge about the
main effects.

Computational formulas for the sums of squares are easily obtained.

The computations are usually displayed in an ANOVA table, such as Table 14-4.

EXAMPLE 14-1 Aircraft primer paints are applied to aluminum surfaces by two methods: dipping and spray-
ing. The purpose of the primer is to improve paint adhesion, and some parts can be primed
using either application method. The process engineering group responsible for this operation
is interested in learning whether three different primers differ in their adhesion properties.

Computing formulas for the sums of squares in a two-factor analysis of variance.

(14-5)

(14-6)

(14-7)

(14-8)

(14-9) SSE � SST � SSAB � SSA � SSB

 SSAB � a
a

i�1
 a

b

j�1

y2
ij.
n �

y2...

abn
� SSA � SSB

 SSB � a
b

j�1

y2.j.
an �

y2...

abn

 SSA � a
a

i�1

y2
i
# ..

bn
�

y2...

abn

 SST � a
a

i�1
 a

b

j�1
 a

n

k�1
y2

ijk �
y2...

abn

Definition

Table 14-4 ANOVA Table for a Two-Factor Factorial, Fixed-Effects Model

Source of Sum of Degrees of 
Variation Squares Freedom Mean Square F0

A treatments SSA a � 1

B treatments SSB b � 1

Interaction SSAB (a � 1)(b � 1)

Error SSE ab(n � 1)

Total SST abn � 1 MSE �
SSE

ab1n � 12

MSAB

MSE
MSAB �

SSAB

1a � 12 1b � 12

MSB

MSE
MSB �

SSB

b � 1

MSA

MSE
MSA �

SSA

a � 1
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14-4 TWO-FACTOR FACTORIAL EXPERIMENTS 515

A factorial experiment was performed to investigate the effect of paint primer type and ap-
plication method on paint adhesion. For each combination of primer type and application
method, three specimens were painted, then a finish paint was applied, and the adhesion
force was measured. The data from the experiment are shown in Table 14-5. The circled
numbers in the cells are the cell totals yij.. The sums of squares required to perform the
ANOVA are computed as follows:

and

SSE � SST � SStypes � SSmethods � SSinteraction

� 10.72 � 4.58 � 4.91 � 0.24 � 0.99

The ANOVA is summarized in Table 14-6. The experimenter has decided to use � � 0.05.
Since f0.05,2,12 � 3.89 and f0.05,1,12 � 4.75, we conclude that the main effects of primer type and

�
189.822

18
� 4.58 � 4.91 � 0.24

 �
112.822 � 115.922 � 111.522 � 115.922 � 118.222 � 115.522

3

 SSinteraction � a
a

i�1
a

b

j�1

y2
ij
#.

n �
y2...

abn
� SStypes � SSmethods

 �
140.222 � 149.622

9
�
189.822

18
� 4.91

 SSmethods � a
b

j�1
 

y2.j.
an �

y2...

abn

 �
128.722 � 134.122 � 127.022

6
�
189.822

18
� 4.58

 SStypes � a
a

i�1
 

y2
i ..

bn
�

y2...

abn

 � 14.022 � 14.522 � p � 15.022 �
189.822

18
� 10.72

 SST � a
a

i�1
a

b

j�1
a

n

k�1
 
y2

ijk �
y2...

abn

Table 14-5 Adhesion Force Data for Example 14-1

Primer Type Dipping Spraying yi..

1 4.0, 4.5, 4.3 12.8 5.4, 4.9, 5.6 15.9 28.7

2 5.6, 4.9, 5.4 15.9 5.8, 6.1, 6.3 18.2 34.1

3 3.8, 3.7, 4.0 11.5 5.5, 5.0, 5.0 15.5 27.0

y.j. 40.2 49.6 89.8 � y...
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516 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

application method affect adhesion force. Furthermore, since 1.5 � f0.05,2,12, there is no
indication of interaction between these factors. The last column of Table 14-6 shows the 
P-value for each F-ratio. Notice that the P-values for the two test statistics for the main effects
are considerably less than 0.05, while the P-value for the test statistic for the interaction is
greater than 0.05.

A graph of the cell adhesion force averages versus levels of primer type for each ap-
plication method is shown in Fig. 14-8. The no-interaction conclusion is obvious in this graph,
because the two lines are nearly parallel. Furthermore, since a large response indicates greater
adhesion force, we conclude that spraying is the best application method and that primer 
type 2 is most effective.

Tests on Individual Means
When both factors are fixed, comparisons between the individual means of either factor may
be made using any multiple comparison technique such as Fisher’s LSD method (described in
Chapter 13). When there is no interaction, these comparisons may be made using either the
row averages or the column averages . However, when interaction is significant, com-
parisons between the means of one factor (say, A) may be obscured by the AB interaction. In
this case, we could apply a procedure such as Fisher’s LSD method to the means of factor A,
with factor B set at a particular level.

Minitab Output
Table 14-7 shows some of the output from the Minitab analysis of variance procedure for the
aircraft primer paint experiment in Example 14-1. The upper portion of the table gives factor
name and level information, and the lower portion of the table presents the analysis of vari-
ance for the adhesion force response. The results are identical to the manual calculations dis-
played in Table 14-6 apart from rounding.

y. j.yi..

5 yij.6

Table 14-6 ANOVA for Example 14-1

Source of Sum of Degrees of Mean
Variation Squares Freedom Square f0 P-Value

Primer types 4.58 2 2.29 28.63 2.7 � E-5
Application methods 4.91 1 4.91 61.38 5.0 � E-7
Interaction 0.24 2 0.12 1.50 0.2621
Error 0.99 12 0.08
Total 10.72 17

1

3.0

4.0

5.0

6.0

7.0

2 3

Spraying

Dipping

Primer type

yij•

Figure 14-8 Graph of
average adhesion force
versus primer types for
both application 
methods.
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14-4 TWO-FACTOR FACTORIAL EXPERIMENTS 517

14-4.2 Model Adequacy Checking

Just as in the single-factor experiments discussed in Chapter 13, the residuals from a factorial
experiment play an important role in assessing model adequacy. The residuals from a 
two-factor factorial are

That is, the residuals are just the difference between the observations and the corresponding
cell averages.

Table 14-8 presents the residuals for the aircraft primer paint data in Example 14-1. The
normal probability plot of these residuals is shown in Fig. 14-9. This plot has tails that do not
fall exactly along a straight line passing through the center of the plot, indicating some poten-
tial problems with the normality assumption, but the deviation from normality does not appear
severe. Figures 14-10 and, 14-11 plot the residuals versus the levels of primer types and ap-
plication methods, respectively. There is some indication that primer type 3 results in slightly
lower variability in adhesion force than the other two primers. The graph of residuals versus
fitted values in Fig. 14-12 does not reveal any unusual or diagnostic pattern.

14-4.3 One Observation per Cell

In some cases involving a two-factor factorial experiment, we may have only one replicate—
that is, only one observation per cell. In this situation, there are exactly as many parameters in
the analysis of variance model as observations, and the error degrees of freedom are zero. Thus,
we cannot test hypotheses about the main effects and interactions unless some additional

eijk � yijk � yij.

Table 14-7 Analysis of Variance From Minitab for Example 14-1

ANOVA (Balanced Designs)

Factor Type Levels Values
Primer fixed 3 1 2 3
Method fixed 2 Dip Spray

Analysis of Variance for Adhesion

Source DF SS MS F P
Primer 2 4.5811 2.2906 27.86 0.000
Method 1 4.9089 4.9089 59.70 0.000
Primer *Method 2 0.2411 0.1206 1.47 0.269
Error 12 0.9867 0.0822
Total 17 10.7178

Table 14-8 Residuals for the Aircraft Primer Experiment in Example 14-1

Application Method

Primer Type Dipping Spraying

1 �0.27, 0.23, 0.03 0.10, �0.40, 0.30
2 0.30, �0.40, 0.10 �0.27, 0.03, 0.23
3 �0.03, �0.13, 0.17 0.33, �0.17, �0.17
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518 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

assumptions are made. One possible assumption is to assume the interaction effect is negligi-
ble and use the interaction mean square as an error mean square. Thus, the analysis is equiva-
lent to the analysis used in the randomized block design. This no-interaction assumption can be
dangerous, and the experimenter should carefully examine the data and the residuals for indi-
cations as to whether or not interaction is present. For more details, see Montgomery (2001).

14-4.4 Factorial Experiments with Random Factors: Overview

In Section 13-3 we introduced the concept of a random factor. This is, of course, a situation
in which the factor of interest has a large number of possible levels and the experimenter
chooses a subset of these levels at random from this population. Conclusions are then drawn
about the population of factor levels.

Random factors can occur in factorial experiments. If all the factors are random, the analysis
of variance model is called a random-effects model. If some factors are fixed and other factors are
random, the analysis of variance model is called a mixed model. The statistical analysis of random
and mixed models is very similar to that of the standard fixed-effects models that are the primary
focus of this chapter. The primary differences are in the types of hypotheses that are tested, the con-
struction of test statistics for these hypotheses, and the estimation of model parameters. Some
additional details on these topics are presented in Section 14-6 on the CD. For a more in-depth pres-
entation, refer to Montgomery (2001) and Neter, Wasserman, Nachtsheim, and Kutner (1996).

–0.5
–2.0

+0.1–0.3 –0.1 +0.3

–1.0

0.0

1.0

2.0

zj

eijk, residual

+0.5

0

–0.5

3

eijk

1 2
Primer type

Figure 14-10 Plot of residuals versus primer type.Figure 14-9 Normal probability plot of the 
residuals from Example 14-1.
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D
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0
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eijk

654
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^

Figure 14-11 Plot of residuals versus application
method.

Figure 14-12 Plot of residuals versus predicted 
values yijk.ˆ
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14-4 TWO-FACTOR FACTORIAL EXPERIMENTS 519

14-1. In his book (Design and Analysis of Experiments,
5th edition, 2001 John Wiley & Sons), D. C. Montgomery
presents the results of an experiment involving a storage
battery used in the launching mechanism of a shoulder-
fired ground-to-air missile. Three material types can be
used to make the battery plates. The objective is to design a
battery that is relatively unaffected by the ambient temper-
ature. The output response from the battery is effective life
in hours. Three temperature levels are selected, and a fac-
torial experiment with four replicates is run. The data are as
follows:

Temperature (�F)

Material Low Medium High

1 130 155 34 40 20 70

74 180 80 75 82 58

2 150 188 136 122 25 70

159 126 106 115 58 45

3 138 110 174 120 96 104

168 160 150 139 82 60

Temperature (�C)

Position 800 825 850

1 570 1063 565

565 1080 510

583 1043 590

2 528 988 526

547 1026 538

521 1004 532

EXERCISES FOR SECTION 14-4

(a) Test the appropriate hypotheses and draw conclusions
using the analysis of variance with � � 0.05.

(b) Graphically analyze the interaction.
(c) Analyze the residuals from this experiment.

14-2. An engineer who suspects that the surface finish of
metal parts is influenced by the type of paint used and the drying
time. He selected three drying times—20, 25, and 30 minutes—
and used two types of paint. Three parts are tested with 
each combination of paint type and drying time. The data are
as follows:

(a) State and test the appropriate hypotheses using the analy-
sis of variance with � � 0.05.

(b) Analyze the residuals from this experiment.

14-3. An article in Industrial Quality Control (1956, pp.
5–8) describes an experiment to investigate the effect of two
factors (glass type and phosphor type) on the brightness of a
television tube. The response variable measured is the current
(in microamps) necessary to obtain a specified brightness
level. The data are shown in the following table:

(a) State the hypotheses of interest in this experiment.
(b) Test the above hypotheses and draw conclusions using the

analysis of variance with � = 0.05.
(c) Analyze the residuals from this experiment.

14-4. An experiment was conducted to determine whether ei-
ther firing temperature or furnace position affects the baked 
density of a carbon anode. The data are as follows:

Drying Time (min)

Paint 20 25 30

1 74 73 78

64 61 85

50 44 92

2 92 98 66

86 73 45
68 88 85

Phosphor Type

1 2 3

1 280 300 290

290 310 285

285 295 290

2 230 260 220

235 240 225

240 235 230

Glass
Type

(a) State the hypotheses of interest.
(b) Test the above hypotheses using the analysis of variance

with � = 0.05. What are your conclusions?
(c) Analyze the residuals from this experiment.

14-5. Continuation of Exercise 14-4. Using Fisher’s LSD
method, investigate the differences between the mean baked
anode density at the three different levels of temperature in
Exercise 14-4. Use � = 0.05.

14-6. Johnson and Leone (Statistics and Experimental
Design in Engineering and the Physical Sciences, John Wiley,
1977) describe an experiment conducted to investigate
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520 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

(a) Is there any indication that either factor affects the amount
of warping? Is there any interaction between the factors?
Use � = 0.05.

(b) Analyze the residuals from this experiment.
(c) Plot the average warping at each level of copper content

and compare the levels using Fisher’s LSD method.
Describe the differences in the effects of the different
levels of copper content on warping. If low warping is
desirable, what level of copper content would you
specify?

(d) Suppose that temperature cannot be easily controlled in
the environment in which the copper plates are to be used.
Does this change your answer for part (c)?

14-7. Consider a two-factor factorial experiment. Develop a
formula for finding a 100 (1 � �)% confidence interval on
the difference between any two means for either a row or
column factor. Apply this formula to find a 95% CI on the dif-
ference in mean warping at the levels of copper content 60 and
80% in Exercise 14-6.

14-8. An article in the Journal of Testing and Evaluation
(Vol. 16, no. 6, 1988, pp. 508–515) investigated the effects of
cyclic loading frequency and environment conditions on fa-
tigue crack growth at a constant 22 MPa stress for a particular

Environment
Air H2O Salt H2O

2.29 2.06 1.90

10
2.47 2.05 1.93
2.48 2.23 1.75
2.12 2.03 2.06

2.65 3.20 3.10

Frequency 1
2.68 3.18 3.24
2.06 3.96 3.98
2.38 3.64 3.24

2.24 11.00 9.96

0.1
2.71 11.00 10.01
2.81 9.06 9.36
2.08 11.30 10.40

(a) Is there indication that either factor affects crack growth
rate? Is there any indication of interaction? Use � � 0.05.

(b) Analyze the residuals from this experiment.
(c) Repeat the analysis in part (a) using ln(y) as the response.

Analyze the residuals from this new response variable and
comment on the results.

14-9. An article in the IEEE Transactions on Electron Devices
(November 1986, p. 1754) describes a study on the effects of
two variables—polysilicon doping and anneal conditions (time
and temperature)—on the base current of a bipolar transistor.
The data from this experiment follows below Exercise 14-10.
(a) Is there any evidence to support the claim that either poly-

silicon doping level or anneal conditions affect base
current? Do these variables interact? Use � � 0.05.

(b) Graphically analyze the interaction.
(c) Analyze the residuals from this experiment.

14-10. Consider the experiment described in Exercise 14-9.
Use Fisher’s LSD method to isolate the effects of anneal con-
ditions on base current, with � � 0.05.

14-5 GENERAL FACTORIAL EXPERIMENTS

Many experiments involve more than two factors. In this section we introduce the case where
there are a levels of factor A, b levels of factor B, c levels of factor C, and so on, arranged
in a factorial experiment. In general, there will be abc n total observations, if there are
n replicates of the complete experiment.

p

Copper Content (%)

(�C) 40 60 80 100

50 17, 20 16, 21 24, 22 28, 27

75 12, 9 18, 13 17, 12 27, 31

100 16, 12 18, 21 25, 23 30, 23

125 21, 17 23, 21 23, 22 29, 31

Temperature

Anneal (temperature/time)
900/60 900/180 950/60 1000/15 1000/30

1 � 1020 4.40 8.30 10.15 10.29 11.01

Polysilicon 4.60 8.90 10.20 10.30 10.58

doping
2 � 1020 3.20 7.81 9.38 10.19 10.81

3.50 7.75 10.02 10.10 10.60

warping of copper plates. The two factors studied were
temperature and the copper content of the plates. The re-
sponse variable is the amount of warping. The data are as
follows:

material. The data from the experiment follow. The response
variable is fatigue crack growth rate.
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14-5 GENERAL FACTORIAL EXPERIMENTS 521

For example, consider the three-factor-factorial experiment, with underlying model

(14-10)

Notice that the model contains three main effects, three two-factor interactions, a three-factor
interaction, and an error term. Assuming that A, B, and C are fixed factors, the analysis of vari-
ance is shown in Table 14-9. Note that there must be at least two replicates (n � 2) to compute
an error sum of squares. The F-test on main effects and interactions follows directly from
the expected mean squares. These ratios follow F distributions under the respective null
hypotheses.

EXAMPLE 14-2 A mechanical engineer is studying the surface roughness of a part produced in a metal-cutting
operation. Three factors, feed rate (A), depth of cut (B), and tool angle (C ), are of interest. All
three factors have been assigned two levels, and two replicates of a factorial design are run.
The coded data are shown in Table 14-10.

The ANOVA is summarized in Table 14-11. Since manual ANOVA computions are
tedious for three-factor experiments, we have used Minitab for the solution of this problem.

� 1���2ijk � 	ijkl µ  

i � 1, 2, p , a
j � 1, 2, p , b
k � 1, 2, p , c
l � 1, 2, p , n

Yijkl � � � �i � �j � �k � 1��2ij � 1��2ik � 1��2jk

Table 14-9 Analysis of Variance Table for the Three-Factor Fixed Effects Model

Source of Sum of Degrees of Expected
Variation Squares Freedom Mean Square Mean Squares F0

A SSA a � 1 MSA

B SSB b � 1 MSB

C SSC c � 1 MSC

AB SSAB 1a � 12 1b � 12 MSAB

AC SSAC 1a � 12 1c � 12 MSAC

BC SSBC 1b � 12 1c � 12 MSBC

ABC SSABC 1a � 12 1b � 12 1c � 12 MSABC

Error SSE abc1n � 12 MSE

Total SST abcn � 1

2

MSABC

MSE

2 �

n ���1���2ijk2

1a � 12 1b � 12 1c � 12

MSBC

MSE

2 �

an ��1��2jk2
1b � 12 1c � 12

MSAC

MSE

2 �

bn ��1��2ik2
1a � 12 1c � 12

MSAB

MSE

2 �

cn ��1��2ij2
1a � 12 1b � 12

MSC

MSE

2 �

abn ��k
2

c � 1

MSB

MSE

2 �

acn ��j
2

b � 1

MSA

MSE

2 �

bcn ��2
i

a � 1

c14.qxd  5/9/02  7:54 PM  Page 521 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 12 FIN L:



522 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

The F-ratios for all three main effects and the interactions are formed by dividing the mean
square for the effect of interest by the error mean square. Since the experimenter has selected
� � 0.05, the critical value for each of these F-ratios is f0.05,1,8 � 5.32. Alternately, we could
use the P-value approach. The P-values for all the test statistics are shown in the last column
of Table 14-11. Inspection of these P-values is revealing. There is a strong main effect of feed
rate, since the F-ratio is well into the critical region. However, there is some indication of an
effect due to the depth of cut, since P = 0.0710 is not much greater than � � 0.05. The next
largest effect is the AB or feed rate � depth of cut interaction. Most likely, both feed rate and
depth of cut are important process variables.

Obviously, factorial experiments with three or more factors can require many runs, par-
ticularly if some of the factors have several (more than two) levels. This point of view leads
us to the class of factorial designs considered in Section 14-7 with all factors at two levels.
These designs are easy to set up and analyze, and they may be used as the basis of many other
useful experimental designs.

Table 14-11 Minitab ANOVA for Example 14-2

ANOVA (Balanced Designs)

Factor Type Levels Values
Feed fixed 2 20 30
Depth fixed 2 0.025 0.040
Angle fixed 2 15 25

Analysis of Variance for Roughness

Source DF SS MS F P
Feed 1 45.563 45.563 18.69 0.003
Depth 1 10.563 10.563 4.33 0.071
Angle 1 3.063 3.063 1.26 0.295
Feed*Depth 1 7.563 7.563 3.10 0.116
Feed*Angle 1 0.062 0.062 0.03 0.877
Depth*Angle 1 1.563 1.563 0.64 0.446
Feed*Depth*Angle 1 5.062 5.062 2.08 0.188
Error 8 19.500 2.437
Total 15 92.938

Table 14-10 Coded Surface Roughness Data for Example 14-2

Depth of Cut (B)

0.025 inch 0.040 inch

Tool Angle (C ) Tool Angle (C )

15� 25� 15� 25�

9 11 9 10
20 inches per minute 7 10 11 8 75

10 10 12 16
30 inches per minute 12 13 15 14 102

yi p
Feed Rate

(A)
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14-7 2k FACTORIAL DESIGNS 523

14-11. The percentage of hardwood concentration in raw
pulp, the freeness, and the cooking time of the pulp are being
investigated for their effects on the strength of paper. The data
from a three-factor factorial experiment are shown in the fol-
lowing table.

Cooking Time 1.5 hours Cooking Time 2.0 hours

Freeness Freeness

350 500 650 350 500 650

10 96.6 97.7 99.4 98.4 99.6 100.6

96.0 96.0 99.8 98.6 100.4 100.9

15 98.5 96.0 98.4 97.5 98.7 99.6

97.2 96.9 97.6 98.1 96.0 99.0

20 97.5 95.6 97.4 97.6 97.0 98.5

96.6 96.2 98.1 98.4 97.8 99.8

Percentage 
of Hardwood

Concentration

(a) Analyze the data using the analysis of variance assuming
that all factors are fixed. Use � � 0.05.

(b) Find P-values for the F-ratios in part (a).
(c) The residuals are found by Graphically

analyze the residuals from this experiment.
eijkl � yijkl � yijk..

EXERCISES FOR SECTION 14-5

14-6 FACTORIAL EXPERIMENTS WITH RANDOM 
FACTORS (CD ONLY)

14-7 2k FACTORIAL DESIGNS

Factorial designs are frequently used in experiments involving several factors where it is
necessary to study the joint effect of the factors on a response. However, several special
cases of the general factorial design are important because they are widely employed 

14-12. The quality control department of a fabric finishing
plant is studying the effects of several factors on dyeing for a
blended cotton/synthetic cloth used to manufacture shirts.
Three operators, three cycle times, and two temperatures were
selected, and three small specimens of cloth were dyed under
each set of conditions. The finished cloth was compared to a

standard, and a numerical score was assigned. The results are
shown in the following table.
(a) State and test the appropriate hypotheses using the analy-

sis of variance with � � 0.05.
(b) The residuals may be obtained from 

Graphically analyze the residuals from this experiment.
eijkl � yijkl � yijk. .

Temperature

300� 350�

Operator Operator

Cycle Time 1 2 3 1 2 3

23 27 31 24 38 34

40 24 28 32 23 36 36

25 26 28 28 35 39

36 34 33 37 34 34

50 35 38 34 39 38 36

36 39 35 35 36 31

28 35 26 26 36 28

60 24 35 27 29 37 26

27 34 25 25 34 34
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524 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

in research work and because they form the basis of other designs of considerable practical
value.

The most important of these special cases is that of k factors, each at only two levels.
These levels may be quantitative, such as two values of temperature, pressure, or time; or they
may be qualitative, such as two machines, two operators, the “high’’ and “low’’ levels of a fac-
tor, or perhaps the presence and absence of a factor. A complete replicate of such a design
requires 2 � 2 � � � � � 2 � 2k observations and is called a 2k factorial design.

The 2k design is particularly useful in the early stages of experimental work, when many
factors are likely to be investigated. It provides the smallest number of runs for which k fac-
tors can be studied in a complete factorial design. Because there are only two levels for each
factor, we must assume that the response is approximately linear over the range of the factor
levels chosen.

14-7.1 22 Design

The simplest type of 2k design is the 22—that is, two factors A and B, each at two levels. We
usually think of these levels as the low and high levels of the factor. The 22 design is shown in
Fig. 14-13. Note that the design can be represented geometrically as a square with the 22 � 4
runs, or treatment combinations, forming the corners of the square. In the 22 design it is cus-
tomary to denote the low and high levels of the factors A and B by the signs � and �, respec-
tively. This is sometimes called the geometric notation for the design.

A special notation is used to label the treatment combinations. In general, a treatment
combination is represented by a series of lowercase letters. If a letter is present, the corre-
sponding factor is run at the high level in that treatment combination; if it is absent, the factor
is run at its low level. For example, treatment combination a indicates that factor A is at the
high level and factor B is at the low level. The treatment combination with both factors at the
low level is represented by (1). This notation is used throughout the 2k design series. For ex-
ample, the treatment combination in a 24 with A and C at the high level and B and D at the low
level is denoted by ac.

The effects of interest in the 22 design are the main effects A and B and the two-factor in-
teraction AB. Let the letters (1), a, b, and ab also represent the totals of all n observations taken
at these design points. It is easy to estimate the effects of these factors. To estimate the main
effect of A, we would average the observations on the right side of the square in Fig. 14-13
where A is at the high level, and subtract from this the average of the observations on the left
side of the square, where A is at the low level, or

Low
(–)

High
(+)

(1)

A

B

b

a

ab

Low
(–)

High
(+)

Treatment
(1)
a
b

ab

A
–
+
–
+

B
–
–
+
+

Figure 14-13 The 22

factorial design.

c14.qxd  5/9/02  7:54 PM  Page 524 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 12 FIN L:



14-7 2k FACTORIAL DESIGNS 525

Similarly, the main effect of B is found by averaging the observations on the top of the square,
where B is at the high level, and subtracting the average of the observations on the bottom of
the square, where B is at the low level:

(14-11) �
1

2n
  3a � ab � b � 112 4

 �
a � ab

2n
�

b � 112
2n

 A � yA� � yA�

(14-12) �
1

2n
  3b � ab � a � 112 4

 �
b � ab

2n
�

a � 112
2n

  B � yB� � yB�

(14-13) �
1

2n
  3ab � 112 � a � b 4

 AB �
ab � 112

2n
�

a � b

2n

Table 14-12 Signs for Effects in the 22 Design

Factorial EffectTreatment
Combination I A B AB

112 � � � �

a � � � �

b � � � �

ab � � � �

Finally, the AB interaction is estimated by taking the difference in the diagonal averages
in Fig. 14-12, or

The quantities in brackets in Equations 14-11, 14-12, and 14-13 are called contrasts. For
example, the A contrast is

ContrastA � a � ab � b � 112
In these equations, the contrast coefficients are always either �1 or �1. A table of plus and
minus signs, such as Table 14-12, can be used to determine the sign on each treatment
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526 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

combination for a particular contrast. The column headings for Table 14-12 are the main ef-
fects A and B, the AB interaction, and I, which represents the total. The row headings are the
treatment combinations. Note that the signs in the AB column are the product of signs from
columns A and B. To generate a contrast from this table, multiply the signs in the appropriate
column of Table 14-12 by the treatment combinations listed in the rows and add. For example,
contrastAB � 31124 � 3�a4 � 3�b4 � 3ab4 � ab � 112 � a � b.

Contrasts are used in calculating both the effect estimates and the sums of squares for A,
B, and the AB interaction. The sums of squares formulas are

(14-14)

 SSAB �
3ab � 112 � a � b 42

4n

 SSB �
3b � ab � a � 112 42

4n

 SSA �
3a � ab � b � 112 42

4n

The analysis of variance is completed by computing the total sum of squares SST (with 4n � 1
degrees of freedom) as usual, and obtaining the error sum of squares SSE [with 4(n � 1)
degrees of freedom] by subtraction.

EXAMPLE 14-3 An article in the AT&T Technical Journal (Vol. 65, March/April 1986, pp. 39–50) describes
the application of two-level factorial designs to integrated circuit manufacturing. A basic pro-
cessing step in this industry is to grow an epitaxial layer on polished silicon wafers. The
wafers are mounted on a susceptor and positioned inside a bell jar. Chemical vapors are intro-
duced through nozzles near the top of the jar. The susceptor is rotated, and heat is applied.
These conditions are maintained until the epitaxial layer is thick enough.

Table 14-13 presents the results of a 22 factorial design with n � 4 replicates using the
factors A � deposition time and B � arsenic flow rate. The two levels of deposition time
are � �short and � �long, and the two levels of arsenic flow rate are � �55% and �
�59%. The response variable is epitaxial layer thickness (�m). We may find the estimates of
the effects using Equations 14-11, 14-12, and 14-13 as follows:

 AB �
1

2142
  359.156 � 56.081 � 59.299 � 55.686 4 � 0.032

 AB �
1

2n
  3ab � 112 � a � b 4

 �
1

2142
  355.686 � 59.156 � 59.299 � 56.081 4 � 0.067

 B �
1
2n

  3b � ab � a � 112 4

 �
1

2142
  359.299 � 59.156 � 55.686 � 56.081 4 � 0.836

 A �
1
2n

  3a � ab � b � 112 4
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14-7 2k FACTORIAL DESIGNS 527

The numerical estimates of the effects indicate that the effect of deposition time is large and
has a positive direction (increasing deposition time increases thickness), since changing dep-
osition time from low to high changes the mean epitaxial layer thickness by 0.836 �m. The
effects of arsenic flow rate (B) and the AB interaction appear small.

The importance of these effects may be confirmed with the analysis of variance. The
sums of squares for A, B, and AB are computed as follows:

� 3.0672

The analysis of variance is summarized in Table 14-14 and confirms our conclusions obtained
by examining the magnitude and direction of the effects. Deposition time is the only factor
that significantly affects epitaxial layer thickness, and from the direction of the effect esti-
mates we know that longer deposition times lead to thicker epitaxial layers.

Residual Analysis
It is easy to obtain the residuals from a 2k design by fitting a regression model to the data. For
the epitaxial process experiment, the regression model is

Y � �0 � �1x1 � 	

 SST � 14.0372 � p � 14.9322 �
156.081 � p � 59.15622

16

 SSAB �
3ab � 112 � a � b 42

16
�
30.252 42

16
� 0.0040

 SSB �
3b � ab � a � 112 42

16
�
3�0.538 42

16
� 0.0181

 SSA �
3a � ab � b � 112 42

16
�
36.688 42

16
� 2.7956

Table 14-13 The 22 Design for the Epitaxial Process Experiment

Treatment Design Factors Thickness (�m)

Combination A B AB Thickness (�m) Total Average

112 � � � 14.037 14.165 13.972 13.907 56.081 14.020
a � � � 14.821 14.757 14.843 14.878 59.299 14.825
b � � � 13.880 13.860 14.032 13.914 55.686 13.922
ab � � � 14.888 14.921 14.415 14.932 59.156 14.789

Table 14-14 Analysis of Variance for the Epitaxial Process Experiment

Source of Degrees of
Variation Sum of Squares Freedom Mean Square f0 P-Value

A (deposition time) 2.7956 1 2.7956 134.40 7.07 E-8
B (arsenic flow) 0.0181 1 0.0181 0.87 0.38
AB 0.0040 1 0.0040 0.19 0.67
Error 0.2495 12 0.0208
Total 3.0672 15
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528 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

since the only active variable is deposition time, which is represented by a coded variable x1.
The low and high levels of deposition time are assigned values x1 � �1 and x1 � �1,
respectively. The least squares fitted model is

where the intercept is the grand average of all 16 observations ( ) and the slope is one-
half the effect estimate for deposition time. (The regression coefficient is one-half the effect
estimate because regression coefficients measure the effect of a unit change in x1 on the mean
of Y, and the effect estimate is based on a two-unit change from �1 to �1.)

This model can be used to obtain the predicted values at the four points that form the cor-
ners of the square in the design. For example, consider the point with low deposition time
(x1 � �1) and low arsenic flow rate. The predicted value is

and the residuals for the four runs at that design point are

e1 � 14.037 � 13.971 � 0.066
e2 � 14.165 � 13.971 � 0.194
e3 � 13.972 � 13.971 � 0.001
e4 � 13.907 � 13.971 � �0.064

The remaining predicted values and residuals at the other three design points are calculated in
a similar manner.

A normal probability plot of these residuals is shown in Fig. 14-14. This plot indicates
that one residual e15 � �0.392 is an outlier. Examining the four runs with high deposition
time and high arsenic flow rate reveals that observation y15 � 14.415 is considerably smaller
than the other three observations at that treatment combination. This adds some additional 
evidence to the tentative conclusion that observation 15 is an outlier. Another possibility is
that some process variables affect the variability in epitaxial layer thickness. If we could dis-
cover which variables produce this effect, we could perhaps adjust these variables to levels
that would minimize the variability in epitaxial layer thickness. This could have important im-
plications in subsequent manufacturing stages. Figures 14-15 and 14-16 are plots of residuals
versus deposition time and arsenic flow rate, respectively. Apart from that unusually large
residual associated with y15, there is no strong evidence that either deposition time or arsenic
flow rate influences the variability in epitaxial layer thickness.

Figure 14-17 shows the standard deviation of epitaxial layer thickness at all four runs in
the 22 design. These standard deviations were calculated using the data in Table 14-13. Notice
that the standard deviation of the four observations with A and B at the high level is consider-
ably larger than the standard deviations at any of the other three design points. Most of this
difference is attributable to the unusually low thickness measurement associated with y15. The
standard deviation of the four observations with A and B at the low level is also somewhat
larger than the standard deviations at the remaining two runs. This could indicate that other
process variables not included in this experiment may affect the variability in epitaxial layer
thickness. Another experiment to study this possibility, involving other process variables,
could be designed and conducted. (The original paper in the AT&T Technical Journal shows
that two additional factors, not considered in this example, affect process variability.)

ŷ � 14.389 � a0.836
2
b 1�12 � 13.971 �m

�̂1y�̂0

ŷ � 14.389 � a0.836
2
b  x1
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Figure 14-14 Normal probability plot of residuals for the 
epitaxial process experiment.

0.5

0

–0.5

e

Low High Deposition time, A

Figure 14-15 Plot of residuals versus deposition time.

0.5

0

–0.5

e

Low Arsenic flow rate, BHigh

Figure 14-16 Plot of residuals versus arsenic flow
rate.

14-7.2 2k Design for k � 3 Factors

The methods presented in the previous section for factorial designs with k � 2 factors each at
two levels can be easily extended to more than two factors. For example, consider k � 3 fac-
tors, each at two levels. This design is a 23 factorial design, and it has eight runs or treatment
combinations. Geometrically, the design is a cube as shown in Fig. 14-18(a), with the eight
runs forming the corners of the cube. Figure 14-18(b) lists the eight runs in a table, with each
row representing one of the runs are the � and � settings indicating the low and high levels

Figure 14-17 The
standard deviation of
epitaxial layer thick-
ness at the four runs in
the 22 design.

0.110 A

B

0.055

0.2510.077

(1) a

b ab

+–

–

+
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530 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

for each of the three factors. This table is sometimes called the design matrix. This design al-
lows three main effects to be estimated (A, B, and C ) along with three two-factor interactions
(AB, AC, and BC ) and a three-factor interaction (ABC ).

The main effects can easily be estimated. Remember that the lowercase letters (1), a, b,
ab, c, ac, bc, and abc represent the total of all n replicates at each of the eight runs in the de-
sign. As seen in Fig. 14-19(a), the main effect of A can be estimated by averaging the four
treatment combinations on the right-hand side of the cube, where A is at the high level, and by

C

a
B

c

bc
abc

ab

A +

+

–

–

(1)

ac

–

+
b

(a) Geometric view (b) The 23 design matrix

Run

1

2

3

4

5

6

7

8

A

–

+

–

+

–

+

–

+

B

–

–

+

+

–

–

+

+

C

–

–

–

–

+

+

+

+

Figure 14-18 The 23

design.
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(a)

(b)

ABC

(c)

A

C

B

+–
+

–

+

–

+

–

–

+

–
+

+
–

–

= + runs
= – runs

Main effects

Two-factor interactions

Three-factor interaction

+

Figure 14-19
Geometric presenta-
tion of contrasts corre-
sponding to the main
effects and interaction
in the 23 design. (a)
Main effects. (b) Two-
factor interactions. 
(c) Three-factor 
interaction.

c14.qxd  5/9/02  7:54 PM  Page 530 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 12 FIN L:



14-7 2k FACTORIAL DESIGNS 531

subtracting from this quantity the average of the four treatment combinations on the left-hand
side of the cube where A is at the low level. This gives

This equation can be rearranged as

 �
a � ab � ac � abc

4n
�
112 � b � c � bc

4n

 A � yA� � yA�

(14-15)A �
1

4n
  3a � ab � ac � abc � 112 � b � c � bc 4

(14-16)�
1

4n
  3b � ab � bc � abc � 112 � a � c � ac 4

B � yB� � yB�

In a similar manner, the effect of B is the difference in averages between the four treatment
combinations in the back face of the cube (Fig. 14-19a), and the four in the front. This yields

The effect of C is the difference in average response between the four treatment combinations
in the top face of the cube in Figure 14-19(a) and the four in the bottom, that is,

The two-factor interaction effects may be computed easily. A measure of the AB interaction
is the difference between the average A effects at the two levels of B. By convention, one-half
of this difference is called the AB interaction. Symbolically,

B Average A Effect

High (�)

Low (�)

Difference 3abc � bc � ab � b � ac � c � a � 112 4
2n

5 1ac � c2 � 3a � 112 4 6
2n

3 1abc � bc2 � 1ab � b2 4
2n

(14-17)�
1

4n
  3c � ac � bc � abc � 112 � a � b � ab 4

C � yC� � yC�
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532 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

Since the AB interaction is one-half of this difference,

We could write Equation 14-18 as follows:

In this form, the AB interaction is easily seen to be the difference in averages between runs
on two diagonal planes in the cube in Fig. 14-19(b). Using similar logic and referring to
Fig. 14-19(b), we find that the AC and BC interactions are

AB �
abc � ab � c � 112

4n
�

bc � b � ac � a

4n

The ABC interaction is defined as the average difference between the AB interaction for
the two different levels of C. Thus,

or

ABC �
1
4n

 5 3abc � bc 4 � 3ac � c 4 � 3ab � b 4 � 3a � 112 4 6

As before, we can think of the ABC interaction as the difference in two averages. If the runs
in the two averages are isolated, they define the vertices of the two tetrahedra that comprise
the cube in Fig. 14-19(c).

In Equations 14-15 through 14-21, the quantities in brackets are contrasts in the treat-
ment combinations. A table of plus and minus signs can be developed from the contrasts
and is shown in Table 14-15. Signs for the main effects are determined directly from the test
matrix in Figure 14-18(b). Once the signs for the main effect columns have been estab-
lished, the signs for the remaining columns can be obtained by multiplying the appropriate

(14-18)AB �
1

4n
  3abc � bc � ab � b � ac � c � a � 112 4

(14-19)

(14-20)BC �
1

4n
  3 112 � a � b � ab � c � ac � bc � abc 4

AC �
1
4n

  3 112 � a � b � ab � c � ac � bc � abc 4

(14-21)ABC �
1

4n
  3abc � bc � ac � c � ab � b � a � 112 4
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14-7 2k FACTORIAL DESIGNS 533

main effect row by row. For example, the signs in the AB column are the products of the A
and B column signs in each row. The contrast for any effect can easily be obtained from this
table.

Table 14-15 has several interesting properties:

1. Except for the identity column I, each column has an equal number of plus and minus
signs.

2. The sum of products of signs in any two columns is zero; that is, the columns in the
table are orthogonal.

3. Multiplying any column by column I leaves the column unchanged; that is, I is an
identity element.

4. The product of any two columns yields a column in the table, for example A � B �
AB, and AB � ABC � A2B2C � C, since any column multiplied by itself is the
identity column.

The estimate of any main effect or interaction in a 2k design is determined by multiplying
the treatment combinations in the first column of the table by the signs in the corresponding
main effect or interaction column, by adding the result to produce a contrast, and then by di-
viding the contrast by one-half the total number of runs in the experiment. For any 2k design
with n replicates, the effect estimates are computed from

Table 14-15 Algebraic Signs for Calculating Effects in the 23 Design

Treatment Factorial Effect

Combination I A B AB C AC BC ABC

112 � � � � � � � �

a � � � � � � � �

b � � � � � � � �

ab � � � � � � � �

c � � � � � � � �

ac � � � � � � � �

bc � � � � � � � �

abc � � � � � � � �

(14-22)Effect �
Contrast

n2k�1

(14-23)SS �
1Contrast22

n2k

and the sum of squares for any effect is
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534 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

EXAMPLE 14-4 Consider the surface roughness experiment originally described in Example 14-2. This is a 23

factorial design in the factors feed rate (A), depth of cut (B), and tool angle (C ), with n � 2
replicates. Table 14-16 presents the observed surface roughness data.

The main effects may be estimated using Equations 14-15 through 14-21. The effect of A,
for example, is

and the sum of squares for A is found using Equation 14-23:

It is easy to verify that the other effects are

B � 1.625
C � 0.875
AB � 1.375
AC � 0.125
BC ��0.625
ABC � 1.125

Examining the magnitude of the effects clearly shows that feed rate (factor A) is dominant,
followed by depth of cut (B) and the AB interaction, although the interaction effect is rela-
tively small. The analysis of variance, summarized in Table 14-17, confirms our interpretation
of the effect estimates.

Minitab will analyze 2k factorial designs. The output from the Minitab DOE (Design of
Experiments) module for this experiment is shown in Table 14-18. The upper portion of the table
displays the effect estimates and regression coefficients for each factorial effect. However, a 

�
12722
2182 � 45.5625SSA �

1ContrastA22
n 2 

k

 �
1
8

  327 4 � 3.375

 �
1

4122   322 � 27 � 23 � 40 � 16 � 20 � 21 � 18 4
 A �

1
4n

  3a � ab � ac � abc � 112 � b � c � bc 4

Table 14-16 Surface Roughness Data for Example 14-4

Treatment Design Factors Surface
Combinations A B C Roughness Totals

112 �1 �1 �1 9, 7 16
a 1 �1 �1 10, 12 22
b �1 1 �1 9, 11 20
ab 1 1 �1 12, 15 27
c �1 �1 1 11, 10 21
ac 1 �1 1 10, 13 23
bc �1 1 1 10, 8 18
abc 1 1 1 16, 14 30
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14-7 2k FACTORIAL DESIGNS 535

t-statistic is reported for each effect instead of the F-statistic used in Table 14-17. Now the square
of a t random variable with d degrees of freedom is an F random variable with 1 numerator and
d denominator degrees of freedom. Thus the square of the t-statistic reported by Minitab will be
equal (apart from rounding errors) to the F-statistic in Table 14-17. To illustrate, for the main ef-
fect of feed Minitab reports t � 4.32 (with eight degrees of freedom), and t2 � (4.32)2 � 18.66,
which is approximately equal to the F-ratio for feed reported in Table 14-17 (F � 18.69). This 
F-ratio has one numerator and eight denominator degrees of freedom.

The lower panel of the Minitab output in Table 14-18 is an analysis of variance summary
focusing on the types of terms in the model. A regression model approach is used in the pres-
entation. You might find it helpful to review Section 12-2.2, particularly the material on the
partial F-test. The row entitled “main effects’’ under source refers to the three main effects

Table 14-17 Analysis of Variance for the Surface Finish Experiment

Source of Degrees of
Variation Sum of Squares Freedom Mean Square f0 P-Value

A 45.5625 1 45.5625 18.69 0.0025
B 10.5625 1 10.5625 4.33 0.0709
C 3.0625 1 3.0625 1.26 0.2948
AB 7.5625 1 7.5625 3.10 0.1162
AC 0.0625 1 0.0625 0.03 0.8784
BC 1.5625 1 1.5625 0.64 0.4548
ABC 5.0625 1 5.0625 2.08 0.1875
Error 19.5000 8 2.4375
Total 92.9375 15

Table 14-18 Minitab Analysis for Example 14-4

Estimated Effects and Coefficients for Roughness

Term Effect Coef StDev Coef T P
Constant 11.0625 0.3903 28.34 0.000
Feed 3.3750 1.6875 0.3903 4.32 0.003
Depth 1.6250 0.8125 0.3903 2.08 0.071
Angle 0.8750 0.4375 0.3903 1.12 0.295
Feed*Depth 1.3750 0.6875 0.3903 1.76 0.116
Feed*Angle 0.1250 0.0625 0.3903 0.16 0.877
Depth*Angle �0.6250 �0.3125 0.3903 �0.80 0.446
Feed*Depth*Angle 1.1250 0.5625 0.3903 1.44 0.188

Analysis of Variance for Roughness

Source DF Seq SS Adj SS Adj MS F P
Main Effects 3 59.188 59.188 19.729 8.09 0.008
2-Way Interactions 3 9.187 9.187 3.062 1.26 0.352
3-Way Interactions 1 5.062 5.062 5.062 2.08 0.188
Residual Error 8 19.500 19.500 2.437

Pure Error 8 19.500 19.500 2.437
Total 15 92.938
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536 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

feed, depth, and angle, each having a single degree of freedom, giving the total 3 in the col-
umn headed “DF.’’ The column headed “Seq SS’’ (an abbreviation for sequential sum of
squares) reports how much the model sum of squares increases when each group of terms is
added to a model that contains the terms listed above the groups. The first number in the “Seq
SS’’ column presents the model sum of squares for fitting a model having only the three main
effects. The row labeled “2-Way Interactions’’ refers to AB, AC, and BC, and the sequential
sum of squares reported here is the increase in the model sum of squares if the interaction
terms are added to a model containing only the main effects. Similarly, the sequential sum of
squares for the three-way interaction is the increase in the model sum of squares that results
from adding the term ABC to a model containing all other effects. The column headed “Adj
SS’’ (an abbreviation for adjusted sum of squares) reports how much the model sum of squares
increases when each group of terms is added to a model that contains all the other terms. Now
since any 2k design with an equal number of replicates in each cell is an orthogonal design, the
adjusted sum of squares will equal the sequential sum of squares. Therefore, the F-tests for
each row in the Minitab analysis of variance table are testing the significance of each group of
terms (main effects, two-factor interactions, and three-factor interactions) as if they were the
last terms to be included in the model. Clearly, only the main effect terms are significant. The
t-tests on the individual factor effects indicate that feed rate and depth of cut have large main
effects, and there may be some mild interaction between these two factors. Therefore, the
Minitab output is in agreement with the results given previously.

Residual Analysis
We may obtain the residuals from a 2k design by using the method demonstrated earlier for the 22

design. As an example, consider the surface roughness experiment. The three largest effects are
A, B, and the AB interaction. The regression model used to obtain the predicted values is

where x1 represents factor A, x2 represents factor B, and x1x2 represents the AB interaction. The
regression coefficients �1, �2, and �12 are estimated by one-half the corresponding effect esti-
mates, and �0 is the grand average. Thus

Note that the regression coefficients are presented by Minitab in the upper panel of Table 14-18.
The predicted values would be obtained by substituting the low and high levels of A and B into
this equation. To illustrate this, at the treatment combination where A, B, and C are all at the low
level, the predicted value is

Since the observed values at this run are 9 and 7, the residuals are 9 � 9.25 � �0.25 and 
7 � 9.25 � �2.25. Residuals for the other 14 runs are obtained similarly.

A normal probability plot of the residuals is shown in Fig. 14-20. Since the residuals lie
approximately along a straight line, we do not suspect any problem with normality in the data.
There are no indications of severe outliers. It would also be helpful to plot the residuals ver-
sus the predicted values and against each of the factors A, B, and C.

 ŷ � 11.065 � 1.68751�12 � 0.81251�12 � 0.68751�12 1�12 � 9.25

 � 11.0625 � 1.6875x1 � 0.8125x2 � 0.6875x1x2

 ŷ � 11.0625 � a3.375
2
b x1 � a1.625

2
b x2 � a1.375

2
b x1x2

Y � �0 � �1x1 � �2 
x2 � �12 

x1x2 � 	
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14-7 2k FACTORIAL DESIGNS 537

Projection of 2k Designs
Any 2k design will collapse or project into another 2k design in fewer variables if one or more of
the original factors are dropped. Sometimes this can provide additional insight into the
remaining factors. For example, consider the surface roughness experiment. Since factor C and
all its interactions are negligible, we could eliminate factor C from the design. The result is to
collapse the cube in Fig. 14-18 into a square in the A � B plane; therefore, each of the four runs
in the new design has four replicates. In general, if we delete h factors so that r � k � h factors
remain, the original 2k design with n replicates will project into a 2r design with n2h replicates.

14-7.3 Single Replicate of the 2k Design

As the number of factors in a factorial experiment grows, the number of effects that can be
estimated also grows. For example, a 24 experiment has 4 main effects, 6 two-factor interac-
tions, 4 three-factor interactions, and 1 four-factor interaction, while a 26 experiment has 6
main effects, 15 two-factor interactions, 20 three-factor interactions, 15 four-factor interac-
tions, 6 five-factor interactions, and 1 six-factor interaction. In most situations the sparsity of
effects principle applies; that is, the system is usually dominated by the main effects and low-
order interactions. The three-factor and higher order interactions are usually negligible.
Therefore, when the number of factors is moderately large, say, k � 4 or 5, a common prac-
tice is to run only a single replicate of the 2k design and then pool or combine the higher order
interactions as an estimate of error. Sometimes a single replicate of a 2k design is called an
unreplicated 2k factorial design.

When analyzing data from unreplicated factorial designs, occasionally real high-order
interactions occur. The use of an error mean square obtained by pooling high-order interactions
is inappropriate in these cases. A simple method of analysis can be used to overcome this prob-
lem. Construct a plot of the estimates of the effects on a normal probability scale. The effects
that are negligible are normally distributed, with mean zero and variance 
2 and will tend to fall
along a straight line on this plot, whereas significant effects will have nonzero means and will
not lie along the straight line. We will illustrate this method in the next example.
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Figure 14-20
Normal probability
plot of residuals from
the surface roughness
experiment.
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538 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

EXAMPLE 14-5 An article in Solid State Technology (“Orthogonal Design for Process Optimization and Its
Application in Plasma Etching,” May 1987, pp. 127–132) describes the application of facto-
rial designs in developing a nitride etch process on a single-wafer plasma etcher. The process
uses C2F6 as the reactant gas. It is possible to vary the gas flow, the power applied to the cath-
ode, the pressure in the reactor chamber, and the spacing between the anode and the cathode
(gap). Several response variables would usually be of interest in this process, but in this
example we will concentrate on etch rate for silicon nitride.

We will use a single replicate of a 24 design to investigate this process. Since it is unlikely
that the three- and four-factor interactions are significant, we will tentatively plan to combine
them as an estimate of error. The factor levels used in the design are shown below:

Table 14-19 presents the data from the 16 runs of the 24 design. Table 14-20 is the table of plus
and minus signs for the 24 design. The signs in the columns of this table can be used to esti-
mate the factor effects. For example, the estimate of factor A is

� �101.625
� 550 � 604 � 633 � 601 � 1037 � 1052 � 1075 � 1063 4

 �
1
8

  3669 � 650 � 642 � 635 � 749 � 868 � 860 � 729

� c � bc � d � bd � cd � bcd 4
 A �

1
8

  3a � ab � ac � abc � ad � abd � acd � abcd � 112 � b

Design Factor

Gap Pressure C2F6 Flow Power
Level (cm) (mTorr) (SCCM) (w)

Low (�) 0.80 450 125 275
High (�) 1.20 550 200 325

Table 14-19 The 24 Design for the Plasma Etch Experiment

A B C D Etch Rate
(Gap) (Pressure) (C2F6 Flow) (Power) (Å/min)

�1 �1 �1 �1 550
1 �1 �1 �1 669

�1 1 �1 �1 604
1 1 �1 �1 650

�1 �1 1 �1 633
1 �1 1 �1 642

�1 1 1 �1 601
1 1 1 �1 635

�1 �1 �1 1 1037
1 �1 �1 1 749

�1 1 �1 1 1052
1 1 �1 1 868

�1 �1 1 1 1075
1 �1 1 1 860

�1 1 1 1 1063
1 1 1 1 729
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14-7 2k FACTORIAL DESIGNS 539

Thus, the effect of increasing the gap between the anode and the cathode from 0.80 to
1.20 centimeters is to decrease the etch rate by 101.625 angstroms per minute.

It is easy to verify (using Minitab, for example) that the complete set of effect estimates is

The normal probability plot of these effects from the plasma etch experiment is shown in
Fig. 14-21. Clearly, the main effects of A and D and the AD interaction are significant, because
they fall far from the line passing through the other points. The analysis of variance summa-
rized in Table 14-21 confirms these findings. Notice that in the analysis of variance we have
pooled the three- and four-factor interactions to form the error mean square. If the normal
probability plot had indicated that any of these interactions were important, they would not
have been included in the error term.

Since A � �101.625, the effect of increasing the gap between the cathode and anode is
to decrease the etch rate. However, D � 306.125; thus, applying higher power levels will in-
crease the etch rate. Figure 14-22 is a plot of the AD interaction. This plot indicates that the
effect of changing the gap width at low power settings is small, but that increasing the gap at
high power settings dramatically reduces the etch rate. High etch rates are obtained at high
power settings and narrow gap widths.

The residuals from the experiment can be obtained from the regression model

 ŷ � 776.0625 � a101.625
2
b  x1 � a306.125

2
b  x4 � a153.625

2
b  x1x4

A � �101.625 AD � �153.625
B � �1.625 BD � �0.625
AB � �7.875 ABD � 4.125
C � 7.375 CD � �2.125
AC � �24.875 ACD � 5.625
BC � �43.875 BCD � �25.375
ABC � �15.625 ABCD � �40.125
D � 306.125

Table 14-20 Contrast Constants for the 24 Design

A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

112 � � � � � � � � � � � � � � �

a � � � � � � � � � � � � � � �

b � � � � � � � � � � � � � � �

ab � � � � � � � � � � � � � � �

c � � � � � � � � � � � � � � �

ac � � � � � � � � � � � � � � �

bc � � � � � � � � � � � � � � �

abc � � � � � � � � � � � � � � �

d � � � � � � � � � � � � � � �

ad � � � � � � � � � � � � � � �

bd � � � � � � � � � � � � � � �

abd � � � � � � � � � � � � � � �

cd � � � � � � � � � � � � � � �

acd � � � � � � � � � � � � � � �

bcd � � � � � � � � � � � � � � �

abcd � � � � � � � � � � � � � � �
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Figure 14-21 Normal probability plot of effects
from the plasma etch experiment.

Figure 14-22 AD (Gap-Power) interaction from the
plasma etch experiment.

For example, when both A and D are at the low level, the predicted value is

and the four residuals at this treatment combination are

The residuals at the other three treatment combinations (A high, D low), (A low, D high), and
(A high, D high) are obtained similarly. A normal probability plot of the residuals is shown in
Fig. 14-23. The plot is satisfactory.

e3 � 633 � 597 � 36  e4 � 601 � 597 � 4

e1 � 550 � 597 � �47  e2 � 604 � 597 � 7

� 597

 ŷ � 776.0625 � a101.625
2
b 1�12 � a306.125

2
b 1�12 � a153.625

2
b 1�12 1�12

Table 14-21 Analysis of Variance for the Plasma Etch Experiment

Source of Degrees of
Variation Sum of Squares Freedom Mean Square f0 P-Value

A 41,310.563 1 41,310.563 20.28 0.0064
B 10.563 1 10.563 �1 —
C 217.563 1 217.563 �1 —
D 374,850.063 1 374,850.063 183.99 0.0000
AB 248.063 1 248.063 �1 —
AC 2,475.063 1 2,475.063 1.21 0.3206
AD 94,402.563 1 94,402.563 46.34 0.0010
BC 7,700.063 1 7,700.063 3.78 0.1095
BD 1.563 1 1.563 �1 —
CD 18.063 1 18.063 �1 —
Error 10,186.813 5 2,037.363
Total 531,420.938 15
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Figure 14-23 Normal
probability plot of
residuals from the
plasma etch
experiment.

Treatment Replicate

Combination I II

112 221 311

a 325 435

b 354 348

ab 552 472

c 440 453

ac 406 377

bc 605 500

abc 392 419

samples of the beverage are given to a test panel consisting of 20
people. Each tester assigns the beverage a point score from 1 to
10. Total score is the response variable, and the objective is to find
a formulation that maximizes total score. Two replicates of this
design are run, and the results are shown in the table. Analyze the
data and draw conclusions. Use � � 0.05 in the statistical tests.

(a) Analyze the data from this experiment.
(b) Find an appropriate regression model that explains tool

life in terms of the variables used in the experiment.
(c) Analyze the residuals from this experiment.

14-14. Four factors are thought to influence the taste of a soft-
drink beverage: type of sweetener (A), ratio of syrup to water (B),
carbonation level (C), and temperature (D). Each factor can be
run at two levels, producing a 24 design. At each run in the design,

Treatment Replicate

Combination I II

112 159 163

a 168 175

b 158 163

ab 166 168

c 175 178

ac 179 183

bc 173 168

abc 179 182

d 164 159

ad 187 189

bd 163 159

abd 185 191

cd 168 174

acd 197 199

bcd 170 174

abcd 194 198

14-7.4 Addition of Center Points to a 2k Design (CD Only)

EXERCISES FOR SECTION 14-7

14-13. An engineer is interested in the effect of cutting
speed (A), metal hardness (B), and cutting angle (C) on the life
of a cutting tool. Two levels of each factor are chosen, and two
replicates of a 23 factorial design are run. The tool life data (in
hours) are shown in the following table:

c14.qxd  5/9/02  7:54 PM  Page 541 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 12 FIN L:



542 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

14-15. Consider the experiment in Exercise 14-14.
Determine an appropriate model and plot the residuals against
the levels of factors A, B, C, and D. Also construct a normal
probability plot of the residuals. Comment on these plots.

14-16. The data shown here represent a single replicate of a
25 design that is used in an experiment to study the compres-
sive strength of concrete. The factors are mix (A), time (B),
laboratory (C), temperature (D), and drying time (E).

(a) Estimate the factor effects.
(b) Which effects appear important? Use a normal probability

plot.
(c) If it is desirable to maximize the strength, in which direc-

tion would you adjust the process variables?
(d) Analyze the residuals from this experiment.

14-17. An article in the IEEE Transactions on Semiconduc-
tor Manufacturing (Vol. 5, no. 3, 1992, pp. 214–222) de-
scribes an experiment to investigate the surface charge on a
silicon wafer. The factors thought to influence induced surface
charge are cleaning method (spin rinse dry or SRD and spin
dry or SD) and the position on the wafer where the charge was
measured. The surface charge (�1011 q/cm3) response data are
as shown.

112 � 700 e � 800
a � 900 ae � 1200
b � 3400 be � 3500
ab � 5500 abe � 6200
c � 600 ce � 600
ac � 1000 ace � 1200
bc � 3000 bce � 3006
abc � 5300 abce � 5500
d � 1000 de � 1900
ad � 1100 ade � 1500
bd � 3000 bde � 4000
abd � 6100 abde � 6500
cd � 800 cde � 1500
acd � 1100 acde � 2000
bcd � 3300 bcde � 3400
abcd � 6000 abcde � 6800

14-18. An experiment described by M. G. Natrella in the
National Bureau of Standards Handbook of Experimental
Statistics (No. 91, 1963) involves flame testing fabrics after
applying fire-retardant treatments. The four factors considered
are type of fabric (A), type of fire-retardant treatment (B),
laundering condition (C—the low level is no laundering, the
high level is after one laundering), and method of conducting
the flame test (D). All factors are run at two levels, and the re-
sponse variable is the inches of fabric burned on a standard
size test sample. The data are:

(a) Estimate the effects and prepare a normal plot of the 
effects.

(b) Construct an analysis of variance table based on the model
tentatively identified in part (a).

(c) Construct a normal probability plot of the residuals and
comment on the results.

14-19. An experiment was run in a semiconductor fabrica-
tion plant in an effort to increase yield. Five factors, each at
two levels, were studied. The factors (and levels) were 
A � aperture setting (small, large), B � exposure time (20%
below nominal, 20% above nominal), C � development time
(30 and 45 seconds), D � mask dimension (small, large), and 
E � etch time (14.5 and 15.5 minutes). The following un-
replicated 25 design was run:

(a) Construct a normal probability plot of the effect estimates.
Which effects appear to be large?

112 � 7 e � 8
a � 9 ae � 12
b � 34 be � 35
ab � 55 abe � 52
c � 16 ce � 15
ac � 20 ace � 22
bc � 40 bce � 45
abc � 60 abce � 65
d � 8 de � 6
ad � 10 ade � 10
bd � 32 bde � 30
abd � 50 abde � 53
cd � 18 cde � 15
acd � 21 acde � 20
bcd � 44 bcde � 41
abcd � 61 abcde � 63

112 � 42 d � 40
a � 31 ad � 30
b � 45 bd � 50
ab � 29 abd � 25
c � 39 cd � 40
ac � 28 acd � 25
bc � 46 bcd � 50
abc � 32 abcd � 23

Test Position
L R

1.66 1.84

SD 1.90 1.84

1.92 1.62

�4.21 �7.58

SRD �1.35 �2.20

�2.08 �5.36

(a) Estimate the factor effects.
(b) Which factors appear important? Use � � 0.05.
(c) Analyze the residuals from this experiment.

Cleaning
Method
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14-8 BLOCKING AND CONFOUNDING IN THE 2k DESIGN 543

(b) Conduct an analysis of variance to confirm your findings
for part (a).

(c) Construct a normal probability plot of the residuals. Is the
plot satisfactory?

(d) Plot the residuals versus the predicted yields and versus
each of the five factors. Comment on the plots.

(e) Interpret any significant interactions.
(f) What are your recommendations regarding process oper-

ating conditions?
(g) Project the 25 design in this problem into a 2r for r � 5

design in the important factors. Sketch the design and
show the average and range of yields at each run. Does
this sketch aid in data interpretation?

14-20. Consider the data from Exercise 14-13. I suppose
that the data from the second replicate was not available.
Analyze the data from replicate I only and comment on your
findings.

14-21. An experiment has run a single replicate 
of a 24 design and calculated the following factor 
effects:

A � 80.25 AB � 53.25 ABC � �2.95
B � �65.50 AC � 11.00 ABD � �8.00
C � �9.25 AD � 9.75 ACD � 10.25
D � �20.50 BC � 18.36 BCD � �7.95

BD � 15.10 ABCD � �6.25
CD � �1.25

(a) Construct a normal probability plot of the effects.
(b) Identify a tentative model, based on the plot of effects in

part (a).
(c) Estimate the regression coefficients in this model, assum-

ing that 

14-22. A 24 factorial design was run in a chemical
process. The design factors are A � time, B � concentration,
C � pressure, and D � temperature. The response variable is

y � 400.

(a) Estimate the factor effects. Based on a normal probability
plot of the effect estimates, identify a model for the data
from this experiment.

(b) Conduct an ANOVA based on the model identified in part
(a). What are your conclusions?

(c) Analyze the residuals and comment on model adequacy.

(d) Find a regression model to predict yield in terms of the ac-
tual factor levels.

(e) Can this design be projected into a 23 design with two
replicates? If so, sketch the design and show the average
and range of the two yield values at each cube corner.
Discuss the practical value of this plot.

Yield Factor Levels

Run A B C D (pounds) � �

1 � � � � 12 A (hours) 25 3

2 � � � � 18 B (%) 14 18

3 � � � � 13 C (psi) 60 80

4 � � � � 16 D (�C) 200 250

5 � � � � 17

6 � � � � 15

7 � � � � 20

8 � � � � 15

9 � � � � 10

10 � � � � 25

11 � � � � 13

12 � � � � 24

13 � � � � 19

14 � � � � 21

15 � � � � 17
16 � � � � 23

14-8 BLOCKING AND CONFOUNDING IN THE 2k DESIGN

It is often impossible to run all the observations in a 2k factorial design under homogeneous
conditions. Blocking is the design technique that is appropriate for this general situation.
However, in many situations the block size is smaller than the number of runs in the complete
replicate. In these cases, confounding is a useful procedure for running the 2k design in 2p

blocks where the number of runs in a block is less than the number of treatment combinations
in one complete replicate. The technique causes certain interaction effects to be indistinguish-
able from blocks or confounded with blocks. We will illustrate confounding in the 2k factorial
design in 2p blocks, where p � k.

Consider a 22 design. Suppose that each of the 22 � 4 treatment combinations requires
four hours of laboratory analysis. Thus, two days are required to perform the experiment. If
days are considered as blocks, we must assign two of the four treatment combinations to
each day.

yield. The data follows:
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544 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

This design is shown in Fig. 14-24. Notice that block 1 contains the treatment combina-
tions (1) and ab and that block 2 contains a and b. The contrasts for estimating the main
effects of factors A and B are

Note that these contrasts are unaffected by blocking since in each contrast there is one plus
and one minus treatment combination from each block. That is, any difference between block
1 and block 2 that increases the readings in one block by an additive constant cancels out. The
contrast for the AB interaction is

Since the two treatment combinations with the plus signs, ab and (1), are in block 1 and the
two with the minus signs, a and b, are in block 2, the block effect and the AB interaction are
identical. That is, the AB interaction is confounded with blocks.

The reason for this is apparent from the table of plus and minus signs for the 22 design
shown in Table 14-12. From the table we see that all treatment combinations that have a plus
on AB are assigned to block 1, whereas all treatment combinations that have a minus sign on
AB are assigned to block 2.

This scheme can be used to confound any 2k design in two blocks. As a second example,
consider a 23 design, run in two blocks. From the table of plus and minus signs, shown in Table
14-15, we assign the treatment combinations that are minus in the ABC column to block 1 and
those that are plus in the ABC column to block 2. The resulting design is shown in Fig. 14-25.

ContrastAB � ab � 112 � a � b

ContrastB � ab � b � a � 112
ContrastA � ab � a � b � 112

b
+

(1)
–

– +
a

ab

A
Geometric view

(a)

Assignment of the four
runs to two blocks

(b)

(1)

Block 1

ab

a

Block 2

b

= Run in block 1

= Run in block 2

Figure 14-24 A 22

design in two blocks.
(a) Geometric view. (b)
Assignment of the four
runs to two blocks.

= Run in block 1

= Run in block 2

A

C

B

abcbc

c

b

ac

a

ab

(1)

(a)

Geometric view

Assignment of the eight
runs to two blocks

(b)

(1)

Block 1

ab

a

Block 2

b

ac

bc

c

abc

Figure 14-25 The 23

design in two blocks
with ABC confounded.
(a) Geometric View.
(b) Assignment of the
eight runs to two
blocks.
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14-8 BLOCKING AND CONFOUNDING IN THE 2k DESIGN 545

There is a more general method of constructing the blocks. The method employs a
defining contrast, say

(14-24)

where xi is the level of the ith factor appearing in a treatment combination and �i is the expo-
nent appearing on the ith factor in the effect that is to be confounded with blocks. For the 2k

system, we have either �i � 0 or 1, and either xi � 0 (low level) or xi � 1 (high level).
Treatment combinations that produce the same value of L (modulus 2) will be placed in the
same block. Since the only possible values of L (mod 2) are 0 and 1, this will assign the 2k

treatment combinations to exactly two blocks.
As an example, consider the 23 design with ABC confounded with blocks. Here x1 corre-

sponds to A, x2 to B, x3 to C, and �1 � �2 � �3 � 1. Thus, the defining contrast that would be
used to confound ABC with blocks is

To assign the treatment combinations to the two blocks, we substitute the treatment combina-
tions into the defining contrast as follows:

1mod 22
1mod 22
1mod 22
1mod 22
1mod 22
1mod 22
1mod 22
1mod 22

Thus (1), ab, ac, and bc are run in block 1, and a, b, c, and abc are run in block 2. This same
design is shown in Fig. 14-25.

A shortcut method is useful in constructing these designs. The block containing the treat-
ment combination (1) is called the principal block. Any element [except (1)] in the principal
block may be generated by multiplying two other elements in the principal block modulus 2
on the exponents. For example, consider the principal block of the 23 design with ABC
confounded, shown in Fig. 14-25. Note that

Treatment combinations in the other block (or blocks) may be generated by multiplying
one element in the new block by each element in the principal block modulus 2 on the
exponents. For the 23 with ABC confounded, since the principal block is (1), ab, ac, and bc,

ac � bc � abc2 � ab

ab � bc � ab2c � ac

ab � ac � a2bc � bc

abc:  L � 1112 � 1112 � 1112 � 3 � 1

bc:  L � 1102 � 1112 � 1112 � 2 � 0

ac:  L � 1112 � 1102 � 1112 � 2 � 0

c:  L � 1102 � 1102 � 1112 � 1 � 1

ab:  L � 1112 � 1112 � 1102 � 2 � 0

b:  L � 1102 � 1112 � 1102 � 1 � 1

a:  L � 1112 � 1102 � 1102 � 1 � 1

112:   L � 1102 � 1102 � 1102 � 0 � 0

L � x1 � x2 � x3

L � �1x1 � �2x2 � � � � � �kxk
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546 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

we know that the treatment combination b is in the other block. Thus, elements of this
second block are

EXAMPLE 14-6 An experiment is performed to investigate the effect of four factors on the terminal miss dis-
tance of a shoulder-fired ground-to-air-missile. The four factors are target type (A), seeker
type (B), target altitude (C), and target range (D). Each factor may be conveniently run at two
levels, and the optical tracking system will allow terminal miss distance to be measured to the
nearest foot. Two different operators or gunners are used in the flight test and, since there may
be differences between operators, the test engineers decided to conduct the 24 design in two
blocks with ABCD confounded. Thus, the defining contrast is

The experimental design and the resulting data are shown in Fig. 14-26. The effect esti-
mates obtained from Minitab are shown in Table 14-22. A normal probability plot of the
effects in Fig. 14-27 reveals that A (target type), D (target range), AD, and AC have large
effects. A confirming analysis of variance, pooling the three-factor interactions as error, is
shown in Table 14-23. Since the AC and AD interactions are significant, it is logical to
conclude that A (target type), C (target altitude), and D (target range) all have important
effects on the miss distance and that there are interactions between target type and alti-
tude and target type and range. Notice that the ABCD effect is treated as blocks in this
analysis.

L � x1 � x2 � x3 � x4

b � bc � b2c � c

b � ac    � abc

b � ab � ab2 � a

b � 112    � b

= Run in block 1

= Run in block 2
A

C

B

abcbc

c

b

ac

a

ab

(1)

(a)

Geometric view

Assignment of the sixteen
runs to two blocks

(b)

Block 1

abcdbcd

cd

bd

acd

ad

abd

d

(1)
ab
ac
bc
ad
bd
cd

abcd

= 3
= 7
= 6
= 8
= 10
= 4
= 8
= 9

Block 2

a
b
c
d

abc
bcd
acd
abd

= 7
= 5
= 6
= 4
= 6
= 7
= 9
= 12

D– +

Figure 14-26 The 24 design in two blocks for Example 14-6. (a) Geometric view. (b) Assignment of the 
16 runs to two blocks.
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14-8 BLOCKING AND CONFOUNDING IN THE 2k DESIGN 547

It is possible to confound the 2k design in four blocks of 2k�2 observations each. To con-
struct the design, two effects are chosen to confound with blocks, and their defining contrasts
are obtained. A third effect, the generalized interaction of the two effects initially chosen, is
also confounded with blocks. The generalized interaction of two effects is found by multiply-
ing their respective letters and reducing the exponents modulus 2.

For example, consider the 24 design in four blocks. If AC and BD are confounded with
blocks, their generalized interaction is (AC )(BD) = ABCD. The design is constructed by using

Table 14-22 Minitab Effect Estimates for
Example 14-6

Estimated Effects and Coefficients for Distance

Term Effect Coef

Constant 6.938

Block 0.063

A 2.625 1.312

B 0.625 0.313

C 0.875 0.438

D 1.875 0.938

AB �0.125 �0.063

AC �2.375 �1.187

AD 1.625 0.813

BC �0.375 �0.188

BD �0.375 �0.187

CD �0.125 �0.062

ABC �0.125 �0.063

ABD 0.875 0.438

ACD �0.375 �0.187

BCD �0.375 �0.187

_2

_1

0

1

0 2

A

D
AD

AC

Effect
N

or
m

al
 s

co
re

Figure 14-27 Normal probability plot of the
effects from Minitab, Example 14-6.

Table 14-23 Analysis of Variance for Example 14-6

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square f0 P-Value

Blocks (ABCD) 0.0625 1 0.0625 0.06 —
A 27.5625 1 27.5625 25.94 0.0070
B 1.5625 1 1.5625 1.47 0.2920
C 3.0625 1 3.0625 2.88 0.1648
D 14.0625 1 14.0625 13.24 0.0220
AB 0.0625 1 0.0625 0.06 —
AC 22.5625 1 22.5625 21.24 0.0100
AD 10.5625 1 10.5625 9.94 0.0344
BC 0.5625 1 0.5625 0.53 —
BD 0.5625 1 0.5625 0.53 —
CD 0.0625 1 0.0625 0.06 —

Error (ABC � ABD � ACD � BCD) 4.2500 4 1.0625
Total 84.9375 15
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548 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

EXERCISES FOR SECTION 14-8

14-23. Consider the data from the first replicate of Exercise
14-13. Suppose that these observations could not all be run
under the same conditions. Set up a design to run these obser-
vations in two blocks of four observations each, with ABC
confounded. Analyze the data.

14-24. Consider the data from the first replicate of Exercise
14-14. Construct a design with two blocks of eight observa-
tions each, with ABCD confounded. Analyze the data.

14-25. Repeat Exercise 14-24 assuming that four blocks
are required. Confound ABD and ABC (and consequently CD)
with blocks.

14-26. Construct a 25 design in two blocks. Select the
ABCDE interaction to be confounded with blocks.

14-27. Construct a 25 design in four blocks. Select the ap-
propriate effects to confound so that the highest possible in-
teractions are confounded with blocks.

14-28. Consider the data from Exercise 14-18. Construct the
design that would have been used to run this experiment in two
blocks of eight runs each. Analyze the data and draw conclusions.

14-29. An article in Industrial and Engineering Chemistry
(“Factorial Experiments in Pilot Plant Studies,” 1951,

pp. 1300–1306) reports on an experiment to investigate the
effect of temperature (A), gas throughput (B), and concentra-
tion (C) on the strength of product solution in a recirculation
unit. Two blocks were used with ABC confounded, and the ex-
periment was replicated twice. The data are as follows:

Replicate 1

Block 1 Block 2

(1) � 99 a � 18
ab � 52 b � 51
ac � 42 c �108
bc � 95 abc � 35

Replicate 2

Block 3 Block 4

(1) � 46 a � 18
ab � 47 b � 62
ac � 22 c �104
bc � 67 abc � 36

the defining contrasts for AC and BD:

It is easy to verify that the four blocks are

L2 � x2 � x4

L1 � x1 � x3

Block 1 Block 2 Block 3 Block 4
L1 � 0, L2 � 0 L1 � 1, L2 � 0 L1 � 0, L2 � 1 L1 � 1, L2 � 1

112 a b ab
ac c abc bc
bd abd d ad

abcd bcd acd cd

This general procedure can be extended to confounding the 2k design in 2p blocks, where 
p � k. Start by selecting p effects to be confounded, such that no effect chosen is a general-
ized interaction of the others. Then the blocks can be constructed from the p defining contrasts
L1, L2, . . . , Lp that are associated with these effects. In addition to the p effects chosen to be
confounded, exactly 2p � p � 1 additional effects are confounded with blocks; these are the
generalized interactions of the original p effects chosen. Care should be taken so as not to 
confound effects of potential interest.

For more information on confounding in the 2k factorial design, refer to Montgomery
(2001, Chapter 7). This book contains guidelines for selecting factors to confound with blocks
so that main effects and low-order interactions are not confounded. In particular, the book
contains a table of suggested confounding schemes for designs with up to seven factors and a
range of block sizes, some of which are as small as two runs.
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14-9 FRACTIONAL REPLICATION OF THE 2k DESIGN 549

14-9 FRACTIONAL REPLICATION OF THE 2k DESIGN

As the number of factors in a 2k factorial design increases, the number of runs required 
increases rapidly. For example, a 25 requires 32 runs. In this design, only 5 degrees of free-
dom correspond to main effects, and 10 degrees of freedom correspond to two-factor
interactions. Sixteen of the 31 degrees of freedom are used to estimate high-order interac-
tions—that is, three-factor and higher order interactions. Often there is little interest in
these high-order interactions, particularly when we first begin to study a process or system.
If we can assume that certain high-order interactions are negligible, a fractional factorial
design involving fewer than the complete set of 2k runs can be used to obtain information
on the main effects and low-order interactions. In this section, we will introduce fractional
replications of the 2k design.

A major use of fractional factorials is in screening experiments. These are experiments
in which many factors are considered with the purpose of identifying those factors (if any) that
have large effects. Screening experiments are usually performed in the early stages of a 
project when it is likely that many of the factors initially considered have little or no effect
on the response. The factors that are identified as important are then investigated more thor-
oughly in subsequent experiments.

14-9.1 One-Half Fraction of the 2k Design

A one-half fraction of the 2k design contains 2k�1 runs and is often called a 2k�1 fractional fac-
torial design. As an example, consider the 23�1 design—that is, a one-half fraction of the 23.
This design has only four runs, in contrast to the full factorial that would require eight runs.
The table of plus and minus signs for the 23 design is shown in Table 14-24. Suppose we se-
lect the four treatment combinations a, b, c, and abc, as our one-half fraction. These treatment
combinations are shown in the top half of Table 14-24 and in Fig. 14-28(a).

Notice that the 23�1 design is formed by selecting only those treatment combinations that
yield a plus on the ABC effect. Thus, ABC is called the generator of this particular fraction.

Factorial Effect

I A B C AB AC BC ABC

a � � � � � � � �

b � � � � � � � �

c � � � � � � � �

abc � � � � � � � �

ab � � � � � � � �

ac � � � � � � � �

bc � � � � � � � �

112 � � � � � � � �

Table 14-24 Plus and Minus Signs for the 23 Factorial Design

Treatment
Combination

(a) Analyze the data from this experiment.
(b) Analyze the residuals and comment on model ade-

quacy.
(c) Comment on the efficiency of this design. Note that we

have replicated the experiment twice, yet we have no 
information on the ABC interaction.

(d) Suggest a better design, specifically, one that would 
provide some information on all interactions.

14-30. Consider the 26 factorial design. Set up a design to
be run in four blocks of 16 runs each. Show that a design that
confounds three of the four-factor interactions with blocks is
the best possible blocking arrangement.
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550 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

Furthermore, the identity element I is also plus for the four runs, so we call

the defining relation for the design.
The treatment combinations in the 23�1 design yields three degrees of freedom associated

with the main effects. From the upper half of Table 14-24, we obtain the estimates of the main
effects as linear combinations of the observations, say,

It is also easy to verify that the estimates of the two-factor interactions should be the follow-
ing linear combinations of the observations:

Thus, the linear combination of observations in column A, , estimates both the main effect
of A and the BC interaction. That is, the linear combination estimates the sum of these two
effects A � BC. Similarly, estimates B � AC, and estimates C � AB. Two or more ef-
fects that have this property are called aliases. In our 23�1 design, A and BC are aliases, B and
AC are aliases, and C and AB are aliases. Aliasing is the direct result of fractional replication.
In many practical situations, it will be possible to select the fraction so that the main effects
and low-order interactions that are of interest will be aliased only with high-order interactions
(which are probably negligible).

The alias structure for this design is found by using the defining relation I � ABC.
Multiplying any effect by the defining relation yields the aliases for that effect. In our 
example, the alias of A is

A � A � ABC � A2BC � BC

/C/B

/A

/A

 AB � 1�2 3� a � b � c � abc 4
 AC � 1�2 3� a � b � c � abc 4
 BC � 1�2 3a � b � c � abc 4

 C � 1�2 3� a � b � c � abc 4
 B � 1�2 3� a � b � c � abc 4
 A � 1�2 3a � b � c � abc 4

I � ABC

A

C

B

abc

c

b

a

(a)

The principal fraction, I = +ABC

bc

ac

ab

(1)

(b)

The alternate fraction, I = –ABC

Figure 14-28 The
one-half fractions of
the 23 design. (a) The
principal fraction, 
I � �ABC. (b) The
alternate fraction, 
I � �ABC.
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14-9 FRACTIONAL REPLICATION OF THE 2k DESIGN 551

since and . The aliases of B and C are

and

Now suppose that we had chosen the other one-half fraction, that is, the treatment com-
binations in Table 14-24 associated with minus on ABC. These four runs are shown in the
lower half of Table 14-24 and in Fig. 14-28(b). The defining relation for this design is 
I � �ABC. The aliases are A � �BC, B � �AC, and C � �AB. Thus, estimates of A, B, and
C that result from this fraction really estimate A � BC, B � AC, and C � AB. In practice, it
usually does not matter which one-half fraction we select. The fraction with the plus sign in
the defining relation is usually called the principal fraction, and the other fraction is usually
called the alternate fraction.

Note that if we had chosen AB as the generator for the fractional factorial,

and the two main effects of A and B would be aliased. This typically loses important information.
Sometimes we use sequences of fractional factorial designs to estimate effects. For 

example, suppose we had run the principal fraction of the 23�1 design with generator ABC.
From this design we have the following effect estimates:

Suppose that we are willing to assume at this point that the two-factor interactions are negli-
gible. If they are, the 23�1 design has produced estimates of the three main effects A, B, and C.
However, if after running the principal fraction we are uncertain about the interactions, it is
possible to estimate them by running the alternate fraction. The alternate fraction produces
the following effect estimates:

We may now obtain de-aliased estimates of the main effects and two-factor interactions
by adding and subtracting the linear combinations of effects estimated in the two individual
fractions. For example, suppose we want to de-alias A from the two-factor interaction BC.
Since and , we can combine these effect estimates as follows:

and

1
2
1/A � /¿

A2 �
1
2
1A � BC � A � BC 2 � BC

1
2

  1/A � /¿
A2 �

1
2
1A � BC � A � BC2 � A

/¿
A � A � BC/A � A � BC

 /¿
C � C � AB

 /¿
B � B � AC

 /¿
A � A � BC

 /C � C � AB

 /B � B � AC

 /A � A � BC

A � A � AB � B

C � C � ABC � ABC2 � AB

B � B � ABC � AB2C � AC

A2 � IA � I � A
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552 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

For all three pairs of effect estimates, we would obtain the following results:

Effect, i from (li � li
�) from (li � li

�)

i � A

i � B

i � C

Thus, by combining a sequence of two fractional factorial designs, we can isolate both the
main effects and the two-factor interactions. This property makes the fractional factorial de-
sign highly useful in experimental problems since we can run sequences of small, efficient ex-
periments, combine information across several experiments, and take advantage of learning
about the process we are experimenting with as we go along. This is an illustration of the con-
cept of sequential experimentation.

A 2k�1 design may be constructed by writing down the treatment combinations for a full
factorial with k � 1 factors, called the basic design, and then adding the kth factor by identi-
fying its plus and minus levels with the plus and minus signs of the highest order interaction.
Therefore, a 23�1 fractional factorial is constructed by writing down the basic design as a full
22 factorial and then equating factor C with the �AB interaction. Thus, to construct the prin-
cipal fraction, we would use C � �AB as follows:

 1�2 3C � AB �  1C � AB2 4 � AB1�2 1C � AB � C � AB2 � C

 1�2 3B � AC �  1B � AC2 4 � AC1�2 1B � AC � B � AC2 � B

 1�2 
3A � BC �  1A � BC2 4 � BC1�2 1A � BC � A � BC2 � A

1�21�2

Table 14-25 The 24�1 Design with Defining Relation I � ABCD

Treatment Etch
A B C D � ABC Combination Rate

� � � � 550
� � � � ad 749
� � � � bd 1052
� � � � ab 650
� � � � cd 1075
� � � � ac 642
� � � � bc 601
� � � � abcd 729

112

Basic Design Fractional Design

Full 22 23�1, I � �ABC

A B A B C � AB

� � � � �

� � � � �

� � � � �

� � � � �

To obtain the alternate fraction we would equate the last column to C � �AB.

EXAMPLE 14-7 To illustrate the use of a one-half fraction, consider the plasma etch experiment described in
Example 14-5. Suppose that we decide to use a 24�1 design with I � ABCD to investigate the
four factors gap (A), pressure (B), C2F6 flow rate (C ), and power setting (D). This design
would be constructed by writing down as the basic design a 23 in the factors A, B, and C and
then setting the levels of the fourth factor D � ABC. The design and the resulting etch rates
are shown in Table 14-25. The design is shown graphically in Fig. 14-29.
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14-9 FRACTIONAL REPLICATION OF THE 2k DESIGN 553

In this design, the main effects are aliased with the three-factor interactions; note that the
alias of A is

or

and similarly B � ACD, C � ABD, and D � ABC.
The two-factor interactions are aliased with each other. For example, the alias of AB is CD:

or

The other aliases are AC � BD and AD � BC.
The estimates of the main effects and their aliases are found using the four columns of

signs in Table 14-25. For example, from column A we obtain the estimated effect

The other columns produce

Clearly, and are large, and if we believe that the three-factor interactions are negligible,
the main effects A (gap) and D (power setting) significantly affect etch rate. 

The interactions are estimated by forming the AB, AC, and AD columns and adding them
to the table. For example, the signs in the AB column are �, �, �, �, �, �, �, �, and this
column produces the estimate

From the AC and AD columns we find

The estimate is large; the most straightforward interpretation of the results is that since A
and D are large, this is the AD interaction. Thus, the results obtained from the 24�1 design
agree with the full factorial results in Example 14-5.

/AD

/AC � AC � BD � � 25.50  and  /AD � AD � BC � �197.50

/AB � AB � CD � 1
4 1550 � 749 � 1052 � 650 � 1075 � 642 � 601 � 7292 � �10

/D/A

/B � B � ACD � 4.00 /C � C � ABD � 11.50 and /D � D � ABC � 290.50

 � �127.00

 /A � A � BCD � 1
4 1� 550 � 749 � 1052 � 650 � 1075 � 642 � 601 � 7292

AB � A2B2CD � CDAB #  I � AB #  ABCD

A � A2BCD � BCDA #  I � A #  ABCD

abcd = 729

cd = 1075

bd = 1052

ad = 749

bc = 601

ac = 642

ab = 650

(1) = 550

A

C

B

D– +

Figure 14-29 The 24�1 design for the experiment of Example 14-7.
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554 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

Computer Solution
Fractional factorial designs are usually analyzed with a software package. Table 14-26 shows
the effect estimates obtained from Minitab for Example 14-7. They are in agreement with the
hand calculation reported earlier.

Normal Probability Plot of Effects
The normal probability plot is very useful in assessing the significance of effects from a frac-
tional factorial design, particularly when many effects are to be estimated. We strongly rec-
ommend examining this plot. Figure 14-30 presents the normal probability plot of the effects
from Example 14-7. This plot was obtained from Minitab. Notice that the A, D, and AD inter-
action effects stand out clearly in this graph.

Residual Analysis
The residuals can be obtained from a fractional factorial by the regression model method
shown previously. Note that the Minitab output for Example 14-7 in Table 14-26 shows the
regression coefficients. The residuals should be graphically analyzed as we have discussed
before, both to assess the validity of the underlying model assumptions and to gain additional
insight into the experimental situation.

Projection of the 2k�1 Design
If one or more factors from a one-half fraction of a 2k can be dropped, the design will project
into a full factorial design. For example, Fig. 14-31 presents a 23�1 design. Notice that this de-
sign will project into a full factorial in any two of the three original factors. Thus, if we think
that at most two of the three factors are important, the 23�1 design is an excellent design for
identifying the significant factors. This projection property is highly useful in factor screen-
ing, because it allows negligible factors to be eliminated, resulting in a stronger experiment in
the active factors that remain.

In the 24�1 design used in the plasma etch experiment in Example 14-7, we found that two
of the four factors (B and C) could be dropped. If we eliminate these two factors, the remain-
ing columns in Table 14-25 form a 22 design in the factors A and D, with two replicates. This
design is shown in Fig. 14-32. The main effects of A and D and the strong two-factor AD in-
teraction are clearly evident from this graph.

Table 14-26 Effect Estimates from Minitab,
Example 14-7

Fractional Factorial Fit

Estimated Effects and Coefficients for Etch Rt

Term Effect Coef
Constant 756.00
Gap �127.00 �63.50
Pressure 4.00 2.00
F. 11.50 5.75
Power 290.50 145.25
Gap*Pressure �10.00 �5.00
Gap*F. �25.50 �12.75
Gap*Power �197.50 �98.75
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Figure 14-30 Normal probability plot of
the effects from Minitab, Example 14-7.
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14-9 FRACTIONAL REPLICATION OF THE 2k DESIGN 555

Design Resolution
The concept of design resolution is a useful way to catalog fractional factorial designs ac-
cording to the alias patterns they produce. Designs of resolution III, IV, and V are particularly
important. The definitions of these terms and an example of each follow.

1. Resolution III Designs. These are designs in which no main effects are aliased with
any other main effect, but main effects are aliased with two-factor interactions and
some two-factor interactions may be aliased with each other. The 23�1 design with
I � ABC is a resolution III design. We usually employ a Roman numeral subscript to
indicate design resolution; thus, this one-half fraction is a design.

2. Resolution IV Designs. These are designs in which no main effect is aliased with
any other main effect or two-factor interactions, but two-factor interactions are
aliased with each other. The 24�1 design with I � ABCD used in Example 14-7 is a
resolution IV design ( ).

3. Resolution V Designs. These are designs in which no main effect or two-factor
interaction is aliased with any other main effect or two-factor interaction, but two-
factor interactions are aliased with three-factor interactions. The 25�1 design with
I � ABCDE is a resolution V design ( ).

Resolution III and IV designs are particularly useful in factor screening experiments. A reso-
lution IV design provides good information about main effects and will provide some infor-
mation about all two-factor interactions.

14-9.2 Smaller Fractions: The 2k�p Fractional Factorial

Although the 2k�1 design is valuable in reducing the number of runs required for an experi-
ment, we frequently find that smaller fractions will provide almost as much useful informa-
tion at even greater economy. In general, a 2k design may be run in a 1 2p fraction called a 
2k�p fractional factorial design. Thus, a 1�4 fraction is called a 2k�2 design, a 1�8 fraction is
called a 2k�3 design, a 1�16 fraction a 2k�4 design, and so on.

�

2V
5�1

2IV
4�1

2III
3�1

+1

–1
–1 +1

(1052, 1075) (749, 729)

(650, 642)
(550, 601)

A (Gap)

D (Power)

Figure 14-32 The 22 design obtained by
dropping factors B and C from the plasma 
etch experiment in Example 14-7.

A

B

C

a

abc

b

c

Figure 14-31 Projection of a 23�1 design into
three 22 designs.
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556 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

To illustrate the 1�4 fraction, consider an experiment with six factors and suppose that the
engineer is primarily interested in main effects but would also like to get some information
about the two-factor interactions. A 26�1 design would require 32 runs and would have 
31 degrees of freedom for estimating effects. Since there are only six main effects and 15 two-
factor interactions, the one-half fraction is inefficient—it requires too many runs. Suppose we
consider a 1�4 fraction, or a 26�2 design. This design contains 16 runs and, with 15 degrees of
freedom, will allow all six main effects to be estimated, with some capability for examining
the two-factor interactions.

To generate this design, we would write down a 24 design in the factors A, B, C, and D as
the basic design and then add two columns for E and F. To find the new columns we could se-
lect the two design generators I � ABCE and I � BCDF. Thus, column E would be found
from E � ABC, and column F would be F � BCD. That is, columns ABCE and BCDF are
equal to the identity column. However, we know that the product of any two columns in the
table of plus and minus signs for a 2k design is just another column in the table; therefore, the
product of ABCE and BCDF or ABCE(BCDF) � AB2C2DEF � ADEF is also an identity col-
umn. Consequently, the complete defining relation for the 26�2 design is

We refer to each term in a defining relation (such as ABCE above) as a word. To find the alias
of any effect, simply multiply the effect by each word in the foregoing defining relation. For
example, the alias of A is

The complete alias relationships for this design are shown in Table 14-27. In general, the res-
olution of a 2k�p design is equal to the number of letters in the shortest word in the complete
defining relation. Therefore, this is a resolution IV design; main effects are aliased with three-
factor and higher interactions, and two-factor interactions are aliased with each other. This
design would provide good information on the main effects and would give some idea about
the strength of the two-factor interactions. The construction and analysis of the design are
illustrated in Example 14-8.

EXAMPLE 14-8 Parts manufactured in an injection-molding process are showing excessive shrinkage, which
is causing problems in assembly operations upstream from the injection-molding area. In an
effort to reduce the shrinkage, a quality-improvement team has decided to use a designed
experiment to study the injection-molding process. The team investigates six factors—mold
temperature (A), screw speed (B), holding time (C), cycle time (D), gate size (E), and holding

A � BCE � ABCDF � DEF

I � ABCE � BCDF � ADEF

Table 14-27 Alias Structure for the Design with I � ABCE �
BCDF � ADEF

A � BCE � DEF � ABCDF AB � CE � ACDF � BDEF
B � ACE � CDF � ABDEF AC � BE � ABDF � CDEF
C � ABE � BDF � ACDEF AD � EF � BCDE � ABCF
D � BCF � AEF � ABCDE AE � BC � DF � ABCDEF
E � ABC � ADF � BCDEF AF � DE � BCEF � ABCD
F � BCD � ADE � ABCEF BD � CF � ACDE � ABEF
ABD � CDE � ACF � BEF BF � CD � ACEF � ABDE
ACD � BDE � ABF � CEF

2IV 
6�2
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14-9 FRACTIONAL REPLICATION OF THE 2k DESIGN 557

pressure (F)—each at two levels, with the objective of learning how each factor affects shrink-
age and obtaining preliminary information about how the factors interact.

The team decides to use a 16-run two-level fractional factorial design for these six factors.
The design is constructed by writing down a 24 as the basic design in the factors A, B, C, and D
and then setting E � ABC and F � BCD as discussed above. Table 14-28 shows the design, along
with the observed shrinkage (�10) for the test part produced at each of the 16 runs in the design.

A normal probability plot of the effect estimates from this experiment is shown in Fig. 14-33.
The only large effects are A (mold temperature), B (screw speed), and the AB interaction.
In light of the alias relationship in Table 14-27, it seems reasonable to tentatively adopt
these conclusions. The plot of the AB interaction in Fig. 14-34 shows that the process is

Table 14-28 A Design for the Injection-Molding Experiment in Example 14-8

Observed
Shrinkage

Run A B C D E � ABC F � BCD (�10)

1 � � � � � � 6
2 � � � � � � 10
3 � � � � � � 32
4 � � � � � � 60
5 � � � � � � 4
6 � � � � � � 15
7 � � � � � � 26
8 � � � � � � 60
9 � � � � � � 8

10 � � � � � � 12
11 � � � � � � 34
12 � � � � � � 60
13 � � � � � � 16
14 � � � � � � 5
15 � � � � � � 37
16 � � � � � � 52

2IV 
6�2

Figure 14-33 Normal probability plot of effects
for Example 14-8.
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for Example 14-8.
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558 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

insensitive to temperature if the screw speed is at the low level but sensitive to temperature
if the screw speed is at the high level. With the screw speed at a low level, the process
should produce an average shrinkage of around 10% regardless of the temperature level
chosen.

Based on this initial analysis, the team decides to set both the mold temperature and the
screw speed at the low level. This set of conditions should reduce the mean shrinkage of parts
to around 10%. However, the variability in shrinkage from part to part is still a potential prob-
lem. In effect, the mean shrinkage can be adequately reduced by the above modifications;
however, the part-to-part variability in shrinkage over a production run could still cause prob-
lems in assembly. One way to address this issue is to see if any of the process factors affect the
variability in parts shrinkage.

Figure 14-35 presents the normal probability plot of the residuals. This plot appears
satisfactory. The plots of residuals versus each factor were then constructed. One of these
plots, that for residuals versus factor C (holding time), is shown in Fig. 14-36. The plot
reveals much less scatter in the residuals at the low holding time than at the high holding
time. These residuals were obtained in the usual way from a model for predicted
shrinkage

where x1, x2, and x1x2 are coded variables that correspond to the factors A and B and the AB
interaction. The residuals are then

The regression model used to produce the residuals essentially removes the location ef-
fects of A, B, and AB from the data; the residuals therefore contain information about
unexplained variability. Figure 14-36 indicates that there is a pattern in the variability and

e � y � ŷ

 � 27.3125 � 6.9375x1 � 17.8125x2 � 5.9375x1x2

 ŷ � �̂0 � �̂1x1 � �̂2x2 � �̂12x1x2
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uals for Example 14-8.

Figure 14-36 Residuals versus holding time
(C ) for Example 14-8.
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14-9 FRACTIONAL REPLICATION OF THE 2k DESIGN 559

that the variability in the shrinkage of parts may be smaller when the holding time is at the
low level.

Figure 14-37 shows the data from this experiment projected onto a cube in the factors A,
B, and C. The average observed shrinkage and the range of observed shrinkage are shown at
each corner of the cube. From inspection of this figure, we see that running the process with
the screw speed (B) at the low level is the key to reducing average parts shrinkage. If B is low,
virtually any combination of temperature (A) and holding time (C ) will result in low values of
average parts shrinkage. However, from examining the ranges of the shrinkage values at each
corner of the cube, it is immediately clear that setting the holding time (C ) at the low level is
the most appropriate choice if we wish to keep the part-to-part variability in shrinkage low
during a production run.

The concepts used in constructing the 26�2 fractional factorial design in Example 14-8
can be extended to the construction of any 2k�p fractional factorial design. In general, a 2k frac-
tional factorial design containing 2k�p runs is called a 1�2p fraction of the 2k design or, more
simply, a 2k�p fractional factorial design. These designs require the selection of p independent
generators. The defining relation for the design consists of the p generators initially chosen
and their 2p � p � 1 generalized interactions.

The alias structure may be found by multiplying each effect column by the defining rela-
tion. Care should be exercised in choosing the generators so that effects of potential interest
are not aliased with each other. Each effect has 2p � 1 aliases. For moderately large values of
k, we usually assume higher order interactions (say, third- or fourth-order or higher) to be neg-
ligible, and this greatly simplifies the alias structure.

It is important to select the p generators for the 2k�p fractional factorial design in such
a way that we obtain the best possible alias relationships. A reasonable criterion is to
select the generators so that the resulting 2k�p design has the highest possible design res-
olution. Montgomery (2001) presents a table of recommended generators for 2k�p frac-
tional factorial designs for k � 15 factors and up to as many as n � 128 runs. A portion
of his table is reproduced here as Table 14-29. In this table, the generators are shown with
either � or � choices; selection of all generators as � will give a principal fraction, while
if any generators are � choices, the design will be one of the alternate fractions for the
same family. The suggested generators in this table will result in a design of the highest
possible resolution. Montgomery (2001) also gives a table of alias relationships for these
designs.
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Figure 14-37 Average
shrinkage and range of
shrinkage in factors A,
B, and C for Example
14-8.
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560 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

Table 14-29 Selected 2k�p Fractional Factorial Designs

Number of Number of
Factors Number of Design Factors Number of Design 

k Fraction Runs Generators k Fraction Runs Generators

3 2III
3�1 4 C � �AB

4 2IV
4�1 8 D � �ABC

5 2V
5�1 16 E � �ABCD

2III
5�2 8 D � �AB

E � �AC
6 2VI

6�1 32 F � �ABCDE
2IV

6�2 16 E � �ABC
F � �BCD

2III
6�3 8 D � �AB

E � �AC
F � �BC

7 2VII
7�1 64 G � �ABCDEF

2IV
7�2 32 E � �ABC

G � �ABDE
2IV

7�3 16 E � �ABC
F � �BCD
G � �ACD

2III
7�4 8 D � �AB

E � �AC
F � �BC
G � �ABC

8 2V
8�2 64 G � �ABCD

H � �ABEF
2IV

8�3 32 F � �ABC
G � �ABD
H � �BCDE

2IV
8�4 16 E � �BCD

F � �ACD
G � �ABC
H � �ABD

9 2VI
9�2 128 H � �ACDFG

J � �BCEFG
2IV

9�3 64 G � �ABCD
H � �ACEF
J � �CDEF

2IV
9�4 32 F � �BCDE

G � �ACDE
H � �ABDE
J � �ABCE

2III
9�5 16 E � �ABC

F � �BCD
G � �ACD
H � �ABD
J � �ABCD

10 H � �ABCG
J � �ACDE

2V
10�3 128 K � �ACDF

G � �BCDF
H � �ACDF
J � �ABDE

2IV
10�4 64 K � �ABCE

F � �ABCD
G � �ABCE
H � �ABDE
J � �ACDE

2IV
10�5 32 K � �BCDE

E � �ABC
F � �BCD
G � �ACD
H � �ABD
J � �ABCD

2III
10�6 16 K � �AB

11 G � �CDE
H � �ABCD
J � �ABF
K � �BDEF

2IV
11�5 64 L � �ADEF

F � �ABC
G � �BCD
H � �CDE
J � �ACD
K � �ADE

2IV
11�6 32 L � �BDE

E � �ABC
F � �BCD
G � �ACD
H � �ABD
J � �ABCD
K � �AB

2III
11�7 16 L � �AC

Source: Montgomery (2001)
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14-9 FRACTIONAL REPLICATION OF THE 2k DESIGN 561

EXAMPLE 14-9 To illustrate the use of Table 14-29, suppose that we have seven factors and that we are
interested in estimating the seven main effects and obtaining some insight regarding 
the two-factor interactions. We are willing to assume that three-factor and higher interactions
are negligible. This information suggests that a resolution IV design would be appropriate.

Table 14-29 shows that two resolution IV fractions are available: the with 32 runs
and the with 16 runs. The aliases involving main effects and two- and three-factor inter-
actions for the 16-run design are presented in Table 14-30. Notice that all seven main effects
are aliased with three-factor interactions. All the two-factor interactions are aliased in groups
of three. Therefore, this design will satisfy our objectives; that is, it will allow the estimation
of the main effects, and it will give some insight regarding two-factor interactions. It is not
necessary to run the design, which would require 32 runs. The construction of the 
design is shown in Table 14-31. Notice that it was constructed by starting with the 16-run
24 design in A, B, C, and D as the basic design and then adding the three columns E � ABC,
F � BCD, and G � ACD as suggested in Table 14-29. Thus, the generators for this design
are I � ABCE, I � BCDF, and I � ACDG. The complete defining relation is I � ABCE �
BCDF � ADEF � ACDG � BDEG � CEFG � ABFG. This defining relation was used to
produce the aliases in Table 14-30. For example, the alias relationship of A is

which, if we ignore interactions higher than three factors, agrees with Table 14-30.

For seven factors, we can reduce the number of runs even further. The 27�4 design is an
eight-run experiment accommodating seven variables. This is a 1�16th fraction and is ob-
tained by first writing down a 23 design as the basic design in the factors A, B, and C, and then
forming the four new columns from I � ABD, I � ACE, I � BCF, and I � ABCG, as sug-
gested in Table 14-29. The design is shown in Table 14-32.

The complete defining relation is found by multiplying the generators together two, three,
and finally four at a time, producing

The alias of any main effect is found by multiplying that effect through each term in the

 � BEG � AFG � DEF � ADEG � CEFG � BDFG � ABCDEFG

 I � ABD � ACE � BCF � ABCG � BCDE � ACDF � CDG � ABEF

A � BCE � ABCDF � DEF � CDG � ABDEG � ACEFG � BFG

2IV
7�32IV

7�2

2IV
7�3

2IV
7�2

Table 14-30 Generators, Defining Relation, and Aliases for the 2IV
7�3

Fractional Factorial Design

Generators and Defining Relation

E � ABC, F � BCD, G � ACD
I � ABCE � BCDF � ADEF � ACDG � BDEG � ABFG � CEFG

Aliases

A � BCE � DEF � CDG � BFG AB � CE � FG
B � ACE � CDF � DEG � AFG AC � BE � DG
C � ABE � BDF � ADG � EFG AD � EF � CG
D � BCF � AEF � ACG � BEG AE � BC � DF
E � ABC � ADF � BDG � CFG AF � DE � BG
F � BCD � ADE � ABG � CEG AG � CD � BF
G � ACD � BDE � ABF � CEF BD � CF � EG

ABD � CDE � ACF � BEF � BCG � AEG � DFG
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562 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

Table 14-31 A 2IV
7�3 Fractional Factorial Design

Basic Design

Run A B C D E � ABC F � BCD G � ACD

1 � � � � � � �
2 � � � � � � �
3 � � � � � � �
4 � � � � � � �
5 � � � � � � �
6 � � � � � � �
7 � � � � � � �
8 � � � � � � �
9 � � � � � � �

10 � � � � � � �
11 � � � � � � �
12 � � � � � � �
13 � � � � � � �
14 � � � � � � �
15 � � � � � � �
16 � � � � � � �

defining relation. For example, the alias of A is

A � BD � CE � ABCF � BCG � ABCDE � CDF � ACDG

� BEF � ABEG � FG � ADEF � DEG � ACEFG � ABDFG � BCDEFG

This design is of resolution III, since the main effect is aliased with two-factor interactions. If
we assume that all three-factor and higher interactions are negligible, the aliases of the seven
main effects are

/G � G � CD � BE � AF

/F � F � BC � AG � DE

/E � E � AC � BG � DF

/D � D � AB � CG � EF

/C � C � AE � BF � DG

/B � B � AD � CF � EG

/A � A � BD � CE � FG

Table 14-32 A 2III
7�4 Fractional Factorial Design

A B C D � AB E � AC F � BC G � ABC

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
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This 2III
7�4 design is called a saturated fractional factorial, because all the available

degrees of freedom are used to estimate main effects. It is possible to combine sequences of
these resolution III fractional factorials to separate the main effects from the two-factor
interactions. The procedure is illustrated in Montgomery (2001) and in Box, Hunter, and
Hunter (1978).

14-31. R. D. Snee (“Experimenting with a Large Number of
Variables,” in Experiments in Industry: Design, Analysis and
Interpretation of Results, by R. D. Snee, L. D. Hare, and J. B.
Trout, eds., ASQC, 1985) describes an experiment in which
a 25�1 design with I � ABCDE was used to investigate the
effects of five factors on the color of a chemical product.
The factors are A � solvent/reactant, B � catalyst/reactant,
C � temperature, D � reactant purity, and E � reactant pH.
The results obtained are as follows:

(a) Prepare a normal probability plot of the effects. Which
factors are active?

(b) Calculate the residuals. Construct a normal probability
plot of the residuals and plot the residuals versus the fitted
values. Comment on the plots.

(c) If any factors are negligible, collapse the 25�1 design into
a full factorial in the active factors. Comment on the re-
sulting design, and interpret the results.

14-32. Montgomery (2001) describes a 24�1 fractional fac-
torial design used to study four factors in a chemical process.
The factors are A � temperature, B � pressure, C � concen-
tration, and D � stirring rate, and the response is filtration
rate. The design and the data are as follows:

e � � 0.63 d � 6.79
a � 2.51 ade � 6.47
b � � 2.68 bde � 3.45

abe � 1.66 abd � 5.68
c � 2.06 cde � 5.22

ace � 1.22 acd � 4.38
bce � � 2.09 bcd � 4.30
abc � 1.93 abcde � 4.05

EXERCISES FOR SECTION 14-9

(a) Write down the alias relationships.
(b) Estimate the factor effects. Which factor effects appear

large?
(c) Project this design into a full factorial in the three appar-

ently important factors and provide a practical interpreta-
tion of the results.

14-33. An article in Industrial and Engineering Chemistry
(“More on Planning Experiments to Increase Research
Efficiency,” 1970, pp. 60–65) uses a 25�2 design to investigate
the effect on process yield of A � condensation temperature,
B � amount of material 1, C � solvent volume, D � con-
densation time, and E � amount of material 2. The results ob-
tained are as follows:

(a) Verify that the design generators used were I � ACE and
I � BDE.

(b) Write down the complete defining relation and the aliases
from the design.

(c) Estimate the main effects.
(d) Prepare an analysis of variance table. Verify that the AB

and AD interactions are available to use as error.
(e) Plot the residuals versus the fitted values. Also construct a

normal probability plot of the residuals. Comment on the
results.

ae � 23.2 cd � 23.8
ab � 15.5 ace � 23.4
ad � 16.9 bde � 16.8
bc � 16.2 abcde � 18.1

Treatment Filtration 
Run A B C D � ABC Combination Rate

1 � � � � 45

2 � � � � ad 100

3 � � � � bd 45

4 � � � � ab 65

5 � � � � cd 75

6 � � � � ac 60

7 � � � � bc 80

8 � � � � abcd 96

112
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564 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

14-34. Consider the 26�2 design in Table 14-28. Suppose
that after analyzing the original data, we find that factors C
and E can be dropped. What type of 2k design is left in the re-
maining variables?

14-35. Consider the 26�2 design in Table 14-28. Suppose
that after the original data analysis, we find that factors D and
F can be dropped. What type of 2k design is left in the remain-
ing variables? Compare the results with Exercise 14-34. Can
you explain why the answers are different?

14-36. Suppose that in Exercise 14-22 it was possible to
run only a �

1

2
� fraction of the 24 design. Construct the design and

use only the data from the eight runs you have generated to
perform the analysis.

14-37. Suppose that in Exercise 14-16 only a 1⁄4 fraction
of the 25 design could be run. Construct the design and analyze
the data that are obtained by selecting only the response for
the eight runs in your design.

14-38. Construct the 2IV
8�4 design recommended in Table

13-29. What are the aliases of the main effects and two-factor
interactions?

14-39. Construct a 2III
6�3 fractional factorial design. Write

down the aliases, assuming that only main effects and two-
factor interactions are of interest.

14-40. Consider the problem in Exercise 14-19. Suppose
that only half of the 32 runs could be made.
(a) Choose the half that you think should be run.
(b) Write out the alias relationships for your design.
(c) Estimate the factor effects.
(d) Plot the effect estimates on normal probability paper and

interpret the results.
(e) Set up an analysis of variance for the factors identified as

potentially interesting from the normal probability plot in
part (d).

(f) Analyze the residuals from the model.
(g) Provide a practical interpretation of the results.

14-10 RESPONSE SURFACE METHODS
AND DESIGNS (CD ONLY)

Supplemental Exercises

14-41. An article in Process Engineering (No. 71, 1992, pp.
46–47) presents a two-factor factorial experiment used to

investigate the effect of pH and catalyst concentration on prod-
uct viscosity (cSt). The data are as follows:

Catalyst Concentration
2.5 2.7

pH 5.6 192, 199, 189, 198 178, 186, 179, 188
5.9 185, 193, 185, 192 197, 196, 204, 204

Time (minutes)

Gear Type 90 120

20-tooth 0.0265 0.0560
0.0340 0.0650

24-tooth 0.0430 0.0720
0.0510 0.0880

28-tooth 0.0405 0.0620
0.0575 0.0825

Salt

Level Untreated MgCl2 NaCl CaCO3 CaCl2 Na2CO3

1 812 752 739 733 725 751
827 728 731 728 727 761
876 764 726 720 719 755

2 945 794 741 786 756 910
881 760 744 771 781 854
919 757 727 779 814 848

(a) Test for main effects and interactions using � � 0.05.
What are your conclusions?

(b) Graph the interaction and discuss the information provided
by this plot.

(c) Analyze the residuals from this experiment.

14-42. Heat treating of metal parts is a widely used manu-
facturing process. An article in the Journal of Metals (Vol. 41,
1989) describes an experiment to investigate flatness distor-
tion from heat treating for three types of gears and two heat-
treating times. The data are as follows:

(a) Is there any evidence that flatness distortion is different
for the different gear types? Is there any indication that
heat treating time affects the flatness distortion? Do these
factors interact? Use � � 0.05.

(b) Construct graphs of the factor effects that aid in drawing
conclusions from this experiment.

(c) Analyze the residuals from this experiment. Comment on
the validity of the underlying assumptions.

14-43. An article in the Textile Research Institute Journal
(Vol. 54, 1984, pp. 171–179) reported the results of an exper-
iment that studied the effects of treating fabric with selected
inorganic salts on the flammability of the material. Two appli-
cation levels of each salt were used, and a vertical burn test
was used on each sample. (This finds the temperature at which
each sample ignites.) The burn test data follow.
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14-10 RESPONSE SURFACE METHODS AND DESIGNS (CD) 565

(a) Test for differences between salts, application levels, and
interactions. Use � � 0.01.

(b) Draw a graph of the interaction between salt and
application level. What conclusions can you draw from
this graph?

(c) Analyze the residuals from this experiment.

14-44. An article in the IEEE Transactions on Components,
Hybrids, and Manufacturing Technology (Vol. 15, 1992) de-
scribes an experiment for investigating a method for aligning
optical chips onto circuit boards. The method involves placing
solder bumps onto the bottom of the chip. The experiment
used three solder bump sizes and three alignment methods.
The response variable is alignment accuracy (in micrometers).
The data are as follows:

for studying a silver automobile basecoat. The response vari-
able is distinctness of image (DOI). The variables used in the
experiment are
A � Percentage of polyester by weight of polyester/melamine

(low value � 50%, high value � 70%)
B � Percentage of cellulose acetate butyrate carboxylate (low

value � 15%, high value � 30%)
C � Percentage of aluminum stearate (low value � 1%, high

value � 3%)
D � Percentage of acid catalyst (low value � 0.25%, high

value � 0.50%)
The responses are (1) � 63.8, a � 77.6, b � 68.8, ab �
76.5, c � 72.5, ac � 77.2, bc � 77.7, abc � 84.5, d � 60.6,
ad � 64.9, bd � 72.7, abd � 73.3, cd � 68.0, acd � 76.3,
bcd � 76.0, and abcd � 75.9.
(a) Estimate the factor effects.
(b) From a normal probability plot of the effects, identify a

tentative model for the data from this experiment.
(c) Using the apparently negligible factors as an estimate of

error, test for significance of the factors identified in part
(b). Use � � 0.05.

(d) What model would you use to describe the process, based
on this experiment? Interpret the model.

(e) Analyze the residuals from the model in part (d) and com-
ment on your findings.

14-47. An article in the Journal of Manufacturing Systems
(Vol. 10, 1991, pp. 32–40) describes an experiment to investi-
gate the effect of four factors P � waterjet pressure, F �
abrasive flow rate, G � abrasive grain size, and V � jet tra-
verse speed on the surface roughness of a waterjet cutter. A 24

design follows.

(a) Is there any indication that either solder bump size or
alignment method affects the alignment accuracy? Is
there any evidence of interaction between these factors?
Use � � 0.05.

(b) What recommendations would you make about this
process?

(c) Analyze the residuals from this experiment. Comment on
model adequacy.

14-45. An article in Solid State Technology (Vol. 29, 1984,
pp. 281–284) describes the use of factorial experiments in
photolithography, an important step in the process of manu-
facturing integrated circuits. The variables in this experiment
(all at two levels) are prebake temperature (A), prebake
time (B), and exposure energy (C), and the response variable
is delta line width, the difference between the line on the
mask and the printed line on the device. The data are as fol-
lows: (1) � �2.30, a � �9.87, b � �18.20, ab � �30.20,
c � �23.80, ac � �4.30, bc � �3.80, and abc � �14.70.
(a) Estimate the factor effects.
(b) Use a normal probability plot of the effect estimates to

identity factors that may be important.
(c) What model would you recommend for predicting the

delta line width response, based on the results of this exper-
iment?

(d) Analyze the residuals from this experiment, and comment
on model adequacy.

14-46. An article in the Journal of Coatings Technology
(Vol. 60, 1988, pp. 27–32) describes a 24 factorial design used

Solder Bump Size Alignment Method

(diameter in �m) 1 2 3

4.60 1.55 1.05
75 4.53 1.45 1.00

2.33 1.72 0.82
130 2.44 1.76 0.95

4.95 2.73 2.36
260 4.55 2.60 2.46

Factors Surface
V F P G Roughness

Run (in/min) (lb/min) (kpsi) (Mesh No.) ( )

1 6 2.0 38 80 104

2 2 2.0 38 80 98

3 6 2.0 30 80 103

4 2 2.0 30 80 96

5 6 1.0 38 80 137

6 2 1.0 38 80 112

7 6 1.0 30 80 143

8 2 1.0 30 80 129

9 6 2.0 38 170 88

10 2 2.0 38 170 70

11 6 2.0 30 170 110

12 2 2.0 30 170 110

13 6 1.0 38 170 102

14 2 1.0 38 170 76

15 6 1.0 30 170 98

16 2 1.0 30 170 68

�m
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(a) Estimate the factor effects.
(b) Form a tentative model by examining a normal probabil-

ity plot of the effects.
(c) Is the model in part (b) a reasonable description 

of the process? Is lack of fit significant? Use � � 
0.05.

(d) Interpret the results of this experiment.
(e) Analyze the residuals from this experiment.

14-48. Construct a design for the problem in Exercise
14-46. Select the data for the eight runs that would have been
required for this design. Analyze these runs and compare your
conclusions to those obtained in Exercise 14-46 for the full
factorial.

14-49. Construct a design for the problem in Exercise
14-47. Select the data for the eight runs that would have been
required for this design, plus the center points. Analyze these
data and compare your conclusions to those obtained in
Exercise 14-47 for the full factorial.

14-50. Construct a design in 16 runs. What are the
alias relationships in this design? 

14-51. Construct a design in eight runs. What are the
alias relationships in this design? 

14-52. In a process development study on yield, four fac-
tors were studied, each at two levels: time (A), concentration
(B), pressure (C), and temperature (D). A single replicate
of a 24 design was run, and the data are shown in the table
below.

25�2
III

28�4
IV

24�1
IV

24�1
IV

(a) Plot the effect estimates on a normal probability scale.
Which factors appear to have large effects?

(b) Conduct an analysis of variance using the normal proba-
bility plot in part (a) for guidance in forming an error
term. What are your conclusions?

(c) Analyze the residuals from this experiment. Does your
analysis indicate any potential problems?

(d) Can this design be collapsed into a 23 design with two
replicates? If so, sketch the design with the average and
range of yield shown at each point in the cube. Interpret
the results.

14-53. An article in the Journal of Quality Technology
(Vol. 17, 1985, pp. 198–206) describes the use of a replicated
fractional factorial to investigate the effect of five factors on
the free height of leaf springs used in an automotive applica-
tion. The factors are A � furnace temperature, B � heating
time, C � transfer time, D � hold down time, and E �
quench oil temperature. The data are shown in the following
table.
(a) What is the generator for this fraction? Write out the alias

structure.
(b) Analyze the data. What factors influence mean free height?
(c) Calculate the range of free height for each run. Is there any

indication that any of these factors affect variability in free
height?

(d) Analyze the residuals from this experiment and comment
on your findings.

Run Actual Run Yield Factor Levels

Number Order A B C D (lbs) Low ( � ) High ( � )

1 5 � � � � 12 A (h) 2.5 3

2 9 � � � � 18 B (%) 14 18

3 8 � � � � 13 C (psi) 60 80

4 13 � � � � 16 D (�C) 225 250

5 3 � � � � 17

6 7 � � � � 15

7 14 � � � � 20

8 1 � � � � 15

9 6 � � � � 10

10 11 � � � � 25

11 2 � � � � 13

12 15 � � � � 24

13 4 � � � � 19

14 16 � � � � 21

15 10 � � � � 17

16 12 � � � � 23
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14-54. An article in Rubber Chemistry and Technology
(Vol. 47, 1974, pp. 825–836) describes an experiment that
studies the Mooney viscosity of rubber to several variables,
including silica filler (parts per hundred) and oil filler (parts

per hundred). Data typical of that reported in this experiment
follow, where

x1 �
silica � 60

15
,  x2 �

oil � 21

15

A B C D E Free Height

� � � � � 7.78 7.78 7.81

� � � � � 8.15 8.18 7.88

� � � � � 7.50 7.56 7.50

� � � � � 7.59 7.56 7.75

� � � � � 7.54 8.00 7.88

� � � � � 7.69 8.09 8.06

� � � � � 7.56 7.52 7.44

� � � � � 7.56 7.81 7.69

� � � � � 7.50 7.56 7.50

� � � � � 7.88 7.88 7.44

� � � � � 7.50 7.56 7.50

� � � � � 7.63 7.75 7.56

� � � � � 7.32 7.44 7.44

� � � � � 7.56 7.69 7.62

� � � � � 7.18 7.18 7.25

� � � � � 7.81 7.50 7.59

Coded levels
x1 x2 y

�1 �1 13.71

1 �1 14.15

�1 1 12.87

1 1 13.53

�1 �1 13.90

1 �1 14.88

�1 1 12.25

�1 1 13.35

(a) What type of experimental design has been used?
(b) Analyze the data and draw appropriate conclusions.
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MIND-EXPANDING EXERCISES

14-55. Consider an unreplicated 2k factorial, and sup-
pose that one of the treatment combinations is missing.
One logical approach to this problem is to estimate the
missing value with a number that makes the highest or-
der interaction estimate zero. Apply this technique to the
data in Example 14-5, assuming that ab is missing.
Compare the results of the analysis of these data with the
results in Example 14-5.

14-56. What blocking scheme would you recommend
if it were necessary to run a 24 design in four blocks of
four runs each?

14-57. Consider a 22 design in two blocks with
AB confounded with blocks. Prove algebraically that
SSAB � SSBlocks.

14-58. Consider a 23 design. Suppose that the largest
number of runs that can be made in one block is four, but
we can afford to perform a total of 32 observations.

(a) Suggest a blocking scheme that will provide some
information on all interactions.

(b) Show an outline (source of variability, degrees of
freedom only) for the analysis of variance for this
design.

14-59. Construct a 25�1 design. Suppose that it is
necessary to run this design in two blocks of eight runs
each. Show how this can be done by confounding a two-
factor interaction (and its aliased three-factor interac-
tion) with blocks.

14-60. Construct a design. Show how this
design may be confounded in four blocks of eight runs
each. Are any two-factor interactions confounded with
blocks?

14-61. Construct a design. Show how this de-
sign can be confounded in two blocks of eight runs each
without losing information on any of the two-factor
interactions.

14-62. Set up a design using D � AB, E � AC,
F � BC, and G � ABC as the design generators. Ignore
all interaction above the two factors.

(a) Verify that each main effect is aliased with three
two-factor interactions.

(b) Suppose that a second design with generators
D � �AB, E � �AC, F � �BC, and G � ABC is
run. What are the aliases of the main effects in this
design?

(c) What factors may be estimated if the two sets of
factor effect estimates above are combined?

To work Exercises 14-63 through 14-67 you will need to
read Section 14.6 on the CD.

14-63. Consider the experiment described in
Example 14-4. Suppose that both factors were random.
(a) Analyze the data and draw appropriate conclusions.
(b) Estimate the variance components.

14-64. For the breaking strength data in Table S14-1,
suppose that the operators were chosen at random, but
machines were a fixed factor. Does this influence the
analysis or your conclusions?

14-65. A company employs two time-study engi-
neers. Their supervisor wishes to determine whether the
standards set by them are influenced by an interaction
between engineers and operators. She selects three oper-
ators at random and conducts an experiment in which
the engineers set standard times for the same job. She
obtains the data shown here:

Operator

Engineer 1 2 3

1 2.59 2.38 2.40
2.78 2.49 2.72

2 2.15 2.85 2.66
2.86 2.72 2.87

(a) State the appropriate hypotheses.
(b) Use the analysis of variance to test these hypotheses

with � � 0.05.
(c) Graphically analyze the residuals from this exper-

iment.
(d) Estimate the appropriate variance components.

14-66. Consider the experiment on baked anode den-
sity described in Exercise 14-4. Suppose that positions
on the furnace were chosen at random and temperature
is a fixed factor.
(a) State the appropriate hypotheses.
(b) Use the analysis of variance to test these hypotheses

with � � 0.05.
(c) Estimate the variance components.

14-67. Consider the experiment described in Exercise
14-63. How does the analysis (and conclusions) change
if both factors are random? Use � � 0.05.

To work Exercises 14-68 and 14-69 you will need to read
Section 14-7.4 on the CD.

27�4
III

27�4
III

27�3
IV

27�2
IV
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14-10 RESPONSE SURFACE METHODS AND DESIGNS (CD ONLY) 569

MIND-EXPANDING EXERCISES

x1 x2 y x1 x2 y

�1 �1 211 0 �1.5 168

1 �1 92 0 1.5 179

�1 1 216 0 0 122

1 1 99 0 0 175

�1.5 0 222 0 0 157

1.5 0 48 0 0 146

14-68. Consider the experiment in Exercise 14-19.
Suppose that a center point had been run (replicated five
times) and the responses were 45, 40, 41, 47, and 43.
(a) Estimate the experimental error using the center

points. Compare this to the estimate obtained origi-
nally in Exercise 14-19 by pooling apparently non-
significant effects.

(b) Test for look of fit, using � � 0.05.

14-69. Consider the data from Exercise 14-13, repli-
cate 1 only. Suppose that a center point with four
replicates is added to these eight factorial runs and the
responses are 425, 400, 437, and 418.
(a) Estimate the facter effects.
(b) Test for lack of fit using � � 0.05
(c) Test for main effects and interactions using � � 0.05.
(d) Analyze residuals and draw conclusions.

To work problem 14-70 through 14-74 you will need to
read Section 14-10 on the CD.

14-70. An article in Rubber Age (Vol. 89, 1961, pp.
453–458) describes an experiment on the manufacture of a
product in which two factors were varied. The factors are
reaction time (hr) and temperature (�C). These factors are
coded as x1 � (time � 12)�8 and x2 � (temperature �
250)�30. The following data were observed where y is the
yield (in percent):

Run
Number x1 x2 y

1 �1 0 83.8

2 1 0 81.7

3 0 0 82.4

4 0 0 82.9

5 0 �1 84.7

6 0 1 75.9

7 0 0 81.2

8 �1.414 �0.414 81.3

9 �1.414 1.414 83.1

10 1.414 �1.414 85.3

11 1.414 1.414 72.7

12 0 0 82.0

(a) Plot the points at which the experimental runs were
made.

(b) Fit a second-order model to the data. Is the second-
order model adequate?

(c) Plot the yield response surface. What recommenda-
tions would you make about the operating condi-
tions for this process?

14-71. Consider the first-order model

where �1 � xi � 1. Find the direction of steepest ascent.

14-72. A manufacturer of cutting tools has devel-
oped two empirical equations for tool life (y1) and tool cost
(y2). Both models are functions of tool hardness (x1) and
manufacturing time (x2). The equations are

and both equations are valid over the range �1.5 �
xi � 1.5. Suppose that tool life must exceed 12 hours
and cost must be below $27.50.
(a) Is there a feasible set of operating conditions?
(b) Where would you run this process?

14-73. An article in Tappi (Vol. 43, 1960, pp. 38–44)
describes an experiment that investigated the ash value of
paper pulp (a measure of inorganic impurities). Two vari-
ables, temperature T in degrees Celsius and time t in hours,
were studied, and some of the results are shown in the fol-
lowing table. The coded predictor variables shown are

and the response y is (dry ash value in %) � 103.

x1 �
1T � 7752

115
,  x2 �

1t � 32
1.5

ŷ2 � 23 � 3x1 � 4x2

ŷ1 � 10 � 5x1 � 2x2

ŷ � 50 � 1.5x1 �  0.8x2

(a) What type of design has been used in this study? Is
the design rotatable?
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570 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

IMPORTANT TERMS AND CONCEPTS

In the E-book, click on any
term or concept below to
go to that subject.

Analysis of variance
(ANOVA)

Blocking and nuisance
factors

Confounding
Factorial Experiment

Fractional factorial design
Interaction
Main effect
Normal probability 

plot of factor 
effects

Orthogonal design
Regression model
Residual analysis

Two-level factorial 
design

CD MATERIAL
Center points in a 

factorial
Central composite 

design
Mixed model
Random model

Response surface
Steepest ascent
Variance components

MIND-EXPANDING EXERCISES

(b) Fit a quadratic model to the data. Is this model satis-
factory?

(c) If it is important to minimize the ash value, where
would you run the process?

14-74. In their book Empirical Model Building and
Response Surfaces (John Wiley, 1987), G. E. P. Box and
N. R. Draper describe an experiment with three factors.
The data shown in the following table are a variation of
the original experiment on page 247 of their book.
Suppose that these data were collected in a semiconduc-
tor manufacturing process.

(a) The response y1 is the average of three readings on
resistivity for a single wafer. Fit a quadratic model
to this response.

(b) The response y2 is the standard deviation of the three
resistivity measurements. Fit a linear model to this
response.

(c) Where would you recommend that we set x1, x2, and
x3 if the objective is to hold mean resistivity at 500
and minimize the standard deviation?

x1 x2 x3 y1 y2 x1 x2 x3 y1 y2

�1 �1 �1 24.00 12.49 1 0 0 501.67 92.50

0 �1 �1 120.33 8.39 �1 1 0 264.00 63.50

1 �1 �1 213.67 42.83 0 1 0 427.00 88.61

�1 0 �1 86.00 3.46 1 1 0 730.67 21.08

0 0 �1 136.63 80.41 �1 �1 1 220.67 133.82

1 0 �1 340.67 16.17 0 �1 1 239.67 23.46

�1 1 �1 112.33 27.57 1 �1 1 422.00 18.52

0 1 �1 256.33 4.62 �1 0 1 199.00 29.44

1 1 �1 271.67 23.63 0 0 1 485.33 44.67

�1 �1 0 81.00 0.00 1 0 1 673.67 158.21

0 �1 0 101.67 17.67 �1 1 1 176.67 55.51

1 �1 0 357.00 32.91 0 1 1 501.00 138.94

�1 0 0 171.33 15.01 1 1 1 1010.00 142.45

0 0 0 372.00 0.00
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14-2 SOME APPLICATIONS OF EXPERIMENTAL 
DESIGN TECHNIQUES (CD ONLY)

Experimental design is an extremely important tool for engineers and scientists who are inter-
ested in improving the performance of a manufacturing process. It also has extensive application
in the development of new processes and in new product design. We now give some examples.

A Process Characterization Experiment
A team of development engineers is working on a new process for soldering electronic com-
ponents to printed circuit boards. Specifically, the team is working with a new type of flow
solder machine that should reduce the number of defective solder joints. (A flow solder
machine preheats printed circuit boards and then moves them into contact with a wave of
liquid solder. This machine makes all the electrical and most of the mechanical connections
of the components to the printed circuit board. Solder defects require touchup or rework,
which adds cost and often damages the boards.) The process will have several (perhaps
many) variables, and all of them are not equally important. The initial list of candidate vari-
ables to be included in the experiment is constructed by combining the knowledge and
information about the process from all team members. In this example, the engineers con-
ducted a brainstorming session and invited manufacturing personnel with experience using
various types of flow soldering equipment to participate. The team determined that the flow
solder machine has several variables that can be controlled. They are

1. Solder temperature

2. Preheat temperature

3. Conveyor speed

4. Flux type

5. Flux-specific gravity

6. Solder wave depth

7. Conveyor angle

In addition to these controllable factors, there are several other factors that cannot be easily
controlled, once the machine enters routine manufacturing, including

1. Thickness of the printed circuit board

2. Types of components used on the board

3. Layout of the components on the board

4. Operator

5. Environmental factors

6. Production rate

Sometimes we call the uncontrollable factors noise factors. A schematic representation of
the process is shown in Fig. S14-1.

In this situation the engineer is interested in characterizing the flow solder machine; that
is, he is interested in determining which factors (both controllable and uncontrollable) affect
the occurrence of defects on the printed circuit boards. To determine these factors, he can
design an experiment that will enable him to estimate the magnitude and direction of the fac-
tor effects. Sometimes we call such an experiment a screening experiment. The information
from this characterization study or screening experiment can help determine the critical
process variables, as well as the direction of adjustment for these factors in order to reduce the

14-1
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number of defects, and assist in determining which process variables should be carefully con-
trolled during manufacturing to prevent high defect levels and erratic process performance.

An Optimization Experiment
In a characterization experiment, we are interested in determining which factors affect the
response. A logical next step is to determine the region in the important factors that leads
to an optimum response. For example, if the response is cost, we will look for a region of
minimum cost.

As an illustration, suppose that the yield of a chemical process is influenced by the op-
erating temperature and the reaction time. We are currently operating the process at 155�F
and 1.7 hours of reaction time, and the current process yield is around 75%. Figure S14-2
shows a view of the time–temperature space from above. In this graph we have connected
points of constant yield with lines. These lines are yield contours, and we have shown the
contours at 60, 70, 80, 90, and 95% yield. To locate the optimum, we might begin with a
factorial experiment such as we described below, with the two factors, time and temperature,

14-2

OutputInput

. . .

Controllable factors
x2x1 xp

z1 z2 zq
Uncontrollable (noise) factors

. . .

(printed circuit boards) (defects, y)

Process
(flow solder machine)

Figure S14-1 The
flow solder 
experiment.

Figure S14-2
Contour plot of yield
as a function of reac-
tion time and reaction
temperature, illustrat-
ing an optimization 
experiment.
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run at two levels each at 10�F and 0.5 hours above and below the current operating condi-
tions. This two-factor factorial design is shown in Fig. S14-2. The average responses
observed at the four points in the experiment (145�F, 1.2 hours; 145�F, 2.2 hours; 165�F, 1.2
hours; and 165�F, 2.2 hours) indicate that we should move in the general direction of
increased temperature and lower reaction time to increase yield. A few additional runs could
be performed in this direction to locate the region of maximum yield.

A Product Design Example
We can also use experimental design in the development of new products. For example, suppose
that a group of engineers are designing a door hinge for an automobile. The product characteris-
tic is the check effort, or the holding ability, of the latch that prevents the door from swinging
closed when the vehicle is parked on a hill. The check mechanism consists of a leaf spring and a
roller. When the door is opened, the roller travels through an arc causing the leaf spring to be com-
pressed. To close the door, the spring must be forced aside, and this creates the check effort. The
engineering team thinks that check effort is a function of the following factors:

1. Roller travel distance

2. Spring height from pivot to base

3. Horizontal distance from pivot to spring

4. Free height of the reinforcement spring

5. Free height of the main spring

The engineers can build a prototype hinge mechanism in which all these factors can be varied
over certain ranges. Once appropriate levels for these five factors have been identified, an ex-
periment can be designed consisting of various combinations of the factor levels, and the pro-
totype can be tested at these combinations. This will produce information concerning which
factors are most influential on the latch check effort, and through analysis of this information,
the latch design can be improved.

These examples illustrate only three applications of experimental design methods. In the
engineering environment, experimental design applications are numerous. Some potential areas
of use are

1. Process troubleshooting

2. Process development and optimization

3. Evaluation of material and alternatives

4. Reliability and life testing

5. Performance testing

6. Product design configuration

7. Component tolerance determination

Experimental design methods allow these problems to be solved efficiently during the early
stages of the product cycle. This has the potential to dramatically lower overall product cost
and reduce development lead time.

14-6 FACTORIAL EXPERIMENTS WITH RANDOM FACTORS 
(CD ONLY)

In this chapter, we focus primarily on the case where all the factors are fixed; that is, the experi-
menter specifically chose the levels, and the conclusions from the experiment are confined to

14-3
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those specific levels. Now we briefly consider the situation where one or more of the factors in a
factorial experiment are random, using the two-factor factorial design as an illustration.

The Random-Effects Model
Suppose that we have two factors A and B arranged in a factorial experiment in which the lev-
els of both factors are selected at random from larger populations of factor levels, and we wish
to extend our conclusion to the entire population of factor levels. The observations are repre-
sented by the model

(S14-1)

where the parameters �i, �j, (��)ij, and �ijk are normally and independently distributed random
variables with means zero and variances , , , and �2, respectively. As a result of these
assumptions, the variance of any observation Yijk is

and �2
�, �

2
�, �2

��, and �2 are called variance components. The hypotheses that we are interested in
testing are H0: �

2
� � 0, H0: �

2
� � 0, and H0: �

2
�� � 0. Notice the similarity to the single-factor

experiment random-effects model discussed in Chapter 13.
The basic analysis of variance remains unchanged; that is, SSA, SSB, SSAB, SST, and SSE are

all calculated as in the fixed-effects case. To construct the test statistics, we must examine the
expected mean squares. They are

and

(S14-2)

Note from the expected mean squares that the appropriate statistic for testing the 
no-interaction hypothesis H0: �

2
�� � 0 is

E1MSE2 � �2

E1MSAB2 � �2 � n�2
��

E1MSB2  � �2 � n�2
�� � an�2

�

E 1MSA2  � �2 � n�2
�� � bn�2

�

V 1Yijk2 � �2
� � �2

� � �2
�� � �2

�2
���2

��2
�

Yijk � 	 � �i � �j � 1��2ij � �ij k 
•

i � 1, 2, . . . , a

j � 1, 2, . . . , b

k� 1, 2, . . . , n

14-4

since if H0 is true, both numerator and denominator of F0 have expectation �2, and only if H0

is false is E(MSAB) greater than E(MSE). The ratio F0 is distributed as F(a
1)(b
1),ab(n
1).
Similarly, for testing that there is no main effect of factor A, or H0: �

2
� � 0, we would use

(S14-3)F0 �
MSAB

MSE

(S14-4)F0 �
MSA

MSAB
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14-5

EXAMPLE S14-1 Two factors that may influence the breaking strength of cloth are being studied. Four test
machines and three operators are chosen at random, and an experiment is run using cloth from
the same production segment. The data are shown in Table S14-1, and the analysis of variance
is in Table S14-2. Notice that the first four columns in Table S14-2. are computed as in a stan-
dard (fixed-effects model) analysis. The test statistics are computed using Equations (S14-3)
through S14-5. We will use � � 0.05. The test statistic for the no-interaction hypothesis
H0: �

2
�� � 0 is

f0 �
MSAB

MSE
�

5.94
3.75

� 1.584

which is distributed as Fa
1,(a
1)(b
1), and for testing H0: �
2
� � 0 the test statistic is

(S14-5)F0 �
MSB

MSAB

which is distributed as Fb
1,(a
1)(b
1). These are all upper-tail, one-tail tests. Thus, the null
hypotheses above would be rejected at the � level of significance if the calculated value of f0

exceeds the upper � percentage point of the F-distribution. Notice that these test statistics are
not the same as those used if both factors A and B are fixed. The expected mean squares are
always used as a guide to test statistic construction.

The variance components may be estimated by equating the observed mean squares to
their expected values and solving for the variance components. This yields

(S14-6)

 �̂2
� �

MSA 
 MSAB

bn

 �̂2
� �

MSB 
 MSAB

an

 �̂2
�� �

MSAB 
 MSE

n

 �̂2 � MSE

Table S14-1 Breaking Strength Data for Example S14-1

Machine

Operator 1 2 3 4

A 113 113 111 113
112 118 111 119

B 111 110 111 114
112 111 109 112

C 109 112 114 111
111 115 112 112
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which would be compared to f0.05,6,12 � 3.00, and so H0: �2
�� � 0 cannot be rejected.

The P-value for this ratio is P � 0.2338. To test for no machine effect (H0: �
2
� � 0), we

compute

which would be compared to f0.05,3,6 � 4.76. The P-value for this ratio is P � 0.3403.
Therefore, we conclude that machines do not significantly affect the breaking strength test
results. To test for no operator effect (H0: �

2
� � 0), we compute

which would be compared to f0.05,2,6 � 5.14. The P-value for this ratio is P � 0.1904. We
conclude that the operators do not affect the breaking strength test results. The variance com-
ponents may be estimated using Equations S14-6 as follows:

All of the variance components , , and are small; in fact, they are not significantly
different from zero.

The Mixed Model
Now suppose that one of the factors, A, is fixed and the other, B, is random. This is called the
mixed model analysis of variance. The linear model is

(S14-7)Yijk � 	 � �i � �j � 1��2ij � �ij k 
•

i �1, 2, . . . , a

j �1, 2, . . . , b

k�1, 2, . . . , n

�̂2
���̂2

��̂2
�

 �̂2
� �

8.11 
 5.94
6

� 0.36

 �̂2
� �

13.17 
 5.94
8

� 0.90

 �̂2
�� �

5.94 
 3.75
2

� 1.10

 �̂2 � 3.75

f0 �
MSA

MSAB
�

13.17
5.94

� 2.217

f0 �
MSB

MSAB
�

8.11
5.94

� 1.365

14-6

Table S14-2 Analysis of Variance for Example 14-2A

Source of Sum of Degrees of Mean
Variation Squares Freedom Square f0 P-Value

Operators 26.33 2 13.17 2.217 0.1904
Machines 24.33 3 8.11 1.365 0.3403
Interaction 35.67 6 5.94 1.584 0.2338
Error 45.00 12 3.75
Total 131.33 23
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In this model, �i is a fixed effect defined such that , is a random effect, the 
interaction term (��)ij is a random effect, and �ijk is a normally and independently distributed
random variable with mean zero and variance �2. The interaction elements (��)ij are normal
random variables with mean zero and variance , and Because
the sum of the interaction effects over the levels of the fixed factor equals zero, this version of
the mixed model is called the restricted model. The interaction elements are not all
independent. For more details, see Montgomery (2001).

The expected mean squares in this case are

g a
i�11��2ij � 0.3 1a 
 12�a 4�2

��

g a
i�1 �i � 0, �j

Therefore, the appropriate test statistic for testing H0: �i � 0 is

14-7

(S14-8)

 E1MSE2 � �2

 E1MSAB2 � �2 � n�2
��

 E1MSB2 � �2 � an�2
�

 E1MSA2 � �2 � n�2
�� �

bna
a

i�1
�2

i

a 
 1

(S14-9)F0 �
MSA

MSAB

(S14-10)F0 �
MSB

MSE

for which the reference distribution is Fa
1,(a 
1)(b
1). For testing H0: �
2
� � 0, the test statistic is

for which the reference distribution is Fb
1,ab(n
1). Finally, for testing H0: �
2
�� � 0 we would use

(S14-11)F0 �
MSAB

MSE

for which the reference distribution is F(a
1)(b
1),ab(n
1).
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The variance components �2
�, �2

��, and �2 may be estimated by eliminating the first equa-
tion from Equations S14-8, leaving three equations in three unknowns, whose solution is

and

This general approach can be used to estimate the variance components in any mixed model.
After eliminating the mean squares containing fixed factors, there will always be a set of equa-
tions remaining that can be solved for the variance components. Table S14-3 summarizes the
analysis of variance for the two-factor mixed model.

Computer Output
Some software packages have the capability to handle random factors in the analysis of vari-
ance. Table S14-4 is the computer solution to Example S14-1 from Minitab. Notice that the 
F-tests on the main effects have been constructed using MSAB in the denominator. The results
closely match those in Table S14-2.

Table S14-5 is the Minitab output for the breaking strength data assuming a mixed model,
where operators are fixed and machines are random. Minitab allowed us to assume that
restricted form of the mixed model [not all software packages make this easy, and some auto-
matically use an unrestricted model, that is, the term (��)ij 
 0 in general]. Notice thatga

i�1

�̂2 � MSE

�̂2
��

 �
MSAB 
 MSE

n

�̂2
�

 �
MSB 
 MSE

an

14-8

Table S14-3 Analysis of Variance for the Two-Factor Mixed Model (A fixed, B random)

Source of Sum of Degrees of Expected Mean Mean 
Variation Squares Freedom Square Square F0

Rows (A) SSA a 
 1 MSA MSA�MSAB

Columns (B) SSB b 
 1 �2 � an�2
� MSB MSB�MSE

Interaction SSAB (a 
 1)(b 
 1) �2 � n�2
�� MSAB MSAB�MSE

Error SSE ab(n 
 1) �2 MSE

Total SST abn 
 1

�2 � n�2
�� � bng  �

2
i � 1a 
 12

Table S14-4 Minitab Output for Example S14-1

Analysis of Variance (Balanced Designs)

Factor Type Levels Values
Operator random 3 A B C
Machine random 4 1 2 3 4

Analysis of Variance for Strength

Source DF SS MS F P
Operator 2 26.333 13.167 2.21 0.190
Machine 3 24.333 8.111 1.36 0.340
Operator*Machine 6 35.667 5.944 1.59 0.234
Error 12 45.000 3.750
Total 23 131.333
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14-9

the test statistics for main effects and interactions have been constructed properly using
Equations S14-9 through S14-11.

14-7.4 Addition of Center Points to a 2k Design (CD Only)

A potential concern in the use of two-level factorial designs is the assumption of linearity in the
factor effects. Of course, perfect linearity is unnecessary, and the 2k system will work quite well
even when the linearity assumption holds only approximately. However, there is a method of
replicating certain points in the 2k factorial that will provide protection against curvature as well
as allow an independent estimate of error to be obtained. The method consists of adding center
points to the 2k design. These consist of nC replicates run at the point xi � 0 (i � 1, 2, . . . , k). One
important reason for adding the replicate runs at the design center is that center points do not
affect the usual effects estimates in a 2k design. We assume that the k factors are quantitative.

To illustrate the approach, consider a 22 design with one observation at each of the
factorial points (
, 
), (�, 
), (
, �), and (�, �) and nC observations at the center points
(0, 0). Figure S14-3 illustrates the situation. Let be the average of the four runs at the fouryF

Table S14-5 Minitab Analysis of Variance for the Breaking Strength Data in Table S14-1 Where
Operators Are Fixed and Machines Are Random (Mixed Model)

Analysis of Variance (Balanced Designs)

Factor Type Levels Values
Operator fixed 3 A B C
Machine random 4 1 2 3 4

Analysis of Variance for Strength

Source DF SS MS F P
Operator 2 26.333 13.167 2.21 0.190
Machine 3 24.333 8.111 2.16 0.145
Operator*Machine 6 35.667 5.944 1.59 0.234
Error 12 45.000 3.750
Total 23 131.333

Figure S14-3 A 22

design with center
points.
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factorial points, and let be the average of the nC run at the center point. If the difference
is small, the center points lie on or near the plane passing through the factorial points,

and there is no curvature. On the other hand, if is large, curvature is present. A single-
degree-of-freedom sum of squares for curvature is given by

(S14-12)

where, in general, nF is the number of factorial design points. This quantity may be compared
to the error mean square to test for curvature. Notice that when Equation S14-12 is divided by

, the result is similar to the square of the t statistic used to compare two means.
More specifically, when points are added to the center of the 2k design, the model we may

entertain is

where the �jj are pure quadratic effects. The test for curvature actually tests the hypotheses

Furthermore, if the factorial points in the design are unreplicated, we may use the nC center
points to construct an estimate of error with nC 
 1 degrees of freedom.

EXAMPLE S14-2 A chemical engineer is studying the percentage of conversion or yield of a process. There are
two variables of interest, reaction time and reaction temperature. Because she is uncertain about
the assumption of linearity over the region of exploration, the engineer decides to conduct a 22
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Figure S14-4 The 22

design with five center
points for Example
S14-2.
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design (with a single replicate of each factorial run) augmented with five center points. The
design and the yield data are shown in Fig. S14-4.

Table S14-6 summarizes the analysis of variance for this experiment. The mean square
error is calculated from the center points as follows:

The average of the points in the factorial portion of the design is , and the average of
the points at the center is . The difference � 40.425 
 40.46 � 
0.035
appears to be small. The curvature sum of squares in the analysis of variance table is computed
from Equation S14-12 as follows:

The analysis of variance indicates that both factors exhibit significant main effects, that there
is no interaction, and that there is no evidence of curvature in the response over the region of
exploration. That is, the null hypothesis cannot be rejected.

14-10 RESPONSE SURFACE METHODS AND DESIGNS (CD ONLY)

Response surface methodology, or RSM, is a collection of mathematical and statistical tech-
niques that are useful for modeling and analysis in applications where a response of interest is
influenced by several variables and the objective is to optimize this response. For example,
suppose that a chemical engineer wishes to find the levels of temperature (x1) and feed con-
centration (x2) that maximize the yield (y) of a process. The process yield is a function of the
levels of temperature and feed concentration, say,

Y � f 1x1, x22 � �

H0: g k
j�1 �jj � 0

 �
142 152 1
0.03522

4 � 5
� 0.0027
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Table S14-6 Analysis of Variance for Example S14-2

Source of Sum of Degrees of Mean
Variation Squares Freedom Square f0 P-Value

A (Time) 2.4025 1 2.4025 55.87 0.0017
B (Temperature) 0.4225 1 0.4225 9.83 0.0350
AB 0.0025 1 0.0025 0.06 0.8237
Curvature 0.0027 1 0.0027 0.06 0.8163
Error 0.1720 4 0.0430
Total 3.0022 8
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where � represents the noise or error observed in the response Y. If we denote the expected re-
sponse by E(Y) � f(x1, x2) � �, then the surface represented by

is called a response surface.
We may represent the response surface graphically as shown in Fig. S14-5, where � is

plotted versus the levels of x1 and x2. Notice that the response is represented as a surface plot
in a three-dimensional space. To help visualize the shape of a response surface, we often plot
the contours of the response surface as shown in Fig. S14-6. In the contour plot, lines of con-
stant response are drawn in the x1, x2 plane. Each contour corresponds to a particular height of
the response surface. The contour plot is helpful in studying the levels of x1 and x2 that result
in changes in the shape or height of the response surface.

In most RSM problems, the form of the relationship between the response and the inde-
pendent variables is unknown. Thus, the first step in RSM is to find a suitable approximation
for the true relationship between Y and the independent variables. Usually, a low-order poly-
nomial in some region of the independent variables is employed. If the response is well
modeled by a linear function of the independent variables, the approximating function is the
first-order model

(S14-13)

If there is curvature in the system, then a polynomial of higher degree must be used, such as
the second-order model

(S14-14)

Many RSM problems use one or both of these approximating polynomials. Of course, it is
unlikely that a polynomial model will be a reasonable approximation of the true functional re-
lationship over the entire space of the independent variables, but for a relatively small region
they usually work quite well.

The method of least squares, discussed in Chapters 11 and 12, is used to estimate the
parameters in the approximating polynomials. The response surface analysis is then done in
terms of the fitted surface. If the fitted surface is an adequate approximation of the true

Y � �0 �a
k

i�1
 �i xi �a

k

i�1
 �ii x2

i � b
i� j

 �ij xi xj � �

Y � �0 � �1x1 � �2x2 � p � �kxk � �

� � f 1x1, x22
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Figure S14-5 A three-dimensional response surface showing the
expected yield as a function of temperature and feed concentration.
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Figure S14-6 A contour plot of the yield re-
sponse surface in Figure S14-5.
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response function, analysis of the fitted surface will be approximately equivalent to analysis
of the actual system.

RSM is a sequential procedure. Often, when we are at a point on the response surface that
is remote from the optimum, such as the current operating conditions in Fig. S14-6, there is
little curvature in the system and the first-order model will be appropriate. Our objective here
is to lead the experimenter rapidly and efficiently to the general vicinity of the optimum. Once
the region of the optimum has been found, a more elaborate model such as the second-order
model may be employed, and an analysis may be performed to locate the optimum. From Fig.
S14-6, we see that the analysis of a response surface can be thought of as “climbing a hill,”
where the top of the hill represents the point of maximum response. If the true optimum is a
point of minimum response, we may think of “descending into a valley.”

The eventual objective of RSM is to determine the optimum operating conditions for the
system or to determine a region of the factor space in which operating specifications are sat-
isfied. Also, note that the word “optimum” in RSM is used in a special sense. The “hill climb-
ing” procedures of RSM guarantee convergence to a local optimum only.

Method of Steepest Ascent
Frequently, the initial estimate of the optimum operating conditions for the system will be far
from the actual optimum. In such circumstances, the objective of the experimenter is to move rap-
idly to the general vicinity of the optimum. We wish to use a simple and economically efficient
experimental procedure. When we are remote from the optimum, we usually assume that a first-
order model is an adequate approximation to the true surface in a small region of the x’s.

The method of steepest ascent is a procedure for moving sequentially along the path of
steepest ascent, that is, in the direction of the maximum increase in the response. Of course, if
minimization is desired, we are talking about the method of steepest descent. The fitted 
first-order model is

(S14-15)

and the first-order response surface, that is, the contours of , is a series of parallel lines such
as that shown in Fig. S14-7. The direction of steepest ascent is the direction in which 

ŷ

ŷ � �̂0 �a
k

i�1
 �̂i xi
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Figure S14-7 First-
order response surface
and path of steepest 
ascent.
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increases most rapidly. This direction is normal to the fitted response surface contours. We
usually take as the path of steepest ascent the line through the center of the region of interest
and normal to the fitted surface contours. Thus, the steps along the path are proportional to the
regression coefficients . The experimenter determines the actual step size based on
process knowledge or other practical considerations.

Experiments are conducted along the path of steepest ascent until no further increase in
response is observed. Then a new first-order model may be fit, a new direction of steepest as-
cent determined, and further experiments conducted in that direction until the experimenter
feels that the process is near the optimum.

5�̂i6

ŷ
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Figure S14-8 Response surface plots for the first-order model
in Example S14-3.
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EXAMPLE S14-3 In Example S14-2 we described an experiment on a chemical process in which two factors,
reaction time (x1) and reaction temperature (x2), affect the percent conversion or yield (Y ).
Figure S14-3 shows the 22 design plus five center points used in this study. The engineer
found that both factors were important, there was no interaction, and there was no curvature
in the response surface. Therefore, the first-order model

should be appropriate. Now the effect estimate of time is 1.55 hours and the effect estimate of
temperature is 0.65�F, and since the regression coefficients and are one-half of the
corresponding effect estimates, the fitted first-order model is

Figure S14-8(a) and (b) show the contour plot and three-dimensional surface plot of this
model. Figure S14-8 also shows the relationship between the coded variables x1 and x2 (that
defined the high and low levels of the factors) and the original variables, time (in minutes) and
temperature (in �F).

From examining these plots (or the fitted model), we see that to move away from the de-
sign center—the point (x1 � 0, x2 � 0)—along the path of steepest ascent, we would move
0.775 unit in the x1 direction for every 0.325 unit in the x2 direction. Thus, the path of steepest
ascent passes through the point (x1 � 0, x2 � 0) and has a slope 0.325�0.775. The engineer
decides to use 5 minutes of reaction time as the basic step size. Now, 5 minutes of reaction
time is equivalent to a step in the coded variable x1 of �x1 � 1. Therefore, the steps along the
path of steepest ascent are �x1 � 1.0000 and �x2 � (0.325�0.775)�x1 � 0.42. A change of
�x2 � 0.42 in the coded variable x2 is equivalent to about 2�F in the original variable temper-
ature. Therefore, the engineer will move along the path of steepest ascent by increasing
reaction time by 5 minutes and temperature by 2�F. An actual observation on yield will be
determined at each point.

Figure S14-9 shows several points along this path of steepest ascent and the yields actually
observed from the process at those points. At points A–D the observed yield increases steadily, but
beyond point D, the yield decreases. Therefore, steepest ascent would terminate in the vicinity of
55 minutes of reaction time and 163�F with an observed percent conversion of 67%.

ŷ � 40.44 � 0.775x1 � 0.325x2

�̂2�̂1
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Figure S14-9 Steepest ascent experiment for Example S14-3.
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Analysis of a Second-Order Response Surface
When the experimenter is relatively close to the optimum, a second-order model is usually
required to approximate the response because of curvature in the true response surface. The
fitted second-order model is

where denotes the least squares estimate of �. In this section we show how to use this fitted
model to find the optimum set of operating conditions for the x’s and to characterize the nature
of the response surface.

EXAMPLE S14-4 Continuation of Example S14-3
Consider the chemical process from Example S14-3, where the method of steepest ascent
terminated at a reaction time of 55 minutes and a temperature of 163�F. The experimenter decides
to fit a second-order model in this region. Table S14-7 and Fig. S14-10 show the experimental
design, which consists of a 22 design centered at 55 minutes and 165�F, five center points, and four
runs along the coordinate axes called axial runs. This type of design is called a central compos-
ite design, and it is a very popular design for fitting second-order response surfaces.

Two response variables were measured during this phase of the experiment: percentage
conversion (yield) and viscosity. The least-squares quadratic model for the yield response is

The analysis of variance for this model is shown in Table S14-8.
Figure S14-11 shows the response surface contour plot and the three-dimensional surface

plot for this model. From examination of these plots, the maximum yield is about 70%,
obtained at approximately 60 minutes of reaction time and 167�F.

The viscosity response is adequately described by the first-order model

ŷ2 � 37.08 � 3.85x1 � 3.10x2
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Table S14-7 Central Composite Design for Example S14-4

Conversion Viscosity
Observation Time Temperature Coded Variables (percent) (mPa-sec)

Number (minutes) (�F) x1 x2 Response 1 Response 2

1 50 160 
1 
1 65.3 35
2 60 160 1 
1 68.2 39
3 50 170 
1 1 66 36
4 60 170 1 1 69.8 43
5 48 165 
1.414 0 64.5 30
6 62 165 1.414 0 69 44
7 55 158 0 
1.414 64 31
8 55 172 0 1.414 68.5 45
9 55 165 0 0 68.9 37

10 55 165 0 0 69.7 34
11 55 165 0 0 68.5 35
12 55 165 0 0 69.4 36
13 55 165 0 0 69 37
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Table S14-9 summarizes the analysis of variance for this model. The response surface is
shown graphically in Fig. S14-12. Notice that viscosity increases as both time and tempera-
ture increase.

As in most response surface problems, the experimenter in this example had conflicting
objectives regarding the two responses. The objective was to maximize yield, but the accept-
able range for viscosity was 38 � y2 � 42. When there are only a few independent variables,
an easy way to solve this problem is to overlay the response surfaces to find the optimum.
Figure S14-13 shows the overlay plot of both responses, with the contours y1 � 69% conver-
sion, y2 � 38, and y2 � 42 highlighted. The shaded areas on this plot identify unfeasible
combinations of time and temperature. This graph shows that several combinations of time
and temperature will be satisfactory.

Example S14-4 illustrates the use of a central composite design (CCD) for fitting a
second-order response surface model. These designs are widely used in practice because they
are relatively efficient with respect to the number of runs required. In general, a CCD in k

14-17

Figure S14-10
Central composite 
design for Example 
S14-4.
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Table S14-8 Analysis of Variance for the Quadratic Model, Yield Response

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square f0 P-Value

Model 45.89 5 9.178 14.93 0.0013
Residual 4.30 7 0.615
Total 50.19 12

Independent Coefficient Standard t for H0

Variable Estimate Error Coefficient � 0 P-Value

Intercept 69.100 0.351 197.1
x1 1.633 0.277 5.891 0.0006
x2 1.083 0.277 3.907 0.0058
x2

1 
0.969 0.297 
3.259 0.0139
x2

2 
1.219 0.297 
4.100 0.0046
x1x2 0.225 0.392 0.5740 0.5839
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Figure S14-11
Response surface plots
in the yield response,
Example S14-4.

Table S14-9 Analysis of Variance for the First-Order Model, Viscosity Response

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square f0 P-Value

Model 195.4 2 97.72 15.89 0.0008
Residual 61.5 10 6.15
Total 256.9 12

Independent Coefficient Degrees of Standard t for H0

Variable Estimate Freedom Error Coefficient � 0 P-Value

Intercept 37.08 1 0.69 53.91
x1 3.85 1 0.88 4.391 0.0014
x2 3.10 1 0.88 3.536 0.0054
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factors requires 2k factorial runs, 2k axial runs, and at least one center point (three to five cen-
ter points are typically used). Designs for k � 2 and k � 3 factors are shown in Fig. S14-14.

The central composite design may be made rotatable by proper choice of the axial
spacing � in Fig. S14-14. If the design is rotatable, the standard deviation of predicted
response is constant at all points that are the same distance from the center of the design. For
rotatability, choose � � (F)1�4, where F is the number of points in the factorial part of the design
(usually F � 2k ). For the case of k � 2 factors, � � (22)1�4 � 1.414, as was used in the
design in Example S14-4. Figure S14-15 presents a contour plot and a surface plot of the stan-
dard deviation of prediction for the quadratic model used for the yield response. Notice that
the contours are concentric circles, implying that yield is predicted with equal precision for all
points that are the same distance from the center of the design. Also, as one would expect, the
precision decreases with increasing distance from the design center.

ŷ
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Figure S14-14 Central composite designs for k � 2 and k � 3.

Figure S14-13 Overlay of yield and viscosity response surfaces,
Example S14-4.
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Figure S14-15 Plots of constant for a rotatable
central composite design.
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CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
1. Determine situations where nonparametric procedures are better alternatives to the t-test and

ANOVA
2. Use one- and two-sample nonparametric tests
3. Use nonparametric alternatives to the single-factor ANOVA
4. Understand how nonparametric tests compare to the t-test in terms of relative efficiency

Answers for most odd numbered exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

15-1 INTRODUCTION

15-2 SIGN TEST

15-2.1 Description of the Test

15-2.2 Sign Test for Paired Samples

15-2.3 Type II Error for the Sign Test

15-2.4 Comparison to the t-Test

15-3 WILCOXON SIGNED-RANK 
TEST

15-3.1 Description of the Test

15-3.2 Large-Sample Approximation

15-3.3 Paired Observations

15-3.4 Comparison to the t-Test

15-4 WILCOXON RANK-SUM TEST

15-4.1 Description of the Test

15-4.2 Large-Sample Approximation

15-4.3 Comparison to the t-Test

15-5 NONPARAMETRIC METHODS IN
THE ANALYSIS OF VARIANCE

15-5.1 Kruskal-Wallis Test

15-5.2 Rank Transformation

15Nonparametric
Statistics
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572 CHAPTER 15 NONPARAMETRIC STATISTICS

15-1 INTRODUCTION

Most of the hypothesis-testing and confidence interval procedures discussed in previous chap-
ters are based on the assumption that we are working with random samples from normal popu-
lations. Traditionally, we have called these procedures parametric methods because they are
based on a particular parametric family of distributions—in this case, the normal. Alternately,
sometimes we say that these procedures are not distribution-free because they depend on the as-
sumption of normality. Fortunately, most of these procedures are relatively insensitive to slight
departures from normality. In general, the t- and F-tests and the t-confidence intervals will have
actual levels of significance or confidence levels that differ from the nominal or advertised lev-
els chosen by the experimenter, although the difference between the actual and advertised levels
is usually fairly small when the underlying population is not too different from the normal.

In this chapter we describe procedures called nonparametric and distribution-free
methods, and we usually make no assumptions about the distribution of the underlying pop-
ulation other than that it is continuous. These procedures have actual level of significance � or
confidence level 100(1 � �)% for many different types of distributions. These procedures
have considerable appeal. One of their advantages is that the data need not be quantitative but
can be categorical (such as yes or no, defective or nondefective) or rank data. Another advan-
tage is that nonparametric procedures are usually very quick and easy to perform.

The procedures described in this chapter are competitors of the parametric t- and 
F-procedures described earlier. Consequently, it is important to compare the performance of
both parametric and nonparametric methods under the assumptions of both normal and non-
normal populations. In general, nonparametric procedures do not utilize all the information
provided by the sample. As a result, a nonparametric procedure will be less efficient than the
corresponding parametric procedure when the underlying population is normal. This loss of
efficiency is reflected by a requirement of a larger sample size for the nonparametric proce-
dure than would be required by the parametric procedure in order to achieve the same power.
On the other hand, this loss of efficiency is usually not large, and often the difference in sam-
ple size is very small. When the underlying distributions are not close to normal, nonparamet-
ric methods have much to offer. They often provide considerable improvement over the
normal-theory parametric methods.

Generally, if both parametric and nonparametric methods are applicable to a particular
problem, we should use the more efficient parametric procedure. However, the assumptions for
the parametric method may be difficult or impossible to justify. For example, the data may be in
the form of ranks. These situations frequently occur in practice. For instance, a panel of judges
may be used to evaluate 10 different formulations of a soft-drink beverage for overall quality,
with the “best’’ formulation assigned rank 1, the “next-best’’ formulation assigned rank 2, and so
forth. It is unlikely that rank data satisfy the normality assumption. Many nonparametric meth-
ods involve the analysis of ranks and consequently are ideally suited to this type of problem.

15-2 SIGN TEST

15-2.1 Description of the Test

The sign test is used to test hypotheses about the median of a continuous distribution.
The median of a distribution is a value of the random variable X such that the probability
is 0.5 that an observed value of X is less than or equal to the median, and the probability is
0.5 that an observed value of X is greater than or equal to the median. That is,
P1X � �̃2 � P1X � �̃2 � 0.5.

�̃
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15-2 SIGN TEST 573

Since the normal distribution is symmetric, the mean of a normal distribution equals the
median. Therefore, the sign test can be used to test hypotheses about the mean of a normal dis-
tribution. This is the same problem for which we used the t-test in Chapter 9. We will discuss
the relative merits of the two procedures in Section 15-2.4. Note that, although the t-test was
designed for samples from a normal distribution, the sign test is appropriate for samples from
any continuous distribution. Thus, the sign test is a nonparametric procedure.

Suppose that the hypotheses are

(15-1)

The test procedure is easy to describe. Suppose that X1, X2, . . . , Xn is a random sample from
the population of interest. Form the differences

(15-2)

Now if the null hypothesis is true, any difference is equally likely
to be positive or negative. An appropriate test statistic is the number of these differences that
are positive, say R�. Therefore, to test the null hypothesis we are really testing that the
number of plus signs is a value of a binomial random variable that has the parameter p � 1�2. 
A P-value for the observed number of plus signs r� can be calculated directly from the bino-
mial distribution. For instance, in testing the hypotheses in Equation 15-1, we will reject H0 in
favor of H1 only if the proportion of plus signs is sufficiently less than 1�2 (or equivalently,
whenever the observed number of plus signs r� is too small). Thus, if the computed P-value

is less than or equal to some preselected significance level �, we will reject H0 and conclude
H1 is true.

To test the other one-sided hypothesis

(15-3)

we will reject H0 in favor of H1 only if the observed number of plus signs, say r�, is large or,
equivalently, whenever the observed fraction of plus signs is significantly greater than 1�2.
Thus, if the computed P-value

is less than �, we will reject H0 and conclude that H1 is true.
The two-sided alternative may also be tested. If the hypotheses are

(15-4)H1: �� 	 ��0

H0: �� � ��0

P � P  aR� � r� when p �
1
2
b

H1: �� 
 ��0

H0: �� � ��0

P � P  aR� � r� when p �
1
2
b

Xi � ��0H0: �� � ��0

Xi � ��0,  i � 1, 2, . . . , n

H1: �� � ��0

H0: �� � ��0
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574 CHAPTER 15 NONPARAMETRIC STATISTICS

we should reject if the proportion of plus signs is significantly different (either
less than or greater than) from 1�2. This is equivalent to the observed number of plus signs r�

being either sufficiently large or sufficiently small. Thus, if r� � n�2 the P-value is

and if r� 
 n�2 the P-value is

If the P-value is less than some preselected level �, we will reject H0 and conclude that H1 is true.

EXAMPLE 15-1 Montgomery, Peck, and Vining (2001) report on a study in which a rocket motor is formed by
binding an igniter propellant and a sustainer propellant together inside a metal housing. The
shear strength of the bond between the two propellant types is an important characteristic. The
results of testing 20 randomly selected motors are shown in Table 15-1. We would like to test
the hypothesis that the median shear strength is 2000 psi, using � � 0.05.

This problem can be solved using the eight-step hypothesis-testing procedure introduced
in Chapter 9:

1. The parameter of interest is the median of the distribution of propellant shear strength.

2.

3.

4. � � 0.05

H1: �� 	 2000 psi

H0: �� � 2000 psi

P � 2P  aR� � r� when p �
1
2
b

P � 2P  aR� � r� when p �
1
2
b

H0: �� � �0
�

Table 15-1 Propellant Shear Strength Data

Observation Shear Strength Differences
i xi xi � 2000 Sign

1 2158.70 �158.70 �

2 1678.15 �321.85 �

3 2316.00 �316.00 �

4 2061.30 �61.30 �

5 2207.50 �207.50 �

6 1708.30 �291.70 �

7 1784.70 �215.30 �

8 2575.10 �575.10 �

9 2357.90 �357.90 �

10 2256.70 �256.70 �

11 2165.20 �165.20 �

12 2399.55 �399.55 �

13 1779.80 �220.20 �

14 2336.75 �336.75 �

15 1765.30 �234.70 �

16 2053.50 �53.50 �

17 2414.40 �414.40 �

18 2200.50 �200.50 �

19 2654.20 �654.20 �

20 1753.70 �246.30 �
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15-2 SIGN TEST 575

5. The test statistic is the observed number of plus differences in Table 15-1, or 
r� � 14.

6. We will reject H0 if the P-value corresponding to r� � 14 is less than or equal to 
� � 0.05.

7. Computations: Since r� � 14 is greater than n�2 � 20�2 � 10, we calculate the 
P-value from

8. Conclusions: Since P � 0.1153 is not less than � � 0.05, we cannot reject the null
hypothesis that the median shear strength is 2000 psi. Another way to say this is that
the observed number of plus signs r� � 14 was not large or small enough to indi-
cate that median shear strength is different from 2000 psi at the � � 0.05 level of
significance. 

It is also possible to construct a table of critical values for the sign test. This table is
shown as Appendix Table VII. The use of this table for the two-sided alternative hypothesis in
Equation 15-4 is simple. As before, let R� denote the number of the differences ( ) that
are positive and let R� denote the number of these differences that are negative. Let R � min 
(R�, R�). Appendix Table VII presents critical values r*� for the sign test that ensure that P
(type I error) � P (reject H0 when H0 is true) � � for � � 0.01, � � 0.05 and � � 0.10. If
the observed value of the test statistic r � r*�, the null hypothesis should be
rejected.

To illustrate how this table is used, refer to the data in Table 15-1 that was used in
Example 15-1. Now r� � 14 and r� � 6; therefore, r � min (14, 6) � 6. From Appendix
Table VII with n � 20 and � � 0.05, we find that r*0.05 � 5. Since r � 6 is not less than or
equal to the critical value r*0.05 � 5, we cannot reject the null hypothesis that the median shear
strength is 2000 psi.

We can also use Appendix Table VII for the sign test when a one-sided alternative
hypothesis is appropriate. If the alternative is reject if r� � r*�;
if the alternative is reject if r� � r*�. The level of significance of
a one-sided test is one-half the value for a two-sided test. Appendix Table VII shows the
one-sided significance levels in the column headings immediately below the two-sided
levels.

Finally, note that when a test statistic has a discrete distribution such as R does in the sign
test, it may be impossible to choose a critical value r*� that has a level of significance exactly
equal to �. The approach used in Appendix Table VII is to choose r*� to yield an � that is as
close to the advertised significance level � as possible.

Ties in the Sign Test
Since the underlying population is assumed to be continuous, there is a zero probability that
we will find a “tie”—that is, a value of Xi exactly equal to . However, this may sometimes
happen in practice because of the way the data are collected. When ties occur, they should be
set aside and the sign test applied to the remaining data.

�0
�

H0: �� � ��0H1: �� 
 ��0,
H0: �� � ��0H1: �� 
 ��0,

H0: �� � ��0

Xi � ��0

 � 0.1153

 � 2 a
20

r�14
 
a20

r
b 10.52r 10.5220�r

P � 2P  aR� � 14 when p �
1
2
b
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576 CHAPTER 15 NONPARAMETRIC STATISTICS

The Normal Approximation
When p � 0.5, the binomial distribution is well approximated by a normal distribution when
n is at least 10. Thus, since the mean of the binomial is np and the variance is np(1 � p), the
distribution of R� is approximately normal with mean 0.5n and variance 0.25n whenever n is
moderately large. Therefore, in these cases the null hypothesis can be tested using
the statistic

H0: �� � ��0

(15-5)Z0 �
R� � 0.5n

0.51n

The two-sided alternative would be rejected if the observed value of the test statistic
, and the critical regions of the one-sided alternative would be chosen to reflect the

sense of the alternative. (If the alternative is , reject H0 if z0 
 z�, for example.)

EXAMPLE 15-2 We will illustrate the normal approximation procedure by applying it to the problem in
Example 15-1. Recall that the data for this example are in Table 15-1. The eight-step proce-
dure follows:

1. The parameter of interest is the median of the distribution of propellant shear strength.

2.

3.

4. � � 0.05

5. The test statistic is

6. Since � � 0.05, we will reject H0 in favor of H1 if 

7. Computations: Since r� � 14, the test statistic is

8. Conclusions: Since z0 � 1.789 is not greater than z0.025 � 1.96, we cannot reject the
null hypothesis. Thus, our conclusions are identical to those in Example 15-1.

15-2.2 Sign Test for Paired Samples

The sign test can also be applied to paired observations drawn from continuous populations.
Let (X1j, X2j), j � 1, 2, . . . , n be a collection of paired observations from two continuous pop-
ulations, and let

Dj � X1j � X2j  j � 1, 2, . . . , n

z0 �
14 � 0.51202

0.5220
� 1.789

0 z0 0 
 z0.025 � 1.96.

z0 �
r� � 0.5n

0.51n

H1: �� 	 2000 psi

H0: �� � 2000 psi

H1: �� 
 ��0

0 z0 0 
 z��2
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15-2 SIGN TEST 577

be the paired differences. We wish to test the hypothesis that the two populations have a
common median, that is, that . This is equivalent to testing that the median of the
differences . This can be done by applying the sign test to the n observed differences
dj, as illustrated in the following example.

EXAMPLE 15-3 An automotive engineer is investigating two different types of metering devices for an
electronic fuel injection system to determine whether they differ in their fuel mileage
performance. The system is installed on 12 different cars, and a test is run with each meter-
ing device on each car. The observed fuel mileage performance data, corresponding differ-
ences, and their signs are shown in Table 15-2. We will use the sign test to determine whether
the median fuel mileage performance is the same for both devices using � � 0.05. The eight-
step-procedure follows:

1. The parameters of interest are the median fuel mileage performance for the two
metering devices.

2. , or, equivalently, 

3. , or, equivalently, 

4. � � 0.05

5. We will use Appendix Table VII to conduct the test, so the test statistic is r �
min(r�, r�).

6. Since � � 0.05 and n � 12, Appendix Table VII gives the critical values as r*0.05 � 2.
We will reject H0 in favor of H1 if r � 2.

7. Computations: Table 15-2 shows the differences and their signs, and we note that
r� � 8, r� � 4, and so r � min(8, 4) � 4.

8. Conclusions: Since r � 4 is not less than or equal to the critical value r*0.05 � 2, we
cannot reject the null hypothesis that the two devices provide the same median fuel
mileage performance.

H1: �D
� 	 0H1: ��1 	 �2

�
H0: �D

� � 0H0: ��1 � �2
�

�D
� � 0

�1
� � �2

�

Table 15-2 Performance of Flow Metering Devices

Metering Device

Car 1 2 Difference, dj Sign

1 17.6 16.8 0.8 �

2 19.4 20.0 �0.6 �

3 19.5 18.2 1.3 �

4 17.1 16.4 0.7 �

5 15.3 16.0 �0.7 �

6 15.9 15.4 0.5 �

7 16.3 16.5 �0.2 �

8 18.4 18.0 0.4 �

9 17.3 16.4 0.9 �

10 19.1 20.1 �1.0 �

11 17.8 16.7 1.1 �

12 18.2 17.9 0.3 �
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578 CHAPTER 15 NONPARAMETRIC STATISTICS

15-2.3 Type II Error for the Sign Test

The sign test will control the probability of type I error at an advertised level � for testing the null
hypothesis for any continuous distribution. As with any hypothesis-testing procedure,
it is important to investigate the probability of a type II error, 
. The test should be able to effec-
tively detect departures from the null hypothesis, and a good measure of this effectiveness is the
value of 
 for departures that are important. A small value of 
 implies an effective test procedure.

In determining 
, it is important to realize not only that a particular value of , say ,
must be used but also that the form of the underlying distribution will affect the calculations. To
illustrate, suppose that the underlying distribution is normal with � � 1 and we are testing the
hypothesis versus . (Since in the normal distribution, this is equiv-
alent to testing that the mean equals 2.) Suppose that it is important to detect a departure from

to . The situation is illustrated graphically in Fig. 15-1(a). When the alternative
hypothesis is true (H1: ), the probability that the random variable X is less than or equal to
the value 2 is

Suppose we have taken a random sample of size 12. At the � � 0.05 level, Appendix Table VII
indicates that we would reject if r� � r*0.05 � 2. Therefore, 
 is the probability that
we do not reject when in fact , or


 � 1 � a
2

x�0
 
a12

x
b 10.15872x10.8413212�x � 0.2944

�� � 3H0: �� � 2
H0: �� � 2

p � P1X � 22 � P1Z � �12 � �1�12 � 0.1587

�� � 3
�� � 3�� � 2

�� � �H1: �� 
 2H0: �� � 2

��0 � ���

H0: �� � ��

x6543210–1

= 1σ

0.1587

x543210–1

= 1σ

Under H1 : µ = 3∼Under H0 : µ = 2∼

(a)

µ = 2∼ µ = 2.89

Under H0 : µ = 2∼

2 µ = 4.33

Under H1 : µ = 3∼

(b)

0.3699

xx

Figure 15-1 Calcula-
tion of 
 for the sign
test. (a) Normal 
distributions. (b)
Exponential 
distributions.
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15-2 SIGN TEST 579

If the distribution of X had been exponential rather than normal, the situation would be as
shown in F and the probability that the random variable X is less than or equal
to the valu
is 3, the m

In this case

Thus, 
area to the
ity distribu
tribution.

15-2.4 Comparison to the

If the unde

have signifi
gions for t
case. Whe

), th
tribution h
ered a test
Wilcoxon 
compares 

� � ��

H0: �� � ��

EXERCISES FOR SECTION 1

15-1. Ten samples were taken from
electronics manufacturing process, a
mined. The sample pH values are 7.9
6.95, 7.05, 7.35, 7.25, 7.42. Manuf
lieves that pH has a median value of
indicate that this statement is correc
� � 0.05 to investigate this hypothe
this test.

15-2. The titanium content in an 
important determinant of strength. A 
reveals the following titanium conten

8.32, 8.05, 8.93, 8.65, 8.25, 8.46, 8.5
8.30, 8.71, 8.75, 8.60, 8.83, 8.50, 8.3
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ig. 15-1(b), 

e x � 2 when (note that when the median of an exponential distribution
ean is 4.33) is

,


 for the sign test depends not only on the alternative value of but also on the
 right of the value specified in the null hypothesis under the population probabil-
tion. This area is highly dependent on the shape of that particular probability dis-

 t-Test

rlying population is normal, either the sign test or the t-test could be used to test
. The t-test is known to have the smallest value of 
 possible among all tests that
cance level � for the one-sided alternative and for tests with symmetric critical re-

he two-sided alternative, so it is superior to the sign test in the normal distribution
n the population distribution is symmetric and nonnormal (but with finite mean
e t-test will have a smaller 
 (or a higher power) than the sign test, unless the dis-
as very heavy tails compared with the normal. Thus, the sign test is usually consid-
 procedure for the median rather than as a serious competitor for the t-test. The
signed-rank test discussed in the next section is preferable to the sign test and

well with the t-test for symmetric distributions.

0

��


 � 1 � a
2

x�0
 a12

x
b 10.36992x10.6301212�x � 0.8794

p � P1X � 22 � �
2

0

1
4.33

  e�
1

4.33x dx � 0.3699

�� � 3

5-2

 a plating bath used in an
nd the bath pH was deter-
1, 7.85, 6.82, 8.01, 7.46,

acturing engineering be-
 7.0. Do the sample data
t? Use the sign test with
sis. Find the P-value for

aircraft-grade alloy is an
sample of 20 test coupons
t (in percent):

2, 8.35, 8.36, 8.41, 8.42,
8, 8.29, 8.46

The median titanium content should be 8.5%. Use the sign test
with � � 0.05 to investigate this hypothesis. Find the P-value
for this test.

15-3. The impurity level (in ppm) is routinely measured in
an intermediate chemical product. The following data were
observed in a recent test:

2.4, 2.5, 1.7, 1.6, 1.9, 2.6, 1.3, 1.9, 2.0, 2.5, 2.6, 2.3, 2.0, 1.8,
1.3, 1.7, 2.0, 1.9, 2.3, 1.9, 2.4, 1.6

Can you claim that the median impurity level is less than 
2.5 ppm? State and test the appropriate hypothesis using the
sign test with � � 0.05. What is the P-value for this 
test?
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15-4. Consider the data in Exercise 15-1. Use the normal
approximation for the sign test to test versus

What is the P-value for this test?

15-5. Consider the compressive strength data in Exercise
8-26.
(a) Use the sign test to investigate the claim that the median

strength is at least 2250 psi. Use � � 0.05.
(b) Use the normal approximation to test the same hypothesis

that you formulated in part (a). What is the P-value for
this test?

15-6. Consider the margarine fat content data in Exercise 
8-25. Use the sign test to test versus

, with � � 0.05. Find the P-value for the test
statistic and use this quantity to make your decision.

15-7. Consider the data in Exercise 15-2. Use the normal
approximation for the sign test to test versus

, with � � 0.05. What is the P-value for this 
test?

15-8. Consider the data in Exercise 15-3. Use the normal
approximation for the sign test to test versus

. What is the P-value for this test?

15-9. Two different types of tips can be used in a Rockwell
hardness tester. Eight coupons from test ingots of a nickel-
based alloy are selected, and each coupon is tested twice, once
with each tip. The Rockwell C-scale hardness readings are
shown in the following table. Use the sign test with � � 0.05
to determine whether or not the two tips produce equivalent
hardness readings.

H1: �� � 2.5
H0: �� � 2.5

H1: �� 	 8.5
H0: �� � 8.5

H1: �� 	 17.0
H0: �� � 17.0

H1: �� 	 7.0.
H0: �� � 7.0

Coupon Tip 1 Tip 2

1 63 60

2 52 51

3 58 56

4 60 59

5 55 58

6 57 54

7 53 52

8 59 61

Drying Times (in hr)

Panel Formulation 1 Formulation 2

1 1.6 1.8

2 1.3 1.5

3 1.5 1.5

4 1.6 1.7

5 1.7 1.6

6 1.9 2.0

7 1.8 2.1

8 1.6 1.7

9 1.4 1.6

10 1.8 1.9

11 1.9 2.0

12 1.8 1.9

13 1.7 1.5

14 1.5 1.7

15 1.6 1.6

16 1.4 1.2

17 1.3 1.6

18 1.6 1.8

19 1.5 1.6

20 1.8 2.0

Inspector Caliper 1 Caliper 2

1 0.265 0.264

2 0.265 0.265

3 0.266 0.264

4 0.267 0.266

5 0.267 0.267

6 0.265 0.268

7 0.267 0.264

8 0.267 0.265

9 0.265 0.265

10 0.268 0.267

11 0.268 0.268

12 0.265 0.269

15-11. Use the normal approximation to the sign test for the
data in Exercise 15-10. What conclusions can you draw?

15-12. The diameter of a ball bearing was measured by 12
inspectors, each using two different kinds of calipers. The
results were as follows:

15-10. Two different formulations of primer paint can be
used on aluminum panels. The drying time of these two for-
mulations is an important consideration in the manufacturing
process. Twenty panels are selected; half of each panel is
painted with primer 1, and the other half is painted with
primer 2. The drying times are observed and reported in the
following table. Is there evidence that the median drying
times of the two formulations are different? Use the sign test
with � � 0.01.

Is there a significant difference between the medians of the
population of measurements represented by the two samples?
Use � � 0.05.
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15-3 WILCOXON SIGNED-RANK TEST

The sign test makes use only of the plus and minus signs of the differences between the ob-
servations and the median (or the plus and minus signs of the differences between the
observations in the paired case). It does not take into account the size or magnitude of these
differences. Frank Wilcoxon devised a test procedure that uses both direction (sign) and mag-
nitude. This procedure, now called the Wilcoxon signed-rank test, is discussed and illus-
trated in this section.

The Wilcoxon signed-rank test applies to the case of symmetric continuous distribu-
tions. Under these assumptions, the mean equals the median, and we can use this procedure to
test the null hypothesis that m 5 m0. We now show how to do this.

15-3.1 Description of the Test

We are interested in testing H0: � � �0 against the usual alternatives. Assume that X1, 
X2, . . . , Xn is a random sample from a continuous and symmetric distribution with mean (and
median) �. Compute the differences Xi � �0, i � 1, 2, . . . , n. Rank the absolute differences

in ascending order, and then give the ranks the signs of their
corresponding differences. Let W� be the sum of the positive ranks and W� be the absolute
value of the sum of the negative ranks, and let W � min(W�, W�). Appendix Table VIII con-
tains critical values of W, say w*�. If the alternative hypothesis is , then if the ob-
served value of the statistic w � w*�, the null hypothesis H0: � � �0 is rejected. Appendix
Table VIII provides significance levels of � � 0.10, � � 0.05, � � 0.02, � � 0.01 for the
two-sided test.

For one-sided tests, if the alternative is H1: � � �0, reject H0: � � �0 if w� � w*�; and if
the alternative is H1: � 	 �0, reject H0: � � �0 if w� � w*�. The significance levels for one-
sided tests provided in Appendix Table VIII are � � 0.05, 0.025, 0.01, and 0.005.

H1: � 
 �0

0  Xi � �0 0  , i � 1, 2, . . . , n

��0

15-13. Consider the blood cholesterol data in Exercise 
10-39. Use the sign test to determine whether there is any dif-
ference between the medians of the two groups of measure-
ments, with � � 0.05. What practical conclusion would you
draw from this study?

15-14. Use the normal approximation for the sign test for
the data in Exercise 15-12. With � � 0.05, what conclusions
can you draw?

15-15. Use the normal approximation to the sign test for
the data in Exercise 15-13. With � � 0.05, what conclusions
can you draw?

15-16. The distribution time between arrivals in a telecom-
munication system is exponential, and the system manager
wishes to test the hypothesis that minutes versus

minutes.
(a) What is the value of the mean of the exponential distribu-

tion under ?
(b) Suppose that we have taken a sample of n � 10 observa-

tions and we observe r� � 3. Would the sign test reject H0

at � � 0.05?

H0: �� � 3.5

H1: �� � 3.5
H0: �� � 3.5

(c) What is the type II error probability of this test if 
?

15-17. Suppose that we take a sample of n � 10 measure-
ments from a normal distribution with � � 1. We wish to test
H0: � � 0 against H1: � � 0. The normal test statistic is

( ), and we decide to use a critical region of 1.96
(that is, reject H0 if z0 � 1.96).
(a) What is � for this test?
(b) What is 
 for this test, if � � 1?
(c) If a sign test is used, specify the critical region that gives

an � value consistent with � for the normal test.
(d) What is the 
 value for the sign test, if � � 1? Compare

this with the result obtained in part (b).

15-18. Consider the test statistic for the sign test in
Exercise 15-9. Find the P-value for this statistic.

15-19. Consider the test statistic for the sign test in Exercise
15-10. Find the P-value for this statistic. Compare it to the 
P-value for the normal approximation test statistic computed
in Exercise 15-11.

��1nZ0 � X �

4.5
��  �
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Observation Difference xi � 2000 Signed Rank

16 �53.50 �1
4 �61.30 �2
1 �158.70 �3

11 �165.20 �4
18 �200.50 �5
5 �207.50 �6
7 �215.30 �7

13 �220.20 �8
15 �234.70 �9
20 �246.30 �10
10 �256.70 �11
6 �291.70 �12
3 �316.00 �13
2 �321.85 �14

14 �336.75 �15
9 �357.90 �16

12 �399.55 �17
17 �414.40 �18
8 �575.10 �19

19 �654.20 �20

EXAMPLE 15-4 We will illustrate the Wilcoxon signed-rank test by applying it to the propellant shear strength
data from Table 15-1. Assume that the underlying distribution is a continuous symmetric dis-
tribution. The eight-step procedure is applied as follows:

1. The parameter of interest is the mean (or median) of the distribution of propellant
shear strength.

2. H0: � � 2000 psi

3. H1: � � 2000 psi

4. � � 0.05

5. The test statistic is

6. We will reject H0 if w � w*0.05 � 52 from Appendix Table VIII.

7. Computations: The signed ranks from Table 15-1 are shown in the following table:

w � min1w�, w�2

The sum of the positive ranks is w� � (1 � 2 � 3 � 4 � 5 � 6 � 11 � 13 � 15 �
16 � 17 � 18 � 19 � 20) � 150, and the sum of the absolute values of the negative
ranks is w� � (7 � 8 � 9 � 10 � 12 � 14) � 60. Therefore,

8. Conclusions: Since w � 60 is not less than or equal to the critical value w0.05 � 52,
we cannot reject the null hypothesis that the mean (or median, since the population is
assumed to be symmetric) shear strength is 2000 psi.

w � min1150, 602 � 60
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Ties in the Wilcoxon Signed-Rank Test
Because the underlying population is continuous, ties are theoretically impossible, although
they will sometimes occur in practice. If several observations have the same absolute magni-
tude, they are assigned the average of the ranks that they would receive if they differed slightly
from one another.

15-3.2 Large-Sample Approximation

If the sample size is moderately large, say n 
 20, it can be shown that W� (or W�) has
approximately a normal distribution with mean

and variance

Therefore, a test of H0: � � �0 can be based on the statistic

�2
W� �

n1n � 12 12n � 12
24

�W� �
n1n � 12

4

(15-6)Z0 �
W� � n1n � 12�42n1n � 12 12n � 12�24

An appropriate critical region for either the two-sided or one-sided alternative hypotheses can
be chosen from a table of the standard normal distribution.

15-3.3 Paired Observations

The Wilcoxon signed-rank test can be applied to paired data. Let (X1j, X2j), j � 1, 2, . . . , n be
a collection of paired observations from two continuous distributions that differ only with re-
spect to their means. (It is not necessary that the distributions of X1 and X2 be symmetric.) This
assures that the distribution of the differences Dj � X1j � X2j is continuous and symmetric.
Thus, the null hypothesis is H0: �1 � �2, which is equivalent to H0: �D � 0. We initially con-
sider the two-sided alternative H1: �1 � �2 (or H1: �D � 0).

To use the Wilcoxon signed-rank test, the differences are first ranked in ascending order of
their absolute values, and then the ranks are given the signs of the differences. Ties are assigned
average ranks. Let W� be the sum of the positive ranks and W� be the absolute value of the sum
of the negative ranks, and W � min(W�, W�). If the observed value w � w*�, the null hypoth-
esis H0: �1 � �2 (or H0: �D � 0) is rejected where w*� is chosen from Appendix Table VIII.

For one-sided tests, if the alternative is H1: �1 
 �2 (or H1: �D 
 0), reject H0 if w� � w*�;
and if H1: �1 � �2 (or H1: �D � 0), reject H0 if w� � w*�. Be sure to use the one-sided test
significance levels shown in Appendix Table VIII.

EXAMPLE 15-5 We will apply the Wilcoxon signed-rank test to the fuel-metering device test data used previously
in Example 15-3. The eight-step hypothesis-testing procedure can be applied as follows:

1. The parameters of interest are the mean fuel mileage performance for the two meter-
ing devices.
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2. H0: �1 � �2 or, equivalently, H0: �D � 0

3. H1: �1 � �2 or, equivalently, H1: �D � 0

4. � � 0.05

5. The test statistic is

where w� and w� are the sums of the positive and negative ranks of the differences
in Table 15-2.

6. Since � � 0.05 and n � 12, Appendix Table VIII gives the critical value as w*0.05 � 13.
We will reject H0: �D � 0 if w � 13.

7. Computations: Using the data in Table 15-2, we compute the following signed ranks:

w � min1w�, w�2

Car Difference Signed Rank

7 �0.2 �1
12 0.3 2
8 0.4 3
6 0.5 4
2 �0.6 �5
4 0.7 6.5
5 �0.7 �6.5
1 0.8 8
9 0.9 9

10 �1.0 �10
11 1.1 11
3 1.3 12

Note that w� � 55.5 and w� � 22.5. Therefore,

8. Conclusions: Since w � 22.5 is not less than or equal to w*0.05 � 13, we cannot reject the
null hypothesis that the two metering devices produce the same mileage performance.

15-3.4 Comparison to the t-Test

When the underlying population is normal, either the t-test or the Wilcoxon signed-rank test
can be used to test hypotheses about �. As mentioned earlier, the t-test is the best test in such
situations in the sense that it produces a minimum value of 
 for all tests with significance
level �. However, since it is not always clear that the normal distribution is appropriate, and
since in many situations it is inappropriate, it is of interest to compare the two procedures for
both normal and nonnormal populations.

Unfortunately, such a comparison is not easy. The problem is that 
 for the Wilcoxon
signed-rank test is very difficult to obtain, and 
 for the t-test is difficult to obtain for nonnormal
distributions. Because type II error comparisons are difficult, other measures of comparison
have been developed. One widely used measure is asymptotic relative efficiency (ARE).

w � min155.5, 22.52 � 22.5
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15-4 WILCOXON RANK-SUM TEST

Suppose that we have two independent continuous populations X1 and X2 with means �1 and
�2. Assume that the distributions of X1 and X2 have the same shape and spread and differ only
(possibly) in their locations. The Wilcoxon rank-sum test can be used to test the hypothesis
H0: �1 � �2. This procedure is sometimes called the Mann-Whitney test, although the Mann-
Whitney test statistic is usually expressed in a different form.

15-4.1 Description of the Test

Let X11, X12, . . . , and X21, X22, . . . , be two independent random samples of sizes n1 �
n2 from the continuous populations X1 and X2 described earlier. We wish to test the hypotheses

H1: �1 	 �2

H0: �1 � �2

X2n2
X1n1

15-20. Consider the data in Exercise 15-1 and assume that
the distribution of pH is symmetric and continuous. Use the
Wilcoxon signed-rank test with � � 0.05 to test the hypothe-
sis H0: � � 7 against H1: � � 7.

15-21. Consider the data in Exercise 15-2. Suppose that the
distribution of titanium content is symmetric and continuous.
Use the Wilcoxon signed-rank test with � � 0.05 to test the
hypothesis H0: � � 8.5 versus H1: � � 8.5.

15-22. Consider the data in Exercise 15-2. Use the large-
sample approximation for the Wilcoxon signed-rank test to test
the hypothesis H0: � � 8.5 versus H1: � � 8.5. Use � � 0.05.
Assume that the distribution of titanium content is continuous
and symmetric.

15-23. Consider the data in Exercise 15-3. Use the Wilcoxon
signed-rank test to test the hypothesis H0: � � 2.5 ppm versus
H1: � � 2.5 ppm with � � 0.05. Assume that the distribution of
impurity level is continuous and symmetric.

15-24. Consider the Rockwell hardness test data in
Exercise 15-9. Assume that both distributions are continuous
and use the Wilcoxon signed-rank test to test that the mean
difference in hardness readings between the two tips is zero.
Use � � 0.05.

15-25. Consider the paint drying time data in Exercise 15-10.
Assume that both populations are continuous, and use the
Wilcoxon signed-rank test to test that the difference in mean
drying times between the two formulations is zero. Use 
� � 0.01.

15-26. Apply the Wilcoxon signed-rank test to the meas-
urement data in Exercise 15-12. Use � � 0.05 and as-
sume that the two distributions of measurements are contin-
uous.

15-27. Apply the Wilcoxon signed-rank test to the blood cho-
lesterol data from Exercise 10-39. Use � � 0.05 and assume that
the two distributions are continuous.

EXERCISES FOR SECTION 15-3

The ARE of one test relative to another is the limiting ratio of the sample sizes necessary to
obtain identical error probabilities for the two procedures. For example, if the ARE of one test
relative to the competitor is 0.5, when sample sizes are large, the first test will require twice as
large a sample as the second one to obtain similar error performance. While this does not tell
us anything for small sample sizes, we can say the following:

1. For normal populations, the ARE of the Wilcoxon signed-rank test relative to the
t-test is approximately 0.95.

2. For nonnormal populations, the ARE is at least 0.86, and in many cases it will exceed
unity.

Although these are large-sample results, we generally conclude that the Wilcoxon signed-rank
test will never be much worse than the t-test and that in many cases where the population is non-
normal it may be superior. Thus, the Wilcoxon signed-rank test is a useful alternate to the t-test.
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The test procedure is as follows. Arrange all n1 � n2 observations in ascending order of
magnitude and assign ranks to them. If two or more observations are tied (identical), use the
mean of the ranks that would have been assigned if the observations differed.

Let W1 be the sum of the ranks in the smaller sample (1), and define W2 to be the sum of
the ranks in the other sample. Then,

(15-7)

Now if the sample means do not differ, we will expect the sum of the ranks to be nearly equal
for both samples after adjusting for the difference in sample size. Consequently, if the sums of
the ranks differ greatly, we will conclude that the means are not equal.

Appendix Table IX contains the critical value of the rank sums for � � 0.05 and � � 0.01
assuming the two-sided alternative above. Refer to Appendix Table IX with the appropriate
sample sizes n1 and n2, and the critical value w� can be obtained. The null H0: �1 � �2 is
rejected in favor of H1: �1 � �2 if either of the observed values w1 or w2 is less than or equal
to the tabulated critical value w�.

The procedure can also be used for one-sided alternatives. If the alternative is H1: �1 � �2,
reject H0 if w1 � w�; for H1: �1 
 �2, reject H0 if w2 � w�. For these one-sided tests, the tabu-
lated critical values w� correspond to levels of significance of � � 0.025 and � � 0.005.

EXAMPLE 15-6 The mean axial stress in tensile members used in an aircraft structure is being studied. Two alloys
are being investigated. Alloy 1 is a traditional material, and alloy 2 is a new aluminum-lithium al-
loy that is much lighter than the standard material. Ten specimens of each alloy type are tested,
and the axial stress is measured. The sample data are assembled in Table 15-3. Using � = 0.05, we
wish to test the hypothesis that the means of the two stress distributions are identical.

We will apply the eight-step hypothesis-testing procedure to this problem:

1. The parameters of interest are the means of the two distributions of axial stress.

2. H0: �1 � �2

3. H1: �1 � �2

4. � � 0.05

5. We will use the Wilcoxon rank-sum test statistic in Equation 15-7,

6. Since � � 0.05 and n1 � n2 � 10, Appendix Table IX gives the critical value as w0.05 �
78. If either w1 or w2 is less than or equal to w0.05 � 78, we will reject H0: �1 � �2.

w2 �
1n1 � n22 1n1 � n2 � 12

2
� w1

W2 �
1n1 � n22 1n1 � n2 � 12

2
� W1

Table 15-3 Axial Stress for Two Aluminum-Lithium Alloys

Alloy 1 Alloy 2

238 psi 3254 psi 3261 psi 3248 psi
3195 3229 3187 3215
3246 3225 3209 3226
3190 3217 3212 3240
3204 3241 3258 3234
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Alloy Number Axial Stress Rank

2 3187 psi 1
1 3190 2
1 3195 3
1 3204 4
2 3209 5
2 3212 6
2 3215 7
1 3217 8
1 3225 9
2 3226 10
1 3229 11
2 3234 12
1 3238 13
2 3240 14
1 3241 15
1 3246 16
2 3248 17
1 3254 18
2 3258 19
2 3261 20

15-4 WILCOXON RANK-SUM TEST 587

7. Computations: The data from Table 15-3 are analyzed in ascending order and ranked
as follows:

The sum of the ranks for alloy 1 is

and for alloy 2

8. Conclusions: Since neither w1 nor w2 is less than or equal to w0.05 � 78, we cannot
reject the null hypothesis that both alloys exhibit the same mean axial stress.

15-4.2 Large-Sample Approximation

When both n1 and n2 are moderately large, say, greater than 8, the distribution of w1 can be
well approximated by the normal distribution with mean

and variance

�2
W1

�
n1n21n1 � n2 � 12

12

�W1
�

n11n1 � n2 � 12
2

w2 �
1n1 � n22 1n1 � n2 � 12

2
� w1 �

110 � 102 110 � 10 � 12
2

� 99 � 111

w1 � 2 � 3 � 4 � 8 � 9 � 11 � 13 � 15 � 16 � 18 � 99
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15-28. An electrical engineer must design a circuit to deliver
the maximum amount of current to a display tube to achieve suf-
ficient image brightness. Within her allowable design constraints,
she has developed two candidate circuits and tests prototypes of
each. The resulting data (in microamperes) are as follows:

Circuit 1: 251, 255, 258, 257, 250, 251, 254, 250, 248

Circuit 2: 250, 253, 249, 256, 259, 252, 260, 251

Use the Wilcoxon rank-sum test to test H0: �1 � �2 against the
alternative H1: �1 > �2. Use � � 0.025.

15-29. One of the authors travels regularly to Seattle,
Washington. He uses either Delta or Alaska. Flight delays are
sometimes unavoidable, but he would be willing to give most
of his business to the airline with the best on-time arrival
record. The number of minutes that his flight arrived late for
the last six trips on each airline follows. Is there evidence that
either airline has superior on-time arrival performance? Use 
� � 0.01 and the Wilcoxon rank-sum test.

Delta: 13, 10, 1, �4, 0, 9 (minutes late)

Alaska: 15, 8, 3, �1, �2, 4 (minutes late)

15-30. The manufacturer of a hot tub is interested in testing
two different heating elements for his product. The element
that produces the maximum heat gain after 15 minutes would
be preferable. He obtains 10 samples of each heating unit and
tests each one. The heat gain after 15 minutes (in �F) follows.

Is there any reason to suspect that one unit is superior to the
other? Use � � 0.05 and the Wilcoxon rank-sum test.

Unit 1: 25, 27, 29, 31, 30, 26, 24, 32, 33, 38

Unit 2: 31, 33, 32, 35, 34, 29, 38, 35, 37, 30

15-31. Use the normal approximation for the Wilcoxon
rank-sum test for the problem in Exercise 15-28. Assume that
� � 0.05. Find the approximate P-value for this test statistic.

15-32. Use the normal approximation for the Wilcoxon
rank-sum test for the heat gain experiment in Exercise 15-30.
Assume that � � 0.05. What is the approximate P-value for
this test statistic?

15-33. Consider the chemical etch rate data in Exercise 10-21.
Use the Wilcoxon rank-sum test to investigate the claim that
the mean etch rate is the same for both solutions. If � � 0.05,
what are your conclusions?

15-34. Use the Wilcoxon rank-sum test for the pipe deflec-
tion temperature experiment described in Exercise 10-20. If 
� � 0.05, what are your conclusions?

15-35. Use the normal approximation for the Wilcoxon
rank-sum test for the problem in Exercise 10-21. Assume that
� � 0.05. Find the approximate P-value for this test.

15-36. Use the normal approximation for the Wilcoxon
rank-sum test for the problem in Exercise 10-20. Assume that
� � 0.05. Find the approximate P-value for this test.

EXERCISES FOR SECTION 15-4

Therefore, for n1 and n2 
 8, we could use

(15-8)Z0 �
W1 � �W1

�W1

as a statistic, and the appropriate critical region is , 
depending on whether the test is a two-tailed, upper-tail, or lower-tail test.

15-4.3 Comparison to the t-Test

In Section 15-3.4 we discussed the comparison of the t-test with the Wilcoxon signed-rank
test. The results for the two-sample problem are identical to the one-sample case. That is,
when the normality assumption is correct, the Wilcoxon rank-sum test is approximately 95%
as efficient as the t-test in large samples. On the other hand, regardless of the form of the dis-
tributions, the Wilcoxon rank-sum test will always be at least 86% as efficient. The efficiency
of the Wilcoxon test relative to the t-test is usually high if the underlying distribution has heav-
ier tails than the normal, because the behavior of the t-test is very dependent on the sample
mean, which is quite unstable in heavy-tailed distributions.

0 z0 0 
 z�/2, z0 
 z�, or z0 � �z�
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15-5 NONPARAMETRIC METHODS IN THE ANALYSIS 
OF VARIANCE

15-5.1 Kruskal-Wallis Test

The single-factor analysis of variance model developed in Chapter 13 for comparing a
population means is

(15-9)

In this model, the error terms �ij are assumed to be normally and independently distributed with
mean zero and variance �2. The assumption of normality led directly to the F-test described in
Chapter 13. The Kruskal-Wallis test is a nonparametric alternative to the F-test; it requires only
that the �ij have the same continuous distribution for all factor levels i � 1, 2, . . . , a.

Suppose that is the total number of observations. Rank all N observations
from smallest to largest, and assign the smallest observation rank 1, the next smallest
rank 2, . . . , and the largest observation rank N. If the null hypothesis

is true, the N observations come from the same distribution, and all possible assignments of
the N ranks to the a samples are equally likely, we would expect the ranks 1, 2, . . . , N to be
mixed throughout the a samples. If, however, the null hypothesis H0 is false, some samples
will consist of observations having predominantly small ranks, while other samples will con-
sist of observations having predominantly large ranks. Let Rij be the rank of observation Yij,
and let Ri. and . denote the total and average of the ni ranks in the ith treatment. When the
null hypothesis is true,

and

The Kruskal-Wallis test statistic measures the degree to which the actual observed average
ranks . differ from their expected value (N � 1)�2. If this difference is large, the null
hypothesis H0 is rejected. The test statistic is

Ri

E1Ri.2 �
1
ni

 a
ni

j�1
E1Rij2 �

N � 1
2

E1Rij2 �
N � 1

2

Ri

H0: �1 � �2 � . . . � �a

N � g a
i�1 ni

Yij � � � �i � �ij 
e i � 1, 2, . . . , a

 j � 1, 2, . . . , ni

(15-10)H �
12

N1N � 12  a
a

i�1
ni aRi. �

N � 1
2
b2
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590 CHAPTER 15 NONPARAMETRIC STATISTICS

An alternative computing formula that is occasionally more convenient is

(15-11)H �
12

N1N � 12  a
a

i�1

R2
i .

ni
� 31N � 12

We would usually prefer Equation 15-11 to Equation 15-10 because it involves the rank totals
rather than the averages.

The null hypothesis H0 should be rejected if the sample data generate a large value for
H. The null distribution for H has been obtained by using the fact that under H0 each pos-
sible assignment of ranks to the a treatments is equally likely. Thus, we could enumerate
all possible assignments and count the number of times each value of H occurs. This has
led to tables of the critical values of H, although most tables are restricted to small sample
sizes ni. In practice, we usually employ the following large-sample approximation.
Whenever H0 is true and either

a � 3 and ni � 6 for i � 1, 2, 3

a 
 3 and ni � 5 for i � 1, 2, . . . , a

H has approximately a chi-square distribution with a � 1 degrees of freedom. Since large val-
ues of H imply that H0 is false, we will reject H0 if the observed value

The test has approximate significance level �.

Ties in the Kruskal-Wallis Test
When observations are tied, assign an average rank to each of the tied observations. When
there are ties, we should replace the test statistic in Equation 15-11 by

(15-12)

where ni is the number of observations in the ith treatment, N is the total number of observa-
tions, and

(15-13)

Note that S 2 is just the variance of the ranks. When the number of ties is moderate, there will
be little difference between Equations 15-11 and 15-12 and the simpler form (Equation 15-11)
may be used.

EXAMPLE 15-7 Montgomery (2001) presented data from an experiment in which five different levels of
cotton content in a synthetic fiber were tested to determine whether cotton content has any
effect on fiber tensile strength. The sample data and ranks from this experiment are shown in
Table 15-4. We will apply the Kruskal-Wallis test to these data, using � � 0.01.

S2 �
1

N � 1
 c a

a

i�1
a
ni

j�1
R2

ij �
N1N � 122

4
d

H �
1

S2  c a
a

i�1

R2
i .

ni
�

N1N � 122
4

d

h � �2
�,a�1
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15-5 NONPARAMETRIC METHODS IN THE ANALYSIS OF VARIANCE 591

Since there is a fairly large number of ties, we use Equation 15-12 as the test statistic.
From Equation 15-13 we find

and the test statistic is

Since h 
 � 13.28, we would reject the null hypothesis and conclude that treatments
differ. This same conclusion is given by the usual analysis of variance F-test.

15-5.2 Rank Transformation

The procedure used in the previous section whereby the observations are replaced by their
ranks is called the rank transformation. It is a very powerful and widely useful technique.
If we were to apply the ordinary F-test to the ranks rather than to the original data, we would
obtain

as the test statistic. Note that as the Kruskal-Wallis statistic H increases or decreases, F0 also
increases or decreases. Now, since the distribution of F0 is approximated by the F-distribution,

F0 �
H� 1a � 12

1N � 1 � H2� 1N � a2

�0.01,4
2

 � 19.06

 �  
1

53.54
 c5245.7 �

2512622
4

d

h �
1

s2  c a
a

i�1

r2
i .
ni

�
N1N � 122

4
d

 � 53.54

 �
1
24

 c5510 �
2512622

2
d

s2 �
1

N � 1
 c a

a

i�1
a
ni

j�1
r2

ij �
N1N � 122

4
d

Table 15-4 Data and Ranks for the Tensile Testing Experiment

Percentage
of Cotton ri.

15 y1j 7 7 15 11 9
ranks r1j 2.0 2.0 12.5 7.0 4.0 27.5

20 y2j 12 17 12 18 18
ranks r2j 9.5 14.0 9.5 16.5 16.5 66.0

25 y3j 14 18 18 19 19
ranks r3j 11.0 16.5 16.5 20.5 20.5 85.0

30 y4j 19 25 22 19 23
ranks r4j 20.5 25.0 23.0 20.5 24.0 113.0

35 y5j 7 10 11 15 11
ranks r5j 2.0 5.0 7.0 12.5 7.0 33.5
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592 CHAPTER 15 NONPARAMETRIC STATISTICS

EXERCISES FOR SECTION 15-5

15-37. Montgomery (2001) presented the results of an ex-
periment to compare four different mixing techniques on the
tensile strength of portland cement. The results are shown in
the following table. Is there any indication that mixing tech-
nique affects the strength? Use � � 0.05.

Mixing
Technique Tensile Strength (lb/in.2)

1 3129 3000 2865 2890

2 3200 3000 2975 3150

3 2800 2900 2985 3050

4 2600 2700 2600 2765

15-38. An article in the Quality Control Handbook, 3rd edi-
tion (McGraw-Hill, 1962) presents the results of an experiment
performed to investigate the effect of three different conditioning
methods on the breaking strength of cement briquettes. The data
are shown in the following table. Using � � 0.05, is there any
indication that conditioning method affects breaking strength?

Conditioning
Method Breaking Strength (lb/in.2)

1 553 550 568 541 537

2 553 599 579 545 540

3 492 530 528 510 571

15-39. In Statistics for Research (John Wiley & Sons,
1983), S. Dowdy and S. Wearden presented the results of an
experiment to measure the performance of hand-held chain
saws. The experimenters measured the kickback angle
through which the saw is deflected when it begins to cut a 
3-inch stock synthetic board. Shown in the following table are 

deflection angles for five saws chosen at random from each of
four different manufacturers. Is there any evidence that the
manufacturers’ products differ with respect to kickback angle?
Use � � 0.01.

Manufacturer Kickback Angle

A 42 17 24 39 43

B 28 50 44 32 61

C 57 45 48 41 54

D 29 40 22 34 30

15-40. Consider the data in Exercise 13-2. Use the
Kruskal-Wallis procedure with � � 0.05 to test for differ-
ences between mean uniformity at the three different gas flow
rates.

15-41. Find the approximate P-value for the test statistic
computed in Exercise 15-37.

15-42. Find the approximate P-value for the test statistic
computed in Exercise 15-40.

Supplemental Exercises

15-43. The surface finish of 10 metal parts produced in a
grinding process is as follows: (in microinches): 10.32, 9.68,
9.92, 10.10, 10.20, 9.87, 10.14, 9.74, 9.80, 10.26. Do the data
support the claim that the median value of surface finish is 10
microinches? Use the sign test with � � 0.05. What is the 
P-value for this test?

15-44. Use the normal appoximation for the sign test for
the problem in Exercise 15-43. Find the P-value for this test.
What are your conclusions if � � 0.05?

15-45. Fluoride emissions (in ppm) from a chemical plant
are monitored routinely. The following are 15 observations

the Kruskal-Wallis test is approximately equivalent to applying the usual analysis of variance
to the ranks.

The rank transformation has wide applicability in experimental design problems for which
no nonparametric alternative to the analysis of variance exists. If the data are ranked and the or-
dinary F-test is applied, an approximate procedure results, but one that has good statistical
properties. When we are concerned about the normality assumption or the effect of outliers or
“wild” values, we recommend that the usual analysis of variance be performed on both the
original data and the ranks. When both procedures give similar results, the analysis of variance
assumptions are probably satisfied reasonably well, and the standard analysis is satisfactory.
When the two procedures differ, the rank transformation should be preferred since it is less
likely to be distorted by nonnormality and unusual observations. In such cases, the experi-
menter may want to investigate the use of transformations for nonnormality and examine the
data and the experimental procedure to determine whether outliers are present and why they
have occurred.
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based on air samples taken randomly during one month of pro-
duction: 7, 3, 4, 2, 5, 6, 9, 8, 7, 3, 4, 4, 3, 2, 6. Can you claim
that the median fluoride impurity level is less than 6 ppm?
State and test the appropriate hypotheses using the sign test
with � � 0.05. What is the P-value for this test?

15-46. Use the normal approximation for the sign test for
the problem in Exercise 15-45. What is the P-value for this
test?

15-47. Consider the data in Exercise 10-42. Use the sign
test with � � 0.05 to determine whether there is a difference
in median impurity readings between the two analytical
tests.

15-48. Consider the data in Exercise 15-43. Use the
Wilcoxon signed-rank test for this problem with � � 0.05.
What hypotheses are being tested in this problem?

15-49. Consider the data in Exercise 15-45. Use the
Wilcoxon signed-rank test for this problem with � � 0.05.
What conclusions can you draw? Does the hypothesis you are
testing now differ from the one tested originally in Exercise
15-45?

15-50. Use the Wilcoxon signed-rank test with � � 0.05 for
the diet-modification experiment described in Exercise 10-41.
State carefully the conclusions that you can draw from this
experiment.

15-51. Use the Wilcoxon rank-sum test with � � 0.01 for
the fuel-economy study described in Exercise 10-83. What

conclusions can you draw about the difference in mean
mileage performance for the two vehicles in this study?

15-52. Use the large-sample approximation for the Wilcoxon
rank-sum test for the fuel-economy data in Exercise 10-83. What
conclusions can you draw about the difference in means if 
� � 0.01? Find the P-value for this test.

15-53. Use the Wilcoxon rank-sum test with � � 0.025 for
the fill-capability experiment described in Exercise 10-85.
What conclusions can you draw about the capability of the two
fillers?

15-54. Use the large-sample approximation for the
Wilcoxon rank-sum test with � � 0.025 for the fill-capability
experiment described in Exercise 10-85. Find the P-value for
this test. What conclusions can you draw?

15-55. Consider the contact resistance experiment in
Exercise 13-31. Use the Kruskal-Wallis test to test for differ-
ences in mean contact resistance among the three alloys. If � �
0.01, what are your conclusions? Find the P-value for this test.

15-56. Consider the experiment described in Exercise 13-28.
Use the Kruskal-Wallis test for this experiment with � � 0.05.
What conclusions would you draw? Find the P-value for
this test.

15-57. Consider the bread quality experiment in Exercise
13-35. Use the Kruskal-Wallis test with � � 0.01 to analyze the
data from this experiment. Find the P-value for this test. What
conclusions can you draw?

15-58. For the large-sample approximation to the
Wilcoxon signed-rank test, derive the mean and stan-
dard deviation of the test statistic used in the procedure.

15-59. Testing for Trends. A turbocharger wheel is
manufactured using an investment-casting process. The
shaft fits into the wheel opening, and this wheel opening
is a critical dimension. As wheel wax patterns are formed,
the hard tool producing the wax patterns wears. This may
cause growth in the wheel-opening dimension. Ten
wheel-opening measurements, in time order of produc-
tion, are 4.00 (millimeters), 4.02, 4.03, 4.01, 4.00, 4.03,
4.04, 4.02, 4.03, 4.03.
(a) Suppose that p is the probability that observation

Xi�5 exceeds observation Xi. If there is no upward or
downward trend, Xi�5 is no more or less likely to ex-
ceed Xi or lie below Xi. What is the value of p?

(b) Let V be the number of values of i for which
Xi�5 
 Xi. If there is no upward or downward trend

in the measurements, what is the probability distri-
bution of V?

(c) Use the data above and the results of parts (a) and
(b) to test H0: there is no trend, versus H1: there is
upward trend. Use � � 0.05.

Note that this test is a modification of the sign test. It
was developed by Cox and Stuart.

15-60. Consider the Wilcoxon signed-rank test, and
suppose that n � 5. Assume that H0: � � �0 is true.
(a) How many different sequences of signed ranks are

possible? Enumerate these sequences.
(b) How many different values of W� are there? Find

the probability associated with each value of W�.
(c) Suppose that we define the critical region of the test

to be to reject H0 if w� 
 w*� and w*� � 13. What is
the approximate � level of this test?

(d) Does this exercise show how the critical values for the
Wilcoxon signed-rank test were developed? Explain.
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In the E-book, click on any
term or concept below to
go to that subject.
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CHAPTER OUTLINE

16Statistical Quality
Control

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
1. Understand the role of statistical tools in quality improvement
2. Understand the different types of variability, rational subgroups, and how a control chart is used

to detect assignable causes
3. Understand the general form of a Shewhart control chart and how to apply zone rules (such as

the Western Electric rules) and pattern analysis to detect assignable causes
4. Construct and interpret control charts for variables such as , R, S, and individuals charts

5. Construct and interpret control charts for attributes such as P and U charts
6. Calculate and interpret process capability ratios

X
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CONTROL CHARTS
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16-4.4 Analysis of Patterns on
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16-5 AND R OR S CONTROL
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INDIVIDUAL MEASUREMENTS

16-7 PROCESS CAPABILITY
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16-8.1 P Chart (Control Chart for
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16-8.2 U Chart (Control Chart for
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16-9 CONTROL CHART 
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16-10 CUMULATIVE SUM CONTROL
CHART

16-11 OTHER SPC PROBLEM-SOLVING
TOOLS

16-12 IMPLEMENTING SPC
X

595

c16.qxd  5/8/02  9:58 PM  Page 595 RK UL 6 RK UL 6:Desktop Folder:



596 CHAPTER 16 STATISTICAL QUALITY CONTROL

7. Calculate the ARL performance for a Shewhart control chart
8. Construct and interpret a cumulative sum control chart
9. Use other statistical process control problem-solving tools

Answers for most odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-text. These are indicated in the 
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

16-1 QUALITY IMPROVEMENT AND STATISTICS

The quality of products and services has become a major decision factor in most businesses
today. Regardless of whether the consumer is an individual, a corporation, a military defense
program, or a retail store, when the consumer is making purchase decisions, he or she is
likely to consider quality of equal importance to cost and schedule. Consequently, quality
improvement has become a major concern to many U.S. corporations. This chapter is about
statistical quality control, a collection of tools that are essential in quality-improvement
activities.

Quality means fitness for use. For example, you or I may purchase automobiles that we
expect to be free of manufacturing defects and that should provide reliable and economical
transportation, a retailer buys finished goods with the expectation that they are properly pack-
aged and arranged for easy storage and display, or a manufacturer buys raw material and
expects to process it with no rework or scrap. In other words, all consumers expect that the
products and services they buy will meet their requirements. Those requirements define 
fitness for use.

Quality or fitness for use is determined through the interaction of quality of design and
quality of conformance. By quality of design we mean the different grades or levels of
performance, reliability, serviceability, and function that are the result of deliberate engi-
neering and management decisions. By quality of conformance, we mean the systematic re-
duction of variability and elimination of defects until every unit produced is identical and
defect-free.

Some confusion exists in our society about quality improvement; some people still think that
it means gold-plating a product or spending more money to develop a product or process. This
thinking is wrong. Quality improvement means the systematic elimination of waste. Examples
of waste include scrap and rework in manufacturing, inspection and testing, errors on documents
(such as engineering drawings, checks, purchase orders, and plans), customer complaint hotlines,
warranty costs, and the time required to do things over again that could have been done right the
first time. A successful quality-improvement effort can eliminate much of this waste and lead to
lower costs, higher productivity, increased customer satisfaction, increased business reputation,
higher market share, and ultimately higher profits for the company.

Statistical methods play a vital role in quality improvement. Some applications are out-
lined below:

1. In product design and development, statistical methods, including designed exper-
iments, can be used to compare different materials, components, or ingredients, and
to help determine both system and component tolerances. This application can sig-
nificantly lower development costs and reduce development time.
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16-3 STATISTICAL PROCESS CONTROL 597

2. Statistical methods can be used to determine the capability of a manufacturing
process. Statistical process control can be used to systematically improve a process
by reducing variability.

3. Experimental design methods can be used to investigate improvements in the
process. These improvements can lead to higher yields and lower manufacturing
costs.

4. Life testing provides reliability and other performance data about the product. This
can lead to new and improved designs and products that have longer useful lives and
lower operating and maintenance costs.

Some of these applications have been illustrated in earlier chapters of this book. It is
essential that engineers, scientists, and managers have an in-depth understanding of these
statistical tools in any industry or business that wants to be a high-quality, low-cost pro-
ducer. In this chapter we provide an introduction to the basic methods of statistical quality
control that, along with experimental design, form the basis of a successful quality-
improvement effort.

16-2 STATISTICAL QUALITY CONTROL

The field of statistical quality control can be broadly defined as those statistical and engineer-
ing methods that are used in measuring, monitoring, controlling, and improving quality.
Statistical quality control is a field that dates back to the 1920s. Dr. Walter A. Shewhart of the
Bell Telephone Laboratories was one of the early pioneers of the field. In 1924 he wrote a
memorandum showing a modern control chart, one of the basic tools of statistical process
control. Harold F. Dodge and Harry G. Romig, two other Bell System employees, provided
much of the leadership in the development of statistically based sampling and inspection
methods. The work of these three men forms much of the basis of the modern field of statis-
tical quality control. World War II saw the widespread introduction of these methods to U.S.
industry. Dr. W. Edwards Deming and Dr. Joseph M. Juran have been instrumental in spread-
ing statistical quality-control methods since World War II.

The Japanese have been particularly successful in deploying statistical quality-control
methods and have used statistical methods to gain significant advantage over their
competitors. In the 1970s American industry suffered extensively from Japanese (and other
foreign) competition; that has led, in turn, to renewed interest in statistical quality-control
methods in the United States. Much of this interest focuses on statistical process control
and experimental design. Many U.S. companies have begun extensive programs to
implement these methods in their manufacturing, engineering, and other business
organizations.

16-3 STATISTICAL PROCESS CONTROL

It is impractical to inspect quality into a product; the product must be built right the first
time. The manufacturing process must therefore be stable or repeatable and capable of op-
erating with little variability around the target or nominal dimension. Online statistical
process control is a powerful tool for achieving process stability and improving capability
through the reduction of variability.
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598 CHAPTER 16 STATISTICAL QUALITY CONTROL

It is customary to think of statistical process control (SPC) as a set of problem-solving
tools that may be applied to any process. The major tools of SPC* are

1. Histogram

2. Pareto chart

3. Cause-and-effect diagram

4. Defect-concentration diagram

5. Control chart

6. Scatter diagram

7. Check sheet

Although these tools are an important part of SPC, they comprise only the technical aspect
of the subject. An equally important element of SPC is attitude—a desire of all individu-
als in the organization for continuous improvement in quality and productivity through the
systematic reduction of variability. The control chart is the most powerful of the SPC
tools.

16-4 INTRODUCTION TO CONTROL CHARTS

16-4.1 Basic Principles

In any production process, regardless of how well-designed or carefully maintained it is, a
certain amount of inherent or natural variability will always exist. This natural variability or
“background noise” is the cumulative effect of many small, essentially unavoidable causes.
When the background noise in a process is relatively small, we usually consider it an accept-
able level of process performance. In the framework of statistical quality control, this natural
variability is often called a “stable system of chance causes.” A process that is operating with
only chance causes of variation present is said to be in statistical control. In other words, the
chance causes are an inherent part of the process.

Other kinds of variability may occasionally be present in the output of a process. This
variability in key quality characteristics usually arises from three sources: improperly ad-
justed machines, operator errors, or defective raw materials. Such variability is generally large
when compared to the background noise, and it usually represents an unacceptable level of
process performance. We refer to these sources of variability that are not part of the chance
cause pattern as assignable causes. A process that is operating in the presence of assignable
causes is said to be out of control.†

Production processes will often operate in the in-control state, producing acceptable
product for relatively long periods of time. Occasionally, however, assignable causes will
occur, seemingly at random, resulting in a “shift” to an out-of-control state where a large pro-
portion of the process output does not conform to requirements. A major objective of statisti-
cal process control is to quickly detect the occurrence of assignable causes or process shifts
so that investigation of the process and corrective action may be undertaken before many

* Some prefer to include the experimental design methods discussed previously as part of the SPC toolkit. We did not
do so, because we think of SPC as an online approach to quality improvement using techniques founded on passive
observation of the process, while design of experiments is an active approach in which deliberate changes are made
to the process variables. As such, designed experiments are often referred to as offline quality control.
† The terminology chance and assignable causes was developed by Dr. Walter A. Shewhart. Today, some writers use
common cause instead of chance cause and special cause instead of assignable cause.
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16-4 INTRODUCTION TO CONTROL CHARTS 599

nonconforming units are manufactured. The control chart is an online process-monitoring
technique widely used for this purpose.

Recall the following from Chapter 1. Figure 1-10 illustrates that adjustments to common
causes of variation increase the variation of a process whereas Fig. 1-11 illustrates that actions
should be taken in response to assignable causes of variation. Control charts may also be used to
estimate the parameters of a production process and, through this information, to determine the
capability of a process to meet specifications. The control chart can also provide information 
that is useful in improving the process. Finally, remember that the eventual goal of statistical
process control is the elimination of variability in the process. Although it may not be possible
to eliminate variability completely, the control chart helps reduce it as much as possible.

A typical control chart is shown in Fig. 16-1, which is a graphical display of a quality char-
acteristic that has been measured or computed from a sample versus the sample number or time.
Often, the samples are selected at periodic intervals such as every hour. The chart contains a cen-
ter line (CL) that represents the average value of the quality characteristic corresponding to the
in-control state. (That is, only chance causes are present.) Two other horizontal lines, called the
upper control limit (UCL) and the lower control limit (LCL), are also shown on the chart. These
control limits are chosen so that if the process is in control, nearly all of the sample points will
fall between them. In general, as long as the points plot within the control limits, the process is
assumed to be in control, and no action is necessary. However, a point that plots outside of the
control limits is interpreted as evidence that the process is out of control, and investigation and
corrective action are required to find and eliminate the assignable cause or causes responsible for
this behavior. The sample points on the control chart are usually connected with straight-line 
segments so that it is easier to visualize how the sequence of points has evolved over time.

Even if all the points plot inside the control limits, if they behave in a systematic or non-
random manner, this is an indication that the process is out of control. For example, if 18 of
the last 20 points plotted above the center line but below the upper control limit and only two
of these points plotted below the center line but above the lower control limit, we would be
very suspicious that something was wrong. If the process is in control, all the plotted points
should have an essentially random pattern. Methods designed to find sequences or nonrandom
patterns can be applied to control charts as an aid in detecting out-of-control conditions. A par-
ticular nonrandom pattern usually appears on a control chart for a reason, and if that reason
can be found and eliminated, process performance can be improved.

There is a close connection between control charts and hypothesis testing. Essentially, the
control chart is a test of the hypothesis that the process is in a state of statistical control. A
point plotting within the control limits is equivalent to failing to reject the hypothesis of sta-
tistical control, and a point plotting outside the control limits is equivalent to rejecting the hy-
pothesis of statistical control.
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Figure 16-1 A typi-
cal control chart.
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We give a general model for a control chart. Let W be a sample statistic that measures some
quality characteristic of interest, and suppose that the mean of W is �W and the standard deviation
of W is �W.* Then the center line, the upper control limit, and the lower control limit become

OutputInput

Verify and
follow up

Detect
assignable

cause

Process

Measurement system

Implement
corrective

action

Identify root
cause of problem

Figure 16-2 Process
improvement using
the control chart.

(16-1)LCL � �W � k�W

 CL � �W

UCL � �W � k�W

* Note that “sigma” refers to the standard deviation of the statistic plotted on the chart (i.e., �W), not the standard
deviation of the quality characteristic.

where k is the “distance” of the control limits from the center line, expressed in standard
deviation units. A common choice is k � 3. This general theory of control charts was first pro-
posed by Dr. Walter A. Shewhart, and control charts developed according to these principles
are often called Shewhart control charts.

The control chart is a device for describing exactly what is meant by statistical control; as
such, it may be used in a variety of ways. In many applications, it is used for online process
monitoring. That is, sample data are collected and used to construct the control chart, and if
the sample values of (say) fall within the control limits and do not exhibit any systematic
pattern, we say the process is in control at the level indicated by the chart. Note that we may
be interested here in determining both whether the past data came from a process that was in
control and whether future samples from this process indicate statistical control.

The most important use of a control chart is to improve the process. We have found that,
generally

1. Most processes do not operate in a state of statistical control.

2. Consequently, the routine and attentive use of control charts will identify assignable
causes. If these causes can be eliminated from the process, variability will be reduced
and the process will be improved.

This process-improvement activity using the control chart is illustrated in Fig. 16-2. Notice that:

x
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16-4 INTRODUCTION TO CONTROL CHARTS 601

3. The control chart will only detect assignable causes. Management, operator, and en-
gineering action will usually be necessary to eliminate the assignable cause. An ac-
tion plan for responding to control chart signals is vital.

In identifying and eliminating assignable causes, it is important to find the underlying root
cause of the problem and to attack it. A cosmetic solution will not result in any real, long-term
process improvement. Developing an effective system for corrective action is an essential
component of an effective SPC implementation.

We may also use the control chart as an estimating device. That is, from a control chart
that exhibits statistical control, we may estimate certain process parameters, such as the mean,
standard deviation, and fraction nonconforming or fallout. These estimates may then be used
to determine the capability of the process to produce acceptable products. Such process
capability studies have considerable impact on many management decision problems that oc-
cur over the product cycle, including make-or-buy decisions, plant and process improvements
that reduce process variability, and contractual agreements with customers or suppliers re-
garding product quality.

Control charts may be classified into two general types. Many quality characteristics can
be measured and expressed as numbers on some continuous scale of measurement. In such
cases, it is convenient to describe the quality characteristic with a measure of central tendency
and a measure of variability. Control charts for central tendency and variability are collec-
tively called variables control charts. The chart is the most widely used chart for moni-
toring central tendency, whereas charts based on either the sample range or the sample stan-
dard deviation are used to control process variability. Many quality characteristics are not
measured on a continuous scale or even a quantitative scale. In these cases, we may judge
each unit of product as either conforming or nonconforming on the basis of whether or not it
possesses certain attributes, or we may count the number of nonconformities (defects)
appearing on a unit of product. Control charts for such quality characteristics are called
attributes control charts.

Control charts have had a long history of use in industry. There are at least five reasons 
for their popularity:

1. Control charts are a proven technique for improving productivity. A successful
control chart program will reduce scrap and rework, which are the primary produc-
tivity killers in any operation. If you reduce scrap and rework, productivity increases,
cost decreases, and production capacity (measured in the number of good parts per
hour) increases.

2. Control charts are effective in defect prevention. The control chart helps keep the
process in control, which is consistent with the “do it right the first time” philosophy.
It is never cheaper to sort out the “good” units from the “bad” later on than it is to
build them correctly initially. If you do not have effective process control, you are
paying someone to make a nonconforming product.

3. Control charts prevent unnecessary process adjustments. A control chart can dis-
tinguish between background noise and abnormal variation; no other device, including
a human operator, is as effective in making this distinction. If process operators adjust
the process based on periodic tests unrelated to a control chart program, they will often
overreact to the background noise and make unneeded adjustments. These unnecessary
adjustments can result in a deterioration of process performance. In other words, the
control chart is consistent with the “if it isn’t broken, don’t fix it” philosophy.

4. Control charts provide diagnostic information. Frequently, the pattern of points
on the control chart will contain information that is of diagnostic value to an

X
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602 CHAPTER 16 STATISTICAL QUALITY CONTROL

experienced operator or engineer. This information allows the operator to implement
a change in the process that will improve its performance.

5. Control charts provide information about process capability. The control chart
provides information about the value of important process parameters and their sta-
bility over time. This allows an estimate of process capability to be made. This in-
formation is of tremendous use to product and process designers.

Control charts are among the most effective management control tools, and they are as
important as cost controls and material controls. Modern computer technology has made it
easy to implement control charts in any type of process, because data collection and analysis
can be performed on a microcomputer or a local area network terminal in realtime, online at
the work center.

16-4.2 Design of a Control Chart

To illustrate these ideas, we give a simplified example of a control chart. In manufacturing au-
tomobile engine piston rings, the inside diameter of the rings is a critical quality characteris-
tic. The process mean inside ring diameter is 74 millimeters, and it is known that the standard
deviation of ring diameter is 0.01 millimeters. A control chart for average ring diameter is
shown in Fig. 16-3. Every hour a random sample of five rings is taken, the average ring di-
ameter of the sample (say ) is computed, and is plotted on the chart. Because this control
chart utilizes the sample mean to monitor the process mean, it is usually called an con-
trol chart. Note that all the points fall within the control limits, so the chart indicates that the
process is in statistical control.

Consider how the control limits were determined. The process average is 74 millimeters,
and the process standard deviation is � � 0.01 millimeters. Now if samples of size n � 5 are
taken, the standard deviation of the sample average is

Therefore, if the process is in control with a mean diameter of 74 millimeters, by using
the central limit theorem to assume that is approximately normally distributed, we
would expect approximately 100(1 � �)% of the sample mean diameters to fall between 
74 � z��2(0.0045) and 74 � z��2(0.0045). As discussed above, we customarily choose the
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16-4 INTRODUCTION TO CONTROL CHARTS 603

constant z��2 to be 3, so the upper and lower control limits become

and

as shown on the control chart. These are the 3-sigma control limits referred to above. Note that
the use of 3-sigma limits implies that � � 0.0027; that is, the probability that the point plots
outside the control limits when the process is in control is 0.0027. The width of the control
limits is inversely related to the sample size n for a given multiple of sigma. Choosing the con-
trol limits is equivalent to setting up the critical region for testing the hypothesis

where � � 0.01 is known. Essentially, the control chart tests this hypothesis repeatedly at dif-
ferent points in time.

In designing a control chart, we must specify both the sample size to use and the fre-
quency of sampling. In general, larger samples will make it easier to detect small shifts in the
process. When choosing the sample size, we must keep in mind the size of the shift that we are
trying to detect. If we are interested in detecting a relatively large process shift, we use smaller
sample sizes than those that would be employed if the shift of interest were relatively small.

We must also determine the frequency of sampling. The most desirable situation from the
point of view of detecting shifts would be to take large samples very frequently; however, this is
usually not economically feasible. The general problem is one of allocating sampling effort. That
is, either we take small samples at short intervals or larger samples at longer intervals. Current in-
dustry practice tends to favor smaller, more frequent samples, particularly in high-volume man-
ufacturing processes or where a great many types of assignable causes can occur. Furthermore,
as automatic sensing and measurement technology develops, it is becoming possible to greatly
increase frequencies. Ultimately, every unit can be tested as it is manufactured. This capability
will not eliminate the need for control charts because the test system will not prevent defects. The
increased data will increase the effectiveness of process control and improve quality.

16-4.3 Rational Subgroups

A fundamental idea in the use of control charts is to collect sample data according to what
Shewhart called the rational subgroup concept. Generally, this means that subgroups or sam-
ples should be selected so that to the extent possible, the variability of the observations within
a subgroup should include all the chance or natural variability and exclude the assignable
variability. Then, the control limits will represent bounds for all the chance variability and not
the assignable variability. Consequently, assignable causes will tend to generate points that are
outside of the control limits, while chance variability will tend to generate points that are
within the control limits.

When control charts are applied to production processes, the time order of production is a
logical basis for rational subgrouping. Even though time order is preserved, it is still possible 
to form subgroups erroneously. If some of the observations in the subgroup are taken at the end
of one 8-hour shift and the remaining observations are taken at the start of the next 8-hour shift,

H1: � � 74
H0: � � 74

LCL � 74 � 310.00452 � 73.9865

UCL � 74 � 310.00452 � 74.0135
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604 CHAPTER 16 STATISTICAL QUALITY CONTROL

any differences between shifts might not be detected. Time order is frequently a good basis for
forming subgroups because it allows us to detect assignable causes that occur over time.

Two general approaches to constructing rational subgroups are used. In the first ap-
proach, each subgroup consists of units that were produced at the same time (or as closely to-
gether as possible). This approach is used when the primary purpose of the control chart is to
detect process shifts. It minimizes variability due to assignable causes within a sample, and it
maximizes variability between samples if assignable causes are present. It also provides bet-
ter estimates of the standard deviation of the process in the case of variables control charts.
This approach to rational subgrouping essentially gives a “snapshot” of the process at each
point in time where a sample is collected.

In the second approach, each sample consists of units of product that are representative of
all units that have been produced since the last sample was taken. Essentially, each subgroup
is a random sample of all process output over the sampling interval. This method of rational
subgrouping is often used when the control chart is employed to make decisions about the ac-
ceptance of all units of product that have been produced since the last sample. In fact, if the
process shifts to an out-of-control state and then back in control again between samples, it is
sometimes argued that the first method of rational subgrouping defined above will be ineffec-
tive against these types of shifts, and so the second method must be used.

When the rational subgroup is a random sample of all units produced over the sampling
interval, considerable care must be taken in interpreting the control charts. If the process mean
drifts between several levels during the interval between samples, the range of observations
within the sample may consequently be relatively large. It is the within-sample variability that
determines the width of the control limits on an chart, so this practice will result in wider
limits on the chart. This makes it harder to detect shifts in the mean. In fact, we can often
make any process appear to be in statistical control just by stretching out the interval between
observations in the sample. It is also possible for shifts in the process average to cause points
on a control chart for the range or standard deviation to plot out of control, even though no
shift in process variability has taken place.

There are other bases for forming rational subgroups. For example, suppose a process con-
sists of several machines that pool their output into a common stream. If we sample from this
common stream of output, it will be very difficult to detect whether or not some of the machines
are out of control. A logical approach to rational subgrouping here is to apply control chart tech-
niques to the output for each individual machine. Sometimes this concept needs to be applied to
different heads on the same machine, different workstations, different operators, and so forth.

The rational subgroup concept is very important. The proper selection of samples re-
quires careful consideration of the process, with the objective of obtaining as much useful in-
formation as possible from the control chart analysis.

16-4.4 Analysis of Patterns on Control Charts

A control chart may indicate an out-of-control condition either when one or more points fall be-
yond the control limits, or when the plotted points exhibit some nonrandom pattern of behavior.
For example, consider the chart shown in Fig. 16-4. Although all 25 points fall within the con-
trol limits, the points do not indicate statistical control because their pattern is very nonrandom
in appearance. Specifically, we note that 19 of the 25 points plot below the center line, while 
only 6 of them plot above. If the points are truly random, we should expect a more even distri-
bution of them above and below the center line. We also observe that following the fourth point,
five points in a row increase in magnitude. This arrangement of points is called a run. Since the
observations are increasing, we could call it a run up; similarly, a sequence of decreasing points

X

X
X
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is called a run down. This control chart has an unusually long run up (beginning with the fourth
point) and an unusually long run down (beginning with the eighteenth point).

In general, we define a run as a sequence of observations of the same type. In addition to
runs up and runs down, we could define the types of observations as those above and below the
center line, respectively, so two points in a row above the center line would be a run of length 2.

A run of length 8 or more points has a very low probability of occurrence in a random
sample of points. Consequently, any type of run of length 8 or more is often taken as a signal
of an out-of-control condition. For example, eight consecutive points on one side of the cen-
ter line will indicate that the process is out of control.

Although runs are an important measure of nonrandom behavior on a control chart, other
types of patterns may also indicate an out-of-control condition. For example, consider the 
chart in Fig. 16-5. Note that the plotted sample averages exhibit a cyclic behavior, yet they all
fall within the control limits. Such a pattern may indicate a problem with the process, such as
operator fatigue, raw material deliveries, and heat or stress buildup. The yield may be im-
proved by eliminating or reducing the sources of variability causing this cyclic behavior
(see Fig. 16-6). In Fig. 16-6, LSL and USL denote the lower and upper specification limits of
the process. These limits represent bounds within which acceptable product must fall and they
are often based on customer requirements.

The problem is one of pattern recognition, that is, recognizing systematic or nonrandom
patterns on the control chart and identifying the reason for this behavior. The ability to interpret

X
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606 CHAPTER 16 STATISTICAL QUALITY CONTROL

a particular pattern in terms of assignable causes requires experience and knowledge of the
process. That is, we must not only know the statistical principles of control charts, but we 
must also have a good understanding of the process.

The Western Electric Handbook (1956) suggests a set of decision rules for detecting non-
random patterns on control charts. Specifically, the Western Electric rules would conclude
that the process is out of control if either

1. One point plots outside 3-sigma control limits.

2. Two out of three consecutive points plot beyond a 2-sigma limit.

3. Four out of five consecutive points plot at a distance of 1-sigma or beyond from the
center line.

4. Eight consecutive points plot on one side of the center line.

We have found these rules very effective in practice for enhancing the sensitivity of control
charts. Rules 2 and 3 apply to one side of the center line at a time. That is, a point above the
upper 2-sigma limit followed immediately by a point below the lower 2-sigma limit would not
signal an out-of-control alarm.

Figure 16-7 shows an control chart for the piston ring process with the 1-sigma, 
2-sigma, and 3-sigma limits used in the Western Electric procedure. Notice that these inner

X
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16-5 AND R OR S CONTROL CHARTS 607X

limits (sometimes called warning limits) partition the control chart into three zones A, B, and
C on each side of the center line. Consequently, the Western Electric rules are sometimes
called the run rules for control charts. Notice that the last four points fall in zone B or beyond.
Thus, since four of five consecutive points exceed the 1-sigma limit, the Western Electric
procedure will conclude that the pattern is nonrandom and the process is out of control.

16-5 AND R OR S CONTROL CHARTS

When dealing with a quality characteristic that can be expressed as a measurement, it is cus-
tomary to monitor both the mean value of the quality characteristic and its variability. Control
over the average quality is exercised by the control chart for averages, usually called the 
chart. Process variability can be controlled by either a range chart (R chart) or a standard de-
viation chart (S chart), depending on how the population standard deviation is estimated.

Suppose that the process mean and standard deviation � and � are known and that we can
assume that the quality characteristic has a normal distribution. Consider the chart. As dis-
cussed previously, we can use � as the center line for the control chart, and we can place the
upper and lower 3-sigma limits at

X

X

X

(16-2) CL � �

 LCL � � � 3��1n

UCL � � � 3��1n

(16-3)i�̂ � X �
1
ma

m

i�1
X

When the parameters � and � are unknown, we usually estimate them on the basis of
preliminary samples, taken when the process is thought to be in control. We recommend the
use of at least 20 to 25 preliminary samples. Suppose m preliminary samples are available,
each of size n. Typically, n will be 4, 5, or 6; these relatively small sample sizes are widely 
used and often arise from the construction of rational subgroups. Let the sample mean for the
ith sample be . Then we estimate the mean of the population, �, by the grand meanXi

Thus, we may take as the center line on the control chart.
We may estimate � from either the standard deviation or the range of the observations

within each sample. The sample size is relatively small, so there is little loss in efficiency in
estimating � from the sample ranges.

The relationship between the range R of a sample from a normal population with known
parameters and the standard deviation of that population is needed. Since R is a random
variable, the quantity W � R��, called the relative range, is also a random variable. The
parameters of the distribution of W have been determined for any sample size n. The mean of
the distribution of W is called d2, and a table of d2 for various n is given in Appendix Table X.

XX
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608 CHAPTER 16 STATISTICAL QUALITY CONTROL

The standard deviation of W is called d3. Because R � �W

(16-4)

Let Ri be the range of the ith sample, and let

�R � d2�  �R � d3�

The center line and upper and lower control limits for an control chart are

(16-9)

where the constant A2 is tabulated for various sample sizes in Appendix Table X.

UCL � x � A2 r  CL � x  LCL � x � A2 r

X

be the average range. Then is an estimator of �R and from Equation 16-4 an unbiased 
estimator of � is

R

The parameters of the R chart may also be easily determined. The center line will obvi-
ously be . To determine the control limits, we need an estimate of �R, the standard deviation
of R. Once again, assuming the process is in control, the distribution of the relative range, W,
will be useful. We may estimate �R from Equation 16-4 as

(16-10)�̂R � d3�̂ � d3 
R

d2

R

Control Chart
(from )R

X

(16-5)R �
1
m  a

m

i�1
 Ri

(16-6)�̂ �
R

d2

Therefore, we may use as our upper and lower control limits for the chart

(16-7)

Define the constant

(16-8)

Now, once we have computed the sample values and , the control chart may be defined
as follows:

Xrx

A2 �
3

d21n

UCL � X �
3

d21n
 R  LCL �  X �

3

d21n
 R

X
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16-5 AND R OR S CONTROL CHARTS 609X

and we would use as the upper and lower control limits on the R chart

(16-11)

Setting D3 � 1 � 3d3�d2 and D4 � 1 � 3d3�d2 leads to the following definition.

 LCL � R �
3d3

d2
  R � a1 �

3d3

d2
b   R

 UCL � R �
3d3

d2
  R � a1 �

3d3

d2
b  R

(16-13)UCL � c4� � 3�21 � c2
4

LCL � c4� � 3�21 � c2
4  CL � c4�

The LCL for an R chart can be a negative number. In that case, it is customary to set LCL
to zero. Because the points plotted on an R chart are nonnegative, no points can fall below an
LCL of zero.

When preliminary samples are used to construct limits for control charts, these limits are
customarily treated as trial values. Therefore, the m sample means and ranges should be plotted
on the appropriate charts, and any points that exceed the control limits should be investigated. If
assignable causes for these points are discovered, they should be eliminated and new limits for
the control charts determined. In this way, the process may be eventually brought into statistical
control and its inherent capabilities assessed. Other changes in process centering and dispersion
may then be contemplated. Also, we often study the R chart first because if the process variabil-
ity is not constant over time the control limits calculated for the chart can be misleading.

Rather than base control charts on ranges, a more modern approach is to calculate the
standard deviation of each subgroup and plot these standard deviations to monitor the process
standard deviation �. This is called an S chart. When an S chart is used, it is common to use
these standard deviations to develop control limits for the chart. Typically, the sample size
used for subgroups is small (fewer than 10) and in that case there is usually little difference in
the chart generated from ranges or standard deviations. However, because computer soft-
ware is often used to implement control charts, S charts are quite common. Details to construct
these charts follow.

In Section 7-2.2 on the CD, it was shown that S is a biased estimator of �. That is,
E(S) � c4� where c4 is a constant that is near, but not equal to, 1. Furthermore, a calculation
similar to the one used for E(S) can derive the standard deviation of the statistic S with the re-
sult . Therefore, the center line and three-sigma control limits for S are�21 � c2

4

X

X

X

The center line and upper and lower control limits for an R chart are

(16-12)

where is the sample average range, and the constants D3 and D4 are tabulated for
various sample sizes in Appendix Table X.

r

UCL � D4 r  CL � r  LCL � D3 
r

R Chart
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610 CHAPTER 16 STATISTICAL QUALITY CONTROL

Assume that there are m preliminary samples available, each of size n, and let Si denote the
standard deviation of the ith sample. Define

(16-14)S �
1
ma

m

i�1
Si

(16-15)�̂ � S�c4

(16-16)UCL � s � 3 
s
c4
21 � c2

4  CL � s  LCL � s � 3 
s
c4
21 � c2

4

S Chart

(16-17)UCL � x � 3 
s

c41n
  CL � x  LCL � s � 3 

s

c41n

Control Chart
(from )S

X

Because , an unbiased estimator of � is That is,S�c4E1S2 � c4�

A control chart for standard deviations follows.

The LCL for an S chart can be a negative number, in that case, it is customary to set LCL to zero.
When an S chart is used, the estimate for � in Equation 16-15 is commonly used to calculate 
the control limits for an chart. This produces the following control limits for an chart.XX

EXAMPLE 16-1 A component part for a jet aircraft engine is manufactured by an investment casting
process. The vane opening on this casting is an important functional parameter of the part.
We will illustrate the use of and R control charts to assess the statistical stability of this
process. Table 16-1 presents 20 samples of five parts each. The values given in the table
have been coded by using the last three digits of the dimension; that is, 31.6 should be
0.50316 inch.

The quantities and are shown at the foot of Table 16-1. The value of A2

for samples of size 5 is A2 � 0.577. Then the trial control limits for the chart are

or

UCL � 36.67  LCL � 29.97

x � A2 r � 33.32 � 10.5772 15.82 � 33.32 � 3.35

X
r � 5.8x � 33.3

X
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16-5 AND R OR S CONTROL CHARTS 611X

For the R chart, the trial control limits are

The and R control charts with these trial control limits are shown in Fig. 16-8. Notice that
samples 6, 8, 11, and 19 are out of control on the chart and that sample 9 is out of control on the
R chart. (These points are labeled with a “1” because they violate the first Western Electric rule.)

For the S chart, the value of c4 � 0.94.
Therefore,

and the trial control limits are

UCL � 2.345 � 2.553 � 4.898

LCL � 2.345 � 2.553 � �0.208

The LCL is set to zero. If  is used to determine the control limits for the chart,

x 

3s

c41n
� 33.32 


312.3452
0.94

� 33.32 
 3.35

Xs

3s
c4
21 � c2

4 �
312.3452

0.94
 21 � 0.942 � 2.553

X
X

 LCL � D3 r � 102 15.82 � 0

 UCL � D4 r � 12.1152 15.82 � 12.27

Table 16-1 Vane-Opening Measurements

Sample
Number x1 x2 x3 x4 x5 r s

1 33 29 31 32 33 31.6 4 1.67332
2 33 31 35 37 31 33.4 6 2.60768
3 35 37 33 34 36 35.0 4 1.58114
4 30 31 33 34 33 32.2 4 1.64317
5 33 34 35 33 34 33.8 2 0.83666
6 38 37 39 40 38 38.4 3 1.14018
7 30 31 32 34 31 31.6 4 1.51658
8 29 39 38 39 39 36.8 10 4.38178
9 28 33 35 36 43 35.0 15 5.43139

10 38 33 32 35 32 34.0 6 2.54951
11 28 30 28 32 31 29.8 4 1.78885
12 31 35 35 35 34 34.0 4 1.73205
13 27 32 34 35 37 33.0 10 3.80789
14 33 33 35 37 36 34.8 4 1.78885
15 35 37 32 35 39 35.6 7 2.60768
16 33 33 27 31 30 30.8 6 2.48998
17 35 34 34 30 32 33.0 5 2.00000
18 32 33 30 30 33 31.6 3 1.51658
19 25 27 34 27 28 28.2 9 3.42053
20 35 35 36 33 30 33.8 6 2.38747

s � 2.345r � 5.8x � 33.32

x
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612 CHAPTER 16 STATISTICAL QUALITY CONTROL

and this result is nearly the same as from . The S chart is shown in Fig. 16-9. Because the con-
trol limits for the chart calculated from are nearly the same as from , the chart is not shown.

Suppose that all of these assignable causes can be traced to a defective tool in the wax-
molding area. We should discard these five samples and recompute the limits for the and R
charts. These new revised limits are, for the chart,

and for the R chart,

 LCL � D3 r � 102 15.02 � 0

 UCL � D4 r � 12.1152 15.02 � 10.57

 LCL � x � A2 r � 33.21 � 10.5772 15.02 � 30.33

 UCL � x � A2 r � 33.21 � 10.5772 15.02 � 36.10

X
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Figure 16-9. The S control chart for vane opening.

1

1

1

1

1

1

30

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Subgroup

10
Subgroup

M
ea

ns
R

an
ge

s

32

34

36

38

40

42

28

26

LCL = 29.97

UCL = 36.67

x =
33.32

1

4

2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20

6

8

10

12

14

16

2

0

UCL = 12.27

r = 5.80

LCL = 0.00

Figure 16-8 The and R control charts for vane opening.X
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16-5 AND R OR S CONTROL CHARTS 613X

1
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= not used in computing
   control limits

Estimation of limits

= not used in computing
   control limits

Figure 16-10 The and R control charts for vane opening, revised limits.X

The revised control charts are shown in Fig. 16-10. Notice that we have treated the first 
20 preliminary samples as estimation data with which to establish control limits. These lim-
its can now be used to judge the statistical control of future production. As each new sample
becomes available, the values of and r should be computed and plotted on the control charts.
It may be desirable to revise the limits periodically, even if the process remains stable. The 
limits should always be revised when process improvements are made.

Computer Construction of and R Control Charts
Many computer programs construct and R control charts. Figures 16-8 and 16-10 show
charts similar to those produced by Minitab for the vane-opening data. This program will 
allow the user to select any multiple of sigma as the width of the control limits and use the
Western Electric rules to detect out-of-control points. The program will also prepare a
summary report as in Table 16-2 and exclude subgroups from the calculation of the control
limits.

X
X

x

Table 16-2 Summary Report from Minitab for the Vane-Opening Data

Test Results for Xbar Chart
TEST 1. One point more than 3.00 sigmas from center line.
Test Failed at points: 6 8 11 19

Test Results for R Chart
TEST 1. One point more than 3.00 sigmas from center line.
Test Failed at points: 9
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614 CHAPTER 16 STATISTICAL QUALITY CONTROL

16-1. An extrusion die is used to produce aluminum rods.
The diameter of the rods is a critical quality characteristic. The
following table shows and r values for 20 samples of five 
rods each. Specifications on the rods are 0.5035 
 0.0010 inch.
The values given are the last three digits of the measurement;
that is, 34.2 is read as 0.50342.

x

(a) Using all the data, find trial control limits for and R
charts, construct the chart, and plot the data.

(b) Use the trial control limits from part (a) to identify 
out-of-control points. If necessary, revise your control
limits, assuming that any samples that plot outside the
control limits can be eliminated.

16-2. Twenty-five samples of size 5 are drawn from a
process at one-hour intervals, and the following data are
obtained:

(a) Find trial control limits for and R charts.
(b) Repeat part (a) for and S charts.

16-3. The pull strength of a wire-bonded lead for an inte-
grated circuit monitored. The following table provides data for
20 samples each of size three.
(a) Use all the data to determine trial control limits for 

and R charts, construct the control limits, and plot the
data.

X

X
X

a
25

i�1
xi � 362.75  a

25

i�1
ri � 8.60  a

25

i�1
si � 3.64

X

(b) Use the control limits from part (a) to identify out-of-control
points. If necessary, revise your control limits assuming that
any samples that plot outside of the control limits can be
eliminated.

(c) Repeat parts (a) and (b) for and S charts.X

16-4. Samples of size n � 6 are collected from a process
every hour. After 20 samples have been collected, we calcu-
late and 

(a) Find trial control limits for and R charts.
(b) If , determine trial control limits for and S

charts.

16-5. Control charts for and R are to be set up for an im-
portant quality characteristic. The sample size is n � 5, and 
and r are computed for each of 35 preliminary samples. The
summary data are

(a) Find trial control limits for and R charts.
(b) Assuming that the process is in control, estimate the

process mean and standard deviation.

16-6. Control charts are to be constructed for samples of size
n � 4, and and s are computed for each of 20 preliminary sam-
ples as follows:

a
20

i�1
xi � 4460  a

20

i�1
si � 271.6

x

X

a
35

i�1
xi � 7805  a

35

i�1
ri � 1200

x
X

Xs�c4 � 1.5
X

r	d2 � 1.4.x � 20.0

EXERCISES FOR SECTION 16-5

Sample r

1 34.2 3
2 31.6 4
3 31.8 4
4 33.4 5
5 35.0 4
6 32.1 2
7 32.6 7
8 33.8 9
9 34.8 10

10 38.6 4
11 35.4 8
12 34.0 6
13 36.0 4
14 37.2 7
15 35.2 3
16 33.4 10
17 35.0 4
18 34.4 7
19 33.9 8
20 34.0 4

x

Sample Number x1 x2 x3

1 15.4 15.6 15.3
2 15.4 17.1 15.2
3 16.1 16.1 13.5
4 13.5 12.5 10.2
5 18.3 16.1 17.0
6 19.2 17.2 19.4
7 14.1 12.4 11.7
8 15.6 13.3 13.6
9 13.9 14.9 15.5

10 18.7 21.2 20.1
11 15.3 13.1 13.7
12 16.6 18.0 18.0
13 17.0 15.2 18.1
14 16.3 16.5 17.7
15 8.4 7.7 8.4
16 11.1 13.8 11.9
17 16.5 17.1 18.5
18 18.0 14.1 15.9
19 17.8 17.3 12.0
20 11.5 10.8 11.2
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16-6 CONTROL CHARTS FOR INDIVIDUAL MEASUREMENTS 615

(a) Determine trial control limits for and S charts.
(b) Assuming the process is in control, estimate the process

mean and standard deviation.

16-7. The thickness of a metal part is an important qual-
ity parameter. Data on thickness (in inches) are given in the
following table, for 25 samples of five parts each.

X (a) Using all the data, find trial control limits for and R
charts, construct the chart, and plot the data. Is the process
in statistical control?

(b) Repeat part (a) for and S charts.
(c) Use the trial control limits from part (a) to identify out-of-

control points. List the sample numbers of the out-of-control
points.

16-8. The copper content of a plating bath is measured three
times per day, and the results are reported in ppm. The and r
values for 25 days are shown in the following table:

(a) Using all the data, find trial control limits for and R charts,
construct the chart, and plot the data. Is the process in
statistical control?

(b) If necessary, revise the control limits computed in part (a),
assuming that any samples that plot outside the control
limits can be eliminated.

Day r Day r

1 5.45 1.21 14 7.01 1.45

2 5.39 0.95 15 5.83 1.37

3 6.85 1.43 16 6.35 1.04

4 6.74 1.29 17 6.05 0.83

5 5.83 1.35 18 7.11 1.35

6 7.22 0.88 19 7.32 1.09

7 6.39 0.92 20 5.90 1.22

8 6.50 1.13 21 5.50 0.98

9 7.15 1.25 22 6.32 1.21

10 5.92 1.05 23 6.55 0.76

11 6.45 0.98 24 5.90 1.20

12 5.38 1.36 25 5.95 1.19

13 6.03 0.83

xx

X

x

X

X

16-6 CONTROL CHARTS FOR INDIVIDUAL 
MEASUREMENTS

In many situations, the sample size used for process control is n � 1; that is, the sample con-
sists of an individual unit. Some examples of these situations are as follows:

1. Automated inspection and measurement technology is used, and every unit manu-
factured is analyzed.

2. The production rate is very slow, and it is inconvenient to allow sample sizes of n � 1
to accumulate before being analyzed.

3. Repeat measurements on the process differ only because of laboratory or analysis 
error, as in many chemical processes.

Sample
Number x1 x2 x3 x4 x5

1 0.0629 0.0636 0.0640 0.0635 0.0640

2 0.0630 0.0631 0.0622 0.0625 0.0627

3 0.0628 0.0631 0.0633 0.0633 0.0630

4 0.0634 0.0630 0.0631 0.0632 0.0633

5 0.0619 0.0628 0.0630 0.0619 0.0625

6 0.0613 0.0629 0.0634 0.0625 0.0628

7 0.0630 0.0639 0.0625 0.0629 0.0627

8 0.0628 0.0627 0.0622 0.0625 0.0627

9 0.0623 0.0626 0.0633 0.0630 0.0624

10 0.0631 0.0631 0.0633 0.0631 0.0630

11 0.0635 0.0630 0.0638 0.0635 0.0633

12 0.0623 0.0630 0.0630 0.0627 0.0629

13 0.0635 0.0631 0.0630 0.0630 0.0630

14 0.0645 0.0640 0.0631 0.0640 0.0642

15 0.0619 0.0644 0.0632 0.0622 0.0635

16 0.0631 0.0627 0.0630 0.0628 0.0629

17 0.0616 0.0623 0.0631 0.0620 0.0625

18 0.0630 0.0630 0.0626 0.0629 0.0628

19 0.0636 0.0631 0.0629 0.0635 0.0634

20 0.0640 0.0635 0.0629 0.0635 0.0634

21 0.0628 0.0625 0.0616 0.0620 0.0623

22 0.0615 0.0625 0.0619 0.0619 0.0622

23 0.0630 0.0632 0.0630 0.0631 0.0630

24 0.0635 0.0629 0.0635 0.0631 0.0633

25 0.0623 0.0629 0.0630 0.0626 0.0628
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616 CHAPTER 16 STATISTICAL QUALITY CONTROL

4. In process plants, such as papermaking, measurements on some parameters such
as coating thickness across the roll will differ very little and produce a standard
deviation that is much too small if the objective is to control coating thickness
along the roll.

In such situations, the individuals control chart is useful. The control chart for individu-
als uses the moving range of two successive observations to estimate the process variability.
The moving range is defined as MRi � 0Xi � Xi�10. 

An estimate of � is

(16-18)

because d2 � 1.128 when two consecutive observations are used to calculate a moving range.
It is also possible to establish a control chart on the moving range using D3 and D4 for n � 2.
The parameters for these charts are defined as follows.

�̂ �
MR

d2
�

MR

1.128

The center line and upper and lower control limits for a control chart for individuals
are

(16-19)

and for a control chart for moving ranges

 LCL � D3mr � 0

 CL � mr

 UCL � D4mr � 3.267mr

 LCL � x � 3 
mr

d2
� x � 3 

mr

1.128

 CL � x

 UCL � x � 3 
mr

d2
� x � 3 

mr

1.128

Individuals
Control Chart 

The procedure is illustrated in the following example.

EXAMPLE 16-2 Table 16-3 shows 20 observations on concentration for the output of a chemical process. The
observations are taken at one-hour intervals. If several observations are taken at the same 
time, the observed concentration reading will differ only because of measurement error. Since
the measurement error is small, only one observation is taken each hour.

To set up the control chart for individuals, note that the sample average of the 20 concen-
tration readings is and that the average of the moving ranges of two observations
shown in the last column of Table 16-3 is To set up the moving-range chart, we
note that D3 � 0 and D4 � 3.267 for n � 2. Therefore, the moving-range chart has center line

, LCL � 0, and The control chart is shown
as the lower control chart in Fig. 16-11 on page 618. This control chart was constructed by
Minitab. Because no points exceed the upper control limit, we may now set up the control chart
for individual concentration measurements. If a moving range of n � 2 observations is used,

UCL � D4mr � 13.2672 12.592 � 8.46.mr � 2.59

mr � 2.59.
x � 99.1
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16-6 CONTROL CHARTS FOR INDIVIDUAL MEASUREMENTS 617

d2 � 1.128. For the data in Table 16-3 we have

The control chart for individual concentration measurements is shown as the upper con-
trol chart in Fig. 16-11. There is no indication of an out-of-control condition.

The chart for individuals can be interpreted much like an ordinary control chart. A shift
in the process average will result in either a point (or points) outside the control limits, or a
pattern consisting of a run on one side of the center line.

Some care should be exercised in interpreting patterns on the moving-range chart. The
moving ranges are correlated, and this correlation may often induce a pattern of runs or cycles
on the chart. The individual measurements are assumed to be uncorrelated, however, and any
apparent pattern on the individuals’ control chart should be carefully investigated.

The control chart for individuals is very insensitive to small shifts in the process mean.
For example, if the size of the shift in the mean is one standard deviation, the average number
of points to detect this shift is 43.9. This result is shown later in the chapter. While the per-
formance of the control chart for individuals is much better for large shifts, in many situations
the shift of interest is not large and more rapid shift detection is desirable. In these cases, we
recommend the cumulative sum control chart (discussed in Section 16-10) or an exponentially
weighted moving-average chart (Montgomery, 2001).

X

 LCL � x � 3 
mr

d2
� 99.1 � 3 

2.59
1.128

� 92.21

 CL � x � 99.1

 UCL � x � 3 
mr

d2
� 99.1 � 3 

2.59
1.128

� 105.99

Table 16-3 Chemical Process Concentration Measurements

Concentration Moving Range
Observation x mr

1 102.0
2 94.8 7.2
3 98.3 3.5
4 98.4 0.1
5 102.0 3.6
6 98.5 3.5
7 99.0 0.5
8 97.7 1.3
9 100.0 2.3

10 98.1 1.9
11 101.3 3.2
12 98.7 2.6
13 101.1 2.4
14 98.4 2.7
15 97.0 1.4
16 96.7 0.3
17 100.3 3.6
18 101.4 1.1
19 97.2 4.2
20 101.0 3.8

mr � 2.59x � 99.1
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618 CHAPTER 16 STATISTICAL QUALITY CONTROL

Some individuals have suggested that limits narrower than 3-sigma be used on the chart
for individuals to enhance its ability to detect small process shifts. This is a dangerous sug-
gestion, for narrower limits will dramatically increase false alarms such that the charts may be
ignored and become useless. If you are interested in detecting small shifts, use the cumulative
sum or exponentially weighted moving-average control chart referred to on the previous page.
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Figure 16-11
Control charts for 
individuals and the
moving range (from
Minitab) for the 
chemical process 
concentration data.

EXERCISES FOR SECTION 16-6

Observation Hardness Observation Hardness

1 51 11 51

2 52 12 57

3 54 13 58

4 55 14 50

5 55 15 53

6 51 16 52

7 52 17 54

8 50 18 50

9 51 19 56

10 56 20 53

16-9. Twenty successive hardness measurements are made
on a metal alloy, and the data are shown in the following table.

(a) Using all the data, compute trial control limits for indi-
vidual observations and moving-range charts. Construct
the chart and plot the data. Determine whether the
process is in statistical control. If not, assume assignable
causes can be found to eliminate these samples and re-
vise the control limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

16-10. In a semiconductor manufacturing process CVD
metal thickness was measured on 30 wafers obtained over ap-
proximately two weeks. Data are shown in the following table.
(a) Using all the data, compute trial control limits for indi-

vidual observations and moving-range charts. Construct
the chart and plot the data. Determine whether the
process is in statistical control. If not, assume assignable
causes can be found to eliminate these samples and re-
vise the control limits.
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16-7 PROCESS CAPABILITY 619

(a) Using all the data, compute trial control limits for individ-
ual observations and moving-range charts. Construct
the control chart and plot the data. Determine whether
the process is in statistical control. If not, assume assigna-
ble causes can be found to eliminate these samples and
revise the control limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

16-12. The viscosity of a chemical intermediate is meas-
ured every hour. Twenty samples each of size n � 1, are in the
following table.

Sample Diameter

1 9.94

2 9.93

3 10.09

4 9.98

5 10.11

6 9.99

7 10.11

8 9.84

9 9.82

10 10.38

11 9.99

12 10.41

13 10.36

Sample Diameter

14 9.99

15 10.12

16 9.81

17 9.73

18 10.14

19 9.96

20 10.06

21 10.11

22 9.95

23 9.92

24 10.09

25 9.85

Sample Viscosity

1 495

2 491

3 501

4 501

5 512

6 540

7 492

8 504

9 542

10 508

11 493

12 507

13 503

14 475

15 497

16 499

17 468

18 486

19 511

20 487

(b) Estimate the process mean and standard deviation for the
in-control process.

16-11. The diameter of holes is measured in consecutive 
order by an automatic sensor. The results of measuring 25
holes are in the following table.

Wafer x Wafer x

1 16.8 16 15.4
2 14.9 17 14.3
3 18.3 18 16.1
4 16.5 19 15.8
5 17.1 20 15.9
6 17.4 21 15.2
7 15.9 22 16.7
8 14.4 23 15.2
9 15.0 24 14.7

10 15.7 25 17.9
11 17.1 26 14.8
12 15.9 27 17.0
13 16.4 28 16.2
14 15.8 29 15.6
15 15.4 30 16.3

16-7 PROCESS CAPABILITY

It is usually necessary to obtain some information about the process capability, that is, the
performance of the process when it is operating in control. Two graphical tools, the toler-
ance chart (or tier chart) and the histogram, are helpful in assessing process capability.

(a) Using all the data, compute trial control limits for individ-
ual observations and moving-range charts. Determine
whether the process is in statistical control. If not, assume
assignable causes can be found to eliminate these samples
and revise the control limits.

(b) Estimate the process mean and standard deviation for the
in-control process.
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620 CHAPTER 16 STATISTICAL QUALITY CONTROL

The tolerance chart for all 20 samples from the vane-manufacturing process is shown in
Fig. 16-12. The specifications on vane opening are in. In terms of the
coded data, the upper specification limit is USL � 40 and the lower specification limit is
LSL � 20, and these limits are shown on the chart in Fig. 16-12. Each measurement is plot-
ted on the tolerance chart. Measurements from the same subgroup are connected with
lines. The tolerance chart is useful in revealing patterns over time in the individual meas-
urements, or it may show that a particular value of or r was produced by one or two un-
usual observations in the sample. For example, note the two unusual observations in sam-
ple 9 and the single unusual observation in sample 8. Note also that it is appropriate to plot
the specification limits on the tolerance chart, since it is a chart of individual measure-
ments. It is never appropriate to plot specification limits on a control chart or to use
the specifications in determining the control limits. Specification limits and control lim-
its are unrelated. Finally, note from Fig. 16-12 that the process is running off-center from
the nominal dimension of 30 (or 0.5030 inch).

The histogram for the vane-opening measurements is shown in Fig. 16-13. The observa-
tions from samples 6, 8, 9, 11, and 19 (corresponding to out of-control points on either the 
or R chart) have been deleted from this histogram. The general impression from examining
this histogram is that the process is capable of meeting the specification but that it is running
off-center.

Another way to express process capability is in terms of an index that is defined as
follows.

X
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Figure 16-12
Tolerance diagram of
vane openings.
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16-7 PROCESS CAPABILITY 621

The process capability ratio (PCR) is

(16-20)PCR �
USL � LSL

6�

Process Capability
Ratio

The numerator of PCR is the width of the specifications. The limits 3� on either side of the
process mean are sometimes called natural tolerance limits, for these represent limits that an
in-control process should meet with most of the units produced. Consequently, 6� is often re-
ferred to as the width of the process. For the vane opening, where our sample size is 5, we
could estimate � as

Therefore, the PCR is estimated to be

The PCR has a natural interpretation: (1�PCR)100 is just the percentage of the specifica-
tions’ width used by the process. Thus, the vane-opening process uses approximately
(1�1.55)100 � 64.5% of the specifications’ width.

Figure 16-14(a) shows a process for which the PCR exceeds unity. Since the process
natural tolerance limits lie inside the specifications, very few defective or nonconform-
ing units will be produced. If PCR � 1, as shown in Fig. 16-14(b), more nonconform-
ing units result. In fact, for a normally distributed process, if PCR � 1, the fraction

PCR �
USL � LSL

6�̂
�

40 � 20

612.152
� 1.55

�̂ �
r

d2
�

5.0
2.326

� 2.15

5
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Figure 16-13
Histogram for vane
opening.
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622 CHAPTER 16 STATISTICAL QUALITY CONTROL

nonconforming is 0.27%, or 2700 parts per million. Finally, when the PCR is less than
unity, as in Fig. 16-14(c), the process is very yield-sensitive and a large number of non-
conforming units will be produced.

The definition of the PCR given in Equation 16-19 implicitly assumes that the process
is centered at the nominal dimension. If the process is running off-center, its actual capa-
bility will be less than indicated by the PCR. It is convenient to think of PCR as a meas-
ure of potential capability, that is, capability with a centered process. If the process is not
centered, a measure of actual capability is often used. This ratio, called PCRk, is defined
below.

USLLSL µ

Nonconforming
units

Nonconforming
units

3σ3σ

(c)

PCR < 1

USLLSL

µ

Nonconforming
units

Nonconforming
units

3σ3σ

(b)

PCR = 1

USLLSL µ

3σ3σ

(a)

PCR > 1

Figure 16-14
Process fallout and the
process capability ratio
(PCR).

(16-21)PCRk � min cUSL � �

3�
, 

� � LSL

3�
d

PCRk

In effect, PCRk is a one-sided process capability ratio that is calculated relative to the specifi-
cation limit nearest to the process mean. For the vane-opening process, we find that the
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16-7 PROCESS CAPABILITY 623

estimate of the process capability ratio PCRk is

Note that if PCR � PCRk, the process is centered at the nominal dimension. Since
for the vane-opening process and the process is obviously run-

ning off-center, as was first noted in Figs. 16-14 and 16-17. This off-center operation was ul-
timately traced to an oversized wax tool. Changing the tooling resulted in a substantial im-
provement in the process (Montgomery, 2001).

The fractions of nonconforming output (or fallout) below the lower specification limit and
above the upper specification limit are often of interest. Suppose that the output from a normally
distributed process in statistical control is denoted as X. The fractions are determined from

EXAMPLE 16-3 For an electronic manufacturing process a current has specifications of mil-
liamperes. The process mean � and standard deviation � are 107.0 and 1.5, respectively. The
process mean is nearer to the USL. Consequently,

The small PCRk indicates that the process is likely to produce currents outside of the specifi-
cation limits. From the normal distribution in Appendix Table II

P1X � USL2 � P1Z � 1110 � 1072	1.52 � P1Z � 22 � 0.023

P1X � LSL2 � P1Z � 190 � 1072	1.52 � P1Z � �11.332 � 0

PCR � 1110 � 902	 16 � 1.52 � 2.22  and  PCRk � 1110 � 1072	 13 � 1.52 � 0.67

100 
 10

P1X � LSL2 � P1Z � 1LSL � �2	�2  P1X � USL2 � P1Z � 1USL � �2	�2

PCR̂ � 1.55,PCR̂k � 1.06

� min c 40 � 33.19

312.152 � 1.06,  
33.19 � 20

312.152 � 2.04 d � 1.06

PCR̂k � min cUSL � x

3�̂ , 
x � LSL

3�̂
d

For this example, the relatively large probability of exceeding the USL is a warning of po-
tential problems with this criterion even if none of the measured observations in a preliminary
sample exceed this limit. We emphasize that the fraction-nonconforming calculation assumes
that the observations are normally distributed and the process is in control. Departures from
normality can seriously affect the results. The calculation should be interpreted as an approx-
imate guideline for process performance. To make matters worse, � and � need to be esti-
mated from the data available and a small sample size can result in poor estimates that further
degrade the calculation.

Montgomery (2001) provides guidelines on appropriate values of the PCR and a table re-
lating fallout for a normally distributed process in statistical control to the value of PCR.
Many U.S. companies use PCR � 1.33 as a minimum acceptable target and PCR � 1.66 as a
minimum target for strength, safety, or critical characteristics. Some companies require that
internal processes and those at suppliers achieve a PCRk � 2.0. Figure 16-15 illustrates a
process with PCR � PCRk � 2.0. Assuming a normal distribution, the calculated fallout for
this process is 0.0018 parts per million. A process with PCRk � 2.0 is referred to as a six-
sigma process because the distance from the process mean to the nearest specification is six
standard deviations. The reason that such a large process capability is often required is that it

c16.qxd  5/8/02  9:58 PM  Page 623 RK UL 6 RK UL 6:Desktop Folder:



624 CHAPTER 16 STATISTICAL QUALITY CONTROL

is difficult to maintain a process mean at the center of the specifications for long periods of
time. A common model that is used to justify the importance of a six-sigma process is illus-
trated by referring to Fig. 16-15. If the process mean shifts off-center by 1.5 standard devia-
tions, the PCRk decreases to 4.5��3� � 1.5. Assuming a normally distributed process, the
fallout of the shifted process is 3.4 parts per million. Consequently, the mean of a 6-sigma
process can shift 1.5 standard deviations from the center of the specifications and still main-
tain a fallout of 3.4 parts per million.

In addition, some U.S. companies, particularly the automobile industry, have adopted the
terminology Cp � PCR and Cpk � PCRk. Because Cp has another meaning in statistics (in
multiple regression) we prefer the traditional notation PCR and PCRk.

We repeat that process capability calculations are meaningful only for stable
processes; that is, processes that are in control. A process capability ratio indicates
whether or not the natural or chance variability in a process is acceptable relative to the
specifications.

USLLSL µ

3σ3σ

1.5σ

PCRk = 1.5PCRk = 2

Figure 16-15 Mean
of a six-sigma process
shifts by 1.5 standard
deviations.

16-13. A normally distributed process uses 66.7% of the
specification band. It is centered at the nominal dimension, lo-
cated halfway between the upper and lower specification limits.
(a) Estimate PCR and PCRk. Interpret these ratios.
(b) What fallout level (fraction defective) is produced?

16-14. Reconsider Exercise 16-1. Use the revised control
limits and process estimates.
(a) Estimate PCR and PCRk. Interpret these ratios.
(b) What percentage of defectives is being produced by this

process?

16-15. Reconsider Exercise 16-2, where the specification
limits are 14.50 � 0.50.
(a) What conclusions can you draw about the ability of the

process to operate within these limits? Estimate the per-
centage of defective items that will be produced.

(b) Estimage PCR and PCRk. Interpret these ratios.

16-16. Reconsider Exercise 16-3. Using the process esti-
mates, what is the fallout level if the coded specifications are
10 � 5 mm? Estimate PCR and interpret this ratio.

16-17. A normally distributed process uses 85% of the spec-
ification band. It is centered at the nominal dimension, located
halfway between the upper and lower specification limits.

EXERCISES FOR SECTION 16-7

(a) Estimate PCR and PCRk. Interpret these ratios.
(b) What fallout level (fraction defective) is produced?

16-18. Reconsider Exercise 16-5. Suppose that the quality
characteristic is normally distributed with specification at 220 �
40. What is the fallout level? Estimate PCR and PCRk and in-
terpret these ratios.

16-19. Reconsider Exercise 16-6. Suppose that the variable
is normally distributed with specifications at 220 � 50. What
is the proportion out of specifications? Estimate and interpret
PCR and PCRk.

16-20. Reconsider Exercise 16-4(a). Assuming that both
charts exhibit statistical control and that the process specifica-
tions are at 20 � 5, estimate PCR and PCRk and interpret these
ratios.

16-21. Reconsider Exercise 16-8. Given that the specifica-
tions are at 6.0 � 1.0, estimate PCR and PCRk and interpret
these ratios.

16-22. Reconsider 16-7(b). What are the natural tolerance
limits of this process?

16-23. Reconsider 16-12. The viscosity specifications are at
500 � 25. Calculate estimates of the process capability ratios
PCR and PCRk for this process and provide an interpretation.
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16-8 ATTRIBUTE CONTROL CHARTS 625

16-8 ATTRIBUTE CONTROL CHARTS

16-8.1 P Chart (Control Chart for Proportions)

Often it is desirable to classify a product as either defective or nondefective on the basis of com-
parison with a standard. This classification is usually done to achieve economy and simplicity in
the inspection operation. For example, the diameter of a ball bearing may be checked by deter-
mining whether it will pass through a gauge consisting of circular holes cut in a template. This
kind of measurement would be much simpler than directly measuring the diameter with a device
such as a micrometer. Control charts for attributes are used in these situations. Attribute control
charts often require a considerably larger sample size than do their variable measurements coun-
terparts. In this section, we will discuss the fraction-defective control chart, or P chart.
Sometimes the P chart is called the control chart for fraction nonconforming.

Suppose D is the number of defective units in a random sample of size n. We assume that
D is a binomial random variable with unknown parameter p. The fraction defective

of each sample is plotted on the chart. Furthermore, the variance of the statistic is

Therefore, a P chart for fraction defective could be constructed using p as the center line and
control limits at

(16-22)

However, the true process fraction defective is almost always unknown and must be estimated
using the data from preliminary samples.

Suppose that m preliminary samples each of size n are available, and let Di be the number
of defectives in the ith sample. The is the sample fraction defective in the ith
sample. The average fraction defective is

(16-23)

Now may be used as an estimator of p in the center line and control limit calculations.P

P �
1
ma

m

i�1
P̂i �

1
mna

m

i�1
Di

P̂i � Di	n

UCL � p � 3 Bp11 � p2
n   LCL � p � 3 Bp11 � p2

n

�2
P̂

�
p11 � p2

n

P̂

P̂ �
D
n

P Chart
The center line and upper and lower control limits for the P chart are

(16-24)

where is the observed value of the average fraction defective.p

UCL � p � 3 Bp11 � p2
n  CL � p LCL � p � 3 Bp11 � p2

n
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626 CHAPTER 16 STATISTICAL QUALITY CONTROL

These control limits are based on the normal approximation to the binomial distribu-
tion. When p is small, the normal approximation may not always be adequate. In such
cases, we may use control limits obtained directly from a table of binomial probabilities. 
If is small, the lower control limit obtained from the normal approximation may be a
negative number. If this should occur, it is customary to consider zero as the lower control
limit.

EXAMPLE 16-4 Suppose we wish to construct a fraction-defective control chart for a ceramic substrate pro-
duction line. We have 20 preliminary samples, each of size 100; the number of defectives in
each sample is shown in Table 16-4. Assume that the samples are numbered in the sequence 
of production. Note that (800�2000) � 0.40; therefore, the trial parameters for the con-
trol chart are

The control chart is shown in Fig. 16-16. All samples are in control. If they were not, we
would search for assignable causes of variation and revise the limits accordingly. This chart
can be used for controlling future production.

Although this process exhibits statistical control, its defective rate ( ) is very
poor. We should take appropriate steps to investigate the process to determine why such a 
large number of defective units is being produced. Defective units should be analyzed to de-
termine the specific types of defects present. Once the defect types are known, process
changes should be investigated to determine their impact on defect levels. Designed experi-
ments may be useful in this regard.

Computer software also produces an NP chart. This is just a control chart of , the
number of defectives in a sample. The points, center line, and control limits for this chart are
just multiples (times n) of the corresponding elements of a P chart. The use of an NP chart
avoids the fractions in a P chart.

nP̂ � D

p � 0.40

 LCL � 0.40 � 3 B 10.402 10.602
100

� 0.25

 UCL � 0.40 � 3 B 10.402 10.602
100

� 0.55    CL � 0.40 

p �

p

Table 16-4 Number of Defectives in Samples of 100 
Ceramic Substrates

Sample No. of Defectives Sample No. of Defectives

1 44 11 36
2 48 12 52
3 32 13 35
4 50 14 41
5 29 15 42
6 31 16 30
7 46 17 46
8 52 18 38
9 44 19 26

10 48 20 30
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16-8 ATTRIBUTE CONTROL CHARTS 627
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Figure 16-16 P chart
for a ceramic substrate.

The center line and upper and lower control limits on the U chart are

(16-27)

where is the average number of defects per unit.u

UCL � u � 3 Bu
n   CL � u   LCL � u � 3 Bu

n

U Chart

16-8.2 U Chart (Control Chart for Defects per Unit)

It is sometimes necessary to monitor the number of defects in a unit of product rather than
the fraction defective. Suppose that in the production of cloth it is necessary to control the
number of defects per yard or that in assembling an aircraft wing the number of missing riv-
ets must be controlled. In these situations we may use the control chart for defects per unit,
or the U chart. Many defects-per-unit situations can be modeled by the Poisson distribution.

If each sample consists of n units and there are C total defects in the sample,

is the average number of defects per unit. A U chart may be constructed for such data.
If the number of defects in a unit is a Poisson random variable with parameter 
, the mean and

variance of this distribution are both 
. Each point on the chart is U, the average number of defects
per unit from a sample of n units. Therefore, the mean of U is 
 and the variance of U is 
�n.

(16-25)

If there are m preliminary samples, and the number of defects per unit in these samples are U1,
U2, . . . , Um, the estimator of the average number of defects per unit is

(16-26)

The parameters of the U chart are defined as follows.

U �
1
ma

m

i�1
Ui

LCL � � � 3 B�
n

UCL � � � 3 B�
n

U �
C
n
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628 CHAPTER 16 STATISTICAL QUALITY CONTROL

These control limits are based on the normal approximation to the Poisson distribution.
When 
 is small, the normal approximation may not always be adequate. In such cases, we
may use control limits obtained directly from a table of Poisson probabilities. If is small,
the lower control limit obtained from the normal approximation may be a negative number.
If this should occur, it is customary to consider zero as the lower control limit.

EXAMPLE 16-5 Printed circuit boards are assembled by a combination of manual assembly and automation. A
flow solder machine is used to make the mechanical and electrical connections of the leaded
components to the board. The boards are run through the flow solder process almost continu-
ously, and every hour five boards are selected and inspected for process-control purposes. The
number of defects in each sample of five boards is noted. Results for 20 samples are shown in
Table 16-5.

The center line for the U chart is

and the upper and lower control limits are

The control chart is plotted in Fig. 16-17. Because LCL is negative, it is set to 0. From the con-
trol chart in Fig. 16-17, we see that the process is in control. However, eight defects per group
of five circuit boards are too many (about 8�5 � 1.6 defects/board), and the process needs
improvement. An investigation needs to be made of the specific types of defects found on the
printed circuit boards. This will usually suggest potential avenues for process improvement.

Computer software also produces a C chart. This is just a control chart of C, the total of
defects in a sample. The points, center line, and control limits for this chart are just multiples

LCL � u � 3 Bu
n � 1.6 � 3 B1.6

5
� 0

UCL � u � 3 Bu
n � 1.6 � 3 B1.6

5
� 3.3

u �
1
20a

20

i�1
ui �

32
20

� 1.6

u

Table 16-5 Number of Defects in Samples of Five Printed Circuit Boards

Number of Defects per Number of Defects per 
Sample Defects Unit ui Sample Defects Unit ui

1 6 1.2 11 9 1.8
2 4 0.8 12 15 3.0
3 8 1.6 13 8 1.6
4 10 2.0 14 10 2.0
5 9 1.8 15 8 1.6
6 12 2.4 16 2 0.4
7 16 3.2 17 7 1.4
8 2 0.4 18 1 0.2
9 3 0.6 19 7 1.4

10 10 2.0 20 13 2.6
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16-8 ATTRIBUTE CONTROL CHARTS 629

(times n) of the corresponding elements of a U chart. The use of a C chart avoids the fractions
that can occur in a U chart.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

UCL = 3.3

Sample number

D
ef

ec
ts

 p
er

 u
ni

t,
 u

2

4

0

u = 1.6

Figure 16-17 U chart
of defects per unit on
printed circuit boards.

16-24. Suppose the following fraction defective has been
found in successive samples of size 100 (read down):

0.09 0.03 0.12

0.10 0.05 0.14

0.13 0.13 0.06

0.08 0.10 0.05

0.14 0.14 0.14

0.09 0.07 0.11

0.10 0.06 0.09

0.15 0.09 0.13

0.13 0.08 0.12

0.06 0.11 0.09

(a) Using all the data, compute trial control limits for a
fraction-defective control chart, construct the chart, and
plot the data.

(b) Determine whether the process is in statistical control. If not,
assume assignable causes can be found and out-of-control
points eliminated. Revise the control limits.

16-25. The following represent the number of solder de-
fects observed on 24 samples of five printed circuit boards: 7,
6, 8, 10, 24, 6, 5, 4, 8, 11, 15, 8, 4, 16, 11, 12, 8, 6, 5, 9, 7, 14,
8, 21.
(a) Using all the data, compute trial control limits for a U con-

trol chart, construct the chart, and plot the data.
(b) Can we conclude that the process is in control using a U

chart? If not, assume assignable causes can be found, list
points and revise the control limits.

16-26. The following represent the number of defects

EXERCISES FOR SECTION 16-8

per 1000 feet in rubber-covered wire: 1, 1, 3, 7, 8, 10, 5, 13,
0, 19, 24, 6, 9, 11, 15, 8, 3, 6, 7, 4, 9, 20, 11, 7, 18, 10, 6, 4,
0, 9, 7, 3, 1, 8, 12. Do the data come from a controlled
process?

16-27. Consider the data in Exercise 16-25. Set up a C chart
for this process. Compare it to the U chart in Exercise 16-25.
Comment on your findings.

16-28. The following are the numbers of defective sol-
der joints found during successive samples of 500 solder
joints:

Day No. of Defectives Day No. of Defectives

1 106 12 37

2 116 13 25

3 164 14 88

4 89 15 101

5 99 16 64

6 40 17 51

7 112 18 74

8 36 19 71

9 69 20 43

10 74 21 80
11 42

(a) Using all the data, compute trial control limits for a
fraction-defective control chart, construct the chart, and
plot the data.

(b) Determine whether the process is in statistical control. If not,
assume assignable causes can be found and out-of-control
points eliminated. Revise the control limits.
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630 CHAPTER 16 STATISTICAL QUALITY CONTROL

16-9 CONTROL CHART PERFORMANCE

Specifying the control limits is one of the critical decisions that must be made in designing a
control chart. By moving the control limits further from the center line, we decrease the risk
of a type I error—that is, the risk of a point falling beyond the control limits, indicating an 
out-of-control condition when no assignable cause is present. However, widening the control
limits will also increase the risk of a type II error—that is, the risk of a point falling between
the control limits when the process is really out of control. If we move the control limits closer
to the center line, the opposite effect is obtained: The risk of type I error is increased, while the
risk of type II error is decreased.

The control limits on a Shewhart control chart are customarily located a distance of plus
or minus three standard deviations of the variable plotted on the chart from the center line.
That is, the constant k in equation 16-1 should be set equal to 3. These limits are called 
3-sigma control limits.

A way to evaluate decisions regarding sample size and sampling frequency is through the
average run length (ARL) of the control chart. Essentially, the ARL is the average number of 
points that must be plotted before a point indicates an out-of-control condition. For any Shewhart
control chart, the ARL can be calculated from the mean of a geometric random variable
(Montgomery 2001). Suppose that p is the probability that any point exceeds the control limits. Then

(16-28)ARL �
1
p

Thus, for an chart with 3-sigma limits, p � 0.0027 is the probability that a single point falls
outside the limits when the process is in control, so

is the average run length of the chart when the process is in control. That is, even if the process
remains in control, an out-of-control signal will be generated every 370 points, on the average.

Consider the piston ring process discussed in Section 16-4.2, and suppose we are sampling
every hour. Thus, we will have a false alarm about every 370 hours on the average. Suppose we
are using a sample size of n � 5 and that when the process goes out of control the mean shifts to
74.0135 millimeters. Then, the probability that falls between the control limits of Fig. 16-3 is
equal to

Therefore, p in Equation 16-28 is 0.50, and the out-of-control ARL is

ARL �
1
p �

1
0.5

� 2

 � P 3�6 � Z � 0 4 � 0.5

 � P c 73.9865 � 74.0135
0.0045

� Z �
74.0135 � 74.0135

0.0045
d

 P 373.9865 � X � 74.0135 when � � 74.0135 4

X

X

ARL �
1
p �

1
0.0027

� 370

X
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16-9 CONTROL CHART PERFORMANCE 631

That is, the control chart will require two samples to detect the process shift, on the aver-
age, so two hours will elapse between the shift and its detection (again on the average).
Suppose this approach is unacceptable, because production of piston rings with a mean di-
ameter of 74.0135 millimeters results in excessive scrap costs and delays final engine as-
sembly. How can we reduce the time needed to detect the out-of-control condition? One
method is to sample more frequently. For example, if we sample every half hour, only one
hour will elapse (on the average) between the shift and its detection. The second possibil-
ity is to increase the sample size. For example, if we use n � 10, the control limits in 
Fig. 16-3 narrow to 73.9905 and 74.0095. The probability of falling between the control
limits when the process mean is 74.0135 millimeters is approximately 0.1, so p � 0.9, and
the out-of-control ARL is

Thus, the larger sample size would allow the shift to be detected about twice as quickly as the
old one. If it became important to detect the shift in the first hour after it occurred, two con-
trol chart designs would work:

ARL �
1
p �

1
0.9

� 1.11

X

Table 16-6 Average Run Length (ARL) for an Chart with 3-Sigma
Control Limits

Magnitude of ARL ARL 
Process Shift n � 1 n � 4

0 370.4 370.4
0.5� 155.2 43.9
1.0� 43.9 6.3
1.5� 15.0 2.0
2.0� 6.3 1.2
3.0� 2.0 1.0

X

Design 1 Design 2

Sample size: n � 5 Sample size: n � 10
Sampling frequency: every half hour Sampling frequency: every hour

Table 16-6 provides average run lengths for an chart with 3-sigma control limits. The aver-
age run lengths are calculated for shifts in the process mean from 0 to 3.0� and for sample
sizes of n � 1 and n � 4 by using 1�p, where p is the probability that a point plots outside of
the control limits. Figure 16-18 illustrates a shift in the process mean of 2�.

X

µ µ σ+ 2

Figure 16-18
Process mean shift 
of 2�.
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632 CHAPTER 16 STATISTICAL QUALITY CONTROL

16-29. Consider the control chart in Fig. 16-3. Suppose
that the mean shifts to 74.010 millimeters.
(a) What is the probability that this shift will be detected on

the next sample?
(b) What is the ARL after the shift?

16-30. An chart uses samples of size 4. The center line is
at 100, and the upper and lower 3-sigma control limits are at
106 and 94, respectively.
(a) What is the process �?
(b) Suppose the process mean shifts to 96. Find the

probability that this shift will be detected on the next
sample.

(c) Find the ARL to detect the shift in part (b).

16-31. Consider the revised control chart in Exercise 16-1
with , UCL � 37.404, LCL � 30.780, and n � 5.
Suppose that the mean shifts to 36.
(a) What is the probability that this shift will be detected on

the next sample?
(b) What is the ARL after the shift?
16-32. Consider the control chart in Exercise 16-2(a)
with , UCL � 14.708, LCL � 14.312, and n � 5.
Suppose that the mean shifts to 14.6.
(a) What is the probability that this shift will be detected on

the next sample?
(b) What is the ARL after the shift?

16-33. Consider the control chart in Exercise 16-3(a)
with , UCL � 15.630, LCL � 5.795, and n � 4.
Suppose that the mean shifts to 13.

r � 6.750
X

r � 0.344
X

�̂ � 2.466
X

X

X

EXERCISES FOR SECTION 16-9

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

16-34. Consider the control chart in Exercise 16-4(a)
with , UCL � 21.88, LCL � 18.12, and n � 5.
Suppose that the mean shifts to 17.
(a) What is the probability that this shift will be detected on

the next sample?
(b) What is the ARL after the shift?

16-35. Consider the control chart in Exercise 16-5 with
, UCL � 242.780, LCL � 203.220, and n � 5.

Suppose that the mean shifts to 210.
(a) What is the probability that this shift will be detected on

the next sample?
(b) What is the ARL after the shift?

16-36. Consider the revised control chart in Exercise 16-7
with , UCL � 0.0635, LCL � 0.0624, and 
n � 5. Suppose that the mean shifts to 0.0625.
(a) What is the probability that this shift will be detected on

the next sample?
(b) What is the ARL after the shift?

16-37. Consider the revised control chart in Exercise 16-8
with , UCL � 7.443, LCL � 5.125, and n � 3.
Suppose that the mean shifts to 5.5.
(a) What is the probability that this shift will be detected on

the next sample?
(b) What is the ARL after the shift?

�̂ � 0.669
X

�̂ � 0.000924
X

r � 34.286
X

�̂ � 1.40
X

16-10 CUMULATIVE SUM CONTROL CHART

In Sections 16-5 and 16-6 we have presented basic types of Shewhart control charts. A ma-
jor disadvantage of any Shewhart control chart is that the chart is relatively insensitive to 
small shifts in the process, say, on the order of about 1.5� or less. One reason for this relatively
poor performance in detecting small process shifts is that the Shewhart chart makes use of
only the information in the last plotted point, and it ignores the information in the sequence of
points. This problem can be addressed, to some extent by adding criteria such as the Western
Electric rules to a Shewhart chart, but the use of these rules reduces the simplicity and ease
of interpretation of the chart. These rules would also cause the in-control average run length
of a Shewhart chart to drop below 370. This increase in the false alarm rate can have serious
practical consequences.

A very effective alternative to the Shewhart control chart is the cumulative sum control
chart (or CUSUM). This chart has much better performance (in terms of ARL) for detecting
small shifts than the Shewhart chart, but it does not cause the in-control ARL to drop signifi-
cantly. This section will illustrate the use of the CUSUM for sample averages and individual
measurements.

The CUSUM chart plots the cumulative sums of the deviations of the sample values from
a target value. For example, suppose that samples of size n � 1 are collected, and is theXj
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16-10 CUMULATIVE SUM CONTROL CHART 633

average of the jth sample. Then if �0 is the target for the process mean, the cumulative sum
control chart is formed by plotting the quantity

(16-29)

against the sample number i. Now, Si is called the cumulative sum up to and including the
ith sample. Because they combine information from several samples, cumulative sum charts
are more effective than Shewhart charts for detecting small process shifts. Furthermore,
they are particularly effective with samples of n � 1. This makes the cumulative sum con-
trol chart a good candidate for use in the chemical and process industries where rational
subgroups are frequently of size 1, as well as in discrete parts manufacturing with automatic
measurement of each part and online control using a microcomputer directly at the work
center.

If the process remains in control at the target value �0, the cumulative sum defined in
equation 16-29 should fluctuate around zero. However, if the mean shifts upward to some
value �1 � �0, say, an upward or positive drift will develop in the cumulative sum Si.
Conversely, if the mean shifts downward to some �1 � �0, a downward or negative drift in Si

will develop. Therefore, if a trend develops in the plotted points either upward or downward,
we should consider this as evidence that the process mean has shifted, and a search for the
assignable cause should be performed.

This theory can easily be demonstrated by applying the CUSUM to the chemical process
concentration data in Table 16-3. Since the concentration readings are individual measure-
ments, we would take in computing the CUSUM. Suppose that the target value for the
concentration is �0 � 99. Then the CUSUM is

Table 16-7 shows the computation of this CUSUM, where the starting value of the
CUSUM, S0, is taken to be zero. Figure 16-19 plots the CUSUM from the last column of Table
16-7. Notice that the CUSUM fluctuates around the value of 0.

The graph in Fig. 16-19 is not a control chart because it lacks control limits. There are
two general approaches to devising control limits for CUSUMS. The older of these two
methods is the V-mask procedure. A typical V mask is shown in Fig. 16-20(a). It is a 
V-shaped notch in a plane that can be placed at different locations on the CUSUM chart. The
decision procedure consists of placing the V mask on the cumulative sum control chart with
the point O on the last value of si and the line OP parallel to the horizontal axis. If all the pre-
vious cumulative sums, s1, s2, . . . , si�1, lie within the two arms of the V mask, the process is
in control. However, if any si lies outside the arms of the mask, the process is considered to
be out of control. In actual use, the V mask would be applied to each new point on the
CUSUM chart as soon as it was plotted. In the example shown in Fig. 16-20(b), an upward
shift in the mean is indicated, since at least one of the points that have occurred earlier than
sample 22 now lies below the lower arm of the mask, when the V mask is centered on the
thirtieth observation. If the point lies above the upper arm, a downward shift in the mean is

 � 1Xi � 992 � Si�1

 � 1Xi � 992 � a
i�1

j�1
1Xj � 992

 Si � a
i

j�1
1Xj � 992

Xj � Xj

Si � a
i

j�1
1Xj � �02
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634 CHAPTER 16 STATISTICAL QUALITY CONTROL

indicated. Thus, the V mask forms a visual frame of reference similar to the control limits on
an ordinary Shewhart control chart. For the technical details of designing the V mask, see
Montgomery (2001).

While some computer programs plot CUSUMS with the V-mask control scheme,
we feel that the other approach to CUSUM control, the tabular CUSUM, is superior.

Table 16-7 CUSUM Computations for the Chemical Process Concentration Data in Table 16-3

Observation, i xi xi � 99 si � (xi � 99) � si�1

1 102.0 3.0 3.0
2 94.8 �4.2 �1.2
3 98.3 �0.7 �1.9
4 98.4 �0.6 �2.5
5 102.0 3.0 0.5
6 98.5 �0.5 0.0
7 99.0 0.0 0.0
8 97.7 �1.3 �1.3
9 100.0 1.0 �0.3

10 98.1 �0.9 �1.2
11 101.3 2.3 1.1
12 98.7 �0.3 0.8
13 101.1 2.1 2.9
14 98.4 �0.6 2.3
15 97.0 �2.0 0.3
16 96.7 �2.3 �2.0
17 100.3 1.3 �0.7
18 101.4 2.4 1.7
19 97.2 �1.8 �0.1
20 101.0 2.0 1.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Observation, i

–2

+4

–4

0

+2

si

Figure 16-19 Plot of
the cumulative sum for
the concentration data,
Table 16-7.
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(b)

Observation, i

K

Figure 16-20 The cumulative sum control chart. (a) The V-mask and scaling. (b) The cumulative
sum control chart in operation.

The tabular procedure is particularly attractive when the CUSUM is implemented on a
computer.

Let SH (i) be an upper one-sided CUSUM for period i and SL(i) be a lower one-sided
CUSUM for period i. These quantities are calculated from

(16-30)

and

(16-31)

where the starting values sH 102 � sL102 � 0.

 sL1i2 � max 30, 1�0 � K2 � xi � sL1i � 12 4

 sH 1i2 � max 30, xi � 1�0 � K2 � sH1i � 12 4
CUSUM

Control Chart

In Equations 16-30 and 16-31 K is called the reference value, which is usually chosen
about halfway between the target �0 and the value of the mean corresponding to the out-of-
control state, �1 � �0 � �. That is, K is about one-half the magnitude of the shift we are in-
terested in, or

Notice that SH (i) and SL(i) accumulate deviations from the target value that are greater than
K, with both quantities reset to zero upon becoming negative. If either SH (i) or SL(i) exceeds
a constant H, the process is out of control. This constant H is usually called the decision
interval.

K �
�

2
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636 CHAPTER 16 STATISTICAL QUALITY CONTROL

EXAMPLE 16-6 A Tabular CUSUM

We will illustrate the tabular CUSUM by applying it to the chemical process concentration data
in Table 16-7. The process target is �0 � 99, and we will use K � 1 as the reference value and
H � 10 as the decision interval. The reasons for these choices will be explained later.

Table 16-8 shows the tabular CUSUM scheme for the chemical process concentration
data. To illustrate the calculations, note that

Therefore, for observation 1 the CUSUMS are

and

as shown in Table 16-8. The quantities nH and nL in Table 16-8 indicate the number of periods that
the CUSUM sH(i) or sL(i) have been nonzero. Notice that the CUSUMS in this example never ex-
ceed the decision interval H � 10. We would therefore conclude that the process is in control.

When the tabular CUSUM indicates that the process is out of control, we should search
for the assignable cause, take any corrective actions indicated, and restart the CUSUMS at

sL112 � max 30, 98 � x1 � sL102 4 � max 30, 98 � 102.0 � 0 4 � 0

sH 112 � max 30, x1 � 100 � sH  
102 4 � max 30, 102.0 � 100 � 0 4 � 2.0

 � max 30, 98 � xi � sL1i � 12 4
 sL 
1i2 � max 30, 1�0 � K2 � xi � sL1i � 12 4 � max 30, 199 � 12 � xi � sL1i � 12 4

 � max 30, xi � 100 � sH 
1i � 12 4

 sH 
1i2 � max 30, xi � 1�0 � K2 � sH1i � 12 4 � max 30, xi � 199 � 12 � sH 

1i � 12 4

Table 16-8 The Tabular CUSUM for the Chemical Process Concentration Data

Observation Upper CUSUM Lower CUSUM

i xi xi � 100 sH (i) nH 98 � xi sL(i) nL

1 102.0 2.0 2.0 1 �4.0 0.0 0
2 94.8 �5.2 0.0 0 3.2 3.2 1
3 98.3 �1.7 0.0 0 �0.3 2.9 2
4 98.4 �1.6 0.0 0 �0.4 2.5 3
5 102.0 2.0 2.0 1 �4.0 0.0 0
6 98.5 �1.5 0.5 2 �0.5 0.0 0
7 99.0 �1.0 0.0 0 �1.0 0.0 0
8 97.7 �2.3 0.0 0 0.3 0.3 1
9 100.0 0.0 0.0 0 �2.0 0.0 0

10 98.1 �1.9 0.0 0 �0.1 0.0 0
11 101.3 1.3 1.3 1 �3.3 0.0 0
12 98.7 �1.3 0.0 0 �0.7 0.0 0
13 101.1 1.1 1.1 1 �3.1 0.0 0
14 98.4 �1.6 0.0 0 �0.4 0.0 0
15 97.0 �3.0 0.0 0 1.0 1.0 1
16 96.7 �3.3 0.0 0 1.3 2.3 2
17 100.3 0.3 0.3 1 �2.3 0.0 0
18 101.4 1.4 1.7 2 �3.4 0.0 0
19 97.2 �2.8 0.0 0 0.8 0.8 1
20 101.0 1.0 1.0 0 �3.0 0.0 0
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16-10 CUMULATIVE SUM CONTROL CHART 637

zero. It may be helpful to have an estimate of the new process mean following the shift. This
can be computed from

(16-32)

It is also useful to present a graphical display of the tabular CUSUMS, which are some-
times called CUSUM status charts. They are constructed by plotting sH (i) and sL(i) versus the
sample number. Figure 16-21 shows the CUSUM status chart for the data in Example 16-6.
Each vertical bar represents the value of sH (i) and sL(i) in period i. With the decision interval
plotted on the chart, the CUSUM status chart resembles a Shewhart control chart. We have
also plotted the sample statistics xi for each period on the CUSUM status chart as the solid
dots. This frequently helps the user of the control chart to visualize the actual process per-
formance that has led to a particular value of the CUSUM.

The tabular CUSUM is designed by choosing values for the reference value K and the de-
cision interval H. We recommend that these parameters be selected to provide good average
run-length values. There have been many analytical studies of CUSUM ARL performance.
Based on these studies, we may give some general recommendations for selecting H and K.
Define and , where is the standard deviation of the sample variable used
in forming the CUSUM (if n � 1, ). Using h � 4 or h � 5 and k � 1�2 will gener-
ally provide a CUSUM that has good ARL properties against a shift of about (or 1�X) in
the process mean. If much larger or smaller shifts are of interest, set k � ��2, where � is the size
of the shift in standard deviation units. Some practitioners prefer to use a standardized variable

as the basis of the CUSUM. In that case, Equations 16-30 and 16-31 become

sH 
1i2 � max 30, yi � K � sH 1i � 12 4  and  sL1i2 � max 30, K � yi � sL1i � 12 4

yi � 1xi � �02	�X

1�X

�X � �X

�
X

K � k�XH � h�X

�̂ � µ
�0 � K �

sH1i2
nH

,      if  sH 
1i2 � H

�0 � K �
sL1i2
nL

, if  sL1i2 � H

1
694

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sample number

H = 5
595

496

397

298

199

0100

1101

2102

3103

4104

5105

6106

sH(i)

sL(i)

x

H = 5

Figure 16-21 The
CUSUM status chart
for Example 15-6.
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638 CHAPTER 16 STATISTICAL QUALITY CONTROL

For this scheme, we would usually select K � 1�2 and H � 4 or H � 5.
To illustrate how well the recommendations of h � 4 or h � 5 with k � 1�2 work, con-

sider these average run lengths in Table 16-9. Notice that a shift of would be detected in
either 8.38 samples (with k � 1�2 and h � 4) or 10.4 samples (with k � 1�2 and h � 5). By
comparison, Table 16-1 shows that an chart would require approximately 43.9 samples, on
the average, to detect this shift.

These design rules were used for the CUSUM in Example 16-6. We assumed that the
process standard deviation � � 2. (This is a reasonable value; see Example 16-2.) Then with
k � 1�2 and h � 5, we would use

1⁄2122
in the tabular CUSUM procedure.

Finally, we should note that supplemental procedures such as the Western Electric rules
cannot be safely applied to the CUSUM, because successive values of SH(i) and SL(i) are not
independent. In fact, the CUSUM can be thought of as a weighted average, where the weights
are stochastic or random. In effect, all the CUSUM values are highly correlated, thereby caus-
ing the Western Electric rules to give too many false alarms.

� 1  and  H � h� � 5122 � 10K � k� �

X

1�X

Table 16-9 Average Run Lengths for a CUSUM Control Chart 
With K = 1�2

Shift in Mean 
(multiple of ) h � 4 h � 5

0 168 465
0.25 74.2 139
0.50 26.6 38.0
0.75 13.3 17.0
1.00 8.38 10.4
1.50 4.75 5.75
2.00 3.34 4.01
2.50 2.62 3.11
3.00 2.19 2.57
4.00 1.71 2.01

�X

16-38. The purity of a chemical product is measured every
two hours. The results of 20 consecutive measurements are as
follows:

Sample Purity Sample Purity

1 89.11 11 88.55
2 90.59 12 90.43
3 91.03 13 91.04
4 89.46 14 88.17
5 89.78 15 91.23
6 90.05 16 90.92
7 90.63 17 88.86
8 90.75 18 90.87
9 89.65 19 90.73

10 90.15 20 89.78

EXERCISES FOR SECTION 16-10

(a) Set up a CUSUM control chart for this process. Use 
� � 0.8 in setting up the procedure, and assume that the
desired process target is 90. Does the process appear to
be in control?

(b) Suppose that the next five observations are 90.75, 90.00,
91.15, 90.95, and 90.86. Apply the CUSUM in part (a) to
these new observations. Is there any evidence that the
process has shifted out of control?

16-39. The diameter of holes is measured in consecutive
order by an automatic sensor. The results of measuring 25
holes follow.

(a) Estimate the process standard deviation.
(b) Set up a CUSUM control procedure, assuming that the

target diameter is 10.0 millimeters. Does the process
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Sample Diameter Sample Diameter

1 9.94 14 9.99

2 9.93 15 10.12

3 10.09 16 9.81

4 9.98 17 9.73

5 10.11 18 10.14

6 9.99 19 9.96

7 10.11 20 10.06

8 9.84 21 10.11

9 9.82 22 9.95

10 10.38 23 9.92

11 9.99 24 10.09

12 10.41 25 9.85

13 10.36

appear to be operating in a state of statistical control at the de-
sired target level?

16-40. The concentration of a chemical product is meas-
ured by taking four samples from each batch of material. The
average concentration of these measurements is shown for the
last 20 batches in the following table:

Batch Concentration Batch Concentration

1 104.5 11 95.4

2 99.9 12 94.5

3 106.7 13 104.5

4 105.2 14 99.7

5 94.8 15 97.7

6 94.6 16 97.0

7 104.4 17 95.8

8 99.4 18 97.4

9 100.3 19 99.0

10 100.3 20 102.6

(a) Suppose that the process standard deviation is � � 8 and
that the target value of concentration for this process is
100. Design a CUSUM scheme for the process. Does the
process appear to be in control at the target?

(b) How many batches would you expect to be produced with
off-target concentration before it would be detected by the
CUSUM control chart if the concentration shifted to 104?
Use Table 16-9.

16-41. Consider a standardized CUSUM with H � 5 and
K � 1�2. Samples are taken every two hours from the 
process. The target value for the process is �0 � 50 and 
� � 2. Use Table 16-9.
(a) If the sample size is n � 1, how many samples would be

required to detect a shift in the process mean to � � 51 on
average?

(b) If the sample size is increased to n � 4, how does this af-
fect the average run length to detect the shift to � � 51
that you determined in part (a)?

16-42. A process has a target of �0 � 100 and a standard
deviation of � � 4. Samples of size n � 1 are taken every two
hours. Use Table 16-9.
(a) Suppose the process mean shifts to � � 102. How many

hours of production will occur before the process shift is
detected by a standardized CUSUM with H � 5 and 
K � 1�2?

(b) It is important to detect the shift defined in part (a) more
quickly. A proposal is made to reduce the sampling
frequency to 0.5 hour. How will this affect the CUSUM
control procedure? How much more quickly will the shift
be detected?

(c) Suppose that the 0.5 hour sampling interval in part (b) is
adopted. How often will false alarms occur with this new
sampling interval? How often did they occur with the old
interval of two hours?

(d) A proposal is made to increase the sample size to n � 4 and
retain the two-hour sampling interval. How does this sug-
gestion compare in terms of average detection time to the
suggestion of decreasing the sampling interval to 0.5 hour?

16-11 OTHER SPC PROBLEM-SOLVING TOOLS

While the control chart is a very powerful tool for investigating the causes of variation in a
process, it is most effective when used with other SPC problem-solving tools. In this section
we illustrate some of these tools, using the printed circuit board defect data in Example 16-4.

Figure 16-17 shows a U chart for the number of defects in samples of five printed circuit
boards. The chart exhibits statistical control, but the number of defects must be reduced. The
average number of defects per board is 8�5 � 1.6, and this level of defects would require ex-
tensive rework.

The first step in solving this problem is to construct a Pareto diagram of the individual de-
fect types. The Pareto diagram, shown in Fig. 16-22, indicates that insufficient solder and solder
balls are the most frequently occurring defects, accounting for (109�160) 100 � 68% of the 
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640 CHAPTER 16 STATISTICAL QUALITY CONTROL

observed defects. Furthermore, the first five defect categories on the Pareto chart are all solder-
related defects. This points to the flow solder process as a potential opportunity for improvement.

To improve the flow solder process, a team consisting of the flow solder operator, the 
shop supervisor, the manufacturing engineer responsible for the process, and a quality engi-
neer meets to study potential causes of solder defects. They conduct a brainstorming session
and produce the cause-and-effect diagram shown in Fig. 16-23. The cause-and-effect diagram
is widely used to display the various potential causes of defects in products and their interre-
lationships. They are useful in summarizing knowledge about the process.

As a result of the brainstorming session, the team tentatively identifies the following vari-
ables as potentially influential in creating solder defects:

1. Flux specific gravity

2. Solder temperature
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Figure 16-22 Pareto
diagram for printed
circuit board defects.
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Figure 16-23 Cause-
and-effect diagram for
the printed circuit
board flow solder
process.
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16-12 IMPLEMENTING SPC 641

3. Conveyor speed

4. Conveyor angle

5. Solder wave height

6. Preheat temperature

7. Pallet loading method

A statistically designed experiment could be used to investigate the effect of these seven vari-
ables on solder defects.

In addition, the team constructed a defect concentration diagram for the product. A de-
fect concentration diagram is just a sketch or drawing of the product, with the most frequently
occurring defects shown on the part. This diagram is used to determine whether defects occur
in the same location on the part. The defect concentration diagram for the printed circuit board
is shown in Fig. 16-24. This diagram indicates that most of the insufficient solder defects are
near the front edge of the board, where it makes initial contact with the solder wave. Further
investigation showed that one of the pallets used to carry the boards across the wave was bent,
causing the front edge of the board to make poor contact with the solder wave.

When the defective pallet was replaced, a designed experiment was used to investigate 
the seven variables discussed earlier. The results of this experiment indicated that several of
these factors were influential and could be adjusted to reduce solder defects. After the results
of the experiment were implemented, the percentage of solder joints requiring rework was re-
duced from 1% to under 100 parts per million (0.01%).

16-12 IMPLEMENTING SPC

The methods of statistical process control can provide significant payback to those companies
that can successfully implement them. While SPC seems to be a collection of statistically
based problem-solving tools, there is more to the successful use of SPC than simply learning
and using these tools. Management involvement and commitment to the quality-improvement
process is the most vital component of SPC’s potential success. Management is a role model,
and others in the organization will look to management for guidance and as an example. A
team approach is also important, for it is usually difficult for one person alone to introduce
process improvements. Many of the “magnificent seven’’ problem-solving tools are helpful in
building an improvement team, including cause-and-effect diagrams, Pareto charts, and defect
concentration diagrams. The basic SPC problem-solving tools must become widely known
and widely used throughout the organization. Continuous training in SPC and quality im-
provement is necessary to achieve this widespread knowledge of the tools.

The objective of an SPC-based quality-improvement program is continuous improve-
ment on a weekly, quarterly, and annual basis. SPC is not a one-time program to be applied

Front

Region of insufficient solder

Back

Figure 16-24 Defect
concentration diagram
for a printed circuit
board.
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when the business is in trouble and later abandoned. Quality improvement must become part
of the culture of the organization.

The control chart is an important tool for process improvement. Processes do not natu-
rally operate in an in-control state, and the use of control charts is an important step that must
be taken early in an SPC program to eliminate assignable causes, reduce process variability,
and stabilize process performance. To improve quality and productivity, we must begin to
manage with facts and data, and not just rely on judgment. Control charts are an important part
of this change in management approach.

In implementing a company-wide SPC program, we have found that the following ele-
ments are usually present in all successful efforts:

1. Management leadership

2. A team approach

3. Education of employees at all levels

4. Emphasis on continuous improvement

5. A mechanism for recognizing success

We cannot overemphasize the importance of management leadership and the team approach.
Successful quality improvement is a “top-down” management-driven activity. It is also im-
portant to measure progress and success and to spread knowledge of this success throughout
the organization. When successful improvements are communicated throughout the company,
this can provide motivation and incentive to improve other processes and to make continuous
improvement a normal part of the way of doing business.

The philosophy of W. Edwards Deming provides an important framework for imple-
menting quality and productivity improvement. Deming’s philosophy is summarized in his 14
points for management. The adherence to these management principles has been an important
factor in Japan’s industrial success and continues to be the catalyst in that nation’s quality- and
productivity-improvement efforts. This philosophy has also now spread rapidly in the West.
Deming’s 14 points are as follows.

1. Create a constancy of purpose focused on the improvement of products and serv-
ices. Constantly try to improve product design and performance. Investment in re-
search, development, and innovation will have a long-term payback to the organization.

2. Adopt a new philosophy of rejecting poor workmanship, defective products, or
bad service. It costs as much to produce a defective unit as it does to produce a
good one (and sometimes more). The cost of dealing with scrap, rework, and other
losses created by defectives is an enormous drain on company resources.

3. Do not rely on mass inspection to “control” quality. All inspection can do is sort
out defectives, and at this point it is too late because we have already paid to pro-
duce these defectives. Inspection occurs too late in the process, it is expensive, and
it is often ineffective. Quality results from the prevention of defectives through
process improvement, not inspection.

4. Do not award business to suppliers on the basis of price alone, but also consider
quality. Price is a meaningful measure of a supplier’s product only if it is consid-
ered in relation to a measure of quality. In other words, the total cost of the item
must be considered, not just the purchase price. When quality is considered, the 
lowest bidder is frequently not the low-cost supplier. Preference should be given to
suppliers who use modern methods of quality improvement in their business and
who can demonstrate process control and capability.
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16-12 IMPLEMENTING SPC 643

5. Focus on continuous improvement. Constantly try to improve the production and
service system. Involve the workforce in these activities and make use of statistical
methods, particularly the SPC problem-solving tools discussed in the previous sec-
tion.

6. Practice modern training methods and invest in training for all employees.
Everyone should be trained in the technical aspects of their job, as well as in mod-
ern quality- and productivity-improvement methods. The training should encourage
all employees to practice these methods every day.

7. Practice modern supervision methods. Supervision should not consist merely of
passive surveillance of workers, but should be focused on helping the employees
improve the system in which they work. The first goal of supervision should be to
improve the work system and the product.

8. Drive out fear. Many workers are afraid to ask questions, report problems, or point
out conditions that are barriers to quality and effective production. In many organi-
zations the economic loss associated with fear is large; only management can elim-
inate fear.

9. Break down the barriers between functional areas of the business. Teamwork
among different organizational units is essential for effective quality and productiv-
ity improvement to take place.

10. Eliminate targets, slogans, and numerical goals for the workforce. A target such
as “zero defects” is useless without a plan as to how to achieve this objective. In
fact, these slogans and “programs” are usually counterproductive. Work to improve
the system and provide information on that.

11. Eliminate numerical quotas and work standards. These standards have histori-
cally been set without regard to quality. Work standards are often symptoms of man-
agement’s inability to understand the work process and to provide an effective man-
agement system focused on improving this process.

12. Remove the barriers that discourage employees from doing their jobs. Management
must listen to employee suggestions, comments, and complaints. The person who is
doing the job is the one who knows the most about it, and usually has valuable ideas
about how to make the process work more effectively. The workforce is an impor-
tant participant in the business, and not just an opponent in collective bargaining.

13. Institute an ongoing program of training and education for all employees.
Education in simple, powerful statistical techniques should be mandatory for all
employees. Use of the basic SPC problem-solving tools, particularly the control
chart, should become widespread in the business. As these charts become wide-
spread, and as employees understand their uses, they will be more likely to look for
the causes of poor quality and to identify process improvements. Education is a way
of making everyone partners in the quality-improvement process.

14. Create a structure in top management that will vigorously advocate the first 13
points.

As we read Deming’s 14 points, we notice two things. First, there is a strong emphasis on
change. Second, the role of management in guiding this change process is of dominating im-
portance. But what should be changed, and how should this change process be started? For ex-
ample, if we want to improve the yield of a semiconductor manufacturing process, what
should we do? It is in this area that statistical methods most frequently come into play. To im-
prove the semiconductor process, we must determine which controllable factors in the process
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644 CHAPTER 16 STATISTICAL QUALITY CONTROL

influence the number of defective units produced. To answer this question, we must collect
data on the process and see how the system reacts to changes in the process variables.
Statistical methods, including the SPC and experimental design techniques in this book, can
contribute to this knowledge.

16-43. The diameter of fuse pins used in an aircraft engine
application is an important quality characteristic. Twenty-five
samples of three pins each are shown as follows:

SUPPLEMENTAL EXERCISES

(e) To make this process a six-sigma process, the variance 
would have to be decreased such that PCRk � 2.0. What
should this new variance value be?

(f) Suppose the mean shifts to 64.01. What is the probability
that this shift will be detected on the next sample? What is
the ARL after the shift?

16-44. Rework Exercise 16-43 with and S charts.

16-45. Plastic bottles for liquid laundry detergent are
formed by blow molding. Twenty samples of n � 100 bottles
are inspected in time order of production, and the fraction de-
fective in each sample is reported. The data are as follows:

X

�2

(a) Set up and R charts for this process. If necessary, revise
limits so that no observations are out-of-control.

(b) Estimate the process mean and standard deviation.
(c) Suppose the process specifications are at 64 
 0.02.

Calculate an estimate of PCR. Does the process meet a
minimum capability level of PCR � 1.33?

(d) Calculate an estimate of PCRk. Use this ratio to draw con-
clusions about process capability.

X

Sample 
Number Diameter

1 64.030 64.002 64.019

2 63.995 63.992 64.001

3 63.988 64.024 64.021

4 64.002 63.996 63.993

5 63.992 64.007 64.015

6 64.009 63.994 63.997

7 63.995 64.006 63.994

8 63.985 64.003 63.993

9 64.008 63.995 64.009

10 63.998 74.000 63.990

11 63.994 63.998 63.994

12 64.004 64.000 64.007

13 63.983 64.002 63.998

14 64.006 63.967 63.994

15 64.012 64.014 63.998

16 64.000 63.984 64.005

17 63.994 64.012 63.986

18 64.006 64.010 64.018

19 63.984 64.002 64.003

20 64.000 64.010 64.013

21 63.988 64.001 64.009

22 64.004 63.999 63.990

23 64.010 63.989 63.990

24 64.015 64.008 63.993

25 63.982 63.984 63.995

Sample Fraction Defective

1 0.12
2 0.15
3 0.18
4 0.10
5 0.12
6 0.11
7 0.05
8 0.09
9 0.13

10 0.13
11 0.10
12 0.07
13 0.12
14 0.08
15 0.09
16 0.15
17 0.10
18 0.06
19 0.12
20 0.13

(a) Set up a P chart for this process. Is the process in statisti-
cal control?

(b) Suppose that instead of n � 100, n � 200. Use the data
given to set up a P chart for this process. Revise the con-
trol limits if necessary.

(c) Compare your control limits for the P charts in parts (a) and
(b). Explain why they differ. Also, explain why your assess-
ment about statistical control differs for the two sizes of n.
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(a) Suppose that a shift in the process mean of magnitude 
� occurs. Verify that the ARL for detecting the shift is
ARL � 43.9.

(b) Find the ARL for detecting a shift of magnitude 2� in the
process mean.

(c) Find the ARL for detecting a shift of magnitude 3� in the
process mean.

(d) Compare your answers to parts (a), (b), and (c) and ex-
plain why the ARL for detection is decreasing as the mag-
nitude of the shift increases.

16-50. Consider a control chart for individuals, applied to a
continuous 24-hour chemical process with observations taken
every hour.
(a) If the chart has 3-sigma limits, verify that the in-control

ARL is ARL � 370. How many false alarms would occur
each 30-day month, on the average, with this chart?

(b) Suppose that the chart has 2-sigma limits. Does this re-
duce the ARL for detecting a shift in the mean of magni-
tude �? (Recall that the ARL for detecting this shift with
3-sigma limits is 43.9.)

(c) Find the in-control ARL if 2-sigma limits are used on the
chart. How many false alarms would occur each month
with this chart? Is this in-control ARL performance satis-
factory? Explain your answer.

16-51. The depth of a keyway is an important part quality
characteristic. Samples of size n � 5 are taken every four hours
from the process and 20 samples are summarized as follows:

16-46. Cover cases for a personal computer are manufac-
tured by injection molding. Samples of five cases are taken
from the process periodically, and the number of defects is
noted. Twenty-five samples follow:

Sample r

1 139.7 1.1

2 139.8 1.4

3 140.0 1.3

4 140.1 1.6

5 139.8 0.9

6 139.9 1.0

7 139.7 1.4

8 140.2 1.2

9 139.3 1.1

10 140.7 1.0

11 138.4 0.8

12 138.5 0.9

13 137.9 1.2

14 138.5 1.1

15 140.8 1.0

16 140.5 1.3

17 139.4 1.4

18 139.9 1.0

19 137.5 1.5

20 139.2 1.3

X

(a) Using all the data, find trial control limits for this U chart
for the process.

(b) Use the trial control limits from part (a) to identify out-of-
control points. If necessary, revise your control limits.

(c) Suppose that instead of samples of 5 cases, the sample
size was 10. Repeat parts (a) and (b). Explain how this
change alters your answers to parts (a) and (b).

16-47. Consider the data in Exercise 16-46.

(a) Using all the data, find trial control limits for a C chart for
this process.

(b) Use the trial control limits of part (a) to identify out-of-
control points. If necessary, revise your control limits.

(c) Suppose that instead of samples of 5 cases, the sample 
was 10 cases. Repeat parts (a) and (b). Explain how this
alters your answers to parts (a) and (b).

16-48. Suppose that a process is in control and an chart is
used with a sample size of 4 to monitor the process. Suddenly
there is a mean shift of 1.5�.
(a) If 3-sigma control limits are in use on the chart, what is

the probability that this shift will remain undetected for
three consecutive samples?

(b) If 2-sigma control limits are in use on the chart, what is
the probability that this shift will remain undetected for
three consecutive samples?

(c) Compare your answers to parts (a) and (b) and explain
why they differ. Also, which limits you would recommend
using and why?

16-49. Consider the control chart for individuals with 
3-sigma limits.

X

X

X

Sample No. of Defects Sample No. of Defects

1 3 14 8

2 2 15 0

3 0 16 2

4 1 17 4

5 4 18 3

6 3 19 5

7 2 20 0

8 4 21 2

9 1 22 1

10 0 23 9

11 2 24 3

12 3 25 2

13 2
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646 CHAPTER 16 STATISTICAL QUALITY CONTROL

(a) Using all the data, find trial control limits for and R
charts. Is the process in control?

(b) Use the trial control limits from part (a) to identify out-of-
control points. If necessary, revise your control limits.
Then, estimate the process standard deviation.

(c) Suppose that the specifications are at 140 
 2. Using the
results from part (b), what statements can you make about
process capability? Compute estimates of the appropriate
process capability ratios.

(d) To make this process a “6-sigma process,” the variance �2

would have to be decreased such that PCRk � 2.0. What
should this new variance value be?

(e) Suppose the mean shifts to 139.7. What is the probability
that this shift will be detected on the next sample? What is
the ARL after the shift?

16-52. A process is controlled by a P chart using samples of
size 100. The center line on the chart is 0.05.
(a) What is the probability that the control chart detects a shift

to 0.08 on the first sample following the shift?
(b) What is the probability that the control chart does not de-

tect a shift to 0.07 on the first sample following the shift
but does detect it on the second sample?

(c) Suppose that instead of a shift in the mean to 0.07, the
mean shifts to 0.10. Repeat parts (a) and (b).

(d) Compare your answers for a shift to 0.07 and for a shift to
0.10. Explain why they differ. Also, explain why a shift to
0.10 is easier to detect.

16-53. Suppose the average number of defects in a unit is
known to be 8. If the mean number of defects in a unit shifts to
16, what is the probability that it will be detected by the U
chart on the first sample following the shift
(a) if the sample size is n � 4?
(b) if the sample size is n � 10?

Use a normal approximation for U.

16-54. Suppose the average number of defects in a unit is

X known to be 10. If the mean number of defects in a unit shifts
to 14, what is the probability that it will be detected by the U
chart on the first sample following the shift
(a) if the sample size is n � 1?
(b) if the sample size is n � 4?
Use a normal approximation for U.

16-55. Suppose that an control chart with 2-sigma lim-
its is used to control a process. Find the probability that a
false out-of-control signal will be produced on the next sam-
ple. Compare this with the corresponding probability for the
chart with 3-sigma limits and discuss. Comment on when
you would prefer to use 2-sigma limits instead of 3-sigma
limits.

16-56. Consider the control chart with 2-sigma limits in
Exercise 16-50.
(a) Find the probability of no signal on the first sample but a

signal on the second.
(b) What is the probability that there will not be a signal in

three samples?

16-57. Suppose a process has a PCR � 2, but the mean is
exactly three standard deviations above the upper specifica-
tion limit. What is the probability of making a product outside
the specification limits?

16-58. Consider the hardness measurement data in Exercise
16-9. Set up a CUSUM scheme for this process using � � 50
and � � 2, so that K � 1 and H � 10. Is the process in control?

16-59. Consider the data in Exercise 16-10. Set up a
CUSUM scheme for this process assuming that � � 80 is the
process target. Explain how you determined your estimate of
� and the CUSUM parameters K and H.

16-60. Reconsider the data in Exercise 16-12. Construct a
CUSUM control chart for this process using �0 � 500 as the
process target. Explain how you determined your estimate of
� and the CUSUM parameters H and K.

X

X

16-61. Suppose a process is in control, and 3-sigma
control limits are in use on the chart. Let the mean
shift by 1.5�. What is the probability that this shift will
remain undetected for three consecutive samples? What
would its probability be if 2-sigma control limits were
used? The sample size is 4.

16-62. Consider an control chart with k-sigma con-
trol limits. Develop a general expression for the proba-
bility that a point will plot outside the control limits
when the process mean has shifted by � units from the
center line.

16-63. Suppose that an chart is used to control a
normally distributed process and that samples of size n
are taken every n hours and plotted on the chart, which
has k-sigma limits.
(a) Find a general expression for the expected number

of samples and time that will be taken until a false
action signal is generated.

(b) Suppose that the process mean shifts to an out-of-
control state, say . Find an expres-
sion for the expected number of samples that 
will be taken until a false action is generated.

�1 � �0 � ��

X

X

X

MIND-EXPANDING EXERCISES
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15-12 IMPLEMENTING SPC 647

(c) Evaluate the in-control ARL for k � 3. How, does
this change if k � 2? What do you think about the
use of 2-sigma limits in practice?

(d) Evaluate the out-of-control ARL for a shift of 1
sigma, given that n � 5.

16-64. Suppose a P chart with center line at with k-
sigma control limits is used to control a process. There is
a critical fraction defective pc that must be detected with
probability 0.50 on the first sample following the shift to
this state. Derive a general formula for the sample size
that should be used on this chart.

16-65. Suppose that a P chart with center line at and
k-sigma control limits is used to control a process. What
is the smallest sample size that can be used on this control
chart to ensure that the lower control limit is positive?

16-66. A process is controlled by a P chart using sam-
ples of size 100. The center line on the chart is 0.05.
What is the probability that the control chart detects a
shift to 0.08 on the first sample following the shift?
What is the probability that the shift is detected by at
least the third sample following the shift?

16-67. Consider a process where specifications on a
quality characteristic are 100 
 15. We know that the stan-
dard deviation of this normally distributed quality charac-
teristic is 5. Where should we center the process to mini-
mize the fraction defective produced? Now suppose the
mean shifts to 105 and we are using a sample size of 4 on
an chart. What is the probability that such a shift will be
detected on the first sample following the shift? What is the
average number of samples until an out-of-control point
occurs? Compare this result to the average number of ob-
servations until a defective occurs (assuming normality).

16-68. The NP Control Chart. An alternative to the
control chart for fraction defective is a control chart based
on the number of defectives, or the NP control chart. The
chart has centerline at n , and the control limits are

and the number of defectives for each sample is plotted
on the chart.
(a) Verify that the control limits given above are correct.

(b) Apply this control chart to the data in Example 16-4.
(c) Will this chart always provide results that are equiv-

alent to the usual P chart?

16-69. The EWMA Control Chart. The exponen-
tially weighted moving average (or EWMA) is defined
as follows:

where 0 � 
 � 1, and the starting value of the EWMA at
time t � 0 is (the process target). An EWMA
control chart is constructed by plotting the Zt values on a
chart with center line at �0 and appropriate control limits.
(a) Verify that 
(b) Let be , and show that 

(c) Use the results of part (b) to determine the control
limits for the EWMA chart.

(d) As , the EWMA control chart should perform
like a standard Shewhart chart. Do you agree with
this statement? Why?

(e) As , the EWMA control chart should perform
like a CUSUM. Provide an argument as to why this 
is so.

(f) Apply this procedure to the data in Example 16-2.

16-70. Standardized Control Chart. Consider the P
chart with the usual 3-sigma control limits. Suppose that
we define a new variable:

as the quantity to plot on a control chart. It is proposed that
this new chart will have a center line at 0 with the upper
and lower control limits at 
3. Verify that this standard-
ized control chart will be equivalent to the original p chart.

16-71. Unequal Sample Sizes. One application of the
standardized control chart introduced in Exercise 16-70
is to allow unequal sample sizes on the control chart.
Provide details concerning how this procedure would be
implemented and illustrate using the following data:

Zi �
P̂i � PCP 11 � P2

n

� S 0

X
� S 1

�2
zt

�
�2

n  a �

2 � �
b 31 � 11 � �22t 4

V1Zt2�2
zt

E1Zt2 � �0

Z0 � �0

Zt � � Xt � 11 � �2Zt�1

 LCL � np � 32np11 � p2
UCL � np � 32np11 � p2

p

X

p

p

MIND-EXPANDING EXERCISES

Sample, i 1 2 3 4 5 6 7 8 9 10

ni 20 25 20 25 50 30 25 25 25 20

pi 0.2 0.16 0.25 0.08 0.3 0.1 0.12 0.16 0.12 0.15

c16.qxd  5/8/02  9:58 PM  Page 647 RK UL 6 RK UL 6:Desktop Folder:



648 CHAPTER 16 STATISTICAL QUALITY CONTROL
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652 APPENDIX A STATISTICAL TABLES AND CHARTS

Table I Summary of Common Probability Distributions

Probability Section
Name Distribution Mean Variance in Book

Discrete

Uniform 3-5

Binomial np 3-6

Geometric 3-7.1

Negative binomial 3-7.2

Hypergeometric np, 3-8

Poisson � � 3-9

Continuous

Uniform 4-5

Normal � �2 4-6

Exponential 4-8

Erlang 4-9.1

Gamma 4-9.2

Weibull 4-10

Lognormal 4-11e2�	
21e
2

�12e�	
2�21

x�22

  exp a� 3 ln1x2 � � 42

2
2 b

��2 c� a1 	
1

�
b d 20 � x, 0 � �, 0 � �

�2�  a1 	
2

�
b�� a1 	

1

�
b�

�
  ax

�
b��1

e�1x��2�,

r��2r��
�xr�1e��x

�1r2 , 0 � x, 0 � r, 0 � �

r��2r��
�rxr�1e��x

1r � 12! , 0 � x, r � 1, 2, . . .

1��21���e��x, 0 � x, 0 � �

�� � x � �, �� � � � �, 0 � �

1

�12

 e

�1�2 1x��
� 22

1b � a22
12

1b 	 a2
2

1

b � a
, a � x � b

e���x

x !
, x � 0, 1, 2, . . . , 0 � �

min1K, n2, K � N, n � N

x � max10, n � N 	 K2, 1, . . .

where p �
K

N

np11 � p2  aN � n

N � 1
b

aK
x

 b aN � K

n � x
 b

aN
n

 b

x � r, r 	 1, r 	 2, . . . , 0 � p � 1

r11 � p2�p2r�pax � 1

r � 1
b 11 � p2x�rpr

x � 1, 2, . . . , 0 � p � 1

11 � p2�p21�p11 � p2x�1p,

x � 0, 1, . . . , n, 0 � p � 1

np11 � p2an
x
b px11 � p2n�x,

1b � a 	 122 � 1

12

1b 	 a2
2

1
n, a � b
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Table II Cumulative Standard Normal Distribution

z �0.09 �0.08 �0.07 �0.06 �0.05 �0.04 �0.03 �0.02 �0.01 �0.00

�3.9 0.000033 0.000034 0.000036 0.000037 0.000039 0.000041 0.000042 0.000044 0.000046 0.000048
�3.8 0.000050 0.000052 0.000054 0.000057 0.000059 0.000062 0.000064 0.000067 0.000069 0.000072
�3.7 0.000075 0.000078 0.000082 0.000085 0.000088 0.000092 0.000096 0.000100 0.000104 0.000108
�3.6 0.000112 0.000117 0.000121 0.000126 0.000131 0.000136 0.000142 0.000147 0.000153 0.000159
�3.5 0.000165 0.000172 0.000179 0.000185 0.000193 0.000200 0.000208 0.000216 0.000224 0.000233
�3.4 0.000242 0.000251 0.000260 0.000270 0.000280 0.000291 0.000302 0.000313 0.000325 0.000337
�3.3 0.000350 0.000362 0.000376 0.000390 0.000404 0.000419 0.000434 0.000450 0.000467 0.000483
�3.2 0.000501 0.000519 0.000538 0.000557 0.000577 0.000598 0.000619 0.000641 0.000664 0.000687
�3.1 0.000711 0.000736 0.000762 0.000789 0.000816 0.000845 0.000874 0.000904 0.000935 0.000968
�3.0 0.001001 0.001035 0.001070 0.001107 0.001144 0.001183 0.001223 0.001264 0.001306 0.001350
�2.9 0.001395 0.001441 0.001489 0.001538 0.001589 0.001641 0.001695 0.001750 0.001807 0.001866
�2.8 0.001926 0.001988 0.002052 0.002118 0.002186 0.002256 0.002327 0.002401 0.002477 0.002555
�2.7 0.002635 0.002718 0.002803 0.002890 0.002980 0.003072 0.003167 0.003264 0.003364 0.003467
�2.6 0.003573 0.003681 0.003793 0.003907 0.004025 0.004145 0.004269 0.004396 0.004527 0.004661
�2.5 0.004799 0.004940 0.005085 0.005234 0.005386 0.005543 0.005703 0.005868 0.006037 0.006210
�2.4 0.006387 0.006569 0.006756 0.006947 0.007143 0.007344 0.007549 0.007760 0.007976 0.008198
�2.3 0.008424 0.008656 0.008894 0.009137 0.009387 0.009642 0.009903 0.010170 0.010444 0.010724
�2.2 0.011011 0.011304 0.011604 0.011911 0.012224 0.012545 0.012874 0.013209 0.013553 0.013903
�2.1 0.014262 0.014629 0.015003 0.015386 0.015778 0.016177 0.016586 0.017003 0.017429 0.017864
�2.0 0.018309 0.018763 0.019226 0.019699 0.020182 0.020675 0.021178 0.021692 0.022216 0.022750
�1.9 0.023295 0.023852 0.024419 0.024998 0.025588 0.026190 0.026803 0.027429 0.028067 0.028717
�1.8 0.029379 0.030054 0.030742 0.031443 0.032157 0.032884 0.033625 0.034379 0.035148 0.035930
�1.7 0.036727 0.037538 0.038364 0.039204 0.040059 0.040929 0.041815 0.042716 0.043633 0.044565
�1.6 0.045514 0.046479 0.047460 0.048457 0.049471 0.050503 0.051551 0.052616 0.053699 0.054799
�1.5 0.055917 0.057053 0.058208 0.059380 0.060571 0.061780 0.063008 0.064256 0.065522 0.066807
�1.4 0.068112 0.069437 0.070781 0.072145 0.073529 0.074934 0.076359 0.077804 0.079270 0.080757
�1.3 0.082264 0.083793 0.085343 0.086915 0.088508 0.090123 0.091759 0.093418 0.095098 0.096801
�1.2 0.098525 0.100273 0.102042 0.103835 0.105650 0.107488 0.109349 0.111233 0.113140 0.115070
�1.1 0.117023 0.119000 0.121001 0.123024 0.125072 0.127143 0.129238 0.131357 0.133500 0.135666
�1.0 0.137857 0.140071 0.142310 0.144572 0.146859 0.149170 0.151505 0.153864 0.156248 0.158655
�0.9 0.161087 0.163543 0.166023 0.168528 0.171056 0.173609 0.176185 0.178786 0.181411 0.184060
�0.8 0.186733 0.189430 0.192150 0.194894 0.197662 0.200454 0.203269 0.206108 0.208970 0.211855
�0.7 0.214764 0.217695 0.220650 0.223627 0.226627 0.229650 0.232695 0.235762 0.238852 0.241964
�0.6 0.245097 0.248252 0.251429 0.254627 0.257846 0.261086 0.264347 0.267629 0.270931 0.274253
�0.5 0.277595 0.280957 0.284339 0.287740 0.291160 0.294599 0.298056 0.301532 0.305026 0.308538
�0.4 0.312067 0.315614 0.319178 0.322758 0.326355 0.329969 0.333598 0.337243 0.340903 0.344578
�0.3 0.348268 0.351973 0.355691 0.359424 0.363169 0.366928 0.370700 0.374484 0.378281 0.382089
�0.2 0.385908 0.389739 0.393580 0.397432 0.401294 0.405165 0.409046 0.412936 0.416834 0.420740
�0.1 0.424655 0.428576 0.432505 0.436441 0.440382 0.444330 0.448283 0.452242 0.456205 0.460172

0.0 0.464144 0.468119 0.472097 0.476078 0.480061 0.484047 0.488033 0.492022 0.496011 0.500000
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654 APPENDIX A STATISTICAL TABLES AND CHARTS

Table II Cumulative Standard Normal Distribution (continued)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.500000 0.503989 0.507978 0.511967 0.515953 0.519939 0.532922 0.527903 0.531881 0.535856
0.1 0.539828 0.543795 0.547758 0.551717 0.555760 0.559618 0.563559 0.567495 0.571424 0.575345
0.2 0.579260 0.583166 0.587064 0.590954 0.594835 0.598706 0.602568 0.606420 0.610261 0.614092
0.3 0.617911 0.621719 0.625516 0.629300 0.633072 0.636831 0.640576 0.644309 0.648027 0.651732
0.4 0.655422 0.659097 0.662757 0.666402 0.670031 0.673645 0.677242 0.680822 0.684386 0.687933
0.5 0.691462 0.694974 0.698468 0.701944 0.705401 0.708840 0.712260 0.715661 0.719043 0.722405
0.6 0.725747 0.729069 0.732371 0.735653 0.738914 0.742154 0.745373 0.748571 0.751748 0.754903
0.7 0.758036 0.761148 0.764238 0.767305 0.770350 0.773373 0.776373 0.779350 0.782305 0.785236
0.8 0.788145 0.791030 0.793892 0.796731 0.799546 0.802338 0.805106 0.807850 0.810570 0.813267
0.9 0.815940 0.818589 0.821214 0.823815 0.826391 0.828944 0.831472 0.833977 0.836457 0.838913
1.0 0.841345 0.843752 0.846136 0.848495 0.850830 0.853141 0.855428 0.857690 0.859929 0.862143
1.1 0.864334 0.866500 0.868643 0.870762 0.872857 0.874928 0.876976 0.878999 0.881000 0.882977
1.2 0.884930 0.886860 0.888767 0.890651 0.892512 0.894350 0.896165 0.897958 0.899727 0.901475
1.3 0.903199 0.904902 0.906582 0.908241 0.909877 0.911492 0.913085 0.914657 0.916207 0.917736
1.4 0.919243 0.920730 0.922196 0.923641 0.925066 0.926471 0.927855 0.929219 0.930563 0.931888
1.5 0.933193 0.934478 0.935744 0.936992 0.938220 0.939429 0.940620 0.941792 0.942947 0.944083
1.6 0.945201 0.946301 0.947384 0.948449 0.949497 0.950529 0.951543 0.952540 0.953521 0.954486
1.7 0.955435 0.956367 0.957284 0.958185 0.959071 0.959941 0.960796 0.961636 0.962462 0.963273
1.8 0.964070 0.964852 0.965621 0.966375 0.967116 0.967843 0.968557 0.969258 0.969946 0.970621
1.9 0.971283 0.971933 0.972571 0.973197 0.973810 0.974412 0.975002 0.975581 0.976148 0.976705
2.0 0.977250 0.977784 0.978308 0.978822 0.979325 0.979818 0.980301 0.980774 0.981237 0.981691
2.1 0.982136 0.982571 0.982997 0.983414 0.983823 0.984222 0.984614 0.984997 0.985371 0.985738
2.2 0.986097 0.986447 0.986791 0.987126 0.987455 0.987776 0.988089 0.988396 0.988696 0.988989
2.3 0.989276 0.989556 0.989830 0.990097 0.990358 0.990613 0.990863 0.991106 0.991344 0.991576
2.4 0.991802 0.992024 0.992240 0.992451 0.992656 0.992857 0.993053 0.993244 0.993431 0.993613
2.5 0.993790 0.993963 0.994132 0.994297 0.994457 0.994614 0.994766 0.994915 0.995060 0.995201
2.6 0.995339 0.995473 0.995604 0.995731 0.995855 0.995975 0.996093 0.996207 0.996319 0.996427
2.7 0.996533 0.996636 0.996736 0.996833 0.996928 0.997020 0.997110 0.997197 0.997282 0.997365
2.8 0.997445 0.997523 0.997599 0.997673 0.997744 0.997814 0.997882 0.997948 0.998012 0.998074
2.9 0.998134 0.998193 0.998250 0.998305 0.998359 0.998411 0.998462 0.998511 0.998559 0.998605
3.0 0.998650 0.998694 0.998736 0.998777 0.998817 0.998856 0.998893 0.998930 0.998965 0.998999
3.1 0.999032 0.999065 0.999096 0.999126 0.999155 0.999184 0.999211 0.999238 0.999264 0.999289
3.2 0.999313 0.999336 0.999359 0.999381 0.999402 0.999423 0.999443 0.999462 0.999481 0.999499
3.3 0.999517 0.999533 0.999550 0.999566 0.999581 0.999596 0.999610 0.999624 0.999638 0.999650
3.4 0.999663 0.999675 0.999687 0.999698 0.999709 0.999720 0.999730 0.999740 0.999749 0.999758
3.5 0.999767 0.999776 0.999784 0.999792 0.999800 0.999807 0.999815 0.999821 0.999828 0.999835
3.6 0.999841 0.999847 0.999853 0.999858 0.999864 0.999869 0.999874 0.999879 0.999883 0.999888
3.7 0.999892 0.999896 0.999900 0.999904 0.999908 0.999912 0.999915 0.999918 0.999922 0.999925
3.8 0.999928 0.999931 0.999933 0.999936 0.999938 0.999941 0.999943 0.999946 0.999948 0.999950
3.9 0.999952 0.999954 0.999956 0.999958 0.999959 0.999961 0.999963 0.999964 0.999966 0.999967
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APPENDIX A 655

Table III Percentage Points �2
�,� of the Chi-Squared Distribution

�
� .995 .990 .975 .950 .900 .500 .100 .050 .025 .010 .005

1 .00	 .00	 .00	 .00	 .02 .45 2.71 3.84 5.02 6.63 7.88
2 .01 .02 .05 .10 .21 1.39 4.61 5.99 7.38 9.21 10.60
3 .07 .11 .22 .35 .58 2.37 6.25 7.81 9.35 11.34 12.84
4 .21 .30 .48 .71 1.06 3.36 7.78 9.49 11.14 13.28 14.86
5 .41 .55 .83 1.15 1.61 4.35 9.24 11.07 12.83 15.09 16.75
6 .68 .87 1.24 1.64 2.20 5.35 10.65 12.59 14.45 16.81 18.55
7 .99 1.24 1.69 2.17 2.83 6.35 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 7.34 13.36 15.51 17.53 20.09 21.96
9 1.73 2.09 2.70 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 5.58 10.34 17.28 19.68 21.92 24.72 26.76
12 3.07 3.57 4.40 5.23 6.30 11.34 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 12.34 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 13.34 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.27 7.26 8.55 14.34 22.31 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 9.31 15.34 23.54 26.30 28.85 32.00 34.27
17 5.70 6.41 7.56 8.67 10.09 16.34 24.77 27.59 30.19 33.41 35.72
18 6.26 7.01 8.23 9.39 10.87 17.34 25.99 28.87 31.53 34.81 37.16
19 6.84 7.63 8.91 10.12 11.65 18.34 27.20 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 12.44 19.34 28.41 31.41 34.17 37.57 40.00
21 8.03 8.90 10.28 11.59 13.24 20.34 29.62 32.67 35.48 38.93 41.40
22 8.64 9.54 10.98 12.34 14.04 21.34 30.81 33.92 36.78 40.29 42.80
23 9.26 10.20 11.69 13.09 14.85 22.34 32.01 35.17 38.08 41.64 44.18
24 9.89 10.86 12.40 13.85 15.66 23.34 33.20 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 16.47 24.34 34.28 37.65 40.65 44.31 46.93
26 11.16 12.20 13.84 15.38 17.29 25.34 35.56 38.89 41.92 45.64 48.29
27 11.81 12.88 14.57 16.15 18.11 26.34 36.74 40.11 43.19 46.96 49.65
28 12.46 13.57 15.31 16.93 18.94 27.34 37.92 41.34 44.46 48.28 50.99
29 13.12 14.26 16.05 17.71 19.77 28.34 39.09 42.56 45.72 49.59 52.34
30 13.79 14.95 16.79 18.49 20.60 29.34 40.26 43.77 46.98 50.89 53.67
40 20.71 22.16 24.43 26.51 29.05 39.34 51.81 55.76 59.34 63.69 66.77
50 27.99 29.71 32.36 34.76 37.69 49.33 63.17 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 46.46 59.33 74.40 79.08 83.30 88.38 91.95
70 43.28 45.44 48.76 51.74 55.33 69.33 85.53 90.53 95.02 100.42 104.22
80 51.17 53.54 57.15 60.39 64.28 79.33 96.58 101.88 106.63 112.33 116.32
90 59.20 61.75 65.65 69.13 73.29 89.33 107.57 113.14 118.14 124.12 128.30

100 67.33 70.06 74.22 77.93 82.36 99.33 118.50 124.34 129.56 135.81 140.17

� � degrees of freedom.

χα, ν
2

α
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656 APPENDIX A STATISTICAL TABLES AND CHARTS

Table IV Percentage Points t�,� of the t-Distribution

�
� .40 .25 .10 .05 .025 .01 .005 .0025 .001 .0005

1 .325 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62
2 .289 .816 1.886 2.920 4.303 6.965 9.925 14.089 23.326 31.598
3 .277 .765 1.638 2.353 3.182 4.541 5.841 7.453 10.213 12.924
4 .271 .741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 .267 .727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 .265 .718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 .263 .711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 .262 .706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 .261 .703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 .260 .700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 .260 .697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 .259 .695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 .259 .694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 .258 .692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 .258 .691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 .258 .690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 .257 .689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 .257 .688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 .257 .688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 .257 .687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 .256 .686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 .256 .685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 .256 .684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 .256 .684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 .256 .684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 .256 .683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 .256 .683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 .256 .683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 .255 .681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
60 .254 .679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

120 .254 .677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
� .253 .674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

� � degrees of freedom.

0
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Table V Percentage Points f�,v1,v2
of the F-Distribution

f0.25,v1,v2

Degrees of freedom for the numerator (v1)

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 5.83 7.50 8.20 8.58 8.82 8.98 9.10 9.19 9.26 9.32 9.41 9.49 9.58 9.63 9.67 9.71 9.76 9.80 9.85
2 2.57 3.00 3.15 3.23 3.28 3.31 3.34 3.35 3.37 3.38 3.39 3.41 3.43 3.43 3.44 3.45 3.46 3.47 3.48
3 2.02 2.28 2.36 2.39 2.41 2.42 2.43 2.44 2.44 2.44 2.45 2.46 2.46 2.46 2.47 2.47 2.47 2.47 2.47
4 1.81 2.00 2.05 2.06 2.07 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08
5 1.69 1.85 1.88 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.88 1.88 1.88 1.88 1.87 1.87 1.87
6 1.62 1.76 1.78 1.79 1.79 1.78 1.78 1.78 1.77 1.77 1.77 1.76 1.76 1.75 1.75 1.75 1.74 1.74 1.74
7 1.57 1.70 1.72 1.72 1.71 1.71 1.70 1.70 1.70 1.69 1.68 1.68 1.67 1.67 1.66 1.66 1.65 1.65 1.65
8 1.54 1.66 1.67 1.66 1.66 1.65 1.64 1.64 1.63 1.63 1.62 1.62 1.61 1.60 1.60 1.59 1.59 1.58 1.58
9 1.51 1.62 1.63 1.63 1.62 1.61 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.56 1.55 1.54 1.54 1.53 1.53

10 1.49 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.56 1.55 1.54 1.53 1.52 1.52 1.51 1.51 1.50 1.49 1.48
11 1.47 1.58 1.58 1.57 1.56 1.55 1.54 1.53 1.53 1.52 1.51 1.50 1.49 1.49 1.48 1.47 1.47 1.46 1.45
12 1.46 1.56 1.56 1.55 1.54 1.53 1.52 1.51 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.45 1.44 1.43 1.42
13 1.45 1.55 1.55 1.53 1.52 1.51 1.50 1.49 1.49 1.48 1.47 1.46 1.45 1.44 1.43 1.42 1.42 1.41 1.40
14 1.44 1.53 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.44 1.43 1.42 1.41 1.41 1.40 1.39 1.38
15 1.43 1.52 1.52 1.51 1.49 1.48 1.47 1.46 1.46 1.45 1.44 1.43 1.41 1.41 1.40 1.39 1.38 1.37 1.36
16 1.42 1.51 1.51 1.50 1.48 1.47 1.46 1.45 1.44 1.44 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.35 1.34
17 1.42 1.51 1.50 1.49 1.47 1.46 1.45 1.44 1.43 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.35 1.34 1.33
18 1.41 1.50 1.49 1.48 1.46 1.45 1.44 1.43 1.42 1.42 1.40 1.39 1.38 1.37 1.36 1.35 1.34 1.33 1.32
19 1.41 1.49 1.49 1.47 1.46 1.44 1.43 1.42 1.41 1.41 1.40 1.38 1.37 1.36 1.35 1.34 1.33 1.32 1.30
20 1.40 1.49 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.39 1.37 1.36 1.35 1.34 1.33 1.32 1.31 1.29
21 1.40 1.48 1.48 1.46 1.44 1.43 1.42 1.41 1.40 1.39 1.38 1.37 1.35 1.34 1.33 1.32 1.31 1.30 1.28
22 1.40 1.48 1.47 1.45 1.44 1.42 1.41 1.40 1.39 1.39 1.37 1.36 1.34 1.33 1.32 1.31 1.30 1.29 1.28
23 1.39 1.47 1.47 1.45 1.43 1.42 1.41 1.40 1.39 1.38 1.37 1.35 1.34 1.33 1.32 1.31 1.30 1.28 1.27
24 1.39 1.47 1.46 1.44 1.43 1.41 1.40 1.39 1.38 1.38 1.36 1.35 1.33 1.32 1.31 1.30 1.29 1.28 1.26
25 1.39 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 1.36 1.34 1.33 1.32 1.31 1.29 1.28 1.27 1.25
26 1.38 1.46 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.37 1.35 1.34 1.32 1.31 1.30 1.29 1.28 1.26 1.25
27 1.38 1.46 1.45 1.43 1.42 1.40 1.39 1.38 1.37 1.36 1.35 1.33 1.32 1.31 1.30 1.28 1.27 1.26 1.24
28 1.38 1.46 1.45 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.25 1.24
29 1.38 1.45 1.45 1.43 1.41 1.40 1.38 1.37 1.36 1.35 1.34 1.32 1.31 1.30 1.29 1.27 1.26 1.25 1.23
30 1.38 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.36 1.35 1.34 1.32 1.30 1.29 1.28 1.27 1.26 1.24 1.23
40 1.36 1.44 1.42 1.40 1.39 1.37 1.36 1.35 1.34 1.33 1.31 1.30 1.28 1.26 1.25 1.24 1.22 1.21 1.19
60 1.35 1.42 1.41 1.38 1.37 1.35 1.33 1.32 1.31 1.30 1.29 1.27 1.25 1.24 1.22 1.21 1.19 1.17 1.15

120 1.34 1.40 1.39 1.37 1.35 1.33 1.31 1.30 1.29 1.28 1.26 1.24 1.22 1.21 1.19 1.18 1.16 1.13 1.10
1.32 1.39 1.37 1.35 1.33 1.31 1.29 1.28 1.27 1.25 1.24 1.22 1.19 1.18 1.16 1.14 1.12 1.08 1.00�
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Table V Percentage Points of the F-Distribution (continued)
f0.10,v1,v2

Degrees of freedom for the numerator (v1)

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33

2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49

3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13

4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76

5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10

6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72

7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47

8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29

9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06

11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97

12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90

13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85

14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80

15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76

16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72

17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69

18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66

19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63

20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61

21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59

22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57

23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55

24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52

26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50

27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49

28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48

29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47

30 2.88 2.49 2.28 2.14 2.03 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46

40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38

60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19

2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00�
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659

Table V Percentage Points of the F-Distribution (continued)
f0.05,v1,v2

Degrees of freedom for the numerator (v1)

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.55 1.43 1.35 1.25

3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00�
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Table V Percentage Points of the F-Distribution (continued)
f0.025,v1,v2

Degrees of freedom for the numerator (v1)

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 976.7 984.9 993.1 997.2 1001 1006 1010 1014 1018

2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.50

3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95 13.90

4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.26

5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07 6.02

6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.90 4.85

7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.42 4.36 4.31 4.25 4.20 4.14

8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.67

9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.33

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.08

11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94 2.88

12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.72

13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66 2.60

14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55 2.49

15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.40

16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38 2.32

17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32 2.25

18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26 2.19

19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20 2.13

20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.09

21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11 2.04

22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08 2.00

23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04 1.97

24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.94

25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98 1.91

26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95 1.88

27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93 1.85

28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91 1.83

29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89 1.81

30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.79

40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.64

60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.48

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.43 1.31

5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.00�
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Table V Percentage Points of the F-Distribution (continued)
f0.01,v1,v2

Degrees of freedom for the numerator (v1)

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 4052 4999.5 5403 5625 5764 5859 5928 5982 6022 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.00 26.50 26.41 26.32 26.22 26.13

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.46

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17

14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00

15 8.68 6.36 5.42 4.89 4.36 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75

17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57

19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.59

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31

23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13

27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06

29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38

6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00�
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(b) O.C. curves for different values of n for the two-sided normal test for a level of significance � � 0.01.

Source: Charts VIa, e, f, k, m, and q are reproduced with permission from “Operating Characteristics
for the Common Statistical Tests of Significance,’’ by C. L. Ferris, F. E. Grubbs, and C. L. Weaver,
Annals of Mathematical Statistics, June 1946.
Charts VIb, c, d, g, h, i, j, l, n, o, p, and r are reproduced with permission from Engineering Statistics,
2nd Edition, by A. H. Bowker and G. J. Lieberman, Prentice-Hall, 1972.

(a) O.C. curves for different values of n for the two-sided normal test for a level of significance � � 0.05.
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Chart VI Operating Characteristic Curves
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(c) O.C. curves for different values of n for the one-sided normal test for a level of significance � � 0.05.

(d) O.C. curves for different values of n for the one-sided normal test for a level of significance � � 0.01.

Chart VI Operating Characteristic Curves (continued)
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(e) O.C. curves for different values of n for the two-sided t-test for a level of significance � � 0.05.

( f ) O.C. curves for different values of n for the two-sided t-test for a level of significance � � 0.01.

Chart VI Operating Characteristic Curves (continued)
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Chart VI Operating Characteristic Curves (continued)
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(g) O.C. curves for different values of n for the one-sided t-test for a level of significance � � 0.05.

(h) O.C. curves for different values of n for the one-sided t-test for a level of significance � � 0.01.
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Chart VI Operating Characteristic Curves (continued)
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(i) O.C. curves for different values of n for the two-sided chi-square test for a level of significance � � 0.05.

( j) O.C. curves for different values of n for the two-sided chi-square test for a level of significance � � 0.01.
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Chart VI Operating Characteristic Curves (continued)
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(k) O.C. curves for different values of n for the one-sided (upper tail) chi-square test for a level of 
significance � � 0.05.

(l) O.C. curves for different values of n for the one-sided (upper tail) chi-square test for a level of 
significance � � 0.01.
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Chart VI Operating Characteristic Curves (continued)
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(m) O.C. curves for different values of n for the one-sided (lower tail) chi-square test for a level of 
significance � � 0.05.

(n) O.C. curves for different values of n for the one-sided (lower tail) chi-square test for a level of 
significance � � 0.01.
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Chart VI Operating Characteristic Curves (continued)
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(o) O.C. curves for different values of n for the two-sided F-test for a level of significance � � 0.05.

( p) O.C. curves for different values of n for the two-sided F-test for a level of significance � � 0.01.
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Chart VI Operating Characteristic Curves (continued)

1
0

2 3 4

0.20

0.40

0.60

0.80

1.00

3

4

5

100

10

152030

7
8

P
ro

ba
bi

lit
y 

of
 a

cc
ep

ti
ng

 H
0

40

50
75

λ

n1 = n2  = 2

6

0
0

2.00 4.00 5.00 8.00 10.00 12.00 14.00

0.20

0.40

0.60

0.80

1.00

16.00

n1 = n2  = 2

3

4

5

6

7810
916

2141
5
1

3
1

1.00
λ

P
ro

ba
bi

lit
y 

of
 a

cc
ep

ti
ng

 H
0

1
2

1

(q) O.C. curves for different values of n for the one-sided F-test for a level of significance � � 0.05.

(r) O.C. curves for different values of n for the one-sided F-test for a level of significance � � 0.01.
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Table VII Critical Values for the Sign Test
r*�

� 0.10 0.05 0.01 Two-sided tests � 0.10 0.05 0.01 Two-sided tests
n 0.05 0.025 0.005 One-sided tests n 0.05 0.025 0.005 One-sided tests

5 0 23 7 6 4
6 0 0 24 7 6 5
7 0 0 25 7 7 5
8 1 0 0 26 8 7 6
9 1 1 0 27 8 7 6

10 1 1 0 28 9 8 6
11 2 1 0 29 9 8 7
12 2 2 1 30 10 9 7
13 3 2 1 31 10 9 7
14 3 2 1 32 10 9 8
15 3 3 2 33 11 10 8
16 4 3 2 34 11 10 9
17 4 4 2 35 12 11 9
18 5 4 3 36 12 11 9
19 5 4 3 37 13 12 10
20 5 5 3 38 13 12 10
21 6 5 4 39 13 12 11
22 6 5 4 40 14 13 11

Table VIII Critical Values for the Wilcoxon Signed-Rank Test
w*�

� 0.10 0.05 0.02 0.01 Two-sided tests
n* 0.05 0.025 0.01 0.005 One-sided tests

4
5 0
6 2 0
7 3 2 0
8 5 3 1 0
9 8 5 3 1

10 10 8 5 3
11 13 10 7 5
12 17 13 9 7
13 21 17 12 9
14 25 21 15 12
15 30 25 19 15
16 35 29 23 19
17 41 34 27 23
18 47 40 32 27
19 53 46 37 32
20 60 52 43 37
21 67 58 49 42
22 75 65 55 48
23 83 73 62 54
24 91 81 69 61
25 100 89 76 68

* If n � 25, W	 (or W�) is approximately normally distributed with mean n(n 	 1)�4
and variance n(n 	 1)(2n 	 1)�24.
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Table IX Critical Values for the Wilcoxon Rank-Sum Test
w0.05

n1*
n2 4 5 6 7 8 9 10 11 12 13 14 15

4 10
5 11 17
6 12 18 26
7 13 20 27 36
8 14 21 29 38 49
9 15 22 31 40 51 63

10 15 23 32 42 53 65 78
11 16 24 34 44 55 68 81 96
12 17 26 35 46 58 71 85 99 115
13 18 27 37 48 60 73 88 103 119 137
14 19 28 38 50 63 76 91 106 123 141 160
15 20 29 40 52 65 79 94 110 127 145 164 185
16 21 31 42 54 67 82 97 114 131 150 169
17 21 32 43 56 70 84 100 117 135 154
18 22 33 45 58 72 87 103 121 139
19 23 34 46 60 74 90 107 124
20 24 35 48 62 77 93 110
21 25 37 50 64 79 95
22 26 38 51 66 82
23 27 39 53 68
24 28 40 55
25 28 42
26 29
27
28

*For n1 and n2 � 8, W1 is approximately normally distributed with mean and variance n1n2(n1 	 n2 	 1)�12.1
2n11 n1 	 n2 	 12

Table IX Critical Values for the Wilcoxon Rank-Sum Test (continued)
w0.01

n1

n2 4 5 6 7 8 9 10 11 12 13 14 15

5 15
6 10 16 23
7 10 17 24 32
8 11 17 25 34 43
9 11 18 26 35 45 56

10 12 19 27 37 47 58 71
11 12 20 28 38 49 61 74 87
12 13 21 30 40 51 63 76 90 106
13 14 22 31 41 53 65 79 93 109 125
14 14 22 32 43 54 67 81 96 112 129 147
15 15 23 33 44 56 70 84 99 115 133 151 171
16 15 24 34 46 58 72 86 102 119 137 155
17 16 25 36 47 60 74 89 105 122 140
18 16 26 37 49 62 76 92 108 125
19 17 27 38 50 64 78 94 111
20 18 28 39 52 66 81 97
21 18 29 40 53 68 83
22 19 29 42 55 70
23 19 30 43 57
24 20 31 44
25 20 32
26 21
27
28
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Table X Factors for Constructing Variables Control Charts

Factor for Control Limits

Chart R Chart S Chart

n* A1 A2 d2 D3 D4 c4 n

2 3.760 1.880 1.128 0 3.267 0.7979 2
3 2.394 1.023 1.693 0 2.575 0.8862 3
4 1.880 .729 2.059 0 2.282 0.9213 4
5 1.596 .577 2.326 0 2.115 0.9400 5
6 1.410 .483 2.534 0 2.004 0.9515 6
7 1.277 .419 2.704 .076 1.924 0.9594 7
8 1.175 .373 2.847 .136 1.864 0.9650 8
9 1.094 .337 2.970 .184 1.816 0.9693 9

10 1.028 .308 3.078 .223 1.777 0.9727 10
11 .973 .285 3.173 .256 1.744 0.9754 11
12 .925 .266 3.258 .284 1.716 0.9776 12
13 .884 .249 3.336 .308 1.692 0.9794 13
14 .848 .235 3.407 .329 1.671 0.9810 14
15 .816 .223 3.472 .348 1.652 0.9823 15
16 .788 .212 3.532 .364 1.636 0.9835 16
17 .762 .203 3.588 .379 1.621 0.9845 17
18 .738 .194 3.640 .392 1.608 0.9854 18
19 .717 .187 3.689 .404 1.596 0.9862 19
20 .697 .180 3.735 .414 1.586 0.9869 20
21 .679 .173 3.778 .425 1.575 0.9876 21
22 .662 .167 3.819 .434 1.566 0.9882 22
23 .647 .162 3.858 .443 1.557 0.9887 23
24 .632 .157 3.895 .452 1.548 0.9892 24
25 .619 .153 3.931 .459 1.541 0.9896 25

* where n � number of observations in sample.n � 25: A1 � 3�1n

X
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Table XI Factors for Tolerance Intervals 

Values of k for Two-Sided Intervals

Confidence
Level 0.90 0.95 0.99

Percent
Coverage 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

2 15.978 18.800 24.167 32.019 37.674 48.430 160.193 188.491 242.300
3 5.847 6.919 8.974 8.380 9.916 12.861 18.930 22.401 29.055
4 4.166 4.943 6.440 5.369 6.370 8.299 9.398 11.150 14.527
5 3.949 4.152 5.423 4.275 5.079 6.634 6.612 7.855 10.260
6 3.131 3.723 4.870 3.712 4.414 5.775 5.337 6.345 8.301
7 2.902 3.452 4.521 3.369 4.007 5.248 4.613 5.488 7.187
8 2.743 3.264 4.278 3.136 3.732 4.891 4.147 4.936 6.468
9 2.626 3.125 4.098 2.967 3.532 4.631 3.822 4.550 5.966

10 2.535 3.018 3.959 2.839 3.379 4.433 3.582 4.265 5.594
11 2.463 2.933 3.849 2.737 3.259 4.277 3.397 4.045 5.308
12 2.404 2.863 3.758 2.655 3.162 4.150 3.250 3.870 5.079
13 2.355 2.805 3.682 2.587 3.081 4.044 3.130 3.727 4.893
14 2.314 2.756 3.618 2.529 3.012 3.955 3.029 3.608 4.737
15 2.278 2.713 3.562 2.480 2.954 3.878 2.945 3.507 4.605
16 2.246 2.676 3.514 2.437 2.903 3.812 2.872 3.421 4.492
17 2.219 2.643 3.471 2.400 2.858 3.754 2.808 3.345 4.393
18 2.194 2.614 3.433 2.366 2.819 3.702 2.753 3.279 4.307
19 2.172 2.588 3.399 2.337 2.784 3.656 2.703 3.221 4.230
20 2.152 2.564 3.368 2.310 2.752 3.615 2.659 3.168 4.161
21 2.135 2.543 3.340 2.286 2.723 3.577 2.620 3.121 4.100
22 2.118 2.524 3.315 2.264 2.697 3.543 2.584 3.078 4.044
23 2.103 2.506 3.292 2.244 2.673 3.512 2.551 3.040 3.993
24 2.089 2.489 3.270 2.225 2.651 3.483 2.522 3.004 3.947
25 2.077 2.474 3.251 2.208 2.631 3.457 2.494 2.972 3.904
30 2.025 2.413 3.170 2.140 2.529 3.350 2.385 2.841 3.733
40 1.959 2.334 3.066 2.052 2.445 3.213 2.247 2.677 3.518
50 1.916 2.284 3.001 1.996 2.379 3.126 2.162 2.576 3.385
60 1.887 2.248 2.955 1.958 2.333 3.066 2.103 2.506 3.293
70 1.865 2.222 2.920 1.929 2.299 3.021 2.060 2.454 3.225
80 1.848 2.202 2.894 1.907 2.272 2.986 2.026 2.414 3.173
90 1.834 2.185 2.872 1.889 2.251 2.958 1.999 2.382 3.130

100 1.822 2.172 2.854 1.874 2.233 2.934 1.977 2.355 3.096
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Table XI Factors for Tolerance Intervals (continued)

Values of k for One-Sided Intervals

Confidence
Level 0.90 0.95 0.99

Percent
Coverage 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

2 10.253 13.090 18.500 20.581 26.260 37.094 103.029 131.426 185.617
3 4.258 5.311 7.340 6.155 7.656 10.553 13.995 17.370 23.896
4 3.188 3.957 5.438 4.162 5.144 7.042 7.380 9.083 12.387
5 2.742 3.400 4.666 3.407 4.203 5.741 5.362 6.578 8.939
6 2.494 3.092 4.243 3.006 3.708 5.062 4.411 5.406 7.335
7 2.333 2.894 3.972 2.755 3.399 4.642 3.859 4.728 6.412
8 2.219 2.754 3.783 2.582 3.187 4.354 3.497 4.285 5.812
9 2.133 2.650 3.641 2.454 3.031 4.143 3.240 3.972 5.389

10 2.066 2.568 3.532 2.355 2.911 3.981 3.048 3.738 5.074
11 2.011 2.503 3.443 2.275 2.815 3.852 2.898 3.556 4.829
12 1.966 2.448 3.371 2.210 2.736 3.747 2.777 3.410 4.633
13 1.928 2.402 3.309 2.155 2.671 3.659 2.677 3.290 4.472
14 1.895 2.363 3.257 2.109 2.614 3.585 2.593 3.189 4.337
15 1.867 2.329 3.212 2.068 2.566 3.520 2.521 3.102 4.222
16 1.842 2.299 3.172 2.033 2.524 3.464 2.459 3.028 4.123
17 1.819 2.272 3.137 2.002 2.486 3.414 2.405 2.963 4.037
18 1.800 2.249 3.105 1.974 2.453 3.370 2.357 2.905 3.960
19 1.782 2.227 3.077 1.949 2.423 3.331 2.314 2.854 3.892
20 1.765 2.028 3.052 1.926 2.396 3.295 2.276 2.808 3.832
21 1.750 2.190 3.028 1.905 2.371 3.263 2.241 2.766 3.777
22 1.737 2.174 3.007 1.886 2.349 3.233 2.209 2.729 3.727
23 1.724 2.159 2.987 1.869 2.328 3.206 2.180 2.694 3.681
24 1.712 2.145 2.969 1.853 2.309 3.181 2.154 2.662 3.640
25 1.702 2.132 2.952 1.838 2.292 3.158 2.129 2.633 3.601
30 1.657 2.080 2.884 1.777 2.220 3.064 2.030 2.515 3.447
40 1.598 2.010 2.793 1.697 2.125 2.941 1.902 2.364 3.249
50 1.559 1.965 2.735 1.646 2.065 2.862 1.821 2.269 3.125
60 1.532 1.933 2.694 1.609 2.022 2.807 1.764 2.202 3.038
70 1.511 1.909 2.662 1.581 1.990 2.765 1.722 2.153 2.974
80 1.495 1.890 2.638 1.559 1.964 2.733 1.688 2.114 2.924
90 1.481 1.874 2.618 1.542 1.944 2.706 1.661 2.082 2.883

100 1.470 1.861 2.601 1.527 1.927 2.684 1.639 2.056 2.850
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CHAPTER 2

Section 2-1
2-1. Let a, b denote a part above,

below the specification.
S � {aaa, aab, aba, abb, baa,

bab, bba, bbb}
2-7. S is the sample space of 100 pos-

sible two-digit integers.
2-9. S � {0, 1, 2, . . . ,} in ppb.
2-17. c � connect, b � busy, S �

{c, bc, bbc, bbbc, bbbbc, . . .}
2-21. (a) S � {0, 1, 2, 3, . . .}

(b) S (c) {12, 13, 14, 15}
(d) {0, 1, 2, . . . , 11} (e) S
(f ) {0, 1, 2, . . . , 7} (g)
(h) (i) {8, 9, 10, . . .}

2-23. Let d denote a distorted bit and let
o denote a bit that is not distorted.

(a)

(b) No
(c) {dddd, dodd, dddo, dodo,

ddod, dood, ddoo, dooo}

(d) {oddd, oodd, oddo, oodo,
odod, oood, odoo, oooo}

(e) {dddd}
(f) {dddd, dodd, dddo, oddd,

ddod, oodd, ddoo}
2-25. 212 � 4096
2-27. (a)

2-29. (a)

(b)
(c) �72.5
(d)

2-31. Let g denote a good board, m a
board with minor defects, and j a
board with major defects.
(a) S � {gg, gm, gj, mg, mm,

mj, jg, jm, jj}
(b) S � {gg, gm, gj, mg, mm,

mj, jg, jm}

Section 2-2
2-35. (a) 0.4 (b) 0.8 (c) 0.6

(d) 1 (e) 0.2
2-37. (a) S � {1, 2, 3, 4, 5, 6, 7, 8}

(b) 2�8 (c) 6�8
2-39. (a) 0.7 (b) 0.8

2-41. (a) 0.25 (b) 0.75
2-43. 5.7 � 10�8

2-45. (a) 0.86 (b) 0.79 (c) 0.14
(d) 0.70 (e) 0.95 (f) 0.84

2-47. (a) 0.30 (b) 0.77 (c) 0.70
(d) 0.22 (e) 0.85 (f) 0.92

Section 2-3
2-49. (a) 0.7 (b) 0.4 (c) 0.1

(d) 0.2 (e) 0.6 from part (b)
(f) 0.8

2-51. No
2-53. (a) 350�370 (b) 362�370

(c) 358�370 (d) 345�370
2-55. (a) 13�130 (b) No

Section 2-4
2-57. (a) 86�100 (b) P(B) �

79�100 (c) 70�79
(d) 70�86

2-59. (a) 345�357 (b) 5�13
2-61. (a) 0.15 (b) 0.153

(c) 0.72 (d) 0.733
(e) 0.11 (f) 0.76

2-63. (a) 15�40 (b) 14�39
(c) 0.135 (d) 0.599

A ´ B � 5x 0 x � 06
A ¨ B � 5x 0 52.5 � x

B¿ � 5x 0 x � 52.56
A¿ � 5x 0 x � 72.56A ´ B � 92
A¿ ¨ B � 10, B¿ � 10,

S � µ
dddd, dodd, oddd, oodd,

dddo, dodo, oddo, oodo,

ddod, dood, odod, oood,

ddoo, dooo, odoo, oooo

∂

	
	

Appendix C
Answers to 
Selected
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680 APPENDIX C ANSWERS TO SELECTED EXERCISES

2-65. (a) 4�499 � 0.0080
(b) (5�500)(4�499) � 0.000080
(c) (495�500)(494�499) � 0.98

2-67. (a) 0.813 (b) 0.632
(c) 0.764

Section 2-5
2-71. 0.22
2-73. 0.023
2-75. 0.028
2-77. (a) 0.0225 (b) 0.125
2-79. (a) 0.20 (b) 0.20

Section 2-6
2-81. No
2-83. No
2-85. (a) No (b) 0.733
2-87. (a) 0.59 (b) 0.328 (c) 0.41
2-89. (a) 0.00003 (b) 0.00024

(c) 0.00107
2-91. 0.9702
2-93. (a) No (b) Yes

Section 2-7
2-95. 0.003
2-97. (a) 0.615 (b) 0.618

(c) 0.052
2-99. (a) 0.9847 (b) 0.1184

Supplemental
2-101. The sample space S � {A, A
D1,

A
D2, A
D3, A
D4, A
D5}
2-103. (a) 0.19 (b) 0.15 (c) 0.99

(d) 0.80 (e) 0.158
2-105. (a) No (b) No (c) 40�240

(d) 200�240 (e) 234�400
(f) 1

2-107. (a) 0.282 (b) 0.718
2-109. 0.996
2-111. (a) 0.0037 (b) 0.811
2-113. (a) 0.0778 (b) 0.00108

(c) 0.947
2-115. (a) 0.9764 (b) 0.680
2-117. (a) 0.207 (b) 0.625 (c) 0.6
2-119. (a) 0.453 (b) 0.261

(c) 0.881 (d) 0.547
(e) 0.783 (f) 0.687

2-121. 1.58 � 10�7

CHAPTER 3

Section 3-1
3-1. {0, 1, 2, . . . , 1000}
3-3. {0, 1, 2, . . . , 99999}

Section 3-2
3-13. fX(0) � 1�3, fX(1.5) � 1�3,

fX(2) � 1�6, fX(3) � 1�6
3-15. (a) 1 (b) 7�8 (c) 3�4

(d) 1�2

3-17. (a) 9�25 (b) 4�25
(c) 12�25 (d) 1

3-19. P(X � 10 million) � 0.3, 
P(X � 5 million) � 0.6, 
P(X � 1 million) � 0.1

3-21. P(X � 0) � 8 � 10�6, 
P(X � 1) � 0.0012, 
P(X � 2) � 0.0576, 
P(X � 3) � 0.9412

3-23. P(X � 15 million) � 0.6, 
P(X � 5 million) � 0.3, 
P(X � �0.5 million) � 0.1

3-25. P(X � 0) � 0.00001, 
P(X � 1) � 0.00167, 
P(X � 2) � 0.07663, 
P(X � 3) � 0.92169

Section 3-3
3-27. (a) 7�8 (b) 1 (c) 3�4

(d) 3�8
3-29. F(x) � 0 for x � 1 million; 0.1

for 1 million � x � 5 million;
0.7 for 5 million � x � 10 mil-
lion; 1 for 10 million � x

3-31. F(x) � 0 for x � 0; 0.008 for 
0 � x � 1; 0.104 for 1 � x � 2;
0.488 for 2 � x � 3; 1 for 3 � x

3-33. (a) 1 (b) 0.5 (c) 0.5
(d) 0.5

3-35. (a) 1 (b) 0.75 (c) 0.25
(d) 0.25 (e) 0 (f) 0

Section 3-4
3-37. E(X ) � 2, V(X ) � 2
3-39. E(X ) � 0, V(X ) � 1.5
3-41. E(X ) � 6.1 million, 

V(X ) � 7.89 million2

3-43. E(X ) � 2.4, V(X ) � 0.48
3-45. x � 24

Section 3-5
3-47. E(X ) � 2, V(X ) � 0.667
3-49. E(X ) � 0.17, V(X ) � 0.0002
3-51. E(X ) � 590.45, V(X ) � 0.0825

Section 3-6
3-57. (a) 0.2461 (b) 0.0547

(c) 0.0107 (d) 0.3223

3-59. (a) 2.4 � 10�8 (b) 0.99989
(c) 9.91 � 10�18

(d) 1.138 � 10�4

3-61. F(x) � 0 for x � 0; 0.4219 for 
0 � x � 1; 0.8438 for 1 � x � 2;
0.9844 for 2 � x � 3; 1 for 3 � x

3-63. (a) 0.3681 (b) 0.6323
(c) 0.9198 (d) E(X ) � 1, 
V(X ) � 0.999

3-65. (a) n � 50, p � 0.1
(b) 0.1117 (c) 4.51 � 10�48

3-67. (a) 0.9961 (b) 0.9886
3-69. (a) 0 (b) 0.2137

Section 3-7
3-71. (a) 0.5 (b) 0.0625

(c) 0.0039 (d) 0.75 (e) 0.25
3-73. (a) 0.0064 (b) 0.9984

(c) 0.008
3-75. (a) 0.0167 (b) 0.9224 (c) 50
3-77. (a) 3.91 � 10�19 (b) 200

(c) 2.56 � 1018

3-79. (a) 5 (b) 5
3-81. (a) 20 (b) 0.0436

(c) 0.0459 (d) 0.0411 (e) 19
3-83. (a) 3000 (b) 1431.18

Section 3-8
3-87. (a) 0.4623 (b) 0.0002

(c) 0.9866 (d) E(X ) � 0.8,
V(X ) � 0.539

3-89. F(X ) � 0 for x � 0; 1�6 for 0 �
x � 1; 2�3 for 1 � x � 2; 29�30
for 2 � x � 3; 1 for 3 � x

3-91. (a) 0.1201 (b) 0.8523
3-93. (a) 0.7069 (b) 0.0607

(c) 0.2811

Section 3-9
3-97. (a) 0.0183 (b) 0.2381

(c) 0.1954 (d) 0.0298
3-99. E(X ) � 2.996, V(X ) � 2.996
3-101. (a) 0.0045 (b) 0.3679

(c) 0.1353 (d) 0.2642
3-103. (a) 4.54 � 10�5 (b) 0.6321
3-105. (a) 0.6065 (b) 8.9 � 10�5

(c) 0.00146

Supplemental
3-107. 0.3714
3-109. (a) 0.0117 (b) 1.3333
3-111. (a) 0.1755 (b) 0.0858

(c) 0.2873
3-113. 0.9810
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3-115.
x 2 3 4 5 6
f(x) 0.0025 0.01 0.03 0.065 0.13

x 7 8 9 10
f(x) 0.18 0.2225 0.2 0.16

3-117. 299
3-119. (a) 4.1 � 10�5 (b) 10

(c) 0.9995
3-121. (a) 0.6 (b) 0.8 (c) 0.7

(d) 3.9 (e) 3.09
3-123. (a) 0.2408 (b) 0.4913
3-125. (a) 0.3233 (b) 0.0916
3-127. 0.0738
3-129. (a) 0.3679 (b) 50.51

(c) 0.9234

CHAPTER 4

Section 4-2
4-1. (a) 0.3670 (b) 0.2858 (c) 0

(d) 0.9817 (e) 0.0498
4-3. (a) 0.4375 (b) 0.7969

(c) 0.5625 (d) 0.7031
(e) 0.5

4-5. (a) 0.5 (b) 0.4375 (c) 0.125
(d) 0 (e) 1 (f ) 0.9655

4-7. (a) 0.5 (b) 49.8
4-9. (a) 0.10 (b) 2.5

Section 4-3
4-11. (a) 0.56 (b) 0.7 (c) 0 (d) 0
4-13. 1 � e�x for x � 0
4-15. 1 � e�(x�4) for x � 4
4-17. (a) 1.25x � 93.25 for 

74.6 � x � 75.4 (b) 0.5
4-21. F(x) � 0 for x � 0; 0.25x2 for 

0 � x � 2; 1 for x � 2

Section 4-4
4-23. E(X ) � 2.6667, V(X ) � 0.8889
4-25. E(X ) � 4.083, V(X ) � 0.3291
4-27. (a) E(X ) � 109.39 �m, 

V(X ) � 33.19 �m2

(b) $54.70
4-29. (a) E(X ) � 5.1 mm, V(X ) �

0.01 mm2 (b) 0.3679

Section 4-5
4-31. (a) E(X ) � 3.5, V(X ) � 1.33,

	X � 1.155 (b) 0.25
4-33. (a) E(X ) � 50, V(X ) � 0.0208,

	X � 0.144 (b) F(x) � 2x
�99.5 for 49.75 � x � 50.25
(c) 0.7

4-35. (a) E(X ) � 1.85 min, V(X ) �
0.0408 min2 (b) 0.7143

(c) F(x) � (x � 1.5)�0.7 for
1.5 � x � 2.2

4-37. (b) 0.25 (c) 0.2140
(d) E(X ) � 0.2100 �m, 

V(X ) � 0.00000833 �m2

Section 4-6
4-39. (a) 0.90658 (b) 0.99865

(c) 0.07353 (d) 0.98422
(e) 0.95116

4-41. (a) 1.28 (b) 0 (c) 1.28
(d) �1.28 (e) 1.33

4-43. (a) 0.93319 (b) 0.69146
(c) 0.9545 (d) 0.00135
(e) 0.15866

4-45. (a) 0.93319 (b) 0.89435
(c) 0.38292 (d) 0.80128
(e) 0.54674

4-47. (a) 0.99379 (b) 0.13591
(c) 5835

4-49. (a) 0.0082 (b) 0.72109
(c) 0.564

4-51. (a) 0.00135 (b) 0.15866
(c) 71.6 min

4-53. (a) 0.02275 (b) 0.47725
(c) 0.336

4-55. (a) 0.15866 (b) 90.0
(c) 99.73%

4-57. (a) 0.15245 (b) 125.6
4-59. (a) 0.06681 (b) 0.86638

(c) 0.000214

Section 4-7
4-61. (a) 0.075 (b) 0.85
4-63. (a) 0.129 (b) 0.488
4-65. 0.013
4-67. 0.966
4-71. (b) 330 (c) 0.0089

Section 4-9
4-73. (a) 0.3679 (b) 0.1353

(c) 0.0498 (d) 29.96
4-75. (a) 0.333 min (b) 0.333 min

(c) 0.9986
4-77. (a) 0.1353 (b) 0.4866

(c) 0.2031 (d) 34.54
4-79. (a) 0.0498 (b) 0.8775
4-81. (a) 0.0025 (b) 0.6321
4-83. (a) 0.1353 (b) 0.2707 (c) 5
4-85. (a) 0.2212 (b) 0.2865

(c) 0.2212
4-87. 0.8488

4-93. (a) 5 (b) 0.1353 (c) No
(d) 11.51

Section 4-10
4-97. (a) 0.1755 (b) 0.2643
4-99. (a) 50,000 (b) 0.677
4-101. (a) 500,000 (b) 223607

(c) 0.0803
4-103. (a) 0.1429 (b) 0.1847
4-105. (a) 120 (b) 1.32934

(c) 11.6317

Section 4-11
4-109. (a) 12,000 (b) 3.61 � 1010

4-111. (a) 0.5273 (b) 8862.3
(c) 0.00166

4-113. (a) 0.275 (b) 0.685
4-115. (a) 443.11 (b) 53650.5

(c) 0.2212

Section 4-12
4-117. (a) 0.9332 (b) 20952.2

(c) E(X ) � 13359.7, 
V(X ) � 1.45 � 1012

4-119. (a) 0.983 (b) 0.45
4-121. 
 � 3.45, �2 � 2.25

Supplemental
4-125. 0.25x2 � x � 1 for 2 � x � 4
4-127. (a) 0.3935 (b) 0.3834

(c) 23.03
4-129. (a) 0.423 (b) 50
4-133. (a) 
 � 3.43, �2 � 0.96

(b) 0.946
4-135. (a) 0.6915 (b) 0.683

(c) 1.86
4-137. (a) 0.0062 (b) 0.0124

(c) 5.33
4-139. 0.0008 to 0.0032
4-141. � � 11,398
4-143. (a) 0.5633 (b) 737.5
4-145. (a) 0.984 (b) 0.834

CHAPTER 5

Section 5-1

5-1.
5-3. E(X ) � 1.8125, 

E(Y) � 2.875
5-5. c � 1�36
5-7. E(X ) � 2.167 , V(X ) � 0.639,

E(Y) � 2.167, V(Y) � 0.639

f 1x, y2 
 0, g  f 1x, y2 � 1
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5-9.
5-11. E(X ) � 1�8, E(Y ) � 1�4
5-13. X � 0, Y � 0 and X � Y � 4
5-15. (b) fX(0) � 0.2338, fX(1) �

0.4188, fX(2) � 0.2679, 
fX(3) � 0.0725, fX(4) �
0.0070

(c) E(X ) � 1.2
(d)

(e)

Section 5-2
5-17. (a) 0.5 (b) 0.35 (c) 0.5

(d) 0.8 (e) 1.5
5-19.

5-21. (a) 0 (b) 0.072 (c) 0.736
(d) 1

5-23. (a) x � 0, y � 0, z � 0, 
x � y � z � 4

(b) No
5-25. (a) 0.1758 (b) 0.2198

(c) E(X ) � 1.067, 
V(X ) � 0.6146

5-27. (a) Yes (b) 0.1944
(c) 0.0001

5-29. (a) 0.7347 (b) 0
(c)

(c)
5-31. (a) binomial p � 0.03, n � 3

E(X ) � 0.03, V(X ) � 0.0297
(b) P(X � 0 � Y � 2) � 0.98958,

P(X � 1 � Y � 2) � 0.01042
(c) E(X � Y � 2) � 0.01042, 

V(X � Y � 2) � 0.01031

Section 5-3
5-35. (a) 0.4444 (b) 0.6944

(c) 0.5833 (d) 0.3733 (e) 2
(f) 0

5-37. 1�24
5-39. (a) (2x � 1)�12 for 0 � x � 3

(b) (y � 1)�6 for 1 � y � 3
(c) 2.111
(d) 0.4167
(e) (2 � x)�6 for 0 � x � 2

5-43. 10
5-45. (a) 10(e�2x � e�5x)�3 for 0 � x

(b) 3.157e�3y for 0 � y � 1
(c) 0.089 (d) 2e�2x�4 for 2 � x

E 1X 0 Y � 22 � 1.7142
P 1X � 2 0 Y � 22 � 0.7347
P 1X � 1 0 Y � 22 � 0.2449,
P 1X � 0 0 Y � 22 � 0.0204,

P 1X � 2 0 Y � 1, Z � 22 � 0.6
P 1X � 1 0 Y � 1, Z � 22 � 0.4,

E 1Y 0 X � 32 � 0.143

fY 03112 � 0.143,
fY 0 3102 � 0.857, 

f  1x, y2 � 0, g  f 1x, y2 � 1 5-49. 2�15
5-51. (a) (x � 1)�7.5 for 0 � x � 1,

2�7.5 for 1 � x � 4
(b) 0.5 for 0 � y � 2
(c) 1 (d) 0.25

5-53. (a) 0.0439, 0.0019
(b) 0.065

Section 5-4
5-55. (a) 0.25 (b) 0.0625 (c) 1

(d) 1 (e) 2�3
5-57. (a) 2x for 0 � x � 1

(b) 0.25
5-61. 6
5-63. (a) 3(x � 1)2 for 0 � x � 1

(b) 6(1 � x � y) for 0 � x, 
0 � y and x � y � 1

(c) 1 for x � 0
(d) 4(1 � 2x) for x � 0.5

5-65. (a) 0.032 (b) 0.0267

Section 5-5
5-67. �XY � 0.703, 	XY � 0.885
5-69. c � 1�36, �XY � �1�36, 

	XY � �0.0435
5-71. �XY � �1�3, 	XY � �1�2
5-73. c � 9.5, �XY � 1.852, 

	XY � 0.928
5-75. X and Y are independent and 

�XY � 	XY � 0

Section 5-6
5-81. 0.827

Section 5-7
5-87. (a) 30 (b) 97 (c) 0.5

(d) 0.846
5-89. (a) E(T ) � 4, �T � 0.1414

(b) 0.017
5-91. (a) E(D) � 1�8, �D � 0.140

(b) 0.187 (c) 0.187
5-93. (a) 0.05 (b) 0.023

(c) 12.129
(d) 0.388 (e) 136

5-95. (a) 0.023 (b) 4558

Supplemental
5-97. (a) 3�8 (b) 3�4 (c) 3�4

(d) 3�8
(e) E(X ) � 7�8, V(X ) �

39�64, E(Y ) � 7�8, 
V(Y ) � 39�64

5-99. (a) 0.0631 (b) 0.122
(c) E(X ) � 2, V(X ) � 1.8
(d) fX �19(0) � 0.667, 

fX �19(1) � 0.333
(e) 1�3

5-103. (b) 1�3 (c) No
5-105. (a) 0.0093 (b) 0.5787

(c) 0.75 (d) 0.2199
(e) 2.25 (f) 1.3333

5-107. (a) 1�2 (b) 1�4 (c) 1�
 for 
x2 � y2 � 1

(d) for �1�x�1
5-109. 3�4
5-111. (a) 0.085 (b) Bin(10, 0.3)

(c) 3
5-113. (a) 0.499 (b) 0.5
5-115. (a) 0.057 (b) 0.057
5-119. (a) E(T) � 1.5, V(T) � 0.078

(b) �0
(c) E(P) � 4, V(P) � 0.568

5-121. � � 5, 

CHAPTER 6

Section 6-1
6-1. , s � 0.00473
6-3. , s � 226.5
6-5. , s � 12.294
6-7. � � 5.44
6-11. (a)

(b) s � 0.02066
6-13. (a) , s � 12.16 

(c) , s � 10.74

Section 6-3
6-19.
Variable N Median Q1 Q3
cycles 70 1436.5 1097.8 1735.0
6-21.
Variable N Median Q1 Q3
yield 90 89.250 86.100 93.125
6-25. , s � 13.03, and

6-27. (b) , s � 2.8, and
(c) 22�40

Section 6-5
6-43. (a) (b) s2 � 0.867, 

s � 0.931
6-45. (a) , s2 � 9.55, 

s � 3.09
(b) , largest value can

increase by any amount
x~ � 953

x � 952.44

x � 4.0

x~ � 90
x � 89

x~ � 261.15
x � 260.7

x � 66.86
x � 65.85

x � 7.184

x � 43.975
x � 7068.1
x � 74.0044

� � 13

221 � x2�
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6-47. (a) ,
(b) s2 � 7.246, s � 2.692

Supplemental
6-73. (a)

(b) s2 � 1.86869, s � 1.367
6-75. (a) Sample 1: range � 4;

Sample 2: range � 4
(b) Sample 1: s � 1.604;

Sample 2: s � 1.852
6-79. (b) , s � 4.48586

CHAPTER 7

Section 7-2
7-1. Estimator 1
7-3. Estimator 2
7-5. 2.5
7-7. Estimator 3 is most efficient;

estimator 2 is the best “unbiased”
estimator.

7-11. (a) 75.427 (b) 75.1
(c) �2 � 2.214, � � 1.488
(d) 0.292 (e) 0.0385

7-13. (a) Yes (b)

7-15. (b)

7-17. (b)

(c) (d) 0.10

Section 7-3
7-31. (a) 423.33, 82.4464

Section 7-5
7-33. 0.8385
7-35. 0.43055
7-37. 0.3472
7-39. 12
7-41. 0.2313
7-43. (a) 0.5885

(b) 0.1759
7-45. 0.983

Supplemental
7-49.
7-51. 0.8664
7-53. 1 (approximately)
7-55. 0 (approximately)

X1 � X2  
�  N 1�5, 0.22332

� �
an1

n2 � an1

� �1 B�2n2 � 11 � �22an1

n1n2
se 1�̂2

se � B�2
1

n1
�

�2
2

n2

112
 �

x � 9.325

x � 65.083

x~ � 49x � 48.125 CHAPTER 8

Section 8-2
8-1. 97.93%, 99.36%, and 96.78%
8-3. (a) 1.29 (b) 1.65 (c) 2.33
8-5. 3
8-7. (a) Longer (b) No

(c) Yes
8-9. (89.471, 91.489)
8-11. (a) (74.0353, 74.0367)

(b) (74.0355, �)
8-13. (a) (3232.11, 3267.89)

(b) (3226.5, 3273.5)
8-15. 267
8-17. 4

Section 8-3
8-19. t0.025,15 � 2.131, t0.05,10 � 1.812,

t0.10,20 � 1.325, t0.005,25 � 2.787,
t0.001,30 � 3.385

8-21. (a) t0.05,14 � 1.761
(b) t0.01,19 � 2.359
(c) t0.001,24 � 3.467

8-23. (1.108, �)
8-25. (a) Yes (b) (16.455, 17.505)
8-27. (a) Yes (b) (8.216, 8.244)
8-29. (4.023, �)
8-31. (1.093, 1.106)

Section 8-4
8-33. 	2

0.05,10 � 18.31, 
	2

0.025,15 � 27.49, 
	2

0.01,12 � 26.22, 
	2

0.005,25 � 46.93, 
	2

0.95,20 � 10.85, 
	2

0.99,18 � 7.01, 
	2

0.995,16 � 5.14
8-35. 0.00003075 
 �2

8-37. 7,975,727.09 
 �2

8-39. 0.31 
 � 
 0.46
8-41. 3.8 � �

Section 8-5
8-43. 622
8-45. 666
8-47. 5759

Section 8-6
8-49. 52131.1 � Xn�1 � 68148.3
8-51. 263.5 � Xn�1 � 370.9
8-53. 2193.5 � Xn�1 � 2326.5
8-55. 3.19 � Xn�1 � 4.19
8-57. 2.56 � Xn�1 � 3.22
8-59. 228.1 � Xn�1 � 235.2

Section 8-7
8-61. (0.408, 2.092)
8-63. (15.14, 18.82)
8-65. (8.16, 8.30)
8-67.
8-69. (1.06, 1.14)

Supplemental
8-71. (a) 0.1 � P-value � 0.25

(b) 0.05 � P-value � 0.1
(c) P-value � 0.00539

8-75. (a) 40 (b) 23
8-77. 2178.51 � Xn�1 � 2341.49
8-79. (a) Yes

(b) 0.618 � � � 0.630
(c) 0.588 � Xn�1 � 0.660
(d) (0.583, 0.665)

8-81. (a) Yes
(b) 2.270 � � � 4.260
(c) �1.297 � Xn�1 � 7.827
(d) (�3.113, 10.363)

8-83. (a) 0.0021 � p � 0.0088
(b) Yes

8-85. (a) 0.210 � p � 0.274
(b) 0.204 � p � 0.280

CHAPTER 9

Section 9-1

9-1. (a) Yes (b) No (c) No
(d) No (e) No

9-3. (a) 0 (b) 0.02275
9-5. 11.5875
9-7. (a) 0.09296 (b) 0.04648

(c) 0.00005
9-9. (a) Reject H0 (b) 0.00889
9-11. (a) 182.9 (b) 0.00776
9-13. (a) 0.0164 (b) 0.21186
9-17. (a) 0.08535 (b) 0
9-19. (a) 0.29372 (b) 0.25721

Section 9-2
9-21. (a) z0 � 0.36, do not reject H0

(b) P-value � 0.71884 (c) 5
(d) 0.68054 (e) (87.85, 93.11)

9-23. (a) z0 � �1.69, do not reject H0

(b) 0.091028 (c) 0 (d) 1
9-25. (a) z0 � �14.43, reject H0

(b) 0 (c) (3232.11, 3267.89)
9-27. (a) z0 � 1.55, do not reject H0

(b) 0.02938 (c) 1
(d) (99.888, �)

9-29. (a) z0 � 1.77, reject H0 (b) 1
(c) 35 (d) (4.003, �)

13.91, �2
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Section 9-3
9-31. (a) t0 � �3.48, reject H0, 

P-value � 0.002
(b) 1 (c) 35
(d) (98.065, 98.463)
(e) Yes

9-33. (a) t0 � �1.46, do not reject
H0, P-value � 0.156

(b) Yes (c) 0.85 (d) 51
(e) (129.406, 130.100)

9-35. t0 � 4.47, reject H0, 
P-value � 0.0005

9-37. (a) t0 � �5.35, do not reject H0

(b) P-value � 0.4
(c) 0.75 (d) 38

9-39. (a) t0 � 2.806, reject H0

(b) P-value � 0.004 (c) 1
(d) 3

9-41. (a) t0 � 3.018, reject H0

(b) P-value � 0.0038 (c) 0.8
(d) 38

Section 9-4
9-43. (a) �0

2 � 8.96, do not reject H0

(b) 0.5 � P-value � 0.9
(c) 50

9-45. (a) �0
2 � 4984.83, reject H0

(b) P-value � 0.005
9-47. (a) �0

2 � 109.52, reject H0

(b) 0.31 � � � 0.46
9-49. 30

Section 9-5
9-51. 0.639, 118
9-53. (a) z0 � �0.53, do not reject H0

(b) P-value � 0.29806
9-55. (a) z0 � 0.452, do not reject H0

(b) P-value � 0.67364
9-57. (a) � � 0.0853 (b)

Section 9-7
9-59. (a) �0

2 � 7.2, do not reject H0

(b) 0.05 � P-value � 0.10
9-61. (a) �0

2 � 1.72, do not reject H0

(b) 0.5 � P-value � 0.9
9-63. (a) �0

2 � 1.053, do not reject H0

(b) 0.1 � P-value � 0.5

Section 9-8
9-65. (a) �0

2 � 11.65, do not reject H0

(b) 0.05 � P-value � 0.10
9-67. (a) �0

2 � 25.55, reject H0

(b) P-value � 0.005
9-69. (a) �0

2 � 10.71, do not reject H0

(b) 0.05 � P-value � 0.10

� � 0

Supplemental
9-71. (a) p(1 � p)�50

(b) p(1 � p)�80
(c) p(1 � p)�100

9-73. (a) � � 0.564
(b) � � 0.161
(c) � � 0.116

9-75. (a) 0.61026 (b) 0.995
(c) 0.9988

9-79. (a) �0
2 � 5.546, reject H0

(b) 0.01 � P-value � 0.025
9-81. (a) �0

2 � 1.75, do not reject H0

9-83. (a) �0
2 � 17.929, reject H0

(b) P-value � 0.0123
9-85. (a) �0

2 � 63.36, reject H0

9-87. (a) z0 � �7.32, reject H0

(b) P-value � 0
(c) �0

2 � 12.0, reject H0

9-89. (b) t0 � 1.608, do not reject H0

(c) 0.1 � P-value � 0.2

CHAPTER 10

Section 10-2
10-1. (a) Yes, cannot reject H0

(b) P-value � 0.3222
(c) 0.9967
(d) (�0.0098, 0.00298)
(e) 9

10-3. 1, Yes
10-5. (a) (0.0987, 0.2813)

(b) (0.0812, 0.299)
(c) (��, 0.2813)

10-7. (a) (�3.684, �2.116)
(b) z0 � �7.254 reject H0

(c) P-value � 0
10-9. 11
10-11. (a) (�5.83, �0.57) (b) Yes
10-13. z0 � �2.385, reject H0

10-15. Yes

Section 10-3
10-17. (a) t0 � 0.230, do not reject H0

(b) P-value � 0.80
(c) (�0.394, 0.494)

10-19. (a) t0 � �3.11, reject H0

(b) (�5.688, �0.3122)
10-21. (a) t0 � �2.83, reject H0

(b) 0.010 � P-value � 0.020
(c) (0.111, 0.749)

10-23. (17.235, 44.765)
10-25. t0 � �5.499, P-value � 0.0010
10-27. (a) t0 � 3.03, reject H0

(b) 0.005 � P-value � 0.010
(c) t0 � 3.03, reject H0

10-29. (�14.34, 21.94)
10-31. (b) t0 � 2.558, reject H0

(c) P-value � 0.020
(d) 0.05 (e) n � 51
(f ) (1.86, 18.94)

Section 10-4
10-33. (0.1694, 0.3778)
10-35. t0 � 0.357, cannot reject H0

10-37. (�727.46, 2464.21)
10-39. t0 � 5.465, reject H0

10-41. t0 � 8.387, reject H0

10-43. t0 � 3.45, reject H0

Section 10-5
10-45. (a) 1.59 (b) 2.28 (c) 2.64

(d) 0.529 (e) 0.524
(f) 0.311

10-47. f0 � 0.657, cannot reject H0

10-49. No
10-51. (a) (0.08775, 3.594)

(b) (0.0585, 5.3)
(c) (0.137, �)

10-53. f0 � 0.297, cannot reject H0

10-55. f0 � 0.2575, cannot reject H0

10-57. (0.3369, 2.640)
10-59. f0 � 0.640, cannot reject H0

Section 10-6
10-61. z0 � 1.49, cannot reject H0

10-63. (a) 0.81859 (b) 383
10-65. (a) z0 � 3.42, reject H0, 

P-value � 0.00062
10-67. (0.0434, 0.1616)

Supplemental
10-69. (1.40, 8.36)
10-71. (a) t0 � 2.554, reject H0

(b) t0 � 2.554, cannot reject H0

(c) t0 � �1.986, cannot reject H0

(d) t0 � �1.986, cannot 
reject H0

10-73. (a) z0 � 6.55, reject H0

(b) z0 � 6.55, reject H0

10-75. (a) (�0.0335, 0.0329)
(b) (�0.0282, 0.0276) 
(c) (�0.0238, 0.0232),

(�0.0203, 0.0200)
10-79. 60
10-81. 26
10-83. (a) No (b) Yes

(d) (18.124, 294.35)
10-85. (b) t0 � �6.06, reject H0

10-87. (b) t0 � �0.512, cannot 
reject H0 (c) 16
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10-89. (b) t0 � �2.74, reject H0

(c) 0.8 (d) 26

CHAPTER 11

Section 11-2
11-1. (a) , 

(b) 37.99 (c) 39.39 (d) 6.71
11-3. (a) ,

(b)
11-5. (a) ,

,

(b) 38.253 (c) �2.0273
11-7. (a) ,

,

(b) 28.226 (c) 1.50048
11-9. (b) ,

,

(c) 4.76301
11-11. (b) ,

,

(c) 21.038 (d) 1.6629
11-17. , 

Section 11-5
11-19. (a) f0 � 73.95, P-value �

0.000001, reject H0

(b)

11-21. (a) t0 � 8.518, reject H0

(b) f0 � 72.5563, reject H0

(c)

(d) t0 � 5.2774, reject H0

11-23. (a) f0 � 4.53158, do not reject
H0, P-value � 0.04734

(b)

(c) t0 � 0.87803, P-value �
0.804251, do not reject H0

(d) t0 � 12.8291, P-value � 0,
reject H0

11-25. (a) f0 � 44.6567, reject H0

P-value � 0.000003
(b)

(c) t0 � �4.59573, reject H0, 
P-value � 0.00022

11-27. (a) f0 � 155, reject H0

P-value � 0.00001

se1�̂02 � 2.13526
se1�̂12 � 0.0256613,

se1�̂02 � 2.61396
se1�̂12 � 0.0166281,

se1�̂02 � 2.5717
se1�̂12 � 0.3902,

se1�̂02 � 0.04091
se1�̂12 � 0.0004839,

�̂1 � 21.031461�̂0 � 0

�̂2 � 13.81
�̂1 � 20.5673
�̂0 � 0.470467

�̂2 � 1.9818
�̂1 � 0.171484
�̂0 � �9.8131

�̂2 � 13.392
�̂1 � �0.0353971
�̂0 � 33.5348

�̂2 � 8.76775
�̂1 � 3.32437
�̂0 � 13.3202
�̂1 � 0.00749
�̂1 � 0.0074902
�̂0 � 0.4631476

�̂1 � �2.330�̂0 � 48.013

(b)

(c) t0 � �4.59573, reject H0

P-value � 0.00022
(d) t0 � 57.8957, reject H0

P-value � 0.00001
(e) t0 � 2.7651, reject H0

P-value � 0.0064

Section 11-6 and Section 11-7
11-31. (a) (�2.9175, �1.7421)

(b) (46.7145, 49.3114)
(c) (41.3293, 43.0477) 
(d) (38.4289, 46.1281)

11-33. (a) (�0.00961, �0.00444)
(b) (16.2448, 27.3318)
(c) (7.91433, 10.37167)
(d) (4.07214, 14.21386)

11-35. (a) (9.10130, 9.31543)
(b) (�11.6219, �1.04911)
(c) (498.72024, 501.52776)
(d) (495.57344, 504.67456)

11-37. (a) (0.03689, 0.010183)
(b) (�47.0877, 14.0691)
(c) (44.0897, 49,1185)
(d) (37.8298, 55.3784)

11-39. (a) (201.552, 226.590)
(b) (�4.67015, �2.346960)
(c) (111.8339, 145.7941)

11-41. (a) (�43.1964, �30.7272)
(b) (2530.09, 2720.68)
(c) (1823.7833, 1948.5247)
(d) (1668.9013, 2103.4067)

Section 11-8
11-43. (d) %
11-45. (a) R2 � 20.1121%

(c) Yes
11-47. (a) R2 � 71.27%
11-49. (a) R2 � 85.22%

Section 11-10
11-55. (a)

(b) f0 � 79.838, reject H0

(c) 0.903 (d) t0 � 8.9345, 
reject H0

(e) z0 � 3.879, reject H0

(f ) (0.7677, 0.9615)
11-57. (a) r � �0.738027

(b) t0 � �5.577, reject H0, 
P-value � 0.00000738 

(c) (�0.871, �0.504)
(d) z0 � �0.394, do not reject

H0, P-value � 0.6936

�̂1 � 0.990987
�̂0 � �0.0280411,

R2 � 76.73

se1�̂02 � 2.13526
se1�̂12 � 0.0256613, 11-59. (a) t0 � 5.47, reject H0, 

P-value � 0
(b) (0.3358, 0.8007) (c) Yes

11-61. (a) r � 0.933203
(b) t0 � 10.06, reject H0

(c)
, 

f0 � 101.16, reject H0

(d) t0 � 0.468345, do not 
reject H0

Supplemental
11-65. (a)

(b) f0 � 12.872, reject H0

(c) (7.961, 23.322)
(d) (74.758, 111.923)
(e) (126.18, 138.70)

11-67. (b)

(c) f0 � 122.03, reject H0

(d) No. (e)

11-69.
11-71. (b)

(c) (�4.912, 35.504)
11-75. (b)

(c) f0 � 19.79, reject H0

R2 � 71.2%
(d) t0 � �0.1953, cannot 

reject H0

CHAPTER 12

Section 12-1

12-1. (b)

(c) 189.481
12-3. (b) 2
12-5. (a)

(b) 8.03 (c) 19.30
12-7. (a)

(b)

(c) 180.95
(d)

(e)

(f) �31.3
se1�̂122 � 0.0039
se1�̂22 � 0.113,
se1�̂12 � 3.846,

se1�̂02 � 101.3,�̂2 � 147.0,
x2 � 0.0041 x12

x1 � 0.222
ŷ � 484.0 � 7.656

se1�̂22 � 0.04338
se1�̂12 � 0.5665,
�̂2 � 153.0, se1�̂02� 36.22,

0.1119x2

ŷ � 383.80 � 3.6381x1 �

1.07822x2

ŷ � 33.4491 � 0.05435x1 �

�̂ � £
171.054

3.713

�1.126

§

�̂1 � 0.930�̂0 � 66,

�̂1 � 15.296�̂0 � �193,
ŷ � 0.7916x

 �̂*
1 � 0.00097

�̂*
0 � 0.5967,

�̂1 � 0.00385
�̂0 � �0.8819,

 �̂1 � 15.64�̂0 � 93.34,

�̂1 � 0.498081
�̂0 � 0.72538,
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(b) (272.44, 308.44)
(c) (257.25, 323.64)

12-31. (a) �0.595 � �2 � 0.535,
0.229 � �3 � 0.812, 
�0.216 � �4 � 0.013, 
�7.298 � �5 � 2.977

(b) (7.982, 10.009) 
(c) (6.8481, 11.143)

12-33. (a) �0.00003 � �Temp �
0.00012, 0.00203 � �soaktime

� 0.00288, �0.02306 
� �soakpct � 0.05976,
0.00501 � �DFtime �
0.01056, �0.01969 �
�Diffpct � 0.01342

(b) (0.0206, 0.0234)
12-35. (a) (0.3882, 0.5998)

(b) y � �5.767703 �
0.496501xPts

(c) (0.4648, 0.5282)

Section 12-5
12-37. (a) 0.82897 (d) No
12-39. (a) 0.985 (b) 0.99
12-41. (b) 0.9937
12-43. (a) 0.9582 (c) 32
12-45. (a) 0.12

(b) 17 and 18

Section 12-6
12-47. (a)

(b) f0 � 1858613, reject H0

(c) t0 � �601.64, reject H0

12-49. (a) 802.943
(b)

12-51. (a)
0.222x2 � 0.128x3 �
0.02x1x2 � 0.009x1x3 �
0.003x2x3 � 0.019x1

2 �
0.007x2

2 � 0.001x3
2

(b) f0 � 19.628, reject H0

(d) f0 � 1.612, do not reject H0

12-55. (a) Min. MSE: x1, x3, x4, x5, x7,
x8, x10, MSE � 6.58, 
Cp � 5.8, Min. Cp: x5, x8, x10,
Cp � 5.02, MSE � 7.97

(b)

(c) Same as part (b)
(d)

0.246x8 � 0.010x10, 
MSE � 7.97, Cp � 5.02

ŷ � 0.341 � 2.862x5 �

MSE � 8.81, Cp � 5.55
ŷ � 34.434 � 0.048x1,

ŷ � �1.769 � 0.421x1 �
� 0.331x2
ŷ � �26204.14 � 189.09x

1.495x2
ŷ � �1.633 � 1.232x �

12-57. (a) y � 4.656 � 0.511x3 �
0.124x4

(b) Same as part (a)
(c) Same as part (a)
(d) All models are the same

12-59. (a)

(b)

,

12-61. (a) Min. Cp: x1, x9, Cp � �1.67
(b) Min. MSE: x1, x7, x9, 

MSE � 1.67, Cp � �0.77
(c) Max. adjusted R2 : x1, x7, x9,

Adj. R2 � 0.98448

Supplemental
12-65. (a) f0 � 1323.62, reject H0

P-value � 0.00001 
(b) Only regressor x4 is 

significant H0

12-67. (a) � �0.908 � 5.482x1
* �

1.126x2
* � 3.920x3

* � 1.143x4
*

(b) f0 � 109.02, reject H0, all
regressors are significant

12-69. (a) � 1.0964x1 �
0.1843x3 � 3.7456x4 �
0.8343x5 � 16.2781x6,
MSE( p) � 694.93, Cp � 5.62

(b) � 1.442x1 �
0.209x3 � 0.6467x5 �
17.5103x6, MSE( p) �
714.20, Cp � 5.57

(c) Same as model b
12-71.

12-73. (a) f0 � 18.28, reject H0

(b) f0 � 2, do not reject H0

CHAPTER 13

Section 13-2
13-1. (a) Reject H0

(b) Model is satisfactory
13-3. (a) Reject H0 (b) P-value � 0
13-5. (a) Reject H0 (c) (140.71,

149.29), (7.36, 24.14)
13-7. (a) Do not reject H0

(b) P-value � 0.214
13-9. (a) Reject H0

(b) P-value � 0.002

VIF1�̂52 � 28.99
VIF1�̂42 � 9.11
VIF1�̂3

*2 � 51.86,

ŷ � �4280.2

ŷ � �3982.1

ŷ

Cp � 4.66, MSE � 0.004
0.0008x3

2
0.022x2 � 0.042x3 �
ŷ � �0.256 � 0.078x1 �
Cp � 4.04, MSE � 0.004
0.031x3 � 0.004x2

2,
ŷ � �0.304 � 0.083x1 �

12-9. (a)

(b) 12 (c)

(d) 91.43
12-11.

Section 12-2
12-13. (a) 260.09, reject H0

(b) reject H0 both significant
12-15. (a) f0 � 25.7465, reject H0

P-value � 0.000001
(b) Reject H0, all coefficients

are significant
12-17. (a) f0 � 53.3162, reject H0

(b) Only �1 is significant
12-19. (a) f0 � 10.08, P-value � 0.005

(b) Only �1 is significant
12-21. (a) f0 � 67.92, reject H0

(b) f0 � 1.07, do not reject H0

(c) 147.0
12-23. (a) f0 � 850.55, reject H0

(b) Regression coefficients for
x1 and x3 are significant

12-25. (a) f0 � 101.79, reject H0

(b) Only regression coefficient
for “PTS” is significant

(c)

reject H0 only regressor 
“PTS” is significant

Section 12-3 and Section 12-4
12-27. (a) (�0.00657, �0.00122)

(b) 0.497648 (c) (7.16, 9.22)
12-29. (a) 0.0972 � �1 � 1.4174, 

�1.9646 � �2 � 17.0026, 
�1.7953 � �3 � 6.7613, 
�1.7941 � �4 � 0.8319

0.004xPPG, f0 � 510.12
ŷ � �5.531 � 0.497xPTS �

se1�̂92 � 0.1110
se1�̂82 � 0.1483,
se1�̂72 � 0.038,
se1�̂62 � 0.0266,
se1�̂52 � 0.2611,
se1�̂42 � 0.0515,
se1�̂32 � 0.0209,
se1�̂22 � 0.0064,
se1�̂12 � 0.0481,

se1�̂02 � 16.18,�̂2 � 2.32,
� 0.0407x8 � 0.2083x9

� 0.0128x6 � 0.030x7

� 0.0383x4 � 0.2068x5

� 0.0018x2 � 0.0023x3

ŷ � �8.0119 � 0.494x1

se1�̂32 � 1.312
se1�̂22 � 0.2239,
se1�̂12 � 3.6916,

se1�̂02 � 49.5815,
� 0.4283x2 � 18.2375x3

ŷ � 47.174 � 9.7352x1
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(d) (69.17, 81.81)
(e) (8.42, 26.33)

13-19. 5

Section 13-3
13-21. (a) Reject H0 (b) 0.01412

(c) 0.0148
13-23. (a) Do not reject H0 (b) 0

(c) 24

Section 13-4
13-25. (a) Reject H0

13-27. (a) Do not reject H0

13-29. (a) Do not reject H0

Supplemental
13-31. (a) Reject H0

(c) (132.97, 147.83)
13-35. (a) Reject H0

(b) P-value � 0.007
13-37. (a) Reject H0

13-39. (a) 0.85 (b) 5

CHAPTER 14

Section 14-4
14-1. (a) Reject H0 for both main

effects and the interaction
14-3. (a) Reject H0 for main effects
14-7. (�3.40, 7.64)
14-9. (a) Reject H0 for both main

effects and the interaction

Section 14-5
14-11. (a) All these main effects are

significant and the hardwood
concentration-freeness inter-
action is significant at
� � 0.05. The P-value for 
the hardwood-cooking time
interaction is 0.075, it is
possibly an important effect
as well.

Section 14-7
14-13. (a) Reject H0 for factors B, C,

and AC
(b)

14-15.

14-17. (b) Reject H0 for factor B
14-19. (a) Factors A, B, C, and AB

5.19x2 � 0.19x4 � 4.62x1x4

ŷ � 175.25 � 4.12x1 �
59.62x1x3

45.12x2 � 35.87x3 �
ŷ � 413.125 � 9.125x1 �

14-21. (b) Factors A, B, and AB
(c)

Section 14-8
14-23. Block 1: (1) ab ac bc

Block 2: a b c abc
There are no significant factors

14-25. Block 1: (1) ac bd abcd
Block 2: a c abd bcd
Block 3: b abc d acd
Block 4: ab bc ad cd
Factor A is significant

14-27. Block 1: (1) ab de acd bcd ace
bce abde

Block 2: a b cd ce ade bde abce
abcd

Block 3: d e bc bd abd abe acde
bcde

Block 4: c ad ae bd be abc cde
abcde

14-29. (a) Factors A, C, AB, and AC are
significant

Section 14-9
14-31. (a) Factors A, B, and D are

significant 
(c) Factors A, B, D, AB, and 

AD are significant
14-33. (b) Design Generators: D � AB,

E � AC; Defining Relation: I �
ABD � ACE � BCDE; Aliases:
A � BD � CD � ABCDE, B �
AD � CDE � ABCE; C �
AE � BDE � ABCD, D �
AB � BCE � ACDE, E �
AC � BCD � ABDE (c) A �
�1.525, B � �5.175, C �
2.275, D � �0.675, E � 2.275

14-35. 24�1 replicated twice
14-37. Factors A, B, and D are significant
14-39. Design Generators: D � AB, 

E � AC, F � BC; Defining
Relations: I � ABD � ACE �
BCF � BCDE � ACDF �
ABEF � DEF; Aliases: A �
BD � CE, B � AD � CF, C �
AE � BF, D � AB � EF, E �
AC � DF, F � BC � DE, 
AB � EF, AF � BE � CD

Supplemental
14-41. The main effect of pH and

the interaction of pH and

32.75x2 � 26.625x1x2

ŷ � 400 � 40.124x1 �
Catalyst Concentration are sig-
nificant

14-43. The salts, application levels, and
the interaction between salts and
application levels are significant

14-45. There are no significant factors
14-47. (a) The factors V, P, G, and PG

are significant. Effects 
P � �10.75, V � 15.75, 
G � �25.00, PG � 19.25

(b)

14-49. The factors V and G are signifi-
cant at � � 0.10. 

14-51. Design Generators: D � �AB,
E � �AC; Defining Relations: I
� A B D � AC E � B C D E ;
Aliases: A � BD � CE, B �
AD � CDE, C � AE � BDE,
D � AB � BCE, E � AC �
BCD, BC � DE, BE � CD

14-53. (a) E � ABCD (b) Factors A,
B, C, E, and interaction BE are
significant (c) Factor A is sig-
nificant in affecting variability

CHAPTER 15

Section 15-2
15-1. Do not reject H0, P-value �

0.109
15-3. Reject H0, P-value � 0.0002
15-5. (a) Do not reject H0

(b) z0 � 0.577, P-value � 0.281
15-7. z0 � �1.34, do not reject H0, 

P-value � 0.1802
15-9. Do not reject H0

15-11. z0 � 2.24, reject H0

15-13. Reject H0

15-15. z0 � 2.84, reject H0

15-17. (a) 0.025 (b) 0.115
(c) 0.011 (d) 0.1587

15-19. P-value � 0.04

Section 15-3
15-21. w � 71 � 52, do not reject H0

15-23. w � 8 � 65, reject H0

15-25. w � 25 � 52, reject H0

15-27. w � 1 � 25, reject H0

Section 15-4
15-29. w � 38 � 23, do not reject H0

14.12x1 � 13.13x4

ŷ � 100.63 �

9.62x2x4

5.37x2 � 12.50x4 �
ŷ � 102.75 � 7.88x1 �
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15-31. z0 � �2.78, do not reject H0, 
P-value � 0.9973

15-33. w � 55 � 78, reject H0

15-35. z0 � �3.77, reject H0, 
P-value � 0.0001

Section 15-5
15-37. Reject H0

15-39. Do not reject H0

15-41. P-value � 0.018

Supplemental
15-43. Do not reject H0, P-value �1
15-45. Do not reject H0

15-47. Do not reject H0

15-49. Reject H0

15-51. Reject H0

15-53. Reject H0

15-55. Reject H0, P-value � 0
15-57. Reject H0, P-value � 0.009

CHAPTER 16

Section 16-5
16-1. (a) chart: UCL � 37.5789, 

CL � 34.32, LCL � 31.0611
R chart: UCL � 11.9461, 
CL � 5.65, LCL � 0

(b) 1 point outside limits on 
chart. Revised limits: 

chart: UCL � 37.4038, CL �
34.0947, LCL � 30.7857, 
R chart: UCL � 12.1297, 
CL � 5.7368, LCL � 0

16-3. (a) chart: UCL � 17.40, 
CL � 15.09, LCL � 12.79
R chart: UCL � 5.792, 
CL � 2.25, LCL � 0

(b) chart: UCL � 17.96, 
CL � 15.78, LCL � 16.62
R chart: UCL � 5.453, 
CL � 2.118, LCL � 0

(c) chart: UCL � 17.42, 
CL � 15.09, LCL � 12.77
s chart: UCL � 3.051, 
CL � 1.1188, LCL � 0 
revised limits: chart: 
UCL � 17.95, CL � 15.78,
LCL � 13.62, s chart: 
UCL � 2.848, CL � 1.109,
LCL � 0

x

x

x

x

x
x

x

16-5. (a) chart: UCL � 242.78, 
CL � 223, LCL � 203.22
R chart: UCL � 72.51, 
CL � 34.286, LCL � 0

(b) , 
16-7. (a) chart: UCL � 0.06347,

CL � 0.06294, 
LCL � 0.0624 R chart:
UCL � 0.001954, 
CL � 0.000924, LCL � 0

(b) chart: UCL � 0.06346,
CL � 0.06295, 
LCL � 0.06241 s chart: 
UCL � 0.000766, 
CL � 0.000367, LCL � 0

(c) The points are 1, 5, 14, 17,
20, 21, and 22; or outside
the control limits of the 
R chart: 6 and 15

Section 16-6
16-9. (a) I chart: UCL � 60.8887, 

CL � 53.05, LCL � 45.2113
MR chart: UCL � 9.63382,
CL � 2.94737, LCL � 0

(b) , 
16-11. (a) I chart: UCL � 10.5358, 

CL � 10.0272, 
LCL � 9.51856 MR chart:
UCL � 0.625123, 
CL � 0.19125, LCL � 0

(b) , 

Section 16-7
16-13. (a) PCR � PCRk � 1.5

(b) 0
16-15. (a) 0.00075 (b) PCR � 1.13,

PCRk � 1.104
16-17. (a) PCR � PCRk � 1.18

(b) 0.00046
16-19. (a) 0.0009 (b) PCR � 1.13,

PCRk � 1.06
16-21. PCR � 0.50, PCRk � 0.357
16-23. PCR � 0.49, PCRk � 0.474

Section 16-8
16-25. (a) U chart: UCL � 3.811, 

CL � 1.942, LCL � 0.0722
(b) Revised limits: U chart:

UCL � 3.463, 
CL � 1.709, LCL � 0

�̂ � 0.1696�̂ � 10.027

�̂ � 2.613�̂ � 53.05

x

x
�̂ � 14.74�̂ � 223

x 16-27. (c) chart: UCL � 19.06, 
CL � 9.708, LCL � 0.3609

Section 16-9
16-29. (a) 0.2177 (b) 4.6
16-31. (a) 0.1020 (b) 9.8
16-33. (a) 0.0548 (b) 18.25
16-35. (a) 0.1515 (b) 6.6
16-37. (a) 0.16603 (b) 6.02

Section 16-10
16-39. (a)
16-41. (a) ARL � 38.0

(b) ARL � 10.4

Supplemental
16-43. (a) chart: UCL � 64.0181,

CL � 64.0, LCL � 63.982
R chart: UCL � 0.0453972,
CL � 0.01764, LCL � 0

(b) , 
(c) PCR � 0.641,
(d) PCRk � 0.641
(e) ,
(f) 0.1705, ARL � 5.87

16-45. (a) p chart: UCL � 0.20387,
CL � 0.11, LCL � 0.01613

(b) p chart: UCL � 0.1717, 
CL � 0.106, 
LCL � 0.04092

16-47. (a) c chart: UCL � 7.51442,
CL � 2.64, LCL � 0

(b) c chart: UCL � 6.50924,
CL � 2.1304, LCL � 0

16-49. (b) 6.30 (c) 2
16-51. (a) chart: UCL � 140.168,

CL � 139.49, 
LCL � 138.812 R chart:
UCL � 2.48437, 
CL � 1.175, LCL � 0

(b) Revised control limits: 
chart: UCL � 140.518, 
CL � 139.808, 
LCL � 139.098 R chart:
UCL � 2.6023, 
CL � 1.231, LCL � 0

(c) PCR � 1.26, PCRk � 1.14
(d) �2 � 0.091
(e) 0.1877, ARL � 5.33

16-53. (a) 0.96995 (b) 1
16-57. 0.000135

x

x

�2 � 0.025

�̂ � 0.0104�̂ � 64

x

�̂ � 0.1695
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Acceptance region. In hypothesis testing, a region in
the sample space of the test statistic such that if the
test statistic falls within it, the null hypothesis is
accepted (better terminology is that the null hypothe-
sis cannot be rejected, since rejection is always a
strong conclusion and acceptance is generally a weak
conclusion).

Addition rule. A formula used to determine the proba-
bility of the union of two (or more) events from the
probabilities of the events and their intersection(s).

Additivity property of �2. If two independent random
variables X1 and X2 are distributed as chi-square with v1

and v2 degrees of freedom respectively, Y � X1 � X2 is
a chi-square random variable with u � v1 � v2 degrees
of freedom. This generalizes to any number of inde-
pendent chi-square random variables.

Adjusted R2. A variation of the R2 statistic that com-
pensates for the number of parameters in a regression
model. Essentially, the adjustment is a penalty for in-
creasing the number of parameters in the model.

Alias. In a fractional factorial experiment when certain
factor effects cannot be estimated uniquely, they are said
to be aliased.

All possible (subsets) regressions. A method of vari-
able selection in regression that examines all possible
subsets of the candidate regressor variables. Efficient
computer algorithms have been developed for imple-
menting all possible regressions.

Alternative hypothesis. In statistical hypothesis test-
ing, this is a hypothesis other than the one that is being
tested. The alternative hypothesis contains feasible con-
ditions, whereas the null hypothesis specifies conditions
that are under test.

Analysis of variance. A method of decomposing the
total variability in a set of observations, as measured by

the sum of the squares of these observations from their
average, into component sums of squares that are asso-
ciated with specific defined sources of variation.

Analytic study. A study in which a sample from a
population is used to make inference to a future popu-
lation. Stability needs to be assumed. See enumerative
study.

Arithmetic mean. The arithmetic mean of a set of
numbers x1, x2, p , xn is their sum divided by the num-
ber of observations, or . The arithmetic
mean is usually denoted by , and is often called the
average.

Assignable cause. The portion of the variability in a
set of observations that can be traced to specific causes,
such as operators, materials, or equipment. Also called a
special cause.

Attribute. A qualitative characteristic of an item or
unit, usually arising in quality control. For example,
classifying production units as defective or nondefec-
tive results in attributes data.

Attribute control chart. Any control chart for a dis-
crete random variable. See variables control charts.

Average. See Arithmetic Mean.

Average run length, or ARL. The average number 
of samples taken in a process monitoring or inspec-
tion scheme until the scheme signals that the process
is operating at a level different from the level in which
it began.

Axioms of probability. A set of rules that probabilities
defined on a sample space must follow. See probability.

Backward elimination. A method of variable selec-
tion in regression that begins with all of the candidate
regressor variables in the model and eliminates the
insignificant regressors one at a time until only signifi-
cant regressors remain.

x
11�n2 g n

i�1xi
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690 GLOSSARY

Bayes’ theorem. An equation for a conditional proba-
bility such as in terms of the reverse conditional
probability .

Bernoulli trials. Sequences of independent trials with
only two outcomes, generally called “success” and “fail-
ure,” in which the probability of success remains constant.

Bias. An effect that systematically distorts a statistical
result or estimate, preventing it from representing the
true quantity of interest.

Biased estimator. See Unbiased estimator.

Bimodal distribution. A distribution with two modes.

Binomial random variable. A discrete random vari-
able that equals the number of successes in a fixed
number of Bernoulli trials.

Bivariate normal distribution. The joint distribution
of two normal random variables.

Block. In experimental design, a group of experimental
units or material that is relatively homogeneous. The
purpose of dividing experimental units into blocks is to
produce an experimental design wherein variability
within blocks is smaller than variability between 
blocks. This allows the factors of interest to be com-
pared in a environment that has less variability than in
an unblocked experiment.

Box plot (or box and whisker plot). A graphical dis-
play of data in which the box contains the middle 50%
of the data (the interquartile range) with the median
dividing it, and the whiskers extend to the smallest and
largest values (or some defined lower and upper limits).

C chart. An attribute control chart that plots the total
number of defects per unit in a subgroup. Similar to a
defects-per-unit or U chart.

Categorical data. Data consisting of counts or obser-
vations that can be classified into categories. The
categories may be descriptive.

Causal variable. When y � f(x) and y is considered to
be caused by x, x is sometimes called a causal variable.

Cause-and-effect diagram. A chart used to organize
the various potential causes of a problem. Also called a
fishbone diagram.

Center line. A horizontal line on a control chart at the
value that estimates the mean of the statistic plotted on
the chart.

Center line. See Control chart.

Central composite design (CCD). A second-order
response surface design in k variables consisting of a

P1B 0 A2
P1A 0 B2

two-level factorial, 2k axial runs, and one or more cen-
ter points. The two-level factorial portion of a CCD can
be a fractional factorial design when k is large. The
CCD is the most widely used design for fitting a 
second-order model.

Central limit theorem. The simplest form of the cen-
tral limit theorem states that the sum of n independently
distributed random variables will tend to be normally
distributed as n becomes large. It is a necessary and
sufficient condition that none of the variances of the
individual random variables are large in comparison to
their sum. There are more general forms of the central
theorem that allow infinite variances and correlated
random variables, and there is a multivariate version of
the theorem

Central tendency. The tendency of data to cluster
around some value. Central tendency is usually ex-
pressed by a measure of location such as the mean, me-
dian, or mode.

Chance cause of variation. The portion of the vari-
ability in a set of observations that is due to only random
forces and which cannot be traced to specific sources,
such as operators, materials, or equipment. Also called a
common cause.

Chebyshev’s inequality. A result that provides bounds
for certain probabilities for arbitrary random variables.

Chi-square (or chi-squared) random variable. A
continuous random variable that results from the sum of
squares of independent standard normal random vari-
ables. It is a special case of a gamma random variable.

Chi-squared test. Any test of significance based on 
the chi-square distribution. The most common chi-
square tests are (1) testing hypotheses about the
variance or standard deviation of a normal distribution
and (2) testing goodness of fit of a theoretical distribu-
tion to sample data.

Coefficient of determination. See R2.

Completely randomized design. A type of experi-
mental design in which the treatments or design factors
are assigned to the experimental units in a random
manner. In designed experiments, a completely random-
ized design results from running all of the treatment
combinations in random order.

Components of variance. The individual components
of the total variance that are attributable to specific
sources. This usually refers to the individual variance
components arising from a random or mixed model
analysis of variance.
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Conditional mean. The mean of the conditional prob-
ability distribution of a random variable.

Conditional probability. The probability of an event
given that the random experiment produces an outcome
in another event.

Conditional probability density function. The proba-
bility density function of the conditional probability
distribution of a continuous random variable.

Conditional probability distribution. The distribution
of a random variable given that the random experiment
produces an outcome in an event. The given event
might specify values for one or more other random
variables.

Conditional probability mass function. The proba-
bility mass function of the conditional probability
distribution of a discrete random variable.

Conditional variance. The variance of the conditional
probability distribution of a random variable.

Confidence coefficient. The probability 1 � � associ-
ated with a confidence interval expressing the probability
that the stated interval will contain the true parameter
value.

Confidence interval. If it is possible to write a proba-
bility statement of the form

where L and U are functions of only the sample data and
� is a parameter, then the interval between L and U is
called a confidence interval (or a 100(1 � �)% confi-
dence interval). The interpretation is that a statement
that the parameter � lies in this interval will be true
100(1 � �)% of the times that such a statement is made.

Confidence level. Another term for the confidence
coefficient.

Confounding. When a factorial experiment is run in
blocks and the blocks are too small to contain a com-
plete replicate of the experiment, one can run a fraction
of the replicate in each block, but this results in losing
information on some effects. These effects are linked
with or confounded with the blocks. In general, when
two factors are varied such that their individual effects
cannot be determined separately, their effects are said to
be confounded.

Consistent estimator. An estimator that converges in
probability to the true value of the estimated parameter
as the sample size increases.

P1L 	 � 	 U 2 � 1 � �

Contingency table. A tabular arrangement expressing
the assignment of members of a data set according to
two or more categories or classification criteria.

Continuity correction. A correction factor used to im-
prove the approximation to binomial probabilities from
a normal distribution.

Continuous distribution. A probability distribution
for a continuous random variable.

Continuous random variable. A random variable
with an interval (either finite or infinite) of real numbers
for its range.

Continuous uniform random variable. A continuous
random variable with range of a finite interval and a
constant probability density function.

Contour plot. A two-dimensional graphic used for a
bivariate probability density function that displays
curves for which the probability density function is
constant.

Control chart. A graphical display used to monitor a
process. It usually consists of a horizontal center line
corresponding to the in-control value of the parameter
that is being monitored and lower and upper control 
limits. The control limits are determined by statistical
criteria and are not arbitrary nor are they related to spec-
ification limits. If sample points fall within the control
limits, the process is said to be in-control, or free from
assignable causes. Points beyond the control limits indi-
cate an out-of-control process; that is, assignable causes
are likely present. This signals the need to find and re-
move the assignable causes.

Control limits. See Control chart.

Convolution. A method to derive the probability den-
sity function of the sum of two independent random
variables from an integral (or sum) of probability
density (or mass) functions.

Cook’s distance. In regression, Cook’s distance is a
measure of the influence of each individual observation
on the estimates of the regression model parameters. It
expresses the distance that the vector of model parame-
ter estimates with the ith observation removed lies from
the vector of model parameter estimates based on all ob-
servations. Large values of Cook’s distance indicate that
the observation is influential.

Correction factor. A term used for the quantity
that is subtracted from 

to give the corrected sum of squares defined as
. The correction factor can also be

written as .nx2
11�n2 g n

i�11xi � x22
g n

i�1 
x2

i11�n2 1 g n
i�1 

xi22
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Correlation. In the most general usage, a measure of
the interdependence among data. The concept may
include more than two variables. The term is most com-
monly used in a narrow sense to express the relationship
between quantitative variables or ranks.

Correlation coefficient. A dimensionless measure of
the interdependence between two variables, usually
lying in the interval from �1 to �1, with zero indi-
cating the absence of correlation (but not necessarily
the independence of the two variables). The most
common form of the correlation coefficient used in
practice is

which is also called the product moment correlation co-
efficient. It is a measure of the linear association be-
tween the two variables y and x.

Correlation matrix. A square matrix that contains the
correlations among a set of random variables, say X1,
X2, p , Xk. The main diagonal elements of the matrix are
unity and the off diagonal elements rij are the correla-
tions between Xi and Xj.

Counting techniques. Formulas used to determine the
number of elements in sample spaces and events.

Covariance. A measure of association between two
random variables obtained as the expected value of the
product of the two random variables around their
means; that is, Cov(X, Y ) � E[(X � 
X)(Y � 
Y)].

Covariance matrix. A square matrix that contains the
variances and covariances among a set of random vari-
ables, say X1, X2, p , Xk. The main diagonal elements of
the matrix are the variances of the random variables and
the off diagonal elements are the covariances between 
Xi and Xj. Also called the variance-covariance matrix.
When the random variables are standardized to have
unit variances, the covariance matrix becomes the cor-
relation matrix.

Critical region. In hypothesis testing, this is the por-
tion of the sample space of a test statistic that will lead
to rejection of the null hypothesis.

Critical value(s). The value of a statistic corresponding
to a stated significance level as determined from the
sampling distribution. For example, if P(Z � z0.05) �
P(Z � 1.96) � 0.05, then z0.05 = 1.96 is the critical
value of z at the 0.05 level of significance.

B an

i�1
1yi � y22an

i�1
1xi � x22

r � an

i�1
3 1yi � y2 1xi � x2 4 �
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Crossed factors. Another name for factors that are
arranged in a factorial experiment.

Cumulative distribution function. For a random vari-
able X, the function of X defined as P(X 	 x) that is
used to specify the probability distribution.

Cumulative normal distribution function. The cumu-
lative distribution of the standard normal distribution,
often denoted as �(x) and tabulated in Appendix Table II.

Cumulative sum control chart (CUSUM). A control
chart in which the point plotted at time t is the sum of
the measured deviations from target for all statistics up
to time t.

Curvilinear regression. An expression sometimes
used for nonlinear regression models or polynomial re-
gression models.

Decision interval. A parameter set in a Tabular CUSUM
algorithm that is determined from a trade-off between
false alarms and the detection of assignable causes.

Defect. Used in statistical quality control, a defect is
a particular type of nonconformance to specifications
or requirements. Sometimes defects are classified into
types, such as appearance defects and functional
defects.

Defects-per-unit control chart. See U chart.

Degrees of freedom. The number of independent com-
parisons that can be made among the elements of a sam-
ple. The term is analogous to the number of degrees of
freedom for an object in a dynamic system, which is the
number of independent coordinates required to deter-
mine the motion of the object.

Deming. W. Edwards Deming (1900–1993) was a
leader in the use of statistical quality control.

Deming’s 14 points. A management philosophy
promoted by W. Edwards Deming that emphasizes the
importance of change and quality.

Density function. Another name for a probability den-
sity function.

Dependent variable. The response variable in regres-
sion or a designed experiment.

Discrete distribution. A probability distribution for a
discrete random variable.

Discrete random variable. A random variable with a
finite (or countably infinite) range.

Discrete uniform random variable. A discrete
random variable with a finite range and constant proba-
bility mass function.
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Dispersion. The amount of variability exhibited by data.

Distribution free methods(s). Any method of infer-
ence (hypothesis testing or confidence interval con-
struction) that does not depend on the form of the
underlying distribution of the observations. Sometimes
called nonparametric method(s).

Distribution function. Another name for a cumulative
distribution function.

Efficiency. A concept in parameter estimation that uses
the variances of different estimators; essentially, an esti-
mator is more efficient than another estimator if it has
smaller variance. When estimators are biased, the con-
cept requires modification.

Enumerative study. A study in which a sample from a
population is used to make inference to the population.
See Analytic study.

Erlang random variable. A continuous random vari-
able that is the sum of a fixed number of independent,
exponential random variables.

�-error (or �-risk). In hypothesis testing, an error in-
curred by failing to reject a null hypothesis when it is
actually false (also called a type II error).

�-error (or �-risk). In hypothesis testing, an error in-
curred by rejecting a null hypothesis when it is actually
true (also called a type I error).

Error mean square. The error sum of squares divided
by its number of degrees of freedom.

Error of estimation. The difference between an esti-
mated value and the true value.

Error sum of squares. In analysis of variance, this is
the portion of total variability that is due to the ran-
dom component in the data. It is usually based on
replication of observations at certain treatment com-
binations in the experiment. It is sometimes called the
residual sum of squares, although this is really a better
term to use only when the sum of squares is based on
the remnants of a model fitting process and not on
replication.

Error variance. The variance of an error term or com-
ponent in a model.

Estimate (or point estimate). The numerical value of
a point estimator.

Estimator (or point estimator). A procedure for pro-
ducing an estimate of a parameter of interest. An esti-
mator is usually a function of only sample data values,
and when these data values are available, it results in an
estimate of the parameter of interest.

Event. A subset of a sample space.

Exhaustive. A property of a collection of events that
indicates that their union equals the sample space.

Expected value. The expected value of a random vari-
able X is its long-term average or mean value. In the
continuous case, the expected value of X is

where f(x) is the density function
of the random variable X.

Exponential random variable. A continuous random
variable that is the time between counts in a Poisson
process.

Factorial experiment. A type of experimental design
in which every level of one factor is tested in combina-
tion with every level of another factor. In general, in a
factorial experiment, all possible combinations of factor
levels are tested.

F-distribution. The distribution of the random vari-
able defined as the ratio of two independent chi-square
random variables each divided by their number of
degrees of freedom.

Finite population correction factor. A term in the for-
mula for the variance of a hypergeometric random
variable.

First-order model. A model that contains only first-
order terms. For example, the first-order response
surface model in two variables is y � 
0 � 
1x1 �

2x2 � �. A first-order model is also called a main
effects model.

Fixed factor (or fixed effect). In analysis of variance, 
a factor or effect is considered fixed if all the levels of
interest for that factor are included in the experiment.
Conclusions are then valid about this set of levels only,
although when the factor is quantitative, it is customary
to fit a model to the data for interpolating between these
levels.

Forward selection. A method of variable selection in
regression, where variables are inserted one at a time
into the model until no other variables that contribute
significantly to the model can be found.

Fraction defective control chart. See P chart.

Fraction defective. In statistical quality control, that
portion of a number of units or the output of a process
that is defective.

Fractional factorial. A type of factorial experiment
in which not all possible treatment combinations are
run. This is usually done to reduce the size of an ex-
periment with several factors.

E1X 2 � ��
��  

xf 1x2  dx
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Frequency distribution. An arrangement of the fre-
quencies of observations in a sample or population
according to the values that the observations take on.

F-test. Any test of significance involving the F-distri-
bution. The most common F-tests are (1) testing
hypotheses about the variances or standard deviations 
of two independent normal distributions, (2) testing
hypotheses about treatment means or variance compo-
nents in the analysis of variance, and (3) testing signifi-
cance of regression or tests on subsets of parameters in
a regression model.

Gamma function. A function used in the probability
density function of a gamma random variable that can
be considered to extend factorials.

Gamma random variable. A random variable that
generalizes an Erlang random variable to noninteger
values of the parameter r.

Gaussian distribution. Another name for the normal
distribution, based on the strong connection of Karl F.
Gauss to the normal distribution; often used in physics
and electrical engineering applications.

Generating function. A function that is used to deter-
mine properties of the probability distribution of a
random variable. See Moment generating function.

Geometric mean. The geometric mean of a set of n
positive data values is the nth root of the product of the
data values; that is .

Geometric random variable. A discrete random vari-
able that is the number of Bernoulli trials until a success
occurs.

Goodness of fit. In general, the agreement of a set
of observed values and a set of theoretical values
that depend on some hypothesis. The term is often
used in fitting a theoretical distribution to a set of
observations.

Harmonic mean. The harmonic mean of a set of data
values is the reciprocal of the arithmetic mean of the 

reciprocals of the data values; that is, .

Hat matrix. In multiple regression, the matrix
. This a projection matrix that maps

the vector of observed response values into a vector of
fitted values by .

Histogram. A univariate data display that uses rectan-
gles proportional in area to class frequencies to visually
exhibit features of data such as location, variability, and
shape.

ŷ � X1X¿X2�1X¿y � Hy

H � X1X¿X2�1X¿
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n  g n

i�1 

1
xi
b�1

g � 1wn
i�1 

xi21�n

Hypergeometric random variable. A discrete random
variable that is the number of success obtained from a sam-
ple drawn without replacement from a finite populations.

Hypothesis (as in statistical hypothesis). A statement
about the parameters of a probability distribution or a
model, or a statement about the form of a probability
distribution.

Hypothesis testing. Any procedure used to test a sta-
tistical hypothesis.

Independence. A property of a probability model and
two (or more) events that allows the probability of the
intersection to be calculated as the product of the prob-
abilities.

Independent random variables. Random variables
for which P(X A, Y B) � P(X A)P(Y B) for any
sets A and B in the range of X and Y, respectively. There
are several equivalent descriptions of independent ran-
dom variables.

Independent variable. The predictor or regressor vari-
ables in a regression model.

Indicator variable(s). Variables that are assigned nu-
merical values to identify the levels of a qualitative or
categorical response. For example, a response with two
categorical levels (yes and no) could be represented
with an indicator variable taking on the values 0 and 1.

Individuals control chart. A Shewhart control chart in
which each plotted point is an individual measurement,
rather than a summary statistic. See control chart,
Shewhart control chart.

Interaction. In factorial experiments, two factors are
said to interact if the effect of one variable is different at
different levels of the other variables. In general, when
variables operate independently of each other, they do
not exhibit interaction.

Intercept. The constant term in a regression model.

Interquartile range. The difference between the third
and first quartiles if a sample of data. The interquartile
range is less sensitive to extreme data values than the
usual sample range.

Interval estimation. The estimation of a parameter by
a range of values between lower and upper limits, in
contrast to point estimation, where the parameter is
estimated by a single numerical value. A confidence
interval is a typical interval estimation procedure.

Jacobian. A matrix of partial derivatives that is used to
determine the distribution of transformed random
variables.
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Joint probability density function. A function used to
calculate probabilities for two or more continuous
random variables.

Joint probability distribution. The probability distri-
bution for two or more random variables in a random
experiment. See Joint probability mass function and
Joint probability density function.

Joint probability mass function. A function used to
calculate probabilities for two or more discrete random
variables.

Kurtosis. A measure of the degree to which a unimodal
distribution is peaked.

Lack of memory property. A property of a Poisson
process. The probability of a count in an interval
depends only on the length of the interval (and not on
the starting point of the interval). A similar property
holds for a series of Bernoulli trials. The probability of
a success in a specified number of trials depends only 
on the number of trials (and not on the starting trial).

Least significance difference test (or Fisher’s LSD
test). An application of the t-test to compare pairs of
means following rejection of the null hypothesis in an
analysis of variance. The error rate is difficult to calculate
exactly because the comparisons are not all independent.

Least squares (method of). A method of parameter es-
timation in which the parameters of a system are esti-
mated by minimizing the sum of the squares of the
differences between the observed values and the fitted
or predicted values from the system.

Least squares estimator. Any estimator obtained by
the method of least squares.

Level of significance. If Z is the test statistic for a hy-
pothesis, and the distribution of Z when the hypothe-
sis is true are known, then we can find the probabili-
ties P(Z 	 zL) and P(Z � zU). Rejection of the
hypothesis is usually expressed in terms of the
observed value of Z falling outside the interval from
zL to zU. The probabilities P(Z 	 zL) and P(Z � zU)
are usually chosen to have small values, such as 0.01,
0.025, 0.05, or 0.10, and are called levels of signifi-
cance. The actual levels chosen are somewhat arbi-
trary and are often expressed in percentages, such as a
5% level of significance.

Likelihood function. Suppose that the random vari-
ables X1, X2, p , Xn have a joint distribution given by
f(x1, x2, p , xn; �1, �2, p , �p) where the �s are un-
known parameters. This joint distribution, considered

as a function of the �s for fixed x’s, is called the like-
lihood function.

Likelihood principle. This principle states that the
information about a model given by a set of data is com-
pletely contained in the likelihood.

Likelihood ratio. Let x1, x2, p , xn be a random sample
from the population f(x; �). The likelihood function for
this sample is We wish to test the
hypothesis H0: � �, where � is a subset of the possi-
ble values � for �. Let the maximum value of L with
respect to � over the entire set of values that the
parameter can take on be denoted by , and let the
maximum value of L with � restricted to the set of val-
ues given by � be . The null hypothesis is tested
by using the likelihood ratio , or a sim-
ple function of it. Large values of the likelihood ratio
are consistent with the null hypothesis.

Likelihood ratio test. A test of a null hypothesis
versus an alternative hypothesis using a test statistic de-
rived from a likelihood ratio.

Linear combination. A random variable that is
defined as a linear function of several random variables.

Linear model. A model in which the observations
are expressed as a linear function of the unknown
parameters. For example, y � 
0 � 
1x � � and y �

0 � 
1x � 
2 x2 � � are linear models.

Location parameter. A parameter that defines a
central value in a sample or a probability distribution.
The mean and the median are location parameters.

Lognormal random variable. A continuous random
variable with probability distribution equal to that of
exp(W) for a normal random variable W.

Main effect. An estimate of the effect of a factor (or
variable) that independently expresses the change in
response due to a change in that factor, regardless of
other factors that may be present in the system.

Marginal probability density function. The probabil-
ity density function of a continuous random variable
obtained from the joint probability distribution of two or
more random variables.

Marginal probability distribution. The probability
distribution of a random variable obtained from the joint
probability distribution of two or more random variables.

Marginal probability mass function. The probability
mass function of a discrete random variable obtained
from the joint probability distribution of two or more
random variables.

� � L1�̂2�L1�̂2
L1�̂2

L1�̂2

L � wn
i�1 f 1xi; �2.
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Maximum likelihood estimation. A method of param-
eter estimation that maximizes the likelihood function of
a sample.

Mean. The mean usually refers either to the expected
value of a random variable or to the arithmetic average
of a set of data.

Mean square. In general, a mean square is deter-
mined by dividing a sum of squares by the number of
degrees of freedom associated with the sum of
squares.

Mean square(d) error. The expected squared deviation
of an estimator from the true value of the parameter it es-
timates. The mean square error can be decomposed into
the variance of the estimator plus the square of the bias;
that is, .

Median. The median of a set of data is that value that
divides the data into two equal halves. When the number
of observations is even, say 2n, it is customary to define
the median as the average of the nth and (n � 1)st rank-
ordered values. The median can also be defined for a
random variable. For example, in the case of a continu-
ous random variable X, the median M can be defined 
as .

Method of steepest ascent. A technique that allows an
experimenter to move efficiently towards a set of opti-
mal operating conditions by following the gradient
direction. The method of steepest ascent is usually em-
ployed in conjunction with fitting a first-order response
surface and deciding that the current region of operation
is inappropriate.

Mixed model. In an analysis of variance context, a
mixed model contains both random and fixed factors.

Mode. The mode of a sample is that observed value
that occurs most frequently. In a probability distribu-
tion f (x) with continuous first derivative, the mode is a
value of x for which df (x)�dx � 0 and d2f (x)�dx2 � 0.
There may be more than one mode of either a sample
or a distribution.

Moment (or population moment). The expected value
of a function of a random variable such as E(X � c)r for
constants c and r. When c � 0, it is said that the moment
is about the origin. See Moment generating function.

Moment estimator. A method of estimating parame-
ters by equating sample moments to population mo-
ments. Since the population moments will be functions
of the unknown parameters, this results in equations that
may be solved for estimates of the parameters.

�M
��

f 1x2  dx � ��
M f 1x2  dx � 1�2

V1�̂2 � 3E1�̂2 � � 42MSE1�̂2 � E1�̂ � �22 �

Moment generating function. A function that is used
to determine properties (such as moments) of the
probability distribution of a random variable. It is the
expected value of exp(tX). See generating function
and moment.

Moving range. The absolute value of the difference
between successive observations in time-ordered data.
Used to estimate chance variation in an individuals con-
trol chart.

Multicollinearity. A condition occurring in multiple
regression where some of the predictor or regressor
variables are nearly linearly dependent. This condition
can lead to instability in the estimates of the regression
model parameters.

Multinomial distribution. The joint probability distri-
bution of the random variables that count the number of
results in each of k classes in a random experiment with
a series of independent trials with constant probability
of each class on each trial. It generalizes a binomial
distribution.

Multiplication rule. For probability, A formula used
to determine the probability of the intersection of two
(or more) events. For counting techniques, a formula
used  to determine the numbers of ways to complete
an operation from the number of ways to complete
successive steps.

Mutually exclusive events. A collection of events
whose intersections are empty.

Natural tolerance limits. A set of symmetric limits
that are three times the process standard deviation from
the process mean.

Negative binomial random variable. A discrete ran-
dom variable that is the number of trials until a specified
number of successes occur in Bernoulli trials.

Nonlinear regression model. A regression model that
is nonlinear in the parameters. It is sometimes applied to
regression models that are nonlinear in the regressors or
predictors, but this is an incorrect usage.

Nonparametric statistical method(s). See Distribution
free method(s).

Normal approximation. A method to approximate
probabilities for binomial and Poisson random variables.

Normal equations. The set of simultaneous linear
equations arrived at in parameter estimation using the
method of least squares.

Normal probability plot. A specially constructed
plot for a variable x (usually on the abscissa) in which

PQ220 6234F.Glo  5/16/02  5:58 PM  Page 696 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L: PPEND



GLOSSARY 697

y (usually on the ordinate) is scaled so that the
graph of the normal cumulative distribution is a
straight line.

Normal random variable. A continuous random vari-
able that is the most important one in statistics because
it results from the central limit theorem. See Central
limit theorem.

NP chart. An attribute control chart that plots the total
of defective units in a subgroup. Similar to a fraction-
defective chart or P chart.

Nuisance factor. A factor that probably influences the
response variable, but which is of no interest in the cur-
rent study. When the levels of the nuisance factor can be
controlled, blocking is the design technique that is
customarily used to remove its effect.

Null hypothesis. This term generally relates to a par-
ticular hypothesis that is under test, as distinct from the
alternative hypothesis (which defines other conditions
that are feasible but not being tested). The null hypothe-
sis determines the probability of type I error for the test
procedure.

One-way model. In an analysis of variance context,
this involves a single variable or factor with a different
levels.

Operating characteristic curves (OC curves). A plot
of the probability of type II error versus some measure
of the extent to which the null hypothesis is false.
Typically, one OC curve is used to represent each sam-
ple size of interest.

Orthogonal. There are several related meanings, in-
cluding the mathematical sense of perpendicular, two
variables being said to be orthogonal if they are statisti-
cally independent, or in experimental design where a
design is orthogonal if it admits statistically independ-
ent estimates of effects.

Orthogonal design. See Orthogonal.

Outcome. An element of a sample space.

Outlier(s). One or more observations in a sample that are
so far from the main body of data that they give rise to the
question that they may be from another population.

Overcontrol. Unnecessary adjustments made to
processes that increase the deviations from target.

Overfitting. Adding more parameters to a model than
is necessary.

P chart. An attribute control chart that plots the propor-
tion of defective units in a subgroup. Also called a frac-
tion-defective control chart. Similar to an NP chart.

Parameter estimation. The process of estimating
the parameters of a population or probability distribu-
tion. Parameter estimation, along with hypothesis
testing, is one of the two major techniques of statisti-
cal inference.

Parameter. An unknown quantity that may vary over a
set of values. Parameters occur in probability distri-
butions and in statistical models, such as regression
models.

Pareto diagram. A bar chart used to rank the causes of
a problem.

PCR. A process capability ratio with numerator equal to
the difference between the product specification limits
and denominator equal to six times the process standard
deviation. Said to measure the potential capability of the
process because the process mean is not considered. See
process capability, process capability ratio, process capa-
bility study and PCRk. Sometimes denoted as Cp in other
references.

PCRk. A process capability ratio with numerator equal
to the difference between the product target and the
nearest specification limit and denominator equal to
three times the process standard deviation. Said to
measure the actual capability of the process because the
process mean is considered. See process capability,
process capability ratio, process capability study, and
PCR. Sometimes denoted as Cpk in other references.

Percentage point. A particular value of a random vari-
able determined from a probability (expressed as a
percentage). For example, the upper 5 percentage point
of the standard normal random variable is Z0.05 � 1.645.

Percentile. The set of values that divide the sample into
100 equal parts.

Poisson process. A random experiment with counts
that occur in an interval and satisfy the following
assumptions. The interval can be partitioned into subin-
tervals such that the probability of more than one count
in a subinterval is zero, the probability of a count in a
subinterval is proportional to the length of the subinter-
val, and the count in each subinterval is independent of
other subintervals.

Poisson random variable. A discrete random variable
that is the number of counts that occur in a Poisson
process.

Pooling. When several sets of data can be thought of as
having been generated from the same model, it is possi-
ble to combine them, usually for purposes of estimating
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one or more parameters. Combining the samples for this
purpose is usually called pooling.

Population standard deviation. See standard deviation.

Population variance. See variance. 

Population. Any finite or infinite collection of individ-
ual units or objects.

Power. The power of a statistical test is the probability
that the test rejects the null hypothesis when the null hy-
pothesis is indeed false. Thus the power is equal to one
minus the probability of type II error.

Prediction. The process of determining the value of
one or more statistical quantities at some future point in
time. In a regression model, predicting the response y
for some specified set of regressors or predictor vari-
ables also leads to a predicted value, although there may
be no temporal element to the problem.

Prediction interval. The interval between a set of
upper and lower limits associated with a predicted value
designed to show on a probability basis the range of
error associated with the prediction.

Predictor variable(s). The independent or regressor
variables in a regression model.

Probability density function. A function used to
calculate probabilities and to specify the probability dis-
tribution of a continuous random variable.

Probability distribution. For a sample space, a
description of the set of possible outcomes along with a
method to determine probabilities. For a random
variable, a probability distribution is a description of the
range along with a method to determine probabilities.

Probability mass function. A function that provides
probabilities for the values in the range of a discrete ran-
dom variable.

Probability. A numerical measure between 0 and 1 as-
signed to events in a sample space. Higher numbers in-
dicate the event is more likely to occur. See axioms of
probability.

Process capability ratio. A ratio that relates the width of
the product specification limits to measures of process
performance. Used to quantify the capability of the
process to produce product within specifications. See
process capability, process capability study, PCR and
PCRk.

Process capability study. A study that collects data to
estimate process capability. See process capability,
process capability ratio, PCR and PCRk.

Process capability. The capability of a process to
produce product within specification limits. See
process capability ratio, process capability study, PCR,
and PCRk. 

P-Value. The exact significance level of a statistical
test; that is, the probability of obtaining a value of the
test statistic that is at least as extreme as that observed
when the null hypothesis is true.

Qualitative (data). Data derived from nonnumeric
attributes, such as sex, ethnic origin or nationality, or
other classification variable.

Quality control. Systems and procedures used by an
organization to assure that the outputs from processes
satisfy customers.

Quantiles. The set of n � 1 values of a variable that
partition it into a number n of equal proportions. For
example, n � 1 � 3 values partition data into four
quantiles with the central value usually called the
median and the lower and upper values usually called
the lower and upper quartiles, respectively.

Quantitative (data). Data in the form of numerical
measurements or counts.

Quartile(s). The three values of a variable that parti-
tion it into four equal parts. The central value is usually
called the median and the lower and upper values are
usually called the lower and upper quartiles, respec-
tively. Also see Quantiles.

R2. A quantity used in regression models to measure the
proportion of total variability in the response accounted
for by the model. Computationally, R2 � SSRegression�
SSTotal, and large values of R2 (near unity) are consid-
ered good. However, it is possible to have large values
of R2 and find that the model is unsatisfactory. R2

is also called the coefficient of determination (or the
coefficient of multiple determination in multiple
regression).

Random. Nondeterministic, occurring purely by
chance, or independent of the occurrence of other events.

Random effects model. In an analysis of variance con-
text, this refers to a model that involves only random
factors.

Random error. An error (usually a term in a statistical
model) that behaves as if it were drawn at random from
a particular probability distribution.

Random experiment. An experiment that can result in
different outcomes, even though it is repeated in the
same manner each time.
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Random factor. In analysis of variance, a factor whose
levels are chosen at random from some population of
factor levels.

Random order. A sequence or order for a set of objects
that is carried out in such a way that every possible or-
dering is equally likely. In experimental design the runs
of the experiment are typically arranged and carried out
in random order.

Random sample. A sample is said to be random if it is
selected in such a way so that every possible sample has
the same probability of being selected.

Random variable. A function that assigns a real num-
ber to each outcome in the sample space of a random
experiment.

Randomization. A set of objects is said to be random-
ized when they are arranged in random order.

Randomized block design. A type of experimental de-
sign in which treatment (or factor levels) are assigned to
blocks in a random manner.

Range. The largest minus the smallest of a set of data
values. The range is a simple measure of variability and
is widely used in quality control.

Range (control) chart. A control chart used to monitor
the variability (dispersion) in a process. See Control chart.

Rank. In the context of data, the rank of a single ob-
servation is its ordinal number when all data values are
ordered according to some criterion, such as their mag-
nitude.

Rational subgroup. A sample of data selected in a man-
ner to include chance sources of variation and to exclude
assignable sources of variation, to the extent possible.

Reference distribution. The distribution of a test
statistic when the null hypothesis is true. Sometimes a
reference distribution is called the null distribution of
the test statistic.

Reference value. A parameter set in a Tabular
CUSUM algorithm that is determined from the magni-
tude of the process shift that should be detected.

Regression. The statistical methods used to investigate
the relationship between a dependent or response
variable y and one or more independent variables x. The
independent variables are usually called regressor vari-
ables or predictor variables.

Regression coefficient(s). The parameter(s) in a re-
gression model.

Regression diagnostics. Techniques for examining a fit-
ted regression model to investigate the adequacy of the fit

and to determine if any of the underlying assumptions
have been violated.

Regression line (or curve). A graphical display of a
regression model, usually with the response y on the
ordinate and the regressor x on the abcissa.

Regression sum of squares. The portion of the total
sum of squares attributable to the model that has been fit
to the data.

Regressor variable. The independent or predictor
variable in a regression model.

Rejection region. In hypothesis testing, this is the
region in the sample space of the test statistic that leads
to rejection of the null hypothesis when the test statistic
falls in this region.

Relative frequency. The relative frequency of an event
is the proportion of times the event occurred in a series
of trial of a random experiment.

Reliability. The probability that a specified mission
will be completed. It usually refers to the probability
that a lifetime of a continuous random variable exceeds
a specified time limit.

Replicates. One of the independent repetitions of one
or more treatment combinations in an experiment.

Replication. The independent execution of an experi-
ment more than once.

Reproductive property of the normal distribution.
A linear combination of independent, normal random
variables is a normal random variable.

Residual. Generally this is the difference between the
observed and the predicted value of some variable. For
example, in regression a residual is the difference
between the observed value of the response and the
corresponding predicted value obtained from the regres-
sion model.

Residual analysis. Any technique that uses the residu-
als, usually to investigate the adequacy of the model that
was used to generate the residuals.

Residual sum of squares. See Error sum of squares.

Response (variable). The dependent variable in a
regression model or the observed output variable in a
designed experiment.

Response surface. When a response y depends on a
function of k quantitative variables x1, x2, p , xk, the
values of the response may be viewed as a surface in
k � 1 dimensions. This surface is called a response
surface. Response surface methodology is a subset of
experimental design concerned with approximating this
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surface with a model and using the resulting model to
optimize the system or process.

Response surface designs. Experimental designs that
have been developed to work well in fitting response
surfaces. These are usually designs for fitting a first- or
second-order model. The central composite design is a
widely used second-order response surface design.

Ridge regression. A method for fitting a regression
model that is intended to overcome the problems associ-
ated with using standard (or ordinary) least squares when
there is a problem with multicollinearity in the data.

Rotatable design. In a rotatable design, the variance of
the predicted response is the same at all points that are
the same distance from the center of the design.

Run rules. A set of rules applied to the points plotted
on a Shewhart control chart that are used to make the
chart more sensitized to assignable causes. See control
chart, Shewhart control chart.

Sample. Any subset of the elements of a population.

Sample mean. The arithmetic average or mean of the
observations in a sample. If the observations are 
x1, x2, p , xn then the sample mean is . The
sample mean is usually denoted by .

Sample moment. The quantity is called
the kth sample moment.

Sample range. See range.

Sample size. The number of observations in a sample.

Sample space. The set of all possible outcomes of a
random experiment.

Sample standard deviation. The positive square root
of the sample variance. The sample standard deviation
is the most widely used measure of variability of
sample data.

Sample variance. A measure of variability of sample
data, defined as , where

is the sample mean.

Sampling distribution. The probability distribution of
a statistic. For example, the sampling distribution of the
sample mean is the normal distribution.

Scatter diagram. A diagram displaying observations on
two variables, x and y. Each observation is represented by
a point showing its x-y coordinates. The scatter diagram
can be very effective in revealing the joint variability of x
and y or the nature of the relationship between them.

Screening experiment. An experiment designed and
conducted for the purpose of screening out or isolating
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a promising set of factors for future experimentation.
Many screening experiments are fractional factorials,
such as two-level fractional factorial designs.

Second-order model. A model that contains second-
order terms. For example, the second-order response
surface model in two variables is y � 
0 � 
1x1 �

2x2 � 
12x1x2 � 
11x

2
1 � 
22x

2
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terms in this model are 
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Shewhart control chart. A specific type of control
chart developed by Walter A. Shewhart. Typically, each
plotted point is a summary statistic calculated from the
data in a rational subgroup. See control chart.

Sign test. A statistical test based on the signs of certain
functions of the observations and not their magnitudes.

Signed-rank test. A statistical test based on the differ-
ences within a set of paired observations. Each differ-
ence has a sign and a rank, and the test uses the sum of
the differences with regard to sign.

Significance. In hypothesis testing, an effect is said to
be significant if the value of the test statistic lies in the
critical region.

Significance level. See Level of significance.

Skewness. A term for asymmetry usually employed
with respect to a histogram of data or a probability dis-
tribution.

Standard deviation. The positive square root of the
variance. The standard deviation is the most widely 
used measure of variability.

Standard error. The standard deviation of the estima-
tor of a parameter. The standard error is also the stan-
dard deviation of the sampling distribution of the esti-
mator of a parameter.

Standard normal random variable. A normal ran-
dom variable with mean zero and variance one that has
its cumulative distribution function tabulated in
Appendix Table II.

Standardize. The transformation of a normal random
variable that subtracts its mean and divides by its standard
deviation to generate a standard normal random variable.

Standardized residual. In regression, the standardized
residual is computed by dividing the ordinary residual by
the square root of the residual mean square. This produces
scaled residuals that have, approximately, a unit variance.

Statistic. A summary value calculated from a sample
of observations. Usually, a statistic is an estimator of
some population parameter.
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Statistical Process Control. A set of problem-solving
tools based on data that are used to improve a process.

Statistical quality control. Statistical and engineering
methods used to measure, monitor, control, and 
improve quality.

Statistics. The science of collecting, analyzing, inter-
preting, and drawing conclusions from data.

Stem and leaf display. A method of displaying data in
which the stem corresponds to a range of data values
and the leaf represents the next digit. It is an alternative
to the histogram but displays the individual observa-
tions rather than sorting them into bins.

Stepwise regression. A method of selecting variables
for inclusion in a regression model. It operates by intro-
ducing the candidate variables one at a time (as in for-
ward selection) and then attempting to remove variables
following each forward step.

Studentized range. The range of a sample divided by
the sample standard deviation.

Studentized residual. In regression, the studentized
residual is calculated by dividing the ordinary residual
by its exact standard deviation, producing a set of scaled
residuals that have, exactly, unit standard deviation.

Sufficient statistic. An estimator is said to be a
sufficient statistic for an unknown parameter if the
distribution of the sample given the statistic does not
depend on the unknown parameter. This means that the
distribution of the estimator contains all of the useful in-
formation about the unknown parameter.

Tabular CUSUM. A numerical algorithm used to de-
tect assignable causes on a cumulative sum control
chart. See V mask.

Tampering. Another name for overcontrol.

t-distribution. The distribution of the random variable
defined as the ratio of two independent random vari-
ables. The numerator is a standard normal random
variable and the denominator is the square root of a chi-
square random variable divided by its number of
degrees of freedom.

Test statistic. A function of a sample of observations
that provides the basis for testing a statistical hypothesis.

Time series. A set of ordered observations taken at
difference points in time.

Tolerance interval. An interval that contains a speci-
fied proportion of a population with a stated level of
confidence.

Tolerance limits. A set of limits between which some
stated proportion of the values of a population must fall
with specified level of confidence.

Total probability rule. Given a collection of mutually
exclusive events whose union is the sample space, the
probability of an event can be written as the sum of the
probabilities of the intersections of the event with the
members of this collection.

Treatment. In experimental design, a treatment is a
specific level of a factor of interest. Thus if the factor is
temperature, the treatments are the specific temperature
levels used in the experiment.

Treatment sum of squares. In analysis of variance,
this is the sum of squares that accounts for the variabil-
ity in the response variable due to the different treat-
ments that have been applied.

t-test. Any test of significance based on the t distribu-
tion. The most common t-tests are (1) testing hypothe-
ses about the mean of a normal distribution with
unknown variance, (2) testing hypotheses about the
means of two normal distributions and (3) testing
hypotheses about individual regression coefficients.

Type I error. In hypothesis testing, an error incurred
by rejecting a null hypothesis when it is actually true
(also called an �-error).

Type II error. In hypothesis testing, an error incurred
by failing to reject a null hypothesis when it is actually
false (also called a 
-error).

U chart. An attribute control chart that plots the aver-
age number of defects per unit in a subgroup. Also called
a defects-per-unit control chart. Similar to a C chart.

Unbiased estimator. An estimator that has its expected
value equal to the parameter that is being estimated is
said to be unbiased.

Uniform random variable. Refers to either a discrete
or continuous uniform random variable.

Uniqueness property of moment generating function.
Refers to the fact that random variables with the same
moment generating function have the same distribution.

Universe. Another name for population.

V mask. A geometrical figure used to detect assignable
causes on a cumulative sum control chart. With appro-
priate values for parameters, identical conclusions can
be made from a V mask and a tabular CUSUM.

Variable selection. The problem of selecting a subset
of variables for a model from a candidate list that
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contains all or most of the useful information about the
response in the data.

Variables control chart. Any control chart for a con-
tinuous random variable. See attributes control charts.

Variance. A measure of variability defined as the
expected value of the square of the random variable
around its mean.

Variance component. In analysis of variance models
involving random effects, one of the objectives is to
determine how much variability can be associated with
each of the potential sources of variability defined by
the experimenters. It is customary to define a variance
associated with each of these sources. These variances
in some sense sum to the total variance of the response,
and are usually called variance components.

Variance inflation factors. Quantities used in multiple
regression to assess the extent of multicollinearity (or
near linear dependence) in the regressors. The variance
inflation factor for the ith regressor VIFi can be defined
as VIFi = [1�(1 � R2

i)], where R2
i is the coefficient of

determination obtained when xi is regressed on the other
regressor variables. Thus when xi is nearly linearly de-
pendent on a subset of the other regressors R2

i will be
close to unity and the value of the corresponding vari-

702 GLOSSARY

ance inflation factor will be large. Values of the variance
inflation factors that exceed 10 are usually taken as a
signal that multicollinearity is present.

Warning limits. Horizontal lines added to a control
chart (in addition to the control limits) that are used to
make the chart more sensitive to assignable causes.

Weibull random variable. A continuous random vari-
able that is often used to model the time until failure of
a physical system. The parameters of the distribution 
are flexible enough that the probability density function 
can assume many different shapes.

Western Electric rules. A specific set of run rules that
were developed at Western Electric Corporation. See
run rules.

Wilcoxon signed rank test. A distribution-free test of
the equality of the location parameters of two otherwise
identical distributions. It is an alternative to the two-
sample t-test for nonnormal populations.

With replacement. A method to select samples in
which items are replaced between successive selections.

Without replacement. A method to select samples in
which items are not replaced between successive
selections.
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A
Acceptance region, 280, 290
Actual process capability versus potential process

capability, 622
Addition of center points to 2k factorial, see Center

points in 2k factorial design
Addition rules of probability, 33, 24
Adjusted R2, 431
All possible regressions, 453
Alternate fraction, 551
Alternative hypothesis, 279
Analysis of variance, 387, 421, 429, 469, 473, 475,

493, 494, 495, 13-5, 506, 511, 589
Analysis of variance method for estimating

variance components, see Estimating 
variance components

Analytic study, 5, 7
Anderson-Darling statistic, 6-1
ANOVA partition of total sum of squares, 474
Approximations to distributions, 119: 

Continuity corrections, 4-1
Normal approximation to binomial, 120, 310 
Normal approximation to Poisson, 121

Assignable cause of variation, 598
Asymptotic relative efficiency, 584
Attributes control charts, 601, 625
Average run length, 630
Axioms of probability, 30, 31

B
Backward elimination of variables in regression, 459
Basic design, 552
Bayes estimation of parameters, 7-3
Bayes estimator, 7-4
Bayes’ theorem, 51, 52
Bernoulli random variable, 11-7
Bernoulli trial, 72
Bias in estimation, 223
Bias of estimator, 223, 226
Binomial distribution, 74, 87, 119, 120, 155, 310,

9-3, 9-4
Binomial random variable, 74, 76, 84, 573
Bins (cells) in histogram, 203, 204
Bivariate distribution, 143, 177
Bivariate normal distribution, 177, 178, 401
Block effect, 493
Blocking, 492, 496, 543, 545
Blocking as restriction on randomization, 496
Bootstrap, 7-2
Bootstrap confidence interval, 8-1
Bootstrap estimate of standard error, 7-2
Bootstrap sample, 7-2, 8-1
Box plot, 207, 208, 471

C
Categorical regressors, 450
Cause-and-effect, 333
Cause-and-effect diagram, 598, 640
Censored data, 246, 275
Center line on control chart, 10, 599, 600
Center points in 2k factorial design, 541, 14-9, 14-10
Central composite design, 14-16, 14-17
Central limit theorem, 109, 240
Chance cause of variation, 598
Chebyshev’s inequality, 5-13, 5-14
Check sheet, 598
Chi distribution, 7-1
Chi-square distribution, 133, 7-1, 262, 308
Chi-square distribution percentage points, 

table of, 655
Chi-square tests, 307, 316, 321
Choice of sample size and confidence intervals,

252, 260, 266, 267, 335
Choice of sample size for single-factor

experiments, 482, 484, 490, 13-7, 13-11
Choice of sample size in statistical tests, 293, 294,

295, 297, 304, 305, 309, 312, 314, 331, 344,
359, 364

Coding data, 219
Coefficient of determination, 397; also see R2

Combinations, 2-3
Common cause of variation, 598
Comparative box plots, 208
Comparative experiments, 278, 328
Comparison of nonparametric tests to t-test, 

579, 584, 588
Complement (set operation), 23
Completely randomized design, 333, 472
Complications in maximum likelihood 

estimation, 235
Components of variance, 473, 487, 488, 489, 14-4
Components of variance model, see Random

effects model ANOVA
Conceptual population, 190
Conditional mean, 147, 163
Conditional probability, 37, 38, 51, 125,126
Conditional probability density function, 162
Conditional probability distribution, 146, 153, 

162, 169, 5-2
Conditional probability mass function, 

146, 153
Conditional variance, 147, 163
Confidence coefficient, 250
Confidence interval, 247, 248, 250, 253, 254, 256,

258, 259, 263, 266, 334, 345, 346, 365, 390,
391, 403, 437, 477, 478

Confidence interval on correlation coefficient, 403

Confidence interval on difference in means of 
two normal distributions: 

Variances known, 334
Variances unknown, 345, 346

Confidence interval on difference in two
proportions, 365

Confidence interval on difference in two treatment
means in ANOVA, 478

Confidence interval on mean of normal
distribution: 

Variance known, 249, 250, 253
Variance unknown, 257, 259

Confidence interval on mean response, 390, 438
Confidence interval on population proportion, 

265, 266
Confidence interval on ratio of variances of two

normal distributions, 359
Confidence interval on regression coefficients,

389, 437
Confidence interval on treatment mean in ANOVA,

477, 478
Confidence interval on variance of normal

distribution, 261, 263
Confidence level and precision of estimation, 251
Confounding, 543, 544, 546, 548
Connection between confidence intervals and

hypothesis tests, 293
Connection between gamma and chi-square

distributions, 133
Connection between Poisson and Erlang

distributions, 129
Connection between Poisson and exponential

distributions, 123
Connection between Weibull and exponential

distributions, 134
Consistent estimator, 245
Contingency table, 320, 322
Continuity corrections, 4-1
Continuous probability distribution, 98:

Chi-square, 133
Erlang, 130
Exponential, 123
F, 355, 356, 357, 10-1
Gamma, 131, 132
Lognormal, 136
Normal, 109, 110, 119, 120, 121, 204, 240
t, 258, 8-2, 301
Uniform, 107
Weibull, 134

Continuous random variable, 54, 97, 98, 100, 157,
5-3, 5-4

Continuous sample space, 19
Continuous uniform distribution, 107

Index
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Continuous uniform random variable, 107
Contour plot, 411
Contrasts, 13-2, 525, 526, 532
Control chart, 10, 598, 599, 600, 601, 602, 607,

609, 610, 615, 625, 627, 632
Control chart for defects per unit, see U-chart
Control chart for fraction defective, see P-chart
Control charts and hypothesis testing, 599
Controllable variables, 469
Convolution, 5-6
Cook’s distance measure, 445
Correlation, 171, 174, 179, 352, 400
Correlation coefficient, 401
Covariance, 171, 172, 174, 182
Covariance matrix, 421
Cp statistic in regression, 454
Critical region, 280, 290
Cumulative distribution function, 63, 64, 102
Cumulative frequency plot, 205
Cumulative standard normal distribution, 653, 654
Cumulative sum control chart, 632, 634, 635
Cyclic data, 210

D
Data collection, 5
Data versus information, 6
Decision interval for CUSUM, 635
Defect concentration diagram, 598, 641
Defects, 627
Defining contrast for blocking in 2k factorial, 545
Defining relation for 2k21 fractional factorial

design, 550
Defining relation for 2k22 fractional factorial

design, 556
Degree of belief interpretation of probability, 28
Degrees of freedom, 193
Deming’s 14 points, 642
Dependent variable, see Response variable
Design generator, 549, 556
Design resolution, 555
Designed experiment, 5, 6, 7, 11-1, 469, 506, 641
Designed experiments in engineering design, 

470, 14-3
Digidot plot, 210, 211
Discrete probability distribution, 61:

Binomial, 74, 87, 119, 120, 155, 310, 9-3, 9-4
Geometric, 78
Hypergeometric, 84, 87, 10-3
Negative binomial, 78, 80
Poisson, 89, 90, 119, 123, 129
Uniform, 70

Discrete random variable, 54, 59, 60, 62, 142, 
143, 5-1

Discrete sample space, 19, 27
Discrete uniform distribution, 70
Discrete uniform random variable, 70
Distribution-free statistical methods, see

Nonparametric statistics
Dot diagram, 3, 8, 197

E
Empirical model, 11, 12, 373, 374; also see

Regression model
Engineering method, 2
Enumerative study, 5
Equal variance assumption in pooled t-test, 10-1
Erlang distribution, 130
Erlang random variable, 129, 131
a-Error, 281, 285
b-Error, 282, 285, 293, 309, 312
Error sum of squares, 379, 421, 429, 449, 474, 475,

488, 493; also see Residual sum of squares
Estimated standard error, 225, 384
Estimating interaction in 2k factorial, 525, 530,

531, 532

Estimating main effects in 2k factorial, 525, 530, 531
Estimating variance components, 489
Estimation of parameters, 220; also see Point

estimation of parameters, Parameter estimation
Events, 22
EWMA control chart, 647
Exhaustive, 44, 52
Expectation function, 12-6
Expected mean squares, 474, 475, 488, 494, 13-6,

13-16, 513, 14-4, 14-7
Expected value of continuous random variable, 105
Expected value of discrete random variable, 66
Expected value of function of continuous random

variable, 106
Expected value of function of discrete random

variable, 69
Expected value (mean) of linear combination of

random variables, 181
Experimental design, see Designed experiments
Experimental unit, 492
Exponential distribution, 123
Exponential probability plot, 6-2
Exponential random variable, 123, 125
Extra sum of squares method, 433, 12-1
Extrapolation and regression, 11-1, 440

F
22 Factorial design, 524
23 Factorial design, 530
2k Factorial design, 1-3, 523, 529
Factorial experiment or design, 1-1, 1-3, 7, 506,

508, 510
Factors for constructing tolerance intervals, 

674, 675
Factors for constructing variables control charts, 673
Failure mechanism, 213
False alarm on control chart, 630
F-distribution, 355, 356, 357, 10-1
F-distribution percentage points, table of, 657,

658, 659, 60, 661
First (or lower) quartile, 200
First-order model, 14-12, 14-13
Fisher’s LSD procedure, 479, 497, 516
Fisher-Irwin test, 10-3, 10-4
Fixed factor effects, 473, 511
Fixed-effects model ANOVA, 473
Forward selection of variables in regression, 458
2k21 Fractional factorial design, 549, 552
2k22 Fractional factorial design, 556
2k2p Fractional factorial design, 555, 559
Fractional factorial experiment, 1-3, 549
Frequency distribution, 203
Full model, 434, 12-1
Functions of random variables, 5-1

G
Gamma distribution, 131, 132
Gamma function, 131, 7-1
Gamma random variable, 131, 132
Gauss-Newton method, 12-8
Gaussian distribution, 109; also see Normal

distribution
General method for deriving confidence 

interval, 253
General procedure for hypothesis testing, 287, 298
General regression significance test, see Extra 

sum of squares method
Generalized interaction, 547
Generator of fractional factorial, see Design

generator
Geometric distribution, 78
Geometric or 61 notation for factorials, 524
Geometric random variable, 79
Goodness-of-fit measure, 6-1

Goodness-of-fit test, 315
Graphical comparison of means following

ANOVA, 13-1

H
Hat matrix, 443
Histogram, 203, 204, 598, 619
Hypergeometric distribution, 84, 87, 10-3
Hypergeometric random variable, 86, 87
Hypothesis, 7, 277, 278, 286
Hypothesis testing, 7, 221, 278, 280, 287, 

289, 307, 310, 315, 320, 9-3, 329, 330, 
331, 337, 338, 339, 341, 342, 357, 358, 
359, 361, 362, 364, 10-3, 384, 387, 402,
428, 433, 572, 581, 585; also see Analysis
of variance

Hypothesis testing on correlation coefficient, 402
Hypothesis testing on difference in means of two

normal distributions: 
Variance known, 329, 330, 331
Variance unknown, 337, 338, 339, 341, 342

Hypothesis testing on mean of normal distribution:
Variance known, 289, 290, 291
Variance unknown, 300, 301, 303

Hypothesis testing on population proportion: 
Large-sample test, 310
Small-sample test, 9-3

Hypothesis testing on ratio of variances of two
normal distributions, 357, 358

Hypothesis testing on regression coefficients in
multiple linear regression: 

Extra sum of squares method, 433
Significance of regression, 428
Tests on individual regression coefficients, 432

Hypothesis testing on regression coefficients in
simple linear regression, 384: 

Analysis of variance approach 387
Significance of regression, 385
t-Tests, 384

Hypothesis testing on variance of normal
distribution, 307

Hypothesis testing on two population proportions:
Large-sample test, 361, 362
Small-sample test, 364, 10-3

I
Identity element, 533
In-control process, 598
Independence, 46, 47, 148, 170
Independent events, 47, 48
Independent random variables, 147, 148, 153, 164,

170, 182, 5-5, 197
Independent variable, see Regressor variable
Indicator variables, 450
Individuals control charts, 615
Influential observations in regression, 444, 445
Interaction, 1-2, 412, 507, 508
Interpretation of confidence interval, 250, 251
Interquartile range, 201
Intersection (set operation), 23
Intrinsically linear model, 400
Invariance property of maximum likelihood 

estimators, 235

J
Jacobian of transformation, 5-3, 5-4, 8-3, 10-2
Joint probability density function, 157, 167
Joint probability distribution, 142, 145, 151, 167,

169, 172, 7-3
Joint probability mass function, 143, 151

K
Kruskal-Wallis test, 589, 590
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L
Lack of memory property of exponential random

variable, 125, 126, 140
Lack of memory property of geometric random

variable, 79, 80
Lack-of-fit sum of squares, 11-2
Large-sample confidence interval, 255
Large-sample confidence interval for mean, 254, 255
Large-sample hypothesis test on mean of normal

distribution, 297
Least significance difference method, 479, 

480, 497
Least squares estimator, see Method of least squares
Least squares normal equations, 376, 409, 414, 417
Leverage in regression, 447
Likelihood function, 230
Likelihood ratio principle, 9-1
Likelihood ratio test statistic, 9-1
Linear combinations of random variables, 180, 181 
Linear model, 374, 413, 417, 447, 12-5, 472, 492
Linear statistical model, see Linear model
Location, 3
Logistic regression model, 11-6
Logit response function, 11-8
Lognormal distribution, 136
Lognormal random variable, 136
Lower confidence limit, 250
Lower control limit, 10, 599

M
Main effect, 507
Marginal probability density function, 159, 168
Marginal probability distribution, 144, 159, 168,

179, 7-3
Marginal probability mass function, 145, 152
Matrix of scatter plots, 416, 456
Maximum likelihood estimation, 230, 231, 233, 

7-5, 9-1, 401, 11-8
Mean, 66, 105, 191
Mean of continuous random variable, 105
Mean of discrete random variable, 66
Mean of population, 191
Mean square error of estimator, 226
Mean squares, 387, 474, 475
Mechanistic model, 11
Median, 200, 205, 206, 572
Method of least squares, 376, 409, 414, 417
Method of maximum likelihood, 6-1; also see

Maximum likelihood estimation
Method of moments, 229
Method of steepest ascent, 14-13
Minimum variance unbiased estimator, 224, 234
Mixed model, 518, 14-6
Mode, 200, 205, 206
Model adequacy checking, 395, 441, 481, 498,

517, 527, 536, 554
Model building in regression, see Variable

selection in regression models
Moment estimator, 229
Moment generating function, 5-8, 5-9, 5-11
Moments about origin, 5-8
Moments of random variable, 5-8; also see

Population moment
Moving range, 616
Moving range control chart, 616
Multicollinearity, 460
Multinomial distribution, 75
Multinomial probability distribution, 154, 155
Multiple comparisons following ANOVA, 479,

497, 13-1, 13-2, 13-4, 516
Multiple linear regression model, 411
Multiplication rule for probabilities, 42, 43, 2-1
Multivariate data, 206
Mutually exclusive events, 24, 34, 35, 52

N
Natural tolerance limits of process, 621
Negative binomial distribution, 78, 80
Negative binomial random variable, 81, 82
Noncentral F distribution, 484
Noncentral t distribution, 304
Nonlinear regression model, 12-5, 12-7
Nonparametric statistics, 275, 572, 581, 585, 589
Nonparametric tolerance interval, 275
Normal (large sample) approximation in sign 

test, 576
Normal (large sample) approximation in Wilcoxon

rank-sum test, 587
Normal (large sample) approximation in Wilcoxon

signed-rank test, 583
Normal approximation to binomial, 120, 310, 9-3
Normal approximation to Poisson, 121
Normal distribution, 109, 110, 119, 120, 121, 

204, 240
Normal probability plot, 213, 214, 215, 6-1, 302,

395, 442, 481, 537
Normal probability plot of effects, 537, 539, 

540, 554
Normal probability plot of residuals, 395, 442, 481
Normal random variable, 110
NP-chart, 626
Nuisance factor, 492
Null hypothesis, 279

O
Objective view of probabilities, 7-3
Observational study, 5, 6
Odds ratio, 11-8
One observation per cell in two-factor 

factorial, 517
One-factor-at-a-time experiment, 508
One-half fraction, 1-3, 545
One-quarter fraction, 556
One-sample confidence intervals, 247, 248, 250,

253, 254, 256, 258, 259, 263, 266
One-sample hypothesis tests, 7, 278, 289, 297, 300,

301, 305, 307, 310, 312, 315, 320
One-sample t-test, 301
One-sample z-test, 290
One-sided alternative hypothesis, 279, 286, 291
One-sided confidence bounds, 253, 259, 264, 267
One-sided confidence bounds, 335
Operating characteristic curves, 295, 304, 309,

331, 344, 359, 482, 13-7
Operating characteristic curves for chi-square test,

666, 667, 668
Operating characteristic curves for F-test, 669, 670
Operating characteristic curves for t-test, 664, 665
Operating characteristic curves for z-test, 662, 663
Optimization experiment, 14-2, 14-11
Order statistics, 245
Ordered stem-and-leaf display, 200
Orthogonal contrasts, 13-2
Orthogonal design, 533
Outlier, 207, 396
Out-of-control process, 598
Overcontrol, 8
Overfitting in regression models, 432

P
Paired samples, 349, 350, 576
Paired t-test, 349, 350, 491
Paired versus unpaired comparison of means, 351
Parameter estimation, 221, 222, 229, 230, 231,

234, 7-3, 376
Parameter estimation in nonlinear regression

model, 12-7
Parametric statistical methods, 572
Pareto chart, 206, 207, 598, 639

Partial F-test, 434, 435
Partial regression coefficients, 411
Patterns on control charts, 599, 604, 605
P-chart, 625, 626
Percentile, 201
Permutations, 2-1
Pivotal quantity for constructing confidence

interval, 253
Point estimate, 221
Point estimation of parameters, 220, 221, 229, 

230, 231, 234, 7-3
Point estimator, 221
Poisson distribution, 89, 90, 119, 123, 129
Poisson process, 90, 123, 129, 130
Poisson random variable, 93
Polynomial regression models, 412, 447
Pooled estimator of variance, 338
Pooled t-test, 339, 10-1
Population, 190, 195, 221
Population moment, 229
Population standard deviation, 193
Posterior distribution, 7-3
Power of statistical test, 285
Precision of estimation, 225, 252
Prediction interval, 247, 249, 268, 393, 439
Prediction interval in regression, 393, 439
Prediction interval on future observation from

normal distribution, 269
Prediction of new observations in regression, 

392, 439
Predictor variable, 375; also see Regressor

variable
Principal block, 545
Principal fraction, 551
Prior distribution, 7-3
Probabilistic linear model, 374; also see

Linear model
Probability, 14, 27, 28, 29, 37, 42, 99
Probability density function, 98, 99
Probability distribution, 59, 61, 66, 70, 74, 78, 80,

84, 90, 97, 98, 142 
Probability mass function, 61, 62, 90, 143, 145
Probability model, 14, 212
Probability plots, 212, 213, 6-1, 6-2, 315
Process capability, 619, 621, 622
Process capability ratio, 621, 622, 623
Process capability study, 601
Process characterization experiment, 14-1
Projection of fractional factorials, 554
Properties of estimators, 221, 225, 226, 245
Properties of least squares estimators, 383
Properties of maximum likelihood estimator, 

234, 235
Pure error sum of squares, 11-2
P-value, 292, 299, 303

Q
Quality improvement, 596
Quartiles, 200

R
R chart, 609
R2, 397, 398, 431
Random, 17
Random effect or factor, 518, 522
Random effects model ANOVA, 473, 487, 488,

518, 14-3, 14-4, 14-5
Random experiments, 17, 18
Random order of trials in experiment, 511
Random sample, 39, 40, 196, 225
Random variable, 3, 53:

Continuous, 54, 96 
Discrete, 54, 70

Randomization, 469, 471
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Randomized complete block design, 491, 13-16
Range, 194,  607
Rank transformation, 591
Ranks, 572, 581, 586, 589, 591
Rational subgroups and control charts, 602
Reduced model, 434, 12-1
Reference distribution, 301, 311
Reference value for CUSUM, 635
Regression analysis, 373
Regression and causality, 11-1
Regression coefficients, 374
Regression model, 13, 374, 411, 527
Regression model summary of 2k factorial, 527
Regression sum of squares, 387, 429
Regressor variable, 375, 412, 450
Rejection region for statistical test see Critical region
Relative efficiency in estimation, 227
Relative frequency, 28
Relative range, 607
Replicates, 1-1, 471, 510
Residual analysis, 395, 396, 11-1, 441, 442, 481,

498, 527, 536, 554
Residual plots, 481, 482, 498, 499, 517
Residual sum of squares, 11-2, 421
Residuals, 377, 395, 418, 441, 481, 517, 536
Resolution III design, 555, 562
Resolution IV design, 555, 556 
Resolution V design, 555
Response surface, 14-12
Response surface methodology, 14-11
Response variable, 375, 412
Restricted model, 14-7
Retrospective study, 5
Ridge regression, 461, 12-2
Ridge trace, 12-2
Rotatable design 14-19
Runs rules, 607

S
S control chart, 610, 611
Sample, 20, 39, 40, 190, 196
Sample correlation coefficient, 402
Sample mean, 190, 197
Sample moment, 229
Sample range, 194, 607
Sample size formulas for confidence intervals,

252, 335
Sample size formulas for tests on proportion, 313
Sample size formulas for tests on means, 294, 332
Sample space, 18: 

Continuous, 19
Discrete, 19, 27

Sample standard deviation, 191, 197
Sample variance, 191, 192, 197
Sampling distribution, 221, 238, 289, 239
Sampling distribution of the mean, 239
Sampling with replacement, 20
Sampling without replacement, 20
Saturated fractional factorial design, 563
Scatter diagram, 373, 598
Scientific method, 2
Screening experiments, 470, 545
Second-order model, 14-10, 14-12
Sensitivity of a statistical test, 285
Sequential experimentation, 470, 551, 14-13
Set operations, 23
Shewhart control charts, 600, 632
Sign test, 572, 575, 578, 579, 593
Sign test for paired samples, 576
Sign test, table of critical values, 671

Significance level of statistical test, 281, 292
Significance of regression, 385, 387, 388, 428
Simple linear regression model, 374
Single replicate of factorial design, 537
Single-factor experiment, 469, 470
Six-sigma process, 623, 624
Six-sigma quality, 140
Sources of variability, 3
Sparsity of effects principle, 537
SPC, 11: also see Statistical process control
Special cause of variation, 598
Stability, 4
Standard deviation of random variable, 66, 105
Standard error of point estimator, 225, 265
Standard error of regression coefficients, 384
Standard normal distribution, 113, 114, 240
Standard normal random variable, 111, 113, 114
Standardized control chart, 647
Standardized residuals, 396, 442
Standardizing normal random variable, 113, 114
Statistic, 197, 221
Statistical inference, 4, 221, 238, 327; also see

Hypothesis testing, Parameter estimation
Statistical process control, 11, 597; also see SPC
Statistical quality control, 596, 597
Statistical thinking, 3
Statistical versus practical significance, 298, 299
Statistics (the field), 2
Stem-and-leaf diagram, 197, 198, 200, 204, 210
Stepwise regression, 457
Strong versus weak conclusions in hypothesis

testing, 285
Studentized residual, 443
Subjective probability, 28
Subjective view of probabilities, 7-3

T
t-Distribution percentage points, table of, 656
t Distribution, 258, 8-2, 301
Tabular CUSUM procedure, 634, 636
Tampering with a process, 8
Taylor series, 12-8
Test for homogeneity in contingency table, 322
Test for independence in contingency table, 320
Test for lack of fit in regression, 11-1
Test statistic, 279, 289, 301, 307, 311, 316, 321,

322, 9-1
Testing for curvature, see Center points in 2k

factorial design
Testing for trends, 593
Third (or upper) quartile, 200
Three-factor factorial experiment, 520
Three-factor interaction, 532
Three-sigma control limits, 603, 630
Ties in Kruskal-Wallis test, 589
Ties in sign test, 575
Ties in Wilcoxon signed-rank test, 583
Time series plot, 8, 209
Time series, 8, 209
Tolerance chart, 619
Tolerance interval, 247, 248, 270, 275
Tolerance intervals for normal distribution, 270
Total probability rule, 43, 44, 52
Total sum of squares, 380, 473
Transformations, 217, 400, 11-4
Treatment effect, 472
Treatment sum of squares, 474, 488, 493
Treatments, 472, 492, 493
Tree diagram, 21, 22, 45
Trend in data, 210

Trimmed mean, 219
Tukey’s test, 13-4
Two-factor factorial experiment, 510, 514, 517
Two-factor interaction, 507
Two-factor interaction plots, 508
Two-factor mixed model, 14-6
Two-factor random effects model, 14-4, 14-5
Two-sample confidence intervals, 334, 335, 345,

346, 352, 359, 365
Two-sample hypothesis tests, 7, 327, 329, 337,

341, 349, 357, 361, 364, 10-3
Two-sided alternative hypothesis, 279, 286
Type I error, 280
Type II error for sign test, 578
Type II error, 282, 293, 312

U
U-chart, 627, 628
Unbalanced experiment, 479
Unbiased estimator, 222, 223, 224, 379, 383, 421
Uniform distribution:

Discrete, 70 
Continuous, 107

Union (set operation), 23
Uniqueness property of moment generating

functions, 5-11
Unreplicated factorial design, 537
Upper confidence limit, 250
Upper control limit, 10, 599

V
Variability, 3, 191
Variable selection in regression models, 432, 452,

453, 457, 458, 459
Variables control charts, 601
Variance components, see components of variance
Variance inflation factors, 460
Variance of linear combination of random

variables, 181
Variance of point estimator, 223, 226
Variance of population, 193
Variance of random variable, 66, 105
Venn diagram, 24
Verifying assumptions, 213, 302; also see Model

adequacy checking
V-mask procedure for CUSUM, 633

W
Warning limits on control charts, 607
Weibull distribution, 134
Weibull probability plot, 6-2
Weibull random variable, 134
Weighted least squares, 409
Western Electric rules for control charts, 606
Wilcoxon rank-sum test, 585, 587, 588
Wilcoxon rank-sum test, table of critical 

values, 672
Wilcoxon signed-rank test, 579, 581, 583, 584
Wilcoxon signed-rank test, table of critical 

values, 671

X

control chart, 607, 608

Z
z-value, 114

X
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