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1. Introduction

Fibonacci numbers arise in the solution of many combinatorial problems. They count the
number of binary sequences with no consecutive zeros, the number of sequences of 1’s and 2’s
which sum to a given number, and the number of independent sets of a path graph. Similar
interpretations exist for Lucas numbers. Using these interpretations, it is possible to provide
combinatorial proofs which shed light on many interesting Fibonacci and Lucas identities [1, 3]. In
this paper, we extend the combinatorial approach to understand relationships among generalized
Fibonacci numbers.

Given G0 and G1, a generalized Fibonacci sequence G0, G1, G2, . . . is defined recursively by
Gn = Gn−1 + Gn−2 for n ≥ 2. Two important special cases are the classical Fibonacci sequence
Fn (F0 = 0 and F1 = 1) and the Lucas sequence Ln (L0 = 2 and L1 = 1).

These sequences satisfy numerous relationships. Many are documented in Vajda [6], where they
are proved by algebraic means. Our goal is to recount these identities by combinatorial means. We
introduce several combinatorial techniques which allow us to provide new proofs of nearly all the
identities in Vajda [6] involving generalized Fibonacci numbers. We show that in the framework
of phased tilings, these identities follow naturally as the tilings are counted, represented, and
transformed in clever ways. These techniques are developed in the next several sections. In the
final section, we discuss possible extensions.

2. Combinatorial Interpretation

Recall that Fn+1 counts the number of sequences of 1’s and 2’s which sum to n. Equivalently,
Fn+1 counts the number of ways to tile a 1 × n rectangle (called an n-board consisting of cells
labelled 1, ..., n) with 1× 1 squares and 1× 2 dominoes. For combinatorial convenience, we define
fn = Fn+1. Then fn is the number of ways to tile an n-board with squares and dominoes.

When G0 and G1 are non-negative integers, we shall obtain an analogous combinatorial inter-
pretation of the generalized Fibonacci numbers Gn. Define a phased n-tiling to be a tiling of an
n-board by squares and dominoes in which the last tile is distinguished in a certain way. Specifi-
cally, if the last tile is a domino, it can be assigned one of G0 possible phases, and if the last tile
is a square it can be assigned one of G1 possible phases. For example, when G0 = 5 and G1 = 17,
there are G3 = 39 phased tilings of length 3 as follows: There are 5 of the form (square, phased
domino); 17 of the form (domino, phased square); and 17 of the form (square, square, phased
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square). In general, let g0 = G0, g1 = G1, and for n ≥ 2, let gn count the number of phased
n-tilings. By conditioning on whether the first tile is a square or domino we obtain the identity

gn = gn−1 + gn−2

for n ≥ 2. Hence gn = Gn, giving the desired interpretation.
This combinatorial definition can be extended to n = 1 and n = 0. Clearly G1 counts the

number of phased 1-tilings. It will be convenient to assign the “last” tile of a 0-board one of the
G0 domino phases.

Notice when there exists only one domino phase and only one square phase, we recover our
original interpretation of fn.

Previous interpretations of the Lucas numbers Ln [1, 4, 5] counted the number of ways to tile a
“circular” n-board by squares or dominoes. Since L0 = 2 and L1 = 1, a phased n-board tiling can
end with a phase one domino, a phase two domino, or a phase one square. In all three cases, the
corresponding circular n-board tiling arises by first gluing cells n and 1 together. Tilings that end
in a phase two domino are then rotated one cell to obtain a circular tiling with a domino covering
cells n and 1.

3. Elementary Identities

Before launching into more sophisticated techniques, we demonstrate how our combinatorial
interpretation of Gn yields quick proofs of some basic identities. For instance, by conditioning on
whether the last tile is a phased domino or a phased square, we immediately obtain for n ≥ 2,

Gn = G0fn−2 +G1fn−1.

More identities are obtained by conditioning on other events. Consider

Identity 1 (Vajda (33)).
n∑
k=0

Gk = Gn+2 −G1.

The right hand side of this equality counts all phased (n+2)-tilings containing at least one domino
(there areG1 phased tilings consisting of all squares). The left hand side is obtained by conditioning
on the position of the first domino. If the first domino covers cells n−k+1 and n−k+2 (0 ≤ k ≤ n),
then the preceding cells are covered by squares and the remaining cells can be covered Gk ways.

Similarly there are G2n−G0 phased 2n-tilings with at least one square. By conditioning on the
position of the first square we obtain

Identity 2 (Vajda (34)).
n∑
k=1

G2k−1 = G2n −G0.

A phased (2n+ 1)-tiling must contain a first square, which leads to

Identity 3 (Vajda (35)).

G1 +
n∑
k=1

G2k = G2n+1.

The G1 term on the left hand side counts those boards that begin with n dominoes followed by a
phased square.

To prove

Identity 4 (Vajda (8)).
Gm+n = fmGn + fm−1Gn−1
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we consider whether or not a phased (m+ n)-tiling can be separated into an (unphased) m-tiling
followed by a phased n-tiling. There are fmGn tilings breakable at cell m. The unbreakable tilings
must contain a domino covering cells m and m+1; the remaining board can be covered fm−1Gn−1

ways.

4. Binomial Identities

Vajda contains several identities involving generalized Fibonacci numbers and binomial coeffi-
cients. All of these are special cases of the following two identities:

Identity 5 (Vajda (46)).

Gn+p =
p∑
i=0

(
p

i

)
Gn−i,

Identity 6 (Vajda (66)).

Gm+(t+1)p =
p∑
i=0

(
p

i

)
f itf

p−i
t−1Gm+i.

When n ≥ p, Identity 5 counts phased (n+p)-tilings by conditioning on the number of dominoes
that appear among the first p tiles. Given an initial segment of i dominoes and p− i squares,

(
p
i

)
counts the number of ways to select the i positions for the dominoes among the first p tiles. Gn−i
counts the number of ways the remaining n− i cells can be given a phased tiling.

Identity 6 can be seen as trying to break a phased (m+(t+1)p)-tiling into p unphased segments
of length t followed by a phased remainder. The first segment consists of the tiles covering cells
1 through j1 where j1 = t if the tiling is breakable at cell t and j1 = t + 1 otherwise. The next
segment consists of the tiles covering cells j1 + 1 through j1 + j2 where j2 = t if the tiling is
breakable at cell j1 + t and j2 = t + 1 otherwise. Continuing in this fashion we decompose our
phased tiling into p tiled segments of length t or t+ 1 followed by a phased remainder of length at
least m. Since the length t+ 1 segments must end with a domino, the term

(
p
i

)
f itf

p−i
t−1Gm+i counts

the number of phased (m+ (t+ 1)p)-tilings with exactly i segments of length t.

5. Simultaneous Tilings

Identities involving squares of generalized Fibonacci numbers suggest investigating pairs of
phased tilings. The right hand side of

Identity 7 (Vajda (39)).
2n∑
i=1

Gi−1Gi = G2
2n −G2

0

counts ordered pairs (A,B) of phased 2n-tilings where A or B contains at least one square. To
interpret the left hand side, we define the parameter kX to be the first cell of the phased tiling
X covered by a square. If X is all dominoes, we set kX equal to infinity. Since, in this case,
at least one square exists in (A,B), the minimum of kA and kB must be finite and odd. Let
k = min{kA, kB +1}. When k is odd, A and B have dominoes covering cells 1 through k−1 and A
has a square covering cell k. Hence the number of phased pairs (A,B) with odd k is G2n−kG2n−k+1.
When k is even, A has dominoes covering cells 1 through k and B has dominoes covering cells 1
through k − 2 with a square covering cell k − 1. Hence the number of phased pairs (A,B) with
even k is also G2n−kG2n−k+1. Setting i = 2n+ 1− k gives the desired identity.

Similarly, the next identity counts ordered pairs of phased (2n + 1)-tilings that contain an
unphased square. Conditioning on the first unphased square yields
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Identity 8 (Vajda (41)).
2n+1∑
i=2

Gi−1Gi = G2
2n+1 −G2

1.

In the same spirit, our next identity conditions on the location of the first domino in a pair of
phased tilings.

Identity 9 (Vajda (43)).
n∑
i=1

Gi−1Gi+2 = G2
n+1 −G2

1

The right hand side counts the number of pairs (A,B) of phased (n + 1)-tilings, where A or B
contains at least one domino. Here we define the parameter `X to be the first cell of the phased
tiling X covered by a domino. If X is all squares, we set `X equal to infinity. Let ` = min{`A, `B}.
The number of phased (n+ 1)-tiling pairs (A,B) where the `th cell of A is covered by a domino is
Gn−`Gn−`+2; the number of such pairs where the `th cell ofA is covered by a square isGn−`+1Gn−`.
This implies

n∑
`=1

Gn−`(Gn−`+2 +Gn−`+1) = G2
n+1 −G2

1.

Substituting Gn−`+3 for Gn−`+2 +Gn−`+1 and letting i = n− `+ 1 yields the desired identity.

6. A Transfer Procedure

The identities proved in this section all take advantage of the same technique. Before proceeding,
we introduce helpful notation. For m ≥ 0, define Gm to be the set of all phased m-tilings with
G0 domino phases and G1 square phases. An element A ∈ Gm created from a sequence of e1

dominoes, e2 squares, e3 dominoes, . . . , and ending with a phased tile can be uniquely expressed
as A = de1se2de3se4 · · · det−1setp, where p represents the phase of the last tile. All exponents are
positive except that e1 or et may be 0, and 2e1 + e2 + 2e3 + e4 + · · · + 2et−1 + et = m. When
et = 0, the last tile is a domino and p ∈ {1, . . . , G0}; when et ≥ 1, the last tile is a square and
p ∈ {1, . . . , G1}. Likewise, for n ≥ 0, define Hn to be the set of all phased n-tilings with H0 domino
phases and H1 square phases. Notice that the sizes of Gm and Hn are Gm and Hn respectively.

We introduce a transfer procedure T to map an ordered pair (A,B) ∈ Gm ×Hn to an ordered
pair (A′, B′) ∈ Gm−1 × Hn+1 where 1 ≤ m ≤ n. T has the effect of shrinking the smaller tiling
and growing the larger tiling by one unit. For such a pair (A,B), define k = min{kA, kB}, the
first cell in A or B that is covered by a square. If the kth cell of A is covered by a square and
1 ≤ k ≤ m − 1, then we transfer that square from A to the kth cell of B. Formally, before
the transfer we have A = d(k−1)/2sa and B = d(k−1)/2b where a ∈ Gm−k and b ∈ Hn−k+1. The
transfer yields A′ = d(k−1)/2a and B′ = d(k−1)/2sb. If the kth cell of A is covered by a domino and
1 ≤ k ≤ m − 2, then we exchange that domino with the square in the kth cell of B. Formally,
before the exchange, A = d(k+1)/2a and B = d(k−1)/2sb where a ∈ Gm−k−1 and b ∈ Hn−k.
The exchange yields A′ = d(k−1)/2sa and B′ = d(k+1)/2b. We abbreviate this transformation by
T (A,B) = (A′, B′). Notice that our rules do not allow for a phased tile to be transferred or
exchanged.

Lemma 1. For 1 ≤ m ≤ n, T establishes an almost one-to-one correspondence between Gm ×Hn
and Gm−1 ×Hn+1. The difference of their sizes satisfies

GmHn −Gm−1Hn+1 = (−1)m[G0Hn−m+2 −G1Hn−m+1].
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Proof. Notice when T is defined, T (A,B) has the same k value as (A,B) which makes T easy
to reverse. It remains to enumerate (A,B) ∈ Gm × Hn for which T is undefined and (A′, B′) ∈
Gm−1 ×Hn+1 that do not appear in the image of T .

When m is odd, T is undefined whenever k = m. Here, A = d(m−1)/2a and B = d(m−1)/2b
where a ∈ G1 and b ∈ Hn−m+1. Hence the domain of T contains GmHn − G1Hn−m+1 elements.
The elements of Gm−1×Hn+1 that do not appear in the image of T have k ≥ m and are therefore
of the form A′ = d(m−1)/2p and B′ = d(m−1)/2b′ where p ∈ {1, . . . , G0} and b′ ∈ Hn−m+2. Hence
the image of T consists of Gm−1Hn+1−G0Hn−m+2 elements. Since T is one-to-one, we have when
m is odd,

GmHn −G1Hn−m+1 = Gm−1Hn+1 −G0Hn−m+2.

When m is even, T is undefined whenever k ≥ m and sometimes undefined when k = m − 1.
Specifically, T is undefined when A = dm/2p and B = d(m−2)/2b where p ∈ {1, . . . , G0} and
b ∈ Hn−m+2. Hence the domain of T contains GmHn − G0Hn−m+2 elements. The elements of
Gm−1 ×Hn+1 that do not appear in the image are of the form A′ = d(m−2)/2a′ and B′ = dm/2b′

where a′ ∈ G1 and b′ ∈ Hn−m+1. Hence the image of T consists of Gm−1Hn+1 − G1Hn−m+1

elements. Thus when m is even, we have

GmHn −G0Hn−m+2 = Gm−1Hn+1 −G1Hn−m+1.

We specialize Lemma 1 by setting m = n and choosing the same initial conditions for Gn and
Hn to obtain

Identity 10 (Vajda (28)).

Gn+1Gn−1 −G2
n = (−1)n(G2

1 −G0G2).

Alternately, setting Gm = Fm and evaluating Lemma 1 at m+ 1, we obtain

Identity 11 (Vajda (9)). For 0 ≤ m ≤ n,

Hn−m = (−1)m(Fm+1Hn − FmHn+1).

A slightly different transfer process is used to prove

Identity 12 (Vajda (10a)). For 0 ≤ m ≤ n,

Gn+m + (−1)mGn−m = LmGn.

We construct an almost one-to-one correspondence from Lm×Gn to Gm+n, where Lm denotes the
set of Lucas tilings of length m. Let (A,B) ∈ Lm × Gn. If A ends in a (phase 1) square or a
phase 1 domino, then we simply append A to the front of B to create an (m + n)-tiling that is
breakable at m. Otherwise, A ends in a phase 2 domino. In this case, before appending A to the
front of B, we transfer a unit from B to A by a similar process. (If the first square occurs in B,
then transfer it into the corresponding cell of A. Otherwise, the first square of A is exchanged
with the corresponding domino in B.) This creates a tiling of Gm+n that is unbreakable at m.
When m is even, the transfer is undefined for the Gn−m elements of Lm × Gn where A contains
only dominoes, ending with a phase 2 domino, and B begins with m/2 dominos. Otherwise the
transfer is one-to-one and onto Gm+n. When m is odd, the transfer is always defined, but misses
the Gn−m elements of Gm+n that begin with m dominoes. Identity 12 follows.

A similar argument establishes

Identity 13 (Vajda (10b)). For 0 ≤ m ≤ n,

Gn+m − (−1)mGn−m = Fm(Gn−1 +Gn+1).
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The transfer process T can be refined to allow us to shrink and grow pairs of phased tilings
by more than one unit. Specifically, we construct an almost one-to-one correspondence between
Gm×Hn and Gm−h×Hn+h where 1 ≤ h ≤ m−1 < n. Let Fn denote the set of (unphased) n-tilings.
So |Fn| = fn. Given (A,B) ∈ Gm×Hn, define a transfer process Th as follows: If A is breakable at
cell h, i.e., A = a1a2 where a1 ∈ Fh and a2 ∈ Gm−h, then we append segment a1 to the beginning
of B. That is to say, Th(A,B) = (A′, B′) where A′ = a2 and B′ = a1B. If A is unbreakable at
cell h, i.e. A = a1da2 where a1 ∈ Fh−1 and a2 ∈ Gm−h−1, then let (A′′, B′′) = T (da2, B) and
(A′, B′) = (A′′, a1B

′′). Notice that B′′, when defined, will necessarily begin with a domino and
therefore B′ will be unbreakable at h.

Discrepancies in Th, mapping Gm×Hn to Gm−h×Hn+h, are proportional (by a factor of fh−1)
to the discrepancies in T mapping Gm−h+1 × Hn to Gm−h × Hn+1. Hence for 1 ≤ h ≤ m − 1,
Lemma 1 implies

GmHn −Gm−hHn+h = (−1)m−h+1fh−1(G0Hn−m+h+1 −G1Hn−m+h).(1)

Notice that fh−1Hn−m+h+1 counts the number of phased (n−m+ 2h)-tilings that are breakable
at h − 1. Hence fh−1Hn−m+h+1 = Hn−m+2h − fh−2Hn−m+h. Similarly fh−1G1 = Gh − fh−2G0.
So equation (1) can be rewritten as

GmHn −Gm−hHn+h = (−1)m−h+1(G0Hn−m+2h −GhHn−m+h).

Reindexing, this is equivalent to

Identity 14 (Vajda (18)).

Gn+hHn+k −GnHn+h+k = (−1)n(GhHk −G0Hh+k).

This identity is applied, directly or indirectly, by Vajda to obtain identities (19a) through (32).

7. Binary Sequences

There are identities involving generalized Fibonacci numbers and powers of 2. This leads us to
investigate the relationship between binary sequences and Fibonacci tilings.

A binary sequence x = x1x2 · · ·xn can be viewed as a set of instructions for creating a Fibonacci
tiling of length less than or equal to n. Reading x from left to right, we interpret 1’s and 01’s as
squares and dominoes respectively. The construction halts on encountering a 00 or the end of the
sequence. For example, 111010110101 represents the 12-tiling s3d2sd2, 1110101110 represents the
9-tiling s3d2s2, and 0111001011 represents the 4-tiling ds2. Binary sequences that begin with 00
denote the 0-tiling.

Given n, tilings of length n and n − 1 are represented uniquely by binary sequences of length
n that end with a 1 or 0, respectively. For k ≤ n − 2, a k-tiling is represented by 2n−k−2 binary
sequences of length n since the first k + 2 bits are determined by the k-tiling followed by 00; the
remaining n− (k + 2) bits may be chosen freely. This yields the following identity:

fn + fn−1 +
n−2∑
k=0

fk 2n−k−2 = 2n.(2)

By dividing by 2n, reindexing, and employing fn+1 = fn + fn−1, we obtain

Identity 15 (Vajda (37a)).
n∑
k=2

fk−2

2k
= 1− fn+1

2n
.
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The same strategy can be applied to phased tilings. Here, for convenience we assume the phase is
determined by the first tile (rather than the last). The phased identity corresponding to equation
(2) is

Gn+1 +Gn +
n−1∑
k=0

Gk 2n−k−1 = 2n(G0 +G1).(3)

The right hand side counts the number of ways to select a length n binary sequence x and a phase
p. From this we construct a length n + 1 binary sequence. If p is a domino phase, construct the
sequence 0x; if p is a square phase, construct the sequence 1x. Interpret this new n+ 1-sequence
as a Fibonacci tiling in the manner discussed previously, and assign the tiling the phase p. By
construction, the phase is compatible with the first tile. (Recall that empty tilings are assigned
a domino phase.) A phased tiling of length n + 1 or n has a unique (x, p) representation. For
0 ≤ k ≤ n − 1, a phased k-tiling has 2n−k−1 representations. This establishes equation (3).
Dividing by 2n gives

Identity 16 (Vajda (37)).
n−1∑
k=0

Gk
2k+1

= (G0 +G1)− Gn+1 +Gn
2n

.

8. Discussion

The techniques presented in this paper are simple but powerful— counting phased tilings enables
us to give visual interpretations to expressions involving generalized Fibonacci numbers. This
approach facilitates a clearer understanding of existing identities, and can be extended in a number
of ways.

For instance, by allowing tiles of length 3 or longer, we can give combinatorial interpretation
to higher-order recurrences; however, the initial conditions do not work out so neatly, since the
number of phases that the last tile admits do not correspond with the initial conditions of the
recurrence.

Another possibility is to allow every square and domino to possess a number of phases, depending
on its location. This leads to recurrences of the form xn = anxn−1 + bnxn−2. The special case
where bn = 1 for all n provides a tiling interpretation of the numerators and denominators of
simple finite continued fractions and is treated in [2].
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