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Preface

This is an introductory textbook for a first course in applied statistics and probability for un-
dergraduate students in engineering and the physical or chemical sciences. These individuals
play a significant role in designing and developing new products and manufacturing systems
and processes, and they also improve existing systems. Statistical methods are an important
tool in these activities because they provide the engineer with both descriptive and analytical
methods for dealing with the variability in observed data. Although many of the methods we
present are fundamental to statistical analysis in other disciplines, such as business and
management, the life sciences, and the social sciences, we have elected to focus on an
engineering-oriented audience. We believe that this approach will best serve students in
engineering and the chemical/physical sciences and will allow them to concentrate on the
many applications of statistics in these disciplines. We have worked hard to ensure that our ex-
amples and exercises are engineering- and science-based, and in almost all cases we have used
examples of real data—either taken from a published source or based on our consulting expe-
riences.

We believe that engineers in all disciplines should take at least one course in statistics.
Unfortunately, because of other requirements, most engineers will only take one statistics
course. This book can be used for a single course, although we have provided enough mate-
rial for two courses in the hope that more students will see the important applications of sta-
tistics in their everyday work and elect a second course. We believe that this book will also
serve as a useful reference.

ORGANIZATION OF THE BOOK

We have retained the relatively modest mathematical level of the first two editions. We have
found that engineering students who have completed one or two semesters of calculus should
have no difficulty reading almost all of the text. It is our intent to give the reader an understand-
ing of the methodology and how to apply it, not the mathematical theory. We have made many
enhancements in this edition, including reorganizing and rewriting major portions of the book.

Perhaps the most common criticism of engineering statistics texts is that they are too
long. Both instructors and students complain that it is impossible to cover all of the topics in
the book in one or even two terms. For authors, this is a serious issue because there is great va-
riety in both the content and level of these courses, and the decisions about what material to
delete without limiting the value of the text are not easy. After struggling with these issues, we
decided to divide the text into two components; a set of core topics, many of which are most
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likely to be covered in an engineering statistics course, and a set of supplementary topics, or
topics that will be useful for some but not all courses. The core topics are in the printed book,
and the complete text (both core and supplementary topics) is available on the CD that is
included with the printed book. Decisions about topics to include in print and which to include
only on the CD were made based on the results of a recent survey of instructors.

The Interactive e-Text consists of the complete text and a wealth of additional material
and features. The text and links on the CD are navigated using Adobe Acrobat™. The links
within the Interactive e-Text include the following: (1) from the Table of Contents to the se-
lected eZext sections, (2) from the Index to the selected topic within the e-Text, (3) from refer-
ence to a figure, table, or equation in one section to the actual figure, table, or equation in an-
other section (all figures can be enlarged and printed), (4) from end-of-chapter Important
Terms and Concepts to their definitions within the chapter, (5) from in-text boldfaced terms
to their corresponding Glossary definitions and explanations, (6) from in-text references to the
corresponding Appendix tables and charts, (7) from boxed-number end-of-chapter exercises
(essentially most odd-numbered exercises) to their answers, (8) from some answers to the
complete problem solution, and (9) from the opening splash screen to the textbook Web site.

Chapter 1 is an introduction to the field of statistics and how engineers use statistical
methodology as part of the engineering problem-solving process. This chapter also introduces
the reader to some engineering applications of statistics, including building empirical models,
designing engineering experiments, and monitoring manufacturing processes. These topics
are discussed in more depth in subsequent chapters.

Chapters 2, 3, 4, and 5 cover the basic concepts of probability, discrete and continuous
random variables, probability distributions, expected values, joint probability distributions,
and independence. We have given a reasonably complete treatment of these topics but have
avoided many of the mathematical or more theoretical details.

Chapter 6 begins the treatment of statistical methods with random sampling; data sum-
mary and description techniques, including stem-and-leaf plots, histograms, box plots, and
probability plotting; and several types of time series plots. Chapter 7 discusses point estimation
of parameters. This chapter also introduces some of the important properties of estimators, the
method of maximum likelihood, the method of moments, sampling distributions, and the cen-
tral limit theorem.

Chapter 8 discusses interval estimation for a single sample. Topics included are confi-
dence intervals for means, variances or standard deviations, and proportions and prediction and
tolerance intervals. Chapter 9 discusses hypothesis tests for a single sample. Chapter 10 pre-
sents tests and confidence intervals for two samples. This material has been extensively rewrit-
ten and reorganized. There is detailed information and examples of methods for determining
appropriate sample sizes. We want the student to become familiar with how these techniques
are used to solve real-world engineering problems and to get some understanding of the con-
cepts behind them. We give a logical, heuristic development of the procedures, rather than a
formal mathematical one.

Chapters 11 and 12 present simple and multiple linear regression. We use matrix algebra
throughout the multiple regression material (Chapter 12) because it is the only easy way to
understand the concepts presented. Scalar arithmetic presentations of multiple regression are
awkward at best, and we have found that undergraduate engineers are exposed to enough
matrix algebra to understand the presentation of this material.

Chapters 13 and 14 deal with single- and multifactor experiments, respectively. The no-
tions of randomization, blocking, factorial designs, interactions, graphical data analysis, and
fractional factorials are emphasized. Chapter 15 gives a brief introduction to the methods and
applications of nonparametric statistics, and Chapter 16 introduces statistical quality control,
emphasizing the control chart and the fundamentals of statistical process control.
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Each chapter has an extensive collection of exercises, including end-of-section exercises
that emphasize the material in that section, supplemental exercises at the end of the chapter
that cover the scope of chapter topics, and mind-expanding exercises that often require the
student to extend the text material somewhat or to apply it in a novel situation. As noted
above, answers are provided to most odd-numbered exercises and the e-7ext contains com-
plete solutions to selected exercises.

USING THE BOOK

This is a very flexible textbook because instructors’ ideas about what should be in a first
course on statistics for engineers vary widely, as do the abilities of different groups of stu-
dents. Therefore, we hesitate to give too much advice but will explain how we use the book.

We believe that a first course in statistics for engineers should be primarily an applied sta-
tistics course, not a probability course. In our one-semester course we cover all of Chapter 1
(in one or two lectures); overview the material on probability, putting most of the emphasis on
the normal distribution (six to eight lectures); discuss most of Chapters 6 though 10 on confi-
dence intervals and tests (twelve to fourteen lectures); introduce regression models in
Chapter 11 (four lectures); give an introduction to the design of experiments from Chapters 13
and 14 (six lectures); and present the basic concepts of statistical process control, including
the Shewhart control chart from Chapter 16 (four lectures). This leaves about three to four pe-
riods for exams and review. Let us emphasize that the purpose of this course is to introduce
engineers to how statistics can be used to solve real-world engineering problems, not to weed
out the less mathematically gifted students. This course is not the “baby math-stat” course that
is all too often given to engineers.

If a second semester is available, it is possible to cover the entire book, including much
of the e-Text material, if appropriate for the audience. It would also be possible to assign and
work many of the homework problems in class to reinforce the understanding of the concepts.
Obviously, multiple regression and more design of experiments would be major topics in a
second course.

USING THE COMPUTER

In practice, engineers use computers to apply statistical methods to solve problems. Therefore,
we strongly recommend that the computer be integrated into the class. Throughout the book we
have presented output from Minitab as typical examples of what can be done with modern sta-
tistical software. In teaching, we have used other software packages, including Statgraphics,
JMP, and Statisticia. We did not clutter up the book with examples from many different packages
because how the instructor integrates the software into the class is ultimately more important
than which package is used. All text data is available in electronic form on the e-7ext CD. In

@ some chapters, there are problems that we feel should be worked using computer software. We
have marked these problems with a special icon in the margin.

In our own classrooms, we use the computer in almost every lecture and demonstrate
how the technique is implemented in software as soon as it is discussed in the lecture.
Student versions of many statistical software packages are available at low cost, and students
can either purchase their own copy or use the products available on the PC local area net-
works. We have found that this greatly improves the pace of the course and student under-
standing of the material.
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USING THE WEB

Additional resources for students and instructors can be found at www.wiley.com/college/
montgomery/.
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The Role of Statistics

in Engineering

CHAPTER OUTLINE

1-1 THE ENGINEERING METHOD AND 1-2.5 A Factorial Experiment for the
STATISTICAL THINKING Pull-off Force Problem (CD Only)

1-2 COLLECTING ENGINEERING DATA 1-2.6 Observing Processes Over Time
1-2.1 Basic Principles 1-3 MECHANISTIC AND EMPIRICAL
1-2.2 Retrospective Study MODELS
1-2.3 Observational Study 1-4 PROBABILITY AND PROBABILITY

MODELS

1-2.4 Designed Experiments

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:

S I N S

6.
7.

. Identify the role that statistics can play in the engineering problem-solving process

. Discuss how variability affects the data collected and used for making engineering decisions
. Explain the difference between enumerative and analytical studies

. Discuss the different methods that engineers use to collect data

. Identify the advantages that designed experiments have in comparison to other methods of col-

lecting engineering data
Explain the differences between mechanistic models and empirical models

Discuss how probability and probability models are used in engineering and science

CD MATERIAL

8.
9.

Explain the factorial experimental design.

Explain how factors can Interact.

Answers for most odd numbered exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
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available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

1-1 THE ENGINEERING METHOD AND STATISTICAL THINKING

Figure 1-1 The
engineering method.

An engineer is someone who solves problems of interest to society by the efficient application
of scientific principles. Engineers accomplish this by either refining an existing product or
process or by designing a new product or process that meets customers’ needs. The engineering,
or scientific, method is the approach to formulating and solving these problems. The steps in
the engineering method are as follows:

Develop a clear and concise description of the problem.

2. Identify, at least tentatively, the important factors that affect this problem or that may
play a role in its solution.

3. Propose a model for the problem, using scientific or engineering knowledge of the
phenomenon being studied. State any limitations or assumptions of the model.

4. Conduct appropriate experiments and collect data to test or validate the tentative
model or conclusions made in steps 2 and 3.

5. Refine the model on the basis of the observed data.
6. Manipulate the model to assist in developing a solution to the problem.

7. Conduct an appropriate experiment to confirm that the proposed solution to the prob-
lem is both effective and efficient.

8. Draw conclusions or make recommendations based on the problem solution.

The steps in the engineering method are shown in Fig. 1-1. Notice that the engineering method
features a strong interplay between the problem, the factors that may influence its solution, a
model of the phenomenon, and experimentation to verify the adequacy of the model and the
proposed solution to the problem. Steps 2—4 in Fig. 1-1 are enclosed in a box, indicating that
several cycles or iterations of these steps may be required to obtain the final solution.
Consequently, engineers must know how to efficiently plan experiments, collect data, analyze
and interpret the data, and understand how the observed data are related to the model they
have proposed for the problem under study.

The field of statistics deals with the collection, presentation, analysis, and use of data to
make decisions, solve problems, and design products and processes. Because many aspects of
engineering practice involve working with data, obviously some knowledge of statistics is
important to any engineer. Specifically, statistical techniques can be a powerful aid in design-
ing new products and systems, improving existing designs, and designing, developing, and
improving production processes.
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Statistical methods are used to help us describe and understand variability. By variability,
we mean that successive observations of a system or phenomenon do not produce exactly the
same result. We all encounter variability in our everyday lives, and statistical thinking can
give us a useful way to incorporate this variability into our decision-making processes. For
example, consider the gasoline mileage performance of your car. Do you always get exactly the
same mileage performance on every tank of fuel? Of course not—in fact, sometimes the mileage
performance varies considerably. This observed variability in gasoline mileage depends on
many factors, such as the type of driving that has occurred most recently (city versus highway),
the changes in condition of the vehicle over time (which could include factors such as tire
inflation, engine compression, or valve wear), the brand and/or octane number of the gasoline
used, or possibly even the weather conditions that have been recently experienced. These factors
represent potential sources of variability in the system. Statistics gives us a framework for
describing this variability and for learning about which potential sources of variability are the
most important or which have the greatest impact on the gasoline mileage performance.

We also encounter variability in dealing with engineering problems. For example, sup-
pose that an engineer is designing a nylon connector to be used in an automotive engine
application. The engineer is considering establishing the design specification on wall thick-
ness at 3/32 inch but is somewhat uncertain about the effect of this decision on the connector
pull-off force. If the pull-off force is too low, the connector may fail when it is installed in an
engine. Eight prototype units are produced and their pull-off forces measured, resulting in the
following data (in pounds): 12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, 13.1. As we anticipated,
not all of the prototypes have the same pull-off force. We say that there is variability in the
pull-off force measurements. Because the pull-off force measurements exhibit variability, we
consider the pull-off force to be a random variable. A convenient way to think of a random
variable, say X, that represents a measurement, is by using the model

X=p+e (1-1)

where . is a constant and € is a random disturbance. The constant remains the same with every
measurement, but small changes in the environment, test equipment, differences in the indi-
vidual parts themselves, and so forth change the value of e. If there were no disturbances, €
would always equal zero and X would always be equal to the constant w. However, this never
happens in the real world, so the actual measurements X exhibit variability. We often need to
describe, quantify and ultimately reduce variability.

Figure 1-2 presents a dot diagram of these data. The dot diagram is a very useful plot for
displaying a small body of data—say, up to about 20 observations. This plot allows us to see eas-
ily two features of the data; the location, or the middle, and the scatter or variability. When the
number of observations is small, it is usually difficult to identify any specific patterns in the vari-
ability, although the dot diagram is a convenient way to see any unusual data features.

The need for statistical thinking arises often in the solution of engineering problems.
Consider the engineer designing the connector. From testing the prototypes, he knows that the
average pull-off force is 13.0 pounds. However, he thinks that this may be too low for the

° e 0O OO o o o o ° = 3 inch
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1 .
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Pull-off force Pull-off force

Figure 1-2 Dot diagram of the pull-off force Figure 1-3 Dot diagram of pull-off force for two wall
data when wall thickness is 3/32 inch. thicknesses.
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intended application, so he decides to consider an alternative design with a greater wall
thickness, 1/8 inch. Eight prototypes of this design are built, and the observed pull-off force
measurements are 12.9, 13.7, 12.8, 13.9, 14.2, 13.2, 13.5, and 13.1. The average is 13.4.
Results for both samples are plotted as dot diagrams in Fig. 1-3, page 3. This display gives
the impression that increasing the wall thickness has led to an increase in pull-off force.
However, there are some obvious questions to ask. For instance, how do we know that an-
other sample of prototypes will not give different results? Is a sample of eight prototypes
adequate to give reliable results? If we use the test results obtained so far to conclude that
increasing the wall thickness increases the strength, what risks are associated with this de-
cision? For example, is it possible that the apparent increase in pull-off force observed in
the thicker prototypes is only due to the inherent variability in the system and that increas-
ing the thickness of the part (and its cost) really has no effect on the pull-off force?

Often, physical laws (such as Ohm’s law and the ideal gas law) are applied to help design
products and processes. We are familiar with this reasoning from general laws to specific
cases. But it is also important to reason from a specific set of measurements to more general
cases to answer the previous questions. This reasoning is from a sample (such as the eight con-
nectors) to a population (such as the connectors that will be sold to customers). The reasoning
is referred to as statistical inference. See Fig. 1-4. Historically, measurements were obtained
from a sample of people and generalized to a population, and the terminology has remained.
Clearly, reasoning based on measurements from some objects to measurements on all objects
can result in errors (called sampling errors). However, if the sample is selected properly, these
risks can be quantified and an appropriate sample size can be determined.

In some cases, the sample is actually selected from a well-defined population. The sam-
ple is a subset of the population. For example, in a study of resistivity a sample of three wafers
might be selected from a production lot of wafers in semiconductor manufacturing. Based on
the resistivity data collected on the three wafers in the sample, we want to draw a conclusion
about the resistivity of all of the wafers in the lot.

In other cases, the population is conceptual (such as with the connectors), but it might be
thought of as future replicates of the objects in the sample. In this situation, the eight proto-
type connectors must be representative, in some sense, of the ones that will be manufactured
in the future. Clearly, this analysis requires some notion of stability as an additional assump-
tion. For example, it might be assumed that the sources of variability in the manufacture of the
prototypes (such as temperature, pressure, and curing time) are the same as those for the con-
nectors that will be manufactured in the future and ultimately sold to customers.

Time
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Figure 1-4  Statistical inference is one type of Figure 1-5 Enumerative versus analytic study.

reasoning.
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The wafers-from-lots example is called an enumerative study. A sample is used to make
an inference to the population from which the sample is selected. The connector example is
called an analytic study. A sample is used to make an inference to a conceptual (future)
population. The statistical analyses are usually the same in both cases, but an analytic study
clearly requires an assumption of stability. See Fig. 1-5, on page 4.

1-2 COLLECTING ENGINEERING DATA
1-2.1 Basic Principles

In the previous section, we illustrated some simple methods for summarizing data. In the en-
gineering environment, the data is almost always a sample that has been selected from some
population. Three basic methods of collecting data are

e A retrospective study using historical data
e An observational study
* A designed experiment

An effective data collection procedure can greatly simplify the analysis and lead to improved
understanding of the population or process that is being studied. We now consider some ex-
amples of these data collection methods.

1-2.2 Retrospective Study

Montgomery, Peck, and Vining (2001) describe an acetone-butyl alcohol distillation
column for which concentration of acetone in the distillate or output product stream is an
important variable. Factors that may affect the distillate are the reboil temperature, the con-
densate temperature, and the reflux rate. Production personnel obtain and archive the
following records:

e The concentration of acetone in an hourly test sample of output product
e The reboil temperature log, which is a plot of the reboil temperature over time
e The condenser temperature controller log

e The nominal reflux rate each hour

The reflux rate should be held constant for this process. Consequently, production personnel
change this very infrequently.

A retrospective study would use either all or a sample of the historical process data
archived over some period of time. The study objective might be to discover the relationships
among the two temperatures and the reflux rate on the acetone concentration in the output
product stream. However, this type of study presents some problems:

1. We may not be able to see the relationship between the reflux rate and acetone con-
centration, because the reflux rate didn’t change much over the historical period.

2. The archived data on the two temperatures (which are recorded almost continu-
ously) do not correspond perfectly to the acetone concentration measurements
(which are made hourly). It may not be obvious how to construct an approximate
correspondence.
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3. Production maintains the two temperatures as closely as possible to desired targets or
set points. Because the temperatures change so little, it may be difficult to assess their
real impact on acetone concentration.

4. Within the narrow ranges that they do vary, the condensate temperature tends to in-
crease with the reboil temperature. Consequently, the effects of these two process
variables on acetone concentration may be difficult to separate.

As you can see, a retrospective study may involve a lot of data, but that data may contain
relatively little useful information about the problem. Furthermore, some of the relevant
data may be missing, there may be transcription or recording errors resulting in outliers
(or unusual values), or data on other important factors may not have been collected and
archived. In the distillation column, for example, the specific concentrations of butyl alco-
hol and acetone in the input feed stream are a very important factor, but they are not
archived because the concentrations are too hard to obtain on a routine basis. As a result of
these types of issues, statistical analysis of historical data sometimes identify interesting
phenomena, but solid and reliable explanations of these phenomena are often difficult to
obtain.

1-2.3 Observational Study

In an observational study, the engineer observes the process or population, disturbing it as lit-
tle as possible, and records the quantities of interest. Because these studies are usually con-
ducted for a relatively short time period, sometimes variables that are not routinely measured
can be included. In the distillation column, the engineer would design a form to record the two
temperatures and the reflux rate when acetone concentration measurements are made. It may
even be possible to measure the input feed stream concentrations so that the impact of this fac-
tor could be studied. Generally, an observational study tends to solve problems 1 and 2 above
and goes a long way toward obtaining accurate and reliable data. However, observational
studies may not help resolve problems 3 and 4.

1-2.4 Designed Experiments

In a designed experiment the engineer makes deliberate or purposeful changes in the control-
lable variables of the system or process, observes the resulting system output data, and then
makes an inference or decision about which variables are responsible for the observed changes
in output performance. The nylon connector example in Section 1-1 illustrates a designed ex-
periment; that is, a deliberate change was made in the wall thickness of the connector with the
objective of discovering whether or not a greater pull-off force could be obtained. Designed
experiments play a very important role in engineering design and development and in the
improvement of manufacturing processes. Generally, when products and processes are designed
and developed with designed experiments, they enjoy better performance, higher reliability, and
lower overall costs. Designed experiments also play a crucial role in reducing the lead time for
engineering design and development activities.

For example, consider the problem involving the choice of wall thickness for the
nylon connector. This is a simple illustration of a designed experiment. The engineer chose
two wall thicknesses for the connector and performed a series of tests to obtain pull-off
force measurements at each wall thickness. In this simple comparative experiment, the
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engineer is interested in determining if there is any difference between the 3/32- and
1/8-inch designs. An approach that could be used in analyzing the data from this experi-
ment is to compare the mean pull-off force for the 3/32-inch design to the mean pull-off
force for the 1/8-inch design using statistical hypothesis testing, which is discussed in
detail in Chapters 9 and 10. Generally, a hypothesis is a statement about some aspect of the
system in which we are interested. For example, the engineer might want to know if the
mean pull-off force of a 3/32-inch design exceeds the typical maximum load expected to
be encountered in this application, say 12.75 pounds. Thus, we would be interested in test-
ing the hypothesis that the mean strength exceeds 12.75 pounds. This is called a single-
sample hypothesis testing problem. It is also an example of an analytic study. Chapter 9
presents techniques for this type of problem. Alternatively, the engineer might be inter-
ested in testing the hypothesis that increasing the wall thickness from 3/32- to 1/8-inch
results in an increase in mean pull-off force. Clearly, this is an analytic study; it is also an
example of a two-sample hypothesis testing problem. Two-sample hypothesis testing
problems are discussed in Chapter 10.

Designed experiments are a very powerful approach to studying complex systems, such
as the distillation column. This process has three factors, the two temperatures and the reflux
rate, and we want to investigate the effect of these three factors on output acetone concentra-
tion. A good experimental design for this problem must ensure that we can separate the effects
of all three factors on the acetone concentration. The specified values of the three factors used
in the experiment are called factor levels. Typically, we use a small number of levels for each
factor, such as two or three. For the distillation column problem, suppose we use a “high,” and
“low,” level (denoted +1 and —1, respectively) for each of the factors. We thus would use two
levels for each of the three factors. A very reasonable experiment design strategy uses every
possible combination of the factor levels to form a basic experiment with eight different set-
tings for the process. This type of experiment is called a factorial experiment. Table 1-1 pres-
ents this experimental design.

Figure 1-6, on page 8, illustrates that this design forms a cube in terms of these high and
low levels. With each setting of the process conditions, we allow the column to reach equilib-
rium, take a sample of the product stream, and determine the acetone concentration. We then
can draw specific inferences about the effect of these factors. Such an approach allows us to
proactively study a population or process. Designed experiments play a very important role in
engineering and science. Chapters 13 and 14 discuss many of the important principles and
techniques of experimental design.

Table 1-1 The Designed Experiment (Factorial Design) for the
Distillation Column

Reboil Temp. Condensate Temp. Reflux Rate
-1 -1 -1
+1 —1 —1
-1 +1 -1
+1 +1 -1
-1 -1 +1
+1 -1 +1
-1 +1 +1

+1 +1 +1
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Figure 1-6  The fac-
torial design for the
distillation column.
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1-2.5 A Factorial Experiment for the Connector Pull-off
Force Problem (CD Only)

1-2.6 Observing Processes Over Time

Figure 1-7 The dot
diagram illustrates
variation but does not
identify the problem.

Often data are collected over time. In this case, it is usually very helpful to plot the data ver-
sus time in a time series plot. Phenomena that might affect the system or process often be-
come more visible in a time-oriented plot and the concept of stability can be better judged.

Figure 1-7 is a dot diagram of acetone concentration readings taken hourly from the
distillation column described in Section 1-2.2. The large variation displayed on the dot
diagram indicates a lot of variability in the concentration, but the chart does not help explain
the reason for the variation. The time series plot is shown in Figure 1-8, on page 9. A shift
in the process mean level is visible in the plot and an estimate of the time of the shift can be
obtained.

W. Edwards Deming, a very influential industrial statistician, stressed that it is important
to understand the nature of variability in processes and systems over time. He conducted an
experiment in which he attempted to drop marbles as close as possible to a target on a table.
He used a funnel mounted on a ring stand and the marbles were dropped into the funnel. See
Fig. 1-9. The funnel was aligned as closely as possible with the center of the target. He then
used two different strategies to operate the process. (1) He never moved the funnel. He just
dropped one marble after another and recorded the distance from the target. (2) He dropped
the first marble and recorded its location relative to the target. He then moved the funnel an
equal and opposite distance in an attempt to compensate for the error. He continued to make
this type of adjustment after each marble was dropped.

After both strategies were completed, he noticed that the variability of the distance
from the target for strategy 2 was approximately 2 times larger than for strategy 1. The ad-
justments to the funnel increased the deviations from the target. The explanation is that the
error (the deviation of the marble’s position from the target) for one marble provides no
information about the error that will occur for the next marble. Consequently, adjustments
to the funnel do not decrease future errors. Instead, they tend to move the funnel farther
from the target.

This interesting experiment points out that adjustments to a process based on random dis-
turbances can actually increase the variation of the process. This is referred to as overcontrol

°
°
°
° e o °
° o o o o °
© © @ 0 0 0 0 0 0 0 0 0 0 0 0 o °
X
80.5 84.0 87.5 91.0 94.5 98.0

Acetone concentration



100

Acetone concentration
©
o

1-2 COLLECTING ENGINEERING DATA 9

80 L4
o o
e o
10 20 30 AN
Observation number (hour) Target Marbles
Figure 1-8 A time series plot of concentration provides Figure 1-9 Deming’s funnel experiment.

more information than the dot diagram.

Figure 1-10  Adjust-
ments applied to
random disturbances
overcontrol the process
and increase the devia-
tions from the target.

or tampering. Adjustments should be applied only to compensate for a nonrandom shift in
the process—then they can help. A computer simulation can be used to demonstrate the les-
sons of the funnel experiment. Figure 1-10 displays a time plot of 100 measurements
(denoted as y) from a process in which only random disturbances are present. The target
value for the process is 10 units. The figure displays the data with and without adjustments
that are applied to the process mean in an attempt to produce data closer to target. Each
adjustment is equal and opposite to the deviation of the previous measurement from target.
For example, when the measurement is 11 (one unit above target), the mean is reduced by
one unit before the next measurement is generated. The overcontrol has increased the devia-
tions from the target.

Figure 1-11 displays the data without adjustment from Fig. 1-10, except that the measure-
ments after observation number 50 are increased by two units to simulate the effect of a shift
in the mean of the process. When there is a true shift in the mean of a process, an adjustment
can be useful. Figure 1-11 also displays the data obtained when one adjustment (a decrease of
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Figure 1-11  Process
mean shift is detected
at observation number
57, and one adjustment
(a decrease of two
units) reduces the
deviations from target.

Figure 1-12 A
control chart for the
chemical process
concentration data.
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two units) is applied to the mean after the shift is detected (at observation number 57). Note
that this adjustment decreases the deviations from target.

The question of when to apply adjustments (and by what amounts) begins with an under-
standing of the types of variation that affect a process. A control chart is an invaluable way
to examine the variability in time-oriented data. Figure 1-12 presents a control chart for the
concentration data from Fig. 1-8. The center line on the control chart is just the average of the
concentration measurements for the first 20 samples (x = 91.5 g/1) when the process is sta-
ble. The upper control limit and the lower control limit are a pair of statistically derived lim-
its that reflect the inherent or natural variability in the process. These limits are located three
standard deviations of the concentration values above and below the center line. If the process
is operating as it should, without any external sources of variability present in the system, the
concentration measurements should fluctuate randomly around the center line, and almost all
of them should fall between the control limits.

In the control chart of Fig. 1-12, the visual frame of reference provided by the center line
and the control limits indicates that some upset or disturbance has affected the process around
sample 20 because all of the following observations are below the center line and two of them
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actually fall below the lower control limit. This is a very strong signal that corrective action is
required in this process. If we can find and eliminate the underlying cause of this upset, we can
improve process performance considerably.

Control charts are a very important application of statistics for monitoring, controlling,
and improving a process. The branch of statistics that makes use of control charts is called sta-
tistical process control, or SPC. We will discuss SPC and control charts in Chapter 16.

1-3 MECHANISTIC AND EMPIRICAL MODELS

Models play an important role in the analysis of nearly all engineering problems. Much of the
formal education of engineers involves learning about the models relevant to specific fields
and the techniques for applying these models in problem formulation and solution. As a sim-
ple example, suppose we are measuring the flow of current in a thin copper wire. Our model
for this phenomenon might be Ohm’s law:

Current = voltage/resistance
or
I=EJR (1-2)

We call this type of model a mechanistic model because it is built from our underlying
knowledge of the basic physical mechanism that relates these variables. However, if we
performed this measurement process more than once, perhaps at different times, or even on
different days, the observed current could differ slightly because of small changes or varia-
tions in factors that are not completely controlled, such as changes in ambient temperature,
fluctuations in performance of the gauge, small impurities present at different locations in the
wire, and drifts in the voltage source. Consequently, a more realistic model of the observed
current might be

I=E/R + ¢ (1-3)

where € is a term added to the model to account for the fact that the observed values of
current flow do not perfectly conform to the mechanistic model. We can think of € as a
term that includes the effects of all of the unmodeled sources of variability that affect this
system.

Sometimes engineers work with problems for which there is no simple or well-
understood mechanistic model that explains the phenomenon. For instance, suppose we are
interested in the number average molecular weight (M,) of a polymer. Now we know that M,
is related to the viscosity of the material (77), and it also depends on the amount of catalyst (C)
and the temperature (7') in the polymerization reactor when the material is manufactured. The
relationship between M, and these variables is

M,=f(V,C,T) (1-4)

say, where the form of the function f'is unknown. Perhaps a working model could be devel-
oped from a first-order Taylor series expansion, which would produce a model of the form

M, = By + BV + B.C + B5T (1-5)
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where the B’s are unknown parameters. Now just as in Ohm’s law, this model will not exactly
describe the phenomenon, so we should account for the other sources of variability that may
affect the molecular weight by adding another term to the model; therefore

Mn = BO + BIV+ Bzc + B3T+ € (1-6)

is the model that we will use to relate molecular weight to the other three variables. This type of
model is called an empirical model; that is, it uses our engineering and scientific knowledge of
the phenomenon, but it is not directly developed from our theoretical or first-principles under-
standing of the underlying mechanism.

To illustrate these ideas with a specific example, consider the data in Table 1-2. This table
contains data on three variables that were collected in an observational study in a semicon-
ductor manufacturing plant. In this plant, the finished semiconductor is wire bonded to a
frame. The variables reported are pull strength (a measure of the amount of force required to
break the bond), the wire length, and the height of the die. We would like to find a model
relating pull strength to wire length and die height. Unfortunately, there is no physical mech-
anism that we can easily apply here, so it doesn’t seem likely that a mechanistic modeling
approach will be successful.

Table 1-2  Wire Bond Pull Strength Data

Observation Pull Strength Wire Length Die Height
Number v X X,
1 9.95 2 50
2 24.45 8 110
3 31.75 11 120
4 35.00 10 550
5 25.02 8 295
6 16.86 4 200
7 14.38 2 375
8 9.60 2 52
9 24.35 9 100
10 27.50 8 300
11 17.08 4 412
12 37.00 11 400
13 41.95 12 500
14 11.66 2 360
15 21.65 4 205
16 17.89 4 400
17 69.00 20 600
18 10.30 1 585
19 34.93 10 540
20 46.59 15 250
21 44.88 15 290
22 54.12 16 510
23 56.63 17 590
24 22.13 6 100

N
W

21.15 5 400




Figure 1-13  Three-
dimensional plot of
the wire and pull
strength data.

Figure 1-14 Plot of
predicted values of
pull strength from the
empirical model.
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Figure 1-13 presents a three-dimensional plot of all 25 observations on pull strength, wire
length, and die height. From examination of this plot, we see that pull strength increases as both
wire length and die height increase. Furthermore, it seems reasonable to think that a model such as

Pull strength = B, + B(wire length) + B,(die height) + €

would be appropriate as an empirical model for this relationship. In general, this type of em-
pirical model is called a regression model. In Chapters 11 and 12 we show how to build
these models and test their adequacy as approximating functions. We will use a method for
estimating the parameters in regression models, called the method of least squares, that
traces its origins to work by Karl Gauss. Essentially, this method chooses the parameters in
the empirical model (the B’s) to minimize the sum of the squared distances between each
data point and the plane represented by the model equation. Applying this technique to the
data in Table 1-2 results in

Pull strength = 2.26 + 2.74(wire length) + 0.0125(die height) (1-7)

where the “hat,” or circumflex, over pull strength indicates that this is an estimated or pre-
dicted quantity.

Figure 1-14 is a plot of the predicted values of pull strength versus wire length and die
height obtained from Equation 1-7. Notice that the predicted values lie on a plane above the
wire length—die height space. From the plot of the data in Fig. 1-13, this model does not ap-
pear unreasonable. The empirical model in Equation 1-7 could be used to predict values of
pull strength for various combinations of wire length and die height that are of interest.
Essentially, the empirical model could be used by an engineer in exactly the same way that
a mechanistic model can be used.

(o)) (0]
o o

N
(@)

Pull strength

16 20 0 100 Q®

Wire length
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CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

1-4 PROBABILITY AND PROBABILITY MODELS

In Section 1-1, it was mentioned that decisions often need to be based on measurements from
only a subset of objects selected in a sample. This process of reasoning from a sample of
objects to conclusions for a population of objects was referred to as statistical inference. A
sample of three wafers selected from a larger production lot of wafers in semiconductor man-
ufacturing was an example mentioned. To make good decisions, an analysis of how well a
sample represents a population is clearly necessary. If the lot contains defective wafers, how
well will the sample detect this? How can we quantify the criterion to “detect well”? Basically,
how can we quantify the risks of decisions based on samples? Furthermore, how should sam-
ples be selected to provide good decisions—ones with acceptable risks? Probability models
help quantify the risks involved in statistical inference, that is, the risks involved in decisions
made every day.

More details are useful to describe the role of probability models. Suppose a production
lot contains 25 wafers. If all the wafers are defective or all are good, clearly any sample will
generate all defective or all good wafers, respectively. However, suppose only one wafer in
the lot is defective. Then a sample might or might not detect (include) the wafer. A probabil-
ity model, along with a method to select the sample, can be used to quantify the risks that the
defective wafer is or is not detected. Based on this analysis, the size of the sample might be
increased (or decreased). The risk here can be interpreted as follows. Suppose a series of lots,
each with exactly one defective wafer, are sampled. The details of the method used to select
the sample are postponed until randomness is discussed in the next chapter. Nevertheless,
assume that the same size sample (such as three wafers) is selected in the same manner from
each lot. The proportion of the lots in which the defective wafer is included in the sample or,
more specifically, the limit of this proportion as the number of lots in the series tends to infin-
ity, is interpreted as the probability that the defective wafer is detected.

A probability model is used to calculate this proportion under reasonable assumptions for
the manner in which the sample is selected. This is fortunate because we do not want to at-
tempt to sample from an infinite series of lots. Problems of this type are worked in Chapters 2
and 3. More importantly, this probability provides valuable, quantitative information regard-
ing any decision about lot quality based on the sample.

Recall from Section 1-1 that a population might be conceptual, as in an analytic study that
applies statistical inference to future production based on the data from current production.
When populations are extended in this manner, the role of statistical inference and the associ-
ated probability models becomes even more important.

In the previous example, each wafer in the sample was only classified as defective or not.
Instead, a continuous measurement might be obtained from each wafer. In Section 1-2.6, con-
centration measurements were taken at periodic intervals from a production process. Figure 1-7
shows that variability is present in the measurements, and there might be concern that the
process has moved from the target setting for concentration. Similar to the defective wafer,
one might want to quantify our ability to detect a process change based on the sample data.
Control limits were mentioned in Section 1-2.6 as decision rules for whether or not to adjust
a process. The probability that a particular process change is detected can be calculated with
a probability model for concentration measurements. Models for continous measurements are
developed based on plausible assumptions for the data and a result known as the central limit
theorem, and the associated normal distribution is a particularly valuable probability model
for statistical inference. Of course, a check of assumptions is important. These types of prob-
ability models are discussed in Chapter 4. The objective is still to quantify the risks inherent
in the inference made from the sample data.
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Throughout Chapters 6 through 15, decisions are based statistical inference from sample
data. Continuous probability models, specifically the normal distribution, are used extensively
to quantify the risks in these decisions and to evaluate ways to collect the data and how large
a sample should be selected.

IMPORTANT TERMS AND CONCEPTS
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1-2.5 A Factorial Experiment for the Connector Pull-off Force Problem

(CD only)

Figure S1-1 The
factorial experiment
for the connector wall
thickness problem.

Much of what we know in the engineering and physical-chemical sciences is developed
through testing or experimentation. Often engineers work in problem areas in which no
scientific or engineering theory is directly or completely applicable, so experimentation
and observation of the resulting data constitute the only way that the problem can be
solved. Even when there is a good underlying scientific theory that we may rely on to
explain the phenomena of interest, it is almost always necessary to conduct tests or exper-
iments to confirm that the theory is indeed operative in the situation or environment in
which it is being applied. We have observed that statistical thinking and statistical methods
play an important role in planning, conducting, and analyzing the data from engineering
experiments.

To further illustrate the factorial design concept introduced in Section 1-2.4, suppose that
in the connector wall thickness example, there are two additional factors of interest, time and
temperature. The cure times of interest are 1 and 24 hours and the temperature levels are 70°F
and 100°F. Now since all three factors have two levels, a factorial experiment would consist
of the eight test combinations shown at the corners of the cube in Fig. S1-1. Two trials, or
replicates, would be performed at each corner, resulting in a 16-run factorial experiment. The
observed values of pull-off force are shown in parentheses at the cube corners in Fig. S1-1.
Notice that this experiment uses eight 3 /32-inch prototypes and eight 1/8-inch prototypes, the
same number used in the simple comparative study in Section 1-1, but we are now investigat-
ing three factors. Generally, factorial experiments are the most efficient way to study the joint
effects of several factors.

Some very interesting tentative conclusions can be drawn from this experiment. First,
compare the average pull-off force of the eight 3 /32-inch prototypes with the average pull-off
force of the eight 1/8-inch prototypes (these are the averages of the eight runs on the left face
and right face of the cube in Fig. S1-1, respectively), or 14.1 — 13.45 = 0.65. Thus, increas-
ing the wall thickness from 3/32 to 1/8-inch increases the average pull-off force by 0.65
pounds. Next, to measure the effect of increasing the cure time, compare the average of the
eight runs in the back face of the cube (where time = 24 hours) with the average of the eight
runs in the front face (where time = 1 hour), or 14.275 — 13.275 = 1. The effect of increas-
ing the cure time from 1 to 24 hours is to increase the average pull-off force by 1 pound; that
is, cure time apparently has an effect that is larger than the effect of increasing the wall
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Figure S1-2  The two-factor interaction between cure time and cure temperature.

thickness. The cure temperature effect can be evaluated by comparing the average of the eight
runs in the top of the cube (where temperature = 100°F) with the average of the eight runs in
the bottom (where temperature = 70°F), or 14.125 — 13.425 = 0.7. Thus, the effect of in-
creasing the cure temperature is to increase the average pull-off force by 0.7 pounds. Thus, if
the engineer’s objective is to design a connector with high pull-off force, there are apparently
several alternatives, such as increasing the wall thickness and using the “standard” curing
conditions of 1 hour and 70°F or using the original 3/32-inch wall thickness but specifying a
longer cure time and higher cure temperature.

There is an interesting relationship between cure time and cure temperature that can be
seen by examination of the graph in Fig. S1-2. This graph was constructed by calculating the
average pull-off force at the four different combinations of time and temperature, plotting
these averages versus time and then connecting the points representing the two temperature
levels with straight lines. The slope of each of these straight lines represents the effect of cure
time on pull-off force. Notice that the slopes of these two lines do not appear to be the same,
indicating that the cure time effect is different at the two values of cure temperature. This is an
example of an interaction between two factors. The interpretation of this interaction is very
straightforward; if the standard cure time (1 hour) is used, cure temperature has little effect,
but if the longer cure time (24 hours) is used, increasing the cure temperature has a large effect
on average pull-off force. Interactions occur often in physical and chemical systems, and
factorial experiments are the only way to investigate their effects. In fact, if interactions are
present and the factorial experimental strategy is not used, incorrect or misleading results may
be obtained.

We can easily extend the factorial strategy to more factors. Suppose that the engineer
wants to consider a fourth factor, type of adhesive. There are two types: the standard
adhesive and a new competitor. Figure S1-3 illustrates how all four factors, wall thickness,
cure time, cure temperature, and type of adhesive, could be investigated in a factorial
design. Since all four factors are still at two levels, the experimental design can still be
represented geometrically as a cube (actually, it’s a hypercube). Notice that as in any fac-
torial design, all possible combinations of the four factors are tested. The experiment re-
quires 16 trials.
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Figure S1-3 A four-factorial experiment for the connector wall thick-
ness problem.

Generally, if there are & factors and they each have two levels, a factorial experimental
design will require 2* runs. For example, with k = 4, the 2* design in Fig. S1-3 requires 16
tests. Clearly, as the number of factors increases, the number of trials required in a factorial
experiment increases rapidly; for instance, eight factors each at two levels would require
256 trials. This quickly becomes unfeasible from the viewpoint of time and other resources.
Fortunately, when there are four to five or more factors, it is usually unnecessary to test all
possible combinations of factor levels. A fractional factorial experiment is a variation of
the basic factorial arrangement in which only a subset of the factor combinations are actu-
ally tested. Figure S1-4 shows a fractional factorial experimental design for the four-factor
version of the connector experiment. The circled test combinations in this figure are the
only test combinations that need to be run. This experimental design requires only 8 runs in-
stead of the original 16; consequently it would be called a one-half fraction. This is an ex-
cellent experimental design in which to study all four factors. It will provide good informa-
tion about the individual effects of the four factors and some information about how these
factors interact.

Factorial and fractional factorial experiments are used extensively by engineers and sci-
entists in industrial research and development, where new technology, products, and
processes are designed and developed and where existing products and processes are im-
proved. Since so much engineering work involves testing and experimentation, it is essential
that all engineers understand the basic principles of planning efficient and effective
experiments. We discuss these principles in Chapter 13. Chapter 14 concentrates on the facto-
rial and fractional factorials that we have introduced here.
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Figure S1-4 A fractional factorial experiment for the connector wall
thickness problem.
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LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:

1.

N N e b

Understand and describe sample spaces and events for random experiments with graphs, tables,
lists, or tree diagrams

. Interpret probabilities and use probabilities of outcomes to calculate probabilities of events in dis-

crete sample spaces

. Calculate the probabilities of joint events such as unions and intersections from the probabilities

of individual events

. Interpret and calculate conditional probabilities of events
. Determine the independence of events and use independence to calculate probabilities
. Use Bayes’ theorem to calculate conditional probabilities

. Understand random variables

CD MATERIAL

8.

Use permutation and combinations to count the number of outcomes in both an event and the
sample space.
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Answers for most odd numbered exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

SAMPLE SPACES AND EVENTS

Random Experiments

If we measure the current in a thin copper wire, we are conducting an experiment. However,
in day-to-day repetitions of the measurement the results can differ slightly because of small
variations in variables that are not controlled in our experiment, including changes in ambient
temperatures, slight variations in gauge and small impurities in the chemical composition of
the wire if different locations are selected, and current source drifts. Consequently, this exper-
iment (as well as many we conduct) is said to have a random component. In some cases,
the random variations, are small enough, relative to our experimental goals, that they can be
ignored. However, no matter how carefully our experiment is designed and conducted, the
variation is almost always present, and its magnitude can be large enough that the important
conclusions from our experiment are not obvious. In these cases, the methods presented in this
book for modeling and analyzing experimental results are quite valuable.

Our goal is to understand, quantify, and model the type of variations that we often
encounter. When we incorporate the variation into our thinking and analyses, we can make
informed judgments from our results that are not invalidated by the variation.

Models and analyses that include variation are not different from models used in other areas
of engineering and science. Figure 2-1 displays the important components. A mathematical
model (or abstraction) of the physical system is developed. It need not be a perfect abstraction.
For example, Newton’s laws are not perfect descriptions of our physical universe. Still, they are
useful models that can be studied and analyzed to approximately quantify the performance of a
wide range of engineered products. Given a mathematical abstraction that is validated with
measurements from our system, we can use the model to understand, describe, and quantify
important aspects of the physical system and predict the response of the system to inputs.

Throughout this text, we discuss models that allow for variations in the outputs of a sys-
tem, even though the variables that we control are not purposely changed during our study.
Figure 2-2 graphically displays a model that incorporates uncontrollable inputs (noise) that
combine with the controllable inputs to produce the output of our system. Because of the

Controlled
variables

i

Input =——| System > Output

Tt

Model Noise
variables

Physical system

Measurements Analysis

Figure 2-1 Continuous iteration between model Figure 2-2  Noise variables affect the
and physical system. transformation of inputs to outputs.
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identifies deviations from the model.

Definition

uncontrollable inputs, the same settings for the controllable inputs do not result in identical
outputs every time the system is measured.

An experiment that can result in different outcomes, even though it is repeated in the
same manner every time, is called a random experiment.

For the example of measuring current in a copper wire, our model for the system might
simply be Ohm’s law. Because of uncontrollable inputs, variations in measurements of current
are expected. Ohm’s law might be a suitable approximation. However, if the variations are
large relative to the intended use of the device under study, we might need to extend our model
to include the variation. See Fig. 2-3.

As another example, in the design of a communication system, such as a computer or
voice communication network, the information capacity available to service individuals using
the network is an important design consideration. For voice communication, sufficient
external lines need to be purchased from the phone company to meet the requirements of a
business. Assuming each line can carry only a single conversation, how many lines should be
purchased? If too few lines are purchased, calls can be delayed or lost. The purchase of too
many lines increases costs. Increasingly, design and product development is required to meet
customer requirements at a competitive cost.

In the design of the voice communication system, a model is needed for the number of calls
and the duration of calls. Even knowing that on average, calls occur every five minutes and that
they last five minutes is not sufficient. If calls arrived precisely at five-minute intervals and lasted
for precisely five minutes, one phone line would be sufficient. However, the slightest variation in
call number or duration would result in some calls being blocked by others. See Fig. 2-4. A system
designed without considering variation will be woefully inadequate for practical use. Our model
for the number and duration of calls needs to include variation as an integral component. An
analysis of models including variation is important for the design of the phone system.

2-1.2 Sample Spaces

To model and analyze a random experiment, we must understand the set of possible out-
comes from the experiment. In this introduction to probability, we make use of the basic
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concepts of sets and operations on sets. It is assumed that the reader is familiar with these
topics.

Definition

The set of all possible outcomes of a random experiment is called the sample space
of the experiment. The sample space is denoted as S.

A sample space is often defined based on the objectives of the analysis.

EXAMPLE 2-1 Consider an experiment in which you select a molded plastic part, such as a connector, and
measure its thickness. The possible values for thickness depend on the resolution of the meas-
uring instrument, and they also depend on upper and lower bounds for thickness. However, it
might be convenient to define the sample space as simply the positive real line

S=R"={x|x>0}
because a negative value for thickness cannot occur.
If it is known that all connectors will be between 10 and 11 millimeters thick, the sample
space could be

S={x|10<x <11}

If the objective of the analysis is to consider only whether a particular part is low, medium,
or high for thickness, the sample space might be taken to be the set of three outcomes:

S = {low, medium, high}

If the objective of the analysis is to consider only whether or not a particular part con-
forms to the manufacturing specifications, the sample space might be simplified to the set of
two outcomes

S = {yes, no}

that indicate whether or not the part conforms.

It is useful to distinguish between two types of sample spaces.

Definition
A sample space is discrete if it consists of a finite or countable infinite set of outcomes.
A sample space is continuous if it contains an interval (either finite or infinite) of
real numbers.

In Example 2-1, the choice S = R is an example of a continuous sample space, whereas
S ={yes, no} is a discrete sample space. As mentioned, the best choice of a sample space
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EXAMPLE 2-2

depends on the objectives of the study. As specific questions occur later in the book, appro-
priate sample spaces are discussed.

If two connectors are selected and measured, the extension of the positive real line R is to take
the sample space to be the positive quadrant of the plane:

S=R"XR"

If the objective of the analysis is to consider only whether or not the parts conform to the
manufacturing specifications, either part may or may not conform. We abbreviate yes and no
as y and n. If the ordered pair yn indicates that the first connector conforms and the second
does not, the sample space can be represented by the four outcomes:

S = {yy, yn, ny, nn}

If we are only interested in the number of conforming parts in the sample, we might sum-
marize the sample space as

S =1{0,1,2}

As another example, consider an experiment in which the thickness is measured until a
connector fails to meet the specifications. The sample space can be represented as

S = {n, yn, yyn, yyyn, yyyyn, and so forth}

In random experiments in which items are selected from a batch, we will indicate whether
or not a selected item is replaced before the next one is selected. For example, if the batch
consists of three items {a, b, ¢} and our experiment is to select two items without replace-
ment, the sample space can be represented as

Swithout = {ab, ac, ba, bc, ca, cb}

This description of the sample space maintains the order of the items selected so that the out-
come ab and ba are separate elements in the sample space. A sample space with less detail
only describes the two items selected {{a, b}, {a, c}, {b, c}}. This sample space is the possi-
ble subsets of two items. Sometimes the ordered outcomes are needed, but in other cases the
simpler, unordered sample space is sufficient.

If items are replaced before the next one is selected, the sampling is referred to as with
replacement. Then the possible ordered outcomes are

Swith = 1aa, ab, ac, ba, bb, bc, ca, cb, cc}

The unordered description of the sample space is {{«, a}, {a, b}, {a,c}, {b, b}, {b,c}, {c,c}}.
Sampling without replacement is more common for industrial applications.

Sometimes it is not necessary to specify the exact item selected, but only a property of the
item. For example, suppose that there are 5 defective parts and 95 good parts in a batch. To
study the quality of the batch, two are selected without replacement. Let g denote a good part
and d denote a defective part. It might be sufficient to describe the sample space (ordered) in
terms of quality of each part selected as

S = {gg, gd, dg, dd}
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One must be cautious with this description of the sample space because there are many more
pairs of items in which both are good than pairs in which both are defective. These differences
must be accounted for when probabilities are computed later in this chapter. Still, this sum-
mary of the sample space will be convenient when conditional probabilities are used later in
this chapter. Also, if there were only one defective part in the batch, there would be fewer
possible outcomes

S = {gg, gd, dg}

because dd would be impossible. For sampling questions, sometimes the most important part
of the solution is an appropriate description of the sample space.

Sample spaces can also be described graphically with tree diagrams. When a sample
space can be constructed in several steps or stages, we can represent each of the n, ways of
completing the first step as a branch of a tree. Each of the ways of completing the second step
can be represented as n, branches starting from the ends of the original branches, and so forth.

Each message in a digital communication system is classified as to whether it is received
within the time specified by the system design. If three messages are classified, use a tree
diagram to represent the sample space of possible outcomes.

Each message can either be received on time or late. The possible results for three mes-
sages can be displayed by eight branches in the tree diagram shown in Fig. 2-5.

An automobile manufacturer provides vehicles equipped with selected options. Each vehicle
is ordered

With or without an automatic transmis- With one of three choices of a stereo
sion system
With or without air-conditioning With one of four exterior colors

If the sample space consists of the set of all possible vehicle types, what is the number of
outcomes in the sample space? The sample space contains 48 outcomes. The tree diagram for
the different types of vehicles is displayed in Fig. 2-6.

Consider an extension of the automobile manufacturer illustration in the previous example in
which another vehicle option is the interior color. There are four choices of interior color: red,
black, blue, or brown. However,

With a red exterior, only a black or red interior can be chosen.

With a white exterior, any interior color can be chosen.
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Figure 2-6  Tree diagram for different types of vehicles.

With a blue exterior, only a black, red, or blue interior can be chosen.

With a brown exterior, only a brown interior can be chosen.

In Fig. 2-6, there are 12 vehicle types with each exterior color, but the number of interior
color choices depends on the exterior color. As shown in Fig. 2-7, the tree diagram can be ex-
tended to show that there are 120 different vehicle types in the sample space.

2-1.3 Events

Often we are interested in a collection of related outcomes from a random experiment.

Definition
An event is a subset of the sample space of a random experiment.

We can also be interested in describing new events from combinations of existing events.
Because events are subsets, we can use basic set operations such as unions, intersections, and

Exterior color White Blue Brown

Figure 2.7 Tree dia- Interior color BlackA m /N

gram for different 12x2=24  12x4=48  12x3=36 12x1=12
types of vehicles with

interior colors. 24 + 48 + 36 + 12 = 120 vehicle types
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complements to form other events of interest. Some of the basic set operations are summa-
rized below in terms of events:

e The union of two events is the event that consists of all outcomes that are contained
in either of the two events. We denote the union as £, U E).

e The intersection of two events is the event that consists of all outcomes that are
contained in both of the two events. We denote the intersection as £, M £, .

e The complement of an event in a sample space is the set of outcomes in the sample
space that are not in the event. We denote the component of the event E as E'.

Consider the sample space S = {yy, yn, ny, nn} in Example 2-2. Suppose that the set of all out-
comes for which at least one part conforms is denoted as £,. Then,

Ey = {yy, yn, ny}
The event in which both parts do not conform, denoted as E,, contains only the single out-
come, E, = {nn}. Other examples of events are E; = (J, the null set, and £, = S, the sample

space. If E5 = {yn, ny, nn},

E\UEs=S  E NEs={yn ny} E} = {nn}

Measurements of the time needed to complete a chemical reaction might be modeled with the
sample space S = R™, the set of positive real numbers. Let

E ={x|1=x<10} and  E,={x|3<x<118}
Then,
ELUE, ={x|1=x<118 and E NE,={x|3<x<10}
Also,

E{ ={x[x=10} and E/NE,={x|10=x<118}

Samples of polycarbonate plastic are analyzed for scratch and shock resistance. The results
from 50 samples are summarized as follows:

shock resistance

high low
scratch resistance high 40 4
low 1 5

Let 4 denote the event that a sample has high shock resistance, and let B denote the event that a
sample has high scratch resistance. Determine the number of samplesin 4 N B, A", and 4 U B.

The event A M B consists of the 40 samples for which scratch and shock resistances
are high. The event 4’ consists of the 9 samples in which the shock resistance is low. The
event 4 U B consists of the 45 samples in which the shock resistance, scratch resistance,
or both are high.



24 CHAPTER 2 PROBABILITY
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Figure 2-8 Venn diagrams.

Diagrams are often used to portray relationships between sets, and these diagrams are
also used to describe relationships between events. We can use Venn diagrams to represent a
sample space and events in a sample space. For example, in Fig. 2-8(a) the sample space of
the random experiment is represented as the points in the rectangle S. The events 4 and B are
the subsets of points in the indicated regions. Figure 2-8(b) illustrates two events with no com-
mon outcomes; Figs. 2-8(c) to 2-8(e) illustrate additional joint events.

Two events with no outcomes in common have an important relationship.

Definition
Two events, denoted as £, and £,, such that

ElﬂEzzg

are said to be mutually exclusive.

The two events in Fig. 2-8(b) are mutually exclusive, whereas the two events in Fig. 2-8(a)
are not.

Additional results involving events are summarized below. The definition of the comple-
ment of an event implies that

(EY =E
The distributive law for set operations implies that

(AUB)NC=ANC)UBNC), ad (ANBUC=AUC)NBUC)



DeMorgan’s laws imply that

(AUB) =4"NB and

Also, remember that

ANB=BNA and
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(ANB) =A'UB’

AUB=BUA

As sample spaces become larger, complete enumeration is difficult. Instead, counts of
the number outcomes in the sample space and in various events are often used to analyze the
random experiment. These methods are referred to as counting techniques and described on

the CD.

EXERCISES FOR SECTION 2-1

Provide a reasonable description of the sample space for each
of the random experiments in Exercises 2-1 to 2-18. There can
be more than one acceptable interpretation of each experi-
ment. Describe any assumptions you make.

2-1. Each of three machined parts is classified as either
above or below the target specification for the part.

2-2. Each of four transmitted bits is classified as either in
error or not in error.

2-3. In the final inspection of electronic power supplies,
three types of nonconformities might occur: functional, minor,
or cosmetic. Power supplies that are defective are further clas-
sified as to type of nonconformity.

2-4. In the manufacturing of digital recording tape, elec-
tronic testing is used to record the number of bits in error in a
350-foot reel.

2-5. In the manufacturing of digital recording tape, each of
24 tracks is classified as containing or not containing one or
more bits in error.

2-6. An ammeter that displays three digits is used to meas-
ure current in milliamperes.

2-7. A scale that displays two decimal places is used to
measure material feeds in a chemical plant in tons.

2-8. The following two questions appear on an employee
survey questionnaire. Each answer is chosen from the five-
point scale 1 (never), 2, 3, 4, 5 (always).

Is the corporation willing to listen to and fairly evaluate
new ideas?
How often are my coworkers important in my overall job
performance?
2-9. The concentration of ozone to the nearest part per billion.

2-10. The time until a tranaction service is requested of a
computer to the nearest millisecond.

2-11. The pH reading of a water sample to the nearest tenth
of a unit.
2-12. The voids in a ferrite slab are classified as small,

medium, or large. The number of voids in each category is
measured by an optical inspection of a sample.

2-13. The time of a chemical reaction is recorded to the
nearest millisecond.

2-14. An order for an automobile can specify either an
automatic or a standard transmission, either with or without
air-conditioning, and any one of the four colors red, blue,
black or white. Describe the set of possible orders for this
experiment.

2-15. A sampled injection-molded part could have been
produced in either one of two presses and in any one of the
eight cavities in each press.

2-16. An order for a computer system can specify memory
of 4, 8, or 12 gigabytes, and disk storage of 200, 300, or 400
gigabytes. Describe the set of possible orders.

2-17. Calls are repeatedly placed to a busy phone line until
a connect is achieved.

2-18. In a magnetic storage device, three attempts are made
to read data before an error recovery procedure that reposi-
tions the magnetic head is used. The error recovery procedure
attempts three repositionings before an “abort” message is
sent to the operator. Let

s denote the success of a read operation

fdenote the failure of a read operation

F denote the failure of an error recovery procedure
S denote the success of an error recovery procedure
A denote an abort message sent to the operator.

Describe the sample space of this experiment with a tree
diagram.
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2-19. Three events are shown on the Venn diagram in the
following figure:

Reproduce the figure and shade the region that corresponds to
each of the following events.

(a) A’ (b) ANB

) 4aNBUC (d) (BUCY

(e) ANB)UC

2-20. Three events are shown on the Venn diagram in the
following figure:

Reproduce the figure and shade the region that corresponds to
each of the following events.

(a) A’ (b) ANB)UANB)

o) aNBpUC (@ BUCY

(e) ANB)YUC

2-21. A digital scale is used that provides weights to the
nearest gram.

(a) What is the sample space for this experiment?

Let 4 denote the event that a weight exceeds 11 grams, let B
denote the event that a weight is less than or equal to 15
grams, and let C denote the event that a weight is greater than
or equal to 8 grams and less than 12 grams.

Describe the following events.

(b) AUB (c) ANB

(d) 4’ (e) AUBUC

H 4UC)y (@ ANBNC
(h)y BBNC (i) AU (BNC)
2-22. In an injection-molding operation, the length and

width, denoted as X and Y, respectively, of each molded part
are evaluated. Let

A denote the event of 48 < X < 52 centimeters
B denote the event of 9 < Y < 11 centimeters

C denote the event that a critical length meets customer
requirements.

Construct a Venn diagram that includes these events. Shade

the areas that represent the following:

(a) 4 (b) ANB

(¢ A/UB (d) AUB

(e) If these events were mutually exclusive, how successful
would this production operation be? Would the process
produce parts with X = 50 centimeters and ¥ = 10
centimeters?

2-23.

tions channel. Each bit is either distorted or received without

distortion. Let 4; denote the event that the ith bit is distorted,

i=1,..,4.

(a) Describe the sample space for this experiment.

(b) Are the 4,’s mutually exclusive?

Describe the outcomes in each of the following events:

(© 4 (d) 4,

(e) 4) N A, NA; N Ay (£) (41 N4y U (43N Ay)

2-24. A sample of three calculators is selected from a manu-

facturing line, and each calculator is classified as either defective

or acceptable. Let 4, B, and C denote the events that the first,

second, and third calculators respectively, are defective.

(a) Describe the sample space for this experiment with a tree
diagram.

Use the tree diagram to describe each of the following

events:

Four bits are transmitted over a digital communica-

(b) 4 (c) B
(d A4NB (e) BUC
2-25. A wireless garage door opener has a code determined

by the up or down setting of 12 switches. How many out-
comes are in the sample space of possible codes?

2-26. Disks of polycarbonate plastic from a supplier are an-
alyzed for scratch and shock resistance. The results from 100
disks are summarized below:

shock resistance

high low
scratch high 70 9
resistance low 16 5

Let 4 denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch



resistance. Determine the number of disks in 4 M B, A’, and
AUB.

2-27. Samples of a cast aluminum part are classified on the
basis of surface finish (in microinches) and edge finish. The
results of 100 parts are summarized as follows:

edge finish
excellent good
surface excellent 80 2
finish good 10 8

(a) Let 4 denote the event that a sample has excellent surface
finish, and let B denote the event that a sample has excel-
lent edge finish. Determine the number of samples in
A" N B,B',and A U B.

(b) Assume that each of two samples is to be classified on the
basis of surface finish, either excellent or good, edge finish,
either excellent or good. Use a tree diagram to represent the
possible outcomes of this experiment.

2-28. Samples of emissions from three suppliers are classi-

fied for conformance to air-quality specifications. The results

from 100 samples are summarized as follows:

conforms
yes no
22 8
supplier 2 25 5
3 30 10

Let A4 denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
Determine the number of samples in 4’ M B, B’, and 4 U B.

2-29. The rise time of a reactor is measured in minutes (and
fractions of minutes). Let the sample space be positive, real
numbers. Define the events 4 and B as follows:

A= {x|x < 72.5}

and

B = {x|x > 525}

2-2 INTERPRETATIONS OF PROBABILITY
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Describe each of the following events:

(a) 4’ (b) B’

(¢c) ANB (d) AUB

2-30. A sample of two items is selected without replace-
ment from a batch. Describe the (ordered) sample space for
each of the following batches:

(a) The batch contains the items {a, b, c, d}.

(b) The batch contains the items {a, b, ¢, d, e, f, g}.

(c) The batch contains 4 defective items and 20 good items.
(d) The batch contains 1 defective item and 20 good items.

2-31. A sample of two printed circuit boards is selected
without replacement from a batch. Describe the (ordered)
sample space for each of the following batches:

(a) The batch contains 90 boards that are not defective, 8
boards with minor defects, and 2 boards with major
defects.

(b) The batch contains 90 boards that are not defective, 8
boards with minor defects, and 1 board with major
defects.

2-32. Counts of the Web pages provided by each of two

computer servers in a selected hour of the day are recorded.

Let A denote the event that at least 10 pages are provided by

server 1 and let B denote the event that at least 20 pages are

provided by server 2.

(a) Describe the sample space for the numbers of pages for
two servers graphically.

Show each of the following events on the sample space graph:

(b) 4 (c) B
(d ANB () AUB
2-33. The rise time of a reactor is measured in minutes

(and fractions of minutes). Let the sample space for the rise
time of each batch be positive, real numbers. Consider
the rise times of two batches. Let 4 denote the event that the
rise time of batch 1 is less than 72.5 minutes, and let B
denote the event that the rise time of batch 2 is greater than
52.5 minutes.

Describe the sample space for the rise time of two batches
graphically and show each of the following events on a two-
dimensional plot:

(a) 4 (b) B’
(¢c) ANB (d) AUB

In this chapter, we introduce probability for discrete sample spaces—those with only a finite
(or countably infinite) set of outcomes. The restriction to these sample spaces enables us to
simplify the concepts and the presentation without excessive mathematics.



28 CHAPTER 2 PROBABILITY

Figure 2-9 Relative
frequency of corrupted
pulses sent over a com-
munication channel.

/ Corrupted pulse

Time

Voltage

Relative frequency of corrupted pulse = 12—0

Probability is used to quantify the likelihood, or chance, that an outcome of a random
experiment will occur. “The chance of rain today is 30%” is a statement that quantifies our
feeling about the possibility of rain. The likelihood of an outcome is quantified by assigning a
number from the interval [0, 1] to the outcome (or a percentage from 0 to 100%). Higher num-
bers indicate that the outcome is more likely than lower numbers. A 0 indicates an outcome
will not occur. A probability of 1 indicates an outcome will occur with certainty.

The probability of an outcome can be interpreted as our subjective probability, or degree
of belief, that the outcome will occur. Different individuals will no doubt assign different
probabilities to the same outcomes. Another interpretation of probability is based on the con-
ceptual model of repeated replications of the random experiment. The probability of an
outcome is interpreted as the limiting value of the proportion of times the outcome occurs in
n repetitions of the random experiment as # increases beyond all bounds. For example, if we
assign probability 0.2 to the outcome that there is a corrupted pulse in a digital signal, we
might interpret this assignment as implying that, if we analyze many pulses, approximately
20% of them will be corrupted. This example provides a relative frequency interpretation of
probability. The proportion, or relative frequency, of replications of the experiment that result
in the outcome is 0.2. Probabilities are chosen so that the sum of the probabilities of all out-
comes in an experiment add up to 1. This convention facilitates the relative frequency inter-
pretation of probability. Figure 2-9 illustrates the concept of relative frequency.

Probabilities for a random experiment are often assigned on the basis of a reasonable
model of the system under study. One approach is to base probability assignments on the sim-
ple concept of equally likely outcomes.

For example, suppose that we will select one laser diode randomly from a batch of 100.
The sample space is the set of 100 diodes. Randomly implies that it is reasonable to assume
that each diode in the batch has an equal chance of being selected. Because the sum of the
probabilities must equal 1, the probability model for this experiment assigns probability of
0.01 to each of the 100 outcomes. We can interpret the probability by imagining many repli-
cations of the experiment. Each time we start with all 100 diodes and select one at random.
The probability 0.01 assigned to a particular diode represents the proportion of replicates in
which a particular diode is selected.

When the model of equally likely outcomes is assumed, the probabilities are chosen to
be equal.

Whenever a sample space consists of N possible outcomes that are equally likely, the
probability of each outcome is 1/N.




Figure 2-10
Probability of the
event £ is the sum of
the probabilities of the
outcomes in E.

EXAMPLE 2-9

Definition

EXAMPLE 2-10
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E—_. .
\E\ \\ Diodes

P(E) =30(0.01) =0.30

It is frequently necessary to assign probabilities to events that are composed of several
outcomes from the sample space. This is straightforward for a discrete sample space.

Assume that 30% of the laser diodes in a batch of 100 meet the minimum power requirements
of a specific customer. If a laser diode is selected randomly, that is, each laser diode is equally
likely to be selected, our intuitive feeling is that the probability of meeting the customer’s
requirements is 0.30.

Let E denote the subset of 30 diodes that meet the customer’s requirements. Because
E contains 30 outcomes and each outcome has probability 0.01, we conclude that the prob-
ability of £ is 0.3. The conclusion matches our intuition. Figure 2-10 illustrates this
example.

For a discrete sample space, the probability of an event can be defined by the reasoning
used in the example above.

For a discrete sample space, the probability of an event E, denoted as P(E), equals the
sum of the probabilities of the outcomes in E.

A random experiment can result in one of the outcomes {a, b, ¢, d} with probabilities 0.1, 0.3,
0.5, and 0.1, respectively. Let A denote the event {a, b}, B the event {b, c, d}, and C the event
{d}.Then,

P(4)=0.1 +03=04

P(B) =03+ 05+0.1=09

P(C) = 0.1
Also, P(4") = 0.6, P(B') = 0.1, and P(C") = 0.9. Furthermore, because 4 N B = {b},

P(ANB)=03. Because 4 UB = {a,b,c,d}, PAUB)=10.1 + 03+ 05+ 0.1 =1.
Because 4 N C is the null set, P(4 N C) = 0.
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EXAMPLE 2-11

EXAMPLE 2-12

A visual inspection of a location on wafers from a semiconductor manufacturing process re-
sulted in the following table:

Number of
Contamination
Particles Proportion of Wafers
0 0.40
1 0.20
2 0.15
3 0.10
4 0.05
5 or more 0.10

If one wafer is selected randomly from this process and the location is inspected, what is the
probability that it contains no particles? If information were available for each wafer, we could
define the sample space as the set of all wafers inspected and proceed as in the example with
diodes. However, this level of detail is not needed in this case. We can consider the sample space
to consist of the six categories that summarize the number of contamination particles on a wafer.
Then, the event that there is no particle in the inspected location on the wafer, denoted as E, can
be considered to be comprised of the single outcome, namely, £ = {0}. Therefore,

P(E) = 04

What is the probability that a wafer contains three or more particles in the inspected
location? Let E denote the event that a wafer contains three or more particles in the inspected
location. Then, E consists of the three outcomes {3, 4, 5 or more}. Therefore,

P(E) = 0.10 + 0.05 + 0.10 = 0.25

Suppose that a batch contains six parts with part numbers {a, b, ¢, d, e, f}. Suppose that two
parts are selected without replacement. Let £ denote the event that the part number of the first
part selected is a. Then E can be written as £ = {ab, ac, ad, ae, af }. The sample space can be
enumerated. It has 30 outcomes. If each outcome is equally likely, P(E) = 5/30 = 1/6.

Also, if E, denotes the event that the second part selected is a, E, = {ba, ca, da, ea, fa}
and with equally likely outcomes, P(E,) = 5/30 = 1/6.

2-2.2 Axioms of Probability

Now that the probability of an event has been defined, we can collect the assumptions that we
have made concerning probabilities into a set of axioms that the probabilities in any random
experiment must satisfy. The axioms ensure that the probabilities assigned in an experiment
can be interpreted as relative frequencies and that the assignments are consistent with our
intuitive understanding of relationships between relative frequencies. For example, if event 4
is contained in event B, we should have P(4) = P(B). The axioms do not determine
probabilities; the probabilities are assigned based on our knowledge of the system under
study. However, the axioms enable us to easily calculate the probabilities of some events from
knowledge of the probabilities of other events.
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Axioms of
Probability

(1 PS) =1
2 0=PE)=1

Probability is a number that is assigned to each member of a collection of events
from a random experiment that satisfies the following properties:
If S is the sample space and E is any event in a random experiment,

(3) For two events E; and E, with £, N E, = &

P(E)UE,) = P(E,) + P(E,)

The property that 0 =< P(E) =< 1 is equivalent to the requirement that a relative frequency
must be between 0 and 1. The property that P(S) = 1 is a consequence of the fact that an
outcome from the sample space occurs on every trial of an experiment. Consequently, the rel-
ative frequency of S is 1. Property 3 implies that if the events £, and E, have no outcomes in
common, the relative frequency of outcomes in £; U E, is the sum of the relative frequencies
of the outcomes in £, and E,.

These axioms imply the following results. The derivations are left as exercises at the end
of this section. Now,

and for any event £,

For example, if the probability of the event E is 0.4, our interpretation of relative
frequency implies that the probability of £’ is 0.6. Furthermore, if the event £, is contained

in the event E,,

EXERCISES FOR SECTION 2-2

P(E)) = P(E,)

2-34. Each of the possible five outcomes of a random ex-
periment is equally likely. The sample space is {a, b, c, d, e}.
Let 4 denote the event {a, b}, and let B denote the event
{c, d, e}. Determine the following:

(a) P(4) (b) P(B)

(c) P(4") (d) P(4U B)

(e) P(4 N B)

2-35. The sample space of a random experiment is {a, b, c,

d, e} with probabilities 0.1, 0.1, 0.2, 0.4, and 0.2, respectively.
Let 4 denote the event {a, b, c}, and let B denote the event
{c, d, e}. Determine the following:

(a) P(A) (b) P(B)

(c) P(4") (d) P4 U B)

(e) P(4 N B)

2-36. A part selected for testing is equally likely to have

been produced on any one of six cutting tools.

(a) What is the sample space?

(b) What is the probability that the part is from tool 1?

(c) What is the probability that the part is from tool 3 or
tool 5?

(d) What is the probability that the part is not from tool 4?

2-37. An injection-molded part is equally likely to be ob-

tained from any one of the eight cavities on a mold.

(a) What is the sample space?

(b) What is the probability a part is from cavity 1 or 2?

(c) What is the probability that a part is neither from cavity 3
nor 4?
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2-38. A sample space contains 20 equally likely outcomes.
If the probability of event 4 is 0.3, how many outcomes are in
event 4?

2-39. Orders for a computer are summarized by the op-
tional features that are requested as follows:

proportion of orders

no optional features 0.3
one optional feature 0.5
more than one optional feature 0.2

(a) What is the probability that an order requests at least one
optional feature?

(b) What is the probability that an order does not request
more than one optional feature?

2-40. If the last digit of a weight measurement is equally
likely to be any of the digits 0 through 9,

(a) What is the probability that the last digit is 0?

(b) What is the probability that the last digit is greater than or
equal to 57

2-41. A sample preparation for a chemical measurement is

completed correctly by 25% of the lab technicians, completed

with a minor error by 70%, and completed with a major error

by 5%.

(a) Ifatechnician is selected randomly to complete the prepa-
ration, what is the probability it is completed without
error?

(b) What is the probability that it is completed with either a
minor or a major error?

2-42. A credit card contains 16 digits between 0 and 9.
However, only 100 million numbers are valid. If a number is
entered randomly, what is the probability that it is a valid
number?

2-43. Suppose your vehicle is licensed in a state that issues
license plates that consist of three digits (between 0 and 9) fol-
lowed by three letters (between 4 and Z). If a license number
is selected randomly, what is the probability that yours is the
one selected?

2-44. A message can follow different paths through
servers on a network. The senders message can go to one of
five servers for the first step, each of them can send to five
servers at the second step, each of which can send to four
servers at the third step, and then the message goes to the re-
cipients server.

(a) How many paths are possible?

(b) Ifall paths are equally likely, what is the probability that a
message passes through the first of four servers at the
third step?

2-45. Disks of polycarbonate plastic from a supplier are an-

alyzed for scratch and shock resistance. The results from 100

disks are summarized as follows:

shock resistance

high low
scratch high 70 9
resistance low 16 5

Let A denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch resist-
ance. If a disk is selected at random, determine the following
probabilities:

(a) P(4) (b) P(B)

(c) P(A') (d) P(4 N B)

(e) P(AUB) (f) P(4'UB)

2-46. Samples of a cast aluminum part are classified on the

basis of surface finish (in microinches) and edge finish. The
results of 100 parts are summarized as follows:

edge finish
excellent good
surface excellent 80 2
finish good 10 8

Let 4 denote the event that a sample has excellent surface fin-
ish, and let B denote the event that a sample has excellent
length. If a part is selected at random, determine the following
probabilities:

(a) P(4) (b) P(B)

(c) P(A') (d) P(4 N B)

(e) P(AUB) (f) P(4'UB)

2-47. Samples of emissions from three suppliers are classi-

fied for conformance to air-quality specifications. The results
from 100 samples are summarized as follows:

conforms
yes no
22
supplier 2 25 5
3 30 10

Let 4 denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
If a sample is selected at random, determine the following
probabilities:

(a) P(4) (b) P(B)
(c) P(4') (d) P(ANB)
(e) P(AUB) (f) P(4' UB)

2-48. Use the axioms of probability to show the following:
(a) Forany event E, P(E') = 1 — P(E).

(b) P() =0

(c) If A is contained in B, then P(4) = P(B)
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2-3 ADDITION RULES

EXAMPLE 2-13

EXAMPLE 2-14

Joint events are generated by applying basic set operations to individual events. Unions of events,
such as 4 U B; intersections of events, such as 4 M B; and complements of events, such as 4,
are commonly of interest. The probability of a joint event can often be determined from the prob-
abilities of the individual events that comprise it. Basic set operations are also sometimes helpful
in determining the probability of a joint event. In this section the focus is on unions of events.

Table 2-1 lists the history of 940 wafers in a semiconductor manufacturing process. Suppose
one wafer is selected at random. Let H denote the event that the wafer contains high levels of
contamination. Then, P(H) = 358/940.

Let C denote the event that the wafer is in the center of a sputtering tool. Then,
P(C) = 626/940. Also, P(H N C) is the probability that the wafer is from the center of the sput-
tering tool and contains high levels of contamination. Therefore,

P(H N C) = 112/940

The event H U C is the event that a wafer is from the center of the sputtering tool or
contains high levels of contamination (or both). From the table, P(H U C) = 872/940. An
alternative calculation of P(H U C) can be obtained as follows. The 112 wafers that comprise
the event H M C are included once in the calculation of P(H) and again in the calculation of
P(C). Therefore, P(H U C) can be found to be

P(H U C) = P(H) + P(C) — P(HN C)
= 358/940 + 626/940 — 112/940 = 872/940

The preceding example illustrates that the probability of 4 or B is interpreted as P(4 U B)
and that the following general addition rule applies.

P(4 UB) = P(4) + P(B) — P(4 N B) 2-1)

The wafers such as those described in Example 2-13 were further classified as either in the
“center” or at the “edge” of the sputtering tool that was used in manufacturing, and by the
degree of contamination. Table 2-2 shows the proportion of wafers in each category. What is

Table 2-1 Wafers in Semiconductor Manufacturing Classified
by Contamination and Location

Location in Sputtering Tool

Contamination Center Edge Total
Low 514 68 582
High 112 246 358

Total 626 314
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Table 2-2 Wafers Classified by Contamination and Location

Number of
Contamination
Particles Center Edge Totals
0 0.30 0.10 0.40
1 0.15 0.05 0.20
2 0.10 0.05 0.15
3 0.06 0.04 0.10
4 0.04 0.01 0.05
5 or more 0.07 0.03 0.10
Totals 0.72 0.28 1.00

the probability that a wafer was either at the edge or that it contains four or more particles? Let
E, denote the event that a wafer contains four or more particles, and let £, denote the event
that a wafer is at the edge.

The requested probability is P(E; U E,). Now, P(E;) = 0.15 and P(E,) = 0.28. Also,
from the table, P(E, N E,) = 0.04 . Therefore, using Equation 2-1, we find that

P(E,UE,)=0.15+ 028 — 0.04 = 0.39

What is the probability that a wafer contains less than two particles or that it is both at the
edge and contains more than four particles? Let E; denote the event that a wafer contains less
than two particles, and let £, denote the event that a wafer is both from the edge and contains
more than four particles. The requested probability is P(E, U E,). Now, P(E;) = 0.60 and
P(E,) = 0.03. Also, E, and E, are mutually exclusive. Consequently, there are no wafers in
the intersection and P(E; M E,) = 0. Therefore,

P(E, UE,) =0.60 + 0.03 = 0.63
Recall that two events 4 and B are said to be mutually exclusive if 4 N B = . Then,

P(4 N B) = 0, and the general result for the probability of A U B simplifies to the third ax-
iom of probability.

If 4 and B are mutually exclusive events,

P(4 U B) = P(4) + P(B) (2-2)

Three or More Events
More complicated probabilities, such as P(4 U B U (), can be determined by repeated use
of Equation 2-1 and by using some basic set operations. For example,

P(AUBUC) = P[(4UB)UC] = P(4U B) + P(C) — P[(4UB) N C]



Figure 2-11  Venn
diagram of four mutu-
ally exclusive events.

EXAMPLE 2-15

2-3 ADDITION RULES 35

Upon expanding P(A U B) by Equation 2-1 and using the distributed rule for set opera-
tions to simplify P[(4 U B) N C], we obtain

P(AUBUC) = P(4) + P(B) — P(AN B) + P(C
— P(4) + P(B) — P(4 N B) + P(C
—[PANC)+PBNC)— PANBNC)]

_|_

) — P[(ANC)U (BN C)]
)

= P(4) + P(B) + P(C) — P(AN B) — P(A N C)
~P(BNC)+ P(ANBNC)

We have developed a formula for the probability of the union of three events. Formulas can be
developed for the probability of the union of any number of events, although the formulas
become very complex. As a summary, for the case of three events

P(AUBUC) = P(4) + P(B) + P(C) — P(4N B)
~PANC)—PBNC)+PANBNC) (2-3)

Results for three or more events simplify considerably if the events are mutually exclu-
sive. In general, a collection of events, E}, E,, ..., E;, is said to be mutually exclusive if there
is no overlap among any of them.

The Venn diagram for several mutually exclusive events is shown in Fig. 2-11. By gener-
alizing the reasoning for the union of two events, the following result can be obtained:

A collection of events, E, E», ..., E}, is said to be mutually exclusive if for all pairs,
For a collection of mutually exclusive events,

P(E\UE,U ... UE) = P(E)) + P(E,) + ... P(Ey) (2-4)

A simple example of mutually exclusive events will be used quite frequently. Let X denote the
pH of a sample. Consider the event that X is greater than 6.5 but less than or equal to 7.8. This
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probability is the sum of any collection of mutually exclusive events with union equal to the

same range for X. One example is

P(6.5<X=78)=P65<X=70)+P10<X=75)+P715<X=78)

Another example is

P65 <X =78) = P65 <X=66)+ P66 <X=171)

+P1<X=T74)+P74<X=78)

The best choice depends on the particular probabilities available.

EXERCISES FOR SECTION 2-3

2-49. 1If P(4) = 0.3, P(B) = 0.2, and P(4 N B) = 0.1,
determine the following probabilities:

(a) P(4") (b) P(4 U B)

(c) P(4' N B) (d) P(ANB")

(©) P{4UBY] () P(4'UB)

2-50. If A, B, and C are mutually exclusive events with

P(4) = 0.2, P(B) = 0.3,and P(C) = 0.4, determine the fol-
lowing probabilities:

(@) PAUBUC)  (b) PANBNC)

(c) P(AN B) (d) P[(AUB)NC]
(e) PA'NB ' NC)
2-51. If A, B, and C are mutually exclusive events, is it pos-

sible for P(4) = 0.3, P(B) = 0.4, and P(C) = 0.5? Why or
why not?

2-52. Disks of polycarbonate plastic from a supplier are an-
alyzed for scratch and shock resistance. The results from 100
disks are summarized as follows:

shock resistance

high low
scratch high 70 9
resistance low 16 5

(a) Ifadisk is selected at random, what is the probability that
its scratch resistance is high and its shock resistance is
high?

(b) If a disk is selected at random, what is the probability
that its scratch resistance is high or its shock resistance
is high?

(c) Consider the event that a disk has high scratch resistance
and the event that a disk has high shock resistance. Are
these two events mutually exclusive?

2-53. The analysis of shafts for a compressor is summarized
by conformance to specifications.

roundness conforms

yes no
surface finish yes 345 5
conforms no 12

(a) Ifashaftis selected at random, what is the probability that
the shaft conforms to surface finish requirements?

(b) What is the probability that the selected shaft conforms
to surface finish requirements or to roundness require-
ments?

(c) What is the probability that the selected shaft either con-
forms to surface finish requirements or does not conform
to roundness requirements?

(d) What is the probability that the selected shaft conforms to
both surface finish and roundness requirements?

2-54. Cooking oil is produced in two main varieties: mono-
and polyunsaturated. Two common sources of cooking oil are
corn and canola. The following table shows the number of
bottles of these oils at a supermarket:

type of oil
canola corn
type of mono 7 13
unsaturation poly 93 77

(a) If a bottle of oil is selected at random, what is the proba-
bility that it belongs to the polyunsaturated category?

(b) What is the probability that the chosen bottle is monoun-
saturated canola oil?

2-55. A manufacturer of front lights for automobiles tests

lamps under a high humidity, high temperature environment

using intensity and useful life as the responses of interest. The

following table shows the performance of 130 lamps:

useful life

satisfactory unsatisfactory
intensity satisfactory 117 3
unsatisfactory 8 2
(a) Find the probability that a randomly selected lamp will
yield unsatisfactory results under any criteria.

(b) The customers for these lamps demand 95% satisfactory
results. Can the lamp manufacturer meet this demand?

2-56. The shafts in Exercise 2-53 are further classified in terms
of the machine tool that was used for manufacturing the shaft.



Tool 1

surface finish
conforms

Tool 2

surface finish

conforms
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(a) Ifashaftis selected at random, what is the probability that
roundness conforms the shaft conforms to surface finish requirements or to
roundness requirements or is from Tool 1?

es no

;/OO { (b) Ifashaftis selected at random, what is the probability that
yes the shaft conforms to surface finish requirements or does
no 4 2

not conform to roundness requirements or is from Tool 2?
(c) Ifashaftis selected at random, what is the probability that
the shaft conforms to both surface finish and roundness

roundness conforms . .
requirements or the shaft is from Tool 2?

yes no (d) Ifashaftis selected at random, what is the probability that
yes 145 4 the shaft conforms to surface finish requirements or the
no 8 6 shaft is from Tool 2?

2-4 CONDITIONAL PROBABILITY

Figure 2-12
Conditional probabili-
ties for parts with
surface flaws.

A digital communication channel has an error rate of one bit per every thousand transmitted.
Errors are rare, but when they occur, they tend to occur in bursts that affect many consecutive
bits. If a single bit is transmitted, we might model the probability of an error as 1/1000.
However, if the previous bit was in error, because of the bursts, we might believe that the
probability that the next bit is in error is greater than 1/1000.

In a thin film manufacturing process, the proportion of parts that are not acceptable is 2%.
However, the process is sensitive to contamination problems that can increase the rate of parts
that are not acceptable. If we knew that during a particular shift there were problems with the
filters used to control contamination, we would assess the probability of a part being unac-
ceptable as higher than 2%.

In a manufacturing process, 10% of the parts contain visible surface flaws and 25% of the
parts with surface flaws are (functionally) defective parts. However, only 5% of parts without
surface flaws are defective parts. The probability of a defective part depends on our knowl-
edge of the presence or absence of a surface flaw.

These examples illustrate that probabilities need to be reevaluated as additional informa-
tion becomes available. The notation and details are further illustrated for this example.

Let D denote the event that a part is defective and let F' denote the event that a part has a
surface flaw. Then, we denote the probability of D given, or assuming, that a part has a sur-
face flaw as P(D|F). This notation is read as the conditional probability of D given F and it
is interpreted as the probability that a part is defective, given that the part has a surface flaw.
Because 25% of the parts with surface flaws are defective, our conclusion can be stated as
P(D|F) = 0.25. Furthermore, because F” denotes the event that a part does not have a surface
flaw and because 5% of the parts without surface flaws are defective, we have that
P(D|F") = 0.05. These results are shown graphically in Fig. 2-12.

P(D|F)=0.25
25% > 5% defective
defective { P(D|F’)=0.05
—— iy
F = parts with F’ = parts without
surface flaws surface flaws
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EXAMPLE 2-16

Definition

Table 2-3  Parts Classified

Surface Flaws
Yes (event F) No Total
Defective Yes (event D) 10 18 38
No 30 342 362
Total 40 360 400

Table 2-3 provides an example of 400 parts classified by surface flaws and as (functionally)
defective. For this table the conditional probabilities match those discussed previously in this
section. For example, of the parts with surface flaws (40 parts) the number defective is 10.
Therefore,

P(D|F) = 10/40 = 0.25
and of the parts without surface flaws (360 parts) the number defective is 18. Therefore,
P(D|F’) = 18/360 = 0.05

In Example 2-16 conditional probabilities were calculated directly. These probabilities
can also be determined from the formal definition of conditional probability.

The conditional probability of an event B given an event 4, denoted as P(B|A), is
P(B|A) = P(4 N B)/P(A) (2-5)

for P(4) > 0.

This definition can be understood in a special case in which all outcomes of a random exper-
iment are equally likely. If there are 7 total outcomes,

P(A) = (number of outcomes in 4)/n

Also,

P(A N B) = (number of outcomes in 4 N B)/n

Consequently,

P40 BY/P(A) = number of outcomes in 4 N B

number of outcomes in 4



Figure 2-13  Tree
diagram for parts
classified
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Surface flaw
0,

360 40
200 N° 78S 200
Defective —yo&—=—————-——-—-———————— —— o —
342 18 3 10
360 V Yes 360 20 ° Yes %0
L] (] L °

Therefore, P(B|A) can be interpreted as the relative frequency of event B among the trials that
produce an outcome in event 4.

Again consider the 400 parts in Table 2-3. From this table

10 /40 _ 10
P(DIF) = P(D N F)/P(F) = 355/ 206 = 20

Note that in this example all four of the following probabilities are different:

P(F) = 40/400
P(D) = 28/400

P(F|D) = 10/28
P(D|F) = 10/40

Here, P(D) and P(D|F) are probabilities of the same event, but they are computed under two
different states of knowledge. Similarly, P(F) and P(F|D) are computed under two different
states of knowledge.

The tree diagram in Fig. 2-13 can also be used to display conditional probabilities. The
first branch is on surface flaw. Of the 40 parts with surface flaws, 10 are functionally defec-
tive and 30 are not. Therefore,

P(D|F) =10/40 and  P(D'|F) = 30/40

Of the 360 parts without surface flaws, 18 are functionally defective and 342 are not. Therefore,

P(D|F") = 342/360  and  P(D'|F’) = 18/360

Random Samples from a Batch

Recall that to select one item randomly from a batch implies that each item is equally likely.
If more than one item is selected, randomly implies that each element of the sample space is
equally likely. For example, when sample spaces were presented earlier in this chapter, sam-
pling with and without replacement were defined and illustrated for the simple case of a batch
with three items {a, b, c}. If two items are selected randomly from this batch without replace-
ment, each of the six outcomes in the ordered sample space

Syithout = {ab, ac, ba, bc, ca, cb}

has probability 1/6. If the unordered sample space is used, each of the three outcomes in
{{a, b}, {a, c}, {b, c}} has probability 1/3.
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What is the conditional probability that b is selected second given that a is selected
first? Because this question considers the results of each pick, the ordered sample space is
used. The definition of conditional probability is applied as follows. Let £, denote the
event that the first item selected is @ and let £, denote the event that the second item se-
lected is b. Then,

E, = {ab, ac} and E, = {ab, cb} and  E,NE, = {ab}
and from the definition of conditional probability

176 _

13" 1/2

P(E,|E\) = P(E, N E,)/P(E;) =

When the sample space is larger, an alternative calculation is usually more convenient.
For example, suppose that a batch contains 10 parts from tool 1 and 40 parts from tool 2. If
two parts are selected randomly, without replacement, what is the conditional probability that
a part from tool 2 is selected second given that a part from tool 1 is selected first? There are
50 possible parts to select first and 49 to select second. Therefore, the (ordered) sample space
has 50 X 49 = 2450 outcomes. Let £, denote the event that the first part is from tool 1 and £,
denote the event that the second part is from tool 2. As above, a count of the number of out-
comes in £, and the intersection is needed.

Although the answer can be determined from this start, this type of question can be
answered more easily with the following result.

To select randomly implies that at each step of the sample, the items that remain in
the batch are equally likely to be selected.

If a part from tool 1 were selected with the first pick, 49 items would remain, 9 from tool 1 and
40 from tool 2, and they would be equally likely to be picked. Therefore, the probability that
a part from tool 2 would be selected with the second pick given this first pick is

P(E,|E,) = 40/49.

In this manner, other probabilities can also be simplified. For example, let the event £
consist of the outcomes with the first selected part from tool 1 and the second part from tool 2.
To determine the probability of E, consider each step. The probability that a part from tool 1
is selected with the first pick is P(E;) = 10/50. The conditional probability that a part from
tool 2 is selected with the second pick, given that a part from tool 1 is selected first is
P(E,|E|) = 40/49. Therefore,

_ 40 10 _

P(E) = P(E,| E|)P(E)) = 29 30 0.163
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Sometimes a partition of the question into successive picks is an easier method to solve the
problem.

A day’s production of 850 manufactured parts contains 50 parts that do not meet customer
requirements. Two parts are selected randomly without replacement from the batch. What is
the probability that the second part is defective given that the first part is defective?

Let A denote the event that the first part selected is defective, and let B denote the event
that the second part selected is defective. The probability needed can be expressed as
P(B|A). If the first part is defective, prior to selecting the second part, the batch contains 849
parts, of which 49 are defective, therefore

P(B|A) = 49/849

Continuing the previous example, if three parts are selected at random, what is the probability
that the first two are defective and the third is not defective? This event can be described in
shorthand notation as simply P(ddn). We have

50 49 800
P = 2 0.0032
(ddn) = 250 " 849 "3ag ~ %003

The third term is obtained as follows. After the first two parts are selected, there are 848
remaining. Of the remaining parts, 800 are not defective. In this example, it is easy to obtain
the solution with a conditional probability for each selection.

EXERCISES FOR SECTION 2-4

2-57. Disks of polycarbonate plastic from a supplier are an- Let A denote the event that a sample has excellent surface fin-
alyzed for scratch and shock resistance. The results from 100 ish, and let B denote the event that a sample has excellent
disks are summarized as follows: length. Determine:
. (@ P(4)  (b) P(B)
shock resistance (c) P(4|B) (d) P(B|4)
high low (e) Ifthe selected part has excellent surface finish, what is the
scratch high 70 9 probability that the length is excellent?
resistance low 16 5 (f) If the selected part has good length, what is the probability
that the surface finish is excellent?

Let 4 denote the event that a disk has high shock resistance, 2-59. The analysis of shafts for a compressor is summarized
and let B denote the event that a disk has high scratch resist- by conformance to specifications:
ance. Determine the following probabilities:
(a) P(A) (b) P(B) roundness conforms
(c) P(4]B) (d) P(Bl4) yes no
2-58. Samples of a cast aluminum part are classified surface finish yes 345 5

on the basis of surface finish (in microinches) and length

conforms no 12

measurements. The results of 100 parts are summarized as

follows: (a) If we know that a shaft conforms to roundness require-
ments, what is the probability that it conforms to surface
length finish requirements?
excellent good (b) If we know that a shaft does not conform to roundness
surface excellent 80 2 requirements, what is the probability that it conforms to
finish good 10 3 surface finish requirements?
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2-60. The following table summarizes the analysis of samples
of galvanized steel for coating weight and surface roughness:

coating weight

high low
surface high 12 16
roughness low 88 34

(a) If'the coating weight of a sample is high, what is the prob-
ability that the surface roughness is high?

(b) If the surface roughness of a sample is high, what is the
probability that the coating weight is high?

(c) If the surface roughness of a sample is low, what is the
probability that the coating weight is low?

2-61. Consider the data on wafer contamination and loca-

tion in the sputtering tool shown in Table 2-2. Assume that one

wafer is selected at random from this set. Let 4 denote the

event that a wafer contains four or more particles, and let B

denote the event that a wafer is from the center of the sputter-

ing tool. Determine:

(a) P(4) (b) P(4]B)
(c) P(B) (d) P(B|4)
(e) PANB) (f) P(A4UB)

2-62. A lot of 100 semiconductor chips contains 20 that are

defective. Two are selected randomly, without replacement,

from the lot.

(a) What is the probability that the first one selected is defec-
tive?

(b) What is the probability that the second one selected is
defective given that the first one was defective?

(c) What is the probability that both are defective?

(d) How does the answer to part (b) change if chips selected
were replaced prior to the next selection?

2-63. A lotcontains 15 castings from a local supplier and 25

castings from a supplier in the next state. Two castings are

selected randomly, without replacement, from the lot of 40.

Let 4 be the event that the first casting selected is from the

local supplier, and let B denote the event that the second cast-

ing is selected from the local supplier. Determine:

(a) P(4) (b) P(B|4)

(c) P(ANB) (d) P(4UB)

2-64. Continuation of Exercise 2-63. Suppose three cast-

ings are selected at random, without replacement, from the lot

of 40. In addition to the definitions of events 4 and B, let C
denote the event that the third casting selected is from the
local supplier. Determine:

(a) PANBNC)

(b)y PANBNC)

2-65. A batch of 500 containers for frozen orange juice con-

tains 5 that are defective. Two are selected, at random, without

replacement from the batch.

(a) What is the probability that the second one selected is
defective given that the first one was defective?

(b) What is the probability that both are defective?

(c) What is the probability that both are acceptable?

2-66. Continuation of Exercise 2-65. Three containers are

selected, at random, without replacement, from the batch.

(a) What is the probability that the third one selected is defec-
tive given that the first and second one selected were
defective?

(b) What is the probability that the third one selected is
defective given that the first one selected was defective
and the second one selected was okay?

(c) What is the probability that all three are defective?

2-67. A maintenance firm has gathered the following infor-

mation regarding the failure mechanisms for air conditioning

systems:

evidence of gas leaks

yes no
evidence of yes 55 17
electrical failure no 32 3

The units without evidence of gas leaks or electrical failure

showed other types of failure. If this is a representative sample

of AC failure, find the probability

(a) That failure involves a gas leak

(b) That there is evidence of electrical failure given that there
was a gas leak

(c) That there is evidence of a gas leak given that there is
evidence of electrical failure

2-68. TfP(A|B) = 1, must 4 = B? Draw a Venn diagram to

explain your answer.

2-69. Suppose 4 and B are mutually exclusive events.

Construct a Venn diagram that contains the three events A4, B,
and C such that P(4|C) = 1 and P(B|C) = 0?

2-5 MULTIPLICATION AND TOTAL PROBABILITY RULES

2-5.1 Multiplication Rule

The definition of conditional probability in Equation 2-5 can be rewritten to provide a general
expression for the probability of the intersection of two events. This formula is referred to as
a multiplication rule for probabilities.
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P(4 N B) = P(B|A)P(4) = P(4|B)P(B) (2-6)

The last expression in Equation 2-6 is obtained by interchanging 4 and B.

The probability that an automobile battery subject to high engine compartment temperature
suffers low charging current is 0.7. The probability that a battery is subject to high engine
compartment temperature is 0.05.

Let C denote the event that a battery suffers low charging current, and let 7" denote the
event that a battery is subject to high engine compartment temperature. The probability that a
battery is subject to low charging current and high engine compartment temperature is

P(CNT)=P(C|T)P(T) = 0.7 X 0.05 = 0.035

2-5.2 Total Probability Rule

The multiplication rule is useful for determining the probability of an event that depends on
other events. For example, suppose that in semiconductor manufacturing the probability is
0.10 that a chip that is subjected to high levels of contamination during manufacturing causes
a product failure. The probability is 0.005 that a chip that is not subjected to high contamina-
tion levels during manufacturing causes a product failure. In a particular production run, 20%
of the chips are subject to high levels of contamination. What is the probability that a product
using one of these chips fails?

Clearly, the requested probability depends on whether or not the chip was exposed to high
levels of contamination. We can solve this problem by the following reasoning. For any event
B, we can write B as the union of the part of B in 4 and the part of B in 4. That is,

B=(4NB)U 4’ NB)

This result is shown in the Venn diagram in Fig. 2-14. Because 4 and A’ are mutually exclu-
sive, A M B and A’ M B are mutually exclusive. Therefore, from the probability of the union
of mutually exclusive events in Equation 2-2 and the Multiplication Rule in Equation 2-6, the
following total probability rule is obtained.

Figure 2-14  Partitioning B=(BNE)UBANE)UBNE3UBNE
an event into two mutually

. Figure 2-15  Partitioning an event into
exclusive subsets.

several mutually exclusive subsets.
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Total Probability
Rule (two events)

EXAMPLE 2-21

Total Probability
Rule (multiple
events)

EXAMPLE 2-22

For any events 4 and B,

P(B) = P(BNA) + P(BNA') = P(B|A)P(A) + P(B|A)P(4")  (2-7)

Consider the contamination discussion at the start of this section. Let F' denote the event
that the product fails, and let H denote the event that the chip is exposed to high levels of
contamination. The requested probability is P(F), and the information provided can be rep-
resented as

P(FIH)=10.10 and  P(F|H') = 0.005
P(H) = 0.20 and P(H") = 0.80

From Equation 2-7,
P(F) = 0.10(0.20) + 0.005(0.80) = 0.0235
which can be interpreted as just the weighted average of the two probabilities of failure.

The reasoning used to develop Equation 2-7 can be applied more generally. In the devel-
opment of Equation 2-7, we only used the two mutually exclusive 4 and 4’. However, the fact
that A U A" = S, the entire sample space, was important. In general, a collection of sets
E\,E,, ..., E; suchthat £, U E,U ... UE; = S is said to be exhaustive. A graphical dis-
play of partitioning an event B among a collection of mutually exclusive and exhaustive
events is shown in Fig. 2-15 on page 43.

Assume Ey, E,, ..., E; are k mutually exclusive and exhaustive sets. Then

P(B) = PBNE,) + PBNE,)) + - + P(BNEy)
= P(B|E\)P(E)) + P(BIE))P(E,y) + -+ + P(BIE)JP(E)  (2-8)

Continuing with the semiconductor manufacturing example, assume the following probabili-
ties for product failure subject to levels of contamination in manufacturing:

Probability of Failure Level of Contamination
0.10 High
0.01 Medium

0.001 Low
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Contamination
{1

0.20 0.50
0.30
High Medium Low
AN N\ AN
P(Fail|High) P(Not Fail |High) P(Fail|Medium)  P(Not Fail|Medium)  P(Fail|Low)  P(Not Fail|Low)
=0.10 =0.90 =0.01 =0.99 =0.001 =0.999
[} L] \. L} L]
0.10(0.20) 0.90(0.20) 0.01(0.30) 0.99(0.30)  0.001(0.50) 0.999(0.50)
=0.02 =0.18 =0.003 =0.297 =0.0005 =0.4995

Figure 2-16  Tree
diagram for
Example 2-22.

P(Fail) = 0.02 + 0.003 + 0.0005 = 0.0235

In a particular production run, 20% of the chips are subjected to high levels of contami-
nation, 30% to medium levels of contamination, and 50% to low levels of contamination.
What is the probability that a product using one of these chips fails? Let

H denote the event that a chip is exposed to high levels of contamination

M denote the event that a chip is exposed to medium levels of contamination

L denote the event that a chip is exposed to low levels of contamination

Then,

P(F) = P(F|H)P(H) + P(F|M)P(M) + P(F[L)P(L)
= 0.10(0.20) + 0.01(0.30) + 0.001(0.50) = 0.0235

This problem is also conveniently solved using the tree diagram in Fig. 2-16.

EXERCISES FOR SECTION 2-5

2-70. Suppose that P(4|B) =04 and P(B)=0.5.
Determine the following:

(a) P(AN B)

(b) P(4' N B)

2-71. Suppose that P(A|B) =02, P(4|B') = 0.3, and
P(B) = 0.8. What is P(4)?

2-72. The probability is 1% that an electrical connector that
is kept dry fails during the warranty period of a portable com-
puter. If the connector is ever wet, the probability of a failure
during the warranty period is 5%. If 90% of the connectors are
kept dry and 10% are wet, what proportion of connectors fail
during the warranty period?

2-73. Suppose 2% of cotton fabric rolls and 3% of nylon
fabric rolls contain flaws. Of the rolls used by a manufacturer,
70% are cotton and 30% are nylon. What is the probability
that a randomly selected roll used by the manufacturer con-
tains flaws?

2-74. In the manufacturing of a chemical adhesive, 3% of
all batches have raw materials from two different lots. This
occurs when holding tanks are replenished and the remaining
portion of a lot is insufficient to fill the tanks.

Only 5% of batches with material from a single lot require
reprocessing. However, the viscosity of batches consisting of
two or more lots of material is more difficult to control, and
40% of such batches require additional processing to achieve
the required viscosity.

Let 4 denote the event that a batch is formed from
two different lots, and let B denote the event that a lot
requires additional processing. Determine the following
probabilities:

() P(4) (b) P(4")

(c) P(B|4) (d) P(B|4")
(e) P(ANB) (f) PANB)
(2) P(B)
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2-75. The edge roughness of slit paper products increases as
knife blades wear. Only 1% of products slit with new blades
have rough edges, 3% of products slit with blades of average
sharpness exhibit roughness, and 5% of products slit with
worn blades exhibit roughness. If 25% of the blades in manu-
facturing are new, 60% are of average sharpness, and 15% are
worn, what is the proportion of products that exhibit edge
roughness?
2-76. Samples of laboratory glass are in small, light pack-
aging or heavy, large packaging. Suppose that 2 and 1% of
the sample shipped in small and large packages, respec-
tively, break during transit. If 60% of the samples are
shipped in large packages and 40% are shipped in small
packages, what proportion of samples break during
shipment?
2-77. Incoming calls to a customer service center are classi-
fied as complaints (75% of call) or requests for information
(25% of calls). Of the complaints, 40% deal with computer
equipment that does not respond and 57% deal with
incomplete software installation; and in the remaining 3% of
complaints the user has improperly followed the installation
instructions. The requests for information are evenly divided
on technical questions (50%) and requests to purchase more
products (50%).
(a) What is the probability that an incoming call to the cus-
tomer service center will be from a customer who has not
followed installation instructions properly?
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(b) Find the probability that an incoming call is a request for
purchasing more products.

2-78. Computer keyboard failures are due to faulty electri-
cal connects (12%) or mechanical defects (88%). Mechanical
defects are related to loose keys (27%) or improper assembly
(73%). Electrical connect defects are caused by defective
wires (35%), improper connections (13%), or poorly welded
wires (52%).

(a) Find the probability that a failure is due to loose keys.

(b) Find the probability that a failure is due to improperly

connected or poorly welded wires.

2-79. A batch of 25 injection-molded parts contains 5 that

have suffered excessive shrinkage.

(a) If two parts are selected at random, and without replace-
ment, what is the probability that the second part selected
is one with excessive shrinkage?

(b) Ifthree parts are selected at random, and without replace-
ment, what is the probability that the third part selected is
one with excessive shrinkage?

2-80. A lot of 100 semiconductor chips contains 20 that are

defective.

(a) Two are selected, at random, without replacement, from
the lot. Determine the probability that the second chip se-
lected is defective.

(b) Three are selected, at random, without replacement,
from the lot. Determine the probability that all are
defective.

In some cases, the conditional probability of P(B|A4) might equal P(B). In this special case,
knowledge that the outcome of the experiment is in event 4 does not affect the probability that

the outcome is in event B.

EXAMPLE 2-23

Suppose a day’s production of 850 manufactured parts contains 50 parts that do not meet

customer requirements. Suppose two parts are selected from the batch, but the first part is
replaced before the second part is selected. What is the probability that the second part is
defective (denoted as B) given that the first part is defective (denoted as 4)? The probability

needed can be expressed as P(B|A4).

Because the first part is replaced prior to selecting the second part, the batch still contains
850 parts, of which 50 are defective. Therefore, the probability of B does not depend on
whether or not the first part was defective. That is,

P(B]A4) = 50/850

Also, the probability that both parts are defective is

P(4 N B) = P(B|A)P(4) = ( >0 ) - (50> = 0.0035

850/ \ 850
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Table 2-4  Parts Classified

Surface Flaws
Yes (event F) No Total
Defective Yes (event D) 2 18 20
No 38 342 380
Total 40 360 400

EXAMPLE 2-24 The information in Table 2-3 related surface flaws to functionally defective parts. In that case,
we determined that P(D|F) = 10/40 = 0.25 and P(D) = 28/400 = 0.07. Suppose that the
situation is different and follows Table 2-4. Then,

P(D|F) =2/40 = 0.05 and  P(D) = 20/400 = 0.05

That is, the probability that the part is defective does not depend on whether it has surface
flaws. Also,

P(F|ID)=2/20=0.10 and  P(F) = 40/400 = 0.10

so the probability of a surface flaw does not depend on whether the part is defective.
Furthermore, the definition of conditional probability implies that

P(F N D) = P(D|F)P(F)
but in the special case of this problem

2 2 1
P(FND) = ADIP(F) = 45+ 56 =500

The preceding example illustrates the following conclusions. In the special case that
P(B|A) = P(B), we obtain

P(AN B) = P(B|A)P(4) = P(B)P(A)
and

_P(ANB) _ PAPB)
P(4|B) = PGB - PE) P(A4)

These conclusions lead to an important definition.

Definition
Two events are independent if any one of the following equivalent statements is true:
(1) P4lB) = P(4)
(2) P(Bl4) = P(B)
(3) P(4NB) = P(A)P(B) (2-9)
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EXAMPLE 2-25

Definition

EXAMPLE 2-26

It is left as a mind-expanding exercise to show that independence implies related results
such as

P(A' N B') = P(4")P(B").

The concept of independence is an important relationship between events and is used
throughout this text. A mutually exclusive relationship between two events is based only on
the outcomes that comprise the events. However, an independence relationship depends on the
probability model used for the random experiment. Often, independence is assumed to be part
of the random experiment that describes the physical system under study.

A day’s production of 850 manufactured parts contains 50 parts that do not meet customer
requirements. Two parts are selected at random, without replacement, from the batch. Let 4
denote the event that the first part is defective, and let B denote the event that the second part
is defective.

We suspect that these two events are not independent because knowledge that the first
part is defective suggests that it is less likely that the second part selected is defective. Indeed,
P(B|A) = 49/849. Now, what is P(B)? Finding the unconditional P(B) is somewhat difficult
because the possible values of the first selection need to be considered:

P(B) = P(B|A)P(4) + P(B|A")P(4")
= (49/849)(50/850) + (50/849)(800/850)
= 50/850

Interestingly, P(B), the unconditional probability that the second part selected is defec-
tive, without any knowledge of the first part, is the same as the probability that the first part
selected is defective. Yet, our goal is to assess independence. Because P(B|A4) does not equal
P(B), the two events are not independent, as we suspected.

When considering three or more events, we can extend the definition of independence
with the following general result.

The events E,, E,, ..., E, are independent if and only if for any subset of these
events £, , E; L E

i Hipp v et i

P(Eil mEl'z m m Eik) - P(Ell) X P(Elz) X oo X P(Elk) (2'10)

This definition is typically used to calculate the probability that several events occur assuming
that they are independent and the individual event probabilities are known. The knowledge
that the events are independent usually comes from a fundamental understanding of the ran-
dom experiment.

Assume that the probability that a wafer contains a large particle of contamination is 0.01 and
that the wafers are independent; that is, the probability that a wafer contains a large particle is
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EXAMPLE 2-28

2-6 INDEPENDENCE 49

not dependent on the characteristics of any of the other wafers. If 15 wafers are analyzed, what
is the probability that no large particles are found?

Let E; denote the event that the ith wafer contains no large particles, i = 1,2, ..., 15.
Then, P(E;) = 0.99. The probability requested can be represented as P(E; N E, N -+ M E}s).
From the independence assumption and Equation 2-10,

P(E,NE,N - NEs) = P(E,) X P(E,) X -+~ X P(Eys) = 0.99"° = 0.86
The following circuit operates only if there is a path of functional devices from left to right.

The probability that each device functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

0.95

0.95

Let T'and B denote the events that the top and bottom devices operate, respectively. There
is a path if at least one device operates. The probability that the circuit operates is

P(TorB)=1—P[(TorB)'] =1— P(T" and B")

a simple formula for the solution can be derived from the complements 7" and B’. From the
independence assumption,

P(T' and B') = P(T")P(B') = (1 — 0.95)* = 0.05%
)
P(TorB) =1 — 0.05* = 0.9975
The following circuit operates only if there is a path of functional devices from left to right.

The probability that each device functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

0.95

0.99 b

[ ]
—

0.95
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The solution can be obtained from a partition of the graph into three columns.
The probability that there is a path of functional devices only through the three units on the
left can be determined from the independence in a manner similar to the previous example.

It is

1 -0.1°

Similarly, the probability that there is a path of functional devices only through the two units

in the middle is

1 — 0.05?

The probability that there is a path of functional devices only through the one unit on the right
is simply the probability that the device functions, namely, 0.99. Therefore, with the inde-
pendence assumption used again, the solution is

(1 = 0.1%)(1 — 0.05%)(0.99) = 0.987

EXERCISES FOR SECTION 2-6

2-81. If P(A|B) = 0.4, P(B) = 0.8, and P(4) = 0.5, are
the events 4 and B independent?

2-82. If P(4]B) = 0.3, P(B) = 0.8, and P(4) = 0.3, are
the events B and the complement of 4 independent?

2-83. Disks of polycarbonate plastic from a supplier are an-
alyzed for scratch and shock resistance. The results from 100
disks are summarized as follows:

shock resistance

high low
scratch high 70 9
resistance low 16 5

Let A4 denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch resist-
ance. Are events 4 and B independent?

2-84. Samples of a cast aluminum part are classified on the
basis of surface finish (in microinches) and length measure-
ments. The results of 100 parts are summarized as follows:

length
excellent good
surface excellent 80 2
finish good 10 8

Let A denote the event that a sample has excellent surface fin-
ish, and let B denote the event that a sample has excellent
length. Are events 4 and B independent?

2-85. Samples of emissions from three suppliers are classi-
fied for conformance to air-quality specifications. The results
from 100 samples are summarized as follows:

conforms
yes no
1 22
supplier 2 25 5
3 30 10

Let 4 denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
(a) Are events 4 and B independent?

(b) Determine P(B|A).

2-86. If P(4) = 0.2, P(B) = 0.2, and 4 and B are mutually
exclusive, are they independent?

2-87. The probability that a lab specimen contains high lev-

els of contamination is 0.10. Five samples are checked, and

the samples are independent.

(a) What is the probability that none contains high levels of
contamination?

(b) What is the probability that exactly one contains high
levels of contamination?

(c) What is the probability that at least one contains high
levels of contamination?

2-88. Ina test of a printed circuit board using a random test

pattern, an array of 10 bits is equally likely to be 0 or 1.

Assume the bits are independent.

(a) What is the probability that all bits are 1s?

(b) What is the probability that all bits are 0s?

(c) What is the probability that exactly five bits are 1s and five
bits are 0s?

2-89. Eight cavities in an injection-molding tool produce
plastic connectors that fall into a common stream. A sample is



chosen every several minutes. Assume that the samples are

independent.

(a) What is the probability that five successive samples were
all produced in cavity one of the mold?

(b) What is the probability that five successive samples were
all produced in the same cavity of the mold?

(c) What is the probability that four out of five successive
samples were produced in cavity one of the mold?

2-90. The following circuit operates if and only if there is a
path of functional devices from left to right. The probability
that each device functions is as shown. Assume that the prob-
ability that a device is functional does not depend on whether
or not other devices are functional. What is the probability that
the circuit operates?

0.9 0.8 0.7

0.95 0.95 0.95

2-91. The following circuit operates if and only if there is a
path of functional devices from left to right. The probability
each device functions is as shown. Assume that the probabil-
ity that a device functions does not depend on whether or not
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other devices are functional. What is the probability that the
circuit operates?

0.9 0.9 0.8

0.95 0.95 0.9

2-92. An optical storage device uses an error recovery proce-
dure that requires an immediate satisfactory readback of any
written data. If the readback is not successful after three writing
operations, that sector of the disk is eliminated as unacceptable
for data storage. On an acceptable portion of the disk, the proba-
bility of a satisfactory readback is 0.98. Assume the readbacks
are independent. What is the probability that an acceptable por-
tion of the disk is eliminated as unacceptable for data storage?
2-93. A batch of 500 containers for frozen orange juice con-
tains 5 that are defective. Two are selected, at random, without
replacement, from the batch. Let 4 and B denote the events
that the first and second container selected is defective, re-
spectively.

(a) Are A and B independent events?

(b) If the sampling were done with replacement, would 4 and

B be independent?

In some examples, we do not have a complete table of information such as the parts in Table
2-3. We might know one conditional probability but would like to calculate a different one. In
the semiconductor contamination problem in Example 2-22, we might ask the following: If
the semiconductor chip in the product fails, what is the probability that the chip was exposed

to high levels of contamination?

From the definition of conditional probability,

P(4 N B) = P(4|B)P(B) = P(B N A) = P(B|4)P(4)

Now considering the second and last terms in the expression above, we can write

P(A|B)

P(B|A)P(4)

for P(B) >0 2-11)

P(B)

This is a useful result that enables us to solve for P(4|B) in terms of P(B| 4).
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EXAMPLE 2-29

Bayes’
Theorem

EXAMPLE 2-30

We can answer the question posed at the start of this section as follows: The probability
requested can be expressed as P(H | F). Then,

P(F|H)P(H)  0.10(0.20)
P(F)  0.0235

P(H|F) =

The value of P(F) in the denominator of our solution was found in Example 2-20.

In general, if P(B) in the denominator of Equation 2-11 is written using the Total
Probability Rule in Equation 2-8, we obtain the following general result, which is known as
Bayes’ Theorem.

IfEy, E,, ..., E;are k mutually exclusive and exhaustive events and B is any
event,

P(B|E\)P(E))
(BIE)P(E) + P(B|E)P(E,) + -+ + P(B|E)P(Ey)

P(E||B) = 5 (2-12)

for P(B) > 0

Because a new medical procedure has been shown to be effective in the early detection of an
illness, a medical screening of the population is proposed. The probability that the test cor-
rectly identifies someone with the illness as positive is 0.99, and the probability that the test
correctly identifies someone without the illness as negative is 0.95. The incidence of the
illness in the general population is 0.0001. You take the test, and the result is positive. What is
the probability that you have the illness?

Let D denote the event that you have the illness, and let § denote the event that the test
signals positive. The probability requested can be denoted as P(D|S). The probability that the
test correctly signals someone without the illness as negative is 0.95. Consequently, the prob-
ability of a positive test without the illness is

P(S|D") = 0.05
From Bayes’ Theorem,

P(D|S) = P(S|D)P(D)/[P(S|D)P(D) + P(S|D")P(D'")]
0.99(0.0001)/[0.99(0.0001) + 0.05(1 — 0.0001)]
1/506 = 0.002

Surprisingly, even though the test is effective, in the sense that P(S|D) is high and
P(S|D’) is low, because the incidence of the illness in the general population is low, the
chances are quite small that you actually have the disease even if the test is positive.
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2-94. Suppose that P(4|B)=0.7, P(4) =0.5, and
P(B) = 0.2. Determine P(B|A).

2-95. Software to detect fraud in consumer phone cards
tracks the number of metropolitan areas where calls origi-
nate each day. It is found that 1% of the legitimate users
originate calls from two or more metropolitan areas in a
single day. However, 30% of fraudulent users originate
calls from two or more metropolitan areas in a single day.
The proportion of fraudulent users is 0.01%. If the
same user originates calls from two or more metropolitan
areas in a single day, what is the probability that the user is
fraudulent?

2-96. Semiconductor lasers used in optical storage products
require higher power levels for write operations than for read
operations. High-power-level operations lower the useful life
of the laser.

Lasers in products used for backup of higher speed mag-
netic disks primarily write, and the probability that the useful
life exceeds five years is 0.95. Lasers that are in products that
are used for main storage spend approximately an equal
amount of time reading and writing, and the probability that
the useful life exceeds five years is 0.995. Now, 25% of the
products from a manufacturer are used for backup and 75% of
the products are used for main storage.

Let 4 denote the event that a laser’s useful life exceeds five
years, and let B denote the event that a laser is in a product that
is used for backup.

Use a tree diagram to determine the following:

(a) P(B) (b) P(4]B)
(©) P(4|B) (@) PANB)
(e) PANB) (f) P4)

(g) What is the probability that the useful life of a laser
exceeds five years?

(h) What is the probability that a laser that failed before five
years came from a product used for backup?

2-97. Customers are used to evaluate preliminary product

designs. In the past, 95% of highly successful products

received good reviews, 60% of moderately successful prod-
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ucts received good reviews, and 10% of poor products

received good reviews. In addition, 40% of products have

been highly successful, 35% have been moderately

successful, and 25% have been poor products.

(a) What is the probability that a product attains a good
review?

(b) If a new design attains a good review, what is the proba-
bility that it will be a highly successful product?

(c) If a product does not attain a good review, what is the
probability that it will be a highly successful product?

2-98. An inspector working for a manufacturing company

has a 99% chance of correctly identifying defective items and

a 0.5% chance of incorrectly classifying a good item as defec-

tive. The company has evidence that its line produces 0.9% of

nonconforming items.

(a) What is the probability that an item selected for inspection
is classified as defective?

(b) If an item selected at random is classified as nondefective,
what is the probability that it is indeed good?

2-99. A new analytical method to detect pollutants in water
is being tested. This new method of chemical analysis is im-
portant because, if adopted, it could be used to detect three dif-
ferent contaminants—organic pollutants, volatile solvents,
and chlorinated compounds—instead of having to use a single
test for each pollutant. The makers of the test claim that it can
detect high levels of organic pollutants with 99.7% accuracy,
volatile solvents with 99.95% accuracy, and chlorinated com-
pounds with 89.7% accuracy. If a pollutant is not present, the
test does not signal. Samples are prepared for the calibration
of the test and 60% of them are contaminated with organic
pollutants, 27% with volatile solvents, and 13% with traces of
chlorinated compounds.
A test sample is selected randomly.
(a) What is the probability that the test will signal?
(b) If the test signals, what is the probability that chlori-
nated compounds are present?

We often summarize the outcome from a random experiment by a simple number. In many
of the examples of random experiments that we have considered, the sample space has
been a description of possible outcomes. In some cases, descriptions of outcomes are suf-
ficient, but in other cases, it is useful to associate a number with each outcome in the sam-
ple space. Because the particular outcome of the experiment is not known in advance, the
resulting value of our variable is not known in advance. For this reason, the variable that
associates a number with the outcome of a random experiment is referred to as a random

variable.
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Definition

Definition

Examples of
Random
Variables

A random variable is a function that assigns a real number to each outcome in the
sample space of a random experiment.

A random variable is denoted by an uppercase letter such as X. After an experi-
ment is conducted, the measured value of the random variable is denoted by a low-
ercase letter such as x = 70 milliamperes.

Sometimes a measurement (such as current in a copper wire or length of a machined part)
can assume any value in an interval of real numbers (at least theoretically). Then arbitrary pre-
cision in the measurement is possible. Of course, in practice, we might round off to the nearest
tenth or hundredth of a unit. The random variable that represents this measurement is said to
be a continuous random variable. The range of the random variable includes all values in an
interval of real numbers; that is, the range can be thought of as a continuum.

In other experiments, we might record a count such as the number of transmitted bits that
are received in error. Then the measurement is limited to integers. Or we might record that a
proportion such as 0.0042 of the 10,000 transmitted bits were received in error. Then the
measurement is fractional, but it is still limited to discrete points on the real line. Whenever
the measurement is limited to discrete points on the real line, the random variable is said to be
a discrete random variable.

A discrete random variable is a random variable with a finite (or countably infinite)
range.

A continuous random variable is a random variable with an interval (either finite or
infinite) of real numbers for its range.

In some cases, the random variable X is actually discrete but, because the range of possible
values is so large, it might be more convenient to analyze X as a continuous random variable. For
example, suppose that current measurements are read from a digital instrument that displays the
current to the nearest one-hundredth of a milliampere. Because the possible measurements are
limited, the random variable is discrete. However, it might be a more convenient, simple approx-
imation to assume that the current measurements are values of a continuous random variable.

Examples of continuous random variables:
electrical current, length, pressure, temperature, time, voltage, weight

Examples of discrete random variables:
number of scratches on a surface, proportion of defective parts among 1000
tested, number of transmitted bits received in error.

EXERCISES FOR SECTION 2-8

2-100. Decide whether a discrete or continuous random (b) The number of times a transistor in a computer memory
variable is the best model for each of the following vari- changes state in one operation.
ables: (c) The volume of gasoline that is lost to evaporation during

(a) The time until a projectile returns to earth. the filling of a gas tank.



(d) The outside diameter of a machined shaft.

(e) The number of cracks exceeding one-half inch in 10 miles
of an interstate highway.

(f) The weight of an injection-molded plastic part.

(g) The number of molecules in a sample of gas.

(h) The concentration of output from a reactor.

(i) The current in an electronic circuit.

Supplemental Exercises

2-101. In circuit testing of printed circuit boards, each
board either fails or does not fail the test. A board that fails the
test is then checked further to determine which one of five de-
fect types is the primary failure mode. Represent the sample
space for this experiment.

2-102. The data from 200 machined parts are summarized
as follows:

depth of bore
above below
edge condition target target
coarse 15 10
moderate 25 20
smooth 50 80

(a) What is the probability that a part selected has a moderate
edge condition and a below-target bore depth?

(b) What is the probability that a part selected has a moderate
edge condition or a below-target bore depth?

(c) What is the probability that a part selected does not have a
moderate edge condition or does not have a below-target
bore depth?

(d) Construct a Venn diagram representation of the events in
this sample space.

2-103. Computers in a shipment of 100 units contain a
portable hard drive, CD RW drive, or both according to the
following table:

portable hard drive

yes no
CD RW
yes 15 80
no 4 1

Let 4 denote the events that a computer has a portable hard
drive and let B denote the event that a computer has a CD RW
drive. If one computer is selected randomly, compute

(a) P(4) (b) P(ANB)
(c) PAUB) (d) P(4' N B)
(e) P(4|B)

2-104. The probability that a customer’s order is not
shipped on time is 0.05. A particular customer places three
orders, and the orders are placed far enough apart in time that
they can be considered to be independent events.
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(a) What is the probability that all are shipped on time?

(b) What is the probability that exactly one is not shipped on
time?

(c) What is the probability that two or more orders are not
shipped on time?

2-105. Let E,, E,, and E; denote the samples that conform

to a percentage of solids specification, a molecular weight

specification, and a color specification, respectively. A total of

240 samples are classified by the E,, E,, and E; specifications,

where yes indicates that the sample conforms.

E5 yes
E,
yes no Total
E, yes 200 1 201
no 5 4 9
Total 205 5 210
E;no
E,
yes no
E, yes 20 4 24
no 6 0 6
Total 26 4 30

(a) Are E,, E,, and E; mutually exclusive events?

(b) Are E'}, E',, and E'; mutually exclusive events?

(c) What is P(E', or E', or E'5)?

(d) What is the probability that a sample conforms to all three
specifications?

(e) What is the probability that a sample conforms to the £, or
Ej5 specification?

(f) What is the probability that a sample conforms to the £, or
E, or E; specification?

2-106. Transactions to a computer database are either new

items or changes to previous items. The addition of an item can

be completed less than 100 milliseconds 90% of the time, but

only 20% of changes to a previous item can be completed in

less than this time. If 30% of transactions are changes, what is

the probability that a transaction can be completed in less than

100 milliseconds?

2-107. A steel plate contains 20 bolts. Assume that 5 bolts

are not torqued to the proper limit. Four bolts are selected at

random, without replacement, to be checked for torque.

(a) What is the probability that all four of the selected bolts
are torqued to the proper limit?

(b) What is the probability that at least one of the selected
bolts is not torqued to the proper limit?

2-108. The following circuit operates if and only if there is

a path of functional devices from left to right. Assume devices

fail independently and that the probability of failure of each



56 CHAPTER 2 PROBABILITY

device is as shown. What is the probability that the circuit
operates?

0.01 —— 0.01 0.1

0.1 0.1

2-109. The probability of getting through by telephone to
buy concert tickets is 0.92. For the same event, the probability
of accessing the vendor’s Web site is 0.95. Assume that these
two ways to buy tickets are independent. What is the proba-
bility that someone who tries to buy tickets through the
Internet and by phone will obtain tickets?

2-110. The British government has stepped up its information
campaign regarding foot and mouth disease by mailing
brochures to farmers around the country. It is estimated that 99%
of Scottish farmers who receive the brochure possess enough in-
formation to deal with an outbreak of the disease, but only 90%
of those without the brochure can deal with an outbreak. After
the first three months of mailing, 95% of the farmers in
Scotland received the informative brochure. Compute the prob-
ability that a randomly selected farmer will have enough infor-
mation to deal effectively with an outbreak of the disease.

2-111. In an automated filling operation, the probability of

an incorrect fill when the process is operated at a low speed is

0.001. When the process is operated at a high speed, the prob-

ability of an incorrect fill is 0.01. Assume that 30% of the

containers are filled when the process is operated at a high
speed and the remainder are filled when the process is
operated at a low speed.

(a) What is the probability of an incorrectly filled container?
(b) Ifan incorrectly filled container is found, what is the proba-
bility that it was filled during the high-speed operation?
2-112. An encryption-decryption system consists of three
elements: encode, transmit, and decode. A faulty encode
occurs in 0.5% of the messages processed, transmission errors
occur in 1% of the messages, and a decode error occurs in

0.1% of the messages. Assume the errors are independent.

(a) What is the probability of a completely defect-free
message?

(b) What is the probability of a message that has either an
encode or a decode error?

2-113. It is known that two defective copies of a commercial

software program were erroneously sent to a shipping lot that

has now a total of 75 copies of the program. A sample of copies
will be selected from the lot without replacement.

(a) Ifthree copies of the software are inspected, determine the
probability that exactly one of the defective copies will be
found.

(b) Ifthree copies of the software are inspected, determine the
probability that both defective copies will be found.

(c) If 73 copies are inspected, determine the probability that
both copies will be found. Hint: Work with the copies that
remain in the lot.

2-114. A robotic insertion tool contains 10 primary compo-
nents. The probability that any component fails during the
warranty period is 0.01. Assume that the components fail
independently and that the tool fails if any component fails.
What is the probability that the tool fails during the warranty
period?

2-115. An e-mail message can travel through one of two
server routes. The probability of transmission error in each of
the servers and the proportion of messages that travel each
route are shown in the following table. Assume that the
servers are independent.

probability of error

percentage

of messages server 1 server2 server3 server 4
route 1 30 0.01 0.015
route 2 70 0.02 0.003

(a) What is the probability that a message will arrive without
error?

(b) If a message arrives in error, what is the probability it was
sent through route 1?

2-116. A machine tool is idle 15% of the time. You request

immediate use of the tool on five different occasions during

the year. Assume that your requests represent independent

events.

(a) What is the probability that the tool is idle at the time of all
of your requests?

(b) What is the probability that the machine is idle at the time
of exactly four of your requests?

(c) What is the probability that the tool is idle at the time of at
least three of your requests?

2-117. Alot of 50 spacing washers contains 30 washers that

are thicker than the target dimension. Suppose that three wash-

ers are selected at random, without replacement, from the lot.

(a) What is the probability that all three washers are thicker
than the target?

(b) What is the probability that the third washer selected is
thicker than the target if the first two washers selected are
thinner than the target?

(c) What is the probability that the third washer selected is
thicker than the target?

2-118. Continuation of Exercise 2-117. Washers are se-

lected from the lot at random, without replacement.

(a) What is the minimum number of washers that need to be
selected so that the probability that all the washers are
thinner than the target is less than 0.10?

(b) What is the minimum number of washers that need to be
selected so that the probability that one or more washers
are thicker than the target is at least 0.90?



2-119. The following table lists the history of 940 orders for
features in an entry-level computer product.

extra memory

no yes
optional high- no 514 68
speed processor  yes 112 246

Let 4 be the event that an order requests the optional high-
speed processor, and let B be the event that an order requests
extra memory. Determine the following probabilities:

(a) P(AUB) (b) P(ANB)

(c) P(A"UB) (d) P(4'NB")

(e) What is the probability that an order requests an optional
high-speed processor given that the order requests extra
memory?

(f) What is the probability that an order requests extra mem-
ory given that the order requests an optional high-speed
processor?

2-120. The alignment between the magnetic tape and head

in a magnetic tape storage system affects the performance of

the system. Suppose that 10% of the read operations are de-
graded by skewed alignments, 5% of the read operations are
degraded by off-center alignments, and the remaining read op-
erations are properly aligned. The probability of a read error is

0.01 from a skewed alignment, 0.02 from an off-center align-

ment, and 0.001 from a proper alignment.

(a) What is the probability of a read error?

(b) If aread error occurs, what is the probability that it is due
to a skewed alignment?

2-121. The following circuit operates if and only if there is

a path of functional devices from left to right. Assume that de-

vices fail independently and that the probability of failure of
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each device is as shown. What is the probability that the
circuit does not operate?

0.02

—1 0.01 — 0.01 |—

— 0.01 —— 0.01 —

0.02

2-122. A company that tracks the use of its web site deter-
mined that the more pages a visitor views, the more likely the
visitor is to provide contact information. Use the following ta-
bles to answer the questions:

Number of

pages viewed: 1 2 3 4 or more

Percentage of

visitors: 40 30 20 10
Percentage of visitors

in each page-view

catgory that provide

contact information: 10 10 20 40

(a) What is the probability that a visitor to the web site
provides contact information?

(b) If a visitor provides contact information, what is the
probability that the visitor viewed four or more pages?
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MIND-EXPANDING EXERCISES

2-123. The alignment between the magnetic tape and
head in a magnetic tape storage system affects the per-
formance of the system. Suppose that 10% of the read
operations are degraded by skewed alignments, 5% by
off-center alignments, 1% by both skewness and off-
center, and the remaining read operations are properly
aligned. The probability of a read error is 0.01 from a
skewed alignment, 0.02 from an off-center alignment,
0.06 from both conditions, and 0.001 from a proper

alignment. What is the probability of a read error.

2-124. Suppose that a lot of washers is large enough
that it can be assumed that the sampling is done with re-
placement. Assume that 60% of the washers exceed the

target thickness.

(a) What is the minimum number of washers that need
to be selected so that the probability that all the
washers are thinner than the target is less than 0.10?

(b) What is the minimum number of washers that need to
be selected so that the probability that one or more
washers are thicker than the target is at least 0.90?

2-125. A biotechnology manufacturing firm can pro-

duce diagnostic test kits at a cost of $20. Each kit for

which there is a demand in the week of production can be
sold for $100. However, the half-life of components in
the kit requires the kit to be scrapped if it is not sold in
the week of production. The cost of scrapping the kit is

$5. The weekly demand is summarized as follows:
weekly demand

Number of

units 0 50 100 200
Probability of

demand 0.05 0.4 0.3

IMPORTANT TERMS AND CONCEPTS

0.25

How many kits should be produced each week to maxi-
mize the mean earnings of the firm?

2-126. Assume the following characteristics of the
inspection process in Exercise 2-107. If an operator
checks a bolt, the probability that an incorrectly
torqued bolt is identified is 0.95. If a checked bolt is
correctly torqued, the operator’s conclusion is always
correct. What is the probability that at least one bolt in
the sample of four is identified as being incorrectly
torqued?

2-127. If the events 4 and B are independent, show
that 4" and B’ are independent.

2-128. Suppose that a table of part counts is generalized
as follows:

conforms
yes no
supplier 1 ka kb
2 a b

where a, b, and k are positive integers. Let A denote the
event that a part is from supplier 1 and let B denote the
event that a part conforms to specifications. Show that
A and B are independent events.

This exercise illustrates the result that whenever the
rows of a table (with » rows and ¢ columns) are propor-
tional, an event defined by a row category and an event
defined by a column category are independent.

In the E-book, click on any Event

term or concept below to  Independence

go to that subject. Multiplication rule
Addition rule Mutually exclusive
Axioms of probability events
Bayes’ theorem Outcome
Conditional probability Random experiment
Equally likely outcomes

Random variables CD MATERIAL
discrete and .
. Permutation
continuous
Combination

Sample spaces—discrete
and continuous

Total probability rule

With or without
replacement
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Multiplication
Rule (for
counting

techniques)

EXAMPLE §2-1

In many of the examples in Chapter 2, it is easy to determine the number of outcomes in each
event. In more complicated examples, determining the number of outcomes that comprise the
sample space (or an event) becomes more difficult. To associate probabilities with events, it is
important to know the number of outcomes both in an event and in the sample space. Some
simple rules can be used to simplify the calculations.

In Example 2-4, an automobile manufacturer provides vehicles equipped with selected
options. Each vehicle is ordered

With or without an automatic transmission
With or without air conditioning

With one of three choices of a stereo system
With one of four exterior colors

The tree diagram in Fig. 2-6 describes the sample space of all possible vehicle types. The size
of the sample space equals the number of branches in the last level of the tree and this quantity
equals 2 X 2 X 3 X 4 =48. This leads to the following useful result.

If an operation can be described as a sequence of & steps, and

if the number of ways of completing step 1 is n;, and

if the number of ways of completing step 2 is n, for each way of completing
step 1, and

if the number of ways of completing step 3 is n; for each way of completing
step 2, and so forth,

the total number of ways of completing the operation is

n1><n2><~~~><nk

In the design of a casing for a gear housing, we can use four different types of fasteners,
three different bolt lengths, and three different bolt locations. From the multiplication rule,
4 X 3 X 3 = 36 different designs are possible.

Permutations

Another useful calculation is the number of ordered sequences of the elements of a set.
Consider a set of elements, such as S = {a, b, c}. A permutation of the elements is an ordered
sequence of the elements. For example, abc, acbh, bac, bca, cab, and cba are all of the permu-
tations of the elements of S.

The number of permutations of » different elements is n! where

nl=nXm—-1)XMn—-2)X - X2X1 (S2-1)

2-1



2-2

EXAMPLE S2-2

EXAMPLE S2-3

This result follows from the multiplication rule. A permutation can be constructed by select-
ing the element to be placed in the first position of the sequence from the n elements, then
selecting the element for the second position from the n» — 1 remaining elements, then select-
ing the element for the third position from the remaining n» — 2 elements, and so forth.
Permutations such as these are sometimes referred to as linear permutations.

In some situations, we are interested in the number of arrangements of only some of the
elements of a set. The following result also follows from the multiplication rule.

The number of permutations of a subset of 7 elements selected from a set of n differ-
ent elements is

Pl=nXmh—-1)Xn=2)X - Xn-—r+1)= (S2-2)

n!
(n—r)!

A printed circuit board has eight different locations in which a component can be placed. If four
different components are to be placed on the board, how many different designs are possible?

Each design consists of selecting a location from the eight locations for the first compo-
nent, a location from the remaining seven for the second component, a location from the re-
maining six for the third component, and a location from the remaining five for the fourth
component. Therefore,

8
P}=8X7X6X5= o 1680 different designs are possible.

Sometimes we are interested in counting the number of ordered sequences for objects that
are not all different. The following result is a useful, general calculation.

The number of permutations of » = n; + n, + --- + n, objects of which »n, are of
one type, 1, are of a second type, ..., and n, are of an rth type is

n!
ST S2-3
n!nyl ns! ... n,l (S2-3)

Consider a machining operation in which a piece of sheet metal needs two identical diameter
holes drilled and two identical size notches cut. We denote a drilling operation as d and a
notching operation as 7. In determining a schedule for a machine shop, we might be interested
in the number of different possible sequences of the four operations. The number of possible
sequences for two drilling operations and two notching operations is

41

T

The six sequences are easily summarized: ddnn, dndn, dnnd, nddn, ndnd, nndd.



EXAMPLE S2-4

EXAMPLE S2-5

EXAMPLE S2-6

2-3

A part is labeled by printing with four thick lines, three medium lines, and two thin lines. If
each ordering of the nine lines represents a different label, how many different labels can be
generated by using this scheme?

From Equation S2-3, the number of possible part labels is

9!
41312!

= 2520

Combinations
Another counting problem of interest is the number of subsets of 7 elements that can be se-
lected from a set of n elements. Here, order is not important. Every subset of » elements can
be indicated by listing the elements in the set and marking each element with a “*” if it is to
be included in the subset. Therefore, each permutation of » *’s and n — r blanks indicate a dif-
ferent subset and the number of these are obtained from Equation S2-3.

For example, if the set is S = {a, b, ¢, d} the subset {a, c} can be indicated as

a b ¢ d

* %

The number of subsets of size » that can be selected from a set of n elements is

denoted as (}') or C and
n n!
=—— 2-4
(r) ri(n — r)! (52-4)

A printed circuit board has eight different locations in which a component can be placed. If
five identical components are to be placed on the board, how many different designs are pos-
sible?

Each design is a subset of the eight locations that are to contain the components. From
Equation S2-4, the number of possible designs is

8!
513!

= 56

The following example uses the multiplication rule in combination with Equation S2-4 to an-
swer a more difficult, but common, question.

A bin of 50 manufactured parts contains three defective parts and 47 nondefective parts. A
sample of six parts is selected from the 50 parts. Selected parts are not replaced. That is, each
part can only be selected once and the sample is a subset of the 50 parts. How many different
samples are there of size six that contain exactly two defective parts?

A subset containing exactly two defective parts can be formed by first choosing the
two defective parts from the three defective parts. Using Equation S2-4, this step can be
completed in

) —i—3d'ff
5 BEINTES 1fterent ways



Then, the second step is to select the remaining four parts from the 47 acceptable parts in the
bin. The second step can be completed in

47!

()%
4) 4143

= 178,365 different ways

Therefore, from the multiplication rule, the number of subsets of size six that contain exactly

two defective items is

3 X 178,365 = 535,095

As an additional computation, the total number of different subsets of size six is found

to be

(

= % 15,890,700
Coel44r T

When probability is discussed in this chapter, the probability of an event is determined as
the ratio of the number of outcomes in the event to the number of outcomes in the sample
space (for equally likely outcomes). Therefore, the probability that a sample contains exactly

two defective parts is

15,890,700

535,095
= 0.034

Note that Example S2-7 illustrates the hypergeometric distribution.

EXERCISES FOR SECTION 2-1.4

S2-1.  An order for a personal digital assistant can specify
any one of five memory sizes, any one of three types of dis-
plays, any one of four sizes of a hard disk, and can either in-
clude or not include a pen tablet. How many different systems
can be ordered?

S2-2. In a manufacturing operation, a part is produced by
machining, polishing, and painting. If there are three machine
tools, four polishing tools, and three painting tools, how many
different routings (consisting of machining, followed by pol-
ishing, and followed by painting) for a part are possible?
S2-3. New designs for a wastewater treatment tank have
proposed three possible shapes, four possible sizes, three loca-
tions for input valves, and four locations for output valves.
How many different product designs are possible?

S2-4. A manufacturing process consists of 10 operations
that can be completed in any order. How many different pro-
duction sequences are possible?

S2-5. A manufacturing operations consists of 10 opera-
tions. However, five machining operations must be com-
pleted before any of the remaining five assembly operations

can begin. Within each set of five, operations can be com-

pleted in any order. How many different production se-

quences are possible?

S2-6. In a sheet metal operation, three notches and four

bends are required. If the operations can be done in any order,

how many different ways of completing the manufacturing are

possible?

S2-7. A lot of 140 semiconductor chips is inspected by

choosing a sample of five chips. Assume 10 of the chips do not

conform to customer requirements.

(a) How many different samples are possible?

(b) How many samples of five contain exactly one noncon-
forming chip?

(c) How many samples of five contain at least one noncon-
forming chip?

S2-8. In the layout of a printed circuit board for an elec-

tronic product, there are 12 different locations that can accom-

modate chips.

(a) If five different types of chips are to be placed on the
board, how many different layouts are possible?



(b) If the five chips that are placed on the board are of the
same type, how many different layouts are possible?

S2-9. In the laboratory analysis of samples from a chemical

process, five samples from the process are analyzed daily. In

addition, a control sample is analyzed two times each day to
check the calibration of the laboratory instruments.

(a) How many different sequences of process and control
samples are possible each day? Assume that the five
process samples are considered identical and that the two
control samples are considered identical.

(b) How many different sequences of process and control sam-
ples are possible if we consider the five process samples to
be different and the two control samples to be identical.

(c) For the same situation as part (b), how many sequences
are possible if the first test of each day must be a control
sample?

S2-10. In the design of an electromechanical product, seven

different components are to be stacked into a cylindrical cas-

ing that holds 12 components in a manner that minimizes the
impact of shocks. One end of the casing is designated as the
bottom and the other end is the top.

(a) How many different designs are possible?

(b) If the seven components are all identical, how many dif-
ferent designs are possible?

(c) If the seven components consist of three of one type of
component and four of another type, how many different
designs are possible? (more difficult)

S2-11. The design of a communication system considered

the following questions:

(a) How many three-digit phone prefixes that are used to rep-
resent a particular geographic area (such as an area code)
can be created from the digits 0 through 9?

(b) As in part (a), how many three-digit phone prefixes are
possible that do not start with 0 or 1, but contain 0 or 1 as
the middle digit?

(¢) How many three-digit phone prefixes are possible in
which no digit appears more than once in each prefix?

2-5

S2-12. A byte is a sequence of eight bits and each bit is ei-

ther 0 or 1.

(a) How many different bytes are possible?

(b) If the first bit of a byte is a parity check, that is, the first
byte is determined from the other seven bits, how many
different bytes are possible?

S2-13. Inachemical plant, 24 holding tanks are used for fi-

nal product storage. Four tanks are selected at random and

without replacement. Suppose that six of the tanks contain
material in which the viscosity exceeds the customer require-
ments.

(a) What is the probability that exactly one tank in the sample
contains high viscosity material?

(b) What is the probability that at least one tank in the sample
contains high viscosity material?

(c) In addition to the six tanks with high viscosity levels, four
different tanks contain material with high impurities.
What is the probability that exactly one tank in the sample
contains high viscosity material and exactly one tank in
the sample contains material with high impurities?

S2-14. Plastic parts produced by an injection-molding oper-
ation are checked for conformance to specifications. Each tool
contains 12 cavities in which parts are produced, and these
parts fall into a conveyor when the press opens. An inspector
chooses 3 parts from among the 12 at random. Two cavities
are affected by a temperature malfunction that results in parts
that do not conform to specifications.

(a) What is the probability that the inspector finds exactly one
nonconforming part?

(b) What is the probability that the inspector finds at least one
nonconforming part?

S2-15. A bin of 50 parts contains five that are defective. A

sample of two is selected at random, without replacement.

(a) Determine the probability that both parts in the sample are
defective by computing a conditional probability.

(b) Determine the answer to part (a) by using the subset ap-
proach that was described in this section.
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After careful study of this chapter you should be able to do the following:
1. Determine probabilities from probability mass functions and the reverse

2. Determine probabilities from cumulative distribution functions and cumulative distribution func-
tions from probability mass functions, and the reverse

3. Calculate means and variances for discrete random variables

4. Understand the assumptions for each of the discrete probability distributions presented

5. Select an appropriate discrete probability distribution to calculate probabilities in specific
applications

6. Calculate probabilities, determine means and variances for each of the discrete probability
distributions presented

Answers for most odd numbered exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for the text sections that appear on CD only. These exercises may be found within the e-Text
immediately following the section they accompany.
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3-1 DISCRETE RANDOM VARIABLES

EXAMPLE 3-1

EXAMPLE 3-2

EXAMPLE 3-3

Many physical systems can be modeled by the same or similar random experiments and ran-
dom variables. The distribution of the random variables involved in each of these common
systems can be analyzed, and the results of that analysis can be used in different applications
and examples. In this chapter, we present the analysis of several random experiments and
discrete random variables that frequently arise in applications. We often omit a discussion of
the underlying sample space of the random experiment and directly describe the distribution
of a particular random variable.

A voice communication system for a business contains 48 external lines. At a particular time,
the system is observed, and some of the lines are being used. Let the random variable X denote
the number of lines in use. Then, X can assume any of the integer values 0 through 48. When
the system is observed, if 10 lines are in use, x = 10.

In a semiconductor manufacturing process, two wafers from a lot are tested. Each wafer is
classified as pass or fail. Assume that the probability that a wafer passes the test is 0.8 and that
wafers are independent. The sample space for the experiment and associated probabilities are
shown in Table 3-1. For example, because of the independence, the probability of the outcome
that the first wafer tested passes and the second wafer tested fails, denoted as pf, is

P(pf) = 0.8(0.2) = 0.16

The random variable X is defined to be equal to the number of wafers that pass. The
last column of the table shows the values of X that are assigned to each outcome in the
experiment.

Define the random variable X to be the number of contamination particles on a wafer in semi-
conductor manufacturing. Although wafers possess a number of characteristics, the random
variable X summarizes the wafer only in terms of the number of particles.

The possible values of X are integers from zero up to some large value that represents the
maximum number of particles that can be found on one of the wafers. If this maximum num-
ber is very large, we might simply assume that the range of X is the set of integers from zero
to infinity.

Note that more than one random variable can be defined on a sample space. In Example
3-3, we might define the random variable Y to be the number of chips from a wafer that fail
the final test.

Table 3-1 Wafer Tests

Outcome
Wafer 1 Wafer 2 Probability X
Pass Pass 0.64 2
Fail Pass 0.16 1
Pass Fail 0.16 1
Fail Fail 0.04 0
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EXERCISES FOR SECTION 3-1

For each of the following exercises, determine the range (pos-
sible values) of the random variable.

3-1. The random variable is the number of nonconforming
solder connections on a printed circuit board with 1000 con-
nections.

3-2. Inavoice communication system with 50 lines, the ran-
dom variable is the number of lines in use at a particular time.

3-3. An electronic scale that displays weights to the nearest
pound is used to weigh packages. The display shows only five
digits. Any weight greater than the display can indicate is
shown as 99999. The random variable is the displayed weight.

3-4. A batch of 500 machined parts contains 10 that do not
conform to customer requirements. The random variable is the
number of parts in a sample of 5 parts that do not conform to
customer requirements.

3-5. A batch of 500 machined parts contains 10 that do not
conform to customer requirements. Parts are selected succes-
sively, without replacement, until a nonconforming part is
obtained. The random variable is the number of parts selected.

3-2 PROBABILITY DISTRIBUTIONS AND

PROBABILITY MASS FUNCTIONS

3-6. The random variable is the moisture content of a lot of
raw material, measured to the nearest percentage point.

3-7. The random variable is the number of surface flaws in
a large coil of galvanized steel.

3-8. The random variable is the number of computer clock
cycles required to complete a selected arithmetic calculation.

3-9. Anorder for an automobile can select the base model or
add any number of 15 options. The random variable is the
number of options selected in an order.

3-10. Wood paneling can be ordered in thicknesses of 1/8,
1/4, or 3/8 inch. The random variable is the total thickness of
paneling in two orders.

3-11. A group of 10,000 people are tested for a gene
called Ifi202 that has been found to increase the risk for lupus.
The random variable is the number of people who carry the
gene.

3-12. A software program has 5000 lines of code. The ran-
dom variable is the number of lines with a fatal error.

Random variables are so important in random experiments that sometimes we essentially ig-
nore the original sample space of the experiment and focus on the probability distribution of
the random variable. For example, in Example 3-1, our analysis might focus exclusively on
the integers {0, 1, ..., 48} in the range of X. In Example 3-2, we might summarize the ran-
dom experiment in terms of the three possible values of X, namely {0, 1, 2}. In this manner, a
random variable can simplify the description and analysis of a random experiment.

The probability distribution of a random variable X is a description of the probabilities
associated with the possible values of X. For a discrete random variable, the distribution is
often specified by just a list of the possible values along with the probability of each. In some
cases, it is convenient to express the probability in terms of a formula.

EXAMPLE 3-4

There is a chance that a bit transmitted through a digital transmission channel is received in

error. Let X equal the number of bits in error in the next four bits transmitted. The possible val-
ues for X are {0, 1, 2, 3, 4}. Based on a model for the errors that is presented in the following
section, probabilities for these values will be determined. Suppose that the probabilities are

P(X = 0) = 0.6561
P(X = 3) = 0.0036

P(X
PX

1) = 02916
4) = 0.0001

P(X = 2) = 0.0486

The probability distribution of X is specified by the possible values along with the probability
of each. A graphical description of the probability distribution of X is shown in Fig. 3-1.

Suppose a loading on a long, thin beam places mass only at discrete points. See Fig. 3-2.
The loading can be described by a function that specifies the mass at each of the discrete
points. Similarly, for a discrete random variable X, its distribution can be described by a func-
tion that specifies the probability at each of the possible discrete values for X.
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Figure 3-1 Probability distribution ~ Figure 3-2 Loadings at discrete points on a
for bits in error. long, thin beam.

Definition
For a discrete random variable X with possible values x;, x,, ..., x,, a probability
mass function is a function such that

1) flx)=0
2 21 o) =1
G flx) = PX =x) (3-1)

For example, in Example 3-4, 1(0) = 0.6561, f(1) = 0.2916, f(2) = 0.0486, f(3) = 0.0036,
and f(4) = 0.0001. Check that the sum of the probabilities in Example 3-4 is 1.

EXAMPLE 3-5 Let the random variable X denote the number of semiconductor wafers that need to be ana-
lyzed in order to detect a large particle of contamination. Assume that the probability that a
wafer contains a large particle is 0.01 and that the wafers are independent. Determine the
probability distribution of X.

Let p denote a wafer in which a large particle is present, and let a denote a wafer in which
it is absent. The sample space of the experiment is infinite, and it can be represented as all pos-
sible sequences that start with a string of a’s and end with p. That is,

s = {p, ap, aap, aaap, aaaap, aaaaap, and so forth}

Consider a few special cases. We have P(X = 1) = P(p) = 0.01. Also, using the inde-
pendence assumption

P(X = 2) = P(ap) = 0.99(0.01) = 0.0099
A general formula is

P(X = x) = P(aa ... ap) = 0.99°"'(0.01), forx=1,2,3,...
—_———

(x = Da’s

Describing the probabilities associated with X in terms of this formula is the simplest method
of describing the distribution of X in this example. Clearly f(x) = 0. The fact that the sum of
the probabilities is 1 is left as an exercise. This is an example of a geometric random variable,
and details are provided later in this chapter.
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3-13. The sample space of a random experiment is {a, b, c,
d, e, [}, and each outcome is equally likely. A random variable
is defined as follows:

outcome|a|b|c|d

e/
X Lo lo 3

Determine the probability mass function of X.

3-14. Use the probability mass function in Exercise 3-11 to
determine the following probabilities:

(a) P(X = 1.5) (b) P(0.5 <X <27)

(c) P(X>3) d) PO=X<2)

() PX=0 or X=2)

Verify that the following functions are probability mass func-
tions, and determine the requested probabilities.

S50 x| -2 | -1 | 0 | 1 | 2
0 Las Las | oas [os |oags

(@) P(Y=2) (b) POY> —2)

©P-1=X=1) (d) PX=-1 or X=2)

316, f(x) = (8/T)(1/2F, x=1,2,3

@) P(X=1) (b) P(X > 1)

() P2<X<6) (dPX=1 or X>1)

317, flx) = % x=0,1,2,3, 4

(a) P(X = 4) (b) PX=1)

© PQ=X<4) (d) PX>—10)

318, f(x) = B/4)(1/4), x=0,1,2,...

() P(X=2) (b) P(X=2

)
() PX>2) (d) PX=1)
3-19. Marketing estimates that a new instrument for the
analysis of soil samples will be very successful, moderately
successful, or unsuccessful, with probabilities 0.3, 0.6,
and 0.1, respectively. The yearly revenue associated with
a very successful, moderately successful, or unsuccessful
product is $10 million, $5 million, and $1 million, respec-
tively. Let the random variable X denote the yearly revenue of
the product. Determine the probability mass function of X.

3-20. A disk drive manufacturer estimates that in five years
a storage device with 1 terabyte of capacity will sell with

probability 0.5, a storage device with 500 gigabytes capacity
will sell with a probability 0.3, and a storage device with 100
gigabytes capacity will sell with probability 0.2. The revenue
associated with the sales in that year are estimated to be $50
million, $25 million, and $10 million, respectively. Let X be
the revenue of storage devices during that year. Determine the
probability mass function of X.

3-21. An optical inspection system is to distinguish
among different part types. The probability of a correct
classification of any part is 0.98. Suppose that three parts
are inspected and that the classifications are independent.
Let the random variable X denote the number of parts that
are correctly classified. Determine the probability mass
function of X.

3-22. In a semiconductor manufacturing process, three
wafers from a lot are tested. Each wafer is classified as pass or

fail. Assume that the probability that a wafer passes the test is

0.8 and that wafers are independent. Determine the probabil-
ity mass function of the number of wafers from a lot that pass
the test.

3-23. The distributor of a machine for cytogenics has
developed a new model. The company estimates that when it
is introduced into the market, it will be very successful with a
probability 0.6, moderately successful with a probability 0.3,
and not successful with probability 0.1. The estimated yearly
profit associated with the model being very successful is $15
million and being moderately successful is $5 million; not
successful would result in a loss of $500,000. Let X be the
yearly profit of the new model. Determine the probability
mass function of X.

3-24. Anassembly consists of two mechanical components.
Suppose that the probabilities that the first and second compo-
nents meet specifications are 0.95 and 0.98. Assume that the
components are independent. Determine the probability mass
function of the number of components in the assembly that
meet specifications.

3-25. An assembly consists of three mechanical compo-
nents. Suppose that the probabilities that the first, second, and
third components meet specifications are 0.95, 0.98, and 0.99.
Assume that the components are independent. Determine the
probability mass function of the number of components in the
assembly that meet specifications.

3-3 CUMULATIVE DISTRIBUTION FUNCTIONS

EXAMPLE 3-6

In Example 3-4, we might be interested in the probability of three or fewer bits being in error.

This question can be expressed as P(X = 3).
The event that {X =< 3} is the union of the events {X = 0}, {X = 1}, {X = 2}, and
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Definition

EXAMPLE 3-7

{X = 3}. Clearly, these three events are mutually exclusive. Therefore,

P(X=3)=P(X=0)+PX=1)+PX=2)+PX=23)
= 0.6561 + 0.2916 + 0.0486 + 0.0036 = 0.9999

This approach can also be used to determine
PX=3)=PX=3)—- PX=2)=0.0036

Example 3-6 shows that it is sometimes useful to be able to provide cumulative proba-
bilities such as P(X = x) and that such probabilities can be used to find the probability mass
function of a random variable. Therefore, using cumulative probabilities is an alternate
method of describing the probability distribution of a random variable.

In general, for any discrete random variable with possible values x, x,..., x,,
the events {X =1x;), {X=1x,),..., {X=1x,) are mutually exclusive. Therefore,

PX =x) = 2= fx).

The cumulative distribution function of a discrete random variable X, denoted as
F(x), is

Flx) = PX=x)= 3 f(x)

For a discrete random variable X, F(x) satisfies the following properties.
() Fx) =PX=x)= 2= fx)
2 0=Fx) =1
(3) Ifx=y, then F(x) =< F(y) (3-2)

Like a probability mass function, a cumulative distribution function provides proba-
bilities. Notice that even if the random variable X can only assume integer values, the
cumulative distribution function can be defined at noninteger values. In Example 3-6,
F(1.5)=PX=15)=P{X=0} + P(X=1)=0.6561 + 0.2916 = 0.9477. Properties (1)
and (2) of a cumulative distribution function follow from the definition. Property (3) follows
from the fact that if x =< y, the event that {X = x} is contained in the event {X = y}.

The next example shows how the cumulative distribution function can be used to deter-
mine the probability mass function of a discrete random variable.

Determine the probability mass function of X from the following cumulative distribution
function:

0 x < =2
02 —-2=x<0
0.7 0=x<2

1 2=x
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F(x) F(x)
1.0 L — 1.000 *——
0.997 o——0

0.886 e—0
0.7 ——o0

0.2
e O
—0 —0
-2 0 2 x 0 1 2 x
Figure 3-3 Cumulative distribution function for Figure 3-4 Cumulative distribution
Example 3-7. function for Example 3-8.

Figure 3-3 displays a plot of F(x). From the plot, the only points that receive nonzero
probability are —2, 0, and 2. The probability mass function at each point is the change in the
cumulative distribution function at the point. Therefore,

f(=2)=02-0=02 f(0)=07-02=05 f(2)=10-07=03

EXAMPLE 3-8 Suppose that a day’s production of 850 manufactured parts contains 50 parts that do not con-
form to customer requirements. Two parts are selected at random, without replacement, from
the batch. Let the random variable X equal the number of nonconforming parts in the sample.
What is the cumulative distribution function of X?

The question can be answered by first finding the probability mass function of X.

800 799
PX=0)=-—+—=0886
850 849
800 50
PX=1)=2-————=0.111
850 849
50 49
PX=2)=—"—+——=0.003
850 849

Therefore,

F(0) = P(X = 0) = 0.886
F(1) = P(X = 1) = 0.886 + 0.111 = 0.997

=
B
2
~
A
\E’/

The cumulative distribution function for this example is graphed in Fig. 3-4. Note that
F(x) is defined for all x from —o < x < o and not only for 0, 1, and 2.

EXERCISES FOR SECTION 3-3

3-26. Determine the cumulative distribution function of the (©) P(-11<X=1) (d PX>0)

random variable in Exercise 3-13. 3-28. Determine the cumulative distribution function for the
3-27. Determine the cumulative distribution function for ~ random variable in Exercise 3-17; also determine the following
the random variable in Exercise 3-15; also determine the fol- probabilities:

lowing probabilities: (a) P(X<15) (b) P(X=3)

(a) P(X = 1.25) (b) P(X =22) () PX>2) (d) P(1<X=2)
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3-29. Determine the cumulative distribution function for
the random variable in Exercise 3-19.

3-30. Determine the cumulative distribution function for
the random variable in Exercise 3-20.

3-31. Determine the cumulative distribution function for
the random variable in Exercise 3-22.

3-32. Determine the cumulative distribution function for
the variable in Exercise 3-23.

Verify that the following functions are cumulative distribution
functions, and determine the probability mass function and the
requested probabilities.

3-33. 0 x <1
F(x) =405 l=x<3
1 3=x
(a) P(X =3) (b) P(X =2)
© Pl=X=2) (d PX>2)

3-34. Errors in an experimental transmission channel are
found when the transmission is checked by a certifier that de-
tects missing pulses. The number of errors found in an eight-
bit byte is a random variable with the following distribution:

0 x <1
0.7 1=x<4
0.9 4d=x<7
1 7T=x

Determine each of the following probabilities:

(@) P(X=4) (b) PX>7)
(© P(X=5) (d) P(X>4)
(e) P(X =2)
3.35. 0 x< —10
025 —10=x<30
F() = 9075 30 < x < 50
1 50 =x

(a) P(X = 50)
() PAO=X=60) (d) PX<0)

(e) P(0=X<10) () P(—10 < X < 10)

3-36. The thickness of wood paneling (in inches) that a cus-
tomer orders is a random variable with the following cumula-
tive distribution function:

(b) P(X = 40)

0 x<1/8
0.2 1/8=x<1/4
0.9 1/4 =x<3/8
1 3/8 =x

Fx) =

Determine the following probabilities:
(a) P(X=1/18) (b) P(X=1/4)
(c) P(X=15/16) (d) P(X>1/4)
(e) PX=1/2)

3-4 MEAN AND VARIANCE OF A DISCRETE RANDOM VARIABLE

Two numbers are often used to summarize a probability distribution for a random variable X.
The mean is a measure of the center or middle of the probability distribution, and the variance
is a measure of the dispersion, or variability in the distribution. These two measures do not
uniquely identify a probability distribution. That is, two different distributions can have the
same mean and variance. Still, these measures are simple, useful summaries of the probabil-

ity distribution of X.

Definition

The mean or expected value of the discrete random variable X, denoted as p or E(X), is
w= E(X) = D af(x)
The variance of X, denoted as o or V(X), is
0 = V(X) = BX — p) = S (x — pf0) = D) —

The standard deviation of X'is 0 = \/07.

(3-3)

X

X X
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1R u

0 2 4 6‘ 8 10 0 2 4 6‘ 8 10

(a) (b)
Figure 3-5 A probability distribution can be viewed as a loading with the mean equal
to the balance point. Parts (a) and (b) illustrate equal means, but Part (a) illustrates a
larger variance.

The mean of a discrete random variable X is a weighted average of the possible values of
X, with weights equal to the probabilities. If f(x) is the probability mass function of a loading
on a long, thin beam, E(X) is the point at which the beam balances. Consequently, £(X)
describes the “center” of the distribution of X in a manner similar to the balance point of a
loading. See Fig. 3-5.

The variance of a random variable X is a measure of dispersion or scatter in the possible
values for X. The variance of X uses weight f(x) as the multiplier of each possible squared
deviation (x — w)?. Figure 3-5 illustrates probability distributions with equal means but dif-
ferent variances. Properties of summations and the definition of | can be used to show the
equality of the formulas for variance.

MX) = 2 (= p)flx) = 2a(x) — 20 2/ x) + p? 2 1)

= D) - 2w+l = D) -
Either formula for 7(x) can be used. Figure 3-6 illustrates that two probability distributions
can differ even though they have identical means and variances.

In Example 3-4, there is a chance that a bit transmitted through a digital transmission channel
is received in error. Let X equal the number of bits in error in the next four bits transmitted.
The possible values for X are {0, 1, 2, 3, 4}. Based on a model for the errors that is presented
in the following section, probabilities for these values will be determined. Suppose that the
probabilities are

P(X=0)= 0651 PX=2)=00486 P(X=4)=0.0001
P(X=1)=02916 P(X=3)=0.0036

| |

0 2 4‘6 8 10 0 2 4‘6 8 10
(a)

(b)
Figure 3-6  The probability distributions illustrated in Parts (a) and (b) differ even
though they have equal means and equal variances.



68

CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Now

+ 1/(1) + 2/(2) + 3/(3) + 4/(4)
(o 6561) + 1(0.2916) + 2(0.0486) + 3(0.0036) + 4(0.0001)
4

Although X never assumes the value 0.4, the weighted average of the possible values is 0.4.
To calculate V(X), a table is convenient.

x x—04 (x — 0.4)? f(x) S)(x — 0.4)
0 —0.4 0.16 0.6561 0.104976
1 0.6 0.36 0.2916 0.104976
2 1.6 2.56 0.0486 0.124416
3 2.6 6.76 0.0036 0.024336
4 3.6 12.96 0.0001 0.001296

Ef )(x; — 0.4)* = 0.36

The alternative formula for variance could also be used to obtain the same result.

EXAMPLE 3-10 Two new product designs are to be compared on the basis of revenue potential. Marketing

feels that the revenue from design A can be predicted quite accurately to be $3 million. The
revenue potential of design B is more difficult to assess. Marketing concludes that there is a
probability of 0.3 that the revenue from design B will be $7 million, but there is a 0.7 proba-
bility that the revenue will be only $2 million. Which design do you prefer?

Let X denote the revenue from design A. Because there is no uncertainty in the revenue
from design A, we can model the distribution of the random variable X as $3 million with
probability 1. Therefore, £(X) = $3 million.

Let Y denote the revenue from design B. The expected value of Y in millions of dollars is

E(Y) = $7(0.3) + $2(0.7) = $3.5

Because E(Y) exceeds £(X), we might prefer design B. However, the variability of the result
from design B is larger. That is,

= (7 — 3.5)%(0.3) + (2 — 3.5)%0.7)

= 5.25 millions of dollars squared

Because the units of the variables in this example are millions of dollars, and because the vari-
ance of a random variable squares the deviations from the mean, the units of o> are millions
of dollars squared. These units make interpretation difficult.

Because the units of standard deviation are the same as the units of the random variable,
the standard deviation o is easier to interpret. In this example, we can summarize our results
as “the average deviation of Y from its mean is $2.29 million.”



EXAMPLE 3-11

Expected Value of a
Function of a
Discrete Random
Variable

EXAMPLE 3-12
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The number of messages sent per hour over a computer network has the following distribution:

x = number of messages | 10 | 11 | 12 | 13 | 14 | 15
[

Jx) | 0.08 | 0.15 | 0.30 | 0.20 0.20 | 0.07

Determine the mean and standard deviation of the number of messages sent per hour.

E(X) = 10(0.08) + 11(0.15) + -+ + 15(0.07) = 12.5
V(X) = 10%0.08) + 11%(0.15) + --- + 15%0.07) — 12.5> = 1.85

VX)) = V185 =136

ag

The variance of a random variable X can be considered to be the expected value of a specific
function of X, namely, A(X) = (X — p)?. In general, the expected value of any function A(X)
of a discrete random variable is defined in a similar manner.

If X is a discrete random variable with probability mass function f{(x),

E[h(X)] = > xh(x)f(x) (3-4)

X

In Example 3-9, X is the number of bits in error in the next four bits transmitted. What is the
expected value of the square of the number of bits in error? Now, #(X) = X?. Therefore,

E[h(X)] = 0% X 0.6561 + 12 X 0.2916 + 22 X 0.0486
+ 3% X 0.0036 + 4% X 0.0001 = 0.52

In the previous example, the expected value of X? does not equal £(X)squared. However, in
the special case that A(X) = aX + b for any constants a and b, E[h(X)] = aE(X) + b. This
can be shown from the properties of sums in the definition in Equation 3-4.

EXERCISES FOR SECTION 3-4

3-37. If the range of X is the set {0, 1, 2, 3, 4} and P(X = 3-42. Determine the mean and variance of the random vari-
x) = 0.2 determine the mean and variance of the random variable. able in Exercise 3-20.
3-38. Determine the mean and variance of the random vari- 3-43. Determine the mean and variance of the random vari-

able in Exercise 3-13.

able in Exercise 3-22.

3-39. Determine the mean and variance of the random vari- 3-44. Determine the mean and variance of the random vari-

able in Exercise 3-15.

able in Exercise 3-23.

3-40. Determine the mean and variance of the random vari- 3-45. The range of the random variable X is [0, 1, 2, 3, x],

able in Exercise 3-17.

where x is unknown. If each value is equally likely and the

3-41. Determine the mean and variance of the random vari- mean of X is 6, determine x.

able in Exercise 3-19.
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3-5 DISCRETE UNIFORM DISTRIBUTION

Definition

EXAMPLE 3-13

Figure 3-7 Probability '
0.1

mass function for a
discrete uniform ran-
dom variable.

The simplest discrete random variable is one that assumes only a finite number of possible
values, each with equal probability. A random variable X that assumes each of the values
X1, X3, -+ 5 X, With equal probability 1/n, is frequently of interest.

A random variable X has a discrete uniform distribution if each of the n values in
its range, say, x;, X, .. , X,, has equal probability. Then,

fix) = 1/n (3-5)

The first digit of a part’s serial number is equally likely to be any one of the digits 0 through 9.
If one part is selected from a large batch and X is the first digit of the serial number, X has a dis-
crete uniform distribution with probability 0.1 for each value in R = {0, 1, 2, ..., 9}. That is,

flx) = 0.1
for each value in R. The probability mass function of X is shown in Fig. 3-7.

Suppose the range of the discrete random variable X is the consecutive integers a,
a+1,a+2,...,b, fora = b. The range of X contains b — a + 1 values each with proba-
bility 1/(b — a + 1). Now,

2 b(b + 1) = (a = 1)a o
The algebraic identity E k= 5 can be used to simplify the result to
k=a

pw = (b + a)/2 The derivation of the variance is left as an exercise.

Suppose X is a discrete uniform random variable on the consecutive integers
a,a+ 1,a+ 2,..., b, fora = b. The mean of X is

b+ a
2

b= EX) =

The variance of X is

(3-6)




3-5 DISCRETE UNIFORM DISTRIBUTION 71

As in Example 3-1, let the random variable X denote the number of the 48 voice lines that are
in use at a particular time. Assume that X is a discrete uniform random variable with a range

E(X) = (48 + 0)/2 = 24

o = {[(48 — 0+ 1Y — 1/12)/ = 14.14

Equation 3-6 is more useful than it might first appear. If all the values in the range of a
random variable X are multiplied by a constant (without changing any probabilities), the mean
and standard deviation of X are multiplied by the constant. You are asked to verify this result
in an exercise. Because the variance of a random variable is the square of the standard devia-
tion, the variance of X is multiplied by the constant squared. More general results of this type

EXAMPLE 3-14

of 0 to 48. Then,

and

are discussed in Chapter 5.
EXAMPLE 3-15

Let the random variable Y denote the proportion of the 48 voice lines that are in use at a par-
ticular time, and X denotes the number of lines that are in use at a particular time. Then,

Y = X/48. Therefore,

E(Y) = E(X)/48 = 0.5

and

EXERCISES FOR SECTION 3-5

V(Y) = V(X)/48% = 0.087

3-46. Let the random variable X have a discrete uniform
distribution on the integers 0 = x = 100. Determine the mean
and variance of X.

3-47. Let the random variable X have a discrete uniform
distribution on the integers 1 = x = 3. Determine the mean
and variance of X.

3-48. Let the random variable X' be equally likely to assume
any of the values 1/8, 1/4, or 3/8. Determine the mean and
variance of X.

3-49. Thickness measurements of a coating process are
made to the nearest hundredth of a millimeter. The thickness
measurements are uniformly distributed with values 0.15,
0.16, 0.17, 0.18, and 0.19. Determine the mean and variance
of the coating thickness for this process.

3-50. Product codes of 2, 3, or 4 letters are equally likely.
What is the mean and standard deviation of the number of
letters in 100 codes?

3-51. The lengths of plate glass parts are measured to the
nearest tenth of a millimeter. The lengths are uniformly dis-
tributed, with values at every tenth of a millimeter starting at

590.0 and continuing through 590.9. Determine the mean and
variance of lengths.

3-52. Suppose that X has a discrete uniform distribution on
the integers 0 through 9. Determine the mean, variance, and
standard deviation of the random variable ¥ = 5X and com-
pare to the corresponding results for X.

3-53. Show that for a discrete uniform random variable X,
if each of the values in the range of X is multiplied by the
constant ¢, the effect is to multiply the mean of X by ¢ and
the variance of X by ¢?. That is, show that E(cX) = cE(X)
and V(cX) = 2V(X).

3-54. The probability of an operator entering alphanu-
meric data incorrectly into a field in a database is equally
likely. The random variable X is the number of fields on a
data entry form with an error. The data entry form has
28 fields. Is X a discrete uniform random variable? Why or
why not.
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3-6 BINOMIAL DISTRIBUTION

Consider the following random experiments and random variables:

1. Flip a coin 10 times. Let X = number of heads obtained.

2. A worn machine tool produces 1% defective parts. Let X = number of defective parts
in the next 25 parts produced.

3. Each sample of air has a 10% chance of containing a particular rare molecule. Let
X = the number of air samples that contain the rare molecule in the next 18 samples
analyzed.

4. Of all bits transmitted through a digital transmission channel, 10% are received in
error. Let X = the number of bits in error in the next five bits transmitted.

5. A multiple choice test contains 10 questions, each with four choices, and you guess
at each question. Let X = the number of questions answered correctly.

In the next 20 births at a hospital, let X' = the number of female births.

Of all patients suffering a particular illness, 35% experience improvement from a
particular medication. In the next 100 patients administered the medication, let X =
the number of patients who experience improvement.

These examples illustrate that a general probability model that includes these experiments as
particular cases would be very useful.

Each of these random experiments can be thought of as consisting of a series of repeated,
random trials: 10 flips of the coin in experiment 1, the production of 25 parts in experiment 2,
and so forth. The random variable in each case is a count of the number of trials that meet a
specified criterion. The outcome from each trial either meets the criterion that X counts or it
does not; consequently, each trial can be summarized as resulting in either a success or a fail-
ure. For example, in the multiple choice experiment, for each question, only the choice that is
correct is considered a success. Choosing any one of the three incorrect choices results in the
trial being summarized as a failure.

The terms success and failure are just labels. We can just as well use 4 and B or 0 or 1.
Unfortunately, the usual labels can sometimes be misleading. In experiment 2, because X
counts defective parts, the production of a defective part is called a success.

A trial with only two possible outcomes is used so frequently as a building block of a
random experiment that it is called a Bernoulli trial. It is usually assumed that the trials that
constitute the random experiment are independent. This implies that the outcome from one
trial has no effect on the outcome to be obtained from any other trial. Furthermore, it is
often reasonable to assume that the probability of a success in each trial is constant. In
the multiple choice experiment, if the test taker has no knowledge of the material and just
guesses at each question, we might assume that the probability of a correct answer is 1/4
for each question.

Factorial notation is used in this section. Recall that n! denotes the product of the integers
less than or equal to #:

nl = n(n — 1)(n —2) - 2)(1)

For example,

51=(5)@)(3)2)(1) =120 11 =1
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3-6 BINOMIAL DISTRIBUTION

and by definition 0! = 1. We also use the combinatorial notation

()=

5 5! 120
2 2130 2-6

See Section 2-1.4, CD material for Chapter 2, for further comments.

For example,

3

The chance that a bit transmitted through a digital transmission channel is received in error is
0.1. Also, assume that the transmission trials are independent. Let X = the number of bits in

error in the next four bits transmitted. Determine P(X = 2).

Let the letter £ denote a bit in error, and let the letter O denote that the bit is okay, that is,
received without error. We can represent the outcomes of this experiment as a list of four let-
ters that indicate the bits that are in error and those that are okay. For example, the outcome
OEOE indicates that the second and fourth bits are in error and the other two bits are okay. The

corresponding values for x are

Outcome X Outcome X
0000 0 EOO0O 1
OOOE 1 EOOE 2
OOEO 1 EOEO 2
OOEE 2 EOEE 3
OEOO 1 EEOO 2
OEOE 2 EEOE 3
OEEO 2 EEEO 3
OEEE 3 EEEE 4

The event that X = 2 consists of the six outcomes:

{EE00, EOEO, EOOE, OEEO, OEOE, OOEE)}

Using the assumption that the trials are independent, the probability of {EEOO} is

P(EEOO) = P(E)P(E)P(0)P(0) = (0.1)*(0.9)* = 0.0081

Also, any one of the six mutually exclusive outcomes for which X = 2 has the same proba-

bility of occurring. Therefore,
P(X = 2) = 6(0.0081) = 0.0486
In general,

P(X = x) = (number of outcomes that result in x errors) times (0.1)*(0.9)* ™~
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To complete a general probability formula, only an expression for the number of outcomes
that contain x errors is needed. An outcome that contains x errors can be constructed by parti-
tioning the four trials (letters) in the outcome into two groups. One group is of size x and
contains the errors, and the other group is of size n» — x and consists of the trials that are okay.
The number of ways of partitioning four objects into two groups, one of which is of size x, is

4 |
< > = 47 Therefore, in this example
x/)  x!(4 —x)!

P(X =x) = (j)(o.l)X(o.9)4‘x

4
Notice that (2) = 41/[2! 2!] = 6, as found above. The probability mass function of X

was shown in Example 3-4 and Fig. 3-1.

The previous example motivates the following result.

Definition
A random experiment consists of # Bernoulli trials such that
(1) The trials are independent

(2) Each trial results in only two possible outcomes, labeled as “success™ and
“failure”

(3) The probability of a success in each trial, denoted as p, remains constant
The random variable X that equals the number of trials that result in a success

has a binomial random variable with parameters 0 < p < landn = 1, 2, .... The
probability mass function of X is

flx) = <”> PA=py  x=0,1,....n (-7)

X

As in Example 3-16, (g) equals the total number of different sequences of trials that
contain x successes and n — x failures. The total number of different sequences that contain x
successes and n — x failures times the probability of each sequence equals P(X = x).

The probability expression above is a very useful formula that can be applied in a num-
ber of examples. The name of the distribution is obtained from the binomial expansion. For
constants ¢ and b, the binomial expansion is

(a + by = 2<Z> a'b"

k=0

Let p denote the probability of success on a single trial. Then, by using the binomial
expansion with ¢ = p and b = 1 — p, we see that the sum of the probabilities for a bino-
mial random variable is 1. Furthermore, because each trial in the experiment is classified
into two outcomes, {success, failure}, the distribution is called a “bi’’-nomial. A more
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Figure 3-8 Binomial distributions for selected values of » and p.

EXAMPLE 3-17

EXAMPLE 3-18

general distribution, which includes the binomial as a special case, is the multinomial
distribution.

Examples of binomial distributions are shown in Fig. 3-8. For a fixed #, the distribution
becomes more symmetric as p increases from 0 to 0.5 or decreases from 1 to 0.5. For a fixed
D, the distribution becomes more symmetric as 7 increases.

Several examples using the binomial coefficient <n> follow.
X

(13()) = 101/[3! 7] = (10 - 9 - 8)/(3 - 2) = 120
<13> = 151/[101 5] = (15 - 14 - 13 - 12 - 11)/(5 - 4 - 3+ 2) = 3003

100
( A >= 1001/[41 96!] = (100 - 99 - 98 - 97)/(4 + 3 - 2) = 3,921,225

Each sample of water has a 10% chance of containing a particular organic pollutant. Assume
that the samples are independent with regard to the presence of the pollutant. Find the proba-
bility that in the next 18 samples, exactly 2 contain the pollutant.

Let X = the number of samples that contain the pollutant in the next 18 samples analyzed.
Then X is a binomial random variable with p = 0.1 and n = 18.
Therefore,

PX=2)= (128> (0.1)%(0.9)®
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18
N0w<2> = 18!/[2! 16!] = 18(17)/2 = 153. Therefore,

P(X = 2) = 153(0.1)%(0.9)' = 0.284

Determine the probability that at least four samples contain the pollutant. The requested
probability is

PX = 4) = § (18)(0.1)X(o.9)18x

x=4 X

However, it is easier to use the complementary event,

PX=4)=1-PX<4 =1~ i (18>(0.1)X(o.9)18x

x=0 X
1 —[0.150 + 0.300 + 0.284 + 0.168] = 0.098

Determine the probability that 3 = X < 7. Now

PB3=X<7) = é(m)(o.l))f(og)l“

=3\ X

0.168 + 0.070 + 0.022 + 0.005
= 0.265

The mean and variance of a binomial random variable depend only on the parameters p
and n. Formulas can be developed from moment generating functions, and details are pro-
vided in Section 5-8, part of the CD material for Chapter 5. The results are simply stated here.

Definition
If X is a binomial random variable with parameters p and n,

w=EX)=np and o’ = VX) = np(1 — p) (3-8)

EXAMPLE 3-19 For the number of transmitted bits received in error in Example 3-16, n = 4 and p = 0.1, so
E(X)=4(0.1) =04 and V(X) = 4(0.1)(0.9) = 0.36

and these results match those obtained from a direct calculation in Example 3-9.

EXERCISES FOR SECTION 3-6

3-55. For each scenario described below, state whether or transducers in a sample of size 30 selected at random from
not the binomial distribution is a reasonable model for the ran- the process.

dom variable and why. State any assumptions you make. (b) From a batch of 50 temperature transducers, a sample of
(a) A production process produces thousands of temperature size 30 is selected without replacement. Let X denote the

transducers. Let X denote the number of nonconforming number of nonconforming transducers in the sample.



(c) Four identical electronic components are wired to a con-
troller that can switch from a failed component to one of
the remaining spares. Let X denote the number of compo-
nents that have failed after a specified period of operation.

(d) Let X denote the number of accidents that occur along the
federal highways in Arizona during a one-month period.

(e) Let X denote the number of correct answers by a student
taking a multiple choice exam in which a student can elim-
inate some of the choices as being incorrect in some ques-
tions and all of the incorrect choices in other questions.

(f) Defects occur randomly over the surface of a semiconduc-
tor chip. However, only 80% of defects can be found by
testing. A sample of 40 chips with one defect each is
tested. Let X denote the number of chips in which the test
finds a defect.

(g) Reconsider the situation in part (f). Now, suppose the sam-
ple of 40 chips consists of chips with 1 and with 0 defects.

(h) A filling operation attempts to fill detergent packages to
the advertised weight. Let X denote the number of deter-
gent packages that are underfilled.

(i) Errors in a digital communication channel occur in bursts
that affect several consecutive bits. Let X denote the num-
ber of bits in error in a transmission of 100,000 bits.

(j) Let X denote the number of surface flaws in a large coil of
galvanized steel.

3-56. The random variable X has a binomial distribution with
n = 10 and p = 0.5. Sketch the probability mass function of X.
(a) What value of X is most likely?

(b) What value(s) of X is(are) least likely?

3-57. The random variable X has a binomial distribution with
n = 10 and p = 0.5. Determine the following probabilities:

(@ PX=35) (b) PX=2)

() PX=9) (d) PB=X<5)

3-58. Sketch the probability mass function of a binomial
distribution with » = 10 and p = 0.01 and comment on the
shape of the distribution.

(a) What value of X is most likely?

(b) What value of X is least likely?

3-59. The random variable X has a binomial distribution with
n =10 and p = 0.01. Determine the following probabilities.
(@) P(X=35) (b) P(X=2)

() PX=9) (d) PB=X<5)

3-60. Determine the cumulative distribution function of a
binomial random variable with n = 3 and p = 1/2.

3-61. Determine the cumulative distribution function of a
binomial random variable with n = 3 and p = 1/4.

3-62. An electronic product contains 40 integrated circuits.
The probability that any integrated circuit is defective is 0.01,
and the integrated circuits are independent. The product oper-
ates only if there are no defective integrated circuits. What is
the probability that the product operates?

3-63. Let X denote the number of bits received in error in a
digital communication channel, and assume that X is a bino-
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mial random variable with p = 0.001. If 1000 bits are trans-

mitted, determine the following:

@@ PX=1) (b) PX=1)

(¢) P(X=2) (d) mean and variance of X

3-64. The phone lines to an airline reservation system are

occupied 40% of the time. Assume that the events that the lines

are occupied on successive calls are independent. Assume that

10 calls are placed to the airline.

(a) What is the probability that for exactly three calls the lines
are occupied?

(b) What is the probability that for at least one call the lines
are not occupied?

(c) What is the expected number of calls in which the lines
are all occupied?

3-65. Batches that consist of 50 coil springs from a production

process are checked for conformance to customer requirements.

The mean number of nonconforming coil springs in a batch is 5.

Assume that the number of nonconforming springs in a batch,

denoted as X, is a binomial random variable.

(a) What are n and p?

(b) What is P(X = 2)?

(c) Whatis P(X = 49)?

3-66. A statistical process control chart example. Samples

of 20 parts from a metal punching process are selected every

hour. Typically, 1% of the parts require rework. Let X denote

the number of parts in the sample of 20 that require rework. A

process problem is suspected if X exceeds its mean by more

than three standard deviations.

(a) If the percentage of parts that require rework remains at
1%, what is the probability that X exceeds its mean by
more than three standard deviations?

(b) If the rework percentage increases to 4%, what is the
probability that X exceeds 1?

(c) If the rework percentage increases to 4%, what is the
probability that X exceeds 1 in at least one of the next five
hours of samples?

3-67. Because not all airline passengers show up for their

reserved seat, an airline sells 125 tickets for a flight that holds

only 120 passengers. The probability that a passenger does not

show up is 0.10, and the passengers behave independently.

(a) What is the probability that every passenger who shows
up can take the flight?

(b) What is the probability that the flight departs with empty
seats?

3-68. This exercise illustrates that poor quality can affect
schedules and costs. A manufacturing process has 100 cus-
tomer orders to fill. Each order requires one component part
that is purchased from a supplier. However, typically, 2% of
the components are identified as defective, and the compo-
nents can be assumed to be independent.
(a) If the manufacturer stocks 100 components, what is the
probability that the 100 orders can be filled without
reordering components?
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(b) If the manufacturer stocks 102 components, what is the
probability that the 100 orders can be filled without
reordering components?

(¢) If the manufacturer stocks 105 components, what is the
probability that the 100 orders can be filled without
reordering components?

3-69. A multiple choice test contains 25 questions, each

with four answers. Assume a student just guesses on each

question.

(a) What is the probability that the student answers more than
20 questions correctly?

CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

(b) What is the probability the student answers less than 5
questions correctly?

3-70. A particularly long traffic light on your morning com-

mute is green 20% of the time that you approach it. Assume

that each morning represents an independent trial.

(a) Over five mornings, what is the probability that the light is
green on exactly one day?

(b) Over 20 mornings, what is the probability that the light is
green on exactly four days?

(c) Over 20 mornings, what is the probability that the light is
green on more than four days?

3-7 GEOMETRIC AND NEGATIVE BINOMIAL DISTRIBUTIONS

3-7.1

EXAMPLE 3-20

Definition

Geometric Distribution

Consider a random experiment that is closely related to the one used in the definition of a
binomial distribution. Again, assume a series of Bernoulli trials (independent trials with con-
stant probability p of a success on each trial). However, instead of a fixed number of trials,
trials are conducted until a success is obtained. Let the random variable X denote the number
of trials until the first success. In Example 3-5, successive wafers are analyzed until a large
particle is detected. Then, X is the number of wafers analyzed. In the transmission of bits, X
might be the number of bits transmitted until an error occurs.

The probability that a bit transmitted through a digital transmission channel is received in
error is 0.1. Assume the transmissions are independent events, and let the random variable X
denote the number of bits transmitted until the first error.

Then, P(X = 5) is the probability that the first four bits are transmitted correctly and the
fifth bit is in error. This event can be denoted as {OOOOE}, where O denotes an okay bit.
Because the trials are independent and the probability of a correct transmission is 0.9,

P(X = 5) = P(OOOOE) = 0.9%0.1 = 0.066
Note that there is some probability that X will equal any integer value. Also, if the first trial is
a success, X = 1. Therefore, the range of X'is {1, 2, 3, ... }, that is, all positive integers.

In a series of Bernoulli trials (independent trials with constant probability p of a suc-
cess), let the random variable X denote the number of trials until the first success.
Then X is a geometric random variable with parameter 0 < p < 1 and

x=1,2,...

f6) =0 =pyp (3-9)

Examples of the probability mass functions for geometric random variables are shown in
Fig. 3-9. Note that the height of the line at x is (I — p) times the height of the line at x — 1.
That is, the probabilities decrease in a geometric progression. The distribution acquires its
name from this result.
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EXAMPLE 3-21 The probability that a wafer contains a large particle of contamination is 0.01. If it is assumed
that the wafers are independent, what is the probability that exactly 125 wafers need to be
analyzed before a large particle is detected?

Let X denote the number of samples analyzed until a large particle is detected. Then X is
a geometric random variable with p = 0.01. The requested probability is

P(X = 125) = (0.99)'>0.01 = 0.0029

The derivation of the mean and variance of a geometric random variable is left as an exercise.
Note that 37, k(1 — p)*~!p can be shown to equal 1/p. The results are as follows.

If X is a geometric random variable with parameter p,

Lw=EX)=1/p and o= WVX)=(1-p)/p (3-10)

EXAMPLE 3-22 Consider the transmission of bits in Example 3-20. Here, p = 0.1. The mean number of
transmissions until the first error is 1/0.1 = 10. The standard deviation of the number
of transmissions before the first error is

o =[(1-0.1)/0.17]" = 9.49
Lack of Memory Property

A geometric random variable has been defined as the number of trials until the first success.
However, because the trials are independent, the count of the number of trials until the next
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success can be started at any trial without changing the probability distribution of the random
variable. For example, in the transmission of bits, if 100 bits are transmitted, the probability
that the first error, after bit 100, occurs on bit 106 is the probability that the next six outcomes
are OOOOOE. This probability is (0.9)°(0.1) = 0.059, which is identical to the probability
that the initial error occurs on bit 6.

The implication of using a geometric model is that the system presumably will not wear
out. The probability of an error remains constant for all transmissions. In this sense, the geo-
metric distribution is said to lack any memory. The lack of memory property will be dis-
cussed again in the context of an exponential random variable in Chapter 4.

EXAMPLE 3-23 In Example 3-20, the probability that a bit is transmitted in error is equal to 0.1. Suppose
50 bits have been transmitted. The mean number of bits until the next error is 1/0.1 = 10—
the same result as the mean number of bits until the first error.

3-7.2 Negative Binomial Distribution

A generalization of a geometric distribution in which the random variable is the number of
Bernoulli trials required to obtain » successes results in the negative binomial distribution.

EXAMPLE 3-24 As in Example 3-20, suppose the probability that a bit transmitted through a digital transmis-
sion channel is received in error is 0.1. Assume the transmissions are independent events, and
let the random variable X denote the number of bits transmitted until the fourth error.

Then, X has a negative binomial distribution with » = 4. Probabilities involving X can be
found as follows. The P(X = 10) is the probability that exactly three errors occur in the first
nine trials and then trial 10 results in the fourth error. The probability that exactly three errors
occur in the first nine trials is determined from the binomial distribution to be

(g) (0.1)}(0.9)°

Because the trials are independent, the probability that exactly three errors occur in the first
9 trials and trial 10 results in the fourth error is the product of the probabilities of these two
events, namely,

<2> (0.1)°(0.9)%(0.1) = (2) (0.1)(0.9)°

The previous result can be generalized as follows.

Definition
In a series of Bernoulli trials (independent trials with constant probability p of a suc-
cess), let the random variable X denote the number of trials until 7 successes occur.
Then X is a negative binomial random variable with parameters 0 < p < 1 and
r=1,23,...,and

f(X)=(f:;>(1 —pfY x=rr+lr+2,.... (3-11)
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Because at least r trials are required to obtain » successes, the range of X is from 7 to . In the
special case that » = 1, a negative binomial random variable is a geometric random variable.
Selected negative binomial distributions are illustrated in Fig. 3-10.

The lack of memory property of a geometric random variable implies the following. Let
X denote the total number of trials required to obtain » successes. Let X denote the number of
trials required to obtain the first success, let X, denote the number of extra trials required to
obtain the second success, let X5 denote the number of extra trials to obtain the third success,
and so forth. Then, the total number of trials required to obtain r successes is
X=X + X, + -+ X. Because of the lack of memory property, each of the random vari-
ables X, X;, ..., X, has a geometric distribution with the same value of p. Consequently, a
negative binomial random variable can be interpreted as the sum of » geometric random vari-
ables. This concept is illustrated in Fig. 3-11.

Recall that a binomial random variable is a count of the number of successes in n
Bernoulli trials. That is, the number of trials is predetermined, and the number of successes is
random. A negative binomial random variable is a count of the number of trials required to

X=X1 +X2 +X3
X, X5 X3

Figure 3-11 Negative N N ——

binomial random S % %

variable represented as 12 3 4 5 6 7 8 9 10 11 12
Trials

a sum of geometric
random variables. ¢ indicates a trial that results in a "success".
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EXAMPLE 3-25

obtain 7 successes. That is, the number of successes is predetermined, and the number of trials
is random. In this sense, a negative binomial random variable can be considered the opposite,
or negative, of a binomial random variable.

The description of a negative binomial random variable as a sum of geometric random
variables leads to the following results for the mean and variance. Sums of random variables
are studied in Chapter 5.

If X is a negative binomial random variable with parameters p and r,

w=EWX)=r/p and o’ = VX)=r(1 - p)/p? (3-12)

A Web site contains three identical computer servers. Only one is used to operate the site, and
the other two are spares that can be activated in case the primary system fails. The probability
of a failure in the primary computer (or any activated spare system) from a request for service
is 0.0005. Assuming that each request represents an independent trial, what is the mean num-
ber of requests until failure of all three servers?

Let X denote the number of requests until all three servers fail, and let X}, X,, and X;
denote the number of requests before a failure of the first, second, and third servers used,
respectively. Now, X = X| + X, + Xj. Also, the requests are assumed to comprise independ-
ent trials with constant probability of failure p = 0.0005. Furthermore, a spare server is not
affected by the number of requests before it is activated. Therefore, X has a negative binomial
distribution with p = 0.0005 and » = 3. Consequently,

E(X) = 3/0.0005 = 6000 requests

What is the probability that all three servers fail within five requests? The probability is
P(X = 5)and

P(X=5)=PX=3)+PX=4)+ PX=5)

3 4
0.0005° + (2) 0.00053(0.9995) + <2> 0.00053(0.9995)?

125X 1079 4+ 375 X 10719 + 7.49 x 1070

=1.249 X 107°
EXERCISES FOR SECTION 3-7
3-71. Suppose the random variable X has a geometric 3-72. Suppose the random variable X has a geometric
distribution with p = 0.5. Determine the following proba- distribution with a mean of 2.5. Determine the following
bilities: probabilities:
(@ PX=1) (b) PX=4) (@ PX=1) (b) P(X=4)
() PX=8) () PX=2) (¢c) PX=15) (d PX=3)
(e) P(X>2) (e) P(X > 3)
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3-73. The probability of a successful optical alignment in

the assembly of an optical data storage product is 0.8. Assume

the trials are independent.

(a) What is the probability that the first successful alignment
requires exactly four trials?

(b) What is the probability that the first successful alignment
requires at most four trials?

(c) What is the probability that the first successful alignment
requires at least four trials?

3-74. In a clinical study, volunteers are tested for a gene

that has been found to increase the risk for a disease. The

probability that a person carries the gene is 0.1.

(a) What is the probability 4 or more people will have to be
tested before 2 with the gene are detected?

(b) How many people are expected to be tested before 2 with
the gene are detected?

3-75. Assume that each of your calls to a popular radio station

has a probability of 0.02 of connecting, that is, of not obtaining a

busy signal. Assume that your calls are independent.

(a) What is the probability that your first call that connects is
your tenth call?

(b) What is the probability that it requires more than five calls
for you to connect?

(c) What is the mean number of calls needed to connect?

3-76. In Exercise 3-70, recall that a particularly long traffic

light on your morning commute is green 20% of the time that

you approach it. Assume that each morning represents an

independent trial.

(a) What is the probability that the first morning that the light
is green is the fourth morning that you approach it?

(b) What is the probability that the light is not green for 10
consecutive mornings?

3-77. A trading company has eight computers that it uses to

trade on the New York Stock Exchange (NYSE). The proba-

bility of a computer failing in a day is 0.005, and the comput-

ers fail independently. Computers are repaired in the evening

and each day is an independent trial.

(a) What is the probability that all eight computers fail in a
day?

(b) What is the mean number of days until a specific com-
puter fails?

(c) What is the mean number of days until all eight computers
fail in the same day?

3-78. In Exercise 3-66, recall that 20 parts are checked each

hour and that X denotes the number of parts in the sample of

20 that require rework.

(a) If the percentage of parts that require rework remains at
1%, what is the probability that hour 10 is the first sample
at which X exceeds 1?

(b) If the rework percentage increases to 4%, what is the
probability that hour 10 is the first sample at which X
exceeds 1?

(c) If the rework percentage increases to 4%, what is the
expected number of hours until X exceeds 1?

3-79. Consider a sequence of independent Bernoulli trials

withp = 0.2.

(a) What is the expected number of trials to obtain the first
success?

(b) After the eighth success occurs, what is the expected num-
ber of trials to obtain the ninth success?

3-80. Show that the probability density function of a nega-
tive binomial random variable equals the probability density
function of a geometric random variable when » = 1. Show
that the formulas for the mean and variance of a negative bi-
nomial random variable equal the corresponding results for
geometric random variable when r = 1.

3-81. Suppose that X is a negative binomial random variable
with p = 0.2 and » = 4. Determine the following:

(a) E(X) (b) P(X = 20)

(¢c) PX=19) (d) P(X=21)

(e) The most likely value for X

3-82. The probability is 0.6 that a calibration of a transducer
in an electronic instrument conforms to specifications for the
measurement system. Assume the calibration attempts are
independent. What is the probability that at most three
calibration attempts are required to meet the specifications for
the measurement system?

3-83. An electronic scale in an automated filling operation

stops the manufacturing line after three underweight packages

are detected. Suppose that the probability of an underweight

package is 0.001 and each fill is independent.

(a) What is the mean number of fills before the line is
stopped?

(b) What is the standard deviation of the number of fills
before the line is stopped?

3-84. A fault-tolerant system that processes transactions for
a financial services firm uses three separate computers. If the
operating computer fails, one of the two spares can be imme-
diately switched online. After the second computer fails, the
last computer can be immediately switched online. Assume
that the probability of a failure during any transaction is 10~%
and that the transactions can be considered to be independent
events.
(a) What is the mean number of transactions before all com-
puters have failed?
(b) What is the variance of the number of transactions before
all computers have failed?
3-85. Derive the expressions for the mean and variance of a
geometric random variable with parameter p. (Formulas for
infinite series are required.)
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3-8 HYPERGEOMETRIC DISTRIBUTION

Definition

In Example 3-8, a day’s production of 850 manufactured parts contains 50 parts that do not
conform to customer requirements. Two parts are selected at random, without replacement
from the day’s production. That is, selected units are not replaced before the next selection is
made. Let 4 and B denote the events that the first and second parts are nonconforming, re-
spectively. In Chapter 2, we found P(B|A4) = 49/849 and P(4) = 50/850. Consequently,
knowledge that the first part is nonconforming suggests that it is less likely that the second
part selected is nonconforming.

This experiment is fundamentally different from the examples based on the binomial dis-

tribution. In this experiment, the trials are not independent. Note that, in the unusual case that
each unit selected is replaced before the next selection, the trials are independent and there is
a constant probability of a nonconforming part on each trial. Then, the number of noncon-
forming parts in the sample is a binomial random variable.

Let X equal the number of nonconforming parts in the sample. Then

P(X = 0) = P(both parts conform) = (800/850)(799/849) = 0.886

P(X = 1) = P(first part selected conforms and the second part selected
does not, or the first part selected does not and the second part
selected conforms)

— (800/850)(50/849) + (50/850)(800/849) = 0.111
P(X = 2) = P(both parts do not conform) = (50/850)(49/849) = 0.003

As in this example, samples are often selected without replacement. Although probabili-

ties can be determined by the reasoning used in the example above, a general formula for
computing probabilities when samples are selected without replacement is quite useful. The
counting rules presented in Section 2-1.4, part of the CD material for Chapter 2, can be used
to justify the formula given below.

A set of N objects contains
K objects classified as successes
N — K objects classified as failures

A sample of size n objects is selected randomly (without replacement) from the N
objects, where K = N andn = N.

Let the random variable X denote the number of successes in the sample. Then
X is a hypergeometric random variable and

()

x = max{0, n + K — N} to min{K, n} (3-13)

The expression min{K, n} is used in the definition of the range of X because the maximum
number of successes that can occur in the sample is the smaller of the sample size, n,
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Figure 3-12 Hypergeometric distributions for
selected values of parameters N, K, and 7.

and the number of successes available, K. Also, if n + K > N, at least n + K — N suc-
cesses must occur in the sample. Selected hypergeometric distributions are illustrated in
Fig. 3-12.

EXAMPLE 3-26 The example at the start of this section can be reanalyzed by using the general expression in
the definition of a hypergeometric random variable. That is,

(50)(800)
0/\ 2/ _ 319600 _ 0

P(X =0) = = 886
(850) 360825
2
(50)(800)
1 1
PX=1)= _ 40000 _ 0.111
(850) 360825
2
(50)(800)
2 )\ 0
PX =2) = = 1225 003

(850) 360825
2

EXAMPLE 3-27 A batch of parts contains 100 parts from a local supplier of tubing and 200 parts from a sup-
plier of tubing in the next state. If four parts are selected randomly and without replacement,
what is the probability they are all from the local supplier?
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EXAMPLE 3-28

Let X equal the number of parts in the sample from the local supplier. Then, X has a
hypergeometric distribution and the requested probability is P(X = 4). Consequently,

P(X =4) = <1400><280) = 0.0119

)

What is the probability that two or more parts in the sample are from the local supplier?
<100)<200) (100)(200) (100)(200)
2 2 3 1 4 0
+ +
<300) <300> (300)
4 4 4

= 0.298 + 0.098 + 0.0119 = 0.408
What is the probability that at least one part in the sample is from the local supplier?

(100)(200)
0 4
PX=z1)=1-PX=0)=1—-—"——"=0.804
(300)
4
The mean and variance of a hypergeometric random variable can be determined from
the trials that comprise the experiment. However, the trials are not independent, and so the

calculations are more difficult than for a binomial distribution. The results are stated as
follows.

PX=2)=

If X is a hypergeometric random variable with parameters N, K, and n, then

L=EX)=np and o= ¥X)=np(l - p) (“) (3-14)

where p = K/N.

Here p is interpreted as the proportion of successes in the set of N objects.

In the previous example, the sample size is 4. The random variable X is the number of parts in
the sample from the local supplier. Then, p = 100/300 = 1/3. Therefore,

E(X) = 4(100/300) = 1.33
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EXAMPLE 3-29

Figure 3-13
Comparison of hyper-
geometric and binomial
distributions.
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and
V(X) = 4(1/3)(2/3)[(300 — 4)/299] = 0.88
For a hypergeometric random variable, £(X) is similar to the mean a binomial random

variable. Also, V(X) differs from the result for a binomial random variable only by the term
shown below.

The term in the variance of a hypergeometric random variable

N—n
N—-1

is called the finite population correction factor.

Sampling with replacement is equivalent to sampling from an infinite set because the propor-
tion of success remains constant for every trial in the experiment. As mentioned previously, if
sampling were done with replacement, X would be a binomial random variable and its vari-
ance would be np(1 — p). Consequently, the finite population correction represents the cor-
rection to the binomial variance that results because the sampling is without replacement from
the finite set of size M.

If n is small relative to N, the correction is small and the hypergeometric distribution is sim-
ilar to the binomial. In this case, a binomial distribution can effectively approximate the distribu-
tion of the number of units of a specified type in the sample. A case is illustrated in Fig. 3-13.

A listing of customer accounts at a large corporation contains 1000 customers. Of these, 700
have purchased at least one of the corporation’s products in the last three months. To evaluate
anew product design, 50 customers are sampled at random from the corporate listing. What is

03 + +
0.2
@) + %
0.1
+ +
0.0
0 1 2 3 4 5

e Hypergeometric N=50,n =5, K=25
+ Binomial n =5, p = 0.5

0 1 2 3 4 5
Hypergeometric probability | 0.025 0.149 0.326 0.326 0.149 0.025
Binomial probability 0.031 0.156 0.321 0.312 0.156 0.031
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the probability that more than 45 of the sampled customers have purchased from the corpora-
tion in the last three months?

The sampling is without replacement. However, because the sample size of 50 is small
relative to the number of customer accounts, 1000, the probability of selecting a customer who
has purchased from the corporation in the last three months remains approximately constant
as the customers are chosen.

For example, let 4 denote the event that the first customer selected has purchased
from the corporation in the last three months, and let B denote the event that the second
customer selected has purchased from the corporation in the last three months. Then,
P(4) = 700/1000 = 0.7 and P(B|A4) = 699/999 = 0.6997. That is, the trials are approxi-
mately independent.

Let X denote the number of customers in the sample who have purchased from the cor-
poration in the last three months. Then, X is a hypergeometric random variable with N =
1000, n = 50, and K = 700. Consequently, p = K/N = 0.7. The requested probability is
P(X > 45). Because the sample size is small relative to the batch size, the distribution of X
can be approximated as binomial with n» = 50 and p = 0.7. Using the binomial approximation
to the distribution of X results in

50 50
P(X>45)= (x) 0.7(1 — 0.7)°7* = 0.00017
x=46

The probability from the hypergeometric distribution is 0.000166, but this requires computer

software. The result agrees well with the binomial approximation.

EXERCISES FOR SECTION 3-8

3-86. Suppose X has a hypergeometric distribution with

N =100, n = 4, and K = 20. Determine the following:

(@ PX=1) (b) P(X=06)

(¢c) P(X=4) (d) Determine the mean and variance of X.

3-87. Suppose X has a hypergeometric distribution with

N = 20,n = 4, and K = 4. Determine the following:

(@ PX=1) (b) P(X=4)

(¢) P(X=2) (d) Determine the mean and variance of .X.

3-88. Suppose X has a hypergeometric distribution with

N =10, n = 3, and K = 4. Sketch the probability mass func-

tion of X.

3-89. Determine the cumulative distribution function for X

in Exercise 3-88.

3-90. Alot of 75 washers contains 5 in which the variability

in thickness around the circumference of the washer is unac-

ceptable. A sample of 10 washers is selected at random,

without replacement.

(a) What is the probability that none of the unacceptable
washers is in the sample?

(b) What is the probability that at least one unacceptable
washer is in the sample?

(c) What is the probability that exactly one unacceptable
washer is in the sample?

(d) What is the mean number of unacceptable washers in the
sample?

3-91. A company employs 800 men under the age of 55.

Suppose that 30% carry a marker on the male chromosome

that indicates an increased risk for high blood pressure.

(a) If 10 men in the company are tested for the marker in this
chromosome, what is the probability that exactly 1 man
has the marker?

(b) If 10 men in the company are tested for the marker in this
chromosome, what is the probability that more than 1 has
the marker?

3-92. Printed circuit cards are placed in a functional test

after being populated with semiconductor chips. A lot contains

140 cards, and 20 are selected without replacement for func-

tional testing.

(a) If 20 cards are defective, what is the probability that at
least 1 defective card is in the sample?

(b) If5 cards are defective, what is the probability that at least
1 defective card appears in the sample?

3-93. Magnetic tape is slit into half-inch widths that are

wound into cartridges. A slitter assembly contains 48 blades.

Five blades are selected at random and evaluated each day for



sharpness. If any dull blade is found, the assembly is replaced

with a newly sharpened set of blades.

(a) If 10 of the blades in an assembly are dull, what is the
probability that the assembly is replaced the first day it is
evaluated?

(b) If 10 of the blades in an assembly are dull, what is the
probability that the assembly is not replaced until the third
day of evaluation? [Hint: Assume the daily decisions are
independent, and use the geometric distribution.]

(c) Suppose on the first day of evaluation, two of the blades
are dull, on the second day of evaluation six are dull, and
on the third day of evaluation, ten are dull. What is the
probability that the assembly is not replaced until the third
day of evaluation? [Hint: Assume the daily decisions are
independent. However, the probability of replacement
changes every day.]

3-94. A state runs a lottery in which 6 numbers are ran-

domly selected from 40, without replacement. A player

chooses 6 numbers before the state’s sample is selected.

(a) What is the probability that the 6 numbers chosen by a
player match all 6 numbers in the state’s sample?

(b) What is the probability that 5 of the 6 numbers chosen by
a player appear in the state’s sample?
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(c) What is the probability that 4 of the 6 numbers chosen by
a player appear in the state’s sample?

(d) If a player enters one lottery each week, what is the
expected number of weeks until a player matches all 6
numbers in the state’s sample?

3-95. Continuation of Exercises 3-86 and 3-87.

(a) Calculate the finite population corrections for Exercises
3-86 and 3-87. For which exercise should the binomial
approximation to the distribution of X be better?

(b) For Exercise 3-86, calculate P(X = 1) and P(X = 4) as-
suming that X has a binomial distribution and compare
these results to results derived from the hypergeometric
distribution.

(c) For Exercise 3-87, calculate P(X = 1) and P(X = 4)
assuming that X has a binomial distribution and compare
these results to the results derived from the hypergeometric
distribution.

3-96. Use the binomial approximation to the hypergeo-

metric distribution to approximate the probabilities in

Exercise 3-92. What is the finite population correction in this

exercise?

We introduce the Poisson distribution with an example.

EXAMPLE 3-30

Consider the transmission of # bits over a digital communication channel. Let the random

variable X equal the number of bits in error. When the probability that a bit is in error is con-
stant and the transmissions are independent, X has a binomial distribution. Let p denote the
probability that a bit is in error. Let A = pn. Then, E(x) = pn = A and

e QR

Now, suppose that the number of bits transmitted increases and the probability of an error
decreases exactly enough that pn remains equal to a constant. That is, »n increases and p de-
creases accordingly, such that £(X) = A remains constant. Then, with some work, it can be

shown that

lim,,_,.. P(X

e M\"
x) = x! 7

x=0,1,2,...

Also, because the number of bits transmitted tends to infinity, the number of errors can equal
any nonnegative integer. Therefore, the range of X is the integers from zero to infinity.

The distribution obtained as the limit in the above example is more useful than the deri-
vation above implies. The following example illustrates the broader applicability.
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EXAMPLE 3-31

Definition

Flaws occur at random along the length of a thin copper wire. Let X denote the random vari-
able that counts the number of flaws in a length of L millimeters of wire and suppose that the
average number of flaws in L millimeters is A.

The probability distribution of X can be found by reasoning in a manner similar to the pre-
vious example. Partition the length of wire into » subintervals of small length, say, 1 microm-
eter each. If the subinterval chosen is small enough, the probability that more than one flaw
occurs in the subinterval is negligible. Furthermore, we can interpret the assumption that
flaws occur at random to imply that every subinterval has the same probability of containing
a flaw, say, p. Finally, if we assume that the probability that a subinterval contains a flaw is in-
dependent of other subintervals, we can model the distribution of X as approximately a bino-
mial random variable. Because

E(X) =A=np
we obtain
p=A/n

That is, the probability that a subinterval contains a flaw is A/n. With small enough subinter-
vals, n is very large and p is very small. Therefore, the distribution of X is obtained as in the
previous example.

Example 3-31 can be generalized to include a broad array of random experiments. The
interval that was partitioned was a length of wire. However, the same reasoning can be
applied to any interval, including an interval of time, an area, or a volume. For example,
counts of (1) particles of contamination in semiconductor manufacturing, (2) flaws in rolls
of textiles, (3) calls to a telephone exchange, (4) power outages, and (5) atomic particles
emitted from a specimen have all been successfully modeled by the probability mass func-
tion in the following definition.

Given an interval of real numbers, assume counts occur at random throughout the in-
terval. If the interval can be partitioned into subintervals of small enough length such
that

(1) the probability of more than one count in a subinterval is zero,

(2) the probability of one count in a subinterval is the same for all subintervals
and proportional to the length of the subinterval, and

(3) the count in each subinterval is independent of other subintervals, the ran-
dom experiment is called a Poisson process.

The random variable X that equals the number of counts in the interval is a Poisson
random variable with parameter 0 < A, and the probability mass function of X is

flx) = x=0,1,2,... (3-15)
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Figure 3-14 Poisson distributions for selected values of the parameters.

Historically, the term process has been used to suggest the observation of a system over
time. In our example with the copper wire, we showed that the Poisson distribution could
also apply to intervals such as lengths. Figure 3-14 provides graphs of selected Poisson

distributions.
It is important to use consistent units in the calculation of probabilities, means, and vari-

ances involving Poisson random variables. The following example illustrates unit conversions.
For example, if the

average number of flaws per millimeter of wire is 3.4, then the

average number of flaws in 10 millimeters of wire is 34, and the

average number of flaws in 100 millimeters of wire is 340.

If a Poisson random variable represents the number of counts in some interval, the mean of the
random variable must equal the expected number of counts in the same length of interval.
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EXAMPLE 3-32

EXAMPLE 3-33

For the case of the thin copper wire, suppose that the number of flaws follows a Poisson dis-
tribution with a mean of 2.3 flaws per millimeter. Determine the probability of exactly 2 flaws
in 1 millimeter of wire.

Let X denote the number of flaws in 1 millimeter of wire. Then, E(X) = 2.3 flaws and

—-23 2
P(x =2) = £ 23" _ (265
21

Determine the probability of 10 flaws in 5 millimeters of wire. Let X denote the number
of flaws in 5 millimeters of wire. Then, X has a Poisson distribution with

E(X) = 5mm X 2.3 flaws/mm = 11.5 flaws
Therefore,

11.5'
— o115

P(X = 10) o

=0.113

Determine the probability of at least 1 flaw in 2 millimeters of wire. Let X denote the
number of flaws in 2 millimeters of wire. Then, X has a Poisson distribution with

E(X) = 2mm X 2.3 flaws/mm = 4.6 flaws
Therefore,

PX=1)=1-PX=0)=1-e* =009899

Contamination is a problem in the manufacture of optical storage disks. The number of particles
of contamination that occur on an optical disk has a Poisson distribution, and the average number
of particles per centimeter squared of media surface is 0.1. The area of a disk under study is 100
squared centimeters. Find the probability that 12 particles occur in the area of a disk under study.

Let X denote the number of particles in the area of a disk under study. Because the mean
number of particles is 0.1 particles per cm?

E(X) = 100 cm? X 0.1 particles/cm* = 10 particles

Therefore,

—101n12
Px = 12) = <197 _ 4,095
121

The probability that zero particles occur in the area of the disk under study is
PX=0)=¢e¢'"=454 X107

Determine the probability that 12 or fewer particles occur in the area of the disk under
study. The probability is

12 e—lOloi
PX=12)=P(X=0)+PX=1)+ -+ PX=12) = 3 —
i=0 L
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Because this sum is tedious to compute, many computer programs calculate cumulative
Poisson probabilities. From one such program, P(X = 12) = 0.791.

The derivation of the mean and variance of a Poisson random variable is left as an exer-
cise. The results are as follows.

If X is a Poisson random variable with parameter A, then

p=EX)=A and o2=VX)=A (3-16)

The mean and variance of a Poisson random variable are equal. For example, if particle counts
follow a Poisson distribution with a mean of 25 particles per square centimeter, the variance
is also 25 and the standard deviation of the counts is 5 per square centimeter. Consequently,
information on the variability is very easily obtained. Conversely, if the variance of count data
is much greater than the mean of the same data, the Poisson distribution is not a good model

for the distribution of the random variable.

EXERCISES FOR SECTION 3-9

3-97. Suppose X has a Poisson distribution with a mean of
4. Determine the following probabilities:

(@ PX=10) (b) P(X=2)

(c) PX=14) (d) PX=238)

3-98. Suppose X has a Poisson distribution with a mean of
0.4. Determine the following probabilities:

(@) P(X=10) (b) PY=2)

(c) P(X=4) (d) P(X=238)

3-99. Suppose that the number of customers that enter
a bank in an hour is a Poisson random variable, and sup-
pose that P(X = 0) = 0.05. Determine the mean and
variance of X.

3-100. The number of telephone calls that arrive at a phone

exchange is often modeled as a Poisson random variable.

Assume that on the average there are 10 calls per hour.

(a) What is the probability that there are exactly 5 calls in one
hour?

(b) What is the probability that there are 3 or less calls in one
hour?

(c) What is the probability that there are exactly 15 calls in
two hours?

(d) What is the probability that there are exactly 5 calls in
30 minutes?

3-101. The number of flaws in bolts of cloth in textile man-

ufacturing is assumed to be Poisson distributed with a mean of

0.1 flaw per square meter.

(a) What is the probability that there are two flaws in 1 square
meter of cloth?

(b) What is the probability that there is one flaw in 10 square
meters of cloth?

(c) What is the probability that there are no flaws in 20 square
meters of cloth?

(d) What is the probability that there are at least two flaws in
10 square meters of cloth?

3-102. When a computer disk manufacturer tests a disk, it
writes to the disk and then tests it using a certifier. The certi-
fier counts the number of missing pulses or errors. The num-
ber of errors on a test area on a disk has a Poisson distribution
withA = 0.2.

(a) What is the expected number of errors per test area?

(b) What percentage of test areas have two or fewer errors?

3-103. The number of cracks in a section of interstate high-
way that are significant enough to require repair is assumed
to follow a Poisson distribution with a mean of two cracks
per mile.

(a) What is the probability that there are no cracks that require
repair in 5 miles of highway?

(b) What is the probability that at least one crack requires
repair in 1/2 mile of highway?

(¢) If the number of cracks is related to the vehicle load on
the highway and some sections of the highway have a
heavy load of vehicles whereas other sections carry
a light load, how do you feel about the assumption of a
Poisson distribution for the number of cracks that
require repair?

3-104. The number of failures for a cytogenics machine

from contamination in biological samples is a Poisson random

variable with a mean of 0.01 per 100 samples.

(a) If the lab usually processes 500 samples per day, what is
the expected number of failures per day?
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(b) What is the probability that the machine will not fail dur-
ing a study that includes 500 participants? (Assume one
sample per participant.)

3-105. The number of surface flaws in plastic panels used

in the interior of automobiles has a Poisson distribution with

a mean of 0.05 flaw per square foot of plastic panel. Assume

an automobile interior contains 10 square feet of plastic

panel.

(a) What is the probability that there are no surface flaws in
an auto’s interior?

(b) If 10 cars are sold to a rental company, what is the proba-
bility that none of the 10 cars has any surface flaws?

(c) If 10 cars are sold to a rental company, what is the proba-
bility that at most one car has any surface flaws?

3-106. The number of failures of a testing instrument from

contamination particles on the product is a Poisson random

variable with a mean of 0.02 failure per hour.

(a) What is the probability that the instrument does not fail in
an 8-hour shift?

(b) What is the probability of at least one failure in a 24-hour
day?

Supplemental Exercises

3-107. A shipment of chemicals arrives in 15 totes. Three of
the totes are selected at random, without replacement, for an
inspection of purity. If two of the totes do not conform to
purity requirements, what is the probability that at least one of
the nonconforming totes is selected in the sample?

3-108. The probability that your call to a service line is an-

swered in less than 30 seconds is 0.75. Assume that your calls

are independent.

(a) Ifyou call 10 times, what is the probability that exactly 9
of your calls are answered within 30 seconds?

(b) Ifyou call 20 times, what is the probability that at least 16
calls are answered in less than 30 seconds?

(c) Ifyou call 20 times, what is the mean number of calls that
are answered in less than 30 seconds?

3-109. Continuation of Exercise 3-108.

(a) What is the probability that you must call four times to
obtain the first answer in less than 30 seconds?

(b) What is the mean number of calls until you are answered
in less than 30 seconds?

3-110. Continuation of Exercise 3-109.

(a) What is the probability that you must call six times in
order for two of your calls to be answered in less than 30
seconds?

(b) What is the mean number of calls to obtain two answers in
less than 30 seconds?

3-111. The number of messages sent to a computer bulletin

board is a Poisson random variable with a mean of 5 messages

per hour.

(a) What is the probability that 5 messages are received in
1 hour?

(b) What is the probability that 10 messages are received in
1.5 hours?

(c) What is the probability that less than two messages are
received in one-half hour?

3-112. A Web site is operated by four identical computer
servers. Only one is used to operate the site; the others are
spares that can be activated in case the active server fails. The
probability that a request to the Web site generates a failure in
the active server is 0.0001. Assume that each request is an in-
dependent trial. What is the mean time until failure of all four
computers?

3-113. The number of errors in a textbook follow a Poisson
distribution with a mean of 0.01 error per page. What is the
probability that there are three or less errors in 100 pages?
3-114. The probability that an individual recovers from an
illness in a one-week time period without treatment is 0.1.
Suppose that 20 independent individuals suffering from this
illness are treated with a drug and 4 recover in a one-week
time period. If the drug has no effect, what is the probability
that 4 or more people recover in a one-week time period?
3-115. Patient response to a generic drug to control pain is
scored on a 5-point scale, where a 5 indicates complete relief.
Historically the distribution of scores is

1 2 3 4 5
0.05 0.1 0.2 0.25 0.4

Two patients, assumed to be independent, are each scored.

(a) What is the probability mass function of the total score?

(b) What is the probability mass function of the average score?

3-116. In a manufacturing process that laminates several

ceramic layers, 1% of the assemblies are defective. Assume

that the assemblies are independent.

(a) What is the mean number of assemblies that need to be
checked to obtain five defective assemblies?

(b) What is the standard deviation of the number of assemblies
that need to be checked to obtain five defective assemblies?

3-117. Continuation of Exercise 3-116. Determine the mini-
mum number of assemblies that need to be checked so that the
probability of at least one defective assembly exceeds 0.95.

3-118. Determine the constant ¢ so that the following func-

tion is a probability mass function: f(x) = cx forx = 1,2, 3, 4.

3-119. A manufacturer of a consumer electronics product ex-

pects 2% of units to fail during the warranty period. A sample of

500 independent units is tracked for warranty performance.

(a) What is the probability that none fails during the warranty
period?

(b) What is the expected number of failures during the
warranty period?

(c) What is the probability that more than two units fail
during the warranty period?

3-120. Messages that arrive at a service center for an infor-

mation systems manufacturer have been classified on the basis



of the number of keywords (used to help route messages) and
the type of message, either email or voice. Also, 70% of the
messages arrive via email and the rest are voice.

number of keywords 0 1 2 3 4
email 0.1 0.1 0.2 0.4 0.2
voice 0.3 0.4 0.2 0.1 0

Determine the probability mass function of the number of
keywords in a message.

3-121. The random variable X has the following probability
distribution:

X 2 3 5 8
probability 0.2 0.4 0.3 0.1

Determine the following:

(a) P(X =< 3) (b) P(X > 2.5)
(c) PR7<X<51) (d) EX)
() "X)

3-122. Determine the probability mass function for the ran-
dom variable with the following cumulative distribution
function:

0 x <2
0.2 2=x<57

F(x) =40.5 57=x<6.5
0.8 6.5=x<38.5
1 85=x

3-123. Each main bearing cap in an engine contains four

bolts. The bolts are selected at random, without replacement,

from a parts bin that contains 30 bolts from one supplier and

70 bolts from another.

(a) What is the probability that a main bearing cap contains
all bolts from the same supplier?

(b) What is the probability that exactly three bolts are from
the same supplier?

3-124. Assume the number of errors along a magnetic
recording surface is a Poisson random variable with a mean of
one error every 10° bits. A sector of data consists of 4096
eight-bit bytes.

(a) What is the probability of more than one error in a sector?
(b) What is the mean number of sectors until an error is found?
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3-125. An installation technician for a specialized commu-
nication system is dispatched to a city only when three or
more orders have been placed. Suppose orders follow a
Poisson distribution with a mean of 0.25 per week for a city
with a population of 100,000 and suppose your city contains a
population of 800,000.

(a) What is the probability that a technician is required after a
one-week period?

(b) Ifyou are the first one in the city to place an order, what is
the probability that you have to wait more than two weeks
from the time you place your order until a technician is
dispatched?

3-126. From 500 customers, a major appliance manufac-
turer will randomly select a sample without replacement. The
company estimates that 25% of the customers will provide
useful data. If this estimate is correct, what is the probability
mass function of the number of customers that will provide
useful data?

(a) Assume that the company samples 5 customers.

(b) Assume that the company samples 10 customers.

3-127. It is suspected that some of the totes containing
chemicals purchased from a supplier exceed the moisture con-
tent target. Samples from 30 totes are to be tested for moisture
content. Assume that the totes are independent. Determine the
proportion of totes from the supplier that must exceed the
moisture content target so that the probability is 0.90 that at
least one tote in the sample of 30 fails the test.

3-128. Messages arrive to a computer server according
to a Poisson distribution with a mean rate of 10 per
hour. Determine the length of an interval of time such that
the probability that no messages arrive during this interval
is 0.90.

3-129. Flaws occur in the interior of plastic used for auto-

mobiles according to a Poisson distribution with a mean of

0.02 flaw per panel.

(a) If 50 panels are inspected, what is the probability that
there are no flaws?

(b) What is the expected number of panels that need to be
inspected before a flaw is found?

(c) If 50 panels are inspected, what is the probability that the
number of panels that have one or more flaws is less than
or equal to 2?
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MIND-EXPANDING EXERCISES

3-130. Derive the mean and variance of a hypergeo-
metric random variable (difficult exercise).

3-131. Show that the function f(x) in Example 3-5
satisfies the properties of a probability mass function by
summing the infinite series.

3-132. Derive the formula for the mean and standard
deviation of a discrete uniform random variable over the
range of integers a, a + 1, ..., b.

3-133. A company performs inspection on shipments
from suppliers in order to defect nonconforming prod-
ucts. Assume a lot contains 1000 items and 1% are
nonconforming. What sample size is needed so that the
probability of choosing at least one nonconforming item
in the sample is at least 0.90? Assume the binomial
approximation to the hypergeometric distribution is
adequate.

3-134. A company performs inspection on shipments
from suppliers in order to detect nonconforming prod-
ucts. The company’s policy is to use a sample size that is
always 10% of the lot size. Comment on the effective-
ness of this policy as a general rule for all sizes of lots.

IMPORTANT TERMS AND CONCEPTS

3-135. Surface flaws in automobile exterior panels
follow a Poisson distribution with a mean of 0.1 flaw per
panel. If 100 panels are checked, what is the probability
that fewer than five panels have any flaws?

3-136. A large bakery can produce rolls in lots of ei-
ther 0, 1000, 2000, or 3000 per day. The production cost
per item is $0.10. The demand varies randomly accord-
ing to the following distribution:

demand for rolls 0 1000 2000 3000
probability of demand 0.3 0.2 03 02

Every roll for which there is a demand is sold for $0.30.
Every roll for which there is no demand is sold in a sec-
ondary market for $0.05. How many rolls should the
bakery produce each day to maximize the mean profit?

3-137. A manufacturer stocks components obtained
from a supplier. Suppose that 2% of the components are
defective and that the defective components occur inde-
pendently. How many components must the manufacturer
have in stock so that the probability that 100 orders can be
completed without reordering components is at least 0.95?

In the E-book, click on any
term or concept below to
go to that subject.
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LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:

1.
2.

Determine probabilities from probability density functions.

Determine probabilities from cumulative distribution functions and cumulative distribution func-
tions from probability density functions, and the reverse.

. Calculate means and variances for continuous random variables.
. Understand the assumptions for each of the continuous probability distributions presented.

. Select an appropriate continuous probability distribution to calculate probabilities in specific

applications.

. Calculate probabilities, determine means and variances for each of the continuous probability

distributions presented.

. Standardize normal random variables.
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CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

8. Use the table for the cumulative distribution function of a standard normal distribution to calcu-
late probabilities.

9. Approximate probabilities for some binomial and Poisson distributions.

CD MATERIAL
10. Use continuity corrections to improve the normal approximation to those binomial and Poisson
distributions.

Answers for most odd numbered exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

CONTINUOUS RANDOM VARIABLES

Previously, we discussed the measurement of the current in a thin copper wire. We noted that
the results might differ slightly in day-to-day replications because of small variations in vari-
ables that are not controlled in our experiment—changes in ambient temperatures, small im-
purities in the chemical composition of the wire, current source drifts, and so forth.

Another example is the selection of one part from a day’s production and very accurately
measuring a dimensional length. In practice, there can be small variations in the actual
measured lengths due to many causes, such as vibrations, temperature fluctuations, operator
differences, calibrations, cutting tool wear, bearing wear, and raw material changes. Even the
measurement procedure can produce variations in the final results.

In these types of experiments, the measurement of interest—current in a copper wire ex-
periment, length of a machined part—can be represented by a random variable. It is reason-
able to model the range of possible values of the random variable by an interval (finite or
infinite) of real numbers. For example, for the length of a machined part, our model enables
the measurement from the experiment to result in any value within an interval of real numbers.
Because the range is any value in an interval, the model provides for any precision in length
measurements. However, because the number of possible values of the random variable X is
uncountably infinite, X has a distinctly different distribution from the discrete random vari-
ables studied previously. The range of X includes all values in an interval of real numbers; that
is, the range of X can be thought of as a continuum.

A number of continuous distributions frequently arise in applications. These distributions
are described, and example computations of probabilities, means, and variances are provided
in the remaining sections of this chapter.

4-2 PROBABILITY DISTRIBUTIONS AND PROBABILITY

DENSITY FUNCTIONS

Density functions are commonly used in engineering to describe physical systems. For exam-
ple, consider the density of a loading on a long, thin beam as shown in Fig. 4-1. For any point
x along the beam, the density can be described by a function (in grams/cm). Intervals with
large loadings correspond to large values for the function. The total loading between points a
and b is determined as the integral of the density function from a to b. This integral is the area
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fx)
oo
£ Pla<X<b)
B
S A
x a b x
Figure 4-1 Density Figure 4-2  Probability determined from the area

function of a loading on a under f(x).
long, thin beam.

under the density function over this interval, and it can be loosely interpreted as the sum of all
the loadings over this interval.

Similarly, a probability density function f{x) can be used to describe the probability dis-
tribution of a continuous random variable X. If an interval is likely to contain a value for X,
its probability is large and it corresponds to large values for f(x). The probability that X is be-
tween a and b is determined as the integral of f(x) from a to b. See Fig. 4-2.

For a continuous random variable X, a probability density function is a function
such that

(1) fx)=0

©

@ |-

- b
3) PlasX=0b)= ff(x) dx = areaunder f(x)fromatob

for any a and b (4-1)

A probability density function provides a simple description of the probabilities associ-
ated with a random variable. As long as f(x) is nonnegative and [ f(x)dx =1,
0 = P(a < X < b) = 1 so that the probabilities are properly restricted. A probability density
function is zero for x values that cannot occur and it is assumed to be zero wherever it is not
specifically defined.

A histogram is an approximation to a probability density function. See Fig. 4-3. For each
interval of the histogram, the area of the bar equals the relative frequency (proportion) of the
measurements in the interval. The relative frequency is an estimate of the probability that a
measurement falls in the interval. Similarly, the area under f(x) over any interval equals the
true probability that a measurement falls in the interval.

The important point is that f(x) is used to calculate an area that represents the prob-
ability that X assumes a value in [a, b]. For the current measurement example, the proba-
bility that X results in [14 mA, 15 mA] is the integral of the probability density function of
X over this interval. The probability that X results in [14.5 mA, 14.6 mA] is the integral of
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EXAMPLE 4-1

fx)
fx)

0.05

x 0 10 20 x

Figure 4-3 Histogram approximates a probability density Figure 4-4 Probability density
function. function for Example 4-1.

the same function, f{x), over the smaller interval. By appropriate choice of the shape of f(x),
we can represent the probabilities associated with any continuous random variable X. The
shape of f(x) determines how the probability that X assumes a value in [14.5 mA, 14.6 mA]
compares to the probability of any other interval of equal or different length.

For the density function of a loading on a long thin beam, because every point has zero
width, the loading at any point is zero. Similarly, for a continuous random variable X and any
value x.

Based on this result, it might appear that our model of a continuous random variable is use-
less. However, in practice, when a particular current measurement is observed, such as 14.47
milliamperes, this result can be interpreted as the rounded value of a current measurement that
is actually in a range such as 14.465 = x = 14.475. Therefore, the probability that the
rounded value 14.47 is observed as the value for X is the probability that X assumes a value in
the interval [14.465, 14.475], which is not zero. Similarly, because each point has zero
probability, one need not distinguish between inequalities such as < or = for continuous
random variables.

If X is a continuous random variable, for any x; and x,,

Pxi =X=x)=Px <X=x)=Pk =X<x)=Px <X<x) 42

Let the continuous random variable X denote the current measured in a thin copper wire in
milliamperes. Assume that the range of X is [0, 20 mA], and assume that the probability den-
sity function of X'is f{x) = 0.05 for 0 = x = 20. What is the probability that a current meas-
urement is less than 10 milliamperes?

The probability density function is shown in Fig. 4-4. It is assumed that f{x) = 0 wherever
it is not specifically defined. The probability requested is indicated by the shaded area in Fig. 4-4.

P(X < 10) = Jf(x) dx = J 0.05 dx = 0.5

0 0
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flx)

125 12.6 x

Figure 4-5 Probability density function for
Example 4-2.

As another example,

20
P(5<X<20)= Jf(x) dx = 0.75

5

Let the continuous random variable X denote the diameter of a hole drilled in a sheet metal
component. The target diameter is 12.5 millimeters. Most random disturbances to the process
result in larger diameters. Historical data show that the distribution of X can be modeled by a
probability density function f(x) = 20e 2%~ 129 x = 12.5.

If a part with a diameter larger than 12.60 millimeters is scrapped, what proportion of
parts is scrapped? The density function and the requested probability are shown in Fig. 4-5. A
part is scrapped if X > 12.60. Now,

©

P(X > 12.60) = Jf(x) dx = J 20e 2007 129) gy = — 72007 125)
2 2

= 0.135
12,6
126 126
What proportion of parts is between 12.5 and 12.6 millimeters? Now,
12,6
12.6
P(12.5 < X < 12.6) = J flx)dx = —e 2671291 = .865
12.5
125

Because the total area under f{x) equals 1, we can also calculate P(12.5 < X < 12.6) =
1 = P(X>12.6) =1 — 0.135 = 0.865.

EXERCISES FOR SECTION 4-2

4-1. Suppose that f(x)
lowing probabilities:

= e “for 0 < x. Determine the fol- 4-3. Suppose that f(x) = x/8 for 3 < x < 5. Determine the
following probabilities:

(a) P(1 <X) (b) P(1 <X<25) (a) P(X < 4) (b) P(X > 3.5)

() PX=3) (d) PX<4) (c) PA<X<59) (d) P(X < 4.5)

(e) P3=X) (e) P(X <350rX>45)

4-2. Suppose that f(x) = e *for 0 < x. 4-4. Suppose that f(x) = e @~ ¥ for 4 < x. Determine the
(a) Determine x such that P(x < X) = 0.10. following probabilities:

(b) Determine x such that P(X =< x) = 0.10. (@ P(1 <X) (b) P2=X<5)
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() P6<X) (d PB<X<12)

(e) Determine x such that P(X < x) = 0.90.

4-5. Suppose that f(x) = 1.5x for —1 < x < 1. Determine

the following probabilities:

(a) P(0 < X)

(c) P(-05=X=0.5)

(e) PX<OorX> —0.5)

(f) Determine x such that P(x < X) = 0.05.

4-6. The probability density function of the time to failure

of an electronic component in a copier (in hours) is f{x) =

o ¥/1000
1000

(a) A component lasts more than 3000 hours before failure.

(b) A component fails in the interval from 1000 to 2000 hours.

(c) A component fails before 1000 hours.

(d) Determine the number of hours at which 10% of all com-

ponents have failed.

(b) P(0.5 < X)
d) PX < —2)

for x > 0. Determine the probability that

4-7. The probability density function of the net weight in

pounds of a packaged chemical herbicide is f(x) = 2.0 for

49.75 < x < 50.25 pounds.

(a) Determine the probability that a package weighs more
than 50 pounds.

(b) How much chemical is contained in 90% of all packages?

4-8. The probability density function of the length of a
hinge for fastening a door is f(x) = 1.25 for 74.6 < x < 75.4
millimeters. Determine the following:

(a) P(X < 74.8)

(b) PX <748 or X>752)

(c) If the specifications for this process are from 74.7
to 75.3 millimeters, what proportion of hinges meets
specifications?

4-9. The probability density function of the length of a

metal rod is f(x) = 2 for 2.3 < x < 2.8 meters.

(a) If the specifications for this process are from 2.25 to 2.75
meters, what proportion of the bars fail to meet the speci-
fications?

(b) Assume that the probability density function is f(x) = 2
for an interval of length 0.5 meters. Over what value
should the density be centered to achieve the greatest pro-
portion of bars within specifications?

4-10. If Xis a continuous random variable, argue that P(x; =

X=x)=Px <X=x) =P =X<x) = Px; <X<ux,).

4-3 CUMULATIVE DISTRIBUTION FUNCTIONS

An alternative method to describe the distribution of a discrete random variable can also be
used for continuous random variables.

Definition

for —o0 < x < oo,

The cumulative distribution function of a continuous random variable X is

Fx)=PX=x) = Jf(u) du

(4-3)

—o0

Extending the definition of f(x) to the entire real line enables us to define the cumulative dis-
tribution function for all real numbers. The following example illustrates the definition.

EXAMPLE 4-3

For the copper current measurement in Example 4-1, the cumulative distribution function of

the random variable X consists of three expressions. If x < 0, f(x) = 0. Therefore,

F(x) =0,

for x <0
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and
F(x) = Jf(u) du = 0.05x, for 0=x<20
0
Finally,
Flx) = Jf(u) du=1, for 20=x
0
Therefore,
0 x <0
Fx) = 40.05x 0=x<20
1 20 =x

The plot of F(x) is shown in Fig. 4-6.

Notice that in the definition of F(x) any < can be changed to = and vice versa. That is,
F(x) can be defined as either 0.05x or 0 at the end-point x = 0, and F(x) can be defined as
either 0.05x or 1 at the end-point x = 20. In other words, F(x) is a continuous function. For a
discrete random variable, F(x) is not a continuous function. Sometimes, a continuous random
variable is defined as one that has a continuous cumulative distribution function.

For the drilling operation in Example 4-2, F(x) consists of two expressions.
F(x)=0 for x<125

and for 12.5 = x

F(X) — Jzoe—zo(u—lz.S) du
2

12.5

= | — o 20G—125)

Therefore,

0 x <125
1= 207129 125 <y

Flx) = {

Figure 4-7 displays a graph of F(x).

Fx) F
| | /
0 20 2 0 12.5 x
Figure 4-6  Cumulative distribution Figure 4-7 Cumulative distribution

function for Example 4-3. function for Example 4-4.
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EXAMPLE 4-5

The probability density function of a continuous random variable can be determined from
the cumulative distribution function by differentiating. Recall that the fundamental theorem of
calculus states that

Then, given F(x)

as long as the derivative exists.

The time until a chemical reaction is complete (in milliseconds) is approximated by the
cumulative distribution function

F(x):{o x<0

1 —e % o=y
Determine the probability density function of X. What proportion of reactions is complete
within 200 milliseconds? Using the result that the probability density function is the deriva-

tive of the F(x), we obtain

0 x<0
f(x) - {0.016_0'0” 0=y

The probability that a reaction completes within 200 milliseconds is

P(X < 200) = F(200) = 1 — e 2 = 0.8647.

EXERCISES FOR SECTION 4-3

4-11. Suppose the cumulative distribution function of the Determine the following:

random variable X is
Flx)

Determine the following:

(b) P(X > 1.5) )
(d) P(X > 6) 4-16. Determine the cumulative distribution function for

(a) P(X < 2.8)
() PX < —2)

4-12. Suppose the cumulative distribution function of the
random variable X is

Fx) =

(@) PX<1.8) (b) P(X> —1.5)
() PX<-2) (d) P(-1<X<1)

0 x <0 4-13. Determine the cumulative distribution function for
02x 0=x<S5 the distribution in Exercise 4-1.
1 5=x 4-14. Determine the cumulative distribution function for

the distribution in Exercise 4-3.

4-15. Determine the cumulative distribution function for
the distribution in Exercise 4-4.

the distribution in Exercise 4-6. Use the cumulative distribu-
tion function to determine the probability that a component
lasts more than 3000 hours before failure.

4-17. Determine the cumulative distribution function for
x <=2 the distribution in Exercise 4-8. Use the cumulative distribu-

025x +05 —2=x<2 tion function to determine the probability that a length

2=x exceeds 75 millimeters.
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Determine the probability density function for each of the fol- 4-20.
lowing cumulative distribution functions.

0 <=2
418. Fx)=1—-¢® x>0 *

025x+05 —2=x<1

-19. F(x) =
4-19 = Yosx+025 1=x<15
0 x<0 1 1.5=x
0.2 0=x<4
Flx) = o o 4-21. The gap width is an important property of a magnetic

0.04x + 064 4=x<9

X 0 recording head. In coded units, if the width is a continuous ran-
=X

dom variable over the range from 0 < x < 2 with f{x) = 0.5x,
determine the cumulative distribution function of the gap width.

4-4 MEAN AND VARIANCE OF A CONTINUOUS
RANDOM VARIABLE

The mean and variance of a continuous random variable are defined similarly to a discrete
random variable. Integration replaces summation in the definitions. If a probability density
function is viewed as a loading on a beam as in Fig. 4-1, the mean is the balance point.

Definition
Suppose X is a continuous random variable with probability density function f{x).
The mean or expected value of X, denoted as . or E(X), is

b= B0 = | ) as 44)
The variance of X, denoted as ¥(X) or ¢, is
=1 = | - W = [ - w

The standard deviation of Xis o = \/03.

The equivalence of the two formulas for variance can be derived as one, as was done for dis-
crete random variables.

EXAMPLE 4-6 For the copper current measurement in Example 4-1, the mean of X is

20
=10
0

20
E(X) = J xf(x) dx = 0.05x%/2

The variance of X is
20
nx) = J (x — 10)*(x) dx = 0.05(x — 10)*/3

0

20

= 33.33
0
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The expected value of a function /(X) of a continuous random variable is defined similarly to
a function of a discrete random variable.

Expected Value
of a Function of
a Continuous

If X is a continuous random variable with probability density function f{(x),

Random -
Variabl BT00] = | ) a @5
EXAMPLE 4-7 In Example 4-1, X is the current measured in milliamperes. What is the expected value of the
squared current? Now, 4(X) = X?2. Therefore,
- 20
3|20
E[h(X)] = J Kf(x) dx = J 0.05x% dx = 0.05 3| =13333
—x 0 0
In the previous example, the expected value of X? does not equal E(X) squared. However, in
the special case that #(X) = aX + b for any constants ¢ and b, E[A(X)] = aE(X) + b. This
can be shown from the properties of integrals.
EXAMPLE 4-8 For the drilling operation in Example 4-2, the mean of X is

E(X) =

xf(x) dx = j x 20e”2007123) gy
2

12.5

Integration by parts can be used to show that

E(X) — _xe*ZO(X*IZS) _

The variance of X is

VXx)

[

o~ 20r—12.5)

=125+ 0.05 = 12.
20 12.5 + 0.05 = 12.55

12.5

= J (x — 12.55)*/(x) dx

12.5

Although more difficult, integration by parts can be used two times to show that /(X) = 0.0025.

EXERCISES FOR SECTION 4-4

4-22. Suppose f(x) = 0.25 for 0 < x < 4. Determine the
mean and variance of X.
4-23. Suppose f(x) = 0.125x for 0 < x < 4. Determine the
mean and variance of X.

4-24. Suppose f(x) = 1.5x* for —1 < x < 1. Determine
the mean and variance of X.

4-25. Suppose that f(x) = x/8 for 3 < x < 5. Determine
the mean and variance for x.

4-26. Determine the mean and variance of the weight of
packages in Exercise 4.7.

4-27. The thickness of a conductive coating in micrometers
has a density function of 600x™2 for 100 pm < x < 120 wm.



(a) Determine the mean and variance of the coating thickness.
(b) Ifthe coating costs $0.50 per micrometer of thickness on
each part, what is the average cost of the coating per
part?
4-28. Suppose that contamination particle size (in microm-
eters) can be modeled as f(x) = 2x* for 1 < x. Determine
the mean of X.
4-29. Integration by parts is required. The probability den-
sity function for the diameter of a drilled hole in millimeters is
10e™ 1% for x > 5 mm. Although the target diameter is 5
millimeters, vibrations, tool wear, and other nuisances pro-
duce diameters larger than 5 millimeters.
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(a) Determine the mean and variance of the diameter of the
holes.

(b) Determine the probability that a diameter exceeds 5.1 mil-
limeters.

4-30. Suppose the probability density function of the length

of computer cables is f(x) = 0.1 from 1200 to 1210 millime-

ters.

(a) Determine the mean and standard deviation of the cable
length.

(b) If the length specifications are 1195 < x < 1205
millimeters, what proportion of cables are within specifi-
cations?

4-5 CONTINUOUS UNIFORM DISTRIBUTION

The simplest continuous distribution is analogous to its discrete counterpart.

Definition
A continuous random variable X with probability density function

fx)=1/(b—a), a=x=b (4-6)

is a continuous uniform random variable.

The probability density function of a continuous uniform random variable is shown in Fig. 4-8.
The mean of the continuous uniform random variable X is

b_(a-i-b)
2

b
X 0.5x2
E(X):Jb—adx:b—a

a

The variance of X is

( a+b>3b

X = 2
2 b —

dx = _-9

3b—a) la 12

These results are summarized as follows.

If X'is a continuous uniform random variable over a = x = b,

(a + b)
2

(b —a)y

2 = =
and o° = V(X) T

wo=E(X) = (4-7)
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EXAMPLE 4-9

flx)
1 flx)
b-a

0.05

a b x 0 5 10 15 20 x
Figure 4-8 Continuous uniform Figure 4-9  Probability for Example 4-9.

probability density function.

Let the continuous random variable X denote the current measured in a thin copper wire in
milliamperes. Assume that the range of X is [0, 20 mA], and assume that the probability den-
sity function of X'is f(x) = 0.05,0 < x = 20.

What is the probability that a measurement of current is between 5 and 10 milliamperes?
The requested probability is shown as the shaded area in Fig. 4-9.

P(5<X<10)

J F(x) dx

5(0.05) = 0.25

The mean and variance formulas can be applied with @ = 0 and b = 20. Therefore,
E(X) =10mA and V(X) = 20*/12 = 33.33 mA?
Consequently, the standard deviation of X'is 5.77 mA.

The cumulative distribution function of a continuous uniform random variable is ob-
tained by integration. If a < x < b,

F(x) = Jl/(b —a)du =x/(b —a) — a/(b — a)

Therefore, the complete description of the cumulative distribution function of a continuous
uniform random variable is

0 x<a
Fx)=q9(x—a)/(b—a) a=x<b
1 b=x

An example of F(x) for a continuous uniform random variable is shown in Fig. 4-6.

EXERCISES FOR SECTION 4-5

4-31. Suppose X has a continuous uniform distribution over
the interval [1.5, 5.5].

(a) Determine the mean, variance, and standard deviation of X.
(b) What is P(X < 2.5)?

4-32. Suppose X has a continuous uniform distribution over
the interval [—1, 1].

(a) Determine the mean, variance, and standard deviation of X.

(b) Determine the value for x such that P(—x < X <x) = 0.90.

4-33. The net weight in pounds of a packaged chemical her-

bicide is uniform for 49.75 < x < 50.25 pounds.

(a) Determine the mean and variance of the weight of pack-
ages.



(b) Determine the cumulative distribution function of the
weight of packages.
(c) Determine P(X < 50.1).

4-34. The thickness of a flange on an aircraft component is

uniformly distributed between 0.95 and 1.05 millimeters.

(a) Determine the cumulative distribution function of flange
thickness.

(b) Determine the proportion of flanges that exceeds 1.02
millimeters.

(c) What thickness is exceeded by 90% of the flanges?

(d) Determine the mean and variance of flange thickness.

4-35. Suppose the time it takes a data collection operator to

fill out an electronic form for a database is uniformly between

1.5 and 2.2 minutes.

(a) What is the mean and variance of the time it takes an op-
erator to fill out the form?

(b) What is the probability that it will take less than two min-
utes to fill out the form?

(c) Determine the cumulative distribution function of the time
it takes to fill out the form.

4-36. The probability density function of the time it takes a
hematology cell counter to complete a test on a blood sample
is f{x) = 0.2 for 50 < x < 75 seconds.
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(a) What percentage of tests require more than 70 seconds to
complete.

(b) What percentage of tests require less than one minute to
complete.

(c) Determine the mean and variance of the time to complete
a test on a sample.

4-37. The thickness of photoresist applied to wafers in

semiconductor manufacturing at a particular location on the

wafer is uniformly distributed between 0.2050 and 0.2150

micrometers.

(a) Determine the cumulative distribution function of pho-
toresist thickness.

(b) Determine the proportion of wafers that exceeds 0.2125
micrometers in photoresist thickness.

(c) What thickness is exceeded by 10% of the wafers?

(d) Determine the mean and variance of photoresist thickness.

4-38. The probability density function of the time required

to complete an assembly operation is f(x) = 0.1 for

30 < x < 40 seconds.

(a) Determine the proportion of assemblies that requires more
than 35 seconds to complete.

(b) What time is exceeded by 90% of the assemblies?

(c) Determine the mean and variance of time of assembly.

Undoubtedly, the most widely used model for the distribution of a random variable is a normal
distribution. Whenever a random experiment is replicated, the random variable that equals the
average (or total) result over the replicates tends to have a normal distribution as the number of
replicates becomes large. De Moivre presented this fundamental result, known as the central
limit theorem, in 1733. Unfortunately, his work was lost for some time, and Gauss independ-
ently developed a normal distribution nearly 100 years later. Although De Moivre was later
credited with the derivation, a normal distribution is also referred to as a Gaussian distribution.

When do we average (or total) results? Almost always. For example, an automotive engi-
neer may plan a study to average pull-off force measurements from several connectors. If we
assume that each measurement results from a replicate of a random experiment, the normal
distribution can be used to make approximate conclusions about this average. These conclu-
sions are the primary topics in the subsequent chapters of this book.

Furthermore, sometimes the central limit theorem is less obvious. For example, assume that
the deviation (or error) in the length of a machined part is the sum of a large number of in-
finitesimal effects, such as temperature and humidity drifts, vibrations, cutting angle variations,
cutting tool wear, bearing wear, rotational speed variations, mounting and fixturing variations,
variations in numerous raw material characteristics, and variation in levels of contamination. If
the component errors are independent and equally likely to be positive or negative, the total error
can be shown to have an approximate normal distribution. Furthermore, the normal distribution
arises in the study of numerous basic physical phenomena. For example, the physicist Maxwell
developed a normal distribution from simple assumptions regarding the velocities of molecules.

The theoretical basis of a normal distribution is mentioned to justify the somewhat com-
plex form of the probability density function. Our objective now is to calculate probabilities
for a normal random variable. The central limit theorem will be stated more carefully later.
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Definition

EXAMPLE 4-10

Figure 4-10 Normal probability density functions for
selected values of the parameters . and o,

Random variables with different means and variances can be modeled by normal proba-
bility density functions with appropriate choices of the center and width of the curve. The
value of E(X) = p determines the center of the probability density function and the value of
V(X) = o determines the width. Figure 4-10 illustrates several normal probability density
functions with selected values of w and 0. Each has the characteristic symmetric bell-shaped
curve, but the centers and dispersions differ. The following definition provides the formula for
normal probability density functions.

A random variable X with probability density function

——w?

! 20° —0 < x <o (4-8)

S0 = ma €

is a normal random variable with parameters p, where —% < p < %, and o > 0.
Also,

E(X)=pn and V(X)=o’ (4-9)

and the notation N, o) is used to denote the distribution. The mean and variance
of X are shown to equal . and o, respectively, at the end of this Section 5-6.

Assume that the current measurements in a strip of wire follow a normal distribution with a
mean of 10 milliamperes and a variance of 4 (milliamperes)*. What is the probability that a
measurement exceeds 13 milliamperes?

Let X denote the current in milliamperes. The requested probability can be represented as
P(X > 13). This probability is shown as the shaded area under the normal probability density
function in Fig. 4-11. Unfortunately, there is no closed-form expression for the integral of a
normal probability density function, and probabilities based on the normal distribution are
typically found numerically or from a table (that we will later introduce).

Some useful results concerning a normal distribution are summarized below and in
Fig. 4-12. For any normal random variable,

Plp—o<X<p+o)=0.6827
P(p — 20 < X<+ 20) = 09545
P(p. — 30 <X <p+ 30)= 09973

Also, from the symmetry of f(x), P(X > p) = P(X < n) = 0.5. Because f{x) is positive for
all x, this model assigns some probability to each interval of the real line. However, the
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fx)

nw-30 u-20 p-o " n+o w+220 pu+3c x
‘ |«— 68% —>| ‘
| 95% |
10 13 x | 99.7% ‘

Figure 4-11 Probability that X > 13 for a normal ran-  Figure 4-12  Probabilities associated with a normal
dom variable with w = 10 and ¢ = 4. distribution.

Definition

EXAMPLE 4-11

probability density function decreases as x moves farther from . Consequently, the probability
that a measurement falls far from p. is small, and at some distance from p the probability of an
interval can be approximated as zero.

The area under a normal probability density function beyond 3¢ from the mean is quite
small. This fact is convenient for quick, rough sketches of a normal probability density func-
tion. The sketches help us determine probabilities. Because more than 0.9973 of the probabil-
ity of a normal distribution is within the interval (. — 30, p + 30), 60 is often referred to as
the width of a normal distribution. Advanced integration methods can be used to show that the
area under the normal probability density function from —o < x < % is 1.

A normal random variable with
p=0 and o’=1
is called a standard normal random variable and is denoted as Z.

The cumulative distribution function of a standard normal random variable is
denoted as

Appendix Table II provides cumulative probability values for ®(z), for a standard normal
random variable. Cumulative distribution functions for normal random variables are also
widely available in computer packages. They can be used in the same manner as Appendix
Table I to obtain probabilities for these random variables. The use of Table II is illustrated by
the following example.

Assume Z is a standard normal random variable. Appendix Table II provides probabilities of
the form P(Z = z). The use of Table II to find P(Z = 1.5) is illustrated in Fig. 4-13. Read
down the z column to the row that equals 1.5. The probability is read from the adjacent col-
umn, labeled 0.00, to be 0.93319.

The column headings refer to the hundredth’s digit of the value of z in P(Z < z). For ex-
ample, P(Z = 1.53) is found by reading down the z column to the row 1.5 and then selecting
the probability from the column labeled 0.03 to be 0.93699.
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P(Z<1.5)=d(1.5)

= shaded area 0.00 0.01 0.02 0.03

0 | 0.50000 0.50399 0.50398 0.51197
Figure 4-13  Standard : :

normal probability den- 1.5 | 093319 0.93448 0.93574 0.93699
sity function. 0 1.5 z

Probabilities that are not of the form P(Z = z ) are found by using the basic rules of prob-
ability and the symmetry of the normal distribution along with Appendix Table II. The fol-
lowing examples illustrate the method.

EXAMPLE 4-12 The following calculations are shown pictorially in Fig. 4-14. In practice, a probability is of-
ten rounded to one or two significant digits.

(1) P(Z>126)=1— P(Z=126)=1— 0.89616 = 0.10384
() P(Z < —0.86) = 0.19490.
(B) P(Z> —137) = P(Z < 1.37) = 0.91465

4 P(—1.25 < Z < 0.37). This probability can be found from the difference of two
areas, P(Z < 0.37) — P(Z < —1.25). Now,

P(Z < 037) = 0.64431 and P(Z< —125) = 0.10565

Therefore,

P(—125<Z<0.37) = 0.64431 — 0.10565 = 0.53866

(1)/\ /\ /\
0 126 ~4.6 -3.99
(2)/\ (6/\
~0.86 0 2=1.65
(3) 0.
-1.37 0 22258
(4)/\ /\ /\
125 0 037 0 0.37 -1.25

Figure 4-14  Graphical displays for standard normal distributions.
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(5) P(Z = —4.6) cannot be found exactly from Appendix Table II. However, the last
entry in the table can be used to find that P(Z = —3.99) = 0.00003. Because
P(Z = —4.6) < P(Z = —3.99), P(Z = —4.6) is nearly zero.

(6) Find the value z such that P(Z > z) = 0.05. This probability expression can be writ-
ten as P(Z = z) = 0.95. Now, Table II is used in reverse. We search through the
probabilities to find the value that corresponds to 0.95. The solution is illustrated in
Fig. 4-14. We do not find 0.95 exactly; the nearest value is 0.95053, corresponding
toz=1.65.

(7) Find the value of z such that P(—z < Z < z) = 0.99. Because of the symmetry of
the normal distribution, if the area of the shaded region in Fig. 4-14(7) is to equal
0.99, the area in each tail of the distribution must equal 0.005. Therefore, the value
for z corresponds to a probability of 0.995 in Table II. The nearest probability in
Table II is 0.99506, when z = 2.58.

The preceding examples show how to calculate probabilities for standard normal random
variables. To use the same approach for an arbitrary normal random variable would require a
separate table for every possible pair of values for w and o. Fortunately, all normal probability
distributions are related algebraically, and Appendix Table II can be used to find the probabili-
ties associated with an arbitrary normal random variable by first using a simple transformation.

If X is a normal random variable with E(X) = p and V(X) = o, the random variable

_ X

Z (o)

(4-10)

is a normal random variable with E(Z) = 0 and V(Z) = 1. That is, Z is a standard
normal random variable.

Creating a new random variable by this transformation is referred to as standardizing.
The random variable Z represents the distance of X from its mean in terms of standard devia-
tions. It is the key step to calculate a probability for an arbitrary normal random variable.

Suppose the current measurements in a strip of wire are assumed to follow a normal distribu-
tion with a mean of 10 milliamperes and a variance of 4 (milliamperes)?. What is the proba-
bility that a measurement will exceed 13 milliamperes?

Let X denote the current in milliamperes. The requested probability can be represented as
P(X > 13). Let Z = (X — 10)/2. The relationship between the several values of X and the
transformed values of Z are shown in Fig. 4-15. We note that X > 13 corresponds to Z > 1.5.
Therefore, from Appendix Table II,

PX>13)=PZ>15)=1—-PZ=15)=1- 093319 = 0.06681
Rather than using Fig. 4-15, the probability can be found from the inequality X > 13. That is,

(X—10) _ (13 - 10)
2 2

P(X> 13) = P( ) = P(Z > 1.5) = 0.06681
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Distribution of Z = X;“

Distribution of X

4 7 91011 13 16 «x

-3 -1.5-05005 15 3 z
10 13 x

Figure 4-15 Standardizing a normal random variable.

In the preceding example, the value 13 is transformed to 1.5 by standardizing, and 1.5 is
often referred to as the z-value associated with a probability. The following summarizes the
calculation of probabilities derived from normal random variables.

Suppose X is a normal random variable with mean w and variance o. Then,

P(sz)=P<X_”sx_“>=P(Zsz) (4-11)

o o

(x —p)

(o)

where Z is a standard normal random variable, and z = is the z-value
obtained by standardizing X.

The probability is obtained by entering Appendix Table I with z = (x — w)/o.

EXAMPLE 4-14 Continuing the previous example, what is the probability that a current measurement is be-
tween 9 and 11 milliamperes? From Fig. 4-15, or by proceeding algebraically, we have

P(9 <X <11)=P((9 — 10)/2 < (X — 10)/2 < (11 — 10)/2)
=P(-05<72<05)=PZ<05)—-P(Z<-0.5)
= 0.69146 — 0.30854 = 0.38292

Determine the value for which the probability that a current measurement is below
this value is 0.98. The requested value is shown graphically in Fig. 4-16. We need the value of
x such that P(X < x) = 0.98. By standardizing, this probability expression can be written as

P(X < x) = P((X — 10)/2 < (x — 10)/2)
= P(Z < (x — 10)/2)
= 0.98

Appendix Table II is used to find the z-value such that P(Z < z) = 0.98. The nearest proba-
bility from Table II results in

P(Z < 2.05) = 0.97982
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Figure 4-16  Deter-
mining the value of x
to meet a specified
probability.

Therefore, (x — 10)/2 = 2.05, and the standardizing transformation is used in reverse to solve
for x. The result is

x = 2(2.05) + 10 = 14.1 milliamperes

EXAMPLE 4-15 Assume that in the detection of a digital signal the background noise follows a normal distri-
bution with a mean of 0 volt and standard deviation of 0.45 volt. The system assumes a digi-
tal 1 has been transmitted when the voltage exceeds 0.9. What is the probability of detecting
a digital 1 when none was sent?

Let the random variable N denote the voltage of noise. The requested probability is

P(N>09)—P<N>0'9>—P(Z>2)—1—097725—002275
70 N045 7 045) - ' o

This probability can be described as the probability of a false detection.
Determine symmetric bounds about 0 that include 99% of all noise readings. The question
requires us to find x such that P(—x < N < x) = 0.99. A graph is shown in Fig. 4-17. Now,

P(—x < N <x) = P(—x/0.45 < N/0.45 < x/0.45)
= P(—x/0.45 < Z < x/0.45) = 0.99

From Appendix Table II

P(—2.58 < Z < 2.58) = 0.9

Distribution of N

. - N
Figure 4-17 Deter- Standardized distribution of 77=
mining the value of x
to meet a specified

probability. -z 0 z -x 0 «x
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EXAMPLE 4-16

Figure 4-18
Distribution for
Example 4-16.

Therefore,
x/0.45 = 2.58
and
x = 2.58(0.45) = 1.16

Suppose a digital 1 is represented as a shift in the mean of the noise distribution to 1.8
volts. What is the probability that a digital 1 is not detected? Let the random variable S denote
the voltage when a digital 1 is transmitted. Then,

S—18 - 09— 1.8
0.45 0.45

P(S<09) = P( ) = P(Z < —2) = 0.02275

This probability can be interpreted as the probability of a missed signal.

The diameter of a shaft in an optical storage drive is normally distributed with mean 0.2508
inch and standard deviation 0.0005 inch. The specifications on the shaft are 0.2500 = 0.0015
inch. What proportion of shafts conforms to specifications?

Let X denote the shaft diameter in inches. The requested probability is shown in Fig. 4-18 and

0.2485 — 0.2508 <7< 0.2515 — 0.2508)

0.0005 0.0005
=P(—4.6<Z<14)=PZ<14)— P(Z< —4.6)
= 0.91924 — 0.0000 = 0.91924

P(0.2485 < X < 0.2515) = P<

Most of the nonconforming shafts are too large, because the process mean is located very near
to the upper specification limit. If the process is centered so that the process mean is equal to
the target value of 0.2500,

0.2485 — 0.2500 0.2515 — 0.2500)

. < X <O0. = <zZ<
P(0.2485 < X < 0.2515) P( 0.0005 0.0005

=P(-3<Z<3)
= P(Z<3)— P(Z< =3)
= 0.99865 — 0.00135
= 0.9973
By recentering the process, the yield is increased to approximately 99.73%.

Specifications

fx)

0.2485 /0.2508 0.2515 «x
0.25
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Mean and Variance of the Normal Distribution (CD Only)

EXERCISES FOR SECTION 4-6

4-39. Use Appendix Table II to determine the following
probabilities for the standard normal random variable Z:

(a) P(Z<1.32) (b) P(Z < 3.0)

(c) P(Z> 1.45) (d) P(Z> —2.15)

(e) P(—2.34<Z<1.76)

4-40. Use Appendix Table II to determine the following
probabilities for the standard normal random variable Z:

(a) P(-1<Z<1) (b) P(-2<Z<2)

(¢) P(—3<Z<3) (d) P(Z>3)

(e) PO<Z<])

4-41. Assume Z has a standard normal distribution. Use
Appendix Table II to determine the value for z that solves each
of the following:

(a) P(Z<z)=109

(¢) P(Z>2)=0.1

(e) P(—124<Z<z2)=0.38
4-42. Assume Z has a standard normal distribution. Use
Appendix Table II to determine the value for z that solves each
of the following:

(a) P(—z2<Z<z)=0.95

(b) P(Z<2z) =05
(d) P(Z>2)=09

(b) P(—z2<Z<z)=0.99

() P(—z2<Z<z)=0.68 (d) P(—z<Z<1z)= 09973
4-43. Assume X is normally distributed with a mean of 10
and a standard deviation of 2. Determine the following:

(a) P(X < 13) (b) P(X>9)

() P6<X<14) (d) PQ<X<4)

(e) P(—2 <X <)

4-44. Assume X is normally distributed with a mean of 10
and a standard deviation of 2. Determine the value for x that
solves each of the following:

(a) PX>x) =05

(b) P(X>x) =0.95

() Px<X<10)=0.2

(d) P(—x<X—-10<x)=0.95

(e) P(—x <X —10<x)=10.99

4-45. Assume X is normally distributed with a mean of 5
and a standard deviation of 4. Determine the following:

(a) PX<11) (b) P(X>0)

() PB<X<T) (d P(—2<X<9)

(e) PR <X<B)

4-46. Assume X is normally distributed with a mean of 5
and a standard deviation of 4. Determine the value for x that
solves each of the following:
(a) PX>x)=10.5

() P6c<X<9)=02

(e) P(—x<X<x)=10.99
4-47. The compressive strength of samples of cement can
be modeled by a normal distribution with a mean of 6000 kilo-
grams per square centimeter and a standard deviation of 100
kilograms per square centimeter.

(b) P(X >x) = 0.95
(d) P3G <X<x)=1095

(a) What is the probability that a sample’s strength is less than
6250 Kg/cm??

(b) What is the probability that a sample’s strength is between
5800 and 5900 Kg/cm??

(c) What strength is exceeded by 95% of the samples?

4-48. The tensile strength of paper is modeled by a normal

distribution with a mean of 35 pounds per square inch and a

standard deviation of 2 pounds per square inch.

(a) What is the probability that the strength of a sample is less
than 40 1b/in*?

(b) If the specifications require the tensile strength to
exceed 30 Ib/in?, what proportion of the samples is
scrapped?

4-49. The line width of for semiconductor manufacturing is

assumed to be normally distributed with a mean of 0.5 mi-

crometer and a standard deviation of 0.05 micrometer.

(a) What is the probability that a line width is greater than
0.62 micrometer?

(b) What is the probability that a line width is between 0.47
and 0.63 micrometer?

(c) The line width of 90% of samples is below what value?

4-50. The fill volume of an automated filling machine used

for filling cans of carbonated beverage is normally distributed

with a mean of 12.4 fluid ounces and a standard deviation of

0.1 fluid ounce.

(a) What is the probability a fill volume is less than 12 fluid
ounces?

(b) If all cans less than 12.1 or greater than 12.6 ounces are
scrapped, what proportion of cans is scrapped?

(c) Determine specifications that are symmetric about the
mean that include 99% of all cans.

4-51. The time it takes a cell to divide (called mitosis) is

normally distributed with an average time of one hour and a

standard deviation of 5 minutes.

(a) What is the probability that a cell divides in less than
45 minutes?

(b) What is the probability that it takes a cell more than
65 minutes to divide?

(c) What is the time that it takes approximately 99% of all
cells to complete mitosis?

4-52. In the previous exercise, suppose that the mean of the

filling operation can be adjusted easily, but the standard devi-

ation remains at 0.1 ounce.

(a) At what value should the mean be set so that 99.9% of all
cans exceed 12 ounces?

(b) At what value should the mean be set so that 99.9% of all
cans exceed 12 ounces if the standard deviation can be re-
duced to 0.05 fluid ounce?
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4-53. The reaction time of a driver to visual stimulus is nor-
mally distributed with a mean of 0.4 seconds and a standard
deviation of 0.05 seconds.

(a) What is the probability that a reaction requires more than
0.5 seconds?

(b) What is the probability that a reaction requires between
0.4 and 0.5 seconds?

(c) What is the reaction time that is exceeded 90% of the
time?

4-54. The speed of a file transfer from a server on campus to

a personal computer at a student’s home on a weekday

evening is normally distributed with a mean of 60 kilobits per

second and a standard deviation of 4 kilobits per second.

(a) What is the probability that the file will transfer at a speed
of 70 kilobits per second or more?

(b) What is the probability that the file will transfer at a speed
of less than 58 kilobits per second?

(c) If the file is 1 megabyte, what is the average time it will
take to transfer the file? (Assume eight bits per byte.)
4-55. The length of an injection-molded plastic case that
holds magnetic tape is normally distributed with a length of
90.2 millimeters and a standard deviation of 0.1 millimeter.
(a) What is the probability that a part is longer than 90.3 mil-

limeters or shorter than 89.7 millimeters?

(b) What should the process mean be set at to obtain the great-
est number of parts between 89.7 and 90.3 millimeters?

(c) If parts that are not between 89.7 and 90.3 millimeters are
scrapped, what is the yield for the process mean that you
selected in part (b)?

4-56. 1In the previous exercise assume that the process is

centered so that the mean is 90 millimeters and the standard

deviation is 0.1 millimeter. Suppose that 10 cases are meas-
ured, and they are assumed to be independent.

(a) What is the probability that all 10 cases are between 89.7
and 90.3 millimeters?

(b) What is the expected number of the 10 cases that are be-
tween 89.7 and 90.3 millimeters?

4-57. The sick-leave time of employees in a firm in a month

is normally distributed with a mean of 100 hours and a stan-

dard deviation of 20 hours.

(a) What is the probability that the sick-leave time for next
month will be between 50 and 80 hours?

(b) How much time should be budgeted for sick leave if the
budgeted amount should be exceeded with a probability
of only 10%?

4-58. The life of a semiconductor laser at a constant power

is normally distributed with a mean of 7000 hours and a stan-

dard deviation of 600 hours.

(a) What is the probability that a laser fails before 5000
hours?

(b) What is the life in hours that 95% of the lasers exceed?

(c) If three lasers are used in a product and they are assumed
to fail independently, what is the probability that all three
are still operating after 7000 hours?

4-59. The diameter of the dot produced by a printer is nor-

mally distributed with a mean diameter of 0.002 inch and a

standard deviation of 0.0004 inch.

(a) What is the probability that the diameter of a dot exceeds
0.0026 inch?

(b) What is the probability that a diameter is between 0.0014
and 0.0026 inch?

(c) What standard deviation of diameters is needed so that the
probability in part (b) is 0.995?

4-60. The weight of a sophisticated running shoe is nor-

mally distributed with a mean of 12 ounces and a standard de-

viation of 0.5 ounce.

(a) What is the probability that a shoe weighs more than 13
ounces?

(b) What must the standard deviation of weight be in order for
the company to state that 99.9% of its shoes are less than
13 ounces?

(c) If the standard deviation remains at 0.5 ounce, what must
the mean weight be in order for the company to state that
99.9% of its shoes are less than 13 ounces?

4-7 NORMAL APPROXIMATION TO THE BINOMIAL

AND POISSON DISTRIBUTIONS

We began our section on the normal distribution with the central limit theorem and the nor-
mal distribution as an approximation to a random variable with a large number of trials.
Consequently, it should not be a surprise to learn that the normal distribution can be used
to approximate binomial probabilities for cases in which # is large. The following example
illustrates that for many physical systems the binomial model is appropriate with an ex-
tremely large value for n. In these cases, it is difficult to calculate probabilities by using the
binomial distribution. Fortunately, the normal approximation is most effective in these
cases. An illustration is provided in Fig. 4-19. The area of each bar equals the binomial
probability of x. Notice that the area of bars can be approximated by areas under the nor-

mal density function.
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EXAMPLE 4-17 In a digital communication channel, assume that the number of bits received in error can be

modeled by a binomial random variable, and assume that the probability that a bit is received
in error is 1 X 10>, If 16 million bits are transmitted, what is the probability that more than
150 errors occur?

Let the random variable X denote the number of errors. Then X is a binomial random vari-

able and
<+ (16,000,000 -5 —5Y16,000,000—
PX>150)=1—-Px=150)=1— > . (107°)%(1 — 107)16:000.000=x
x=0

Clearly, the probability in Example 4-17 is difficult to compute. Fortunately, the normal
distribution can be used to provide an excellent approximation in this example.

Normal
Approximation to If X is a binomial random variable,
the Binomial
Distribution X~ np
l=—F (4-12)
Vap(l = p)

is approximately a standard normal random variable. The approximation is good for

np>5 and n(l —p)>>5

Recall that for a binomial variable X, E(X) = np and V(X) = np(1 — p). Consequently, the ex-
pression in Equation 4-12 is nothing more than the formula for standardizing the random vari-
able X. Probabilities involving X can be approximated by using a standard normal distribution.
The approximation is good when # is large relative to p.
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EXAMPLE 4-18

EXAMPLE 4-19

The digital communication problem in the previous example is solved as follows:

X — 160 150 — 160
P(X > 150) = P< ))

>
V160(1 — 1075~ V160(1 — 1075
= P(Z> —0.79) = P(Z < 0.79) = 0.785

Because np = (16 X 10°)(1 X 10°) = 160and n(1 — p) is much larger, the approximation
is expected to work well in this case.

Again consider the transmission of bits in Example 4-18. To judge how well the normal
approximation works, assume only n = 50 bits are to be transmitted and that the probability
of an error is p = 0.1. The exact probability that 2 or less errors occur is

50
PX=2)= ( 0 >0.95° + (510> 0.1(0.9%) + (520> 0.1%(0.9%) = 0.112

Based on the normal approximation

X—-5 2-5
= = —_—— | = < —1. = ().
P(X=2) P( 5 <21 ) P(Z < —1.42) = 0.08

Even for a sample as small as 50 bits, the normal approximation is reasonable.

If np or n(1 — p) is small, the binomial distribution is quite skewed and the symmetric
normal distribution is not a good approximation. Two cases are illustrated in Fig. 4-20.
However, a correction factor can be used that will further improve the approximation. This
factor is called a continuity correction and it is discussed in Section 4-8 on the CD.

0.4
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Figure 4-20 Binomial . .
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hypergometric ~ binomial ~ normal
distribution L distribution np >5 distribution
N n(l—p)>5

Figure 4-21 Conditions for approximating hypergeometric and binomial probabilities.

Recall that the binomial distribution is a satisfactory approximation to the hypergeomet-
ric distribution when 7, the sample size, is small relative to N, the size of the population from
which the sample is selected. A rule of thumb is that the binomial approximation is effective
if n/N < 0.1. Recall that for a hypergeometric distribution p is defined as p = K/N. That is,
p is interpreted as the number of successes in the population. Therefore, the normal distribu-
tion can provide an effective approximation of hypergeometric probabilities when n/N < 0.1,
np > 5 and n(l — p) > 5. Figure 4-21 provides a summary of these guidelines.

Recall that the Poisson distribution was developed as the limit of a binomial distribution as
the number of trials increased to infinity. Consequently, it should not be surprising to find that the
normal distribution can also be used to approximate probabilities of a Poisson random variable.

If X is a Poisson random variable with E(X) = A and V(X) = A,

_X-

At (4-13)

is approximately a standard normal random variable. The approximation is good for

Z

A>S

Assume that the number of asbestos particles in a squared meter of dust on a surface follows
a Poisson distribution with a mean of 1000. If a squared meter of dust is analyzed, what is the
probability that less than 950 particles are found?

This probability can be expressed exactly as

950 e~ 1000x1000

P(X =950) = >
x=0 x!

The computational difficulty is clear. The probability can be approximated as

950 — 1000
-

PX<x) = P<Z_ 500 >: P(Z = —1.58) = 0.057

EXERCISES FOR SECTION 4-7

4-61. Suppose that X is a binomial random variable with 4-62. Suppose that X is a binomial random variable with

n =200 and p = 0.4.

n=100andp = 0.1.

(a) Approximate the probability that X is less than or equal (a) Compute the exact probability that X is less than 4.

to 70. (b) Approximate the probability that X is less than 4 and com-
(b) Approximate the probability that X is greater than 70 and pare to the result in part (a).
less than 90. (c) Approximate the probability that § < X < 12.
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4-63. The manufacturing of semiconductor chips produces

2% defective chips. Assume the chips are independent and

that a lot contains 1000 chips.

(a) Approximate the probability that more than 25 chips are
defective.

(b) Approximate the probability that between 20 and 30 chips
are defective.

4-64. A supplier ships a lot of 1000 electrical connectors. A

sample of 25 is selected at random, without replacement.

Assume the lot contains 100 defective connectors.

(a) Using a binomial approximation, what is the probability
that there are no defective connectors in the sample?

(b) Use the normal approximation to answer the result in part
(a). Is the approximation satisfactory?

(c) Redo parts (a) and (b) assuming the lot size is 500. Is the nor-
mal approximation to the probability that there are no defec-
tive connectors in the sample satisfactory in this case?

4-65. An electronic office product contains 5000 elec-
tronic components. Assume that the probability that each
component operates without failure during the useful life of
the product is 0.999, and assume that the components fail
independently. Approximate the probability that 10 or more
of the original 5000 components fail during the useful life of
the product.

4-66. Suppose that the number of asbestos particles in a sam-
ple of 1 squared centimeter of dust is a Poisson random variable
with a mean of 1000. What is the probability that 10 squared cen-
timeters of dust contains more than 10,000 particles?

4-67. A corporate Web site contains errors on 50 of 1000
pages. If 100 pages are sampled randomly, without replace-

ment, approximate the probability that at least 1 of the pages

in error are in the sample.

4-68. Hits to a high-volume Web site are assumed to follow

a Poisson distribution with a mean of 10,000 per day.

Approximate each of the following:

(a) The probability of more than 20,000 hits in a day

(b) The probability of less than 9900 hits in a day

(c) The value such that the probability that the number of hits
in a day exceed the value is 0.01

4-69. Continuation of Exercise 4-68.

(a) Approximate the expected number of days in a year (365
days) that exceed 10,200 hits.

(b) Approximate the probability that over a year (365 days)
more than 15 days each have more than 10,200 hits.

4-70. The percentage of people exposed to a bacteria who

become ill is 20%. Assume that people are independent. Assume

that 1000 people are exposed to the bacteria. Approximate each

of the following:

(a) The probability that more than 225 become ill

(b) The probability that between 175 and 225 become ill

(c) The value such that the probability that the number of peo-
ple that become ill exceeds the value is 0.01

4-71. A high-volume printer produces minor print-quality

errors on a test pattern of 1000 pages of text according to a

Poisson distribution with a mean of 0.4 per page.

(a) Why are the number of errors on each page independent
random variables?

(b) What is the mean number of pages with errors (one or more)?

(c) Approximate the probability that more than 350 pages
contain errors (one or more).

4-8 CONTINUITY CORRECTION TO IMPROVE

THE APPROXIMATION (CD ONLY)

4-9 EXPONENTIAL DISTRIBUTION

The discussion of the Poisson distribution defined a random variable to be the number of
flaws along a length of copper wire. The distance between flaws is another random variable
that is often of interest. Let the random variable X denote the length from any starting point on

the wire until a flaw is detected.

As you might expect, the distribution of X can be obtained from knowledge of the
distribution of the number of flaws. The key to the relationship is the following concept. The
distance to the first flaw exceeds 3 millimeters if and only if there are no flaws within a length
of 3 millimeters—simple, but sufficient for an analysis of the distribution of X.

In general, let the random variable N denote the number of flaws in x millimeters of wire.
If the mean number of flaws is A per millimeter, NV has a Poisson distribution with mean Ax.
We assume that the wire is longer than the value of x. Now,

e—/\x()\x)o

PX>x)=PN=0)=—"—"—=¢N

0!
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Therefore,
Fx)=PX=x)=1—-e* x=0

is the cumulative distribution function of X. By differentiating F(x), the probability density
function of X is calculated to be

fx) =Ae™, x=0

The derivation of the distribution of X depends only on the assumption that the flaws in
the wire follow a Poisson process. Also, the starting point for measuring X doesn’t matter
because the probability of the number of flaws in an interval of a Poisson process depends
only on the length of the interval, not on the location. For any Poisson process, the following
general result applies.

The random variable X that equals the distance between successive counts of a
Poisson process with mean A > 0 is an exponential random variable with parame-
ter A. The probability density function of X is

fx) =Xe™ for 0=x<w (4-14)

The exponential distribution obtains its name from the exponential function in the proba-
bility density function. Plots of the exponential distribution for selected values of A are shown
in Fig. 4-22. For any value of A, the exponential distribution is quite skewed. The following
results are easily obtained and are left as an exercise.

If the random variable X has an exponential distribution with parameter A,

p=EX)=— and o*=VX)=— (4-15)

g
A

It is important to use consistent units in the calculation of probabilities, means, and variances
involving exponential random variables. The following example illustrates unit conversions.

In a large corporate computer network, user log-ons to the system can be modeled as a Pois-
son process with a mean of 25 log-ons per hour. What is the probability that there are no log-
ons in an interval of 6 minutes?

Let X denote the time in hours from the start of the interval until the first log-on. Then, X
has an exponential distribution with A = 25 log-ons per hour. We are interested in the proba-
bility that X exceeds 6 minutes. Because A is given in log-ons per hour, we express all time
units in hours. That is, 6 minutes = 0.1 hour. The probability requested is shown as the shaded
area under the probability density function in Fig. 4-23. Therefore,

©

P(X>0.1) = J 25¢ 2 dx = ¢ 201 = 0,082
0

.1
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Figure 4-22  Probability density function of expo- Figure 4-23  Probability for the expo-
nential random variables for selected values of A. nential distribution in Example 4-21.

Also, the cumulative distribution function can be used to obtain the same result as follows:
P(X>0.1)=1- F0.1) = ¢ 20D

An identical answer is obtained by expressing the mean number of log-ons as 0.417 log-
ons per minute and computing the probability that the time until the next log-on exceeds 6
minutes. Try it.

What is the probability that the time until the next log-on is between 2 and 3 minutes?
Upon converting all units to hours,

0.05
0.05
P(0.033 < X < 0.05) = f 25¢ P dx = —e =0.152
0.033
0.033

An alternative solution is
P(0.033 < X < 0.05) = F(0.05) — F(0.033) = 0.152

Determine the interval of time such that the probability that no log-on occurs in the inter-
val is 0.90. The question asks for the length of time x such that P(X > x) = 0.90. Now,

PX>x)=e 2 =10.90
Take the (natural) log of both sides to obtain —25x = In(0.90) = —0.1054. Therefore,

x = 0.00421 hour = 0.25 minute
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Furthermore, the mean time until the next log-on is
p = 1/25 = 0.04 hour = 2.4 minutes
The standard deviation of the time until the next log-on is
o = 1/25 hours = 2.4 minutes

In the previous example, the probability that there are no log-ons in a 6-minute interval is
0.082 regardless of the starting time of the interval. A Poisson process assumes that events oc-
cur uniformly throughout the interval of observation; that is, there is no clustering of events.
If the log-ons are well modeled by a Poisson process, the probability that the first log-on after
noon occurs after 12:06 p.M. is the same as the probability that the first log-on after 3:00 p.m.
occurs after 3:06 PM. And if someone logs on at 2:22 P.M., the probability the next log-on
occurs after 2:28 p.M. is still 0.082.

Our starting point for observing the system does not matter. However, if there are
high-use periods during the day, such as right after 8:00 A.M., followed by a period of low
use, a Poisson process is not an appropriate model for log-ons and the distribution is not
appropriate for computing probabilities. It might be reasonable to model each of the high-
and low-use periods by a separate Poisson process, employing a larger value for A during
the high-use periods and a smaller value otherwise. Then, an exponential distribution with
the corresponding value of A can be used to calculate log-on probabilities for the high- and
low-use periods.

Lack of Memory Property
An even more interesting property of an exponential random variable is concerned with con-
ditional probabilities.

Let X denote the time between detections of a particle with a geiger counter and assume that
X has an exponential distribution with A = 1.4 minutes. The probability that we detect a par-
ticle within 30 seconds of starting the counter is

P(X < 0.5 minute) = F(0.5) = 1 — ¢ ¥4 =030

In this calculation, all units are converted to minutes. Now, suppose we turn on the geiger
counter and wait 3 minutes without detecting a particle. What is the probability that a particle
is detected in the next 30 seconds?

Because we have already been waiting for 3 minutes, we feel that we are “due.” That
is, the probability of a detection in the next 30 seconds should be greater than 0.3. However,
for an exponential distribution, this is not true. The requested probability can be expressed
as the conditional probability that P(X < 3.5| X > 3). From the definition of conditional
probability,

P(X <35|X>3)=P3 <X<3.5)/P(X>3)
where

P3<X<35)=FQ35) —F3)=[1—-e/ —[1 — e ¥ =0.0035
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Lack of
Memory
Property

Figure 4-24 Lack of
memory property of
an exponential
distribution.

and

PX>3)=1-F3)=e ¥4 =0117
Therefore,

P(X <3.5|X>3)=0.035/0.117 = 0.30

After waiting for 3 minutes without a detection, the probability of a detection in the next 30
seconds is the same as the probability of a detection in the 30 seconds immediately after start-
ing the counter. The fact that you have waited 3 minutes without a detection does not change
the probability of a detection in the next 30 seconds.

Example 4-22 illustrates the lack of memory property of an exponential random vari-
able and a general statement of the property follows. In fact, the exponential distribution is the
only continuous distribution with this property.

For an exponential random variable X,

PX <t + 56| X>1)=PX<t) (4-16)

Figure 4-24 graphically illustrates the lack of memory property. The area of region A divided
by the total area under the probability density function (4 + B + C + D = 1) equals
P(X < t,). The area of region C divided by the area C + Dequals P(X < t; + t,| X > t,). The
lack of memory property implies that the proportion of the total area that is in 4 equals the
proportion of the area in C and D that is in C. The mathematical verification of the lack of
memory property is left as a mind-expanding exercise.

The lack of memory property is not that surprising when you consider the development
of a Poisson process. In that development, we assumed that an interval could be partitioned
into small intervals that were independent. These subintervals are similar to independent
Bernoulli trials that comprise a binomial process; knowledge of previous results does not af-
fect the probabilities of events in future subintervals. An exponential random variable is the
continuous analog of a geometric random variable, and they share a similar lack of memory
property.

The exponential distribution is often used in reliability studies as the model for the
time until failure of a device. For example, the lifetime of a semiconductor chip might be
modeled as an exponential random variable with a mean of 40,000 hours. The lack of

f(x)

to t1 ty +to x
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memory property of the exponential distribution implies that the device does not wear out.
That is, regardless of how long the device has been operating, the probability of a failure
in the next 1000 hours is the same as the probability of a failure in the first 1000 hours of
operation. The lifetime L of a device with failures caused by random shocks might be ap-
propriately modeled as an exponential random variable. However, the lifetime L of a
device that suffers slow mechanical wear, such as bearing wear, is better modeled by a dis-
tribution such that P(L < ¢ + At|L > ¢) increases with ¢. Distributions such as the Weibull
distribution are often used, in practice, to model the failure time of this type of device. The
Weibull distribution is presented in a later section.

EXERCISES FOR SECTION 4-9

4-72. Suppose X has an exponential distribution with X = 2.
Determine the following:

(a PX=0) (b) P(X=2)

© PX=1) (d P1<X<2)

(e) Find the value of x such that P(X < x) = 0.05.

4-73. Suppose X has an exponential distribution with mean
equal to 10. Determine the following:

(a) P(X > 10)

(b) P(X > 20)

(c) P(X > 30)

(d) Find the value of x such that P(X < x) = 0.95.

4-74. Suppose the counts recorded by a geiger counter follow

a Poisson process with an average of two counts per minute.

(a) What is the probability that there are no counts in a 30-
second interval?

(b) What is the probability that the first count occurs in less
than 10 seconds?

(c) What is the probability that the first count occurs between
1 and 2 minutes after start-up?

4-75. Suppose that the log-ons to a computer network fol-

low a Poisson process with an average of 3 counts per minute.

(a) What is the mean time between counts?

(b) What is the standard deviation of the time between counts?

(c) Determine x such that the probability that at least one
count occurs before time x minutes is 0.95.

4-76. The time to failure (in hours) for a laser in a cytome-

try machine is modeled by an exponential distribution with

A = 0.00004.

(a) What is the probability that the laser will last at least
20,000 hours?

(b) What is the probability that the laser will last at most
30,000 hours?

(c) What is the probability that the laser will last between
20,000 and 30,000 hours?

4-77. The time between calls to a plumbing supply business

is exponentially distributed with a mean time between calls of

15 minutes.

(a) What is the probability that there are no calls within a 30-
minute interval?

(b) What is the probability that at least one call arrives within
a 10-minute interval?

(c) What is the probability that the first call arrives within 5
and 10 minutes after opening?

(d) Determine the length of an interval of time such that the
probability of at least one call in the interval is 0.90.

4-78. The life of automobile voltage regulators has an expo-

nential distribution with a mean life of six years. You purchase

an automobile that is six years old, with a working voltage
regulator, and plan to own it for six years.

(a) What is the probability that the voltage regulator fails dur-
ing your ownership?

(b) If your regulator fails after you own the automobile three
years and it is replaced, what is the mean time until the
next failure?

4-79. The time to failure (in hours) of fans in a personal com-

puter can be modeled by an exponential distribution with

A = 0.0003.

(a) What proportion of the fans will last at least 10,000 hours?

(b) What proportion of the fans will last at most 7000 hours?

4-80. The time between the arrival of electronic messages at

your computer is exponentially distributed with a mean of two

hours.

(a) What is the probability that you do not receive a message
during a two-hour period?

(b) If you have not had a message in the last four hours, what
is the probability that you do not receive a message in the
next two hours?

(c) What is the expected time between your fifth and sixth
messages?

4-81. The time between arrivals of taxis at a busy intersec-

tion is exponentially distributed with a mean of 10 minutes.

(a) What is the probability that you wait longer than one hour
for a taxi?

(b) Suppose you have already been waiting for one hour for a
taxi, what is the probability that one arrives within the
next 10 minutes?

4-82. Continuation of Exercise 4-81.

(a) Determine x such that the probability that you wait more
than x minutes is 0.10.
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(b) Determine x such that the probability that you wait less
than x minutes is 0.90.

(c) Determine x such that the probability that you wait less
than x minutes is 0.50.

4-83. The distance between major cracks in a highway fol-

lows an exponential distribution with a mean of 5 miles.

(a) What is the probability that there are no major cracks in a
10-mile stretch of the highway?

(b) What is the probability that there are two major cracks in
a 10-mile stretch of the highway?

(c) What is the standard deviation of the distance between
major cracks?

4-84. Continuation of Exercise 4-83.

(a) What is the probability that the first major crack occurs
between 12 and 15 miles of the start of inspection?

(b) What is the probability that there are no major cracks in
two separate 5-mile stretches of the highway?

(c) Given that there are no cracks in the first 5 miles in-
spected, what is the probability that there are no major
cracks in the next 10 miles inspected?

4-85. The lifetime of a mechanical assembly in a vibration

test is exponentially distributed with a mean of 400 hours.

(a) What is the probability that an assembly on test fails in
less than 100 hours?

(b) What is the probability that an assembly operates for more
than 500 hours before failure?

(c) If an assembly has been on test for 400 hours without a fail-
ure, what is the probability of a failure in the next 100 hours?

4-86. Continuation of Exercise 4-85.

(a) If 10 assemblies are tested, what is the probability that at
least one fails in less than 100 hours? Assume that the as-
semblies fail independently.

(b) If 10 assemblies are tested, what is the probability that all
have failed by 800 hours? Assume the assemblies fail
independently.

4-87. When a bus service reduces fares, a particular trip
from New York City to Albany, New York, is very popular.
A small bus can carry four passengers. The time between calls
for tickets is exponentially distributed with a mean of 30 min-
utes. Assume that each call orders one ticket. What is the prob-
ability that the bus is filled in less than 3 hours from the time
of the fare reduction?

4-88. The time between arrivals of small aircraft at a county
airport is exponentially distributed with a mean of one hour.
What is the probability that more than three aircraft arrive
within an hour?

4-89. Continuation of Exercise 4-88.

(a) If 30 separate one-hour intervals are chosen, what is the
probability that no interval contains more than three arrivals?

(b) Determine the length of an interval of time (in hours) such
that the probability that no arrivals occur during the inter-
val is 0.10.

4-90. The time between calls to a corporate office is expo-

nentially distributed with a mean of 10 minutes.

(a) What is the probability that there are more than three calls
in one-half hour?

(b) What is the probability that there are no calls within one-
half hour?

(c) Determine x such that the probability that there are no
calls within x hours is 0.01.

4-91. Continuation of Exercise 4-90.

(a) What is the probability that there are no calls within a two-
hour interval?

(b) If four nonoverlapping one-half hour intervals are se-
lected, what is the probability that none of these intervals
contains any call?

(c) Explain the relationship between the results in part (a)
and (b).

4-92. If the random variable X has an exponential distribu-

tion with mean 6, determine the following:

(a) P(X>60) (b) P(X>26)

(c) P(X > 36)

(d) How do the results depend on 6?

4-93. Assume that the flaws along a magnetic tape follow a

Poisson distribution with a mean of 0.2 flaw per meter. Let X

denote the distance between two successive flaws.

(a) What is the mean of X?

(b) What is the probability that there are no flaws in 10 con-
secutive meters of tape?

(c) Does your answer to part (b) change if the 10 meters are
not consecutive?

(d) How many meters of tape need to be inspected so that the
probability that at least one flaw is found is 90%?

4-94. Continuation of Exercise 4-93. (More difficult ques-

tions.)

(a) What is the probability that the first time the distance be-
tween two flaws exceeds 8 meters is at the fifth flaw?

(b) What is the mean number of flaws before a distance be-
tween two flaws exceeds 8 meters?

4-95. Derive the formula for the mean and variance of an

exponential random variable.

4-10 ERLANG AND GAMMA DISTRIBUTIONS

4.10.1 Erlang Distribution

An exponential random variable describes the length until the first count is obtained in a
Poisson process. A generalization of the exponential distribution is the length until » counts
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occur in a Poisson process. The random variable that equals the interval length until 7 counts
occur in a Poisson process has an Erlang random variable.

The failures of the central processor units of large computer systems are often modeled as a
Poisson process. Typically, failures are not caused by components wearing out, but by more
random failures of the large number of semiconductor circuits in the units. Assume that the
units that fail are immediately repaired, and assume that the mean number of failures per hour
is 0.0001. Let X denote the time until four failures occur in a system. Determine the probabil-
ity that X exceeds 40,000 hours.

Let the random variable N denote the number of failures in 40,000 hours of operation.
The time until four failures occur exceeds 40,000 hours if and only if the number of failures
in 40,000 hours is three or less. Therefore,

P(X > 40,000) = P(N = 3)

The assumption that the failures follow a Poisson process implies that N has a Poisson distri-
bution with

E(N) = 40,000(0.0001) = 4 failures per 40,000 hours
Therefore,

e*44k
k!

3
P(X > 40,000) = P(N = 3) = >, = 0.433
k=0

The cumulative distribution function of a general Erlang random variable X can be obtained
from P(X = x) = 1 — P(X > x), and P(X > x) can be determined as in the previous exam-
ple. Then, the probability density function of X can be obtained by differentiating the cumula-
tive distribution function and using a great deal of algebraic simplification. The details are left
as an exercise. In general, we can obtain the following result.

The random variable X that equals the interval length until » counts occur in a
Poisson process with mean A > 0 has an Erlang random variable with parameters
A and r. The probability density function of X is

B XX~ lefx\x

1o)==

forx >0andr =1,2,... 4-17)

Sketches of the Erlang probability density function for several values of 7 and A are
shown in Fig. 4-25. Clearly, an Erlang random variable with » = 1 is an exponential
random variable. Probabilities involving Erlang random variables are often determined by
computing a summation of Poisson random variables as in Example 4-23. The probability
density function of an Erlang random variable can be used to determine probabilities;
however, integrating by parts is often necessary. As was the case for the exponential
distribution, one must be careful to define the random variable and the parameter in
consistent units.
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Figure 4-25  Erlang probability density functions
for selected values of 7 and A.

An alternative approach to computing the probability requested in Example 4-24 is to inte-
grate the probability density function of X. That is,

0 ©

ror—1,—Ax
P(X > 40,000) = f flx) dx = J A e T

d.
(r— 1) o
40,000 40,000

where » = 4 and A = 0.0001. Integration by parts can be used to verify the result obtained
previously.

An Erlang random variable can be thought of as the continuous analog of a negative
binomial random variable. A negative binomial random variable can be expressed as the sum
of r geometric random variables. Similarly, an Erlang random variable can be represented as
the sum of » exponential random variables. Using this conclusion, we can obtain the follow-
ing plausible result. Sums of random variables are studied in Chapter 5.

If X is an Erlang random variable with parameters A and 7,

p=EX)=r/A and o*=V(X)=r/A? (4-18)

4.10.2 Gamma Distribution

The Erlang distribution is a special case of the gamma distribution. If the parameter » of
an Erlang random variable is not an integer, but » > 0, the random variable has a gamma
distribution. However, in the Erlang density function, the parameter » appears as r factorial.
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Therefore, to define a gamma random variable, we require a generalization of the factorial
function.

The gamma function is

I'(r) = Jx’lex dx, forr >0 (4-19)
0

It can be shown that the integral in the definition of I'(#) is finite. Furthermore, by using inte-
gration by parts it can be shown that

r'n=0-DIF-1)
This result is left as an exercise. Therefore, if 7 is a positive integer (as in the Erlang distribution),
I'(r)= (- 1)
Also, I'(1) = 0! = 1 and it can be shown that I'(1/2) = =!/2. The gamma function can be in-
terpreted as a generalization to noninteger values of 7 of the term (» — 1)! that is used in the

Erlang probability density function.
Now the gamma probability density function can be stated.

The random variable X with probability density function

ror—1_—Ax
flx) = “rr(; for x > 0 (4-20)

has a gamma random variable with parameters A > 0 and » > 0. If  is an integer,
X has an Erlang distribution.

Sketches of the gamma distribution for several values of A and » are shown in Fig. 4-26. It can
be shown that f{(x) satisfies the properties of a probability density function, and the following
result can be obtained. Repeated integration by parts can be used, but the details are lengthy.

If X'is a gamma random variable with parameters A and r,

pw=EX)=r/A and o*= VX)=r/A? (4-21)

Although the gamma distribution is not frequently used as a model for a physical system,
the special case of the Erlang distribution is very useful for modeling random experiments. The
exercises provide illustrations. Furthermore, the chi-squared distribution is a special case of
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Figure 4-26 Gamma probability density functions

for selected values of A and 7.

the gamma distribution in which A =

1/2 and r equals one of the values 1/2, 1,3/2,2,.... This

distribution is used extensively in interval estimation and tests of hypotheses that are discussed

in subsequent chapters.

EXERCISES FOR SECTION 4-10

4-96. Calls to a telephone system follow a Poisson distribu-

tion with a mean of five calls per minute.

(a) What is the name applied to the distribution and parame-
ter values of the time until the tenth call?

(b) What is the mean time until the tenth call?

(c) What is the mean time between the ninth and tenth calls?

4-97. Continuation of Exercise 4-96.

(a) What is the probability that exactly four calls occur within
one minute?

(b) If 10 separate one-minute intervals are chosen, what is the
probability that all intervals contain more than two calls?

4-98. Raw materials are studied for contamination. Suppose

that the number of particles of contamination per pound of

material is a Poisson random variable with a mean of 0.01 par-

ticle per pound.

(a) What is the expected number of pounds of material re-
quired to obtain 15 particles of contamination?

(b) What is the standard deviation of the pounds of materials
required to obtain 15 particles of contamination?

4-99. The time between failures of a laser in a cytogenics ma-

chine is exponentially distributed with a mean of 25,000 hours.

(a) What is the expected time until the second failure?

(b) What is the probability that the time until the third failure
exceeds 50,000 hours?

4-100. In adata communication system, several messages

that arrive at a node are bundled into a packet before they

are transmitted over the network. Assume the messages ar-

rive at the node according to a Poisson process with 7 = 30

messages per minute. Five messages are used to form a

packet.

(a) What is the mean time until a packet is formed, that is, un-
til five messages arrived at the node?

(b) What is the standard deviation of the time until a packet is
formed?

(c) What is the probability that a packet is formed in less than
10 seconds?

(d) What is the probability that a packet is formed in less than
5 seconds?

4-101. Errors caused by contamination on optical disks oc-

cur at the rate of one error every 10° bits. Assume the errors

follow a Poisson distribution.

(a) What is the mean number of bits until five errors occur?

(b) What is the standard deviation of the number of bits until
five errors occur?



(c) The error-correcting code might be ineffective if there are
three or more errors within 10° bits. What is the probabil-
ity of this event?

4-102. Calls to the help line of a large computer distributor
follow a Possion distribution with a mean of 20 calls per minute.
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4-104. The time between process problems in a manufac-

turing line is exponentially distributed with a mean of 30 days.

(a) What is the expected time until the fourth problem?

(b) What is the probability that the time until the fourth prob-
lem exceeds 120 days?

4-103.

mean of 5 minutes.

(a) What is the mean time until the one-hundredth call? 4-105. Use the properties of the gamma function to evaluate
(b) What is the mean time between call numbers 50 and §0? the following:
(c) What is the probability that three or more calls occur  (a) I'(6) (b) I'(5/2)
within 15 seconds? (c) T(9/2)
The time between arrivals of customers at an auto- 4-106. Use integration by parts to show that I'(r) = (r — 1)
matic teller machine is an exponential random variable with a r(r—1).
4-107. Show that the gamma density function f{x, A, ) in-

(a) What is the probability that more than three customers

tegrates to 1.

arrive in 10 minutes?

(b) What is the probability that the time until the fifth cus-
tomer arrives is less than 15 minutes?

4-108. Use the result for the gamma distribution to determine
the mean and variance of a chi-square distribution with » = 7/2.

4-11 WEIBULL DISTRIBUTION

Definition

As mentioned previously, the Weibull distribution is often used to model the time until failure
of many different physical systems. The parameters in the distribution provide a great deal of
flexibility to model systems in which the number of failures increases with time (bearing
wear), decreases with time (some semiconductors), or remains constant with time (failures
caused by external shocks to the system).

The random variable X with probability density function

fx) = E(;)Bl exp[—@ﬂ, forx > 0

is a Weibull random variable with scale parameter & > 0 and shape parameter 3 > 0.

(4-22)

The flexibility of the Weibull distribution is illustrated by the graphs of selected probability
density functions in Fig. 4-27. By inspecting the probability density function, it is seen that
when 3 = 1, the Weibull distribution is identical to the exponential distribution.

The cumulative distribution function is often used to compute probabilities. The follow-
ing result can be obtained.

If X has a Weibull distribution with parameters & and B, then the cumulative distri-
bution function of X'is

Flx)=1-— e‘(%)ﬁ (4-23)
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Figure 4-27 Weibull probability density functions
for selected values of & and (3.

Also, the following result can be obtained.

If X has a Weibull distribution with parameters & and 3,

p=Ex) =8l <1 + é) and o = V(x) = 8T <1 + é) - % [F<1 * EB)T

(4-24)

The time to failure (in hours) of a bearing in a mechanical shaft is satisfactorily modeled as a
Weibull random variable with B = 1/2, and & = 5000 hours. Determine the mean time until
failure.

From the expression for the mean,

E(X) = 5000I[1 + (1/0.5)] = 5000I[3] = 5000 X 2! = 10,000 hours

Determine the probability that a bearing lasts at least 6000 hours. Now

60002 ~1.095
P(x > 6000) = 1 = F(6000) = exp—|{ 5,00 ) | = ¢+ = 0334

Consequently, only 33.4% of all bearings last at least 6000 hours.



EXERCISES FOR SECTION 4-11
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4-109. Suppose that X has a Weibull distribution with
B = 0.2 and 8 = 100 hours. Determine the mean and vari-
ance of X.

4-110. Suppose that X has a Weibull distribution f = 0.2

and 8 = 100 hours. Determine the following:

(a) P(X <10,000) (b) P(X > 5000)

4-111. Assume that the life of a roller bearing follows a

Weibull distribution with parameters = 2 and 8 = 10,000

hours.

(a) Determine the probability that a bearing lasts at least 8000
hours.

(b) Determine the mean time until failure of a bearing.

(c) If 10 bearings are in use and failures occur independently,
what is the probability that all 10 bearings last at least
8000 hours?

4-112. The life (in hours) of a computer processing unit

(CPU) is modeled by a Weibull distribution with parameters

B = 3 and 8 = 900 hours.

(a) Determine the mean life of the CPU.

(b) Determine the variance of the life of the CPU.

(c) What is the probability that the CPU fails before 500
hours?

4-12 LOGNORMAL DISTRIBUTION

4-113. Assume the life of a packaged magnetic disk exposed

to corrosive gases has a Weibull distribution with § = 0.5 and

the mean life is 600 hours.

(a) Determine the probability that a packaged disk lasts at
least 500 hours.

(b) Determine the probability that a packaged disk fails be-
fore 400 hours.

4-114. The life of a recirculating pump follows a Weibull

distribution with parameters 3 = 2, and 8 = 700 hours.

(a) Determine the mean life of a pump.

(b) Determine the variance of the life of a pump.

(c) What is the probability that a pump will last longer than its
mean?

4-115. The life (in hours) of a magnetic resonance imagin-
ing machine (MRI) is modeled by a Weibull distribution with
parameters 3 = 2 and 8 = 500 hours.

(a) Determine the mean life of the MRI.

(b) Determine the variance of the life of the MRI.

(c) What is the probability that the MRI fails before 250 hours?
4-116. If X is a Weibull random variable with § = 1, and
8 = 1000, what is another name for the distribution of X and
what is the mean of X?

Variables in a system sometimes follow an exponential relationship as x = exp(w). If the
exponent is a random variable, say W, X = exp(W) is a random variable and the distribu-
tion of X is of interest. An important special case occurs when /# has a normal distribution.
In that case, the distribution of X is called a lognormal distribution. The name follows
from the transformation In (X) = W. That is, the natural logarithm of X is normally dis-

tributed.

Probabilities for X are obtained from the transformation to ¥, but we need to recognize
that the range of X is (0, ). Suppose that /¥ is normally distributed with mean 6 and variance
o?; then the cumulative distribution function for X is

F(x) = P[X = x]

=p{25 ln(x()n— e} _ q)[ln(x()n— e}

= Plexp(W) = x] = P[W = In (x)]

for x > 0, where Z is a standard normal random variable. Therefore, Appendix Table II can be
used to determine the probability. Also, F(x) = 0, for x = 0.

The probability density function of X can be obtained from the derivative of F(x).
This derivative is applied to the last term in the expression for F(x), the integral of the stan-
dard normal density function. Furthermore, from the probability density function, the
mean and variance of X can be derived. The details are omitted, but a summary of results

follows.
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Figure 4-28 Lognormal probability density functions with
6 = 0 for selected values of w?.

Let 7 have a normal distribution mean 6 and variance »?; then X = exp(W) is a log-
normal random variable with probability density function

R { (Inx — 0)?
fx) = xo V2w %P~ 20°

The mean and variance of X are

] 0<x<o

EX) =" and VX)) = (e — 1) (4-25)

The parameters of a lognormal distribution are 6 and w?, but care is needed to interpret that
these are the mean and variance of the normal random variable /. The mean and variance of
X are the functions of these parameters shown in (4-25). Figure 4-28 illustrates lognormal dis-
tributions for selected values of the parameters.

The lifetime of a product that degrades over time is often modeled by a lognormal ran-
dom variable. For example, this is a common distribution for the lifetime of a semiconductor
laser. A Weibull distribution can also be used in this type of application, and with an appro-
priate choice for parameters, it can approximate a selected lognormal distribution. However,
a lognormal distribution is derived from a simple exponential function of a normal random
variable, so it is easy to understand and easy to evaluate probabilities.

The lifetime of a semiconductor laser has a lognormal distribution with 6 = 10 hours and
® = 1.5 hours. What is the probability the lifetime exceeds 10,000 hours?
From the cumulative distribution function for X

P(X > 10,000) = 1 — P[exp(W) =< 10,000] = 1 — P[W =< In(10,000)]
(ln(l0,000) - 10
(-7 -

" >: 1 — ®(—0.52) =1 — 030 = 0.70
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What lifetime is exceeded by 99% of lasers? The question is to determine x such that

P(X > x) = 0.99. Therefore,

P(X > x) = Plexp(W) > x]

1.5

= P[W>h@]=1- @(m@)—m) = 0.99

From Appendix Table II, 1 — ®(z) = 0.99 when z = —2.33. Therefore,

In(x) — 10
1.5

= —233

and x = exp(6.505) = 668.48 hours.

Determine the mean and standard deviation of lifetime. Now,

E(X) = &7 = exp(10 + 1.125) = 67,846.3

2

VX) = e29+w2(em

— 1) = exp(20 + 2.25)[exp(2.25) — 1] = 39,070,059,886.6

so the standard deviation of X is 197,661.5 hours. Notice that the standard deviation of life-

time is large relative to the mean.

EXERCISES FOR SECTION 4-12

4-117. Suppose that X has a lognormal distribution with
parameters § = 5 and w? = 9. Determine the following:

(a) P(X < 13,300)

(b) The value for x such that P(X = x) = 0.95

(c) The mean and variance of X

4-118. Suppose that X has a lognormal distribution with
parameters = —2 and w? = 9. Determine the following:
(a) P(500 < X < 1000)

(b) The value for x such that P(X < x) = 0.1

(c) The mean and variance of X

4-119. Suppose that X has a lognormal distribution with pa-

rameters § = 2 and w®> = 4. Determine the following:

(a) P(X < 500)

(b) The conditional probability that X < 1500 given that
X > 1000

(c) What does the difference between the probabilities in
parts (a) and (b) imply about lifetimes of lognormal ran-
dom variables?

4-120. The length of time (in seconds) that a user views a

page on a Web site before moving to another page is a lognor-

mal random variable with parameters & = 0.5 and w? = 1.

(a) What is the probability that a page is viewed for more than
10 seconds?

(b) What is the length of time that 50% of users view the page?

(c) What is the mean and standard deviation of the time until
a user moves from the page?

4-121. Suppose that X has a lognormal distribution and that
the mean and variance of X are 100 and 85,000, respectively.

Determine the parameters 6 and w? of the lognormal distribu-

tion. (Hint: define x = exp(0) and y = exp(w?) and write two

equations in terms of x and y.)

4-122. The lifetime of a semiconductor laser has a log-

normal distribution, and it is known that the mean and stan-

dard deviation of lifetime are 10,000 and 20,000, respec-

tively.

(a) Calculate the parameters of the lognormal distribution

(b) Determine the probability that a lifetime exceeds 10,000
hours

(c) Determine the lifetime that is exceeded by 90% of lasers

4-123. Derive the probability density function of a lognor-
mal random variable from the derivative of the cumulative
distribution function.

Supplemental Exercises

4-124. Suppose that f(x) =05x — 1 for 2 <x<4.
Determine the following:

(a) P(X <2.5)

(b) P(X > 3)

(c) P25<X<35)

4-125. Continuation of Exercise 4-124. Determine the
cumulative distribution function of the random variable.
4-126. Continuation of Exercise 4-124. Determine the
mean and variance of the random variable.
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4-127. The time between calls is exponentially distributed

with a mean time between calls of 10 minutes.

(a) What is the probability that the time until the first call is
less than 5 minutes?

(b) What is the probability that the time until the first call is
between 5 and 15 minutes?

(c) Determine the length of an interval of time such that the
probability of at least one call in the interval is 0.90.

4-128. Continuation of Exercise 4-127.

(a) If there has not been a call in 10 minutes, what is the proba-
bility that the time until the next call is less than 5 minutes?

(b) What is the probability that there are no calls in the inter-
vals from 10:00 to 10:05, from 11:30 to 11:35, and from
2:00 to 2:05?

4-129. Continuation of Exercise 4-127.

(a) What is the probability that the time until the third call is
greater than 30 minutes?

(b) What is the mean time until the fifth call?

4-130. The CPU of a personal computer has a lifetime that

is exponentially distributed with a mean lifetime of six years.

You have owned this CPU for three years. What is the proba-

bility that the CPU fails in the next three years?

4-131. Continuation of Exercise 4-130. Assume that your

corporation has owned 10 CPUs for three years, and assume

that the CPUs fail independently. What is the probability that

at least one fails within the next three years?

4-132. Suppose that X has a lognormal distribution with

parameters § = 0 and w? = 4. Determine the following:

(a) P(10 < X < 50)

(b) The value for x such that P(X < x) = 0.05

(c) The mean and variance of X

4-133. Suppose that X has a lognormal distribution and that

the mean and variance of X are 50 and 4000, respectively.

Determine the following:

(a) The parameters 6 and w? of the lognormal distribution

(b) The probability that X is less than 150

4-134. Asbestos fibers in a dust sample are identified by an

electron microscope after sample preparation. Suppose that

the number of fibers is a Poisson random variable and the

mean number of fibers per squared centimeter of surface dust

is 100. A sample of 800 square centimeters of dust is analyzed.

Assume a particular grid cell under the microscope represents

1/160,000 of the sample.

(a) What is the probability that at least one fiber is visible in
the grid cell?

(b) What is the mean of the number of grid cells that need to
be viewed to observe 10 that contain fibers?

(c) What is the standard deviation of the number of grid cells
that need to be viewed to observe 10 that contain fibers?

4-135. Without an automated irrigation system, the height

of plants two weeks after germination is normally distributed

with a mean of 2.5 centimeters and a standard deviation of 0.5

centimeters.

(a) What is the probability that a plant’s height is greater than
2.25 centimeters?

(b) What is the probability that a plant’s height is between 2.0
and 3.0 centimeters?

(c) What height is exceeded by 90% of the plants?

4-136. Continuation of Exercise 4-135. With an automated

irrigation system, a plant grows to a height of 3.5 centimeters

two weeks after germination.

(a) What is the probability of obtaining a plant of this height or
greater from the distribution of heights in Exercise 4-135.

(b) Do you think the automated irrigation system increases
the plant height at two weeks after germination?

4-137. The thickness of a laminated covering for a wood

surface is normally distributed with a mean of 5 millimeters

and a standard deviation of 0.2 millimeter.

(a) What is the probability that a covering thickness is greater
than 5.5 millimeters?

(b) If the specifications require the thickness to be between
4.5 and 5.5 millimeters, what proportion of coverings do
not meet specifications?

(c) The covering thickness of 95% of samples is below what
value?

4-138. The diameter of the dot produced by a printer is nor-

mally distributed with a mean diameter of 0.002 inch.

Suppose that the specifications require the dot diameter to be

between 0.0014 and 0.0026 inch. If the probability that a dot

meets specifications is to be 0.9973, what standard deviation
is needed?

4-139. Continuation of Exercise 4-138. Assume that the stan-

dard deviation of the size of a dot is 0.0004 inch. If the proba-

bility that a dot meets specifications is to be 0.9973, what spec-
ifications are needed? Assume that the specifications are to be

chosen symmetrically around the mean of 0.002.

4-140. The life of a semiconductor laser at a constant power

is normally distributed with a mean of 7000 hours and a stan-

dard deviation of 600 hours.

(a) What is the probability that a laser fails before 5,800
hours?

(b) What is the life in hours that 90% of the lasers exceed?

4-141. Continuation of Exercise 4-140. What should the

mean life equal in order for 99% of the lasers to exceed 10,000

hours before failure?

4-142. Continuation of Exercise 4-140. A product contains

three lasers, and the product fails if any of the lasers fails.

Assume the lasers fail independently. What should the mean

life equal in order for 99% of the products to exceed 10,000

hours before failure?

4-143. Continuation of Exercise 140. Rework parts (a) and

(b). Assume that the lifetime is an exponential random vari-

able with the same mean.

4-144. Continuation of Exercise 4-140. Rework parts (a)

and (b). Assume that the lifetime is a lognormal random vari-

able with the same mean and standard deviation.



4-145. A square inch of carpeting contains 50 carpet fibers.

The probability of a damaged fiber is 0.0001. Assume the

damaged fibers occur independently.

(a) Approximate the probability of one or more damaged
fibers in 1 square yard of carpeting.

(b) Approximate the probability of four or more damaged
fibers in 1 square yard of carpeting.

4-146. An airline makes 200 reservations for a flight that
holds 185 passengers. The probability that a passenger arrives
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for the flight is 0.9 and the passengers are assumed to be inde-

pendent.

(a) Approximate the probability that all the passengers that
arrive can be seated.

(b) Approximate the probability that there are empty seats.

(c) Approximate the number of reservations that the airline
should make so that the probability that everyone who ar-
rives can be seated is 0.95. [Hint: Successively try values
for the number of reservations.]

MIND-EXPANDING EXERCISES

4-147. The steps in this exercise lead to the probabil-

ity density function of an Erlang random variable X with

parameters A and 7, f(x) = A’x" " le™*/(r — 1), x > 0,

r=12,....

(a) Use the Poisson distribution to express P(X > x).

(b) Use the result from part (a) to determine the cumu-
lative distribution function of X.

(c) Differentiate the cumulative distribution function in
part (b) and simplify to obtain the probability den-
sity function of X.

4-148. A bearing assembly contains 10 bearings. The

bearing diameters are assumed to be independent and

normally distributed with a mean of 1.5 millimeters and

a standard deviation of 0.025 millimeter. What is the

probability that the maximum diameter bearing in the

assembly exceeds 1.6 millimeters?

4-149. Let the random variable X denote a measure-

ment from a manufactured product. Suppose the target

value for the measurement is m. For example, X could

denote a dimensional length, and the target might be 10

millimeters. The quality loss of the process producing

the product is defined to be the expected value of
$k(X — m)?, where k is a constant that relates a devia-
tion from target to a loss measured in dollars.

(a) Suppose X is a continuous random variable with
E(X) = m and V(X) = 0. What is the quality loss
of the process?

(b) Suppose X is a continuous random variable with
E(X) = w and ¥(X) = . What is the quality loss
of the process?

4-150. The lifetime of an electronic amplifier is mod-

eled as an exponential random variable. If 10% of the

amplifiers have a mean of 20,000 hours and the remain-
ing amplifiers have a mean of 50,000 hours, what pro-
portion of the amplifiers fail before 60,000 hours?

4-151. Lack of Memory Property. Show that for
an exponential random variable X, P(X <1t + t, |
X>1)=PX<t)

4-152. A process is said to be of six-sigma quality if

the process mean is at least six standard deviations from

the nearest specification. Assume a normally distributed
measurement.

(a) If a process mean is centered between the upper and
lower specifications at a distance of six standard de-
viations from each, what is the probability that a
product does not meet specifications? Using the
result that 0.000001 equals one part per million,
express the answer in parts per million.

(b) Because it is difficult to maintain a process mean
centered between the specifications, the probability
of a product not meeting specifications is often cal-
culated after assuming the process shifts. If the
process mean positioned as in part (a) shifts upward
by 1.5 standard deviations, what is the probability
that a product does not meet specifications? Express
the answer in parts per million.

(c) Rework part (a). Assume that the process mean is
at a distance of three standard deviations.

(d) Rework part (b). Assume that the process mean is at
a distance of three standard deviations and then
shifts upward by 1.5 standard deviations.

(e) Compare the results in parts (b) and (d) and comment.
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IMPORTANT TERMS AND CONCEPTS

In the E-book, click on any
term or concept below to
go to that subject.

Chi-squared
distribution

Continuous uniform
distribution

Cumulative probability
distribution function-
continuous random
variable

Erlang distribution

Exponential distribution

Gamma distribution

Lack of memory
property-continuous
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Lognormal
distribution

Mean-continuous
random variable

Mean-function of a
continuous random
variable

Normal approximation to
binomial and Poisson
probabilities

Normal distribution

Probability density
function

Probability distribution-
continuous random
variable

Standard deviation-
continuous random
variable

Standard normal
distribution
Standardizing
Variance-continuous
random variable
Weibull distribution
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4-1

Mean and Variance of the Normal Distribution (CD Only)
In the derivations below, the mean and variance of a normal random variable are shown
to be w and o?, respectively. The mean of x is

o~ (—wy20

E(X) = Jx\/z—wodx

—©

By making the change of variable y = (x — p)/0, the integral becomes

I e I iy
E(X) = +o|y—r—
LS RVl ERV

-2
. . . e . .. .
The first integral in the expression above equals 1 because 5 is a probability density
V2w

function and the second integral is found to be 0 by either formally making the change of vari-
able u = —y?*/2 or noticing the symmetry of the integrand about y = 0. Therefore, E(X) = .
The variance of X is

T o~ (w20
o= |

RV

By making the change of variable y = (x — p)/o, the integral becomes

©

e V2

V()Ozazjyz\/ﬁdy

—

—y/2
Upon integrating by parts withu = yand dv = y eﬁ dy, V(X) is found to be o”.
T

4-8 CONTINUITY CORRECTIONS TO IMPROVE
THE APPROXIMATION

From Fig. 4-19 it can be seen that a probability such as P(3 = X = 7) is better approximated
by the area under the normal curve from 2.5 to 7.5. This observation provides a method to im-
prove the approximation of binomial probabilities. Because a continuous normal distribution
is used to approximate a discrete binomial distribution, the modification is referred to as a
continuity correction.

If X is a binomial random variable with parameters » and p, and ifx = 0, 1, 2, ..., n,
the continuity correction to improve approximations obtained from the normal dis-
tribution is

x+05—np

Vnp(l = p)

PX=x)=PX=x+05=P|Z=

and

x—O.S—np<

Vmp(1 —p)

Px=X)=Px—-05=X)=P
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EXAMPLE §4-1

A way to remember the approximation is to write the probability in terms of = or = and

then add or subtract the 0.5 correction factor to make the probability greater.

Consider the situation in Example 4-20 with » = 50 and p = 0.1. The probability P(X < 2)

is better approximated as

2+05-5

515 >=P(ZS ~1.18) = 0.119

PX =2) =P(X52.5)~P<ZS
and this result is closer to the exact probability of 0.112 than the previous result of 0.08.
As another example, P(8 < X) = P(9 = X) and this is better approximated as

9-05-5

P9 = X) = P(8.5 s)()xP(wsZ>=P(l.65 =27)=0.05

We can even approximate P(X = 5) = P(5 = X = 5) as

5—05-—5 5+0.5—5)
— =/ =—"

= = ~
PE=Xx=53) P( 2.12 2.12

and this compares well with the exact answer of 0.1849.

= P(—0.24 = Z=0.24) = 0.19

EXERCISES FOR SECTION 4-8

S4-1. Continuity correction. The normal approximation of
a binomial probability is sometimes modified by a correction
factor of 0.5 that improves the approximation. Suppose that X
is binomial with » = 50 and p = 0.1. Because X is a discrete
random variable, P(X = 2) = P(X = 2.5). However, the nor-
mal approximation to P(X = 2) can be improved by applying
the approximation to P(X = 2.5).

(a) Approximate P(X = 2) by computing the z-value corre-
sponding to x = 2.5.

(b) Approximate P(X = 2) by computing the z-value corre-
sponding to x = 2.

(c) Compare the results in parts (a) and (b) to the exact value
of P(X = 2) to evaluate the effectiveness of the continuity
correction.

(d) Use the continuity correction to approximate P(X < 10).
S4-2. Continuity correction. Suppose that X is binomial
with n = 50 and p = 0.1. Because X is a discrete random vari-
able, P(X = 2) = P(X = 1.5). However, the normal approxi-
mation to P(X = 2) can be improved by applying the approxi-
mation to P(X = 1.5). The continuity correction of 0.5 is either
added or subtracted. The easy rule to remember is that the con-
tinuity correction is always applied to make the approximating
normal probability greatest.

(a) Approximate P(X = 2) by computing the z-value corre-
sponding to 1.5.

(b) Approximate P(X = 2) by computing the z-value corre-
sponding to 2.

(c) Compare the results in parts (a) and (b) to the exact value
of P(X = 2) to evaluate the effectiveness of the continuity
correction.

(d) Use the continuity correction to approximate P(X > 6).

S4-3. Continuity correction. Suppose that X is binomial

with n = 50 and p = 0.1. Because X is a discrete random vari-

able, P2 = X =5) = P(1.5 = X = 5.5). However, the normal

approximation to P(2 = X = 5) can be improved by applying

the approximation to P(1.5 = X = 5.5).

(a) Approximate P(2 = X = 5) by computing the z-values
corresponding to 1.5 and 5.5.

(b) Approximate P(2 = X = 5) by computing the z-values
corresponding to 2 and 5.

S4-4. Continuity correction. Suppose that X is binomial

withn =50 and p = 0.1. Then, P(X = 10) = P(10 = X = 10).

Using the results for the continuity corrections, we can ap-

proximate P(10 = X = 10) by applying the normal standardi-

zation to P(9.5 = X = 10.5).

(a) Approximate P(X = 10) by computing the z-values corre-
sponding to 9.5 and 10.5.

(b) Approximate P(X = 5).

S4-5. Continuity correction. The manufacturing of

semiconductor chips produces 2% defective chips. Assume

that the chips are independent and that a lot contains 1000

chips.

(a) Use the continuity correction to approximate the probabil-
ity that 20 to 30 chips in the lot are defective.

(b) Use the continuity correction to approximate the probabil-
ity that exactly 20 chips are defective.

(c) Determine the number of defective chips, x, such that the
normal approximation for the probability of obtaining x
defective chips is greatest.
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LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
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probability density function

. Use joint probability mass functions and joint probability density functions to calculate probabilities
. Calculate marginal and conditional probability distributions from joint probability distributions
. Use the multinomial distribution to determine probabilities

. Interpret and calculate covariances and correlations between random variables

. Understand properties of a bivariate normal distribution and be able to draw contour plots for the

6. Calculate means and variance for linear combinations of random variables and calculate proba-
bilities for linear combinations of normally distributed random variables

141



142 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

CD MATERIAL
7. Determine the distribution of a function of one or more random variables

8. Calculate moment generating functions and use them to determine moments for random variables
and use the uniqueness property to determine the distribution of a random variable

9. Provide bounds on probabilities for arbitrary distributions based on Chebyshev’s inequality

Answers for most odd numbered exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for the text sections that appear on CD only. These exercises may be found within the
e-Text immediately following the section they accompany.

In Chapters 3 and 4 we studied probability distributions for a single random variable. However,
it is often useful to have more than one random variable defined in a random experiment. For ex-
ample, in the classification of transmitted and received signals, each signal can be classified as
high, medium, or low quality. We might define the random variable X to be the number of high-
quality signals received and the random variable Y to be the number of low-quality signals
received. In another example, the continuous random variable X can denote the length of one di-
mension of an injection-molded part, and the continuous random variable ¥ might denote the
length of another dimension. We might be interested in probabilities that can be expressed in
terms of both X and Y. For example, if the specifications for X and Y are (2.95 to 3.05) and (7.60
to 7.80) millimeters, respectively, we might be interested in the probability that a part satisfies
both specifications; that is, P(2.95 < X < 3.05 and 7.60 < Y < 7.80).

In general, if X and Y are two random variables, the probability distribution that defines
their simultaneous behavior is called a joint probability distribution. In this chapter, we
investigate some important properties of these joint distributions.

5-1 TWO DISCRETE RANDOM VARIABLES

5-1.1 Joint Probability Distributions

EXAMPLE 5-1

For simplicity, we begin by considering random experiments in which only two random vari-
ables are studied. In later sections, we generalize the presentation to the joint probability
distribution of more than two random variables.

In the development of a new receiver for the transmission of digital information, each re-
ceived bit is rated as acceptable, suspect, or unacceptable, depending on the quality of the
received signal, with probabilities 0.9, 0.08, and 0.02, respectively. Assume that the ratings of
each bit are independent.

In the first four bits transmitted, let

X denote the number of acceptable bits

Y denote the number of suspect bits

Then, the distribution of X is binomial with » = 4 and p = 0.9, and the distribution of Y is
binomial with » = 4 and p = 0.08. However, because only four bits are being rated, the possible
values of X and Y are restricted to the points shown in the graph in Fig. 5-1. Although the possi-
ble values of Xare 0, 1, 2, 3, or 4, if y = 3, x = 0 or 1. By specifying the probability of each of
the points in Fig. 5-1, we specify the joint probability distribution of X and Y. Similarly to an in-
dividual random variable, we define the range of the random variables (X, Y) to be the set of
points (x, y) in two-dimensional space for which the probability that X = x and ¥ = y is positive.
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If X and Y are discrete random variables, the joint probability distribution of X and Y is a
description of the set of points (x, y) in the range of (X, Y) along with the probability of each point.
The joint probability distribution of two random variables is sometimes referred to as the bivari-
ate probability distribution or bivariate distribution of the random variables. One way to
describe the joint probability distribution of two discrete random variables is through a joint
probability mass function. Also, P(X = x and Y = y) is usually written as P(X = x, ¥ = y).

The joint probability mass function of the discrete random variables X and Y,
denoted as fyy(x, ), satisfies

1) folx,y)=0
@ 2> foky) =1
x

B) folxy) =PX=xY=y) (5-1)

Subscripts are used to indicate the random variables in the bivariate probability distribution.
Just as the probability mass function of a single random variable X is assumed to be zero at all
values outside the range of X, so the joint probability mass function of X and Y is assumed to
be zero at values for which a probability is not specified.

Probabilities for each point in Fig. 5-1 are determined as follows. For example, P(X = 2, Y = 1)
is the probability that exactly two acceptable bits and exactly one suspect bit are received among
the four bits transferred. Let a, s, and u denote acceptable, suspect, and unacceptable bits, respec-
tively. By the assumption of independence,

P(aasu) = 0.9(0.9)(0.08)(0.02) = 0.0013

The number of possible sequences consisting of two a’s, one s, and one u is shown in the CD
material for Chapter 2:

41
201111

=12

Therefore,

P(aasu) = 12(0.0013) = 0.0156
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and
Sor(2, 1) =PX=2,Y=1)=0.0156

The probabilities for all points in Fig. 5-1 are shown next to the point and the figure describes
the joint probability distribution of X and Y.

5-1.2 Marginal Probability Distributions

EXAMPLE 5-3

Figure 5-2 Marginal
probability distribu-
tions of X and Y from
Fig. 5-1.

If more than one random variable is defined in a random experiment, it is important to distin-
guish between the joint probability distribution of X and Y and the probability distribution of
each variable individually. The individual probability distribution of a random variable is re-
ferred to as its marginal probability distribution. In Example 5-1, we mentioned that the
marginal probability distribution of X is binomial with » = 4 and p = 0.9 and the marginal
probability distribution of Y is binomial with » = 4 and p = 0.08.

In general, the marginal probability distribution of X can be determined from the joint
probability distribution of X and other random variables. For example, to determine P(X = x),
we sum P(X = x, Y = y) over all points in the range of (X, Y for which X = x. Subscripts on
the probability mass functions distinguish between the random variables.

The joint probability distribution of X and Y in Fig. 5-1 can be used to find the marginal prob-
ability distribution of X. For example,

PX=3)=PX=3,Y=0)+PX=37Y=1)
= 0.0583 + 0.2333 = 0.292

As expected, this probability matches the result obtained from the binomial probability distribu-
tion for X; that is, P(X = 3) = (1)0.9%0.1' = 0.292. The marginal probability distribution for X
is found by summing the probabilities in each column, whereas the marginal probability distribu-
tion for Y is found by summing the probabilities in each row. The results are shown in Fig. 5-2.

Although the marginal probability distribution of X in the previous example can be
determined directly from the description of the experiment, in some problems the marginal
probability distribution is determined from the joint probability distribution.

fy® =
0.00004 4 e

0.00188 3e
0.03250 2e
0.24925 1e

0.71637 Qe ° ) ° .
0 1 2 3 4 x

fx(x) = 0.0001 0.0036 0.0486 0.2916 0.6561
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If X'and Y are discrete random variables with joint probability mass function fyy (x, ),
then the marginal probability mass functions of X and Y are

fx(x) = PIX = x) = RE faley) and fy(y) = P(Y = y) = ; Jor(%,)
x ¥ (5-2)

where R, denotes the set of all points in the range of (X, ¥) for which X = x and
R, denotes the set of all points in the range of (X, ¥) for which ¥ = y

Given a joint probability mass function for random variables X and Y, £(X) and V(X)) can
be obtained directly from the joint probability distribution of X and Y or by first calculating the
marginal probability distribution of X and then determining E(X) and V(X) by the usual
method. This is shown in the following equation.

If the marginal probability distribution of X has the probability mass function fy(x),
then

EX) = py = Exfx(x) = Ex( ; fXY(xay)> = 2 ;foY(x’y)

X

= ; Xfxr(%, ) (5-3)

and

nx) = 0%( E(X - “‘X)zfX(x) = E (x = MX)Z REfXY(x: )

2 ; (x — IJ'X)ZfXY(x’ y) = ER: (x — “‘X)zfXY(xa »)

where R, denotes the set of all points in the range of (X, Y) for which X = x and R
denotes the set of all points in the range of (X, ¥)

In Example 5-1, E(X) can be found as

EX) = 0[fxy(0,0) + fyyr(0, 1) + fiy(0,2) + fxr(0, 3) + fir(0, 4)]
+ 1 (1, 0) + fiy(1, 1) + fir(1, 2) + fi(1,3)]
+ Z[ny(2, 0) +fXY(2’ 1) +fXY(2a 2)]
+ 3[fxr(3,0) + fir(3, 1)]
)

= 0[0.0001] + 1[0.0036] + 2[0.0486] + 3[0.02916] + 4[0.6561] = 3.6

Alternatively, because the marginal probability distribution of X is binomial,

EX) =np =4(09) = 3.6
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The calculation using the joint probability distribution can be used to determine E(X) even in
cases in which the marginal probability distribution of X is not known. As practice, you can
use the joint probability distribution to verify that £(Y) = 0.32 in Example 5-1.

Also,

V(X) = np(1 — p) = 4(0.9)(1 — 0.9) = 0.36

Verify that the same result can be obtained from the joint probability distribution of X and Y.

5-1.3 Conditional Probability Distributions

EXAMPLE 5-5

Definition

When two random variables are defined in a random experiment, knowledge of one can change
the probabilities that we associate with the values of the other. Recall that in Example 5-1, X
denotes the number of acceptable bits and Y denotes the number of suspect bits received by a
receiver. Because only four bits are transmitted, if X = 4, ¥ must equal 0. Using the notation for
conditional probabilities from Chapter 2, we can write this result as P(Y = 0|.X = 4) = 1. If
X = 3, Y can only equal 0 or 1. Consequently, the random variables X and Y can be considered
to be dependent. Knowledge of the value obtained for X changes the probabilities associated
with the values of Y.

Recall that the definition of conditional probability for events 4 and B is P(B|A4) =
P(A N B)/P(A). This definition can be applied with the event 4 defined to be X = x and event
B defined tobe Y = y.

For Example 5-1, X and Y denote the number of acceptable and suspect bits received, respec-
tively. The remaining bits are unacceptable.

P(Y=0|X=3)=PX=3,Y=0)/PX=23)
= fxr(3, 0)/fx(3) = 0.05832/0.2916 = 0.200

The probability that ¥ = 1 given that X = 3 is

PY=1|X=3)=PX=3,Y=1)/PX=23)
= fxr(3, 1)/fx(3) = 0.2333/0.2916 = 0.800

Given that X = 3, the only possible values for Y are 0 and 1. Notice that P(Y = 0|.X = 3) +
P(Y = 1|X = 3) = 1. The values 0 and 1 for Y along with the probabilities 0.200 and 0.800
define the conditional probability distribution of Y given that X = 3.

Example 5-5 illustrates that the conditional probabilities that Y = y given that X = x can be
thought of as a new probability distribution. The following definition generalizes these ideas.

Given discrete random variables X and Y with joint probability mass function fyy(x, )
the conditional probability mass function of Y given X = x is

Srix) = L (e, ¥)/fx(x) for fy(x) >0 (5-4)




EXAMPLE 5-6

Definition

Figure 5-3

Conditional probability
distributions of Y given
X = X, fY\x(y) in
Example 5-6.
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The function fy,(y) is used to find the probabilities of the possible values for Y given that X = x.
That is, it is the probability mass function for the possible values of Y given that X = x. More pre-
cisely, let R, denote the set of all points in the range of (X, Y) for which X = x. The conditional
probability mass function provides the conditional probabilities for the values of Y in the set R..

Because a conditional probability mass function fy|,(y) is a probability mass func-
tion for all y in R,, the following properties are satisfied:

(D) fri(y) =0
() ; fris(y) =1

() P(Y =ylX =1x) = fyy) (5-5)

For the joint probability distribution in Fig. 5-1, fy|,(») is found by dividing each fy,(x, y) by
fx(x). Here, fy(x) is simply the sum of the probabilities in each column of Fig. 5-1. The func-
tion fy,(») is shown in Fig. 5-3. In Fig. 5-3, each column sums to one because it is a proba-
bility distribution.

Properties of random variables can be extended to a conditional probability distribution
of Y given X = x. The usual formulas for mean and variance can be applied to a conditional
probability mass function.

Let R, denote the set of all points in the range of (X, Y) for which X = x. The
conditional mean of ¥ given X = x, denoted as E(Y|x) or pyi,, is

E(Y]x) = RE Yfrix(v) (5-6)

and the conditional variance of Y given X = x, denoted as V(Y|x) or (r%\x, is

V(Y|x) = E(y - IJJYIx)sz\x(y) = ; yszIx(y) - “‘%’Ix

5

y

0.410
4 e

0.410 0.511
3e °

0.154 0.383 0.640
2 e ° °

0.0256 0.096 0.320 0.800
1le ° ° °

0.0016 0.008 0.040 0.200 1.0
Qe ° ° o °

0 1 2 3 4 x
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EXAMPLE 5-7

For the random variables in Example 5-1, the conditional mean of ¥ given X = 2 is obtained
from the conditional distribution in Fig. 5-3:

E(Y]2) = pyp = 0(0.040) + 1(0.320) + 2(0.640) = 1.6

The conditional mean is interpreted as the expected number of acceptable bits given that two
of the four bits transmitted are suspect. The conditional variance of Y given X = 2 is

M(Y12) = (0 = pyp)*(0.040) + (1 — py2)*(0.320) + (2 — pypp)*(0.640) = 0.32

5-1.4 Independence

EXAMPLE 5-8

Figure 5-4 (a) Joint
and marginal probabil-
ity distributions of X
and Y in Example 5-8.
(b) Conditional proba-
bility distribution of ¥
given X = x in
Example 5-8.

In some random experiments, knowledge of the values of X does not change any of the prob-
abilities associated with the values for Y.

In a plastic molding operation, each part is classified as to whether it conforms to color and
length specifications. Define the random variable X and Y as

X = { 1 if the part conforms to color specifications
0 otherwise

{ 1 if the part conforms to length specifications
0 otherwise

Assume the joint probability distribution of X and Y is defined by fyy(x, y) in Fig. 5-4(a).
The marginal probability distributions of X and Y are also shown in Fig. 5-4(a). Note that
JSxr(x, ¥) = fx(x) fy(y). The conditional probability mass function fy|.(y) is shown in Fig.
5-4(b). Notice that for any x, fy,(») = fy(»). That is, knowledge of whether or not the part meets
color specifications does not change the probability that it meets length specifications.

By analogy with independent events, we define two random variables to be independent
whenever fyy(x, v) = fy(x) fy(») for all x and y. Notice that independence implies that
Jxr(x, ) = fy(x) fy(») for all x and y. If we find one pair of x and y in which the equality fails,
X and Y are not independent. If two random variables are independent, then

Srr(x, ») _ Sx(x) fy(y)
Sx(x) Sx(x)

fY\x(y) = = fr(»)

With similar calculations, the following equivalent statements can be shown.

y y
fy® =
0.0098 0.9702 0.98 0.98
098 1le ° le °
0.0002 0.0198 0.02 0.02
0.02 O-e ° Oe °
0 1 x 0 1 x
fx(x)= 0.01 0.99
(a) b)
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For discrete random variables X and Y, if any one of the following properties is true,
the others are also true, and X and Y are independent.

() fir(x,») = fx(x) fy(y) forall xandy
@) fyx(y) = fy(y) forallxandy withfy(x) >0
(3)  fxiy(x) =fx(x) forallxandy withfy(y) >0

(4) P(X€ A,Y € B) = P(X € A)P(Y € B) for any sets 4 and B in the range
of X and Y, respectively. 5-7)

Rectangular Range for (X, Y)!

If the set of points in two-dimensional space that receive positive probability under
fyy(x, y) does not form a rectangle, X and Y are not independent because knowledge of X
can restrict the range of values of Y that receive positive probability. In Example 5-1
knowledge that X = 3 implies that ¥ can equal only 0 or 1. Consequently, the marginal
probability distribution of Y does not equal the conditional probability distribution fy(;(y)
for X = 3. Using this idea, we know immediately that the random variables X and Y with
joint probability mass function in Fig. 5-1 are not independent. If the set of points in two-
dimensional space that receives positive probability under fyy(x, y) forms a rectangle,
independence is possible but not demonstrated. One of the conditions in Equation 5-7 must
still be verified.

Rather than verifying independence from a joint probability distribution, knowledge of
the random experiment is often used to assume that two random variables are independent.
Then, the joint probability mass function of X and Y is computed from the product of the
marginal probability mass functions.

In a large shipment of parts, 1% of the parts do not conform to specifications. The supplier
inspects a random sample of 30 parts, and the random variable X denotes the number of parts
in the sample that do not conform to specifications. The purchaser inspects another random
sample of 20 parts, and the random variable Y denotes the number of parts in this sample that
do not conform to specifications. What is the probability that X = 1 and ¥ = 1?

Although the samples are typically selected without replacement, if the shipment is large,
relative to the sample sizes being used, approximate probabilities can be computed by assum-
ing the sampling is with replacement and that X and Y are independent. With this assumption,
the marginal probability distribution of X is binomial with » = 30 and p = 0.01, and the mar-
ginal probability distribution of Y is binomial with » = 20 and p = 0.01.

If independence between X and Y were not assumed, the solution would have to proceed
as follows:

PX=1Y=1)=PX=0,Y=0)+PX=1Y=0)
+PX=0,Y=1)+PX=1Y=1)

However, with independence, property (4) of Equation 5-7 can be used as

PX=1,Y=1)=PX=1)P¥=1)
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and the binomial distributions for X and Y can be used to determine these probabilities as
P(X=1)=0.9639 and P(Y = 1) = 0.9831. Therefore, PX = 1, Y = 1) = 0.948.
Consequently, the probability that the shipment is accepted for use in manufacturing is
0.948 even if 1% of the parts do not conform to specifications. If the supplier and the pur-
chaser change their policies so that the shipment is acceptable only if zero nonconforming
parts are found in the sample, the probability that the shipment is accepted for production is

still quite high. That is,

P(X=0,Y=0)=PX=0)PY = 0) = 0.605

This example shows that inspection is not an effective means of achieving quality.

EXERCISES FOR SECTION 5-1

5-1. Show that the following function satisfies the proper-
ties of a joint probability mass function.

x y Jxr(x, )
1 1 1/4
1.5 2 1/8
1.5 3 1/4
2.5 4 1/4
3 5 1/8

5-2.  Continuation of Exercise 5-1. Determine the following

probabilities:

(a) P(X<25,Y<3) (b) P(X<25)

(c) P(Y<3) (d) PX>1.8,Y>47)

5-3. Continuation of Exercise 5-1. Determine £(X ) and E(Y).

5-4. Continuation of Exercise 5-1. Determine

(a) The marginal probability distribution of the random
variable X.

(b) The conditional probability distribution of Y given that
X=15.

(c) The conditional probability distribution of X given that
Y=2.

(d) E(Y|X = 1.5)

(e) Are X and Y independent?

5-5. Determine the value of ¢ that makes the function

f(x,y) = ¢(x + y) ajoint probability mass function over the

nine points withx = 1,2,3andy = 1, 2, 3.

5-6. Continuation of Exercise 5-5. Determine the following

probabilities:

(a) PX=1,Y<4) (b) PX=1)

(c) P(Y=2) d) PX<2,Y<2)

5-7. Continuation of Exercise 5-5. Determine E(X), E(Y),

V(X), and (Y).

5-8. Continuation of Exercise 5-5. Determine

(a) The marginal probability distribution of the random
variable X.

(b) The conditional probability distribution of Y given that
X=1

(c) The conditional probability distribution of X given that
Y=2.

d) EY|XxX=1)

(e) Are X and Y independent?

5-9. Show that the following function satisfies the proper-

ties of a joint probability mass function.

x Y Sar(x, »)
-1 -2 1/8
-0.5 -1 1/4
0.5 1 1/2
1 2 1/8

5-10. Continuation of Exercise 5-9. Determine the follow-
ing probabilities:

(a) P(X<05,Y<1.5)
(c) P(Y<1.5)

(b) P(X < 0.5)
(d) P(X > 0.25, Y < 4.5)

5-11. Continuation of Exercise 5-9. Determine E(X) and
E(Y).
5-12. Continuation of Exercise 5-9. Determine

(a) The marginal probability distribution of the random
variable X.

(b) The conditional probability distribution of Y given that
X=1

(c) The conditional probability distribution of X given that
Y=1.

(d) E(X|y = 1)

(e) Are X and Y independent?

5-13. Four electronic printers are selected from a large lot

of damaged printers. Each printer is inspected and classified

as containing either a major or a minor defect. Let the random

variables X and Y denote the number of printers with major

and minor defects, respectively. Determine the range of the

joint probability distribution of X and Y.



5-14. Inthe transmission of digital information, the probabil-
ity that a bit has high, moderate, and low distortion is 0.01, 0.10,
and 0.95, respectively. Suppose that three bits are transmitted
and that the amount of distortion of each bit is assumed to be in-
dependent. Let X and Y denote the number of bits with high and
moderate distortion out of the three, respectively. Determine

(@) fyr(x,») (b) fx(x)

(c) E(X) D frin(y)

(e) E(Y|X=1) (f) Are Xand Y independent?

5-15. A small-business Web site contains 100 pages and

60%, 30%, and 10% of the pages contain low, moderate, and
high graphic content, respectively. A sample of four pages is
selected without replacement, and X and Y denote the number
of pages with moderate and high graphics output in the
sample. Determine

(@ frr(xy) (®) fx(x)
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(¢) E(XY) A fis ()

(e) E(Y|X =3) ) (Y| X =3)

(g) Are Xand Y independent?

5-16. A manufacturing company employs two inspecting

devices to sample a fraction of their output for quality control
purposes. The first inspection monitor is able to accurately
detect 99.3% of the defective items it receives, whereas the
second is able to do so in 99.7% of the cases. Assume that four
defective items are produced and sent out for inspection. Let X'
and Y denote the number of items that will be identified as
defective by inspecting devices 1 and 2, respectively. Assume
the devices are independent. Determine

(@) fry(x,») (b) fx(x)
(c) E(X) (d) fria 0V)
(e) E(Y|X =2) ) "Ylx=2)

(g) Are Xand Y independent?

5-2 MULTIPLE DISCRETE RANDOM VARIABLES

5.2.1 Joint Probability Distributions

EXAMPLE 5-10

In some cases, more than two random variables are defined in a random experiment, and

the concepts presented earlier in the chapter can easily be extended. The notation can be
cumbersome and if doubts arise, it is helpful to refer to the equivalent concept for two ran-
dom variables. Suppose that the quality of each bit received in Example 5-1 is categorized
even more finely into one of the four classes, excellent, good, fair, or poor, denoted by
E, G, F, and P, respectively. Also, let the random variables X|, X, X5, and X, denote the
number of bits that are £, G, F, and P, respectively, in a transmission of 20 bits. In this
example, we are interested in the joint probability distribution of four random variables.
Because each of the 20 bits is categorized into one of the four classes, only values for
X1, X5, X3, and x, such that x; + x, + x3 + x, = 20 receive positive probability in the prob-

ability distribution.

In general, given discrete random variables X|, X5, X3, ...
tribution of X;, X, X3, ..., X, is a description of the set of points (x;, x5, x3, ...
, X,,, along with the probability of each point. A joint probability mass

range of X, X5, X5, ...

, X, the joint probabilit?/ dis-
,X,) in the

function is a simple extension of a bivariate probability mass function.

Definition

for all points (x, x5, ...

The joint probability mass function of X, X;, ..., X, is

leXz...Xp(x19x29 9xp) = P(Xl = xlaXZ =X .. vap = xp) (5'8)

, X,) in the range of X}, X;, ..., X),.

P

A marginal probability distribution is a simple extension of the result for two random

variables.
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Definition

EXAMPLE 5-11

Mean and
Variance from
Joint
Distribution

Figure 5-5 Joint
probability distribution
of X}, X,, and X;.

If X;, X5, X5, ..., X, are discrete random variables with joint probability mass func-
tion fy x, . X, (x1, x5, ... ,X,), the marginal probability mass function of any X; is
f)g(xi) =PX; =x;) = ; leXz...Xp(xlaxz» ’xp) (5-9)

where R, denotes the set of points in the range of (X;, X5, ..., X,) for which X; = x;

Points that have positive probability in the joint probability distribution of three random variables
X, X5, X5 are shown in Fig. 5-5. The range is the nonnegative integers with x; + x, + x; = 3.
The marginal probability distribution of X, is found as follows.

P(X; = 0) = frx,x,(3,0,0) + fxx,x,(0,0,3) + fynx (1, 0,2) + fyx,x(2,0,1)
Py = 1) = frnx (2, 1,0) + frnx (0, 1,2) + fyxx (1, 1 1)

P(X; = 2) = fronx(1,2,0) + fyx,x (0,2, 1)

P(X, = 3) = fy,x,x,(0, 3, 0)

Furthermore, E(X)) and V(X;) fori = 1,2, ..., p can be determined from the marginal
probability distribution of X; or from the joint probability distribution of X, X5, ..., X, as
follows.

E(‘Xl) = 2 xileXz.‘.Xp(xlsx% sxp)
R
and

X)) = ; (% = 1) frx.. 2, (51 %25 -5 %) (5-10)

where R is the set of all points in the range of X, X5, ..., X,,.

With several random variables, we might be interested in the probability distribution of some
subset of the collection of variables. The probability distribution of X}, X5, ..., X}, £ < p can
be obtained from the joint probability distribution of X;, X, ..., X, as follows.

3e X



Distribution of
a Subset of
Random
Variables

Definition
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If X1, X, X5, ..., X, are discrete random variables with joint probability mass function
leXz_._Xp(xl,xz, ...,x,), the joint probability mass function of X;, X, ..., X,
k<p,is

Sty x (X0 X0, o, x) = PG = X0, X0 = X, 0, X = )

= D PX; =x, X =X ..., Xp = Xp) (5-11)
R

X1 X .. X

where R, . . denotes the set of all points in the range of X, X5, ..., X, for which
Xl = Xl,Xz = X2, ... st = Xk

That is, P(X; = x, X5 = x5, ..., X; = x;) is the sum of the probabilities over all points in the
range of X\, X, X3, ..., X, for which X; = x;, X, = x,,..., and X, = x;. An example is
presented in the next section. Any k random variables can be used in the definition. The first &
simplifies the notation.

Conditional Probability Distributions

Conditional probability distributions can be developed for multiple discrete random variables
by an extension of the ideas used for two discrete random variables. For example, the condi-
tional joint probability mass function of X}, X,, X; given X, X5 is

fX, X2X3X4X5(xla X3, X3, X4, X5)

fX4X5(x4’ Xs)

fX1X2X3|x4x5<x 1 X2, X3) =

for fx,x,(x4, xs) > 0. The conditional joint probability mass function of X}, X;, X; given X, X5
provides the conditional probabilities at all points in the range of X}, X,, X3, X, X5 for which
X4 = X4 alldX5 = Xs.

The concept of independence can be extended to multiple discrete random variables.

Discrete variables X, X5, ..., X, are independent if and only if
Sz x, (X1 X5 -5 %) = S, (01) i (%2) - - fx () (5-12)
for all xy, x,, ..., X,

Similar to the result for bivariate random variables, independence implies that Equation 5-12
holds for all xy, x5, ..., x,. If we find one point for which the equality fails, X, X,, ..., X,
are not independent. It can be shown that if X}, X, ..., X, are independent,

P(X; € 41, X, € 4y, ..., X, € A4,) = P(X; € 4\)P(X, E 4)) ... P(X, € 4,)

for any sets 4y, 4, ..., 4,,.
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5.2.2 Multinomial Probability Distribution

EXAMPLE 5-12

Multinomial
Distribution

A joint probability distribution for multiple discrete random variables that is quite useful is an
extension of the binomial. The random experiment that generates the probability distribution
consists of a series of independent trials. However, the results from each trial can be catego-
rized into one of & classes.

We might be interested in a probability such as the following. Of the 20 bits received, what is
the probability that 14 are excellent, 3 are good, 2 are fair, and 1 is poor? Assume that the clas-
sifications of individual bits are independent events and that the probabilities of £, G, F, and
P are 0.6, 0.3, 0.08, and 0.02, respectively. One sequence of 20 bits that produces the speci-
fied numbers of bits in each class can be represented as

EEEEEEEEEEEEEEGGGFFP
Using independence, we find that the probability of this sequence is
P(EEEEEEEEEEEEEEGGGFFP) = 0.6'%0.3°0.08%0.02! = 2.708 X 107°

Clearly, all sequences that consist of the same numbers of E’s, G’s, F’s, and P’s have the same
probability. Consequently, the requested probability can be found by multiplying 2.708 X
107 by the number of sequences with 14 E’s, three G’s, two F’s, and one P. The number of
sequences is found from the CD material for Chapter 2 to be

20 2325600
141312111

Therefore, the requested probability is
P(14E’s, three G’s, two F’s, and one P) = 2325600(2.708 X 10~°) = 0.0063

Example 5-12 leads to the following generalization of a binomial experiment and a bino-
mial distribution.

Suppose a random experiment consists of a series of # trials. Assume that

(1) The result of each trial is classified into one of & classes.

(2) The probability of a trial generating a result in class 1, class 2, ..., class &
is constant over the trials and equal to py, p», ... , p;, respectively.

(3) The trials are independent.

The random variables X, X, ..., X, that denote the number of trials that result in
class 1, class 2, ..., class k, respectively, have a multinomial distribution and the
joint probability mass function is

n!

o PP pi (5-13)
Xk.

P(Xl = xl,Xz = x2,...,Xk = xk) = xl|x2‘

forxl+x2+---+xk=nandp1+p2+"'+pk=1.
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EXAMPLE 5-14
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The multinomial distribution is considered a multivariable extension of the binomial
distribution.

In Example 5-12, let the random variables X;, X,, X3, and X, denote the number of bits that are
E, G, F, and P, respectively, in a transmission of 20 bits. The probability that 12 of the bits
received are £, 6 are G, 2 are F', and 0 are P is

!

— 120 260 0220 (00 —
= 121612101 0.6'70.3°0.0870.02" = 0.0358

PX, = 12,X, = 6,X; = 2,X, = 0)

Each trial in a multinomial random experiment can be regarded as either generating or not
generating a result in class i, for each i = 1, 2, .. ., k. Because the random variable X; is the
number of trials that result in class 7, X; has a binomial distribution.

If X}, X,, . . ., X; have a multinomial distribution, the marginal probability distribu-
tion of X; is binomial with

E(X;) = np; and V(X)) = np;(1 — p;) (5-14)

In Example 5-13, the marginal probability distribution of X, is binomial with » = 20 and
p = 0.3. Furthermore, the joint marginal probability distribution of X, and X; is found as
follows. The P(X, = x,, X3 = x3) is the probability that exactly x, trials result in G and that x;
result in . The remaining n — x, — x5 trials must result in either £ or P. Consequently, we can
consider each trial in the experiment to result in one of three classes, { G}, {F'}, or {E, P}, with
probabilities 0.3, 0.08, and 0.6 + 0.02 = 0.62, respectively. With these new classes, we can
consider the trials to comprise a new multinomial experiment. Therefore,

Sox, (%2, X3) = P(Xy = x5, X5 = x3)
|
= & - (0.3)%(0.08)(0.62)"

gl (n = x — x3)!

The joint probability distribution of other sets of variables can be found similarly.

EXERCISES FOR SECTION 5-2

5-17. Suppose the random variables X, Y, and Z have the Determine the following:

following joint probability distribution (@ PX=2) (b PX=1Y=2)
(¢c) PZ<15) (d PX=1 or Z=2)

X v z f(x, v, 2) () E(X)
1 1 1 0.05 5-18. Continuation of Exercise 5-17. Determine the follow-
1 1 2 0.10 ing:
| ) | 0.15 (@ PX=1]Y=1) (b)y PX=1,Y=1|z=2)
) ) ) 0.20 () PX=1lY=1,Z=2)
5 1 1 0.20 5-19. Continuation of Exercise 5-17. Determine the condi-
) 1 ) 015 tional probability distribution of X given that Y = 1 and Z = 2.
P b 1 0.10 5-20. Based on the number of voids, a ferrite slab is classi-
2 2 ) 0.05 fied as either high, medium, or low. Historically, 5% of the

slabs are classified as high, 85% as medium, and 10% as low.
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A sample of 20 slabs is selected for testing. Let X, Y, and Z

denote the number of slabs that are independently classified as

high, medium, and low, respectively.

(a) What is the name and the values of the parameters of the
joint probability distribution of X, Y, and Z?

(b) What is the range of the joint probability distribution of
X, Y, z2?

(c) What is the name and the values of the parameters of the
marginal probability distribution of X?

(d) Determine E(X)and V(X).

5-21. Continuation of Exercise 5-20. Determine the

following:

(a) PX=1,Y=17,Z=3)

by PX=1,Y=17,Z=3)

(c) PX=1)

(@ EX)

5-22. Continuation of Exercise 5-20. Determine the

following:

(@ P(X=2,Z=3|Y=17)

(c) E(X|Y =17)

5-23. Anorder of 15 printers contains four with a graphics-

enhancement feature, five with extra memory, and six with

both features. Four printers are selected at random, without

replacement, from this set. Let the random variables X, Y,

and Z denote the number of printers in the sample

with graphics enhancement only, extra memory only, and

both, respectively.

(a) Describe the range of the joint probability distribution of
X, Y, and Z.

(b) Is the probability distribution of X, Y, and Z multinomial?
Why or why not?

(b) P(X =2|Y =17)

5-24. Continuation of Exercise 5-23. Determine the condi-

tional probability distribution of X given that ¥ = 2.

5-25.

ing:

(@) PX=1,Y=2,Z=1)

(¢) E(X)and V(X)

5-26. Continuation of Exercise 5-23. Determine the

following:

(@ PX=1,Y=2]Z=1) (b) P(X=2]Y=2)

(c) The conditional probability distribution of X given that
Y=0and Z = 3.

5-27. Four electronic ovens that were dropped during ship-

ment are inspected and classified as containing either a major,

a minor, or no defect. In the past, 60% of dropped ovens had

a major defect, 30% had a minor defect, and 10% had no

defect. Assume that the defects on the four ovens occur

independently.

(a) Isthe probability distribution of the count of ovens in each
category multinomial? Why or why not?

(b) What is the probability that, of the four dropped ovens, two
have a major defect and two have a minor defect?

(c) What is the probability that no oven has a defect?

Continuation of Exercise 5-23. Determine the follow-

(b) PX=1,Y=1)

5-28. Continuation of Exercise 5-27. Determine the

following:

(a) The joint probability mass function of the number of ovens
with a major defect and the number with a minor defect.

(b) The expected number of ovens with a major defect.

(c) The expected number of ovens with a minor defect.

5-29.

ing:

(a) The conditional probability that two ovens have major
defects given that two ovens have minor defects

(b) The conditional probability that three ovens have major
defects given that two ovens have minor defects

(c) The conditional probability distribution of the number of
ovens with major defects given that two ovens have minor
defects

(d) The conditional mean of the number of ovens with major
defects given that two ovens have minor defects

5-30. In the transmission of digital information, the proba-

bility that a bit has high, moderate, or low distortion is 0.01,

0.04, and 0.95, respectively. Suppose that three bits are trans-

mitted and that the amount of distortion of each bit is assumed

to be independent.

(a) What is the probability that two bits have high distortion
and one has moderate distortion?

(b) What is the probability that all three bits have low
distortion?

5-31. Continuation of Exercise 5-30. Let X and Y denote the

number of bits with high and moderate distortion out of the

three transmitted, respectively. Determine the following:

(a) The probability distribution, mean and variance of X.

(b) The conditional probability distribution, conditional mean
and conditional variance of X given that ¥ = 2.

Continuation of Exercise 5-27. Determine the follow-

5-32. A marketing company performed a risk analysis for a

manufacturer of synthetic fibers and concluded that new com-

petitors present no risk 13% of the time (due mostly to the di-

versity of fibers manufactured), moderate risk 72% of the time

(some overlapping of products), and very high risk (competi-

tor manufactures the exact same products) 15% of the time. It

is known that 12 international companies are planning to open

new facilities for the manufacture of synthetic fibers within

the next three years. Assume the companies are independent.

Let X, Y, and Z denote the number of new competitors that will

pose no, moderate, and very high risk for the interested com-

pany, respectively.

(a) What is the range of the joint probability distribution of
X, Y,and Z?

(b) Determine PX =1,Y=3,Z=1)

(c) Determine P(Z < 2)

5-33. Continuation of Exercise 5-32. Determine the

following:

(@ P(Z=2|Y=1,X=10)

() PY=1,Z=1]|X=10)

(b) P(Z=1]X = 10)
(d) E(Z|X = 10)
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5-3 TWO CONTINUOUS RANDOM VARIABLES

5-3.1 Joint Probability Distributions

Definition

Our presentation of the joint probability distribution of two continuous random variables is
similar to our discussion of two discrete random variables. As an example, let the continuous
random variable X denote the length of one dimenson of an injection-molded part, and let the
continuous random variable Y denote the length of another dimension. The sample space of
the random experiment consists of points in two dimensions.

We can study each random variable separately. However, because the two random vari-
ables are measurements from the same part, small disturbances in the injection-molding
process, such as pressure and temperature variations, might be more likely to generate values
for X and Y in specific regions of two-dimensional space. For example, a small pressure in-
crease might generate parts such that both X and Y are greater than their respective targets and
a small pressure decrease might generate parts such that X and Y are both less than their re-
spective targets. Therefore, based on pressure variations, we expect that the probability of a
part with X much greater than its target and ¥ much less than its target is small. Knowledge of
the joint probability distribution of X and Y provides information that is not obvious from the
marginal probability distributions.

The joint probability distribution of two continuous random variables X and Y can be
specified by providing a method for calculating the probability that X and ¥ assume a value in
any region R of two-dimensional space. Analogous to the probability density function of a sin-
gle continuous random variable, a joint probability density function can be defined over
two-dimensional space. The double integral of fyy(x, y) over a region R provides the proba-
bility that (X, Y) assumes a value in R. This integral can be interpreted as the volume under the
surface fyy(x, y) over the region R.

A joint probability density function for X and Y is shown in Fig. 5-6. The probability
that (X,Y) assumes a value in the region R equals the volume of the shaded region in
Fig. 5-6. In this manner, a joint probability density function is used to determine probabil-
ities for X and Y.

A joint probability density function for the continuous random variables X and Y,
denoted as fyy(x, ), satisfies the following properties:

(1) fyy(x,y) = 0 forallx,y

© o

@ f ffxy(x, sy = 1

—o0 —oo

(3) For any region R of two-dimensional space

e = || oty day (5-15)

R

Typically, fyy(x,y) is defined over all of two-dimensional space by assuming that
Sxyr(x, ) = 0 for all points for which fyy(x, y) is not specified.
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fxy( y)
fxy® y)
F
x %
Probability that (X, Y) is in the region R is determined
by the volume of fxy(x, y) over the region R.

Figure 5-6  Joint probability density function for Figure 5-7 Joint probability density function for the lengths
random variables X and Y. of different dimensions of an injection-molded part.

EXAMPLE 5-15

At the start of this chapter, the lengths of different dimensions of an injection-molded part
were presented as an example of two random variables. Each length might be modeled by a
normal distribution. However, because the measurements are from the same part, the random
variables are typically not independent. A probability distribution for two normal random vari-
ables that are not independent is important in many applications and it is presented later in this
chapter. If the specifications for X and Y are 2.95 to 3.05 and 7.60 to 7.80 millimeters, respec-
tively, we might be interested in the probability that a part satisfies both specifications; that is,
P(2.95 < X < 3.05,7.60 < Y < 7.80). Suppose that fyy(x, y) is shown in Fig. 5-7. The re-
quired probability is the volume of fyy(x, y) within the specifications. Often a probability such
as this must be determined from a numerical integration.

Let the random variable X denote the time until a computer server connects to your machine
(in milliseconds), and let Y denote the time until the server authorizes you as a valid user (in
milliseconds). Each of these random variables measures the wait from a common starting time
and X < Y. Assume that the joint probability density function for X and Y'is

fir(x,y) = 6 X 10 %exp(—0.001x — 0.002y) forx <y

Reasonable assumptions can be used to develop such a distribution, but for now, our focus is
only on the joint probability density function.

The region with nonzero probability is shaded in Fig. 5-8. The property that this joint
probability density function integrates to 1 can be verified by the integral of fyy(x, y) over this
region as follows:

j J’ny (x,y)dy dx = J J6 X 10767 0-001x=0.002v 77y, | 1y

—o0

©

6 X 10~ 6 J —0.002y dy e 0001xdx

X

—0 002x

70.001)(
0.002 dx

10~ 6

I
o0

= 0.003 j e 0003 g | = 0. 003(

0

0. oo3>
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y y
2000
0
0 x 0 1000 x
Figure 5-8 The joint probability Figure 5-9 Region of integration for
density function of X and Y is the probability that X << 1000 and ¥ <
nonzero over the shaded region. 2000 is darkly shaded.

The probability that X < 1000 and Y < 2000 is determined as the integral over the
darkly shaded region in Fig. 5-9.

1000 2000

P(X = 1000, Y =< 2000) = J an(x, y)dydx

0 x

1000 /2000

=6 X 10—6 j J e—0.00Zydy e—0.0le dx
0 x
o —0.002x —4

e — e

=6 X 107° - = ) 000y g

J ( 0.002 )e o

0
1000

= 0.003 J e—0.003x _ e—4 e—0.0le dx

0

=000 ("5 )~ (o).
- 0.003 ¢\ 0.001

= 0.003(316.738 — 11.578) = 0.915

5-3.2 Marginal Probability Distributions

Similar to joint discrete random variables, we can find the marginal probability distributions
of X and Y from the joint probability distribution.

Definition
If the joint probability density function of continuous random variables X and Y is
Jfxr(x, y), the marginal probability density functions of X and Y are

50 = [ty and 70) = [ ot ) as (5-16)

R, R,

where R, denotes the set of all points in the range of (X, Y) for which X = x and
R, denotes the set of all points in the range of (X, ¥) for which ¥ = y
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Mean and
Variance from
Joint
Distribution

EXAMPLE 5-16

A probability involving only one random variable, say, for example, P(a < X < b),
can be found from the marginal probability distribution of X or from the joint probability
distribution of X and Y. For example, P(a < X < b) equals P(a < X < b, —» < Y < »),
Therefore,

b b b
Pla<X<b)= J foy(x, y)dy dx = J J Sxyr(x,y)dy |dx = fo(X) dx
a R a Ry a
Similarly, £(X’) and V(X) can be obtained directly from the joint probability distribution of X
and Y or by first calculating the marginal probability distribution of X. The details, shown in
the following equations, are similar to those used for discrete random variables.

= ijny(x, y) dxdy (5-17)

and

=
o)
[

o j (x — o) de = T(x - w| | Fntenay |

R,

Jx — x)” frr(x, y) dx dy

R

where Ry denotes the set of all points in the range of (X, Y) for which X = x and
Ry denotes the set of all points in the range of (X, Y)

For the random variables that denote times in Example 5-15, calculate the probability that ¥
exceeds 2000 milliseconds.

This probability is determined as the integral of fyy(x, y) over the darkly shaded region
in Fig. 5-10. The region is partitioned into two parts and different limits of integration are de-
termined for each part.

2000 %
P(Y > 2000) = J J 6 X 1070~ 0-001x=0002y g, f gy
0 2000

4 J' J6 X 10*6e*04OOIX*04002ydy dx

2000 \ x
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2000

0
0 2000 x

Figure 5-10 Region of integration
for the probability that ¥ << 2000 is
darkly shaded and it is partitioned
into two regions with x < 2000 and
x > 2000.

The first integral is

2000
6 X 107° J

0

2000

e—0.0le dx = 6 X 10_6 e—4 Je—0.00Ix dx

o~ 0-002y

—0.002

o

0

6x10°° _,/1— e2>
T 0002 ¢ < 0.001 )~ 00475

The second integral is

F —0.002y | 6
e 6 X 10
X —6 —0.001x — —0.003x
6> 10 J —0.002 |, &= 002 J ¢ d
2000 2000
_6><106< >_ 0,005
0.002 \0.003 '

Therefore,

P(Y > 2000) = 0.0475 + 0.0025 = 0.05.

Alternatively, the probability can be calculated from the marginal probability distribution of ¥
as follows. For y > 0

y

y
() = J6 % 1076700010002y 7 — ¢ s 1()~6p0-002 jeo.omxdx
0
~0.001
=6 X 10—68—0.002)1(6 !

0
v | — 0001y
— 6% 106 —0.002y< )
~0.001 0) 6 %10 "e 0.001

=6 X 1037 0002(] — 70001 fory >0
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We have obtained the marginal probability density function of Y. Now,

©

P(Y > 2000) = 6 X 10~° J e 0002 (1 — 000y gy,

2000
e 10 Ke—o.oozy o ) ~ <e—0.003y
2000 _0003

)

~0.002
=6 X 10—3{ et et ] = 0.05
0.002  0.003

5-3.3 Conditional Probability Distributions

Analogous to discrete random variables, we can define the conditional probability distribution
of Y given X = x.

Definition
Given continuous random variables X and Y with joint probability density function
fxy(x, y), the conditional probability density function of Y given X = x is

fXY(x’ y)
Sx(x)

frix(y) = for  fx(x) >0 (5-18)

The function fy,(y) is used to find the probabilities of the possible values for Y given
that X = x. Let R, denote the set of all points in the range of (X, ¥) for which X = x. The
conditional probability density function provides the conditional probabilities for the values
of Yin the set R,.

Because the conditional probability density function fy(,(y) is a probability density
function for all y in R,, the following properties are satisfied:

(D) fria(») =0
2 J Jrix(y)dy =1

3 P(YreBlXxX=x) = Jfo(y) dy for any set B in the range of ¥

B

(5-19)

It is important to state the region in which a joint, marginal, or conditional probability
density function is not zero. The following example illustrates this.

EXAMPLE 5-17 For the random variables that denote times in Example 5-15, determine the conditional prob-
ability density function for Y given that X = x.
First the marginal density function of x is determined. For x > 0



Figure 5-11 The
conditional probability
density function for Y,
given that x = 1500, is
nonzero over the solid
line.

Definition
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1500

0
0 1500 x

0

fX(x) — j6 X 10_68_0'001X_0'002ydy — 6 X 10—66—0.001x(

X

o~ 0-002y

—0.002

)

—0.002x
) = 0.003¢7 %09 for x>0

— 6 % 10 6—0001x £
6 X107 0.002

This is an exponential distribution with A = 0.003. Now, for 0 < x and x < y the conditional
probability density function is

6 X 106~ 0-001x—0.002y
fY\x(y) = for(e)/fe(x) = 0.003¢0-003x

= 0.002e*002 70002 forg<x and x<y

The conditional probability density function of Y, given that x = 1500, is nonzero on the solid
line in Fig. 5-11.

Determine the probability that Y exceeds 2000, given that x = 1500. That is, determine
P(Y > 2000 | x = 1500).The conditional probability density function is integrated as follows:

P(Y > 2000[x = 1500) = J Frisoo(y) dy = J 0.002¢"-002(1500)=0.002y 77,
2000

2000

0002y

—0.002

0.002¢° (

] . e—4
= 0.002 =0.
2000) 0.002e (0.002) 0.368

Let R, denote the set of all points in the range of (X, Y) for which X = x. The condi-
tional mean of Y given X = x, denoted as E(Y|x) or py|,, is

B 1) = | w0 v
Ry
and the conditional variance of ¥ given X = x, denoted as V(Y| x) or 63, is

Y |x) = j (v = wy) fr(y) dy = J YV fye(¥) dy = i (5-20)

Ry Ry
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EXAMPLE 5-18 For the random variables that denote times in Example 5-15, determine the conditional mean
for Y given that x = 1500.

The conditional probability density function for Y was determined in Example 5-17.
Because fy)1500() is nonzero for y > 1500,

E(Y|x = 1500) = Jy(o_oozeo.ooz(lsoo)0.002y) dy = 0.002¢3 Jyeo.oozy dy
1500 1500

Integrate by parts as follows:

1500 1500
~0.002° 1500>

]Oye‘(wozydy _, 00002y | - I < e—o.oozy> "
—0.002 | 590 —0.002
1500 _, _( 00002y
(—0.002)(—0.002)
~ 1500 _, e’ e
T 0.002° T (0.002)(0.002)  0.002

(2000)

With the constant 0.002¢° reapplied

E(Y|x = 1500) = 2000

5.3.4 Independence

The definition of independence for continuous random variables is similar to the definition for
discrete random variables. If fyy(x, y) = fv(x) fy(») for all x and y, X and Y are independent.

Independence implies that fyy(x, ) = fy(x) fy(y) for all x and y. If we find one pair of x and y
in which the equality fails, X and Y are not independent.

Definition

For continuous random variables X and Y, if any one of the following properties is
true, the others are also true, and X and Y are said to be independent.

(1) far(x,y) = fx(x) fy(y) forallxandy
(2)  fri(y) =fr(y) forall x and y with fy(x) > 0
(3)  fxp(x) = fx(x) forall x and y with fy(y) > 0

(4) P(X€ A,Y € B) = P(X € A)P(Y € B) for any sets 4 and B in the range
of X and Y, respectively. (5-21)

EXAMPLE 5-19 For the joint distribution of times in Example 5-15, the

e Marginal distribution of ¥ was determined in Example 5-16.

e Conditional distribution of ¥ given X = x was determined in Example 5-17.

Because the marginal and conditional probability densities are not the same for all values of
x, property (2) of Equation 5-20 implies that the random variables are not independent. The



EXAMPLE 5-20

EXAMPLE 5-21
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fact that these variables are not independent can be determined quickly by noticing that the
range of (X, Y), shown in Fig. 5-8, is not rectangular. Consequently, knowledge of X changes
the interval of values for Y that receives nonzero probability.

Suppose that Example 5-15 is modified so that the joint probability density function of X and Y
is fyy(x,y) = 2 X 10767 0:001x=0002 for y = (0 and y = 0. Show that X and Y are independ-
ent and determine P(X > 1000, ¥ < 1000).

The marginal probability density function of X is

fr(x) = f 2 X 10707000002 gy = 0,001~ %™ forx > 0
0
The marginal probability density function of y is
() = J 2 X 107 0e” 0000002 gy = 0.002¢” %% for y > 0
0

Therefore, fyy(x, y) = fy(x) fy(») for all x and y and X and Y are independent.
To determine the probability requested, property (4) of Equation 5-21 and the fact that
each random variable has an exponential distribution can be applied.

P(X > 1000, Y < 1000) = P(X > 1000)P(Y < 1000) = e '(1 — e™?) = 0.318

Often, based on knowledge of the system under study, random variables are assumed to be in-
dependent. Then, probabilities involving both variables can be determined from the marginal
probability distributions.

Let the random variables X and Y denote the lengths of two dimensions of a machined part, re-
spectively. Assume that X and Y are independent random variables, and further assume that the
distribution of X is normal with mean 10.5 millimeters and variance 0.0025 (millimeter)® and
that the distribution of Y is normal with mean 3.2 millimeters and variance 0.0036 (millime-
ter)?. Determine the probability that 10.4 < X < 10.6 and 3.15 < Y < 3.25.

Because X and Y are independent,

P(10.4 < X < 10.6,3.15 < ¥ < 3.25) = P(10.4 < X < 10.6)P(3.15 < ¥ < 3.25)

(10.4 — 10.5 10.6 — 10.5) <3.15 —32 325 — 3.2)
= — < A< <Z<—
0.05 0.05 0.06 0.06

= P(—2 < Z<2)P(—0.833 < Z < 0.833) = 0.566

where Z denotes a standard normal random variable.

EXERCISES FOR SECTION 5-3

5-34. Determine the value of ¢ such that the function (a) P(X<2,Y<3) (b) P(X<25)

f(x, y) = cxy for 0 <x <3 and 0 < y < 3 satisfies the () P(1<Y<25) (d PX>18,1<Y<25)
properties of a joint probability density function. (e) E(X) () PX<0,Y<4)

5-35. Continuation of Exercise 5-34. Determine the

following:
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5-36. Continuation of Exercise 5-34. Determine the
following:

(a) Marginal probability distribution of the random variable X
(b) Conditional probability distribution of Y given that X = 1.5
(c) E(Y|X) = 1.5)

(d) P(Y <2]X=15)

(e) Conditional probability distribution of X given that ¥ = 2
5-37. Determine the value of ¢ that makes the function
f(x,¥) = c(x + y) a joint probability density function over the
range 0 <x < 3andx <y <x + 2.

5-38. Continuation of Exercise 5-37. Determine the
following:

(a) PX<1,Y<2) (b P(1<X<2)

(c) P(Y>1) d PX<2,Y<2)

(e) EX)

5-39. Continuation of Exercise 5-37. Determine the
following:

(a) Marginal probability distribution of X

(b) Conditional probability distribution of Y given that X = 1

(c) E(Y|X = 1)

(d P(Y>2]|x=1)

(e) Conditional probability distribution of X given that
Y=2

5-40. Determine the value of ¢ that makes the function

f(x, ) = cxy a joint probability density function over the range

0<x<3and0 <y <nx.

5-41. Continuation of Exercise 5-40. Determine the
following:

(a) PX<1,Y<2) (b) P(1 <X<2)

(c) P(Y>1) d) PX<2,Y<2)

(e) E(X) () EY)

5-42. Continuation of Exercise 5-40. Determine the
following:

(a) Marginal probability distribution of X

(b) Conditional probability distribution of ¥ given X = 1

(c) E(Ylx =1)

(d P(Y>2]|Xx=1)

(e) Conditional probability distribution of X given ¥ = 2
5-43. Determine the value of ¢ that makes the function
f(x,y) = ce”> ¥ a joint probability density function over
the range 0 < xand 0 <y < x.

5-44. Continuation of Exercise 5-43. Determine the
following:

(a) PX<1,Y<2) (b) P(1<X<2)

(c) P(Y>3) d) PX<2,Y<2)

(e) EX) (f) EY)

5-45. Continuation of Exercise 5-43. Determine the
following:

(a) Marginal probability distribution of X

(b) Conditional probability distribution of ¥ given X = 1
(c) E(Ylx =1)

(d) Conditional probability distribution of X given ¥ = 2

5-46. Determine the value of ¢ that makes the function
f(x,y) = ce”> ¥ a joint probability density function over
the range 0 < x and x < y.

5-47. Continuation of Exercise 5-46. Determine the
following:

(a) PX<1,Y<2) (b) P(1<X<2)

(c) P(Y>3) d) P(X<2,Y<2)

(e) E(X) (f) E(Y)

5-48. Continuation of Exercise 5-46. Determine the
following:

(a) Marginal probability distribution of X'

(b) Conditional probability distribution of ¥ given X = 1

() E(Y|X =1)

(d P(Y<20x=1)

(e) Conditional probability distribution of X given ¥ = 2
5-49. Two methods of measuring surface smoothness are
used to evaluate a paper product. The measurements are
recorded as deviations from the nominal surface smoothness
in coded units. The joint probability distribution of the
two measurements is a uniform distribution over the re-
gion 0 <x<4,0<y andx — 1 <y <x + 1. That is,
fxr(x,y) = c forx and y in the region. Determine the value for
¢ such that fyy(x, y) is a joint probability density function.

5-50. Continuation of Exercise 5-49. Determine the

following:

(a) P(X<05,Y<0.5) (b) P(X<05)

(c) E(X) (d) E(Y)

5-51. Continuation of Exercise 5-49. Determine the follow-

ing:

(a) Marginal probability distribution of X

(b) Conditional probability distribution of ¥ given X = 1

(c) E(YIX=1)

(d P(Y<05|x=1)

5-52. The time between surface finish problems in a galva-

nizing process is exponentially distributed with a mean of

40 hours. A single plant operates three galvanizing lines that

are assumed to operate independently.

(a) What is the probability that none of the lines experiences
a surface finish problem in 40 hours of operation?

(b) What is the probability that all three lines experience a sur-
face finish problem between 20 and 40 hours of operation?

(c) Why is the joint probability density function not needed to
answer the previous questions?

5-53. A popular clothing manufacturer receives Internet

orders via two different routing systems. The time between

orders for each routing system in a typical day is known to be

exponentially distributed with a mean of 3.2 minutes. Both

systems operate independently.

(a) What is the probability that no orders will be received in a
5 minute period? In a 10 minute period?

(b) What is the probability that both systems receive two
orders between 10 and 15 minutes after the site is offi-
cially open for business?
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(a) Graph fyx(y) = xe ™ for y > 0 for several values of x.

answer the previous questions? Determine
5-54. The conditional probability distribution of Y given (b) PY<2|X=2) (c) E(Y|X=2)
X =xis fy,(y) = xe”* for y > 0 and the marginal probabil- (d) E(Y|X = x) @) fyr(x,»)
ity distribution of X is a continuous uniform distribution over ® fr(y)

0 to 10.

5-4 MULTIPLE CONTINUOUS RANDOM VARIABLES

EXAMPLE 5-22

Definition

EXAMPLE 5-23

As for discrete random variables, in some cases, more than two continuous random variables
are defined in a random experiment.

Many dimensions of a machined part are routinely measured during production. Let the ran-
dom variables, X;, X, X3, and X, denote the lengths of four dimensions of a part. Then, at least
four random variables are of interest in this study.

The joint probability distribution of continuous random variables, X;, X5, X5..., X,
can be specified by providing a method of calculating the probability that X}, X;, X3, ..., X,
assume a value in a region R of p-dimensional space. A joint probability density function
leXz_,_Xp(xl, Xy, ..., X,) is used to determine the probability that (X, X;, Xj, ..., X)) assume a

value in a region R by the multiple integral of fy, x, . Xp(xl, Xy, ... , X,) over the region R.

A joint probability density function for the continuous random variables X, X,,

Xz, ..., X,, denoted as fy, x, . x (X1, %, ..., X,), satisfies the following properties:

(D Sfox..x (X%, ..., x,) = 0

(2) j J JleXz_,_Xp(xl,xz,...,xp) dx1 dX2...dxp =1

—

(3) For any region B of p-dimensional space

P[(X],Xz,...,)(}]) EB] = jJ folxz_._xp(xl,xz,...,xp) dxldX2...dxp (5'22)
B

Typically, fy,x,. .. X, (X1, X2, ..., x,) is defined over all of p-dimensional space by assum-
ing that leXz»-»Xp(xl’ Xy, ..., x,) = 0 for all points for which fX1X24.4)(,,(X1, X, ... ,X,) is not
specified.

In an electronic assembly, let the random variables X;, X5, X3, X; denote the lifetimes of four
components in hours. Suppose that the joint probability density function of these variables is

_ ~2_—0.001x, — 0.002x, — 0.0015x; — 0.003x
JSxxoxnx, (X1 X2, X3, x4) = 9 X 1077 ! : : ‘

forx; =0,x,=0,x3=0,x, =0

What is the probability that the device operates for more than 1000 hours without any failures?
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EXAMPLE 5-24

Definition

The requested probability is P(X; > 1000, X, > 1000, X; > 1000, X, > 1000), which
equals the multiple integral of fy, , x, x,(x1, X2, X3, x4) over the region x; > 1000, x, > 1000,
x3 > 1000, x, > 1000. The joint probability density function can be written as a product of
exponential functions, and each integral is the simple integral of an exponential function.
Therefore,

P(X, > 1000, X, > 1000, X3 > 1000, X; > 1000) = ¢~ 271573 = 0.00055

Suppose that the joint probability density function of several continuous random vari-
ables is a constant, say ¢ over a region R (and zero elsewhere). In this special case,

J J J’leXz'_,Xp(xl,xz, ceesXp) dxy dx; ... dx, = ¢ X (volume of region R) = 1

by property (2) of Equation 5-22. Therefore, ¢ = 1/volume (R). Furthermore, by property (3)
of Equation 5-22.

P[(X}, Xy, ..., X,) € B]

JJ JleXZ-“Xp(xl’xz’ ,xp) dxl de ...dxp = ¢ X volume (B mR)
B

volume (B M R)
volume (R)

When the joint probability density function is constant, the probability that the random vari-
ables assume a value in the region B is just the ratio of the volume of the region B M R to the
volume of the region R for which the probability is positive.

Suppose the joint probability density function of the continuous random variables X and Y is
constant over the region x> + y? = 4. Determine the probability that X*> + ¥Y? < 1.

The region that receives positive probability is a circle of radius 2. Therefore, the area of
this region is 41r. The area of the region x> + y* = 1 is 7. Consequently, the requested prob-
ability is w/(4m) = 1/4.

If the joint probability density function of continuous random variables X;, X, ..., X,
is leszXp(xl, X; ..., X,) the marginal probability density function of X; is

Sfx(x) = JJ JfXIXZ___Xp(xl,xz, s Xp)dxydxy odx oy dxgyy ..o dx,  (5-23)

R,

X

where R, denotes the set of all points in the range of Xj, X,, ..., X, for which
)(i = X;.
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As for two random variables, a probability involving only one random variable, say, for
example P(a < X; < b), can be determined from the marginal probability distribution of X;
or from the joint probability distribution of X, X5, ..., X,,. That s,

Pla<X;<b)=P(-o <X <o,..,—0<)X,_;<0oag<X<bh,
—OO<)(I+1<OO”—OO<)(‘D<OO)

Furthermore, E(X;) and V(X;), fori = 1,2, ..., p, can be determined from the marginal prob-
ability distribution of X; or from the joint probability distribution of X;, X5, ..., X,, as follows.

EX) = j j jxileXz._.Xp(xl,xz,...,xp)dxl dx, ...dx,

—o

and (5-24)

nXx) = J J j (xi = MX,-)zleXz...Xp(xlaxz, vy Xp) dxy dxy .. dx,,

The probability distribution of a subset of variables such as X}, X5, ..., X}, £ < p, canbe
obtained from the joint probability distribution of X}, X;, Xj, ..., X, as follows.

If the joint probability density function of continuous random variables X;, X, ..., X,
iS fx, x,...x,(*1, X2, .., X,), the probability density function of X, X,, ..., X;, k <p,
is

leXz.A.Xk(xlaxZ, ey Xp)

= J j JleXz‘“Xp(xl,xz,...,xp)dxk+1dxk+2...dxp (5'25)
R

XXy X

where R, ,, . denotes the set of all points in the range of X, X5, ..., X; for which
X] = xl,Xz = X2, ... ,Xk = Xg-

Conditional Probability Distribution
Conditional probability distributions can be developed for multiple continuous random vari-
ables by an extension of the ideas used for two continuous random variables.

fX, X, X5 X, Xs(xla X2, X3, X4, Xs)

fXAXS(X49 Xs)

fX1X2X3\x4x5(xl’ X2, X3) =

for fx, x,(x4, x5) > 0.
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Definition

EXAMPLE 5-25

EXAMPLE 5-26

The concept of independence can be extended to multiple continuous random variables.

Continuous random variables X|, X5, ..., X, are independent if and only if

Sk x X% - Xp) = fr ()i (x2) - S (xp) forallxy,x,,....x,  (5-26)

Similar to the result for only two random variables, independence implies that Equation 5-26
holds for all xy, x,, ... , x,. If we find one point for which the equality fails, X}, X, ..., X, are
not independent. It is left as an exercise to show that if X}, X, ..., X, are independent,

P(Xl EA1!X2 eAz,,)(p EAP) = P(Xl eAl)P(Xz eAz)P()(p EAP)

for any regions A, A, ..., 4, in the range of X, X5, ..., X, respectively.

In Chapter 3, we showed that a negative binomial random variable with parameters p and r
can be represented as a sum of 7 geometric random variables X;, X5, ..., X,. Each geometric
random variable represents the additional trials required to obtain the next success. Because
the trials in a binomial experiment are independent, X;, X, ..., X, are independent random
variables.

Suppose Xi, X,, and X; represent the thickness in micrometers of a substrate, an active layer,
and a coating layer of a chemical product. Assume that X;, X,, and X; are independent
and normally distributed with w; = 10000, p, = 1000, p3 = 80, oy = 250, o, = 20, and
o3 = 4, respectively. The specifications for the thickness of the substrate, active layer, and
coating layer are 9200 < x; < 10800, 950 < x, < 1050, and 75 < x3 < 85, respectively.
What proportion of chemical products meets all thickness specifications? Which one of the
three thicknesses has the least probability of meeting specifications?

The requested probability is P(9200 < X; < 10800, 950 < X, < 1050, 75 < X3 < 85.
Because the random variables are independent,

P(9200 < X; < 10800, 950 < X, < 1050, 75 < X; < 85)
= P(9200 < X; < 10800)P(950 < X, < 1050)P(75 < X; < 85)

After standardizing, the above equals
P(=32<Z<32)P(-25<Z<25P(—125<Z<125)

where Z is a standard normal random variable. From the table of the standard normal distri-
bution, the above equals

(0.99862)(0.98758)(0.78870) = 0.7778

The thickness of the coating layer has the least probability of meeting specifications.
Consequently, a priority should be to reduce variability in this part of the process.
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5-55. Suppose the random variables X, Y, and Z have the joint

probability density function f(x,y,z) = 8xyz for 0 <x < 1,

0 <y<1,and 0 <z < 1. Determine the following:

(a) P(X<05) (b) PIX<0.5Y<05)

(c) P(Z<2) (d PX<050rZ <2)

(e) E(X)

5-56. Continuation of Exercise 5-55. Determine the following:

(a) P(X<0.5|Y=0.5)

(b) P(X<0.5,Y<0.5]Z=0.8)

5-57. Continuation of Exercise 5-55. Determine the following:

(a) Conditional probability distribution of X given that ¥ =
0.5and Z = 0.8

(b) P(X<05]Y=05,Z=0.8)

5-58. Suppose the random variables X, Y, and Z have

the joint probability density function fyy,(x, y, z) = ¢ over

the cylinder x* + »* < 4 and 0 < z < 4. Determine the

following.

(a) The constant c¢ so that fyy,(x, y, z) is a probability density

function
(b) P(X? + Y2 <2)
(c) P(z<2)
(d) E(X)
5-59. Continuation of Exercise 5-58. Determine the
following:
(@ PX<1ly=1) () PX>+Y2<l1|z=1)
5-60. Continuation of Exercise 5-58. Determine the condi-

tional probability distribution of Z given that X = 1 and
Y=1.

5-61. Determine the value of ¢ that makes fyy,(x, y, z) = ¢
a joint probability density function over the region x > 0,
y>0,z>0,andx + y+z<1.

5-62. Continuation of Exercise 5-61. Determine the following:
(a) P(X<05,Y<0.5,Z2<0.5)

(b) P(X <0.5,Y<0.5)

(c) P(X<0.5)

(d) E(X)

5-63. Continuation of Exercise 5-61. Determine the following:
(a) Marginal distribution of X

(b) Joint distribution of X and Y

5.5 COVARIANCE AND CORRELATION

(c) Conditional probability distribution of X given that ¥ =
0.5and Z = 0.5

(d) Conditional probability distribution of X given that
Y=05

5-64. The yield in pounds from a day’s production is nor-

mally distributed with a mean of 1500 pounds and standard

deviation of 100 pounds. Assume that the yields on different

days are independent random variables.

(a) What is the probability that the production yield exceeds
1400 pounds on each of five days next week?

(b) What is the probability that the production yield exceeds
1400 pounds on at least four of the five days next week?

5-65. The weights of adobe bricks used for construction are

normally distributed with a mean of 3 pounds and a standard

deviation of 0.25 pound. Assume that the weights of the bricks

are independent and that a random sample of 20 bricks is

selected.

(a) What is the probability that all the bricks in the sample
exceed 2.75 pounds?

(b) What is the probability that the heaviest brick in the sam-
ple exceeds 3.75 pounds?

5-66. A manufacturer of electroluminescent lamps knows

that the amount of luminescent ink deposited on one of

its products is normally distributed with a mean of 1.2

grams and a standard deviation of 0.03 grams. Any lamp

with less than 1.14 grams of luminescent ink will fail

to meet customer’s specifications. A random sample of

25 lamps is collected and the mass of luminescent ink on

each is measured.

(a) What is the probability that at least 1 lamp fails to meet
specifications?

(b) What is the probability that 5 lamps or fewer fail to meet
specifications?

(c) What is the probability that all lamps conform to specifi-
cations?

(d) Why is the joint probability distribution of the 25 lamps
not needed to answer the previous questions?

When two or more random variables are defined on a probability space, it is useful to describe
how they vary together; that is, it is useful to measure the relationship between the variables.
A common measure of the relationship between two random variables is the covariance. To
define the covariance, we need to describe the expected value of a function of two random
variables (X, Y). The definition simply extends that used for a function of a single random

variable.
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Definition

EXAMPLE 5-27

Definition

Figure 5-12  Joint
distribution of X'and Y
for Example 5-27.

EE h(x,y) fyxy(x,y) X, Ydiscrete
ElWx, ] =1 .~ (5-27)

JJ h(x, y) fxy(x, y)dxdy X, Y continuous

R

That is, E[h(X, Y)] can be thought of as the weighted average of /(x, y) for each point in the
range of (X, Y). The value of E[A(X, Y)] represents the average value of (X, Y) that is expected
in a long sequence of repeated trials of the random experiment.

For the joint probability distribution of the two random variables in Fig. 5-12, calculate
E[(X = px)(Y = py)]-

The result is obtained by multiplying x — wy times y — Wy, times fyy(x, y) for each point
in the range of (X, Y). First, wy and ., are determined from Equation 5-3 as
py=1X03+3X07=24
and
py=1X03+2X04+3X03=2.0

Therefore,

E[(X — mo(Y — uy)] = (1 — 2.4)(1 — 2.0) X 0.1
+ (1 = 2.4)(2 — 2.0) X 02 + (3 — 2.4)(1 — 2.0) X 0.2
+(3—24)2 —2.0) X 02 + (3~ 24)(3 —2.0) X 03 =02

The covariance is defined for both continuous and discrete random variables by the same formula.

The covariance between the random variables X and Y, denoted as cov(X, Y) or oy, is

oxy = E[(X = py)(Y — wy)] = E(XY) — pxiny (5-28)
y
3 ©03
2 °0.2 °0.2
e 0.1 °0.2
1 2 3 x
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If the points in the joint probability distribution of X and Y that receive positive probabil-
ity tend to fall along a line of positive (or negative) slope, o yy is positive (or negative). If the
points tend to fall along a line of positive slope, X tends to be greater than py when Y is greater
than py. Therefore, the product of the two terms x — py and y — pwy tends to be positive.
However, if the points tend to fall along a line of negative slope, x — .y tends to be positive
when y — py is negative, and vice versa. Therefore, the product of x — pwyand y — wy tends
to be negative. In this sense, the covariance between X and Y describes the variation between
the two random variables. Figure 5-13 shows examples of pairs of random variables with
positive, negative, and zero covariance.

Covariance is a measure of linear relationship between the random variables. If the re-
lationship between the random variables is nonlinear, the covariance might not be sensitive to
the relationship. This is illustrated in Fig. 5-13(d). The only points with nonzero probability
are the points on the circle. There is an identifiable relationship between the variables. Still,
the covariance is zero.

The equality of the two expressions for covariance in Equation 5-28 is shown for contin-
uous random variables as follows. By writing the expectations as integrals,

E[(Y = p)X — py)] = (x = w0y — Ky) frr(x, y) dxdy

[xy — wyy — xpy + pxiy] fry(x, y) dxdy

A E bt
é"g é%t@

y
L] L]
L] L] L]
L[] [ ] L] L] y
L] [ ] L ] L] ® ° °
L] L] L] L ] ° ° °
L] ] L]
[ ] L] L] L]
L] L ]
x x
(a) Positive covariance (b) Zero covariance
y All points are of Y
. o equal probability

(c¢) Negative covariance (d) Zero covariance
Figure 5-13  Joint probability distributions and the sign of covariance between X and Y.
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Now
J JHnyH(xsy) dxdy = py J J)’f)ﬂ/(&ﬂ dxdy | = pxpy

Therefore,
E[(X = p)(Y — ny)] = Xfxy(x,p) dxdy — pyby — pxiy T Bxihy

xyfxy(x, ) dxdy — pywy = E(XY) — pyuy

é%é? é"i%
e

EXAMPLE 5-28 In Example 5-1, the random variables X and Y are the number of acceptable and suspect bits
among four bits received during a digital communication, respectively. Is the covariance

between X and Y positive or negative?
Because X and Y are the number of acceptable and suspect bits out of the four received,

X + Y =4 If Xis near 4, Y must be near 0. Therefore, X and Y have a negative covariance.
This can be verified from the joint probability distribution in Fig. 5-1.

There is another measure of the relationship between two random variables that is often
easier to interpret than the covariance.

Definition
The correlation between random variables X and Y, denoted as pyy, is

cov(X, Y) Oxy (5-29)

P O Y)  oxOy

Because oy > 0 and oy > 0, if the covariance between X and Y is positive, negative, or zero,
the correlation between X and Y is positive, negative, or zero, respectively. The following

result can be shown.

For any two random variables X and Y

=y =41 (5-30)

The correlation just scales the covariance by the standard deviation of each variable.
Consequently, the correlation is a dimensionless quantity that can be used to compare the
linear relationships between pairs of variables in different units.
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If the points in the joint probability distribution of X and Y that receive positive probabil-
ity tend to fall along a line of positive (or negative) slope, pyy is near +1 (or —1). If pyy
equals +1 or —1, it can be shown that the points in the joint probability distribution that
receive positive probability fall exactly along a straight line. Two random variables with
nonzero correlation are said to be correlated. Similar to covariance, the correlation is a meas-
ure of the linear relationship between random variables.

For the discrete random variables X and Y with the joint distribution shown in Fig. 5-14,
determine o yy and pyy.

The calculations for E(XY), E(X), and V(X) are as follows.

EXY)=0X0X02+1X1X01+1X2X01+2xX1XD0.l
+2X2X01+3X3X%X04=45
EX)=0X02+1X02+2X02+3X04=1.8
VX)=(0—1.87xX02+ (1 —18?%*%x02+(2—18)?%x02
+(3—-1.8?%x04=136

Because the marginal probability distribution of Y is the same as for X, E(Y) = 1.8 and
V(Y) = 1.36. Consequently,

oyxy = E(XY) — E(X)E(Y) = 4.5 — (1.8)(1.8) = 1.26
Furthermore,

PXr = axoy T (V1.36)(V1.36)

= 0.926

Suppose that the random variable X has the following distribution: P(X = 1) = 0.2,
PX=2)=0.6,P(X=3)=02.LetY =2X + 5. Thatis, P(Y = 7) = 0.2, P(Y = 9) = 0.6,
P(Y = 11) = 0.2. Determine the correlation between X and Y. Refer to Fig. 5-15.

Because X and Y are linearly related, p = 1. This can be verified by direct calculations:
Try it.

For independent random variables, we do not expect any relationship in their joint prob-
ability distribution. The following result is left as an exercise.

y y

3 e 0.4 11 °© 0.2
2 (01 0.1 9 ® 0.6

1 0.1 0.1 7 e 0.2

p=1
0.2

Qe

0 1 2 3 x 1 2 3 x

Figure 5-14 Joint distribution for Figure 5-15 Joint distribution for
Example 5-29. Example 5-30.
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If X and Y are independent random variables,

EXAMPLE 5-31 For the two random variables in Fig. 5-16, show that oy, = 0.

The two random variables in this example are continuous random variables. In this case
E(XY) is defined as the double integral over the range of (X, Y). That is,

4 2 47 2 4
1 1 2
E(XY) = “xyfxy(x,y)dxdy=l6f szyzdx dy=16Jy2 /3
00 0 0 0 0
4
—lf 2[8/3]d . °/3 ‘ —1[64/3]—32/9
T 16) 7 RN R N
0
Also,
42 4T 2 4
1 ) 1 s
EX) = | | xforlx, y)dxdy = = Xodx \dy = e | | X/3] |dy
00 0 0 0 0
- L 2/2 ' [8/3] = l[16/2] =4/3
16777, 6
42 4 2 4 5
1 1
E(Y):JJnynydXdy_6Jy2 dex dy=l6J’y2 /2| |dy
00 0 0 0 0
— 2 3 ! _1 —
= 16|73 | = gl64/3] = 8/3
y
4
3
fxy@y) = %6xy
2
1
0 1 2 x

Figure 5-16 Random variables
with zero covariance from Example
5-31.
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Thus,
E(XY) — E(XX)E(Y) = 32/9 — (4/3)(8/3) = 0

It can be shown that these two random variables are independent. You can check that
Jxr(x, y) = fx(x)fy(y) for all x and y.

However, if the correlation between two random variables is zero, we cannot immediately
conclude that the random variables are independent. Figure 5-13(d) provides an example.

EXERCISES FOR SECTION 5-5

5-67.

Determine the covariance and correlation for the
following joint probability distribution:

5-73. Determine the value for ¢ and the covariance and cor-
relation for the joint probability density function fyy(x, v) = ¢
over therange 0 <x <5, 0<y,andx — 1 <y <x + 1.

v ; 31 g 2 5-74. Determine the covariance and correlation for the joint
JJ; () 1/8 1/4 12 1/8 probability density function fyy(x, y) = 6 X 1076~ 0-001x=0.002
XY\ A

5-68.

X —1

Determine the covariance and correlation for the
following joint probability distribution:

over the range 0 < x and x < y from Example 5-15.

5-75. Determine the covariance and correlation for the joint

probability density function fyy(x, y) = e * ¥ over the range

0<xand 0 < y.

—0.5 0.5 1

9 . ) ) 5-76.  Suppose that the correlation between X and Y'is p. For
Y constants a, b, ¢, and d, what is the correlation between the
Jor(x, ) 1/8 1/4 1/2 1/8 random variables U = aX + band V = c¢Y + d?
5-69. Determine the value for ¢ and the covariance and 5-77.  The joint probability distribution is
correlation for the joint probability mass function fyy(x, y) =
X -1 0 0 1
c(x +y)forx =1,2,3andy = 1,2, 3. 0 1 ] 0
5-70. Determine the covariance and correlation for the joint Y
probability distribution shown in Fig. 5-4(a) and described in Jir(x,¥) 1/4 1/4 174 1/4
Example 5-8. Show that the correlation between X and Y is zero, but Xand Y
5-71. Determine the covariance and correlation for X; and are not independent.

X, in the joint distribution of the multinomial random vari-
ables X}, X, and X; in with p; = p, = p; = 4 and n = 3. What
can you conclude about the sign of the correlation between
two random variables in a multinomial distribution?

5-72. Determine the value for ¢ and the covariance and cor-
relation for the joint probability density function fyy(x, y) =

5-78. Suppose X and Y are independent continuous random
variables. Show that oy, = 0.

cxyovertherange 0 < x <3 and 0 <y < x.

5-6 BIVARIATE NORMAL DISTRIBUTION

EXAMPLE 5-32

An extension of a normal distribution to two random variables is an important bivariate prob-
ability distribution.

At the start of this chapter, the length of different dimensions of an injection-molded part was
presented as an example of two random variables. Each length might be modeled by a normal
distribution. However, because the measurements are from the same part, the random
variables are typically not independent. A probability distribution for two normal random vari-
ables that are not independent is important in many applications. As stated at the start of the
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Definition

EXAMPLE 5-33

fXY(x5 y)

2.4

Figure 5-17 Examples

chapter, if the specifications for X and Y are 2.95 to 3.05 and 7.60 to 7.80 millimeters, respec-
tively, we might be interested in the probability that a part satisfies both specifications; that is,
P(2.95 < X <3.05,7.60 <Y < 7.80).

The probability density function of a bivariate normal distribution is
il ) 1 { ~1 [(X_Mx)z
X V5 0x Oy, oy, ys P) = ex;
L T CUEY O
2p(x — = — )
_ 200 w0 — ) = ) ]} (5:32)

+
OxOy o

for —o0 < x < and — <y < %, with parameters oy > 0, gy > 0, —0 < py < %,
—o < py<oand -1 <p<1.

The result that fyy(x, v; 0y, Oy, Ly by, p) Integrates to 1 is left as an exercise. Also, the bivari-
ate normal probability density function is positive over the entire plane of real numbers.

Two examples of bivariate normal distributions are illustrated in Fig. 5-17 along with
corresponding contour plots. Each curve on the contour plots is a set of points for which the
probability density function is constant. As seen in the contour plots, the bivariate normal
probability density function is constant on ellipses in the (x, y) plane. (We can consider a circle
to be a special case of an ellipse.) The center of each ellipse is at the point (iy, py). If p > 0
(p < 0), the major axis of each ellipse has positive (negative) slope, respectively. If p = 0, the
major axis of the ellipse is aligned with either the x or y coordinate axis.

1

V2w
normal distribution with oy = 1, oy = 1, py = 0, py = 0, and p = 0. This probability density
function is illustrated in Fig. 5-18. Notice that the contour plot consists of concentric circles about
the origin.

0 5(x2 412
e 0.5(x*+)7)

The joint probability density function fyy(x, y) = is a special case of a bivariate

By completing the square in the exponent, the following results can be shown. The details
are left as an exercise.

@)

KX

of bivariate normal distributions.



Marginal
Distributions of
Bivariate Normal
Random Variables

5.6 BIVARIATE NORMAL DISTRIBUTION 179

X
Figure 5-18 Bivariate normal probability density Figure 5-19 Marginal probability
function withoy = 1,0, = 1,p =0, py = 0, and density functions of a bivariate
wy = 0. normal distribution.

If X and Y have a bivariate normal distribution with joint probability density fyy(x, y;
Oy Oy, Ly Ly P), the marginal probability distributions of X and Y are normal
with means py and pyand standard deviations oy and oy, respectively. (5-33)

Figure 5-19 illustrates that the marginal probability distributions of X and Y are normal.

Furthermore, as the notation suggests, p represents the correlation between X and Y. The
following result is left as an exercise.

If Xand Y have a bivariate normal distribution with joint probability density function
for(x, y; 0x, Oy, xs oy, P), the correlation between X and Y is p. (5-34)

The contour plots in Fig. 5-17 illustrate that as p moves from zero (left graph) to 0.9 (right
graph), the ellipses narrow around the major axis. The probability is more concentrated about
a line in the (x, y) plane and graphically displays greater correlation between the variables. If
p = —1 or +1, all the probability is concentrated on a line in the (x, y) plane. That is, the
probability that X and Y assume a value that is not on the line is zero. In this case, the bivari-
ate normal probability density is not defined.

In general, zero correlation does not imply independence. But in the special case that X

and Y have a bivariate normal distribution, if p = 0, X and Y are independent. The details are
left as an exercise.

If X and Y have a bivariate normal distribution with p = 0, X and Y are independent.
(5-35)
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An important use of the bivariate normal distribution is to calculate probabilities involving
two correlated normal random variables.

EXAMPLE 5-34

Suppose that the X and Y dimensions of an injection-molded part have a bivariate normal

distribution with oy = 0.04, oy = 0.08. py = 3.00. wy = 7.70, and p = 0.8. Then, the prob-
ability that a part satisfies both specifications is

P(2.95 < X < 3.05,7.60 < Y < 7.80)

This probability can be obtained by integrating fyy(X, ¥; Oy, Oy Wy Ly, p) Over the region
2.95 <x < 3.05and 7.60 < y < 7.80, as shown in Fig. 5-7. Unfortunately, there is often no
closed-form solution to probabilities involving bivariate normal distributions. In this case, the
integration must be done numerically.

EXERCISES FOR SECTION 5-6

5-79. Let X and Y represent concentration and viscosity of a
chemical product. Suppose X and Y have a bivariate normal
distribution with oy = 4, oy = 1, wy = 2, and py = 1. Draw
a rough contour plot of the joint probability density function
for each of the following values for p:

(@p=0 (b) p=108
(c) p=-08
5-80. Let X and Y represent two dimensions of an injec-

tion molded part. Suppose X and Y have a bivariate normal
distribution with oy = 0.04, o, = 0.08, pny = 3.00,
wy = 7.70, and py = 0. Determine P(2.95 < X < 3.05,
7.60 < Y < 7.80).

5-81. In the manufacture of electroluminescent lamps,
several different layers of ink are deposited onto a plastic
substrate. The thickness of these layers is critical if specifi-
cations regarding the final color and intensity of light of
the lamp are to be met. Let X and Y denote the thickness
of two different layers of ink. It is known that X is nor-
mally distributed with a mean of 0.1 millimeter and a
standard deviation of 0.00031 millimeter, and Y is also
normally distributed with a mean of 0.23 millimeter and a
standard deviation of 0.00017 millimeter. The value of p for
these variables is equal to zero. Specifications call for a
lamp to have a thickness of the ink corresponding to X in
the range of 0.099535 to 0.100465 millimeters and Y in
the range of 0.22966 to 0.23034 millimeters. What is the
probability that a randomly selected lamp will conform to
specifications?

5-82. Suppose that X and Y have a bivariate normal distri-

bution with joint probability density function fyy (x, y; oy, Oy,

x> oy P)-

(a) Show that the conditional distribution of Y, given that
X = x is normal.

(b) Determine E(Y|X = x).

(c) Determine V(Y|X = x).

5-83. If X and Y have a bivariate normal distribution with

p = 0, show that X and Y are independent.

5-84. Show that the probability density function fy,(x, y;

Oy Oy My, Ly, p) Of a bivariate normal distribution integrates

to one. [Hint: Complete the square in the exponent and use the

fact that the integral of a normal probability density function

for a single variable is 1.]

5-85. If X and Y have a bivariate normal distribution with

joint probability density fyy(x, ¥; Oy, Oy Ky, My P), Show

that the marginal probability distribution of X is normal

with mean Wy and standard deviation oy. [Hint: Complete

the square in the exponent and use the fact that the integral

of a normal probability density function for a single variable

is 1.]

5-86. If X and Y have a bivariate normal distribution with

joint probability density fyy(x, v; Oy, Oy, Iy, Ly p), Show that

the correlation between X and Y is p. [Hint: Complete the

square in the exponent].

5.7 LINEAR COMBINATIONS OF RANDOM VARIABLES

A random variable is sometimes defined as a function of one or more random variables.
The CD material presents methods to determine the distributions of general functions of
random variables. Furthermore, moment-generating functions are introduced on the CD
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and used to determine the distribution of a sum of random variables. In this section, results
for linear functions are highlighted because of their importance in the remainder of the
book. References are made to the CD material as needed. For example, if the random vari-
ables X and X, denote the length and width, respectively, of a manufactured part, ¥ = 2.X;
+ 2X, is a random variable that represents the perimeter of the part. As another example,
recall that the negative binomial random variable was represented as the sum of several
geometric random variables.

In this section, we develop results for random variables that are linear combinations of
random variables.

Definition

Given random variables X, X5, ..., X, and constants ¢y, ¢, ... , Cp,

Y = Cle aF CzXz AP oeo qp Cpo (5-36)

is a linear combination of X, X;,..., X,,.

Now, E(Y) can be found from the joint probability distribution of X;, X, ..., X, as follows.
Assume X}, X, ..., X, are continuous random variables. An analogous calculation can be used
for discrete random variables.

J (crx1 + Xy + -+ X)) fxx,. x, (X1 Xo oo, Xp) dxy Xy L dx,,

E(Y)ZI

é%éﬂ é%g

+

o

)
é%‘xé%gé’ 3

e
.. j xleIXZ'”Xp(xl,xz, ,xp) dxl dX2...dxp
—o0
xzleXz'“Xp(xl,xz,...,xp) dxl de...dxp + s ey

xprIXr“Xp(xl,xz, ,xp) dxl dX2 dxp

L s l——
L s l—

By using Equation 5-24 for each of the terms in this expression, we obtain the following.

Mean of a
Linear IfY=cX| + Xy + - + ¢, X,
Combination
E(Y) =S clE(Xl) aF CzE(Xz) JF cco ¢ CPE()(P) (5'37)

Furthermore, it is left as an exercise to show the following.
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Variance of a
Linear
Combination

EXAMPLE 5-35

EXAMPLE 5-36

If X, X5, ..., X, are random variables, and ¥ = ¢ X; + ¢, X, + -+ + ¢, X, then in
general

NY) = V(X)) + aV(Xy) + - + aV(X,) + 2D D cejcov(X, X)) (5-38)

i<j
If X3, X, ..., X, are independent,

NY) = V(X)) + aV(X) + - + oV(X,) (5-39)

Note that the result for the variance in Equation 5-39 requires the random variables to be
independent. To see why the independence is important, consider the following simple exam-
ple. Let X, denote any random variable and define X, = —X,. Clearly, X, and X, are not inde-
pendent. In fact, pyy = —1. Now, ¥ = X; + X, is 0 with probability 1. Therefore, V(Y) = 0,
regardless of the variances of X; and X.

In Chapter 3, we found that if Y is a negative binomial random variable with parameters p and
r, Y =X + X, + -+ X, where each X; is a geometric random variable with parameter
p and they are independent. Therefore, E(X;) = 1/p and E(X;) = (1 — p)/p>. From Equation
5-37, E(Y) = r/p and from Equation 5-39, V(Y) = r(1 — p)/p°.

An approach similar to the one applied in the above example can be used to verify the
formulas for the mean and variance of an Erlang random variable in Chapter 4.

Suppose the random variables X; and X, denote the length and width, respectively, of a man-
ufactured part. Assume E(X,) = 2 centimeters with standard deviation 0.1 centimeter and
E(X,) = 5 centimeters with standard deviation 0.2 centimeter. Also, assume that the covari-
ance between X, and X, is —0.005. Then, ¥ = 2X, + 2X, is a random variable that represents
the perimeter of the part. From Equation 5-36,

E(Y) = 2(2) + 2(5) = 14 centimeters
and from Equation 5-38

V(Y) = 2%(0.1%) + 2%(0.2%) + 2 X 2 X 2(—0.005)
= 0.04 + 0.16 — 0.04 = 0.16 centimeters squared

Therefore, the standard deviation of Y is 0.16'/ 2 = 0.4 centimeters.

The particular linear combination that represents the average of p random variables, with
identical means and variances, is used quite often in the subsequent chapters. We highlight the
results for this special case.
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IfX=(X +X+ - +X)/pwithEX) = pfori = 1,2,...,p
EX) = (5-40a)

if X, X;, ..., X, are also independent with V(X;) = o’ fori=1,2,...,p,

(5-40b)

The conclusion for V(X ) is obtained as follows. Using Equation 5-39, with ¢; = 1/p and

V(X;) = o?, yields

V()?) = (1/p)2(r2 + o+ (1/[9)20'2 = o’/p

. J

p terms

Another useful result concerning linear combinations of random variables is a reproduc-

tive property that holds for independent, normal random variables.

If X;, X,, ..., X, are independent, normal random variables with E(X;) = p; and
V(X;) = o7, fori = 1,2,...,p,

Y=cXi + X, + -+ ¢,X,
is a normal random variable with
E(Y)=cip + copp + - + ol
and

nYy) = Aot + ot + - + cf,(rf, (5-41)

The mean and variance of Y follow from Equations 5-37 and 5-39. The fact that ¥ has a

nor-

mal distribution can be obtained from moment-generating functions discussed in Section 5-9

in the CD material.

Let the random variables X| and X, denote the length and width, respectively, of a manufac-
tured part. Assume that X, is normal with E(X;) = 2 centimeters and standard deviation
0.1 centimeter and that X, is normal with E£(X,) = 5 centimeters and standard deviation 0.2
centimeter. Also, assume that X; and X, are independent. Determine the probability that the

perimeter exceeds 14.5 centimeters.
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Then, Y = 2X, + 2X, is a normal random variable that represents the perimeter of the
part. We obtain, £(Y) = 14 centimeters and the variance of Y is

M(Y)=4X0.1> + 4 X 022 = 0.0416
Now,

P(Y > 14.5) = P[(Y — py)/oy > (145 — 14)/7/0.0416]
= P(Z> 1.12) = 0.13

Soft-drink cans are filled by an automated filling machine. The mean fill volume is 12.1 fluid
ounces, and the standard deviation is 0.1 fluid ounce. Assume that the fill volumes of the cans
are independent, normal random variables. What is the probability that the average volume of

10 cans selected from this process is less than 12 fluid ounces?

Let X;, X, ..

., Xj denote the fill volumes of the 10 cans. The average fill volume

(denoted as X) is a normal random variable with

E(X) =121

Consequently,

P(X < 12)

EXERCISES FOR SECTION 5-7

— 017
and V(X) = o 0.001

X—py 12-121
= < -
Pl 7ox 10.001

= P(Z < —3.16) = 0.00079

5-87. 1If X and Y are independent, normal random variables
with E(X) =0, MX)=4, EY)=10, and Y)=09.
Determine the following:
(a) EQ2X + 3Y)

(c) PQX +3Y<30) (d) P2X + 3Y<40)

5-88. Suppose that the random variable X represents the
length of a punched part in centimeters. Let ¥ be the length
of the part in millimeters. If £(X) = 5 and V(X) = 0.25, what
are the mean and variance of Y?

(b) V(2X + 3Y)

5-89. A plastic casing for a magnetic disk is composed of

two halves. The thickness of each half is normally distributed

with a mean of 2 millimeters and a standard deviation of

0.1 millimeter and the halves are independent.

(a) Determine the mean and standard deviation of the total
thickness of the two halves.

(b) What is the probability that the total thickness exceeds
4.3 millimeters?

5-90. In the manufacture of electroluminescent lamps, sev-

eral different layers of ink are deposited onto a plastic sub-

strate. The thickness of these layers is critical if specifications

regarding the final color and intensity of light of the lamp are

to be met. Let X and Y denote the thickness of two different

layers of ink. It is known that X is normally distributed with a

mean of 0.1 millimeter and a standard deviation of 0.00031

millimeter and Y is also normally distributed with a mean of

0.23 millimeter and a standard deviation of 0.00017 millime-

ter. Assume that these variables are independent.

(a) If a particular lamp is made up of these two inks only,
what is the probability that the total ink thickness is less
than 0.2337 millimeter?

(b) A lamp with a total ink thickness exceeding 0.2405 mil-
limeters lacks the uniformity of color demanded by the
customer. Find the probability that a randomly selected
lamp fails to meet customer specifications.

5-91. The width of a casing for a door is normally distrib-

uted with a mean of 24 inches and a standard deviation of

1/8 inch. The width of a door is normally distributed with a

mean of 23 and 7/8 inches and a standard deviation of 1/16

inch. Assume independence.

(a) Determine the mean and standard deviation of the differ-
ence between the width of the casing and the width of the
door.
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A

| A |
Figure 5-20 Figure for the
U-shaped component.

(b) What is the probability that the width of the casing minus
the width of the door exceeds 1/4 inch?

(c) What is the probability that the door does not fit in the
casing?

5-92. A U-shaped component is to be formed from the three

parts 4, B, and C. The picture is shown in Fig. 5-20. The length

of 4 is normally distributed with a mean of 10 millimeters and

a standard deviation of 0.1 millimeter. The thickness of parts B

and C is normally distributed with a mean of 2 millimeters and

a standard deviation of 0.05 millimeter. Assume all dimensions

are independent.

(a) Determine the mean and standard deviation of the length
of the gap D.

(b) What is the probability that the gap D is less than 5.9 mil-
limeters?

5-93. Soft-drink cans are filled by an automated filling ma-

chine and the standard deviation is 0.5 fluid ounce. Assume

that the fill volumes of the cans are independent, normal ran-
dom variables.

(a) What is the standard deviation of the average fill volume
of 100 cans?

(b) If the mean fill volume is 12.1 ounces, what is the proba-
bility that the average fill volume of the 100 cans is below
12 fluid ounces?

(c) What should the mean fill volume equal so that the proba-
bility that the average of 100 cans is below 12 fluid ounces
is 0.005?

(d) If the mean fill volume is 12.1 fluid ounces, what should
the standard deviation of fill volume equal so that the
probability that the average of 100 cans is below 12 fluid
ounces is 0.005?

(e) Determine the number of cans that need to be measured
such that the probability that the average fill volume is
less than 12 fluid ounces is 0.01.

5-94. The photoresist thickness in semiconductor manufac-

turing has a mean of 10 micrometers and a standard deviation of

1 micrometer. Assume that the thickness is normally distributed

and that the thicknesses of different wafers are independent.

(a) Determine the probability that the average thickness of 10
wafers is either greater than 11 or less than 9 micrometers.

(b) Determine the number of wafers that needs to be meas-
ured such that the probability that the average thickness
exceeds 11 micrometers is 0.01.

(c) If the mean thickness is 10 micrometers, what should the
standard deviation of thickness equal so that the probabil-
ity that the average of 10 wafers is either greater than 11 or
less than 9 micrometers is 0.001?

5-95. Assume that the weights of individuals are independ-

ent and normally distributed with a mean of 160 pounds and a

standard deviation of 30 pounds. Suppose that 25 people

squeeze into an elevator that is designed to hold 4300 pounds.

(a) What is the probability that the load (total weight) exceeds
the design limit?

(b) What design limit is exceeded by 25 occupants with prob-
ability 0.0001?

5-8 FUNCTIONS OF RANDOM
VARIABLES (CD ONLY)

5-9 MOMENT GENERATING
FUNCTION (CD ONLY)

5-10 CHEBYSHEV’S INEQUALITY
(CD ONLY)
Supplemental Exercises
5-96. Show that the following function satisfies the proper-

ties of a joint probability mass function:

x y Jx, )
0 0 1/4
0 1 1/8
1 0 1/8
1 1 1/4
2 2 1/4

5-97. Continuation of Exercise 5-96. Determine the follow-
ing probabilities:

(a) P(X<05,Y<15) (b) PX=1)

(c) P(X < 1.5) (d) P(X>0.5,Y<15)

(e) Determine E(X), E(Y), V(X), and V(Y).

5-98. Continuation of Exercise 5-96. Determine the following:
(a) Marginal probability distribution of the random variable X
(b) Conditional probability distribution of Y given that X = 1
(c) E(Y|X=1)

(d) Are Xand Y independent? Why or why not?

(e) Calculate the correlation between X and Y.

5-99. The percentage of people given an antirheumatoid
medication who suffer severe, moderate, or minor side effects
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are 10, 20, and 70%, respectively. Assume that people react

independently and that 20 people are given the medication.

Determine the following:

(a) The probability that 2, 4, and 14 people will suffer severe,
moderate, or minor side effects, respectively

(b) The probability that no one will suffer severe side effects

(c) The mean and variance of the number of people that will
suffer severe side effects

(d) What is the conditional probability distribution of the
number of people who suffer severe side effects given that
19 suffer minor side effects?

(e) What is the conditional mean of the number of people who
suffer severe side effects given that 19 suffer minor side
effects?

5-100. The backoff torque required to remove bolts in a

steel plate is rated as high, moderate, or low. Historically, the

probability of a high, moderate, or low rating is 0.6, 0.3, or

0.1, respectively. Suppose that 20 bolts are evaluated and that

the torque ratings are independent.

(a) What is the probability that 12, 6, and 2 bolts are rated as
high, moderate, and low, respectively?

(b) What is the marginal distribution of the number of bolts
rated low?

(c) What is the expected number of bolts rated low?

(d) What is the probability that the number of bolts rated low
is greater than two?

5-101. Continuation of Exercise 5-100

(a) What is the conditional distribution of the number of bolts
rated low given that 16 bolts are rated high?

(b) What is the conditional expected number of bolts rated
low given that 16 bolts are rated high?

(c) Are the numbers of bolts rated high and low independent
random variables?

5-102. To evaluate the technical support from a computer

manufacturer, the number of rings before a call is answered by

a service representative is tracked. Historically, 70% of the

calls are answered in two rings or less, 25% are answered in

three or four rings, and the remaining calls require five rings
or more. Suppose you call this manufacturer 10 times and
assume that the calls are independent.

(a) What is the probability that eight calls are answered in two
rings or less, one call is answered in three or four rings,
and one call requires five rings or more?

(b) What is the probability that all 10 calls are answered in
four rings or less?

(c) What is the expected number of calls answered in four
rings or less?

5-103. Continuation of Exercise 5-102

(a) What is the conditional distribution of the number of calls
requiring five rings or more given that eight calls are
answered in two rings or less?

(b) What is the conditional expected number of calls requir-
ing five rings or more given that eight calls are answered
in two rings or less?

(c) Are the number of calls answered in two rings or less and
the number of calls requiring five rings or more independ-
ent random variables?

5-104. Determine the value of ¢ such that the function

f(x, y) = cx’y for 0 <x <3 and 0 <y < 2 satisfies the

properties of a joint probability density function.

5-105.

following:

(@) PX<1,Y<]1)

() P(1<Y<25) (@ PX>2,1<Y<15)

(e) E(X) (0 E(Y)

5-106. Continuation of Exercise 5-104.

(a) Determine the marginal probability distribution of the
random variable X.

(b) Determine the conditional probability distribution of Y
given that X = 1.

(c) Determine the conditional probability distribution of X
given that ¥ = 1.

5-107. The joint distribution of the continuous random

variables X, Y, and Z is constant over the region x> + y? < 1,

0<z<4.

(a) Determine P(X? + Y% = 0.5)

(b) Determine P(X? + Y2 = 0.5,Z < 2)

(c) What is the joint conditional probability density function
of X'and Y given that Z = 1?

(d) What is the marginal probability density function of X?

5-108. Continuation of Exercise 5-107.

(a) Determine the conditional mean of Z given that X = 0 and
Y=0.

(b) In general, determine the conditional mean of Z given that
X=xand Y = y.

5-109. Suppose that X and Y are independent, continuous

uniform random variables for 0 < x < 1 and 0 < y < 1. Use

the joint probability density function to determine the proba-

bility that | X — Y| < 0.5.

5-110. The lifetimes of six major components in a copier are

independent exponential random variables with means of 8000,

10,000, 10,000, 20,000, 20,000, and 25,000 hours, respectively.

(a) What is the probability that the lifetimes of all the compo-
nents exceed 5000 hours?

(b) What is the probability that at least one component life-
time exceeds 25,000 hours?

5-111. Contamination problems in semiconductor manu-

facturing can result in a functional defect, a minor defect, or

no defect in the final product. Suppose that 20, 50, and 30% of

the contamination problems result in functional, minor, and no

defects, respectively. Assume that the effects of 10 contamina-

tion problems are independent.

(a) What is the probability that the 10 contamination problems
result in two functional defects and five minor defects?

(b) What is the distribution of the number of contamination
problems that result in no defects?

Continuation of Exercise 5-104. Determine the

(b) P(X < 2.5)
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(c) What is the expected number of contamination problems
that result in no defects?

5-112. The weight of adobe bricks for construction is

normally distributed with a mean of 3 pounds and a standard

deviation of 0.25 pound. Assume that the weights of the bricks

are independent and that a random sample of 25 bricks is

chosen.

(a) What is the probability that the mean weight of the sample
is less than 2.95 pounds?

(b) What value will the mean weight exceed with probability
0.99?

5-113. The length and width of panels used for interior doors

(in inches) are denoted as X and Y, respectively. Suppose that X

and Y are independent, continuous uniform random variables for

17.75 <x < 18.25and 4.75 < y < 5.25, respectively.

(a) By integrating the joint probability density function over
the appropriate region, determine the probability that the
area of a panel exceeds 90 squared inches.

(b) What is the probability that the perimeter of a panel
exceeds 46 inches?

5-114. The weight of a small candy is normally distributed

with a mean of 0.1 ounce and a standard deviation of 0.01

ounce. Suppose that 16 candies are placed in a package and

that the weights are independent.

(a) What are the mean and variance of package net weight?

(b) What is the probability that the net weight of a package is
less than 1.6 ounces?

(c) If 17 candies are placed in each package, what is the
probability that the net weight of a package is less than
1.6 ounces?

5-115. The time for an automated system in a warechouse to

locate a part is normally distributed with a mean of 45 seconds

and a standard deviation of 30 seconds. Suppose that inde-

pendent requests are made for 10 parts.

(a) What is the probability that the average time to locate 10
parts exceeds 60 seconds?

(b) What is the probability that the total time to locate 10
parts exceeds 600 seconds?

5-116. A mechanical assembly used in an automobile en-

gine contains four major components. The weights of the

components are independent and normally distributed with

the following means and standard deviations (in ounces):

Standard
Component Mean Deviation
Left case 4 0.4
Right case 5.5 0.5
Bearing assembly 10 0.2
Bolt assembly 8 0.5

(a) What is the probability that the weight of an assembly
exceeds 29.5 ounces?

(b) What is the probability that the mean weight of eight
independent assemblies exceeds 29 ounces?

5-117. Suppose X and Y have a bivariate normal distribution
withoy=4,0y=1,py =4,y =4,andp = —0.2. Draw
a rough contour plot of the joint probability density function.
5-118.

1 -1
If fyy(x, y) = Tom &P {ﬁ [(x — 1)

—1.6(x— Dy —2)+ (- 2)2]}
determine E£(X), E(Y), V(X), V(Y), and p by recorganizing the
parameters in the joint probability density function.

5-119. The permeability of a membrane used as a moisture

barrier in a biological application depends on the thickness of

two integrated layers. The layers are normally distributed with

means of 0.5 and 1 millimeters, respectively. The standard

deviations of layer thickness are 0.1 and 0.2 millimeters,

respectively. The correlation between layers is 0.7.

(a) Determine the mean and variance of the total thickness of
the two layers.

(b) What is the probability that the total thickness is less than
1 millimeter?

(c) Let X, and X, denote the thickness of layers 1 and 2, re-
spectively. A measure of performance of the membrane is
a function 2X; + 3X, of the thickness. Determine the
mean and variance of this performance measure.

5-120. The permeability of a membrane used as a moisture
barrier in a biological application depends on the thickness of
three integrated layers. Layers 1, 2, and 3 are normally dis-
tributed with means of 0.5, 1, and 1.5 millimeters, respec-
tively. The standard deviations of layer thickness are 0.1, 0.2,
and 0.3, respectively. Also, the correlation between layers 1
and 2 is 0.7, between layers 2 and 3 is 0.5, and between layers
land 3 is 0.3.
(a) Determine the mean and variance of the total thickness of
the three layers.
(b) What is the probability that the total thickness is less than
1.5 millimeters?

5-121. A small company is to decide what investments to
use for cash generated from operations. Each investment has a
mean and standard deviation associated with the percentage
gain. The first security has a mean percentage gain of 5% with
a standard deviation of 2%, and the second security provides
the same mean of 5% with a standard deviation of 4%. The
securities have a correlation of —0.5, so there is a negative
correlation between the percentage returns. If the company
invests two million dollars with half in each security, what is
the mean and standard deviation of the percentage return?
Compare the standard deviation of this strategy to one that
invests the two million dollars into the first security only.
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5-122.
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MIND-EXPANDING EXERCISES

Show that if X, X,, ..., X, are independent,

continuous random variables, P(X; € 4, X, € 4,, ...,
X, € 4,) = P(X, € 4))P(X; € 4,) ... P(X, € 4,) for any

regions Ay, A, ..
respectively.
5-123.

., 4, in the range of X, X, ... , X

Show that if X, X;, ..

P

., X, are independent

random variables and ¥ = ¢/ X + ¢;X; + -+ + ¢, X,

MY) = GVX) + BVG) + -+ + EH,)

P

You can assume that the random variables are continuous.

IMPORTANT TERMS AND CONCEPTS

5-124. Suppose that the joint probability function of
the continuous random variables X and Y is constant on
the rectangle 0 < x < a, 0 < y < b. Show that X'and ¥
are independent.

5-125. Suppose that the range of the continuous
variables X and Yis 0 < x < g and 0 <y < b. Also
suppose that the joint probability density function
fyr(x, v) = g(x)h(y), where g(x) is a function only of
x and A(y) is a function only of y. Show that X and Y
are independent.

In the E-book, click on any
term or concept below to
go to that subject.

Bivariate normal
distribution

Conditional mean

Conditional probability
density function

Conditional probability
mass function

Conditional variance

Contour plots

Correlation

Covariance

Independence

Joint probability density
function

Joint probability mass
function

Linear combinations of
random variables

Marginal probability
distribution

Multinomial
distribution

Moment generating
function

Reproductive property
of the normal distri-
bution

CD MATERIAL

Convolution

Functions of random
variables

Jacobian of a transfor-
mation

Uniqueness property of
moment generating
function

Chebyshev’s inequality
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EXAMPLE S§5-1

In many situations in statistics, it is necessary to derive the probability distribution of a func-
tion of one or more random variables. In this section, we present some results that are helpful
in solving this problem.

Suppose that X'is a discrete random variable with probability distribution fy(x). Let Y = h(X)
be a function of X that defines a one-to-one transformation between the values of X and Y, and we
wish to find the probability distribution of Y. By a one-to-one transformation, we mean that each
value x is related to one and only one value of y = A(x) and that each value of y is related to one
and only one value of x, say, x = u(y), where u( y) is found by solving y = A(x) for x in terms of y.

Now, the random variable Y takes on the value y when X takes on the value u(y).
Therefore, the probability distribution of Y is

() = P(Y =y) = PIX = u(y)] = fx[u(y)]

We may state this result as follows.

Suppose that X is a discrete random variable with probability distribution fy(x). Let
Y = h(X) define a one-to-one transformation between the values of X and Y so that
the equation y = A(x) can be solved uniquely for x in terms of y. Let this solution be
x = u(y). Then the probability distribution of the random variable Y is

Hr(») = fxlu(y)] (S5-1)

Let X be a geometric random variable with probability distribution

fix)y=p(1—p* ", x=12,..

Find the probability distribution of ¥ = X2,
Since X = 0, the transformation is one to one; that is, y = x> and x = \/y Therefore,
Equation S5-1 indicates that the distribution of the random variable Y is

fY(y) :f(\/y) :p(l _p)\fy—l’ Yy = 1,4,9,16,...

Now suppose that we have two discrete random variables X; and X, with joint probability
distribution fy, v,(x1, x,) and we wish to find the joint probability distribution fy, y,(y1,y,) of
two new random variables Y, = h,(X}, X;) and Y, = h,(X], X,). We assume that the functions
h, and &, define a one-to-one transformation between (x;, x,) and (y,, y,). Solving the equa-
tions y; = hy(x,, x,) and y, = hy(x;, x,) simultaneously, we obtain the unique solution
x, = u;(y1, y») and x, = uy(y,, ¥,). Therefore, the random variables Y; and Y, take on the
values y,; and y, when X, takes on the value u,(y,, y,) and X, takes the value u,(y,, y,). The
joint probability distribution of Y; and Y, is

Srn(y2) = P(Yy =y, Yo = 1)
= P[X; = wy(y1, »2), X2 = r(y1, 1))
= fX,Xz[ul(yla yz), uz(yla yz)}

5-1
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EXAMPLE S§5-2

We will also state this result as follows.

Suppose that X, and X, are discrete random variables with joint probability distribu-
tion fy x,(x1,X,), and let Y} = (X}, X;) and Y, = h,(X}, X;) define one-to-one trans-
formations between the points (x;, x,) and (v;, y,) so that the equations y; = A;(x;, x,)
and y, = h,(x,, x,) can be solved uniquely for x; and x, in terms of y; and y,. Let this
solution be x; = u;(y;, ¥,) and x, = u,(y,, y,). Then the joint probability distribution
of Y, and ¥, is

Sy 32) = froxlui (v v2), ua(v1, 2)] (S5-2)

A very important application of Equation S5-2 is in finding the distribution of a random vari-
able Y, that is a function of two other random variables X and X,. That is, let Y|, = h,(X;, X3)
where X; and X; are discrete random variables with joint distribution fy, y,(x;, x,). We want to
find the probability distribution of Y, say, fy,(;). To do this, we define a second function ¥, =
hy(X,, X,) so that the one-to-one correspondence between the points (x;, x,) and (v, y,) is main-
tained, and we use the result in Equation S5-2 to find the joint probability distribution of ¥; and
Y,. Then the distribution of ¥, alone is found by summing over the y, values in this joint distribu-
tion. That is, fy () is just the marginal probability distribution of Y7, or

fY,(J’1) = EfY,Yz(yla )’2)
Y2

Consider the case where X; and X, are independent Poisson random variables with parameters
\; and \,, respectively. We will find the distribution of the random variable Y, = X| + X,.
The joint distribution of X and X is

leXz(x 1, X) = fX, (x 1)fX2(x2)
e M e TR
X1 ' XZ!
e*(/\lﬂ\z)/\)lfl)\)zfz

=2 =0, xn=01,..
xl!xZ!

because X; and X, are independent. Now to use Equation S5-2 we need to define a second func-
tion Y, = h,(X), X;). Let this function be ¥, = X,. Now the solutions for x, and x, are x; = y; — »,
and x, = y,. Thus, from Equation S5-2 the joint probability distribution of ¥, and Y, is

e_()‘l"')\z))\ 1()’1_)’2))\)2’2

fYIYZ(yl’yz): > y1:O’1529~~~9 YZ:(),I,---,)’l

(y1 = »2)! !

Because x; = 0, the transformation x; = y, — y, requires that x, = y, must always be less than
or equal to y,. Thus, the values of y, are 0, 1, . . ., y;, and the marginal probability distribution
of Y, is obtained as follows:

n e MitAd ) BTy

Il
Tr(v) = y;OfYIYZ(J’byZ) = y;o (1 — 12)! !
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b =0 (= )t nt 5

e*(/\ﬁr)tz) V1 yl!/\(lyliyZ))\"z)z ei()tﬁ/\Z) ! (yl) A(M*)’Z)A)’z
) ! ’

The summation in this last expression is the binomial expansion of (A; + A,)", so

e—()\l"')\z)(/\l + )\Z)Jﬁ
»!

fY,(yl) = , y =0,1,...

We recognize this as a Poisson distribution with parameter \; + \,. Therefore, we have shown
that the sum of two independent Poisson random variables with parameters A\, and \, has a
Poisson distribution with parameter A; + \,.

We now consider the situation where the random variables are continuous. Let ¥ = A(X),
with X continuous and the transformation is one to one.

Suppose that X is a continuous random variable with probability distribution f(x).
The function ¥ = A(X) is a one-to-one transformation between the values of ¥ and X
so that the equation y = A(x) can be uniquely solved for x in terms of y. Let this
solution be x = u(y). The probability distribution of Y is

M) = fxlu()]1 ] (85-3)

where J = u'(y) is called the Jacobian of the transformation and the absolute value
of Jis used.

Equation S5-3 is shown as follows. Let the function y = A(x) be an increasing function of x.
Now

—o0

If we change the variable of integration from x to y by using x = u(y), we obtain dx = u'(y) dy
and then

a

Pr=a) = | Hu)W0) v

—

Since the integral gives the probability that ¥ =< a for all values of a contained in the feasible
set of values for y, fy[u(y)]u'(y) must be the probability density of Y. Therefore, the proba-
bility distribution of Y is

Iy(y) = Lalu) ' (v) = filu(y)

If the function y = A(x) is a decreasing function of x, a similar argument holds.
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EXAMPLE S5-3

EXAMPLE §5-4

Let X be a continuous random variable with probability distribution
X
fX(x)=§, 0=x<4

Find the probability distribution of ¥ = A(X) = 2X + 4.

Note that y = h(x) = 2x + 4 is an increasing function of x. The inverse solution is x =
u(y) = (y — 4)/2, and from this we find the Jacobian to be J = u'(y) = dx/dy = 1/2.
Therefore, from S5-3 the probability distribution of Y is

=02 ()2t

4=y=12

We now consider the case where X| and X, are continuous random variables and we wish
to find the joint probability distribution of Y| = 4,(X;, X,) and Y, = h,(X}, X;) where the trans-
formation is one to one. The application of this will typically be in finding the probability dis-
tribution of Y, = h,(X}, X;), analogous to the discrete case discussed above. We will need the
following result.

Suppose that X; and X, are continuous random variables with joint probability distri-
bution fy y,(x1, x,), and let ¥} = hy(X;, X;) and Y, = hy(X;, X;) define a one-to-one
transformation between the points (x;, x,) and (y,, y,). Let the equations y;, = A;(x,
X,) and y, = hy(x, x,) be uniquely solved for x; and x, in terms of y; and y, as x; =
(1, y,) and x, = u,(yy, 1,). Then the joint probability of ¥; and Y, is

S (V1) = frox, [i(v, v2), ua(31, v2)] 1] (S5-4)
where J is the Jacobian and is given by the following determinant:

0x1/0y1, 0x1/ 9y,
0x,/ Y1, 09X/ 9y,

and the absolute value of the determinant is used.

This result can be used to find fy,y,(1, ), the joint probability distribution of ¥, and Y. Then
the probability distribution of Y, is

le(yl) = J leYz(yl’ ¥2) dy,
Thatis, fy, (1) is the marginal probability distribution of Y.

Suppose that X; and X, are independent exponential random variables with fy,(x;) = 2"
and fy,(x;) = 2¢~ %, Find the probability distribution of ¥ = X;/X;.
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The joint probability distribution of X; and X is
Sy, (X1, x) = Qo Watx) x =0, X =0
because X; and X, are independent. Let ¥, = i, (X}, X;) = X|/X; and Y, = hy(X|, X)) =

X, + X;. The inverse solutions of y; = x;/x, and y, = x; + x, are x; = y; /(1 + y;) and
X, = »/(1 + 1), and it follows that

oxy _ [1] 9x _ [yl}
)3 72 (1+y)) A (1 + )

o _ [ ~1 ] %_[ ! }
v LAyl e LA+

Therefore
)2 Y1
g (1 +y) (1+y) _»
) L (1 + )

(1+y) (1 +y)

and from Equation S5-4 the joint probability distribution of ¥; and 7, is

Trr,(1 72) = feog [tn(31s v2), (1, v2)] 1]

T (RN (R f
(1+»)

=4e 2 p,/(1 + y)?

for y; > 0, y, > 0. We need to find the distribution of ¥; = X;/X,. This is the marginal prob-
ability distribution of Y}, or

fr(») = J Srn (1, 12) dya
0

J 46722 /(1 + y1)*] dy,
0

1

=, ¥y >0

(1 +y)
An important application of Equation S5-4 is to obtain the distribution of the sum of two
independent random variables X; and X,. Let ¥, = X; + X, and let ¥, = X,. The inverse so-
lutions are x; = y; — », and x, = y,. Therefore,

E)x1 8x1
1 - =
a1 a2

ox ox
2 2

a1 a2
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Convolution
of X; and X,

and |J| = 1. From Equation S5-4, the joint probability density function of Y; and Y, is

Srr (06 32) = fr (01 — »2)fx(2)

Therefore, the marginal probability density function of Y] is

fY.()H) = J le(yl - yz)fxz(h) dy,

The notation is simpler if the variable of integration y, is replaced with x and y, is replaced
with y. Then the following result is obtained.

If X; and X, are independent random variables with probability density functions
fx,(x1) and fy,(x,), respectively, the probability density function of ¥ = X; + X; is

500 = | Sl = 97 (55-5)

—oo

The probability density function of Y in Equation S5-5 is referred to as the convolution of the
probability density functions for X and X,. This concept is commonly used for transforma-
tions (such as Fourier transformations) in mathematics. This integral may be evaluated nu-
merically to obtain the probability density function of Y, even for complex probability density
functions for X; and X,. A similar result can be obtained for discrete random variables with the
integral replaced with a sum.

In some problems involving transformations, we need to find the probability distribution
of the random variable Y = A(X) when X is a continuous random variable, but the transforma-
tion is not one to one. The following result is helpful.

Suppose that X is a continuous random variable with probability distribution fy(x),
and ¥ = A(X) is a transformation that is not one to one. If the interval over which X
is defined can be partitioned into m mutually exclusive disjoint sets such that each of
the inverse functions x; = u(y), X, = us(¥), ..., X, = u,,(») of y = u(x) is one to
one, the probability distribution of Y is

fr(y) = Z Selwi(»)] 1] (85-6)
where J; = uj(y),i = 1,2, ..., m and the absolute values are used.

To illustrate how this equation is used, suppose that X is a normal random variable with
mean p and variance ¢?, and we wish to show that the distribution of ¥ = (X — p)?/o? is a
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chi-squared distribution with one degree of freedom. Let Z = (X — w)/o, and Y = Z% The
probability distribution of Z is the standard normal; that is,

f(2) =

1
V2

e 7, —0 <z < ®

The inverse solutions of y = z* are z = +V/y, so the transformation is not one to one. Define

z; = —Vyand z, = +VYy so that J;

= —(1/2)/VYy and J, = (1/2)/V/y. Then by Equation

S5-6, the probability distribution of Y is

fr(y) = \/12—“_ e V2 2_\1&’ + \/1277 e V2 2\1&’
_ ﬁym—l eI, y>0
Now it can be shown that V@ = I'(1/2), so we may write f( ) as
1271 g2, y>0

fr(y) = ;ly
i

which is the chi-squared distribution with 1 degree of freedom.

EXERCISES FOR SECTION 5-8

S5-1.  Suppose that X is a random variable with probability
distribution

Jfy(x) = 1/4, x=1,2,3,4

Find the probability distribution of the random ¥ = 2X + 1.
S5-2. Let X be a binomial random variable with p = 0.25
and n = 3. Find the probability distribution of the random
variable ¥ = X?.

S5-3.  Suppose that X is a continuous random variable with
probability distribution

(a) Find the probability distribution of the random variable
Y=2X+ 10.
(b) Find the expected value of Y.

S5-4.  Suppose that X has a uniform probability distribution

Show that the probability distribution of the random variable
Y = —2 In X is chi-squared with two degrees of freedom.

S5-5. A current of / amperes flows through a resistance of R
ohms according to the probability distribution

fi(0) = 2i, 0=i=1
Suppose that the resistance is also a random variable with
probability distribution

fr(r) =1, 0=r=1

Assume that 7 and R are independent.

(a) Find the probability distribution for the power (in watts)
P= I’R.

(b) Find E(P).

S5-6. A random variable X has the following probability

distribution:

frx)=e™  x=0

(a) Find the probability distribution for ¥ = X
(b) Find the probability distribution for ¥ = X'/,
(c) Find the probability distribution for ¥ = In X.
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S5-7. The velocity of a particle in a gas is a random variable
V with probability distribution
fr(v) = aPe™? v>0

where b is a constant that depends on the temperature of the

gas and the mass of the particle.

(a) Find the value of the constant a.

(b) The kinetic energy of the particle is W = mV?/2. Find the
probability distribution of 7.

S5-8.  Suppose that X has the probability distribution

Find the probability distribution of the random variable ¥ = &*.

S5-9. Prove that Equation S5-3 holds when y = A(x) is a
decreasing function of x.

S5-10. The random variable X has the probability distribution

0=x=4

filw) = 5

Find the probability distribution of ¥ = (X — 2).
S5-11. Consider a rectangle with sides of length S| and S,,
where S and S, are independent random variables. The prob-

ability distributions of S; and S, are

.f:gl (Sl) = 2S1 >

OSSISI
and

N

f:S'z (S2) = §2’

OSS2S4

(a) Find the joint distribution of the area of the rectangle 4 =
S S, and the random variable ¥ = §;.

(b) Find the probability distribution of the area 4 of the rec-
tangle.

S5-12. Suppose we have a simple electrical circuit in

which Ohm’s law 7 = IR holds. We are interested in the

probability distribution of the resistance R given that } and

I are independent random variables with the following dis-

tributions:

and

Find the probability distribution of R.

5-9 MOMENT GENERATING FUNCTIONS (CD ONLY)

Suppose that X is a random variable with mean .. Throughout this book we have used the idea of
the expected value of the random variable X, and in fact £(X) = . Now suppose that we are in-
terested in the expected value of a particular function of X, say, g(X) = X". The expected value of
this function, or £[g(X)] = E(X"), is called the »th moment about the origin of the random variable

X, which we will denote by ;.

Definition

b = E(X")

The rth moment about the origin of the random variable X is

> X f(x), X discrete
= (S5-7)
J' X'f(x)dx, X continuous

—o0

Notice that the first moment about the origin is just the mean, that is, E(X) = | = p.
Furthermore, since the second moment about the origin is E(X?) = .}, we can write the vari-
ance of a random variable in terms of origin moments as follows:

o? = EX) — [E)T = pj — p?
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EXAMPLE S5-5

5-9

The moments of a random variable can often be determined directly from the definition
in Equation S5-7, but there is an alternative procedure that is frequently useful that makes use
of a special function.

The moment generating function of the random variable X is the expected value of
e and is denoted by M, (). That is,
> e fx), X discrete
My(f) = E(e®) = { = (S5-8)
J e*f(x)dx, X continuous

—o0

The moment generating function My(#) will exist only if the sum or integral in the above def-
inition converges. If the moment generating function of a random variable does exist, it can be
used to obtain all the origin moments of the random variable.

Let X be a random variable with moment generating function My(#). Then

d"Mx(t)
= $5-9
By e (55-9)

Assuming that we can differentiate inside the summation and integral signs,
> xef(x), X discrete
d"My(t) I

dt”
X'e*f(x)dx, X -continuous

—o0

Now if we set # = 0 in this expression, we find that

d"Mx(1)
dt”

. E(X")

Suppose that X has a binomial distribution, that is

flx) = <Z>px(l -p) x=0,1,...,n

Determine the moment generating function and use it to verify that the mean and variance of
the binomial random variable are w. = np and o = np(1 — p).
From the definition of a moment generating function, we have

)= 3 & (M)t - = 3 (1) wera - oy
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This last summation is the binomial expansion of [pe’ + (1 — p)]”, so

My(1) = [pe' + (1 = p)]"

Taking the first and second derivatives, we obtain

dMy(t
i) = P50 ety + ple — 1yt
and
d*My(t
30 = T et~ p w1+ e - )

If we set ¢+ = 0 in MY (), we obtain

My(f)[=0 = wi = =mnp

which is the mean of the binomial random variable X. Now if we set # = 0 in My(?),

Mx(t) | =0 = 2 = np(1 = p + np)
Therefore, the variance of the binomial random variable is

2

ol =ph - W=

np(1 = p + np) = (np)* = np — np* = np(1 = p)
EXAMPLE S5-6 Find the moment generating function of the normal random variable and use it to show that
the mean and variance of this random variable are . and o, respectively.
The moment generating function is

©

1
M(7) Je’xg T e~ TR gy

0

J L 2o g0 gy
oV2m

©

If we complete the square in the exponent, we have
¥ = 2(p + to?)x + p? =[x — (u + 106)]* — 2uto? — £ot

and then

1

(= (pH o - 200’ —Pot}/207) 4
oV2m € "

1
= phra2 | (12— (utof/ey
¢ J o\V2m ¢ *
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Letu = [x — (u + t0?)]/o. Then dx = & du, and this last expression above becomes

My(t) = ehi+ a2 le e R dy
V2w

Now the integral is just the total area under a standard normal density, which is 1, so the mo-
ment generating function of a normal random variable is
MX(t) _ ep.t+crzt2/2

Differentiating this function twice with respect to 7 and setting # = 0 in the result, we find

dM y(t d*My(t
+0) =pi=p and M) =pr=0"+p

Therefore, the variance of the normal random variable is

2 2

cdEpy =t =0

Moment generating functions have many important and useful properties. One of the

most important of these is the uniqueness property. That is, the moment generating function

of'a random variable is unique when it exists, so if we have two random variables X and Y, say,

with moment generating functions My(¢) and My (¢), then if My (f) = M,(¢) for all values of ¢,

both X and Y have the same probability distribution. Some of the other useful properties of the
moment generating function are summarized as follows.

If X is a random variable and a is a constant, then
(1) My t) = &My (1)
(2) Mux(t) = My(at)
If Xi, X,, ..., X, are independent random variables with moment generating functions

My (8), Mx,(0), . .., M (), respectively, and if ¥ = X; + X; + --- + X, then the mo-
ment generating function of Y'is

() My(2) = My () * My (1) = -+ My (1) (85-10)

n

Property (1) follows from My, ,(f) = E[/®T9] = e“E(e”) = e“My(t). Property (2)
follows from M,y(f) = E["™Y] = E[¢“X] = My(at). Consider property (3) for the case
where the X’’s are continuous random variables:

MY(t) = E(el‘Y) — E[et(Xl+X2+<.4+X”)]

= J J fet(’“”ﬁ”'”")f(xl,xz, ey Xp) dxydxy ... dx,
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Since the X’s are independent,

FACTIE e ) =fX.(x1) 'sz(xz) to 'fX,,(xn)

and one may write

[

J e fy,(x1) dx; j e fy (xp) doy -+ Jetx”fxn(xn) dx,

—®%

= My (1) M) - My (D)

My(1)

For the case when the X’s are discrete, we would use the same approach replacing integrals
with summations.

Equation S5-10 is particularly useful. In many situations we need to find the distribution
of the sum of two or more independent random variables, and often this result makes the prob-
lem very easy. This is illustrated in the following example.

EXAMPLE S5-7 Suppose that X; and )X, are two independent Poisson random variables with parameters A, and
A,, respectively. Find the probability distribution of ¥ = X, + X.
The moment generating function of a Poisson random variable with parameter A is

My(t) = PACE)
so the moment generating functions of X, and X, are My (1) = M Vand M (1) = D),
respectively. Using Equation S5-10, we find that the moment generating function of
Y=X +X,is
My(t) = My, (t)Myt) = METDAE =) = LA 1)
which is recognized as the moment generating function of a Poisson random variable with pa-
rameter A; + A,. Therefore, we have shown that the sum of two independent Poisson random

variables with parameters A | and A, is a Poisson random variable with parameters equal to the
sum of the two parameters A| + A,.

EXERCISES FOR SECTION 5-9

S5-13. A random variable X has the discrete uniform distri- e Mx
bution fx) = P x=0,1,...
x!
fx) = 1 =12 m (a) Show that the moment generating function is
m! 9 9t
My(r) = &

(b) Use My(?) to find the mean and variance of the Poisson

My(t) = M random variable.
. m(l — ¢ S5-15. The geometric random variable X has probability
distribution

(b) Use M(¢) to find the mean and variance of X. -
S5-14. A random variable X has the Poisson distribution S =0 =p)"p, x=12,...



(a) Show that the moment generating function is

O =T

(b) Use My(?) to find the mean and variance of X.
S5-16. The chi-squared random variable with & degrees of
freedom has moment generating function My(¢) = (1 — 2¢) %2,
Suppose that X; and X, are independent chi-squared random
variables with &k, and &, degrees of freedom, respectively.
What is the distribution of ¥ = X, + X,?
S5-17. A continuous random variable X has the following
probability distribution:

Sx) =4dxe™ >, x>0
(a) Find the moment generating function for X.
(b) Find the mean and variance of X.

S5-18. The continuous uniform random variable X has den-
sity function

(a) Show that the moment generating function is

etB _ eta

MX(I) = t(B _ OL)

(b) Use My(?) to find the mean and variance of X.
S5-19. A random variable X has the exponential distribution
x>0

flx) = Ae ™M

(a) Show that the moment generating function of X is

M(t) = (1 - Ai)fl

(b) Find the mean and variance of X.
S5-20. A random variable X has the gamma distribution

5-13

1) = % Axyle ™ x>0

(a) Show that the moment generating function of X is

M(t) = (1 - Ai)f

(b) Find the mean and variance of X.

S5-21. Let X}, X5, ..., X, be independent exponential ran-

dom variables with parameter \.

(a) Find the moment generating function of ¥ = X, +
X, + o+ X

(b) What is the distribution of the random variable ¥?

[Hint: Use the results of Exercise S5-20].

S5-22. Suppose that X; has a normal distribution with mean
|; and variance 0',2,1' = 1,2. Let X, and X, be independent.
(a) Find the moment generating function of ¥ = X| + X,.

(b) What is the distribution of the random variable ¥?

S5-23. Show that the moment generating function of the
chi-squared random variable with k& degrees of freedom is
My(f) = (1 — 2)™%2. Show that the mean and variance of this
random variable are k and 2k, respectively.

S5-24. Continuation of Exercise S5-20.

(a) Show that by expanding e in a power series and taking
expectations term by term we may write the moment gen-
erating function as

My(r) = E(e")

2

! It
:l+plt+925+”~

r

1
+ Mri‘+...
r.

Thus, the coefficient of #/7! in this expansion is p’., the 7th

origin moment.

(b) Continuation of Exercise S5-20. Write the power series
expansion for My(?), the gamma random variable.

(c) Continuation of Exercise S5-20. Find ., and p5 using the
results of parts (a) and (b). Does this approach give the
same answers that you found for the mean and variance of
the gamma random variable in Exercise S5-20?

5-10 CHEBYSHEV’S INEQUALITY (CD ONLY)

In Chapter 3 we showed that if X is a normal random variable with mean p and standard
deviation o, P(p. — 1.960 < X < + 1.960) = 0.95. This result relates the probability of a
normal random variable to the magnitude of the standard deviation. An interesting, similar re-
sult that applies to any discrete or continuous random variable was developed by the mathe-

matician Chebyshev in 1867.
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Chebyshev's
Inequality

EXAMPLE S§5-8

For any random variable X with mean p. and variance o~,
P(X — u| = co) =1/

for ¢ > 0.

This result is interpreted as follows. The probability that a random variable differs from its
mean by at least ¢ standard deviations is less than or equal to 1/c*. Note that the rule is useful
only for ¢ > 1.

For example, using ¢ = 2 implies that the probability that any random variable differs
from its mean by at least two standard deviations is no greater than 1/4. We know that for a
normal random variable, this probability is less than 0.05. Also, using ¢ = 3 implies that the
probability that any random variable differs from its mean by at least three standard deviations
is no greater than 1/9. Chebyshev’s inequality provides a relationship between the standard
deviation and the dispersion of the probability distribution of any random variable. The proof
is left as an exercise.

Table S5-1 compares probabilities computed by Chebyshev’s rule to probabilities com-
puted for a normal random variable.

The process of drilling holes in printed circuit boards produces diameters with a standard
deviation of 0.01 millimeter. How many diameters must be measured so that the probability is
at least 8/9 that the average of the measured diameters is within 0.005 of the process mean
diameter p?

Let X}, X, . . ., X, be the random variables that denote the diameters of n holes. The aver-
age measured diameter is X = (X; + X, + --- + X,)/n. Assume that the X’s are independent
random variables. From Equation 5-40, E(X) = wand V(X) = 0.01?/n. Consequently, the
standard deviation of X is (0.01%/x)"/?. By applying Chebyshev’s inequality to X,

P(| X — p = ¢(0.01%/n)?) = 1/
Let ¢ = 3. Then,

P(| X — p = 3(0.01%/n)?) = 1/9
Therefore,

P(| X — p| < 3(0.01%/n)'?) = 8/9

Table S5-1 Percentage of Distribution Greater than ¢ Standard
Deviations from the Mean

Chebyshev’s Rule Normal
G for any Probability Distribution Distribution
1.5 less than 44.4% 13.4%
2 less than 25.0% 4.6%
3 less than 11.1% 0.27%
4 less than 6.3% 0.01%
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Thus, the probability that X is within 3(0.012/n)!/? of w is at least 8/9. Finally, 7 is chosen
such that 3(0.01%/n)"/? = 0.005. That is,

n=

EXERCISES FOR SECTION 5-10

32[0.01%/0.005%] = 36

S5-25. The photoresist thickness in semiconductor manu-
facturing has a mean of 10 micrometers and a standard devia-
tion of 1 micrometer. Bound the probability that the thickness
is less than 6 or greater than 14 micrometers.

S5-26. Suppose X has a continuous uniform distribution
with range 0 < x < 10. Use Chebyshev’s rule to bound the
probability that X differs from its mean by more than two stan-
dard deviations and compare to the actual probability.

S5-27. Suppose X has an exponential distribution with
mean 20. Use Chebyshev’s rule to bound the probability that
X differs from its mean by more than two standard deviations
and by more than three standard deviations and compare to the
actual probabilities.

S5-28. Suppose X has a Poisson distribution with mean A = 4.
Use Chebyshev’s rule to bound the probability that X differs from
its mean by more than two standard deviations and by more than
three standard deviations and compare to the actual probabilities.
S5-29. Consider the process of drilling holes in printed cir-
cuits boards. Assume that the standard deviation of the diame-
ters is 0.01 and that the diameters are independent. Suppose

that the average of 500 diameters is used to estimate the

process mean.

(a) The probability is at least 15/16 that the measured aver-
age is within some bound of the process mean. What is the
bound?

(b) If it is assumed that the diameters are normally distrib-
uted, determine the bound such that the probability is
15/16 that the measured average is closer to the process
mean than the bound.

S5-30. Prove Chebyshev’s rule from the following steps.
Define the random variable Y as follows:

{1
Y=
O

(a) Determine E(Y)

(b) Show that (X — p)> = (X — w)’ ¥ = *o?Y

(¢) Using part (b), show that E[(X — w)*] = *a? E[Y]

(d) Using part (c), complete the derivation of Chebyshev’s
inequality.

if [ X — p|=co
otherwise
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CHAPTER OUTLINE

6-1 DATA SUMMARY AND DISPLAY
6-2 RANDOM SAMPLING
6-3 STEM-AND-LEAF DIAGRAMS

6-4 FREQUENCY DISTRIBUTIONS
AND HISTOGRAMS

6-5
6-6
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BOX PLOTS
TIME SEQUENCE PLOTS
PROBABILITY PLOTS

MORE ABOUT PROBABILITY
PLOTTING (CD ONLY)

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:

1. Compute and interpret the sample mean, sample variance, sample standard deviation, sample me-

dian, and sample range

2. Explain the concepts of sample mean, sample variance, population mean, and population variance

8]

and the box plot

. Explain the concept of random sampling

NI WO NN

oriented data.

CD MATERIAL

. Construct and interpret normal probability plots

. Construct and interpret visual data displays, including the stem-and-leaf display, the histogram,

. Explain how to use box plots and other data displays to visually compare two or more samples of data

. Know how to use simple time series plots to visually display the important features of time-

8. Interpret probability plots for distributions other than normal.

Answers for most odd numbered exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

189



190 CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

6-1 DATA SUMMARY AND DISPLAY

Well-constructed data summaries and displays are essential to good statistical thinking, be-
cause they can focus the engineer on important features of the data or provide insight about
the type of model that should be used in solving the problem. The computer has become an
important tool in the presentation and analysis of data. While many statistical techniques re-
quire only a hand-held calculator, much time and effort may be required by this approach, and
a computer will perform the tasks much more efficiently.

Most statistical analysis is done using a prewritten library of statistical programs. The
user enters the data and then selects the types of analysis and output displays that are of
interest. Statistical software packages are available for both mainframe machines and
personal computers. We will present examples of output from Minitab (one of the most
widely-used PC packages), throughout the book. We will not discuss the hands-on use of
Minitab for entering and editing data or using commands. This information is found in the
software documentation.

We often find it useful to describe data features numerically. For example, we can char-
acterize the location or central tendency in the data by the ordinary arithmetic average or
mean. Because we almost always think of our data as a sample, we will refer to the arithmetic
mean as the sample mean.

Definition
If the n observations in a sample are denoted by xi, x,, ..., x,,, the sample mean is
n
X +x+ -+ x Exi
1 2 n o =1
X = P = (6-1)
EXAMPLE 6-1 Let’s consider the eight observations collected from the prototype engine connectors from

Chapter 1. The eight observations are x; = 12.6, x, = 12.9, x; = 13.4, x, = 12.3, x5 = 13.6,
Xx¢ = 13.5,x; = 12.6, and x3 = 13.1. The sample mean is

oAt tx, ;x" 126 + 12.9 + - + 13.1
. _ _

n 8 8

=3 = 13.0 pounds

A physical interpretation of the sample mean as a measure of location is shown in the dot
diagram of the pull-off force data. See Figure 6-1. Notice that the sample mean x = 13.0 can be
thought of as a “balance point.” That is, if each observation represents 1 pound of mass placed
at the point on the x-axis, a fulcrum located at x would exactly balance this system of weights.

The sample mean is the average value of all the observations in the data set. Usually,
these data are a sample of observations that have been selected from some larger population
of observations. Here the population might consist of all the connectors that will be manufac-
tured and sold to customers. Recall that this type of population is called a conceptual or



Figure 6-1 The
sample mean as a
balance point for a
system of weights.
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hypothetical population, because it does not physically exist. Sometimes there is an actual
physical population, such as a lot of silicon wafers produced in a semiconductor factory.

In previous chapters we have introduced the mean of a probability distribution, denoted
w. If we think of a probability distribution as a model for the population, one way to think
of the mean is as the average of all the measurements in the population. For a finite popula-
tion with N measurements, the mean is

Xi

=

I
—_

1

lJ~=N

(6-2)

The sample mean, X, is a reasonable estimate of the population mean, . Therefore, the engi-
neer designing the connector using a 3/32-inch wall thickness would conclude, on the basis
of the data, that an estimate of the mean pull-off force is 13.0 pounds.

Although the sample mean is useful, it does not convey all of the information about a
sample of data. The variability or scatter in the data may be described by the sample variance
or the sample standard deviation.

If x1, x5, ..., X, is a sample of n observations, the sample variance is

> (- B2
Pf=t (6-3)

The sample standard deviation, s, is the positive square root of the sample variance.

The units of measurements for the sample variance are the square of the original units of
the variable. Thus, if x is measured in pounds, the units for the sample variance are (pounds)>.
The standard deviation has the desirable property of measuring variability in the original units
of the variable of interest, x.

How Does the Sample Variance Measure Variability?

To see how the sample variance measures dispersion or variability, refer to Fig. 6-2, which
shows the deviations x; — X for the connector pull-off force data. The greater the amount of
variability in the pull-off force data, the larger in absolute magnitude some of the deviations
x; — x will be. Since the deviations x; — X always sum to zero, we must use a measure of vari-
ability that changes the negative deviations to nonnegative quantities. Squaring the deviations
is the approach used in the sample variance. Consequently, if s> is small, there is relatively
little variability in the data, but if s? is large, the variability is relatively large.
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Figure 6-2  How the
sample variance meas-
ures variability through
the deviations x; — X.

EXAMPLE 6-2

oo

12 13 14 15
X2 xg

Table 6-1 displays the quantities needed for calculating the sample variance and sample
standard deviation for the pull-off force data. These data are plotted in Fig. 6-2. The
numerator of s° is

(x; — X)* = 1.60

8
=1

so the sample variance is

1.60 1.60
2 =—-—————= — = 2
S =31 7 0.2286 (pounds)

and the sample standard deviation is

s = V0.2286 = 0.48 pounds

Computation of s*

The computation of s* requires calculation of X, n subtractions, and n squaring and adding op-
erations. If the original observations or the deviations x; — X are not integers, the deviations
Xx; — X may be tedious to work with, and several decimals may have to be carried to ensure

Table 6-1 Calculation of Terms for the Sample Variance and Sample
Standard Deviation

i i 55 = 3 (x; — x)?
1 12.6 —-0.4 0.16
2 12.9 —0.1 0.01
3 13.4 0.4 0.16
4 12.3 —-0.7 0.49
5 13.6 0.6 0.36
6 13.5 0.5 0.25
7 12.6 —-0.4 0.16
8 13.1 0.1 0.01

104.0 0.0 1.60
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numerical accuracy. A more efficient computational formula for the sample variance is
obtained as follows:

n n

E(x,» — )?)2 E (x,2 + 3+ 2xx;) Ex,z + nx* — ZEEX[
=l i=1

o =l _ =l

n—1 n—1 n—1
and since X = (1/n) X/, x;, this last equation reduces to

PR
_ =l

n—1

s2

(6-4)

Note that Equation 6-4 requires squaring each individual x;, then squaring the sum of the x;,
subtracting ( X x;)*/n from X x?, and finally dividing by n — 1. Sometimes this is called the
shortcut method for calculating s* (or s).

We will calculate the sample variance and standard deviation using the shortcut method,
Equation 6-4. The formula gives

<§n:)c>2 (104)?

n ) =
X2 - 1353.6 — ———
B ; ’ n 8 160

2
s n— 1 7 7

= (.2286 (pounds)?

and
s = V0.2286 = 0.48 pounds

These results agree exactly with those obtained previously.

Analogous to the sample variance s°, the variability in the population is defined by the
population variance (0%). As in earlier chapters, the positive square root of 62, or o, will
denote the population standard deviation. When the population is finite and consists of N
values, we may define the population variance as

< 2
< (i — 1) (6-5)
N

i
o’ =

1

We observed previously that the sample mean could be used as an estimate of the population
mean. Similarly, the sample variance is an estimate of the population variance. In Chapter 7,
we will discuss estimation of parameters more formally.

Note that the divisor for the sample variance is the sample size minus one (n — 1), while
for the population variance it is the population size N. If we knew the true value of the popu-
lation mean ., we could find the sample variance as the average squared deviation of the sam-
ple observations about . In practice, the value of w is almost never known, and so the sum of
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Definition

the squared deviations about the sample average x must be used instead. However, the obser-
vations x; tend to be closer to their average, x, than to the population mean, . Therefore, to
compensate for this we use n — 1 as the divisor rather than ». If we used # as the divisor in the
sample variance, we would obtain a measure of variability that is, on the average, consistently
smaller than the true population variance .

Another way to think about this is to consider the sample variance s> as being based on
n — 1 degrees of freedom. The term degrees of freedom results from the fact that the »n devi-
ations x; — X, X, — X, ..., x, — x always sum to zero, and so specifying the values of any
n — 1 of these quantities automatically determines the remaining one. This was illustrated in
Table 6-1. Thus, only n — 1 of the n deviations, x; — X, are freely determined.

In addition to the sample variance and sample standard deviation, the sample range, or
the difference between the largest and smallest observations, is a useful measure of variabil-
ity. The sample range is defined as follows.

If the n observations in a sample are denoted by xy, x,, ..., x,,, the sample range is

r = max(x;) — min(x;) (6-6)

For the pull-off force data, the sample range is » = 13.6 — 12.3 = 1.3. Generally, as the vari-
ability in sample data increases, the sample range increases.

The sample range is easy to calculate, but it ignores all of the information in the sample
data between the largest and smallest values. For example, the two samples 1, 3, 5, 8, and 9
and 1, 5,5, 5, and 9, both have the same range (» = 8). However, the standard deviation of the
first sample is s; = 3.35, while the standard deviation of the second sample is s, = 2.83. The
variability is actually less in the second sample.

Sometimes, when the sample size is small, say » < 8 or 10, the information loss associ-
ated with the range is not too serious. For example, the range is used widely in statistical qual-
ity control where sample sizes of 4 or 5 are fairly common. We will discuss some of these

applications in Chapter 16.

EXERCISES FOR SECTIONS 6-1 AND 6-2

6-1. Eight measurements were made on the inside diameter
of forged piston rings used in an automobile engine. The data
(in millimeters) are 74.001, 74.003, 74.015, 74.000, 74.005,
74.002, 74.005, and 74.004. Calculate the sample mean and
sample standard deviation, construct a dot diagram, and com-
ment on the data.

6-2. In Applied Life Data Analysis (Wiley, 1982), Wayne
Nelson presents the breakdown time of an insulating fluid be-
tween electrodes at 34 kV. The times, in minutes, are as fol-
lows: 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50,
7.35,8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71, and 72.89.
Calculate the sample mean and sample standard deviation.

6-3. The January 1990 issue of Arizona Trend contains a
supplement describing the 12 “best” golf courses in the state.
The yardages (lengths) of these courses are as follows: 6981,
7099, 6930, 6992, 7518, 7100, 6935, 7518, 7013, 6800, 7041,

and 6890. Calculate the sample mean and sample standard de-
viation. Construct a dot diagram of the data.

6-4. An article in the Journal of Structural Engineering
(Vol. 115, 1989) describes an experiment to test the yield
strength of circular tubes with caps welded to the ends. The
first yields (in kN) are 96, 96, 102, 102, 102, 104, 104, 108,
126, 126, 128, 128, 140, 156, 160, 160, 164, and 170.
Calculate the sample mean and sample standard deviation.
Construct a dot diagram of the data.

6-5. An article in Human Factors (June 1989) presented
data on visual accommodation (a function of eye movement)
when recognizing a speckle pattern on a high-resolution CRT
screen. The data are as follows: 36.45, 67.90, 38.77, 42.18,
26.72, 50.77, 39.30, and 49.71. Calculate the sample mean
and sample standard deviation. Construct a dot diagram of the
data.



6-6. The following data are direct solar intensity measure-
ments (watts/m?) on different days at a location in southern
Spain: 562, 869, 708, 775, 775, 704, 809, 856, 655, 806,
878,909, 918, 558, 768, 870, 918, 940, 946, 661, 820, 898,
935, 952, 957, 693, 835, 905, 939, 955, 960, 498, 653, 730,
and 753. Calculate the sample mean and sample standard
deviation.

6-7. The April 22, 1991 issue of Aviation Week and Space

Technology reports that during Operation Desert Storm, U.S.

Air Force F-117A pilots flew 1270 combat sorties for a total of

6905 hours. What is the mean duration of an F-117A mission

during this operation? Why is the parameter you have calcu-

lated a population mean?

6-8. Preventing fatigue crack propagation in aircraft struc-

tures is an important element of aircraft safety. An engineering

study to investigate fatigue crack in n = 9 cyclically loaded

wing boxes reported the following crack lengths (in mm):

2.13,2.96,3.02, 1.82, 1.15, 1.37, 2.04, 2.47, 2.60.

(a) Calculate the sample mean.

(b) Calculate the sample variance and sample standard
deviation.

(c) Prepare a dot diagram of the data.

6-9. Consider the solar intensity data in Exercise 6-6.

Prepare a dot diagram of this data. Indicate where the sample

mean falls on this diagram. Give a practical interpretation of

the sample mean.

6-10. Exercise 6-5 describes data from an article in Human

Factors on visual accommodation from an experiment involv-

ing a high-resolution CRT screen.

(a) Construct a dot diagram of this data.

(b) Data from a second experiment using a low-resolution
screen were also reported in the article. They are 8.85,

6-2 RANDOM SAMPLING
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35.80, 26.53, 64.63,9.00, 15.38, 8.14, and 8.24. Prepare a
dot diagram for this second sample and compare it to the
one for the first sample. What can you conclude about
CRT resolution in this situation?

6-11. The pH of a solution is measured eight times by one

operator using the same instrument. She obtains the following

data: 7.15,7.20, 7.18, 7.19, 7.21, 7.20, 7.16, and 7.18.

(a) Calculate the sample mean.

(b) Calculate the sample variance and sample standard
deviation.

(c) What are the major sources of variability in this experiment?

6-12. An article in the Journal of Aircraft (1988) describes
the computation of drag coefficients for the NASA 0012 air-
foil. Different computational algorithms were used at
M., = 0.7 with the following results (drag coefficients are in
units of drag counts; that is, one count is equivalent to a drag
coefficient of 0.0001): 79, 100, 74, 83, 81, 85, 82, 80, and 84.
Compute the sample mean, sample variance, and sample stan-
dard deviation, and construct a dot diagram.

6-13. The following data are the joint temperatures of the

O-rings (°F) for each test firing or actual launch of the space

shuttle rocket motor (from Presidential Commission on the

Space Shuttle Challenger Accident, Vol. 1, pp. 129-131):

84, 49, 61, 40, 83, 67, 45, 66, 70, 69, 80, 58, 68, 60, 67, 72,

73,70, 57, 63, 70, 78, 52, 67, 53, 67, 75, 61, 70, 81, 76, 79,

75,76, 58, 31.

(a) Compute the sample mean and sample standard deviation.

(b) Construct a dot diagram of the temperature data.

(c) Set aside the smallest observation (31°F) and recompute
the quantities in part (a). Comment on your findings.
How “different” are the other temperatures from this
last value?

Definition

In most statistics problems, we work with a sample of observations selected from the popula-
tion that we are interested in studying. Figure 6-3 illustrates the relationship between the pop-
ulation and the sample. We have informally discussed these concepts before; however, we
now give the formal definitions of some of these terms.

A population consists of the totality of the observations with which we are concerned.

In any particular problem, the population may be small, large but finite, or infinite. The
number of observations in the population is called the size of the population. For example, the
number of underfilled bottles produced on one day by a soft-drink company is a population of
finite size. The observations obtained by measuring the carbon monoxide level every day is a
population of infinite size. We often use a probability distribution as a model for a popula-
tion. For example, a structural engineer might consider the population of tensile strengths of a
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Figure 6-3 Relation-
ship between a popula-
tion and a sample.

Definition

Population

Sample (xy, x5, x3,..., x,)

\ x, sample average
s, sample standard

deviation
Histogram
e ¢
Ly
x ] x
s

chassis structural element to be normally distributed with mean p and variance o*. We could
refer to this as a normal population or a normally distributed population.

In most situations, it is impossible or impractical to observe the entire population. For ex-
ample, we could not test the tensile strength of all the chassis structural elements because it
would be too time consuming and expensive. Furthermore, some (perhaps many) of these
structural elements do not yet exist at the time a decision is to be made, so to a large extent,
we must view the population as conceptual. Therefore, we depend on a subset of observations
from the population to help make decisions about the population.

A sample is a subset of observations selected from a population.

For statistical methods to be valid, the sample must be representative of the population. It
is often tempting to select the observations that are most convenient as the sample or to exer-
cise judgment in sample selection. These procedures can frequently introduce bias into the
sample, and as a result the parameter of interest will be consistently underestimated (or over-
estimated) by such a sample. Furthermore, the behavior of a judgment sample cannot be statis-
tically described. To avoid these difficulties, it is desirable to select a random sample as the
result of some chance mechanism. Consequently, the selection of a sample is a random exper-
iment and each observation in the sample is the observed value of a random variable. The
observations in the population determine the probability distribution of the random variable.

To define a random sample, let X be a random variable that represents the result of one se-
lection of an observation from the population. Let f(x) denote the probability density function
of X. Suppose that each observation in the sample is obtained independently, under unchanging
conditions. That is, the observations for the sample are obtained by observing X independently
under unchanging conditions, say, » times. Let X; denote the random variable that represents
the ith replicate. Then, X|, X5, ..., X,, is a random sample and the numerical values obtained
are denoted as xy, x,, ..., x,. The random variables in a random sample are independent with
the same probability distribution f(x) because of the identical conditions under which each
observation is obtained. That is, the marginal probability density function of X7, X5, ..., X, is
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Sx1), f(x2), .-, f(x,), respectively, and by independence the joint probability density function
of the random sample is fy. x, x (X1, %2, ..., %,) = f{x)f(x2) ... f(x,).

Definition
The random variables X;, X,, ..., X, are a random sample of size » if (a) the X;’s are
independent random variables, and (b) every X; has the same probability distribution.

To illustrate this definition, suppose that we are investigating the effective service life of
an electronic component used in a cardiac pacemaker and that component life is normally dis-
tributed. Then we would expect each of the observations on component life X;, X5, ..., X, in
a random sample of » components to be independent random variables with exactly the same
normal distribution. After the data are collected, the numerical values of the observed life-
times are denoted as xy, x,, ..., X,

The primary purpose in taking a random sample is to obtain information about the unknown
population parameters. Suppose, for example, that we wish to reach a conclusion about the pro-
portion of people in the United States who prefer a particular brand of soft drink. Let p represent
the unknown value of this proportion. It is impractical to question every individual in the popula-
tion to determine the true value of p. In order to make an inference regarding the true proportion
P, a more reasonable procedure would be to select a random sample (of an appropriate size) and
use the observed proportion p of people in this sample favoring the brand of soft drink.

The sample proportion, p is computed by dividing the number of individuals in the sam-
ple who prefer the brand of soft drink by the total sample size n. Thus, p is a function of the
observed values in the random sample. Since many random samples are possible from a pop-
ulation, the value of p will vary from sample to sample. That is, p is a random variable. Such
a random variable is called a statistic.

Definition
A statistic is any function of the observations in a random sample.

We have encountered statistics before. For example, if X, X,, ..., X, is a random sample of
size n, the sample mean X, the sample variance S%, and the sample standard deviation S are
statistics.

Although numerical summary statistics are very useful, graphical displays of sample data
are a very powerful and extremely useful way to visually examine the data. We now present a few
of the techniques that are most relevant to engineering applications of probability and statistics.

6-3 STEM-AND-LEAF DIAGRAMS

The dot diagram is a useful data display for small samples, up to (say) about 20 observations.
However, when the number of observations is moderately large, other graphical displays may
be more useful.

For example, consider the data in Table 6-2. These data are the compressive strengths in
pounds per square inch (psi) of 80 specimens of a new aluminum-lithium alloy undergoing eval-
uation as a possible material for aircraft structural elements. The data were recorded in the order
of testing, and in this format they do not convey much information about compressive strength.
Questions such as “What percent of the specimens fail below 120 psi?” are not easy to answer.
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Steps for
Constructing a Stem-
and-Leaf Diagram

EXAMPLE 6-4

Table 6-2 Compressive Strength (in psi) of 80 Aluminum-Lithium Alloy Specimens

105 221 183 186 121 181 180 143
97 154 153 174 120 168 167 141
245 228 174 199 181 158 176 110
163 131 154 115 160 208 158 133
207 180 190 193 194 133 156 123
134 178 76 167 184 135 229 146
218 157 101 171 165 172 158 169
199 151 142 163 145 171 148 158
160 175 149 87 160 237 150 135
196 201 200 176 150 170 118 149

Because there are many observations, constructing a dot diagram of these data would be rela-
tively inefficient; more effective displays are available for large data sets.

A stem-and-leaf diagram is a good way to obtain an informative visual display of a data
set xq, X,, ..., X,, where each number x; consists of at least two digits. To construct a stem-
and-leaf diagram, use the following steps.

(1) Divide each number x; into two parts: a stem, consisting of one or more of the
leading digits and a leaf, consisting of the remaining digit.

(2) List the stem values in a vertical column.
(3) Record the leaf for each observation beside its stem.

(4) Write the units for stems and leaves on the display.

To illustrate, if the data consist of percent defective information between 0 and 100 on
lots of semiconductor wafers, we can divide the value 76 into the stem 7 and the leaf 6. In gen-
eral, we should choose relatively few stems in comparison with the number of observations.
It is usually best to choose between 5 and 20 stems.

To illustrate the construction of a stem-and-leaf diagram, consider the alloy compressive
strength data in Table 6-2. We will select as stem values the numbers 7, 8,9, ..., 24. The
resulting stem-and-leaf diagram is presented in Fig. 6-4. The last column in the diagram is a
frequency count of the number of leaves associated with each stem. Inspection of this display
immediately reveals that most of the compressive strengths lie between 110 and 200 psi and
that a central value is somewhere between 150 and 160 psi. Furthermore, the strengths are dis-
tributed approximately symmetrically about the central value. The stem-and-leaf diagram
enables us to determine quickly some important features of the data that were not immediately
obvious in the original display in Table 6-2.

In some data sets, it may be desirable to provide more classes or stems. One way to do this
would be to modify the original stems as follows: Divide the stem 5 (say) into two new stems,
5L and 5U. The stem 5L has leaves 0, 1, 2, 3, and 4, and stem 5U has leaves 5, 6, 7, 8, and 9.
This will double the number of original stems. We could increase the number of original stems
by four by defining five new stems: 5z with leaves 0 and 1, 5t (for twos and three) with leaves
2 and 3, 5f (for fours and fives) with leaves 4 and 5, 5s (for six and seven) with leaves 6 and
7, and 5e with leaves 8 and 9.



Figure 6-4 Stem-
and-leaf diagram for
the compressive
strength data in Table
6-2.

EXAMPLE 6-5

Figure 6-5 Stem-
and-leaf displays for
Example 6-5. Stem:
Tens digits. Leaf:
Ones digits.

6-3 STEM-AND-LEAF DIAGRAMS

Stem Leaf Frequency
7 6 1
8 7 1
9 7 1
10 51 2
11 580 3
12 103 3
13 413535 6
14 29583169 8
15 471340886808 12
16 3073050879 10
17 8544162106 10
18 0361410 7
19 960934 6
20 7108 4
21 8 1
22 189 3
23 7 1
5 1

Stem : Tens and hundreds digits (psi); Leaf: Ones digits (psi)

199

Figure 6-5 illustrates the stem-and-leaf diagram for 25 observations on batch yields from a
chemical process. In Fig. 6-5(a) we have used 6, 7, 8, and 9 as the stems. This results in too
few stems, and the stem-and-leaf diagram does not provide much information about the data.
In Fig. 6-5(b) we have divided each stem into two parts, resulting in a display that more

Stem | Leaf Stem Leaf
6 134556 6L 134
7 011357889 6U 556
8 1344788 7L 0113
9 235 7U 57889
(a) 8L 1344
8U 788
9L 23
U 5
(b)

Stem Leaf
6z 1
6t 3
6f 455
6s 6
6e
7z 011
7t 3
7t 5
7s 7
Te 889
8z 1
8t 3
8f 44
8s 7
8e 88
9z
9t 23
9f 5
9s
9¢
©)]
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Figure 6-6 A stem-
and-leaf diagram from
Minitab.
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Character Stem-and-Leaf Display

Stem-and-leaf of Strength
N=80 LeafUnit=1.0

1 7 6

2 8 7

3 9 7

5 10 15

8 11 058

11 12 013

17 13 133455

25 14 12356899
37 15 001344678888
(10) 16 0003357789
33 17 0112445668
23 18 0011346

16 19 034699

10 20 0178

6 21 8

5 22 189

2 23 7

1 24 5

adequately displays the data. Figure 6-5(c) illustrates a stem-and-leaf display with each stem
divided into five parts. There are too many stems in this plot, resulting in a display that does
not tell us much about the shape of the data.

Figure 6-6 shows a stem-and-leaf display of the compressive strength data in Table 6-2
produced by Minitab. The software uses the same stems as in Fig. 6-4. Note also that the com-
puter orders the leaves from smallest to largest on each stem. This form of the plot is usually
called an ordered stem-and-leaf diagram. This is not usually done when the plot is con-
structed manually because it can be time consuming. The computer adds a column to the left of
the stems that provides a count of the observations at and above each stem in the upper half of
the display and a count of the observations at and below each stem in the lower half of the dis-
play. At the middle stem of 16, the column indicates the number of observations at this stem.

The ordered stem-and-leaf display makes it relatively easy to find data features such as per-
centiles, quartiles, and the median. The sample median is a measure of central tendency that
divides the data into two equal parts, half below the median and half above. If the number of
observations is even, the median is halfway between the two central values. From Fig. 6-6
we find the 40th and 41st values of strength as 160 and 163, so the median is
(160 + 163)/2 = 161.5. If the number of observations is odd, the median is the central value.
The sample mode is the most frequently occurring data value. Figure 6-6 indicates that the mode
is 158; this value occurs four times, and no other value occurs as frequently in the sample.

We can also divide data into more than two parts. When an ordered set of data is divided
into four equal parts, the division points are called quartiles. The first or lower quartile, q,, is
a value that has approximately 25% of the observations below it and approximately 75% of
the observations above. The second quartile, gq,, has approximately 50% of the observations
below its value. The second quartile is exactly equal to the median. The third or upper quar-
tile, g5, has approximately 75% of the observations below its value. As in the case of the
median, the quartiles may not be unique. The compressive strength data in Fig. 6-6 contains
n = 80 observations. Minitab software calculates the first and third quartiles as the (n + 1)/4
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Table 6-3 Summary Statistics for the Compressive Strength Data from Minitab

Variable N Mean Median StDev SE Mean
80 162.66 161.50 33.77 3.78
Min Max Q1 Q3
76.00 245.00 143.50 181.00

and 3(n + 1)/4 ordered observations and interpolates as needed. For example,
(80 + 1)/4 = 20.25 and 3(80 + 1)/4 = 60.75. Therefore, Minitab interpolates between the
20th and 21st ordered observation to obtain ¢; = 143.50 and between the 60th and 61st ob-
servation to obtain g3 = 181.00. In general, the 100kth percentile is a data value such that ap-
proximately 100k% of the observations are at or below this value and approximately
100(1 — k)% of them are above it. Finally, we may use the interquartile range, defined as
IQR = ¢3 — ¢, as a measure of variability. The interquartile range is less sensitive to the ex-
treme values in the sample than is the ordinary sample range.

Many statistics software packages provide data summaries that include these quantities.
The output obtained for the compressive strength data in Table 6-2 from Minitab is shown in
Table 6-3.

EXERCISES FOR SECTION 6-3

6-14. An article in Technometrics (Vol. 19, 1977, p. 425) (b) Does it appear likely that a coupon will “survive” beyond
presents the following data on the motor fuel octane ratings of 2000 cycles? Justify your answer.

several blends of gasoline:

88.5
94.7
84.3
90.1
89.0
89.8
91.6
90.3
90.0
91.5
89.9

Construct a stem-and-leaf display for these data.

6-15.

98.8
88.3
90.4
91.2
90.6
92.2
87.7
91.1
86.7
93.4
96.1

The following data are the numbers of cycles to fail-

89.6
90.4
91.6
90.7
88.6
88.3
94.2
85.3
90.1
89.3
91.1

6-16. The percentage of cotton in material used to manufac-
ture men’s shirts follows. Construct a stem-and-leaf display

922 927 834 875 909 for the data.

834 879 926 878 899

910 930 937 883 918 342 378 336 326 338 358 347 346
882 944 965 892 897 331 36.6 347 331 342 376 33,6 33.6
885 904 843 923 922 345 354 350 346 334 373 325 341
933 912 932 889 356 346 354 359 347 346 341 347
874 867 886 898 363 338 362 347 346 355 351 357
91.1 942 887 927 351 37.1 368 336 352 328 36.8 368
905 908 927 933 347 340 351 329 350 321 379 343
1003 90.1 893 867 336 341 353 335 349 345 364 327
87.6 91.8 91.0 091.0 6-17. The following data represent the yield on 90 consecu-

tive batches of ceramic substrate to which a metal coating has
been applied by a vapor-deposition process. Construct a stem-
and-leaf display for these data.

ure of aluminum test coupons subjected to repeated alternat-

ing stress at 21,000 psi, 18 cycles per second:

1115
1310
1540
1502
1258
1315
1085

798
1020

865
2130
1421
1109
1481
1567
1883
1203
1270

1015
845
1674
1016
1102
1605
706
2215
785

94.1 86.1 953 849 888 846 944 8§41
932 904 941 783 864 836 96.1 837
90.6 89.1 97.8 89.6 851 854 980 829
914 873 931 903 84.0 897 854 873
882 84.1 864 931 937 R87.6 86.6 864
86.1 90.1 87.6 94.6 87.7 851 91.7 845
95.1 952 941 963 906 89.6 875
90.0 86.1 921 947 894 90.0 842
924 943 964 91.1 886 90.1 85.1
873 932 882 924 841 943 905
86.6 86.7 864 90.6 82.6 973 956

885 1594 1000 1416 1501
1223 2023 1820 1560 1238
375 1315 1940 1055 990
2265 1269 1120 1764 1468
1910 1260 910 1330 1512
1018 1888 1730 1608 1750
1452 1782 1102 1535 1642
1890 1522 1578 1781

2100 1792 758 1750

(a) Construct a stem-and-leaf display for these data. 91.2 83.0 850 89.1 831 968 883
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6-18. Find the median and the quartiles for the motor fuel
octane data in Exercise 6-14.

6-19. Find the median and the quartiles for the failure data
in Exercise 6-15.

6-20. Find the median, mode, and sample average of the
data in Exercise 6-16. Explain how these three measures of
location describe different features in the data.

6-21. Find the median and the quartiles for the yield data in
Exercise 6-19.

6-22. The female students in an undergraduate engineering
core course at ASU self-reported their heights to the nearest
inch. The data are

62 64 66 67
68 64 66 68
69 65 70 65

65 68 61 65 67 65 64 63 67
69 65 67 62 66 68 67 66 65
67 68 65 63 64 67 67

(a) Calculate the
height.

(b) Construct a stem-and-leaf diagram for the height data and
comment on any important features that you notice.

(c) What is the median height of this group of female engi-
neering students?

6-23. The shear strengths of 100 spot welds in a titanium

alloy follow. Construct a stem-and-leaf diagram for the weld

strength data and comment on any important features that you

notice.

5408 5431
5420 5429
5407 5469
5463 5408
5399 5391
5445 5436
5381 5425
5401 5411
5458 5485
5383 5401

6-24. Animportant quality characteristic of water is the con-
centration of suspended solid material. Following are 60 meas-
urements on suspended solids from a certain lake. Construct a
stem-and-leaf diagram for this data and comment on any im-
portant features that you notice. Compute the sample mean,
sample standard deviation, and the sample median.

sample mean and standard deviation of

5475
5401
5416
5481
5477
5454
5388
5399
5431
5407

5442
5446
5377
5453
5447
5453
5388
5431
5416
5385

5376
5487
5454
5422
5329
5428
5378
5440
5431
5440

5388
5416
5375
5354
5473
5418
5481
5413
5390
5422

5459 5422
5382 5357
5409 5459
5421 5406
5423 5441
5465 5427
5387 5440
5406 5342
5399 5435
5448 5366

5416
5388
5445
5444
5412
5421
5482
5452
5387
5430

5435
5457
5429
5466
5384
5396
5406
5420
5462
5418

42.4
543
56.3
61.4
42.6
61.4

65.7
54.0
433
64.0
77.4
73.1

29.8
73.1
57.4
64.2
54.7
77.3

58.7
81.3
453
72.6
57.1
48.5

52.1
59.9
80.1
72.5
773
89.8

55.8
56.9
49.7
46.1
393
50.7

57.0
62.2
42.8
53.1
76.4
52.0

68.7
69.9
42.4
56.1
59.3
59.6

67.3
66.9
59.6
67.2
511
66.1

67.3
59.0
65.8
70.7
73.8
31.6

6-25. The United States Golf Association tests golf balls to
ensure that they conform to the rules of golf. Balls are tested for
weight, diameter, roundness, and overall distance. The overall

CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

distance test is conducted by hitting balls with a driver swung
by a mechanical device nicknamed “Iron Byron” after the
legendary great Byron Nelson, whose swing the machine is said
to emulate. Following are 100 distances (in yards) achieved by
a particular brand of golf ball in the overall distance test.
Construct a stem-and-leaf diagram for this data and comment
on any important features that you notice. Compute the sample
mean, sample standard deviation, and the sample median.

265.7
255.1
233.7
253.7
264.5
245.5
280.3
248.3
267.0
271.5
240.8
250.2
251.4

270.6
268.9
263.5
262.2
2448
279.6
272.7
278.7
273.4
242.9
276.6
255.8
276.1

274.2
267.4
244.5
252.0
264.0
237.8
261.0
236.0
247.7
273.6
264.5
285.3
277.8

261.4
253.6
251.8
280.3
268.3
278.5
260.0
271.2
254.8
256.1
264.5
255.4
266.8

254.5
2343
259.5
274.9
272.1
2733
2793
279.8
272.8
251.6
226.8
240.5
268.5

283.7
263.2
257.5
233.7
260.2
263.7
252.1
245.6
270.5

261.3
258.1
254.2
257.7
237.9
255.8
241.4
2443
241.2
254.4
256.8
255.3
255.0

259.4
270.5
270.7
272.6
274.0
260.7
260.6
272.2
251.1
232.1
273.0
266.6
273.2

6-26. A semiconductor manufacturer produces devices used
as central processing units in personal computers. The speed of
the device (in megahertz) is important because it determines the
price that the manufacturer can charge for the devices. The fol-
lowing table contains measurements on 120 devices. Construct a
stem-and-leaf diagram for this data and comment on any impor-
tant features that you notice. Compute the sample mean, sample
standard deviation, and the sample median. What percentage of
the devices has a speed exceeding 700 megahertz?

680
677
649
681
652
717
704
683
662
681

669
669
675
679
720
727
652
723
644
715

719
700
701
691
660
653
664
710
683
665

699
718
721
683
695
637
702
680
695
676

670
690
683
705
701
660
661
684
678
665

710
681
735
746
724
693
720
705
674
675

722
702
688
706
668
679
695
681
656
655

663
696
763
649
698
682
670
748
667
659

658
692
672
668
668
724
656
697
683
720

634
690
698
672
660
642
718
703
691
675

720
694
659
690
680
704
660
660
680
697

690
660
704
724
739
695
648
722
685
663

6-27. A group of wine enthusiasts taste-tested a pinot noir
wine from Oregon. The evaluation was to grade the wine on a
0 to 100 point scale. The results follow:

94 9 92 91 91 8 89 91 91 90
99 93 87 9 91 92 89 & 89 90
8 95 91 8 & 92 8 8 95 92
& 91 & 89 88 84 8 90 90 83

(a) Construct a stem-and-leaf diagram for this data and com-
ment on any important features that you notice.
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(b) Compute the sample mean, sample standard deviation,
and the sample median.

(c) A wine rated above 90 is considered truly exceptional.
What proportion of the taste-tasters considered this partic-
ular pinot noir truly exceptional?

6-28. In their book Introduction to Linear Regression

Analysis (3rd edition, Wiley, 2001) Montgomery, Peck, and

Vining present measurements on NbOCl; concentration from

a tube-flow reactor experiment. The data, in gram —mole per

liter X 1073, are as follows:

203

(b) Compute the sample mean, sample standard deviation,
and the sample median.

6-29. A Comparative Stem-and-Leaf Diagram. In

Exercise 6-22, we presented height data that was self-reported

by female undergraduate engineering students in a core course

at ASU. In the same class, the male students self-reported their

heights as follows:

69 67 69 70 65 68 69 70 71 69 66 67 69 75 68 67 68
69 70 71 72 68 69 69 70 71 68 72 69 69 68 69 73 70

450 450
1145 1085

(a) Construct a stem-and-leaf diagram for this data and com-
ment on any important features that you notice.

473
1066

507 457 452 453
1111 1364
1733 2753 3186 3227 3469 1911

73 68 69 71 67 68 65 68 68 69 70 74 71 69 70 69
1215 1256

1396 1575 1617
2588 2635 2725

(a) Construct a comparative stem-and-leaf diagram by listing
the stems in the center of the display and then placing the
female leaves on the left and the male leaves on the right.

(b) Comment on any important features that you notice in this
display.

1254
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A frequency distribution is a more compact summary of data than a stem-and-leaf diagram.
To construct a frequency distribution, we must divide the range of the data into intervals, which
are usually called class intervals, cells, or bins. If possible, the bins should be of equal width
in order to enhance the visual information in the frequency distribution. Some judgment must
be used in selecting the number of bins so that a reasonable display can be developed. The num-
ber of bins depends on the number of observations and the amount of scatter or dispersion in
the data. A frequency distribution that uses either too few or too many bins will not be inform-
ative. We usually find that between 5 and 20 bins is satisfactory in most cases and that the num-
ber of bins should increase with n. Choosing the number of bins approximately equal to the
square root of the number of observations often works well in practice.

A frequency distribution for the comprehensive strength data in Table 6-2 is shown in
Table 6-4. Since the data set contains 80 observations, and since V/80 = 9, we suspect that
about eight to nine bins will provide a satisfactory frequency distribution. The largest and
smallest data values are 245 and 76, respectively, so the bins must cover a range of at least
245 — 76 = 169 units on the psi scale. If we want the lower limit for the first bin to begin
slightly below the smallest data value and the upper limit for the last bin to be slightly above
the largest data value, we might start the frequency distribution at 70 and end it at 250. This is
an interval or range of 180 psi units. Nine bins, each of width 20 psi, give a reasonable
frequency distribution, so the frequency distribution in Table 6-4 is based on nine bins.

The second row of Table 6-4 contains a relative frequency distribution. The relative
frequencies are found by dividing the observed frequency in each bin by the total number of

Table 6-4 Frequency Distribution for the Compressive Strength Data in Table 6-2

Class 70=x<90 90=x<110 110=x<130 130=x<150 150=x<170 170=x<190 190 =x<210 210=x<230 230 =x< 250
Frequency 2 3 6 14 22 17 10 4 2
Relative

frequency 0.0250 0.0375 0.0750 0.1750 0.2750 0.2125 0.1250 0.0500 0.0250
Cumulative

relative

frequency 0.0250 0.0625 0.1375 0.3125 0.5875 0.8000 0.9250 0.9750 1.0000
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Constructing a
Histogram (Equal
Bin Widths)

Figure 6-7 Histogram
of compressive strength
for 80 aluminum-
lithium alloy
specimens.

observations. The last row of Table 6-4 expresses the relative frequencies on a cumulative ba-
sis. Frequency distributions are often easier to interpret than tables of data. For example, from
Table 6-4 it is very easy to see that most of the specimens have compressive strengths between
130 and 190 psi and that 97.5 percent of the specimens fail below 230 psi.

The histogram is a visual display of the frequency distribution. The stages for construct-
ing a histogram follow.

(1) Label the bin (class interval) boundaries on a horizontal scale.

(2) Mark and label the vertical scale with the frequencies or the relative
frequencies.

(3) Above each bin, draw a rectangle where height is equal to the frequency (or rel-
ative frequency) corresponding to that bin.

Figure 6-7 is the histogram for the compression strength data. The histogram, like the stem-
and-leaf diagram, provides a visual impression of the shape of the distribution of the meas-
urements and information about the central tendency and scatter or dispersion in the data.
Notice the symmetric, bell-shaped distribution of the strength measurements in Fig. 6-7. This
display often gives insight about possible choices of probability distribution to use as a model
for the population. For example, here we would likely conclude that the normal distribution
is a reasonable model for the population of compression strength measurements.

Sometimes a histogram with unequal bin widths will be employed. For example, if the
data have several extreme observations or outliers, using a few equal-width bins will result
in nearly all observations falling in just of few of the bins. Using many equal-width bins will
result in many bins with zero frequency. A better choice is to use shorter intervals in the region
where most of the data falls and a few wide intervals near the extreme observations. When the
bins are of unequal width, the rectangle’s area (not its height) should be proportional to the
bin frequency. This implies that the rectangle height should be

bin frequency

Rectangle height = —
& & bin width

In passing from either the original data or stem-and-leaf diagram to a frequency distribu-
tion or histogram, we have lost some information because we no longer have the individual
observations. However, this information loss is often small compared with the conciseness
and ease of interpretation gained in using the frequency distribution and histogram.
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g
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Strength Strength
Figure 6-8 A histogram of the compressive strength Figure 6-9 A histogram of the compressive strength
data from Minitab with 17 bins. data from Minitab with nine bins.

Figure 6-10 A
cumulative distribution
plot of the compressive
strength data from
Minitab.

Figure 6-8 shows a histogram of the compressive strength data from Minitab. The “de-
fault” settings were used in this histogram, leading to 17 bins. We have noted that histograms
may be relatively sensitive to the number of bins and their width. For small data sets, his-
tograms may change dramatically in appearance if the number and/or width of the bins
changes. Histograms are more stable for larger data sets, preferably of size 75 to 100 or more.
Figure 6-9 shows the Minitab histogram for the compressive strength data with nine bins. This
is similar to the original histogram shown in Fig. 6-7. Since the number of observations is
moderately large (n = 80), the choice of the number of bins is not especially important, and
both Figs. 6-8 and 6-9 convey similar information.

Figure 6-10 shows a variation of the histogram available in Minitab, the cumulative fre-
quency plot. In this plot, the height of each bar is the total number of observations that are less
than or equal to the upper limit of the bin. Cumulative distributions are also useful in data in-
terpretation; for example, we can read directly from Fig. 6-10 that there are approximately 70
observations less than or equal to 200 psi.

When the sample size is large, the histogram can provide a reasonably reliable indicator of
the general shape of the distribution or population of measurements from which the sample
was drawn. Figure 6-11 presents three cases. The median is denoted as %. Generally, if the data
are symmetric, as in Fig. 6-11(b), the mean and median coincide. If, in addition, the data have
only one mode (we say the data are unimodal), the mean, median, and mode all coincide. If the
data are skewed (asymmetric, with a long tail to one side), as in Fig. 6-11(a) and (c), the mean,
median, and mode do not coincide. Usually, we find that mode < median < mean if the

80
70
60
50
40
30
20
10

Cumulative frequency

100 150 200 250
Strength
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Figure 6-11
Histograms for sym-
metric and skewed dis-
tributions.

EXAMPLE 6-6

xr x x X X
x
Negative or left skew Symmetric Positive or right skew
(@) (b) (c)

distribution is skewed to the right, whereas mode > median > mean if the distribution is
skewed to the left.

Frequency distributions and histograms can also be used with qualitative or categorical
data. In some applications there will be a natural ordering of the categories (such as freshman,
sophomore, junior, and senior), whereas in others the order of the categories will be arbitrary
(such as male and female). When using categorical data, the bins should have equal width.

Figure 6-12 presents the production of transport aircraft by the Boeing Company in 1985. No-
tice that the 737 was the most popular model, followed by the 757, 747, 767, and 707.

A chart of occurrences by category (in which the categories are ordered by the number of
occurrences) is sometimes referred to as a Pareto chart. See Exercise 6-41.

In this section we have concentrated on descriptive methods for the situation in which each
observation in a data set is a single number or belongs to one category. In many cases, we work
with data in which each observation consists of several measurements. For example, in a gasoline
mileage study, each observation might consist of a measurement of miles per gallon, the size of
the engine in the vehicle, engine horsepower, vehicle weight, and vehicle length. This is an ex-
ample of multivariate data. In later chapters, we will discuss analyzing this type of data.

EXERCISES FOR SECTION 6-4

6-30. Construct a frequency distribution and histogram for 6-32. Construct a frequency distribution and histogram for

the motor fuel octane data from Exercise 6-14. Use eight bins. the cotton content data in Exercise 6-16.
6-31. Construct a frequency distribution and histogram us- 6-33. Construct a frequency distribution and histogram for
ing the failure data from Exercise 6-15. the yield data in Exercise 6-17.
250

g8 150

§ —

=

53

s} 5 100

38

ES

S c

Z g2 50
Figure 6-12

Airplane production in
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6-34. Construct a frequency distribution and histogram with
16 bins for the motor fuel octane data in Exercise 6-14. Compare
its shape with that of the histogram with eight bins from Exercise
6-30. Do both histograms display similar information?

6-35. Construct a histogram for the female student height
data in Exercise 6-22.

6-36. Construct a histogram with 10 bins for the spot weld
shear strength data in Exercise 6-23. Comment on the shape of
the histogram. Does it convey the same information as the
stem-and-leaf display?

6-37. Construct a histogram for the water quality data in
Exercise 6-24. Comment on the shape of the histogram. Does
it convey the same information as the stem-and-leaf display?
6-38. Construct a histogram with 10 bins for the overall dis-
tance data in Exercise 6-25. Comment on the shape of the his-
togram. Does it convey the same information as the stem-and-
leaf display?

6-39. Construct a histogram for the semiconductor speed
data in Exercise 6-26. Comment on the shape of the his-
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togram. Does it convey the same information as the stem-and-
leaf display?

6-40. Construct a histogram for the pinot noir wine rating data
in Exercise 6-27. Comment on the shape of the histogram. Does
it convey the same information as the stem-and-leaf display?

6-41. The Pareto Chart. An important variation of a his-
togram for categorical data is the Pareto chart. This chart is
widely used in quality improvement efforts, and the categories
usually represent different types of defects, failure modes, or
product/process problems. The categories are ordered so that
the category with the largest frequency is on the left, followed
by the category with the second largest frequency and so forth.
These charts are named after the Italian economist V. Pareto,
and they usually exhibit “Pareto’s law”; that is, most of the de-
fects can be accounted for by only a few categories. Suppose
that the following information on structural defects in auto-
mobile doors is obtained: dents, 4; pits, 4; parts assembled out
of sequence, 6; parts undertrimmed, 21; missing holes/slots, §;
parts not lubricated, 5; parts out of contour, 30; and parts not

deburred, 3. Construct and interpret a Pareto chart.

6-5 BOXPLOTS

Figure 6-13 Descrip-
tion of a box plot.

The stem-and-leaf display and the histogram provide general visual impressions about a data
set, while numerical quantities such as x or s provide information about only one feature of
the data. The box plot is a graphical display that simultaneously describes several important
features of a data set, such as center, spread, departure from symmetry, and identification of
unusual observations or outliers.

A box plot displays the three quartiles, the minimum, and the maximum of the data on a rec-
tangular box, aligned either horizontally or vertically. The box encloses the interquartile range with
the left (or lower) edge at the first quartile, ¢,, and the right (or upper) edge at the third quartile, ¢;.
A line is drawn through the box at the second quartile (which is the 50th percentile or the median),
¢>» = x. A line, or whisker, extends from each end of the box. The lower whisker is a line from the
first quartile to the smallest data point within 1.5 interquartile ranges from the first quartile. The
upper whisker is a line from the third quartile to the largest data point within 1.5 interquartile
ranges from the third quartile. Data farther from the box than the whiskers are plotted as individ-
ual points. A point beyond a whisker, but less than 3 interquartile ranges from the box edge, is
called an outlier. A point more than 3 interquartile ranges from the box edge is called an extreme
outlier. See Fig. 6-13. Occasionally, different symbols, such as open and filled circles, are used to
identify the two types of outliers. Sometimes box plots are called box-and-whisker plots.

Whisker extends to
largest data point within
1.5 interquartile ranges
from third quartile

Whisker extends to

smallest data point within
1.5 interquartile ranges from
first quartile
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AN —
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Figure 6-14 Box plot for compressive

strength data in Table 6-2.
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Figure 6-15 Comparative box plots of a
quality index at three plants.

Figure 6-14 presents the box plot from Minitab for the alloy compressive strength data
shown in Table 6-2. This box plot indicates that the distribution of compressive strengths is
fairly symmetric around the central value, because the left and right whiskers and the lengths
of the left and right boxes around the median are about the same. There are also two mild out-

liers on either end of the data.

Box plots are very useful in graphical comparisons among data sets, because they have
high visual impact and are easy to understand. For example, Fig. 6-15 shows the comparative
box plots for a manufacturing quality index on semiconductor devices at three manufacturing
plants. Inspection of this display reveals that there is too much variability at plant 2 and that
plants 2 and 3 need to raise their quality index performance.

EXERCISES FOR SECTION 6-5

6-42. Exercise 6-13 presented the joint temperatures of

the O-rings (°F) for each test firing or actual launch of the

space shuttle rocket motor. In that exercise you were asked
to find the sample mean and sample standard deviation of
temperature.

(a) Find the upper and lower quartiles of temperature.

(b) Find the median.

(c) Set aside the smallest observation (31°F) and recompute
the quantities in parts (a) and (b). Comment on your find-
ings. How “different” are the other temperatures from this
smallest value?

(d) Construct a box plot of the data and comment on the pos-
sible presence of outliers.

6-43. An article in the Transactions of the Institution of

Chemical Engineers (Vol. 34, 1956, pp. 280-293) reported

data from an experiment investigating the effect of several

process variables on the vapor phase oxidation of naphtha-

lene. A sample of the percentage mole conversion of naphtha-

lene to maleic anhydride follows: 4.2, 4.7, 4.7, 5.0, 3.8, 3.6,

3.0,5.1,3.1,3.8,4.8,4.0,5.2,4.3,2.38,2.0,2.8,3.3,48, 5.0.

(a) Calculate the sample mean.

(b) Calculate the sample variance and sample standard
deviation.

(c) Construct a box plot of the data.

6-44. The “cold start ignition time” of an automobile engine

is being investigated by a gasoline manufacturer. The follow-

ing times (in seconds) were obtained for a test vehicle: 1.75,

1.92,2.62,2.35,3.09, 3.15,2.53, 1.91.

(a) Calculate the sample mean and sample standard deviation.

(b) Construct a box plot of the data.

6-45. The nine measurements that follow are furnace tem-

peratures recorded on successive batches in a semiconductor



manufacturing process (units are °F): 953, 950, 948, 955, 951,

949, 957, 954, 955.

(a) Calculate the sample mean, sample variance, and standard
deviation.

(b) Find the median. How much could the largest temperature
measurement increase without changing the median value?

(c) Construct a box plot of the data.

6-46. Exercise 6-12 presents drag coefficients for the

NASA 0012 airfoil. You were asked to calculate the sample

mean, sample variance, and sample standard deviation of

those coefficients.

(a) Find the upper and lower quartiles of the drag coefficients.

(b) Construct a box plot of the data.

(c) Set aside the largest observation (100) and rework parts a
and b. Comment on your findings.

6-47. The following data are the temperatures of effluent at

discharge from a sewage treatment facility on consecutive

days:

43 47 51 48 52 50 46 49
45 52 46 51 44 49 46 51
49 45 44 50 48 50 49 50

(a) Calculate the sample mean and median.

(b) Calculate the sample variance and sample standard
deviation.

(c) Construct a box plot of the data and comment on the in-
formation in this display.

6-48. Reconsider the golf course yardage data in Exercise 6-3.

Construct a box plot of the yardages and write an interpreta-

tion of the plot.

6-49. Reconsider the motor fuel octane rating data in

Exercise 6-14. Construct a box plot of the yardages and write

an interpretation of the plot. How does the box plot compare

in interpretive value to the original stem-and-leaf diagram in

Exercise 6-14?
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6-50. Reconsider the spot weld shear strength data in
Exercise 6-23. Construct a box plot of the strengths and write
an interpretation of the plot. How does the box plot compare
in interpretive value to the original stem-and-leaf diagram in
Exercise 6-23?

6-51. Reconsider the female engineering student height
data in Exercise 6-22. Construct a box plot of the heights and
write an interpretation of the plot. How does the box plot com-
pare in interpretive value to the original stem-and-leaf dia-
gram in Exercise 6-22?

6-52. Reconsider the water quality data in Exercise 6-24.
Construct a box plot of the concentrations and write an interpre-
tation of the plot. How does the box plot compare in interpretive
value to the original stem-and-leaf diagram in Exercise 6-24?
6-53. Reconsider the golf ball overall distance data in
Exercise 6-25. Construct a box plot of the yardage distance
and write an interpretation of the plot. How does the box plot
compare in interpretive value to the original stem-and-leaf di-
agram in Exercise 6-25?

6-54. Reconsider the wine rating data in Exercise 6-27.
Construct a box plot of the wine ratings and write an interpreta-
tion of the plot. How does the box plot compare in interpretive
value to the original stem-and-leaf diagram in Exercise 6-27?
6-55. Use the data on heights of female and male engineer-
ing students from Exercises 6-22 and 6-29 to construct
comparative box plots. Write an interpretation of the informa-
tion that you see in these plots.

6-56. In Exercise 6-44, data was presented on the cold start
ignition time of a particular gasoline used in a test vehicle. A
second formulation of the gasoline was tested in the same ve-
hicle, with the following times (in seconds): 1.83, 1.99, 3.13,
3.29,2.65,2.87,3.40,2.46, 1.89, and 3.35. Use this new data
along with the cold start times reported in Exercise 6-44 to
construct comparative box plots. Write an interpretation of the
information that you see in these plots.

The graphical displays that we have considered thus far such as histograms, stem-and-leaf
plots, and box plots are very useful visual methods for showing the variability in data.
However, we noted in Section 1-2.2 that time is an important factor that contributes to vari-
ability in data, and those graphical methods do not take this into account. A time series or
time sequence is a data set in which the observations are recorded in the order in which they
occur. A time series plot is a graph in which the vertical axis denotes the observed value of
the variable (say x) and the horizontal axis denotes the time (which could be minutes, days,
years, etc.) When measurements are plotted as a time series, we often see trends, cycles, or
other broad features of the data that could not be seen otherwise.

@

@ @ @

@



210

Sales, x

CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

Sales, x

19821983 1984 1985 1986 19871988 1989 1990 1991 Years 1 2 3 4 1 2 3 4 1 2 3 4Quarters

1989 1990 1991
(a) ()

Figure 6-16 Company sales by year (a) and by quarter (b).

For example, consider Fig. 6-16(a), which presents a time series plot of the annual sales
of a company for the last 10 years. The general impression from this display is that sales show
an upward trend. There is some variability about this trend, with some years’ sales increasing
over those of the last year and some years’ sales decreasing. Figure 6-16(b) shows the last
three years of sales reported by quarter. This plot clearly shows that the annual sales in this
business exhibit a cyclic variability by quarter, with the first- and second-quarter sales being
generally greater than sales during the third and fourth quarters.

Sometimes it can be very helpful to combine a time series plot with some of the other
graphical displays that we have considered previously. J. Stuart Hunter (The American
Statistician, Vol. 42, 1988, p. 54) has suggested combining the stem-and-leaf plot with a time
series plot to form a digidot plot.

Figure 6-17 shows a digidot plot for the observations on compressive strength from
Table 6-2, assuming that these observations are recorded in the order in which they

Leaf Stem Time series plot
5| 24
7 23
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8 21 s |
7108 | 20 \ ﬁ .
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471340886808 | 15 ® 3 ¥ o . l\o
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Figure 6-17 A digidot plot of the compressive strength data in Table 6-2.
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hourly.

occurred. This plot effectively displays the overall variability in the compressive strength
data and simultaneously shows the variability in these measurements over time. The general
impression is that compressive strength varies around the mean value of 162.67, and there
is no strong obvious pattern in this variability over time.

The digidot plot in Fig. 6-18 tells a different story. This plot summarizes 30 observations
on concentration of the output product from a chemical process, where the observations are
recorded at one-hour time intervals. This plot indicates that during the first 20 hours of oper-
ation this process produced concentrations generally above 85 grams per liter, but that
following sample 20, something may have occurred in the process that results in lower con-
centrations. If this variability in output product concentration can be reduced, operation of this

process can be improved.

EXERCISES FOR SECTION 6-6

6-57. The College of Engineering and Applied Science at
Arizona State University had a VAX computer system.
Response times for 20 consecutive jobs were recorded and are
as follows: (read across)

(b) Specifications on product viscosity are at 48 = 2. What

conclusions can you make about process performance?
6-59. The pull-off force for a connector is measured in a
laboratory test. Data for 40 test specimens follow (read down,

53 10.1 59 122 112 124 92  thenlefttoright).

5.0 5.8 7.2 8.5 7.3 3.9 10.5 241 203 201 251 236 190

9.5 6.2 10.0 4.7 6.4 8.1 258 195 195 238 245 175
Construct and interpret a time series plot of these data. 237 249 255 210 209 178
6-58. The following data are the viscosity measurements 210 220 245 198 212 175
for a chemical product observed hourly (read down, then left 194 194 235 199 185 190
to right). 225 245 220 183 187

248 209 249 213 218

47.9 48.6 48.0 48.1 43.0 43.2

479 48.8 475 48.0 42.9 43.6 (a) Construct a time series plot of the data.

48.6 48.1 48.6 48.3 43.6 430 (b) Construct and interpret either a digidot plot or a stem-and-

480 483 480 432 433 435 leaf plot of the data.

48.4 472 47.9 43.0 43.0 43.0 6-60. In their book Time Series Analysis, Forecasting, and

481 489 483 435 428 ' Control (Prentice Hall, 1994), G. E. P. Box, G. M. Jenkins,

48'0 48'6 48'5 43'1 43'1 and G. C. Reinsel present chemical process concentration

(a) Construct and interpret either a digidot plot or a separate
stem-and-leaf and time series plot of these data.

readings made every two hours. Some of these data follow
(read down, then left to right).
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Table 6-5 United Kingdom Passenger Airline Miles Flown

Month 1964 1965 1966 1967 1968 1969 1970
Jan. 7.269 8.350 8.186 8.334 8.639 9.491 10.840
Feb. 6.775 7.829 7.444 7.899 8.772 8.919 10.436
Mar. 7.819 8.829 8.484 9.994 10.894 11.607 13.589
Apr. 8.371 9.948 9.864 10.078 10.455 8.852 13.402
May 9.069 10.638 10.252 10.801 11.179 12.537 13.103
June 10.248 11.253 12.282 12.953 10.588 14.759 14.933
July 11.030 11.424 11.637 12.222 10.794 13.667 14.147
Aug. 10.882 11.391 11.577 12.246 12.770 13.731 14.057
Sept. 10.333 10.665 12.417 13.281 13.812 15.110 16.234
Oct. 9.109 9.396 9.637 10.366 10.857 12.185 12.389
Now. 7.685 7.775 8.094 8.730 9.290 10.645 11.594
Dec. 7.682 7.933 9.280 9.614 10.925 12.161 12.772

17.0 16.7 17.1 17.5 17.6 41 10 16 8 62 94
16.6 17.4 17.4 18.1 17.5 21 8 7 13 98 96
16.3 17.2 17.4 17.5 16.5 16 2 4 57 124 77
16.1 17.4 17.5 17.4 17.8 6 0 2 122 96 59
17.1 17.4 17.4 17.4 17.3 4 1 8 138 66 44
16.9 17.0 17.6 17.1 17.3 7 5 17 103 64 47
16.8 17.3 17.4 17.6 17.1 14 12 36 86 54 30
17.4 17.2 17.3 17.7 17.4 34 14 50 63 39 16
17.1 17.4 17.0 17.4 16.9 45 35 62 37 21 7
17.0 16.8 17.8 17.8 17.3 43 46 67 24 7 37
48 41 71 11 4 74
6-61. Construct and interpret either a digidot plot or a stem- 42 30 48 15 23
and-leaf plot of these data. The 100 annual Wolfer sunspot 28 24 28 40 55

numbers from 1770 to 1869 follow. (For an interesting analy-

sis and interpretation of these numbers, see the book by 6-62

In their book Forecasting and Time Series Analysis,

Box, Jenkins, and Reinsel referenced in Exercise 6-60. Their 2nd edition (McGraw-Hill, 1990), D. C. Montgomery, L. A.

analysis requires some advanced knowledge of statistics and
statistical model building.) (read down, then left to right)

Johnson, and J. S. Gardiner analyze the data in Table 6-5,
which are the monthly total passenger airline miles flown in

(a) Construct a tin}e series p'lot of thfas'e data. the United Kingdom, 1964—-1970 (in millions of miles). D
(b) Construct and interpret either a digidot plot or a stem-and- =

leaf plot of these data.

101
82
66
35

(a) Draw a time series plot of the data and comment on any
features of the data that are apparent.
(b) Construct and interpret either a digidot plot or a stem-and-

31 154 38 83 90 leaf plot of these data.
7 125 23 132 67

20 85 10 131 60

92 68 24 118 47

6-7 PROBABILITY PLOTS

How do we know if a particular probability distribution is a reasonable model for data?
Sometimes, this is an important question because many of the statistical techniques
presented in subsequent chapters are based on an assumption that the population distribution
is of a specific type. Thus, we can think of determining whether data come from a specific
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probability distribution as verifying assumptions. In other cases, the form of the distribution
can give insight into the underlying physical mechanism generating the data. For example, in
reliability engineering, verifying that time-to-failure data come from an exponential distri-
bution identifies the failure mechanism in the sense that the failure rate is constant with
respect to time.

Some of the visual displays we have used earlier, such as the histogram, can provide
insight about the form of the underlying distribution. However, histograms are usually not
really reliable indicators of the distribution form unless the sample size is very large.
Probability plotting is a graphical method for determining whether sample data conform
to a hypothesized distribution based on a subjective visual examination of the data. The gen-
eral procedure is very simple and can be performed quickly. It is also more reliable than the
histogram for small to moderate size samples. Probability plotting typically uses special
graph paper, known as probability paper, that has been designed for the hypothesized
distribution. Probability paper is widely available for the normal, lognormal, Weibull, and
various chi-square and gamma distributions. We focus primarily on normal probability plots
because many statistical techniques are appropriate only when the population is (at least ap-
proximately) normal.

To construct a probability plot, the observations in the sample are first ranked from
smallest to largest. That is, the sample x;, x, ..., x,, is arranged as X(1)p X2)p « -+ > X(n)y where
X(1) is the smallest observation, x,, is the second smallest observation, and so forth, with x,,
the largest. The ordered observations x; are then plotted against their observed cumulative
frequency (j — 0.5)/n on the appropriate probability paper. If the hypothesized distribution
adequately describes the data, the plotted points will fall approximately along a straight line;
if the plotted points deviate significantly from a straight line, the hypothesized model is not
appropriate. Usually, the determination of whether or not the data plot as a straight line is
subjective. The procedure is illustrated in the following example.

Ten observations on the effective service life in minutes of batteries used in a portable
personal computer are as follows: 176, 191, 214, 220, 205, 192, 201, 190, 183, 185. We
hypothesize that battery life is adequately modeled by a normal distribution. To use probabil-
ity plotting to investigate this hypothesis, first arrange the observations in ascending order and
calculate their cumulative frequencies (j — 0.5)/10 as shown in Table 6-6.

The pairs of values x(;) and (j — 0.5)/10 are now plotted on normal probability paper.
This plot is shown in Fig. 6-19. Most normal probability paper plots 100(; — 0.5)/n on the left
vertical scale and 100[ 1 — (j — 0.5)/n] on the right vertical scale, with the variable value plot-
ted on the horizontal scale. A straight line, chosen subjectively, has been drawn through the plot-
ted points. In drawing the straight line, you should be influenced more by the points near the
middle of the plot than by the extreme points. A good rule of thumb is to draw the line approxi-
mately between the 25th and 75th percentile points. This is how the line in Fig. 6-19 was deter-
mined. In assessing the “closeness” of the points to the straight line, imagine a “fat pencil” lying
along the line. If all the points are covered by this imaginary pencil, a normal distribution ade-
quately describes the data. Since the points in Fig. 6-19 would pass the “fat pencil” test, we con-
clude that the normal distribution is an appropriate model.

A normal probability plot can also be constructed on ordinary graph paper by plotting
the standardized normal scores z; against x ;, where the standardized normal scores satisfy

ji—05
n P(Z = z;) = P(z)
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99.9 0.1
Table 6-6 Calculation for Constracting a Normal
99 1 Probability Plot
95 5 e Jj x(j) (j — 0.5)/10 z;
< £
ﬁ. 80 20 g 1 176 0.05 —1.64
© . K 2 183 0.15 —1.04
7 50 . 50 ™
g e 3 185 0.25 —0.67
S 20 80 g 4 190 0.35 —0.39
o
5% s ~ 5 191 0.45 ~0.13
6 192 0.55 0.13
L 99 7 201 0.65 0.39
O'1170 180 190 200 210 220 0 8 205 0.75 0.67
» 0 9 214 0.85 1.04
7 10 220 0.95 1.64

Figure 6-19 Normal probability plot for battery life.

For example, if (j — 0.5)/n = 0.05, ®(z;) = 0.05 implies that z; = —1.64. To illustrate,
consider the data from Example 6-4. In the last column of Table 6-6 we show the standarized
normal scores. Figure 6-20 presents the plot of z; versus x(; This normal probability plot is
equivalent to the one in Fig. 6-19.

We have constructed our probability plots with the probability scale (or the z-scale) on the
vertical axis. Some computer packages “flip” the axis and put the probability scale on the hor-
izontal axis.

The normal probability plot can be useful in identifying distributions that are symmetric
but that have tails that are “heavier” or “lighter” than the normal. They can also be useful in
identifying skewed distributions. When a sample is selected from a light-tailed distribution
(such as the uniform distribution), the smallest and largest observations will not be as extreme
as would be expected in a sample from a normal distribution. Thus if we consider the straight
line drawn through the observations at the center of the normal probability plot, observations
on the left side will tend to fall below the line, whereas observations on the right side will tend
to fall above the line. This will produce an S-shaped normal probability plot such as shown in

3.30

Z
0
-1.65
Figure 6-20 Normal
probability plot
obtained from ~3.30
standardized normal 170 180 190 200 210 220

scores. x(j)
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Figure 6-21 Normal probability plots indicating a nonnormal distrubution. (a) Light-tailed distribution. (b) Heavy-tailed
distribution. (c) A distribution with positive (or right) skew.

Fig. 6-21(a). A heavy-tailed distribution will result in data that also produces an S-shaped
normal probability plot, but now the observations on the left will be above the straight line and
the observations on the right will lie below the line. See Fig. 6-19(b). A positively skewed dis-
tribution will tend to produce a pattern such as shown in Fig. 6-19(c), where points on both
ends of the plot tend to fall below the line, giving a curved shape to the plot. This occurs be-
cause both the smallest and the largest observations from this type of distribution are larger
than expected in a sample from a normal distribution.

Even when the underlying population is exactly normal, the sample data will not plot
exactly on a straight line. Some judgment and experience are required to evaluate the plot.
Generally, if the sample size is n < 30, there can be a lot of deviation from linearity in normal
plots, so in these cases only a very severe departure from linearity should be interpreted as a
strong indication of nonnormality. As n increases, the linear pattern will tend to become
stronger, and the normal probability plot will be easier to interpret and more reliable as an

indicator of the form of the distribution.

EXERCISES FOR SECTION 6-7

6-63. Construct a normal probability plot of the piston ring
diameter data in Exercise 6-1. Does it seem reasonable to
assume that piston ring diameter is normally distributed?

6-64. Construct a normal probability plot of the insulating
fluid breakdown time data in Exercise 6-2. Does it seem
reasonable to assume that breakdown time is normally
distributed?

6-65. Construct a normal probability plot of the visual
accommodation data in Exercise 6-5. Does it seem reason-
able to assume that visual accommodation is normally
distributed?

6-66. Construct a normal probability plot of the O-ring joint
temperature data in Exercise 6-13. Does it seem reasonable to
assume that O-ring joint temperature is normally distributed?
Discuss any interesting features that you see on the plot.

6-67. Construct a normal probability plot of the octane rat-
ing data in Exercise 6-14. Does it seem reasonable to assume
that octane rating is normally distributed?

6-68. Construct a normal probability plot of the cycles to
failure data in Exercise 6-15. Does it seem reasonable to as-
sume that cycles to failure is normally distributed?

6-69. Construct a normal probability plot of the wine qual-
ity rating data in Exercise 6-27. Does it seem reasonable to
assume that this variable is normally distributed?

6-70. Construct a normal probability plot of the sus-
pended solids concentration data in Exercise 6-24. Does it
seem reasonable to assume that the concentration of
suspended solids in water from this particular lake is
normally distributed?
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6-71. Construct two normal probability plots for the height
data in Exercises 6-22 and 6-29. Plot the data for female and
male students on the same axes. Does height seem to be
normally distributed for either group of students? If both pop-
ulations have the same variance, the two normal probability
plots should have identical slopes. What conclusions would
you draw about the heights of the two groups of students from
visual examination of the normal probability plots?

6-72. It is possible to obtain a “quick and dirty” estimate of
the mean of a normal distribution from the fiftieth percentile
value on a normal probability plot. Provide an argument why
this is so. It is also possible to obtain an estimate of the stan-
dard deviation of a normal distribution by subtracting the
sixty-fourth percentile value from the fiftieth percentile value.
Provide an argument why this is so.

6-8 MORE ABOUT PROBABILITY
PLOTTING (CD ONLY)

Supplemental Exercises

6-73. The concentration of a solution is measured six times

by one operator using the same instrument. She obtains the

following data: 63.2, 67.1, 65.8, 64.0, 65.1, and 65.3 (grams
per liter).

(a) Calculate the sample mean. Suppose that the desirable
value for this solution has been specified to be 65.0
grams per liter. Do you think that the sample mean
value computed here is close enough to the target value
to accept the solution as conforming to target? Explain
your reasoning.

(b) Calculate the sample variance and sample standard
deviation.

(c) Suppose that in measuring the concentration, the operator
must set up an apparatus and use a reagent material. What
do you think the major sources of variability are in this ex-
periment? Why is it desirable to have a small variance of
these measurements?

6-74. A sample of six resistors yielded the following resist-
ances (ohms): x; = 45,x, = 38, x3 = 47, x4 = 41, x5 = 35,
and xg = 43.

(a) Compute the sample variance and sample standard
deviation.

(b) Subtract 35 from each of the original resistance measure-
ments and compute s> and s. Compare your results with
those obtained in part (a) and explain your findings.

(c) If the resistances were 450, 380, 470, 410, 350, and 430
ohms, could you use the results of previous parts of this
problem to find s? and s?

6-75. Consider the following two samples:

Sample 1: 10,9, 8,7, 8, 6, 10, 6
Sample 2: 10, 6, 10, 6, 8, 10, 8, 6

CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

(a) Calculate the sample range for both samples. Would you
conclude that both samples exhibit the same variability?
Explain.

(b) Calculate the sample standard deviations for both sam-
ples. Do these quantities indicate that both samples have
the same variability? Explain.

(c) Write a short statement contrasting the sample range
versus the sample standard deviation as a measure of vari-
ability.

6-76. An article in Quality Engineering (Vol. 4, 1992, pp.

487-495) presents viscosity data from a batch chemical

process. A sample of these data follows:

133 143 149 152 158 142 16.0 14.0
145 161 137 152 137 169 149 144
153 131 152 159 151 149 13.6 137
153 155 145 165 134 152 153 138
143 12,6 153 148 141 144 143 15.6
148 146 156 151 148 152 15,6 145
152 143 158 17.0 143 14,6 16.1 128
145 154 133 149 143 164 139 16.1
146 152 141 148 164 142 152 16.6
141 168 154 140 169 157 144 15.6

(a) Reading down and left to right, draw a time series plot of
all the data and comment on any features of the data that
are revealed by this plot.

(b) Consider the notion that the first 40 observations were
generated from a specific process, whereas the last 40 ob-
servations were generated from a different process. Does
the plot indicate that the two processes generate similar
results?

(c) Compute the sample mean and sample variance of the first
40 observations; then compute these values for the second
40 observations. Do these quantities indicate that both
processes yield the same mean level? The same variabil-
ity? Explain.

6-77. Reconsider the data from Exercise 6-76. Prepare

comparative box plots for two groups of observations: the

first 40 and the last 40. Comment on the information in the
box plots.

6-78. The data shown in Table 6-7 are monthly champagne

sales in France (1962-1969) in thousands of bottles.

(a) Construct a time series plot of the data and comment on
any features of the data that are revealed by this plot.

(b) Speculate on how you would use a graphical proce-
dure to forecast monthly champagne sales for the year
1970.

6-79. A manufacturer of coil springs is interested in imple-
menting a quality control system to monitor his production
process. As part of this quality system, it is decided to record
the number of nonconforming coil springs in each production
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Table 6-7 Champagne Sales in France
Month 1962 1963 1964 1965 1966 1967 1968 1969
Jan. 2.851 2.541 3.113 5.375 3.633 4.016 2.639 3.934
Feb. 2.672 2.475 3.006 3.088 4.292 3.957 2.899 3.162
Mar. 2.755 3.031 4.047 3.718 4.154 4.510 3.370 4.286
Apr. 2.721 3.266 3.523 4514 4.121 4.276 3.740 4.676
May 2.946 3.776 3.937 4.520 4.647 4.968 2.927 5.010
June 3.036 3.230 3.986 4.539 4.753 4.677 3.986 4.874
July 2.282 3.028 3.260 3.663 3.965 3.523 4.217 4.633
Aug. 2.212 1.759 1.573 1.643 1.723 1.821 1.738 1.659
Sept. 2.922 3.595 3.528 4.739 5.048 5.222 5.221 5.591
Oct. 4.301 4.474 5.211 5.428 6.922 6.873 6.424 6.981
Nov. 5.764 6.838 7.614 8.314 9.858 10.803 9.842 9.851
Dec. 7.132 8.357 9.254 10.651 11.331 13.916 13.076 12.670

batch of size 50. During 40 days of production, 40 batches of
data were collected as follows:

Read data across.

9 12 6 9 7 14 12 4 6 7
8 5 9 7 8 11 3 6 7 7
11 4 4 8 7 5 6 4 5 8
19 19 18 12 11 17 15 17 13 13

(a) Construct a stem-and-leaf plot of the data.

(b) Find the sample average and standard deviation.

(c) Construct a time series plot of the data. Is there evidence
that there was an increase or decrease in the average
number of nonconforming springs made during the 40
days? Explain.

6-80. A communication channel is being monitored by

recording the number of errors in a string of 1000 bits. Data

for 20 of these strings follow:

Read data across.
3 1 0 1 3 2 4 1 3 1
1 1 2 3 3 2 0 2 0 1

(a) Construct a stem-and-leaf plot of the data.

(b) Find the sample average and standard deviation.

(c) Construct a time series plot of the data. Is there evidence
that there was an increase or decrease in the number of
errors in a string? Explain.

6-81. Reconsider the data in Exercise 6-76. Construct normal
probability plots for two groups of the data: the first 40 and the
last 40 observations. Construct both plots on the same axes.
What tentative conclusions can you draw?

6-82. Construct a normal probability plot of the effluent dis-
charge temperature data from Exercise 6-47. Based on the
plot, what tentative conclusions can you draw?

6-83. Construct normal probability plots of the cold start
ignition time data presented in Exercises 6-44 and 6-56.

Construct a separate plot for each gasoline formulation, but
arrange the plots on the same axes. What tentative conclusions
can you draw?

6-84. Transformations. In some data sets, a transformation

by some mathematical function applied to the original data,

such as V/y or log y, can result in data that are simpler to work
with statistically than the original data. To illustrate the effect
of a transformation, consider the following data, which repre-

sent cycles to failure for a yarn product: 675, 3650, 175, 1150,

290, 2000, 100, 375.

(a) Construct a normal probability plot and comment on the
shape of the data distribution.

(b) Transform the data using logarithms; that is, let y* (new
value) = log y (old value). Construct a normal probability
plot of the transformed data and comment on the effect of
the transformation.

6-85. In 1879, A. A. Michelson made 100 determinations of

the velocity of light in air using a modification of a method

proposed by the French physicist Foucault. He made the
measurements in five trials of 20 measurements each. The ob-
servations (in kilometers per second) follow. Each value has

299,000 substracted from it.

Trial 1
850 900 930 950 980
1000 930 760 1000 960
740 1070 850 980 880
980 650 810 1000 960
Trial 2
960 960 880 850 900
830 810 880 800 760
940 940 800 880 840
790 880 830 790 800
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Trial 3
880 880 720 620 970
880 850 840 850 840
880 860 720 860 950
910 870 840 840 840
Trial 4
890 810 800 760 750
910 890 880 840 850
810 820 770 740 760
920 860 720 850 780
Trial 5
890 780 760 790 820
870 810 810 950 810
840 810 810 810 850
870 740 940 800 870

The currently accepted true velocity of light in a vacuum is
299, 792.5 kilometers per second. Stigler (1977, The Annals of
Statistics) reports that the “true” value for comparison to these
measurements is 734.5. Construct comparative box plots of
these measurements. Does it seem that all five trials are con-

CHAPTER 6 RANDOM SAMPLING AND DATA DESCRIPTION

sistent with respect to the variability of the measurements?
Are all five trials centered on the same value? How does each
group of trials compare to the true value? Could there have
been “startup” effects in the experiment that Michelson
performed? Could there have been bias in the measuring
instrument?

6-86. 1In 1789, Henry Cavendish estimated the density of
the earth by using a torsion balance. His 29 measurements
follow, expressed as a multiple of the density of water.

5.50 5.30 5.47 5.10 5.29 5.65
5.55 5.61 5.75 5.63 5.27 5.44
5.57 5.36 4.88 5.86 5.34 5.39
5.34 5.53 5.29 4.07 5.85 5.46
5.42 5.79 5.62 5.58 5.26

(a) Calculate the sample mean, sample standard deviation,
and median of the Cavendish density data.

(b) Construct a normal probability plot of the data. Comment
on the plot. Does there seem to be a “low” outlier in the
data?

(c) Would the sample median be a better estimate of the
density of the earth than the sample mean? Why?
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MIND-EXPANDING EXERCISES

6-87. Consider the airfoil data in Exercise 6-12.
Subtract 30 from each value and then multiply the re-
sulting quantities by 10. Now compute s for the new
data. How is this quantity related to s* for the original
data? Explain why.

6-88. Consider the quantity >, (x; — a)*. For what
value of a is this quantity minimized?

6-89 Using the results of Exercise 6-87, which of the
two quantities >.—; (x; — X)* and Xi—; (x; — p)?
will be smaller, provided that x # w?

6-90. Coding the Data. Let y;, = a + bx;, i =
1,2,...,n, where a and b are nonzero constants. Find the
relationship between x and y, and between s, and s,
6-91. A sample of temperature measurements in a fur-
nace yielded a sample average (°F) of 835.00 and a sam-
ple standard deviation of 10.5. Using the results from
Exercise 6-90, what are the sample average and sample
standard deviations expressed in °C?

6-92. Consider the sample xy, x,, . . ., x,, with sample
mean X and sample standard deviation s. Let
z;= (x; — x)/s,i = 1,2, ..., n. What are the values of
the sample mean and sample standard deviation of the z,?
6-93. An experiment to investigate the survival time
in hours of an electronic component consists of placing
the parts in a test cell and running them for 100 hours
under elevated temperature conditions. (This is called an
“accelerated” life test.) Eight components were tested
with the following resulting failure times:

75, 63,1007, 36, 51, 45, 80, 90

The observation 100 indicates that the unit still func-
tioned at 100 hours. Is there any meaningful measure of
location that can be calculated for these data? What is its
numerical value?

IMPORTANT TERMS AND CONCEPTS

6-94. Suppose that we have a sample x;, x,, ..., x, and

we have calculated x,, and S,% for the sample. Now an

(n + 1)st observation becomes available. Let x,,.; and

52, be the sample mean and sample variance for the

sample using all » + 1 observations.

(a) Show how x,, ;| can be computed using X, and x,, .

(b) Show that ;2 _ (, — 1)@ + "(xnn+ 1+—1x,,)2

(c) Use the results of parts (a) and (b) to calculate the
new sample average and standard deviation for the
data of Exercise 6-22, when the new observation is
X33 = 64.

6-95. The Trimmed Mean. Suppose that the data are

arranged in increasing order, 7% of the observations are

removed from each end and the sample mean of the re-
maining numbers is calculated. The resulting quantity is
called a trimmed mean. The trimmed mean generally
lies between the sample mean x and the sample median

Xx. Why?

(a) Calculate the 10% trimmed mean for the yield data
in Exercise 6-17.

(b) Calculate the 20% trimmed mean for the yield data
in Exercise 6-17 and compare it with the quantity
found in part (a).

(c) Compare the values calculated in parts (a) and (b)
with the sample mean and median for the yield
data. Is there much difference in these quantities?
Why?

6-96. The Trimmed Mean. Suppose that the sample

size n is such that the quantity n7/100 is not an integer.

Develop a procedure for obtaining a trimmed mean in

this case.
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Figure S6-1. Normal
probability plot (from
Minitab) of the data
from Table S6-1.

Probability plots are extremely useful and are often the first technique used in an effort to
determine which probability distribution is likely to provide a reasonable model for the data.

We give a simple illustration of how a normal probability plot can be useful in distin-
guishing between normal and nonnormal data. Table S6-1 contains 50 observations gener-
ated at random from an exponential distribution with mean 20 (or A = 0.05). These data
were generated using the random number generation capability in Minitab. Figure S6-1
presents a normal probability plot of these data, constructed using Minitab. The observa-
tions do not even approximately lie along a straight line, giving a clear indication that the
data do not follow a normal distribution. The strong curvature at both ends of the plot sug-
gests that the data come from a distribution with right or positive skew. Compare Fig. S6-1
with Fig. 6-19c.

Minitab also provides estimates of the mean and standard deviation of the distribution us-
ing the method of maximum likelihood (abbreviated ML on the graph in Figure S6-1). We
will discuss maximum likelihood estimation in Chapter 7. For the normal distribution, this is
the familiar sample mean and sample standard deviation that we first presented in Chapter 1.
Minitab also presents a quantitative measure of how well the data are described by a normal
distribution. This goodness-of-fit measure is called the Anderson-Darling statistic (abbrevi-
ated AD on the Minitab probability plot). The Anderson-Darling statistic is based on the prob-
ability integral transformation

Flx) = J f(u) du

that can be used to convert the data to a uniform distribution if the hypothesized distribution
is correct. Thus, if xq, x,, . . ., x, are independent and identically distributed random variables
whose cumulative distribution function is F(x), then F(x,), F(x,), . . ., F(x,) are independent
uniform (0, 1) random variables. The Anderson-Darling statistic essentially compares how
close the F(x;), F(x,), . . ., F(x,) values are to values from a uniform (0, 1) distribution. For

Normal probability plot
ML estimates

o ML estimates
Mean 20.7362
St. Dev. 19.2616

Goodness of fit
AD* 1.904

Percentage
(&)
o

0 50 100
Data
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Figure S6-2.
Exponential probabil-
ity plot (from Minitab)
of the data from Table
Se6-1.

Figure S6-3. Weibull
probability plot (from
Minitab) of the data
from Table S6-1.
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this reason, the Anderson-Darling test is sometimes called a “distance” test. The test is upper-
tailed; that is, if the computed value exceeds a critical value, the hypothesis of normality is
rejected. The 5% critical value of the Anderson-Darling statistic is 0.752 and the 1% value is
1.035. Because the Anderson-Darling statistic in Figure S6-1 is 1.904, and this exceeds the 1%
critical value, we conclude that the assumption of normality would be inappropriate.

Minitab can construct several other types of probability plots. An exponential probability
plot of the data in Table S6-1 is shown in Figure S6-2. Notice that the data lies very close to
the straight line in this plot, implying that the exponential is a good model for the data.
Minitab also provides an estimate of the mean of the exponential distribution. This estimate is
just the sample mean.

Figure S6-3 is a Weibull probability plot of the data from Table S6-1, constructed using
Minitab. The data lies approximately along a straight line, suggesting that the Weibull
distribution is also a reasonable model for the data. Notice that Minitab provides maximum

Weibull probability plot
ML estimates

99 ML estimates

88 Shape  1.01967
80 Scale  20.8955
70

60 Goodness of fit

28 AD* 0.679

Percentage
N
o

0.1 1.0 10.0 100.0
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Table S6-1 50 Observations Drawn at Random from an Exponential Distribution with
Mean 20 (A = 0.05)

1.2934 14.1968 13.2798 16.1154 14.8891 31.6489

2.4330 13.1818 5.7511 39.9558 97.8874 21.1057
15.8770 9.0942 31.3655 1.3104 12.0008 11.2846
21.9606 21.1336 26.8364 9.3134 31.0346 29.0222
47.4481 0.3389 1.0999 19.8350 1.5191 2.5623
34.8720 39.2494 12.1621 18.8295 35.3307
27.0908 0.6731 14.2467 49.9397 6.0479

17.5253 68.7876 57.8919 1.0882 22.4244

6.8290 37.9023 1.8219 6.4967 12.8239

likelihood estimates of the shape parameter 3 and the scale parameter 8. The shape parameter
estimate is very close to unity, and we know that a Weibull distribution with B = 1 is the
exponential distribution.
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Point Estimation

of Parameters

CHAPTER OUTLINE

7-1 INTRODUCTION 7-3 METHODS OF POINT ESTIMATION

7-2  GENERAL CONCEPTS OF POINT 7-3.1 Method of Moments
ESTIMATION

7-3.2 Method of Maximum Likelihood

7-2.1 Unbiased Estimators 7-3.3 Bayesian Estimation of

7-2.2 Proof that S is a Biased Estimator Parameters (CD Only)

of o (CD Only) 7.4 SAMPLING DISTRIBUTIONS
7-2.3 Variance of a Point Estimator 7.5 SAMPLING DISTRIBUTIONS
7-2.4 Standard Error: Reporting a OF MEANS

Point Estimate

7-2.5 Bootstrap Estimate of the Standard
Error (CD Only)

7-2.6 Mean Square Error of an Estimator

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Explain the general concepts of estimating the parameters of a population or a probability distribution
2. Explain important properties of point estimators, including bias, variance, and mean square error

3. Know how to construct point estimators using the method of moments and the method of maxi-
mum likelihood

4. Know how to compute and explain the precision with which a parameter is estimated
5. Understand the central limit theorem

6. Explain the important role of the normal distribution as a sampling distribution

CD MATERIAL
7. Use bootstrapping to find the standard error of a point estimate

8. Know how to construct a point estimator using the Bayesian approach
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Answers for most odd numbered exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Ex