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INTRODUCTION 

The nine mathematicians whose works are represented in 
the following pages are among the most famous in the whole 
history of mathematics. Each of them made a significant con- 
tribution to the science-a contribution which changed the 
succeeding course of the development of mathematics. That 
is why we have called this book Breakthroughs in Mathe- 
matics. Just as surely as there are technological breakthroughs 
which change our way of living, so are there breakthroughs 
in the pure sciences which have such an impact that they af- 
feet all succeeding thought. 

The mathematicians whose works we examine bridge a span 
of more than 2200 years, from Euclid, who lived and worked 
in Alexandria around 300 B.C., to Bertrand Russell, whose 
major mathematical work was accomplished in the fist years 
of the twentieth century. These nine chapters survey the major 
parts of mathematics; a great many of its branches are touched 
on. We shall have occasion to deal with geometry, both Eu- 
clidean and non-Euclidean, with arithmetic, algebra, analytic 
geometry, the theory of irrationals, set-theory, calculus of 
probability, and mathematical logic. Also, though this is a mat- 
ter of accident, the authors whose works we study come from 
almost every important country in the West: from ancient 
Greece and Hellenistic Rome, Egypt, France, Germany, Great 
Britain, and Russia. 

No collection of nine names could possibly include all the 
great mathematicians. Let us just name some of the most fa- 
mous ones whom we had to ignore here: Apollonius of Perga, 
Pierre de Fermat, Blaise Pascal, Sir Isaac Newton, Gottfried 
Wilhelm Leibniz, Karl Friedrich Gauss, Georg Cantor, and 
many, many others. There are a number of reasons why we 
chose the particular authors and books represented. In part, 

ix 



x INTRODUCTION 

a choice such as this is, of course, based on subjective and 
personal preferences. On objective grounds, however, we were 
mainly interested in presenting treatises or parts of treatises 
that would exemplify the major branches of mathematics, that 
would be complete and understandable in themselves, and 
that would not require a great deal of prior mathematical 
knowledge. There is one major omission which we regret: 
none of the works here deals with the calculus. The reason is 
that neither Newton nor Leibniz (who simultaneously devel- 
oped modern calculus) has left us a short and simple treatise 
on the subject. Newton, to be sure, devotes the beginning of 
his Principia to the calculus, but unfortunately his treatment 
of the matter is not easy to understand. 

What is the purpose in presenting these excerpts and the 
commentaries on them? Very simply, we want to afford the 
reader who is interested in mathematics and in the history of 
its development an opportunity to see great mathematical 
minds at work. Most readers of this book will probably already 
have read some mathematical books-in school if nowhere 
else. But here we give the reader a view of mathematics as it 
is being developed; he can follow the thought of the greatest 
mathematicians as they themselves set it down. Most great 
mathematicians are also great teachers of mathematics; cer- 
tainly these nine writers make every possible effort to make 
their discoveries understandable to the lay reader. (The one 
exception may be Descartes, who practices occasional delib- 
erate obscurity in order to show off his own brilliance.) Each 
of these selections can be read independently of the others, as 
an example of mathematical genius at work. Each selection 
will make the reader acquainted with an important advance 
in mathematics; and he will learn about it from the one per- 
son best qualified to teach him-its discoverer. 

Breakthroughs in Mathematics is not a textbook. It does 
not aim at the kind of completeness that a textbook possesses. 
Rather it aims to supplement what a textbook does by present- 
ing to the reader something he cannot easily obtain elsewhere: 
excerpts from the words of mathematical pioneers themselves. 
Most people with any pretense to an education have heard 
the names of Euclid, Descartes, and Russell, but few have 
read their works. With this little book we hope to close that 
gap and enable a reader not merely to read about these men 
and to be told that they are famous, but also to read their 
works and to judge for himself why and whether they are justly 
famous. 
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Ideally, these nine selections can and should be read without 
need of further explanation from anyone else. If there are any 
readers who would like to attempt reading only the nine se- 
lections (Part I of each chapter) without the commentaries 
(Part II of each chapter), they should certainly try to do so. 
The task is by no means impossible; and what may be lost in 
time is probably more than outweighed by the added pleasure 
as well as the deeper understanding that such a reader will 
carry away with him. 

However, the majority of readers will probably not want 
to undertake the somewhat arduous task of proceeding with- 
out any help. For them, we have provided the commentaries 
in Part II of each chapter. These commentaries are meant to 
supplement but not to replace the reader’s own thought about 
what he has read. In these portions of each chapter, we point 
out what are the highlights of the preceding selection, what 
are some of the difliculties, and what additional steps should 
be taken in order to understand what the author is driving at. 
We also provide some very brief biographical remarks about 
the authors and, where necessary, supply the historical back- 
ground for the book under discussion. Furthermore, we oc- 
casionally go beyond what the author tells us in his work, and 
indicate the significance of the work for other fields and fu- 
ture developments. 

Just as the nine selections give us merely a sampling of 
mathematical thought during more than 2000 years, so the 
commentaries do not by any means exhaust what can be said 
about the various selections. Each commentary is supposed to 
help the reader understand the preceding selection; it is not 
supposed to replace it. Sometimes, we have concentrated on 
explaining the dficult parts of the work being considered; 
sometimes, we have emphasized something the author has 
neglected; at still other times, we extend the author’s thought 
beyond its immediate application. But no attempt is or could 
be made at examinin g all of the selections in complete detail 
and pointing out everything important about them. Such a 
task would be impossible and unending. Different commen- 
taries do different things; in almost every chapter, the author’s 
selection contains more than we could discuss in the com- 
mentary. 

In short, our aim is to help the reader overcome the more 
obvious difhculties SO that he can get into the original work 
itself. We do this in the hope that the reader will understand 
what these mathematicians have to say and that he will enjoy 
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himself in doing so. Nothing is more fatal to the progress of 
a learner in a science than an initial unnecessary discourage 
ment. We have tried to save the reader such discouragement 
and to stay by his side long enough and sympathetically enough 
so that he can learn directly from these great teachers. 

Peter WolB 
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CHAPTER ONE 

Euclid---The Beginnings of Geometry 

PART I 

The following selection consists of the 8rst 26 propositions in 
Book I of Euclid’s Elements of Geometry. This is just a little 
more than half of the 8rst book, which altogether contains 
48 propositions. ‘Book I itself, however, is only part of the 
Elements; there are thirteen books in this work. 

Book I presents the major propositions of plane geometry, 
except those involving circles. Book II deals with the trans- 
formation of areas. Books III and IV add propositions about 
circles. Book V takes up the subject of ratios and proportions 
in general; Book VI applies it to geometry. Books VII, VIII, 
and IX are not geometrical in character at all, but arithmetical: 
that is, they treat of numbers. Book X takes up a rather spe- 
cial subject, namely incommensurable lines and areas. This 
is the longest of the thirteen books. Books XI and XII deal 
with solid geometry. Book XIII also has to do with solid geom- 
etry, but with a rather special part of it: the five regular solids. 
These are the solids that have as their surfaces regular poly- 
gons (polygons all of whose angles and sides are equal). The 
last proposition in the entire work proves that there can only 
be these five solids and no more. The five are these: the tetra- 
hedron, consisting of four equilateral triangles; the hexahedron 
(or cube), consisting of six squares; the octahedron, consisting 
of eight equilateral triangles; the icosahedron, consisting of 
twenty equilateral triangles; and finally the dodecahedron, con- 
sisting of twelve regular pentagons. 

15 
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Euclid: 
Elements of Geometry* 

BOOK I 

DEFINITIONS 

1. A point is that which has no part. 
2. A line is breadthless length. 
3. The extremities of a line are points. 
4. A straight line is a line which lies evenly with the points 

on itself. 
5. A surface is that which has length and breadth only. 
6. The extremities of a surface are lines. 
7. A plane surface is a surface which lies evenly with the 

straight lines on itself. 
8. A plane angle is the inclination to one another of two 

lines in a plane which meet one another and do not lie in a 
straight line. 

9. And when the lines containing the angle are straight, 
the angle is called rectilineal. 

10. When a straight line set up on a straight line makes 
the adjacent angles equal to one another, each of the equal 
angles is right, and the straight line standing on the other is 
called a perpendicular to that on which it stands. 

11. An obtuse angle is an angle greater than a right angle. 
12. An acute angle is an angle less than a right angle. 
13. A boundary is that which is an extremity of anything. 
14. A figure is that which is contained by any boundary 

or boundaries. 
15. A circle is a plane figure contained by one line such 

that all the straight lines falling upon it from one point among 
those lying within the figure are equal to one another. 

16. And the point is called the centre of the circle. 
17. A diameter of the circle is any straight line drawn 

through the centre and terminated in both directions by the 

* From The Thirteen Books of Euclid’s Elements, trans. by Sir 
Thomas L. Heath (2nd ed.; London: Cambridge University Press, 1926). 
Reprinted by permission. 
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circumference of the circle, and such a straight line also bisects 
the circle. 

18. A semicircle is the figure contained by the diameter 
and the circumference cut off by it. And the centre of the 
semicircle is the same as that of the circle. 

19. Rectihneal figures are those which are. contained by 
straight lines, trilateral figures being those contained by three, 
quadrilateral those contained by four, and multilateral those 
contained by more than four straight lines. 

20. Of trilateral figures, an equilateral triangle is that which 
has its three sides equal, an isosceles triangle that which has 
two of its sides alone equal, and a scalene triangle that which 
has its three sides unequal. 

21. Further, of trilateral figures, a right-angled triangle is 
that which has a right angle, an obtuse-angled triangle that 
which has an obtuse angle, and an acute-angled triangle that 
which has its three angles acute. 

22. Of quadrilateral figures, a square is that which is both 
equilateral and right-angled; an oblong that which is right- 
angled but not equilateral; a rhombus that which is equilateral 
but not right-angled; and a rhomboid that which has its op- 
posite sides and angles equal to one another but is neither 
equilateral nor right-angled. And let quadrilaterals other than 
these be called trapezia. 

23. Parallel straight lines are straight Lines which, being in 
the same plane and being produced indefinitely in both di- 
rections, do not meet one another in either direction. 

POSTULATES 

Let the following be postulated: 
1. To draw a straight line from any point to any point. 
2. To produce a finite straight line continuously in a straight 

line. 
3. To describe a circle with any centre and distance. 
4. That ah right angles are equal to one another. 
5. That, if a straight line falling on two straight lines make 

the interior angles on the same side less than two right angles, 
the two straight lines, if produced indefinitely, meet on that 
side on which are the angles less than two right angles. 
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COMMON NOTIONS 

1. Things which are equal to the same thing are also equal 
to one another. 

2. If equals be added to equals, the wholes are equal. 
3. If equals be subtracted from equals, the remainders are 

equal. 
4. Things which coincide with one another are equal to 

one another. 
5. The whoie is greater than the part. 

PROPOSITIONS 

PROPOSITION 1 

On a given finite straight line to construct an equilateral tri- 
angle. 

Let AB be the .given finite straight line. 
Thus it is required to construct an equilateral triangle on 

the straight line AB. 

With centre A and distance AB let the circle BCD be de- 
scribed; [PO&. 31 

again, with centre B and distance BA let the circle ACE be 
described; [PC&. 31 

and from the point C, in which the circles cut one another, to 
the points A, B let the straight lines CA, CB be joined. [post. 11 

Now, since the point A is the centre of the circle CDB, AC 
is equal to AB. [Def. 151 

Again, since the point B is the centre of the circle CAE, 
BC is equal to BA. IDef. 151 
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But CA was also proved equal to AB; therefore each of the 
straight lines CA, CB is equal to AB. 

And things which are equal to the same thing are also equal 
to one another; [C.N. 11 

therefore CA is also equal to CB. 
Therefore the three straight lines CA, AB, BC are equal to 

one another. 
Therefore the triangle ABC is equilateral; and it has been 

constructed on the given finite straight line AB. (Being) what 
was required to do. 

PROPOSITION 2 

To place at a given point (as an extremity) a straight line equal 
to a given straight line. 

Let A be the given point, and BC the given straight line. 
Thus it is required to place at the point A (as an extremity) 

a straight line equal to the given straight line BC. 

C 
K 

N 

D 

@ 

B 
A 

G 
F 

E 

From the point A to the point B let the straight line AB be 
joined; [Post. 11 

and on it let the equilateral triangle DAB be constructed. II. II 
Let the straight lines AE, BF be produced in a straight line 

with DA, DB; [Post. 21 

with centre B and distance BC let the circle CGH be described; 

and again, with centre D and distance DG let the circle%k~ 
be described. [Post. 31 

Then, since the point B is the centre of the circle CGH, 
BC is equal to BG. 
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Again, since the point D is the centre of the circle GKL, 
DL is equal to DG. 

And in these DA is equal to DB; therefore the remainder 
AL is equal to the remainder BG. [C.N. 31 

But BC was also proved equal to BG; therefore each of the 
straight lines AL, BC is equal to BG. 

And things which are equal to the same thing are also equal 
to one another; [C.N. 11 

therefore AL is also equal to BC. 
Therefore at the given point A the straight line AL is placed 

equal to the given straight line BC. (Being) what it was re 
quired to do. 

PROPOSITION 3 

Given two unequal straight lines, to cut off from the greater a 
straight line equal to the less. 

Let AB, C be the two given unequal straight lines, and let 
AB be the greater of them. 

Thus it is required to cut off from AB the greater a straight 
Line equal to C the less. 

At the point A let AD be placed equal to the straight line C, 
[I. 21 

and with centre A and distance AD let the circle DEF be 
described. [Post. 31 

Now, since the point A is the centre of the circle DEF, AE 
is equal to AD. [De& 151 

C 

But C is also equal to AD. 
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Therefore each of the straight lines AE, C is equal to AD; 
so that AE is also equal to C. [C.N. 11 

Therefore, given the two straight lines AB, C, from AB the 
greater AE has been cut off equal to C the less. (Being) what 
it was required to do. 

PROPOSITION 4 

Zf two triangles have the two sides equal to two sides respec- 
tively, and have the angles contained by the equal straight lines 
equal, they will also have the base equal to the base, the tri- 
angle will be equal to the triangle, and the remaining angles 
will be equal to the remaining angles respectively, namely those 
which the equal sides subtend. 

Let ABC, DEF be two triangles having the two sides AB, AC 
equal to the two sides DE, DF respectively, namely AB to DE 
and AC to DF, and the angle BAC equal to the angle EDF. 

I say that the base BC is also equal to the base EF, the tri- 
angle ABC will be equal to the triangle DEF, and the remain- 
ing angles will be equal to the remaining angles respectively, 
namely those which the equal sides subtend, that is, the angle 
ABC to the angle DEF, and the angle ACB to the angle DFE. 

For, if the triangle ABC be applied to the triangle DEF, and 
if the point A be placed on the point D and the straight line 
AB on DE, then the point B will also coincide with E, because 
AB is equal to DE. 

Again, AB coinciding with DE, the straight line AC will also 
coincide with DF, because the angle BAC is equal to the angle 
EDF, hence the point C will also coincide with the point F, 
because AC is again equal to DF. 

But B also coincided with E; hence the base BC will coincide 
with the base EF. 

[For if, when B coincides with E and C with F, the base BC 
does not coincide with the base EF, two straight lines will en- 
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close a space: which is impossible. Therefore the base BC will 
coincide with EFj and will be equal to it. [C.N. 41 

Thus the whole triangle ABC will coincide with the whole 
triangle DEF, and will be equal to it. 

And the remaining angles will also coincide with the re- 
maining angles and will be equal to them, the angle ABC to 
the angle DEF, and the angle ACB to the angle DFE. 

Therefore etc. (Being) what it was required to prove. 

PROPOSITION 5 

In isosceles triangles the angles at the base are equal to one 
another, and, if the equal straight lines be produced further, 
the angles under the base will be equal to one another. 

Let ABC be an isosceles triangle having the side AB equal to 
the side AC; and let the straight lines BD, CE be produced 
further in a straight line with AB, AC. [Post. 21 

I say that the angle ABC is equal to the angle ACB, and the 
angle CBD to the angle BCE. 

Let a point F be taken at random on BD; from AE the 
greater let AG be cut off equal to AF the less; EI. 31 
and let the straight lines FC, GB be joined. [Post. 11 

Then, since AF is equal to AG and AB to AC, the two sides 
FA, AC are equal to the two sides GA, AB, respectively; and 
they contain a common angle, the angle FAG. 

A 

A B C 

F G 

0 E 

Therefore the base FC is equal to the base GB, and the tri- 
angle AFC is equal to the triangle AGB, and the remaining 
angles will be equal to the remaining angles respectively, 
namely those which the equal sides subtend, that is, the angle 
ACF to the angle ABG, and the angle AFC to the angle AGB. 

[I. 41 
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And, since the whole AF is equal to the whole AG, and in 
these AB is equal. to AC, the remainder BF is equal to the re 
mainder CG. 

But FC was also proved equal to GB; therefore the two 
sides BF, FC are equal to the two sides CG, GB respectively; 
and the angle BFC is equal to the angle CGB, while the base 
BC is common to them; therefore the triangle BFC is also equal 
to the triangle CGB, and the remaining angles will be equal to 
the remaining angles respectively, namely those which the 
equal sides subtend; therefore the angle FBC is equal to the 
angle GCB, and the angle BCF to the angle CBG. 

Accordingly, since the whole angle ABG was proved equal 
to the angle ACF, and in these the angle CBG is equal to the 
angle BCF, the remaining angle ABC is equal to the remaining 
angle ACB; and they are at the base of the triangle ABC. 

But the angle FBC was also proved equal to the angle GCB; 
and they are under the base. 

Therefore etc. Q.E.D. 

PROPOSITION 6 

Zf in a triangle two angles be equal to one another, the sides 
which subtend the equal angles will also be equal to one 
another. 

Let ABC be a triangle having the angle ABC equal to the 
angle ACB. 

I say that the side AB is also equal to the side AC. 
For, if AB is unequal to AC, one of them is greater. 

A D 
B A C 

Let AB be greater; and from AB the greater let DB be cut 
off equal to AC the less; let DC be joined. 

Then, since DB is equal to AC, and BC is common, the two 
sides DB, BC are equal to the two sides AC, CB respectively; 
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and the angle DBC is equal to the angle ACB; therefore the 
base DC is equal to the base AB, and the triangle DBC will be 
equal to the triangle ACB, the .iess to the greater: which is 
absurd. 

Therefore AB is not unequal to AC; it is therefore equal 
to it. 

Therefore etc. Q.E.D. 

PROPOSITION 7 

Given two straight lines constructed on a straight line (from 
its extremities) and meeting in a point, there cannot be con- 
structed on the same straight line (from its extremities), and 
on the same side of it, two other straight lines meeting in an- 
other point and equal to the former two respectively, namely 
each to that which has the same extremity with it. 

For, if possible, given two straight lines AC, CB constructed 
on the straight line AB and meeting at the point C, let two 
other straight lines AD, DB be constructed on the same straight 
line AB, on the same side of it, meeting in another point D 
and equal to the former two respectively, namely each to that 
which has the same extremity with it, so that CA is equal to 
DA which has the same extremity A with it, and CB to DB 
which has the same extremity B with it; and let CD be joined. 

Then, since AC is equal to AD, the angle ACD is also equal 
to the angle ADC; [I. 51 

C 
D 

A 443 B 

therefore the angle ADC is greater than the angle DCB; there- 
fore the angle CDB is much greater than the angle DCB. 

Again, since CB is equal to DB, the angle CDB is also equal 
to the angle DCB. But it was also proved much greater than it: 
which is impossible. 

Therefore etc. QB.D. 
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PROPOSITION 8 

Zf two triangles have the two sides equal to two sides respec- 
lively, and have also the base equal to the base, they will also 
have the angles equal which are contained by the equal straight 
lines. 

Let ABC, DEF be two triangles having the two sides AB, AC 
equal to the two sides DE, DF respectively, namely AB to DE, 
and AC to DF; and let them have the base BC equal to the 
base EF; I say that the angle BAC is also equal to the angle 
EDF. 

For, if the triangle ABC be applied to the triangle DEF, and 
if the point B be placed on the point E and the straight line 
BC on EF, the point C will also coincide with F, because BC 
is equal to EF. 

Then, BC coinciding with EF, BA, AC will also coincide 
with ED, DF; for, if the base BC coincides with the base EF, 
and the sides BA, AC do not coincide with ED, DF but fall 
beside them as EG, GF, then, given two straight lines con- 
structed on a straight line (from its extremities) and meeting 
in a point, there will have been constructed on the same straight 
line (from its extremities), and on the same side of it, two 
other straight lines meeting in another point and equal to the 
former two respectively, namely each to that which has the 
same extremity with it. But they cannot be so constructed. 

Therefore it is not possible that, if the base BC be ap$ei 
to the base EF, the sides BA, AC should not coincide with ED, 
DF; they will therefore coincide, so that the angle BAC will 
also coincide with angle EDF, and will be equal to it. 

Therefore etc. Q.E.D. 
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PROPOSITION 9 

To bisect a given rectilineal angle. 

Let the angle BAC be the given rectilineal angle. 
Thus it is required to bisect it. 
Let a point D be taken at random on AB; let AE be cut off 

from AC equal to AD; [I. 31 

let DE be joined, and on DE let the equilateral triangle DEF 
be constructed; let AF be joined. A 

A 0 E 

B F C 
I say that the angle BAC has been bisected by the straight 

line AF. 
For, since AD is equal to AE, and AF is common, the two 

sides DA, AF are equal to the two sides EA, AF respectively. 
And the base DF is equal to the base EF; therefore the angle 

DAF is equal to the angle EAF. [I. 81 
Therefore the given rectilineal angle BAC has been bisected 

by the straight line AF. Q.E.F. 

PROPOSITION 10 

To bisect a given finite straight line. 

Let AB be the given finite straight line. 
Thus it is required to bisect the finite straight line AB. 
Let the equilateral triangle ABC be constructed on it, [I. 11 

and let the angle ACB be bisected by the straight line CD. [I. 91 
I say that the straight line AB has been bisected at the 

point D. 

c 

A A D B 
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For, since AC is equal to CB, and CD is common, the two 

sides AC, CD are equal to the two sides BC, CD respectively; 
and the angle ACD is equal to the angle BCD; therefore the 
base AD is equal to the base BD. II. 41 

Therefore the given finite straight line AB has been bi- 
sected at D. QJ3.F. 

PROPOSITION 11 

To draw a straight line at right angles to a given straight line 
from a given point on it. 

Let AB be the given straight line, and C the given point on it. 
Thus it is required to draw from the point C a straight line 

at right angles to the straight line AB. 

P 

Let a point D be taken at random on AC; let CE be made 
equal to CD; II. 31 

on DE let the equilateral triangle FDE be constructed, cr. 11 
and let FC be joined; I say that the straight line FC has been 
drawn at right angles to the given straight line AB from C the 
given point on it. 

For, since DC is equal to CE, and CF is common, the two 
sides DC, CF are equal to the two sides EC, CF respectively; 
and the base DF is equal to the base FE; therefore the angle 
DCF is equal to the angle ECF, [I. 81 

and they are adjacent angles. 
But, when a straight line set up on a straight line makes the 

adjacent angles equal to one another, each of the equal angles 
is right; [Def. lo] 

therefore each of the angles DCF, FCE is right. 
Therefore the straight line CF has been drawn at right angles 

to the given straight line AB from the given point C on it. 
Q.E.F. 
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PROPOSITION 12 

To a given infinite straight line, from a given point which is 
not on it, to draw a perpendicular straight line. 

Let AB be the given infinite straight line, and C the given 
point which is not on it; thus it is required to draw to the given 
infinite straight line AB, from the given point C which is not 
on it, a perpendicular straight line. 

For let a point D be taken at random on the other side of 
the straight line AB, and with centre C and distance CD let 
the circle EFG be described; [Post. 31 

let the straight line EG be bisected at H, [I. 101 

and let the straight lines CG, CH, CE be joined. [Post. 11 

I say that CH has been drawn perpendicular to the given 
infinite straight line AB from the given point C which is not 
on it. 

For, since GH is equal to HE, and HC is common, the two 
sides GH, HC are equal to the two sides EH, HC respectively; 
and the base CG is equal to the base CR, therefore the angle 
CHG is equal to the angle ENC. [I. 83 

And they are adjacent angles. 
But, when a straight line set up on a straight line makes the 

adjacent angles equal to one another, each of the equal angles 
is right, and the straight line standing on the other is called 
a perpendicular to that on which it stands. [Def. 101 

Therefore CH has been drawn perpendicular to the given 
infinite straight line AB from the given point C which is not 
on it. Q.E.P. 
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PROPOSITION 13 

Zf a straight line set up on a straight line makes angles, it will 
make either two right angles or angles equal to two right angles. 

For let any straight line AB set up on the straight line CD 
make the angles CBA, ABD; I say that the angles CBA, ABD 
are either two right angles or equal to two right angles. 

Now, if the angle CBA is equal to the angle ABD, they are 
two right angles. [Def. 101 

But, if not, let BE be drawn from the point B at right angles 
to CD; [I. 111 

therefore the angles CBE, EBD are two right angles. 
Then, since the angle CBE is equal to the two angles CBA, 

ABE, let the angle EBD be added to each; therefore the angles 
CBE, EBD are equal to the three angles CBA, ABE, EBD. 

[C.N. 21 

Again, since the angle DBA is equal to the two angles DBE, 
EBA, let the angle ABC be added to each; therefore the angles 
DBA, ABC are equal to the three angles DBE, EBA, ABC. 

[C.N. 21 

But the angles CBE, EBD were also proved equal to the 
same three angles; and things which are equal to the same 
thing are also equal to one another; [C.N. 11 
therefore the angles CBE, EBD are also equal to the angles 
DBA, ABC. But the angles CBE, EBD are two right angles; 
therefore the angles DBA, ABC are also equal to two right 
angles. 

Therefore etc. Q.E.D. 

PROPOSITION 14 

Zf with any straight line, and at a point on it, two straight lines 
not lying on the same side make the adjacent angles equal to 
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IWO right angles, the two straight lines will be in a straight line 
with one another. 

For with any straight line AB, and at the point B on it, let 
the two straight lines BC, BD not lying on the same side make 
the adjacent angles ABC, ABD equal to two right angles; I 
say that BD is in a straight line with CB. 

For, if BD is not in a straight line with BC, let BE be in a 
straight line with CB. 

Then, since the straight line AB stands on the straight line 
CBE, the angles ABC, ABE are equal to two right angles. 

[I. 131 
But the angles ABC, ABD are also equal to two right angles; 
therefore the angles CBA, ABE are equal to the angles CBA, 
ABD. [Post. 4 and C.N. 11 

Let the angle CBA be subtracted from each; therefore the 
remaining angle ABE is equal to the remaining angle ABD, 

[C.N. 31 
the less to the greater: which is impossible. Therefore BE is 
not in a straight line with CB. 

Similarly we can prove that neither is any other straight line 
except BD. Therefore CB is in a straight line with BD. 

Therefore etc. Q.E.D. 

PROPOSITION 15 

Zf two straight lines cut one another, they make the vertical 
angles equal to one another. 

For let the straight lines AB, CD cut one another at the 
point E; I say that the angle AEC is equal to the angle DEB, 
and the angle CEB to the angle AED. 

A 

D 
E 

1\- 

C 

B 
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For, since the straight line AE stands on the straight line CD, 
making the angles CEA, AED, the angles CEA; AED are equal 
to two right angles. [I. 131 

Again, since the straight line DE stands on the straight line 
AB, making the angles AED, DEB, the angles AED, DEB are 
equal to two right angles. II. 131 

But the angles CEA, AED were also proved equal to two 
right angles; therefore the angles CEA, AED are equal to the 
angles AED, DEB. [Post. 4 and C.N. 11 

Let the angle AED be subtracted from each; therefore the 
remaining angle CEA is equal to the remaining angle BED. 

[C.N. 31 
Similarly it can be proved that the angles CEB, DEA are 

also equal. 
Therefore etc. Q.E.D. 

[PORISM. From this it is manifest that, if two straight lines 
cut one another, they will make the. angles at the point of sec- 
tion equal to four right angles.] 

PROPOSITION 16 

In any triangle, if one of the sides be produced, the exterior 
angle is greater than either of the interior and opposite angles. 

Let ABC be a triangle, and let one side of it BC be produced 
to D; I say that the exterior angle ACD is greater than either 
of the interior and opposite angles CBA, BAC. 

A F 

E 

B 

q 

C D 

G 

Let AC be bisected at E II. IO], and let BE be joined and pro- 
duced in a straight line to F; let EF be made equal to BE II. 31, 

let FC be joined [Post. II, and let AC be drawn through to G. 
[Post. 21. 

Then, since AE is equal to EC, and BE to EF, the two sides 
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AE, EB are equal to the two sides CE, EF respectively; and 
the angle AEB is equal to the angle FEC, for they are vertical 
angles. [I. 151 

Therefore the base AB is equal to the base FC, and the tri- 
angle ABE is equal to the triangle CFE, and the remaining 
angles are equal to the remaining angles respectively, namely 
those which the equal sides subtend; II. 41 
therefore the angle BAE is equal to the angle ECF. 

But the angle ECD is greater than the angle ECF; [C.N. 51 
therefore the angle ACD is greater than the angle BAE. 

Similarly also, if BC be bisected, the angle BCG, that is, the 
angle ACD [I. 151, can be proved greater than the angle ABC 
as well. 

Therefore etc. Q.E.D. 

PROPOSITION 17 

In any triangle two angles taken together in any manner are 
less than two right angles. 

Let ABC be a triangle; I say that two angles of the triangle 
ABC taken together in any manner are less than two right 
angles. 

*pl- 
C 

For let BC be produced to D. [Post. 21 

Then, since the angle ACD is an exterior angle of the tri- 
angle ABC, it is greater than the interior and opposite angle 
ABC. Let the angle ACB be added to each; therefore the angles 
ACD, ACB are greater than the angles ABC, BCA. But the 
angles ACD, ACB are equal to two right angles. [I. 131 

Therefore the angles ABC, BCA are less than two right 
angles. 

Similarly we can prove that the angles BAC, ACB are also 
less than two right angles, and so are the angles CAB, ABC 
as well. 

Therefore etc. Q.E.D. 
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PROPOSITION 18 

In any triangle the greater side subtends the greater angle. 

For let ABC be a triangle having the side AC greater than 
AB; I say that the angle ABC is also greater than the angle 
BCA. 

For, since AC is greater than AB, let AD be made equal to 
AB [I. 31, and let BD be joined. 

Then, since the angle ADB is an exterior angle of the tri- 
angle BCD, it is greater than the interior and opposite angle 
DCB. II. 161 

But the angle ADB is equal to the angle ABD, since the side 
AB is equal to AD; therefore the angle ABD is also greater 
than the angle ACB; therefore the angle ABC is much greater 
than the angle ACB. 
Therefore etc. Q.E.D. 

I PROPOSITION 19 

In any triangle the greater angle is subtended by the greater 
side. 

Let ABC be a triangle having the angle ABC greater than the 
angle BCA; I say that the side AC is also greater than the side 
AB. 
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For, if not, AC is either equal to AB or less. 
Now AC is not equal to AB; for then the angle ABC would 

also have been equal to the angle ACB; [I. 51 
but it is not; therefore AC is not equal to AB. 

Neither is AC less than AB, for then the angle ABC would 
also have been less than the angle ACB; [I. 181 

but it is not; therefore AC is not less than AB. 
And it was proved that it is not equal either. Therefore AC 

is greater than AB. 
Therefore etc. QJ3.D; 

PROPOSITION 20 

In any .triangle two sides taken together in any manner are 
greater than the remaining one. 

For let ABC be a triangle; I say that in the triangle ABC 
two sides taken together in any manner are greater than the 
remaining one, namely BA, AC greater than BC; AB, BC 
greater than AC; BC, CA greater than AB. 

D 
A A 

B C 

For let BA be drawn through to the point D, let DA be 
made equal to CA, and let DC be joined. 

Then, since DA is equal to AC, the angle ADC is also equal 
to the angle ACD; II. 51 
therefore the angle BCD is greater than the angle ADC. 

And, since DCB is a triangle having the angle BCD Ei%i 
than the angle BDC, and the greater angle is subtended by the 
greater side, [I. 193 

therefore DB is greater than BC. 
But DA is equal to AC; therefore BA, AC are greater than 

BC. 
Similarly we can prove that AB, BC are also greater than 

CA, and BC, CA than AB. 
Therefore etc. Q.E.D. 
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PROPOSITION 21 

Zf on one of the sides of a triangle, from its extremities, there 
be constructed two straight lines meeting within the triangle, 
the straight lines so constructed will be less than the remaining 
two sides of the triangle, but will contain a greater angle. 

On BC, one of the sides of the triangle ABC, from its ex- 
tremities B, C, let the two straight lines BD, DC be constructed 
meeting within the triangle; I say that BD, DC are less than the 
remaining two sides of the triangle BA, AC, but contain an 
angle BDC greater than the angle BAC. 

A 

E 

A 

D 

B C 

For let BD be drawn through to E. 
Then, since in any triangle two sides are greater than the 

remaining one, [I. 201 
therefore, in the triangle ABE, the two sides AB, AE are 
greater than BE. 

Let EC be added to each; therefore BA, AC are greater than 
BE, EC. 

Again, since, in the triangle CED, the two sides CE, ED are 
greater than CD, let DB be added to each; therefore CE, EB 
are greater than CD, DB. 

But BA, AC were proved greater than BE, EC; therefore 
BA, AC are much greater than BD, DC. 

Again, since in any triangle the exterior angle is greater than 
the interior and opposite angle, [I. 161 

therefore, in the triangle CDE, the exterior angle BDC is 
greater than the angle CED. 

For the same reason, moreover, in the triangle ABE also, 
the exterior angle CEB is greater than the angle BAC. But the 
angle BDC was proved greater than the angle CEB; therefore 
the angle BDC is much greater than the angle BAC. 

Therefore etc. Q.E.D. 
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PROPOSITION 22 

Out of three straight lines, which are equal to three given 
straight lines, to construct a triangle: thus it is necessary that 
two of the straight lines taken together in any manner should 
be greater than the remaining one. 

Let the three given straight lines be A, B, C, and of these let 
two taken together in any manner be greater than the remain- 
ing one, namely A, B greater than C; A, C greater than B; and 
B, C greater than A; thus it is required to construct a triangle 
out of straight lines equal to A, B, C. 

0 H ’ 

Let there be set out a straight line DE, terminated at D but 
of in&rite length in the direction of E, and let DF be made 
equal to A, FG equal to B, and GH equal to C. II. 31 

With centre F and distance FD let the circle DKL be de- 
scribed; again, with centre G and distance GH let the circle 
KLH be described; and let KF, KG be joined; I say that the 
triangle KFG has been constructed out of three straight lines 
equal to A, B, C. 

For, since the point F is the centre of the circle DKL, FD 
is equal to FK. 

But FD is equal to A; therefore KF is also equal to A. 
Again, since the point G is the centre of the circle LKH, GH 

is equal to GK. 
But GH is equal to C; therefore KG is also equal to C. And 

FG is also equal to B; therefore the three straight lines KF, 
FG, GK are equal to the three straight lines A, B, C. 

Therefore out of the three straight lines KF, FG, GK, which 
are equal to the three given straight lines A, B, C, the triangle 
KFG has been constructed. Q.E.F. 
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PROPOSITION 23 

On a given straight line and at a point on it to construct a rec- 
tilineal angle equal to a given rectilineal angle. 

Let AB be the given straight line, A the point on it, and the 
angle DCE the given rectilineal angle; thus it is required to 
construct on the given straight line AB, and at the point A on 
it, a rectilineal angle equal to the given rectilineal angle DCE. 

On the straight lines CD, CE respectively let the points D, 
E be taken at random; let DE be joined, and out of three 
straight lines which are equal to the three straight lines CD, 
DE, CE let the triangle AFG be constructed in such a way 
that CD is equal to AF, CE to AG, and further DE to FG. 

Then, since the two sides DC, CE are equal to the two z$zi 
FA, AG respectively, and the base DE is equal to the base FG, 
the angle DCE is equal to the angle FAG. II. 81 

Therefore on the given straight line AB, and at the point A 
on it, the rectilineal angle FAG has been constructed equal to 
the given rectilineal angle DCE. Q.E.P. 

PROPOSITION 24 

Zf two triangles have the two sides equal to two sides respec- 
tively, but have the one of the angles contained by the equal 
straight lines greater than the other, they will also have the 
base greater than the base. 

Let ABC, DEF be two triangles having the two sides AB, AC 
equal to the two sides DE, DF respectively, namely AB to DE, 
and AC to DF, and let the angle at A be greater than the angle 
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at D; I say that the base BC is also greater than the base EF. 

For, since the angle BAC is greater than the angle EDF, let 
there be constructed, on the straight line DE, and at the point 
D on it, the angle EDG equal to the angle BAC; [I. 231 

let DG be made equal to either of the two straight lines AC, 
DF, and let EG, FG be joined. 

Then, since AB is equal to DE, and AC to DG, the two sides 
BA, AC are equal to the two sides ED, DG, respectively; and 
the angle BAC is equal to the angle EDG; therefore the base 
BC is equal to the base EG. II. 41 

Again, since DF is equal to DG, the angle DGF is also equal 
to the angle DFG; II. 51 
therefore the angle DFG is greater than the angle EGF. 

Therefore the angle EFG is much greater than the angle 
EGF. 

And, since EFG is a triangle having the angle EFG greater 
than the angle EGF, and the greater angle is subtended by the 
greater side, [I. 191 

the side EG is also greater than EF. But EG is equal to BC. 
Therefore BC is also greater than EF. 
Therefore etc. Q.E.D. 

PROPOSITION 25 

Zf two triangles have the two sides equal to two sides respec- 
tively, but have the base greater than the base, they will also 
have the one of the angles contained by the equal straight lines 
greater than the other. 

Let ABC, DEF be two triangles having the two sides AB, AC 
equal to the two sides DE, DF respectively, namely AB to DE, 
and AC to DF; and let the base BC be greater than the base 
EF; I say that the angle BAC is also greater than the angle 
EDF. 
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For, if not, it is neither equal to it or less. 
Now the angle BAC is not equal to the angle EDF; for then 

the base BC would also have been equal to the base EF, [I. 41 

but it is not; therefore the angle BAC is not equal to the angle 
EDF. 

Neither again is the angle BAC less than the angle EDF; 
for then the base BC would also have been less than the base 
EF, [I. 241 

but it is not; therefore the angle BAC is not less than the angle 
EDF. 

But it was proved that it is not equal either; therefore the 
angle BAC is greater than the angle EDF. 

Therefore etc. Q.E.D. 

PROPOSITION 26 

Zf two triangles have the two angles equal to two angles re- 
spectively, and one side equal to one side, namely, either the 
side adjoining the equal angles, or that subtending one of the 
equal angles, they will also have the remaining sides equal to 
the remaining sides and the remaining angle to the remaining 
angle. 

Let ABC, DEF be two triangles having the two angles ABC, 
BCA equal to the two angles DEF, EFD respectively, namely 
the angle ABC to the angle DEF, and the angle BCA to the 
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angle EFD; and let them also have one side equal to one side, 
first that adjoining the equal angles, namely BC to EF; I say 
that they will also have the remaining sides equal to the re- 
maining sides respectively, namely AB to DE and AC to DF, 
and the remaining angle to the remaining angle, namely the 
a&e BAC to the angle EDF. 

For, if AB is unequal to DE, one of them is greater. 
Let AB be greater, and let BG be made equal to DE; and let 

GC be joined. 
Then, since BG is equal to DE, and BC to EF, the two sides 

GB, BC are equal to the two sides DE,. EF respectively; and 
the angle GBC is equal to the angle DEF; therefore the base 
GC is equal to the base -DF, and the triangle GBC is equal to 
the triangle DEF, and the remaining angles will be equal to 
the remaining angles, namely those which the equal sides 
subtend; II. 41 

therefore the angle GCB is equal to the angle DFE. But the 
angle DFE is by hypothesis equal to the angle BCA; therefore 
the angle BCG is equal to the angle BCA, the less to the 
greater: which is impossible. Therefore AB is not unequal to 
DE, and is therefore equal to it. 

But BC is also equal to EF; therefore the two sides AB, BC 
are equal to the two sides DE, EF respectively, and the angle 
ABC is equal to the angle DEF; therefore the base AC is equal 
to the base DF, and the remaining angle BAC is equal to the 
remaining angle EDF. II. 41 

Again, let sides subtending equal angles be equal, as AB to 
DE; I say again that the remaining sides will be equal to the 
remaining sides, namely AC to DF and BC to EF, and fur- 
ther the remaining angle BAC is equal to the remaining angle 
EDF. 

For, if BC is unequal to EF, one of them is greater. 
Let BC be greater, if possible, and let BH be made equal to 

EF; let AH be joined. 
Then, since BH is equal to EF, and AB to DE, the two sides 

AB, BH are equal to the two sides DE,.EF respectively, and 
they contain equal angles; therefore the base AH is equal to 
the base DF, and the triangle ABH is equal to the triangle 
DEF, and the remaining angles will be equal to the remaining 
angles, namely those which the equal sides subtend; II. 41 

therefore the angle BHA is equal to the angle EFD. 
But the angle EFD is equal to the angle BCA; therefore, in 

the triangle AHC, the exterior angle BHA is equal to the in- 
terior and opposite angle BCA : which is impossible. [I. 161 
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Therefore BC is not unequal to EF, and is therefore equal 
to it. 

But AB is also equal to DE; therefore the two sides AB, BC 
are equal to the two sides DE, EF respectively, and they con- 
tain equal angles; therefore the base AC is equal to the base 
DF, the triangle ABC equal to the triangle DEF, and the re 
maining angle BAC equal to the remaining angle EDF. [I. 41 

Therefore etc. Q.E.D. 

PART II 

Geometry is a pursuit which suffers from the fact that ini- 
tially it is-or seems to be-almost too easy. The word “al- 
gebra” calls to mind unintelligible scribbles and fearsome 
formulas; geometry, on the other hand, seems like an easy- 
going and useful discipline. The worst thing about geometry 
seems to be its name, but apprehension concerning it quickly 
vanishes when we learn-as no book on geometry fails to tell 
us-that “geometry” means “measurement of the earth” and 
that the ancient Egyptians practiced geometry because they 
found it necessary to resurvey their lands each year after the 
floods of the Nile had inundated their country. 

This view of geometry is, no doubt, in very large part cor- 
rect. Of all the various branches of mathematics, geometry is 
the one that is most easily apprehended by the student new to 
the subject. Yet there is also something dangerous in the very 
ease with which geometrical matters can be comprehended: 
we may think that we understand more than we really do. 

An example of the kind of misunderstanding that many 
people have concerning geometry but of which they are un- 
aware lies in the matter of terminology. For instance, many 
people will call the figure here drawn a “square.” (See Figure 
l-l) Now this is wrong; yet if it were called to their attention, 
such people would perhaps be annoyed at the pettiness which 
did not realize that they meant the figure was “sort of squarish” 
and so might as well be called a square. In one sense, they 
would be right; words, after ah, are a matter of convention, 
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and furthermore the figure here depicted (a rectangle) is sort 
of squarish. 

Figure l-l 

But the matter is not to be dismissed as simply as all that. 
It is precisely the task of geometry to make exact what we 
mean when we say that a rectangle is not a square and yet is 
“sort of squarish.” If we proceed with this task and succeed 
in making clear the similarities and the ditIerences between a 
rectangle and a square, we shall then have defined both 
“square” and “rectangle.” And this is the first-though by no 
means the only or the most important-task of geometry. 

There are many other areas where familiarity with geo- 
metrical subject matter may interfere with our ability-at least 
initially-to think scientifically about geometry. Ask a layman 
to look at Figure l-2. It is drawn so that the two sides of the 

A 
Figure l-2 

triangle issuing from the peak are equal. (Such a triangle is 
called isosceles.) Suppose I now assert that the two angles at 
the bottom of the triangle are also equal. Chances are very 
good that a layman would accept that statement and perhaps 
even add the exclamation “of course!” There is nothing wrong 
here on the surface. The two angles at the base ure in fact 
equal. What is not so clear, however, is that this is a matter 
of course. Intuition may tell us that the angles are equal. But 
geometry, when conducted as a science, does not rely on in- 
tuition. A geometer would refuse to believe a statement of the 
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kind made above until it had been proved. Nor should such 
refusal be considered perverse; there are many known in- 
stances where the “obvious truth” turned out to be false. (The 
reader is probably himself familiar with some such cases; 
many are popularly known as mathematical puzzles.) Instead 
of intuition, the geometer relies on proof or demonstration to 

convince himself of the truth of a geometrical proposition. This 
is a second, and a much more important, task of geometry. 

In his Elements, Euclid brings definition and proof, order 
and precision, to the entire geometrical area. Euclid is neither 
the first nor the greatest geometer who ever lived. However, 
he is probably the greatest known compiler and organizer of 
geometrical material. Although before Euclid there were ge- 
ometers and geometrical knowledge, not much of geometry 
hung together in a systematic fashion. Euclid arranged what 
he found (and added some things of his own), and the result 
is a systematic body of knowledge which has ever since been 
known as Euclidean geometry. 

Some of the geometers whose achievements are preserved 
in Euclid’s Elements are known to us. For example, it is 
thought that Book V, which deals with ratios and proportions, 
is due to Eudoxus, while Book X, which is the longest of the 
thirteen books and deals with a very specialized subject-ge- 
ometrical magnitudes incommensurable with one another-is 
ascribed to Theaetetus. Aristotle mentions Eudoxus as a geom- 
eter and astronomer; Theaetetus is one of the speakers in 
Plato’s dialogue Theaetetus. Book XIII of the Elements, which 
discusses the five regular solids (tetrahedron or triangular pyra- 
mid, hexahedron or cube, octahedron, isosahedron, and do- 
decahedron), is thought to be the special contribution of Euclid 
himself. 

Very little is known about Euclid’s life. He lived and worked 
around 300 B.C. in Alexandria, though he was probably trained 
in Athens. He wrote several works besides the Elements, but 
his fame rests on this book. 

Book I of the Elements covers the major portions of plane 
geometry. Omissions arise from the fact that almost nothing 
is said about circles (this subject is reserved for Books III and 
IV) and that there is no measurement of lines and areas in 
Book I. 

Book I begins with what we may call a “preliminary part,” 
followed by a much longer “main part.” The preliminary part 
has three sections: Definitions, Postulates, and Common No- 
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tions. The main part consists of 48 propositions. The Defini- 
tions list and describe the things Euclid talks about (such as 
points, lines, and triangles); the Postulates contain a number 
of statements which Euclid asks us to accept for the sake of 
what is to follow; the Common Notions (or Axioms) contain 
statements which Euclid feels are self-evident or obvious and 
therefore are or should be commonly known. The 4,s proposi- 
tions then follow; each of these either shows how a certain 
geometrical construction is to be done or proves some geo- 
metrical truth. 

Although Euclid provides no internal divisions in the “prop- 
osition” section of Book I, we can nevertheless divide it into 
three quite distinct parts. The first part goes from Proposition 
1 to Proposition 26. Of the three parts this is the most diversi- 
fied, but its main subject matter is triangles. The second part 
goes from Proposition 27 to Proposition 32. This part deals 
almost exclusively with parallel lines. The third part goes from 
Proposition 33 to the end of the book-Proposition 48. Its 
subject matter is parallelograms. There is a definite progression 
in these three parts. The “triangle” part of the book culminates 
in certain propositions about the equality (or congruency) of 
triangles. The congruency propositions are needed in the “par- 
allel lines” part of the book. And the last part of the book, in 
turn, is dependent on the middle part. 

Each of these three large parts in Book I can again be sub- 
divided into groups of propositions. We shall briefly indicate 
how this might be done in the first part (Propositions l-26); 
this will also help the reader gain some notion of the content 
of Book 1. Propositions l-3 constitute a group whose purpose 
is to show how to cut off from a straight line a segment equal 
to another straight line. Proposition 4 stands by itself; it is a 
congruency proposition, showing that two triangles are con- 
gruent if two sides and the included angle of one triangle are 
equal to the corresponding two sides and included angle of 
the other triangle. Propositions 5-8 are another “congruency” 
group culminating in Proposition 8, which states that two tri- 
angles are congruent if the three sides of one triangle are equal 
to the corresponding three sides of the other triangle. Proposi- 
tions 9-12 form what we may call a “construction group” of 
propositions; four very important constructions, showing how 
to bisect straight lines and angles and how to drop and erect 
perpendiculars, are demonstrated here. Propositions 13-l 5 are 
a group dealing with angles. Propositions 20-22 deal with the 
size relationships existing among the sides of a triangle. Propo- 
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sition 23 stands by itself, because it is needed at this point: it 
shows how to construct an angle equal to a given angle. Propo- 
sitions 24-26 constitute a group that combines what has been 
learned in Propositions 16-19 and in Propositions 20-22. The 
culmination of this group is Proposition 26, another congru- 
ency proposition which shows that two triangles are congruent 
if one side and two angles of one triangle are equal to the cor- 
responding side and angles of the other triangle. 

Now it is time to look at Euclid’s work in some detail. We 
begin with the Definitions. It is quite easy to understand what 
definitions are and why they must precede the remainder of 
Euclid’s work. Before Euclid can talk intelligently about tri- 
angles, rectangles, etc., he must tell us what these things are; 
otherwise we should know neither what he is talking about nor 
whether he is correct in his assertions. Thus it is entirely ap- 
propriate that Euclid define “point,” “line,” “triangle,” “circle,” 
“straight line,” etc. 

Are Euclid’s definitions good ones? For example, a point 
is defined as “that which has no part.” A line is defined as 
“breadthless length,” and a straight line is said to lie “evenly 
with the points on itself.” Are these definitions really helpful 
in understanding the things under consideration? If we did 
not already know what a point is, would the definition help us? 
Or would it tend to confuse us? For instance, it might seem 
that according to Euclid a point is nothing at all; for if it were 
anything, it would have to have parts. And, in the definition 
of a straight line, how helpful is it to say that it lies evenly 
with the points on itself? We may also wonder if Euclid has 
defined a sulhcient number of terms. Why, for instance, did 
he not define the term “part”? Or, the term “evenly”? This 
latter term would seem to be crucially important, since straight- 
ness is defined by means of it. Here we see a fundamental fact 
of definitions: Not everything can be defined. This fact is so 
important that we must investigate it a little more. 

Defining something means giving its meaning with the help 
of other terms. But these other terms may themselves be in 
need of definition. And, indeed, if we are faced with someone 
who takes nothing for granted and wants to be sure of every- 
thing, we will be forced to go on defining. It is easy to see that 
this is a losing game: if the original term being del%ned is A 
and if we define A in terms of B, C, and D, then we can be 
asked to define B, C, and D. In doing so, new terms must be 
used. We obviously cannot use the term A to define B, since it 
is A’s meaning that is at stake. But the new terms, say E, F, 
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and G, must themselves be defined, and so on. This clearly 
cannot go on forever, for there is no end to it, How do we 
stop it? By saying, as we did above, that not everything can, 
or need be, detied. 

This solution, easy and neat as it appears, has its own difli- 
culties. We may claim that to define “point” as “that which has 
no part” is perfectly sound, because the term “part” needs no 
definition. Furthermore, we may say or assume that the other 
words in the sentence, such as “that” and “has” are even less 
in need of a definition, because their meaning is self-evident 
and clear. It would be hard to maintain that the meaning of 
“part” is not well known. However, is it better known than the 
meaning of the term “point”? Why, in other words, define 
“point” in terms of other words which are claimed to be well 
known and unambiguous? Why not just claim that the mean- 
ing of the word “point” is well known and unambiguous and 
be done with it? Similar arguments could be construed against 
the need or even helpfulness of trying to define “line” or 
“straight line.” It is not helpful, we may feel, to speak of 
“breadthless length”; these two terms are, if anything, more 
obscure than the term “line.” As for the definition of “straight 
line,” that seems worse than no definition at all: surely no one 
would know what I am talking about if I said, “Here is a line 
that lies evenly with the points on itself”; whereas just as surely, 
almost everybody would know what I meant were I to speak 
of a “straight line.” 

This matter cannot be resolved in an absolute fashion. Since 
not every term can be defined, it becomes a matter of prudence 
which terms should be defined and which should be left un- 
defined. Euclid apparently followed the rule that he would 
try to define all specifically geometrical terms that he needed, 
using nongeometrical language to do it. Thus, he defines 
“point,” “line, ” “straight line,” etc., because these are the ele- 
ments with which he has to deal. He apparently feels he can- 
not or should not assume familiarity with them, whereas he 
can assume some working knowledge of terms like “part,” 
“breadth,” etc., because they are part of everyday speech. 

After the initial few defkitions, the difficulties of defining 
become less and less, because the terms defined earlier can 
be used in the later definitions. We need say very little more 
about the detiitions; they should present no problems. TWO 

other definitions are worth noting, however. 
Definition 10 defines a right angle. Whenever two lines in- 

tersect, four angles are formed; and of these four, two are ad- 
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jacent to each other. A right angle, Euclid states, is formed 
when two lines intersect in such a fashion that two adjacent 
angles are equal to each other. (See Figure l-3.) Each of the 
two equal adjacent angles is then a right angle. 

If angle A = angle B, then A, B are both right angles. 

A 8 

Figure l-3 

The definition is perhaps more remarkable for what it does 
not say than for anything else. It does not say that a right 
angle is equal to 90”. This is an instance of Euclid’s careful- 
ness in his defining process. The term “degree” has not been 
defined by him (and in fact is nowhere defined in the Ele- 
ments) ; hence he does not employ it in his definition of a right 
angle. More than prudence is-involved here: the term “degree,” 
if it were defined, would be seen to be dependent on “right 
angle”; that is, the definition of “angle of 1 O” would have to 
be “an angle which is the 90th part of a right angle.” 

The other definition to which we want to call attention is 
the last one. It defines parallel lines as those straight lines which 
never meet, no matter how far they are extended in either 
direction, provided that the two lines are in the same plane. 
(If they are not in the same plane, they could fail to meet and 
yet not be parallel. Such non-meeting, but not-parallel lines 
in three dimensions are called “skew.“) 

This brings us to the postulates, which are five in number. 
Of these, the most famous and the most interesting is the fifth 
postulate, the so-called “parallel postulate.” This postulate is 
thought to be Euclid’s own contribution to plane geometry, 
and if he had done nothing else in geometry, he would be 
famous for it. We shall discuss this postulate in great detail 
in the next chapter, in connection with the selection from 
Lobachevski. 

Of the remaining four postulates, the first three are very 
much alike; they “postulate” that certain geometrical con- 
structions can be done. The root meaning of the word “postu- 
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late” is “to demand”; in fact, Euclid demands of us that we 
agree that the following things can be done: that any two 
points can be joined by a straight line; that any straight line 
may be extended in either direction indetiitely; that given a 
point and a distance, a circle can be drawn with that point as 
center and that distance as radius. Sometimes these postulates 
are paraphrased as meaning that Euclidean geometry restricts 
itself to constructions that can be made with ruler and compass. 
This interpretation is all right as long as we do not take it too 
literally. The ruler and compass being talked about are mental 
instruments. There is no reference in these postulates to any 
actual drawing instruments; Euclid’s geometry is not that of 
the drawing board. What these postulates mean is that Euclid 
asks us to grant that he may connect any two points with a 
line, in his mind. It takes only a moment’s reflection to see that 
Euclid cannot be talking about pencil lines drawn with a 
ruler. A line, according to his definition, is length without 
breadth, and no pencil can ever draw a line that has no breadth. 
It may be a thin line, but it will have breadth. 

In other words, Euclid is talking about ideal figures, and the 
constructions which he here asks us to believe can be made 
are ideal constructions. Why is there any need for construc- 
tions at all? The simplest answer is that constructions enable 
us to do something. Without constructions, we would have to 
co&e geometry to those things which are described in the 
Definitions; we could never admit any new entities into geom- 
etry. By means of constructions, on the other hand, we con- 
struct or make new things out of old; we can combine the 
various things defined-such as lines and triangles and circles 
-into new figures and make propositions about them. 

These postulates are in a way completely arbitrary. It is 
possible to have geometries in which some of these postulates 
are omitted, or in which other postulates are substituted for 
them. We can easily imagine a geometry which would not con- 
tain Postulate 1. This geometry might substitute another postu- 
late such as this: Between any two points there is a unique 
shortest possible line which can be drawn. Postulate 2 might 
also be abandoned and the following substituted: No line can 
be indefinitely extended; ail lines are tite. 

Strange as these postulates may seem, they would serve 
(with certain exceptions) for the geometry that can be studied 
on the surface of a sphere. Here the shortest distance between 
any two points on the surface is always a “great circle.” Any 
two points on a sphere (except end points of a diameter) can 
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be joined by a unique great circle (a great circle is one whose 
center is at the center of the sphere); but all great circles are 
finite in length and ah are equally long. Figure l-4 shows two 
points A and B on the surface of a sphere which are joined 
by a “great circle.” Another great circle, in the position of an 

Figure l-4 

“equator,” has been drawn to illustrate how all great circles 
are equal. Among other things, then, the postulates indicate 
what kind of geometry Euclid is talking about. He is not talk- 
ing about spherical geometry, for in such a geometry his postu- 
lates would obviously not apply. 

Though the particular postulates that Euclid chooses are 
arbitrary, they are obviously chosen with a good deal of pru- 
dence. They are those postulates which are needed in order to 
prove the important propositions of ordinary plane geometry. 
Here, as elsewhere, Euclid follows common sense. He departs 
from it only where it is absolutely necessary. Euclid could 
have chosen other postulates; for instance, he might have 
postulated that around any two points an ellipse of a given 
eccentricity can be drawn. Such a postulate would be just as 
permissible as the one about the circle which he uses. A great 
many propositions could be proved with the help of this postu- 
late which cannot be proved with Euclid’s (and vice versa). 
As it happens, however, the propositions which the ellipse- 
postulate permits us to prove are rather recondite, whereas the 
propositions which Euclid’s circle-postulate allows us to prove 
(and which would be lost if the other one were adopted) are 
all very well known and very useful. By “lost” we mean that 
these propositions could no longer be derived from the postu- 
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lates of the system; but neither could the opposites of these 
propositions be derived. 

The fourth postulate is not an operational postulate. It sim- 
ply states that all right angles are equal to one another. This 
post&ate is worthy of note, because at first sight it seems su- 
perfluous. It seems obvious that all right angles are the same. 

a 

Figure l-5 

But again what seems so obvious is not necessarily so. To show 
this, look at Figure l-5a and b. If A = B, then A and B are 
both right angles. If C = D, then C and D are both right angles 
also. But is it clear that A = C, or B = D? Nat necessarily. 
In the diagrams as drawn, we have in fact tried to make A not 
equal to C, and B not equal to D. The reader may object that 
the diagrams also look as though A and B were not equal, and 
as though C and D were not really equal. This is granted as far 
as looks are concerned; but geometry does not go by looks. If 
it is maintained that the diagrams as we have drawn them rep- 
resent impossible situations-that is, that A and C must be 
equal, because otherwise A and B cannot be equal-then that 
is merely a restatement of Euclid’s fourth postulate. Like the 
postulate, it is an assertion of certain relations of equality, with- 
out proof. Euclid’s postulate makes explicit what we feel must 
be true: if the postulate did not hold, the situation depicted 
in Figure 1-5~ might prevail (if the two figures l-Sa and b 
were superimposed on one another). This situation cannot 
exist, however, if all right angles are equal to one another. 

Finally we come to the common notions, or axioms. Euclid 
sets down five statements which, he feels, are self-evident. That 
is to say, they are true and known to be true by everyone who 
understands the meaning of the terms in the statements. The 
common notions do seem rather obvious; the first one, for in- 
stance, states : “Things which are equai to the same thing are 
also equal to one another.” Their very obviousness and sim- 
plicity may inspire contempt; and a less careful geometer than 
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Euclid might not bother to put them down at all. But here again 
Euclid follows the rule to put down everything that he needs 
as a tool for the propositions that are to come. 

Is there any difference between the postulates and the com- 
mon notions? In Euclid’s mind, there clearly is. He is apolo- 
getic about the postulates (as the name indicates). He asks us 
to grant him the truth of the postulates. But Euclid does not 
ask us to do anything about the common notions; he simply 
states them as true, because he obviously feels that they are. 
Thus we may say that the postulates are geometrical assump- 
tions, whereas the common notions are general self-evident 
truths. This statement points to another difference between 
postulates and axioms: the former are geometrical in nature, 
while the axioms are generally true. Presumably another sci- 
ence, such as arithmetic, would have postulates different from 
those of geometry. But the axioms used in arithmetic would be 
the same as those used in geometry. 

This, at least, seems to be Euclid’s way of looking at things. 
Other views are possible. For instance, some mathematicians 
maintain that postulates and common notions are not really 
different. The postulates can be (and perhaps even should be) 
stated in nongeometrical language; and the common notions, 
according to these mathematicians, are not more self-evident 
than the postulates. Both common notions and postulates 
should be recognized for what they are: assumptions. We will 
not, at the moment, pursue this view any further. Again we 
recognize, however, that Euclid is on the side of common 
sense. It seems as though the common notions are a lot more 
evident than the postulates, and it certainly seems as though 
they have a wider applicability than the postulates do. 

Now it is time to turn to some of the actual propositions in 
Book I. We have earlier noted that the propositions fall into 
three main parts and that each of these parts can again be 
divided into a number of groups. We have also already pointed 
out that the various parts and groups are organically related- 
that is, that the earlier parts lead naturally to later ones. Is it the 
case, then, that the order of the propositions in Book I is com- 
pletely prescribed? Or to restate the question: Is it the case that 
the order of the propositions cannot be different from what it 
is? The answer to this question is a qualified “yes.” It is not 
true that the order of the propositions as given by Euclid is ab- 
solutely the only one that could have been chosen. A look at 
other geometry textbooks will show that this is so. But, starting 
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with Euclid’s definitions, postulates, and axioms, there are not 
many other orders that could have been taken, and certainly 
not many that would be as good as the one Euclid has chosen. 
Thus, while we cannot say that the order of the propositions in 
Book I is absolutely and necessarily determined by their con- 
tent, it is correct to say that the order is more than arbitrary, 
that there is a natural progression from earlier to later proposi- 
tions, and that Euclid is very much aware of the progressive 
character of the book. He never loses sight of the fact that 
later propositions must depend only on earlier ones, and very 
frequently we find that a proposition is clearly introduced for 
no other purpose than to make the proof of the next one 
possible. 

“Proof” is, of course, the all-important term in geometry. 
In a moment we shall see what a geometrical proof looks like. 
But first we are bound to notice one thing: the first proposition 
in Book I-that is, the first proposition in the entire Elements- 
is not a proof at all. Instead of proving that something is the 
case, it sets out to construct something. “On a given finite 
straight line,” the proposition says, “to construct an equilateral 
triangle.” 

We encountered constructions earlier, when we noted that 
the first three postulates were construction postulates. Indeed, 
the statement of Proposition 1 is such that grammatically it 
could be turned into a postulate; Euclid might have said: Let 
it be postulated, on a given finite straight line, to construct an 
equilateral triangle. 

Why did Euclid not do this? The answer is quite simple: he 
did not have to. A postulate, after all, is a sign of a sort of 
weakness. It constitutes a demand on the part of the geometer 
that something be granted him-either that something is true 
(as in Postulate 4) or that something can be done (as in Postu- 
lates l-3). If we do not grant the geometer’s postulates, he 
cannot force us to do so; on the other hand, we cannot then 
expect him to prove his geometrical propositions, either. 

The more postulates a geometer makes, the less surprising it 
becomes that he can prove many and complicated propositions. 
Just to go to the absurd extreme, a geometer could postulate as 
true all geometrical propositions. Such procedure would not 
be wrong, but it would of course be useless and uninteresting. 
At the other extreme, and just as absurd in his way, would be 
the geometer who wanted to make no postulates whatsoever. 
Such a geometer, too, could not be gainsaid. But his method 
would be as valueless as the other: he could prove no proposi- 
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tions whatever. In the middle is the kind of geometry in which 
postulates are made: enough postulates so that all the proposi- 
tions of geometry can be proved, but no more than necessary. 
This is the kind of geometry which Euclid aims to present to 
us here. To have made Proposition 1 a postulate would have 
offended, therefore, against the (implied) principle of using 
as few postulates as possible. 

Now let us look at how the construction is accomplished. 
From each of the end points A and B of the given line a circle 
is described, with the given line as its radius. (See Figure l-6.) 

C 

A 0 B 

Figure l-6 

These two circles meet (actually, they meet twice: once above 
and once below the given line), in a point C. Euclid then con- 
nects this newly found point C with each of the end points A 
and B of the given line. Thus a triangle ABC is formed. The 
construction is now over; all that remains to be done is to show 
that ABC is an equilateral triangle. This is easy enough: AB 
and AC are equal, because they are radii of the same circle; 
BA and BC are equal because they are radii of the same circle. 
Finally, AC and BC are equal because they are equal to the 
same thing, namely AB. Thus Euclid concludes that “that which 
it was required to do” has been done. The last phrase in Latin 
is quod erat faciendum; that is why the letters “Q.E.F.” are 
often placed at the end of construction propositions. 

What permits Euclid to draw a circle around A (and around 
B) ? Postulate 3, of course. Similarly, Postulate 1 justifies 
Euclid’s joining the point C with A and B. Thus, the construc- 
tion of Proposition 1 is executed by means of the constructions 
that are permitted through the postulates. At the end of Propo- 
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siti011 1, Euclid has a new construction available, namely, that 
of an equilateral triangle. In the next proposition, therefore, 
Euclid could make use of any one of four constructions: to 
jam two pomts by a straight line, to extend a straight line, to 
draw a circle with any given radius and center, to construct 
an equilateral triangle with a given side. 

How valid is Euclid’s proof that the figure constructed is 
actually the one called for? Euclid makes no attempt to prove 
that the figure ABC is in fact a triangle; presumably this is 
clear and obvious from the diagram. (It may not be so ob- 
vious as Euclid thinks; remember that the lines and figures 
with which Euclid is concerned are not those on paper but 
ideal lines and figures in the geometer’s mind. There might be 
some difficulty in inferring something about the shape of a 
figure that is ideal and invisible from a visible and material 
diagram.) The proof that the three sides of the triangle are 
all equal depends on the definition of a circle. Euclid reminds 
us (as the bracketed figure indicates) that in Definition 15 a 
circle is defined as the kind of figure in which all radii are 
equal. This, together with Common Notion 1, is sullicient to 
show that all three sides of the triangle are of the same length. 

A purist could raise some objections to Euclid’s procedure. 
For instance, how do we know that the two circles, one with 
the center at A, and the other with the center at B, meet at 
all? And if they do meet, is Euclid correct in assuming, as he 
obviously does, that they meet in a point? This latter fact could 
probably be proved from the definition of “line” as “breadth- 
less length”; but Euclid certainly does not do it. 

Proposition 2 deserves a close look. As in Proposition 1, a 
construction is called for. We are given a point, and we are 
given a finite straight line. The point is not on the line. The 
problem is to place the given line (or more correctly, another 
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Figure l-7 
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line equal to it in length) in such a way that the given point 
is one of the end points of the line. (See Figure l-7.) The 
whole language of the proposition is very physical; it speaks 
of placing lines, of touching lines, etc. Accordingly, the answer 
to the problem also seems physically simple: just pick up the 
given line and put it over where the point is. If lines and points 
were in fact physical entities, this solution would be excellent. 
Since, however, they are ideal things, the solution cannot de 
pend on any physical picking up or motion through space. 
What must be done can involve only those constructions or 
operations which are possible because of the postulates or the 
one additional tool which Euclid now has-Proposition 1. 
There is nothing in these postulates or Proposition 1 about 
“picking up” a line or about its geometrical equivalent, which 
would be the permission to move a line through space. In fact, 
if we look at what Proposition 2 tries to accomplish, we can 
see that-provided the construction can be shown to be pos- 
sible-it will give the geometer the permission to move lines 
through space. Proposition 2 is the substitute for a postulate 
“To move a line anywhere in space without changing its length.” 

To accomplish the construction, the given point and one 
end of the given line are first connected. (It can be either end; 

Figure 1-8~ 

Figure l-8a indicates how it is done in one case, and Figure 
l-8b shows the other case.) On this line an equilateral tri- 
angle is built, according to Proposition 1. Then the two “arms” 
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r 

Figure l-8b 

of this triangle, DA and DB, are extended indefinitely, accord- 
ing to Postulate 2. Now comes the real trick of the proposition. 
A circle is described, with B as center and the given line BC 
as radius. This circle intersects the extended line DB in the 
point G. This gives us the line DG, which is longer than the 
line we are looking for by the amount DB. But if we now draw 
a circle around D as center with the line DG as radius, we 
obtain the line DL (where the circle intersects the extension 
of DA). DL, therefore, is longer than the line we are looking 
for also by the amount DB (or what is the same thing, DA). 
But that leaves AL as the line of the desired length and, further- 
more, starting exactly at the point where we want it to, A. 

This proposition certainly displays Euclid’s ingenuity as a 
geometer. But, we may ask ourselves with some dismay, is 
this not an awfully complicated amount of construction to 
have to go through simply in order to place a line at a given 
point? If such a simple operation requires so many steps and 
so many justitications, think of how complicated a truly dit% 
cult geometrical construction must be! Fortunately we can 
allay these fears. The manner of showing how this construc- 
tion is accomplished is indeed complicated, but it will never 
be needed again. From now on when it is necessary to move 
a line from where it is to some other location, Euclid simply 
says, “Let it be done,” and refers to Proposition 2 as his justifi- 
cation for the fact that it calz be done. This is exactly how 
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Euclid uses the postulates; when it is necessary to draw a 
straight line between two points, Euclid simply says, “Let it be 
done,” and refers to Postulate 1. 

We can see Euclid doing this in the very next proposition. 
This is yet a third construction, asking us to cut off from a 
longer line a segment equal in length to a shorter line. Euclid 
calls the longer line AI?, the shorter one simply C. And he be- 
gins his construction by saying “At the point A let AD be 
placed equal to the straight line C,” and he refers us to Proposi- 
tion 2 at this point. This illustrates a general procedure of 
geometry: once something has been shown to be true, or once 
a construction has been shown to be possible, it is not neces- 
sary to repeat its proof again and again. If it has once been 
done, it is enough; the reference to the proposition in which 
the proof or construction was fist made is merely a mnemonic 
device in case we have forgotten where to look. 

So far there has been a perfect progression of the proposi- 
tions: Proposition 1 depends only on the definitions, postulates, 
and axioms; Proposition 2 depends on Proposition 1 and on the 
definitions, postulates, and axioms; Proposition 3 depends on 
Proposition 2 (which in turn depends on Proposition 1) and 
on the definitions, postulates, and axioms. This perfect pro- 
gression is interrupted with Proposition 4, which does not 
depend on Proposition 3. In fact, it does not depend on any 
prior proposition, or even on any of the postulates. The only 
reference to prior material that is made in the body of the 
proposition is to Common Notion 4. This “independence” of 
Proposition 4 is somewhat strange; it indicates something spe- 
cial about the manner of proof. 

What Euclid tries to prove is that two triangles are equal 
(congruent) if two sides and the included angle of one are 
equal to two sides and the included angle of the other one. 
His method of proof is nothing at all like what he did in the 
previous three propositions. Euclid “picks up” one triangle and 
superimposes it (places it) on the second one. Then he notes 
that if this is done so that point A and point D coincide (we are 
referring to Euclid’s figure) and so that line AB is in the di- 
rection of line DE, then B and E must also coincide because 
of the equal length of AB and DE. Similarly, because of the 
equality of the angles at A and D, the direction of AC and DF 
coincide, and because of the equality of AC and DF the. points 
C and F coincide. And thus, if B and E coincide while C and F 
~SO coincide, the connecting straight lines, BC and EF, must 
C&O coincide. (Euclid makes a tacit assumption here: between 
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IWO pohts only one straight line can be drawn.) Since the two 
triangles coincide in all respects, Euclid concludes that they 
are congruent. 

There can be no quarreling with the result. We may won- 
der, however, about the legitimacy of Euclid’s method of proof. 
HOW valid is the method of superimposition as geometrical 
proof? The reader may recall that in connection with Proposi- 
tion 2 we pointed out that geometrical entities like points and 
Iines are not physical things and that they cannot simply be 
picked up and moved about in space. Here, however, Euclid 
does this very thing. If it is legitimate here, why wasn’t it 
legitimate in Proposition 21 If Euclid had allowed himself that 
method earlier, the whole cumbersome method of construction 
in Proposition 2 could have been eliminated. 

The best answer we can give is that just as “picking up” 
lines was not legitimate in Proposition 2, so it is really not 
legitimate here. In other words, it may well be that the proof 
of Proposition 4 is very faulty indeed, or to put it more bluntly, 
that it is no proof at all. Does this mean that what Proposition 
4 states is not true? Not at all; it merely means that Euclid’s 
way of proving it is unsatisfactory. Are there other ways of 
proving this proposition? There may be, especially if we sup- 
plement Euclid’s postulates with some additional ones (such 
as one about the movability of geometrical figures without 
distortion). But if additional postulates are needed in order 
to prove Proposition 4, could we not simply solve the prohlem 
by making Proposition 4 itself a postulate? The answer is that 
we certainly could. The only question is whether it is prefer- 
able to have Proposition 4 itself as a postulate or to have a 
different postulate about the movability of geometrical figures. 
The second postulate would be more general in character; that 
may or may not be an advantage. Whichever solution is 
adopted, it is clear that the proof of Proposition 4 cannot be ac- 
cepted unless at least one additional assumption is made. That 
additional assumption may be the truth of Proposition 4 itself, 
or it may be some other assumption from which the truth of 
Proposition 4 can be demonstrated. 

No matter how we resolve the difliculty concerning Proposi- 
tion 4, it still remains true that it in no way depends on any 
of the preceding propositions. Hence, could not Proposition 4 
have come before the first three propositions? Or to put the 
same question in a slightly dserent way: Is there any reason 
why Proposition 1 rather than Proposition 4 should be put 
first in the book? 
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There is a reason for beginning with Proposition 1, and it 
derives from the fact that Proposition 1 is a construction, 
whereas Proposition 4 is not. Construction propositions (and 
postulates) perform a very important function in geometry. 
Suppose that there were no construction postulates and that 
no proposition had as yet been proved in Book I. The only 
purely geometrical knowledge we could have then would re- 
side in the definitions. These define certain ideal entities, such 
as straight lines, triangles, and circles. Do we know, as the 
result of these definitions, that these things actually exist? 
Lest it seem that we have raised a foolish question, because 
anything which has been defined must exist, we point to the 
fact that there are many things that can be defined but which 
do not exist. A favorite example, of course, is mermaids. There 
is nothing self-contradictory about the definition of a mer- 
maid; yet such beings do not exist. Many other things can be 
defined and yet no guarantee given that they exist: We are not 
talking about obviously self-contradictory definitions (such as 
that of a round square), but of definitions of things that could, 
but as a matter of fact do not, exist. 

How do we know, then, that straight lines exist? From 
Postulate 1, because that postulate states that a straight line 
can be drawn between any two points; a line that can be 
drawn obviously exists. Similarly, Postulate 3 assures us of 
the real existence of circles. But how do we know that tri- 
angles exist? There is no postulate to assure us that triangles 
can be drawn, Instead of a postulate, however, there is a 
proposition that assures that triangles exist. Proposition 1 
shows us how an equilateral triangle can be drawn; and if it 
can be drawn, it exists. 

Construction propositions, therefore, not only show us how 
to perform certain geometrical constructions, but they also 
assure us that the geometrical entity being constructed is a 
really existing one. This in turn indicates why it is preferable 
to have Proposition 1 precede Proposition 4, even though the 
two propositions are independent of each other. If Euclid 
began Book I with Proposition 4, his readers might wonder 
whether he is stating something and proving something about 
a figure that does not have any reality. 

We need say very little about Proposition 5 except to point 
out that it is a typical proposition. It is a demonstration, not 
a construction; it does not employ any strange methods of 
proof like Proposition 4, and in general it is an example of 
what most people have in mind when they think of a geometri- 
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cal theorem. The proposition is also a good instance of Euclid’s 
careful progressive method. It could not come any earlier in 
Book 1. because it depends on both Propositions 3 and 4. An- 
other respect in which this proposition is typical is that it in- 
volves a subsidiary construction; that is, a construction is 
made in the proof for no other purpose than to make the 
demonstration possible. 

Proposition 6 is in one way much less important than Propo- 
sition 5, but it is of more interest to us because of the way in 
which it is proved. The method of proof is called “reduction 
to the absurd.” It is one of the most frequently used methods 
in all of mathematics. 

Proposition 6 is the converse of Proposition 5. The latter 
showed that in isosceles triangles the base angles are equal; the 
former proves that if in a triangle the base angles are equal, 
then the triangle is isosceles. We are given, therefore, that the 
angle at B and the angle at C are equal. (See Figure l-Pa.) We 

a b 
Figure l-9 

are to prove that AB = AC. Let us assume, Euclid says, the 
opposite of what we want to prove. We will then go on to 
show that this (the opposite) cannot possibly be true. The 
opposite of AB’s being equal to AC is that AB is not equal to 
AC. If AB is not equal to AC, then one side has to be greater 
than the other. It does not matter for the purposes of the 
proof which side it is; let us say that it is AB that is greater. 
Since AB is greater, cut off from AB the segment DB equal to 
AC. Then join DC. Euclid shows, by using Proposition 4, that 
the two triangles DBC and ACB are equal. (To show which 
two triangles Euclid is talking about, we have separated them 
in Figure l-Pb. The corresponding parts have been marked.) 
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But it is clearly impossible that these two triangles are equal, 
Euclid continues, because one triangle is wholly contained 
within the other. Hence we have been led to an impossible 
or absurd conclusion. Since all the steps in the proof were, 
however, logically impeccable, what can be the source of the 
impossible conclusion? It can be only one thing: the initial 
assumption that AB is greater than AC. Since true premises 
never lead to false conclusions (as long as no logical fallacies 
are committed), it must be that the premise “AB is greater 
than AC” is false. If that premise is false, its contradictory 
must be true; that is, it must be true that AB is not greater 
than AC. This still leaves the possibility that AB is smaller 
than AC, but that premise can be shown to lead to an absurdity 
just as quickly as the previous one. Thus, the only premise 
which does not lead to any absurdity is that AB is equal to AC. 

The power of this method lies in the fact that it is not 
restricted to geometry. It can be used anywhere. Simply as- 
sume the truth of the opposite (contradictory) of what you 
want to prove. Then see if this assumption leads to any ab- 
surdities or impossibilities. If it does, the original assumption 
must be false, and so its contradictory (which is what you 
wanted to prove in the first place) is true. 

The method depends on two logical principles: First, a false 
conclusion is a sign of a false premise somewhere in a logical 
process (assuming that the various steps of the process are 
carried out according to the ordinary laws of logic). Second, 
if a proposition is false, then its contradictory is true; and 
again, if a proposition is true, then its contradictory is false. 
This is not surprising, bersuse two contradictory propositions 
are defined as a pair of propositions such that only one can 
be true at a time, and only one can be false at a time. For 
example, the contradictory of the proposition “this board is 
red” is the proposition “this board is not red.” The contra- 
dictory is not any proposition like “this board is blue,” because 
quite obviously both “this board is red” and “this board is 
blue” can be false at the same time-for example, if the board 
is green. 

A word of caution may be in order about the fj.rst logical 
principle (that a false conclusion is a sign of a false premise). 
The opposite is not true; that is, a true conclusion is not a 
sign of true premises. If, using a set of premises and valid 
reasoning, you arrive at a true conclusion, it may still be the 
case that one or more of your premises are false. An example 
may be helpful. Each of the two following premises is false: 
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(1) All Americans speak French fluently; (2) General de 
Gaulle is an American. But these two premises combine cor- 
rectly to give the following true conclusion: General de Gaulle 
speaks French fluently. 

There are many variations of reduction to the absurd. We 
shall encounter some of them later on in this book. The im- 
portant thing is to be sure that the logical processes involved 
are valid and to be certain that the conclusion which you claim 
to be absurd is so in fact. In Proposition 6 it is worth noting 
that the discovery of the absurdity depends on visual intuition; 
that is, Euclid asks us to look at the diagram and to see 
that the two triangles clearly cannot be equal because the one 
is totally within the other. Once more this raises the question 
of how appropriate it is for Euclid to depend on sight and on 
the diagram in his book when, as we have repeatedly pointed 
out, Euclidean geometry is not concerned with visible lines, 
triangles, etc. 

Although there are many more propositions in Book I, we 
shall not examine most of them in detail, since they present 
neither much difficulty nor any new principles. In the next 
chapter, however, we shall examine another group of propo- 
sitions from Book I that does exhibit a new principle. 



CHAPTER TWO 

Lobachevski-Non-Euclidean Geometry 

PART I 

The following selection consists of two sections. First, we have 
six more propositions from Book I of Euclid’s Elements 
(propositions 27-32). These are propositions dealing with 
parallel lines. With these Euclidean propositions we have 
placed some pages from Lobachevski’s Theory of Parallels. 
This work discusses Euclid’s theory of parallels, finds fault 
with it, and substitutes another theory for it. In so doing, 
Lobachevski develops a version of “non-Euclidean geometry.” 

Euclid: 

Elements of Geometry* 

BOOK I 

PROPOSITION 27 

Zf a straight line falling on two straight lines make the alternate 
angles equal to one another, the straight lines will be parallel 
to one another. 

For let the straight line EF falling on the two straight lines 
AB, CD make the alternate angles AEF, EFD equal to one 
another; 

* From The Thzrteen Books of Euclid’s Elements, trans. by Sir 
Thomas L. Heath (2nd ed.; London: Cambridge University Press, 1926). 
Reprinted by permission. 

63 
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A E B 

P 
G 

c F D 

I say that AB is parallel to CD. 
For, if not, AB, CD when produced will meet either in the 

direction of B, D or towards A, C. 
Let them be produced and meet, in the direction of B, D, 

at G. 
Then, in the triangle GEF, the exterior angle AEF is equal 

to the interior and opposite angle EFG : 
which is impossible. Cl. 161 

Therefore AB, CD when produced will not meet in the di- 
rection of B, D. 

Similarly it can be proved that neither will they meet to- 
wards A, C. 

But straight lines which do not meet in either direction are 
parallel; [Def. 231 

therefore AB is parallel to CD. 
Therefore etc. QED. 

PROPOSITION 28 

If a straight line falling on two straight lines make the ex- 
terior angle equal to the interior and opposite angle on the 
same side, or the interior angles on the same side equal to two 
right angles, the straight lines will be parallel to one another. 

For let the straight line EF falling on the two straight lines 
AB, CD make the exterior angle EGB equal to the interior 
and opposite angle GHD, or the interior angles on the same 

e 
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G 
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H 

D 

F 
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side, namely BGH, GHD, equal to two right angles; I say that 
AB is parallel to CD. 

For, since the angle EGB is equal to the angle GHD, while 
the angle EGB is equal to the angle AGH, [I. 151 

the angle AGH is also equal to the angle GHD; and they are 
alternate; therefore AB is parallel to CD. [I. 271 

Again, since the angles BGH, GHD are equal to two right 
angles, and the angles AGH, BGH are also equal to two right 
angles, [I. 131 

the angles AGH, BGH are equal to the angles BGH, GHD. 
Let the angle BGH be subtracted from each; therefore the 

remaining angle AGH is equal to the remaining angle GHD; 
and they are alternate; therefore AB is parallel to CD. [I. 271 

Therefore etc. Q.E.D. 

PROPOSITION 29 

A straight line falling on parallel straight lines makes the alter- 
nate angles equal to one another, the exterior angle equal to 
the interior and opposite angle, and the interior angles on the 
same side equal to two right angles. 

For let the straight line EF fall on the parallel straight lines 
AB, CD; I say that it makes the alternate angles AGH, GHD 
equal, the exterior angle EGB equal to the interior and opposite 
angle GHD, and the interior angles on the same side, namely 
BGH, GHD, equal to two right angles. 
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For, if the angle AGH is unequal to the angle GHD, one 
of them is greater. 

Let the angle AGH be greater. 
Let the angle BGH be added to each; therefore the angles 

AGH, BGH are greater than the angles BGH, GHD. 
But the angles AGH, BGH are equal to two right angles; 

[I. 131 
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therefore the angles BGH, GHD are less than two right angles. 
But straight lines produced indefinitely from angles less 

than two right angles meet; [Pod. 51 

therefore AB, CD, if produced indefinitely, will meet; but they 
do not meet, because they are by hypothesis parallel. 

Therefore the angle AGH is not unequal to the angle GHD, 
and is therefore equal to it. 

Again, the angle AGH is equal to the angle EGB; [I. 151 
therefore the angle EGB is also equal to the angle GHD. 

[C.N. l] 
Let the angle BGH be added to each; therefore the angles 

EGB, BGH are equal to the angles BGH, GHD. [C.N. 21 

But the angles EGB, BGH are equal to two right angles; 
[I. 131 

therefore the angles BGH, GHD are also equal to two right 
angles. 

Therefore etc. Q.E.D. 

PROPOSITION 30 

Straight lines parallel to the same straight line are also parallel 
to one another. 

Let each of the straight lines AB, CD be parallel to EF, I 
say that AB is also parallel to CD. 

A 
G 
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Ii 
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For let the straight line GK fall upon them. 
Then, since the straight line GK has fallen on the parallel 

straight lines AB, EF, the angle of AGK is equal to the angle 
GHF. [I. 291 

Again, since the straight line GK has fallen on the parallel 
straight lines EF, CD, the angle GHF is equal to the angle 
GKD. [I. 291 

But the angle AGK was also proved equal to the angle GHF; 
therefore the angle AGK is also equal to the angle GKD; 

[C.N. 11 

and they are alternate. 
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For let CE be drawn through the point C parallel to the 
straight line AB. [I. 311 

A E 

AL 
B C D 

Then, since AB is parallel to CE, and AC has fallen upon 
them, the alternate angles BAC, ACE are equal to one an- 
other. [I. 291 

Again, since AB is parallel to CE, and the straight line BD 
has fallen upon them, the exterior angle ECD is equal to the 
interior and opposite angle ABC. [I. 291 

But the angle ACE was also proved equal to the angle 
BAC, therefore the whole angle ACD is equal to the two in- 
terior and opposite angles BAC, ABC. 

Let the angle ACB be added to each; therefore the angles 
ACD, ACB are equal to the three angles ABC, BCA, CAB. 

But the angles ACD, ACB are equal to two right angles; 
[I. 131 

therefore the angles ABC, BCA, CAB are also equal to two 
right angles. 

Therefore etc. Q.&D. 

Nicholas Lobachevski: The Theory of Parallels* 

In geometry I find certain imperfections which I hold to be 
the reason why this science, apart from transition into ana- 
lytics, can as yet make no advance from that state in which it 
has come to us from Euclid. 

As belonging to these imperfections, I consider the obscurity 
in the fundamental concepts of the geometrical magnitudes and 
in the manner and method of representing the measuring of 
these magnitudes, and IUlly the momentous gap in the theory 

*From Geometrical Researches on the Theory of Parallels, trans. 
by George B. Hakted (Chicago-London: The Open Court Publishing 
Co., 1914; copyright by The Open Court Publishing Co., La Salle, Ill., 
1942), pp. 11-19. Reprinted by permission. 
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of parallels, to fill which all efforts of mathematicians have 
been so far in vain. 

For this theory Legendre’s endeavors have done nothing, 
since he was forced to leave the only rigid way to turn into a 
side path and take refuge in auxiliary theorems which he il- 
logically strove to exhibit as necessary axioms. My hrst essay 
on the foundations of geometry I published in the Kasan 
Messenger for the year 1829. In the hope of having satisfied all 
requirements, I undertook hereupon a treatment of the whole 
of this science, and published my work in separate parts in the 
“Gelehrten Schriften der Universitaet Kasan” for the years 
1836,1837,1838, under the title “New Elements of Geometry, 
with a complete Theory of Parallels.” The extent of this work 
perhaps hindered my countrymen from following such a sub- 
ject, which since Legendre had lost its interest. Yet I am of 
the opinion that the Theory of Parallels should not lose its 
claim to the attention of geometers, and therefore I aim to 
give here the substance of my investigations, remarking be- 
forehand that contrary to the opinion of Legendre, all other 
imperfections-for example, the detition of a straight line- 
show themselves foreign here and without any real influence 
on the Theory of Parallels. 

In order not to fatigue my reader with the multitude of 
those theorems whose proofs present no dif&ulties, I preti 
here only those of which a knowledge is necessary for what 
follows. 

1. A straight line fits upon itself in all its positions. By this 
I mean that during the revolution of the surface containing it 
the straight line does not change its place if it goes through 
two unmoving points in the surface: (i. e., if we turn the 
surface containing it about two points of the line, the line 
does not move.) 

2. Two straight lines can not intersect in two points. 
3. A straight line sufficiently produced both ways must go 

out beyond all bounds, and in such way cuts a bounded plain 
into two parts. 

4. Two straight lines perpendicular to a third never inter- 
sect, how far soever they be produced. 

5. A straight line always cuts another in going from one 
side of it over to the other side: (i. e., one straight line must 
cut another if it has points on both sides of it.) 

6. Vertical angles, where the sides of one are productions 
of the sides of the other, are equal. This holds of plane recti- 
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lineal angles among themselves, as also of plane surface 
angles: (i. e., dihedral angles.) 

7. TWO straight lines can not intersect, if a third cuts them 
at the same angle. 

8. In a rectilineal triangle equal sides lie opposite equal 
angles, and inversely. 

9. In a rectilineal triangle, a greater side lies opposite a 
greater angle. In a right-angled triangle the hypothenuse is 
greater than either of the other sides, and the two angles 
adjacent to it are acute. 

10. Rectilineal triangles are congruent if they have a side 
and two angles equal, or two sides and the included angle 
equal, or two sides and the angle opposite the greater equal, or 
three sides equal. 

11. A straight line which stands at right angles upon two 
other straight lines not in one plane with it is perpendicular 
to all straight lines drawn through the common intersection 
point in the plane of those two. 

12. The intersection of a sphere with a plane is a circle. 
13. A straight line at right angles to the intersection of two 

perpendicular planes, and in one, is perpendicular to the other. 
14. In a spherical triangle equal sides lie opposite equal 

angles, and inversely. 
15. Spherical triangles are congruent (or symmetrical) if 

they have two sides and the included angle equal, or a side 
and the adjacent angles equal. 

From here follow the other theorems with their explanations 
and proofs. 

16. All straight lines which in a plane go out lrom a point 
can with reference to a given straight line in the same plane, 
be divided into two classes-into cutting and not-cutting. 

The boundary lines of the one and the other class of those 
lines will be called parallel to the given line. 

From the point A (Fig. 1) let fall upon the line BC the 
perpendicular AD, to which again draw the perpendicular 
AE. 

In the right angle EAD either will all straight lines which 
go out from the point A meet the line DC, as for example AF, 
or some of them, like the perpendicular AE, will not meet the 
line DC. In the uncertainty whether the perpendicular AE 
is the only line which does not meet DC, we will assume it 
may be possible that there are st?’ other lines, for example AG, 
which do not cut DC, how far soever they may be prolonged. 
In passing over from the cutting lines, as AF, to the not-cutting 
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Figure 1 

lines, as AG, we must come upon a line AH, parallel to DC, 
a boundary line, upon one side of which all lines AG are such 
as do not meet the line DC, while upon the other side every 
straight line AF cuts the line DC. 

The angle HAD between the parallel HA and the perpen- 
dicular AD is called the parallel angle (angle of parallelism), 
which we will here designate ZZ (p) for AD = p. 

If ZZ (p) is a right angle, so will the prolongation AE’ of the 
perpendicular AE likewise be parallel to the prolongation DB 
of the line DC, in addition to which we remark that in regard 
to the four right angles, which are made at the point A by the 
perpendiculars AE and AD, and their prolongations AE’ and 
AD’, every straight line which goes out from the point A, 
either itself or at least its prolongation, lies in one of the two 
right angles, which are turned toward BC, so that except the 
parallel EZ3’ ail others, if they are sticiently produced both 
ways, must intersect the line BC. 

If ZZ (p) < 95 T, then upon the other side of AD, making 
the same angle DAK = ZZ (p) will lie also a line AK, parallel 
to the prolongation DB of the line DC, so that under this as- 
sumption we must also make a distinction of sides in paral- 
lelism. 

All remaining lines or their prolongations within the two 
right angles turned toward BC pertain to those that intersect, 
if they lie within the angle HAK =2 ZZ (p) between the par- 
allels; they pertain on the other hand to the non-intersecting 
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Now let E’ be a point on the production of AB and E’K’ 
perpendicular to the production of the line CD; draw the line 
E’F’ making so small an angle AE’F’ that it cuts AC some- 
where in F’; making the same angle with AB, draw also from 
A the line AF, whose production will cut CD in G (Theorem 
16). 

Thus we get a triangle AGC, into which goes the produc- 
tion of the line E’F’; since now this line can not cut AC a sec- 
ond time, and also can not cut AG, since the angle BAG = 
BE’G’ (Theorem 7), therefore must it meet CD somewhere 
in G’. 

Therefore from whatever points E and E’ the lines EF and 
ET go out, and however little they may diverge from the line 
AB, yet will they always cut CD, to which AB is parallel. 

18. TWO lines are always mutually parallel. 
Let AC be a perpendicular on CD, to which AB is parallel; 

if we draw from C the line CE making any acute angle ECD 
with CD, and let fall from A the perpendicular AF upon CE, 
we obtain a right-angled triangle ACF, in which AC, being 
the hypothenuse, is greater than the side AF (Theorem 9). 

A 

H 

Figure 3 

Make AG = AF, and slide the figure EFAB until AF co- 
incides with AG, when AB and FE will take the position AK 
and GH, such that the angle BAK = FAC, consequently AK 
must cut the line DC somewhere in K (Theorem 16)) thus 
forming a triangle AKC, on one side of which the perpen- 
dicular GH intersects the line AK in L (Theorem 3)) and thus 
determines the distance AL of the intersection point of the 
lines AB and CE on the line AB from the point A. 

Hence it follows that CE will always intersect AB, how small 
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AG, if they lie upon the other sides of the parallels AH and 
AK, in the opening of the two angles EAH = M T - ZZ (p) , 
E’AK = Yz x - ZZ (p) , between the parallels and EE’ the 
perpendicular to AD. Upon the other side of the perpendicu- 
lar EE’ will in like manner the prolongations AH’ and AK’ 
of the parallels AH and AK likewise be parallel to BC; the re- 
maining lines pertain, if in the angle K’AH’, to the intersect- 
ing, but if in the angles K’AE, H’AE’ to the non-intersecting. 

In accordance with this, for the assumption ZZ (p) = Yz ‘IT, 
the lines can be only intersecting or parallel; but if we assume 
that ZZ (p) < Yz T, then we must allow two parallels, one on 
the one and one on the other side; in addition we must distin- 
guish the remaining lines into non-intersecting and intersecting. 

For both assumptions it serves as the mark of parallelism 
that the line becomes intersecting for the smallest deviation 
toward the side where lies the parallel, so that if AH is parallel 
to DC, every line AF cuts DC, how small soever the angle 
HAF may be. 

17. A straight line maintains the characteristic of parallel- 
ism at all its points. 

Given AB (Fig. 2) parallel to CD, to which latter AC is 
perpendicular. We will consider two points taken at random 
on the line AB and its production beyond the perpendicular. 

Figure 2 

Let the point E lie on that side of the perpendicular on which 
AB is looked upon as parallel to CD. 

Let fall from the point E a perpendicular EK on CD and 
so draw EF that it falls within the angle BEK. 

Connect the points A and F by a straight line, whose pro- 
duction then (by Theorem 16) must cut CD somewhere in G. 
Thus we get a triangle ACG, into which the line EF goes; 
now since this latter, from the construction, can not cut AC, 
and can not cut AG or EK a second time (Theorem 2)) there 
fore it must meet CD somewhere at H (Theorem 3). 
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AAc 
Figure 5 

So we obtain a right-angled triangle with the perpendicular 
sides p and q, and from this quadrilateral whose opposite 
sides are equal and whose adjacent sides p and q are at right 
angles (Fig. 6). 

By repetition of this quadrilateral we can make another with 
sides np and mq, and finally a quadrilateral ABCD with sides 
at right angles to each other, such that AB = np, AD = mq. 

Figure 6 

DC = np, BC = mq, where m and n are any whole numbers. 
Such a quadrilateral is divided by the diagonal DB into two 
congruent right-angled triangles, BAD and BCD, in each of 
which the sum of the three angles = T;. 

The numbers n and m can be taken sufficiently great for the 
right-angled triangle ABC (Fig. 7) whose perpendicular sides 
AB = np, BC = mq, to enclose within itself another given 
(right-angled) triangle BDE as soon as the right-angles fit each 
other. 

Drawing the line DC, we obtain right-angled triangles of 
which every successive two have a side in common. 

The triangle ABC is formed by the union of the two tri- 
angles ACD and DCB, in neither of which can the sum of the 
angles be greater than 7; consequently it must be equal to T, 
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soever may be the angle ECD, consequently CD is parallel to 
AB (Theorem 16). 

19. In a rectilineal triangle the sum of the three angles can 
not he greater than two right angles. 

Suppose in the triangle ABC (Fig. 4) the sum of the three 
angles is equal to VT + a; then choose in case of the inequality 
of the sides the smallest BC, halve it in D, draw from A 
through D the line AD and make the prolongation of it, DE, 
equal to AD, then join the point E to the point C by the straight 
line EC. In the congruent triangles ADB and CDE, the angle 

$ 
A C 

Figure 4 

ABD = DCE, and BAD = DEC (Theorems 6 and 10); 
whence follows that also in the triangle ACE the sum of the 
three angles must be equal to VT + a; but also the smallest 
angle BAC (Theorem 9) of the triangle ABC in passing over 
into the new triangle ACE has been cut up into the two parts 
EAC and AEC. Continuing this process, continually halving 
the side opposite the smallest angle, we must finally attain to 
a triangle in which the sum of the three angles is r + a, but 
wherein are two angles, each of which in absolute magnitude 
is less than %a; since now, however, the third angle can not 
be greater than r, so must a be either null or negative. 

20. Zf in any rectilineal triangle the sum of the three angles 
is equal to two right angles, so is this also the case for every 

other triangle. 
If in the rectilineal triangle ABC (Fig. 5) the sum of the 

three angles = rr, then must at least two of its angles, A and 
C, be acute. Let fall from the vertex of the third angle B upon 
the opposite side AC the perpendicular p. This will cut the 
triangle into two right-angled triangles, in each of which the 
sum of the three angles must also be r, since it can not in 
either be greater than rr, and in their combination not less 
than n-. 
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In the right-angled triangle ABD let the angle ADZ3 = a; 
then must in the isosceles triangle ADE the angle AED be 
either 1%~ or less (Theorems 8 and 20). Continuing thus we 
finally attain to such an angle, AEE, as is less than any given 
angle. 

22. Zf two perpendiculars to the same straight line are par- 
allel to each other, then the sum of the three angles in a rec- 
tilineal triangle is equal to two right angles. 

Let the lines AB and CD (Fig. 9) be parallel to each other 
and perpendicular to AC. 

Draw from A the lines AE and AF to the points E and F, 
which are taken on the line CD at any distance FC > EC 
from the point C. 

fi: 
E F 

Figure 9 

Suppose in the right-angled triangle ACE the sum of the 
three angles is equal to x - (Y, in the triangle AEF equal to 
r-p, then must it in the triangle ACF equal 7 - (Y - ,8, where 
Q and p can not be negative. 

Further, let the angle BAF = a, AFC = 6, so is C\I + /3 = 
Q - b; now by revolving the line AF away from the perpen- 
dicular AC we can make the angle Q between AF and the par- 
allel AB as small as we choose; so also can we lessen the angle 
b, consequently the two angles a and p can have no other mag- 
nitude than cu=O and p=O. 

It follows that in all rectilineal triangles the sum of the three 
angles is either T and at the same time also the parallel angle 
zz (P) = 342 T for every line p, or for all triangles this sum is 
< T and at the same time also ZZ (p) < 95 rr. 

The first assumption serves as foundation for the ordinary 
geometry and plane trigonometry. 

The second assumption can likewise be admitted without 
leading to any contradiction in the results, and founds a new 
geometric science, to which I have given the name Imaginary 
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in order that the sum in the compound triangle may be equal 
to x. 

Figure 7 

In the same way the triangle BDC consists of the two tri- 
angles DEC and DBE, consequently must in DBE the sum 
of the three angles be equal to T, and in general this must be 
true for every triangle, since each can be cut into two right- 
angled triangles. 

From this it follows that only two hypotheses are allowable: 
Either is the sum of the three angles in all rectilineal triangles 
equal to X, or this sum is in all less than T. 

21. From a given point we can always draw a straight line 
that shall make with a given straight line an angle as small as 
we choose. 

Let fall from the given point A (Fig. 8) upon the given line 
BC the perpendicular AB; take upon BC at random the point 
D; draw the line AD; make DE=AD, and draw AE. 

Figure 8 
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the major objections to the postulate. Its statement begins with 
something that is given-the interior angles on the same side 
are less than two right angles-and then proceeds to a con- 
clusion-the two lines will meet on the side where the angles 
are less than two right angles. (See Figure Z-l.) Objectors 

Figure 2-1 

feel that it is not at all self-evident that the conclusion follows 
from the premises. Hence, whereas we can easily accept the 
validity of the Grst four postulates, there is no reason why we 
should consider the fifth postulate valid. Objectors feel that 
its truth should be proved, just as though it were a proposition. 

The matter is worse if the postulate is called an axiom (as 
it frequently is in early Latin translations of Euclid), for, as 
we noted in Chapter I, axioms are statements of self-evident 
truths; but the fifth postulate is not self-evident, and so the 
name “axiom” should not be applied to it. Thus Saccheri, 
after stating the “axiom,” writes as follows: 

No one doubts the truth of this proposition; but. . . 
they accuse Euclid . . . because he has used for it the 
name axiom, as if obviously from the right understand- 
ing of its terms alone came conviction. Whence not L 
few (withal retaining Euclid’s definition of parallels) 
have attempted its demonstration from those proposi. 
tions of Euclid’s First Book alone which precede thz 
twenty-ninth, wherein begins the use of the controverted 
proposition. * 

* Girolamo Saccheri’s Euclides Vindicatus, ed. and trans. by George 
Bruce Halsted. Chicago, 1920: Open Court Publishing Co., pp. 5-7. 
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Geometry, and which I intend here to expound as far as the 
development of the equations between the sides and angles of 
the rectilineal and spherical triangle. 

PART II 

If ever there was a scandal in the intellectual world, Euclid’s 
fifth postulate constituted such a scandal. The very existence 
of this postulate seemed offensive to a great many people; even 
those who did not completely condemn the postulate neverthe- 
less considered it a blemish on Euclid’s otherwise elegant edi- 
fice. Indeed, there exists a book by an eighteenth-century 
Italian Jesuit, Girolamo Saccheri, the English title of which is 
Euclid Freed of Every Fleck. This book, published in 1733, 
is not a mere curiosity written by a crank; it is a very serious 
work which plays an important role in the controversy sur- 
rounding the postulate. Now, however, this controversy no 
longer exists. The fifth postulate has become quite acceptable, 
and Euclid, instead of being chastised for having formulated 
it, is praised for having recognized the need for it. Indeed, 
mathematicians hold that the fifth postulate is characteristic of 
Euclid’s geometry. It is now recognized that Saccheri and all 
the other mathematicians who felt uncomfortable about the 
fifth postulate were really searching for a form of generalized 
non-Euclidean geometry. 

Let us take a close look at Euclid’s famous-or infamous- 
postulate: 

Let it be postulated that, if a straight line falling on 
two straight lines make the interior angles on the same 
side less than two right angles, the two straight lines, if 
produced indefinitely, meet on that side on which are 
the angles less than the two right angles (p. 17). 

Whereas the first four postulates are brief and easily under- 
stood, Euclid’s fifth postulate is as lengthy as a proposition 
and as complicated. The complication and length constitute 
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first proposition involving parallel lines-Proposition 27- 
does not make use of Postulate 5. The proposition states that, 
if a line intersects two other lines in such a way that the al- 
ternate angles are equal, then the two lines are parallel. (See 
Figure 2-2. In that figure, alternate angles are designated by 
the same letters.) 

5 
D\C 

Figure 2-2 

To prove this proposition, Euclid employs the method of 
reduction to the absurd: if two lines are not parallel, then of 
course they must meet. Assume, therefore, that they do meet 
(it does not matter on which side) at the point G (see Figure 
2-3). A triangle, EFG, is then formed. One of the pairs of 
alternate angles is AEF and EFD; it is given that they are 
equal. However, it is impossible that they be equal, since in 

G 
\ 

C- 
D 

F 

Figure 2-3 

the triangle EFG the angle AEF is an exterior angle, whereas 
angle EFG is an interior angle. According to Proposition 16 
of Book I, an exterior angle of a triangle is always greater than 
either of the two opposite interior angles. Hence, the same 
angle (AEF) must be both equal to, and greater than, EFG- 
a conclusion which is absurd. Thus the original assumption 
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Here the objections and the proposed remedy are quite 
clearly stated. Saccheri states that the Gfth postulate or axiom 
is true but that it is wrong to call it by the name “axiom” (that 
is, to claim self-evidence for it); hence the postulate must be 
proved to be true. To accomplish this proof, we have available 
to us all the propositions in Book I which precede Proposition 
29, the first one in which the postulate is used. Saccheri at- 
tempts to accomplish this task, and to a certain extent he 
succeeds. 

Nicholas Lobachevski, writing more than a hundred years 
after Saccheri (in 1840)) employs almost the same language: 

In geometry I find certain imperfections which I hold 
to be the reason why this science. . . can as yet make 
no advance from that state in which it has come to us 
from Euclid. 

As belonging to these imperfections, I consider . . . the 
momentous gap in the theory of parallels, to Cl1 which 
all efforts of mathematicians have been so far in vain 
(pp. 68-9). 

The man who wrote these words was born at Makariev, 
Russia, in the year 1793. Lobachevski went to the gymnasium 
in the city of Kazan, and then entered the university there. All 
of his active intellectual life was spent at the University of 
Kazan; he was first a student, then a professor, and finally the 
rector of the University. Lobachevski carried a tremendous load 
of teaching and administrative responsibilities (the latter being 
especially heavy in bureaucratic Russia), so that we wonder 
how he ever found time for his own research. His l&t writings 
on the subject of parallels go back to 1826, but the Theory of 
Parallels was not published until 1840. Incidentally, almost 
rhe same results as those obtained by Lobachevski were found 
by John Bolyai, a Hungarian mathematician. His work on par- 
allelism was published in 183 1, but it is thought that Bolyai’s 
&.t ideas on the subject go back to 1823. Neither Lobachev- 
ski’s nor Bolyai’s works attracted much attention when they 
were first published; not until 1867, when Bernhard Riemann’s 
essay on the basic hypotheses that support geometry was post- 
humously published, did mathematicians generally take an 
interest in non-Euclidean geometries. Lobachevski died in the 
year 1856. 

Let us begin with a look at Euclid’s theory of parallels. The 



NON-EUCLIDEAN GEOMETRY 83 

by reduction to the absurd. The element which produces the 
absurdity, however, is different: in the case of Proposition 27, 
it is Proposition 16 that is the keystone to the proof, whereas 
in the case of Proposition 29 it is Postulate 5 that provides 
the absurdity. 

In order to overcome the “flaws” of Euclid’s geometry, Lo- 
bachevski substitutes a new postulate for Euclid’s fifth one. 
Unfortunately, he is not very explicit in his manner of doing 
it. To understand Lobachevski’s procedure, we must f?rst realize 
that there are several different but equivalent ways in which 
Euclid’s tifth postulate can be stated. One of the equivalent 
statements of Postulate 5 is this: “In a plane, through a given 
point, there is one and just one parallel line to a given line.” 

To see how this statement is equivalent to Euclid’s hfth 
postulate, let us restate the proof of Proposition 29, using the 
postulate of the uniqueness of the parallel line. It is to be 
proved that if a line intersects two parallel lines, then the al- 
ternate angles are equal. Let AB and CD be the parallel lines, 
and let EF intersect them. (See Figure 2-5.) It is to be proved 

A B 

C D 

Figure 2-5 

that angle AGH = angle GHD. We use reduction to the ab- 
surd. If the two angles are not equal, then construct angle JGH 
so that it is equal to angle GHD. Extend line JG so that the 
line JK is formed. Now, because of the equality of angle JGN 
and angle GHD, the two lines JK and CD are parallel, accord- 
ing to Proposition 27. But line AB is also parallel to line CD. 
Thus we have arrived at an absurdity-for two lines, JK and 
AB, are both parallel to the same line, CD. According to the 
postulate of the “uniqueness of parallel lines,” this is 
impossible. 
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-that the two lines meet to form a triangle-must be false, 
and so the given two lines must be non-meeting or parallel. 

Let us skip Proposition 28, which is just another version of 
Proposition 27, and hurry on to Proposition 29, in which the 
parallel postulate is used for the tirst time. Proposition 29 is 
the converse of Proposition 27. What is given in the first prop- 
osition becomes what is proved in the second proposition, and 
what is proved in the first proposition becomes what is given 
in the second one. Thus it is given in Proposition 27 that the 
alternate angles are equal, and it is proved that the two lines 
in question are parallel. On the other hand, in Proposition 29 
it is given that the two lines are parallel, and it is proved that 
the alternate angles are equal. 

The proof is by reduction to the absurd, just as is the proof 
of Proposition 27. Let us assume, Euclid says, that the alter- 
nate angles are not equal. Then one of them must be greater 
than the other one (it does not matter which one it is). Let 
the greater angle be AGH. (See Figure 2-4.) Add the angle 
BGH to both the angle AGH and the angle GHD. Then angle 
AGH + angle BGH is greater than angle GHD + angle BGH. 

E\ 

Figure 2-4 

But angle AGH + angle BGH is equal to two right angles. 
Hence the two angles GHD + BGH are less than two right 
angles. And so, by Postulate 5 the lines AB and CD, if ex- 
tended, must meet toward BD. However, this is absurd, since 
the lines are given to be parallel. And so the assumption that 
the alternate angles are not equal must be false. 

Since Propositions 27 and 29 are converses, we should ex- 
pect their proofs to be similar. And so they are: both proceed 
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cated than Euclid’s, it should not be surprising that the proofs 
of his propositions are also more complex. 

AL. 0 
Figure 2-6 

Euclid proves that the angles of a triangle are equal to two 
right angles in the following manner: If the triangle is ABC, 
Euclid tirst extends the line AB to D. (See Figure 2-6.) Then, 
through B, he draws BE parallel to AC. From Proposition 29 
it follows that angle CBE is equal to angle ACB, and that EBD 
is equal to angle CAB. Hence the three angles ABC, CBE, and 
EBD are equal to the three interior angles of the triangle. But 
the former angles, being the angles on a straight line, are equal 
to two right angles; consequently the interior angles of a tri- 
angle must also be equal to two right angles. In Lobachevski’s 
geometry this proof fails, of course, because of the unavail- 
ability of Proposition 29. 

What does Lobachevski substitute for Proposition 32? In 
any triangle, Lobachevski tells us, the sum of the angles is 
at most equal to two right angles. Thus there may be triangles 
in which the sum of the interior angles is less than two right 
angles, or there may be triangles in which the sum is exactly 
equal to two right angles. But there are no triangles in which 
the sum of the angles is greater than two right angles. The 
proof is found in Section 19. The method used is that of re- 
duction to the absurd. (Note that the methods of Euclid and 
Lobachevski are the same, even though some of their crucial 
assumptions are different.) Lobachevski assumes that the sum 
of the angles in a triangle is greater than two right angles. (For 
“two right angles” Lobachevski uses the expression r; this is 
merely a different way of measuring angles. A third way of 
expressing the assumption is to say that the sum of the angles 
of the triangles is greater than 180”. We shall adhere to Eu- 
clid’s way of measuring angles-in terms of right angles.) 

TO arrive at an absurdity, Lobachevski bisects one of the 
sides of the triangle, BC, at a point D. (See Figure 2-7.) He 
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The postulate Lobachevski substitutes for Euclid’s may be 
expressed in this form: “In a plane, through a given point, 
there exists an infinite number of lines that do not cut a given 
line.” Thus Lobachevski postulates an infinite number of paral- 
lel lines to a given line, in Euclid’s sense of the word “parallel.” 
Lobachevski himself, however, reserves the term “parallel” for 
two special not-cutting lines. 

In section 16 (p. 70) Lobachevski defines parallelism. 
However, he first makes a distinction: 

All straight lines which in a plane go out from a point 
can, with reference to a given straight line in the same 
plane, be divided into two classes-into cutting and not- 
cutting. 

Of course, Euclid would agree with this definition, but he 
would add that the class of not-cutting lines has just one mem- 
ber, that not-cutting line being the one which Euclid calls the 
parallel. Lobachevski, as we have said, postulates that there 
is an h&rite number of not-cutting lines, just as there is an 
infinite number of cutting lines. Parallel lines are defined by 
bim in terms of these two classes: “The boundary lines of the 
one and the other class of lines will be called parallel to the 
given line.” If there are both not-cutting and cutting lines, 
there must be a last not-cutting line; that is, every line beyond 
this last one is such that it cuts the given line, whereas every 
line on the other side of this last one does not cut the given 
line. None of this contradicts anything that Euclid has said; 
it merely becomes superfluous if there is only one not-cutting 
line. In that case the boundary line between cutting and not- 
cutting lines is itself identical with the one and only not-cutting 
line. 

Having substituted a new postulate for Euclid’s-but one 
which is not contradictory to Euclid’s, merely wider-Loba- 
chevski proceeds to prove propositions concerning the same 
matters as Euclid. Naturally, his results are not the same as 
Euclid’s; however, they are not contradictory to Euclid’s. Just 
as Euclid’s postulate is a special case of Lobachevski’s postu- 
late (that is, the special case when the not-cutting lines num- 
ber only one), so Euclid’s propositions are special cases of 
Lobachevski’s. For example, Euclid Grids that the sum of the 
angles in a triangle is equal to two right angles; Lobachevski 
tids this sum to be either two right angles or less than two 
right angles. Since Lobachevski’s postulate is more compli- 
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that the original assumption is wrong and that the sum of the 
angles in a triangle cannot be greater than two right angles. 

In Section 20, Lobachevski points out that he does not know 
what the sum of the angles in a triangle amounts to, except 
that the sum cannot be greater than two right angles. He then 
adds this: if there is just one triangle concerning which it is 
known that the sum of its angles is exactly equal to two right 
angles, then all triangles must have the sum of their angles 
equal to two right angles. Let the triangle concerning which it 
is known that the sum of its angles is equal to two right angles 
be ABC. (See Figure 2-S.) Let MN0 be any other right-angled 
triangle. (We are changing Lobachevki’s terminology, since 

B 0 

Y= 

4 d A x 
rt rt 

D wc M N 

Figure 2-8 

he uses the same letters in several triangles, thereby creating 
unnecessary confusion.) From the vertex opposite the largest 
side of ABC drop the perpendicular BD. This divides the tri- 
angle ABC into two right-angled triangles, ABD and BDC. 
From the previous proposition, the sum of the angles in either 
of the right-angled triangles cannot be greater than two right 
angles. Thus we have 

(1) x + y + right angle is equal to or less than 2 right 
angles. 

and 
(2) z + w + right angle is equal to or less than 2 right 

angles. 
If we now add these two lines together, we get 

(3) n+y+z+w+2rightanglesisequaltoorlessthan 
4 right angles. 

But since it is given that x + y + z + w is equal to 2 right 
angles, it is clear that in statement (3) the relation of being 
“equal” rather than that of being “less than” holds. In other 
words, statement (3) should be written as follows: 

(3) x + y + z + w + 2 right angles = 4 right angles. 
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Figure 2-7 

connects A and D with a straight line and extends AD to E 
so that AD equals DE. Then it is easy to prove that triangles 
ABD and DCE are congruent (this does not involve any ref- 
erence to parallelism). Now consider the newly formed tri- 
angle AEC. The sum of its angles-EAC, ACE, and CEA- 
is equal to the sum of the angles of the original triangle. For 
the sake of convenience, we have given letters to the various 
angles. Equal angles have been designated by the same letter. 
In the original triangle the sum of the interior angles, starting at 
point B and running counterclockwise, is w + x + y + z. In the 
new triangle, starting at E and going counterclockwise, the sum 
is x + y + z + w. It follows that the sum of the angles in the new 
triangle AEC is also greater than two right angles. If the sum of 
the angles in the first triangle ABC is, for example, 2 right 
angles + a, then it is also 2 right angles + a in the new tri- 
angle AEC. At the same time, it is clear that the angle EAC 
(or y) is smaller than the angle BAC (or x + y) .By proceeding 
in the same manner with triangle AEC (that is, by dividing 
the side EC in half), we arrive at yet another triangle with the 
sum of its angles equal to 2 right angles + a; this triangle will 
have an angle at A even smaller than EAC or y. By proceed- 
ing in this manner, it is possible to finally arrive at a triangle 
which has an angle at A smaller than the quantity ?4a. We 
can proceed in the same manner with the other small angle 
(such as the one E) and, while keeping the sum of the angles 
in the triangle constant, have the other small angle also equal 
to less than Ma. Since the sum of the three angles of the final 
triangle must be equal to 2 right angles + a, while the two 
small angles together are less than a (each separately being 
less than Ma), the remaining third angle will have to be greater 
than two right angles. This is absurd, for if this third angle 
ever becomes so large as to be equal to two right angles, there 
wiIl be no angle-and no triangle-left. We conclude, then, 
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two right angles, because the angles of the big triangles are 
equal to the angles of the original triangle BDC with the sides 
p and q. 

Now choose the number n large enough so that EH is 
greater than MN and GH is greater than NO. Draw the tri- 
angle EGH so that it wholly encloses the triangle MNO. (See 
Figure 2-10.) Thus points H and N coincide. Join M and G. 
We shall now show that, since the big triangle, EGH, has 
angles equal to two right angles, the two triangles which to- 
gether make it up-EGM and MGN-must each have angles 
equal to two right angles. Similarly, since the sum of the angles 
in MGN is equal to two right angles, the angles in triangle 
MN0 must amount to the same sum. 

We already know that the angles of any triangle must be 
either less than two right angles or exactly equal to two right 
angles. But if the angles x + y + z are less than two right 
angles or if the angles w + v are less than a right angle (it is 
given that the angle at N is right), an impossibility results. For 
if we add all these angles up, we find that x + y + v + z + w 
are less than three right angles. Now it is known from Euclid’s 
Proposition 13 that z + w is equal to two right angles. That 
would leave x + y + v as equal to less than one right angle. But 
this cannot be, since these three angles, together with the right 
angle at N, are supposed to make two right angles. Thus our 
assumption has led to an absurdity, and we see that all the 
triangles enclosed in EGH must have their angles equal to two 
right angles. 

Since MN0 was any right triangle, we can conclude that if 
any right triangle has the sum of its interior angles equal to 
two right angles, then all right triangles have their angular 
sum equal to two right angles. If all right triangles have their 
angular sum equal to two right angles, then ah triangles have 
the same angular sum, for any triangle can be divided into 
two right triangles. 

From this Lobachevski concludes that “only two hypotheses 
are allowable: Either is the sum of the three angles in all recti- 
lineal triangles equal to x [two right angles], or this sum is in all 
less than 7r.” In other words, either all geometry is Euclidean, 
or all geometry is Lobachevskian. There cannot be a mixture 
of the two geometries. “It follows,” Lobachevski writes, 

that in all rectilineal triangles the sum of the three 
angles is either rr [two right angles] . . . , or for all tri- 
angles this sum is less than r. . . . 
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Therefore, in lines (1) and (2)) we must also have the re- 
lation of equality; for if in either of them the relation of being 
“less than” obtained, we could not by adding obtain line (3) 
with the equal sign. Thus triangle BDC has the sum of its 
angles equal to two right angles, as does triangle ADB. By 
placing two triangles such as BDC together, we can form a 
rectangle (Lobachevski uses the term “quadrilateral”) with 
sides BC = p, and DC = 4. From many rectangles equal to 
this one, we can form one with sides np and nq, where IZ is a 
whole number. (Lobachevski says to make the rectangle with 
sides np and mq, where n and m are different whole numbers; 
however, he then is not entitled to take the following step, 

Figure 2-9 

although he seems unaware of it.) Let this large rectangle be 
called EFGH. (See Figure 2-9.) The diagonal EG divides this 
rectangle into two congruent triangles, EFG and EGH. The 
sum of the angles in each of these two big triangles is equal to 

G 

Figure 2-10 
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Euclid concludes that since angle ABD is equal to angle DCE, 
therefore the exterior angle DCF must be greater than the in- 
terior angle ABD. 

Now let us make a slight change in the diagram for Proposi- 
tion 16 (of Euclid) or Section 19 (of Lobachevski) . Instead 
of drawing the figure with straight lines, as we have so far 
done, let us draw the figure on the surface of a sphere. Here 
the place of straight lines is taken by great circles-circles that 
have the same center as the sphere itself. Examples of great 
circles on the Earth are the equator and all of the meridians. A 
great circle is like a straight line, in that it constitutes the short- 
est distance between two points on a sphere, just as a straight 
line is the shortest distance between two points on a plane. 

Look at Figure 2-12. We have drawn a triangle ABC con- 
sisting of parts of great circles. The base AC is part of the 
“equator” of the sphere; the two sides AB and BC are each 
“meridians”; thus the point B is the “north pole” of the sphere. 
In order to give some definiteness to the figure, we have made 
the angle at B equal to 120’. (We shall here use the degree 
measurement of angles for simplicity’s sake.) Notice that no 
matter what the angle at B is made to be, the two angles at A 
and at C are right angles. Thus no matter what the angle at 
B is, the sum of the angles of the triangle ABC is certainly 
going to be greater than two right angles or 180”. In our ex- 
ample, it is three and a third right angles, or 300”. Thus Loba- 
chevski’s Section 19 does not apply to spherical triangles. If 
we now extend the base AC, say to F, it is also apparent at 
once that Euclid’s Proposition 16 does not hold true for spheri- 
cal triangles. For the exterior angle BCF is a right angle; it is 
therefore equal to one of the opposite interior angles-the one 
at A-and is smaller than the other opposite interior angle- 
the one at B. 

If we complete the figure so that, on the sphere, we duplicate 
the constructions of Proposition 16 or Section 19, we can see 
why their statements cannot be proved here. Bisect BC at D. 
Join A and D (with a great circle), and extend the great circle 
segment to E so that AD = DE. Join E and C with the seg- 
ment of a great circle. (It takes a little practice to see the dia- 
gram properly. The point E is on the far side of the sphere; to 
understand why EC is drawn the way it is, remember that the 
circle of which EC is a part has its center at the center of the 
sphere. Below the main diagram we have placed another one, 
in which the spherical triangle has been “flattened out” and 
placed in the plane. This may help in visualizing the spherical 
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The first assumption serves as the foundation for the 
ordinary geometry and plane trigonometry. 

The second assumption can likewise be admitted with- 
out leading to any contradiction in the results, and 
founds a new geometric science, to which I have given 
the name Imaginary Geometry, and which I intend here 
to expound. . . (pp. 77-8). 

We have merely Lobachevski’s word for the fact that his 
geometry can be developed without contradition; he has not 
proved this. At the same time, it is only fair to note that Euclid 
nowhere proves that his geometry will never lead to contra- 
dictions. Euclid’s “proof” consists in the actual development 
of hundreds of propositions without contradictions; Lobachev- 
ski’s “proor is of the same sort. The pages following Section 
22 are a verification of his boast that a non-contradictory 
geometry can be developed from his postulate. 

Let us reexamine Section 19. This is the section in which 
Lobachevski proves that the sum of the angles of any triangle 
cannot be greater than two right angles. Compare the proof of 
this proposition with the proof of Euclid’s sixteenth proposi- 
tion, which shows that in a triangle the exterior angIe is al- 
ways greater than either of the two opposite interior angles. 
You will notice that the two proofs are almost the same. Both 
depend on the same construction: the side BC of the triangle 
ABC is bisected; A is joined to D and then extended so that 
AD = DE. Then E is joined to C. (See Figure 2-l 1.) The 
two triangles ABD and DEC are easily shown to be congruent. 
Euclid and Lobachevski use this congruency for different 
purposes. 

Figure 2-11 
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which behave like the great circles on a sphere. These would 
be quite different straight lines from Euclid’s or Lobachevski’s, 
of course. (Lobachevski’s straight lines are also different from 
Euclid’s; there can be an infinite number of straight lines not 
meeting a given line, if the lines are Lobachevski’s sort, where- 
as there can be only one such non-meeting line if the lines are 
Euclid’s kind.) The characteristic of this new, third sort of 
straight lines is that to a given line there is ~to non-meeting 
line. (All the great circles on a sphere meet twice; for example, 
all meridians meet at the north pole and at the south pole,) 
It turns out to be possible to have a geometrical system in 
which the straight lines in a plane are of this “quasi-spherical” 
sort. This new geometry is called “Riematian” after the Ger- 
man mathematician Bernhard Riemann ( 1826-1866)) who 
first studied it. It is, of course, different from both Euclid’s 
geometry and Lobachevski’s. For example, the sum of the 
angles in a Riemannian triangle is found to be greater than 
two right angles. 

Just as the sphere provides a way of visualizing a plane 
geometry in which there are no parallel lines, there is another 
surface which enables us to visualize Lobachevski’s geometry, 
in which there is an infinite number of parallel lines. This sur- 
face is called a “pseudosphere”; it is shown in Figure 2-13. 
On the pseudosphere those lines which are the shortest dis- 

Figure 2-13 

tance between two points behave like the straight lines in a 
Lobachevskian plane. There are many non-meeting lines to a 
given line, and the sum of the angles of a triangle is less than 
two right angles. 

Those lines on a surface which constitute the shortest dis- 
tance between two points are called the “geodesics” of that 
surface. The straight lines in Riemannian geometry have many 
of the properties of the geodesics of a sphere, whereas the 
straight lines in Lobachevskian geometry have many of the 
properties of the geodesics of a pseudosphere. However, it is 
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Figure 2-12 

diagram. Another aid would be to draw the diagram on a 
truly spherical surface such as a ball.) 

Looking at Figure 2-12, it is obvious why the proof of 
Proposition 16 or Section 19 fails. The line EC does not fall 
within the angle BCF but outside of it. Thus Euclid could not 
here conclude that angle DCF is greater than angle DCE. (In 
fact we know that DCF is 90” and that DCE, being equal to 
the angle at B, is 120”.) And Lobachevski cannot conclude 
that there is a limit to how large the angle ACE can become; 
in fact, this angle in our diagram is greater than 180”, and 
there is still a triangle AEC. (Angle ACE is 210” in our ex- 
ample.) 

Now imagine that there are straight lines-not great circles- 
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selves equally valid. That is, each can be shown to be a con- 
sistent system. Each system contains equivalent propositions; 
that is, each proposition in one system has a corresponding 
proposition in the other systems. No one of these geometries 
is more true than another; this statement is not so hard to 
accept if we remember that geometry is not concerned with 
physical lines or points, but rather with ideal, mental entities. 
These things of the mind can, of course, be shaped by the 
mind (as long as no contradictions develop). If we wish, 
therefore, we can choose to geometrize with lines that behave 
like those of Riemann or those of Lobachevski rather than 
those of Euclid. 

Yet we may also ask, which geometry applies to the things 
and the space around us? We are used to employing Euclidean 
geometry; engineers and architects certainly assume that 
Euclid’s geometry and no other is true. Yet this is not con- 
clusive, for it is apparent that for small figures the results 
which the three geometries yield would be almost indistin- 
guishable. A small triangle on a vast sphere is very much like 
a plane triangle in Euclidean space. Similarly, it may be that 
space is Lobachevskian in character; yet it may be so large 
that for the small areas in human purview, the geometrical 
results would not be noticeably different from those of Euclid- 
ean geometry. 

The question of which geometry is most suitable for physi- 
cal applications is an experimental one. The German mathema- 
tician Gauss ( 1777-1855) performed some measurements on 
large triangles to determine whether the sum of their angles 
was 180” or not. However, his results were inconclusive; such 
differences from 180” as he found were so small that they 
might have been due to experimental error. 
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most important to realize that these non-Euclidean geometries 
are plane geometries; the sphere, the pseudosphere, and their 
geodesics are useful only in order to visualize these geometries. 
Riemannian geometry is not spherical geometry, nor is Loba- 
chevskian geometry pseudospherical geometry. 

To sum up, there are three possibilities as regards parallel 
lines, each possibility giving rise to a different geometry: ( 1) 
Through a given point there is an infinite number of non- 
meeting lines to a given line-Lobachevskian geometry. (2) 
Through a given point there is one and only one non-meeting 
line to a given point-Euclidean geometry. (3) Through a 
given point there is no non-meeting line to a given line- 
Riemannian geometry. 

Any system of geometry in which Euclid’s Proposition 16 is 
valid eliminates the possibility of Riemannian geometry. This 
is the reason why, as we noted earlier, Saccheri had a certain 
amount of success in proving Euclid’s Mth postulate. Sac- 
cheri accepted Proposition 16; consequently, he was able to 
demonstrate absurd conclusions from (the equivalent of) Rie 
maim’s postulate. 

A system of geometry in which Euclid’s Postulate 5 holds 
eliminates Lobachevski’s hypothesis. Thus Euclid rids him- 
self of the possibility of Riemannian geometry by means of 
Proposition 16, and of Lobachevskian geometry by means of 
Postulate 5. We should add that Proposition 16 is, in turn, 
based on Postulate 2 (that is, on the assumption that straight 
lines are infinite in length) ; Proposition 16 (or Lobachevski’s 
Section 19) cannot be proved in Riemannian geometry, be- 
cause in the latter straight lines are finite in length. We can 
now see that the proofs of Euclid’s Propositions 27 and 29 are 
really quite similar. Both, as we have already noted, are dem- 
onstrated by use of reduction to the absurd. But the keystone 
to the absurdity is Proposition 16 in the first case, and Postu- 
late 5 in the second case. Proposition 16 is the equivalent of 
another postulate concerning parallelism, namely, “To a given 
line, through a given point, there exists at least one parallel 
(non-meeting) line.” In both Proposition 27 and Proposition 
29, therefore, the absurdity is reached by the use of a postu- 
late concerning parallel lines. 

Finally, we must touch on a question that has no doubt 
already occurred to the reader: Which of these geometries is 
true? Or are any of them true? The answer is in one way 
simple, yet also complicated. All three geometries are in them- 
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RenC Descartes 
Geometry* 

BOOK I 

PROBLEMS THE CONSTRUCTION OF WHICH 

REQUIRES ONLY STRAIGHT LINES AND CIRCLES 

Any problem in geometry can easily be reduced to such 
terms that a knowledge of the lengths of certain straight lines 
is sutlicient for its construction. Just as arithmetic consists of 
only four or five operations, namely, addition, subtraction, 
multiplication, division and the extraction of roots, which may 
be considered a kind of division, so in geometry, to find re- 
quired lines it is merely necessary to add or subtract other 
lines; or else, taking one line which I shall call unity in order 
to relate it as closely as possible to numbers, and which can 
in general be chosen arbitrarily, and having given two other 
lines, to Grid a fourth line which shall be to one of the given 
lines as the other is to unity (which is the same as multiplica- 
tion); or, again, to fmd a fourth line which is to one of the 
given lines as unity is to the other (which is equivalent to 
division) ; or, finally, to find one, two, or several mean pro- 
portionals between unit and some other line (which is the same 
as extracting the square root, cube root, etc., of the given 
line). And I shall not hesitate to introduce these arithmetical 
terms into geometry, for the sake of greater clearness. 

For example, let AB be taken as unity, and let it be required 
to multiply BD by BC. I have only to join the points A and C, 
and draw DE parallel to CA; then BE is the product of BD 

and BC. 

m. 
D A 

*From The Geometry of Rene Descartes, trans. by David E. Smith 
and Marcia L. Latham (Chicago-London: The Open Court Publishing 
Company, 1925), pp. 2-17. Reprinted by permission. 



CHAPTER THREE 

Descartes-Geometry and Algebra Joined 

PART1 

The following selection consists of a few pages from the be- 
ginning of Descartes’ Geometry. That title may be slightly mis- 
leading; the subject being developed here is actually what we 
nowadays call analytic geometry. Descartes worked out the 
method of analytic geometry in response to a need: he felt 
that geometry as practiced by the ancients was too obscure 
and difficult to understand. Though Descartes knew Euclid’s 
work, of course, the charge of obscurity is leveled not so much 
against the Elements as against later Greek mathematicians 
and their works, especially Apollonius’ work on conic sections. 
The conic sections are figures obtained by slicing a cone with 
a plane surface. As the result of such slicing we may obtain 
either a circle, an ellipse, a parabola, or a hyperbola. These 
four figures are the “conic sections.” Ever since Descartes’ 
time, these conic sections have been elegantly treated by the 
method of analytic geometry. 

96 
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names are assigned or changed. For example, we may write, 
AB = 1, that is AB is equal to 1; GH = a, BD = b, and SO on. 

If, then, we wish to solve any problem, we first suppose the 
solution already effected, and give names to all the lines that 
seem needful for its construction, to those that are unknown 
as well as to those that are known. Then, making no distinction 
between known and unknown lines, we must unravel the difE- 
culty in any way that shows most naturally the relations be- 
tween these lines, until we find it possible to express a single 
quantity in two ways. This will constitute an equation, since 
the terms of one of these two expressions are together equal 
to the terms of the other. 

We must tid as many such equations as there are supposed 
to be unknown lines; but if, after considering everything in- 
volved, so many cannot be found, it is evident that the ques- 
tion is not entirely determined. In such a case we may choose 
arbitrarily lines of known length for each unknown line to 
which there corresponds no equation. 

If there are several equations, we must use each in order, 
either considering it alone or comparing it with the others, so 
as to obtain a value for each of the unknown lines; and so 
we must combine them until there remains a single unknown 
line which is equal to some known line, or whose square, cube, 
fourth power, tith power, sixth power, etc., is equal to the 
sum or ditference of two or more quantities, one of which is 
known, while the others consist of mean proportionals between 
unity and this square, or cube, or fourth power, etc., multiplied 
by other known lines. I may express this as follows: 

z = b, 
or z2= -az+bs 
or 23 = az2 + b2z ‘- ~3, 

or z4=az3-c3z+d4, etc. 
That is, Z, which I take for the unknown quantity, is equal to b; 
Or, the square of z is equal to the square of b diminished by a 
multiplied by z; or, the cube of z is equal to a multiplied by 
the square of z, plus the square of b multiplied by z, diminished 
by the cube of c; and similarly for the others. 

Thus, all the unknown quantities can be expressed in terms 
of a single quantity, whenever the problem can be constructed 
by means of circles and straight lines, or by conic sections, or 
even by some other curve of degree not greater than the third 
or fourth. 

But I shall not stop to explain this in more detail, because 
I should deprive you of the pleasure of mastering it yourself, 
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If it be required to divide BE by BD, I join E and D, and 
draw AC parallel to DE; then BC is the result of the division. 

If the square root of GH is desired, I add, along the same 
straight line, FG equal to unity; then, bisecting FH at K, I 
describe the circle FZH about K as a center, and draw from G 
a perpendicular and extend it to I, and GZ is the required root. 
I do not speak here of cube root, or other roots, since I shall 
speak more conveniently of them later. 

iT\ FG K 

Often it is not necessary thus to draw the lines on paper, 
but it is suthcient to designate each by a single letter. Thus, to 
add the lines BD and GH, I call one a and the other b, and 
write a + b. Then a - b will indicate that b is subtracted from 

a; ab that a is multiplied by b; a that a is divided by b; aa or a2 
b 

that a is multiplied by itself; ~3 that this result is multiplied by 
a, and so on, indefinitely. Again, if I wish to extract the square 
root of u2 + b2, I write v u2 + b2; if I wish to extract the cube 
root of d - b3 + ab2, I write +Y d - b3 + ab2, and similarly for 
other roots. Here it must be observed that by a2, b3, and simi- 
lar expressions, I ordinarily mean only simple lines, which, 
however, I name squares, cubes, etc., so that I may make use 
of the terms employed in algebra. 

It should also be noted that all parts of a single line should 
always be expressed by the same number of dimensions, pro- 
vided unity is not determined by the conditions of the problem. 
Thus, a3 contains as many dimensions as ab2 or b3, these be- 
ing the component parts of the line which I have called 
ya3- b3+ab2. It is not, however, the same thing when unity 
is determined, because unity can always be understood, even 
where there are too many or too few dimensions; thus, if it be 
required to extract the cube root of db2-- b, we must consider 
the quantity u2b2 divided once by unity, and the quantity b 
multiplied twice by unity. 

Finally, so that we may be sure to remember the names of 
these lines, a separate list should always be made as often as 
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But if I have y2 = - ay + b2, where y is the quantity whose 
value is desired, I construct the same right triangle NLM, and 
on the hypotenuse MN lay off NP equal to NL, and the re- 
mainder PM is y, the desired root. Thus I have 

y=-;a+ d $2-i-@. 

In the same way, if I had 
x4 = - ax2 + b2, 

PM would be x2 and I should have 

x= ,/-ia+.,/iaZ+bZ, 

and so for other cases. 
Finally, if I have 22 = az - b2, I make NL equal to % a and 

LM equal to b as before; then, instead of joining the points 
M and N, I draw MQR parallel to LN, and with N as a center 

describe a circle through L cutting MQR in the points Q and 
R; then z, the line sought, is either MQ or MR, for in this 
case it can be expressed in two ways, namely: 

and 

z=La- 
2 d 

1 
-a2 - b2. 
4 

And if the circle described about N and passing through L 
neither cuts nor touches the line M&R, the equation has no 
root, so that we may say that the construction of the problem 
is impossible. 
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as well as of the advantage of training your mind by working 
over it, which is in my opinion the principal benefit to be de- 
rived from this science. Because I find nothing here so difficult 
that it cannot be worked out by any one at all familiar with 
ordinary geometry and with algebra, who will consider care 
fully all that is set forth in this treatise. 

I shall therefore content myself with the statement that if the 
student, in solving these equations, does not fail to make use 
of division wherever possible, he will surely reach the simplest 
terms to which the problem can be reduced. 

And if it can be solved by ordinary geometry, that is, by the 
use of straight lines and circles traced on a plane surface, 
when the last equation shall have been entirely solved there 
will remain at most only the square of an unknown quantity, 
equal to the product of its root by some known quantity, in- 
creased or diminished by some other quantity also known. 
Then this root or unknown line can easily be found. For ex- 
ample, if I have 22 = az + b2, I construct a right triangle NLM 
with one side LM, equal to b, the square root of the known 
quantity b2 and the other side, LN, equal to ‘/z a, that is, to 

half the other known quantity which was multiplied by z, 
which I supposed to be the unknown line. Then prolonging 
MN, the hypotenuse of this triangle, to 0, so that NO is equal 
to NL, the whole line OM is the required line z. This is ex- 
pressed in the following way: 

z=;a+ i a2 + b2. 
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knowledge. Among his philosophical works are the Me&u- 
tions, the Discourses, and the Principles of Philosophy. Other 
famous works of Descartes are the Rules for the Direction of 
the Mind, a treatise dealing with the methodology of speculative 
thought; the Passions of the Soul, a work in psychology; and 
the Geometry, the book with which we are here concerned. 

Descartes also wrote about various scientific subjects; he 
developed a theory of optics, a theory of the motion of the 
heart, and a theory of the motion of the planets. Since Des- 
cartes was a contemporary of Johann Kepler, Galileo Galilei, 
and William Harvey, he was acquainted with the work of 
these scientists, and they with his. His philosophical works 
were circulated among the philosophers of his age and aroused 
much admiration as well as controversy. Philosophers such as 
Thomas Hobbes, Antoine Arnauld, and Pierre Gassendi wrote 
lengthy objections to Descartes’ Meditations, and he in turn 
replied to these. (Both objections and replies are included in 
many editions of the Meditations.) In short, the work of 
Descartes created a stir even in his lifetime, and the Geometry 
did so no less than his other books. 

Descartes was a proud and vain man; he delights in show- 
ing his readers that he knows something that they do not. 
Consequently, he very frequently does not explain his methods 
and procedures in any detail. For instance, he writes, con- 
cerning the basic principles of his Geometry : 

But I shall not stop to explain this in more detail, be- 
cause I should deprive you of the pleasure of mastering 
it yourself, as well as of the advantage of training your 
mind by working over it, which is in my opinion the 
principal benefit to be derived from this science (p. 99). 

In spite of Descartes’ reluctance to say much about his 
geometry, we can easily state its aim: to join geometry and 
algebra, to solve geometrical problems by algebraic methods, 
and, conversely, to solve arithmetical or algebraic problems 
by geometrical methods. 

Descartes was not the first to recognize that geometry and 
arithmetic are closely related. The very fact that both are 
branches of mathematics indicates that they have a great deal 
in common-namely, that their subject matter is quantity. 
Euclid deals with arithmetic in Books 7-9 of the Elements, 
indicating that he, too, considered geometry and arithmetic 
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These same roots can be found by many other methods; I 
have given these very simple ones to show that it is possible to 
construct all the problems of ordinary geometry by doing no 
more than the little covered in the four figures that I have ex- 
plained. This is one thing which I believe the ancient mathe- 
maticians did not observe, for otherwise they would not have 
put so much labor into writing so many books in which the 
very sequence of the propositions shows that they did not have 
a sure method of finding all, but rather gathered together those 
propositions on which they had happened by accident. 

PART II 

Histories of culture place the beginning of modern times 
around the year 1600. Such a date is, of course, arbitrary. 
There were men and events before 1600 that clearly belong 
to modem times, such as the discovery of America and the 
revolutionary work in astronomy by Copernicus. Still, the 
number of those who gained fame in all fields of knowledge 
increased impressively from 1600 on. In philosophy we may 
mention Descartes, Spinoza, Leibniz, and Locke; in mathe- 
matics, Fermat, the Bernouilli family, Descartes, and Pascal; 
in chemistry, Boyle, Priestley, Stahl, and Lavoisier; in physics, 
Kepler, Galileo, Newton, and Huygens. 

Without doubt, one of the most famous of all these men 
is Descartes. No other man so justly deserves the title of 
“the first of the moderns.” Descartes not only initiated mod- 
ern thought and modern methods in philosophy and mathe- 
matics; he also was remarkably aware of the fact that he was 
discarding the traditions and errors of earlier times. 

Rent? Descartes ( 15961650) was educated at the Jesuit 
school of La Fleche. All his life, Descartes remained friendly 
toward the Jesuits, and one of them, Marin Mersenne, also a 
former pupil at La Fleche, became an intimate friend of his. 
Descartes traveled through much of Europe, living not only 
in his native France, but also in Germany, Sweden, Holland, 
Austria, Bohemia, and Italy. Much of his life after 1628 was 
spent in Holland, where most of his works were written. 

Descartes contributed to almost all major branches of 
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Let AB, AD,. . . be any number of straight lines given 
in position, and let it be required to tkd a point C, from 
which straight lines CB, CD, . . . can be drawn, making 
angles CBA, CDA, . . . respectively, with the given lines, 
and such that the product of certain of them is equal to 
the product of the rest, or at least such that these two 
products shall have a given ratio, for this condition does 
not make the problem any more difficult. (See Figure 
3-l.) 

Figure 3-l 

He continues as follows: 

First, I suppose the thing done, and since so many lines 
are confusing, I may simplify matters by considering 
one of the given lines and one of those to be drawn (as, 
for example, AB and BC) as the principal lines, to which 
I shall try to refer all the others. Call the segment of the 
line AB between A and B, x, and call BC, y. 

Descartes actually uses more given lines than the two we 
have drawn, and consequently, more lines are also to be drawn 
from point C. We have simplified the example and the diagram 
in order to make it more intelligible. The problem which Des- 
cartes poses is that of finding all those points C (he says the 
point C) which are such that the product of BC and CD 
(where these two lines make given angles with the given lines) 
is a given quantity. Let the product of BC and CD be, say, 24. 
In other words, if we let AB = x and BC = y, as Descartes 
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to be closely a.fIiliated. When we measure the length of lines 
and calculate the areas of figures, we are applying arithmetic 
to geometry. When we use the words “square” and “cube” to 
indicate certain kinds of numbers-those which are obtained 
when a number is multiplied by itself either once or twice 
-we are using an obvious analogy between arithmetic and 
geometry. 

Descartes systematizes the relation between geometry and 
arithmetic. He develops in the Geometry a method for dealing 
with any geometrical problem-a method now known as an- 
alytic geometry. This method, properly applied, abolishes the 
need for geometrical ingenuity; the solution to a geometrical 
problem no longer depends on the geometer’s ability to draw 
certain lines and see certain connections. It is necessary only 
to apply Descartes’ method, and the solution must appear. 
(Ingenuity may still have a role in that an ingenious mathe- 
matician may arrive at the solution more rapidly and more 
smoothly than an unskilled one, even if both use the methods 
of analytic geometry.) 

Descartes states the heart of the method as follows: 

If, then, we wish to solve any problem, we first sup- 
pose the solution already effected, and give names to all 
the lines.that seem needful for its construction-to those 
that are unknown as well as to those that are known 
(p. 99). 

We should notice that this is a method for solving construc- 
tion problems. In the typical problem which Descartes has in 
mind, a certain line (or other figure) is to be constructed. This 
line is defined in terms of some of its properties; a circle, for 
example, would be defined as a line all of whose points are 
equidistant from a given point. 

Although Descartes solves construction problems, he does 
not employ any of Euclid’s construction postulates. The rea- 
son for this apparent paradox is that Descartes’ understanding 
of the term “construction” is quite different from Euclid’s. 
For Euclid, to construct a figure means to draw it (or to un- 
derstand how one would draw it), using the postulates of his 
system. For Descartes, to construct a geometrical figure means 
to tid an algebraic equation for that figure. 

Let us illustrate Descartes’ method with an example. A few 
pages beyond the portion of the Geometry which we reprint., 
Descartes writes: 
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fore, could not draw the wanted line, for the only curved lines 
which he can draw are circles (with the help of Postulate 3). 

However, though Euclid could not draw the entire line, he 
could find several points of it. For example, one point of the 

Figure 3-3 
line must be halfway between the given point F and the given 
line AB. Other points of the line for which we are looking can 
be found by drawing a circle with any radius b around the 
given point F, and then finding the two points on this circle 
which are also at the distance b from the given line AB. (This 
can be done by drawing a line parallel to AB, at a distance b 
from AB. See Figure 3-3.) 

Descartes solves the problem by beginning with the assump- 
tion that C is one of the points he is looking for. (See Figure 

A B 
1 

I 

x 1 

f 

/ 

I 

I 
Yl 

f 

F/*\.. 
I 

-\ 

i 
\ 1 

.A.. I 
L--,,,,------,,,A 
D C 

Figure 3-4 

I 34.) We have already noted that he calls AB “x” and BC “y.” 
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proposes, then the problem is to find points C such that y *DC 
= 24. Now all that remains to be done is to express the line 
DC in terms of x and y; then we shall have an equation of the 
kind that Descartes is looking for. It is theoretically simple to 
express DC in terms of x and y, since all the angles of the 
quadrilateral ABCD are known. In practice, however, the ex- 
pression would be quite complicated, involving trigonometric 
functions such as sines and cosines. 

Let us investigate another problem of the kind that Des- 
cartes wants to solve, but a problem which is less complex than 
the one above: Given a straight line, and a point not on that 
line, to construct a line all of whose points are equidistant 
from the point and the line. First let us indicate that this is 
the sort of problem that Descartes wishes to solve. Where he 
has two given lines, AB and AD, we have one given line AB, 
and a given point F. (See Figure 3-2.) The points C, which 
we assume have been found, are such that the lines which are 
drawn from C to F and from C perpendicular to AB are equal. 

I-- 

@\.: . 
Figure 3-2 

Since the line from C to AB is called “the distance,” the angle 
which line BC makes with AB is a right angle. The basic equa- 

tion then is $j = 1. 

Pause for a moment and consider whether, and how, Euclid 
would solve this problem. Euclid would be stumped, for it is 
apparent that the line which we are looking for must be curved 
and that, at the same time, the line is not a circle. Euclid, there 
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ue.~ for X, we can find the corresponding values for Y, and in 
that way find points on the curve. For example, if .X = 0, we 

substitute this value in the formula and find that Y = f. Sim- 

ilarly, by substituting 1, 2, 3, etc., for x in the formula, we 
can find the corresponding values of y, and consequently Other 
points C. However, the important innovation in Descartes’ 
method is that the actual drawing of the curve becomes I.U+ 
important. The curve is in fact identified with its equation, and 
the equation reveals all the important facts concerning the 
curve. 

Descartes’ method is tremendously powerful. Evidence of 
this is the fact that no one nowadays develops geometry in the 
Euclidean fashion; instead, geometry is developed analytically. 
What gives the method this power? First, analytic geometry 
has freed itself from the restrictions of Euclid’s construction 
postulates, or from any other set of construction postulates. 
Such postulates, whether they are Euclid’s, Lobachevski’s, or 
any other geumeter’s, restrict the number of operations that 
can be performed. Certain constructions are permitted, others 
are not. Descartes’ geometry, since it is basically algebraical, 
is not affected by any of these restrictions. This is not to say 
that it operates without any restrictions. The postulates of 
algebra apply to the algebraical operations. Furthermore, Des- 
cartes uses certain geometrical properties of his figures; on 
page 108 we used Euclid’s 47th proposition in Book I of the 
Elements in order to derive the formula for the parabola. Em- 
ploying this theorem means, of course, that we are operating 
in the realm of Euclidean geometry (for this theorem is de- 
pendent on the parallel postulate). Analytic geometry cannot 
escape all postulates: any geometrical problem must be solved 
within a set of postulates. However, analytic geometry can 
qUdY well solve problems in Lobachevskian and in Euclidean 
geometry. The important advantage which analytic geometry 
has lies in the realm of constructions. Euclid could draw only 
straight lines and circles, and Lobachevski, for all his differ- 
erences with Euclid on parallelism, permitted himself no dif- 
ferent constructions. Descartes, however, permits himself to 
draw a~ figure whatsoever, because he pays no attention to 
construction postulates. 

The second reason for the power of Descartes’ method is 
the trick of assuming, when a problem needs to be solved, that 
the solution has already been effected. Then, with the required 
line already drawn, Descartes works backwards. If a certain 
line is to be drawn, Descartes simply says, “Let it be done.” 
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(A is the point at which the perpendicular from F meets AB. 
The distance AF is fixed; let us call it CL. Now drop a perpen- 
dicular from C to AF extended; let it intersect this extension 
at D. CDF is a right triangle; hence, according to Proposition 
47 of Euclid, Book I (the so-called Pythagorean theorem), 

?%‘%3=?i%+DCk 
Note that FD = y - a, and that DC = n. We can write, there 
fore, 

cF2 = (y - a)2 + x2. 
We also know that CF = CB = y. And so we have 

y2 = (y - a)2 + x2. 
y2 = y2 - 2ya + a2 + x2. 

2ya = a2 + x2. 
This can also be written as follows: 

2ya - a2 = x2 

2a(y -3 = x2 

No matter which way the equation is written, this is the solu- 
tion to the problem. 

How is this a solution? We pointed out earlier that no con- 
struction of the desired line by strictly Euclidean means was 
possible, and Descartes’ solution certainIy is not Euclidean. 
Descartes solves the problem-but only if we revise our un- 
derstanding of what it means to solve a problem. For Euclid, 
it means to construct, by means of the given postulates, the 
desired figure. For Descartes, it means to tind an equation 
which reveals all of the characteristics of the desired figure 
(usually a curve). 

Employing Euclid’s conception of geometry, we know noth- 
ing about the curve we are looking for until it has been drawn. 
In fact, we do not even know that it actually exists. Employing 
Descartes’ conception of geometry, all that is needed is to &d 
the equation of the curve. If there is an equation, there is a 
curve; furthermore, the form of the equation reveals every- 
thing there is to know about the curve. For example, a trained 
mathematician looking at the equation which we derived from 
Figure 3-4 would be able to tell what kind of curve it is (a pa- 
rabola), which way it points, whether it curves very steeply, 
whether it intersects AB, and many other things. 

The actual drawing of the curve becomes quite unimportant, 
though it can of course be done. We fist divide x and y into 
arbitrary units. We may, for example, count off units on AB 
(the “x-axis”), by starting at A (calling A the O-point) and 
going to the right. The O-point for the “y-axis” must also be 
at A, so that AF becomes the y-axis. By choosing random val- 
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It is easy to see how greatly this method increases his ability 
to solve problems. All constructions involving curved lines 
other than circles remained completely foreign to Euclid, but 
they are definitely part of Descartes’ sphere of interest. 

Is this “backwards” method of solving problems legitimate? 
If the problem is to construct a line of such-and-such prop- 
erties, to say “Let the construction be done” seems simply to 
circumvent the problem. To understand the sense in which 
Descartes (and analytic geometry) provides legitimate solu- 
tions, we must investigate the meaning of “solution.” 

For Euclid, to solve a geometrical problem means to begin 
with what is given or known and then, gradually, piece by 
piece, to add other valid assertions (either propositions or 
postulates), until he arrives at the required answer. Because 
this method arrives at its goal by the compilation of various 
pieces of previously acquired knowledge, it is called the “syn- 
thetic” method. This method puts together, or synthesizes, 
many small pieces in order to arrive at a result which before 
was unknown. 

For Descartes, to solve a geometrical problem means to look 
at the solution as though he had already found it, and break- 
ing it up-or analyzing it-into small parts each of which is 
known to us. This method, therefore, is called the “analytic” 
method, and when it is applied to geometry it gives us analytic 
geometry. 

Is Descartes’ method better or worse than Euclid’s? Both 
methods have their advantages and disadvantages. Euclid’s 
has the advantage of being more orderly; slowly, he proceeds 
from what is known to new and unknown things. On the other 
hand, Descartes’ method has the advantage of being more 
easily learned and of being very fruitful for new discoveries. 
Euclid’s method suffers from the fact that, as we read along 
in a series of propositions or in a single proposition, we very 
often cannot understand why the geometer takes a particular 
direction. Quite frequently it comes as a surprise to the reader 
when Euclid arrives at his desired result. Descartes, who loved 
to impugn the motives of other mathematicians, claimed that 
this was precisely the reason why the ancient geometers em- 
ployed the synthetic method: their achievement seemed all the 
greater because the student could not understand how the re- 
sult had even been discovered. Although we may not agree 
with Descartes’ view of the ancients’ motives, we must con- 
cede that his method clarifies to a much greater extent the 
reason for each step undertaken. 



CHAPTER FOUR 

Archimedes--Numbers and Counting 

PART I 

We have already mentioned that Euclid’s Elements contains 
arithmetical as well as geometrical material. In the present 
selection, we present two short excerpts from the three number 
books (Books VII-IX). First, there are all the definitions that 
Euclid puts down at the beginning of Book VII; and secondly, 
there is one very important proposition from Book IX. Of 
course, the number books contain a great deal more than this, 
but much of it is very ordinary arithmetical stuff and some of 
it is also not of much interest to us any more. But the two 
excerpts which we have selected retain their validity and their 
utility. 

In addition to Euclid, we also make the acquaintance here 
of Archimedes, with the little treatise called The Sand-Reck- 
oner. ‘Archimedes wrote many treatises, and quite a few of 
them have come down to us. Many deal with problems of 
physics; others deal with pure mathematics. The Sand-Reckoner 
attacks a fairly simple problem, but one that is nevertheless 
important: how to count up to large numbers, and how to 
name large numbers in a consistent fashion. 

I13 
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make some number, the number so produced is called plane, 
and its sides are the numbers which have multiplied one an- 
other. 

17. And, when three numbers having multiplied one an- 
other make some number, the number so produced is solid, 
and its sides are the numbers which have multiplied one 
another. 

18. A square number is equal multiplied by equal, or a 
number which is contained by two equal numbers. 

19. And a cube is equal multiplied by equal and again by 
equal, or a number which is contained by three equal numbers. 

20. Numbers are proportional when the fist is the same 
multiple, or the same part, or the same parts, of the second 
that the third is of the fourth. 

21. Similar plane and solid numbers are those which have 
their sides proportional. 

22. A perfect number is that which is equal to its own 
parts. . . 

BOOK IX 

PROPOSITION 20 

Prime numbers are more than any assigned multitude of prime 
numbers. 

Let A, B, C be the assigned prime numbers; I say that there 
are more prime numbers than A, B, C. 

For let the least number measured by A, B, C be taken, 
and let it be DE; let the unit DF be added to DE. 

Then EF is either prime or not. 

A- 
B- G 
C 

E 
D 

F 

First, let it be prime; then the prime numbers A, B, C, EF 
have been found which are more than A, B, C. 

Next, let EF not be prime; therefore it is measured by some 
prime number. 

[VII. 311 



114 BREAKTHROUGHS IN MATHEMATICS 

Euclid: 
Elements of Geometry* 

BOOK VII 

DEFINITIONS 

1. An unit is that by virtue of which each of the things that 
exist is called one. 

2. A number is a multitude composed of units. 
3. A number is a part of a number, the less of the greater, 

when it measures the greater; 
4. but parts when it does not measure it. 
5. The greater number is a multiple of the less when it is 

measured by the less. 
6. An even number is that which is divisible into two equal 

Parts* 
7. An odd number is that which is not divisible into two 

equal parts, or that which differs by an unit from an even 
number. 

8. An even-times even number is that which is measured 
by an even number according to an even number. 

9. An even-times odd number is that which is measured 
by an even number according to an odd number. 

10. An odd-times odd number is that which is measured by 
an odd number according to an odd number. 

11. A prime number is that which is measured by an unit 
alone. 

12. Numbers prime to one another are those which are 
measured by an unit alone as a common measure. 

13. A composite number is that which is measured by some 
number. 

14. Numbers composite to one another are those which are 
measured by some number as a common measure. 

15. A number is said to multiply a number when that which 
is multiplied is added to itself as many times as there are units 
in the other, and thus some number is produced. 

16. And, when two numbers having multiplied one another 

* From The Thirteen Books of Euclid’s Elements, trans. by Sir 
Thomas L. Heath (2nd ed.; London: Cambridge University Press, 1926). 
Reprinted by permission. 
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line between the centre of the sun and the centre of the earth. 
This is the common account as you have heard from astron- 
omers. But Aristarchus of Samos brought out a book con- 
sisting of some hypotheses, in which the premises lead to the 
result that the universe is many times greater than that now 
so called. His hypotheses are that the fixed stars and the sun 
remain unmoved, that the earth revolves about the sun in the 
circumference of a circle, the sun lying in the middle of the 
orbit, and that the sphere of the fixed stars, situated about 
the same centre as the sun, is so great that the circle in which 
he supposes the earth to revolve bears such a proportion 
to the distance of the fixed stars as the centre of the sphere 
bears to its surface. Now it is easy to see that this is impossible; 
for, since the centre of the sphere has no magnitude, we cannot 
conceive it to bear any ratio whatever to the surface of the 
sphere. We must however take Aristarchus to mean this: since 
we conceive the earth to be, as it were, the centre of the uni- 
verse, the ratio which the earth bears to what we describe as 
the ‘universe’ is the same as the ratio which the sphere con- 
taining the circle in which he supposes the earth to revolve 
bears to the sphere of the fixed stars. For he adapts the proofs 
of his results to a hypothesis of this kind, and in particular 
he appears to suppose the magnitude of the sphere in which 
he represents the earth as moving tc be equal to what we call 
the ‘universe.’ 

I say then that, even if a sphere were made up of the sand, 
as great as Aristarchus supposes the sphere of the fixed stars 
to be, I shall still prove that, of the numbers named in the 
Principles, some exceed in multitude the number of the sand 
which is equal in magnitude to the sphere referred to, pro- 
vided that the following assumptions be made. 

1. The perimeter of the earth is about 3,000,OOO stadia and 
not greater. 

It is true that some have tried, as you are of course aware, 
to prove that the said perimeter is about 300,000 stadia. But 
I go further and, putting the magnitude of the earth at ten 
times the size that my predecessors thought it, I suppose its 
perimeter to be about 3,000,OOO stadia and not greater. 

2. The diameter of the earth is greater than the diameter of 
the moon, and the diameter of the sun is greater than the di- 
ameter of the earth. 

In this assumption I follow most of the earlier astronomers. 
3. The diameter of the sun is about 30 times the diameter 

of the moon and not greater. 
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Let it be measured by the prime number G. 
I say that G is not the same with any of the numbers A, B, C. 
For, if possible, let it be so. 
Now A, B, C measure DE; therefore G also will measure 

DE. 
But it also measures EF. 
Therefore G, being a number, will measure the remainder, 

the unit DF: which is absurd. 
Therefore G is not the same with any one of the numbers 

A, B, C. 
And by hypothesis it is prime. 
Therefore the prime numbers A, B, C, G have been found 

which are more than the assigned multitude of A, B, C. 
Q.E.D. 

Archimedes: The Sand Reckoner* 

“There are some, king Gelon, who think that the number 
of the sand is infinite in multitude; and I mean by the sand 
not only that which exists about Syracuse and the rest of Sicily 
but also that which is found in every region whether inhabited 
or uninhabited. Again there are some who, without regarding 
it as infinite, yet think that no number has been named which 
is great enough to exceed its multitude. And it is clear that 
they who hold this view, if they imagined a mass made up of 
sand in other respects as large as the mass of the earth, in- 
cluding in it all the seas and the hollows of the earth f2led up 
to a height equal to that of the highest of the mountains, 
would be many times further still from recognising that any 
number could be expressed which exceeded the multitude of 
the sand so taken. But I will try to show you by means of 
geometrical proofs, which you will be able to follow, that, of 
the numbers named by me and given in the work which I sent 
to Zeuxippus, some exceed not only the number of the mass of 
sand equal in magnitude to the earth filled up in the way de- 
scribed, but also that of a mass equal in magnitude to the 
universe. Now you are aware that ‘universe’ is the name 
given by most astronomers to the sphere whose centre is the 
centre of the earth and whose radius is equal to the straight 

* From The Works of Archimedes, ed. by Sir Thomas L. Heath (Cam- 
bridge: at the University Press, 1897). Reprinted by permission. 
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Further, let the plane cut the sphere of the ‘universe’ (i.e. 
the sphere whose centre is C and radius CO) in the great 
circle AOB. 

Draw from E two tangents to the circle FKG touching it 
at P, Q, and from C draw two other tangents to the same circle 
touching it in F, G respectively. 

Let CO meet the sections of the earth and sun in H, K 
respectively; and let CF, CG produced meet the great circle 
AOB in A, B. 

Join EO, OF, OG, OP, OQ, AB, and let AB meet CO in M. 
Now CO > EO, since the sun is just above the horizon. 

Therefore L PEQ > L FCG. 

AndLPEQ>&,R 

but <AR > 
where R represents a right angle. 

Thus L FCG <&R, a fortiori, 
and the chord AB subtends an arc of the great circle which is 
less than &th of the circumference of that circle, i.e. 

AB < (side of 656-sided polygon inscribed in the circle). 
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It is true that, of the earlier astronomers, Eudoxus declared 
it to be about nine times as great, and Pheidias my father 
twelve times, while Aristarchus tried to prove that the diam- 
eter of the sun is greater than 18 times but less than 20 times 
the diameter of the moon. But I go even further than Aris- 
tarchus in order that the truth of my proposition may be 
established beyond dispute, and I suppose the diameter of the 
sun to be about 30 times that of the moon and not greater. 

4. The diameter of the sun is greater than the side of the 
chiliagon inscribed in the greatest circle in the (sphere of the) 
universe. 

I make this assumption because Aristarchus discovered that 
the sun appeared to be about &th part of the circle of the 
zodiac, and I myself tried, by a method which I will now 
describe, to find experimentally the angle subtended by the sun 
and having its vertex at the eye.” 

[Up to this point the treatise has been literally translated 
because of the historical interest attaching to the ipsissima 
verba of Archimedes on such a subject. The rest of the work 
can now be more freely reproduced, and, before proceeding to 
the mathematical contents of it, it is only necessary to remark 
that Archimedes next describes how he arrived at a higher and 
a lower limit for the angle subtended by the sun. This he did 
by taking a long rod or ruler, fastening on the end of it a 
small cylinder or disc, pointing the rod in the direction of the 
sun just after its rising (so that it was possible to look directly 
at it), then putting the cylinder at such a distance that it just 
concealed, and just failed to conceal, the sun, and lastly mea- 
suring the angles subtended by the cylinder. He explains also 
the correction which he thought it necessary to make because 
“the eye does not see from one point but from a certain area.“] 

The result of the experiment was to show that the angle 
subtended by the diameter of the sun was less than &th part, 

and greater than &th part, of a right angle. 
TO prove that (on this assumption) the diameter of the sun 

is greater than the side of a chiliagon, or figure with 1000 equal 
sides, inscribed in a great circle of the ‘universe.’ 

Suppose the plane of the paper to be the plane passing 
through the centre of the sun, the centre of the earth and the 
eye, at the time when the sun has just risen above the horizon. 
Let the plane cut the earth in the circle EHL and the sun in 
the circle FKG, the centres of the earth and sun being C, 0 
respectively, and E being the position of the eye. 
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(1) Suppose, for brevity, that d, represents the diameter 
of the ‘universe,’ d, that the sun, d, that of the earth, and d, 
that of the moon. 

By hypothesis, d, I+ 3Od,,,, [Assumption 31 

and de > dm; [Assumption 21 

therefore d, C 30d,. 
Now, by the last proposition, 

d, > (side of chiliagon inscribed in great circle), 
so that (perimeter of chiliagon) < lOOOd, 

< 30,00Od,. 
But the perimeter of any regular polygon with more sides 

than 6 inscribed in a circle is greater than that of the inscribed 
regular hexagon, and therefore greater than three times the 
diameter. Hence (perimeter of chiliagon) > 3d,. 

It follows that d, < lO,OOOd,. 
(2) (Perimeter of earth) > 3,000,OOO stadia. bwm~tion II 

and (perimeter of earth) > 3d,. 
Therefore d, < l,OOO,OOO stadia, 
whence d, < 10,000,000,000 stadia. 

Assumption 5. 
Suppose a quantity of sand taken not greater than a poppy- 

seed, and suppose that it contains not more than 10,000 grains. 
Next suppose the diameter of the poppy-seed to be not less 

than&h of a finger-breadth. 

Orders and periods of numbers. 
I. We have traditional names for numbers up to a myriad 

(10,000) ; we can therefore express numbers up to a myriad 
myriads (100,000,000). Let these numbers be called num- 
bers of the first order. 

Suppose the 100,000,000 to be the unit of the second order, 
and let the second order consist of the numbers from that unit 
up to (100,000,000)2. 

Let this again be the unit of the third order of num- 
bers ending with (100,000,000)3; and so on, until we 
reach the 100,000,000th order of numbers ending with 
(100,000,000) i~~cc@~, which we will call P. 

II. Suppose the numbers from 1 to P just described to form 
the first period. 

Let P be the unit of the first order of the second period, and 
let this consist of the numbers from P up to 100,000,000 P. 

Let the last number be the unit of the second order of the 
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NOW the perimeter of any polygon inscribed in the great 
circle is less than PO. [Cf. Measurement of a circle, Prop. 3.1 

Therefore AB : co < 11 : 1148, 
and, a fortiori, AB <&CO. . . . . . . . . . . .(a). 

Again, since CA = CO, and AM is perpendicular to CO, 
while OF is perpendicular to CA, AM = OF. 

Therefore AB = 2AM = (diameter of sun). 
Thus (diameter of sun) < $0, by (a), 

and, a fortiori 

(diameter of earth) < $0. L4ssLImption 21 

Hence CH+OK<&O, 

so that HK>=CO 

Ed 
CO:HK<%:;9. 

CO > CF, 
while HK < EQ. 

Therefore CF:EQ<100:99 . . . . . . . . . . . . (p). 
Now in the right-angled triangles CFO, EQO, of the sides 

about the right angles, 
OF = OQ, but EQ < CF (since EO < CO). 
Therefore LOEQ:LOCF>CO:EO. 
but <CF:EQ. 
Doubling the angles, 

But 

Therefore 

LPEQ:LABC<CF:EQ 
< 100 : 99, by (j3) above. 

LPEQ >& R, by hypothesis. 

L ACB >&R 

>&R. 

It follows that the arc AB is greater than&h of the circUm- 

ference of the great circle AOB. 
Hence, a fortiori, AB > (side of chiliagon inscribed in great 

circle), and AB is equal to the diameter of the sun, as proved 
above. 

The following results can now be proved: 
(diameter of ‘universe’) < 10,000 (diameter of earth), 

and (diameter of ‘universe’) < 10,000,000,000 studia. 
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Octads. 
Consider the series of terms in continued proportion of 

which the tirst is 1 and the second 10 [i.e. the geometrical 
progression 1, 101, 102, 103, . . . I. The first octud of these 
terms [i.e. 1, 101, 102,. . . 1071 fall accordingly under the first 
order of the first period above described, the second octad [i.e. 
108, 109, . . . lOts] under the second order of the first period, 
the tist term of the octad being the unit of the corresponding 
order in each case. Similarly for the third octad, and so on. 
We can, in the same way, place any number of octads. 

Theorem. 
If there be any number of terms of a series in continued 

proportion, say Al, AZ, As, . . . A,,,, . . . A,,, . . . A,,,+,,-1, . . . of 
which A1 = 1, A2 = 10 [so that the series forms the geomet- 
rical progression 1, 101, 102, . . . 10m--1, . . . lo”--1, . . . 
10m+n-2, . . . 1, and if any two terms as A,,,, A,, be taken and 
multiplied, the product A, * A,, will be a term in the same 
series and will be as many terms distant from A,, as A,,, is dis- 
tant from Al; also it will be distant from A1 by a number of 
terms less by one than the sum of the numbers of terms by 
which A,,, and A,, respectively are distant from AI. 

Take the term which is distant from A, by the same num- 
ber of terms as A, is distant from Al. This number of terms is 
m (the first and last being both counted). Thus the term to be 
taken is m terms distant from A,, and is therefore the term 
&,I. 

We have therefore to prove that 
A,.A, = A,,-I. 

Now terms equally distant from other terms in the con- 
tinued proportion are proportional. 

Thus Am Am+n-I. 
-=A,- AI 

But A,,, = A,*AI, since A1 = 1. 
Therefore A,+,,-1 = A,,, . A n......... (1). 
The second result is now obvious, since A, is m terms 

distant from AI, A, is n terms distant from AI, and Am+n-l is 
(m + n - 1) terms distant from AI. 

Application to the number of the sand. 
By Assumption 5 [p. 1211, 

(diam. of poppy-seed) a& (finger-breadth) ; 
and, since spheres are to one another in the @icate ratio 

of their diameters, it follows that sphere 
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second period, and let this end with (100,000,000)2 P. 
We can go on in this way till we reach the 1OO,OOO,OOOth 

order of the second period ending with ( 100,000,000) rCVOO800 
P, or Pz. 

III. Taking p2 as the unit of the first order of the third 
period, we proceed in the same way till we reach the 
1OO,OOO,OOOth order of the third period ending with P3. 

Iv. Taking P3 as the tit of the first order of the fourth 
period, we continue the same process until we arrive at the 
1OO,OOO,OOOth order of the 100,000,000th period ending with 
Pl@-WW~. This last number is expressed by Archimedes as “a 
myriad-myriad units of the myriad-myriad-th order of the 
myriad-myriad& period, which is easily seen to be 100,000,000 
times the product of ( 100,000,000) a%999399 and p99~!Q’s9~9*, i.e. 
p100,ooo,ooo. 

me scheme of numbers thus described can be exhibited 
more clearly by means of indices as follows. 

FIRST PERIOD. 

First order. Numbers from 1 to 108. 
Second order. ” ” 108 to 1016. 
Third order. ” ” 1016 to 10”. 

. 
(lO*);h order. ” ” 18*.(1@--1) to lO**ro” (P, say). 

SECOND PERIOD. 

First order. ” ” P-1 to P-108. 
Second order. ” ” P * 108 to P * 1016. 

. 

( 10s) jh order. ” 

. 

” p. 108. W-1) to 
P. lOs.rw (or P2). 

( 108) TH’PERIOD. 

First order. ” 
Second order. ” 

” Pip--1* 1 to P108--1.10*. 
” pW-1.108 to ploS-1.1016. 

. 

(10s) ;h order. ” ” plW-1.1()8.(108-l) to 

Pl@-l. lOgel@ (i.e. Plw). 

The prodigious extent of this scheme will be appreciated 
when it is considered that the last number in the first period 
would be represented now by 1 followed by 800,000,000 
ciphers, while the last number of the (10s) th period would 
require 100,000,000 times as many ciphers, i.e. 80,000 million 
millions of ciphers.] 
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(7) 100,000,000 stadia 

(8) 10,000,000,000 
stadia 

< 40th term [1039] 

< [107 or] 10,000,000 units of fifth 
order. 

< (7th term of series) X (40th 
term) 

< 46th term Cl@51 
< [ 103 or] 100,000 units of sixth or- 

der. 
< (7th term of series) X (46th 

term) 

I 

< 52nd term of series [105i] 
< [103 or] 1,000 units of seventh or- 

der. 
But, by the proposition above [p. 1201, 

(diameter of ‘universe’) < 10,000,000,000 stadia. 
Hence the number of grains of sand which could be con- 

tained in a sphere of the size of our ‘universe’ is less than 
1,000 units of the seventh order of numbers [or 10511. 

From this we can prove further that a sphere of the size 
attributed by Aristarchus to the sphere of the fixed stars would 
contain a number of grains of sand less than 10,000,000 units 
of the eighth order of numbers [or 1056+7 =I 10631. 

For, by hypothesis, 
(earth) : (‘universe’) = (‘universe’) : (sphere of fixed 
stars). 

And [p. 1201 
(diameter of ‘universe’) < 10,000 (diam. of earth) ; 

whence 
(diam. of sphere of fixed stars) < 10,000 (diam. of ‘universe’). 

Therefore 
(sphere of iixed stars) < ( 10,000) 3. (‘universe’). 

It follows that the number of grains of sand which would be 
contained in a sphere equal to the sphere of the fixed stars 

< ( 10,000)3 X 1,000 units of seventh order 
< ( 13th term of series) X (52nd term of series) 
< 64th term of series [i.e. 10631 
< [ 107 or] 10,000,000 units of eighth order of 

numbers. 
Conclusion. 

“I conceive that these things, king Gelon, will appear in- 
credible to the great majority of people who have not studied 
mathematics, but that to those who are conversant therewith 
and have given thought to the question of the distances and 
sizes of the earth and the sun and moon and the whole universe 
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of diam. 1 tiger-breadth > 64,000 poppy-seeds 
> 64,000 X 10,000 
> 640,000,OOO 
> 6 units of second 

I 
grains 

order + 40,000,OOO of 
units of first order 

I 

sand. 
(a fortiori) < 10 units of second 

order of numbers. 
We now gradually increase the diameter of the supposed 

sphere, multiplying it by 100 each time. Thus, remembering 
that the sphere is thereby multiplied by 1003 or l,OOO,OOO, the 
number of grams of sand which would be contained in a sphere 
with each successive diameter may be arrived at as follows. 

Diameter of sphere. 

(1) 100 finger- 
breadths 

(2) 

(3) 

10,000 finger- 
breadths 

1 stadium 
(< 10,000 finger- 
breadths) 

(4) 100 stadia 

(5) 10,000 stadia 

(6) l,OOO,OOO stadia 

Corresponding number of grains of 
sand. 
< l,OOO,OOO X 10 units of second 

order. 
< (7th term of series) X (10th term 

of series) 
< 16th term of series [i.e. 10151 
< [ 107 or] 10,000,000 units of the 

second order. 
< l,OOO,OOO X (last number) 
< (7th term of series) X ( 16th term) 
< 22nd term of series [i.e. 10211 
< [ 105 or] 100,000 units of third or- 

der. 
< 100,000 units of third order. 

< l,OOO,OOO X (last number) 
< (7th term of series) X (22nd 

term) 
< 28th term of series [1027] 

< [103 or] 1,000 units of fourth 
order. 

< 1 ,OOO,OOO X (last number) 
< (7th term of series) X (28th 

term) 
< 34th term of series [loss] 
< 10 units of fifth order. 
< (7th term of series) X (34th 

term) 
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“(a + b) + c = a + (b + c) .” There are several other, simi- 
lar arithmetical postulates which are also omitted by Euclid. 
Euclid, who was so careful and precise in his formulation of 
the geometrical postulates, is apparently quite careless and 
happy-go-lucky here. In contrast to this, modern arithmetic 
and algebra pay much attention to the problem of tinding the 
right postulates. 

Definition 11 defhres a prime number as one “which is meas- 
ured by an unit alone.” Another definition of a prime number 
is that it is not divisible by any number (except itself and 
unity). Examples of prime numbers are 2 (the only even 
prime number), 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, and so 
on. Even from these few examples it is obvious that prime 
numbers become more scarce as we count higher. Between 23 
and 29 five not-prime numbers (composite numbers) inter- 
vene. These intervals become larger and larger; between 199 
and 211, there are 11 composite numbers. This increasing 
rarity of prime numbers naturally leads to the question whether 
perhaps beyond a certain point in the number scale, there 
might be no more prime numbers at all. Is it possible that all 
numbers beyond a certain one (probably very large) are com- 
posite numbers? Or do prime numbers keep recurring, al- 
though less and less frequently? 

Proposition 20 of Book IX of the EZements answers this 
question: The quantity of prime numbers is infinitely large. 
Euclid’s way of stating the proposition does not immediately 
reveal what he has in mind: “Prime numbers are more than 
any assigned multitude of prime numbers.” This means the 
following: Suppose it is claimed that the number of prime 
numbers is finite, say equal to n. Then Euclid proves that there 
must be more than n prime numbers. 

The last statement is a rather curious one. On the asump- 

ti011 that something is the case, namely, that there are just n 
prime numbers, the opposite is proved, namely, that there 
are more than n prime numbers. This oddity in the proof, to- 
gether with the intrinsic interest in the statement of the propo- 

sition, constitutes the reason for our including this single 
proposition from the arithmetical books of Euclid’s Elements. 
The proof is also remarkable for the fact that it depends on 
nothing previously proved; it is an exercise in pure logic alone. 

Instead of stating the proof in general terms, let US first 

exemplify it. Suppose that someone said: “The number of 
prime numbers is finite.” We would then be justified in asking 
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the proof will carry conviction. And it was for this reason that 
I thought the subject would be not inappropriate for your 
consideration.” 

PART II 

In the light of the achievements of the Greek geometers, 
we sometimes forget that the Greeks also devoted a great deal 
of study to numbers. This chapter illustrates their theoretical 
as well as their practical interest in numbers. The selection 
from Euclid has to do with number theory; the selection from 
Archimedes deals with the more mundane problem of how to 
name numbers. 

We will begin with the brief selection from Euclid. His ap- 
proach to arithmetic is very similar to his approach to geom- 
etry; in both sciences he begins with a long series of definitions 
which define both terms the reader is already familiar with 
and terms that are probably new to him. As was the case in 
Book I, the early definitions, because they deal with the basic 
terms, present the greatest difficulty; see, for example, Euclid’s 
definitions of “unit” and “number.” 

The definitions are not followed by postulates or axioms. 
The absence of axioms can easily be explained: axioms are no 
different for arithmetic than for geometry; having been set 
down in Book I, they need not be repeated here. The lack of 
postulates is a different matter, however. It seems as though 
Euclid did not think that he needed to postulate anything here 
as he did in geometry. Yet this is clearly wrong. Just as there 
are geometrical constructions the possibility of which must be 
granted to Euclid in geometry, so there are a number of oper- 
ations in arithmetic which must be granted to him if he is to 
prove anything here. For example, there should be a postulate 
which says: “Let it be granted that if a, b, and c are three 
numbers, then the sum of a and b added to c is the same as 
the number obtained by adding a to the sum of b and c.” Or, 
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numbers. we are able to demonstrate that there are. at least 
II + 1 prime numbers. We might call this .method “reduction 
to the opposite.” Although this method is powerful, the num- 
ber of instances where it can be. applied is small. 

Now we turn our attention to Archimedes. There was prob- 
ably no branch of mathematics known to him to which Archi- 
medes did not make a valuable contribution. Living. in the 
third century B.C. (from aproximately 287 to 212 B.C.), 

Archimedes displayed a dazzling skill in geometry, in arithme- 
tic, in the calculus, in the physics of the lever, and of floating 
bodies-a skill that was not matched until two thousand years 
later. 

Archimedes lived in Syracuse in Sicily, though he had studied 
at Alexandria. The Sand -Reckoner is addressed to Gelon, the 
king of Syracuse; Archimedes was on friendly terms with both 
Gelon and his father, Hiero. On behalf of the kings of Syra- 
cuse, Archimedes constructed many clever mechanical devices, 
especially for repelling besieging armies. Archimedes attached 
little importance to these ingenious machines; he considered 
himself a mathematician and requested that on his tombstone 
there be displayed a sphere with a circumscribed cylinder- 
thus commemorating what he considered to be his outstanding 
achievement, namely, the discovery of the relation of the vol- 
ume of asphere and a cylinder. 

Archimedes died when Syracuse was conquered ‘by the 
Romans under the command of Marcehus in 212 B.C. Al- 
though Marcellus had given orders that Archimedes was not 
to be harmed, in the confusion of the battle Archimedes was 
slam. Marcellus was chagrined by the unfortunate event and 
gave Archimedes a decent burial. Much of our knowledge of 
Archimedes as a person stems from Plutarch’s Life of Mar- 
cellus. He is best seen, however, through his works, of which 
a great many have survived. The Sand-Reckoner, though it is 
a short work, displays his general scientific erudition as well 
as his skill as a mathematician. 

All of us have at one time or. another encountered someone 
given to constant exaggeration. One of the most common 
exaggerations is the substitution of the word “infinite” for the 
phrase “very large.” Many people say that something is “in- 
finitely better than something else,” or that “a modern ballistic 
missile is infinitely more complicated than the airplane of the 
brothers Wright,” or that “the number of atoms in a given 
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hh: “How many prime numbers are there?’ His answer 
would have to be some number; let us assume that he an- 
swers: “There are just four prime numbers.” Using Euclid’s 
method, we will now show that if there are four prime nun+ 
bers, then there is at least another, a fifth prime number. 

The four prime numbers claimed to be the only ones would 
have to be the fist four primes, of course; that is, they would 
have to be 2,3,5,7. Form the product of these four numbers- 
namely, 2 l 3 l 5 l 7 = 210. Add 1 to this product: 210 + 1 
= 211. This new number is either a prime number or not. In 
this case, 211 is a prime number and, therefore, the proposition 
has been proved, for we have found a fifth prime number. 

Suppose it had been claimed that there are just six prime 
numbers-namely, 2, 3, 5, 7, 11, 13. Form the product of 
these numbers. 2 l 3 l 5 l 7 l 11 l 13 = 30,030. Add 1 to 
this product: 30,030 + 1 = 30,031. Again we say that this 
number is either prime or not. In this case, it is a composite 
number and therefore divisible by some prime number. This 
prime number cannot be any of the original six, for if any of 
them is divided into 30,031, it leaves a remainder of 1. 
(This is the case because all of the original six prime numbers 
are divisible into 30,030.) Therefore, the proposition has again 
been proved, since a seventh prime number has been found. 
This seventh prime number is the one which is a factor of 
30,031. In this example, the number would be 59, since 30,031 
= 59 l 509. (509 is also prime, so that we have actually 
found not only a seventh but also an eighth prime number.) 

Euclid’s proof is merely a generalization of this. If it is 
asserted that there are just n prime numbers, form the product 
of these n prime numbers. Add 1 to this product. This number 
-call it K-is itself either prime or not. If K is prime, the 
proposition has already been proved. If K is not a prime num- 
ber, then it must be divisible by some prime number. This 
prime number is not one of the original IZ primes, for any of 
these n primes, if divided into K, leaves the remainder 1. 
Hence a new prime number has been found-namely, the one 
which is the factor of K. 

What is the method of this proof? It somewhat resembles 
reduction to the absurd. We are to prove that the number of 
primes is larger than any given number, and so we begin by 
assuming the contradictory, namely that the number of primes 
is equal to a given number. But the conclusion which we come 
to is not in itself absurd; it merely contradicts the original 
assumption. From the assumption that there are just n prime 
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In defining what he means by “universe,” Archimedes writes 
as follows (remember that the entire work is addressed to 
King Gelon) : 

Now you are aware that “universe” is the name given 
by most astronomers to the sphere whose centre is the 
centre of the earth and whose radius is equal to the 
straight line between the centre of the sun and the centre 
of the earth (p. 116). 

This view of the universe is based on the geocentric hypothe- 
sis: The earth is thought to be in the center of the universe, 
with sun, moon, planets, and the fixed stars all revolving 
around the earth. In this hypothesis, the fixed stars are usually 
considered to be farther out than any other heavenly body, 
but as Archimedes states the theory here, it appears that the 
sun is at the greatest distance from the earth. 

Archimedes then reports that there is also another view of 
the universe: 

Aristarchus of Samos brought out a book consisting of 
some hypotheses, in which the premises lead to the re- 
sult that the universe is many times greater than that now 
so called. His hypotheses are that the fixed stars and the 
sun remain unmoved, that the earth revolves about the 
sun in the circumference of a circle, the sun lying in the 
middle of the orbit, and that the sphere of the fixed stars, 
situated about the same centre as the sun, is so great 
that the circle in which he supposes the earth to revolve 
bears such a proportion to the distance of the lixed stars 
as the centre of the sphere bears to its surface (p. 117). 

This is a heliocentric view: the sun is the center of the 
universe and the earth revolves around the sun. The fixed 
stars are truly fixed-that is, motionless-but appear to move 
because of the daily rotation of the earth. This is, of course, 
exactly the theory put forth by Copernicus some 1,700 years 
later. Aristarchus’ theory apparently could not hold its own 
against the rival geocentric theory and was not generally ac- 
cepted. (We may surmise that the reason for Aristarchus’ fail- 
ure lay in the apparent greater simplicity of the geocentric 
theory. In the course of time, however, the geocentric theory 
needed so many modifications and additions that, by the time 
of Copernicus, it was far more complicated than the rediscov- 
ered heliocentric theory.) 
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piece of matter is infinite.” All of these expressions are not 
merely inaccurate, but wrong. Nothing on this earth is in- 
finitely more complicated or infinitely better than -yang 
else, and there is no number that is infinite. (Throughout this 
chapter, we use the word “number” to stand for “whole num- 
ber” or “integer.“) An infinite amount-leaving aside the 
question of whether or not there is such a thing-would mean 
an amount that cannot be counted, no matter how much time 
is taken to do it. An infinite quantity is not enumerable--it 
cannot be counted. And conversely, anything which ccuz be 
counted-any quantity, no matter how large, to which a 
number can be assigned-is by that token not infinite. No 
number can ever be said to be infinite, for every number al- 
ways has a next one; hence the former number cannot be 
called infinite, since there is at least one number greater than 
it. In fact, a good definition of intinity state; that infinity is 
larger than any number that you may name and that conse- 
quently, infinity itse!f is not a number. 

King Gelon, to whom The Sand-Reckoner is addressed, was 
evidently a person foe. whom “very la. 2” ald “infinite” were 
synonymous, especially when “very large” means something of 
the order of ,millions or even more. One of the major tasks 
that Archimedes sets for himself in this little treatise is to show 
the king that “large’‘-no matter how large-is not infinite, 
but very definitely finite. Archimedes takes a quantity which 
seems to the uneducated to be so large as to be indistinguish- 
able from infinity-the number of grain; of sand in the uni- 
verse-and counts it. At least, he shows that this quantity can- 
not possibly exceed a certain number which he names. And 
so, if the quantity can be numbered, it is not infinite. 

In order to accomplish his purpose, Arc.,imedes must first 
have some notion of the size of the ulliver,e. He must tell us 
what he means by “the universe,” and how large he conceives 
it to be. He must also tell us how large i-e takes a grain of 
sand to be. Then Archimedes must find a way of naming 
very large numbers, so that he can tell us in a definite way the 
number of grains of sand in the universe. It will not do for 
him simply to say “it’s a very large number”; for nobody de- 
nies this. What is desired is a definite number to be assigned 
to the quantity of sand; this will show that the quantity is 
finite. 

By “universe” Archimedes means the space enclosed by the 
sphere of the fixed stars. (In ancient astronomy, all fixed stars 
were thought to be attached or “fixed” to one celestial sphere.) 
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of three bodies: the earth, the sun, and the moon. Since Archi- 
medes is interested in the size of the “universe,” he must con- 
nect these diameters with the diameter or with the circumfer- 
ence of the universe. This he does in Assumption 4, in which 
he tells us that if a regular chiliagon (figure of a thousand 
sides) is inscribed in the “equator” of the universe, then the 
diameter of the sun is greater than the side of the chiliagon. 
Actually, Archimedes proves this statement _ by means of ex- 
perimental evidence. Then he goes on: 

Since 
the diameter of the sun is -equal to or less than 30 diam- 

eters of the moon 
and 

the diameter of the moon is less than the diameter of the 
earth 

or 
30 diameters of the moon are less than 30 diameters of 

the earth, 
it follows that 

the diameter of the sun is less than 30 diameters of the 
earth. 

Assumption 4 states that 
the diameter of the sun is greater than the side of the 

chiliagon inscribed in the universe. 
Thus 

1000 diameters of the sun are greater than 1000 sides 
of the chiliagon 

which means that 
1000 diameters of the sun are greater than the circum- 

ference of the chiliagon. 
Turning this last inequality around, we have 

the circumference of the chiliagon is less than 1000 diam- 
eters of the sun 

or 
the circumference of the chiliagon is less than 30,000 

diameters of the earth. 
The circumference of a regular hexagon (six-sided figure) 

inscribed in a circle is three times the diameter of the circle. 
Any regular figure which has more than six sides has a circum- 
ference larger than that of the hexagon, but smaller than that 
of the circle. Consequently, the circumference of a regular 
chiliagon inscribed in the equator of the universe is greater 
than three times the diameter of the universe. Let us write 
this down: 
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If the heliocentric theory is adopted, the fixed stars must 
be far more distant from the earth than they need be in the 
geocentric theory. Although the earth is sometimes closer to, 
and sometimes farther from, a given star (depending on where 
the earth is in the course of its annual revolution around the 
sun), the earth always seems to be exactly in the center of the 
universe. This can be the case only if the distance to the fixed 
stars is so great that in relation to it, the distance from the 
earth to the sun is so small as to be negligible. This is what 
Archimedes means when he writes that “the sphere of the 
fixed stars . . . is so great that the circle in which he supposes 
the earth to revolve bears such a proportion to the distance of 
the iixed stars as the centre of the sphere bears to its surface.” 

Now Archimedes begins to put down some hypothetical fig- 
ures about the actual size of the universe. He is not so much 
concerned to give accurate figures for the astronomical dis- 
tances as to be sure always to give a greater distance than any- 
one has proposed. In this way-if he succeeds in showing that 
the grains of sand in such a universe are enumerable-it wilI 
certainly be obvious that the quantity of sand in the actual 
universe, being smaller, must be also enumerable. 

Archimedes begins by giving a value for the circumference 
of the earth. He assumes that it is- no larger than 3 million 
stadia. A stadium is a Greek unit of length; it was not every- 
where the same length. (Just as “mile” can mean a statute 
mile or a nautical mile, and just as “gallon” designates a dif- 
ferent volume in the United States and in Canada.) For our 
purposes we may say that a stadium is approximately 600 feet 
long. Consequently, as brief calculation will show, the figure 
of 3 million stadia is far too large jfor the circumference of 
the earth; in fact, 300,000 stadia, which, as Archimedes notes, 
some other astronomers proposed for the size of the earth, 
is much closer. But Archimedes is onIy interested in giving 
estimates that are not too small. 

Further, Archimedes notes that the diameter of the sun is 
greater than the diameter of the earth, while the diameter of 
the earth is greater than that of the moon. In addition, Archi- 
medes assumes that the diameter of the sun is about 30 times 
as great as the diameter of the moon, but not more than that. 
For this result he relies on experimental work by various as- 
tronomers; again, to be on the safe side he elects a value which 
makes the sun greater than any of the astronomers has found 
it to be. 

So far all the assumptions have dealt with the diameters 
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(400,000)3 

1 
But 

(400,000)3 = t4 ’ 1o5)3 - 64 . 10’5 . 
1 1 

Since, according to Archimedes, a sphere with the diameter 
of one poppy seed contains 10,000 grams of sand it follows 
that a sphere with a diameter of 1 stadium contains 64 l 

101s . 10,000 grams of sand, or 64 l 101s l 104 = 64 l 1019 
grains of sand. 

How many grains of sand are there in a sphere the size of the 
universe, or 10 billion stadia? Again we use the relation he- 
tween volumes of spheres: 
Volume of a sphere with a diameter of 1010 stadia 
Volume of a snhere with the diameter of 1 stadium = 

(10193 
- = 1030. 

1 
Since the smaller sphere (with the diameter of 1 stadium) 

contains 64 l 1019 grains of sand, the larger sphere must con- 
tain 1030 times as many grains. Now 1019 l 1030 = 1049. Thus 
the number of grains of sand in the universe, using Archi- 
medes’ assumptions, is 64 l 1049 (written as 64 followed by 
49 zeros). 

In making this calculation, we have employed the decimal 
system of numerical notation. This system is based on the 
powers of 10-10, 100, 1000, and so on. Each power of 10 
gives its name to a whole series of numbers; there are units, 
tens, hundreds, thousands, and so on. However, we very 
quickly run out of names for the powers of ten, and in any 
case it becomes difficult to remember just what we mean, for 
example, by a quadrillion. For that reason, mathematicians 
do not even try to name very large numbers with. words. They 
merely write them as powers of ten. Thus 5 million is very 
often written as 5 l 106. For numbers larger than a million, 
this manner of notation is almost mandatory. The reader will 
have noticed that we employed this notation for the number 
of grains in the universe. 

Let us now take a look at the system of naming numbers 
that Archimedes devised and see whether it is adequate to his 
purpose. That is, can numbers as large as 64 l 1049 (or even 
larger) be written in his notation? The Greeks, unlike us, had 
a single name for the number 10,000, namely “myriad.” Thus 
they had distinct names up to the fourth power of ten, namely, 
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The circumference of the chiliagon is greater than 3 diam- 
eters of the universe 

or, turning this around, 
3 diameters of the universe are less than the circumfer- 

ence of the chiliagon. 
Dividing by three, we have 

the diameter of the universe is less than y3 of the circum- 
ference of the chiliagon. 

Reverting to the relation between the circumference of the 
chiliagon and the diameter of the earth, we have 

the diameter of the universe is less than y3 of 30,000 
diameters of the earth, 

or 
the diameter of the universe is less than 10,000 diameters 

of the earth. 
Since the circumference of the earth has been assumed to 

be at most 3 million stadia, the diameter of the earthsmust be 
less than 1 million stadia. (This is true because the diameter 
of a circle is multiplied by T, which is greater than 3, in order 
to obtain the circumference of a circle.) 

Hence, if 
the diameter of the earth is less than 1 million stadia, 

it follows that 
the diameter of the universe is less than 10,000 million 

stadia, 
or 

the diameter of the universe is less than 10 billion stadia. 
Since, as we noted earlier, a stadium is about 600 feet or 

l/9 of a mile, the “universe” in this calculation turns out to 
have a diameter of about 1 .l billion miles. Imagine the vast 
quantity of sand, if thii entire universe were Bled with sand! 
Nevertheless, Archimedes proposes to tell us the number of 
grains of sand if this universe contained nothing but sand. 

Let us simplify Archimedes* statements just a little. Let us 
say, for example, that he maintains that 

1 stadium equals 10,000 fingerbreadths. 
Since 

1 fingerbreadth equals 40 diameters of a poppy seed, 
it follows that 

1 stadium equals 400,000 diameters of a poppy seed. 
Now the volumes of spheres are to each other as the cubes 

of their diameters. Hence we have 
Volume of a ‘sphere with the diameter of 1 stadium 
Volume of a sphere with the diameter of 1 poppy seed a 
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pressed, therefore, by a number of the seventh order. There is 
no need even to go to the-end of the first period of numbers! 

To appreciate Archimedes :achievementr in developing such 
a scheme, remember .that in explaining it, we constantly had 
recourse to the decimal system We expressed all of Arch&. 
medes’ numbers in terms. of powers of ten: Archimedes, it 
must be remembered, did- not possess the-symbol ‘%I!’ for writ- .- 
ing numbers. What seems easy to, us,” therefore, reqkad a 
tremendous .effort of %mgination and insight. Even without 
the symbol “0” Archimedes took the basic step in the writing 
of numbers: he uses. each number that he can express as the 
unit for a new group of numbers: This is exactly- what is done 
in the decimal system, or in any other system that writes its 
numbers by reference to the powers of some unit., 
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ten, a hundred, a thousand, and a myriad. Apparently they. 
had no names for larger numbers; for instance, they had no 
name for a million. But given the’names they had, they could 
give distinct names, Archimedes notes, up to a myriad myriads. 
For example, there might be a number as follows: 

4838 myriads, 659 thousands, 76 hundreds, 3 tens, 5. 
This number means: 

4838 l 10,000 plus 659 . 1000 plus 76 l 100 plus 3 l 10 
plus 5 or 

48,380,OOO plus 659,000 plus 7600 plus 30 plus 5. 
In the decimal system this number would be written aa 
49,046,635. 

Since a myriad myriads ( 100,000,000) is the last number 
that can be given a distinct name, Archimedes proposes that 
this number become the unit of a second group of numbers, 
which he calls numbers of the second order. (Numbers from 
1 to 100,000,000 he calls numbers of the first order.) Num- 
bers of the second order run from 100,000,000 to (lOO,OOO,- 
000) 2. This last number becomes the unit of numbers of. the 
third order. In general, the numbers of the nth order are those 
beginning with ( 100,000,000) n-1 and ending with ( lOO,OOO,- 
000)n. We can continue until we reach the 1OO,OOO,OOOth or- 
der of numbers, which, will end with the number (lOO,OOO,- 
000) i~@JO~~. Archimedes calls this number P. In decimal 
notation, P would be written as ( 108) iw or lO@ - I@‘). 

Archimedes now calls the entire group of numbers from 1 
to P the first period of numbers. Then he ,considers the num- 
ber P as the unit of the first order of the second period. The 
first order of the second unit would go from P up to lOO,OOO,- 
OOOP. There is no need to describe the rest of the scheme, 
since Archimedes does it adequately. But what isof interest is 
this: although Archimedes at this point has barely begun to 
develop his scheme, we are already far past the number needed 
to express the number of grains of sand in the universe. As we 
saw, this number was approximately 64 l 1049, or less than 
1052. Where does this number fail in Archimedes’ scheme? 

The first order of numbers goes from 1 to 108 (1 to a 
myriad). 

The second order of numbers goes from 108 to 1016 (a 
myriad to a myriad of myriads). 

The third order of numbers goes from 1016 to 1024. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
The seventh order of numbers goes from 1048 to 1056. 

The number of grains of sand in the universe can be ex- 
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myself for the frrst time obliged to lecture upon the elements 
of the differential calculus and felt more keenly than ever be 
fore the lack of a really scientific foundation for arithmetic. In 
discussing the notion of the approach of a variable magnitude 
to a fixed limiting value, and especially in proving the theorem 
that every magnitude which grows continually, but not beyond 
all limits, must certainly approach a limiting value, I had re- 
course to geometric evidences. Even now such resort to geomet- 
ric intuition in a first presentation of the differential calculus, I 
regard as exceedingly useful, from the didactic standpoint, and 
indeed indispensable, if one does not wish to lose too much 
time. But that this form of introduction into the differential 
calculus can make no claim to being scientific, no one will 
deny. For myself this feeling. of dissatisfaction was so over- 
powering that I made the fixed resolve,.to keep meditating on 
the question till I should find a purely arithmetic and perfectly 
rigorous foundation for the principles of infinitesimal analysis. 
The statement is so frequently made that the differential cal- 
culus deals with continuous magnitude, and yet an explana- 
tion of this continuity is nowhere given; even the most rigorous 
expositions of the differential calculus do not base their proofs 
upon continuity but, with more or less consciousness of the 
fact, they either appeal to geometric notions or those suggested 
by geometry, or depend upon theorems which are never es- 
tablished in a purely arithmetic manner. Among these, for 
example, belongs the above-mentioned theorem, and a more 
careful investigation convinced me that this theorem, or any 
one equivalent to it, can be regarded in some way as sufficient 
basis for infinitesimal analysis. It then only remained to dis- 
cover its true origin in the elements of arithmetic and thus at 
the same time to secure a real definition of the essence of con- 
tinuity. I succeeded Nov. 24, 1858, and a few days afterward 
I communicated the results of my meditations to my dear 
friend Durege with whom I had a long and lively discussion. 
Later I explained these views of a scientific basis of arithmetic 
to a few of my pupils, and here in Braunschweig read a paper 
upon the subject before the scientific club of professors, but I 
could not make up my mind to its publication, because, in 
the first place, the presentation did not seem altogether simple, 
and further, the theory itself had little promise. Nevertheless 
I had already half determined to select this theme as subject 
for this occasion, when a few days ago, March 14, by the 
kindness of the author, the paper Die Elemente der Funktionen- 
lehre by E. Heine (Crelle’s Journal, Vol. 74) came into my 



CHAPTER FIVE 

Dedekind-Irrational Numbers 

PART I 

Whereas the previous selection dealt with some fairly simple 
problems in the realm of numbers-whether they are prime, 
how many prime numbers there are, how to count numbers- 
the selection now before us deals with a very sophisticated 
problem. It establishes, in very rigorous and convincing fash- 
ion, that there is a kind of number which is very special. It is 
called “irrational,” and its defining property is that there is no 
number, no matter how small, which can be a factor of both 
an irrational number and a rational number. No matter how 
tiny a fraction you choose, you can never find one that will go 
into both the number 1 (a rational number) and the number 
fl (an irrational number). The existence of such numbers 
had been known long before Dedekind, but he put the theory 
of irrational numbers on a rigorous and respectable footing. 

Richard Dedekind : 
Continuity and Irrational Numbers* 

My attention was first directed toward the considerations 
which form the subject of this pamphlet in the autumn of 
1858. As professor in the Polytechnic School in Ziirich I found 

* From Essays on the Theory of Numbers, trans. by Wooster Wood- 
ruff Beman (3rd printing; Chicago-London: The Open Court Publish- 
ing Company, 1924), pp. 1-19. Reprinted by permission. 
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hands and confirmed me in my decision. In the main I fully 
agree with the substance of this memoir, and indeed I could 
hardly do otherwise, but I will frankly acknowledge that my 
own presentation seems to me to be simpler in form and to 
bring out the vital point more clearly. While writing this pref- 
ace (March 20, 1872)) I am just in receipt of the interesting 
paper Ueber die Ausdehnung eines Satzes aus der Theorie der 
trigonometrischen Reihen, by G. Cantor (Math. Annalen, Vol. 
5), for which I owe the ingenious author my hearty thanks. 
As I find on a hasty perusal, the axiom given in Section II 
of that paper, aside from the form of presentation, agrees with 
what I designate in Section III as the essence of continuity. 
But what advantage will be gained by even a purely abstract 
definition of real numbers of a higher type, I am as yet unable 
to see, conceiving as I do of the domain of real numbers as 
complete in itself. 

I PROPERTIES OF RATIONAL NUMBERS 

The development of the arithmetic of rational numbers is 
here presupposed, but still I think it worth while to call atten- 
tion to certain important matters without discussion, so as to 
show at the outset the standpoint assumed in what follows. I 
regard the whole of arithmetic as a necessary, or at least nat- 
ural, consequence of the simplest arithmetic act, that of count- 
ing, and counting itself as nothing else than the successive cre- 
ation of the infinite series of positive integers in which each 
individual is defined by the one immediately preceding; the 
simplest act is the passing from an already-formed individual 
to the consecutive new one to be formed. The chain of these 
numbers forms in itself an exceedingly useful instrument for 
the human mind; it presents an inexhaustible wealth of re- 
markable laws obtained by the introduction of the four fun- 
damental operations of arithmetic. Addition is the combina- 
tion of any arbitrary repetitions of the above-mentioned sim- 
plest act into a single act; from it in a similar way arises mul- 
tiplication. While the performance of these two operations 
is always possible, that of the inverse operations, subtraction 
and division, proves to be limited. Whatever the immediate 
occasion may have been, whatever comparisons or analogies 
with experience, or intuition, may have led thereto; it is cer- 
tainly true that just this limitation in performing the indirect 
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p, which may be regarded as the point corresponding to the 
number a; to the rational number zero coTesponds the point 
0. In this way to every rational number a, i. e., to every indi- 
vidual in R, corresponds one and only one point p, i. e., an in- 
dividual in L. To the two numbers a, b respectively correspond 
the two points p, 4, and if a > b, then p lies to the right of Q. 
To the laws I, II, m of the previous Section correspond com- 
pletely the laws I, n, m of the present. 

III CONTINUITY OF THE STRAIGHT LINE 

Of the greatest importance, however, is the fact that in the 
straight line L there are infinitely many points which corre- 
spond to no rational number. If the point p corresponds to 
the rational number a, then, as is well known, the length Op is 
commensurable with the invariable unit of measure used in 
the construction, i. e., there exists a third length, a so-called 
common measure, of which these two lengths are integral 
multiples. .But the ancient Greeks already knew and had dem- 
onstrated that there are lengths incommensurable with a given 
unit of length, e. g., the diagonal of the square whose side is 
the unit of length. If we lay off such a length from point 0 
upon the line we obtain an end-point which corresponds to 
no rational number. Since further it can be easily shown that 
there are infinitely many lengths which are incommensurable 
with the unit of length, we may affirm: The straight line L is 
infinitely richer in point-individuals than the domain R of ra- 
tional numbers in number-individuals. 

If now, as is our desire, we try to follow up arithmetically 
all phenomena in the straight line, the domain of rational num- 
bers is insufficient and it becomes absolutely necessary that 
the instrument R constructed by the creation of the rational 
numbers be essentially improved by the creation of new num- 
bers such that the domain of numbers shall gain the same 
completeness, or as we may say at once, the same continuity, 
as the straight line. 

The previous considerations are so familiar and well known 
to all that many will regard their repetition quite superfluous. 
Still I regarded this recapitulation as necessary to prepare prop- 
erly for the main question. For, the way in which the irra- 
tional numbers are usually introduced is based directly ‘upon 
the conception of extensive magnitudes-which itself is no- 
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bers al that are < a, the second class A2 comprises all numbers 
~2 that are > a; the number a itself may be assigned at pleas- 
ure to the first or second class, being respectively the greatest 
number of the first class or the least of the second. In every 
case the separation of the system R into two classes Al, Aa is 
such that every number of the first class A1 is less than every 
number of the second class A2. 

11 COMPARISON OF THE-RATIONAL NUMBERS WITH 
THE POINTS OF A STRAIGHT LINE 

The above-mentioned properties of rational numbers recall 
the corresponding relations of position of the points of a 
straight line L. If the two opposite directions existing upon-it 
are distinguished by “right” and “left,” and p, q are two dif* 
ferent .points, then either p lies to the right of q, and at the 
same time’ q to the left of p, or conversely q lies to the right 
of p and at the same time p to the left of q. A third case is im- 
possible, if p, q are actually different points. In regard to this 
difference in position the following laws hold: 

I. If p lies to the right of q, and q to the right of r, then p 
lies to the right of r; and we say that q lies between the points 
pandr. 

n. If p, r are two different points then there always exist in- 
l?nitely many points that lie between p and r. 

III. If p is a definite point in L, then all points in L fall into 
two classes, PI, P2, each of which contains infinitely many in- 
dividuals; the first class PI contains all the points PI, that lie 
to the left of p, and the second class P2 contains all the points 
p2 that lie to the right of p; the point p itself may be assigned 
at pleasure to the first or second class. In every case the sep- 
aration of the straight line L into the two classes or portions 
PI, Pz, is of such a character that every point of the first class 
PI lies to the left of every point of the second class P2. 

This analogy between rational numbers and the points of 
a straight line, as is well known, becomes a real correspondence 
when we select upon the straight line a definite origin or zero- 
point 0 and a definite unit of length for the measurement of 
segments. With the aid of the latter to every rational number 
a a corresponding length can be constructed and if we lay 
this ofI upon the straight line to the right or left of 0 accord- 
ing as Q is possitive or negative, we obtain a definite end-point 
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which produces this division of all points into two classes, this 
severing of the straight line into two portions.” 

As already said I think I shall not err in assuming that every 
one will at once grant the truth of this statement; the majority 
of my readers will be very much disappointed in learning that 
by this commonplace remark the secret of continuity is to be 
revealed. To this I may say that I am glad if every one finds 
the above principle so obvious and so in harmony with his 
own ideas of a line; for I am utterly unable to adduce any 
proof of its correctness, nor has any one the power. The as- 
sumption of this property of the line is nothing else than an 
axiom by which we attribute to the line its continuity, by which 
we Grid continuity in the line. If space has at all a real exist- 
ence it is not necessary for it to be continuous; many of its 
properties would remain the same even were it discontinu- 
ous. And if we knew for certain that space was discontinuous 
there would be nothing to prevent us, in case we so desired, 
from filling up its gaps, in thought, and thus making it con- 
tinuous; this filling up would consist in a creation of new 
point-individuals and would have to be effected in accordance 
with the above principle. 

Iv CREATION OF IRRATIONAL NUMBERS 

From the last remarks it is sufficiently obvious how the 
discontinuous domain R of rational numbers may be rendered 
complete so as to form a continuous domain. In Section I 
it was pointed out that every rational number (I effects a sep- 
aration of the system R into two classes such that every num- 
ber al of the first class A1 is less than every number a2 of the 
second class A2; the number a is either the greatest number 
of the class A1 or the least number of the class AP. If now any 
separation of the system R into two classes AI, A2, is given 
which possesses only this -characteristic property that every 
number al in A1 is less than every number a2 in AZ, then for 
brevity we shall call such a separation a cut [S&mitt] and des- 
ignate it by (AI, AZ). We can then say that every rational 
number a produces one cut or, strictly speaking, two cuts, 
which, however, we shall not look upon as essentially different; 
this cut possesses, besides, the property that either among the 
numbers of the fist class there exists a greatest or among the 
numbers of the second class a least number. And conversely, 
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and 

y2 _ D = (x2 - m3 
(3x* +D)* 

If in this we assume x to be a positive number from the 
class A1, then x2 < D, and hence y > x and y* < D. Therefore 
y likewise belongs to the class A1. But if we assume x to be 
a number from the class AZ, then x2 > D, and hence Y < x9 
y > 0, and y2 > D. Therefore y likewise belongs to the CUSS 

AZ. This cut is therefore produced by no rational number. 
In this property that not all cuts are produced by rational 

numbers consists the incompleteness or discontinuity of the 
domain R of all rational numbers. 

Whenever, then, we have to do with a cut (Al, AZ) pro- 
duced by no rational number, we create a new, an irrational 
number a, which we regard as completely defined by this cut 
(Al, A2); we shall say that the number o corresponds to this 
cut, or that it produces this cut. From now on, therefore, to 
every definite cut there corresponds a definite rational or ir- 
rational number, and we regard two numbers as di@wzt or 
unequal always and only when they correspond to essentially 
different cuts. 

In order to obtain a basis for the orderly arrangement of 
all real, i. e., of all rational and irrational numbers we must 
investigate the relation between any two cuts (Al, &) and 
(&, B2) produced by any two numbers Q and p. Obviously 
a cut (Al, AZ) is given completely when one of the two classes, 
e. g., the Grst, Al, is known, because the second, A2, consists 
of all rational numbers not contained in A1, and the charac- 
teristic property of such a first class lies in this: that if the 
number al is contained in it, it also contains all numbers less 
than al. If now we compare two such fhst classes A1, B1 with 
each other, it may happen 

1. That they are perfectly identical, i. e., that every number 
contained in Al is also contained in B1, and that .every num- 
ber contained in BI is also contained in Al. In this case A2 is 
necessarily identical with BP, and the two cuts are perfectly 
identical, which we denote in symbols by a = p or p = a. 

But if the two classes AI, B1 are not identical, then there 
exists in the one, e. g., in AI, a number d1 = b’2 not con- 
tained in the other BI and consequently found in B2; hence 
all numbers 61 contained in B1 are certainly lessthan this num- 
ber ~‘1 = b’2 and therefore all numbers b1 are contained in 
AI. 

2. If now this number u’l is the only one in A1 that is not 
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if a cut possesses this property, then it is produced by t.hi~ 

greatest or least rational number. 
But it is easy to show that there exist infinitely many cuts 

not produced by rational numbers. The following example 
suggests itself most readily. 

Let D be a positive integer but not the square of an integer, 
then there exists a positive integer X such that 

XZ<D< (A+ 1)2. 
If we assign to the second class AZ, every positive rational 

number ~22 whose square is > D, to the tist class AI all other 
rational numbers al, this separation forms a cut (AI, AZ), i. e., 
every number al is less than every number u2. For if al = 0, 
or is negative, then on that ground al is less than any number 
~2, because, by definition, this last is positive; if al is positive, 
then is its square 5 D, and hence al is less than any positive 
number u2 whose square is > D. 

But this cut is produced by no rational number. To demon- 
strate this it must be shown first of all that there exists no ra- 
tional number whose square = D. Although this is known 
from the first elements of the theory of numbers, still the fol- 
lowing indirect proof may find place here. If there exist a ra- 
tional number whose square = D, then there exist two positive 
integers f, 24, that satisfy the equation 

t2 - Du2 = 0, 
and we may assume that u is the least positive integer posses- 
sing the property that its square, by multiplication by D, may 
be converted into the square of an integer t. Since evidently 

Au<t<(X+l)u, 
the number U’ = t - Au is a positive integer certainly less 
than u. If further we put 

t’ = Du - At, 
t’ is likewise a positive integer, and we have 

t2 - Du’2 = (X2 - D) (t2 - Du2) = 0, 
which is contrary to the assumption respecting u. 

Hence the square of every rational number x is either < D 
or > D. From this it easily follows that there is neither in the 
class AI a greatest, nor in the class A2 a least number. For if 
we put 

x(x2 + 30) 
Y= 3x2+D ’ 

we have 
_ x -2xCD - x2) 

’ - 3x2+ D 
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longs to the class A1; for since there is in A1 number dl = b’z 
which belongs to the class BB, it follows that the number p, 
whether the greatest number in B1 or the least in BZ is cer- 
tainly 5 u’~ and hence contained in A1. Likewise it is obvi- 
ous from a > ,6 that the greater number a, if rational, cer- 
tainly belongs to thezclass Bz, because a 2 dI. Combining 
these two considerations we get the following result: If a cut 
is produced by the number a then any rational number be- 
longs to the class A1 or to the class A2 according.as it is less 
or greater than a; if the number a is itself rational it may be- 
long to either class. 

From this we obtain tially the following: If a > p, i. e., 
if there are infinitely many numbers in Al not contained in 
BI then there are in6nitely many such numbers that at the 
same time are different from CI and from p; every such ra- 
tional number c is < a, because it is contained in AI and at 
the same time it is > p because contained in Bz. 

PART II 

The name of Pythagoras of Samos, a Greek mathematician 
and philosopher of the sixth century B.C., is indelibly asso- 
ciated with the discovery of irrational numbers. According 
to tradition, Pythagoras discovered that the side and the di- 
agonal of a square are incommensurable: if the length of the 
side of the square is called “1,” then the length of the diagonal 
is given by the value of the square root of 2, a value that is an 
irrational number. 

There are several terms in the preceding paragraph which 
need clearing up. Foremost among them is “irrational”; next 
in importance, because of its close relation to irrationality, is 
“incommensurable.” The way to understand the problem of 
irrationality among numbers is to understand first of all what 
rational numbers are. This in turn requires us to go back and 
begin with the simplest of all numbers, the positive integers, 1, 
2, 3, 4,..., etc. (Actually, even these numbers are not simple; 



148 BREAKTHROUGHS IN MATHEMATICS 

conta.hd in B1, then is every other number al contained in Al 
also contained in B1 and is consequently < dl, i. e., d1 is the 
greatest among all the numbers al, hence the cut -(Al, AZ) is 
produced by the rational number a = dl = Y2. Concerning 
the other cut (BI, 82) we know already that all numbers b1 
in & are also contained in A1 and are less than the number 
a’1 = b’2 which is contained in BP; every other number ba 
contained in BZ must, however, be greater than b’2, for other- 
wise it would be less than dl, therefore contained in A1 and 
hence in BI; hence b’z is the least among all numbers con- 
in &, and consequently the cut (B1, B2) is produced by the 
same rational number p = b’2 = dl = a. The two cuts are 
then only unessentially different. 

3. If, however, there exist in A1 at least two different num- 
bers d1 = Mz and a” 1 = b”2, which are not contained in 
BI, then there exist infinitely many of them, because all the 
infinitely many numbers lying between dl and a”l are obvi- 
ously contained in A1 (Section I, II) but not in BI. In this case 
we say that the numbers a and /3 corresponding to these two 
essentially different cuts (Al, AZ) and (B1, B2) are different, 
and further that a is greater than /3, that p is less than a, which 
we express in symbols by a > p as well as /3 < a. It is to be 
noticed that this definition coincides completely with the one 
given earlier, when a, p are rational. 

The remaining possible cases are these: 
4. If there exists in B1 one and only one number b’ = a’~, 

that is not contained in A1 then the two cuts (At AZ) and 
(B1, B2) are only unessentially different and they are pro- 
duced by one and the same rational number a = U’Z = b’l = /?. 

5. But if there are in B1 atleast two numbers which are not 
contained in AI, then /3 > a, a < p. 

As this exhausts the possible cases, it follows that Of two 

different numbers one is necessarily the greater, the other the 
less, which gives two possibilities. A third case is impossible. 
This was indeed involved in the use of the comparative 
(greater, less) to designate the relation between a, P; but this 
use has only now been justified. In just such investigations one 
needs to exercise the greatest care so that even with the best 
intention to be honest he shall not, through a hasty choice of 
expressions borrowed from other notions already developed, 
allow himself to be led into the use of inadmissible transfers 
from one domain to the other. 

If now we consider again somewhat carefully the case (Y > P 
it is obvious that the less number p, if rational, certainly be- 
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tion is perfectly legitimate; mathematicians prefer, however, 
the second answer, since they like to leave as few insoluble 
problems as possible. In this case, the price of finding a solu- 
tion is a new definition of number with a consequent expm- 
sion of the number system. 

If we reckon all integers-both positive and negative (as well 
as O)-as belonging to the number system, then the operation 
of subtraction can always be performed within that system. 
For subtraction, the system of natural numbers is not closed, 
but the system of all integers is. Subtracting an integer from 
an integer always results in another integer. Certain rules 
must be established, of course, to indicate how the operations 
are to be performed, but these rules present no difhculties. 
For example, - 5 - (- 8) = - 5 + 8, according to the rules. 
We do not intend here to investigate whether these rules are 
good, clear, or self-explanatory. We only want to point out 
that the rules are such that any subtraction problem has just 
one answer, and that the answer-if the problem involves in- 
tegers-is always an integer. 

This expansion of the number system to include negative 
integers not only makes subtraction among natural numbers 
always possible; it also is the case that this new system of all 
integers is closed for subtraction, so that subtraction among 
integers (whether positive or negative) is always possible. 

We have already indicated that the system of natural num- 
bers is not closed for division. How about the system of all 
integers? Is it closed for division? The answer again is No. 
The introduction of negative integers has done nothing toward 
solving the problem of making division always possible. What 
needs to be done, if we are faced with division problems such 
as 40 + 7, is either the declaration that this problem has no 
solution, or else another expansion of the number system to 
include fractions. If we are willing to modify our def3nition of 
number once more and to expand our number system accord- 
ingly, then we can give an answer to division problems such 
as 40 f 7; the answer is, of course 5;. 

By introducing not only positive but also negative fractions 
we can make division always possible as long as it involves 
Only positive or negative integers or fractions. There is one 
exception however: If division by 0 is called for, there is no 
answer. Division by 0 is declared not possible. We mention 
this mainly to indicate that this way of dealing with a dif% 
culty-declaring the problem impossible-is one that is, in 
fact, occasionally used by mathematicians. 
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in the next chapter we shah see that it is quite difFicult to define 
the allegedly simple term “number”; for the time being, how- 
ever, we shall rely on our intuitive understanding of the mean- 
ing of number.) The positive integers are what Euclid had in 
mind when he defined “number.” Note, incidentally, that 
Euclid does not include “1,” or the unit, among the numbers. 
Thereby he avoids circularity in his definition of number, 
which is “multitude of units.” The positive integers are often 
referred to as “natural numbers.” 

Mathematics cannot get along well just using the natural 
numbers. Suppose we start with any natural number a and 
add another natural number b to it. The result c-whatever 
it may be-will be another natural number. Similarly, if a 
given naturad number d is multiplied by a natural number e, 
the result f is again a natural number. Thus the operations of 
addition and multiplication are such that if they are performed 
on two or more members of the natural number system they 
will give results that are also members of the natural number 
system. Another way of saying the same thing is that for ad- 
dition and multiplication the natural number system is closed; 
these operations, when performed on natural numbers, do not 
take us out of the system. 

We run into trouble, however, when we turn to the other 
two basic arithmetical operations-subtraction and division. 
Sometimes, these two operations when performed on natural 
numbers give results that are themselves natural numbers. If 
the natural number from which we subtract is greater than 
the natural number which we subtract, then the result is an- 
other natural number. For example, 8 - 5 = 3; 56,734 - 
39,001 = 17,733. And similarly if the natural number which 
we divide is a multiple of the natural number which we divide 
it by, then the result is another natural number. 40 f 5 = 8; 
306 t 17 = 18, and so on. 

But if things are the other way around, we must leave the 
natural number system in order to get an answer. If in a sub- 

traction problem of natural numbers the first number is smaller 
than the second number, then the resulting difference is 
not a natural number. We can only say in such a case either 
that there is no answer, or that the answer is a new kind of 
number, a negative number. Either “5 - 8” must be consid- 
ered as a problem without a solution, or if we want it to have 
a solution, we must admit that a problem involving two nat- 
ural numbers can result in something not a natural number, 
namely a negative number. Either way of looking at subtrac- 
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serves to define an irrational number; accordingly this method 
is referred to as the “Dedekind Schnitt.” 

Dedekind’s procedure is very simple and very difhcult to 
understand. What he does is apparently so unexciting that it 
is diicult to realize the significance of it. 

Dedekind begins by noting three laws that are true for any 
two rational numbers a and b, which are not equal. 

1. If a is greater than b and b is greater than c, then also 
u is greater than c. The property of being “greater than” is 
transitive, as we would now say. 

2. Between any two rational numbers, there lies an i&nit.: 
number of other rational numbers. We have already men- 
tioned this property of the rational number system. 

3. Any rational number a divides the entire system of ra- 
tional numbers into two classes. One class contains all those 
rational numbers smaller than a; the other class, those num. 
bers greater than a. These are two completely distinct classes. 
having no members in common. To which of these two classes 
does a itself belong? We may assign it to either class; it makes 
no difference. No matter where we place a itself, it is true that 
any member of the first class is smaller than any member of 
the second class. The only difference is this: if we assign a 
to the first class, then this class has a greatest member, namely 
u, while the second class has no least member (for between 
any member of the. second class and u, there always exists an 
inhnite number of other rational numbers). If, on the other 
hand, we assign a to the second class, then this second class 
has a least member, namely a, while the first class has no great- 
est membeF. (For again, if we put forward any rational num- 
ber in the first class as allegedly the greatest, it is always pos- 
sible to find in&ritely many other rational numbers which are 
larger than this number but still smaller than a, and so belong 
to the first class.) 

Dedekind summarizes the significance of this kind of cut as 
follows: 

We can then say that every rational number a produces 
one cut, or, strictly speaking, two cuts, which, however, 
we shall not look upon as essentially different; this cut 
possesses, besides, the property that either among the 
numbers of the grst class there exists a greatest or among 
the numbers of the second class a least number. And 
conversely, if a cut possesses this property, then it is pro- 
duced by this greatest or least rational number (p. 145). 
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The system of the numbers we have so far introduced- 
positive and negative integers, as well as positive and negative 
fractions-is called the system of rational numbers. It is closed 
for the operations of addition, subtraction, multiplication, and 
division, with the single exception of division by 0, which 
is never permitted. 

It is obvious that the system of rational numbers includes a 
great many numbers. For example, between any two rational 
numbers there is always a third one which is greater than one 
of the original numbers and smaller than the other one. (This 
is not true of integers; for example, there is no integer between 
21 and 22.) It it also intuitively obvious that in any given in- 
terval, say between two integers like 5 and 6, there is an in- 
finite number of rational numbers. 

But interestingly enough, the system of rational numbers 
does not yet include all numbers. There are two ways of see- 
ing this: First, we could show that there are some “numbers” 
such as the length of the diagonal of a square whose side is 1, 

. which are not equal to any rational numbers. We could show 
that there are a great many other numbers of this sort, which 
obviously are not rational. The second way consists of looking 
at the system of rational numbers and finding that in fact there 
are “holes” in it: there are some places in the interval between 
1 and 2 which are not taken up by any rational number. An- 
other way of saying this is that the system of rational numbers 
is not continuous. If we compare the interval between 1 and 
2 with the points on a line, we should find that we cannot as- 
sign a rational number to every point. There are, so to speak, 
“too many” points on the line. The points to which no rational 
.numbers correspond have irrational numbers corresponding 
to them. 

It was the German mathematician Richard Dedekind who 
first rigorously analyzed the concept of irrational number. 
Dedekind (1831-1916) was a student of Gauss-perhaps his 
greatest-at the University of Giittingen. Though Dedekind 
spent most of his life in a relatively obscure teaching position, 
his works have that simplicity and abstractness that mark the 
mathematician of genius. 

In defining irrational numbers, Dedekind chose the set- 
ond of the two ways we mentioned above. He began with the 
system of rational numbers and then showed that by means of 
that system he could detlne numbers which did not belong in 
that system. The method he used is that of making a Schnitt 
(German for “cut”) in the rational number system. This cut 
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auchasX2and (X+l)z.IfD=18,thenA=4,andh-tl= 
5; 18 lies between 16 and 25. 

Now Dedekind divides all rational numbers into two classes, 
in terms of D. He calls these two classes A 1 and AZ. The aec- 
ond class, At, includes all positive rational numbers whose 
square is greater than D; the first class, Al, includes all other 
rational numbers. Every number in A1 is less than any num- 
ber in AZ. A1 contains all negative numbers, since AZ. containa 
only positive numbers and any negative number is, of course, 
smaller than any positive number. The positive numbers which 
A1 contains are smaller than the positive numbers in As, for 
the only positive numbers in A1 are those whose square is less 
than D, whereas AZ contains all those positive numbers whose 
square is greater than D. 

Thus Al and AZ are two classes of the kind which Dedekind 
has discussed earlier: any member of A 1 is less than any mem- 
ber of A*, and any member of A2 is greater than any member 
of Al. But A1 has no greatest member and AZ has no least 
member. This last fact still remains to be shown; but if Dede- 
kind succeeds in demonstrating it, he will also have succeeded 
in proving that here is a cut in the rational number system not 
made by a rational number. 

Everything, then, depends on the absence of both a least 
(in AZ) and a greatest (in Al) member. To show that these 
numbers are absent, Dedekind begins by hrst showing that 
there is no rational number whose square is D. The proof is 
by reduction to the absurd. 

Let us assume that in fact there is a rational number whose 
square is D. Since, by assumption D lies between the squares 
of two adjacent integers (h and h + 1) , the rational number 

whose square is D must be a fraction. Let it be i. Let these 

he the least positive numbers in which that fraction can be 
expressed; that is, let it not be possible to do any more “can- 
celing.” Thus 

fL -= 
I42 D 

or 
fL = Du2 

or 
fL - Du2 = 0. 

If we substitute the value $ for D in the inequality 
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Then he continues with the most important statement in the 
entire work: 

But it is easy to show that there exist infinitely many 
cuts not produced by rational numbers. 

Before going on, let us examine what one of Dedekind’s 
cuts looks like, when it is made by a rational number. Let us 
consider the number % . This is, of course, a rational number. 
According to Dedekind, it divides all rational numbers into 
two classes, namely, those smaller than %, and those greater 
than %. Examples of numbers in the first class are %, M, 0, 
-%, - 2, etc. Examples of numbers in the second class are 
1, 1%) 756, etc. All numbers in the first group are smaher 
than all numbers in the second group. Conversely, all numbers 
in the second group are greater than all numbers in the first 
group. Now it only remains to assign a place to 4/J itself. If 
we assign it to the first class, it is still true that every member 
of the first group is smaller than any member of the second 
group. Suppose that we now assign % to the second group 
instead; it will still be true that any member of the first group 
is smaller than any member of the second group. If we as- 
sign % to the first group, then the lirst group has a greatest 
member, namely %. If, instead, we assign % to the second 
group, then the second group has a least member, namely %. 

Dedekind’s method of showing that “in the holes” of the 
razional number system there are other, irrational, numbers, 
.$ as follows: He proposes to show us a cut made in the ra- 
tional number system, but not by a rational number. This cut, 
is before, produces two classes. As before, it will be the case 
that any member of the first class is less than any member of 
the second class (and any member of the second class is greater 
than any member of the first class). So far all is the same as 
before. Here is the difference: The cut which Dedekind pro- 
poses to show us is such that the 8rst class has no greatest 
member, while the second class has no least member. If he 
can succeed in showing us such a cut, then it is clear that no 
rational number has produced it; for any rational number 
produces a cut in which either the fist group has a greatest, 
or the second group, a least, member. 

Dedekind begins by choosing a positive integer, but one 
which is not the square of another integer. An example of such 
an integer would be the number 18. Dedekind calls this num- 
ber D. The number D then lies between two square numbers, 
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This last quantity can be written as 
(A2 - D) (f2 - Du2). 

257 

But we know that (t2 -Dz42) = 0, by the assumption that 
t 

2 
when squared equals D. Therefore the whole product ‘is 

equal to 0. And therefore also 
t’2 - Du’2 = 0. 

This means that 

tQ D -= 
l.d2 

And since u’ is smaller than u, this contradicts the original 

assumption that L was the fraction in the smallest terms which, 

when squared, gives D. 

Hence we conclude that the number whose square is D is 
not rational-that is, that it cannot be expressed as a fraction 
of integers. Having established this, we can show that the 
class AI has no greatest, and the class Az no least, member. 

The method of proof is another reduction to the absurd- 
Suppose there is a number x which is the greatest in Al. (It 
will, of course, be a positive number.) Now form the quantity 

Y 
=x(x2 + 30) 

3x2 + D 

Then 

Y -x= x(x2 + 30) _ x 
3x2 + D 

= x(x2 + 30) - x(3x2 + D) 

3x2 + D 
x3 + 3Dx - 3x3 - xD 2Dx - 2x3 

= -= 
3x2 + D 3x2 + D 

2x(D - x2) 
= 

3x2’+D ’ 

Consider this last quantity: x is positive, and since x is assumed 
to belong to the class Al, D is greater than x2. Therefore, the 
numerator of the fraction is positive, and the entire fraction 
is positive, since the denominator is clearly positive. But if the 
quantity y - x is positive, then y is greater than x. 

Furthermore, y2 is less than D and therefore y belongs to AI. 
TO see this, consider the same quantity y as before, namely, 

Y 
x(-x2 + 30). 

= 3x2+D 
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x2 < D < (A + 1)2 

we get 

x2 <$ < (A + 1)2 

or 
x2242 < t2 < (A + 1 )W 

or 
Au < t < (A + l)u. 

Regarding first only the left side of the last inequality, we 
see that 

0 < t - Au. 
This means that t - AU is a positive quantity. Furthermore, 
since t, A, u are all integers, t - AU must also be an integer. 

Looking now at the right side of the above inequality, we 
see that 

t<Xu+u 
or again 

t - Au < u. 
Let us give the quantity t - Au the name u’. Let us also give 
the name t’ to the quantity Du - ht. This last quantity is cer- 
tainly an integer, since D, u, A, and t are all integers. It is also 
a positive integer, for Du is greater than At. This may be seen 
as follows: 

Du2 = t2 
or 

t2 
Du= 

ll* 

The last line may be written as 

Du= 1.‘. 
U 

Now ‘, when squared, makes D, while h when squared makes 
U 

~2, and D is greater than h2; therefore f is greater than A. 
U 

Hence Du, which equals t 01, is greater than t f A. 

Now form the quantity t’t - Du’2. This is equal to 
(Du - ht)2 - D(t - Au)~. 

This last quantity is equal to 
D2u2 - 2Duht + h2t2 - Dt2 + 2Dthu - Dx2u2 

or 
D3.42 + h2t2 - Dt2 - DhW. 
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entire expression y2 - D is positive, which means that y2 is 
greater than D, or y belongs to AZ. 

These two demonstrations together show that neither does 
A1 have a greatest member, nor does A2 have a least member. 
Consequently, the cut (At AZ) is not made by any rational 
number. 

But if the cut (Al, AZ) is not made by any rational number, 
then it must be made by another, new kind of number, since 
in all respects the cut is like the cut made by a rational num- 
ber, except for the property that A, has no greatest, and As 
no least, member. This new type of number is called an irra- 
tional number. The word “irrational” is not meant to suggest 
anything unreasonable or strange about these numbers; it 
merely means that these numbers have no ratio to the num- 
ber 1 that can be expressed in whole numbers. 

What is Dedekind’s achievement? Irrational numbers had 
been known for a long time. Pythagoras allegedly discovered 
that the diagonal of a unit square is irrational, and Euclid’s 
Book X is an immense collection of propositions devoted to 
incommensurable lines (which are the geometric equivalent 
or irrational numbers). What was lacking in all the earlier dis- 
cussions of irrationals was a clear understanding of their na- 
ture. The early followers of Pythagoras were so puzzled by 
the character of irrationals that they thought there was some- 
thing mystical about them. And indeed, an irrational number 
is strange: No common measure can be found-no matter 
how small-for the unit (that is, the number 1) and the irra- 
tional number. For if there were a common measure, it would 
go a certain number of times into the so-called irrational num- 
ber, and another number of times into the unit. But this would 
make a rational fraction of the irrational. For let the irrational 
be called z. Then if there is some very small measure of both 
z and 1, it would go, say, 876 times into z, and 438 times into 
1. But in that case, z/l = 876/438, and this, of course is a 
rational fraction. Hence there is no common measure-no 
matter how tiny-for the irrational and the unit. (This is why 
irrational numbers are also “incommensurable”; they are in- 
commensurable with the unit, since they have no measure in 
common with it.) 

All this, however, is not saying what irrational numbers are. 
It merely describes a property they have-that of not having 
a common measure with the unit. And this property leaves in 
doubt whether, first, there are such things, and second, if there 
are, whether. they are properly called numbers. Dedekind’s 
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Then 

y2 = 
x2(x2 + 3D)2 x2(x4 + 6x2D + 9D*) 

(3x2+0)* = (3x2 + D)2 
x6 + 6x4D + 9DW = 

(3x2 + D)* 
Then 

Y2 - 
D /+6x4D+9D*x2Gx4D-D 

(3x2 + D)* 

= x6 + 6x4D + 90*x* - D(3x2 + D)* 
(3x2 + D)* 

x6 + 6x4D + 9D2,* - 9Dx4 - 6x202 - D3 
= 

(3x2 + D)* 
x6 - 3x4D + 3x2D2 - 03 (x2 - D)3 

= 
(3x2 + D)* =(3xz+D)* 

The numerator of the last fraction is negative. For 9 is 
less than D, so that x* - D is negative. And a negative num- 
ber raised to the third power gives another negative number. 
(For example, - 5 raised to the third power is - 125.) The 
denominator of the fraction is positive, and therefore the frac- 
tion as a whole is negative. This means that y* - D is nega- 
tive; in other words, y2 is less than D. 

This proves that there isno greatest member in A1. For on 
the assumption that there was a greatest member x, we have 
found another number, y, which is greater than x and also 
belongs to Al. (Note that the method of this proof is much 
like that of Proposition 20 in Euclid’s Book IX: assuming 
that something is the case, we prove that it is not.) 

In exactly similar fashion, we can prove that Az has no 
least member. To prove this, let us again assume that there 
is a least member x. Form the quantity y as before, and also 
Y - x. The fraction 

y-x= 
2x(D - x2) 

3x* + D 

now is negative, for in the numerator D is smaller than x2, mak- 
ing the whole fraction negative. Consequently, y is less than x. 

To show y is a member of AZ, we must prove that y* is 
greater than D. Form again the expression y* -D. As before, 

(x2 - D)3 

Y2 - D = (3x2 + D)*’ 

This time, since 39 is greater than D, the expression 39 - D 
is positive, and hence its cube is also positive. Therefore, the 



CHAPTER SIX 

Russell-The Definition of Number 

PART I 

Very often the simplest questions are the hardest to answer. 
This is due to the fact that simple questions, or at least 
questions about simple things, often go to the very heart of 
a matter. The question “What is a number?” is that kind of 
question; it goes to the very heart of the science of arithmetic. 
Not many people dare ask such questions; fewer still know how 
to answer them. Bertrand Russell, in the selection now before 
us, dares ask the question and then proceeds to answer it- 
in a manner that has stood the test of time. His answer is still 
accepted, and it reveals to us a great deal about the character 
of numbers. 

Bertrand Russell: 
Introduction to Mathematical Philosophy* 

Chapter I 

THE SERIES OF NATURAL NUMBERS 

Mathematics is a study which, when we start from its most 
familiar portions, may be pursued in either of two opposite 
directions. The more familiar direction is constructive, towards 

* From Introduction to Mathematical Philosophy (London: George 
Allen & Unwin, Ltd., 1919), pp. l-28. Reprinted by permission of George 
Allen & Unwin, Ltd., and the Macmillan Company. 

161 
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cut, however, assures us on both counts. All numbers are now 
defined in terms of curs; that is, each number is defined as 
making a unique division in the system of infinite numbers. 
Rational numbers and irrational numbers differ in just one 
respect: the presence or absence of a least or greatest member 
of the cut. 

This definition of numbers defines numbers in terms of each 
other, and therefore does not really say “what a number is.” 
It defines a given number in the sense of distinguishing it from 
all other numbers, and it does so in terms of a certain opera- 
tion-that of dividing the set of numbers. In the next chapter 
we shall encounter an attempt at really defining number-that 
is, saying what it is. 
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philosophy simply and tmtechnically, without enlarging upon 
those portions which are so doubtful or difficult that an ele- 
mentary treatment is scarcely possible. A full treatment will 
be found in Principia Mathematics;* the treatment in the pres- 
ent volume is intended merely as an introduction. 

To the average educated person of the present day, the 
obvious starting-point of mathematics would be the series of 
whole numbers, 

1, 2, 3, 4, . . . etc. 
Probably only a person with some mathematical knowledge 
would think of beginning with 0 instead of 1, but we will 
presume this degree of knowledge; we will take as our starting- 
point the series: 

0, 1, 2, 3, . . . n, n + 1, . . . 
and it is this series that we shall mean when we speak of the 
“series of natural numbers.” 

It is only at a high stage of civilisation that we could take 
this series as our starting-point. It must have required many 
ages to discover that a brace of pheasants and a couple of days 
were both instances of the number 2: the degree of abstraction 
involved is far from easy. And the discovery that 1 is a number 
must have been difficult. As for 0, it is a very recent addition; 
the Greeks and Romans had no such digit. If we had been 
embarking upon mathematical philosophy in earlier days, we 
should have had to start with something less abstract than the 
series of natural numbers, which we should reach as a stage on 
our backward journey. When the logical foundations of mathe- 
matics have grown more familiar, we shall be able to start 
further back, at what is now a late stage in our analysis. But 
for the moment the natural numbers seem to represent what is 
easiest and most familiar in mathematics. 

But though familiar, they are not understood. Very few 
people are prepared with a definition of what is meant by 
“number,” or “0” or “1.” It is not very difficult to see that, 
starting from 0, any other of the natural numbers can be 
reached by repeated additions of 1, but we shall have to de- 
fine what we mean by “adding 1,” and what we mean by “re- 
peated.” These questions are by no means easy. It was believed 
until recently that some, at least, of these first notions of arith- 
metic must be accepted as too simple and primitive to be de- 
fined. Since all terms that are defined are defined by means of 
other terms, it is clear that human knowledge must always be 

* Cambridge University Press, vol. i., 1910; vol. ii, 1911; vol. iii., 1913. 
By Whitehead and Russell. 
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gradually increasing complexity: from integers to fractions, 
real numbers, complex numbers; from addition and multi- 
plication to differentiation and integration, and on to higher 
mathematics. The other direction, which is less familiar, pro- 
i eeds, by analysing, to greater and greater abstractness and 
ogical simplicity; instead of asking what can be defined and 
deduced from what is assumed to begin with, we ask instead 
what more general ideas and principles can be found, in terms 
of which what was our starting-point can be defined or de 
&iced. It is the fact of pursuing this opposite direction that 
characterises mathematical philosophy as opposed to ordinary 
mathematics. But it should be understood that the distinction 
is one, not in the subject matter, but in the state of mind of 
the investigator. Early Greek geometers, passing from the em- 
pirical rules of Egyptian land-surveying to the general propo- 
sitions by which those rules were found to be justifiable, and 
thence to Euclid’s axioms and postulates, were engaged in 
mathematical philosophy, according to the above definition; 
but when once the axioms and postulates had been reached, 
their deductive employment, as we find it in Euclid, belonged 
to mathematics in the ordinary sense. The distinction between 
mathematics and mathematical philosophy is one which de- 
pends upon the interest inspiring the research, and upon the 
stage which the research has reached; not upon the proposi- 
tions with which the research is concerned. 

We may state the same distinction in another way. The 
most obvious and easy things in mathematics are not those that 
come logically at the beginning; they are things that, from 
the point of view of logical deduction, come somewhere in the 
middle. Just as the easiest bodies to see are those that are 
neither very near nor very far, neither very small nor very 
great, so the easiest conceptions to grasp are those that are 
neither very compIex nor very simple (using “simple” in a 
logical sense). And as we need two sorts of instruments, the 
telescope and the microscope, for the enlargement of our visual 
powers, so we need two sorts of instruments for the enlarge 
ment of our logical powers, one to take us forward to the 
higher mathematics, the other to take us backward to the Iog- 
;cal foundations of the things that we are inclined to take for 
granted in mathematics. We shall find that by analysing our 

ordinary mathematical notions we acquire fresh insight, new 
powers, and the means of reaching whole new mathematical 
subjects by adopting fresh lines of advance after our backward 
journey. It is the purpose of this book to explain mathematical 
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as it were, hostages for the whole of traditional pure mathe- 
matics. If they could be defined and proved in terms of others, 
so could all pure mathematics. Their logical “weight,” if one 
may use such an expression, is equal to that of the whole series 
of sciences that have been deduced from the theory of the nat- 
ural numbers; the truth of this whole series is assured if the 
truth of the five primitive propositions is guaranteed, provided, 
of course, that there is nothing erroneous in the purely logical 
apparatus which is also involved. The work of analysing mathe- 
matics is extraordinarily facilitated by this work of Peano’s. 

The three primitive ideas in Peano’s arithmetic are: 
0, number, successor. 

By “successor” he means the next number in the natural 
order. That is to say, the successor of 0 is 1, the successor of 
1 is 2, and so on. By “number” he means, in this connection, 
the class of the natural numbers.1 He is not assuming that 
we know all the members of this class, but only that we know 
what we mean when we say that this or that is a number, just 
as we know what we mean when we say “Jones is a man,” 
though we do not know all men individually. 

The five primitive propositions which Peano assumes are: 
(1) 0 is a number. 
(2) The successor of any number is a number. 
(3) No two numbers have the same successor. 
(4) 0 is not the successor of any number. 
(5) Any property which belongs to 0, and also to the suc- 

cessor of every number which has the property, be- 
longs to all numbers. 

The last of these is the principle of mathematical induction. 
We shah have much to say concerning mathematical induction 
in the sequel; for the present, we are concerned with it only 
as it occurs in Peano’s analysis of arithmetic. 

Let us consider briefly the kind of way in which the theory 
of the natural numbers results from these three ideas and five 
propositions. To begin with, we define 1 as “the successor of 
0,” 2 as “the successor of 1,” and so on. We can obviously go 
on as long as we like with these dehitions, since, in virtue of 
(2), every number that we reach will have a successor, and, in 
virtue of (3)) this cannot be any of the numbers already de- 
fined, because, if it were, two different numbers would have 
the same successor; and in virtue of (4) none of the numbers 
we reach in the series of successors can be 0. Thus the series 

’ We shall use “number” in this sense in the present chapter. After- 
wards the word will be used in a more general sense. 
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content to accept some terms as intelligible without definition, 
in order to have a starting-point for its definitions. It is not 
clear that there must be terms which are incapable of deli- 
tion: it is possible that, however far back we go in defining, 
we always might go further still. On the other hand, it is also 
possible that, when analysis has been pushed far enough, we 
can reach terms that really are simple, and therefore logically 
incapable of the sort of definition that consists in analysing. 
This is a question which it is not necessary for us to decide; 
for our purposes it is sufficient to observe that, since human 
powers are finite, the definitions known to us must always be- 
gin somewhere, with terms undefined for the moment, though 
perhaps not permanently. 

All traditional pure mathematics, including analytical geom- 
etry, may be regarded as consisting wholly of propositions 
about the natural numbers. That is to say, the terms which 
occur can be defined by means of the natural numbers, and 
the propositions can be deduced from the properties of the 
natural numbers-with the addition, in each case, of the ideas 
and propositions of pure logic. 

That all traditional pure mathematics can be derived from 
the natural numbers is a fairly recent discovery, though it had 
long been suspected. Pythagoras, who believed that not only 
mathematics, but everything else could be deduced from num- 
bers, was the discoverer of the most serious obstacle in the 
way of what is called the “arithmetising” of mathematics. 
It was Pythagoras who discovered the existence of incom- 
mensurables, and, in particular, the incommensurability of the 
side of a square and the diagonal. If the length of the side is 
1 inch, the number of inches in the diagonal is the square root 
of 2, which appeared not to be a number at all. The problem 
thus raised was solved only in our own day, and was only 
solved completely by the help of the reduction of arithmetic to 
logic, which will be explained in following chapters. For the 
present, we shall take for granted the arithmetisation of mathe- 
matics, though this was a feat of the very greatest importance. 

Having reduced all traditional pure mathematics to the 
theory of the natural numbers, the next step in logical analysis 
was to reduce this theory itself to the smallest set of premisses 
and undefined terms from which it could be derived. This work 
was accomplished by Peano. He showed that the entire theory 
of the natural numbers could be derived from three primitive 
ideas and five primitive propositions in addition to those of 
pure logic. These three ideas and five propositions thus became, 
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1, ?h, 4/a, ?& 446, . . . 

and let “successor” mean “half.” Then all Peano’s five axioms 
will be true of this set. 

It is clear that such examples might be multiplied indefi- 
nitely. In fact, given any series 

x0, Xl, x2, x3, . . . &l, . - . 

which is endless, contains no repetitions, has a beginning, and 
has no terms that cannot be reached from the beginning in a 
finite number of steps, we have a set of terms verifying Peano’s 
axioms. This is easily seen, though the formal proof is some- 
what long. Let “0” mean x0, let “number” mean the whole 
set of terms, and let the “successor” of X, mean .x,+1. Then 

(1) “0 is a number,” i.e. x0 is a member of the set. 
(2) “The successor of any number is a number,” i.e. tak- 

ing any term x, in the set, x,,+~ is also in the set. 
(3) “No two numbers have the same successor,” i.e. if x, 

and x, are two different members of the set, x,+1 and xn+l 
are different; this results from the fact that (by hypothesis) 
there are no repetitions in the set. 

(4) “0 is not the successor of any number,” i.e. no term in 
the set comes before x0. 

(5) This becomes: Any property which belongs to XO, and 
belongs to x~+~ provided it belongs to xn, belongs to all the x’s. 

This follows from the corresponding property for numbers. 
A series of the form 

x0, Xl, x2, . . . x,, . . . 
in which there is a first term, a successor to each term (so that 
there is no last term), no repetitions, and every term can be 
reached from the start in a Unite number of steps, is called a 
progression. Progressions are of great importance in the princi- 
ples of mathematics. As we have just seen, every progression 
verifies Peano’s five axioms. It can be proved, conversely, 
that every series which verifies Peano’s five axioms is a pro- 
gression. Hence these five axioms may be used to define the 
class of progressions: “progressionCare “those series which 
verify these five axioms.” Any progression may be taken as 
the basis of pure mathematics: we may give the name “0” 
to its Grst term, the name “number” to the whole set of its 
terms, and the name “successor” to the next in the progres- 
sion. The progression need not be composed of numbers: it 
may be composed of points in space, or moments of time, or 
any other terms of which there is an infinite supply. Each dii- 
ferent progression will give rise to a different interpretation of 
all the propositions of traditional pure mathematics; all these 
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of successors gives us an endless series of continually new num- 
bers. In virtue of (5) all numbers come in this series, which 
begins with 0 and travels on through successive successors: 
for (a) 0 belongs to this series, and (6) if a number n belongs 
to it, so does its successor, whence, by mathematical induction, 
every member belongs to the series. 

Suppose we wish to define the sum of two numbers. Taking 
any number m, we define m+O as m, and m+(n+l) as the 
successor of m + n. In virtue of (5) this gives a definition of 
the sum of m and n, whatever number 12 may be. Similarly 
we can define the product of any two numbers. The reader can 
easily convince himself that any ordinary elementary proposi- 
tion of arithmetic can be proved by means of our five premisses, 
and if he has any difficulty he can find the proof in Peano. 

It is time now to turn to the considerations which make it 
necessary to advance beyond the standpoint of Peano, who 
represents the last perfection of the “arithmetisation” of mathe- 
matics, to that of Frege, who ftrst succeeded in “logicising” 
mathematics, i.e. in reducing to logic the arithmetical notions 
which his predecessors had shown to be sufficient for mathe- 
matics. We shall not, in this chapter, actually give Frege’s def- 
inition of number and of particular numbers, but we shall give 
some of the reasons why Peano’s treatment is less final than 
it appears to be. 

In the lirst place, Peano’s three primitive ideas-namely, 
“0, ” “number,” and “successor’‘-are capable of an i&rite 
number of different interpretations, all of which will satisfy 
the five primitive propositions. We will give some examples. 

( 1) Let “0” be taken to mean 100, and let “number” be 
taken to mean the numbers from 100 onward in the series of 
natural numbers. Then all our primitive propositions are sat- 
isfied, even the fourth, for, though 100 is the successor of 
99, 99 is not a “number” in the sense which we are now giving 
the word “number.” It is obvious that any number may be 
substituted for 100 in this example. 

(2) Let “0” have its usual meaning, but let “number” mean 
what we usually call “even numbers,” and let the “successor” of 
a number be what results from adding two to it. Then “1” will 
stand for the number two, “2” will stand for the number four, 
and so on; the series of “numbers” now will be. 

0, two, four, six, eight. . . 
All Peano’s five premisses are satisfied still. 

(3) Let “0” mean the number one, let “number” mean 
the set 
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whether there are such sets. In the second place, as already 
observed, we want our numbers to be such as can be used for 
counting common objects, and this requires that our numbers 
should have a definite meaning, not merely that they should 
have certain formal properties. This definite meaning is defined 
by the logical theory of arithmetic. 

Chapter I1 

DEFINITION OF NUMBER 

The question “What is a number?” is one which has been 
often asked, but has only been correctly answered in our own 
time. The answer was given by Frege in 1884, in his Grund- 
Zagen der Arithmetik.* Although this book is quite short, not 
dficult, and of the very highest importance, it attracted almost 
no attention, and the definition of number which it contains 
remained practically unknown until it was rediscovered by the 
present author in 1901. 

In seeking a definition of number, the first thing to be clear 
about is what we may call the grammar of our inquiry. Many 
philosophers, when attempting to define number, are really 
setting to work to define plurality, which is quite a ditferent 
thing. Number is what is characteristic of numbers, as man 
is what is characteristic of men. A plurality is not an instance 
of number, but of some particular number. A trio of men, 
for example, is an instance of the number 3, and the number 
3 is an instance of number; but the trio is not an instance of 
number. This point may seem elementary and scarcely worth 
mentioning; yet it has proved too subtle for the philosophers, 
with few exceptions. 

A particular number is not identical with any collection of 
terms having that number: the number 3 is not identical with 
the trio consisting of Brown, Jones, and Robinson. The number 
3 is something which all trios have in common, and which dis- 
tinguishes them from other collections. A number is some- 
thing that characterises certain collections, namely, those that 
have that number. 

* The same answer is given more fully and with more development in 
his Grundgesetze der Arithmetik, vol. i., 1893. 



168 BREAKTHROUGHS IN MATHEMATICS 

possible interpretations will be equally true, 
In Peano’s system there is nothing to enable us to distinguish 

between these different interpretations of his primitive ideas. 
It is assumed that we know what is meant by “0,” and that 
we shall not suppose that this symbol means 100 or Cleopatra’s 
Needle or any of the other things that it might mean. 

This point, that “0” and “number” and “successor” cannot 
be defined by means of Peano’s five axioms, but must be in- 
dependently understood, is important. We want our numbers 
not merely to verify mathematical formulae, but to apply in 
the right way to common objects. We want to have ten tigers 
and two eyes and one nose. A system in which “1” meant 100, 
and “2” meant 101, and so on, might be all right for pure 
mathematics, but would not suit daily life. We want “0” and 
“number” and “successor” to have meanings which wilI give 
us the right allowance of fingers and eyes and noses. We have 
already some knowledge (though not sufhciently articulate or 
analytic) of what we mean by “1” and “2” and so on, and our use 
of numbers in arithmetic must conform to this knowledge. We 
cannot secure that this shall be the case by Peano’s method; all 
that we can do if we adopt his method, is to say “we know what 
we mean by ‘0’ and ‘number’ and ‘successor,’ though we cannot 
explain what we mean in terms of other simpler concepts.” It 
is quite legitimate to say this when we must, and at some point 
we all must; but it is the object of mathematical philosophy to 
put off saying it as long as possible. By the logical theory of 
arithmetic we are able to put it off for a very long time. 

It might be suggested that, instead of setting up “0” and 
“number” and “successor” as terms of which we know the 
meaning although we cannot define them, we might let them 
stand for any three terms that verify Peano’s five axioms. They 
will then no longer be terms which have a meaning that is defi- 
nite though undefined: they will be “variables,” terms con- 
cerning which we make certain hypotheses, namely, those 
stated in the five axioms, but which are otherwise undeter- 
mined. If we adopt this plan, our theorems will not be proved 
concerning an ascertained set of terms called “the natural 
numbers,” but concerning all sets of terms having certain prop- 
erties. Such a procedure is not fallacious; indeed for certain 
purposes it represents a valuable generahsation. But from two 
points of view it fails to give an adequate basis for arithmetic. 
In the fist place, it does not enable us to know whether there 
are any sets of terms verifying Peano’s axioms; it does not 
even give the faintest suggestion of any way of discovering 
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or all irrational numbers, or all of any other infinite collection. 
Thus our knowledge in regard to all such collections can only 
be derived from a definition by intension. 

These remarks are relevant, when we are seeking the defi- 
nition of number, in three different ways. In the first place, 
numbers themselves form an infinite collection, and cannot 
therefore be defined by enumeration. In the second place, the 
collections having a given number of terms themselves pre- 
sumably form an infinite collection: it is to be presumed, for 
example, that there are an infinite collection of trios in the 
world, for if this were not the case the total number of things in 
the world would be finite, which, though possible, seems un- 
likely. In the third place, we wish to define “number” in such a 
way that infinite numbers may be possible; thus we must be 
able to speak of the number of terms in an infinite collection, 
and such a collection must be defined by intension, i.e. by a 
property common to all its members and peculiar to them. 

For many purposes, a class and a defining characteristic of 
it are practically interchangeable. The vital difference between 
the two consists in the fact that there is only one class having a 
given set of members, whereas there are always many different 
characteristics by which a given class may be defined. Men 
may be defined as featherless bipeds, or as rational animals, 
or (more correctly) by the traits by which Swift delineates the 
Yahoos. It is this fact that a defining characteristic is never 
unique which makes classes useful; otherwise we could be 
content with the properties common and peculiar to their mem- 
bers.* Any one of these properties can be used in place of 
the class whenever uniqueness is not important. 

Returning now to the definition of number, it is clear that 
number is a way of bringing together certain collections, 
namely, those that have a given number of terms. We can 
suppose all couples in one bundle, all trios in another, 
and so on. In this way we obtain various bundles of collec- 
tions, each bundle consisting of all the collections that have 
a certain number of terms. Each bundle is a class whose 
members are collections, i.e. classes; thus each is a class of 
classes. The bundle consisting of all couples, for example, 
is a class of classes: each couple is a class with two members, 
and the whole bundle of couples is a class with an infinite 
number of members, each of which is a class of two members. 

* As will be explained later, classes may be regarded as logical fictions, 
manufactured out of defining characteristics. But for the present it will 
simplify our exposition to treat classes as if they were real. 
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Instead of speaking of a “collection,” we shall as a rule speak 
of a “class,” or sometimes a “set.” Other words used in mathe- 
matics for the same thing are “aggregate” and “manifold.” 
We shall have much to say later on about classes. For the 
present, we will say as little as possible. But there are some 
remarks that must be made immediately. 

A class or collection may be defined in two ways that at fist 
sight seem quite distinct. We may enumerate its members, as 
when we say, “The collection I mean is Brown, Jones, and 
Robinson.” Or we may mention a defining property, as when 
we speak of “mankind” or “the inhabitants of London.” The 
definition which enumerates is called a definition by “exten- 
sion,” and the one which mentions a defining property is called 
a definition by “intension.” Of these two kinds of definition, 
the one by intension is logically more fundamental. This is 
shown by two considerations: (1) that the extensional defini- 
tion can always be reduced to an intensional one; (2) that the 
intensional one often cannot even theoretically be reduced to 
the extensional one. Each of these points needs a word of 
explanation. 

(1) Brown, Jones and Robinson all of them possess a cer- 
tain property which is possessed by nothing else in the whole 
universe, namely, the property of being either Brown or Jones 
or Robinson. This property can be used to give a def?nition by 
intension of the class consisting of Brown and Jones and Rob- 
inson. Consider such a formula as “x is Brown or x is Jones 
or x is Robinson.” This formula will be true for just three x’s, 
namely, Brown and Jones and Robinson. In this respect it re 
sembles a cubic equation with its three roots. It may be taken 
as assigning a property common to the members of the class 
consisting of these three men, and peculiar to them. A similar 
treatment can obviously be applied to any other class given 
in extension. 

(2) It is obvious that in practice we can often know a great 
deal about a class without being able to enumerate its mem- 
bers. No one man could actually enumerate all men, or even 
all the inhabitants of London, yet a great deal is known about 
each of these classes. This is enough to show that defmition by 
extension is not necessary to knowledge about a class. But when 
we come to consider infinite classes, we find that enumeration 
is not even theoretically possible for beings who only live for 
a finite time. We cannot enumerate all the natural numbers: 
they are 0, 1, 2, 3, and so OIZ. At some point we must content 
ourselves with “and so on.” We cannot enumerate all fractions 
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stances should suffice to make clear the notions of one-one, 
one-many, and many-one relations, which play a great part 
in the principles of mathematics, not only in relation t0 the 
definition of numbers, but in many other connections. 

Two classes are said to be “similar” when there is a one-one 
relation which correlates the terms of the one class each with 
one term of the other class, in the same manner in which the 
relation of marriage correlates husbands with wives. A few 
preliminary definitions will help us to state this definition more 
precisely. The class of those terms that have a given relation 
to something or other is called the domain of that relation: 
thus fathers are the domain of the relation of father to child, 
husbands are the domain of the relation of husband to wife, 
wives are the domain of the relation of wife to husband, and 
husbands and wives together are the domain of the relation of 
marriage. The relation of wife to husband is called the converse 
of the relation of husband to wife. Similarly less is the converse 
of greater, later is the converse of earlier, and so on. Generally, 
the converse of a given relation is that relation which holds 
between y and x whenever the given relation holds between 
x and y. The converse domain of a relation is the domain of 
its converse: thus the class of wives is the converse domain 
of the relation of husband to wife. We may now state our 
detinition of similarity as follows:- 

One cluss is said to be “similar” to another when there is a 
one-one relation of which the one cluss is the domain, whiIe 
the other is the converse domain. 

It is easy to prove ( 1) that every class is similar to itself, (2) 
that if a class a is similar to a class p, then p is similar to a, (3) 
that if a is similar to p and /3 to y, then a is similar to y. A 
relation is said to be reflexive when it possesses the first of these 
properties, symmetrical when it possesses the second, and tran- 
sitive when it possesses the third. It is obvious that a relation 
which is symmetrical and transitive must be reflexive through- 
out its domain. Relations which possess these properties are an 
important kind, and it is worth while to note that similarity is 
one of this kind of relations. 

It is obvious to common sense that two finite classes have 
the same number of terms if they are similar, but not other- 
wise. The act of counting consists in establishing a one-one 
correlation between the set of objects counted and the natural 
numbers (excluding 0) that are used up in the process. Accord- 
ingly common sense concludes that there are as many objects 
in the set to be counted as there are numbers up to the last 
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How shall we decide whether two collections are to belong 
to the same bundle? The answer that suggests itself is: “Find 
out how many members each has, and put them in the same 
bundle if they have the same number of members.” But this 
presupposes that we have defined numbers, and that we know 
how to discover how many terms a collection has. We are SO 

used to the operation of counting that such a presupposition 
might easily pass unnoticed. In fact, however, counting, though 
familiar, is logically a very complex operaticn; moreover it 
is only available, as a means of discovering how many terms 
a collection has, when the collection is finite. Our definition of 
number must not assume in advance that all numbers are finite; 
and we cannot in any case, without a vicious circle, use 
counting to define numbers, because numbers are used in 
counting. We need, therefore, some other method of deciding 
when two collections have the same number of terms. 

In actual fact, it is simpler logically to find out whether two 
collections have the same number of terms than it is to define 
what that number is. An illustration will make this clear. If 
there were no polygamy or polyandry anywhere in the world, 
it is clear that the number of husbands living at any moment 
would be exactly the same as the number of wives. We do 
not need a census to assure us of this, nor do we need to 
know what is the actual number of husbands and of wives. 
We know the number must be the same in both collections, 
because each husband has one wife and each wife has one 
husband. The relation of husband and wife is what is called 
“one-one.” 

A relation is said to be “one-one” when, if x has the relation 
in question to y, no other term x’ has the same relation to y, 
and x does not have the same relation to any term y’ other 
than y. When only the first of these two conditions is fulfilled, 
the relation is called “one-many”; when only the second is ful- 
filled, it is called “many-one.” It should be observed that the 
number 1 is not used in these definitions. 

In Christian countries, the relation of husband to wife is 
one-one; in Mohammedan countries it is one-many; in Tibet it 
is many-one. The relation of father to son is one-many; that 
of son to father is many-one, but that of eldest son to father 
is one-one. If n is any number, the relation of n to n + 1 is 
one-one; so is the relation of n to 2n or to 3n. When we are 
considering only positive numbers, the relation of n to n2 is 
one-one; but when negative numbers are admitted, it becomes 
two-one, since n and -n have the same square. These in- 
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paradoxical. But when we come to the actual definition of 
numbers we cannot avoid what must at first sight seem a pa=- 
dox, though this impression will soon wear off. We naturally 
think that the class of couples (for example) is something dif- 
ferent from the number 2. But there is no doubt about the class 
of couples: it is indubitable and not difficult to define, whereas 
the number 2, in any other sense, is a metaphysical entity about 
which we can never feel that it exists or that we have tracked 
it down. It is therefore more prudent to content ourselves with 
the class of couples, which we are sure of, than to hunt for a 
problematical number 2 which must always remain elusive. 
Accordingly we set up the following definition:- 

The number of a class is the class of all those classes that are 
similar to it. 

Thus the number of a couple will be the class of all couples. 
In fact, the class of all couples will be the number 2, according 
to our definition. At the expense of a little oddity, this definition 
secures definiteness and indubitableness; and it is not difkult 
to prove that numbers so defined have all the properties that 
we expect numbers to have. 

We may now go on to define numbers in general as any one 
of the bundles into which similarity collects classes. A number 
will be a set of classes such as that any two are similar to each 
other, and none outside the set are similar to any inside the set. 
In other words, a number (in general) is any collection which 
is the number of one of its members; or, more simply still: 

A number is anything which is the number of some class. 
Such a definition has a verbal appearance of being circular, 

but in fact it is not. We define “the number of a given class” 
without using the notion of number in general; therefore we 
may define number in general in terms of “the number of a 
given class” without committing any logical error. 

Definitions of this sort are in fact very common. The class 
of fathers, for example, would have to be defined by first de- 
tig what it is to be the father of somebody; then the class of 
fathers will be all those who are somebody’s father. Similarly 
if we want to define square numbers (say), we must fist de 
Ike what we mean by saying that one number is the square of 
another, and then define square numbers as those that are the 
squares of other numbers. This kind of procedure is very corn- 
mon, and it is important to realise that it is legitimate and even 
often necessary. 

We have now given a definition of numbers which will serve 
for finite collections. It remains to be seen how it will serve 
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number used in the counting. And we also know that, so long 
as we confine ourselves to finite numbers, there are just n num- 
bers from 1 up to n. Hence it follows that the last number used 
in counting a collection is the number of terms in the collec- 
tion, provided the collection is finite. But this result, besides 
being only applicable to finite collections, depends upon and 
assumes the fact that two classes which are similar have the 
same number of terms; for what we do when we count (say) 
10 objects is to show that the set of these objects is similar to 
the set of numbers 1 to 10. The notion of similarity is logically 
presupposed in the operation of counting, and is logically sim- 
pler though less familiar. In counting, it is necessary to take 
the objects counted in a certain order, at first, second, third, 
etc., but order is not of the essence of number: it is an irrele- 
vant addition, an unnecessary complication from the logical 
point of view. The notion of similarity does not demand an 
order: for example, we saw that the number of husbands is 
the same as the number of wives, without having to establish 
an order of precedence among them. The notion of similarity 
also does not require that the classes which are similar should 
be finite. Take, for example, the natural numbers (excluding 
0) on the one hand, and the fractions which have 1 for their 
numerator on the other hand: it is obvious that we can cor- 
relate 2 with 1%) 3 with 1%) and so on, thus proving that the two 
classes are similar. 

We may thus use the notion of “similarity” to decide when 
two collections are to belong to the same bundle, in the sense 
in which we were asking this question earlier in this chapter. 
We want to make one bundle containing the class that has no 
members: this will be for the number 0. Then we want a bundle 
of all the classes that have one member: this will be for the 
number 1. Then, for the number 2, we want a bundle consist- 
ing of ail couples; then one of all trios; and so on. Given any 
collection, we can define the bundle it is to belong to as being 
the class of all those collections that are “similar” to it. It is 
very easy to see that if (for example) a collection has three 
members, the class of all those collections that are similar to it 
will be the class of trios. And whatever number of terms a col- 
lection may have, those collections that are “similar” to it will 
have the same number of terms. We may take this as a defini- 
tion of “having the same number of terms.” It is obvious that 
it gives results conformable to usage so long as we contine 
ourselves to Cnite collections. 

So far we have not suggested anything in the slightest degree 
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nition. Our definition must not assume that we know what a 
&rite number is. 

The key to our problem lies in mathematical induction. It 
will be remembered that, in Chapter I., this was the fifth of the 
five primitive propositions which we laid down about the nat- 
ural numbers. It stated that any property which belongs to 0, 
and to the successor of any number which has the property, 
belongs to all the natural numbers. This was then presented as 
a principle, but we shall now adopt it as a definition. It is not 
dif6cult to see that the terms obeying it are the same as the 
numbers that can be reached from 0 by successive steps from 
next to next, but as the point is important we will set forth the 
matter in some detail. 

We shall do well to begin with some dehnitions, which will 
be useful in other connections also. 

A property is said to be “hereditary” in the natural-number 
series if, whenever it belongs to a number n, it also belongs to 
II + 1, the successor of n. Similarly a class is said to be “heredi- 
tary” if, whenever n is a member of the class, so is IZ + 1. It is 
easy to see, though we are not yet supposed to know, that to 
say a property is hereditary is equivalent to saying that it be- 
longs to all the natural numbers not less than some one of 
them, e.g. it must belong to all that are not less than 100, or 
all that are not less than 1000, or it may be that it belongs to 
all that are not less than 0, i.e. to all without exception. 

A property is said to be “inductive” when it is a hereditary 
property which belongs to 0. Similarly a class is “inductive” 
when it is a hereditary class of which 0 is a member. 

Given a hereditary class of which 0 is a member, it follows 
that 1 is a member of it, because a hereditary class contains the 
successors of its members, and 1 is the successor of 0. Similarly, 
given a hereditary class of which 1 is a member, it follows that 
2 is a member of it; and so on. Thus we can prove by a step- 
by-step procedure that any assigned natural number, say 
30,000, is a member of every inductive class. 

We will define the “posterity” of a given natural number 
with respect to the relation “immediate predecessor” (which 
is the converse of “successor”) as all those terms that belong 
to every hereditary class to which the given number belongs. It 
is again easy to see that the posterity of a natural number con- 
sists of itself and all greater natural numbers; but this also we 
do not yet officially know. 

By the above definitions, the posterity of 0 will consist of 
those terms which belong to every inductive class. 
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for infinite collections. But first we must decide what we mean 
by “finite” and “infinite,” which cannot be done within the 
limits of the present chapter. 

Chapter III 

FINITUDE AND MATHEMATICAL INDUCTION 

The series of natural numbers, as we saw in Chapter I., can 
all be defined if we know what we mean by the three terms “0,” 
“number,” and “successor.” But we may go a step farther: 
we can define all the natural numbers if we know what we 
mean by “0” and “successor.” It will help us to understand the 
difference between finite and infinite to see how this can be 
done, and why the method by which it is done cannot be ex- 
tended beyond the finite. We will not yet consider how “0” and 
“successor” are to be defined: we will for the moment assume 
that we know what these terms mean, and show how thence all 
other natural numbers can be obtained. 

It is easy to see that we can reach any assigned number, say 
30,000. We first define “1” as “the successor of 0,” then we 
define “2” as “the successor of 1,” and so on. In the case of 
an assigned number, such as 30,000, the proof that we can 
reach it by proceeding step by step in this fashion may be 
made, if we have the patience, by actual experiment: we can 
go on until we actually arrive at 30,000. But although the 
method of experiment is available for each particular natural 
number, it is not available for proving the general proposition 
that all such numbers can be reached in this way, i.e. by pro- 
ceeding from 0 step by step from each number to its successor. 
Is there any other way by which this can be proved? 

Let us consider the question the other way around. What are 
the numbers that can be reached, given the terms “0” and 
“successor”? Is there any way by which we can define the 
whole class of such numbers? We reach 1, as the successor of 
0; 2, as the successor of 1; 3, as the successor of 2; and so on. 
It is this “and so on” that we wish to replace by something less 
vague and indefinite. We might be tempted to say that “and 
so on” means that the process of proceeding to the successor 
may be repeated any finite number of times; but the problem 
upon which we are engaged is the problem of defining “finite 
number,” and therefore we must not use this notion in our de& 
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is not a member of a. Then the class consisting of a with x 
added on will have n + 1 members. Thus we have the follow- 
ing detiition : - 

The successor of the number of terms in the class a is the 
number of terms in the class consisting of a together with x, 
where x is any term not belonging to the class. 

Certain niceties are required to make this definition perfect, 
but they need not concern us.* It will be remembered that we 
have already given (in Chapter II) a logical detition of the 
number of terms in a class, namely, we defined it as the set of 
all classes that are similar to the given class. 

We have thus reduced Peano’s three primitive ideas to ideas 
of logic: we have given definitions of them which make them 
definite, no longer capable of an insnity of different meanings, 
as they were when they were only determinate to the extent of 
obeying Peano’s five axioms. We have removed them from the 
fundamental apparatus of terms that must be merely appre- 
hended, and have thus increased the deductive articulation of 
mathematics. 

As regards the five primitive propositions, we have already 
succeeded in making two of them demonstrable by our deli- 
tion of “natural number.” How stands it with the remaining 
three? It is very easy to prove that 0 is not the successor of any 
number, and that the successor of any number is a number. But 
there is a diaculty about the remaining primitive proposition, 
namely, “no two numbers have the same successor.” The difE% 
culty does not arise unless the total number of individuals in 
the universe is finite; for given two numbers m and n, neither of 
which is the total number of individuals in the universe, it is 
easy to prove that we cannot have m + 1 = n+ 1 unless we have 
m =n. But let us suppose that the total number of individuals 
in the universe were (say) 10; then there would be no class of 
11 individuals, and the number 11 would be the null-class. So 
would the number 12. Thus we should have 1 1 = 12; therefore 
the successor of 10 would be the same as the successor of 11, 
although 10 would not be the same as 11. Thus we should have 
two merent numbers with the same successor. This failure of 
the third axiom cannot arise, however, if the number of indi- 
viduals in the world is not finite. We shall return to this topic 
at a later stage. 

Assuming that the number of individuals in the universe is 
not tite, we have now succeeded not only in defining Peano’s 
three primitive ideas, but in seeing how to prove his five primi- 

* See Principia Mathematics, vol. ii. l 110. 
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It is now not difhcult to make it obvious that the posterity of 
0 is the same set as those terms that can be reached from 0 by 
successive steps from next to next. For, in the li.rst place, 0 
belongs to both these sets (in the sense in which we have de- 
fined our terms) ; in the second place, if n belongs to both sets, 
SO does n + 1. It is to be observed that we are dealing here with 
the kind of matter that does not admit of precise proof, namely, 
the comparison of a relatively vague idea with a relatively pre- 
cise one. The notion of “those terms that can be reached from 
0 by successive steps from next to next” is vague, though it 
seems as if it conveyed a dell&e meaning; on the other hand, 
“the posterity of 0” is precise and explicit just where the other 
idea is hazy. It may be taken as giving what we meant to mean 
when we spoke of the terms that can be reached from 0 by 
successive steps. 

We now lay down the following definition:- 
The “natural numbers” are the posterity of 0 with respect 

to the relation “immediate predecessor” (which is the converse 
of “successor”). 

We have thus arrived at a definition of one of Peano’s three 
primitive ideas in terms of the other two. As a result of this 
definition, two of his primitive propositions-namely, the one 
asserting that 0 is a number and the one asserting mathematical 
induction-become unnecessary, since they result from the 
definition. The one asserting that the successor of a natural 
number is a natural number is only needed in the weakened 
form “every natural number has a successor.” 

We can, of course, easily define “0” and “successor” by 
means of the definition of number in general which we arrived 

at in Chapter II. The number 0 is the number of terms in a 
class which has no members, i.e. in the class which is called the 
“null-class.” By the general detlnition of number, the number 
of terms in the null-class is the set of all classes similar to the 
null-class, i.e. (as is easily proved) the set consisting of the 
null-class all alone, i.e. the class whose only member is the 
null-class. (This is not identical with the null-class: it has one 
member, namely, the null-class, whereas the null-class itself 
has no members. A class which has one member is never iden- 
tical with that one member, as we shall explain when we come 
to the theory of classes.) Thus we have the following purely 
logical detition:- 0 is the class whose only member is the 
null-class. 

It remains to define “successor.” Given any number n, let 
a be a class which has n members, and let x be a term which 
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must be capable of detiition in terms of “parent,” but until 
Frege developed his generalised theory of induction, no one 
could have defined “ancestor” precisely in terms of “parent.” 
A brief consideration of this point will serve to show the im- 
portance of the theory. A person confronted for the fist time 
with the problem of defining “ancestor” in terms of “parent” 
would naturally say that A is an ancestor of Z if, between A 
and Z, there are a certain number of people, B, C, . . . , of whom 
B is a child of A, each is a parent of the next, until the last, who 
is a parent of Z. But this definition is not adequate unless we 
add that the number of intermediate terms is to be finite. Take, 
for example, such a series as the following:- 

- 1, - 35, - %, - 96, . . . I/s, %, !h, 1. 

Here we have Grst a series of negative fractions with no end, 
and then a series of positive fractions with no beginning. Shall 
we say that, in this series, - I% is an ancestor of l/a ? It will be 
so according to the beginner’s definition suggested above, but 
it will not be so according to any definition which will give the 
kind of idea that we wish to define. For this purpose, it is 
essential that the number of intermediaries should be finite. 
But, as we saw, “&rite” is to be defined by means of mathe- 
matical induction, and it is simpler to define the ancestral rela- 
tion generally at once than to define it first only for the case of 
the relation of n to n + 1, and then extend it to other cases. 
Here, as constantly elsewhere, generality from the first, though 
it may require more thought at the start, will be found in the 
long run to economise thought and increase logical power. 

The use of mathematical induction in demonstrations was, 
in the past, something of a mystery. There seemed no reason- 
able doubt that it was a valid method of proof, but no one quite 
knew why it was valid. Some believed it to be really a case 
of induction, in the sense in which that word is used in logic. 
Poincar6* considered it to be a principle of the utmost impor- 
tance, by means of which an i&rite number of syllogisms could 
be condensed into one argument. We now know that all such 
views are mistaken, and that mathematical induction is a de& 
nition, not a principle. There are some numbers to which it 
can be applied, and there are others (as we shall see in Chapter 
VIII) to which it cannot be applied. We define the “natural 
numbers” as those to which proofs by mathematical induction 
can be applied, i.e. as those that possess all inductive properties. 
It follows that such proofs can be applied to the natural num- 
bers, not in virtue of any mysterious intuition or axiom or 

* Science and Method, chap. iv. 
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tive propositions, by means of primitive ideas and propositions 
belonging to logic. It follows that all pure mathematics, in so 
far as it is deducible from the theory of the natural numbers, 
is only a prolongation of logic. The extension of this result to 
those modern branches of mathematics which are not deduc- 
ible from the theory of the natural numbers offers no diflkulty 
of principle, as we have shown elsewhere.* 

The process of mathematical induction, by means of which 
we detlned the natural numbers, is capable of generalisation. 
We defined the natural numbers as the “posterity” of 0 with 
respect to the relation of a number to its immediate successor. 
If we call this relation N, any number m will have this relation 
to m + 1. A property is “hereditary with respect to N,” or 
simply “N-hereditary,” if, whenever the property belongs to a 
number m, it also belongs to m + 1, i.e. to the number to which 
m has the relation N. And a number n will be said to belong to 
the “posterity” of m with respect to the relation N if n has 
every N-hereditary property belonging to m. These definitions 
can all be applied to any other relation just as well as to N. 
Thus if R is any relation whatever, we can lay down the fol- 
lowing definitions: + 

A property is called “R-hereditary” when, if it belongs to 
a term X, and x has the relation R to y, then it belongs to y. 

A class is R-hereditary when its defining property is R- 
hereditary. 

A term x is said to be an “R-ancestor” of the term y if y has 
every R-hereditary property that x has, provided x is a term 
which has the relation R to something or to which something 
has the relation R. (This is only to exclude trivial cases.) 

The “R-posterity” of x is all the terms of which n is an R- 
ancestor. 

We have framed the above definitions so that if a term is the 
ancestor of anything it is its own ancestor and belongs to its 
own posterity. This is merely for convenience. 

It will be observed that if we take for R the relation “parent,” 
“ancestor” and “posterity” will have the usual meanings, ex- 
cept that a person will be included among his own ancestors 
and posterity. It is, of course, obvious at once that “ancestor” 

* For geometry, in so far as it is not purely analytical, see Principles 
of Mathematics, part vi.; for rational dynamics, ibid, part vii. 

t These. definitions, and the generalised theory of induction, are due 
to Frege, and were published so long ago as 1879 in his Begriffsschrift. 
In spite of the great value of this work, I was, I believe, the first person 
who ever read it-more than twenty years after its pubhcation. 
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PART II 

In the previous chapter we saw how the system of “natural 
numbers” is gradually enlarged, for the sake of making the 
various arithmetical operations possible under all conditions; 
thus there are added to it, lirst, the negative whole numbers, 
and then, the fractions resulting from division. The resulting 
system of positive and negative integers together with tractions 
is called the system of rational numbers. Dedekind then showed 
that each rational number can be defined as a certain cut in 
this system; furthermore, he showed that there exists an in- 
finite number of cuts in the rational number system not made 
by rational numbers. These cuts, therefore, are made by a 
different type of number, called irrational. The system of ra- 
tional and irrational numbers together contains all the real 
numbers. 

This entire development of the number system begins with 
the concept of natural number. It is entirely appropriate, 
therefore, that we should take up in this chapter the question, 
What is a natural number? For an answer we turn to Bertrand 
Russell’s Introduction to Mathematical Philosophy. 

This book, which appeared in 1919, was written while the 
author was in prison. In a way this fact is symbolic of much of 
Russell’s life: his main interests are mathematics, philosophy, 
and a social doctrine directed toward liberty and peace. Be- 
cause of his social and political views, RusselI has been trou- 
bling, and been troubled by, governments and authorities all 
his life. In 1918, when he was forty-six years of age, his pacifist 
views brought about his imprisonment; in 1962, at the age of 
ninety, he was imprisoned again, because of civil disobedience 
while advocating nuclear disarmament. Controversy has sur- 
rounded Russell all his life, and he has seemed to thrive on it. 

Bertrand Russell (he became Earl Russell in 193 1) was 
born in 1872. He studied at Cambridge and soon became in- 
terested in philosophy. His gift for mathematics caused him 
to study for a while with the Italian mathematician Giuseppe 
Peano in Paris (whom he mentions in our excerpt from the 
Introduction to Mathematical Philosophy). Peano’s work led 



I82 BREAKTHROUGHS IN MATHEMATICS 

principle, but as a purely verbal proposition. If “quadrupeds” 
are defined as animals having four legs, it will follow that ani- 
mals that have four legs are quadrupeds; and the case of num- 
bers that obey mathematical induction is exactly similar. 

We shall use the phrase “inductive numbers” to mean the 
same set as we have hitherto spoken of as the “natural num- 
bers.” The phrase “inductive numbers” is preferable as afford- 
ing a reminder that the definition of this set of numbers is 
obtained from mathematical induction. 

Mathematical induction affords, more than anything else, 
the essential characteristic by which the finite is distinguished 
from the infinite. The principle of mathematical induction 
might be stated popularly in some such form as “what can be 
inferred from next to next can be inferred from first to last.” 
This is true when the number of intermediate steps between 
first and last is finite, not otherwise. Anyone who has ever 
watched a goods train beginning to move will have noticed how 
the impulse is communicated with a jerk from each truck to 
the next, until at last even the hindmost truck is in motion. 
When the train is very long, it is a very long time before the last 
truck moves. If the train were infinitely long, there would be 
an infinite succession of jerks, and the time would never come 
when the whole train would be in motion. Nevertheless, if 
there were a series of trucks no longer than the series of induc- 
tive numbers (which, as we shall see, is an instance of the 
smallest of infinites), every truck would begin to move sooner 
or later if the engine persevered, though there would always be 
other trucks further back which had not yet begun to move. 
This image will help to elucidate the argument from next to 
next, and its connection with finitude. When we come to in- 
finite numbers, where arguments from mathematical induction 
will be no longer valid, the properties of such numbers will 
help to make clear, by contrast, the almost unconscious use 
that is made of mathematical induction where finite numbers 
are concerned. 
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general is? This is what Russell sets out to do: first to tell us 
what characterizes a given multitude (or, as he calls it, plur- 
ality) such as 5, or 7, etc., and then to go to the more abstract 
concept of number in general. 

First, Russell notes that a particular number, such as 3, is 
not identical with alI those collections (or sets) consisting of 
3 members. Rather, the number 3 is something which all sets 
of 3 members have in common. Hence it is entirely reasonable 
to expect that the number 3 will and should be defined in 
terms of the sets consisting of 3 members. 

Russell proceeds as follows: Collect for example, all the 

Bundle of couples Bundle of trios 

sets consisting of two members. Put all these sets into one 
“bundle.” Then collect all the sets consisting of three mem- 
bers, and put them into another bundle. Do this for all sets, so 
that we end up with an (infmite) number of bundles, where 
each bundle contains all the sets with a given number of mem- 
bers. Each bundle will, of course, contain an infinite number 
of sets. Then we will try to define the number 2 in terms of 
the “bundle” containing all the sets of two members, the num- 
ber 3 in terms of all the sets of three members, and so on. 

An immediate difhculty presents itself. In advance of hav- 
ing defined “2,” how can we know whether a given set belongs 
to the “bundle” of sets of two members? Our definition of 
“2” should not be dependent on prior knowledge of what “2” 
is. This matter can be dealt with rather neatly, however. Con- 
sider the inf%rite number of sets which are to be distributed 
over the various “bundles.” Put into the same bundle, says 
Russell, all those sets which are similar. Similar sets are those 
whose members can be put into one-to-one correspondence 
with one another. This can be done without any actual count- 
ing; I can know, for example, that two sets are similar, with- 
out knowing how many members each of them has. 
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Russell to investigate the logical foundations of mathematics, 
together with Alfred North Whitehead (186 1-1947). To- 
gether they produced the monumental Principia Mathematics, 
whose three volumes appeared in 1910, 1912, and 1913. 

Russell’s output of books has been prodigious. In The Phi- 
losophy of Bertrand Russell (ed. Paul A. Schilppz third edition, 
New York, 195 1: Tudor Publishing Co.), the btbliography of 
his writings takes fifty-six pages, and he has been by no means 
idle since then. In philosophy his main interest has been the 
theory of knowledge; some of his major works in this field 
are Our Knowledge of the External World; The Analysis of 
Mind; The Analysis of Matter; An Znquiry into the Meaning 
of Truth; Human Knowledge: Its Scope and Limits. He has 
also written a history of philosophy. He is the author of many 
other books on logic and mathematics besides the ones we 
have mentioned, as well as of scores of articles. In the field 
of social theory he has written innumerable articles, essays, 
and pamphlets, as well as books. In 1950 he was awarded the 
Nobel Prize for Literature. 

Let us begin our study of the Zntroduction to Mathematical 
Philosophy by examining Chapter 2, because this is where 
Russell discusses the concept of number. 

We start by looking back at Euclid’s simple way of dealing 
with these matters, “A unit,” he says, “is that in virtue of which 
each of the things that exist is called one.” Number, then, is 
very straightforwardly defined as “a multitude composed of 
units.” Is anything wrong with these definitions? We might 
feel just a little uncomfortable with this definition of “unit.” 
It hardly seems very practical: there is an air of the obscure 
and metaphysical about it. This is not to say that the detmition 
is false-definitions are never false as long as they are inter- 
nally consistent. But this definition may be more suitable for 
the man who discusses metaphysical problems of the oneness 
or manyness of things than the mathematician who is only 
concerned to perform operations with numbers. The objection 
then, to Euclid’s definition of “unit” would be that it appears 
to suffer from inutility. 

The objection to his definition of “number” would be that 
while it may be correct, it nevertheless is unilluminating. What 
does it mean to call a number a multitude of units except that 
a number consists of a number of units? Obviously the num- 
ber 5 is a multitude consisting of 5 units. But can we say more 
precisely what the number 5 is, and then, what number in 
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ber 2.” In defense of his definition he does not attempt to 
show that our common-sense impression is wrong. He does 
not try to convince us that the class of couples is the number 
2, if we would only try to understand more deeply what “num- 
ber” or “the number 2” is. Russell’s defense is much more 
pragmatic : 

There is no doubt about the class of couples: it is indubi- 
table and not difficult to define, whereas the number 2, 
in any other sense, is a metaphysical entity about which 
we can never feel sure that it exists or that we have 
tracked it down. 

And so he concludes: 

It is therefore more prudent to content ourselves with 
the class of couples, which we are sure of, than to hunt 
for a problematical number 2, which must always re 
main elusive (p. 175). 

Since Russell claims only pragmatic justification for his defi- 
nition, we cannot attack it on the grounds that it is not what 
we had expected, that it is too different from Euclid’s deli- 
tion, or that it does not really tell us what the essence of 
number is, etc. We can, however, quite legitimately withhold 
judgment until we have seen whether the definition works- 
that is, until it has been established whether in fact this defi- 
nition of “number” is useful. Since Russell bases his entire 
justification for the definition on this level, we are entitled to 
judge it on that level also. Euclid’s definition, on the other 
hand, should be judged on different grounds, since it in fact 
attempts to tell us what a number is. Which kind of definition 
is better is a matter to be decided by the theory of definitions, 
a branch of the science of logic. 

But to return to Russell’s definition of “number”: The num- 
ber 2 is the class of all those classes which have two members; 
the number 5 is the class of all those classes which have 5 
members-but can we generalize these definitions? Yes, a 
number obviously will be “a set of classes such that any two 
are similar to each other, and none outside the set are similar 
to any inside the set.” Or, to generalize still further, since we 
have defined what “number of a class” means, we can now 
say (following Russell) that anything which is the number of 
a class is a number simply. A little more elegantly, we say: 



I86 BREAKTHROUGHS IN MATHEMATICS 

Thus, says Russell, barring the existence of polygamy or 
polyandry in the world, we can know that the number of liv- 
ing husbands is exactly the same as the number of living wives, 
for these two sets can be put in one-to-one correspondence- 
that is, each husband to his wife. Nor is it necessary that two 
sets be Unite in order for us to know that they can be put in 
one-to-one correspondence. For example, it is perfectly ob- 
vious that the set of natural numbers can be put in one-to-one 
correspondence with the set of fractions ?4,%, 45, and so on. In 
fact, putting any collection into one-t&one correspondence 
with the set of natural numbers is what counting is. What con- 
cerns us here, however, is that it is possible to decide whether 
two sets are similar (that is, belong to the same bundle of sets), 
without this decision’s involving the concept of number. 

Let us suppose, then, that all sets have been collected in ap- 
propriate bundles-that is, each set with all those sets that are 
similar to it. Thus there will be a “bundle” containing the set 
of no members (the so-called null set), then a bundle con- 
taining all the sets with one member, then a bundle with the 
sets of couples, etc. Now we-or rather Russell-are ready to 
define “number.” 

Here it is well to remind ourselves that a del%nition is some- 
thing arbitrary. However, while any (consistent) detition of 
“number” would in one way be acceptable, there is another 
criterion. That is utility. A mathematician, whether Euclid or 
Russell, is at liberty to begin his work with his own definitions; 
nobody can deny him the right to define things and assign 
names as he pleases. If, however, the mathematician wants to 
be of use to his reader, he will be careful to define his elements 
in such a way that the reader will recognize the things being 
defined-will, in other words, be able to make use of the 
definitions. With this caution, let us look at Russell’s deli&ion: 

The number of a class is the class of all those classes that 
are similar to it (p. 175). 

Before discussing the definition, let us translate it. Suppose 
there is a set containing a certain number of members, say 
five. How are we going to define the number 51 What are we 
going to say is the number 5? Russell answers: “Five” is the 
class of all those classes containing five members. 

Russell recognizes that his definition of number will seem 
strange at first. “We naturally think,” he writes, “that the class 
of couples (for example) is something different from the num- 
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can be reduced to arithmetic, or more precisely to the science 
of natural numbers. We can believe this quite easily; we have 
already seen in Chapter 3 that geometry can be reduced to 
algebra, and we have just learned in the previous chapter how 
irrational numbers can be defined in terms of rational num- 
bers, so that the entire theory of irrational numbers is re- 
duced to that of natural numbers. This arithmetization of 
mathematics reached its climax in the work of the Italian 
mathematician Giuseppe Peano (1858-1932). 

Peano undertook the next logical step in this progressive 
arithmetization. That step consisted in reducing arithmetic it- 
self-or better, the theory of natural numbers-to the smallest 
possible number of primitive, undefined terms and primitive, 
unproved propositions. The three undefined terms are “0,” 
“number,” “successor.” It is clear what Peano means by “0”; 
by “number” he means the class of natural numbers (includ- 
ing 0); by “successor” he means the successor of a natural 
number, or the next number in the natural order. 

There is no need for us here to repeat the five primitive 
propositions; Russell lists them on page 165. By means of 
the three primitive terms and the five primitive propositions, 
all the ordinary propositions of arithmetic can be proved. It 
is quite obvious that this is precisely the sort of thing which 
Euclid did in geometry: the three primitive terms correspond 
to the terms in the Definitions (remember, we noted at the 
time that some of them might better have been left unde- 
fined); the five primitive propositions correspond to Euclid’s 
postulates. 

Russell notes, however, that it is necessary to go beyond 
Peano’s work. One reason for this is that the primitive unde- 
fined terms of Peano’s system are capable of an infinite num- 
ber of interpretations. We gave the terms their “ordinary” 
interpretation above. That is, we interpreted “0” as meaning 
“zero” in the ordinary sense, “number” as meaning “the class 
of natural numbers ” and “successor” as meaning “next nat- 
ural number .” It is important to realize that this was an inter- 
pretation-that is, an attachment of meaning to those three 
terms made by us-because that meaning is not contained in 
those terms as such. Russell points out various other possible 
interpretations for these three terms; they are just as valid as 
the first interpretation, even though they may seem a little 
strange and unfamiliar. 

Faced with a number of undefined terms capable of a va- 
riety of interpretations, we have a choice of two courses of 
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A number is anything which is the number of some 
class (p. 175). 

Russell briefly considers the charge that this definition of 
number is circular, since it appears to define “number” in 
terms of “number.” He dismisses this charge easily, however, 
because “number” is here defined in terms of “number of a 
class.” And “number of a class” has been defined by him earlier 
in terms that do not involve the concept of number, but only 
the concepts of “class” and “similar classes.” There is an ap- 
pearance of circularity because of the occurrence of the word 
“number” among the words used to define “number.” But 
Russell points out that this quite frequently happens in valid 
definitions. For example, the father of a person might be de- 
fined as that per:on’s immediate male progenitor. “Father,” 
in general, then would be defined as he who is some person’s 
father. 

This is exactly the sort of thing that we do in the definition 
of number. However, if we wish to avoid even the appearance 
of circularity, we can easily do it by substituting for “number 
of a class” its definition. Then we can say: 

A number is anything which is a set of similar classes. 

The definition of “number” which Russell develops in Chap- 
ter 2 is, as Russell points out, due to the German mathema- 
tician Gottlob Frege ( 1848-l 925). Frege’s endeavor-and 
Russell’s after him-was to reduce mathematics to non-mathe- 
matical terms. The definition of “number” is a good instance 
of this. It involves no purely mathematical or arithmetical 
terms: the concepts used in it are taken from the science of 
logic. Basically, the concepts used are two: that of class (which 
in turn involves such concepts as “membership in a class” or 
“belonging to a class”), and that of similarity of a class. Num- 
ber, an arithmetical concept as we ordinarily think of it, 
emerges from these purely logical concepts. Whenever there 
are classes that are similar to one another, there is a class of 
all these similar classes. That class is a number. 

Russell’s definition of “number” is an instance, therefore, of 
reduction, of reducing one science at least partly to another. 
By defining “number” in purely logical terms, we reduce, to 
that extent, arithmetic to a part of logic. But Russell is in- 
terested in much more extensive reductions. In Chapter 1 
he mentions (but does not prove) that all of mathematics 
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a next one after it). This of course also means that every 
natural number has an immediate predecessor, except 0. For 
if a number m has the successor n, then n has the immediate 
predecessor m. 

Now the natural numbers have a great many different ProP- 
erties. Some properties are such that if they belong to a num- 
ber, then they belong also to the successor of that number. 
Russell calls such properties “hereditary.” Most properties are 
not of this kind; for example, the property of being even is 
not hereditary. If a number is even, then its successor is not 
even. 

Consider the property “being a member of a class A”; sup- 
pose this property is hereditary. This means that if a number 
belongs to class A, then its successor also belongs to class A. 
Since the property of being a member in this class A is heredi- 
tary, we call the class A also hereditary. 

If a property is hereditary and belongs to the number 0, 
then the property is called inductive. Similarly, if the property 
“being a member of class A” is hereditary and 0 is a member 
of class A, then A is said to be an inductive class. Let us note 
the obvious: the four statements concerning hereditary prop- 
erties, hereditary classes, inductive properties, and inductive 
class are alI definitions; as such they are arbitrary, not subject 
to dispute, and simply laid down by Russell for convenience 
and clarity. 

It follows from the definition of “inductive class” that any 
natural number is a member of every inductive class. For 0 
is a member of any inductive class (by definition) ; and if 0 
is a member of au inductive class, then 1 is also a member of 
it; if 1 is a member of it, then 2 is, and so forth until we reach 
the given natural number. 

Russell needs to make one more definition in order to ac- 
complish his task. Let us state once more what that task is, 
SO that we can be sure to understand in what sense he ac- 
complishes what he sets out to do. Russell’s aim is to replace 
the vague, intuitive understanding of the class of natural num- 
bers with a precise definition, where that definition is to involve 
o@ the terms “0” and “successor” from the field of number 
theory (the definition may and will of course involve other 
general logical terms). The vague intuitive understanding of 
the class of natural numbers states that each number is reached 
step by step as the successor of a number; or to put it the other 
way around, each number is the predecessor of another number. 

Since this is vague and unclear, Russell proposes to clarify 
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action. First, we could leave them undefined and uninterpreted, 
simply noting that these terms are variables, the only restric- 
tion on these variables being that they must fit the five primitive 
propositions. Such a course of action is logically permissible, 
but of course the result will be that our “arithmetical” results 
(the propositions proved by means of the primitive proposi- 
tions about the primitive terms) will not really be arithmetical. 
The propositions will be exercises in logic; we will not know 
to what these propositions apply, or even whether there are 
any things in reality to which they apply. 

The second course, and the one which Russell follows, is to 
give a detinite interpretation to these primitive terms. This in- 
terpretation is of course, the “ordinary” one-that is, one 
which interprets “number” to mean “the class of natural num- 
bers,” and so forth. But where can we turn for the means of 
making such an interpretation? Russell’s answer is logic. 

In Chapter 3 of the Introduction to Mathematical Philoso- 
phy Russell turns to the task of giving interpretations to the 
primitive terms and primitive propositions in Peano’s theory 
by the use of logical terms. When he has fmished his task, 
Russell has therefore succeeded in Zogicizing arithmetic. Since 
all arithmetical terms and propositions will have been reduced 
to logical terms and propositions, arithmetic will cease to exist 
as a separate science and will from now on be understood as 
merely a part of the science of logic. 

Peano’s three primitive terms were “0,” “number,” “succes- 
sor.” The first thing which Russell proposes to do is to deline 
“number” in terms of “0” and “successor.” These last two 
terms are, for the time being, still considered as undefined and 
not in need of definition. We must note one important differ- 
ence between the task which Russell solved in Chapter 2 and 
the task which he sets himself here in Chapter 3. In the earlier 
chapter, Russell gave a definition in logical terms, of any 
number, or “number” in general. Here in Chapter 3, Russell 
searches for a definition, in terms of “0” and “successor,” of 
“the class of natural numbers.” Whereas the detition de- 
veloped in Chapter 2 seeks only to say what any natural num- 
ber is, the definition looked for here is that of the entire class 
of natural numbers in terms of one natural number, namely 
0. The definition developed here will, therefore, be a genetic 
definition; that is, it will tell us how the class of natural num- 
bers comes to be, starting with the first natural number, 0. 

We can assume that the natural number series starts with 0, 
and that each natural number has a successor (that is, there is 
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to every hereditary class to which the given number belongs.” 
Or, to put it in less. precise but plainer words, the posterity of 
a given number consists of all those numbers that are con- 
nected with it by a hereditary property. If the given number 
is 0, then for “hereditary” class we substitute “inductive” class, 
and we will find that the posterity of 0, with respect to the 
relation “immediate predecessor,” is all those terms which 
belong to every inductive class. (Or, again, the posterity of 0 
is all those numbers that are connected with it by some in- 
ductive property.) Having defined the posterity of 0, Russell 
now turns around and defines the class of natural numbers 
as follows : 

The “natural numbers” are the posterity of 0 with respect 
to the relation “immediate predecessor” (which is the 
converse of “successor”) (p. 178). 

What has this definition accomplished? First, it states pre- 
cisely what we mean by the vague expression “each number 
comes from its predecessor, step by step.” Secondly, this de% 
nition has accomplished this task using only two of Peano’s 
undefined terms. Russell immediately proceeds to show that 
the other two undefined primitive terms can also be replaced 
by expressions involving only logical and no arithmetical terms. 
Thus 0, in accord with the work done in Chapter II, is defined 
as the class of all the classes having no members. Since there 
is only one class that has no members-the so-called null class 
-0 can be defined as the class that has only one member, 
namely the null class. Then Russell also defines “successor” in 
strictly logical terms-that is, using such terms as “class,” 
“member ” etc. 

Thus arithmetic is left with no primitive undefined terms. 
(The only undefined terms are those that are undefined in 
logic; arithmetic has no undefined terms of its own.) Further- 
more, Russell shows, arithmetic also does not have any un- 
proved, primitive propositions. We will not repeat Russell’s 
reasoning here, except with respect to Peano’s axiom 5, the 
one dealing with matematical induction. That particular axiom 
(see p. 165) stated this: 

Any property which belongs to 0, and also to the succes- 
sor of every number which has the property, belongs to 
all numbers. 

This seems like a fairly complicated and lengthy axiom, and 
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it. What do we mean, he asks, when we say that all numbers 
after a given number arise from it, step by step, because each 
number, beginning with the given number, is the predecessor 
of another number? Or, what do we mean when we consider 
all numbers after a given number as the “posterity” of that 
number, arising from the relation of “immediate predecessor”? 
In our restatement of Russell’s task, we have placed first the 
vague and intuitive statements which all of us bring to the 
study of numbers; and we have indicated that it is his task to 
clarify these vague statements. Actually, Russell approaches 
the matter in a slightly different way. He first gives a precise 
(though unusual) definition of the class of natural numbers, 
and then he indicates that this is what we meant all along by 
our vague statements concerning the class of natural numbers. 

The one added definition which, we noted above, Russell 
needs is that of posterity. Our common sense tells us that 
posterity is that which comes after, but we need to be more 
precise. A person or a thing has different posterities with re- 
spect to different relations. To take the most obvious example 
first: A man’s posterity, with respect to fatherhood, consists of 
his children, and his children’s children, and so forth. If I ask 
what a man’s posterity is with respect to the relation of being 
the father of sons, then it will be all his male children, and 
their male children, and so forth. (It may happen, of course, 
that with respect to this relationship a man has no posterity at 
all.) Similarly, too, we might define a relation of authorship 
so that an author’s posterity would consist of all those persons 
who read his books, and then of all those who read books 
written by the fist generation of readers, and so on. 

What Russell sets out to define, then, is the posterity of a 
number with respect to the relation “immediate predecessor.” 
To put what Russell is looking for in plainer terms, he wants to 
deGne what all those numbers are which follow a given num- 
ber, as a result of the fact that the given number is the im- 
mediate predecessor of a nurnber, while this second number is 
again the immediate predecessor of another number. The 
posterity of a given number, in other words, consists of all 
those numbers which arise from it, step by step. This, we 
recall, was the intuitive and vague understanding of the class 
of numbers. Now let us look at Russell’s detlnition, which 
makes it precise. He defines the posterity of a given number 
(with respect to the relation of “immediate predecessor”- 
that is, arising from the fact that every number is the immediate 
predecessor of another number) as “all those terms that belong 
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consequently one might wish that it would not be necessary to 
accept it without proof. (This, of course, was precisely the 
kind of objection urged against Euclid’s fifth postulate.) 
Peano’s fifth axiom is no longer necessary, however, if we 
define “natural numbers” as Russell does. For that definition 
includes the property of “inductiveness.” In other words, the 
class of natural numbers is defined in such a way that mathe- 
matical induction must necessarily hold. For the natural num- 
bers are said to be the posterity of 0, and the posterity of 0 
is de6ned as all those numbers connected with 0 by the in- 
ductive property. To see this, it is merely necessary to go back 
to the definition of “posterity”; it involves the definition of 
hereditariness, and this in turn means “inductiveness.” Thus, 
mathematical induction, far from being a problem for the 
arithmetician, becomes in fact the defining property of natural 
numbers. We can even say that Russell defines natural num- 
bers as all those, starting from 0, for which mathematical in- 
duction holds. 

The use of mathematical induction- in demonstrations 
was, in the past, something of a mystery. There seemed 
no reasonable doubt that it was a valid method of proof, 
but no one quite knew why it was valid. . . . We now 
know that. . . mathematical induction is a definition, not 
a principle. There are some numbers to which it can be 
applied, and there are others. . . to which it cannot be 
applied. We define the “natural numbers” as those to 
which.proofs by mathematical induction can be applied, 
i.e. as those that possess all inductive properties (p. 18 1) . 

What finally, is the result of Russell’s work as far as we 
have read it? He himself sums it up quite clearly, on p. 179: 

We have now succeeded not only in defining Peano’s 
three primitive ideas, but in seeing how to prove his five 
primitive propositions, by means of primitive ideas and 
propositions belonging to logic. It follows that all pure 
mathematics, in so far as it is deducible from the theory 
of natural numbers, is only a prolongation of logic. 



CHAPTER SEVEN 

Euler-A New Branch of Mathematics: Topology 

PART I 

Most of us tacitly assume that mathematics is a science dealing 
with the measurement of quantities. Indeed, the word “geom- 
etry,” which is sometimes used synonymously with “mathe- 
matics,” means “measurement of the earth.” In the selection 
before us now, however, we see that mathematics includes a 
great deal more than measurement. Leonhard Euler, an eight- 
eenth-century mathematician, shows us that “position” or 
“relative position” is a property that can be treated mathe- 
matically. Not only such questions as “are these two triangles 
of the same shape?” or “Is this number a factor of that num- 
ber?” but also a question like “Is this point inside or outside of 
that figure?” are all mathematically significant. 

If it seems strange that “relative position” should be a part 
of mathematics, a look at Euler’s treatment will dispel any 
doubt. These “topological” matters are treated deductively 
and just as rigorously as matters of size and shape are treated 
by Euclid. 

Leonhard Euler: 
Solution of a Problem Belonging 

to the “Geometry of Position”* 

1. Beside that part of geometry which deals with quantities 
and which always is studied with the greatest care, Leibniz 
makes mention of another part. He was the l?rst to do so, al- 

* A new translation by Peter Wolff. Copyright @ 1963 by Peter Wolff. 
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3. But since the problem of Kijnigsberg pertains to seven 
bridges, it could be solved by a complete enumeration of all 
the routes which can be taken; from this it would become 
clear whether some route satisfies the problem or not. But 
because of the great number of combinations this mode of 
solution is both too difficult and laborious and in other prob- 
lems of more bridges cannot be employed at all. If this kind 
of method should be pursued to the end, many answers will 
be found to questions that were not asked; in this without 
doubt consists the cause of great difbculty. Wherefore having 
dismissed this method I have searched for another one which 
would not do anything more than show whether such a route 
can be found or not; for I suspected that such a method would 
be much simpler. 

4. Now my whole method rests on a suitable way of desig- 
nating each single crossing of the bridges; for this I use the 
capital letters A, B, C, D which describe each of the regions 
that are separated by the river. Thus, if someone goes from 
region A to region 23, by either the bridge a or the bridge b, 
I denote this crossing by the letters AB. The f%st of these 
shows the region from which the traveler came, and the sec- 
ond gives the region into which he goes after crossing the 
bridge. Again, if a traveler should go from region B to region 
D by bridge f, this crossing is represented by the letters BD. 
Two successive crossings AB and BD I then denote by the three 
letters ABD, because the middle letter B designates both the 
region which he reached by the tist crossing and the region 
which he left by the second crossing. 

5. Similarly, if the traveler should go on from region D to 
region C by the way of bridge g, I denote these three successive 
crossings by the four letters ABDC. From these four letters 
ABDC it will be understood that the traveler was fist in 
region A and crossed into region B, that from here he went 
on to region D and that from here he tinally proceeded to C. 
Since, however, these regions are separated from each other by 
the river, it is necessary that the walker crossed three bridges. 
Thus crossings that are undertaken by way of four successive 
bridges are denoted by five letters; and if the walker crosses 
any number of bridges the number of letters denoting his 
route will be one greater than the number of bridges. Thus a 
crossing by seven bridges requires eight letters for its desig- 
nation. 

6. In this manner of denoting the crossings, I pay no at- 
tention to which bridges are used, but if the same crossing can 
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though it is almost unknown, and he called it geometriu sirus 
(geometry of position). This part of geometry was stated by 
him to deal only with the determination of location and with 
eliciting the properties of location. In this business no regard 
is had to quantities nor is there any need for calculating quan- 
tities. However, this does not sufficiently define the sort of 
problems that belong to this geometry of position, nor what 
method is to be used in solving them. Therefore, since recently 
there has been made mention of a certain problem, which 
seems to pertain to geometry, but which is so constituted that 
it requires neither quantitative determination nor admits of 
quantitative solution through calculation, I have not had any 
doubt at all to refer it to the geometry of position, especially 
because in its solution only position comes under considera- 
tion, while calculation is of no use. Hence I have determined 
here to exhibit my method, which I have invented for solving 
problems of this kind, as an example of the geometry of posi- 
tion. 

2. The problem, then, which I was told is quite well enough 
known, was the following: In Kiinigsberg in Prussia there is 
an island A, called the Kneipfhof, encircled by a river which 
divides into two arms, as can be seen from the figure: the 
branches are furnished with seven bridges, a, 6, c, d, e, f, and g. 
Now the following question is asked concerning these bridges: 
Could someone follow a course so that he crosses each bridge 
once, and none more than once? I was told that some deny 
altogether that this is possible while others doubt it, but no- 
body asserts that it is possible. I formulated for myself the 
following general problem from this: whatever be the shape 
of the river and the distribution of its branches and whatever 
be the number of bridges, to find whether it is possible to 
cross all bridges once only, or not. 

C 

Figure 7-l 
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Figure 7-2 

the crossings over these bridges. Because three bridges lead to 
the region B, the letter B must occur twice, and similarly the 
letter D and the letter C must each occur twice. Hence in the 
series of eight letters, by which the crossing of seven bridges 
must be designated, the letter A should occur three times, and 
the letters B, C, and D each twice. But in a series of eight 
letters this can in no way be accomplished. From this it is clear 
that the required crossing over the seven bridges of Kiinigsberg 
cannot be done. 

10. In similar fashion we can decide in any other case of 
bridges, if only the number which lead to any region is odd, 
whether each single bridge can be crossed just once. If it hap- 
pens that the sum of all the times that each single letter should 
occur is equal to the number of all the bridges plus one, then 
such a crossing can be made. But if, as happened in our ex- 
ample, the sum of all the times should be greater than the 
number of bridges plus one, then such a crossing cannot be 
accomplished. The rule which I have given for finding the num- 
ber of times of the letter A from the number of bridges leading 
into the region A, is equally valid whether all bridges come 
from one region B, as is the case in Figure 7-2, or whether they 
come from different regions; for I only consider the region A 
and inquire, how many times the letter A ought to occur. 

11. If, however, the number of bridges leading to region A 
is even, then it must be known, in the matter of crossing each 
single bridge, whether the traveler began his course in A or 
not. For if two bridges lead to A and the traveler begins his 
course in A, then the letter A must occur twice; for it must once 
be present in order to denote the exit from A by one bridge, 
and once more in order to designate the reentry into A by way 
of the other bridge. But if the traveler begins his course in 
some other region, then the letter A wiU occur only once; for 
being written once it will denote both the arrival at A and the 
exit from A, in my manner of denoting such a course. 

12. Now let four bridges lead into region A and let the trav- 
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be made from one region into another by several bridges, then 
it is just the same, whichever bridge be crossed, as long as the 
traveler reaches the designated region. From this it is clear 
that if the path over the seven bridges of the figure can be 
traced in such fashion that it crosses over each one once but 
over none twice, then this path can be represented by eight 
letters and these letters must be disposed in such fashion that 
the letters A and B occur directly next to each other twice, 
because there are two bridges a and b joining regions A and 
B; similarly, the two letters A and C also should occur twice 
in immediate succession in this series of eight letters; then the 
sequence of letters A and D should occur once, and similarly 
the sequence of letters B and D and C and D must occur once. 

7. The question is reduced to this, then, that from the four 
letters A, B, C, and D a series of eight letters must be formed, 
in which all the sequences occur just as many times as we 
have indicated. However, before beginning work to find such an 
arrangement, it is convenient to show whether these letters 
can be disposed in this manner or not. For if it can be demon- 
strated that such an arrangement can by no means be made, 
all labor would be useless which was directed toward bringing 
this about. Wherefore I have searched for a rule, by means 
of which it could easily be ascertained-both for this question 
and for all similar ones-whether such an arrangement of 
letters can exist. 

8. In order to find this rule I consider the single region A, 
into which any number of bridges Q, b, c, d, etc. lead (Figure 
7-2). Of all these bridges, I first pay attention to the single one 
a, which leads to the region A. If now the traveler crosses by 
way of this bridge, he necessarily must either have been in 
region A before he crosses, or must :each region A after the 
crossing. Therefore, according to the way of naming the cross- 
ing that I established above, it is necessary that the letter A 
occur once. If three bridges, say a, b, c, lead to region A and the 
traveler crosses over all three, then in naming his travel the 
letter A will occur twice, whether or not he started his course 
from A. Similarly, if five bridges lead to A, then in naming 
crossings by way of all five, the letter A must occur three times. 
And if the number of bridges be any odd number whatever, if 
we add one to this number and take half of it, this will give 
the number of times that letter A must occur. 

9. To turn now to the case of the bridges that are to be 
crossed in Kiinigsberg. Because five bridges a, b, c, d, e lead 
to the island A, the letter A must occur three times in naming 
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ing can be made. But it must be noted that, if the sum is one less 
than the number placed above, then the beginning of the route 
must be made in a region marked with an asterisk; on the 
other hand, from a region not so marked, if the sum is equal 
to the number in question. Thus in the case of Kiinigsberg I 
make the following calculations: 

Number of bridges 7; key number, 8 
Bridges 

A 5 3 
B 3 2 
C 3 2 
D 3 2 

Because this calculation results in a sum greater than 8, a 
crossing of this kind cannot be made in any way. 

15. Let there be two islands A and B, surrounded by water, 
and let this water be connected with four rivers, as the figure 
(Figure 7-3) shows. So that the island can be reached let there 
be 15 bridges Q, b, c, d, etc. across the water surrounding the 
islands and the rivers. The question is whether some course can 

Figure 7-3 

be found so that each of the bridges is crossed, but none more 
than once. First, therefore, I name all the regions which are 
separated by water from one another, by the letters A, B, C, 
D, E, F; there are six of these regions.Then I add one to the 
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eler begin his course in A. In the designation of this course the 
letter A must be present three times, if he crosses over each 
single bridge once. But if he begins to walk in another region, 
then the letter A will occur only twice. If six bridges lead to the 
region A, then the letter A will occur four times, if the begin- 
ning of the walk is made at A; but if the traveler does not at 
the beginning come from A, then it will have to occur only 
three times. Generally therefore, if the number of bridges is 
even, one half of that number gives the number of times 
which the letter A must occur, if the beginning of the route 
is not in the region A; one half of the number of bridges plus 
one will give the number of times that the letter A must occur, 
if the beginning of the route is made in A itself. 

13. But because in such a course the beginning can only be 
made in one region, I determine the number of times that the 
letter designating each region must occur from the number of 
bridges leading into the region, as half the sum of all the 
bridges plus one, if the number of bridges is odd; but as the 
half of the number of bridges themselves, if it is even. Then 
if the number of all the letter occurrences equals the number 
of the bridges. plus one, the desired course can successfully 
be traversed; but the beginning must be made from a region 
into which an odd number of bridges leads. If, however, the 
number of letter occurrences should happen to be less by one 
than that of the bridges plus one, then the course can success- 
fully be traversed by beginning in a region into which an even 
number of bridges leads, because in this way the number of 
letter occurrences is increased by one. 

14. Suppose then that any configuration whatever of water 
and bridges is given and that it is to be investigated whether 
it is possible to cross over each bridge once; I go about it in 
the following fashion: First, I name all regions that are sep- 
arated by water from each other by the letters A, B, C, etc. 
Second, I take the number of all the bridges, add one to it, 
and place this number at the head of the succeeding calcu- 
lation. Third, after the letters A, B, C, etc., written below 
one another, I write the number of bridges leading into the 
region. Fourth, I mark with an asterisk those letters that have 
even numbers after them. Fifth, I write half of the even num- 
ber next to each of the even numbers, and I write a number 
equal to half of each odd number plus one next to each odd 
number. Sixth, I add together the numbers written in the 
last column. If this sum is equal to, or less by one than the num- 
ber of bridges plus one-then I conclude that the desired cross- 
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signifying the bridges, attached to the letters A, B, C, etc. are 
uneven, it is necessary that the number of these numbers be 
even. Thus in the example of Kiinigsberg there were four num- 
bers of bridges that were odd, attached to the letters of the 
regions A, B, C, D, as can be seen from section 14. And in 
the preceding example, in section 15, there are only two odd 
numbers, attached to the letters D and E. 

18. Sine? the sum of all thd number* attached to the letters 
A, B, C, etc. equals twice the number of bridges, it is apparent 
that if two be added to this sum and the result divided by 2, 
then this must give the number placed at the head of the cal- 
culation. If, therefore, all the numbers attached to the letters 
A, B, C, D, etc. are even and in order to obtain the numbers 
of the third column half of each of them is taken, their sum 
will be less by one than the key number at the top. Therefore 
in such cases a crossing over the bridges can always be made. 
For in whatever region the course begins, it has bridges even in 
number leading to it, as is required. Thus in the Kiinigsberg case 
it would be possible for someone to cross over each bridge twice; 
each bridge could be, as it were, divided in two, and then 
the number of bridges leading into each region will be even. 

19. Furthermore, if only two of the numbers attached to 
the letters A, B, C, etc. are odd, but all the others are even, 
then the desired crossing can always be successfully made, as 
long as the beginning of the course is in a region with which 
an odd number of bridges connect. For if the even numbers 
are halved as well as the odd numbers plus one, according to 
the rule, the sum of all these halves will be greater by one than 
the number of bridges and therefore equal to the key number 
at the head. 

From this it will then be seen that, if there are four or six 
or eight, etc. odd numbers in the second column, then the sum 
of the numbers in the third column will be greater than the 
key number at the head and will exceed it by one or two or 
three etc. and hence the crossing cannot be made. 

20. Hence if any case whatsoever be given, it can now very 
easily be recognized whether a crossing over all bridges once 
can be made or not, with the help of this rule: 

If there are more than two regions which have an odd num- 
ber of bridges leading to them, then it can with certainty be af- 
firmed that such a crossing cannot be made. 

If, however, there are two regions which have an odd num- 
ber of bridges leading to them, then the crossing can be made, 
if the course begins in one of these regions. 
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number 15 of the bridges, and place the sum 16 at the head 
of the following calculation: 

Key number = 16 
A* 8 4 
B* 4 2 
C* 4 2 
D 3 2 
E 5 3 
F* 6 3 

16 
Third, I write the letters A, B, C, etc. under one another and 
with each I place the number of bridges that lead into this 
region, as 8 bridges lead to A, and four to B, etc. Fourth, those 
letters which have even numbers attached I mark with an 
asterisk. Fifth, in the third column I write half of the even 
numbers, but to the odd numbers I add one and write half of 
that. Sixth, I add the numbers of the third column to one an- 
other and obtain the sum 16. Since this is equal to the num- 
ber 16 placed above the calculation, it follows that the cross- 
ing can be made in the desired fashion, if the course takes 
its beginnings either in region D or E, because these are not 
marked with an asterisk. The course could be made in this 
way: 

EaFbBcFdAeFfCgAhCiDkAmEnApBoElD, 
where I placed the bridges by which the crossings are made 
between the capital letters. 

16. By this reasoning it will be easy to judge in every case 
no matter how greatly complex, whether all bridges can be 
crossed just once, or not. I shall now relate a much easier way 
of discerning the same thing, which follows without great dif- 
ficulty from the present way, after I have first made the fol- 
lowing observations. First I observe that all the numbers of 
bridges, written in the second column after the letters A, B, 
C, etc. if added together are twice as great as the number of 
bridges. The reason of this is that in this calculation where all 
bridges leading into a given region are counted, each bridge 
is counted twice; for each bridge has reference to both regions 
which it joins. 

17. From this observation it follows therefore that the sum 
of all the bridges which lead into each region is an even num- 
ber, because its half is equal to the number of bridges. Hence 
it cannot happen that among the numbers of bridges leading 
into the several regions there is just one that is uneven; nor 
that three be uneven, nor five, etc. Hence if any of the numbers 
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If, finally, there are no regions which have odd numbers of 
bridges leading to them, then the desired crossing can be made, 
no matter in which region the beginning of the walk is made. 

This rule therefore fully solves the given problem. 
21. But when it has been found that such a crossing can be 

made, the question still remains, how the course is to be found. 
For this I use the following rule: Let pairs of bridges which 
lead from one region to another, be eliminated in thought, as 
many times as it can be done. In this way, the number of 
bridges will be radically and quickly diminished. Then the de- 
sired course over the remaining bridges which can easily be 
done is looked for. When this has been found, it will at once 
be clear to anyone who attends to it that the bridges eliminated 
in thought will not disturb this course: and I judge it is not 
necessary for me to teach more about the finding of the course. 

PART II 

Leonhard Euler lived from 1707-1783, during the period 
that is often called “the age of reason” or “the enlightenment.” 
The French encyclopedists (men like Diderot and d’Alembert) 
worked to publish the first encyclopedia; Voltaire, living some- 
times in France, sometimes in Germany, wrote novels, satires, 
and a philosophical dictionary; in Great Britain, George Berke- 
ley and David Hume published important treatises on the 
theory of knowledge, while Edward Gibbon labored for twenty 
years on The Decline and Fall of the Roman Empire. Europe 
was in broad intellectual ferment, with all the arts and sciences 
flourishing. 

This favorable environment for intellectual pursuits resulted 
in the establishment of royal academies in many European 
countries. These were centers of learning, supported financially 
by the rulers of their countries, in which research of the most 
diverse kind was carried on under the patronage of the king. 
Many of the most important achievements of the eighteenth 
century are recorded in the annals of proceedings of one or 
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while the letters AD (or DA ) , BD (or DB) , and CD (or DC) 
must each occur once. The question then is, Can a sequence 
of eight letters be formed in which this arrangement of letters 
holds? The whole rest of the paper is devoted to the problem 
of investigating the possibility of this letter sequence (or gen- 
erally, other letter sequences of similar sort). 

Euler reasons as follows. (The problem is made a little 
easier, as we shall see, because each of the four regions A, B, 
C, D, has an odd number of bridges leading to ic.) If a region 
has just one bridge leading to it, then the letter (say, A) of 
the region must occur just once, namely as either the starting 
point or the arrival point for a crossing. Suppose there are 
three bridges leading to the region A. Then the letter A must 
occur twice, whether the traveler starts in A or not. (See Fig- 
ures 7-4a and 74b). And again, if there are five bridges lead- 

BABA 
fa b 

Figure 7-4 

ing to region A, then the letter A must occur three times. Gen- 
erally, if there is an odd number of bridges leading to a region, 
the number of times which that letter must occur is equal to 
the number of bridges plus 1, divided by 2. 

This immediately answers the question about the Kijnigs- 
berg problem. Since five bridges lead to A, the letter A must 
occur three times. Since three bridges lead to B, the letter B 
must occur twice. Since three bridges lead to C, the letter C 
must occur twice. Finally, since three bridges lead to D, the 
letter D must occur twice. Thus the total sequence of letters 
must contain 3 A’s, 2 B’s, 2 C’s, and 2 D’s. But that is a total 
of 9 letters; yet the total sequence of letters is only supposed 
to consist of 8 letters (since each bridge is to be crossed just 
once.) Hence the problem is insoluble, since two incompatible 
conditions must be met: When we consider the problem as a 
whole, we find that just 8 letters must describe the series or‘ 
crossings. When we consider the problem region by region, we 
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splits into two branches, forming an island (the Kneipfhof), 
and then continues in two branches. The city of Konigsberg 
is located on both sides of the river and on the island, and the 
bridges are arranged accordingly. 

This problem is one of a more general kind, which is prob- 
ably familiar to the reader. That is, it belongs to the class of 
problems in which we are given a certain figure and we are 
asked to trace this figure in “one stroke”-that is, without re- 
peating or retracing any part of the diagram. Euler’s problem 
has a certain added charm because of the geographical de- 
tails, but they are of no importance to the character of the 
problem. Euler gives us a method for solving not only the 
Konigsberg problem, but all other problems of a similar sort 
as well. 

An important part of Euler’s scheme of solving problems 
of this kind consists in the proper labeling of the figure. He 
gives capital letters to each of the regions that are completely 
separated from each other by the river; there are four of them: 
A, B, C, D. (It is clear that in order for these four regions to 
be truly separated, we must conceive the river to go on in- 
definitely to the left; similarly, each of the two branches of the 
river on the right must continue indefinitely.) Then Euler 
designates the various bridges by small letters, u, b, c, d, e, f, g. 

Next, he denotes the crossing from A to B by way of bridge 
a by the sequence of letters AaB, or, if no attention is paid to 
which bridge is used, the crossing from A to B is simply de- 
noted by AB. Similarly going from B to D would be denoted by 
BfD, if we want to call attention to the bridge used, or simply 
by BD, if we do not. In the same fashion, going from A first 
to B and then to D is denoted by ABD. (Since no small letters 
are used, we do not know whether the crossing from A to B 
was by way of bridge a or b). Crossing over one bridge takes 
us from one region to a second one; and conversely, going 
from one region to a second one and from the second one to 
a third involves two bridges. In general, it is easy to see, the 
number of regions (that is, the number of capital letters) in 
a given course must be greater by one than the number of 
bridges crossed. In the Ktinigsberg problem, therefore, we 
know that if the required course can be traced, over seven 
bridges, it must be designated by eight letters. 

Furthermore, since there are two bridges from A to B, the 
letters A and B must appear next to each other (either as AB 
or BA) twice in the sequence of eight letters; similarly, the 
letters A and C also must appear next to each other twice, 
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not in A. But if the beginning of the course is in A, then the 
number of times which the letter A must occur is given by 

;+ 1. 

Suppose, then, that we have a problem where there are a 
number of regions, and where some of the regions have odd 
numbers of bridges leading to them, while others have even 
numbers of bridges leading to them. How can we determine 
how many times each letter must occur (when we consider 
the problem region by region) ? Euler’s reasoning goes like 
this: Let us assume that the beginning of the course is in some 
region that has an odd number of bridges leading to it. Then 
the problem becomes perfectly determinate. For in the case 
of regions with odd numbers of bridges, it makes no difference 
where the course starts; consequently, I can determine the 
number of times that each letter designating an “odd” region 
must occur from the number of bridges. Now the rest of the 
problem is also determinate. For if the course starts in one of 
the “odd” regions, I can determine the number of times that 
each letter designating an “even” region must occur from the 
rule that applies when the start is not in an “even” region. 

What if the beginning of the course is in one of the “even” 
regions? This means that for one region, but o&y one region, 
the number of times that the letter designating that region 
occurs must be increased by one. None of the other letter oc- 
currences need to be changed, because as far as the other even 
regions go, the beginning of the course is still in a region other 
than themselves. And, of course, as far as the “odd” regions 
are concerned, the numbers of times that the letters designat- 
ing them occur are not at all affected by where the beginning 
is made. So the rule for finding the number of times that the 
letters designating the various regions occur is very simple: 
For the “odd” regions take half of the sum obtained by adding 
one to the number of bridges; for the “even” regions take half 
of the number of bridges. This will give the number of letter 
occurrences, if the start of the course is in an “odd” region. If 
the start is in an “even” region, simply add one to the previous 
sum. If the sum is equal to the number of letter occurrences in 
the problem as a whole, it is soluble. 

This solves the general problem, but Euler is still not sat- 
isfied. The general solution is too complicated for easy appli- 
cation, since we must consider each region separately and 
calculate the number of times that the letter of that region 
Wa occur from the number of bridges leading into it. Next, 
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find that a total of 9 letters is needed to describe the cross- 
ings. Thus Euler has proved what, he tells us, had always been 
suspected but had never been demonstrated-that the required 
course over the seven bridges cannot be traced. 

Euler immediately sets out to generalize his solution. He 
begins by investigating the situation when an even number of 
bridges leads to a region. Let us say that two bridges lead to 
region A. It immediately becomes apparent that it makes a 
difference whether the course begin at A or not. If two bridges 
lead to A, and the beginning of the course is in A, then the 
letter A will occur twice. (See Figure 7-5a.) 

a b 
Figure 7-5 

But if two bridges lead to A, and the beginning of the course 
is not in A, then the letter A will occur only once. (See Fig- 
ure 7-5b.) 

a b 
Figure 7-6 

Similarly, consider the case of four bridges leading to A. If 
the beginning of the course is at A, then the letter A must occur 
three times, but if the beginning of the course is not at A, then 
the letter A must occur just twice. (See Figures 7-6a and 7-6b). 
And the general rule is that if n is an even number of bridges 
leading to a region, then the number of times which the letter 

A must occur is equal to f , if the beginning of the course is 
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be sure to start the course in an “odd” region: otherwise, one 
more will be added from the fact that one of the “even” 
regions contains the start.) 

If there are more than two “odd” regions, either four, or 
six, or more, the problem will not have a solution. Each two 
“odd” regions will add one to the number of letter occurrences 
above the number of bridges, and the result will be a number 
too large for the solution to be possible. (This is what happens 
in the Konigsberg problem.) 

And so, as the result of Euler’s analysis, we can say that 
“bridge” problems similar to the Kiinigsberg problem can be 
solved, provided all the regions are “even” or no more than two 
regions are “odd.” If we have two ‘odd” regions, then we must 
start the course in one of the odd regions. 

Now let us make a slight switch on Euler’s problem. Let us 
replace the picture of river, island, and bridges with a differ- 
ent diagram. Let each of the four regions A, B, C, D be re- 
placed by a point. Let each of the seven bridges a, b, c, d, e, 
f, g be replaced by a line joining two of the points. The 
Konigsberg diagram will then become like Figure 7-7. 

C 

A 

t-3 

D 

0 
Figure 7-7 

Why is it legitimate to replace entire “regions” by points? 
For the purposes of Euler’s problem, there is no real difference 
between his regions and points. The basic and essential fact 
about the four regions is that they must be totally unconnected 
except by bridges. And this is exactly the case with four points 
located in space. They have no connection until we draw lines 
joining them (corresponding to the bridges). It is also apparent 
that there are any number of equivalent diagrams that I could 
draw for the Kiinigsberg problem. For example, consider 
Figures 7-8a. b, and c. Each one of them is the “same” as 
the Konigsberg diagram. 



212 BREAKTHROUGHS IN MATHEMATICS 

therefore, Euler derives a method that enables us to determine 
with hardly any calculation at all whether a crossing of the 
required kind can be made. 

First, Euler notes that if we consider for each region how 
many bridges lead into it, and then add up these numbers, the 
resulting sum will be double the total number of bridges in the 
problem. For in the calculation region by region, each bridge 
is counted twice: The bridge connecting A and B is counted 
once as leading into A, and once as leading into B. This in 

turn means that the total number of bridges, when we count 
them region by region, must be an even number (for twice 
any number is an even number). 

From this Euler concludes that there cannot be just one 
region that has an odd number of bridges leading into it (for 
then the sum of all bridges considered region by region would 
be odd) ; nor can there be three regions with odd numbers of 
bridges, for the same reason. In general, the number of “odd” 
regions cannot be odd but must be even. 

What can we say about the number of times that each letter 
must occur? Suppose all the regions are “even”; then for each 
region the number of letter occurrences is equal to half of the 
bridges, except for one region. This one region-whichever 
it may be-is the one where the course starts; for this region 
the number of letter occurrences will be one greater than half 
of the bridges leading into it. If we, then, add up all the num- 
bers of letter occurrences, we get this result: it would be equal 
exactly to the number of bridges; for the number of letter 
occurrences is equal to half the bridges, but the bridges are 
counted twice, when we go region by region. However, be- 
cause we have to start in some one region, one more letter 
occurrence must be added. So, if all regions are “even,” the 
letter occurrences are exactly equal to the number of bridges 
plus one. And that is how many times we saw the letters must 
occur when we consider the path as a whole. Euler concludes, 
therefore, that if all the regions are “even,” the problem can 
always be solved. 

If there are just two “odd” regions, the result will be the 
same, provided we start in an odd region. Each of the “even’: 
regions now will give us letter occurrences equal to half the 
bridges. The two “odd” regions will each give us letter occur- 
rences equal to one-half more than half the number of bridges. 
When we add up all the letter occurrences, therefore, we will 
find (since each bridge is considered twice), that we have a 
number equal to the number of bridges plus one. (But we must 
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cannot be traced in one continuous line, because it has four 
“odd” vertices (that is, four vertices where three limes come 
together). The figure in 7-9b can be drawn in one continuous 
line, provided we start at one of the two vertices marked “3,” 
while the figure in 7-9c can be drawn no matter where we 
start. 

Now we can look back and indicate in a general sort of way 
what topology is. It is obviously a branch of geometry, in that 
it deals with points and lines. However, it does not treat these 
elements in any metric way; that is, it is not interested in size 
relationships. It is interested only in relative position. That is 
why Leibniz, as Euler tells us at the beginning of his little 
piece, called this branch of geometry “geometry of position.” 
It is also sometimes called “analysis situs,” which is merely a 
Latin way of saying that it analyzes position. (These names 
have an advantage over topology in that the latter name is 
nowadays used in a wider sense.) In general, geometry of po- 
sition deals with properties that remain constant (invariant) 
when size and distance relationships are distorted. 

If you look again at the three diagrams in Figure 7-8, you 
can see how uninterested topology is in absolute size, of lines, 
angles, etc., and even in whether a iine is straight or curved. 
From the topological point of view, all three figures are ex- 
actly the same. Similarly, a triangle, a square, and a circle 
are exactly the same from the point of view of topology, be- 
cause each of these figures divides the plane into two parts, 
one “inside” the figure, the other one “outside” it. Further- 
more, it is of no importance how big the closed figure is; 
topologically the situation is exactly the same. 

Euler’s problem, it is apparent, has nothing to do with meas- 
urement. The only question is this: Can a continuous line be 
drawn, through the four points, A, B, C, D, connecting A and 
B twice, A and C twice, A and D once, B and C not at all, 
B and D once, C and D once, with the continuous line cross- 
ing itself only at the four points A, B, C, D? The answer, we 
have just learned, is No. 

Another typical topological problem is that of determining 
the inside and outside for a given figure. This may seem like no 
problem at all. In a triangle, for example, it is obvious what 
is inside the figure and what is outside. But there are other 
figures for which this determination is a problem. Consider 
the famous Moebius strip (named after its discoverer). We 
obtain this strip by taking a long, thin rectangle and bending 
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Euler’s general problem may now be stated as follows: 
Given any figure consisting only of lines joining a number of 
vertices, can we determine whether such a figure can be traced 

C 

A 

@ 

D 

a 

C 

A 

ID 

D 

0 
b 

Figure 7-8 

by a continuous line, without any part of the line being re 
traced? and the answer which Euler has found is this: Con- 
sider each vertex. Count the lines joining this vertex. If all 
the vertices are joined to others by even numbers of lines, the 
problem has a solution. If two of the vertices are joined to 
others by odd numbers of lines, the problem still has a solu- 
tion, but we must start to trace our line from one of the “odd” 
vertices. If more than two vertices are joined by odd num- 
bers of lines, the problem is not soluble. 

Look at the three diagrams, 7-9a, b, and c. Although they 
become progressively more complicated, the simplest one 

a b 

Figure 7-9 
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the dotted line and then make a cut following that line, alI 
the way around, you will find that the strip has not been sep- 
arated in two parts. It is still one whole! 

The coloring of maps gives rise to a fascinating puzzle that 
belongs to topology: We wish to color a map in such a fash- 
ion that the same color shall not appear on both sides of a 
boundary between two countries. (If several countries come 
together at only one point, then the same color may be used.) 
The problem is: If the map is drawn on a plane surface, what 
is the least number of colors that have to be used? This is 
one of those problems, like the one of the Kiinigsberg bridges, 
where everyone is pretty sure of the answer, but no one has 
been able to prove that the answer is correct. You will lose 
no money if you bet that four colors are suflkient, but mathe- 
matically speaking, the problem is still unsolved. Incidentally, 
it has been proved that at most five colors need to be used for 
a map on a plane surface. 

Figure 7-12 
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Pierre Simon de Laplace: 
A Philosophical Essay on Probabilities* 

Chapter Z 

INTRODUCTION 

This philosophical essay is the development of a lecture on 
probabilities which I delivered in 1795 to the normal schools 
whither I had been called, by a decree of the national conven- 
tion, as professor of mathematics with Lagrange. I have re- 
cently published upon the same subject a work entitled The 
Analytical Theory of Probabilities. I present here without the 
aid of analysis the principles and general results of this theory, 
applying them to the most important questions of life, which 
are indeed for the most part only problems of probability. 
Strictly speaking it may even be said that nearly all our knowl- 
edge is problematical; and in the small number of things which 
we are able to know with certainty, even in the mathematical 
sciences themselves, the principal means for ascertaining truth 
-induction and analogy -are based on probabilities; so that 
the entire system of human knowledge is connected with the 
theory set forth in this essay. Doubtless it will be seen here 
with interest that in considering, even in the eternal principles 
of reason, justice, and humanity, only the favorable chances 
which are constantly attached to them, there is a great ad- 
vantage in following these principles and serious inconvenience 
in departing from them: their chances, like those favorable to 
lotteries, always end by prevailing in the midst of the vacilla- 
tions of hazard. I hope that the reflections given in this essay 
may merit the attention of philosophers and direct it to a 
subject so worthy of engaging their minds. 

* From A Philosophical Essay on Probabilities, trans. by F. W. TN- 
Scott and F. L Emory (New York: Dover Publications, Inc., 1951), 
pp. 1-19. 
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it so as to connect one end with the other. However, before 
making the final connection (by pasting or in some other way) 
we twist the rectangle so as to place C on A and D on B. 
(See Figure 7-10.) 

A D 

--------------------------------- 

B C 

B D 

Figure 7-10 

The resulting figure is the Moebius strip. (See Figure 7-11.) 

Figure 7-11 

If we trace a line parallel to the two long sides of the ret- 
tangle (such as the dotted line in the figure), we find that al- 
though we start on the “outside” of the strip, pretty soon we are 
on the “inside” of it. If you puncture the strip somewhere along 
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it to comprehend in the same analytical expressions the past 
and future states of the system of the world. Applying the same 
method to some other objects of its knowledge, it has suc- 
ceeded in referring to general laws observed phenomena and 
in foreseeing those which given circumstances ought to pro- 
duce. All these efforts in the search for truth tend to lead it 
back continually to the vast intelligence which we have just 
mentioned, but from which it will always remain infinitely re- 
moved. This tendency, peculiar to the human race, is that 
which renders it superior to animals; and their progress in this 
respect distinguishes nations and ages and constitutes their 
true glory. 

Let us recall that formerly, and at no remote epoch, an un- 
usual rain or an extreme drought, a comet having in train a 
very long tail, the eclipses, the aurora borealis, and in general 
all the unusual phenomena were regarded as so many signs 
of celestial wrath. Heaven was invoked in order to avert their 
baneful influence. No one prayed to have the planets and the 
sun arrested in their courses: observation had soon made ap- 
parent the futility of such prayers. But as these phenomena, 
occurring and disappearing at long intervals, seemed to op- 
pose the order of nature, it was supposed that Heaven, irritated 
by the crimes of the earth, had created them to announce its 
vengeance. Thus the long tail of the comet of 1456 spread 
terror through Europe, already thrown into consternation by 
the rapid successes of the Turks, who had just overthrown 
the Lower Empire. This star after four revolutions has excited 
among us a very different interest. The knowledge of the laws 
of the system of the world acquired in the interval had dis- 
sipated the fears begotten by the ignorance of the true rela- 
tionship of man to the universe; and Halley, having recog- 
nixed the identity of this comet with those of the years 1531, 
1607, and 1682, announced its next return for the end of the 
year 1758 or the beginning of the year 1759. The learned 
world awaited with impatience this return which was to con- 
firm one of the greatest discoveries that have been made in 
the sciences, and fulfill the prediction of Seneca when he said, 
in speaking of the revolutions of those stars which fall from 
an enormous height: “The day will come when, by study pur- 
sued through several ages, the things now concealed will ap- 
pear with evidence; and posterity will be astonished that truths 
so clear had escaped us.” Clairaut then undertook to submit 
to analysis the perturbations which the comet had experienced 
by the action of the two great planets, Jupiter and Saturn; 



CHAPTER EIGHT 

Lap/ace-The Theory of Probability 

PART I 

In the previous chapter, Euler introduced us to a new branch 
of mathematics, topology. In this chapter, Laplace makes us 
acquainted with yet another branch of mathematics, the cal- 
culus of probability. It is not so difhcult to understand that the 
treatment of probabilities belongs to mathematics; but it is 
important to remember that Laplace is concerned only with 
the mathematics of probabilities. For example, if we know 
how probable it is that a baby will be a girl (it is not quite 
the same probability as that it will be a boy), and how probable 
it is that a given child will have blond hair, then Laplace’s 
calculus can tell us how probable it is that a newborn baby 
will be a blond girl. This calculus cannot, however, tell us 
anything about the probability of a baby being a girl: this 
is a matter for medicine and statistics to determine. 

Just as geometry and calculus cannot tell us anything about 
the motions of the planets and yet are used in the calculations 
which astronomers make about these motions, so the calculus 
of probabilities is a tool that is used in many different sciences, 
without itself giving us information about the content of these 
sciences. 

218 
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at first. But then we have obviously the case of um B with the 
single difference that the three balls of this last urn would be 
replaced by three systems of two balls invariably connected. 

When all the cases are favorable to an event the probability 
changes to certainty and its expression becomes equal to unity. 
Upon this condition, certainty and probability are comparable, 
although there may be an essential difference between the two 
states of the mind when a truth is rigorously demonstrated to 
it, or when it still perceives a small source of error. 

In things which are only probable the difference of the data, 
which each man has in regard to them, is one of the principal 
causes of the diversity of opinions which prevail in regard to 
the same objects. Let us suppose, for example, that we have 
three urns, A, B, C, one of which contains only black balls 
while the two others contain only white balls; a ball is to be 
drawn from the urn C and the probability is demanded that this 
ball will be black. If we do not know which of the three urns 
contains black balls only, so that there is no reason to believe 
that it is C rather than B or A, these three hypotheses will ap- 
pear equally possible, and since a black ball can be drawn only 
in the first hypothesis, the probability of drawing it is equal to 
one third. If it is known that the urn A contains white balls 
only, the indecision then extends only to the urns B and C, 
and the probability that the ball drawn from the urn C will 
be black is one half. Finally this probability changes to cer- 
tainty if we are assured that the urns A and B contain white 
balls only. 

It is thus that an incident related to a numerous assembly 
fmds various degrees of credence, according to the extent of 
knowledge of the auditors. If the man who reports it is fully 
convinced of it and if, by his position and character, he in- 
spires great confidence, his statement, however extraordinary it 
may be, will have for the auditors who lack information the 
same degree of probability as an ordinary statement made by 
the same man, and they will have entire faith in it. But if 
some one of them knows that the same incident is rejected by 
other equally trustworthy men, he will be in doubt and the in- 
cident will be discredited by the enlightened auditors, who will 
reject it whether it be in regard to facts well averred or the 
immutable laws of nature. 

It is to the influence of the opinion of those whom the mul- 
titude judges best informed and to whom it has been accus- 
tomed to give its confidence in regard to the most important 
matters of life that the propagation of those errors is due which 
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Chapter ZZ 

CONCERNING PROBABILITY 

Ah events, even those which on account of their insignifi- 
cance do not seem to follow the great laws of nature, are a 
result of it just as necessarily as the revolutions of the sun. In 
ignorance of the ties which unite such events to the entire sys- 
tem of the universe, they have been made to depend upon final 
causes or upon hazard, according as they occur and are re- 
peated with regularity, or appear without regard to order; but 
these imaginary causes have gradually receded with the widen- 
ing bounds of knowledge and disappear entirely before sound 
philosophy, which sees in them only the expression of our 
ignorance of the true causes. 

Present events are connected with preceding ones by a tie 
based upon the evident principle that a thing cannot occur 
without a cause which produces it. This axiom, known by the 
name of the principle of sufficient reason, extends even to ac- 
tions which are considered indifferent; the freest will is unable 
without a determinative motive to give them birth; if we as- 
sume two positions with exactly similar circumstances and find 
that the will is active in the one and inactive in the other, we 
say that its choice is an effect without a cause. It is then, says 
Leibniz, the blind chance of the Epicureans. The contrary 
opinion is an illusion of the mind, which, losing sight of the 
evasive reasons of the choice of the will in different things, 
believes that choice is determined of itself and without motives. 

We ought then to regard the present state of the universe 
as the effect of its anterior state and as the cause of the one 
which is to follow. Given for one instant an intelligence which 
could comprehend all the forces by which nature is animated 
and the respective situation of the beings who compose it- 
an intelligence sticiently vast to submit these data to analysis 
-it would embrace in the same formula the movements of 
the greatest bodies of the universe and those of the lightest 
atom; for it, nothing would be uncertain and the future, as 
the past, would be present to its eyes. The human mind offers, 
in the perfection which it has been able to give to astronomy, 
a feeble idea of this intelligence. Its discoveries in mechanics 
and geometry, added to that of universal gravity, have enabled 
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heads and tails, are perfectly similar. Let us find the prob- 
ability of throwing heads at least one time in two throws. It is 
clear that four equally possible cases may arise, namely, heads 
at the first and at the second throw; heads at the first throw and 
tails at the second; tails at the first throw and heads at the sec- 
ond; finally, tails at both throws. The first three cases are fa- 
vorable to the event whose probability is sought; consequently 
this probability is equal to 3% ; so that it is a bet of three to one 
that heads will be thrown at least once in two throws. 

We can count at this game only three different cases, namely, 
heads at the first throw, which dispenses with throwing a sec- 
ond time; tails at the first throw and heads at the second; finally, 
tails at the first and at the second throw. This would reduce 
the probability to 2%~ if we should consider with d’Alembert 
these three cases as equally possible. But it is apparent that the 
probability of throwing heads at the first throw is ?4z, while that 
of the other two cases is l/4, the first case being a simple event 
which corresponds to two events combined: heads at the first 
and at the second throw, and heads at the first throw, tails at 
the second. If we then, conforming to the second principle, 
add the possibility 1% of heads at the first throw to the possi- 
bility 34 of tails at the first throw and heads at the second, we 
shall have % for the probability sought, which agrees with what 
is found in the supposition when we play the two throws. This 
supposition does not change at all the chance of that one who 
bets on this event; it simply serves to reduce the various cases 
to the cases equally possible. 

Third Principle.-One of the most important points of the 
theory of probabilities and that which lends the most to illu- 
sions is the manner in which these probabilities increase or 
diminish by their mutual combination. If the events are inde- 
pendent of one another, the probability of their combined ex- 
istence is the product of their respective probabilities. Thus 
the probability of throwing one ace with a single die is 1/6; that 
of throwing two aces in throwing two dice at the same time is 
4s~. Each face of the one being able to combine with the six 
faces of the other, there are in fact thirty-six equally possible 
cases, among which one single case gives two aces. Generally 
the probability that a simple event in the same circumstances 
will occur consecutively a given number of times is equal to 
the probability of this simple event raised to the power in- 
dicated by this number. Having thus the successive powers 
of a fraction less than unity diminishing, without ceasing, an 
event which depends upon a series of very great probabilities 
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after immense calculations he fixed its next passage at the 
perihelion toward the beginning of April, 1759, which was 
actually verified by observation. The regularity which astron- 
omy shows us in the movements of the comets doubtless exists 
also in all phenomena. 

The curve described by a simple molecule of air or vapor 
is regulated in a manner just as certain as the planetary orbits; 
the only difference between them is that which comes from 
our ignorance. 

Probability is relative, in part to this ignorance, in part to 
our knowledge. We know that of three or a greater number 
of events a single one ought to occur; but nothing induces us 
to believe that one of them will occur rather than the others. 
In this state of indecision it is impossible for us to announce 
their occurrence with certainty. It is, however, probable that 
one of these events, chosen at will, will not occur because we 
see several cases equally possible which exclude its occurrence, 
while only a single one favors it. 

The theory of chance consists in reducing all the events 
of the same kind to a certain number of cases equally possible, 
that is to say, to such as we may be equally undecided about in 
regard to their existence, and in determining the number of 
cases favorable to the event whose probability is sought. The 
ratio of this number to that of all the cases possible is the 
measure of this probability, which is thus simply a fraction 
whose numerator is the number of favorable cases and whose 
denominator is the number of all the cases possible. 

The preceding notion of probability supposes that, in in- 
creasing in the same ratio the number of favorable cases and 
that of all the cases possible, the probability remains the same. 
In order to convince ourselves let us take two urns, A and B, 
the &st containing four white and two black balls, and the 
second containing only two white balls and one black one. We 
may imagine the two black balls of the first urn attached by 
a thread which breaks at the moment when one of them is 
seized in order to be drawn out, and the four white balls thus 
forming two similar systems. All the chances which will favor 
the seizure of one of the balls of the black system will lead to a 
black ball. If we conceive now that the threads which unite the 
balls do not break at all, it is clear that the number of possible 
chances will not change any more than that of the chances 
favorable to the extraction of the black balls: but two balls 
will be drawn from the urn at the same time; the probability 
of drawing a black ball from the urn A will then be the same as 
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change to certainty if a black ball had been drawn from the 
same urn. We will determine this influence by means of the 
following principle, which is a corollary of the preceding one. 

Fifth Principle.-If we calculate a priori the probability of 
the occurred event and the probability of an event composed 
of that one and a second one which is expected, the second 
probability divided by the first will be the probability of the 
event expected, drawn from the observed event. 

Here is presented the question raised by some philosophers 
touching the influence of the past upon the probability of the 

future. Let us suppose at the play of heads and tails that heads 
has occurred oftener than tails. By this alone we shall be led 
to believe that in the constitution of the coin there is a secret 
cause which favors it. Thus in the conduct of life constant 
happiness is a proof of competency which should induce us to 
employ preferably happy persons. But if by the unreliability 
of circumstances we are constantly brought back to a state of 
absolute indecision, if, for example, we change the coin at each 
throw at the play of heads and tails, the past can shed no light 
upon the future and it would be absurd to take account of it. 

Sixth Principle.-Each of the causes to which an observed 
event may be attributed is indicated with just as much likeli- 
hood as there is probability that the event will take place, 
supposing the event to be constant. The probability of the 
existence of any one of these causes is then a fraction whose 
numerator is the probability of the event resulting from this 
cause and whose denominator is the sum of the similar prob- 
abilities relative to all the causes; if these various causes, con- 
sidered a priori, are unequally probable, it is necessary, in 
place of the probability of the event resulting from each cause, 
to employ the product of this probability by the possibility of 
the cause itself. This is the fundamental principle of this branch 
of the analysis of chances which consists in passing from events 
to causes. 

This principle gives the reason why we attribute regular 
events to a particular cause. Some philosophers have thought 
that these events are less possible than others and that at the 
play of heads and tails, for example, the combination in which 
heads occurs twenty successive times is less easy in its nature 
than those where heads and tails are mixed in an irregular man- 
ner. But this opinion supposes that past events have an influ- 
ence on the possibility of future events, which is not at all 
admissible. The regular combinations occur more rarely only 
because they are less numerous. If we seek a cause wherever 
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in times of ignorance have covered the face of the earth. Magic 
and astrology offer us two great examples. These errors incuI- 
cated in infancy, adopted without examination, and having 
for a basis only universal credence, have maintained them- 
selves during a very long time; but at last the progress of 
science has destroyed them in the minds of enlightened men, 
whose opinion consequently has caused them to disappear 
even among the common people, through the power of imita- 
tion and habit which had so generally spread them abroad. This 
power, the richest resource of the moral world, establishes and 
conserves in a whole nation ideas entirely contrary to those 
which it upholds elsewhere with the same authority. What 
indulgence ought we not then to have for opinions different 
from ours, when this difference often depends only upon the 
various points of view where circumstances have placed us! 
Let us enlighten those whom we judge insufficiently instructed; 
but first let us examine critically our own opinions and weigh 
with impartiality their respective probabilities. 

The difference of opinions depends, however, upon the 
manner in which the influence of known data is determined. 
The theory of probabilities holds to considerations so delicate 
that it is not surprising that with the same data two persons ar- 
rive at different results, especially in very complicated ques- 
tions. Let us examine now the general principles of this theory. 

Chapter 111 

THE GENERAL PRINCIPLES OF 

THE CALCULUS OF PROBABILITIES 

First Principle.-The first of these principles is the defini- 
tion itself of probability, which, as has been seen, is the ratio 
of the number of favorable cases to that of all the cases 
possible. 

Second Principle. -But that supposes the various cases 
equally possible. If they are not so, we will determine first their 
respective possibilities, whose exact appreciation is one of the 
most delicate points of the theory of chance. Then the prob- 
ability will be the sum of the possibilities of each favorable 
case. Let us illustrate this principle by an example. 

Let us suppose that we throw into the air a large and very 
thin coin whose two large opposite faces, which we will call 
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of which may be either white or black. One of these balls is 
drawn and is put back into the urn before proceeding to a new 
draw. Suppose that in the first two draws white balls have 
been drawn; the probability of again drawing a white ball at 
the third draw is required. 

Only two hypotheses can be made here: either one of the 
balls is white and the other black, or both are white. In the first 
hypothesis the probability of the event observed is 1/4 ; it is unity 
or certainty in the second. Thus in regarding these hypotheses 
as so many causes, we shall have for the sixth principle I% and 
% for their respective probabilities. But if the first hypothesis 
occurs, the probability of drawing a white ball at the third 
draw is %; it is equal to certainty in the second hypothesis; 
multiplying then the last probabilities by those of the cor- 
responding hypotheses, the sum of the products, or So, will be 
the probability of drawing a white ball at the third draw. 

When the probability of a single event is unknown we may 
suppose it equal to any value from zero to unity. The prob- 
ability of each of these hypotheses, drawn from the event ob- 
served, is, by the sixth principle, a fraction whose numerator 
is the probability of the event in this hypothesis and whose 
denominator is the sum of the similar probabilities relative to 
all the hypotheses. Thus the probability that the possibility of 
the event is comprised within given limits is the sum of the frac- 
tions comprised within these limits. Now if we multiply each 
fraction by the probability of the future event, determined in 
the corresponding hypothesis, the sum of the products relative 
to all the hypotheses will be, by the seventh principle, the 
probability of the future event drawn from the event observed. 
Thus we find that an event having occurred successively any 
number of times, the probability that it will happen again the 
next time is equal to this number increased by unity divided 
by the same number, increased by two units. Placing the most 
ancient epoch of history at five thousand years ago, or at 
1,826,213 days, and the sun having risen constantly in the in- 
terval at each revolution of twenty-four hours, it is a bet of 
1,826,214 to one that it will rise again tomorrow. But this 
number is incomparably greater for him who, recognizing in 
the totality of phenomena the principal regulator of days and 
seasons, sees that nothing at the present moment can arrest the 
course of it. 

Buffon in his Political Arithmetic calculates differently the 
preceding probability. He supposes that it differs from unity 
only by a fraction whose numerator is unity and whose de- 
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may become extremely improbable. Suppose then an incident 
be transmitted to us by twenty witnesses in such manner that 
the first has transmitted it to the second, the second to the 
third, and so on. Suppose again that the probability of each 
testimony be equal to the fraction 940; that of the incident re- 
sulting from the testimonies wiil be less than 1%. We cannot 
better compare this diminution of the probability than with 
the extinction of the light of objects by the interposition of 
several pieces of glass. A relatively small number of pieces 
suffices to take away the view of an object that a single piece 
allows us to perceive in a distinct manner. The historians do 
not appear to have paid sufficient attention to this degradation 
of the probability of events when seen across a great number 
of successive generations; many historical events reputed as 
certain would be at least doubtful if they were submitted to 
this test. 

In the purely mathematical sciences the most distant con- 
sequences participate in the certainty of the principle from 
which they are derived. In the applications of analysis to 
physics the results have all the certainty of facts or experi- 
ences. But in the moral sciences, where each inference is de- 
duced from that which precedes it only in a probable manner, 
however probable these deductions may be, the chance of 
error increases with their number and ultimately surpasses the 
chance of truth. in the consequences very remote from the 
principle. 

Fourth Principle. -When two events depend upon each 
other, the probability of the compound event is the product 
of the probability of the first event and the probability that, 
this event having occurred, the second will occur. Thus in the 
preceding case of the three urns A, B, C, of which two con- 
tain only white balls and one contains only black balls, the 
probability of drawing a white ball from the urn C is 2/3, since 
of the three urns only two contain balls of that color. But when 
a white ball has been drawn from the urn C, the indecision 
relative to that one of the urns which contain only black balls 
extends only to the urns A and B; the probability of drawing 
a white ball from the urn B is */2 ; the product of 2/5 by l/i, or 
%, is then the probability of drawing two white balls at one 
time from the urns B and C. 

We see by this example the influence of past events upon 
the probability of future events. For the probability of draw- 
ing a white ball from the urn B, which primarily is 2/3, becomes 
34 when a white ball has been drawn from the urn C; it would 
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tion of the sun and moon precisely or only probably determine 
the tides? According to the Newtonian theory, or any other 
deterministic account of the universe, these results are certain 
and true, not merely probable. And Laplace himself must have 
thought so, otherwise he would hardly have attempted his 
M&unique Ce’leste. The reason why such an ambitious project 
seemed possible was precisely that it appeared that with the 
help of Newton’s laws all the motions of the planetary bodies 
would be determined and therefore could be calculated. 

In the preceding paragraph we have employed three related 
concepts-namely “true,” “certain,” and “probable.” Only if 
these three concepts are clearly distinguished from one an- 
other can we hope to understand the nature of probable knowl- 
edge. The important point to realize is that “probable” is not 
opposed to “true,” but to “certain.” The opposite of “true” is 
“false.” Thus we have two pairs of terms: true-false and 
probable-certain. 

A proposition is either true or false, and this is quite in- 
dependent of whether anybody knows the truth or falsity of 
the proposition. A proposition which is true may to a given 
person, however, be only probable. The reason for this would 
be that the person under consideration has insufficient evidence 
on which to base anything except the judgment “This proposi- 
tion is probable” (he may also be able to say how probable). 
This explains the role of probability in science: although any 
given event is determined, and although all the propositions of 
the science are true, we may not have-at least initially-sufli- 
cient evidence to know the truth of the propositions and may 
have to rest content with probability. 

Let us take a trivial example of probability: Suppose a base- 
ball broadcast is put on tape and the broadcast begins an hour 
later than the game itself. Now let us assume that someone 
listens to the broadcast, who has no idea of the outcome of the 
game and who does not, in fact, realize that the broadcast is 
delayed. In the eighth inning, the listener hears that team A is 
ahead 7-2. At this time, A actually has already won the game. 
Our listener, however, does not know this; and so all he can say 
at this point is that in the light of his evidence it is probable 
that A is going to win. He cannot claim that it is certain that 
team A is going to win, nor can he maintain that he knows that 
A is going to win (although it is in fact true). 

An interesting corollary of this is that a proposition which 
is false can also be probable to a given person. To return to our 
baseball example: Let’s imagine another game, in which team 
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we perceive symmetry, it is not that we regard a symmetrical 
event as less possible than the others, but, since this event 
ought to be the effect of a regular cause or that of chance, the 
first of these suppositions is more probable than the second. 
On a table we see letters arranged in this order, C o IZ s t a n 
t i n o p 1 e, and we judge that this arrangement is not the re 
sult of chance, not because it is less possible than the others, 
for if this word were not employed in any language we should 
not suspect it came from any particular cause, but this word 
being in use among us, it is incomparably more probable that 
some person has thus arranged the aforesaid letters than that 
this arrangement is due to chance. 

This is the place to define the word extraordinary. We ar- 
range in our thought all possible events in various classes; and 
we regard as extraordinary those classes which include a very 
small number. Thus at the play of heads and tails the occur- 
rence of heads a hundred successive times appears to us ex- 
traordinary because of the almost infinite number of com- 
binations which may occur in a hundred throws; and if we 
divide the combinations into regular series containing an order 
easy to comprehend, and into irregular series, the latter are 
incomparably more numerous. The drawing of a white ball 
from an urn which among a million balls contains only one 
of this color, the others being black, would appear to us like- 
wise extraordinary, because we form only two classes of events 
relative to the two colors. But the drawing of the number 
475813, for example, from an urn that contains a million 
numbers seems to us an ordinary event; because, comparing 
individually the numbers with one another without dividing 
them into classes, we have no reason to believe that one of 
them will appear sooner than the others. 

From what precedes, we ought generally to conclude that 
the more extraordinary the event, the greater the need of its 
being supported by strong proofs. For, those who attest it being 
able to deceive or to have been deceived, these two causes are 
as much more probable as the reality of the event is less. We 
shall see this particularly when we come to speak of the prob- 
ability of testimony. 

Seventh Principle.-The probability of a future event is the 
sum of the products of the probability of each cause, drawn 
from the event observed, by the probability that, this cause 
existing, the future event will occur. The following example 
will illustrate this principle. 

Let us imagine an urn which contains only two balls, each 
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pose we are given a die and are asked what the probability is 
that the number 5 will come up. We might then ask: What has 
been the past experience with this particular die? If we are 
told that in 100 throws of the die, it came up “1” 10 times, 
“2” 20 times, “3” 10 times, “4” 10 times, “5” 40 times, and 
“6” 10 times, we might conclude on the basis of this evidence 
that first, the die is loaded, and second, there is forty per cent 
probability (or a probability of 0.4) that number 5 will come 
up in the next throw. 

In this example, we have inferred the probability of a fu- 
ture event from past events. Thus, the evidence for the 0.4 
probability is arrived at empirically or a posteriori (together 
with some fancy reasoning, which we are purposely ignoring, 
about the future being like the past, or nature being uniform, 
etc.). There might seem to be another, a priori, way of judging 
probability: Confronted with a die we might say that, in the 
absence of any information about previous throws with this die, 
each number should come up as frequently as the others. Con- 
sequently, the probability that one number, 5, will come up 
is 3/s or 0.167. 

This last line of reasoning is often attacked, because it is 
an argument from ignorance. That is, it makes sense only be- 
cause we say that we have no information about previous 
throws. But can knowledge be based on ignorance? This seems 
like a weighty objection to the a priori argument; still, there 
are also some powerful defenses for it. For example, on what 
are we to base a probability judgment in the case where there 
is no past experience? Or must we say that the next throw has 
no probability whatever? (The answer here would be that, 
since probability is related to evidence and here there is no 
evidence, it is meaningless to speak of a probability judgment.) 
Furthermore, when we did have evidence and found that 40 
per cent of the throws came up “5,” we added, apparently 
very reasonably, that the die was loaded. Now what does this 
mean except that a priori-that is, before being informed of 
past throws-we would not have expected so high a percentage 
of 5’s? The fact that 40 per cent rather than 16.67 per cent of 
the throws were 5’s is contrary to our initial expectation. 

Let us stop here and not pursue this topic further, although 
it is important and very interesting in its own right. However, 
it is not a topic which Laplace pursues in the present essay. 
This little treatise is merely concerned with the mathematical 
theory of probability, not with the problem of how probabili- 
ties are determined. In fact, more correctly, Laplace in these 
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nominator is the number 2 raised to a power equal to the num- 
ber of days which have elapsed since the epoch. But the true 
manner of relating past events with the probability of causes 
and of future events was unknown to this illustrious writer. 

PART II 

In the preceding chapter we saw how Euler’s life was spent 
under the patronage of the Russian and Prussian courts. His 
fortune rose and sank with the shifting political winds of St. 
Petersburg and at Berlin. Pierre Simon de Laplace had to cope 
with the changing political fortunes of his native France- 
but cope he did, very successfully, although his lifetime (1749 
-1827) overlapped the reigns of Louis XVI, the French Revo- 
lution, Napoleon Bonaparte, and Louis XVIII. Laplace held 
several high governmental offices under Napoleon, was 
awarded numerous decorations, and achieved the title of 
Marquis. 

Almost all of Laplace’s creative life was spent in work on 
his masterpiece, the M&unique Ce’leste. Its five volumes were 
published over a period of twenty-six years. In this work La- 
place attempted-and to a great extent succeeded-to explain 
all the various motions of all the bodies in the solar system by 
means of Newton’s law of universal gravitation. Laplace’s 
work on probability, of which we here have a small part, was 
inspired by his astronomical work, for its need arose there. 

The concept of a probable event is a very tricky one. It is 
very difficult to state what it means without contradiction. Let 
us begin by noting an obvious puzzle: What need was there 
for probability theory in planetary theory based on Newton’s 
laws? Without going into details about those laws, it is well 
known that Newton’s laws of motion, and his law of universal 
gravitation, determine in a precise way all the motions of all 
bodies. Is it only probable that the earth revolves around the 
sun in an ellipse, or is it certainly so? Does the relative posi- 
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certain things can be done with them. The calculus begins 
where the empirical determination of probabilities leaves off. 

Laplace’s first principle is the definition of probability as 
“the ratio of the number of favorable cases to that of all the 
cases possible.” We have already seen that in practice there 
is considerable difficulty in knowing what the number of all 
possible cases is. 

This definition of probability assumes that all the possible 
cases are equi-possible cases. (The probability of throwing a 
4 with a die is %, because there are 6 equally possible cases, 
and only one of them is favorable, namely, when the 4 comes 
up.) In the second principle Laplace tells us what to do if the 
possible cases are not all equal. We must then divide the un- 
equally possible cases until we have only equally possible 
cases. Let us look at his example. 

Given a coin that is perfectly balanced and that is to be 
thrown twice, what is the probability of throwing heads at 
least once-that is, either once or twice? Before solving the 
problem, we should note that it perfectly exemplifies the non- 
empirical character of Laplace’s procedure. When Laplace 
writes that the “opposite faces which we will call heads and 
tails, are perfectly similar” he means to tell us that the prob- 
ability of throwing heads in one throw is exactly 1%. This is 
the meaning of the expression “perfectly similar.” The prob- 
lem may therefore be stated as follows: Given a coin, which 
is such that the probability of throwing heads in any given 
throw is 1/2, what is the probability of throwing heads at least 
once in two throws? From one given probability (that of 
throwing heads in one throw) another probability is to be de- 
rived (that of throwing heads once in two throws). Nothing 
is said about how the given probability is determined, although 
we may infer from Laplace’s way of stating things that it is 
an a priori determination. 

In this example, there are four equally possible cases. Let 
us list them in a table. 

First throw Second throw 
1st case: Heads Heads 
2nd case: Heads Tails 
3rd case: Tails Heads 
4th case: Tails Tails 

Of these four cases, the first three are favorable to the event 
in question (throwing at least one heads) ; hence the probability 
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A leads 7-2 in the eighth inning. In the ninth inning, however, 
B makes a tremendous comeback and wins the game 9-7. 
Again, the listener in the eighth inning, unapprised of the 
final score, would be justified in saying, “It is probable that A 
is going to win.” This would be a perfectly reasonable state- 
ment. It would of course be false, but it would nevertheless 
be probable. 

Probability, in other words, is always relative to a given 
amount of evidence. We can never simply say, “This proposi- 
tion is probable to such an extent”; we must always use some 
expression like, “This proposition, on the basis of this evi- 
dence, has such and such probability.” It is clear, therefore, 
that the probability of a given proposition can change-if, 
namely, the available evidence changes. What may seem like an 
astonishing-that is, very improbable-proposition to some- 
one when he is first told about it without any (or hardly any) 
evidence, may turn out to be quite probable to him when he 
sees what the evidence for the proposition is. 

Another way of stating what probability is consists in calling 
it a “reasonable degree of belief.” On the basis of such and 
such evidence, it is reasonable to believe that the proposition 
under consideration has this amount of probability. By speak- 
ing of reasonable belief, we call attention to the fact that 
the belief must be based on the available evidence, not on 
“hunches,” or on no evidence at all, or on blind faith. To go 
back to our baseball game example once more: If team A 
leads by 7-2 in the eighth inning, then it is reasonable to be- 
lieve that A will go on to win the game. There may, however, 
be a devoted fan of team B who in the face of adversity still 
claims, “I just know that B is going to pull this game out of the 
fire and win it.” Now this would not be a reasonable belief on 
the basis of the evidence, or at least-to put the matter more 
accurately-it would not be as reasonable as the belief that A 
is going to win. The fact that B does go on to victory in no way 
affects the judgment of the reasonableness (or probability) of 
the earlier beliefs, based on the incomplete evidence at that 
time. 

What are the kinds of things that constitute evidence for the 
probability of a proposition? There is quite a bit of controversy 
here. However, we shall not try to make any determinations of 
what is and is not correct, since this would involve us in dis- 
cussions of induction and similar topics that go beyond the 
mathematical theory of probability. Let us note only one way 
in which evidence for a proposition may be accumulated. Sup 
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ond die, the probability that 1 will come up is also 4%; the prob- 
ability that both dice will come up with a 1 is, therefore, % * I/, 
or %G. To see that this is correct, we need only realize that for 
two dice there are all together 36 different cases that may arise, 
namely the following: 

l-l 2-l 3-l 4-l 5-l 6-l 
l-2 2-2 3-2 4-2 5-2 6-2 
l-3 2-3 3-3 4-3 5-3 6-3 
l-4 2-4 3-4 4-4 5-4 6-4 
l-5 2-5 3-5 4-5 5-5 6-5 
l-6 2-6 3-6 4-6 5-6 6-6 

Of all these 36 cases, only one is favorable, namely the l-l 
case. And so its probability is %s. Of course, the probability of 
any other specified combination of faces coming up is exactly 
the same; for instance, the probability of getting a 4 with the 
first die and getting a 5 with the second is also %G. 

Let us try to give another example, but one which is not so 
artificial as one involving dice. What is the probability that a 
given automobile in the United States is (1) made by manu- 
facturer X, and (2) registered in the state of Y? We must find 
out what the probability of any cars being made by X is; let 
it be 0.5. Then we must find out what the probability of any 
car’s being registered in state Y is; let it be 0.2. We must make 
certain of one other condition: that these two events are 
independent of one another. In practice, they probably are not 
quite independent. It may well be that manufacturer X sells 
more cars in one state than in another; that would make the 
two events to a certain degree dependent on one another. For 
if Y happens to be a state in which X sells more cars than it 
does in Z, then the occurrence of the first favorable event (the 
car being manufactured by X) influences the occurrence of the 
second event favorably (the car’s being registered in the state 
of Y). But if we assume that X sells exactly the same percent- 
age of cars in every state, then the probability of the two events 
both occurring would be 0.5 * 0.2 or 0.01. 

The fourth principle considers what we are to do when the 
two events whose combined probability we wish to find are not 
independent of one another. The answer is simple, though 
again in practice not always easy to apply. Suppose the prob- 
ability of a’s occurring is p, and suppose that the probability of 
b’s occurring if u has occurred is r. Then the probability of a 
and b both occurring is p * r. The difficulty, of course, is in de- 



234 BREAKTHROUGHS IN MATHEMATICS 

chapters is interested in a calculus of probabilities, not in pr&- 
ability as such. TO the extent that Laplace has to make a com- 
mitment, however, he seems to favor the a priori school, which 
derives probability from ignorance. “The theory of chance,” 
he writes, 

consists in reducing all the events of the same kind to a 
certain number of cases equally possible, that is to say, 
to such as we may be equally undecided about in regard 
to their existence, and in determining the number of cases 
favorable to the event whose probability is sought. 

On the basis of this, Laplace gives his detition of the prob- 
ability of an event: 

The ratio of this number to that of all the cases possible 
is the measure of this probability, which is thus simply 
a fraction whose numerator is the number of favorable 
cases and whose denominator is the number of all the 
cases possible. 

The real difficulty, of course, comes in determining what 
are equally possible cases, and this cannot be decided a priori. 
In the case of a die, it may seem as though we know a priori 
that there are six equally possible cases, but this is not true. 
The six possible cases are equally possible only if we know 
that the die is not loaded, and this fact can be determined 
only by experience. In other words, we know that all six cases 
are equally possible only if we have thrown the die a great 
many times and have found empirically that all- six cases come 
up the same, or almost the same, number of times. 

However it be determined, probability is expressed by a frac- 
tion, always less than 1 and more than 0. To say that a prop- 
osition is to be believed with probability 1 would mean that 
the proposition is certainly known to be true, whereas if its 
probability is 0, it would be certainly false. 

In Chapter 3 of his essay, Laplace outlines the principles 
of the calculus of probabilities. Here he states the rules which 
must be employed in performing operations with probabilities. 
Just as there are rules for arithmetic (the calculus of numbers), 
such as a + b = b + a, so there are certain rules about how 
we must combine probabilities. This calculus is a branch of 
pure mathematics; that is, it has nothing to do with how we 
determine probabilities in practice, nor does it in any way 
depend on our definition of probability. This cdcdu~ simply 
assumes that there are things called probabilities, and that 
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influences the future. In its broadest terms, this fallacy is the 
following: Suppose a coin, assumed to be perfectly balanced, 
is thrown a number of times. The probability of either heads 
or tails coming up in any given throw is %5. Consequently, if 
we make a very large number of throws, we should expect that 
half of them would be heads and half tails. Suppose, however, 
that we have made 50 throws, and that of these 35 were heads 
and 15 tails. Now let us make ten more throws; all ten come 
up heads, so that we have a total of 45 heads and 15 tails in 
60 throws. The “gambler’s fallacy” consists in concluding that 
therefore there is a probability of more than $5 that the next 
throw will be tails. The fallacious reasoning is that the num- 
ber of heads and tails has to “even out”; this is incorrect. We 
assumed, in stating this problem, that the coin was perfectly 
balanced. The probability that the sixty-first throw will come 
up tails is, therefore, exactly l/z ; no more and no less. (The 
coin, after all, does not know that the past throws have been 
heavily in favor of heads.) The reason why the probability is 
unchanged is that there is no dependence of the latter events 
on the former (the way there was in the case of the three urns). 

Only one other possibility need be considered: we may have 
been incorrect in our initial statement that the coin was per- 
fectly balanced. If this is so-if the coin is weighted in such 
a fashion as to favor heads-then, of course, the gambler is 
all the more foolish to judge that tails are more likely to come 
up in the sixty-first throw than before. On the contrary, on this 
assumption, the gambler will do well to judge that he is faced 
with a coin so weighted that the probability of heads coming up 
is s/4, while that of tails coming up is only I/. 

In the sixth principle Laplace goes from events to causes. 
(This is what we did in discussing the gambler’s fallacy.) Sup- 
pose that there is a probability of l/2 that event a will occur, 
as the result of either cause g, cause h, or cause k. Let us fur- 
ther assume that the three causes g, h, k are equally probable. 
Then there is a l/3 probability that if a occurs, it will be due to 
g; there is a 95 probability that if it occurs, it will be due to h; 
and there is also a 95 probability that if it occurs it will be due 
to k. Since the probability that the event will occur at all is 
equal to l/2, the probability of g existing will be ‘/3 multiplied 
by %, or 4%. Similarly for the other two causes. 

Usually, of course, we will not know, independently of con- 
sidering the causes, that the probability of an event a is ‘95 or 
any other figure. Instead, we usually work the other way 
around: We may know that the probability of event a due to 
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of this event is 3/4. There is another, but erroneous, way of 
looking at this problem. According to this second way, there 
are only three cases: 

1st case: Heads in first throw. A second throw is then un- 
necessary, because we have “won.” 

2nd case : Tails in first throw. This is unfavorable, but we 
get another chance and make another throw. This 
time heads comes up and we still “win.” 

3rd case: Tails in llrst throw. We throw again, but tails 
comes up a second time. We “lose.” 

Of these three cases, the first two are favorable to the event 
in question, and so the probability would seem to be %. But 
this analysis is incorrect, because the three cases are not equally 
possible. The first case actually is twice as “possible’‘-that is, 
twice as likely to come up as either of the second two. For the 
first case contains in itself two cases; that of heads tirst and 
heads second, and that of heads fist and tails second. If we 
insist on only considering three cases, we must therefore as- 
cribe to the first case (heads at the first throw) the probability 
of l/2, while the other favorable case (heads at the second 
throw, after the first throw has been tails) has the probability 
of l/4. The probability of all the favorable cases is then the 
sum of 1% and 1%) or % . It is probably easier, however, simply 
to disallow the analysis into three cases and insist that the cor- 
rect analysis takes account of all four cases. 

The third principle is a most important one. It concerns the 
probability of two events both happening, when we know the 
probability of the first event, the probability of the second 
event, and also that the two events are independent of one 
another. This last stricture is most important. If the fact that 
event a has happened influences the probability that b will hap- 
pen, then the probability that a and b will both happen is ob- 
viously quite different from what it would be if the fact that (I 
has happened has no influence on the probability of b happen- 
ing. In the former case, a and b are not independent events, 
but in the latter case they are. 

Now if the two events a and b are independent, and if the 
probability that a will happen is p and the probability that b 
will happen is 4, then the probability that a and b will both 
happen is p * 4. The example which Laplace uses is that of 
two dice being thrown. We wish to know the probability that 
both dice will come up with an ace. Considering only one die, 
the probability of 1 coming up is %; considering only the sec- 
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of the second hypothesis. The probability therefore of draw- 
ing a white ball (when the first two draws have shown white 
balls) is 440 + % = SO. This last fraction is pretty close to 
unity or certainty. That is as it should be, for if we already have 
drawn two white balls, it is pretty likely, according to com- 
mon sense, that both balls are white and that the third and 
all succeeding drawings will result in white balls. The seventh 
principle of Laplace tells us just how likely it is. 
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termining the value of r. In order to find it, we must be able to 
state what the influence of a’s occurrence on b is. 

Laplace’s example for this case involves three urns, A, B, C. 
All that is known of these three urns is that two of them con- 
tain only white balls, while one contains only black balls. A 
ball is drawn from urn C. What is the probability of its being 
white? There are three possible cases, two of which are favor- 
able to the drawn ball being white, as follows: 

1st case: A-white balls B-white balls C-black balls 
2nd case: A-white balls B-black balls C-white balls 
3rd case: A-black balls B-white balls C-white balls 

Suppose now that a white ball has been drawn from urn C, 
and that we draw another ball from urn B. What is the prob- 
ability of this ball’s being white? Since the ball drawn from C 
was white, only two cases are now left as possibilities (the 
two marked “2nd” and “3rd” in the table above). Hence, on 
the assumption of C’s containing white balls, the probability 
of drawing a white ball from B is 1%. Consequently, the prob- 
ability of drawing white balls from both C and B is equal to 
%‘?h=% Or %. 

Thus the occurrence or nonoccurrence of past events can 
influence the probability of future events. In the case of the 
three urns, the probability of drawing a white ball from urn B 
is 2% (if nothing is known about past drawings). If, however, 
a ball is first drawn from urn C and is white, then the prob- 
ability of drawing a white ball from B becomes, as we saw, Yz. 
On the other hand, if a ball is first drawn from C and is black, 
then the probability of drawing a white ball from B becomes 
1 or certainty (since there is only one urn with black balls). 

Laplace formalizes this as the fifth principle. Let an event 
have occurred, such as drawing a white ball from urn C. Cal- 
culate the probability of this event. It is 2/3. Now calculate the 
probability of another event combined of the occurred event 
and another one (drawing a white ball from both C and B) ; 
this we saw was 8. If we take the last probability (that of the 
combined event) and divide it by the tirst probability (that 
of the event which actually occurred), the result will give us 
the probability of the second event( drawing a white ball from 
B) on the basis of C containing white balls. In our example, 
1% divided by 2/3 = V’2. 

This is the place at which to discuss the so-called “gambler’s 
fallacy.” It is based on an incorrect analysis of how the past 
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George Boole: 
The Laws of Thought* 

Chapter I1 

OF SIGNS IN GENERAL, AND OF THE SIGNS 

APPROPRIATE TO THE SCIENCE OF LOGIC IN 

PARTICULAR; ALSO OF THE LAWS TO WHICH 

THAT CLASS OF SIGNS ARE SUBJECT 

1. That Language is an instrument of human reason, and 
not merely a medium for the expression of thought, is a truth 
generally admitted. It is proposed in this chapter to inquire 
what it is that renders Language thus subservient to the most 
important of our intellectual faculties. In the various steps of 
this inquiry we shall be led to consider the constitution of 
Language, considered as a system adapted to an end or pur- 
pose; to investigate its elements; to seek to determine their 
mutual relation and dependence; and to inquire in what man- 
ner they contribute to the attainment of the end to which, as 
co-ordinate parts of a system, they have respect. 

In proceeding to these inquiries, it will not be necessary to 
enter into the discussion of that famous question of the schools, 
whether Language is to be regarded as an essenfial instrument 
of reasoning, or whether, on the other hand, it is possible for 
us to reason without its aid. I suppose this question to be be- 
side the design of the present treatise, for the following reason, 
viz., that it is the business of Science to investigate laws; and 
that, whether we regard signs as the representatives of things 
and of their relations, or as the representatives of the concep- 
tions and operations of the human intellect, in studying the 
laws of signs, we are in effect studying the manifested laws 
of reasoning. If there exists a difference between the two in- 
quiries, it is one which does not affect the scientific expressions 
of formal law, which are the object of investigation in the 

* From George Boole’s Collected Logical Works (Cambridge: Mac- 
millan and Co., 1854), Vol. II, An Investigation of the Laws of Thought, 
pp. 26-56. 
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g is one thing; that the probability of a due to h is something 
else, while the probability of a due to k is yet a third value. 
Then we calculate the probability of g or h or k being the ac- 
tually existing cause on the basis of these figures. 

In his discussion of the seventh principle Laplace gives an 
example which illustrates this. He imagines that there is an 
urn which contains two balls. Each ball may be either black 
or white. We do not know what the colors are before we be- 
gin to draw the balls out. One ball is drawn and found to be 
white. It is replaced in the urn. Another ball is now drawn and 
replaced. It, too, is found to be white. The “event” correspond- 
ing to a above is that of drawing two successive white balls. 
The “causes” which bring this about are different possible con- 
tents of the urn. We know right away that it is impossible for 
both balls to be black. Only two “causes” remain which could 
have caused the event of drawing a white ball each time. 
Either one of the two balls is white and the other black, or 
both balls are white. On the assumption of the first “cause,” 
the probability of drawing two white balls in succession is 1%~. 
On the assumption of the second “cause,” the probability is 1. 
Then, by the sixth principle, we calculate the probability of 
either of the two causes existing as follows: Form a fraction 
whose denominator is the sum of the probabilities of the event 
occurring due to all the causes. In our case, this is l/4 + 1, or 
%. The probability of the first cause existing, is then l/4 divided 
by %, while the probability of the second cause existing is 1 
divided by %. The resulting probabilities are % and 4/5. 

But the seventh principle does more than merely illustrate 
the sixth one. There is an additional problem which Laplace 
investigates: In the same example as above (that is, one urn 
with two balls in it, their color unknown before we start draw- 
ing out balls and replacing them), we want to know what the 
probability is that the third time we draw a ball it will be white, 
on the assumption that the first two times the ball drawn was 
white. 

We know, from the sixth principle, that there is a 5’s prob- 
ability that one ball is black and one is white, while there is 
a ‘?? probability that both balls are white. If the first hypothesis 
(one white, one black) is correct, then there is a l/2 probability 
that the third ball drawn will be white; if the second hypoth- 
esis (two white balls) is correct, there is a probability of 1 
(that is, certainty) that the third ball will be white. Hence 
the probability of drawing a white ball will be 1% * l? on the 
basis of the first hypothesis; and it will be ‘% * 1 on the basis 
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3. Let us consider the particulars involved in the above defi- 
nition separately. 

( 1.) In the first place, a sign is an arbitrary mark. It is clearly 
indifferent what particular word or token we associate with a 
given idea, provided that the association once made is perma- 
nent. The Romans expressed by the word “civitas” what we 
designate by the word “state.” But both they and we might 
equally well have employed any other word to represent the 
same conception. Nothing, indeed, in the nature of Language 
would prevent us from using a mere letter in the same sense. 
Were this done, the laws according to which that letter would 
require to be used would be essentially the same with the laws 
which govern the use of “civitas” in the Latin, and of “state” in 
the English language, so far at least as the use of those words 
is regulated by any general principles common to all languages 
alike. 

(2.) In the second place, it is necessary that each sign 
should possess, within the limits of the same discourse or proc- 
ess of reasoning, a fixed interpretation. The necessity of this 
condition is obvious, and seems to be founded in the very 
nature of the subject. There exists, however, a dispute as to 
the precise nature of the representative office of words or sym- 
bols used as names in the processes of reasoning. By some it 
is maintained, that they represent the conceptions of the mind 
alone; by others, that they represent things. The question is 
not of great importance here, as its decision cannot affect the 
laws according to which signs are employed. I apprehend, 
however, that the general answer to this and such like ques- 
tions is, that in the processes of reasoning, signs stand in the 
place and fulfill the office of the conceptions and operations 
of the mind; but that as those conceptions and operations rep- 
resent things, and the connexions and relations of things, so 
signs represent things with their connexions and relations; and 
lastly, that as signs stand in the place of the conceptions and 
operations of the mind, they are subject to the laws of those 
conceptions and operations. This view will be more fully elu- 
cidated in the next chapter; but it here serves to explain the 
third of those particulars involved in the definition of a sign, 
viz., its subjection to Bxed laws of combination depending upon 
the nature of its interpretation. 

4. The analysis and classification of those signs by which 
the operations of reasoning are conducted will be considered 
in the following Proposition: 



CHAPTER NINE 

Boo/e-Algebra and Logic Joined 

PART I 

George Boole, in his Laws of Thought, shows us that there is 
yet another branch. of learning which is part of mathematics. 
Here we have logic being treated as a part of mathematics. 
To be sure, it is strange mathematics, with strange laws and 
strange propositions. 

Later developments have shown that Boole was on the right 
track. At present, it is a question whether logic ought to be 
considered a branch of mathematics, or mathematics a branch 
of logic. Indeed, the best way to solve this problem may be 
to say that logic and mathematics are one. 

How important Boole’s work has been to modern science 
and technology can be seen when we recall such expressions 
as “mechanical brains” or “thinking machines” for the mod- 
ern computer. What these expressions signify, of course, is 
that these machines can perform certain mathematical opera- 
tions which have a logical counterpart. If the machine is prop- 
erly set up (“programmed”), and if the various operations are 
correctly interpreted, then the computer can be used to per- 
form in a few minutes logical and mathematical calculations 
that it would take a human being weeks or months to perform. 
It is all based on Boole’s insight that-logical and mathematical 
operations are, to a certain extent, interchangeable1 

242 
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cumstances or relation, the detailed exposition of which would 
involve the use of many signs. The epithets of poetic diction 
are very frequently of this kind. They are usually compounded 
adjectives, singly fuhllhng the office of a many-worded de- 
scription. Homer’s “deep-eddying ocean” embodies a virtual 
description in the single word @%SLV~S. And conventionally 
any other description addressed either to the imagination or to 
the intellect might equally be represented by a single sign, the 
use of which would in all essential points be subject to the same 
laws as the use of the adjective “good” or “great.” Combined 
with the subject “thing,” such a sign would virtually become 
a substantive; and by a single substantive the combined mean- 
ing both of thing and quality might be expressed. 

6. Now, as it has been defined that a sign is an arbitrary 
mark, it is permissible to replace all signs of the species above 
described by letters. Let us then agree to represent the class of 
individuals to which a particular name or description is ap- 
plicable, by a single letter, as x. If the .name is ‘men,” for in- 
stance, let x represent “all men,” or the class “men.” By a 
class is usually meant a collection of individuals, to each of 
which a particular name or description may be applied; but in 
this work the meaning of the term will be extended so as to 
include the case in which but a single individual exists, an- 
swering to the required name or description, as well as the 
cases denoted by the terms “nothing” and “universe,” which 
as “classes” should be understood to comprise respectively 
“no beings, ” “all beings.” Again, if an adjective, as “good,” is 
employed as a term of description, let us represent by a letter, 
as y, all things to which the description “good” is applicable, 
i.e. “‘all good things,” or the class “good things.” Let it further 
be agreed, that by the combination xy shall be represented 
that class of things to which the names or descriptions repre- 
sented by x and y are simultaneously applicable. Thus, if x 
alone stands for “white things,” and y for “sheep,” let xy stand 
for “white sheep”; and in like manner, if z stand for “horned 
things,” and x and y retain their previous interpretations, let 
zxy represent “horned white sheep,” i.e. that collection of things 
to which the name “sheep,” and the descriptions “white” and 
“horned” are together applicable. 

Let us now consider the laws to which the symbols X, y, 
&c., used in the above sense, are subject. 

7. First, it is evident, that according to the above combina- 
tions, the order in which two symbols are written is indifferent. 
The expressions xy and yx equally represent that class of things 
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present stage of this work, but relates only to the mode in 
which those results are presented to the mental regard. For 
though in investigating the laws of signs, Q posteriori, the im- 
mediate subject of examination is Language, with the rules 
which govern its use; while in making the internal processes 
of thought the direct object of inquiry, we appeal in a more 
immediate way to our personal consciousness, - it will be 
found that in both cases the results obtained are formally 
equivalent. Nor could we easily conceive, that the unnum- 
bered tongues and dialects of the earth should have preserved 
through a long succession of ages so much that is common 
and universal, were we not assured of the existence of some 
deep foundation of their agreement in the laws of the mind 
itself. 

2. The elements of which all language consists are signs 
or symbols. Words are signs. Sometimes they are said to rep- 
resent things; sometimes the operations by which the mind 
combines together the simple notions of things into complex 
conceptions; sometimes they express the relations of action, 
passion, or mere quality, which we perceive to exist among the 
objects of our experience; sometimes the emotions of the per- 
ceiving mind. But words, although in this and in other ways 
they fulfill the office of signs, or representative symbols, are 
not the only signs which we are capable of employing. Arbi- 
trary marks, which speak only to the eye, and arbitrary sounds 
or actions, which address themselves to some other sense, are 
equally of the nature of signs, provided that their representa- 
tive office is defined and understood. In the mathematical 
sciences, letters, and the symbols +, -, =, &c., are used as 
signs, although the term “sign” is applied to the latter class 
of symbols, which represent operations or relations, rather 
than to the former, which represent the elements of number 
and quantity. As the real import of a sign does not in any way 
depend upon its particular form or expression, so neither do 
the laws which determine its use. In the present treatise, how- 
ever, it is with written signs that we have to do, and it is with 
reference to these exclusively that the term “sign” will be 
employed. The essential properties of signs are enumerated 
in the following definition. 
Definition.-A sign is an arbitrary mark, having a fixed inter- 
pretation, and susceptible of combination which other signs 
in subjection to tixed laws dependent upon their mutual in- 
terpretation. 
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of the qualities or attributes of an object, apart from alI 
questions of causation, is a difference in conception merely. 
The law (1) expresses as a general truth, that the same thing 
may be conceived in different ways, and states the nature of 
that difference; and it does no more than this. 

Secondly, as a law of thought, it is actually developed in a 
law of Language, the product and the instrument of thought. 
Though the tendency of prose writing is toward uniformity, 
yet even there the order of sequence of adjectives, absolute 
in their meaning, and applied to the same subject, is indifferent 
but poetic diction borrows much of its rich diversity from the 
extension of the same lawful freedom to the substantive also. 
The language of Milton is peculiarly distinguished by this 
species of variety. Not only does the substantive often precede 
the adjectives by which it is qualified, but it is frequently placed 
in their midst. In the first few lines of the invocation to Light, 
we meet with such examples as the following: 

“OfTspring of heaven first-born.” 
“The rising world of waters dark and deep.” 
“Bright effluence of bright essence increate.” 

Now these inverted forms are not simply the fruits of a 
poetic license. They are the natural expressions of a freedom 
sanctioned by the intimate laws of thought, but for reasons 
of convenience not exercised in the ordinary use of language. 

Thirdly, the law expressed by ( 1) may be characterized 
by saying that the literal symbols x, y, z, are commutative, 
like the symbols of Algebra. In saying this, it is not afhrmed 
that the process of multiplication in Algebra, of which the 
fundamental law is expressed by the equation 

XY =yx, 
possesses in itself any analogy with that process of 1ogica.l 
combination which xy has been made to represent above; but 
only that if the arithmetical and the logical process are ex- 
pressed in the same manner, their symbolical expressions will 
be subject to the same formal law. The evidence of that sub- 
jection is in the two cases quite distinct. 

9. As the combination of two literal symbols in the form 
xy expresses the whole of that class of objects to which the 
names or qualities represented by n and y are together app& 
cable, it follows that if the two symbols have exactly the same 
signification, their combination expresses no more than either 



246 BREAKTHROUGHS IN MATHEMATICS 

PROPOSITION I 

All the operations of Language, as an instrument of reasoning, 
may be conducted by a system of signs composed of the fol- 
lowing elements, viz.: 

1st. Literal symbols, as x, y, &c., representing things as sub- 
jects of our conceptions. 

2nd. Signs of operation, as +, -, X, standing for those 
operations of the mind by which the conceptions of things are 
combined or resolved so as to form new conceptions involving 
the same elements. 

3rd. The sign of identity, =. 
And these symbols of Logic are in their use subject to defy- 

nite laws, partly agreeing with and partly differing from the 
laws of the corresponding symbols in the science of Algebra. 

Let it be assumed as a criterion of the true elements of ra- 
tional discourse, that they should be susceptible of combination 
in the simplest forms and by the simplest laws, and thus com- 
bining should generate all other known and conceivable forms 
of language; and adopting this principle, let the following 
classi&ation be considered. 

CLASS I 

5. Appellative or descriptive signs, expressing either the 
name of a thing, or some quality or circumstance belonging 
to it. 

To this class we may obviously refer the substantive proper 
or common, and the adjective. These may indeed be regarded 
as differing only in this respect, that the former expresses the 
substantive existence of the individual thing or things to which 
it refers; the latter implies that existence. If we attach to the 
adjective the universahy understood subject ‘being” or ‘thing,” 
it becomes virtually a substantive, and may for ah the essential 
purposes of reasoning be replaced by the substantive. Whether 
or not, in every particular of the mental regard, it is the same 
thing to say, “Water is a fluid thing,” as to say, “Water is fluid”; 
it is at least equivalent in the expression of the processes of 
reasoning. 

It is clear also, that to the above class we must refer any 
sign which may conventionally be used to express some cir- 
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CLASS II 

11. Signs of those mental operations whereby we collect 

parts into a whole, or separate a whole into its parts. 

We are not only capable of entertaining the conceptions 
of objects, as characterized by names, qualities, or circum- 
stances, applicable to each individual of the group under 
consideration, but also of forming the aggregate conception 
of a group of objects consisting of partial groups, each of 
which is separately named or described. For this purpose we 
use the conjunctions “and,” “or,” &c. “Trees and minerals,” 
“barren mountains, or fertile vales,” are examples of this kind. 
In strictness, the words “and,” “or,” interposed between the 
terms descriptive of two or more classes of objects, imply that 
those classes are quite distinct, so that no member of one is 
found in another. In this and in all other respects the words 
“and” “ or” are analogous with the sign + in algebra, and their 
laws are identical. Thus the expression “men and women” is, 
conventional meanings set aside, equivalent with the expres- 
sion “women and men.” Let x represent “men,” y “women”; 
and let + stand for “ and ” and “or,” then we have 

x+y=y+x, (3) 
an equation which would equally hold true if x and y repre- 
sented numbers, and + were the sign of arithmetical addition. 

Let the symbol z stand for the adjective “European,” then 
since it is, in effect, the same thing to say “European men and 
women,” as to say “European men and European women,” 
we have 

2(x + Y) =zx tzy. (4) 
And this equation also would be equally true were x, y, and 
z symbols of number, and were the juxtaposition of two 1itera.l 
symbols to represent their algebraic product, just as in the 
logical signification previously given, it represents the class of 
objects to which both the epithets conjoined belong. 

The above are the laws which govern the use of the sign 
+, here used to denote the positive operation of aggregating 
parts into a whole. But the very idea of an operation effect- 
ing some positive change seems to suggest to us the idea of an 
opposite or negative operation, having the effect of undoing 
what the former one has done. Thus we cannot conceive it pos- 
sible to collect parts into a whole, and not conceive it also pos- 
sible to separate a part from a whole. This operation we express 
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to the several members of which the names or descriptions x 
and Y are together applicable. Hence we have, 

(1) 
In the case of x repre.senzg\Eti things, and y sheep, either 

of the members of this equation will represent the class of 
“white sheep.” There may be a difference as to the order in 
which the conception is formed, but there is none as to the 
individual things which are comprehended under it. In like 
manner, if x represent “estuaries,” and y “rivers,” the expres- 
sions xy and yx will indifferently represent “rivers that are 
estuaries,” or “estuaries that are rivers,” the combination in 
this case being in ordinary language that of two substantives, 
instead of that of a substantive and an adjective as in the pre- 
vious instance. Let there be a third symbol, as z, representing 
that class of things to which the term “navigable” is applicable, 
and any one of the following expressions, 

zxy, zyx, xyz, &c., 
will represent the class of “navigable rivers that are estuaries.” 

If one of the descriptive terms should have some implied 
reference to another, it is only necessary to include that ref- 
erence expressly in its stated meaning, in order to render the 
above remarks still applicable. Thus, if x represent “wise” and 
y “counsellor,” we shall have to define whether x implies wis- 
dom in the absolute sense, or only the wisdom of counsel. 
With such definition the law xy = yx continues to be valid. 

We are permitted, therefore, to employ the symbols x, y, z, 
&c., in the place of the substantives, adjectives, and descriptive 
phrases subject to the rule of interpretation, that any expres- 
sion in which several of these symbols are written together shall 
represent all the objects or individuals to which their several 
meanings are together applicable, and to the law that the order 
in which the symbols succeed each other is indifferent. 

As the rule of interpretation has been sufficiently exempli- 
fied, I shall deem it unnecessary always to express the subject 
“things” in detiing the interpretation of a symbol used for 
an adjective. When I say, let x represent “good,” it will be un- 
derstood that x only represents “good” when a subject for that 
quality is supplied by another symbol, and that, used alone, 
its interpretation will be “good things.” 

8. Concerning the law above determined, the following 
observations, which will also be more or less appropriate to 
certain other laws to be deduced hereafter, may be added. 

First, I would remark, that this law is a law of thought, and 
not, properly speaking, a law of things. Ditference in the order 



ALGEBRA AND LOGIC JOINED 253 

class, it is sufhcient for the purposes of Logic to consider it as 
including only the substantive verb is or are, since every other 
verb may be resolved into this element, and one of the signs 
included under Class I. For as those signs are used to express 
quality or circumstance of every kind, they may be employed 
to express the active or passive relation of the subject of the 
verb, considered with reference either to past, to present, or 
to future time. Thus the Proposition, “&sar conquered the 
Gauls,” may be resolved into “Cresar is he who conquered the 
Gauls.” The ground of this analysis I conceive to be the fol- 
lowing:-Unless we understand what is meant by having con- 

quered the Gauls, i.e. by the expression “One who conquered 
the Gauls,” we cannot understand the sentence in question. It 
is, therefore, truly an element of that sentence; another ele- 
ment is “Cazsar,” and there is yet another required, the copula 
is, to show the connexion of these two. I do not, however, 
aflirm that there is no other mode than the above of contem- 
plating the relation expressed by the proposition, “Cresar COU- 

quered the Gauls,“; but only that the analysis here given is 
a correct one for the particular point of view which has been 
taken, and that it suffices for the purposes of logical deduction. 
It may be remarked that the passive and future participles of 
the Greek language imply the existence of the principle which 
has been asserted, viz.: that the sign is or are may be regarded 
as an element of every personal verb. 

13. The above sign, is or are, may be expressed by the sym- 
bol = . The laws, or as would usually be said, the axioms which 
the symbol introduces, are next to be considered. 

Let us take the Proposition, “The stars are the suns and the 
planets,” and let us represent stars by X, suns by y, and planets 
by z; we have then 

x=y+z. (7) 
Now if it be true that the stars are the suns and the planets, 
it will follow that the stars, except the planets, are suns. This 
would give the equation 

x-z==, (8) 
which must therefore be a deduction from (7). Thus a term 
z has been removed from one side of an equation to the other- 
by changing its sign. This is in accordance with the algebraic 
rule of transposition. 

But instead of dwelling upon particular cases, we may at 
once afhrm the general a.xioms:- 

1st. If equal things are added to equal things, the wholes 
are equal. 
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of the symbols taken alone would do. In such case we should 
therefore have 

2-y = x. 
As y is, however, supposed to have the same meaning as X, we 
may replace it in the above equation by X, and we thus get 

xx = x. 
Now in common Algebra the combination xx is more briefly 
represented by x2. Let us adopt the same principle of notation 
here; for the mode of expressing a particular succession of 
mental operations is a thing in itself quite as arbitrary as the 
mode of expressing a single idea or operation (II. 3). In ac- 
cordance with this notation, then, the above equation assumes 
the form 

P = x , (2) 
and is, in fact the expression of a second general law of those 
symbols by which names, qualities, or description, are sym- 
bolically represented. 

The reader must bear in mind that although the symbols x 
and y in the examples previously formed received significations 
distinct from each other, nothing prevents us from attributing 
to them precisely the same signification. It is evident that the 
more nearly their actual significations approach to each other, 
the more nearly does the class of things denoted by the com- 
bination xy approach to identity with the class denoted by x, 
as well as with that denoted by y. The case supposed in the 
demonstration of the equation (2) is that of absolute identity 
of meaning. The law which it expresses is practically exempli- 
fied in language. To say “good, good,” in relation to any sub- 
ject, though a cumbrous and useless pleonasm, is the same as 
to say “good.” Thus “good, good” men, is equivalent to “good” 
men. Such repetitions of words are indeed sometimes em- 
ployed to heighten a quality or strengthen an a&mation. But 
this effect is merely secondary and conventional; it is not 
founded in the intrinsic relations of language and thought. 
Most of the operations which we observe in nature, or per- 
form ourselves, are of such a kind that their effect is aug- 
mented by repetition, and this circumstance prepares us to 
expect the same thing in language, and even to use repetition 
when we design to speak with emphasis. But neither in strict 
reasoning nor in exact discourse is there any just ground for 
such a practice. 

10. We pass now to the consideration of another class of 
the signs of speech, and of the laws connected with their use. 
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algebra that axiom does not possess the generality of those 
other axioms which have been considered. The deduction Of 
the equation x = y from the equation zx = zy is only valid 
when it is known that z is not equal to 0. If then the value 
z = 0 is supposed to be admissible in the algebraic system, 
the axiom above stated ceases to be applicable, and the an- 
alogy before exemplified remains at least unbroken. 

15. However, it is not with the symbols or quantity gen- 
erally that it is of any importance, except as a matter of spec- 
ulation, to trace such affinities. We have seen (II. 9) that the 
symbols of Logic are subject to the special law, 

x2 = x. 

Now of the symbols of Number there are but two, viz. 0 
and 1, which are subject to the same formal law. We know 

that 02 = 0, and that 12 = 1; and the equation x2 = X, COW 

sidered as algebraic, has no other roots than 0 and 1. Hence, 
instead of determining the measure of formal agreement of 
the symbols of Logic with those of Number generally, it is more 
immediately suggested to us to compare them with symbols 
of quantity admitting only of the values 0 and 1. Let us con- 
ceive, then, of an Algebra in which the symbols X, y, z, &c. 
admit indifferently of the values 0 and 1, and of these values 
alone. The laws, the axioms, and the processes of such an 
Algebra will be identical in their whole extent with the laws, 
the axioms, and the processes of an Algebra of Logic. Dif- 
ference of interpretation will alone divide them. Upon this 

principle the method of the following work is established. 
16. It now remains to show that those constituent parts of 

ordinary language which have not been considered in the pre- 
vious sections of this chapter are either resolvable into the 
same elements as those which have been considered, or are 
subsidiary to those elements by contributing to their more 
precise definition. 

The substantive, the adjective, and the verb, together with 
the particles and, except, we have already considered. The 
pronoun may be regarded as a particular form of the sub- 
stantive or the adjective. The adverb modifies the meaning of 
the verb, but does not affect its nature. Prepositions contribute 
to the expression of circumstance or relation, and thus tend to 
give precision and detail to the meaning of the literal symbols. 
The conjunctions if, either, or, are used chiefly in the expres- 
sion of relation among propositions, and it will hereafter be 
shown that the same relations can be completely expressed by 
elementary symbols analogous in interpretation, and identical 
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in common language by the sign except, as, “All men except 
Asiatics, ” “All states except those which are monarchical.” 
Here it is implied that the things excepted form a part of the 
things from which they are excepted. As we have expressed 
the operation of aggregation by the sign +, so we may express 
the negative operation above described by - (minus). Thus if 
x be taken to represent men, and y, Asiatics, i.e. Asiatic men, 
then the conception of “All men except Asiatics” will be ex- 
pressed by x - y. And if we represent by x, “states,” and by 
y the descriptive property “having a monarchical form,” then 
the conception of “All states except those which are monar- 
chical” will be expressed by x - xy. 

As it is indifferent for all the essential purposes of reason- 
ing whether we express excepted cases first or last in the order 
of speech, it is also indifferent in what order we write any 
series of terms, some of which are affected by the sign -. 
Thus we have, as in the common algebra, 

x-y=-y+x. (5) 
Still representing by x the class “men,” and by y “Asiatics,” 
let z represent the adjective “white.” Now to apply the adjec- 
tive “white” to the collection of men expressed by the phrase 
“Men except Asiatics,” is the same as to say, “White men, 
except white Asiatics.” Hence we have 

z(x - y) = zx - zy. (6) 
This is also in accordance with the laws of ordinary algebra. 

The equations (4) and (6) may be considered as exempli- 
fication of a single general law, which may be stated by say- 
ing, that the literal symbols, x, y, z, &c. are distributive in their 
operation. The general fact which that law expresses is this, 
viz.:-If any quality or circumstance is ascribed to all the 
members of a group, formed either by aggregation or exclu- 
sion of partial groups, the resulting conception is the same as 
if the quality or circumstance were first ascribed to each mem- 
ber of the partial groups, and the aggregation or exclusion ef- 
fected afterwards. That which is ascribed to the members of 
the whole is ascribed to the members of all its parts, howsoever 
those parts are connected together. 

CLASS III 

12. Signs by which relation is expressed, and by which we 
form propositions. 

Though all verbs may with propriety be referred to this 
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2. If this distinction is important in physical science, much 
more does it deserve attention in connexion with the science of 
the intellectual powers. For the questions which this science 
presents become, in expression at least, almost necessarily 
mixed up with modes of thought and language, which betray 
a metaphysical origin. The idealist would give to the laws of 
reasoning one form of expression; the sceptic, if true to his 

principles, another. They who regard the phanomena with 
which we are concerned in this inquiry as the mere successive 
states of the thinking subject devoid of any causal connexion, 
and they who refer them to the operations of an active intelli- 
gence, would, if consistent, equally differ in their modes of 
statement. Like difference would also result from a difference 
of classification of the mental faculties. Now the principle 
which I would here assert, as affording us the only ground of 
confidence and stability amid so much of seeming and of real 
diversity, is the following, viz., that if the laws in question are 
really deduced from observation, they have a real existence 
as laws of the human mind, independently of any metaphysical 
theory which may seem to be involved in the mode of their 
statement. They contain an element of truth which no ulterior 
criticism upon the nature, or event upon the reality, of the 
mind’s operations, can essentially affect. Let it even be granted 
that the mind is but a succession of states of consciousness, a 
series of fleeting impressions uncaused from without or from 
within, emerging out of nothing, and returning into nothing 
again ,-the last refinement of the sceptic intellect,-still, as laws 
of succession, or at least of a past succession, the results to 
which observation had led would remain true. They would 
require to be intepreted into a language from whose vocabulary 
all such terms as cause and effect, operation and subject, sub- 
stance and attribute, had been banished; but they would still 
be valid as scientific truths. 

Moreover, as any statement of the laws of thought, founded 
upon actual observation, must thus contain scientific elements 
which are independent of metaphysical theories of the nature 
of the mind, the practical application of such elements to the 
construction of a system or method of reasoning must also be 
independent of metaphysical distinctions. For it is upon the 
scientific elements involved in the statement of the laws, that 
any practical application will rest, just as the practical con- 
clusions of physical astronomy are independent of any theory 
of the cause of gravitation, but rest only on the knowledge of 
its phzenomenal effects. And, therefore, as respects both the 
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2nd. If equal things are taken from equal things, the re- 
mainders are equal. 

And it hence appears that we may add or subtract equa- 
tions, and employ the rule of transposition above given just 
as in common algebra. 

Again: If two classes of things, x and y, be identical, that 
is, if all the members of the one are members of the other, 
then those members of the one class which possess a given 
property z will be identical with those members of the other 
which possess the same property z. Hence if we have the 
equation 

x = y; 
then whatever class or property z may represent, we have also 

zx = zy. 
This is formally the same as the algebraic law:-If both mem- 
bers of an equation are multiplied by the same quantity, the 
products are equal. 

In like manner it may be shown that if the corresponding 
members of two equations are multiplied together, the result- 
ing equation is true. 

14. Here, however, the analogy of the present system with 
that of algebra, as commonly stated, appears to stop. Suppose 
it true that those members of a class x which possess a certain 
property z are identical with those members of a class y which 
possess the same property z, it does not follow that the mem- 
bers of the class x universally are identical with the members 
of the class y. Hence it cannot be inferred from the equation 

zx = zy, 
that the equation 

x=y 
is also true. In other words, the axiom of algebraists, that 
both sides of an equation may be divided by the same quantity, 
has no formal equivalent here. I say no formal equivalent, 
because, in accordance with the general spirit of these inquir- 
ies, it is not even sought to determine whether the mental op- 
eration which is represented by removing a logical symbol, z, 
from a combination zx, is in itself analogous with the operation 
of division in Arithmetic. That mental operation is indeed 
identical with what is commonly termed Abstraction, and it 
wi.U hereafter appear that its laws are dependent upon the laws 
already deduced in this chapter. What has now been shown is, 
that there does not exist among those laws anything analogous 
in form with a commonly received axiom of Algebra. 

But a little consideration will show that even in common 
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In every discourse, whether of the mind conversing with its 
own thoughts, or of the individual in his intercourse with 
others, there is an assumed or expressed limit within which the 
subjects of its operation are confined. The most unfettered dis- 
course is that in which the words we use are understood in the 
widest possible application, and for them the limits of dis- 
course are co-extensive with those of the universe itself. But 
more usually we confine ourselves to a less spacious field. 
Sometimes, in discoursing of men we imply (without express- 
ing the limitation) that it is of men only under certain circum- 
stances and conditions that we speak, as of civilized men, or of 
men in the vigour of life, or of men under some other condi- 
tion or relation. Now, whatever may be the extent of the field 
within which all the objects of our discourse are found, that 
field may properly be termed the universe of discourse. 

5. Furthermore, this universe of discourse is in the strictest 
sense the ultimate subject of the discourse. The office of any 
name or descriptive term employed under the limitations sup- 
posed is not to raise in the mind the conception of all the be- 
ings or objects to which that name or description is applicable, 
but only of those which exist within the supposed universe of 
discourse. If that universe of discourse is the actual universe 
of things, which it always is when our words are taken in their 
real and literal sense, then by men we mean all men that exist; 
but if the universe of discourse is limited by any antecedent 
implied understanding, then it is of men under the limitation 
thus introduced that we speak. It is in both cases the business 
of the word men to direct a certain operation of the mind, by 
which, from the proper universe of discourse, we select or fix 
upon the individuals signified. 

6. Exactly of the same kind is the mental operation implied 
by the use of an adjective. Let, for instance, the universe of dis- 
course be the actual Universe. Then, as the word men directs 
us to select mentally from that Universe all the beings to which 
the term “men” is applicable; so the adjective “good,” in the 
combination “good men,” directs us still further to select men- 
tally from the class of men all those who possess the further 
quality “good”; and if another adjective were prefixed to the 
combination “good men,” it would direct a further operation 
of the same nature, having reference to that further quality 
which it might be chosen to express. 

It is important to notice carefully the real nature of the 
operation here described, for it is conceivable, that it might 
have been different from what it is. Were the adjective simply 
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in form and law with the symbols whose use and meaning have 
been explained in this Chapter. As to any remaining elements 
of speech, it will, upon examination, be found that they are 
used either to give a more definite significance to the terms of 
discourse, and thus enter into the interpretation of the literal 
symbols already considered, or to express some emotion or 
state of feeling accompanying the utterance of a proposition, 
and thus do not belong to the province of the understanding, 
with which alone our present concern lies. Experience of its 
use will testify to the sufficiency of the classilication which has 
been adopted. 

Chapter ZZZ 

DERIVATION OF THE LAWS OF THE SYMBOLS 

OF LOGIC FROM THE LAWS OF THE OPERA- 

TIONS OF THE HUMAN MIND 

1. The object of science, properly so called, is the knowl- 
edge of laws and relations. To be able to distinguish what is 
essential to this end, from what is only accidentally associated 
with it, is one of the most important conditions of scientific 
progress. I say, to distinguish between these elements, because 
a consistent devotion to science does not require that the at- 
tention should be altogether withdrawn from other specula- 
tions, often of a metaphysical nature, with which it is not unfre- 
quently connected. Such questions, for instance, as the existence 
of a sustaining ground of phanomena, the reality of cause, the 
propriety of forms of speech implying that the successive states 
of things are connected by operations, and others of a like 
nature, may possess a deep interest and significance in relation 
to science, without being essentially scientific. It is indeed 
scarcely possible to express the conclusions of natural science 
without borrowing the language of these conceptions. Nor is 
there necessarily any practical inconvenience arising from this 
source. They who believe, and they who refuse to believe, that 
there is more in the relation of cause and effect than an in- 
variable order of succession, agree in their interpretation of 
the conclusions of physical astronomy. But they only agree 
because they recognise a common element of scientific truth, 
which is independent of their particular views of the nature of 
causation. 
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order of nature, it is clear that the laws of the name or symbol 
must be of a derivative character,-must, in fact, originate 
in those of the operation which they represent. That the laws 
of the symbol and of the mental process are identical in ex- 
pression will now be shown. 

8. Let us then suppose that the universe of our discourse 
is the actual universe, so that words are to be used in the full 
extent of their meaning, and let us consider the two mental 
operations implied by the words “white” and “men.” The word 
“men” implies the operation of selecting in thought from its 
subject, the universe, all men; and the resulting conception, 
men, becomes the subject of the next operation. The opera- 
tion implied by the word “white” is that of selecting from its 
subject, “men,” all of that class which are white. The final re- 
sulting conception is that of “white men.” Now it is perfectly 
apparent that if the operations above described had been per- 
formed in a converse order, the result would have been the 
same. Whether we begin by forming the conception of “men,” 
and then by a second intellectual act limit that conception to 
“white men,” or whether we begin by forming the conception 
of “white objects,” and then limit it to such of that class as 
are “men,” is perfectly indifferent so far as the result is con- 
cerned. It is obvious that the order of the mental processes 
would be equally indifferent if for the words “white” and 
“men” we substituted any other descriptive or appellative 
terms whatever, provided only that their meaning was fixed 
and absolute. And thus the indifference of the order of two 
successive acts of the faculty of Conception, the one of which 
furnishes the subject upon which the other is supposed to op- 
erate, is a general condition of the exercise of that faculty. 
It is a law of the mind, and it is the real origin of that law of 
the literal symbols of Logic which constitutes its formal expres- 
sion [ ( 1) Chapter. II]. 

9. It is equally clear that the mental operation above de- 
scribed is of such a nature that its effect is not altered by repe- 
tition. Suppose that by a definite act of conception the attention 
has been fIxed upon men, and that by another exercise of the 
same faculty we limit it to those of the race who are white. 
Then any further repetition of the latter mental act, by which 
the attention is limited to white objects, does not in any way 
modify the conception arrived at, viz., that of white men. This 
is also an example of a general law of the mind, and it has its 
formal expression in the law [( 2) Chap. II.] of the literal 
symbols., 
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determination of the laws of thought, and the practical use of 
them when discovered, we are, for all really scientific ends, un- 
concerned with the truth or falsehood of any metaphysical 
speculations whatever. 

3. The course which it appears to me to be expedient, under 
these circumstances, to adopt, is to avail myself as far-as pos- 
sible of the language of common discourse, without regard 
to any theory of the nature and powers of the mind which it 
may be thought to embody. For instance, it is agreeable to 
common usage to say that we converse with each other by the 
communication of ideas, or conceptions, such communication 
being the office of words; and that with reference to any par- 
ticular ideas or conceptions presented to it, the mind possesses 
certain powers or faculties by which the mental regard may 
be fixed upon some ideas, to the exclusion of others, or by 
which the given conceptions or ideas may, in various ways, be 
combined together. To those faculties or powers different 
names, as Attention, Simple Apprehension, Conception or 
Imagination, Abstraction, &c., have been given,-names which 
have not only furnished the titles of distinct divisions of the 
philosophy of the human mind, but passed into the common 
language of men. Whenever, then, occasion shall occur to use 
these terms, I shall do so without implying thereby that I ac- 
cept the theory that the mind possesses such and such powers 
and faculties as distinct elements of its activity. Nor is it in- 
deed necessary to inquire whether such powers or the under- 
standing have a distinct existence or not. We may merge these 
different titles under the one generic name of Operations of, 
the human mind, define these operations so far as is necessary 
for the purposes of this work, and then seek to express their 
ultimate laws. Such will be the general order of the course 
which I shall pursue, though reference will occasionally be 
made to the names which common agreement has assigned to 
the particular states or operations of the mind which may fall 
under our notice. 

It will be most convenient to distribute the more definite 
results of the following investigation into distinct Propositions. 

FROPOSITI~N I 

4. To deduce the laws of the symbols of Logic from a con- 
sideration of those operations of the mind which are implied 
in the strict use of language as an instrument of reasoning. 
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tage in employing the same symbols in different systems of 
thought, provided that such interpretations can be assigned 
to them as shall render their formal laws identical, and their 
use consistent. The ground of that employment will not then 
be community of interpretation, but the community of the 
formal laws, to which in their respective systems they are 
subject. Nor must that community of formal laws be estab- 
lished upon any other ground than that of a careful observa- 
tion and comparison of those results which are seen to flow 
independently from the interpretations of the systems under 
consideration. 

These observations will explain the process of inquiry 
adopted in the following Proposition. The literal symbols of 
Logic are universally subject to the law whose expression is 
~2 =x. Of the symbols of Number there are two only, 0 and 
1, which satisfy, this law. But each of these symbols is also 
subject to a law peculiar to itself in the system of numerical 
magnitude, and this suggests the inquiry, what interpretations 
must be given to the literal symbols of Logic, in order that 
the same peculiar and formal laws may be realized in the 
logical system also. 

PROPOSITION II 

.13. To determine the logical value and significance of the 
symbols 0 and 1. 

The symbol 0, as used in Algebra, satisfies the following 
formal law, 

0 X y = 0, or Oy = 0, (1) 
whatever number y may represent. That this formal law may 
be obeyed in the system of Logic, we must assign to the sym- 
bol 0 such an interpretation that the class represented by Oy 
may be, identical .with the class represented by 0, whatever the 
class y may be. A little consideration will show that this condi- 
tion is satisfied if the symbol 0 represents Nothing. In accord- 
ance with a previous definition, we may term Nothing a class. 
In fact, Nothing and Universe are the two limits of class ex- 
tension, for they are the limits of the possible interpretations 
of general names, none of which can relate to fewer individuals 
than are comprised in Nothing, or to more than are comprised 
in the Universe. Now whatever the class y may be, the indi- 
viduals which are common to it and to the class “Nothing” 
are identical with those comprised in the class “Nothing,” for 
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attributive in its character, it would seem, that when a par- 
ticular set of beings is designated by men, the prefixing of the 
adjective good would direct us to attach mentally to all those 
beings the quality of goodness. But this is not the real office of 
the adjective. The operation which we really perform is one of 
selection according to a prescribed principle or idea. To what 
faculties of mind such an operation would be referred, accord- 
ing to the received classification of its powers, it is not import- 
ant to inquire, but I suppose that it would be considered as de- 
pendent upon the two faculties of Conception or Imagination, 
and Attention. To the one of these faculties might be referred 
the formation of the general conception; to the other the fix- 
ing of the mental regard upon those individuals within the 
prescribed universe of discourse which answer to the concep- 
tion. If, however, as seems not improbable, the power of At- 
tention is nothing more than the power of continuing the ex- 
ercise of any other faculty of the mind, we might properly 
regard the whole of the mental process above described as 
referrible to the mental faculty of Imagination or Conception, 
the first step of the process being the conception of the Uni- 
verse itself, and each succeeding step limiting in a definite 
manner the conception thus formed. Adopting this view, I 
shall describe each such step, or any definite combination of 
such steps, as a definite act of conception. And the use of this 
term I shall extend so as to include in its meaning not only the 
conception of classes of objects represented by particular 
names or simple attributes of quality, but also the combination 
of such conceptions in any manner consistent with the powers 
and limitations of the human mind; indeed, any intellectual 
operation short of that which is involved in the structure of a 
sentence or proposition. The general laws to which such OP- 

erations of the mind are subject are now to be considered. 
7. Now it will be shown that the laws which in the preced- 

ing chapter have been determined a posteriori from the con- 

stitution of language, for the use of the literal symbols of 
Logic, are in reality the laws of that definite mental operation 
which has just been described. We commence our discourse 
with a certain understanding as to the limits of its subject, i.e. 
as to the limits of its Universe. Every name, every term of de- 
scription that we employ, directs him whom we address to the 
performance of a certain mental operation upon that subject. 
And thus is thought communicated. But as each name or de 
scriptive term is in this view but the representative of an 
intellectual operation, that operation being also prior in the 
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of maxims or necessuly truths, yet, on account of the great 
importance of that law of thought to which it relates, it has 
been thought proper to introduce it here. 

PBOP~SITION IV 

That axiom of metaphysicians which is termed the principle 
of contradiction, and which affirms that it is impossible for 

any being to possess a quality, and at the same time not to pos- 
sess it, is a consequence of the fundamental law of thought, 
whose expression is x2 =x. 

Let us write this equation in the form 
x-x2=0 , 

whence we have 
x(1 - x) = 0; (1) 

both these transformations being justified by the axiomatic 
laws of combination and transposition (II. 13). Let us, for 
simplicity of conception, give to the symbol x the particular 
interpretation of men, then 1 - x will represent the class of 
“not-men” (Prop. III.). Now the formal product of the ex- 
pressions of two classes represents that class of individuals 
which is common to them both (II. 6). Hence x( 1 - x) will 
represent the class whose members are at once “men,” and 
“not men,” and the equation (1) thus express the principle, 
that a class whose members are at the same time men and not 
men does not exist. In other words, that it is impossible for the 
same individual to be at the same time a man and not a man. 
Now let the meaning of the symbol x be extended from the 
representing of “men,” to that of any class of beings charac- 
terized by the possession of any quality whatever; and the 
equation (1) will then express that it is impossible for a being 
to possess a quality and not to possess that quality at the same 
time. But. this is identically that “principle of contradiction” 
which Aristotle has described as the fundamental axiom of all 
philosophy. “It is impossible that the same quality should both 
belong and not belong to the same thing. . . . This is the most 
certain of all principles. . . . Wherefore they who demonstrate 
refer to this as an ultimate opinion. For it is by nature the 
source of all the other axioms.” 

The above interpretation has been introduced not on ac- 
count of its immediate value in the present system, but as an 
illustration of a signilicant fact in the philosophy of the intel- 
lectual powers, viz., that what has been commonly regarded 
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10. Again, it is manifest that from the conceptions of two 
distinct classes of things we can form the conception of that 
collection of things which the two classes taken together com- 
pose; and it is obviously indifferent in what order of position 
or of priority those classes are presented to the mental view. 
This is another general law of the mind, and its expression is 
found in (3) Chap. II. 

11. It is not necessary to pursue this course of inquiry and 
comparison. Sulhcient illustration has been given to render 
manifest the two following positions, viz.: 

First, that the operations of the mind, by which, in the ex- 
ercise of its power of imagination or conception, it combines 
and modifies the simple ideas of things or qualities, not less 
than those operations of the reason which are exercised upon 
truths and propositions, are subject to general laws. 

Secondly, that those laws are mathematical in their form, 
and that they are actually developed in the essential laws of 
human language. Wherefore the laws of the symbols of Logic 
are deducible from a consideration of the operations of the 
mind in reasoning. 

12. The remainder of this chapter will be occupied with 
questions relating to that law of thought whose expression is 
x2 = x (II. 9)) a law which, as has been implied (II. 15)) 
forms the characteristic distinction of the operations of the 
mind in its ordinary discourse and reasoning, as compared 
with its operations when occupied with the general algebra 
of quantity. An important part of the following inquiry wilI 
consist in proving that the symbols 0 and 1 occupy a place, 
and are susceptible of an interpretation, among the symbols 
of Logic; and it may tist be necessary to show how particular 
symbols, such as the above, may with propriety and advan- 
tage be employed in the representation of distinct systems of 
thought. 

The ground of this propriety cannot consist in any com- 
munity of interpretation. For in systems of thought so truly 
distinct as those of Logic and Arithmetic (I use the latter term 
in its widest sense as the science of Number), there is, properly 
speaking, no community of subject. The one of them is con- 
versant with the very conceptions of things, the other takes 
account solely of their numerical relations. But inasmuch as 
the forms and methods of any system of reasoning depend 
immediately upon the laws to which the symbols are subject, 
and only mediately, through the above link of connexion, upon 
their interpretation, there may be both propriety and advan- 
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PART II 

Why are geometry and arithmetic both considered to be 
parts of mathematics? What do they have in common? Or to 
put the question broadly, since there are many other parts to 
mathematics besides these two, what is the essential character 
of a mathematical science? One answer, of long standing, is 
that all branches of mathematics deal with quantity. Thus the 
ancient mathematicians pointed out that geometry deals with 
continuous quantities (such as lines), while arithmetic deals 
with discrete quantities (numbers). 

But this answer is to a certain extent unsatisfactory. To say 
that mathematics “deals” with quantities does not reveal the 
essential character of the mathematical activity. Furthermore, 
it is even doubtful whether mathematics is necessarily con- 
cerned with quantities; for instance, when we look back on 

the bridge problem of Kiinigsberg, or topological problems in 
general, it is not apparent that such problems deal with either 
continuous or discrete quantities. It seems more accurate to 
say these problems involve relations, such as “being inside or 
outside of” or “being to the right of” and similar ones. 

There is, however, one characteristic that is common to aII 
mathematical branches. This is the character of deductiveness. 
All mathematical propositions are demonstrated from certain 
definitions, axioms, or postulates. In different parts of mathe- 
matics the definitions and the postulates are different; what is 
not different is that conclusions are demonstrated, step by step, 
from certain things that are given. 

It makes sense, therefore, to say that the basic character- 
istic of mathematics consists in demonstrating a conclusion 
from a hypothesis. And so the purest mathematics would be 
that which disregards completely what is being demonstrated 
and pays attention only to the process of demonstration or de- 
duction. This means, of course, that the purest mathematics 
is the theory of deduction, or deductive logic. 

This it is which George Boole attempts to do in the Laws of 
Thought. In the first chapter of this work, Boole describes his 
aim as follows: 
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they are none. And thus by assigning to 0 the interpretation 
Nothing, the law (1) is satisfied; and it is not otherwise satis- 
fied consistently with the perfectly general character of the 
class y. 

Secondly, the symbol 1 satisfies in the system of Number 
the following law, viz., 

1 X y = y, or ly = y, 
whatever number y .may represent. And this formal equation 
being assumed as equally valid in the system of this work, in 
which 1 and y represent classes, it appears that the symbol 1 
must represent such a class that all the individuals which are 
found in uny proposed class y are also all the individuals ly 
that are common to that class y and the class represented by 
1. A little consideration will here show that the class repre- 
sented by 1 must be “the Universe,” since this is the only class 
in which are found all the individuals that exist in any class. 
Hence the respective interpretations of the symbols 0 and 1 
in the system of Logic are Nothing and Universe. 

14. As with the idea of any class of objects as “men,” there 
is suggested to the mind the idea of the contrary class of beings 
which are not men; and as the whole Universe is made up of 
these two classes together; since of every individual which it 
comprehends we may aflirm either that it is a man, or that it 
is not a man, it becomes important to inquire how such con- 
trary names are to be expressed. Such is the object of the fol- 
lowing Proposition. 

PROPOSITION III 

Zf x represent any class of objects, then will 1 - x represent 
the contrary or supplementary class of objects, i.e. the class 
including all objects which are nof comprehended in the class x. 

For greater distinctness of conception let x represent the 
class men, and let us express, according to the last Proposi- 
tion, the Universe by 1; now if from the conception of the 
Universe, as consisting of “men” and “not-men,” we exclude 
the conception of “men,” the resulting conception is that of the 
contrary class, “not-men.” Hence the class “not-men” will be 
represented-by 1 - x. And, in general, whatever class of ob- 
jects is represented by the symbol x, the contrary class will be 
expressed by 1 - x. 

15. Although the following Proposition belongs in strict- 
ness to a future chapter of this work, devoted to the subject 
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seems to be to reduce logical symbolism to algebraical sym- 
bolism, making only those changes which are absolutely re- 
quired. But though the symbols are for the most part the same 
ones as those used in algebra, the meaning of those symbols is 
quite different. 

This is what Boole tells us in Proposition I. There are just 
three classes of signs which he needs in order to symbolize 
logic. They are : 

(1) Letters such as x, y, z, etc. These letters are used to 
represent things. The letters correspond to the things which 
are defined in Euclid’s Definitions, for these letters are the 
elements on which we operate in order to prove certain propo- 
sitions. This is exactly what we do in geometry with lines, tri- 
angles, circles, etc. We perform certain operations with them 
-as stated in the postulates-in order to prove geometrical 
propositions. There is one interesting difference: because logic 
deals with everything that can be thought about, the letters 
X, y, z, etc., may stand for anything. At the same time X, y, z, 
etc., need not be defined, because if we say, in a given problem, 
that x stands for “tree,” we then mean by “tree” just what the 
word ordinarily signifies. 

(2) Signs of operations. Boole mentions +, -, X. This 
class of signs corresponds to Euclid’s postulates. Later on 
Boole will tell us just what operations are signified by the var- 
ious signs; they are similar to, but not the same as, the alge- 
braic operations signified by the same signs. 

(3) The third class of signs has only one member; this is 
the sign of identity, =. 

Now let us see what we can say about these various kinds of 
symbols. First, we should note that the literal symbols such as 
x do not actually stand for things, but for classes of things. 
That is, as these symbols are here employed, they do not stand 
for individual things or persons (like “this tree,” or “the man 
named Paul”), but rather classes of things that have a com- 
mon characteristic such as “the class of all white things,” or 
“the class of all attorneys,” and so on. Further, we note that 
these literal symbols stand indifferently for things that in 
language are expressed by either nouns or adjectives. That is, 
x can as well stand for substantive things like “persons,” “trees,” 
“books,” etc., or for qualities like “white,” “dog-eared,” “beau- 
tiful,” and so on. Though this may seem surprising at first 
sight, it really is not. Either kind of word stands for a class. 
When we say x stands for “white,” we mean more accurately 
that x stands for the class of all white things. And when we 
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as the fundamental axiom of metaphysics is but the conse- 
quence of a law of thought, mathematical in its form. I desire 
to direct attention also to the circumstances that the equation 
(1) in which that fundamental law of thought is expressed is 
an equation of second degree.* Without speculating at all in 
this chapter upon the question, whether that circumstance is 
necessary in its own nature, we may venture to assert that if 
it had not existed, the whole procedure of the understanding 
would have been different from what it is. Thus it is a con- 
sequence of the fact that the fundamental equation of thought 
is of the second degree, that we perform the operation of 
analysis and classification, by division into pairs of opposites, 
or, as it is technically said, by dichotomy. Now if the equation 
in question had been of the third degree, still admitting of in- 
terpretation as such, the mental division must have been three- 
fold in character, and we must have proceeded by a species of 
trichotomy, the real nature of which it is imposiible for us, 
with our existing faculties, adequately to conceive, but the laws 
of which we might still investigate as an object of intellectual 
speculation. 

16. The law of thought expressed by the equation ( 1) will, 
for reasons which are made apparent by the above discussion, 
be occasionally referred to as the “law of duality.” 

* Should it here be said that the existence of the equation x*=x neces- 
sitates also the existence of the equation xS=x, which is of the third de- 
gree, and then inquired whether that equation does not indicate a process 
of trichotomy; the answer is,. that the equation x8=x is not interpretable in 
the system of logic. For wntmg it in either of the forms 

x(1-x) (1+x) =o, 
x(1-x) (-l--x)=0, gj 

we see that its interpretation, if possible at all, must involve that of the 
factor 1+x, or of the factor -1-x. The former is not interpretable, be- 
cause we cannot conceive of the addition of any class x to the universe 
1; the latter is not interpretable, because the symbol -1 is not subject to 
the law x(1-x)=0, to which all class symbols are subject. Hence the 
equation xJ=x adnuts of no interpretation analogous to that of the equa- 
tion x-‘=x. Were the former equation, however, true independently of 
the latter, i.e. were that act of the mind which is denoted by the symbol 
x, such that its second repetition should reproduce the result of a single 
operation, but not its first or mere repetition, it is presumable that we 
should be able to interpret one of the forms (2), (3), which under the 
actual conditions of thought we cannot do. There exist operations, known 
to the mathematician, the law of which may be adequately expressed by 
the equation 9=x. But they are of a nature altogether foreign to the 
province of general reasoning. 

In saying that it is conceivable that the law of thought might have been 
different from what it is, I mean only that we can frame such an hy- 
pothesis, and study its consequences. The possibility of doing this in- 
volves no such doctrine as that the actual law of human reason is the 
product either of chance or of arbitrary will. 
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also trees. And yx stands for all those trees which are white. 
It is apparent that xy = yx. Intersection of sets is commuta- 

tive, therefore, just as multiplication is. However, this does not 
follow simply from the symbolism employed; rather, it had to 
be proved. But because the commutative law holds for the 
intersection of sets, xy is a good way of symbolizing the inter- 
section of x and y. 

Next let us consider how to symbolize the set z that is 
formed from all those individuals which belong either to set x 
or to set y or to both x and y. Such a set is now called the 
union of x and y. If, as before, x and y stand for all white 
things and all trees, respectively, then the union of x and y con- 
sists of all those things which are either white, or trees, or both. 
The only things excluded from the union of x and y are those 
which are neither x nor y. Here we have made an arbitrary 
decision about the use of the word “or”: if a is either b or c, 
this shall include the possibility,that a is both b and c. This is 
usually called the weak usage of “or.” If, on the other hand, 
“or” is used in its strong sense, then .“a is either b or c” ex- 
cludes the possibility of a being both b and c. Unless it is stated- 
differently, the “or” employed in these pages and in logic in 
general is the weak “or.” 

Boole actually uses the strong “or.” He-uses the symbol “+” 
for it. In what follows, we shall assume, nevertheless, that 
Boole used the weak “or” and that “+” symbolizes the opera- 
tion of forming the union, in its ordinary sense. 

Is the operation symbolized by “+” commutative? Yes, it 
is, and incidentally this is true whether “or” is used in its weak 
or strong sense. The things which are either white, or trees (or 
both) are clearly the same as. the things which are either trees, 
or white (or both). That is why “+” is a good symbol to use 
for the union of sets, since “+” in algebra is commutative. 

Boole notes that the operation of forming the intersection 
is distributive with respect to forming the union. If x stands for 
“men,” y for “women,” and z for “European,” then 

z(x + Y) = zx + zy 

For the left-hand expression means: “All those European 
things which are also either men or women.” The right-hand 
expression mea.6 : “All things which are either European men 
or European women.” Once more we see how appropriate is 
the symbolism which Boole has chosen, since the symbols have 
the same properties whether they are interpreted algebraically 
or logically. 

We should note, although Boole does not say it, that we 
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The design of the following treatise is to investigate the 
fundamental laws of those operations of the mind by 
which reasoning is performed; to give expression to them 
in the symbolic language of a Calculus, and upon this 
foundation to establish the science of Logic and con- 
struct its method . . . . 

Notice that by an opposite way of reasoning we have ar- 
rived at the same place where we were in Chapter 6. There 
we saw, with the help of Bertrand Russell’s Zntroduction to 
Mathematical Philosophy, that mathematics can be reduced 
to logic. Here, we are now saying that logic can be seen as the 
heart of mathematics, if we abstract from the particularities 
of various branches of mathematics. (Russell was, of course, 
familiar with Boole’s work.) In this chapter, following Boole, 
we will not try to reduce mathematics to logic; rather we shall 
use what knowledge of mathematics (especially arithmetic 
and algebra) we have to develop a simple and symbolic theory 
of logic. 

George Boole was born in the year 1815 in the town of 
Lincoln in England. Because of the limited financial means of 
his family, Boole very largely had to educate himself. At the 
age of sixteen he began to teach in an elementary school for 
boys, and four years later he established his own school; his 
interest in mathematics dated from this time. As the result of 
some of his work, he gradually became acquainted with the 
leading mathematicians of England. In the year 1849, Boole 
was appointed professor of mathematics at Queen’s College 
in Cork. His famous work, The Laws of Thought, of which 
we have two chapters here, was published in 1854. Boole died 
at the age of forty-nine, in the year 1864. 

Boole’s work marks the beginning of symbolic logic. Since 
his time, this science has been greatly developed and in some 
respects changed. One of the major changes is that of sym- 
bolism. If we were to reproduce a typical page here of Russell 
and Whitehead’s Principia Mathematics, we would see symbol 
after unfamiliar symbol. The page would probably look as 
unfamiliar as though it were written in a strange language (as 
indeed it is). This proliferation of symbols has as its purpose 
clarity and unambiguity; unfortunately, though this purpose 
is worthy, there is the side-effect of frightening the ordinary 
reader. 

One advantage of Boole’s work is that he introduces a mini- 
mum of new symbolism. In fact, a major portion of his intent 
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the properties “featherless biped” (yz), then we have 
x = yz 

It is actually more accurate to say that Boole’s sign “=” stands 
for identity; for it can be employed only when the set on the 
left side of the equation is identical with the set on the right 
side. This is the case with “man” and “featherless biped”; it is 
also the case with the example which Boole gives, where the 
set of stars is identical with the set of the suns and planets. 
Identity is usually denoted in modern notation by the sign 
“f.” It is important to remember that Boole’s sign = means 
identity. This will prevent us from making mistakes. For ex- 
ample, how do we signify the statement “All men are animals”? 
Let x stand for man, and y for animals. Do we say then that 

x=y? 
No, for this would mean that the set of men and the set of ani- 
mals are identical. Obviously, however, the set of animals is 
much more extensive, since it includes other animals besides 
men. The set of men is identical with a subset of the set of 
animals. Boole is well aware of this; later in the book, he uses 
the symbol v to express this situation: 

x = vy. 
All men are suww of the animals, or the set of men is a subset 
of the set of animals. The symbol “v” signifies either the word 
“some” or else that we are considering not the entire set y, but 
a subset of it. 

But let us return to the sign of identity. Obviously, for any x, 
x = x. 

The set of x’s is equivalent (identical) to the set of x’s If x 
stands for the set of trees, then the set of trees is identical with 
the set of trees. Now consider the expression x * x, or x2 if 
we follow algebraic usage. This means the class of all those 
trees which are also trees. It is obvious that 

x = x2. 
Here is another departure from ordinary algebra, for this 

equation is not true in algebra. As before, however, we need 
not be shocked. On the contrary, it is these places where alge- 
bra and logic diverge that give us the most information about 
the character of both. This is true here; the law x = x2 pro-. 
vides Boole with an important insight into the symbolism of 
logic. 

While the relation x = x2 is not generally true in algebra, 
there are two values of x for which it is true. For if we solve 
the quadratic equation, we find 

x* - x = 0, 
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say that y stands for “tree,” we mean more accurately that y 
stands for “the class of all trees.” In addition, the members of 
the class “trees,‘‘-that is, the individual trees-are known to 
belong to the class because they all share in one or more class- 
delining characteristics. But each characteristic would be ex- 
pressed by an adjective, although it might be a very long com- 
pound word, standing for a very complicated characteristic, 
such as “possessing roots and leaves, and a hard trunk that 
grows by annual layers, etc.” Both “white” and “tree,” there- 
fore, really signify a class with a certain characteristic. In the 
tist case the characteristic just happens to be very simple, 
while in the second case it is complex. 

Now if we want to signify things which belong to both 
classes x and y, we do so by forming the expression xy (an- 
alogous to the algebraic product). However, xy in logic will 
not stand for multiplication, but rather for the operation of 
forming a set out of all those members which are common to 
two sets. In the language of sets this is called forming the 
intersection of two sets. Multiplication of algebraic quantities 
is, therefore, the analog of forming the intersection of sets. 

Multiplication has the property of being commutative; that 
is, the product of a times b equals the product of b times a. 
Is the operation of forming the intersection of two sets also 
commutative? We can easily see that it is. The individuals in 
set x which also belong to set y are the same as the individuals 
in set y which also belong to set x. This is easily seen if we 
represent the two sets x and y by circles. It is this way of rep- 

Figure 8-l 

resenting sets that gave rise to the expression “intersection.” 
The same thing can be seen if we express xy and yx in terms 
of the defining characteristics of x and y. If x is “white” and 
y is “tree,” then xy stands for all those white things which are 
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classes to propositions. That is, instead of merely expressing 
identities that state class-defining properties (like “The stars 
are all the suns and all the planets”), he must go to assertions 
like “All men are mortal.” Secondly, he must develop a calculus 
for these propositions; that is, he must tell us what to do with 
these propositions in order to derive other propositions from 
them. Thus, he must develop what is called a “propositional 
calculus” (sometimes called a sentential calculus, since propo- 
sitions are expressed by sentences). 

In order to derive “All men are mortal” from two proposi- 
tions like “All animals are mortal” and “All men are animals,” 
a theory of deduction has to be developed. That is, rules must 
be stated, according to which certain operations are performed, 
leading to the desired results. Aristotle, in the fourth century 
B.C., had already stated some rules for the theory of deduction, 
but his logic employed no mathematical symbolism. What is 
needed now is quasi-mathematical rules to accomplish the 
same thing. 

All these things which we say need to be done have been 
accomplished by Boole and by later symbolic logicians. There 
is a completely developed propositional calculus and a theory 
of deduction. In fact, of course, symbolic logic goes far be- 
yond this, into areas Boole never dreamed of. As is almost the 
case when a science becomes highly developed, the foundations 
of it are closely investigated (as in Russell and Whitehead’s 
Principia Mathematics) . As the result of such close and pains- 
taking investigations, difficulties, problems, and even para- 
doxes have been discovered in logic. But this in no way lessens 
George Boole’s accomplishment, who almost single-handedly 
founded the science of symbolic logic. 
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have now arrived at a point where the analogy between algebra 
and logic breaks down. For although, in algebra, multiplica- 
tion is distributive with respect to addition, the reverse is not 
true: addition is not distributive with respect to multiplication. 
Let us gve an example: 

5(3+4) =5*3+.5-4= 15+20 

But suppose I have 
5 + (3 * 4) = 17 

If addition were distributed over multiplication, we should 
be able to say that 

(5 + 3) (5 + 4) 
is also equal to 17. But of course it is not; it is 72. 

But matters are otherwise with sets. Here not only is inter- 
section distributive with respect to union, but union is also dis- 
tributive with respect to intersection. Let us give an example. 
Let z stand again for “European,” let x stand for “Asiatic,” and 
let y stand for “all women.” Consider the union of z and xy- 
that is, 

z + (XY) 
From our definition of union and intersection we know that this 
means “all those things which are European or are Asiatic 
women.” Now let us distribute the union and see what happens: 

(z + xl (z + Y) 
What does this mean? The first parenthesis means “all things 
that are either European or Asiatic.” The second parenthesis 
means “All European things or all women.” What is the inter- 
section of these two sets? That is, what sorts of individuals are 
common to both sets? They are “All European things or alI 
Asiatic women”; but this of course is exactly the same as 
z + (XY). 

Should we be shocked that algebra and logic diverge here? 
Not at all. Boole does not claim that algebra and logic are the 
same; he merely maintains that logic can be symbolized in a 
fashion similar to that employed in algebra. As much as pos- 
sible, Boole uses the same symbolism for logic as for algebra, 
but there is no absolute need to. In fact, the symbols for “in- 
tersection” and “union” usually employed in modern notation 
are different from Boole’s. (The intersection a and b is writ- 
ten a U b, and the union of a and b is a U b.) 

Now let us turn to the most important sign in Boole’s sys- 
tem, namely, “ = .” We have already used it here and there, but 
now we must investigate more closely what its meanings and 
properties are. This sign stands for the equality of equivalence 
of two sets. If, for example, the class “man” (x) is defined by 
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Of 

x(x- 1) =o. 
The two roots of this equation-that is, the two values of x 
which satisfy this equation-are 0 and 1. If x = 1, then it is 
true that x = x2* , similarly, if x = 0, then it is also true that 
x = x2. 

This suggests to Boole that the two numbers 0 and 1 might be 
introduced into the logical system, since they follow the same 
rules. He then asks the question, If these two numerical sym- 
bols are introduced into logic, what is their logical meaning? 

It is an algebraic property of 0 that for any y, 
oy = 0. 

Logically interpreted, this means that the intersection of the 
set 0 and the set y is identical with the set 0. But this is true 
for only one set, namely the set of no members, the so-called 
null set. Hence 0 must represent the. null set. 

It is an algebraic property of 1, that for any y, 
l*y=y. 

Logically interpreted, this means that the intersection. of the 
set 1 and the set y is identical with the set y. But this is true for 
only one set also, namely the set of all members, which Boole 
calls “the Universe.” 

Boole has already told us earlier that he interprets the sign 
“_ 7, to be the opposite of “+” and that it means “except.” 
Hence, he now says, the expression 1 - x means “everything 
except x.” 

What is the meaning of the basic logical equation, 
x(1 -x) = 01 

The left side stands for the intersection of everything that is 
x with everything except x. What do these two sets have in 
common? Nothing, of course, and this is what the right side 
of the equation also states. 

This, Boole says, is the symbolic expression of the Law of 
Contradiction. For the equation states that no class exists whose 
members at the same time possess the attribute x and the at- 
tribute of not having x. The equation expresses 

that it is impossible for a being to possess a quality and 
not to possess that quality at the same time (p. 265). 

This is where Boole stops, in the two chapters under con- 
sideration. His symbolism is now complete, or nearly so for 
operations with classes. What remains to be done? At least two 

major steps: First, Boole must go from statements about 
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