A LEISURELY INTRODUCTION TO FORMAL GROUPS
AND ELLIPTIC CURVES
Antonia W. Bluher

The purpose of this paper is twofold: to explain in an elementary way how to associate a formal group
law to an elliptic curve (in Parts I and II) and to discuss some theorems related to work of Couveignes [C]
(in Part IIT). The subject of formal groups is enormous, and the subject of elliptic curves is even larger. In
Parts I and IT we content ourselves with presenting just enough background to see how the two subjects
are interconnected. Many (in fact, most) interesting topics relating elliptic curves and formal groups are
not mentioned, for instance the connections of formal groups and elliptic curves with L-functions and the
applications of formal groups to lifting ordinary abelian varieties from characteristic p to characteristic zero.
The reader who is interested in these topics can consult the bibliography of [H]. This exposition should be
accessible to people with no background in elliptic curves or formal groups.

We treat curves defined over arbitrary fields, including fields of characteristic two or three. Some
standard theorems are stated without proof; in those cases precise references are given. For instance, it is
not proved that the group law for an elliptic curve is associative. The paper is divided into three parts: (I)
Formal group laws; (II) Elliptic curves and their associated formal group laws; and (III) Further results on
formal group laws. Each part is divided into several sections. Cross references to theorems, propositions,
lemmas, examples, equations within a part are given in parentheses, for example (3.2). Cross references from
within one part to another part are preceded by the appropriate roman numeral, for example (1.3.2). Apart
from some results in §II1.3, none of the material is original. T would like to thank Al Laing for a very careful
reading of the original manuscript and many suggestions for improvement.
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PART I: FORMAL GROUPS

¢I.1. Definition and construction of formal group laws

Let R be a commutative ring with a multiplicative identity 1. A formal power series over R is a
symbol 220:0 a, 7", where a, € R and 7 is a dummy variable. The set of power series can be made into a

ring R[[r]] by defining
Zaﬂ'i +Zbi’ri = Z(al +bi)7'i

(Z aiTi)(Z bitt) = chi, where ¢; = zl:ajb,»,j.
=0

In other words, addition and multiplication are defined by extending the usual addition and multiplication
rules for polynomials. One can recursively define R[[X, Y]] = R[[X||[[Y]], R[[X,Y, Z]] = R[[X, Y]][[Z]], and
SO on.

In general it is not possible to compose two power series in a meaningful way. For example, if we tried
to form the composition fog with f=1+7+ 72+ 7> +--- and g = 1 + 7 we would get

fog=1+0+n)+0+7)>+1+7)°+--

The constant term is 1 +1+ 1+ - .-, which makes no sense. But there are some cases where f o g does make
sense, namely when f is a polynomial or when the constant term of g is zero. Let R[[X,Y]] = R[[X]][[Y]],
the ring of formal power series in two variables. If F' € R[[X,Y]] and g, h € TR[[7]] then

F(g,h) makes sense and belongs to R[[7]].

To see this, we must show that only finitely many terms of F(X,Y") contribute to the nth coefficient of
F(g,h). Let F(X,Y) =Y fi;XVI. Ifg= i, gt and h = > ;= b7 then g'h? = g1h;7"7+ higher
order terms, so if i +j > n then f;;g°h/ does not contribute to the nth coefficient of F(g,h). Since there are
a finite number of terms X'Y7 with i + j < n, it follows that F(g, h) is defined. Notice that if the constant
term of F' vanishes then F'(g, h) € TR][[7]].

A one dimensional (commutative) formal group law over R is a power series F' € R[[X, Y]] with zero
constant term such that the “addition” rule on TR[[7]] given by

g®r h=F(g,h)

makes 7R][[7]] into an abelian group with identity 0. In other words, for every g, h we must have (f ®p g) B p

h = f®p (9g®F h) (associative law), f ®p g = g B f (commutative law), f ®r 0 = f (0 is identity), and

for each f € TR[[r]] there exists g € TR[[7]] such that f ®r g = 0 (inverses). Denote this group by C(F).
The following proposition gives a general method to construct formal group laws.

Proposition 1.1. Let G be an abelian group, O its identity element, and write its multiplication law
additively. Suppose there is a one-to-one map T : TR|[r]] — G such that T'(0) = Og, and a power series
F € R[[X,Y]] with zero constant term such that
T(9) +T(h)=T(F(g,h)) (1.1)
for all g, h € TR][r]]. Then F defines a formal group law.
The nontrivial part of the proof is the existence of inverses. The proof will be given in the next section.
Here we give three examples of the construction. The first two are warm-up examples, and the third is the

construction of the formal group law associated to an elliptic curve.
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Example 1.2. Let G = R[[r]] under usual addition. Let T : 7R[[r]] — R[[7]] be the inclusion. Then the
equation (1.1) may be written as g + h = F(g,h). Thus X @p Y = F(X,Y) = X +Y. This is called the

additive formal group law.

Example 1.3. Assume R is a ring with a unit. The units of R[[r]] are the power series whose constant
term is a unit in R; see Lemma 1.4 below.
Let T : 7R[[7]] — R[[7]]* be given by
T(g)=1+g.
Then
T(9)T(h)=(1+g)(1+h)=1+g+h+gh=T(g+h+ gh).

Thus we are led to the multiplicative formal group law

XepY=FX,Y)=X+Y + XV

Lemma 1.4.  The units of the ring R[[X;,...,X,]] are the power series whose constant term is a unit in
R.

Proor. Let Rj = R[[Xi,...,X;]] for 1 < j < n, andlet Ry = R. If j > 0 then R; = R;_1[X;] by

definition. Let Af; denote the ideal of R; generated by X1, X»,...,X; when j > 0, and let My = {0}. We

make the inductive hypothesis that ij = R* + M; for all j < n. This holds trivially when n = 1. Let

n > 1, and let Y a; X} € R, be a power series whose inverse we wish to compute, where a; € R,_;. Then
aobo =1

a061 + a1b0 =0

agby + a1bp—1 + -+ am—1b1 + anbog =0

This infinite system of equations has a solution with b; in R,,_1 iff a¢ is a unit in R,_;. Thus
R =R} |+ X,R,.

By induction hypothesis, R ; + X,,R,, = R* + M,,_; + X,,R,,, and this equals R* + M,, since M,, =
M1+ X, R,,. O

Example 1.5. Those not familiar with elliptic curves should read this example after reading §I1.1. Let R
be a domain and let L be the quotient field of R[[7]]. Let E be an elliptic curve with equation of the form

Y2Z 4+ a1 XYZ+asYZ? = X2+ o X2 Z + as X Z° + ag Z°,

where the a; belong to R. Since R C L, one can consider E(L), the solutions to the above equation which lie in
P2(L). In Part 1T we will show that E(L) is a group (provided the projective curve is nonsingular), explicitly
give a one-to-one map T : TR[[7]] = E(L), and find a power series F' such that T'(g) + T'(h) = T(F(g, h)).
F will be called the formal group law associated to the elliptic curve E.



§1.2. A formal semigroup law is automatically a formal group law

Let R be a commutative ring with a multiplicative identity which we denote by 1. In the preceding
section we defined a commutative formal group law to be a power series in two variables which makes 7R[[7]]
into an abelian group with identity 0. The more customary definition is as follows: a (commutative) formal
group law over R is a power series F(X,Y) € R[[X,Y]] such that

() F(X,0) = X; (Additive Identity)
(i) F(X,)Y)=F(Y,X) (Commutative Law) (2.1)
(iii) F(F(X,Y),Z)=F(X,F(Y,Z2)) (Associative Law).

We will show in Proposition 2.3 that this definition is equivalent to our earlier one. The first property
implies that F has the form X + Y H(X,Y). By symmetry in X and Y, it must therefore be of the form

F(X,Y)=X+Y + XYG(X,Y), G eR[X,Y]. (2.2)

First we should check that (ii7) makes sense; that is, that F'(F(X,Y), Z) and F(X, F(Y, Z)) are well defined
power series in X, Y, and Z. This follows from the following lemma.

Lemma 2.1. Let F, g be power series in two variables and let h be a power series in one variable. Suppose
that g and h have zero constant term. Then F(g(X,Y),h(Z)) is a well defined power series in R|[X,Y, Z]].

ProoF. If F is a polynomial then the result is clear. Let F' =Y F,; X?Y?. Observe that g(X,Y)*h(Z)"
consists only of terms ¢;jx XY7 Z¥ such that i + j + k > a + b. In other words, if i + j + k = N then only
the terms of F' with a + b < N contribute to the coefficient of X?Y7Z* in F(g,h). The important point is
that there are only finitely many such a and b. This proves that F'(g, h) is well defined. a

Lemma 2.2. Let F' be a power series satisfying the three conditions above. There exists a power series
(1) € TR|[7]] such that
F(g,t0g9)=0  forall g € TR[[7]].

Proor. Let /() = —7. By (2.2)
F(r,)M) =7 —7=0mod 7°.

Now assume inductively that :(N) € 7R[[7]] satisfies F(7,:™)) = 0 mod 7¥*! and (V) = ;¥ -1 mod 7V
Then there is a € R such that
F(r, ™) = ar™+! mod 7V +2.

Let ((N+1) = ,(N) — q7N+1_ By (2.2)
F(L(N), —ar¥ ) = (M) gV = (N4 g 7N F2,

Thus

F(r, Ny = F(r, FOWNY) —arN YY) = F(F (7, i), —arV+1)

F(r,i/ M) —ar™+' = 0 mod 7V+2,

This completes the induction. Let ¢+ € 7R[[7]] be the power series such that ¢ = «/N) mod 7V+! for all N.
Then F(r,u(7)) = 0, and hence F(z,t(z)) = 0 for all z € TR[[7]]. -

Proposition 2.3. Let F' be a power series in two variables with coefficients in R such that F'(0,0) = 0.
The following are equivalent.

(1) The three conditions in (2.1) hold;

(2) The binary operation on TR|[r]] defined by f &r g = F(f,g) makes TR|[r]] into an abelian group with
identity 0;



(3) The binary operation on TR[[7]] defined by f ®&r g = F(f,g) makes TR|[7]] into an abelian semigroup
with identity 0.

Proor. We will show (1) = (2) = (3) = (1). Assume (1) holds. Define a binary operation on 7R[[7]] by
ferg=F(f,g) for f,g € TR[[]]. The three conditions immediately imply f €r 0= f, f ®r g = g ®F f,
and (f ®pg)®rh = f®r (g®rh) for f,g,h € TR[[7]]. Lemma 2.2 implies f ®p ¢(f) = 0. This proves (2).
It is obvious that (2) implies (3).

Now assume (3) holds. We will prove condition (i) of (2.1) holds; the other conditions in (2.1) can be
proved similarly. Let G(X,Y,Z) = F(F(X,Y),Z) — F(X,F(Y,Z)). We must show G = 0. By hypothesis,
if a, b, c are any positive integers then

Gr, 1) = (1" @r ") Br T — T @p (TP ®F 7°) = 0
as an element of R[[7]]. We must show that every coefficient of G is zero. Write
i.j, k>0

Since the Nth coefficient of G(7%,7%,7°) is zero we have

Z gijk =0 (2.3)
{i..k€Zso | (a,b,c)-(4,4,k)=N}
for all positive integers a,b,c, N. We need to show each g;; = 0. Suppose not. Among all ¢, j, k for which
gijk is nonzero, consider those for which Ny = i + j + k is minimal. Among all 4, j,k with g;;; # 0 and
i+ j + k = Ny, consider those for which Ny = i + j is minimal. Finally, among all ¢, j, k with g;;z # 0,
i+j+ k=N, and i + j = N, select the one for which N3 = ¢ is minimal. Call this triple (4o, jo, ko); that
is, i9 + jo + ko = N1, io + jo = Nz, i9p = N3. Choose integers My, Mo, M3 such that
M3 >1, My > MsN3, My > MyN>+ M3Ns3.
Let
(a,b,c) = (Ml + M2 + M3,M1 + Mz,Ml), N = M1N1 + M2N2 + M3N3.

We will obtain a contradiction by showing that

Z 9ijk = Gio,jo,ko # 0. (24)
{idh€Zi50] (a,b,0)-(i4:k) =N}

Suppose g;jx # 0 and (a,b,c) - (i, j,k) = N. The equality can be written

My(i+j+k)+ My(i 4+ j) + Msi = N. (2.5)
Now i 4+ j + k > Ny by the minimality of N;. Strict inequality cannot hold, since otherwise

M(i+j+k)+ M(i +j) + Msgi > M;(N; +1) > N.
Thus i + j + k = N;. By minimality of Ny we know ¢ 4+ j > N». Again strict inequality cannot hold, since
otherwise
Mi(i+37+k)+ M(i+j)+ Msi > MyNy + Ma(Ny +1) > N.
Thus i + j = N». Now the equality (2.5) shows i = N3. This establishes (2.4) and completes the proof. O
Proof of Proposition 1.1: The hypothesis of Proposition 1.1 is that there is an injective map T' from 7R[[7]]
into an abelian group G such that T'(0) = O¢, and there is a power series F(X,Y’) with zero constant term
such that
T(g9) +T(h) =T(F(g,h))
for all g,h € TR[[7]]. We need to show that F' gives an abelian group law on 7R[[7]]. By the preceding
proposition, it suffices to show F' makes 7R[[7]] into an abelian semigroup with identity 0; that is, if f,g,h €
TR[[7]] then
fer(gorh)=(forg) ®rh, fOrg=g®rh, fOr0=Ff

Now T(f @ (g ®r b)) = T(f) + T(g ®r h) = T(f) + T(g9) + T(h) and similarly T((f ©r g) r h) =
T(f)+T(g)+T(h). This proves the first identity, since T' is one-to-one. The other two identities are proved
similarly. |



§1.3. Homomorphisms of formal group laws

If F is a formal group law then write C(F) for the group it determines. That is, C(F') = 7R|[[7]] as a set,
and the group law is given by ¢ ®p h = F(g,h). If F, F' are two formal group laws then a homomorphism
from F to F' is defined as a power series U(r) € TR|[[r]] with zero constant term such that g — U(g) defines
a homomorphism from C(F) into C(F"). Explicitly,

Uo(a@py)=(Uox) @m (Uoy)
for all z,y € TR][[r]]. In terms of power series this can be written
U(F(X,Y)) = F'(UX),U(Y)). (3.1)

The reason that U has zero constant term is that U must take 7R[[7]] into itself. An example of a ho-
momorphism from F to itself is the multiplication by n map, denoted [n] or [n]p, which is defined by the

rules:
0]=0, [1]=7, [n+1llr=[nlrdrr=F(n]r,7)if n >0, [n]=t0[-n]if n<DO0. (3.2)

Let Gy, G> be abelian groups, and let T; : 7R[[7]] = G; (i = 1,2) be one-to-one maps such that T;(0) is
the identity element of GG;. Let F; be power series with zero constant term such that

where ®¢, denotes addition on the group G; and g @, h = F;(g,h). We showed that F; is a formal group
law, and the above equation simply states that T; is a group homomorphism from C(F;) into G;.

Lemma 3.1. Let G;,T;, F;, C(F;) be as above. Suppose there is a group homomorphism ¢ : G; — G-
and a power series U with zero constant term such that

P(Ti(g)) = T2 (U(9)) (3-3)
for all g € TR][r]]. Then U is a homomorphism between the formal group laws defined by F; and F5.

Proor. It suffices to show that U is a homomorphism from C(F}) to C(F3). By hypothesis there is a
commutative diagram

C(F) —2 s G
U (U

C(F) —2 G

Here T1,T5,v are homomorphisms and 73,75 are injective. It follows by diagram chasing that U is a
homomorphism, as claimed. O

As a special case, let Gy = Gy =G, Ty =T, =T, F;, = F» = F, and ¢(g) = ng, where n € Z. Then
U = [n], which was defined by (3.2). The power series for [n] may either be computed from the recursion
(3.2) or from the formula (3.3), which in this context reads

nT(g) =T([n)(g))  for g € TR[[7]]. (3.4)

For the additive formal group law we have T' = inclusion of 7R[[r]] into R[[r]] and the formula reads
ng = [n](g). So in that case,
[n)(T) = nT (Additive Formal Group)
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For the multiplicative formal group law we have G = R[[7]]* and T(g9) = 1+ g, so the formula reads
(1+g9)" =1+ [n](g).- Thus for the multiplicative formal group law the coefficients of [n] are given by the
binomial coefficients:

n
[n](g) = Z (7)7’ (Multiplicative Formal Group).
i=1

In the special case where n = p = the characteristic of R with p > 0 we have (1+ g)? = 1+ ¢gP, and therefore

[p](T) = 7* (Multiplicative Formal Group).

¢I.4. Heights

If R has characteristic p then the height of a homomorphism U, written ht(U), is the largest integer
h such that U(r) = V(T”h) for some power series V', or oo if U = 0. The height of the formal group law
is defined as the height of the homomorphism [p]. For the additive formal group law of Example 2.2 defined
by F(X,Y) =X +Y we have [p](7) = pr =0, so the height of F' is co. For the multiplicative formal group
law of Example 2.3 given by FI(X,Y) = X +Y + XY we have [p](r) = 7P, therefore the multiplicative formal
group law has height one.

Example 4.1. Let F =Y f;; XY be a formal group law over an integral domain R of characteristic p > 0.
Let F(P) =" fEX'Y7. We claim that F(®) is a formal group law, and ¢ = X? is a homomorphism (evidently

of height 1) from F to F(). For the first assertion, replace X,Y, Z by X'/? Y/?_ 7!/P in the relation (2.1)
then take the pth power. This yields the corresponding relations for F(®). For the second assertion, note
that

FP($(X),6(Y)) = F(X,Y)” = ¢(F(X,Y)).

Observe that ¢* : F — Fe),

Proposition 4.2.  Let Fy, F> be formal group laws over an integral domain R of characteristic p. Let
U(r) = > u;m" be a homomorphism from F, to Fy of height k. Then the first nonzero coefficient of U is

k
uyn. Moreover, there is a homomorphism V : F\"") — Fy such that U =V o ¢F.

Proor. If k =0 then u; # 0 for some j which is prime to p, therefore U'(7) = Y, mu,, 7™ ! is nonzero.
Differentiate the equation U(F; (X,Y)) = F5(U(X),U(Y)) with respect to Y and then set Y = 0. We obtain

OF OF:
U'(Fi(X,0) 5 (X, 0) = 22

Since F;(X,Y) =X +Y + XYG;(X,Y) for i = 1,2, this becomes

(U(X),U(0)) U'(0).

U'(X)(1+ XG1(X,0)) = (14 G2(U(X),0)) us.

The left side is nonzero, therefore u; # 0.

Now let k£ > 1 and set ¢ = pF. By definition of height, there is a power series V(1) € TR[[r]] such that
U(r) = V(79). Now V" is nonzero, since otherwise V' would be a function of 77, so that ¢ could be replaced by
pq. We claim V' is a homomorphism from Fl('I) to F,. We have to show V(Fl(Q) (X,Y)) = B (V(X),V()).
The left side is V(F; (X/9,Y1/9)9) = U (F(X/9,Y1/9)). The right side is F>(U(X'/),U(Y/)). These
two are equal because U is a homomorphism from F; to Fy. Since V' # 0, V has height zero. It follows from
the case k = 0 that the first coefficient of V' is nonzero. Thus the coefficient of 77 in U is nonzero. O

Example 4.3 Suppose F = Y f;; XY is a formal group law over an integral domain R of characteristic
two. Then

Rl =[lr@rllr=F(r,r)=> " > fij

n=1 i+j=n



Since F' is symmetric, f;; + fj; = 0. Thus the terms in )" f;; with ¢ < j cancel the terms with ¢ > j. The
only surviving terms are f;;, where 2i = n. Thus

2] = fant™".
n=1

Proposition 4.2 asserts that the smallest n for which f,, # 0 is a power of two, say 2¥, and the height of F'
is k+ 1.

Corollary 4.4. IfF,F', F" are formal group laws over an integral domain R, U : F — F', and V : F' —
F", then
ht(V o U) = ht(V) + ht(U).

Proor. Define the degree of a nonzero power series Y a;7% to be the smallest i such that a; # 0. Propo-
sition 4.2 asserts that if U is a nonzero homomorphism of formal group laws then deg(U) = Pt () The
degrees of power series multiply when they are composed, therefore pht(VoU) = pht(V)pht(U) — pht(V)+ht(U)
O

If F,F' are formal group laws over an integral domain R and Uy,U, : F' — F', define U; &g Us =
F'(Uy,Us). Uy ®@pr Us is a homomorphism from F to F'.

Corollary 4.5. ht(Ul DF UQ) Z 1nf{ ht(Ul),ht(UQ) } Ifht(Ul) < ht(Uz) then ht(Ul DF Uz) = ht(Ul)

Proor. Write F'(X, Y) = X+Y+XYG’(X, Y) Then U1 @ Uy = FI(Ul, Uz) = U1+U2+U1U2GI(U1, Uz)
The corollary is therefore true when the word “degree” is substituted for the word “height”. Since ht(U;) =
log, (deg(U;)), the corollary follows. O

Corollary 4.6. If F, F' are formal group laws defined over an integral domain R and if there is a nonzero
homomorphism U from F to F' then F' and F' have the same height.

Proor. Certainly [p]p oU = U o [p]p, so [p|r and [p]r have the same height by Corollary 4.4. O

It is a theorem of M. Lazard ([F], [H]) that if R is a separably closed field of characteristic p then two
formal group laws F, F' defined over R are isomorphic iff they have the same height; this gives a partial
converse to Corollary 4.6. We will see that the height of the formal group law associated to an elliptic
curve E defined over a field R of characteristic p is one or two according as E is ordinary or supersingular.
Thus Lazard’s Theorem implies that the formal group laws of any two ordinary elliptic curves (or any two
supersingular elliptic curves) are isomorphic over the algebraic closure of R. On the other hand, the condition
that two elliptic curves over R be isomorphic is much more restrictive (the two curves must have the same
j-invariant; see [S, p. 47-50]) This means that isomorphisms of formal group laws are far more abundant
than isomorphisms of elliptic curves.

Corollary 4.7.  Every formal group F over a ring of characteristic p has height at least one.
Proor. We claim that for any n € Z,
[]F = nT+7°(--). (4.1)

This is true if n = 0 or 1 since [0]p = 0 and [1]p = 7. Let n > 1, and assume the claim is true for n — 1.
Then it is true for n also, since

nlr=F(n—1p,7)=[n—-1r+717+72(-").

9



The claim is true for negative integers because [—n]p = ¢ o [n]p where ¢+ = [—1]p, and the first term of ¢ is
—7 by the proof of Lemma 2.2. This proves the claim. Now [p]r = pT + -- -, and pr = 0. Thus [p]F cannot
have height zero by Proposition 4.2. O

Corollary 4.8. Suppose R is an integral domain of characteristic p > 0 and F is a formal group law over
R. If n = ap' with (a,p) = 1 then ht([n]r) =t ht(F).

Proor. ht([n]r) = ht([a]r)+t ht([p]r) by Corollary 4.4. The height of [a]F is zero by (4.1), and ht([p]r) =
ht(F') by definition. O

Proposition 4.9.  Let F,F’ be formal group laws of finite height h over a finite field K of character-
istic p and let v,v' be the first nonzero coefficient of the power series [p|r,|p|r:, respectively. Let L be
the compositum of K and F,, where ¢ = ph. If there is a nonzero homomorphism U from F into F' then

Ng/p,(v) = Ng/p, (V).

Proor. Let K have cardinality p". Write n = n'd, h = h'd, where (n',h’) = 1. Then L has cardinality
pm M4 = ¢ By Proposition 4.2, [p]lp = V o ¢", [plpr = V' o ¢". Here V is a homomorphism of height zero
from F@ into F, and similarly for V'. The first term of V is v7. Now ¢* o V = V') o ¢, where V@)
is the homomorphism from FE**™) into F**) obtained by raising the coefficients of V to the p*th power.
Thus

[p"]r=(Vod")" =VoVWo V) o oy o (4.2)

n'—1

Denote Vo V(@ o...0 V" ™) by N(V). The first term of N(V) is

n'—1

( H vqi)r = Nyz/F, (v)T.

i=0

Since U, V,V' have colefﬁcients in K and’ " =afora € K, """ = ¢""" commutes with U,V, and V.
Thus the equality [p" g o U = U o [p™ | implies N(V') o U = U o N(V). If U has height j then the
coefficient of 77 in the above equality is Ny /g, (v')upi = upiNp/p, (v), and up; # 0 by Proposition 4.2. Thus
Np/r,(v) =N/, (0'). O
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PART II. ELLIPTIC CURVES AND THEIR ASSOCIATED FORMAL GROUPS

¢I1.1. Background on elliptic curves

If K is a field then the 2-dimensional projective space P?(K) is the set of triples (X,Y,Z) € K x K x K
such that X,Y, Z are not all zero, modulo the equivalence (X,Y, Z) =2 (AX,AY,AZ) for all 0 # A € K. Three
points (X;,Y;, Z;) (i = 1,2,3) in P2(K) are said to be colinear if there exist \, u, v € K, not all zero, such
that AX; + pY; + vZ; = 0 for ¢ = 1,2,3. In particular, if Z; # 0 for all i then the colinearity of the three
points (X;,Y;, Z;) in P?(K) is equivalent to the colinearity of the points (z;,y;) in the affine plane, where
x; = X;/Z; and y; = Y;/Z;. This follows from the equation Az; + py; + v = 0 for all i.

A Weierstrass equation is a cubic equation W (X,Y, Z) = 0, where

W(X,Y,Z)=Y?Z+ a1 XYZ+a3YZ? — (X3 4+ axa X*Z + as X Z* + as Z2), (1.1)

a; € K. Since this equation is homogeneous, we can think of its solutions as lying in P?(K). A singular
point is a point P € P*(K) such that W (P) = 0W/dX(P) = OW/dY (P) = OW/dZ(P) = 0, where K
denotes the algebraic closure of K. It can be shown that the Weierstrass equation has no singular points
iff A # 0, where A is a certain polynomial in the a;; see [S, p. 46]. Let us assume A # 0. Then the set of
solutions to (1.1) in P?(K) is called an elliptic curve. The elements of the elliptic curve are called points.
If L is any field containing all the Weierstrass coefficients a; then E(L) is defined to be the set of solutions
to (1.1) in P?(L). The Weierstrass equation can often be simplified. For example, in characteristic zero a
linear change of coordinates puts the Weierstrass equation into the form Y27 = X3 + a4 X Z? + agZ>. See
[S, Appendix A].

The only point on the elliptic curve which intersects the line Z = 0 is the point (0,1,0). This is called
the point at infinity and is often denoted by Og. In contrast, the “finite” points of E(K) are the points
(X,Y, 1) which satisfy the above equation, and it is customary to identify these points with the points (X,Y)
in the affine plane K x K such that

Y24+ a1 XY +a3Y = X2+ X? + ay X + ag. (1.2)

E(K) can be made into an abelian group with additive identity equal to O by insisting that any three
colinear points on E(K) (counting multiplicities) sum to Og. The proof that this group law is associative
can be found in [K] using Bézout’s Theorem or in [S] using the Picard group. In this context, the phrase
“counting multiplicities” means to count the multiplicities of the roots of the cubic which results when one
variable is eliminated from the Weierstrass equation by using the equation of the intersecting line. We give
several examples which should make this clear.

Example 1.1: Lines through the origin. The equation of a line through (0,1, 0) has the form AX+vZ =
0, where \,v € K are not both zero. If A = 0 then the line is Z = 0, and the Weierstrass equation becomes
simply 0 = W (X,Y,0) = X?. This has one solution X = 0 with multiplicity three. Thus (0, 1,0) intersects
Z = 0 with multiplicity three. This gives 3(0,1,0) = (0, 1,0), which is consistent with the fact that (0, 1,0)
is the identity. If A # 0 then X = ¢Z, where ¢ = —v/A. The Weierstrass equation becomes

W(cZ,Y,Z) =Y?Z + (a1c + a3)Y Z% — (¢ + asc® + agc + ag) Z° = 0.
This factors as
Z(Y? + (arc+ a3)YZ — (A + axc® + asc+ a6)Z?) = Z(Y — i Z)(Y — y22)
where y1, y2 belong to a quadratic extension of K and satisfy y; +y2 = —(aic+a3), y1y2 = —(c3 +axc® +age+
ag). The intersection of E with the line is {(0,1,0), (c,y1,1), (¢,y2, 1)}, hence (0,1,0) + (¢, y1,1) + (¢, y2,1) =
(0,1,0). In other words, if (¢,y1,1) lies on E then —(c,y1,1) = (¢, y2,1), where y; + y» = —(a;c + a3). This
gives the inversion formula:

—(.’L’,y,l) :(wa_(y+alw+a’3)vl)' (13)

11



If it happens that y = —(y + a1z + as3), that is, 2y = —(a1z + a3), then (z,y, 1) is a two-torsion point.

Example 1.2: Lines which miss the origin. The equation of a line which misses (0,1,0) is AX + uY +
vZ =0, where u # 0. Since (0,1,0) is the only point on E which intersects Z = 0, the intersection points
of the line with the elliptic curve all have a nonzero Z-coordinate. Let m = —\/u, b = —v/u, y = Y/Z,
x = X/Z. Then the three intersection points (z;,y;,1), ¢ = 1,2,3, satisfy the Weierstrass equation and
y; = mx; + b. Another way to view this is: suppose (z1,y1,1) and (z2,¥2,1) are two points on the elliptic
curve such that z; # xo, and define m = (y; — y2)/(z1 — x2), b = y1 — mxy. Substitute y = ma + b into
the affine form of the Weierstrass equation to get a cubic equation in z of the form 2* + Bz + Cz + D = 0,
where the coefficients explicitly depend on the a; and on m and b. Explicitly, B = —m? — a;m + as. Two
roots of this cubic equation are xy and z5. Let x3 denote the third root. Then

2+ B2’ +Cr+D=(z—z)(z—22)(x —23) =2° — (21 + 22 +23)2> + (- )z + (-+),
so that 3 = —z1 — x5 — B. This yields the addition formula
(x1,y1,1) + (w2,2,1) = (z3, —(y3 + @13 +az), 1)  if z1 # 22,

T3 = —71 — T2 + m® +aym — as, m = (y1 —y2)/(z1 — z2),

Y3 = mT3 + Yy — M.

Example 1.3: Duplication formula. How do we compute P + P? Assume P = (z1,y1,1) is not a
two-torsion point, that is, 2y; # —(a1x + a3). Then —(P + P) is the point (z2,y2, 1) on the curve such that
2(z1,y1,1) + (z2,92,1) = (0,1,0). Let AX + pY 4+ vZ be the line which passes through these points with
correct multiplicity. It misses the origin, so p # 0. Thus the line has the form y — y; = m(z — 1), where
y=Y/Z, = X/Z. First we will find m, then we will find z2,y>. When y is replaced by m(z — z1) + y; in
the Weierstrass equation, we get a cubic z* + Bz? + Cz + D, and it should equal (z — z1)?(z — z2). Here
B =ay —m?—am, C =m?(2x) + m(—2y; + a1z — az) + (ag — a1y1). If we differentiate the cubic and
set z = x1 we are supposed to get zero. Hence 327 + 2Bz, + C' = 0. We can solve for m in this relation; in
fact m will just be the slope of the tangent line to the curve E at P, namely m = (dy/dx)(P). It turns out

m = (Sxf + 2a2x1 + ag — ary1)/(ar1z1 + 2y1 + a3).
Since (v — x1)*(x — x2) = 2 + Ba®> + Cx + D,
Ty = =221 — B =2z —as + m> + a1m, y2 =m(ze — 1) + y1-

Finally,
2(z1,y1,1) = —(22,y2,1) = (22, —(y2 + @122 + a3), 1).

§I1.2. The affine plane Y # 0

It turns out that the image of the map T : TR[[r]] = E(L) which was alluded to in Example I.1.4 will
be contained in the set of points (X,Y, Z) for which ¥ # 0. For this reason we will need some addition
formulas for points in this region. In principle, such addition formulas could be deduced from formulas
in the preceding section by using a change of variables, however this method is cumbersome to the point
that it will crash Mathematica on a workstation. The better method is to introduce new affine coordinates
(X,Y,Z) = (t,—1, s) and calculate addition by intersecting the curve with various lines.

There are three points (X,Y, Z) on E (counting multiplicities) such that Y = 0. Suppose AX +pY +vZ
is a line which misses these three points. Then A and v are not both zero. If v # 0 then the line misses the
three points iff (=\/v,0,1) € E; that is, iff —\/v is not a root of the equation X3 + as X2 + a4 X + ag = 0.
If A # 0 then the line misses the three points iff (1,0,—v/)\) € E iff —v/)\ is not a root of the equation
1 + CLQZ + 0,4Z2 + a6Z3 = 0
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IfY # 0 then (X,Y,Z) = (¢,—1,s), where s = —=Z/Y, t = —X/Y. The point (¢,—1, s) lies on the line
AX +pY +vZ =0 iff At + vs = p. The Weierstrass equation can be written as

s =1° + aits + ast’s + azs® + asts® + ags”. (2.1)

The next proposition summarizes addition formulas of the form (¢;,—1,s1) + (t2,—1,52) + (t3,—1,s3) =
(0,1,0).

Proposition 2.1.  Let P; = (t;,—1,s;) fori =1,2.
(a) Supposet; # 0 and let m = sy /ty. If 1 + asm + agm? + agm? # 0 then

—t —
P = L 1, ik . (2.2)
1—a1t1 — ass 1—a1t1 — ass

(b) Suppose t; # ty and let m = (s1 — 82)/(t1 — t2), b =81 —mt1, A =1+ aam + asm® + agm®. If A #0
then

P+ P = _(tSa_lamtS +b)a

arm + asb + asm? + 2a4mb + 3agm?>b

A
(c) Suppose 1 — ait; — 2azs; — ast? — 2a4t151 — 3agss # 0. Let

ty = —t; — ty —

(2.3)

ais1 + 3t% + 2ass1t1 + a4s%

m = .
1-— a1t1 — 20381 - GQt% - 2a4t131 - 3068%

Suppose 1 + aam + agm? + agm® # 0. Then
[2]P1 = P1 + P1 = —(tg, —l,mt3 - mt1 + 81),

aim + azm? + (as + 2a4m + 3agm?)(s; — mty)

t3 = —2t1 —
3 ! 1+ asm + agm? + agm?

Proor. (b) Pi, P lie on the line mX — bY — Z = 0. Let P3 be the third point of intersection of this line
with the elliptic curve. Write P3 = (3,3, 23). If y3 = 0 then P; = (1,0,m). From the Weierstrass equation
(1.1), 1 + azm + agm? + agm? = 0, contrary to the hypothesis. Thus y3 # 0, and hence P3 can be written
P; = (t3,—1,mt3 + b). Likewise P; = (t;, —1,mt; + b) for i = 1,2. When (¢, —1, mt + b) is substituted for
(X,Y, Z) in the Weierstrass equation, the result must be of the form A(t — t1)(t — t2)(t — t3) with A # 0.
Hence

—(mt 4+ b) + art(mt + b) + ag(mt + b)? + t* + ast*(mt + b) + ast(mt + b)* + ag(mt + b)?
= At —t)(t — t2)(t — t3).

The left side is of the form
(1 + aam + agm? + agm®)t® + (a1m + azm? + azb + 2a4mb + 3agm?b)t* + (- )t + (--+)

and the right side is of the form At> — A(t; + to + 3)t2 + - - -. Now (b) follows immediately.
(a) Let P, = (0,1,0), m = s1/t;, A = 1+ aam + agm?® + agm?®. Since A # 0, (b) implies that
Py +(0,1,0) + (t3,—1,mt3) = (0,1,0), where t3 = —t; — (aym + agm?)/A. Thus —P; = (t3,—1,mt3). Now

3 3 2 2 3 2
1A =1t + astys1 + aqt187 + ags; = s1 — a1t151 — azsy,

thus

_ aym + asm? _ —t1(t3A) — (a1t?s1 + astys?)
h=—h-— = A

—t1$1 _tl

S1 — a1t131 — ags% 1-— a1t1 — ass )
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(¢) From equation (2.1) one computes that (ds/dt)(P;) = m. Thus s = mt+(s; —mt) is the line which
is tangent to the elliptic curve at P;. In (XY, Z)-coordinates this line has the equation mX +(mt; —s1)Y — Z.
Let P3 = (x3,ys,23) be the other point on the curve which intersects this line. The only point on the line
with y = 0is (1,0,m). Since we assume 1+ asm + agm? + agm® # 0, (1,0,m) does not lie on the curve.
Thus y3 # 0, so P; = (t3,—1, s3). Substitute (¢, —1,mt + b) with b = s; — mt; into the Weierstrass equation
to get

(1 + azm + agm? + agm®)t® + (aym + azm?® + azb + 2a4mb + 3agm>b)t* + (- )t + (---)
= (constant)(t — t1)*(t — t3).

Now solve for t3 to get the result. O

¢I1.3. Function fields, local rings, and uniformizers

Let K be any field, and let C' = C(X,Y, Z) be a curve in P? (K). This means that C is an irreducible
homogeneous polynomial with coordinates in K. Assume the coefficients of C' belong to K, and let C(K) =
{PeP*K)|C(P)=0}. A point in C(K) is called nonsingular if VpC # 0, where

0 0 0
vpC = <8XC(P)’ 8YC(P)’ 3ZC(P)> .
The function field K(C) of C over K is the set of all quotients p(X,Y, Z)/q(X,Y, Z), where p and ¢ are
homogeneous polynomials of the same degree with coefficients in K such that C does not divide ¢, modulo
the equivalence: p/q = p'/q" iff p¢’ — qp’ is divisible by C. The addition and multiplication in K(C) are
defined in the same way as for rational functions. Equivalently, if we set x = X/Z and y = Y/Z then K (C)
is the quotient field of the integral domain

Kz, y)/(C(z,y,1)).

This field has transcendence degree 1, thus any two elements of the function field satisfy some algebraic
relation. Notice that p(AX,\Y,AZ)/q(AX,\Y,\Z) = p(X,Y, Z)/q(X,Y, Z) because of the homogeneity, so
p(P)/q(P) makes sense for P € C(K) provided ¢(P) # 0. A function f € K(C) is said to be defined at
a point P € C(K) if there exists p/q in the equivalence class of f such that g(P) # 0. If f is defined at P
then the value of f at P, denoted f(P), is defined as p(P)/q(P) for any (hence every) p/q which is in the
equivalence class of f and for which ¢(P) #0. If P € C(K) and f € K(C) is defined at P then f(P) € K.

As an example, let us show that for the Weierstrass equation, Z/X is defined at (0,1,0). Since Z(Y? +
az3YZ —a¢Z?) = X(—a1YZ + X2 + a3 X7 + a4 Z?),

—a1YZ+ X2+ axXZ + a4 Z?

Z/X =
/ Y2+G3YZ—(L6Z2

Now Y2 + a3Y Z — agZ* does not vanish at (0,1,0), so Z/X is indeed defined at (0,1,0).

For the remainder of this section assume P € C(K). Let Qp be the ring of functions in K(C) which
are defined at P, and let Mp be the ideal of Qp consisting of functions which take the value zero at P. Qp
is called the local ring of C' at P. If we identify the set of constant functions with K then

Qp =K & Mp (3.1)
(internal direct sum) because f = f(P) + (f — f(P)).
Lemma 3.1. Qp — Mp =Qf. Mp is the unique maximal ideal of Qp.

Proor. If f € Qp — Mp then f can be written as F(X,Y, Z)/G(X,Y, Z), where F,G are homogeneous
polynomials of the same degree and F,G do not vanish at P. Since 1/f can be written G/F, 1/f € Qp.
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This shows that Qp — Mp C QF. The reverse inclusion is also true, for if f € QF then there is g € Qp with
fg=1. Then f(P)g(P) =1, so f(P) is a unit in K. In particular, f is not in Mp. We have proved the first
statement. For the second statement, let I be any proper ideal of Qp. Then I NQF = @; otherwise I would
equal Qp. Thus I misses the complement of Mp completely; equivalently, I C Mp. O

Our next goal is to show that if P is a nonsingular point (that is, VpC # 0) then Mp is principal. First

we need some lemmas. These lemmas are true in more generality than we state them.

Lemma 3.2 (Nakayama’s Lemma). If A is a finitely generated Qp-module and MpA = A then
A={0}.

Proor. Let uy,...,u, be a set of generators for A with n as small as possible. Since u; € A = MpA,
there exist u; € Mp such that u1 = > pyu;. Now 1 —pq € QIXD, so we can solve for uq in terms of us, ..., u,.
This contradicts the minimality of n. a

Corollary 3.3. N3, MR ={0}. Thus Mp 2 M3.

Proor. Let A =NMZ. A is finitiely generated by the Hilbert Basis Theorem [Fu, p. 13], s0 A = {0} by
Nakayama’s Lemma. O

Lemma 3.4. If P is a nonsingular point of C then Mp /M3 is isomorphic to K.

Proor.  Observe that Mp/M% is an Qp/Mp-vector space, and Qp/Mp is canonically isomorphic to K
by (3.1). We just have to prove this vector space is one-dimensional, or equivalently that its dual is one-
dimensional. So let \ : MP/M}% — K be a K-linear map. Since Qp = K + Mp, we can think of A as a
K-linear map from Qp into K which is trivial on M3 + K.

We will construct a K-linear map ¥ : Qp — K which is trivial on K + M#%, and we will prove that
A is proportional to 9. Fix coordinates for P: P = (Xy, Yy, Zp). Fix R € K3 such that R- P = 1. Let
C(X,Y,Z) = 0 be the equation of the curve. Let vpC = (0C/0X(P),0C/dY (P),0C[dZ(P)), the gradient
of C' at P. We claim VpC and R are linearly independent. First observe VpC # 0 since the curve is
nonsingular at P by hypothesis. By Euler’s identity (X0/0X +Y9/0Y + Z0/0Z)C = deg(C)C. (The proof
of Euler’s identity is that for any monomial X*Y?Z¢ we have (X0/0X +Y9/0Y + Z0/0Z)(XY"*Z¢) =
(a+b+c)X*Y?Z¢) Evaluating Euler’s identity at P gives P - VpC = dec(C) C(P) = 0. Since P - R # 0,
this shows VpC is linearly independent from R. It follows that the space of vectors which are orthogonal to
R and VpC is one-dimensional, spanned by a vector 7.

Define ¢ : Qp — K by

)(f) =T Vp(f).
We claim ¢ is well-defined, K-linear, and surjective. To prove it is well-defined, it suffices to show T -
vp(F/G) = 0 if F vanishes identically on the curve and G(P) # 0. In that case, C divides F. Let
h = F/(CG). Then
T-vp(F/G)=C(P)T-Vvph+h(P)T-vpC =040

as required. The map ¢ is certainly K-linear. If S is any vector in K> such that S-P = 0 but S-T # 0 then

£0, (3.1)

so the map is nontrivial. Any nontrivial K-linear map into K is surjective. Let us show that the kernel
contains K + M#%. Certainly T - Vp annihilates the constants K. If f,g € Mp then Vp(fg) = 0 by the
product rule, so M7 is in the kernel also.

It remains to show that an arbitrary linear map A : Qp — K which is trivial on K + M123 coincides with
a multiple of ¥. The map X obeys a product rule, for if f = f(P) + f1, g = g(P) + g1 where f,g € Qp then
fi,91 € Mp, and fg = f(P)g +g(P)f — f(P)g(P) + fig1, so

A(fg) = F(P)A(g) + g(P)A(S)-
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It follows that A is completely determined by its values at X/p, Y/p, and Z/p, where p = R - (X,Y, Z).
Denote these by values by «, 3,v. We claim (a,3,7) is proportional to T'. This will imply there is a one-
dimensional space of such J; in particular A must be proportional to . We must show («, 3, ) is orthogonal
to both R and VpC. Let R = (R1, R2,R3) and p = R1 X + R.Y + R3Z. Then

R (a,B,7) = RiA(X/p) + ReA(Y/p) + R3A(Z/p)
=M1 X + RY + R3Z)/p) = A(1) = 0,

VpC - (a,8,7) = NC(X/p,Y/p, Z[p)) = NC(X. Y, 2)p*5(©) = 0.
O

Corollary 3.5. Supose P is nonsingular. Let v € Mp, and let R,T be nonzero vectors in K such that
R-P#0,T-R=0,andT-VpC =0. Thenu € Mp — M3 iff T-Vpu #0. Also, if S-P=0but S-T #0
then S - (X,Y,Z)/R-(X,Y,Z) belongs to Mp — M.

ProoF. In the notation of the preceding proof, the hypothesis states that 9(u) # 0. Since ¥ induces an
isomorphism of Mp/M? with K, we know u ¢ M3 iff 9(u) # 0. The last statement follows from (3.1). O

Proposition 3.6.  Suppose P is nonsingular. Then Mp is a principal ideal of Qp. In fact, ifu € Mp then
Mp =uQp < u¢g M3.

Proor. Mp # M% by Lemma 3.2. Let u € Mp — M3. Then

QP ~ UQP UQP

K= —= — .
Mp UMP M123

1

The image of 1 in this composite map is u mod M3, which is nonzero. Thus the kernel of the projection
map from uQp/uMp into uQdp/M% has to be trivial. This shows uMp = M3.
Also, Mp = uK + M?% because Mp/M?3 is a one-dimensional K-vector space by Lemma 3.4. Thus

uQp = u(K + Mp) = uK + uMp = uK + M3} = Mp.

O

Corollary 3.7.  Suppose P is nonsingular. Let 0 # f € K(C), u € Mp — M3%. There is a unique integer
v(f) such that f = u"Y)g with g € Q. This integer does not depend on the choice of u.

Proor. Write f = F/G with F, G homogeneous of degree m. Choose R € K? so that P- R # 0. Let p be
the homogeneous polynomial p = R - (X,Y, Z). Then f = fi/fs, where fi = F/p™ and f, = G/p™. Note
that f1, fo € Qp. By Corollary 3.3,

Qp — {0} = LpZo(MP — Mp™),
where M9 = Qp. Clearly M} — MR = 4"Q3, since M = uQ2p. Define ny,ns by fi € M — Mpit! and
let n =ny —no. Then fu™" = fru ™ /(fou ") € QF. O

Qp is called the local ring at P. If P is nonsingular, then a uniformizer is an element of Mp such
that Mp = uQp; equivalently it is an element of Mp — M3. The integer v(f) is called the valuation of f
at P. If u(f) > 0, f has a zero of order v(f) at P; if v(f) < 0, f has a pole of order —v(f) at P. If
v(f) =0, we say f is finite and nonvanishing at P.

Example 3.8 Let C' = W be given by the Weierstrass equation (1.1). Let us show that X/Y is a uniformizer
at (0,1,0). In Corollary 3.5 we take R = P = (0,1,0) and compute from (1.1) that vpW = (0,0,1). Thus
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T =(1,0,0). Now X/Y vanishes at P, and T-Vp(X/Y) =9/0X(X/Y)|p =1 # 0. So X/Y is a uniformizer
by Corollary 3.5.

Example 3.9 Let us compute v(Z/X) at the point P = (0,1,0) on an elliptic curve. By (1.1), ZV = X3,
with

V=Y24+a XY +a3YZ —aryX? — as X Z — ag Z>.
Then Z/X = X?)V = (X/Y)?(Y?/V). Since Y?/V € Q} and X/Y is a uniformizer, we see that v(Z/X) =
2. Thus z = X/Z has a pole of order 2 at the origin. Since Y/Z = (Y/X)(X/Z), y = Y/Z has a pole of
order 3 at the origin.

¢I1.4. Power series expansions

Lemma 4.1. Let C = C(X,Y, Z) be a projective curve over K which is nonsingular at P. Suppose C has
coefficients in K and P € C(K). Let u € K(C) be a uniformizer at P. If f is a nonzero function in K(C')
and v(f) = a then there exist unique constants f; € K for j > a such that for any N > a,

N
f- Z fjuj has a zero of order at least NV + 1.
Jj=a

Moreover, f, # 0.

Proor. Let g =u"*f € QF, fo = g(P). This is the only constant for which g — f, € Mp, so it is the
only constant for which v(f — u®f,) = v(u®(g — f,)) > a. From this observation, the lemma may be easily
proved by induction. O

Corollary 4.2. A choice of uniformizer u at P determines a one to one homomorphism of rings
v, : Qp — KJ[7]].

If0 #V =Y vt € K[[r]], define deg(V') to be the smallest integer n such that v, # 0, and define
deg(0) = oo. If one puts metrics on Qp and on K[[r]] by the rules |f| = ¢’ for f € Qp, |V| = c?&V) for
V € K|[r]], where 0 < ¢ < 1, then ¥, is an isometry. In particular, ¥, is continuous with respect to the
topologies on Qp, K[[r]] which are induced by the above metrics. The image of ¥,, is dense in K|[[r]].

Proor. The homomorphism ¥, is defined by: ¥, (f) = > f;77, where the f; are as in Lemma 4.1. It is
easy to see (using the uniqueness of the coefficients f;) that ¥, is a ring homomorphism. ¥, is an isometry
because vp(f) = a implies f, is the first nonzero coefficient. If ¥, (f) = 0 then |f| = |¥,(f)| = |0] =0, so
f enMp. By Corollary 3.3, f must be zero; thus ¥,, is one to one. If g is any polynomial with coefficients
in K then g(u) € Qp and ¥,(g(u)) = g(7). This shows ¥, (Qp) is dense in K[[7]]. O

Let E be an elliptic curve determined by a nonsingular Weierstrass equation (1.1). Define functions
s,t € K(E) by the formulas: s = —=Z/Y,t = —X/Y, as in §2. These have zeroes at the identity of orders 3
and 1, respectively, by Examples 3.8 and 3.9. By dividing through the Weierstrass equation by Y2 we see
that s and ¢ satisfy the equation (2.1). If O is the additive identity of E then s(O) = t(O) = 0. Moreover, ¢
is a uniformizer at O since it has a simple zero there, thus we can formally express s as a power series in ¢
in the sense that we can find an infinite power series

S(r) = i ;7!
i=3

with the property that for any NV > 3, the function s — Zév s;t! has a zero of order at least N + 1 at the
additive identity. The series S can be computed by recursively substituting approximations for s into the
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right hand side of (2.1) and expanding to get improved approximations. We start with the approximation
s = O(t?) to obtain

s =13+ a1t O(t®) + axt?0(t*) + az(0(t*))? + ast(O(t*))* + ag(O(t?))?
=2+ 0(th).

On the next round substitute > + O(t*) for s in the right side of the equation to obtain
s =12+ art(t® + Ot")) + O(t°) = t* + ayt* + O(t%).
The next round yields

s =1 4+ art(t® + ayt* + O(#°)) + axt®(t> + O(tY)) + O(19)
=13 +art* + (a? + ax)t® + O(t°).

This procedure yields the general rule:

So =81 = 89 =0, s3 =1, and if n > 4 then
Sp = Q18p—1 + Q25,2 + a3 E 8isj + a4 E 8isj + ag Z 8iS;Sk. (4.1)
i+j=n i+j=n—1 i+j+k=n

Lemma 4.3. Let W be the Weierstrass equation (1.1), where a; € R and R is an integral domain. Let
s; € R be defined by the recursion (4.1) and let S = 3" s;7' € TR[[r]]. Then W(r,—1,5) = 0 in R[[7]]. If
fyg € TR[[7]] and W(f,—1,9) =0 then g = So f.

Remark. Since the Weierstrass equation is cubic in the variable Z, it follows that for fixed f € 7R[[7]], the
equation W(f,—1, g) = 0 has three solutions for g in the algebraic closure of the quotient field of R[[7]]. The
lemma asserts that exactly one of these solutions lies in 7R[[7]].

Proor. Let K be the quotient ring of R and let E be the elliptic curve over K with equation W. As

usual, let t = —X/Y, s = —-Z/Y € K(E). Then ¢ is a uniformizer at the origin, so ¥; : Qo — K|[[7]] can be
defined. Moreover, ¢;(t) = 7, ¥4(s) =.S. Now W (t,—1,s) =0, so

0=, (W(t —1,s)) = W(r,—1,5).

From this it follows that W(f,—1,S o f) =0 for any f € 7K][r]].
Now suppose f,g € TR[[7]] and W(f,—1,9) =0. Let h =S o f. Then

0=W(f,—1,h) — W(f,—1,9)
=(g—h) (<1 +arf+asf> +as(g+h) +asf(g+h) + as(g® + gh+ h?)) .

Since —1+ a3 f + --- is a unit in R[[7]] by Lemma I1.1.4, g — h must be zero. O
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¢I1.5. Isogenies

A reference for this section is [S]. Let E, E' be two elliptic curves defined over the same field K. An
algebraic map from E to E' is a function « : E(K) — E'(K) such that for each P € E there exist
homogeneous polynomials f1, f2, f3 of the same degree and not all vanishing at P such that for all but

finitely many Q € E(K),
a(Q) = (/1(Q), f2(Q), f3(Q))-

An example of an algebraic map from FE to itself is the translation by P map 7p(Q) = P+ Q for P,Q € E.
The algebraic map is said to be defined over a field K if E, E' are defined over K and if all the coefficients
of fi, f2, f3 can be chosen to belong to K. It is a theorem [S, p. 75] that every nonconstant algebraic map
from E into E’ which takes the origin to the origin is a group homomorphism. Such an algebraic map is
called an isogeny. If 7: E — E' and —Q = 7(0,1,0) € E' then 7¢ o 7 takes the origin of E into the origin
of E'. Thus every nonconstant algebraic map is the composition of an isogeny with a translation. Two
curves E, E' are called isogenous over K if there exists an isogeny defined over K from E into E’. The
endomorphism ring of E, written Endk (E), is the set of isogenies over K from F to itself, together with
the constant zero map, with the addition and multiplication laws:

(a+pB)(P)=a(P)+B(P), af=aocf.

Note that Z C Endg (E). If K is the finite field with ¢ elements then the Frobenius endomorphism ¢,
is defined by ¢, (X,Y, Z) = (X9,Y?, Z?). Since ¢, coincides with the Galois action, it commutes with any
endomorphism of £ which is defined over K. In particular, ¢, commutes with Z.

If « : E — E'is an isogeny, define a*K(E') = { foa|f € K(E')}; this is a subfield of K(F). The
degree of an isogeny « : E — E' is the index of a*K(E') in K(E). This number is finite because both
fields have transcendence degree 1 and « is a nonconstant map. If K has characteristic p then the Frobenius
isogeny ¢, (X,Y,Z) = (XP,Y? ZP) from E into E® has degree p. Here E(P) is the curve whose Weierstrass
equation is obtained from that of E by raising the coefficients to the pth power.

Every isogeny a : E — E' has a dual isogeny & : E' — E. The dual isogeny is characterized by the
property that a0 & = [deg(a)]p and & o a = [deg(a)]g, where [n]g denotes multiplication by n. If E = E',
then there is an integer a(a), called the trace of «, such that a + & = [a(a)]r. The endomorphism «
satisfies the quadratic equation

a® — [a(a)]a + [deg(a)] =0 in End(E).
In particular, if K has g elements then there is ¢ € Z such that

@5 — [tlpy + [q] = 0.

The integer t is called the trace of Frobenius. It is well known ([S, Ch. 5]) that [t| < 2,/q and the
cardinality of E(K) is ¢+ 1 —t.

§I1.6. Constructing the formal group law of an elliptic curve

Consider an elliptic curve E with Weierstrass equation given by equation (1.1) over an arbitrary field K.
Let L be the quotient field of K[[7]]. Since K C L, we can consider the points in F(L). Let R be a subring
of K (possibly R = K) containing 1 and all the Weierstrass coefficients a;. We will construct a formal group
law by embedding TR[[7]] into E(L) and “stealing” the group law from E(L).

Consider points of the form (¢,—1,s) in E(K). Then ¢ can be regarded as the function —X/Y € K(E),
and it is a uniformizer at the origin. Let S be the formal power series constructed in §4. If f € 7R][[r]] then
(f,—1,S5(f)) € E(L) by Lemma 4.3, so there is an embedding T : T7R[[7]] = E(L) given by

T(f) = (f,—1,5(f)- (6.1)
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Recall Proposition 1.1.1, which guarantees that if we can find a power series F' in two variables with the
properties that £(0,0) = 0 and T'(f) + T(g9) = T(F(f,g)) then F will be a formal group law. We now show
such an F' can be found.

Theorem 6.1. There is a power series F(ti,t2) € R[[X,Y]] with zero constant term such that for
frg € TR[[r]],

T(f)+T(9) =T(F(f,9) (6.2)

Therefore F' is a formal group law.

Proor. Consider Proposition 2.1, but treat t1,¢> as indeterminates and substitute S(t1), S(t2) for s, so.
In other words, we are working over the field L' = the quotient field of R[[t1,?2]]. We need to show t3 of
equation (2.3) is a power series in t1,t2. Let M be the ideal of R[[t1,t2]] generated by ¢; and ¢». In other
words, M is the set of elements p € R[[t1, t2]] for which x(0,0) = 0. If 4 € M and w is a unit of R then u+
is a unit in R[[t1,?2]] by Lemma 1.1.4. Now

o S0 =S) _ $ it — 1)

t1 — 2 P t1 — 2

[ee]
D osiltT 6 e taty 1)
i=3

= s3(t] +tita +13) + 84 (5 + tita + t1t3 +t5) + -
so m belongs to M?2. Then A =1+ asm + asm? + agm? is a unit in R[[t;,s]], since A is the sum of a unit
in R and an element of M. In particular, A # 0, so Proposition 2.1(b) applies. Also b= S(t;) —mt; € M?3.
Now (2.3) shows that t3 € M. Thus we can write t3 = G(t1,t2), G € M. Certainly ¢35 # 0, because G =
—t1 —t» mod M?2. We have (tl, -1, S(tl))+(t2, -1, S(tg)) = —(t3, -1, 83) in E(LI), where s3 = mt3+b € M3,
By Proposition 2.1(a), the right side is

—l3 1 —S3
1—a1t3 —0383’ ’ 1—a1t3 — asss )

Let

—t
F(ty,ts) = 2 € M.

1-— a1t3 — 383

If we substitute ¢t = f(7), t2 = g(7) for f,g € TR[[7]] we get a homomorphism R[[t;,t2]] — R[[7]], which
induces a homomorphism E(L') — E(L). It follows that

(fa _15 S(f)) + (ga _15 S(g)) = (F(fa g)a _15 (**))a
where (x*) is the result of substituting f, g into the power series s3 € M?>. In particular, () € TR[[7]], so

by Lemma 4.3 (xx) = S(F(f,g)). This proves (6.2). The fact that F' is a formal group law follows from
Proposition I.1.1. O

The first few terms of I are:

FX,Y)=X+Y —a1 XY — ap(X?Y + XY?) — (2a3X3Y + (3az — a1a2) X?Y? 4+ 2a3XY3) + - -
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¢I1.7. Homomorphisms of formal group laws arising from isogenies

We claim that an isogeny of elliptic curves over K gives rise to a homomorphism of the corresponding
formal group laws over K. Indeed, let

I(XaYa Z) = (fl(XaYa Z),fQ(X,Y,Z),fg(X,Y, Z))

be an isogeny between elliptic curves E, E' over K. Here f1, fo, f3 are homogeneous polynomials of the same
degree, say d, and fi, f2, f3 do not simultaneously vanish at the origin. Since the origin of E is carried to
the origin of E', f; and f3 vanish at (0,1,0) but f5(0,1,0) # 0. Thus f,/Y% € M and fo/Y? € Q*, where
M = Mg, 0y and Q@ = Qg,1,0). Now f1/Y* = f1(X/Y,1,Z/Y) = fr(=t,1,—s) = (=1)*f1(t,—1,5) € M and
similarly fo/Y? = (=1)?fy(t,—1,5) € Q*. Thus

fl(XaYa Z)/fQ(XaYa Z) = fl(ta_las)/fQ(ta_las) € M.

Let U(r) = Y72, u;7* denote the expansion of f/f> with respect to ¢. Practically speaking, U can be
obtained by expanding s as a power series S and then computing

fi(r, =1,5(7))/ fa (7, =1, 5(7))
in the ring K[[r]]. Note that f2(r, —1,S(7)) is invertible since its constant term is nonzero.

Proposition 7.1. Let E,E', E" be elliptic curves over K and let F, F', F" denote the associated formal
group laws over K. If I : E — E' is an isogeny then the power series U constructed above belongs to
Hom(F,F"). The map I — U is a one to one group homomorphism from Isog(E, E') — Hom(F, F'). If
I' : E' — E" and I' corresponds to U’ € Hom(F', F"") then I' o I corresponds to U’ o U € Hom(F, F").

Proor. Let L be the quotient field of K[[7]]. Since I is defined over K, it is a priori defined over L. As
usual, let t = —X/Y, s = —Z/Y. The discussion above shows that I can be written in a neighborhood of

the origin as

fl( 1 S) _1 f3(t,—1,8)>

fg(t,—l,S)’ ’fg(t,—l,s) '
Let T : 7K[[7]] = E(L) and T' : 7K[[r]] = E'(L) be the embeddings (6.1). Substitute (X,Y,Z) — T'(f) =
(f,—1,5(f)) € E(L), where f € TK[[r]]. Then t = —X/Y changes to f and s = —Z/Y changes to S o f.
Thus

ta_a

I(X,Y,Z) = <

I(T(f) = (U). -1, V(f),
where

U(r) = fi(r,=1,5(7))/ fa(r, =1,5(7)) € TK[[7]]

and V(1) = f3(r,-1,5(7))/ f2(r,—1,5(7)) € 7K][7]]. By Lemma 4.3, V = 5’ o U, where S’(t) is the power
series expansion for —Z/Y in the curve E’. Thus

I(T(f) =T (U(f)- (7.1)

By Lemma 1.3.1, this equation proves that U is a homomorphism of formal group laws.
If 1,1, € Isog(E,E"), and if U;,Us € Hom(F, F') are the corresponding homomorphisms of formal
group laws then on the elliptic curve E(L),

(Il + IQ)(T, —1,5(7’)) = Il(’l', —1,5) + IQ(T, —].,S) by definition of Il + _[2
= T’(Ul) + TI(UQ) by (71)
= T'(F'(Uy,U>)) by (6.2).

On the other hand, if I; 4+ I5 corresponds to Us then
(11 + 12)(7’, -1, S) = T/(U3)
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by (6.2). Since T" is one to one, Us = F'(Uy,Us) = Uy ®pr Us. This shows that the map I — U is a group
homomorphism.
Finally,if I : E — E', I' : E' — E" correspond to U, U’, respectively, then since U is the unique solution
in7K[[r]Jto IeT =T"'0U,
I'oloT =I'0oT' oU=T"0U'0U,

whence I' o I corresponds to U’ o U. O
Example 7.2: Let F be the formal group law over R associated to an elliptic curve E with Weierstrass

equation (1.1), where the coefficients a; € R, and R is an integral domain. We will compute [—1]F and
[-2]p. Let g € TR][7]]. By Proposition 2.1(a),

i _ _ -9 _ —Sog
[F1167(0) = 1l 1.5 00) = (e L )

The right side is T(—g/(1 — a19 — a3S o g)) by Lemma 4.3. Now Lemma 1.3.1 implies

—T e
[-1]r T — T;(alT—%—agS)

The calculation of [—2]g is similar. By Proposition 2.1(c),

[-2]T(9) = [-2]r(g, —1,S 0 g) = (t3(9), =1,m(g)t3(g) — gm(g) + S o g),

where
m(7) = (a19(7) + 37% + 2a275(7) + asS(1)?)

. Z (a17 +2a3S(1) + a7 + 2a47S(7) + 3asS(7)?)",
n=0

t3(r) = =27 — (aym(1) + agm(7)? + (as + 2asm(7) + 3agm(7)*) (S(r) — Tm(7))
Y (=)™ (am(r) + agm(r)? + agm(r)*)".

n=0

Again, Lemma 4.3 implies [2]pT(g) = T'(t3(g)) and Lemma 1.3.1 implies
[=2]F = t3(7).
Obviously [2]F = [-1]F o [-2]F. O

An isogeny I : E — E' is called separable if it has the property: if ¢’ is a uniformizer at the origin of E’
then Iot’ is a uniformizer at the origin of E. This definition does not depend on the choice of uniformizer ¢'.
An isogeny which is not separable is called inseparable. In characteristic zero, all isogenies are separable. In
characteristic p, the Frobenius is not separable, since it carries uniformizers into pth powers of uniformizers.
It is a theorem [S, I1.2.12] that every isogeny can be factored as ¢ from E into E@ (¢ = p*) composed

with a separable isogeny from E(@ into E'.

Lemma 7.3.  Let I be an isogeny from E to E' and let U(r) = 5 u;7" be the corresponding homomorphism
between the formal group laws. I is separable iff uy # 0.

Proor. Let ' be the function —X/Y € K(E'). U is the power series expansion of ¢’ o I. Thus ' o I is not
a uniformizer iff ' o I € M(20 1,0) iff u; = 0. O

Example 7.4. Let E be an elliptic curve over a field K of characteristic p > 0, and let F be its associated

formal group law. Then ¢, : £ — E(®) corresponds to the homomorphism of formal group laws ¢ = 7P :
F — F®),
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¢I1.8. Height of an elliptic curve

The height of a formal group law was defined in §1.4. Naturally, the height of an elliptic curve is defined
to be the height of the associated formal group law.

Proposition 8.1.  An elliptic curve over a field of characteristic p has height one or two.

Proor. Let ¢, : E — E® be the pth power Frobenius and ¢, : E(®?) — E its dual. Let F be the formal
group law associated to E, and let V(1) = Y v;7? : F(®) — F be the homomorphism of formal group laws
associated to ¢p. Then [p]p = V(7P). If ¢, is separable then v; # 0, so E has height one. If ¢, is inseparable,
it can be written as a composition of a power of ¢, and a separable isogeny ([S, Corollary I1.2.12]). Since the
degree of ¢, equals the degree of ¢, only one power of ¢, can occur in this decomposition. Thus ¢, = aoy,
with @ an isomorphism. Let A = Y a;7! be the power series corresponding to o and let A’ be the power
series corresponding to a~!. Then [p|g = A(rP’) = a;77" + -+, and a; # 0 because A o A'(7) = r. In this
case E has height two. O

An elliptic curve in characteristic p of height one is called ordinary. An elliptic curve in characteristic p
of height 2 is called supersingular. The next lemma gives another characterization of supersingular and
ordinary curves when the underlying field is finite. Recall that the trace of Frobenius was defined in §5.

Proposition 8.2.  An elliptic curve E over a finite field K with ¢ = p" elements is supersingular iff p divides
the trace of Frobenius iff |E(K)| = 1 mod p. If E is supersingular and n is even then |E(K)| = ¢+ 1+m,/q,
m € {-2,-1,0,1,2}. If E is supersingular, n is odd, and p > 5, then |E(K)| = g+ 1. If E is supersingular,
n is odd, and p < 3 then |E(K)| = q+ 1+ m,/pq, wherem € { -1,0,1}.

For a more precise statement about which values of |E(K)| can occur, the reader may consult [W,
Theorem 4.1].
PrROOF.  As above, let F' be the formal group law corresponding to E and V : F?) — F the homomorphism
of formal group laws corresponding to ¢,. In other words, V is defined by [p]r = V(77). Recall that E®)
denotes the elliptic curve whose Weierstrass equation is obtained by taking the pth powers of the Weierstrass
coefficients for F, and we use similar notation for isogenies. Now gb(”k) : BE®*™) 5 E®") is the dual of the

k k41

map @ : E®") - EGT) 5o

~ ~ ~ n—1
S@po%p)o...o%p )

is the dual of o). The corresponding formal group law homomorphism is

NV)=VoV®o...o "™,

Let ¢ be the trace of Frobenius (§5), so that |E(K)| = ¢+ 1 —t. Since [t]g is the sum of ¢} and its dual in
End(E), it follows that
tlr=NV)®p® =FN(V), 7).

If E is supersingular then V' has height one, so N(V') has height n. In that case, [t]r has height at least
n, so [t>]F has height at least 2n. Since the height of F is two in this case, Corollary 1.4.8 implies #* is
divisible by p™. Since [t| < 2,/7 (see §5) and ¢|t*, we deduce that t* € {0,q,2¢,3¢,4¢}. Since t € Z, we
find t € {0,+q"/?,+2¢"/?} if n is even; t = 0 if n is odd and p > 3; ¢t € {0, ++/2¢} if n is odd and p = 2,
t € {0,£+/3q} if nis odd and p = 3. Since |E(K)| = ¢+ 1 —t, the cardinality of E(K) must be of the form
stated.

Next suppose E is ordinary. Then N(V') has height zero, so [t]r has height zero. In that case Corol-
lary 1.4.8 implies ¢ is prime to p. a

Proposition 8.3. If E is an ordinary elliptic curve defined over a field K of cardinality p™ and F' is its
associated formal group law then the trace of the Frobenius endomorphism is equal mod p to the norm from
K to F, of the first nonzero coefficient of [p|r.
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Proor. Let |K| = p" = q. The homomorphism of F associated to 2 +[~t] g, + [¢] 5 is zero, thus each of
its coefficients is zero. Now ¢, corresponds to the power series 77, and [—t]g corresponds to a power series

of the form —t7 4 72(---), therefore @2 + [~t]g o ¢, corresponds to F(Tq2 ,—t79 + 729(--+)), which is of the
form —t77 4+ 724(--.). Finally, we evaluate [¢]r. Equation (1.4.2) reads

1

lalr = (Vog)" =V oVP o .oV Do g = (Ngp, (0)7 + (- )7°) 0 77,
s0 [qlr = Ngyp, (v)77 + (729)(- --). Thus

0= F (=77 +720(-+), Ny, (0)77 + 721(:+)) = (—t + Ny, (0)7 4+ 729(- ).
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PART III. FURTHER RESULTS ON FORMAL GROUPS

¢ITI.1. Some theorems of Couveignes

Let R be an integral domain of characteristic p. Let F, C R be the field with p elements if p is prime,
and Fy = Zif p=0. Let F =, fi; X'Y/, F' = 32, fi; X'V be two formal group laws over R, and
let U(r) = 352, uit* € TR[[7]] be a homomorphism from F to F'. Couveignes proved with an elementary
argument in his PhD thesis that the coefficients u; satisfy some simple relations over R.

Theorem 1.1.  Let i be a positive integer which is not a power of p. If p= 0 assume (' ) is a unit in R
for some 1 < m < i. There is a polynomial C; in several variables with coefficients in ¥, such that for each
F F' U as above we have

wi = Ci(uj, frt, fa |1 <j <i,1<k+£<1).

Proor. Let A be transcendental and work in the integral domain R[A]. Since U is a homomorphism,
U(F(r, A7) = F'(U(r), U(A7)).

By (I.2.2) there are power series G, G’ € R[[X,Y]] such that F(X,Y) = X+Y+XYG(X,Y) and F'(X,Y) =
X +Y + XYG'(X,Y). Therefore

D ui(r+ Ar + APG(r, An))Y = wir + ) ui(Ar) + U(n)U(AT)G' (U(r),U(Ar)).
This can be rewritten

0=> ur{(1+ A+ ArG(r, A7))) — (1+ A7)}

- AT2(Z Uj+1Tj)(Z Uj+1(AT)j)G'(Z uyr?, Zuj(AT)j)-

The coefficient of 7% is of the form u;{(14+ A)!— (1+ A%)}+ M;, where M; is a polynomial in A, uy,ua, ..., ui—1
and in some of the coefficients of G,G'. This gives the relation

u{(1+ A) — (1+ A} - M; =0.

The hypothesis that i is not a power of p implies (14 4)* # 1+ A%, If p = 0 choose m such that (! ) is a unit
in R, and if p > 0 let m be a positive integer such that the coefficient of A™ is nonzero in the polynomial
(1+ A)* — (1 + A?). In characteristic p this coefficient is a unit in R because it is a nonzero element of the
prime field Fp,. Since A is transcendental, the coefficient of A™ in our relation must be identically zero. This

coefficient gives our desired formula for u; in terms of the u; and the coefficients of F' and F”. O

The next theorem accounts for the u; when i is a power of p. It was proved by Couveignes for formal
group laws associated to ordinary elliptic curves, but his argument generalizes easily to formal group laws
of any height.

Theorem 1.2.  Let i be a power of a prime p and let h > 0. There is a polynomial C; in several variables
with coefficients in F, such that: if F = Y fre X*Y* Qnd F' = Ef]’-lXJYE are formal group laws of height
h over a domain R of characteristic p and U =) u;7’ : F — F' a homomorphism then

viud — vju; = Ci(uj, fre, foo | J < ik + €< qi)
where q = p* and vy,v are the first nonzero coefficients of the power series [p|r, [p]r:, respectively.
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Proor. By Proposition 1.4.2 we can write [p]p(7) = V o ¢"(7) = V(r9), where V(1) = Y v;7/ is a
homomorphism of height zero from F(9) to F'. Tt is easy to show by induction on n that for n > 0 the jth
coefficient of [n]r is a polynomial in the fi, with k£ + ¢ < j. Since v; is the jgth coefficient of [p]r, v; is a
polynomial in the fi, with k + ¢ < jq. Similarly [p]p = V' o ¢", V(1) =3 vird, and v} is a polynomial in
the fi, with k£ + ¢ < jq. Since [p]pr oU =U o [p]F,

V'(U(n)?) =U(V(r).
Let o = 79. The left side is - -
(Y ufo?) + s (o uged)” o,
j=1 j=1

and the coefficient of o' is of the form v{u! plus terms involving u; for j < i and v, for j <. The right side
is
u1(z ’Ujo'j) + U2(Z 'Ujg'j)2 + -+ UZ(Z ’U]'O'j)i 4o,
J j J

This time the coefficient of o' is of the form u;(v;)? plus terms involving u; for j < i and v; for j < i. By
equating the two sides we get v{u] — vju; equals a polynomial in the u; for 1 < j < i and the vj,v; for
1<j<i.

Example 1.3. When i = p° Couveignes’ relation is simply
viud —viug = 0.

If p=2and i =2 then

rq 2 _ 1,.2q
ViUy — ViU = V2U1 + Vsl -

§II1.2. Hom(F,F') as a Z-module or Z,-module

Let F,F’ be two formal group laws over an integral domain R of characteristic p. Let Hom(F, F")
denote the group of homomorphisms from F' to F’, where the addition is defined as in Corollary 1.4.5. Write
End(F) = Hom(F, F). If A\ € End(F), p € End(F"), U,V € Hom(F,F') then poU o A € Hom(F,F'). In
particular, Z acts on Hom(F, F') by

n-U=[n]poU=Uoln]lp (neZ).

We will show that if p > 0 then the action of Z can be extended to an action of Z,, the p-adic integers. By
definition, Z, is the completion of Z with respect to the p-adic metric |ap”|, = p~" for ap” € Z, (p,a) = 1.
For nonzero a € Z, we define v,(a) = r, where r is the integer such that a = p"b, b € Z;; thus |al, = p~?(®).

Lemma 2.1. IfU € Hom(F, F') and the height of F' is not oo thenn -U =0 only if n =0 or U = 0.

Proor. n-U =|[n]p oU. Since R is a domain, the composition of two power series A, B € TR[[7]] is zero
if A=0or B=0. Thusn-U =0if U = 0 or [n]pr = 0. Now [n]p = 0 iff n = 0 by Corollaries 1.4.8
and [.4.7. d

We put a topology on Hom(F), F') by decreeing that U and V" are close iff U ©+ V has a large height. In
other words, the topology on Hom(F, F') is induced from the height metric |U| = ¢"*Y), where 0 < ¢ < 1.

Proposition 2.2.  If R is a domain of characteristic p > 0 and U € Hom(F, F') then the map Z X
Hom(F, F') — Hom(F, F") given by (n,U) — n-U is continuous with respect to the p-adic metric on Z and
the height metric on Hom(F, F").

Proor.  We must show that if n = m + ap® with ¢ large and if U,V € Hom(F, F') are close then n - U is
close to m - V. But

n-Uopm-V=[n]poUcrV)®r [ap']r oV.
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The height of [n]p o (U & V) is > ht(U &5 V). The height of [ap!]p o V is > t. Both these heights are
large, so the height of the sum is large by Corollary 1.4.5. O

Corollary 2.3. If R is an integral domain of characteristic p > 0 then Hom(F, F") is a Z,-module. If the
height of F' is finite and a € Z,,, U € Hom(F, F') then a-U =0 only ifa=0 or U = 0.

Proor. The first sentence is immediate from Proposition 2.2. Since in particular End(F") is a Z,-module,
we can define [a]pr = a - [1]p» € End(F') when a € Z,. Then a-U = [a]pr o U. This can equal zero only
if [a]7 = 0 or U = 0. Suppose [a]pr = 0. Let n be an integer such that |a — n|, < |a|,, thus n = a + p*b,
b € Z,, and p* does not divide a. Then ht([n]p) < k ht(E"), ht([p*b]F') > k ht(F'), so by Corollary 1.4.5,
ht([a]F') = ht([n]r-) < co. This shows [a]p # 0, as required. O

¢II1.3. Consequences of Couveignes’ theorems

Fix the following notation throughout this section. Let R be an integral domain of characteristic p > 0,
F and F' formal group laws of height h over R, and q = p". Let C1,C,... denote Couveignes’ relations
given in §1 evaluated at the coefficients of F, F' but leaving the u; as indeterminates; thus C; € R[X1, ..., X|]
and C; = X;+ a certain polynomial in X7,...,X;_q if i is not a power of p; C; = v{ X! — vi X;+ a certain
polynomial in Xy,...,X;_; if 7 is a power of p. Here the v; and v} lie in R, since they are polynomials in
the coefficients of F and F', respectively. Couveignes’ theorems assert that if > u;7! € Hom(F, F') then
Ci(uy,...,u;) =0 for all i. Let K denote the separable algebraic closure of the quotient field of R.

Lemma 3.1.  There are exactly ¢ solutions (u1, ..., upn_1) with u; € K to the first p" — 1 of Couveignes’
relations.

Proor.  For each solution (vy,...,v;—1) to the first 1 — 1 of Couveignes’ equations over K there are g values
or 1 value of v; such that (v, ...,v;) is a solution to the ith relation, according as 7 is or is not a power of p.
(To see that the g solutions for v; are distinct when ¢ is a power of p, note that the derivative with respect
to X; of C; is vi, which is nonzero.) The lemma now follows easily by induction on n. O

Theorem 3.2.  Ifuj,us,... is a solution to Couveignes’ relations then S u;7¢ € Hom(F, F").

Proor. Without loss of generality we can replace R by K. In [F, III, §2] it is shown that Hom(F, F") is
free over Z, of rank h? and p"Hom(F, F") is the set of homomorphisms with height > nh. (In fact, it is
shown that Hom(F), F") is the maximal order of a central division algebra over Q,, of rank h? and invarianat
1/h, but we do not need this here.) It follows that a complete set of Z,-module generators Uy, ..., U2 can
be found such that the height of each generator is less than h, and if ) ¢;U; has height > nh for some
¢ € Z, then each ¢; is divisible by p". If U, U’ € Hom(F, F') and U = U’ mod deg ¢" (meaning that the ith
coefficient of U and U’ coincide for all ¢ < ¢™) then

0=F'(U",[-1]p oU") = F'(U,[-1]p o U") = U S U' mod deg q",

so U ©p U’ has height > nh, and it is therefore divisible by p™. Thus > ¢;U; = Y. cjU; mod deg ¢"

-1
i=1

truncations of power series in Hom(F, F') is the cardinality of (Z/p"Z)"", which is ¢"*. Each truncation
gives rise to a solution (u1,...,usm—_1) of the first ¢" — 1 of Couveignes’ relations. Since this coincides with
the total number of solutions, each solution of Couveignes’ relation arises from Hom(F, F"). O

(¢i, c; € Zy) implies ¢; = ¢; mod p™. This shows that the number of distinct elements u; 7" which are

Corollary 3.3. Ifh =1 and if Hom(F, F') contains a homomorphism (with coefficients in R) of height k
then all the solutions (vi,vs,...) in K to Couveignes’ relations for which v; = 0 for i < p* actually lie in R.

Proor. Let U be the homomorphism of height k¥ and Z, - U = {¢-U|c € Z,}. As mentioned in the
previous proof, Hom(F, F') 2 Z,, and it is generated by a homomorphism Up of height zero. Find a € Z,
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such that U = a - Up. Since ht(a - Up) = vy(a), vy(a) = k. Thus Z, - U = Zya - Uy = p*Z, - Uy. Since U
is defined over R, so is ¢ - U for each ¢ € Z,. Thus every element of p¥Z, - Uy has coefficients in R. The
coefficients of such elements are precisely the solutions (v, vs, . ..) to Couveignes’ relations which have v; = 0
for all i < pF — 1. O
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