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Preface

The Dictionary of Classical and Theoretical Mathematics, one volume of the Comprehensive
Dictionary of Mathematics, includes entries from the fields of geometry, logic, number theory,
set theory, and topology. The authors who contributed their work to this volume are professional
mathematicians, active in both teaching and research.

The goa in writing this dictionary has been to define each term rigorously, not to author a
large and comprehensive survey text in mathematics. Though it has remained our purpose to make
each definition self-contained, some definitions unavoidably depend on others, and a modicum of
“definition chasing” is necessitated. We hope thisis minimal.

The authors have attempted to extend the scope of this dictionary to the fringes of commonly
accepted higher mathematics. Surely, some readers will regard an excluded term as being mistak-
enly overlooked, and an included term as one “not quite yet cooked” by years of use by a broad
mathematical community. Such differences in taste cannot be circumnavigated, even by our well-
intentioned and diligent authors. Mathematicsis aliving and breathing entity, changing daily, so a
list of included terms may be regarded only as a snapshot in time.

We thank the authors who spent countless hours composing original definitions. In particular, the
help of Dr. Steve Benson, Dr. William Harris, and Dr. Tamara Hummel was key in organizing the
collection of terms. Our hopeisthat thisdictionary becomes avaluable source for students, teachers,
researchers, and professionals.

Catherine Cavagnaro
William T. Haight, 11
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absolute value

A

Abelian category  An additive category C,
which satisfiesthe following conditions, for any
morphism f € Homg (X, Y):

(i.) f hasakernel (a morphismi € Home
(X', X) such that fi = 0) and a co-kernel (a
morphism p € Home (Y, Y') suchthat pf = 0);

(ii.) f may befactored asthe composition of
an epic (onto morphism) followed by a monic
(one-to-one morphism) and this factorization is
unique up to equivalent choices for these mor-
phisms;

(iii.) if f isamonic, thenitisakernd; if f
isan epic, then it isaco-kernel.

See additive category.

Abel’'s summation identity If a(n) is an
arithmetical function (areal or complex valued
function defined on the natural numbers), define

0 ifx<1,
Y am) ifx>1.

n<x

AQx) = =

If the function f is continuoudly differentiable
ontheinterval [w, x], then

dYooamfm) = A@fX)
i — Aw) fw)
—/ AW f' (@) dt .

absciss of absolute convergence  For the
o
Dirichlet series 3 £ thereal number o, if it

n=1
exists, such that the series converges absolutely
for al complex numberss = x+iy withx > o,
but not for any s so that x < o,. If the series
converges absolutely for al s, then o, = —oc0
and if the seriesfails to converge absolutely for
any s, theno, = co. Theset {x +iy: x > o4}
is called the half plane of absolute convergence
for the series. See also abscissa of convergence.
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absciss of convergence  For the Dirichlet

o0
series Y L% the real number o, if it exists,

né

n=1

such that the series converges for all complex
numbers s = x + iy with x > o, but not for
any s so that x < o.. If the series converges
absolutely for al s, then o, = —oo and if the
seriesfailsto converge absolutely for any s, then
o, = oo. The abscissa of convergence of the
seriesisawayslessthan or equal to the abscissa
of absolute convergence (o, < o,). The set
{x +iy : x > o.} iscalled the half plane of
convergence for the series. See also abscissa of
absol ute convergence.

absolute neighborhoad retract A topolog-
ical space W such that, whenever (X, A) is a
pair consisting of a (Hausdorff) normal space
X and a closed subspace A, then any continu-
ous function f : A —> W can be extended
to a continuous function F : U — W, for
U some open subset of X containing A. Any
absolute retract is an absol ute neighborhood re-
tract (ANR). Another example of an ANR isthe
n-dimensional sphere, which is not an absolute
retract.

absoluteretract A topological space W such
that, whenever (X, A) is a pair consisting of a
(Hausdorff) normal space X and a closed sub-
space A, thenany continuousfunction f : A —
W can be extended to a continuous function
F : X — W. For example, the unit interval
is an absolute retract; thisis the content of the
Tietze Extension Theorem. See also absolute
neighborhood retract.

absolute value (1) If r isarea number, the
guantity

r
Irl =
—r

Equivalently, |r| = v/r2. For example, | — 7|
= |7 =7and | — 1.237| = 1.237. Also called
magnitude of r.

(2) If z = x + iy isacomplex number, then
|z|, aso referred to as the norm or modulus of
z, equals v/x2 + y2. For example, |1 — 2i| =
V12422 = /5

(3) In R" (Euclidean n space), the absolute
value of an element is its (Euclidean) distance

ifr>0,
ifr <O.



abundant number

totheorigin. Thatis,

(a1, ap, ..., ay)| =\/af+a5+~~+a3.
In particular, if a isarea or complex number,
then |a| isthe distance from a to O.

abundant number A positiveinteger n hav-
ing the property that the sum of its positive di-
visors is greater than 2n, i.e, o(n) > 2n. For
example, 24 is abundant, since

1+2+34+44+64+8+12+24=60> 48.

Thesmallest odd abundant number is945. Com+
pare with deficient number, perfect number.

accumulation point A point x in atopolog-
ical space X such that every neighborhood of x
containsapoint of X otherthanx. Thatis, forall
openU C X withx € U,thereisay € U which
is different from x. Equivalently, x € X \ {x}.

More generaly, x is an accumulation point
of asubset A C X if every neighborhood of x
contains a point of A other than x. That is, for
dlopen U C X withx € U, thereisay €
U N A which is different from x. Equivalently,
x e A\ {x}.

additivecategory A category C with thefol-
lowing properties:

(i.) the Cartesian product of any two ele-
ments of Obj(C) isagain in Obj(C);

(ii.) Home (A, B) isanadditive Abeliangroup
with identity element O, for any A, B €Obj(C);

(iii.) the distributive laws f(g1 + g2) =
fer+ fgrand (f1+ f2)g = f1g+ f28 holdfor
morphisms when the compositions are defined.

See category.

additive function  An arithmetic function f
having the property that f (mn) = f(m)+ f(n)
whenever m and n are relatively prime. (See
arithmetic function). For example, w, the num-
ber of distinct prime divisors function, is ad-
ditive. The values of an additive function de-
pend only on its values at powers of primes: if
n=pit-- pland f isadditive then f(n) =
F(PH +...+ f(p). Seealso completely ad-
ditive function.
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additive functor An additive functor F :
C — D, between two additive categories, such
that F(f +g) = F(f) + F(g) forany f, g €
Hom¢ (A, B). See additive category, functor.

Ademrelations Therelationsinthe Steenrod
algebra which describe a product of pth power
or sguare operations as a linear combination of
products of these operations. For the square op-
erations (p = 2), when0 < i < 2j,

i _ Jj—k-1 i+j—k gk
Sq' S¢/ = ) ( o )Sq Sq*,
0<k<[i/2]

where [i/2] is the greatest integer less than or
equal to i /2 and the binomial coefficientsin the
sumaretaken mod 2, sincethe square operations
areaZ/2-algebra

As a consequence of the values of the bino-
mial coefficients, S¢2'~1 Sq" = Ofor all values
of n.

The relations for Steenrod algebra of pth
power operations are similar.

adjoint functor If X isafixed object in a
category X, the covariant functor Hom,, : X —
Setsmaps A €0bj (X) to Homy (X, A); f €
Homy (A, A”) ismapped to f; : Homy (X, A)
— Homy (X, A”) by g — fg. The contravari-
ant functor Hom* : X — Setsmaps A €Obj(X)
toHomy (A, X); f € Homy (A, A”) ismapped
to

f* :Homy (A, X) — Homy (A, X) ,

by g — gf.

Let C, D be categories. Two covariant func-
torsF :C - Dand G : D — C are adjoint
functors if, for any A, A’ € Obj(C), B, B’ €
Obj(D), there exists a bijection

¢ : Hom¢ (A, G(B)) — Homp(F(A), B)

that makes the following diagrams commute for
any f:A— A'inC,g: B — B'inD:



algebraic variety

Hom¢ (A, G(B)) Hom¢(A’, G(B))
gl gl

Homp(F(A). B) """ Homp(FA'). B)
Home (A, G(B)) ‘2Y*  Home(A, G(B'))

5| 7l
Homp(F(A), B) Homp(F(A), B')

See category of sets.

alephs Formthesequenceof infinite cardinal
numbers (R,), where « is an ordinal number.

Alexander'sHorned Sphee  Anexampleof
atwo sphere in R® whose complement in R3 is
not topologically equivalent to the complement
of the standard two sphere $2 ¢ RS,

This space may be constructed as follows:
On the standard two sphere $2, choose two mu-
tually disjoint disksand extend each to formtwo
“horns” whosetipsform apair of parallel disks.
On each of the parallel disks, form a pair of
horns with paralléel disk tipsin which each pair
of horns interlocks the other and where the dis-
tance between each pair of horn tipsis half the
previous distance. Continuing this process, at
stage n, 2" pairwise linked horns are created.

In the limit, as the number of stages of the
construction approaches infinity, the tips of the
hornsformaset of limit pointsin R® homeomor-
phic to the Cantor set. The resulting surfaceis
homeomorphicto the standard two sphere $2 but
the complement in R3 is not simply connected.

algebraof sets A collection of subsets S of a
non-empty set X which contains X andisclosed
with respect to the formation of finite unions,
intersections, and differences. More precisely,

(i) XeS;

(i) if A,B € S,then AU B, AN B, and
A\B aredsoin S.

See union, difference of sets.

algebraic number (1) A complex number

whichisazero of apolynomial with rational co-
efficients (i.e., « isalgebraic if there exist ratio-
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Alexander’s Horned Sphere.
PovRay.

Graphic rendered by

nal numbersag, ay, . . . ,a, sothat 3" a;a’ = 0).

i=0
For example, +/2 is an algebraic number since
it satisfies the equation x2 — 2 = 0. Sincethere
isno polynomial p(x) with rational coefficients
such that p(w) = 0, we seethat 7 isnot an al-
gebraic number. A complex number that is not
an algebraic number is called a transcendental
number.

(2) If F isafield, then « is said to be al-
gebraic over F if « is a zero of a polynomial
having coefficientsin F. That is, if there exist
dements fo, f1, f2,..., fu of F sothat fo +
fro + foa®- -+ fra™ =0, then« isalgebraic
over F.

algebraic number field A subfield of the
complex numbers consisting entirely of alge-
braic numbers. See also algebraic number.

algebraic number theory  That branch of
mathematics involving the study of algebraic
numbers and their generalizations. It can be ar-
guedthat the genesisof algebraic number theory
was Fermat’s Last Theorem since much of the
results and techniques of the subject sprung di-
rectly or indirectly from attempts to prove the
Fermat conjecture.

algebraicvariety  Let A beapolynomial ring
k[x1, ..., x,]overafield k. Anaffinealgebraic
variety is a closed subset of A" (in the Zariski
topology of A™) which is not the union of two
proper (Zariski) closed subsets of A”". In the
Zariski topology, a closed set is the set of com-
mon zeros of a set of polynomials. Thus, an
affine algebraic variety is a subset of A" which
isthe set of common zeros of a set of polynomi-



altitude

as but which cannot be expressed as the union
of two such sets.

Thetopology on an affine variety isinherited
from A",

In general, an (abstract) algebraic variety isa
topol ogical spacewith open setsU; whoseunion
is the whole space and each of which has an
affine algebraic variety structure so that the in-
duced variety structures (from U; and U;) on
each intersection U; N U; are isomorphic.

Thesolutionstoany polynomial equationform
an algebraic variety. Real and complex projec-
tive spaces can be described as agebraic vari-
eties (k isthefield of real or complex numbers,

respectively).

altitude  In plane geometry, a line segment
joining avertex of atriangle to the line through
the opposite side and perpendicular to the line.
The term is also used to describe the length of
the line segment. The areaof atriangleisgiven
by one half the product of the length of any side
and the length of the corresponding altitude.

amicable pair of integers  Two positive in-
tegers m and n such that the sum of the positive
divisors of both m and n is equa to the sum of
mand n, i.e, o(m) = o(n) = m +n. For
example, 220 and 284 form an amicable pair,
since

0(220) = 0(284) =504 .

A perfect number forms an amicable pair with
itself.

analyticnumber theory  That branch of math-
ematics in which the methods and ideas of red
and complex analysis are applied to problems
concerning integers.

analyticset Thecontinuousimage of aBorel
set. More precisely, if X is a Polish space and
A C X,then Aisanalyticif thereisaBorel set B
contained in a Polish space Y and a continuous
f : X — Y with f(A) = B. Equivaently, A
isanalyticif itisthe projectionin X of aclosed
set

C <X xNN,

where NN isthe Baire space. Every Borel setis
analytic, but there are analytic sets that are not
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Borel. The collection of analytic setsis denoted
>]. Seealso Borel set, projective set.

annulus A topological space homeomorphic
to the product of the sphere $” and the closed
unitinterval 7. Theterm sometimesrefersspecif-
ically to aclosed subset of the plane bounded by
two concentric circles.

antichain A subset A of apartialy ordered
set (P, <) such that any two distinct elements
x,y € A arenot comparable under the ordering
<. Symboalically, neither x < y nor y < x for
any x,y € A.

arc A subset of atopological space, homeo-
morphic to the closed unit interval [0, 1].

arcwise connected component If p isapoint
in atopologica space X, then the arcwise con-
nected component of p in X isthe set of points
g in X such that there is an arc (in X) joining
ptog. Thatis, for any point ¢ distinct from
p in the arc component of p there is a homeo-
morphism ¢ : [0, 1] — J of the unit interval
onto some subspace J containing p and ¢. The
arcwise connected component of p isthelargest
arcwise connected subspace of X containing p.

arcwise connected topological space A topo-
logical space X such that, given any two distinct
points p and ¢ in X, thereis a subspace J of X
homeomorphic to the unit interval [0, 1] con-
taining both p and g.

arithmetical hierarchy A method of classi-
fying the complexity of aset of natural numbers
based on the quantifier complexity of its defi-
nition. The arithmetical hierarchy consists of
classes of sets =0, 119, and A9, for n > 0.

Aset Aisin =9 = M if itisrecursive (com-
putable). For n > 1, aset A isin 20 if thereis
acomputable (recursive) (n + 1)—ary relation R
such that for all natural numbers x,

x €A = GyD(Vy2) ... (Quyn)R(x,7),

where Q,, isdif nisodd and Q, isVif nis
odd, and where y abbreviates y1, ..., y,. For
n > 1,aset Aisin 19 if there is a computable
(recursive) (n + 1)—ary relation R such that for



atom of a Boolean algebra

al natural numbers x,

x €A — (Vyo@y2) ... (Quyn)R(x,y),

where Q,, isdifnisevenand Q,, isVifnis
odd. Forn > 0, aset Aisin A if itisin both
>0 and 11°.

Note that it suffices to define the classes =0
and 1'12 as above since, using acomputable cod-
ing function, pairs of like quantifiers (for exam-
ple, (3y1)(y2)) can be contracted to a single
quantifier ((3y)). The superscript 0in =9, 119,
A% is sometimes omitted and indicates classes
in the arithmetical hierarchy, as opposed to the
analytical hierarchy.

A set A is arithmetical if it belongs to the
arithmetical hierarchy; i.e., if, for some n, A
isin =0 or 1MY. For example, any computably
(recursively) enumerable set isin £9.

arithmetical set A set A which belongs to
the arithmetical hierarchy; i.e., for some n, A
isin 20 or 119, See arithmetical hierarchy. For
example, any computably (recursively) enumer-
ablesetisin 9.

arithmetic function A function whose do-
main is the set of positive integers. Usually, an
arithmetic function measures some property of
an integer, e.g., the Euler phi function ¢ or the
sum of divisors function o. The properties of
thefunction itself, such asits order of growth or
whether or notitismultiplicative, areoften stud-
ied. Arithmeticfunctionsarealso called number
theoretic functions.

Aronszajp tree A tree of height w1 which
has no uncountable branches or levels. Thus,
for each o < w1, the a-level of T, Lev,(T),
given by

{t € T :ordertype({s € T : s < 1}) = a}

iscountable, Lev,,, (T) isthefirst empty level of
T,and any set B C T which istotally ordered
by < (branch) is countable. An Aronszajn tree
is constructible in ZFC without any extra set-
theoretic hypotheses.

For any regular cardinal «, ax-Aronszajntree
isatree of height « in which all levelshave size
lessthan « and all brancheshavelength lessthan
k. Seealso Sudlin tree, Kurepatree.
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associatd fiber bundle A concept in the
theory of fiber bundles. A fiber bundle ¢ con-
sists of aspace B called the base space, a space
E cdlled the total space, a space F called the
fiber, atopological group G of transformations
of F,andamapr : E — B. Theeisa
covering of B by open sets U; and homeomor-
phisms¢; : U; x F — E; = n~1(U;) such
that 77 o ¢; (x, V) = x. Thisidentifies 7 ~1(x)
withthefiber F. WhentwosetsU; and U; over-
lap, the two identifications are related by coor-
dinate transformations g;;(x) of F, which are
required to be continuously varying el ements of
G. If G dso actsasagroup of transformations
on a space F’, then the associated fiber bundle
¢’ = ' . E' — B isthe (uniquely deter-
mined) fiber bundle with the same base space
B, fiber F’, and the same coordinate transfor-
mationsas ¢ .

associatd principal fiber bundle  Theasso-
ciated fiber bundle, of afiber bundle ¢, with the
fiber F replaced by the group G. See associated
fiber bundle. The group acts by left multiplica-
tion, and the coordinate transformations g;; are
the same as those of the bundle ¢.

atomic formula  Let £ be afirst order lan-
guage. An atomic formula is an expression
which has the form P(z4, ..., t,), where P is
an n-place predicate symbol of L and 1, ..., 1,
aretermsof L. If £ contains equality (=), then
= is viewed as a two-place predicate. Conse-
quently, if 71 and 7 areterms, then ¢y = isan
atomic formula.

atomic model A model A in alanguage L
such that every n-tuple of elements of A sat-
isfies a complete formula in T, the theory of
A. That is, for any a € A", thereisan L-
formula6(x) suchthat A = 6(a), and for any
L-formula ¢, either T + Vx(0(X) — ¢(x)) or
T+ Vx(0(x) — —¢(x)). Thisis equivalent
to the complete type of every a being principal.
Any finite model is atomic, as is the standard
model of number theory.

atom of a Boolean algebra If (B, Vv, A,
~,1,0) isaBoolean algebra, a € Bisan atom
if itisaminimal element of B\{0}. For exam-



automorphism

ple, in the Boolean agebra of the power set of
any nonempty set, any singleton set is an atom.

automorphism  Let £ be afirst order lan-
guage and let A be a structure for £. An auto-
mor phism of A is an isomorphism from A onto
itself. Seeisomorphism.

axiomatic se theory A collection of state-
mentsconcerning set theory which canbeproved
from a collection of fundamental axioms. The
validity of the statements in the theory plays no
role; rather, one is only concerned with the fact
that they can be deduced from the axioms.

Axiom of Choice  Suppose that {X}qer iS
a family of non-empty, pairwise digoint sets.
Then there exists a set Y which consists of ex-
actly one element from each set in the family.
Equivalently, given any family of non-empty
sets{ Xy }aer, thereexistsafunction f : { Xy }aer
— Ugen Xo such that f(X,) € X, for each
ael.

The existence of such aset Y or function f
can be proved from the Zermelo-Fraenkel ax-
ioms when there are only finitely many setsin
the family. However, when there are infinitely
many setsin the family it isimpossible to prove
that such Y, f exist or do not exist. Therefore,
neither the Axiom of Choice nor its negation can
be proved from the axioms of Zermel o-Fraenkel
set theory.

Axiom of Comprehension Also called Ax-
iom of Separation. See Axiom of Separation.

Axiom of Constructibility  Every setiscon-
structible. See constructible set.

Axiom of Dependern Choice
of dependent choices.

See principle

Axiom of Determinancy  For any set X C
w®, the game Gx is determined. This axiom
contradicts the Axiom of Choice. See deter-
mined.

Axiom of Equality If two sets are equal,

then they have the same elements. This is the
converse of the Axiom of Extensionality and is
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considered to be an axiom of logic, not an axiom
of set theory.

Axiom of Extensionality  If two setshavethe
same elements, then they are equal. Thisisone
of the axioms of Zermelo-Fraenkel set theory.

Axiom of Foundation = Same as the Axiom
of Regularity. See Axiom of Regularity.

Axiom of Infinity ~ Thereexistsaninfiniteset.
Thisis one of the axioms of Zermelo-Fraenkel
set theory. Seeinfinite set.

Axiom of Regularity = Every non-empty set
hasan € -minimal element. More precisely, ev-
ery non-empty set S containsan element x € S
with the property that thereisnoelement y € S
such that y € x. Thisis one of the axioms of
Zermelo-Fraenkel set theory.

Axiom of Replacement If f isafunction,
then, for every set X, there existsaset f(X) =
{f(x) : x € X}. Thisisone of the axioms of
Zermelo-Fraenkel set theory.

Axiom of Separation If P isaproperty and
X isaset, thenthereexistsasetY = {x € X : x
satisfies property P}.

Thisis one of the axioms of Zermelo-Fraen-
kel set theory. It isaweaker version of the Ax-
iom of Comprehension: if P isa property, then
thereexistsaset Y = {X : X satisfies property
P}. Russell’s Paradox shows that the Axiom of
Comprehension is false for sets. See also Rus-
sell’s Paradox.

Axiom of Subsets Same as the Axiom of
Separation. See Axiom of Separation.

Axiom of the Empty Set  There exists a set
@ which has no elements.

Axiom of the Power Set  For every set X,
there existsaset P(X), the set of all subsets of
X. Thisisone of the axioms of Zermelo-Fraen-
kel set theory.

Axiom ofthe Unordered Pair If XandY are
sets, then there existsa set { X, Y}. Thisaxiom,



Axiom of Union

aso known as the Axiom of Pairing, is one of Axiom of Union  For any set S, there exists
the axioms of Zermelo-Fraenkel set theory. aset that isthe union of al the elements of S.
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base of number system

B

Baireclass The Baire classes B, are anin-
creasing sequence of families of functions de-
fined inductively for « < w1. Bg isthe set of
continuous functions. For « > 0, f isin Baire
class « if there is a sequence of functions { f,,}
converging pointwise to f, with f, € Bg, and
Bn < o for eechn. Thus, f isin Baire class
1 (or is Baire-1) if it is the pointwise limit of
a sequence of continuous functions. In some
cases, it is useful to define the classes so that if
f € By, then f ¢ Bg forany g < . Seealso
Baire function.

Baire function A function belonging to one
of the Baire classes, B,, for some o« < wi.
Equivalently, theset of Bairefunctionanatopo-
logical spaceisthe smallest collection contain-
ing al continuous functionswhichis closed un-
der pointwise limits. SeeBaire class.

It is atheorem that f is a Baire function if
andonly if f isBorel measurable, thatis, if and
only if f~1(U) isaBorel set for any open set
U.

Baire measurabk function A function f :
X — Y,where X and Y aretopological spaces,
such that the inverse image of any open set has
the Baire property. SeeBaire property. That is,
if V. C Y isopen, then

fFAvy=vuac=W\C)u(C\U),

whereU C X isopenand C C X ismeager.

Baire property A set that can be written as
an open set modulo a first category or meager
set. That is, X hasthe Baire propertyif thereis
an open set U and a meager set C with

X=UAC=U\C)U(C\U).

Since the meager sets form ao-ideal, this hap-
pens if and only if there is an open set U and
meager sets C and D with X = (U \ C) U D.
Every Borel set has the Baire property; in fact,
every analytic set has the Baire property.
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Baire space (1) A topological space X such
that no nonempty open set in X is meager (first
category). That is, noopenset U # @ in X
may be written as a countable union of nowhere
dense sets. Equivalently, X is a Baire spacdf
and only if theintersection of any countable col-
lection of denseopen setsin X isdense, whichis
trueif andonly if, for any countabl e collection of
closed sets {C,, } with empty interior, their union
UC, aso has empty interior. The Baire Cate-
gory Theorem states that any complete metric
space isaBaire space.

(2) TheBaire spaceisthe set of al infinite se-
quences of natural numbers, NN, with the prod-
uct topology and using the discrete topology on
each copy of N. Thus, U isabasic open set in
NN if there is afinite sequence of natural num-
bers o such that U isthe set of al infinite se-
guences which begin with o. The Baire space
is homeomorphic to the irrationals.

bar construction For a group G, one can
construct a space BG as the geometric realiza
tion of the following simplicial complex. The
faces F,, in simplicial degree n are given by
(n + D)-tuples of elements of G. The boundary
maps F, —> F,_1 are given by the simplicia
boundary formula

n

> (=D'(g0 - i

i=0

» &n)

wherethenotation g; indicatesthat g; isomitted
to obtain an n-tuple. The ith degeneracy map
si+ F, — F,y1isgivenby inserting the group
identity element in the ith position.

Example: B(Z/2), the classifying space of
thegroup Z/2, is R P, red infinite projective
space (the union of R P" for al n positive inte-
gers).

The bar constructionhas many generaliza-
tions and is a useful means of constructing the
nerve of a category or the classifying space of a
group, which determines the vector bundles of
amanifold with the group acting on the fiber.

base of number system The number b, in
use, when areal number » iswritten intheform

N
— pJ
r_erb,

Jj=—00



Bern ays-Gode | set theory

whereeachr; =0,1,...,h — 1, and r isrepre-
sented in the notation

F =FNFN—1-"-T0.F—1F—2 - .

For example, the base of the standard decimal
system is 10 and we need the digits O, 1, 2, 3,
4,5, 6,7,8, and 9 in order to use this system.
Similarly, we use only the digits 0 and 1 in the
binary system; this is a “base 2" system. In
the base b system, the number 10215.2011 is
equivalent to the decimal number

Ixb*+0xb3+2xb%+1xb+5+2xb 1L

+0x b 2+1xb3+1xb".

That is, each place represents a specific power
of the base b. See alsoradix.

Bernays-Godé sd theory ~ An axiomatic set
theory, which is based on axioms other than
those of Zermelo-Fraenkel set theory. Bernays-
Go6dd s theoryconsiderstwo types of objects:
sets and classes. Every set is a class, but the
converse is not true; classes that are not sets
are called proper classes. This theory has the
Axioms of Infinity, Union, Power Set, Replace-
ment, Regularity, and Unordered Pair for sets
from Zermelo-Fraenkel set theory. It also has
the following axioms, with classes writtenin :

(i.) Axiom of Extensionality (for classes):
Supposethat X and Y are two classes such that
UeXifandonlyif U €Y foral set U. Then
X=Y.

(ii.) If X € Y, then X isasat.

(iii.) Axiom of Comprehension: For any for-
mula F (X) having sets as variables there exists
aclassY consisting of all sets satisfying thefor-
mula F (X).

Bertrand’s postulate  If x isarea number
greater than 1, then there is at least one prime
number p sothat x < p < 2x. Bertrands Pos-
tulate was conjectured to be true by the French
mathematician Joseph Louis Francois Bertrand
and later proved by the Russian mathematician
Pafnuty Lvovich Tchebychef.

Betti number  Suppose X is a space whose
homology groups are finitely generated. Then
the kth homology group isisomorphic to the di-
rect sum of atorsion group 7;, and afree Abelian
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group By. The kth Beti numbe b (X) of X is
the rank of By. Equivaently, by (X) is the di-
mension of Hy (X, Q), the kth homology group
with rational coefficients, viewed as a vector
space over the rationals. For example, bo(X)
is the number of connected components of X.

bijection A function f : X — Y, between
two sets, with the following two properties:

(i.) fisone-to-one(if x1,x2 € X and f(x1)
= f(x2), thenx1 = x2);

(ii.) f isonto (for any y € Y there existsan
x € X suchthat f(x) = y).

Seefunction.

binomial coefficient (1) If n and k are non-
negative integers with k < n, then the binomial
cosficient (}) equals Wlk),

(2) The binomial coefficient (}) also repre-
sents the number of ways to choose & distinct
items from among n distinct items, without re-
gard to the order of choosing.

(3)The binomial coefficient (}) isthekth en-
try inthenthrow of Pascal’sTriangle. It must be
noted that Pascal’s Triangle begins with row O,
and each row begins with entry 0. SeePascal’s
triangle.

Binomial Theorem If a and b are elements
of acommutativering and n isanon-negativein-
teger, then (a + b)" = >} _o (})a*b"~*, where
(7) isthe binomial coefficient. Seebinomial co-
efficient.

Bockstein operation  In cohomology theory,
a cohomology operation is a natural transfor-
mation between two cohomology functors. |f
0> A— B — C — Oisashort exact se-
quence of modulesover aring R,andif X C Y
aretopological spaces, thenthereisalong exact
sequence in cohomology:

.. — HY(X,Y:A) — HI(X,Y; B) >
HY(X,Y;C) —
HIYY(X,Y; A) > HITY X, Y;B) —> ... .
The homomorphism
B:HY(X,Y:C) > HITH (X, Y; A)

isthe Bockstein (cohomology) operation



bounde d quantifier

Bolzano\Weierstrass Theorem Every
bounded sequence in R has a convergent sub-
sequence. That is, if

{x, :n €N} Cla,b]

is an infinite sequence, then thereis an increas-
ing sequence {ny : k € N} € N such that
{xn, : k € N} converges.

Boolean algebra A non-empty set X, along
withtwo binary operationsU and N (called union
and intersection, respectively), a unary opera
tion ' (called complement), and two elements
0, 1 € X which satisfy the following properties
foral A, B,C € X.

(i) AU(BUC)=(AUB)UC

(i) AN(BNC)=(ANB)NC

(i) AUB=BUA

(iv) ANB=BNA

(v) AN(BUC)=(ANB)U(ANC)

(Vi) AU(BNC)=(AUB)N(AUC)

(vii) AUO=AandAN1=A

(viii.) Thereexistsanelement A’ sothat AU
A'=1landANA =0.

Borel measurabk function A function f :
X — Y, for X, Y topological spaces, such that
the inverse image of any open set isaBorel set.
Thisisequivalent to requiring theinverseimage
of any Borel set to be Borel. Any continuous
function is Borel measurable.

It is a theorem that f is Borel measurable
if and only if f isaBairefunction. SeeBaire
function.

Borel set  The collection B of Borel setsof
atopological space X isthe smallest o-algebra
containingall opensetsof X. Thatis, inaddition
to containing open sets, 15 must be closed under
complements and countable intersections (and,
thus, isa so closed under countable unions). For
comparison, the topology on X is closed under
arbitrary unions but only finite intersections.

Borel sets may also be defined inductively:
let =2 denote the collection of open setsand I19
theclosed sets. Thenforl < a < w1, A € 28
if and only if

A= UneNAn

where, foreachn € N, A, € I3 and &, < «.
A set Bisin 1‘[8 if and only if the complement
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of Bisin 0. Then the collection of all Borel
setsis

B= Ua<w122 = Uoc<w11-[2 .

Setsin X3 arealso known as F,, sets; setsin 1
aeGs;.

If the space X is metrizable, then closed sets
are G5 and open sets are F,,. In this case, we
havefor al o < w1,

0 0 0 0
Lund el nnd,,.

This puts the Borel setsin ahierarchy of length
w1 known as the Borel hierarchy. Se= alsopro-
jective set.

bound (1) An upper boundon a set, S, of

real numbersisanumber u sothat u > s for al

s € S. If suchau exists, S issaidto bebounded
aboveby u. Notethat if u isan upper bound for

the set S, then so is any number larger than u.

See alsoleast upper bound.

(2) A lower boundonaset, S, of real numbers
isanumber ¢ sothat ¢ < s foral s € S. If such
an ¢ exists, S issaid to be boundel belowby 2.
Notethat if £ isalower bound for the set S, then
so is any number smaller than £. Seegreatest
lower bound.

(3) A bound on aset, S, of real numbersisa
number b sothat |s| < bforals € S.

boundary group (homology) If {C,, 9,} is
a chain complex (of Abelian groups), then the
kth boundary groupB; is the subgroup of Cy
consisting of elements of the form dc¢ for ¢ in
Ci+1. Thatis, By = 0Ck41.

boundaryoperator A chaincomplex{C,, 9,}
consists of a sequence of groups or modules

over aring R, together with homomorphisms

o, : C;, — C,_1, such that 9,1 09, = 0.

Thehomomorphismsd,, arecalled theboundary
operators Specifically, if K isan ordered sim-

plicial complex and C,, isthefree Abelian group

generated by the n-dimensional simplices, then

the boundary operator is defined by taking any

n-simplex ¢ to the alternating sum of itsn — 1-

dimensional faces. This definition is then ex-

tended to a homomorphism.

bounded quantifier  The quantifiersVx < y
and 3x < y. The statement Vx < y¢(x) is



bound variable

equivaentto Vx(x < y — ¢(x)), and Ix <
yo(x)isequivaenttoIx(x < y A ¢ (x)).

More generally, Vx € y¢(x) is equivalent
tovx(x € y > ¢(x)) and Ix € yop(x) is
equivalentto Ix(x € y A ¢ (x)).

bound variable  Let £ be afirst-order lan-
guage and let ¢ be awell-formed formulaof L.
An occurrence of avariable v in ¢ is boundif
it occurs asthe variable of aquantifier or within
the scope of aquantifier Vv or Jv. The scope of
the quantifier Vv in aformulaVva isa.

For example, the first occurrence of the vari-
able vy isfree, while the remaining occurrences
are bound in the formula

Yvo(vy = v2 = Vvi(vy = v3)).

All occurrences of the variable v1 are bound in
the formula

Vvi(va = v2 — Vvi(vy = v3)).

box topology
product

A topology on the Cartesian

[T
aeA

of acollection of topological spaces X,,, having
as a basis the set of al open boxes, [],c4 Uq,
where each U,, isan open subset of X,,. Thedif-
ference between thisand the product topology is
that in the box topologythere are no restrictions
on any of the U,,.

Brouwer Fixed-Point Theorem  Any con-
tinuous mapping f of afinite product of copies
of [0, 1] to itself, or of S” to itself, has a fixed
point, that is, apoint z such that f(z) = z.
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Intuitively, if a piece of paper is taken off a
table, crumpled up, and laid back down on the
same part of the table, then at least one point is
exactly above the same point on the table that it
was originally.

bundle group A group that acts (continu-
oudly) on avector bundle or fiber bundle E —
B and preserves fibers (so the action restricts to
an action on each inverseimage of apointin B).
For example, the real orthogonal group O(n) is
abundle grougdor any rank n real vector bundle.
If the bundle is orientable, then SO(n) isalso a
bundle group for the vector bundle.

Thebundlegroup may alsobecalledthestruc-
ture groupof the bundle.

bundle mapping A fiber preservingmap g :
E — E',wherep: E — Bandp': E/' —
B’ arefiber bundles. If the bundles are smooth
vector bundles, then ¢ must be a smooth map
and linear on the vector space fibers.

Example: When a manifold is embedded in
R", it has both a tangent and a hormal bundle.
Thedirect sum of theseisthetrivial bundle M x
R"; eachinclusion into thetrivial rank n bundle
isabundle mapping.

bundle of planes A fiber bundlewhosefibers
areall homeomorphicto R2. A canonical exam-
ple of this is given by considering the Grass-
mann manifold of planes in R". Each point
corresponds to a plane in R” in the same way
each point of the projective space RP"~1 cor-
respondsto alinein R”. The bundle of planes
over thismanifold is given by alowing thefiber
over each point in the manifold to be the actual
plane represented by that point. If one consid-
ers the manifold as the collection of names of
the planes, then the bundle is the collection of
planes, parameterized by their “names’.



catastrophe theory

C

canonicd bundle If the points of a space
represent (continuously parameterized) geomet-
ric objects, then the space has a canonical bun-
dle given by setting the fiber above each point
to be the geometric object to which that point
corresponds. Examples include the canonical
line bundle of projective space and the canon-
ical vector bundle over a Grassmann manifold
(the manifold of affine n-spacesin R™).

canonicd linebundle  Projective space RP"
can be considered as the space of al lines in
R™+1 which go through the origin or, equiva-
lently, as the quotient of $”** formed by iden-
tifying each point with its negative. The canon-
ical line bundle over RP" isthe rank one vector
bundle formed by taking asfiber over apointin
RP” the actual line that the point represents.

Example: RP! is homeomorphic to S*; the
canonical line bundle over RP! is homeomor-
phic to the M &bius band.

There are al so projective spaces formed over
complex or quaternionic space, where alineis
acomplex or quaternionic line.

Cantor-Bernstein Theorem If A and B are
sets,and f: A — B, g: B — A areinjective
functions, then there exists abijection z: A —
B. Thistheorem is also known as the Cantor-
Schréder-Bernstein Theorem or the Schréder-
Bernstein Theorem.

Cantor-Schroder-Bernstein Theorem  See
Cantor-Bernstein Theorem.

Cantorset (1) (Thestandard Cantor set.) A
subset of Rt whichisan exampleof atotally dis-
connected compact topological space in which
every element is alimit point of the set.

To construct the Cantor set as a subset of
[0, 1], let Io = [0, 1] € RY, I = [0, 31U[3, 1]
and I = [0, $]1U[3. 31U(3. §1U[S. 1]. Ingen-
eral, define I,, to bethe union of closed intervals
obtained by removing the open “middle thirds’
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from each of the closed intervals comprising
I,—1. The Cantor setisdefinedasC = N>, /..

The Cantor set has length 0, which can be
verified by summing the lengths of the intervals
removed to obtain asum of 1. It isaclosed set
where each point is an accumulation point. On
the other hand, it can be shown that the Cantor
set can be placed in one-to-one correspondence
with the points of the interval [0, 1].

(2) Any topological space homeomorphic to
the standard Cantor set in RY.

Cantor's Theorem  If S isany set, there is
no surjection from S onto the power set P(S).

Cartan formula A formula expressing the
relationship between values of an operation on
aproduct of termsand productsof operationsap-
plied to individual terms. For the mod 2 Steen-
rod algebra, the Cartan formula is given by

Sq' (xy) =Y (Sq7x)(Sq' T y).
J

The sum is finite since S¢g/x = 0 when j is
greater than the degree of the cohomology class
x. A differential in a spectral sequence is an-
other example where there is a Cartan formula
(if thereis a product on the spectral sequence).

Cartesian product  For any two sets X and
Y, the set, denoted X x Y, of all ordered pairs
(x,y)withx € X,y e Y.

Cartesian space The standard coordinate
space R", where points are given by n rea-
valued coordinates for some n. Distance be-
tween two points x = (x1,...,x,) and y =
(y1, - - -, yn) is determined by the Pythagorean

identity:
d(x,y) = |y (xi— )2
i=1

Cartesian space is amodel of Euclidean geom-
etry.

catastrophe theory  The study of quantities
which may change suddenly (discontinuously)
even while the quantities that determine them
change smoothly.



categorical theory

Example: When forces on an object grow to
the point of overcoming the opposing force due
to friction, the object will move suddenly.

categoricd theory A consistent theory T
in alanguage L is categorical if all models of
T areisomorphic. Because of the Léwenheim-
Skolem Theorem, no theory with an infinite
model can be categorical in this sense, since
models of different cardinalities cannot be iso-
morphic.

More generaly, a consistent theory T is k-
categorical for acardinal « if any two models of
T of sizex areisomorphic.

category A category X consists of aclass of
objects, Obj(X), pairwise digoint sets of func-
tions (morphisms), Homx (A, B), for every or-
dered pair of objects A, B €Obj(X), and com-
positions

Homy (A, B) xHomx (B, C) — Homx (A, C),

denoted (f, g) — gf satisfying the following
properties:

(i.) for each A €Obj(X) thereis an identity
morphism 14, € Homc (A, A) suchthat f14 =
fforal f e Homy(A, B) and1,¢ = g for all
g € Homy (C, A);

(i) associativity of composition for mor-
phisms holds whenever possible: if f €
Homx(A,B), g € Homx(B,C), h €
Homx (C, D), then h(gf) = (hg) f.

categoly of groups  The class of al groups
G, H, ..., with each Hom(G, H) equa to the
set of al group homomorphisms f : G — H,
under theusual composition. Denoted Grp. See
category.

categoly of linear spaces The class of all
vector spacesV, W, ..., witheachHom(V, W)
equal to the set of all linear transformations f :
V — W, under theusual composition. Denoted
Lin. See category.

categoly of manifolds Theclassof al differ-
entiable manifolds M, N, ..., with each
Hom(M, N) equal totheset of all differentiable
functions f : M — N, under the usual compo-
sition. Denoted Man. See category.

© 2001 by CRC Press LLC

categoty of rings The class of al rings
R, S, ...,witheachHom(R, S) equal to the set
of al ring homomorphisms f : R — S, un-
der the usual composition. Denoted Ring. See
category.

category of sets TheclassofadlsetsX, Y, ...,
withHom(X, Y) equal to the set of all functions
f : X — Y, under the usual composition. De-
noted Se. See category.

categoly of topologicd spaces The class
of al topological spaces X, 7, ..., with each
Hom(X, Y) equal to the set of all continuous
functions f : X — Y, under the usua compo-
sition. Denoted Top. See category.

Cauchy sequence Aninfinite sequence {x,}
of points in a metric space M, with distance
function d, such that, given any positive num-
ber ¢, there is an integer N such that for any
pair of integersm, n greater than N the distance
d(xp, x,) isadwayslessthane. Any convergent
sequence is automatically a Cauchy sequence.

Cavalieri's Theorem  The theorem or prin-
ciple that if two solids have equal area cross-
sections, thenthey haveequal volumes, waspub-
lished by Bonaventura Cavalieri in 1635. Asa
consequence of this theorem, the volume of a
cylinder, evenif itisoblique, isdetermined only
by the height of the cylinder and the area of its
base.

cell A setwhoseinterior ishomeomorphicto
the n-dimensional unit disk {x € R" : ||x|| <
1} and whose boundary is divided into finitely
many lower-dimensional cells, called faces of
theoriginal cell. The number n isthe dimension
of the cell and the cell itself is called an n-cell.
Cells are the building blocks of a complex.

central symmetry  The property of a geo-
metric figure F, such that F contains a point ¢
(the center of F) so that, for every point p; on
F, there is another point p, on F such that ¢
bisects the line segment p1p>.

centroid  Thepoint of intersection of thethree
medians of atriangle.



characteristic number

chain A formal finite linear combination of
simplicesinasimplicial complex K withinteger
coefficients, or more generally with coefficients
in some ring. The term is also used in more
genera settingsto denote an element of achain
complex.

chain complex Let R bearing (for example,
the integers). A chain complex of R-modules
consists of a family of R-modules C,;, where
n ranges over the integers (or sometimes the
non-negativeintegers), together with homomor-
phismsd, : C, —> C,,_1 satisfying the condi-
tion: 9,,_1 0 9,(x) = Ofor every x in C,,.

chain equivalent complexes Let C = {C,}
and C’ = {C},} bechain complexeswith bound-
ary maps d and ', respectively. (See chain
complex.) A chain mapping f : C — C’
is a chain equivalence if there is a chain map-
ping g : ¢’ — C and chain homotopies from
g o f to the identity mapping of C and from
f o g totheidentity mapping of C’. Inthiscase
we say that C and C’ are chain equivalent. A
chain equivalence induces an isomorphism be-
tween the homology of C and the homology of
C’. For example, if ¢ : X — Y isahomo-
topy equivalence of topological spaces, then ¢
inducesachain equivalenceof thesingular chain
complexesof X and Y.

chaingroup Let K beasimplicial complex.
Then the nth chain group C,(K) is the free
Abelian group constructed by taking all finite
linear combinations with integer coefficients of
n-dimensional simplices of K. Similarly, if X
is a topological space, the nth singular chain
group is the free Abelian group constructed by
taking all finite linear combinations of singular
simplices, which are continuous functions from
the standard n-dimensional smplex to X.

chain homotopy LetC = {C,} and C' =
{C/,} be chain complexes with boundary maps
9, and 9, respectively. Let f and g be chain
mappings from C to C’. See chain complex,
chain mapping. Then achain homotopy T from
f to g isacollection of homomorphisms 7;, :
C, — C1/1+1 suchthat 8,4107, + 1100, =
fn — gn- For example, ahomotopy between two
maps from a topological space X to atopologi-

© 2001 by CRC Press LLC

cal space Y induces a chain homotopy between
the induced chain maps from the singular chain
complex of X to the singular chain complex of
Y.

chain mapping Let C = {C,} and C' =
{C;,} be chain complexes with boundary maps
dh: Cp — Cporandd, : C) — C 4,
respectively. See chain complex. A chain map-
ping f : C — C’ is afamily of homomor-
phisms f, : C, — C,, satisfying 9, o f, =
fu—1 0 0,. For example, when¢ : X — Y is
continuous, the induced map from the singular
chain complex of X to the singular chain com-
plex of Y isachain map.

characteristicclass Let E —> B beavector
bundle. A characteristic class assignsaclass &
in the cohomology H*(B) of B to each vector
bundle over B so that the assignment is “pre-
dictable” or natural with respect to maps of vec-
tor bundles. That is, if themaps f : E —> E’
and g : B —> B’ formamap of vector bundles
so that E — B is equivalent to the pullback
g*(E") —> B, thentheclassassignedto E —
B istheimageof theclassassignedto £/ — B’
under themap g* : H*(B') — H*(B).

When the cohomology of the base space can
be considered as a set of numbers, the charac-
teristic classissometimescalled acharacteristic
number.

Example: Stiefel-Whitney classes of a man-
ifold are characteristic classes in mod 2 coho-
mology.

characteristic function The characteristic
function x4 of aset A of natural numbersisthe
function that indicates membership in that set;
i.e, for all natural numbersn,

(n) = 1 if neA
XATD=10 if ngA.

More generally, if A isafixed universal set
and B C A, thenfor all x € A,

) = 1 if xeB
XBYY) =10 if x¢B.

characteristic number See characteristic

class.



choice function

choice function Suppose that {Xy}eer iSa
family of non-empty sets. A choice function is
afunction f : {Xo}eer = Uyer Xo such that
f(Xy) € Xy foradl a € T'. Seealso Axiom of
Choice.

choiceset Supposethat {X,}qer isafamily
of pairwise digoint, non-empty sets. A choice
setisaset Y, which consists of exactly one ele-
ment from each set in the family. See also Ax-
iom of Choice.

chord A line segment with endpoints on a
curve (usualy acircle).

Christoffel symbols  The coefficientsin lo-
cal coordinates for a connection on a manifold.
If ul,...,u") isaloca coordinate system in
a manifold M and V is a covariant derivative
operator, then the derivatives of the coordinate
fields % can be written as linear combinations
of the coordinate fields:

Vo= ; rk_?
o = 2

The functions F{‘j(ul, ..., u") arethe Christof-
fel symbols. For the standard connection on
Euclidean space R” the Christoffel symbols are
identically zero inrectilinear coordinates, but in
genera coordinate systems they do not vanish
eveninR",

Church-Turing Thesis  If apartial function
¢ on the natural numbers is computable by an
algorithm in the intuitive sense, then ¢ is com-
putable, in the formal, mathematical sense. (A
function ¢ onthenatural numbersispartial if its
domain is some subset of the natural numbers.)
See computable.

This statement of the Church-Turing The-
sis is a modern day rephrasing of independent
statements by Alonzo Church and Alan Tur-
ing. Church’s Thesis, published by Church in
1936, states that the intuitively computable par-
tial functions are exactly the general recursive
functions, where the notion of general recursive
function is a formalization of computable de-
fined by Godel. Turing's Thesis, published by
Turing in 1936, states that the intuitively com-
putable partial functions are exactly the partial
functions which are Turing computable.
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The Church-Turing Thesisisastatement that
cannot be proved; rather it must be accepted or
rejected. The Church-Turing Thesisis, in gen-
eral, accepted by mathematicians; evidence in
favor of accepting the thesis is that all known
methodsof formalizing the notion of computabil-
ity (see computable) have resulted in the same
class of functions; i.e., a partia function ¢ is
partial recursiveif and only if it is Turing com-
putable, etc.

Themost important use of the Church-Turing
Thesis is to define formally the notion of non-
computability. To show the lack of any ago-
rithm to compute a function, it suffices by the
thesis to show that the function is not partial re-
cursive (or Turing computable, etc.). The con-
verseof the Church-Turing Thesisisclearly true.

circle  Thecurve consisting of al pointsin a
plane which are a fixed distance (the radius of
the circle) from a fixed point (the center of the
circle) in the plane.

circle of curvature  For aplanecurve, acircle
of curvatureisthe circle defined at apoint onthe
curve that is both tangent to the curve and has
thesame curvature asthe curveat that point. For
a space curve, the osculating circleisthecircle
of curvature.

circle on sphere  Theintersection of the sur-
face of the sphere with aplane.

circulararc A segment of acircle.
circular cone A conewhose baseisacircle.

circular cylinder
circles.

A cylinder whosebasesare

circularhelix A curvelying onthe surface of
acircular cylinder that cutsthe surface at acon-
stant angle. It isparameterized by the equations
x = asint, y = acost, and z = bt, where a
and b arereal constants.

circumcenter of triangle  Thecenter of acir-
cle circumscribed about a given triangle. The
circumcenter coincides with the point common
to the three perpendicular bisectors of the trian-
gle. See circumscribe.



closed and unbounded

circumference of a circle
length, of acircle.

The perimeter, or

circumference of a sphee  The circumfer-
ence of agreat circle of the sphere. See circum-
ference of acircle, great circle.

circumscribe  Generaly a plane (or solid)
figure F circumscribes a polygon (or polyhe-
dron) P if the region bounded by F contains
the region bounded by P and if every vertex of
P isincident with F. Insuch acase P is said
to beinscribed in F. See circumscribed circle,
for example. In specific circumstances, figures
other than polygons and polyhedra may also be
circumscribed.

circumscribed circle A circlecontaining the
interior of apolygoninitsinterior, in such away
that every vertex of the polygonison thecircle;
i.e., the polygonisinscribed in the circle.

circumscribed cone A cone that circum-
scribes a pyramid in such a way that the base
of the cone circumscribes the base of the pyra-
mid and the vertex of the cone coincides with
the vertex of the pyramid; i.e., the pyramid is
inscribed in the cone. See circumscribe.

circumscribed cylinder A cylinder that cir-
cumscribesaprismin such away that both bases
of the cylinder circumscribe abase of the prism;
i.e., the prism is inscribed in the cylinder. See
circumscribe.

circumscribed polygon A polygon that con-
tainsthe region bounded by aclosed curve (usu-
aly acircle) in the region it bounds, in such a
way that every side of the polygon is tangent
to the closed curve; i.e., the closed curveisin-
scribed in the polygon.

circumscribed polyhedron A polyhedron
that bounds a volume containing the volume
bounded by a closed surface (usually a sphere)
in such away that every face of the polyhedron
is tangent to the closed surface; i.e., the closed
surface is inscribed in the polyhedron. See cir-
cumscribe.
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circumscribed prism A prism that contains
theinterior of acylinder initsinterior, insuch a
way that both bases of the prism circumscribe a
base of the cylinder (and so each lateral face of
the prism is tangent to the cylindrical surface);
i.e., the cylinder is inscribed in the prism. See
circumscribe.

circumscribed pyramid A pyramidthat con-
tains, initsinterior, theinterior of acone, insuch
away that the base of the pyramid circumscribes
the base of the cone and the vertex of the pyra-
mid coincides with the vertex of the cone; i.e.,
the cone is inscribed in the pyramid. See cir-
cumscribe.

circumscribed sphae A sphere that con-
tains, in its interior, the region bounded by a
polyhedron, in such a way that every vertex of
the polyhedron is on the sphere; i.e., the poly-
hedron is inscribed in the sphere. See circum-
scribe.

class Thecollection of all objectsthat satisfy
a given property. Every set is a class, but the
converse is not true. A class that is not a set
is called a proper class; such a class is much
“larger” than aset becauseit cannot be assigned
acardinality. See Bernays-Godel set theory.

classifying space The classifying space of
atopological group G is a space BG with the
property that the set of equivalence classes of
vector bundles p: E — B with G-actionisin
bijective correspondence with the set [B, BG]
of homotopy classes of maps from the space B
to BG.

The space BG isunigque up to homotopy, that
is, any two spaces satisfying the above property
for afixed group G are homotopy equivalent.

For G = Z/2, BZ/2isaninfinite projective
space RP*°, the union of al projective spaces
RP". Since O(1) = Z/2, dl line bundles over
aspace X are classified up to bundle homotopy
equivalence by homotopy classes of maps from
X into RP*,

closed and unbounded If « is a hon-zero
limit ordinal (in practice « is an uncountable
cardina), and C C «, C is closed and un-
bounded if it satisfies (i.) for every sequence



closed convex curve

a < a1 < --- < ag... of elements of C
(where B < y, for some y < «), the supre-
mum of the sequence, | J4_, a4, isin C, and
(ii.) for every o < «, thereexists 8 € C such
that B > «. A closed and unbounded subset of
K« isoften called a club subset of «.

closel convex curve A curve C inthe plane
which is a closed curve and is the boundary of
a convex figure A. That is, the line segment
joining any two pointsin C lies entirely within
A. Equivalently, if A isa closed bounded con-
vex figurein the plane, then its boundary C isa
closed convex curve.

closed convex surface  The boundary S of
a closed convex body in three-dimensional Eu-
clidean space. S istopologically equivalent to
a sphere and the line segment joining any two
pointsin S liesin the bounded region bounded
by S.

closel formula A well-formed formula ¢ of
a first-order language such that ¢ has no free
variables.

closa halfline A setinR of theform|[a, oo)
or (—oo, a] for somea € R.

closa half plane A subset of R? consisting
of astraightline L and exactly oneof thetwo half
planes which L determines. Thus, any closed
half plane is either of the form {(x, y) : ax +
by > c}or {(x,y) : ax + by < c}. The sets
x > cand x < carevertical closed half planes;
y > candy < ¢ are horizontal half planes.

closedmap A function f : X — Y between
topological spaces X and Y such that, for any
closed set C C X, theimageset f(C) isclosed
inYy.

closad set (1) A subset A of atopological
space, such that the complement of A is open.
See open set. For example, the sets [a, b] and
{a} are closed in the usual topology of the red
line.

(2) A closed set of ordinas is one that is
closed in the order topology. That is, C C «
isclosedif, for any limit ordinal . < «,if CNA
isunbounded in A, then A € C. Equivaently, if
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{Bs : @ < A} C C isanincreasing sequence of
length A < «, then

B=Ilimpg,eC.
a—>A

For example, the set of all limit ordinals less
than « is closed in k. See also unbounded set,
stationary set.

closal surface A compact Hausdorff topo-
logical space with the property that each point
has a neighborhood topologically equivalent to
the plane. Thus, a closed surface is a compact
2-dimensional manifold without boundary. The
ellipsoids given by ;‘—2 + y_j + f—i —1=0ae
simple examples of cl oﬁ surfaces. More gen-
erdly, if f(x,y, z) isadifferentiable function,
thenthe set of points S satisfying f(x, y,z) =0
is a closed surface provided that S is bounded
andthegradient of f doesnot vanishat any point
inS.

closure of a set  The closure of a subset A
of atopological space X isthe smallest closed
set A C X which contains A. In other words,
A isthe intersection of all closed setsin X that
contain A. Equivalently, A = AU A’, where A’
isthe derived set of A. For example, the closure
of therationalsintheusual topology isthewhole
real line.
cluster point  See accumulation point.
cobordism A cobordism between two n-
dimensiona manifoldsisan (n+1)-dimensional
manifold whose boundary is the digoint union
of the two lower dimensional manifolds. A
cobordism between two manifolds with a cer-
tain structure must also have that structure. For
example, if themanifoldsarereal oriented man-
ifolds, then the cobordism must also be a rea
oriented manifold.

Example: Thecylinder providesacobordism
between the circle and itself. Any manifold
with boundary provides a cobordism between
the boundary manifold and the empty set, which
is considered an n-manifold for al n.

cobordismclass For amanifold M, theclass
of all manifolds cobordant M, that is, all man-
ifolds N for which there exists a manifold W



comb space

whose boundary is the digoint union of M and
N.

cobordism group  The cobordism classes of
n-dimensional manifolds (possibly with addi-
tional structure) forman Abelian group; theprod-
uct is given by digoint union. The identity €l-
ement is the class given by the empty set. The
inverse of the cobordism class of a manifold M
is given by reversing the orientation of M; the
manifold M x [0, 1] isacobordism between M
and M with the reverse orientation. (See cobor-
dism class.) When studying cobordism classes
of unoriented manifolds, each manifold is its
own inverse; thus, al such cobordism classes
are 2-torsion.

Some results in geometry show that cobor-
dant manifolds may have a common geometric
or topological property, for example, two spin-
cobordant manifoldseither both admit apositive
scalar curvature metric, or neither manifold can
have such ametric.

Codazzi-Mainardi equations A system of
partial differential equations arising in the the-
ory of surfaces. If M is a surface in R with
local coordinates (u?, u?), its geometric invari-
ants can be described by its first fundamental
form g;; (u*, u?) and second fundamental form
Lij(u',u?). The Christoffel symbols Ff‘j are
determined by the first fundamental form. (See
Christoffel symbols.) In order for functions g;;
and L;;, i, j = 1, 2 to be the first and second
fundamental forms of a surface, certain integra-
bility conditions (arising from equality of mixed
partial derivatives) must be satisfied. One set of
conditions, the Codazzi-Mainardi equations, is
given in terms of the Christoffel symbols by:

oLk oL;j I I
o) —W-FrikL[j—Filek:O.
codimension A nonnegative integer associ-

ated with asubspace W of aspace V. Whenever
the space has a dimension (e.g., a topological
or a vector space) denoted by dimV/, the codi-
mension of W isthe defect dmV —dimW. For
example, acurvein asurface has codimension 1
(topology) and a line in space has codimension
2 (aline through the origin is a vector subspace
R of R3).
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cofinal Let «, 8 be limit ordinals. An in-
creasing sequence (a; : T < B) iscofinal in «
if lim._ga; = . Seelimit ordinal.

cofinality  Let « be an infinite limit ordinal.
The cofinality of « is the least ordinal 8 such
that there exists asequence («; : T < 8) which
iscofinal in . See cofinal.

cofinite subset A subset A of an infinite set
S, suchthat S\ A isfinite. Thus, theset of all in-
tegerswith absolutevalue at least 13 isacofinite
subset of Z.

coimage Let C be an additive category and
f € Home (X, Y) amorphism. Ifi € Home (X',
X) isamorphismsuchthat fi = O, thenacoim-
ageof fisamorphismg € Homg(X, Y') such
that gi = 0. See additive category.

coinfinite subset A subset A if aninfinite set
S such that S\ A isinfinite. Thus, the set of al
even integersis acoinfinite subset of Z.

collapse A collapse of a complex K is afi-
nite sequence of elementary combinatorial op-
erations which preserves the homotopy type of
the underlying space.

For example, let K be a simplicial complex
of dimension n of theform K = L Uo U T,
where L is a subcomplex of K, o is an open
n-smplex of K, and t isafreeface of . That
is, T isann — 1 dimensional face of o and is not
the face of any other n-dimensional simplex.

The operation of replacing the complex L U
o U t with the subcomplex L is caled an ele-
mentary collapse of K and is denoted K \, L.
A collapse is a finite sequence of elementary
collapses K N\ L1--- \y Ly

When K isa CW complex, ball pairs of the
form (B", B"1) are used in place of the pair
(o, 7).
collection  Seeset.
collinear  Points that lie on the same line or
on planes that share acommon line.

comb space A topological subspace of the
plane R? which resemblesacombwithinfinitely
many teeth converging to oneend. For example,



common tangent

the subset of the unit square [0, 112 given by
({0} x [0, 1Dy
1
({% tk > 1} x [0,1D U ([0, 1] x {O})

is a comb space. The subspace obtained from
this set by deleting the line segment {0} x (0, 1)
isan example of a connected set that is not path
connected.

comma tangent A line that is tangent to

two circles.
commutative diagram A diagram
A BB
al e
c 2 »p

in which the two compositions g2 f1 and fog1
are equal. Commutative triangles can be con-
sidered a specia case if one of the functions
is the identity. Larger diagrams composed of
squares and triangles commute if each square
and triangle inside the diagram commutes. See
diagram.

compact (1) The property of a topological
space X that every cover of X by open sets (ev-
ery collection { X, } of opensetswith X C UX,)
contains a finite subcover (a finite collection
Xags -, Xa, With X C UXy,).

(2) A compact topological space.

compad complexmanifold A complex man-
ifold whichiscompact in the complex topol ogy.
A common example is a Riemann surface (1-
dimensional complex manifold): the (Riemann)
sphereiscompact, unlikethe spherewith apoint
removed. Thespherewithanopendisk removed
is also compact in the complex topology, but
strictly speaking it is not a complex manifold
(some points do not lie in an open disk): it is
known as a manifold with boundary. See com-
plex manifold.

compactification A compactification of a
topological space X isapair, (Y, f),whereY is
a compact Hausdorff space and f is a homeo-
morphism from X onto a dense subset of Y. A
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necessary and sufficient condition for aspaceto
have a compactification isthat it be completely
regular. See also one-point compactification,
Stone-Cech compactification.

compact leaf A concept arising in the the-
ory of foliations. A foliated manifold is an n-
dimensiona manifold M, partitionedinto afam-
ily of digoint, path-connected subsets L, such
that thereisacovering of M by open setsU; and
homeomorphisms #; : U; — R” taking each
component of L, NU; onto aparallel tranglate of
the subspace R¥. Each L, iscalled aleaf, and it
isacompact leaf if it is compact as a subspace.

compact-opentopology Thetopology onthe
spaceof continuousfunctionsfromatopol ogical
space X to atopological space Y, generated by
taking as a subbasis al sets of the form {f :
f(C) € U}, where C € X is compact and
U C Y isopen. If Y isametric space, this
topology is the same as that given by uniform
cornvergence on compact sets.

comparability of cardinal numbers The
proposition that, for any two cardinals «, 8, ei-
thera < gorg <a.

compass  An instrument for constructing
points at a certain distance from a fixed point
and for measuring distance between points.

compatible (elements of a partial ordering)
Two elements p and g of apartial order (P, <)
such that thereisanr € P withr < p and
r < g. Otherwise p and g areincompatible.

In the specia case of a Boolean algebra, p
and g are compatibleif and only if p A g # 0.
Inatree, however, p and g are compatibleif and
only if they are comparable: p < q orgq < p.

complementary angles Two anglesarecom-
plementary if their sum isaright angle.

complementofaset If Xisasetcontainedin
auniversal set U, the complement of X, denoted
X', is the set of al elementsin U that do not
belong to X. More precisely, X' = {u € U :
u ¢ X}.



complex conjugate bundle

completely additivefunction  Anarithmetic
function f having the property that f(mn) =
f(@m) + f(n) for al positive integers m and
n. (See arithmetic function.) For example, the
function f(n) = log n is completely additive.
Thevalues of acompletely additive function de-
pend only onitsvaluesat primes, since f (p') =
i+ f(p). Seealso additive function.

completely multiplicat ivefunction  Anarith-
metic function f having the property that
f(mn) = f(m) - f(n) for al positive integers
m and n. (See arithmetic function.) For exam-
ple, A, Liouville'sfunction, iscompletely multi-
plicative. Thevaluesof acompletely multiplica
tivefunction depend only onitsvaluesat primes,
since f(p') = (f(p))'. Seealso multiplicative
function, strongly multiplicative function.

completely normal topologicd space A
topological space X such that every subspace
of X isnormal. In particular, X itself must
be normal, and since normality is not generally
preserved in subspaces, complete normality is
stronger than normality. Complete normality is
equivalent torequiring that, for all subsets A and
Bof X,if AN B = AN B =, then there are
digoint open sets U and V with A € U and
BCV.

completelyregular topologicd space A topo-
logical space X such that points are closed and

points and closed sets can be separated by con-

tinuous functions. That is, for each x € X, the

singleton {x} isclosed, andforal closedC C X

with x ¢ C, thereis acontinuous f : X —

[0, 1] such that f(x) = Oand f(c) = 1forall

ceC.

complete metric space A topological space
X with metric d such that any Cauchy sequence
in X converges. That is, if {x, : n € N} C X
is such that for any ¢ > O thereisan N with
d(xy, xm) < € forany n,m > N, then thereis
anx € X withx,, — x. For example, each Eu-
clidean n-space R" is a complete metric space.

complete s¢ of logical connecives A set
C of logical connectives such that, given any
well-formed propositional (sentential) formula
¢, whose logical connectives are from among
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the usua set {—, A, v, —, <>} of logica con-
nectives, there is a well-formed propositional
formula v, whose logical connectives are from
C, such that ¢ and v arelogically equivalent.

Examples of complete sets of logical con-
nectivesinclude {—, A, v}, {—, A}, {—, v}, and
{—, —}. Theset {A, —} is not a complete set
of logical connectives.

completetheory  Let £ be afirst order lan-
guage and let T be a (closed) theory of £. The
theory T is completeif, for al sentences o, &-
thero e Tor(—o) eT.

If T issimply acollection of sentences, then
T iscompleteif for al sentences o, either o is
alogical consegquenceof T or (—o) isalogica
consequence of 7. Equivalently, T is complete
if, for all sentences o, either o isprovable from
T or (—o) isprovablefrom T'.

Let A be astructure for £. The theory of A
(denoted Th(A)), the set of all sentences of £
which aretruein A, is a complete theory.

complex A collection of cellswith the prop-
erties: (i.) if C isacdl in the complex, then
every faceof C isinthecomplex; and (ii.) every
two cellsin the complex have disjoint interiors.

complex analytic fiber bundle A fiber bun-
def: F — X where F and X are complex
manifolds and f is an analytic map. See fiber
bundle.

complex analytic structure  Onareal differ-
ential manifold M an integrable complex struc-
tureonthetangent bundle 7 M ; namely, thedata
of aninvertible linear map J,, : T,M — T,M
on each tangent space at p € M, such that
J5 = — Identity, which varies smoothly with
p and is integrable, i.e., admits an atlas with
constant transition functions. Without the inte-
grability condition, the data define an “amost-
complex structure” on M.

complex conjugate bundle For a complex
vector bundle f : V — M, the conjugate bun-
dleV isdefined by taking the complex conjugate
fqofeachlocal map f,, : C" x Uy = V|y, =
f~Y(U,) that defines the bundle restricted to
U,, for asuitable covering U,, of M.



complex dimension

complexdimension (1) For avector space X,
thedimension of X, considered asavector space
over thefield C of complex numbers, asopposed
to thereal dimension, which isthe dimension of
X asavector space over the real numbers R.

(2) (For a complex manifold M). The com-
plex dimension of thetangent space T, M at each
point p.

(3) The dimension of a complex; i.e, the
highest of the dimensions of the cells that form
the complex.

complex linebundle A complex vector bun-
dlewhosefibershavedimension 1. Seecomplex
vector bundle.

complex manifold A set of points M which
can becovered with afamily of subsets{Uy, }uca
i.e, M = Jyeca Ua, €ach of which isisomor-
phic to an open bal in complex n-space:
(21, z0) € C" 21?4 ...+ |zal? = 1),
for afixed non-negative integer n.

complex of lines  In projective geometry, a
line complex is a subvariety of the Grassman-
nian Gr(2, 4) of al linesin (complex) projective
3-space CP3, which is the set of 2-dimensional
subspaces of a 4-dimensional complex vector
space. Gr(2,4) is a quadric hypersurface in
CP®, thus an example of line complex isa“lin-
ear line complex”, the intersection of Gr(2, 4)
with a hyperplane, e.g., al the lines in P° that
meet a given plane.

complex plane  The topologica space, de-
noted C or C, consisting of the set of complex
numbers, i.e., numbersof theforma +bi, where
a and b are real numbers and i = —1. C is
usualy visualized as the set of pairs (a, b) and
hence the terminology plane.

The term extended complex plane refers to
C, together with a point at infinity and neigh-
borhoods of the form {z : |z|| > r} for red
numbers r.

complexsphae (1) A sphere{z: |z —z0| =
r}, in the complex plane.

(2) A unit sphere whose points are identified
with points in the complex plane by a stereo-
graphic projection, with the “north pole” iden-
tifiedwiththepoint co. Suchasphere, therefore,
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representstheextended complex plane. Seecom-
plex plane.

complex torus  The rn-dimensional compact
complex analytic manifold C"/A, where n is
a positive integer and A a complete lattice in
C". Indimension 1, thecomplex tori C/(Zw1+
Zwy), where w1 and w» are complex numbers
independent over R, are all algebraic varieties,
also called dliptic curves.

complex vectar bundle A complex vector
bundle (of dimension ) onadifferentiableman-
ifold M isamanifold E, given by a family of
complex vector spaces {E,} pem, With atrivial-
ization over an open covering {Uy}yea Of M,
namely diffeomorphisms ¢, : C" x U, —
{Ep}peu,. If M and E are complex anaytic
manifolds and aftrivialization exists with ¢, bi-
holomorphic maps, the bundleis said to be com-
plex analytic.
composite  See composite number.
composie number  An integer, other than
—1, 0, and 1, that is not a prime number. That
is, anonzero integer is composite if it has more
than two positive divisors. For example, 6 is
composite since the positive divisors of 6 are
1, 2, 3, and 6. Just as prime numbers are usu-
aly assumed to be positive integers, a compos-
ite number is usually assumed to be positive as
well.

composition of functions  Supposethat f :
X - Yadg :Y — Z arefunctions. The
composition gf : X — Z isthe function con-
sisting of all ordered pairs (x, z) such that there
exists an element y € Y with (x,y) € f and
(y,z) € g. Seefunction.

computable LetN bethe set of natural num-
bers. Intuitively, a function f : N — N is
computable if there is an agorithm, or effec-
tive procedure, which, given n € N as input,
produces f (n) asoutput in finitely many steps.
There are no limitations on the amount of time
or “memory” (i.e., “scratch paper”) necessary
to compute f(n), except that they be finite. If
f : NF — N, then f is computable is defined
analogously.



computable

A function ¢ on N is partial if its domain
is some subset of N; i.e., ¢ may not be defined
on al inputs. A partia function ¢ on N isin-
tuitively computable if there is an algorithm, or
effective procedure, whichgivenn € N asinput,
produces ¢(n) as output in finitely many steps
if n € dom(g), and runs forever otherwise.

For example, the function f(n,m) =n+m
is intuitively computable, as is the function f
which, oninput n € N, produces as output the
nth prime number. The function ¢ which, on
inputn € N, producestheoutput 1if thereexists
aconsecutive run of exactly n 5sin the decimal
expansion of 7, and is undefined otherwise, is
an intuitively computable partial function.

The notion of computability has a formal
mathematical definition; in order to say that a
functionisnot computable, one must have afor-
mal mathematical definition. There have been
several formalizations of the intuitive notion of
computability, all of which generate the same
class of functions. Given hereisthe formaliza-
tion of Turing computable. A second formal-
ization is given in the definition of a partial re-
cursive function. See partial recursive function.
Other formalizationsincludethat of register ma-
chine computability (Shepherdson—Sturgis,
1963), genera recursive functions (GoOdel,

1934), and A-definablefunctions (Church, 1930).

It has been proved that, for any partial function
@, ¢ is Turing computable if and only if ¢ is
partial recursive, if and only if ¢ isregister ma-
chine computable, etc. See also Church-Turing
Thesis. Thus, the term computable can (math-
ematically) mean computable in any such for-
malization.

A set A of natural numbersis computable if
itscharacteristicfunctioniscomputable; i.e., the
function

1 if neA
XM =109 it nga

isrecursive.

A partia function ¢ on N is Turing com-
putable if there is some Turing machine that
computesit. The notion of Turing machine was
formalized by Alan Turing in his 1936 Proceed-
ings of the London Mathematical Society paper.

A Turing machine consists of a bi-infinite
tape, which is divided into cells, areading head
which can scan one cell of the tape at atime, a

© 2001 by CRC Press LLC

finitetape alphabet S = {so, 51, ..., s, } Oof sym-
bolswhich can bewritten onthetape, and afinite
set O = {q0, 91, ..., qn} Of possiblestates. The
sets S and Q havethe propertiesthat SN Q = @,
{1, B} € S (where B stands for “blank”), and
qo € Q isthedesignated initial state. A Turing
machine which isin state ¢ ; reading symbol s;
on its tape may perform one of three possible
actions: it may write over the symbol it is scan-
ning, move the read head right (R), and go into
another (possibly the same) state; it may write
over the symboal it is scanning, move the read
head left (L), and go into another (possibly the
same) state; or it may halt.

Theaction of the Turing machineisgoverned
by a Turing program, given by atransition func-
tion§, whosedomainissomesubset of O x S and
whoserangeisasubset of theset O x S x {R, L}.
If8(qg, a) = (g, a, m), thentheaction of thema-
chineisasfollows. If the machineisin state g,
reading symbol a on the tape, then it replaces a
by a on the tape, moves the read head one cell
to theright if m = R, moves the read head one
cell totheleftif m = L, and goes into state g.
The Turing program haltsif the machineisin a
state g, reading a symbol a, and the transition
function is undefined on (¢, a).

A Turing machine computes a partial func-
tionasfollows: giveninput x1, ..., x,, thetape
isinitialy setto

...Bratlpgretlp  prutlp

where 1¥ indicates a string of k 1s, one symbol
1 per cell, ... B1*1+1 indicates that all cells to
theleft of theinitial 1 on the tape are blank, and
1*+1p .. indicates that al cells to the right
of the last 1 on the tape are blank. The read-
ing head is positioned on the leftmost 1 on the
tape, and themachineisset totheinitial state go.
The output of the function (if any) isthe number
of 1son the tape when the machine halts, after
executing the program, if it ever halts.

The following is a Turing machine program
which computes the function f(x1, x2) = x1 +
x2, thus showing that f is Turing computable.
Theideaisthat, given input

...B1ratlpyretlp

the machine replaces the middle blank B by a
1 (instructions 1 — 2), moves to the leftmost 1



concentric

(instructions 3 — 4), and then erases three 1s
(instructions 5—7).

* 8(q0.1) = (g0, 1, B)

* 8(q0. B) = (91,1, L)
* 8(g1, D) =(q1,1. L)

* 8(q1, B) = (92, B, R)
* 8(g2,1) = (g3, B, R)
* 8(g3,1) = (g4, B, R)
* 8(qa, 1) = (g5, B, R)

Other formalizations of the Turing machine
exist which are dlight variations of those given
hereand which producethesameclassof Turing—
computable functions.

concentric A commongeometricterm, mean-
ing “with the same center”. See concentric cir-
cles, concentric cylinders.

concentric circles  Circlesthat lieinthesame
plane and have the same center.

concentric cylinders Circular cylinders
whosecircular cross-sectionsare concentric cir-
cles.

concentric spheres
center.

Spheres with the same

cone A solidin R3, bounded by aregion in
a plane (the base) and the surface formed by
straight lines (the generators) which join points
of the boundary of the base to afixed point (the
vertex) not in the plane of the base. The coni-
cal surface described by a moving straight line
passing through the vertex and tracing any fixed
curve, such as acircle, ellipse, etc., at another
point is sometimes also called a cone. A cone
may be viewed as a quadratic surface, whose
equation is Ax? 4+ By? 4+ Cz2 =0(A, B, C #
0). When A = B, itisaright circular cone
(also called a cone of revolution); if A#B, itis
an oblique circular cone.

cone extension A deformation of acone. For

agiven direction at a point, it represents the in-
crease of length per unit length of arc, i.e., the
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unit vector in that direction. For example, let
I*¥ (I = [—1, 1]) be a k-dimensional convex
cell which isacone of the boundary of 7* from
its center 0. Each point x of I¥ can be written
uniquely asx =t -u for 0 < ¢+ < 1whereu be-
longs to the boundary of 7*. A cone extension
results when a piecewise linear embedding F
fromtheboundary of 1" totheboundary of 1" is
extended to apiecewiselinear embedding F be-
tween the two convex cellsby setting F(0) = 0
and F(t-u)=t- f(u)fort-ueI™—{0}.

conformal arc element Let S" be a con-
formal space of dimension n (an n-dimensional
sphere represented as the quadric hypersurface
S x12+x22~|—...+x,12—2x0xoo =0inan(n+1)-
dimensional real projective space P"t1, where
the (x;) are homogeneous coordinatesin P +1).
The conformal arc element of a curve is given
by the Frenet-Serret formulafor the curve. For
example, let S be a surface in a 3-dimensional
projective spaceand let A beapoint of S associ-
ated with al the frames[A, A1, A2, Ag] where
A1, Ay, Az are points of the tangent planeto S
at A. The Frenet-Serret formulafor S is given
by the following matrix:

0 do 0 0 0
kda 0 0 0 dua

wf=| —da 0 0 tda O
0 0 —wda O O
0 kdo —da 0 0

where da isthe conformal arc element, « isthe
conformal curvature, and t isthe conformal tor-
sion. a)g is the Pfaffian form that depends on
the principal parameters determining the origin
A and the secondary parameters determining the
frame.

conformal correspondence A diffeomor-
phism between two surfaces, whose derivative
is a linear map. Angles, but not necessarily
lengths, are preserved under conformal corre-
spondence. Also called conformal mapping.

conformal curvature  Let 7 beanopeninter-
val of R. Leto : I — R®beacurve parameter-
ized by arclengths (s € I)anda” (s) # 0. For
each value of s, let ¢, n, and b be vector fields



congruence on a category

aong a defined by

a// (S)

lla” ()

t(s) = a"(s), n(s) =

and
b(s)=t(s) xn(s) .

The derivative ¢ (s) = « (s)n (s) yields the
functionx : I — R, the geometric entity which
is the curvature of « in a neighborhood of S.
Physically, curvature measures how much the
curve differs (bends) from a straight line. This
definitionisgeneralizableton-dimensional con-
formal space, where the conformal curvature of
a curve can be derived from the Frenet-Serret
apparatus. The concept of curvature associated
with a moving frame along a curve was intro-
duced by F. Frenet in 1847 and independently
by JA. Serretin 1851.

conformal differential geometry  The study
of geometric quantities that are invariant un-
der conformal transformations, using methods
of mathematical analysissuch asdifferential cal-
culus.

conformal equivalence Letw = f(z) bea
function that conformally maps adomain D on
the complex z-sphere homeomorphically onto a
domain A on the complex w-sphere. Then A is
conformally equivalent to D.

conformal geometry  The study of proper-
ties of figuresthat areinvariant under conformal
transformations. Let " be an n-dimensional
sphere, P"*1 be an (n + 1)-dimensiona pro-
jective space, and let M (n) be the group of all
projective transformations of P"*1 which leave
S" invariant. Then (8", M (n)) is a conformal
geometry or a M 6bius geometry.

conformal invariant A geometric quantity
preserved by conformal mappings.

conformal mapping A conformal mapping
or correspondence between two surfaces S and
S* is a diffeomorphism of S onto $* such that
the angle between any two curves at an arbitrary
point x on S isequal totheanglebetweenthecor-
responding curves on S*. Conformal mappings
are more general than isomorphisms which pre-

© 2001 by CRC Press LLC

serve both angles and distances. In R3, con-
formal mappings are those obtained by trans-
lations, reflections in planes, and inversions in
spheres. A one-to-one conformal mapping is a
conformal transformation. In R3 the conformal
transformations form the 10-parameter confor-
mal group. In 1779, Lagrange had obtained al
the conformal transformations of a portion of
the earth’s surface onto a plane area that trans-
formed latitude and longitude circlesinto circu-
lar arcs.

conformal torsion  Let I be an open interval
of R. Letw : I — R® beacurve parameterized
by arc length S (S € I) and asf” (s) # 0. For
each value of S, let ¢, n, and b be vector fields
aong a defined by

f<s>:“sf/<s>’”<s>=||§§%u’

and
b(s)=t(s) xn(s) .

The derivative bsf/ (s) = 1 (s) n (s) yields the
functiont : I — R, ageometricentity whichis
thetorsion of « intheneighborhood of s. It mea-
sures the arc-rate of turning of . Generalizing
to n-dimensional conformal space, the confor-
mal torsion of a curve can be derived from the
Frenet-Serret apparatus. The concept of torsion
associated with a moving frame along a curve
was introduced by F. Frenet in 1847 and inde-
pendently by J.A. Serret in 1851.

congruene of lines  Refersto a set of lines
in projective, affine, or Euclidean space depend-
ing on a set of parameters. For example, let P°
be a 5-dimensional projective space, and Q a
hyperquadrix defined by the equation p° p23 —
p%2p13 4 p08p12 — 0, where the p/ are ho-
mogeneous coordinates of P°. Then we define
a congruence of lines as a set of 2-parameter
straight lines corresponding to a surface of two
dimensionson Q in P°. The theory of congru-
ences is an important part of projective differ-
ential geometry. See also congruent objects in
space.

congruence on a category An equivaence
relation ~ on the morphisms of a category C
such that (i.) for every equivalence class E of



congruent objects in plane

morphisms in C, there exist objects A, B in C
such that E is contained in the class of mor-
phismsfrom A to B, and (ii.) for al morphisms
f.f,g, g of C,if f ~ f andg ~ g/, then
fog~ flog (assuming fogand f/ og
exist).

congruent objectsin plane  Two objects P
and P*inR? arecongruent if thereexistsarigid
motion « : R2 — R?2 such that «(P) = P*.

congruen objectsin space  Two objects S
and $* in R® are congruent if thereexistsarigid
motion & : R® — R3 such that «(S) = S*.

conicsection A geometric locus obtained by
taking planar sections of a conical surface (i.e.,
of acircular cone formed from the rotation of
one line around another, provided the lines are
not parallel or orthogonal). These sections do
not passthrough theintersection point of thetwo
lineswhich producethecircular cone. Theconic
sectionisthusaplanecurvein R generated by a
point that moves so that the ratio of its distance
from a fixed point to its distance from a fixed
line is constant. It can be one of three types:
an ellipse (where the intersecting plane meets
all generators of the cone in the points of only
one convex half-cone), a parabola (where the
intersecting planeisparallel to oneof thetangent
planes to the cone going off to infinity), or a
hyperbola (where the intersecting plane meets
both half-cones).

conical helix A space curve that lies on the
surface of acone and cuts all the generatorsat a
constant angle. See cone.

conical surface A surface of revolution of
constant curvature in R3. It can be generated
by astraight line that connects afixed point (the
vertex) with each point of afixed curve (the di-
rectrix). The conical surface consists of two
concave pieces positioned symmetrically about
thevertex. Itisquadricif thedirectrixisaconic.
A circular conical surfaceisonewhosedirectrix
is a circle and whose vertex is on the line per-
pendicular to the plane of the circle and passing
through the center of the circle.
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conjugate angles Two angles whose sumis
360 degrees (27 radians).

conjugatearcs Twocircular arcswhoseunion
isacompletecircle.

conjunctive normal form A propositional
(sentential) formula of the form

n m;
/\ \/Aij ;

i=1\j=1
i.e,
AnnVv--- VA ) AN---ANAu V- VA,

whereeach A;;, 1 <i <n,1 < j < my,is
either a sentence symbol or the negation of a
sentence symbol. Every well-formed proposi-
tional formulais logically equivalent to one in
conjunctive normal form.

For example, if A, B, and C are sentence
symboals, then the well-formed formula ((A —
B) — C)islogicaly equivaentto (—Av—BV
C)A(AV=BVC)A(AV BvVvC(C),whichisa
formulain conjunctive normal form.

connected A subset A of atopological space
X is connected if it is connected as a subspace
of X. Inother words, A isconnected if there do
not exist nonempty digjoint setsU and V, which
arerelatively openin A suchthat A =U U V.
That is, there are no disjoint open sets U and V
iNXWthUNA#0@,VNA#£@ andA =
(UNA)U(VNA) = (UUV)NA. Forexample,
(0, 1) isconnected in R, while [0, 0.5) U (0.5, 1]
isnot, because[0, 0.5) and (0.5, 1] arerelatively
open in that space.

connected component Inatopological space
X, the connected component of x € X isthe
largest connected A € X which contains x.
Equivalently, A istheunion of all connected sets
in X which contain x. Any space can be par-
titioned into its connected components, which
must be digjoint.

connected im kleinen A topological space
X isconnected imkleinen if, for any x € X and
open set U containing x, there is a connected
ACUandanopenV C A withx € V. This
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form of connectedness is stronger than being
locally connected.
connectal set  See connected.

connected sum An n-dimensional manifold
formed from n-dimensional manifolds A1 and
Mo (and denoted M1#M>) as follows. Let By
and B> be closed n-dimensiona balls in My
and M», respectively. Leth : S —> So bea
homeomorphism of the boundary sphere of B
totheboundary of B,. Then M1#M> istheunion
of M1 minustheinterior of B; and M2 minusthe
interior of By, with each x in S7 identified with
h(x) in Sp. The resulting space is a manifold;
different choices of balls and homeomorphisms
may give rise to inequivalent manifolds.

connected topological space A topological
space X such that there do not exist nonempty
disointopensetsU and V suchthat X = UUV.
Equivalently, the only subsets of X that are both
open and closed are ¥ and X itself.

connective fiber space A fiber space that
cannot be represented as the sum of two non-
empty disjoint open-closed subsets. Connectiv-
ity is preserved under homeomophisms.

conservative Let £1 and £, be first order
languages with £1 C L»; let T1 be atheory of
L1 and T> be atheory of £,. Thetheory 7> isa
conservative extension of 71 if

(i.) T> isan extension of T1; i.e, T1 C T>,
and

(ii.) for every sentence o of L1, if o isa
theorem of T» (T - o), then o is atheorem of
T1 (Ty - o).

consistent Let £ beafirst order language and
let T" beaset of well-formed formulasof £. The
setI" isconsistent if it isnot inconsistent; i.e., if
there does not exist aformulaw such that both o
and (—«a) aretheoremsof I'. If I is consistent,
then there must exist aformula« such that « is
not a theorem of I'. Note that I" is consistent
if and only if T is satisfiable, by soundness and
completeness of first order logic.

If I is a set of sentences and ¢ is a well-
formed formula, then ¢ is consistent with I if
I' has amodel that is also amodel of ¢.
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consistent axioms A set of axioms such that
thereis no statement A such that both A and its
negation are provable from the set of axioms.
Informally, a collection of axioms is consistent
if thereisamodel for the axioms; the axioms of
group theory are consistent as G = {e}, where -
isdefinedon G by ¢ - ¢ = ¢, isamodel of these
axioms.

In the case of formal systems, Godel's Se-
cond Incompleteness Theorem states, roughly,
that the consistency of any sufficiently strong
theory cannot be proved in that theory; for ex-
ample, itisnot possibleto prove the consistency
of Zermelo-Fraenkel (Z F) set theory from the
axioms of ZF. Consequently, only a relative
notion of consistency can be considered; i.e.,
givenaset ¥ of axioms of aforma system and
a statement A in the language of that system,
one askswhether X U {A} is consistent, assum-
ing that X is consistent. For example, Godel
proved in 1936 that, assuming Z F is consistent,
s0is ZFC, where ZFC is ZF set theory to-
gether with the Axiom of Choice. In addition,
Cohen provedin 1963 that, assuming Z F iscon-
sistent, 0isZF + —AC,where ZF + —AC is
Z F set theory together with the negation of the
Axiom of Choice.

constructible set  Anelement of theclass L,
defined below in the constructible hierarchy:
(i) Lo=9;
(ii.) Lo = Upy Lp, if o isalimit ordinal;
(iii.) Lgy1 = the set of al subsets definable
over Ly;

(V) L = Uycorg Le-

contact element  In the Euclidean plane R?,
anordered pair (p, £) consisting of apoint p and
aline ¢ containing the point p. More generally,
a contact element in a smooth n-dimensional
manifold M isapair (p, H) consisting of apoint
pinM andann — 1-dimensiona plane H inthe
tangent space at p. The contact elementsin M
forma(2n—1)-dimensional manifoldwhich has
aspecia structureonit called acontact structure.

contact form A one-form @ on a smooth
(2n + 1)-dimensional manifold M suchthat w A
(dw)" # 0 everywhere on M. At each point p
in M, the kernel K(p) of w(p) is a plane of
dimension 2xn in the tangent space at p. The
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condition on w is equivalent to the statement:
for any vector V € K (p) thereisa W such that
dw(V, W) # 0. Darboux’s Theorem says that
it is aways possible to find local coordinates
oL xm oyt Lyt ) inwhich o = dz —
Y yidxi

contad manifold  Theodd-dimensional coun-
terpart of a symplectic manifold. A contact
manifold isasmooth (21 + 1)-dimensional man-
ifold M together with a one-form w on M such
that wA (dw)" # Oeverywhereon M. Thereisa
uniquevector field V on M, called the character-
istic vector field, determined by two conditions:

(i) o(V)=1and

(ii.) do(V, W) =0foral w.

In specia local coordinates, this is the vector
field .

An example of acontact manifold is the unit
sphere §2*1, viewed as a submanifold of com-
plex n-dimensional space. The characteristic
vector field is the field of unit vectors tangent
to the great circles which form the fibers of the
Hopf fibrationz : §2**1 — CP” of thesphere
over complex projective space. m is the map
that takes a point in the sphere to the complex 1-
dimensional subspace containing the point. The
1-form w is given by the formula

oW)y=<V,W>,
where <, > isthe Euclidean inner product.

contad metricstructure A Riemannianmet-
ric g on amanifold M of dimension 2» + 1 and
a contact form » which are compatible. The
contact form n isa 1-form on M which satisfies
the condition n A (dn)" # 0 a every point. n
determines a subspace K (p) of codimension 1
in the tangent space M, to M at the point p,
as well as a vector £ transverse to K(p) and
determined by the conditions. n(¢) = 1 and
dn(V,&) = O0fordl V in K(p). The met-
ric g must make £(p) a unit vector, orthogo-
nal to K(p). For X and Y in K (p), the metric
satisfies dn(X,Y) = g(X, ¢Y), where ¢(p) :
M, — M, isalinear transformation satisfying
¢=(V) = =V on K(p) and ¢(§) = 0. More
precisaly, ¢ isatensor field on M of type (1, 1)
satisfying ¢? = —1 + n ®&.
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contad structure A specification of a (2n)-
dimensiona plane K (p) in the tangent space
of a manifold M of dimension 2n + 1, at each
point p, in such away that in some open set U
around p thereisasmooth, one-form w suchthat
K (gq) isthekernel of w(q) for every ¢g. Theone-
form is required to satisfy the non-degeneracy
condition: w A (dw)" # Oforal g inU. The
form w is caled alocal contact form. On the
overlap of two such open sets, the local forms
agree up to a non-vanishing scalar multiple. If
the form can be globally defined, then M isa
contact manifold.

An example of a contact structure is given
by the manifold of straight lines in the plane
R2. Loca coordinates (x, y,z) are given by
letting (x, y) be the point of contact and 0 <
z < m the angle between the line and a hori-
zontal line. (Different coordinates are chosen if
the line is horizontal.) The 1-form is given by
w(x,y,z) =sin(z)dx —cos(z)dy. Thisl-form
cannot be defined globally.
continued fraction A real number of the

form
by
ao +

ai + 7
az+ %
agz+

ag+ c.

where each g; is areal number. If the expres-
sion consistsof only afinite number of fractions,
the expression is called a finite continued frac-
tion and is (obviously) a rational humber. See
also finite continued fraction. Aninfinitesimple
continued fraction is one of the form

1
ap + 1
a1+

az+

1
1

az+

where each of the g; is an integer. See also
convergence of a continued fraction.

continuous function A function f from a
topological space X to a topological space Y
suchthat, for eachopenU C Y, theset f~1(U)
isopenin X. For functions on thereal line, this
is equivalent to requiring that, for any ¢ > 0,
thereexistsas > Osuchthat | f(x)— f(y)| < €
whenever |x — y| < 4.
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continuous geometry  An orthomodular |at-
tice, i.e., a complete and complemented modu-
lar lattice L such that given any element x of
L and any subset W of L which is well or-
dered with respect to the ordering in L, then
x Nsupw = sup(a N w), wherew € W. The
concept of a continuous geometry was intro-
duced by John von Neumann. When the dimen-
sion is discrete, continuous geometry contains
projective geometry as a special case. Gener-
aly, however the lattices have continuous di-
mension.

continuum hypothesis  The statement

2N — N1 .

(It is not possible to prove this statement or its
negation in Zermelo-Frankel set theory with the
Axiom of Choice.)

contractible topologicd space A topologi-
cal space X that can be shrunk to a point. More
precisaly, X iscontractibleif thereisa continu-
ousfunctionc : X x [0, 1] — X (calledacon-
traction) suchthat c(x, 0) = x forall xin X, and
forsome p in X, ¢(x,1) = p fordl x. Then-
dimensional Euclidean spaces are contractible,
while any spacewith anonzero homology or ho-
motopy group in a positive dimension gives an
example of a non-contractible space.

contraction  If X isasubspace of Y, thena
contraction of X in Y is a continuous function
c: X x[0,1] — Y such that ¢(x, 0) = x for
dlxinX,andforsomepinY,c(x,1) = pfor
al x in X. See contractible topological space.
convergence of a continued fraction  Given
the continued fraction

b1
aop + by

define

C,=ap+
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(the nth convergent of the continued fraction).
If lim C, = L, then the continued fraction is

n—o0

said to convergeto L. That is,

by
b

b,
ar—
az+

L =ap+

ai +

ag+ c.

convergent
fraction.

See convergence of a continued

convergert sequence A sequence of points
{x, : n € N}inatopological space X converges
tox € X if, for any open set U containing x,
thereisan N € Nwithx, e Ufordln > N. A
sequence is convergent if it converges to some
x € X. For example, the sequence of reals {%}
convergesto 0, while the sequence {n} does not
converge.

convex (1) A non-empty subset X of R” such
that, for any elementsx, y € X, and any number
csuchthat0 < ¢ < 1, thedlementcx + (1—c)y
of R" belongsto X. In RZ, for example, a set
is convex if it contains the line segment joining
any two of its points. See also convex closure.

(2) A red function f(x) inaninterval I such
that the graph of f liesnowhere aboveits secant
line in any subinterval of 1.

convex body A bounded, closed, convex set
(finite or infinite) that has interior points. See
CONVex.

convex cell  The convex closure of a finite
set of points P = {po, p1, ..., Pk}, in an n-
dimensional affine space A”. When po, ..., pr
are independent, it is a k-dimensional simplex
with vertices po, ..., pk.

convex closure  For any subset X of an n-
dimensional affine space A", there existsamin-
imal convex set that contains X. Thisset, which
istheintersection of al the convex setsthat con-
tain X, is the convex closure of X. In R", the
convex closure of aset X isthe set of possible
locations of the center of gravity of masswhich
can be distributed in different ways in the mini-
mal convex set containing X. Each point of the
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convex closureisthe center of gravity of amass
concentrated at not more than n + 1 points.

For asubset X of A", X isconvex if the seg-
ment joining two arbitrary points of X is con-
tained in X.

convex cone A convex body consisting of
half-lines emanating from a point (the apex of
the cone). The surface of aconvex coneissome-
times called a convex cone.

convex cylinder A cylinder that liesentirely
on oneside of any tangent plane at apoint of the
cylinder. See cylinder.

convex hull  Thesmallest convex set contain-
ing agiven subset X of a Euclidean space. The
convex hull of X can be constructed by forming
the intersection of al half-planes containing X.
See also convex closure.

convex polygon A polygon in R? with the
property that each of itsinterior angles (the an-
gles made by adjacent sides of the polygon and
contained within the polygon) is less than or
equal to 180 degrees. A convex polygon always
has an interior.

convex polyhedral cone A convex conein
R3whichistheintersection of linear half-spaces.
See convex cone.

convex polyhedron  The convex closure of
a finite number of points in R”; that is, the
bounded intersection of afinitenumber of closed
half-spaces. InR3, itisasolid bounded by plane
polygons, which lies entirely on one side of any
plane containing one of itsfaces. Any plane sec-
tion of aconvex polyhedronisaconvex polygon.
See convex closure, convex polygon.

coordinate  See coordinate system. In R2, a
coordinate is one of an ordered pair of numbers
that locates the position of apoint in the plane.

coordinate axis  One of finitely many com-
ponents of a reference system which provides
a one-to-one correspondence between the ele-
ments of a set (on a plane or a surface, in a
space, or on amanifold) with the numbers used
to specify their position. In R”, it is part of an
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orthogonal frame which determines the rectan-
gular coordinates of each point in the space. In
R? a coordinate axis is a line along which or
parallel to which a coordinate is measured.

coordinatebundle Let E, B, F betopologi-
cal spacesand p : E — B beacontinuousmap.
Let G be an effective left topological transfor-
mationgroup of F. If thereexistsan open cover-
ing {Ugy}aen Of B, and a homeomorphism ¢,, :
U, x F ~ p~L(U,) for eacha € A, then the
system (E, p, B, F, G, Uy, ¢,) is a coordinate
bundle if it has the following three properties:
(i) poa(b,y) =b (b € Uy, y € F); (ii.) de-
finegep : F ~ p~L(b) (b € Ua) by ¢ p(y) =
$a(b,y). Then gga(b) = ¢53¢as € G for
beU,NUg; (iii.)gaa(b) : Uy NUg — G is
continuous.

coordinate function  The homeomorphism

bo Uy x F =~ p~t(Uy)

for each o € A of the coordinate bundle (E, p,
B, F, G, Uy, ¢,) belonging to the fiber bundle
(E7 pa Bv F’ G)

coordinatehyperplane A coordinate hyper-
plane in a vector space X over afield K isthe
image under a translation of a vector subspace
M with the quotient space X /M.

coordinate neighborhood  The open cover-
ing {U,}(x € A) of B of the coordinate bundle
(E, p, B, F,G, Uy, ¢o) belonging to the fiber
bundle (E, p, B, F, G). See coordinate bundle.

coordinate system Let S be aset of mathe-
matical objects. A coordinate systemisamech-
anism that assigns (tuples of) numbers to each
element of the set S. The numbers correspond-
ingto each element arecalled itscoordinates. In
R2, such areference system is called the rectan-
gular coordinate system. In R3, the coordinate
functions, « and v, of p~1 [where p isaone-to-
one regular mapping of an open set of R? into
asubset of R3] constitute the coordinate system
associated with p.

coordinate transformation Let E, B, F be
topological spacesand p : E — B beacontin-
uous map. Let G bean effectiveleft topological



covariant functor

transformation group of F. Assume there ex-
ists an open covering {U,} (o € A) of B, and
ahomeomorphism ¢, : U, XF ~ p~1(U,) for
eacha € A. Definegyp : F ~ p~L(b) (b €
Ua) bY ¢a.p(y) = ¢a(b.y). Then gge(b) =
d’f;:},(l)a,h e Gforb € U,NUg. Thenthecontin-
uoustransformation gg,, isthecoordinatetrans-
formation of thecoordinatebundle (E, p, B, F,
G, Uy, ¢o) belonging to the fiber bundle
(E,p,B,F,G).

coplanar  Lyinginthe same plane.
coproduct  For any two sets X and Y, a co-
product of X and Y isadigoint union D inthe
diagram

x5 py

wherei and j areinjections. The set D is not
unique and can be constructed as follows. If X
and Y aredigoint, thenlet D = XUY. If X and
Y arenot digoint, let D = X UY’, where Y’ is
aset that isequivalent to Y and digjoint from X.
Other coproducts of X and Y can be formed by
choosing different sets Y’.

correspondirg angles  Let two straight lines
lyingin R? becut by atransversal, so that angles
x and y areapair of alternating interior angles,
and y and z areapair of vertical angles. Then x
and z are corresponding angles.

cotangertbundle Let M beann-dimensional
differentiable manifold of class C”. Consider
T (M), the union over p € M of al the vector
spaces T, (M) of vectorstangentto M at p. De-
finewr : T(M) — M by n(T,(M)) = p. Then
T (M) may be regarded asamanifold called the
tangent bundle of M. The dua bundle is the
cotangent bundle.

coterminal angles  Angleswith the sameter-
minal side (the moving straight line which re-
volves around the fixed straight line, the initial
side, toformtheangle) and the sameinitia side.
Two angles are coterminal if they are generated
by the revolution of two lines about the same
point of theinitial sidein such away that the fi-
nal positions of the revolving lines are the same.
For example, 60° and -300° are coterminal an-
gles.
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Countable Axiom of Choice  The statement
that, for any countable family of non-empty,
pairwisedigoint sets{ X, }aca, thereexistsaset
Y which consists of exactly one element from
each set in the family. Equivalently, if {Xq}qea
is a countable family of non-empty sets, then
there exists afunction f : {Xs}aer = Ugen
Xy suchthat f(X,) € Xo foral a € A. See
Axiom of Choice.

countable chain condition (1) A partial or-
der (P, <) hasthe countable chain condition if
any antichainin P iscountable. Aset A C Pis
an antichain if its elements are pairwise incom-
patible; that is, for any p and ¢ in A, thereisno
re Pwithr < pandr < gq. Thus, P hasthe
countable chain condition (or is ccc) if it hasno
uncountabl e subset of pairwise incompatible el-
ements. Examples of ccc partial orders include
the collection of all finite sequencesof Osand 1s
ordered by extension (p < ¢ if p 2 ¢), andthe
collection of all measurable sets modulo mea-
sure zero sets ordered by inclusion ([A] < [B]
if AC B).

(2) A topological space satisfies the count-
able chain condition if it contains no uncount-
able collection of pairwise digoint non-empty
open sets. If X isatopological space and P is
the collection of al non-empty open subsets of
X ordered by p < g if and only if p C g, then
X isaccc topological spaceif and only if P is
accc partia order.

countably compact topological space A
topol ogical space X suchthat any countableopen
cover of X contains a finite subcover. That is,
if each U, isopenand X = U,enU,,, then there
isafiniteset A € N with X = U,,caU,. This
is equivalent to requiring that any countably in-
finite subset of X has an accumulation point.

The space of ordinals less than w; with the
order topology is a countably compact space
which is not compact.

counterclockwise  The direction of rotation
opposite to that in which the hands of the clock
move.

covariantfunctor  LetC and D becategories.
A covariant functor F isafunction F : Obj(C)
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— Obj(D) suchthat, forany A, B €Obj(C) the
following hold:
(i.) if f e Hom¢(A, B), then

F(f) € Homp(F(A), F(B)) ;

(ii.) F(1e) = 1p;

(iii.) F(gf) = F(g)F(f), where f and g
are morphisms in C whose composition gf is
defined.

covering dimension A nonnegative integer,
assigned to a set by means of coverings. For
topological spaces the covering dimension (or
L ebesquedimension) isdefined intermsof open
coverings. The dimension of a normal space x
is less than or equal to n if, in each finite open
covering of x, afinite open covering can bein-
scribed whose number of elements containing a
given point islessthan or equal ton + 1.

coveringgroup p: E — X isacovering
space of X if every point of X has a neighbor-
hood whose inverse image is the digjoint union
of open setshomeomorphic to the neighborhood
by p. The covering group (group of cover-
ing transformations) isthe group of homeomor-
phisms of E which preserve the fibers (homeo-
morphismsh : E — E with ph = p).

Thereal line coversthecircle St by the map
which takes x to e?**, The group of covering
transformations is isomorphic to the group of
integers.

covering homotopy property A mapp: E
— B hasthe covering homotopy property if it
satisfiesthefollowing: givenanymap f: X —
E and any homotopy /#: X x [0,1] — B of
po f (sohi = pf), thereisalift H: X x
[0,1] — Eof hsothat pH = hand Hi = f,
wherei istheinclusion of X x {0} in X x [0, 1].
That is, given maps represented by the solid
linesin the diagram below,
X i> E
il I p
XxxI - B
thereexistsamap H : X x I — E sothat the
diagram with H added commutes.
A surjective map satisfying the covering ho-
motopy property is caled a fibration. This is
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agenerdization of the concept of fiber bundle;
the fiber in afibration is only determined up to
homotopy, that is, the inverseimages of two dif-
ferent points (if B is connected) will only be
homotopy equivalent to each other.

covering map A continuous surjection p :
X — Y such that every y € Y has an open
path connected neighborhood U such that, for
each open path component V. € p~(U), p is
a homeomorphism from V onto U. In other
words, the Vs form a stack of copies over U
which cover it. For example, the map p(¢) =
(cost, sint) isacoveringmap from R tothe unit
circle.

covering space A topologica space X isa
covering space of Y if there is a covering map
p: X — Y. Seecovering map. For example, R
isacovering space of the unit circlevia p(t) =
(cost, sint).

covering transformation A map¢ : E —>
E suchthat po¢ = ¢, wherep : E — Bisa
covering map of an arcwise connected, locally
arcwise connected space B. See covering map.

covering transformation group  The group
of covering transformations ¢ : E — E, un-
der composition. See covering transformation.
Inthe special casewhere E istheuniversal cover
of B, thisgroup isisomorphic to the fundamen-
tal group of the space B.

cross-section A cross-section or section of
afiber bundle p : E — B with fiber F isa
map s : B —> E with ph equal to the identity
on B. Clearly every trivial bundle B x F has
numerous sections. A non-trivial exampleisthe
Mobius band, a bundle over its middle circle.
The inclusion of the middle circle is a section
for that bundle.

cube  One of the five types of regular poly-
hedra in E3. Also known as a hexahedron, it
is a solid bounded by 6 planes with 12 equal
edges and face angles that are right angles. In
E™, itisaset consisting of all those pointsx =
(x1, ..., xp), for which x; issuch that a; < x; <
b; foreachi, whereq; and b; aresuchthat b; —a;
has the same value for each i.
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cumulative hierarchy  The hierarchy of sets
defined recursively using the power set opera
tion at successor stagesand union at limit stages:
(i) Vo =8, (ii.) Vys1 = P(Vy), for dl ordi-
nasa, and (iii.) Vi = (Ug-; Vg, for any limit
ordinal 1. AlsoknownastheZermelohierarchy.
See also universe of sets.

curvature A measureof thequantitativechar-
acteristics (in terms of numbers, vectors, ten-
sors) which describe the degree to which some
object (acurve, Riemannian manifold, etc.) de-
viatesfrom certain other objects (astraight line,
a Euclidean surface, etc.), which are consid-
ered to be flat. Asalocal property of a plane
curve, curvature may intuitively be thought of
asthe degree to which acurveis“bent” at each
point. For non-planar space curves, curvature
is defined as the magnitude of a rate of rota
tion vector. Gauss had defined the curvature of
asurface in R® at a point (x, y, z) as the limit
of the ratio of the area of the region on a unit
sphere around apoint (X, Y, Z) [determined by
the radius of the spherein a direction normal to
(x, y, z)] to the area of the region on the sur-
face around (x, y, z), as these two areas shrink
to their respective points. Riemann’'s concep-
tion of curvature for any n-dimensional mani-
fold was a generalization of Gauss definition
for surfaces.

curve A continuous function from (an inter-
val in) R into R, athough usually referred to
as the image (range) of such afunction.

Euclid distinguished lines from curves, but
today lines, in the Euclidean sense, are consid-
ered curves which include straight lines. Georg
Cantor defined a curve as a continuum that is
nowheredensein R2. A continuouscurvein R?
that covers a square is a Peano curve.

curve of constart breadth  Let E be the
boundary of a convex body X in R?, O anin-
terior point of X, and P an arbitrary point of
X different from O. E admits exactly one sup-
porting line I(P) which is perpendicular to the
line O P and meets the half-line OP. Let O P’
be the half-line with direction oppositeto that of
O P, and! the supporting line/(P"). Then the
distance between the parallel lines/ and !’ isthe
breadth of E. Let M = M (E) bethe maximum
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and m = m(E) be the minimum of the breath
of E. If M = m, then E is acurve of constant
breadth.

cusp A double point on acurve C, at which
two tangentsto C are coincident.

cut point (1) Intopology, apoint p inaspace
X such that X\{p} = AU B, where A and B
are nonempty open sets.

(2) In Riemannian geometry, if M isaRie-
mannian manifold and p is a point of M, then
apoint g of M is a cut point with respect to
p if there is a shortest geodesic joining p to ¢
which, if extended beyond ¢, failsto be ashort-
est path to pointsbeyond ¢. For example, onthe
standard sphere the antipode of any point isthe
unigue cut point.

CW complex A topological space construc-
ted iteratively as follows. Let D" be an n-cell,
that is, a set homeomorphic to al points of dis-
tanceat most 1 fromtheoriginin R"; the bound-
ary of D" isthe (n—1)-sphere, " 1. Beginwith
acollection of points. At each stage, attach new
cells by identifying the boundary of a cell D"
with pointsin lower dimensional cells.

One can build the sphere §” in two distinct
ways. First, start with one point; attach the cell
D" by identifying all pointsinitsboundary with
that onepoint. Alternately, start with two points.
Attach two 1-cells (intervals) by sending one
endpoint to each of the two points that formed
the previous stage. This constructs acircle, S*.
Given "1 by iteration, form $” by identify-
ing the boundaries of each of two n-cells with
§"~1, Thislatter construction is convenient for
studying real projective space.

Any manifold can be constructed as a CW
complex and such constructions are useful for
calculating the homology or cohomology of the
manifold.

cycle AnéementcinC, suchthatd,(c) =0,
where C,, isamember of achain complex over
aring R. See chain complex.

cycle group  If {C,, 3} is achain complex
(of Abelian groups), then the kth cyclegroup Z;,
isthe subgroup of C; consisting of all elements
¢ such that 9;(c) = 0. The boundary group
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B, = 9,4+1/Cy+1 is a subgroup of the cycle
group, since d, +109, = 0. Seechain complex.

cylinder A flat ruled surfacein R3, which is
the locus of points on a straight line (the gen-
erator) moving paralel to itself, and intersect-
ing a given plane curve (the directrix). Thus,
as the generator, which is perpendicular to the
plane of the directrix, movesalong the directrix,
it sweeps out a cylinder.

cylinder of revolution A surface formed by
the set of al lines passing through agiven circle
and perpendicular tothe planeof thecircle. Also
known as aright circular cylinder.
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cylindrical helix A helix whose path lieson
acylinder, forming a constant angle with the el-
ements of the cylinder. A cylindrical helix is
described, for example, by the parametric equa-
tions

X = COSt
y =sint
z=t

(—o0 <t < 00).

cylindrical surface A surface generated by
a line in space moving along a curve, aways
staying parallel to afixed line.



Dedekind cut

D

Darboux’s frame If y(s) isacurveonasur-
face M in Euclidean space R3, parameterized by
arc length, then there is an orthonormal frame
(T, U, V) defined along the curve called Dar-
boux’s frame The first vector, T = y/(s), is
the unit tangent vector to the curve. The vector
V = v(y(s)) is the unit normal to the surface
at the point. (Thisassumesthat anormal vector
field v(P) isspecified.) ThevectorU =V x T
is the normal vector to the curve in the surface,
whose direction is determined by the choice of
surface normal. One can then define the analog
of the Frenet equations for the curve:

7 = keU + 1,V
U = —«,T + 1,V
V' = —k,T —1,U

The functions «, and «, are the geodesic cur-
vature and the normal curvature respectively,
of the curve in the surface. 7, is the geodesic
torsion
decagon A ten-sided polygon.

decidable A set of objects of somesortisde-
cidableif there is an effective procedure (algo-
rithm) which, given an arbitrary object, decides
whether or not the object isin the set. Thisno-
tion, as defined, isan intuitive notion. To define
this notion formally requires the formal notion
of computability and the ability to code effec-
tively (Godel number) the objects in question.
Seecomputable.

For example, the set of tautologies of pro-
positional logic isdecidable; i.e., thereis an ef-
fective procedure which, given astring from the
language of the propositional logic, can deter-
mine whether or not the string is awell-formed
formula, and if it is, can determine whether or
not the well-formed formula is a tautology. As
another example, atheory in first order logic is
decidable if it is both complete and axiomatiz-
able by adecidable set of axioms.
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decision problem A decision problenasks
if there exists an effective procedure (algorithm)
for deciding the truth or falsity of an entire class
of statements. If such an effective procedure ex-
ists, the problemissaid to besolvable otherwise
the problem is said to be unsolvable

Thisnotion, asdefined, isintuitive. To define
it formally requires the formal notion of com-
putability, the ability to effectively code (Godel
number) the statements, and the Church—Turing
Thesis.

For example, given an n-ary predicate R, the
decision problem associated with R asksif there
is an effective procedure for deciding, given ar-
bitrary natural numbers ay, ..., a,, whether
R(aa, ..., a,) istrue or fase. This decision
problem is solvable if R is recursive (comput-
able) as arelation; otherwise it is unsolvable.

There are many famous decision problems.
Hilbert’s Tenth Problem asksif thereisan effec-
tive procedurewhich, given aDiophantineequa-
tionp(x1, ..., x,) = 0,wherepisapolynomial
with integer coefficients, determineswhether or
not there is an integer solution. It was proved
by results of Matijasevi€ (1970) and Davis, Put-
nam, and Robinson (1961) that Hilbert's Tenth
Problem is not solvable. The decision prob-
lem for propositional logic, which asksif there
is an effective procedure which, given a well-
formed formula of propositiona logic, deter-
mines whether or not that formulais provable,
was proved by Post (1921) to be solvable. On
the other hand, the decision problem (Entschei-
dungsproblem) for first-order logic is not solv-
able (Church, 1936; Turing, 1936); i.e., if L is
a first-order language with a k-ary function or
predicate symbol, for k > 2, then thereisno ef-
fective procedure that can determine whether or
not an arbitrary sentence of £ islogically valid.

Dedekind cut  Suppose that X is a subset
of R and A, B are two subsets of X with the
following properties:

(i) ANB =@;

(i) AUB =X;

(iiiya<bforanya € A, b € B.
The sets A and B form aDedekind cuif A has
alast element and B has no first element, or if
A hasno last element and B has afirst element.
X isaninterva of R if and only if any choice of
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A, B satisfying conditions (i.) through (iii.) is
a Dedekind cut.

If there exists a choice of A and B which is
not aDedekind cut, then X canbeextendedtoan
interval of R by including additional real num-
bers. For example, if X consists of the rational
numbers, then no choiceof A, B isaDedekind
cut. However, X may be extended by including
the irrational numbers. This technique can be
used if X is a subset of any complete linearly
ordered set.

deduction  Seeproof.

deficiert number A positiveinteger n having
the property that the sum of its positive divisors
islessthan 2n, i.e.,, o (n) < 2n. For example,
16 is deficient, since

1+424+448+16=31<32.

Compae with abundant number, perfect num-
ber.

definition by recursion  Seerecursion.

degeneraeconic A conic section formed by
aplaneintersecting aconical surface either only
inthe vertex of the surface (resulting in apoint),
only at an element of the surface (resulting in
aline), or only at two elements of the surface
(resulting in two lines).

degeneraesimplex Ann-simplex(mapfrom
then-dimensional analog of atriangleto aspace)
whose image is less than rn-dimensional.

degeeof anarc  The degree measure of the
central angle determining the arc, provided the
arcisminor. If thearcismgjor, itsdegreeis 360
minus the degree measure of the central angle.

degee of mapping Let f : (S", x0) —
(8", xp) be acontinuous map wheren > 1 and
let fi : H,(S",x0) — H,(S", x0) bethein-
duced map. If zg isthe generator of H,,(S", xp),
then f,(zo) = d - zo for someinteger d. In this
cased isthe degreeof themap f and isdenoted
deg(f).

An important consequence of this is the
Brouwe FixedPoint Theaem: Every contin-
uousmap f : B" — B" hasafixed point.
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degee of unsolvability  For a set of natural

numbers of A, the set
deg(A) = {B : B =r A};

i.e., the class of all sets B of natural numbers
which are Turing equivalent to A. A degree of
unsolvabilityis often called a Turing degree, or
simply adegree.

As an example, if A is a recursive (com-
putable) set, thendeg(A) consistsof al recursive
(computable) sets. However, if A iscomputably
(recursively) enumerable, then deg(A) does not
consist of all computably enumerable sets.

deMorgan'slaws Let B beaBoolean age-
brawith binary operations U, N and unary oper-
ation’. If X, Y € B, then:

Xny)=xuy’
(Xuy)y=x'nv’.
SeeBoolean algebra.

denominator  The number b in the fraction

a
Z.
dense linear ordering  Givenaset A with at
|east two distinct elements and alinear ordering
< on A, < isdenseif, for al x,y € A with
x < y,thereexistsz € Awithx < z < y.
The usual ordering < on Q, the set of rational
numbers, is dense.

dense subset A subset A of a topological
space X suchthat A = X, where A denotesthe
closureof Ain X.

denumerable set A set A, equinumerous
with the set N of natural numbers; i.e.,, such
that there is a bijection from A onto N. For
example, the set Q of rational numbersis denu-
merable, while the set R of real numbersis not
denumerable.

derived set  The set of accumulation points
of a subset A of atopological space X. The
derived setof A iswritten A’. The closure of
Aisthen AU A’, and A isclosed if and only if
A C A.

determined Let X be asubset of w®. Asso-
ciatedwith X isthegame G x whichisplayed by
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two players A and B. Thetwo players aternate
choosing natural numbersaz, b1, az, ba, .. .. If
the sequence (a1, b1,a2,b2,...) € X, then
player A wins. If not, player B wins. A strat-
egy isarulethat tellsthe player (either A or B)
which number to choose, based on the previous
choices of both players. A winning strategy is
astrategy in which the player alwayswins. The
game G x isdeterminedf one of thetwo players
has awinning strategy.

developablesurface A ruled surfaceisasur-
face swept out by astraight line (called the gen-
erator) moving through space. It can be given a
parameterization of theform X (u, v) = C(u) +
vD(u)whereC isacurveand C’ (1) x D (u) does
not vanish. If the tangent plane to the surface
at any point is tangent along the entire genera-
tor through the point, then the surfaceis called
adevelopabé surface For example, a cylinder
is a developable surface, asis a cone. A hy-
perboloid of one sheet is an example of aruled
surface which is not a devel opable surface.

diagonal  For any set X, the subset A =
{(x,x) : x € X} of X x X. Thisisaso com-
monly referred to as the relation of equalityon
X. Seerelation.

diagond intersection  If x isaregular un-
countable cardina and (S,, o < «) isase
guence of subsets of «, the diagond intersec-
tion of this sequence, denoted A{S, : o < «},

iS{B: B € MNyep Sal-

diagram A diagram

a b

consists of vertices a, b, ... and arrows. The
vertices represent sets A, B, ... and the arrows
represent functions between the sets.

diagraminthecategory InthecategoryC,a
diagram in which the vertices represent objects
of C and the arrows represent morphisms of C.
Seediagram, category.

diameter  The greatest distance between any
two points of the body in question.
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diametral plane A planecontaining all mid-
points of a set of parallel chords of a surface.

diamond A strengthening of the Continuum
Hypothesis (denoted <>) which assertsthat there
isasequence of sets S, C « for o < w1, caled
the diamondsequence, which captures al sub-
sets of w1 inacertainway. Givenany X C wg,
the set of « where X N = S, is stationary in
w1. In other words, there are alarge number of
a where S, isthesameas X up to .

To see why this implies the Continuum Hy-
pothesis, notice that if X C w, then

XNa=X

forany o > w. But C = [w, w1) isclosed and
unbounded, sothereisana € CNSwhere S, =
X Na = X. That is, each subset of the natural
numbers appears in the diamond sequence, so
the number of subsetsisat most w;.

Other consequences of <> include the nega-
tion of Sudlin’'sHypothesis; i.e., & impliesthere
isan w1-Sudlin tree.

difference of sets Fortwosets X and Y, the
set X\Y consisting of all elements of X which
are not elements of Y. More precisaly,

X\Y={xeX:x¢Y}.

differentiable structure A compatible way
of assigning, to each point in a space, a homeo-
morphism from a neighborhood of that point to
an open subset of n-dimensional real space R”,
or of n-dimensional complex space C".

differential geometry  Thebody of geometry
that investigates curves and surfaces in the im-
mediate neighborhood of one of their points, us-
ing calculus, and analyzeswhat isimplied about
the curve or surface as a whole on the basis of
thislocal behavior. A more advanced aspect of
differential geometrys the possibility of con-
structing geometrical systemsdetermined solely
by concepts and postulates that affect only the
immediate neighborhood of each point of the
system.

differentialinvariant ~ Anexpressionthat con-
sistsof certainfunctions, partial derivatives, and
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differentials, which is invariant with respect to
certain transformations.

dihedralangle Theanglebetweentwo planes,
measured as the angle in a plane perpendicular
to the line of intersection of the two planes. If
the planes do not intersect, or coincide, the di-
hedal angleis zero.

dilatation  An &ffinity that possesses a fixed
point and mapsevery lineonto aparallel of itself.

dimension  Any one of many possible dif-
ferent topologically invariant measures of the
size of a topological space. Different defini-
tions of dimensiorinclude the L ebesgue dimen-
sion, the homological dimension, the cohomo-
logical dimension, and the large and small in-
ductivedimensions. Thelargeinductive dimen-
sion, which agrees with the L ebesgue and small
inductive dimensions when the space is separa-
ble and metrizable, is defined inductively asfol-
lows. We say that the empty set has dimension
—1. Assuming that we have defined all spaces
of dimension < n, we say that a space X has
dimension < n + 1 if, for any digoint closed
subsets C and D of X, thereis a closed subset
T of X with dimension T < n such that X\T
is the union of two digoint open subsets, one
containing C and the other containing D. We
then say that atopologica space has dimension
n if it has dimension < n but it does not have
dimension <n — 1.

dimension function A functiond : L —
Z from a lattice L to the nonnegative integers
satisfyingtheconditions(i.) d(x+y)+d(xy) =
dx)+d(y)foralx,y e L,and(ii.) if [x, y]is
anelementary interval in L, thend (y) = d(x)+
1

dimension of a complex Let X be a CW-
complex and let E bethe set of cellsof X. The
dimensiorof X isgiven by:

dimX = sup{dim(e) : e € E} .
We say that X is finite dimensionalif dimX is

finite and infinite dimensionabtherwise.
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dimensiors of a rectangle  The dimensions
that fully describe a rectangle, namely length
and width.

Dimension Theorem of Affine Geometry
Given affine space A", with nondigoint sub-
spaces A" and A* of dimension » and s, respec-
tively, thenr +s = dim(A” UA%) +dim(A" N
A%).

dimension theory  The branch of topology
devoted to the definition and study of the notion
of dimension in various classes of topological
spaces.

dimension type  Two topological spaces X
and Y have the same dimensia typeif X is
homeomorphictoasubspaceof Y and Y ishome-
omorphic to a subspace of X.

dimension zero A topological space X has
dimensio zeo if it has the discrete topology.
Seetopological dimension.

Dini surface A helicoidal surface in three-
dimensional Euclidean space, which is the sur-
face of revolution of atractrix.

directed set A set D with apartial order <,
suchthatforall a, b € D thereexistsan element
ce Dsothata <candb < c.

directrix ~ Thepolar, with respect to therecip-
rocating circle of a conic section, of the center
of thereciprocal circle of the conic section; this
applies when the conic section is regarded as
the reciprocal of acircle. Alternatively, if the
conic section is regarded as a curve generated
by a point moving in the plane such that the ra-
tio of its distance from a fixed point to a fixed
line remains constant, then the directrix of the
conic section is that fixed line.

directrix of Wilczynski ~ Two straight lines
associated with anormal framein projectivedif-
ferential geometry.

Dirichlet convolution ~ The arithmetic func-
tion fxg definedby (f*g)(n) =, f(d)g(3),
where f and g are arithmetic functions, and d
ranges over the divisors of n. (Seearithmetic
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function.) For example, if f = ¢, the Euler
phi function, and g = t, the number of divisors
function,

(¢ x 7)(10)

= ¢ (D1 (10)+9 ()T (9)+¢ (9T (2)+¢(10)7(1)
= 18 .

In fact, ¢ * © = o, the sum of divisors func-
tion. The Dirichlet convolutionis also called
the Dirichlet product.

Dirichlet inverse  TheDiri chlet inverseof an
arithmetic function f isafunction f~1 suchthat
theDirichlet convolution fx f~1 = I, theiden-
tity function. (Seearithmeticfunction, Dirichlet
convolution.) A function f has a Dirichlet in-
verseif andonly if f(1) # 0. Whenitexists, the
inverse is unique. For example, i, the Mobius
function, and u, the unit function, are Dirichlet
inverses of one another.

Dirichlet multiplication ~ The operation un-
der whichthe Dirichlet convolution of two arith-
metic functions is computed. It is commutative
and associative. In fact, the set of arithmetic
functions f such that (1) # 0 forms a group
under this operation. See also Dirichlet convo-
lution.

Dirichlet product  SeeDirichlet convolution.

discrete linear ordering
< onaset A such that

(i.) every element x € A that has asuccessor
(i.e, anelement y € A such that x < y) has
an immediate successor (i.e., thereexistsz € A
such that z isasuccessor of x and there does not
existy € Awithx < y < z), and

(ii.) every element x € A that has a prede-
cessor (i.e, anelement y € A suchthat y < x)
has an immediate predecessor (i.e., there exists
z € A suchthat z isapredecessor of x and there
doesnot existy € A withz < y < x).

The usual ordering < on the set N of natural
numbersis discrete.

A linear ordering

discrete topology  The topology on a set X,
consisting of all subsets of X. That is, every
subset isopenin X.
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disjoint sets  Two sets X and Y which have
no common elements. Symbolically, X and Y
aredigoint if

XNnYy=4¢.

disjunctive normal form A propositional
(sentential) formula of the form

n m;
VA

i=1\,j=1

(All/\"‘/\Alml)v"'V
(Anl/\"'AAnmn)a

whereeach A;;, 1 <i <n,1 < j < my,is
either a sentence symbol or the negation of a
sentence symbol. Every well-formed proposi-
tional formulais logically equivalent to one in
disjunctive normal form.

For example, if A, B, and C are sentence
symbols, then the well-formed formula ((A —
B) — C) islogically equivalent to (A A B A
C)V(AA=BAC)V(AA=BA=C)V (mAA
BAC)V (=AA—=BAC),whichisaformula
in disjunctive normal form.

distance  Part of the definition of a metric
space M. The distance function on M, d :
M x M — R, must be nonnegative-valued
and satisfy (i.) d(P1, P2) = 0if and only if
Py = Py, (ii.) d(P1, P2) = d(P2, P1), and
(iii.) d(P1, P2) + d(P2, P3) > d(P1, P3) for
al Py, P, P3 € M. Then the distance between
two points P; and P2 isd(P1, P2). Wemay then
al so definethe distance between any two subsets
S and T of M to bethe greatest lower bound of
theset {d(s,7):s € S,t € T}.

Inthree-dimensional Euclidean space, thedis-
tance function is given by

d((x1, y1, 21), (x2, ¥2, 22))

= \/(xz —x1)?+ (y2— y1)? + (22 — z22)2.

distance function A functiond : X x X —
R, where X is atopological space and R isthe



division algorithm

real numbers, which satisfiesthefollowing three
conditions:

(i.) d(x,y) > 0,andd(x, y) = 0if and only
if x = y;

(i) d(x,y) = d(y, x); and

(iii.) d(x, y) +d(y,2) = d(x, 2).
This last condition, known as the triangle in-
equality, generalizes the principle of plane ge-
ometry that the length of any side of atriangle
is not longer than the sum of the lengths of the
other two sides.

division algorithm  If aandb # Oarein Z,
there exist unique integersr sothata = bg +r
and0 < r < b. A clever repeated application of
the division algorithm,known as Euclid's algo-
rithm, leads to the computation of the greatest
common divisor of the integers a and b. See
Euclidean agorithm.

Division algorithms hold in other rings, such
as the polynomials with real coefficients.

divisor  If ¢ and b are elements of aring and
there exists an element ¢ in that ring satisfying
bc = a, then b (similarly, ¢) is a divisor of
a. For example, in the ring of integers, 6 isa
divisor of 24 since 6 x 4 = 24 (and 4, 6, and
24 are al integers), while 5 is not a divisor of
24 since there is no integer ¢ so that 5¢ = 24.
However, inthering Z3s (theintegers mod 36),
5is adivisor of 24 since5 x 12 = 24 in Zzg
(alternatively, 5 x 12 = 24 (mod 36)).
dodecagon A polygon having 12 sides.
dodecahedon A polyhedron with 12 faces.
The regular dodecaherbn, the regular con-
vex polyhedron having 12 pentagonal faces, 30
edges, and 20 vertices, isone of thefive platonic
solids.

domain  For abinary relation R on two sets
X and Y, the set

dom(R) = {x : (x,y) € Rforsomey e Y}.
Commonly, therelation R isafunction f, R =
{(x,y) : y = f(x)}, and the domain of the

function f is the domain of the relation R, in
this case. Seerelation.
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double angle formulas  The trigonometric
identities sSin20 = 2sin# cosh and cos26 =
1—2sin?6.

dual  The dual of a concept represented by
adiagram is the diagram in which the vertices
are the same, but al arrows are reversed. See
diagram.

dual bundle
tion

Given abundle &, with projec-

n:E—> B,
the dud bundle £* of & hasthe projection

7 :E — B,

with E' = U,epln 1 (p)]*, where [x~(p)]*
denotes the dual space of 7 ~1(p), and 7’ takes
each [x~(p)]* to p.

dual category Thedual of acategory C (also
known as the opposite of C) isthe category C°P
which satisfies the following properties:

(i.) Obj(C?P) = Ob(C);

(| | ) HomCop (A s B) = Homc (B, A)
Composition of morphismsin C° is defined by
g7 fF = (fg)P. Seecategory.

dual complex  The set of dual cells of sim-
plices of acomplex. More specifically, consider
asimplicial complex C. Let C’ be the barycen-
tric subdivision of C and, for any g-simplex o
of C, let C (o) denote the union of al (n — ¢)-
simplices (n being the dimension of the mani-
fold) of C’. Thentheset C* = {C(0) : 0 € C}
isthe dual complexof C.

dual convex cone Given aconvex cone C C
R", theset {x € R" : (x,y) < Oforadl y € C}.
Here (x, y) denotes the inner product of x and
y.

Dupin indicatrix If M is asurface in RS,
and P isapoint in M, then a plane paralel to
the tangent plane to M at P and very close to
thetangent planewill intersect M inacurvethat
is approximately a quadratic curve. The Dupin
indicatrix is a quadratic curve that is similar to
this curve of intersection. If the principal cur-
vatures x1 and k2 of the surface at P are both
positive, then the Dupin indicatrix is given by



dyadic compactum

the ellipse k1x2 + koy2 = 1. If k1 > 0 > &>,
then the Dupin indicatrix is the pair of hyper-
bolas k1x2 + kpy2 = +1. When one of the
principal curvaturesis 0, the indicatrix isa pair
of parallel straight lines.

duplication of cube  One of the “Three Fa
mous Greek Problems” from the classical Greek
geometers. In this problem, acubeisto be con-
structed with double the volume of agiven cube.
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It can be proved that this construction isimpos-
sible using a straight edge and compass alone.

dyadic compactum  Let X be the discrete
space with two points. The infinite product of
copies of X, with the product topology, is the
dyadic compactum It is a compact, uncount-
able, totally disconnected, Hausdorff space,
homeomorphic to the Cantor set. SeealsoCan-
tor set.



Eilenberg-Steenrod Axioms

E

eccentric angle  For an ellipse, the angle 9,
wherethe ellipse is described parametrically by
the equations x = a cosf, y = bsing. Simi-
larly, the eccentric angle at (x, y) for a hyper-
bola described parametrically by the equations
X =asecp,y =btang is¢.

eccentric circles (1) For an ellipse, the cir-
cles centered at the center of the ellipse with
diameters equal to the lengths of the major and
minor axes of the ellipse.

(2) The two eccentric circles of a hyperbola
are those with center at the origin of the hyper-
bola, and with diameters equal to the lengths of
the transverse and conjugate axes of the hyper-
bola.

eccentricity ~ For a conic section, the ratio
%, when the conic section in question is re-
garded as the reciprocal of a circle with radius
r and center A with respect to the circle having
center O. Alternatively, if the conic section is
regarded as a curve generated by a point mov-
ing in the plane such that theratio of itsdistance
from a fixed point to a fixed line remains con-
stant, then the eccentricity of the conic is that
distanceratio.

effective  Informally, the term effectiveis of -
ten used as in the definition of effective pro-
cedure, as a synonym for “algorithmic”. For-
mally, the term effective is synonymous with
computable, or recursive. See effective proce-
dure, computable, recursive.

effectively enumerable A set A of natura
numberssuch that thereisan effective procedure
which, when given anatural number ., will out-
put 1 after finitely many stepsif n € A and will
run forever otherwise. Alternatively, A is effec-
tively enumerable if there is an effective proce-
durethat liststheelementsof A. In other words,
for an effectively enumerable set A, if n € A,
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one will find out eventually, but if n ¢ A, then
one will never know for sure.

For example, the set of all natural numbersn
suchthat thereexistsaconsecutiverun of exactly
n 5sinthe decimal expansion of  iseffectively
enumerable.

This notion is intuitive; the corresponding
formal notion is recursively enumerable, also
known as computably enumerable. See recur-
sively enumerable.

effective procedure  An effective procedure
(or algorithm) is afinite, precisely given list of
instructions which is deterministic; i.e., at any
step during the execution of the instructions,
there must be at most one instruction that can
be applied. This notion is intuitive for a corre-
sponding formal mathematical notion. Seecom-
putable, recursive.

Eilenberg-Steenrod Axioms  Let 7 beacat-
egory of pairsof topological spacesand continu-
ous maps and let A denote the category of Abel-
ian groups. Suppose we have the following:

(i.) A functor H, : T — A for each integer
p = 0, whose value is denoted H, (X, A). If
f :(X,A) — (Y, B) isacontinuous map, let
(f+)p denote the induced map from H,(X, A)
to H,(Y, B).

(ii.) A natural transformation

3, : Hy(X, A) = H,_1(A)

for eachinteger p > 0, where A denotesthe pair
(A, 9).

These functors and natural transformations
must satisfy the following three axioms from
category theory. All pairsarein 7.

Axiom 1. If i istheidentity, then (i,), isthe
identity for each p.

Axiom 2. ((k o h)x)p = (ks)p o (h) p.

Axiom 3. If f : (X, A) — (Y, B), then the
following diagram is commutative:

Hy(X,A) Y H,(Y, B)
op | op |
Hp—l(A) ((f\i)*)p Hp—l(B) )

The Eilenberg-Steenrod axioms are the fol-
lowing five axioms:
Exactness Axiom. The sequence

( (

> Hy(A) iiszp(X) ”_*))”H,,(X, A)



elementarily equivalent structures

3
PH,_1(A) — ...
—_—

isexact,wherei : A — Xandrw : X — (X, A)
are the inclusion maps.

Homotopy Axiom. If h and k arehomotopic,
then (hy), = (ki) for each p.

Excision Axiom. Given (X, A), let U be
an open subset of X such that U C IntA. If
(X\U,A\U)isin A, thentheinclusion (X \
U, A\ U) — (X, A) induces an isomorphism

Hy(X\U, A\U) ~ Hy(X, A) .

Dimension Axiom. If P isaone-point space,
the H,(P) = {0} for p # O and Ho(P) >~ Z.

Axiom of Compact Support. If z €
H,(X, A), thereisapair (Xo, Ao) in7T with Xg
and Ag compact, such that z is in the image of
the homomorphism H,(Xo, Ao) — H,(X, a)
induced by theinclusion (Xg, Ag) — (X, A).

Any theory that satisfiestheseaxiomsiscalled
a homology theory on 7. (See homology the-
ory.) Thefirst homology theory was defined for
the category of compact polyhedra. Later sev-
eral other homology theories, such as singular
homology, were defined. Eilenberg and Steen-
rod then showed that the above axioms com-
pletely classified the homology groups on the
class of polyhedra. There are also similar ax-
iomsfor cohomology theory, except for the Ax-
iom of Compact Support.

elementarily equivalent structures Two
structures A and B in the language L such that,
for every sentence ¢ of L, A = ¢ if and only
if B = ¢; thatis, ¢ istruein A if and only if
itistruein B. Elementary equivalence (written
A = B) expresses the property that L cannot
distinguish between the structures A and B.

elementary diagram  The theory of all sen-
tences which hold in amodel A, using an extra
constant symbol for each element of A. More
precisely, let A beamodel inthelanguage L, and
let L 4 bethe expansion of L which adds anew
constant symbol ¢, for eacha € A. Then the
elementary diagram of A isthe set of all Ly4-
sentences which are true in the model A with
each ¢, interpreted by a.

elementary embedding  Let £ be afirst or-
der language, and let A and B be structures
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for £, where A and B are the universes of A
and B3, respectively. An elementary embedding
of A into B is an embedding 2 of A into B
with the property that for every well-formed for-
mula ¢ with free variables vy, ..., v, and ev-
ery n-tupleas, ..., a, of lementsof A, if =4
play, ...a,], then =g ¢lh(ay), ..., hiay)].
See embedding, satisfy (for the definition of the
notation used here).

elementary substructure  Let £ be a first
order language, and let A and B be structuresfor
L, where A isthe universe of A. The structure
A isan elementary substructure of B if

(i.) Aisasubstructure of 13, and

(ii.) for al well-formed formulas ¢ with
freevariablesfromamong vy, ..., v, and al n-
tuples as1,...,a, of elements of A, if
Eaola, ..., a,], then =g ¢las, ..., a,].

See satisfy (for the definition of the notation
used here).

If Aisanelementary substructure of 5, then
B is an elementary extension of A. The term
elementary submodel issometimessynonymous
with elementary substructure.

As an example, let £ be the first order lan-
guage with equality whose only predicate sym-
bol is <. Let Q bethe structure whose universe
is the set Q of rational numbers and where <
is interpreted in the usual way, and let R be
the structure whose universeisthe set R of real
numbers and where < isinterpreted in the usual
way. Then Q is an elementary substructure of
R.

element of aset  One of the objects x that
makes up the set X, written x € X. See set.

element of cone  Any line that lies on the
surface of a given cone and contains its vertex.

element of cylinder  Thegenerator of agiven
cylinder in any fixed position, wherethecylinder
is thought of as being generated by a straight
linemoving along agiven curvewhileremaining
parallel to afixed line.

ellipse A proper conic section formed by the
intersection of a plane with one nappe of the
cone. Alternatively, a conic section with eccen-
tricity lessthan one.



equinumerous sets

ellipsoid A surface whose intersection with
any planeiseither apoint, acircle, or an ellipse.

ellipticcone  The set of points consisting of
all the lines passing through a fixed ellipse and
afixed point not in the plane of the ellipse.

dlipticcylinder  The set of points consisting
of al the lines passing through a fixed ellipse
and parallel to a fixed line not paralel to the
plane of the ellipse.

dliptic point A point on a surface at which
the centers of curvature are all on the same side
of the surface normal; the normal sections are
all concave or all convex.

dlipticsurface  Anytypeof Riemannsurface
that can be mapped conformally on the closed
complex plane. More generaly, a nonsingular
surface E having a surjective morphism

T:E—>S

onto a nonsingular curve S whose generic fiber
isanonsingular elliptic curve.

dliptic transformation A linear fractional

transformation

az+b
cz+d

Vil d

on the complex numbers C, wherea + d isredl,
and discriminant (a + d)? — 4 is negative.

embedding (1) Let £ be afirst order lan-
guage, and let A and B be structuresfor £, with
universes A and B for A and B, respectively. A
function n : A — B is an embedding if % is
injective and

(i.) for each n-ary predicate symbol P and
everyas, ...a, € A,

(ai,...,ay) € PA
& (h(ar), ..., hiay)) € PB |

(ii.) for each constant symbal c,
h(cA) = CB,

and
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(iii.) for each n-ary function symbol f and
everyag...,a, € A,

h(fAat, ..., an) = B, ..., hiay)).

If thereis an embedding of A into B, then A
isisomorphic to a substructure of .

(2) An injective map f of a space X into a
space Y such that if Z = f(X), then the map
f': X — Z, obtained by restricting the co-
domain of f, isahomeomorphism.

empty set A set denoted ¢ which has no el-
ements.

enumeration  Anenumerationof aset Aisa
surjection f : N — A;i.e., afunction f which
has domain N and range A. Such a function
is caled an enumeration because it “lists’ the
elements of A. An enumeration need not be an
injection (i.e., one-to-one), nor list the elements
of A inany particular order.

equal geometric figures  Two figures such
that one can be moved coincident with the other
viaatransformation.

equal sets  Two sets A and B which havethe
same elements; that is, if for all x, x € A if
and only if x € B. Informa ZF (Zermelo-
Fraenkel) set theory, thisis called the Axiom of
Extensionality.

equiangular polygon A polygon whosein-
terior angles all have the same measure.

equiangular spiral A spira given by the po-
lar equationr = ¢*?, wherek isaconstant. Also
known as the logarithmic or exponential spiral,
or the spiral of Bernoulli.

equidistant A set of objects such that any
pair of objects in the set is the same distance
apart as any other pair of objectsin the set.

equilateral A figure with sides, all of which
have the same length.

equilateral triangle
three sides congruent.

A triangle having all

equinumeroussets  Two sets A and B such
that thereisabijection, or one-to-onecorrespon-



equipollent sets

dence, between them; i.e., there is a function
f : A — Bsuchthat f isboth injective and
surjective. For example, if N denotes the set of
natural numbers, Q denotes the set of rational
numbers, and R denotesthe set of real numbers,
then N and Q are equinumerous, while Q and R
are not equinumerous.

equipollent sets  Two sets A and B which
have abijection f : A — B between them.

equivalent basesfor atopological space  Let
X beatopological space. ThebasesBand B’ are
equivalent if they generatethe sametopology on
X. That is, for al B € B, if x € B then there
exists B’ € B’ sothat x € B’ C B. Conversely
foral B’ € B/,if x € B’ thenthereexistsB € B
sothatx € B C B'.

equivalent sets  Two sets A and B such that
there exists a bijection f : A — B.

Erlangen Program The name given to a
method for studying the geometry of a space
X.

Initiated by Felix Klein, the program pro-
posed a study of the geometric properties of a
space X that remain invariant under a specified
group of one-to-one continuoustransformations
of the space.

For example, the geometry of the Euclidean
plane can be described by the group of rigid mo-
tions of R? that take congruent figures to one
another.

ecribed circle of a triangle A circle tan-
gent to one side of the triangle as well asto the
extensions of the other two sides.

Euclidean  Satisfying the postulates of Eu-
clid's Elements.

Euclidean algorithm A method for deter-
mining the greatest common divisor of two
nonzero integers using repeated application of
the division algorithm. See division algorithm.

To find ged(10, 46), begin by using the divi-
sion algorithm to determine the remainder ob-
tained when 44 is divided by 12:

46 = 4(10) + 6.
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Next, repeat the division algorithm with 10 and
6 (the dividend and remainder from above):

10 =1(6) + 4.

Thisprocedure (repeating thedivision algorithm
with the previous dividend and remainder) isre-
peated until a0 remainder is obtained (note that
thisis guaranteed to occur eventually, since the
remainders are necessarily decreasing). To con-
tinue the illustration, repeat the division algo-
rithm with 6 and 4 to obtain,

6=1(4) +2,

then apply the division algorithm one moretime
to get
4=2(2)+0.

The last nonzero remainder will always be the
greatest common divisor of the two original in-
tegers.

To illustrate the algorithm more succinctly,

46 = 4(10) + 6
10 =1(6) + 4
6 =1(4)+2
4 =22+0

As 2 isthelast nonzero remainder, we conclude
that gcd(10, 46) = 2.
Also known as Euclid’s algorithm.

Euclidean geometry Ordinary plane or
three-dimensional geometry. More generally,
it can refer to any geometry in which each
point is uniquely described by an ordered set
of n numbers, the coordinates of the point, and
where the distance d(x, y) between two points

x=(x1,...,xppandy = (y1,..., yn) isgiven
by d(x, y) = /2 2{_1 (i — xi)2.

Euclideanplane Two-dimensional Euclidean
space, inwhich each point isuniquely described
by an ordered pair of real numbers (x, y), and
distancebetween points P; = (x1, y1) and P> =
(x2, y2) isgiven by

d(PL P2) = [ (r2 = 202 + (y2 — y0? |

Euclidean polyhedron In R%, a solid
bounded by polygons. Moregenerally, the set of



Euler's summation formula

points belonging to the simplices of aEuclidean
simplicial complex in R”.

Euclideanspace A spacethat hasaEuclidean
geometry. See Euclidean geometry.

Euler characteristic  Let K beasimplicia
complex of dimension n and let «,, be the num-
ber of simplices of dimension m. Then the
Euler-Poincaré characteristic, x(K), of K is
defined by:

> D"

m=0

x(K) =

Themost common version of the Eul er-Poincaré
characteristic occurs in the case where K has
dimension two. If we let V be the number of
vertices, E bethe number of edges, and F bethe
number of facesof K,then x(K) = V—E+F.

The Euler-Poincaré characteristic is an in-
variant of the complex; that is, it isindependent
of the triangulation of the complex K.

If B, isthe pth Betti number of K, that is
Bp = rankHp(K)/Tp(K) where T,(K) is the
torsion subgroup of H,(K), then

n

X(K) =Y (=D?B,.

p=0

Euler phi function  Thearithmetic function,
denoted ¢, which, for any positive integer n, re-
turnsthe number of positiveintegerslessthan or
equal to n which are relatively primeto n. (See
arithmetic function.) Thatis, ¢(n) =#{i : 1 <
i <nand(i,n) = 1}. For example, ¢(6) =
2, $(13) = 12. Thevalueof ¢ (n) isevenfor all
n > 1. Itismultiplicative; its value at a prime
power is given by ¢ (p') = p'~L(p — 1). Itis
also called the totient function.

Euler-Poincaré class  Given an orientable
vector bundle &, with base space B, on R", the
primary obstruction in H" (B; Z) for construct-
ing a cross-section of the associated (n — 1)-
sphere bundle. The Euler-Poincare class of a
manifold isthat of its tangent bundle.

Euler-Poincaré formula  See Euler charac-

teristic.
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Euler product If f isamultiplicative func-

tion (areal or complex valued function defined

on the positive integers with the property that if

ged(m, n) = 1, then f(mn) = f(m) f(n)) and
(e.¢]

the series >~ f(n) converges absolutely, then
n=1

> s = ]_[(l+f(p)+f(p2)+~~) ,

n=1

where the product istaken over all primes. This
product is called the Euler product of the series.

If f is completely multiplicative (f (mn) =
f(m) f(n) for al m, n), inwhich case f(p*) =
f(p)¥ for each k and p, then the Euler product
above can be simplified using our knowledge of
geometric series and we have

Zf(”) 1_[1 f(p)

Euler product formula  The Euler product
for certain Dirichlet series. See Euler product.

For example, using the Euler product (with
f(n) = 1foral n), wecan expressthe Riemann
zetafunction as a product. Namely,

co =TT (2- i)l

A
» p
for al rea numberss > 1.

Euler'scriterion  Let p bean odd prime. If
p isnot adivisor of the integer a, then a isa

quadratic residue of p if and only if a"7 isone

-1
more than amultiple of p (note that a7 isa-
ways either one more or onelessthan amultiple
of p by Fermat’s Little Theorem).

Euler’'ssummation formula A formulathat
specifies the error involved when a partial sum
of an arithmetic function is approximated by an
integral. Specificaly, the formula states that
if @ and b are rea numbers with @ < b and
f is continuously differentiable on the interval



Euler’'s Theorem of Polyhedrons

[a, b], then

b
Y fy = /f(x)dx

a<k<b

b
+/ [ = [x]) dx

+ @G- 16D fb)
—(a—la])f(a).

Here, [x] denotes the greatest integer less than
or equal to x (the so-called greatest integer func-
tion).

The Euler-Maclaurin summation formulais
aspecia case of Euler’s formulawhen a and b
areintegers. Namely,

b b
dofk = /f(x)dx
k=a a

b 1
+/ Fleoe —[x]— E)dx

+}() }(b)
o /@ =570

Euler's Theorem of Polyhedrons  For Eu-
clidean space, thistheorem statesthat V — E +
F = 2for any simple polyhedron, where V =
number of vertices, E = number of edges, and
F = number of faces in the polyhedron. This
theorem may be generalized to statethat, for any
finite CW complex, ag — a1 + a2 = 2, where
«; = number of i-cells of the CW complex.

exact functor A diagram

0—>A’—f>B—g>C—>O

in the category of modulesisexact if f isinjec-
tive, g issurjective, andthekernel of g isequal to
theimage of f. An exact functor is an additive
functor F : C — D between categories of mod-
ules satisfying the property that the exactness of
the diagram

f

0—sA-LB-S5Cc—0

implies the exactness of either

0— FA) 2 rpy 2% Fie) — 0
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or

0— F o) X8 rey Y Fa) — 0,

depending on whether F is covariant or con-
travariant, respectively. See diagram, additive
functor, covariant functor.

exact sequence of groups A finite sequence

of groups
A0f0A1f1A2f3 fnflAn_lfn A,
— — — —

isexact if Im(fi—1) = Ker(f;) fori = 1,2,
o,n—1.
An infinite sequence of groups

iz, ft—lAifiAHlfiHm

— -

isexact if Im(fi_1) = Ker(f;) fordli e Z.

A short exact sequence of groups is an exact
sequencel - A - B — C — 1, wherel
denotes the trivial group, i is injective, and =
is surjective. In this case we say that B is an
extension of A by C.
existential quantifier ~ See quantifier.
existential sentence  Let £ be afirst order
language and let o be a sentence of £. The
sentence o isan existential sentenceif it hasthe
form Jvy1 ... Jv,a, Where o is quantifier-free,
for somen > 0.

expansion of a language Let £1 and £»
be first order languages. The language £ is
an expansion of £ if £1 C Ly; i.e, L2 has
all the symbols of L1, together with additional
predicate symbols, constant symbols, or func-
tion symbols.

Let £ beafirst order language, A a structure
for £,andlet X € A, where A isthe universe of
A. Theexpansion Ly isthe expansion obtained
from £ by adding a new and distinct constant
symbol ¢, foreacha € X.

expansion of astructure Let £4 and £ be
first order languages such that £, is an expan-
sion of £1, and let A be astructure for £1. An
expansion of 4 to £, givesinterpretationsin A,
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the universe of A, of the additional predicate,
constant, and function symbolsin £, whilethe
interpretationsin A of the symbolsin £1 remain
the same.

Let £ beafirst order language, A astructure
for £, and let X C A, where A isthe universe
of A. The expansion Ay isthe expansion of A
to Lx by interpreting each new constant symbol
cq Of Lx,foreacha € X, by a;i.e, cfx =a.
This expansion is often denoted by (A, a).cx.
See also expansion of alanguage.
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extension  See substructure.

extensionof amapping Supposethat A C X
andthat f : A — Yisamap. ThenF : X —» Y
isanextension of f if therestrictionof Fto A is
equal to f; that is, F(a) = f(a) fordl a € A.

extreme point A point of a convex set in
Euclidean space which is not the midpoint of
astraight line joining two distinct points of the
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F, set A countable union of closed sets. See
Gs Set.

face A boundary polygon of a Euclidean
polyhedron. More generdly, an (n — 1)-
dimensional subspace F of a convex cell C in
n-dimensional affine space A" such that F is
the intersection of the boundary of C with an
(n — 1)-dimensional subspace of A”.

faceangle  Anangle between two edges of a
polyhedron that share a vertex.

factor of integer  Theinteger b isafactor of
the integer a if there exists an integer ¢ so that
a = be. For example, 8 is afactor of 24 since
24 = 8 x 3, but 8isnot afactor of 36 sincethere
isno integer ¢ where 8¢ = 36. See also divisor.

family A family of setsisafunction from an
index set A to the set of subsetsof aset X whose
valueat o € A isdenoted by X, . Although the
function can be denoted in the usual way as a
set of ordered pairs {(«, X,) : @ € A}, itis
completely specified by {X, : o« € A}.

Fareyarc Foragivenpositiveinteger n, con-
struct the Farey series F,, of order n, that is, the
ascending sequence of rational numbers 7 be-
tween 0 and 1 with the property that 0 < a <
b < n and GCD(a, b) = 1. Next, determine
the mediants of all consecutive elements of F,,.
(See mediant.) A Farey arcisan interval of the
form (p, q), where p and ¢ are consecutive me-
diants. Theseintervals are usually visualized as
arcs lying on the circle of circumference 1 on
which the number x is represented by the point
P, lying x units counterclockwise from O (the
“bottom” of thecircle). Under theidentification
0 = 1 on this circle, we also include the arc

4+, =) which runs from the “last” mediant
to thefirst. Each of these arcs contains exactly
one member of F, The collection of Farey arcs
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of order n iscalled the Farey dissection (of order
n) of the circle. See also Farey dissection.

Farey dissection  The Farey dissection of or-
der n isthe collection of Farey arcs of order n.
See also Farey arc.

Farey sequence If n is a positive integer,
the Farey sequence of order n (denoted by F,,)
is the sequence of rational numbers, listed in
increasing order, whosedenominator isnolarger
than n. For example,

-2 -1012
Astoerrrey)

-3 -10 1132
estegrrerer)
Fy=(. 2 -t-tol1214 |

'3'2'3'1'3°2°3° 13"
The Farey sequences can be used to make ratio-

nal approximations.

Fermat number A number of theform F,, =
22" + 1, where n is a nonnegative integer. For
example, F3 = 257. The Fermat numbers
are named after Pierre de Fermat, a 17th cen-
tury lawyer and amateur mathematician, who
conjectured that all F,, are prime. The inte-
gers F,, n < 4, arein fact prime, but no other
prime Fermat numbers are known. All F,, with
5 < n < 27 (except n = 24) are known to be
composite.

fiber Any f~1(y)fory e Y,wheref : X —
Y (thatis, (X, Y, f))isafiber space. Sometimes
spelled fibre. See fiber space.

fiber bundle A fiber bundle (over aspace X)
isafibration f : F — X, namely a continuous
surjective map such that X can be covered by
open sets U,, over which the fibration is equiv-
aent to the trivial one, the second projection of
the Cartesian product Y x U, — U,, for Y a
suitable space.

fiber product In complete generality, the
category-theoretical product X x ¢ Y of X with
Y,where X, Y, and S areobjectsinacategory C,
and X and Y (with given morphismes) arethought
of as objectsin the category C/S. Here the cat-
egory C/S has as its objects all morphisms to
S. A morphisminC/S from f : X — Sto
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g :Y — Sisany morphism A in C from X to
Y suchthat f = g o h. Sometimes spelled fibre
product.

fiber space A triple consisting of two topo-
logical spaces X and Y, and a continuous map
f : X — Y, such that, for any cube I" =
{(x1,...x,) : 0 < x; < 1}, any mapping ¢ :
I" — X, and any homotopy &, : I" — Y with
f o ¢ = hg, thereisahomotopy ¢, : I" — X
with ¢g = ¢ and f o ¢; = h, for al t. Some-
times spelled fibre space.

fiber sum  Given two objects X and Y ina
category C, thefiber product inthedual category
C° of these two objects over another object S.
Sometimes spelled fibre sum. Seefiber product.

Fibonacci sequence  Therecursive sequence
{fn} =1{1,1,2,3,5,8, ...} defined by theini-
tial conditions fo = f1 = 1 and the recursive
equation f,+1 = fu+ fu—1. Themathematician
L eonardo de Fibonacci originally devel oped this
sequence to model the so-called “Rabbit Prob-
lem”: Supposethat rabbitsmatureinonemonth,
that the gestation period for rabbits is also one
month, that a female rabbit aways gives birth
to a breeding pair of rabbits, and that rabbits
never die. If amaleand femalerabbit areleft on
an uninhabited island at birth, how many pairs
of rabbits will there be after a given number of
months?

Initially, there is one pair of rabbits (we let
fo denote the number (1) of pairs of immature
rabbits at the end of the “Oth” month). At the
end of the first month, the rabbits have matured
and are able to reproduce (after a gestation pe-
riod of one month, the female will give birth) so
that f1 = 1, aswell. At the end of the second
month, thefemal erabbit hasgivenbirthto apair
of rabbits, so f, = 2. At the end of the third
month, the new pair of rabbits has just matured
and the first pair gives birth to another pair of
rabbits. Thus, f3 = 3. At the end of the fourth
month, both the origina pair and the first pair
of offspring give birth to pairs of rabbits, so that
fa = 5. Itisleft to the reader to show that the
nthterm of the Fibonacci sequence providesthe
number of pairs of rabbits which are aive at the
end of the nth month.
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filter (1) Afilter onaset S (orinP(S))isa
collection F of subsetsof S suchthat (i.) S € F,
(i) A,B € FimpliesANB e F,forall A,
Band (iii.) Ae Fand A C BimpliesB € F,
forall A, B. A proper filter does not contain the
empty set. For example, if S isany infinite set,
the Fréchet filter on S is the set of all cofinite
subsets of S. The Fréchet filter is a proper fil-
ter. Another important example of aproper filter
is the club filter on some uncountable cardinal
number «. The club filter on « is the set of all
club subsets of «.

(2 If (B,Vv,A,~,10) is aBoolean alge-
bra, 7 € Bisafilter in Bif (i) 1 € F, (ii)
a,b € Fimpliesa nb € F, fordl a, b, and
(iila e Fanda Ab = a impliesb € F, for
al a,b. For example, (P(N),U,N, ~,N, &)
is a Boolean algebra, and the set of al cofinite
subsets of N is afilter in this Boolean algebra.

(3)If (P, <)isapartialy ordered set, 7 € P
isafilterin P if (i.) foral a, b € F,thereexists
¢ € Fsuchthat ¢ < aandc < b, and (ii.) for
dla e Fandalx € P,x <a implies x € F.

filter in apartial order A nonempty subset
G of apartial order (P, <) such that any two
elements of G are compatible in G and G is
closed upwards. That is, for any p and ¢ in
G, thereisanr € Gwithr < pandr < ¢q
(compatibility), and for any p € G,if g € P
with p < ¢, then g € G (closed up). Filters
capture large elements in a partial order in the
same way that ideals capture small elements.

final object Anabject F inacategory C with
the property that, for any object X in C, there
exists aunique morphism g € Homg (X, F).

finite cardinal A natural number, regarded
as acardina number.

finitecharacter A set A (of sets) is of finite
character if A # ¢ andfor dl sets X, X isin A
if and only if every finite subset of X isin A.

For example, let A be the collection of all
sets that contain pairwise disjoint subsets of N.
Then A has finite character.
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finite continued fraction A real number of

theform

ap +

ai +
1T ot

agt——m———
1

an—1ta,;

where each a; is areal number. If each g; is
an integer, the fraction is said to be a simple
finite continued fraction. It can be shown that
area number isrationa if and only if it can be
expressed asafinite (simple) continued fraction.
For example,

10 1
27 241

As an dlternative to this cumbersome notation,
the finite continued fraction decomposition of a
number isoftenabbreviated [ag; a1, a2, . .. , a,],
sothat 29 isdenoted [0; 2, 1, 2, 3.

finite intersection property  The property
of acollection C of subsets of aset X that, for
every finitesubcollection {C1, ..., C,} of C, the
intersection C1 N - - - N C,, is non-empty.

finiteordinal A natural number, regarded as
an ordinal number. See ordinal.

finite set A set that contains only finitely
many elements. Equivalently, a set whose car-
dinality isanatural number.

first category  Theclassof topological space
that is the countable union of nowhere dense
subsets. Such aspaceisalso called meager. See
nowhere dense subset, second category space.

first countablespace A topological space X
that has a countable basis at each point x € X.
That is, for each x € X there is a countable
collection B, of neighborhoods of x such that if
U C X isan open set containing x, then there
isaset B € B, withx e BC U.

first fundamental form  The quadratic form
defined on tangent vectors to a surface M in
Euclidean space R? by taking the square of the
length of the vector. If a portion of the surface
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is parameterized by
X(u,v) = (x(u, v), y(u, v), z(u, v)) ,

then a tangent vector can be represented as a
Iineard combination of thedvectors X, =
d d _(dx dy d
(_;7 ﬁ’ ﬁ) and Xl) - (ﬁa dv’ d_i) Let
E(u,v) =Xy - Xy, Fu,v) =Xy - Xy

and
Gu,v) =X, Xy .

Then any tangent vector a X, + b X, haslength
given by v/Ea2 + 2Fab + Gb2. Thefirst fun-
damental form isclassically given in the form:

ds® = Edu® + 2Fdudv + gdv2 .

first order language A first order language
L for first order logic consists of the following
alphabet of symbols:

(i.) () (parentheses)

(ii.) =, — (logical connectives)

(iii.) aninfinitelist of variables v1, vo, ...

(iv.) asymbol = for equality (which is op-
tional)

(v.) aquantifier v

(vi.) predicate symbols: for each positive
integer n, a particular, possibly empty, set of
symbols, called n-place predicate symbols

(vii.) constant symbols: a particular, possi-
bly empty, set of symbols, called constant sym-
bols

(viii.) function symbols: for each positivein-
teger n, aparticular, possibly empty, set of sym-
bols, called n-place function symbols (constant
symbols are sometimes called O-place function
symbols).

Initem (ii.), any complete set of logical con-
nectivescouldbeused. Initem(v.), theuniversa
quantifier V could be replaced by the existential
quantifier 3.

Such a language is called a first order lan-
guage because the quantifier ranges over vari-
ables only, as opposed to a second order lan-
guage, where there are two types of quantifiers.

Some examples of first order languages are
the language of set theory and the language of
elementary number theory.

Thelanguage of set theory isafirst order lan-
guage that contains equality and one two-place
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predicate €. In thislanguage, the variables are
intended to represent sets, and € is intended to
be interpreted as “is an element of ”.

The language of elementary number theory
is afirst order language that contains equality,
asingle constant symbol 0, one two-place pred-
icate <, one one-place function symbol S, and
three two-place function symbols +, -, and E.
In this language, the variables are intended to
represent natural numbers, S is intended to be
interpreted as the successor function, and 0, <,
+, -, and E are intended to be interpreted as O,
the usual ordering on the natural numbers, addi-
tion, multiplication, and exponentiation, respec-
tively.

first order logic A forma logic with sym-
bols from a first order language, rules that tell
which expressions from the language are well-
formed formul as, asemantic notion of truth (see
structure, satisfy), and a syntactical notion of
provability (see predicate calculus, proof).
Firstorder logicisalsocalled predicatelogic.

fixedpoint Letf: X — X becontinuous. A
point xg € X isafixedpoint for fif f(xg) = xo.
See Brouwer Fixed-Point Theorem.

focal property of a conic A property of a
conic section with regard to its focus or foci.
For an dlipse, this property islines drawn from
thefaoci to afixed point on the ellipse make equal
angles with the tangent at the point. For a hy-
perbola, it islines drawn from the foci to afixed
point on the hyperbola make an angle that is bi-
sected by thetangent at the point. For aparabola,
itisthelinefromthefocusto afixed point onthe
parabola makes an angle with the tangent equal
to that made by the tangent with theline parallel
to the axis of the parabola passing through the
point.

focus A point or points in the plane, corre-
sponding to a given conic section, whose role
varies depending upon the type of conic. An
ellipse may be thought of as the locus of points
in the plane whose distances from the foci have
a constant sum. A hyperbola may be thought
of asthelocus of pointsin the plane whose dis-
tances from the foci have a constant difference.
A parabola may be thought of as the locus of
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pointsin the plane whose distances from the fo-
cusandagivenline(seealsodirectrix) areequal .

foliation A family {N, : » € A} of arcwise-
connected pairwise digoint subsets covering a
given manifold M such that every point in M
has a local coordinate system (x1, ..., x") so
that each N, isgivenby x”~*+1 =constant, . . . ,
x" = constant for some 0 < k < n.

foot of perpendicular  Supposel isalinein
the Euclidean (or hyperbolic) planeand P isa
point not lying on /. Then the unique point O
lying on the line ! such that the line through P
and Q is perpendicular to/ is called the foot of
the perpendicular from P to!.

forgetful functor A functor F from a cat-
egory C to Set that assigns to each object
A €O0bj(C) its underlying set (also denoted by
A) and to each morphism f : A — BinC
the function f : A — B. Thus, the functor
“forgets’ any additional properties that the ob-
jects and morphismsin C have. For example, if
C = Grp, thenagroup A € C is mapped to the
set A and a group homomorphism f : A — B
is mapped to the function f; al group-theoretic
properties possessed by A and f are ignored.
See functor.

formal proof  See proof.

formal theory  Seetheory.

four-space The topological vector space
formed by taking the Cartesian product of four
copiesof thereal line, denoted E#, R* or R*. A
pointinfour-spaceisuniquely determined by an
ordered quadruple (a, b, ¢, d) of real numbers.

fraction If a and b are integers with b #
0, then the fraction a + b denotes the rationa
number resulting from the quotient a + b.
Fréchet filter  Seefilter.

freevariable Let £ beafirst order language.
If x isavariable and « is a well-formed for-
mula of £, then x occurs free in o (or x isa
freevariablein «) isdefined by induction on the
complexity of «, asfollows:
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(i.) If « isan atomic formula, then x occurs
freein« if x occursin .

(ii.) If = (—pB), then x occursfreein (=)
if x occursfreein 8.

(iii.) If @ = (8 — y), then x occurs freein
(B — y)if x occursfreein g oriny.

(iv.) If @ = Vu; 8, then x occursfreeinVu; 8
if x occursfreein g and x # v;.

As an example, v1 and vs occur free, while
v2 does not occur free, in

Yvo(v1 = v2 — Yvi(v1 = v3)).

Frenet frame An orthonorma frame
{T(¢), N(t), B(s)} of vectors at the point C(s)
on a given curve in R3, giving a moving coor-
dinate system along the curve. Assume C has
three continuous derivatives and that C’(t) and
C”(r) are linearly independent. The first vec-
tor, T, is the unit vector tangent to the curve,
given by % The second unit vector, N, is
the principal normal to the curve. It liesin the
plane spanned by C’(r) and C" (t), is perpendic-
ularto T, and ischosen so that it makes an acute
angle with C”(¢). The third vector, B, is the
binormal vector. It isdefinedby B =T x N.

Frenet'sformulas  Equations that relate the
fundamental geometric invariants of a curve in
Euclidean space or, more generaly, in a Rie-
mannian 3-manifold.

SupposeC (s) isacurve possessing threecon-
tinuousderivatives, parameterized by arclength.
Assume that C”(s) # 0. Then the curve hasa
Frenet frame (7', N, B) satisfying thefollowing
linear system of differential equations:

C'(s) =T(s)
T'(s) = k(s)N(s)
N'(s) = —k(s)T(s) + t(s)B(s)
B'(s) = —1(s)N(s)

Thefunction k(s) isthe geodesic curvature, and
thefunction 7 (s) isthetorsion of the curve. See
Frenet frame.

Frobeniusintegrability condition ~ Thecon-
dition that must be satisfied by a k-dimensional
distribution in an n-dimensional manifoldin or-
der for thedistribution to betangent to theleaves
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of ak-dimensional foliation. Given a manifold
M, a distribution A assigns to each point P
in M ak-dimensional subspace of the tangent
space at P. It isintegrable if the manifold is
the union of k-dimensional submanifolds, such
that the k-plane A (p) isthetangent plane of the
k-manifold through p. The Frobenius condition
saysthat if X and Y are vector fields defined in
aneighborhood of P suchthat X(Q) and Y (Q)
liein A(Q), thentheLiebracket [X, Y](Q) also
liesin A(Q). Seefoliation.

Frobenius Theorem A theorem that gives
necessary and sufficient conditions for a distri-
bution in a manifold to be tangent to the leaves
of afoliation. Given a manifold M, a distri-
bution A assigns to each point P in M a k-
dimensional subspace of the tangent spaceat P.
Itisintegrableif the manifold isthe union of k-
dimensional submanifolds, suchthat thek-plane
A(p) is the tangent plane of the k-manifold
through p. The Frobenius Theorem says that
A isintegrableif and only if, whenever X and
Y are vector fields defined in aneighborhood of
P suchthat X(Q) and Y(Q) liein A(Q), then
the Lie bracket [X, Y](Q) alsoliesin A(Q).

frustrum  The portion of a cone lying be-
tween its base and a plane parallel to the base.

full subcategory  See subcategory.

function If X and Y are sets, then afunction
from X to Y isareation f € X x Y (often
written f : X — Y) with the property that
(x,y), (x,z) € fimpliesy = z. Itissan-
dard to write f(x) = y when (x,y) € f. See
relation.

function space (1) Let X and Y betopolog-
ical spaces. The function space Y is the set
of all continuous maps from X into Y. This
space can be given several topologies, the most
common being the compact-open topology. See
compact-open topol ogy.

(2) Any topological space whose elements
are functions on some common domain.

functor  Either a covariant functor or a con-
travariant functor. 1f no description is specified,
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then the functor is assumed to be covariant. See
covariant functor.

fundamental cycle If M isacompact, ori-
entable manifold of dimension #, then the n-
dimensional homology of M isaninfinitecyclic
group. A generator of H,, (M) is afundamental
cycle. If M isapolyhedral manifold, then the
fundamental cycle in simplicial homology can
be given by the n-chain which is the sum of the
n-simplices. See homology group.

Fundamental Theorem of Arithmetic  If n
is an integer greater than 1, then n is either a
prime number or can be expressed as a product
of prime numbers, uniquely, except for order.
For example, 24 = 2 x 2 x 2 x 3and 30 =
2x3x5.

Fundamental Theorem of the Theory of
Curves A curve in Euclidean space R® is
uniquely determined up to rigid motion by its
geodesic curvature ¥ and torsion z, as func-
tions of its arc length parameter s. More pre-
cisely, given two continuous functions « (s) and
7(s) of onereal variable such that « > 0, and
given initial values X (0) and X’(0) in R® with
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|X'(0)| = 1, thereisaunique curve X (s) whose
curvatureisx andtorsionist. x isusualy taken
to be continuously differentiable and X then has
three continuous derivatives.

Fundamental Theorem of the Theory of Sur-
faces Let S be asurfacein Euclidean three-
space parameterized by

X(u,v) = (x(u,v), yu,v), z(u,v)) ,

where x, y, and z are assumed to have con-
tinuous third-order partial derivatives. Then S
possesses afirst fundamental form g and a sec-
ond fundamental form L satisfying the Gauss
equations and the Codazzi-Mainardi equations.
The fundamental theorem of the theory of sur-
faces states the converse, namely, if g(u, v) is
a positive definite symmetric tensor (i.e., anin-
ner product), and L (u, v) isasymmetric tensor,
with g having continuous second derivativesand
L having continuous first derivatives, and if g
and L satisfy the Gauss and Codazzi-Mainardi
equations, then they (locally) determine a sur-
face S uniquely up to rigid motion. See first
fundamenta form, Gauss equations, Codazzi-
Mainardi equations.
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G

Gs set A countableintersection of open sets.
SeeF, set.

Gauss equations A system of partial dif-
ferential equations arising in the theory of sur-
faces. If M isasurfacein R with local coor-
dinates (u1, u?), its geometric invariants can be
described by its first fundamental form
gij(ul,u?), and second fundamental form
Lij(u*,u?). The Christoffel symbols Ffj are
determined by the first fundamental form. In
order for functions g;; and L;;, i, j =1,2to
be the first and second fundamental forms of
a surface, certain integrability conditions (aris-
ing from equality of mixed partial derivatives)
must be satisfied. One set of conditions, the
Gaus equations relate the determinant of the
second fundamental form to an expression in-
volving only thefirst fundamental form (and its
first and second partial derivatives). See also
Christoffel symbols, first fundamental form.

general Cantor set A Cantor set in which
intervals of length ; are removed at stagen for
0 < o < 1. Theresulting set, C,, = N72 1y,
isaclosed set with length 1 — « which formsa
totally disconnected compact topological space
inwhich every element isalimit point of the set.
SeeCantor set.

generalized continuum hypothesis The
Statement

e = Ro+1

for al ordinals «. (Both this statement and
its negation are independent of the axioms of
Zermelo-Fraenkel set theory with the Axiom of
Choice.) Seecontinuum hypothesis.

generalized Riemann hypothesis ~ An asser-
tion concerning the zeros of functions that are
similar to the Riemann zeta function. These
functionsare called L-functions and are defined

© 2001 by CRC Press LLC

o X (1)
L(s, x) = ; P
where x isaDiri chlet character, thatis, area or
complex valued function defined on the positive
integers so that

(i) x(mn) = x(m)x(n) fordl m and n;

(ii.) thereisapositiveinteger k sothat x (n +
k) = x(n) for dl n;

(iii.) x(n) = 0if gcd(n, k) > 1.
Thegenealized Riemam hypothessconjectures
that all zerosof thefunction L(s, x) onthe“crit-
ical strip” (those complex numberss = x + iy
such that 0 < x < 1) must lie on the “critical
ling” (x = 3). Noticethat L(s, 1) = ¢(s), sothe
generalized Riemann hypothesis “agrees with”
the Riemann hypothesis. SeealsoRiemann zeta
function, Riemann Hypothesis.

General Position Theorem A name given
to a number of theorems asserting, for various
classes of maps of spaces X into spaces Y, that
such maps may be approximated by maps hav-
ing smpler structure. These “generic” maps
usually have minimum possible dimensionality
of intersections or self-intersections. A simple
example is the statement that two affine sub-
spaces of dimensions k and [ in n-dimensional
space can be perturbed so that they intersect in
a subspace of dimensionn — (k + 1).

generating curve A surface of revolution in
Euclidean space can be parameterized by

X(1,0) = (r(t) cos(9), r(1) sin(®), z(1)) ,

where r(r) > 0 and z(¢) are continuous func-
tions. Thecurveo (t) = (r(z), z(¢z)) isthe gen-
erating curveof the surface.

geodesic In a manifold with metric (non-
degenerate smoothly varying quadratic form on
each tangent space), a curve of minimal length
between two points. An example of geodesics
are arcs of great circles on a sphere.

geodesic correspondence A smooth map
¢ : S — S’ between two surfaces which takes
geodesics of S to geodesics of S’. Anisometric
mapping isautomatically ageodesic correspon-
dence put the converseis not true.
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An example of ageodesic correspondenceis
given by central projection of the hemisphere
7 =+/1—x2 — y2totheplanez = 1. Greatcir-
clearcsin the hemisphere correspond to straight
lines in the plane under this projection.

geodesic curvature If C isacurvelying on
asurface S in Euclidean space R3, parameter-
ized by unit speed, then its second derivative or
acceleration vector C” is perpendicular to the
velocity vector C’. The length of the compo-
nent of C” tangent to the surfaceisthe geodesic
curvature of the curve. It measures the amount
of bending the curve undergoes within the sur-
face, as opposed to the amount of bending due
to the bending of the surface itself.

geometric realization  Let S be an abstract
simplicial complex. If S isisomorphic to the
vertex scheme of asimplicial complex K, then
K isthe geometrt realizationof S. The geo-
metric realization of an abstract simplicial com-
plex is unique up to isomorphism.

geometry on asurface  The measurement of
lengths of curves, angles between curves, and
areas of figures lying on a surface. Thisisaso
called intrinsic geometryto distinguish it from
properties of a surface that depend on how the
surface sitsin space.

Godel number A G6dd numbering(arith-
metization) isan effectivemethod of coding non-
numerical objects by natural numbers. For ex-
ample, there is a computable bijection from the
set 7 of al Turing machine programs to the set
of natural numbers. The inverse of this bijec-
tion is also computable, so that, given a Turing
machine program, one can effectively find the
natural number assigned to it, which is called
the Godd numberof the program, and given a
natural number, one can effectively “decode” it
in order to find the Turing machine program that
correspondstoit. The notation ¢, isused to de-
notethe Turing computable partial functionwith
Godel number ¢; i.e., ¢, is Turing computable
via the Turing program with Godel number e.
Godel wasthe first to use Godel numbersin his
proof of hisIncompleteness Theorem.
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Godel settheory  ThesameasBernays-Godel
set theory. SeeBernays-Godel set theory.

great circle A circle on a sphere formed by
intersecting the sphere with a plane that passes
through the center of the sphere. If P and Q are
two points on the sphere, then a curve of least
length joining P to Q isan arc of agreat circle.
See alsogeodesic.

greatest common divisor (1) If a and b are
nonzero integers, then the greatest common di-
visor of a and b, denoted gcd(a, b) isthe largest
integer that is a divisor of both a and . For
example, the greatest common divisor of 28 and
36 is 4 (the common divisors of 28 and 36 are
+1, 42, and £4).

(2) Alternatively, in a Euclidean ring,
R, gcd(a, b) is an element (not necessarily
unique) d of R satisfying

(i.) d isadivisor of both a and b;

(ii.) if x isadivisor of a and b, then x isalso
adivisor of d.

greatest element  Given aset A with an or-
dering<on A,anelementu € Aissaidtobea
greatest elemerdf A if, foral x € A, x < u.
Note that if A has a greatest element, then it is
unique. Compare witHeast element.

greatest lower bound  Let A be an ordered
setandlet B € A. Anéement/ € A issad
to be agreatest lower boungor infimurm for B
if it isalower bound for B (i.e., for dl x € B,
[ < x) andif itisthe greatest element in the set
of al lower boundsfor B (i.e, fordl y € A, if
foral x € B,y < x,theny <I). Notethat if a
set has agreatest lower bound, then it isunique.
Compare witHeast upper bound.

group A non-empty set G with a product
map G x G —> G ((g, h) istaken to gh), an
inversemap G —> G (g istakentog1),anda
distinguished element called the identity (often
denoted 0O, 1, or ¢) satisfying ge = eg = g,
for g € G. These satisfy the relationships that
81(g283) = (g182)gzand gg L = e = g~ 1g.

Common examples include topological
groups and Lie groups.



group of symmetries

group of motions A group of length-
preserving transformations, or rigid motions, in
Euclidean n-space. A group is a hon-empty set
with abinary associative operation that contains
an identity and an inverse of each one of itsele-
ments. Therigid motionsof the Euclidean plane
aretrangdlations, rotations, reflections, and glide-
reflections.
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group of symmetries  Of afigure, a group
of motions that transform a figure into itself.
Seegroup of motions. For example, the group
of symmetries of an equilateral triangle is the
group of six elementsthat can beidentified with
the permutations of the vertices.



hexahedron

H

halfline A connectd unboundd ard proper
subseof alinein Euclidean space Also called
aray. See also closal halff line.

half plane (1) (Open Onre of the two con-
nectel ses remainirg after deletirg aline from
aplane.

(2) (Closed An open half plane together
with the deletal line. Example On the Carte-
sian plare an open haff plareisthesd {(x, y) :
ax+by—+c > 0}where(a, b) # (0,0),aandc
areconstantthecorrespondig closed half plane
isthesd {(x, y) : ax + by + ¢ > O}

half space  One of the two connectd sets
remainirg after deletirg from aspheeitsinter-
sectian with aplare throuch the cente:.

haltingproblem  Informally, thehalting prob-
lemaslsif therisan effective proceduewhich,
given an arbitrawy effective procedue and input
a naturd numbe n, answes “yes’ if that pro-
gram on input » halts ard outpus “no” othe-
wise.

Formally, thehalting se K isthese of codes
of pairs of naturd numbes (e, x) sud tha the
partid recursve function with Gédd number
e is defina on input x; i.e, Ko = {(e,x) :
@e(x) isdefined, where ¢, is the partid recu-
sive function with Godé numbe ¢. The halt-
ing s is not recursve (computable) as aset
of naturd numbers althoudn it is recursvely
(computably enumerable Anothe halting set
iIsK = {e: ¢.(e) isdefined. Thesd K isalso
computaby (recursvely) enumeral® but non—
computabé (non-recurive).

Hausdorff Maximal Principle  Every chain
in apartially orderal se can be extendal to a
maximd chain This principle is provable in
ZFC, anditisprovably equvalert to the Axiom
of Choiee ard Zorn'sLemmain ZF.
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Hausdor ff metric Let (X, d) be ametric
space If A Cc Xade > 0, let U(A, ¢€) be
the e-neighborhod of A. That is,

U(A’ E) = UHEAB(av 6)

where B(a,¢) = {x € X : d(x,a) < €}.
Let H denot the collection of all (non-empty)
closed bounde@ subses of X. If A,B € H
then the Hausdorff Metric on # is defina by
D(A, B)

=infle : ACUA,e)and B C U(B,¢)}.

Hausdor ff topological space A topological
spae X sudhthat for eat parr of distind points
x,y € X,therexist open neighborhoodU and
V of x ard y, respedwely, suhtha UNV = @.
Also calledTo-space. See separatio axioms

height (of atree)  The least ordina such
that thexth level of a given tre@ is empty. That
is, « is the first ordinal for which there is no el-
ement inT whose predecessors have order type
a. For example, iff = {{a}, {a, b}} ordered
by inclusion, then Ley(T') contains the sdu},
Lev1(T) contains{a, b}, and the height of is
two.

Equivalently, the height of may be defined
by

height(T) = sup{ordertypé{s € T : s <1}) + 1} .
teT

heptagon A plane polygon with seven sides.
A (convex)heptagon is called regular when its
sides have equal length. In that case, its ver-
tices lie on a circle and all of the edges joining
two neighboring ones are of equal length; for

example, the verticeécos@,sin %) i =
o,...,6.

hereditary property of atopological space

A propertyP of a topological spac& such that
every subspacg C X has propertyP. For ex-
ample, the property of being Hausdorff is hered-
itary, while the property of being compact is not.
hexagon A plane polygon with six vertices.

hexahedron A polyhedron with six faces.
The most familiar reguldrexahedronis the cube,



Hilbert cube

regular for a (convex) polyhedran meanirg that
all the faces are equa regular polygors ard all
the vertices belorg to the same numbe of faces.

Hilbert cube  The Cartesia produd 02, 7

of countaby many closeal unit intervals It is

homeomorpld to []°2, [0, 1] as well as the

subspace

o0
H = {(xy) € R® : Zx,§<oo}.
n=1

holomorphic function A function

f@a, o z)

that is equa to the sum of an absolutey con-
vergert power seriesin asuitabk polydisc near
ead point of itsdoman (the radius may depend
on the point):

[z =) clar,... a2t 2,

ajZO

c(ay, ... ,ay) € C. Whenn = 1, thiscondition

isequvalen to the Cauchy-Riemamequations:

ou Jdv dv ov

ox  ay 9y  ox
forz = x +iy, f(2) = ulx,y) +iv(x,y).
Examples include polynomiak in z and the ex-
ponentid function e*.

holomorphic local coordinate syssem  For

acompkx analytic manifold of dimensia n, a
biholomorphe identificatian ¢y (,) of asuitable
open neighborhod U (p) of ead point p with

the open ball of radius 1and cente the origin in

C", ¢up) : Bo— U(p).

homogeneoustopological space A topolog-
ical spae X sud that, for ead pair of points x
ard y in X, thereis ahomeomorphism /i : X —
X sudhtha h(x) = y.

homology classofamap Letf:X — Y
be continuows and let ~ denoe the homotqy
equvalene@relation The homotgy class of f
isthe equvalene class

[fl={g: X — Y :giscontinuosand g >~ f}.
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If A C X is asubspacethen the homotqy
clasof f rel Aistheequvaleneclas[f]a

={g: X —> Y :giscontinuosand g~ frel A}.

homology equivalence Let7 denoethecat-
egory of all pairs (X, A) of topologica spaces,
wherr X is identified with the pair (X, #). A
homotopy equivalence betwee the pairs (X, A)
ard (Y, B) is apair of functiors f : (X, A) —
(Y,B)ard g : (Y, B) — (X, A),suchtha go f
is homotopc to the identity mgp iy of X and
f o g ishomotopt to the identity map iy of Y.

homology group  Let n be aposiive inte-

ge, X atopologicd space and x a point in

X. Then the nth homotgy grow =, (X, x) is

definel to be the groyp of homotgy classes
of mays of the standad sphee $” to X tak-

ing a fixed bas point x of " to x. In the
ca®en = 1, thisis the fundamenthgrouy of

X (with bag point x), with concatenatio of

loops inducing the grouwp operation In dimen-
siors highe than 1, the groyp operatia turns
out to becommutaitve. Anothe way of defining
(X, x) isto take homotqy classsof mays of

[0, 1]" to X taking the bounday to x. With this

definition it is easie to defire the grouyp ope-

ation by concatenation f + g : [0,1]" —

X isdefing by: f + g(t1,12, ... ,1,) equals
fQ@t1,t2,...,t,) for0 <t < % ard it equals
gn—11 ...t ford <n <1

homology theory A homology theory on a
cakegory T of pairsof topologicdspace (X, A)
consiss of

(i.) afunctar H, from 7 to the caigory
of Abelian groups A for ead integer p > 0,
whetre the image of the pair (X, A) is denoted
by H,(X, A) and

(ii.) anatura transformation

3, : Hy(X, A) = H, 1(A)

foreadhinteger p > 0, wher A denotethe pair
(A, ¥), whichsatisfy the Eilenbeg-Steenrd Ax-
ioms. See Eilenbeg-Steenrd Axioms.

homothety  Atransformation of the Euclidean
plane to itself which takes every triangle to a
similar triangle. The homotheties of the plane



hypotenuse

form a group unde composition which con-
tains all isometries and the dilations given by

fx,y) = (ax,ay),a #0.

homotopy type of a space  Let 7 denote
the category of all pairs (X, A) of topological
spaceswher X isidentifiedwiththepair (X, 0).
The homotopy type of the pair (X, A) is the
equvaleneclass

[(X, )] ={(Y,B) : (Y, B)

ishomoty equvalert to (X,A)} .

Hopf bundle  The bundie st — $% —

52 formed as follows. Conside S2 as the unit
sphee in C? (where C denots the compkx
numbers) The sphee 52 is given by CP!, the
spa@ of compkx lines in C?, by identifying
thelinethrough the poirt (z1, z2) with the point
z2/71 in C when z1 # 0 ard identifying C with

thespheelessonepoint thecompkx linegiven
by points (0, z2) isidentified with theremaining
point on $2. The projectiin S3 — $2isgiven
by the mgp which send (z1, z2) to the complkex

line throudh (z1, z2) (thougtt of as apoint of
CP! identified with apoint in $2). Ead fiber is
homeomorphi to S*.

Using quaternios and Cayley numbes in-
steal of compkx numbersone can defineanal-
ogows bundles S —> §% and S1° — $8 with
fibers $3 and S7, respedtwely. All threebundles
are calledHopf bundles.

hyperbolic paraboloid  One of the quadratic
surfacesin R3. Since asymmetrc matrix over

the reak is congruemto one in diagon# form,

the (non-cegeneratgquadrt suifaces are clas-
sified by the sign of their eigawvalues ard the
configuratian of their points at infinity into el-

lipsoids hyperboloidselliptic paraboloidsand
hyperbolic paraboloids, thelatter having canon-
ical equatian % = ;‘—2 — Z—i for some non-zero
constarga, b, c.

hyperbolic plane A plare satisfyirg the ax-
ioms of hyperbolc geomety, which comprise
Hilbert'saxiomsof planegeomety ardthe“char-
acteristc axiom of hyperbolc geometry” for
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any line [ and point p not on /, ther are at
leag two lines on p not meetirg /. A model
of thehyperbolic planeis given by the unit disc
D = {(x,y) € R2 : x2 4+ y2 < 1}, with the
Poincaé metric ds? = %, the lines
being geodesic.

hyperboloid  One of the quadrt surfacesin
R3, like the hyperbolt paraboloid. See hypa-
bolic paraboloid Thecanonicaequatimforthe

hyperboloil of one she¢ is %; — —2 + 22 =1
ard tha for the hyperbolouﬁ of two shees is

i —2 = 1, wher a, b, ¢ are non-zero
constantsAsthe nanme suggestsonedifference
betwee the two case is tha one suffae con-
sists of one connectd componentthe othe of
two.

hyperellipticsurface A Riemam surface X,
namey acompat compkx manifold of dimen-
sion 1, which generalize the compkex torus in
the foll owing sense there exists aholomorphic
map X — P! of degree 2, with 2g + 2 branch
points where 2 — 2g is the Euler characteristic
of thetopologicad suiface X. Seecompatcom-
plex manifold compkx torus The numbe g
is called the gents of the suiface Also called
elliptic curve, in the cas of gens 1.

hyperplane Inn-dimension&(affine or pro-
jective) spae of dimensim n, asubspae of di-
mensionn — 1.

hyperplaneat infinity  Inn-dimensiondpro-

jective spaceP”, with given coordinaé system
(x0 : x1:...:x,), ahyperpla® H, typically

given by the equatia xg = 0. The complement
P"\ H canthus be identified with affine n-space
A" with coordinate(j%, .. ’;—g).

hypersurface Inaffineor projecive spacea
subsedefinal by one (nonzerg algebrat equa-
tion in the coordinates A hyperplare is an ex-

ampk of hypersurface, which is definal by one
linear equation.See also hyperplane

hypotenuse  The side of a right triangle op-
posite the right angle. It is the longest side of
the triangle.



inaccessible cardinal (weakly)

icosahedron A polyhedron with 20 faces.
Theicosahedronisoneof thefive (convex) poly-
hedra that can be regular.

ideal Let S beanonempty set and let P(S)
be the power set of S. A set I C P(S) isan
ideal on S if

iyoel

(i) foral X, Y eI, XUY e,

(iii.) foral X,Y,if X e Tand Y C X, then
Yel.

As an example, let S be the set N of natural
numbersand let 1 be the set of all finite subsets
of N. Then I isanideal on S.

identification map A continuous onto map-
ping f : X — Y such that thetopology on Y is
the identification topology; that is, U isopenin
Y if andonly if f~1(U) isopenin X. Seealso
quotient map.

identification space  An identification space
of a topological space X is a set Y endowed
with the topology induced by an onto mapping
f : X — Y. Thistopology (the identification
topology) is given by: U < Y isopen if and
only if f~1(U) isopenin X. See also quotient
space.

identification topology See identification
space.

identity function The arithmetic function,
denoted 7, which hasthevaluelwhenn = 1and
has the value Owhenn > 1, i.e, I(n) = | 1],
the floor function applied to % Itis completely
(and strongly) multiplicative. This function is
the identity under Dirichlet multiplication. See
arithmetic function, Dirichlet multiplication.

image Let f: A — B beafunction, and
let x € A. Theimage of x under f is f(x), the
unique element of B to which x is mapped by
f. Givenasubset C C A, theimage of C under
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fis
f(©) = {fx):xeC}
= {yeB:(@ExeOlf(x) =yl

imaginary axis  The y-axis, which corre-
sponds to the purely imaginary numbersin the
Argand diagram for the complex numbers,
namely the identification of x 4+ iy € C with
the point (x, y) € R?.

imbedding A one-to-onecontinuousmap f :
X — Y, between topological spaces, for which
theredtriction f* : X — f(X) toitsrangeisa
homeomorphism. Here

fX) ={yeY:IxeX (f(x) =]

and f* is required not only to be one-to-one,
onto, and continuous, but to have a continuous
inverse.

immersed submanifold  The image f(M)
of an immersion f : M — N between two
manifolds. Each pointin M hasaneighborhood
onwhich f isan embedding. However, the map
f need not be an embedding, so f (M) need not
be a manifold with the induced topology as a
subset of N, evenif f isglobaly 1-1. A simple
example is given by the immersion of the open
interval into the plane whoseimage isthefigure
6. A more complicated example is given by
viewing the torus as the quotient of the plane
by the integer lattice. Then aline of irrational
dopeismapped onto adense subset of thetorus,
which is an immersed submanifold.

inaccessible cardinal (strongly) A cardina
x which is uncountable, regular, and satisfies
the condition 2¢ < « fordl o < «, i.e, «
isastrong limit cardinal. (Any strongly inac-
cessible cardinal is weakly inaccessible since a
strong limit cardinal isalimit cardinal. The ex-
istence of strongly inaccessible cardinal s cannot
be proved in Zermelo-Fraenkel set theory with
the Axiom of Choice.) Seeregular cardinal.

inaccessible cardinal (weakly) A cardina
which is uncountable, a regular cardina, and a
limit cardinal. (The existence of weakly inac-
cessible cardinals cannot be proved in Zermelo-
Fraenkel set theory with the Axiom of Choice.



incenter of triangle

As seen in the definition of inaccessible cardi-
na (strongly), every strongly inaccessible car-
dinal is weakly inaccessible. [See inaccessible
cardinal (strongly).] If one assumes the gener-
alized continuum hypothesis, then the converse
istrue.) Seeregular cardinal, limit cardinal.

incenter of triangle  Thecenter of theunique
circlewhich can beinscribed in agiventriangle.
It is located at the intersection of the internal
bisectors of the three vertices of the triangle.

incommensurable  Two line segments XY
and XY’ such that thereis no line segment AB
with the property that each of XY and X'Y’ has
length that is an exact (integer) multiple of the
length of AB. That is, thereis no unit of mea-
sure with respect to which both segments have
integer length.

For example, the hypotenuse of an isosceles
right triangle and aleg of thetriangle areincom-
mensurable because +/2 isanirrationa number.

incompar able (elements of a partial order-
ing) If(P, <)isapartialyorderedset, x, y €
P areincomparableif neitherx < y,nory < x.

incompatible (elementsof a partial ordering)
See compatible (elements of apartial ordering).

inconsistent  Let £ be afirst order language
and let T" be aset of well-formed formulas of L.
The set ' isinconsistent if there exists a well-
formed formula « such that both « and (—«)
are provable from I (i.e,, both « and (—«) are
theoremsof I'). If " isinconsistent, then in fact
every formulaisatheorem of T'.

inconsistent axioms A set of axioms such
that there is a statement A such that both A and
its negation are provable from the axioms. See
alsoinconsistent. For example, in set theory, the
axioms AC (the Axiom of Choice) and AD (the
Axiom of Determinacy) are inconsistent, as the
Axiom of Determinacy contradicts the Axiom
of Choaice.

indiscernible A subset 7 of amodel A isa
set of indiscerniblesif nofirst-order formulacan
distinguish between increasing sequences from
1. More precisdly, if < isany linear order on [/
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andn € N, thenfordla; <a» <--- <a, and
b1 <bz < <by inl, A= ¢(a)ifandonly
if A= ¢()foral L-formulas¢.

induction One of two techniques used to
prove that a given proposition P is true for all
natural numbers. Let P (n) denotethe statement
“Pistrue for the natural number n”. The prin-
ciple of weak induction states that if

(i.) P(0)

(ii.) P(m) implies P(m + 1) for any natura
number M,
then P (n) for al natural numbersn. The prin-
ciple of strong induction states that if (i.) and
(i) P(0), P(1),..., P(m) implies P(m + 1)
for any natural number m, then P (n) istrue for
any natural number n. The proof technique in
the principle of strong induction may be gen-
eralized to any well-ordered set W, giving the
principle of transfinite induction.

inductiveset A set A suchthat @ € A, and
for all sets x, if x € A then xT € A, where
xT = x U {x} isthe successor of the set x.

infimum  Let (X, <) be a partially ordered
set and supposethat Y € X. Anelementz € X
is an infimum, or greatest lower bound, of Y
(denoted inf(Y) or glb(Y)) if z isalower bound
for Y and r < z for any other element » which
isalower bound for Y. Seelower bound.

infinitecontinued fraction A continuedfrac-
tion that is not finite. See continued fraction,
finite continued fraction.

infinite dimensional projective space A
spacein projective geometry, which generalizes
the n-dimensional projective space P*. Over a
field k, the points of P can be coordinatized by
(n 4+ 1)-tuples (xp : x1 : ... : x,) Wherex; € k
and at least one x; # 0, up to the equivalence
relation (xg : ... :x,) ~ (Axo : ... : Axy,) for
0 # A € k. Theclassical examples are thered
projective space (k = R) and complex projec-
tive space (k = C). The infinite dimensional
proj ective space can be constructed as a direct
limit
l[im_ P = P>,

namely acollection of injectionsz; : P' — P>
with the property that 7; = m; o p;;, where



interior angle

pij : P/ — P isthenatural inclusion (xo : ... :
xj)—~ (xp:...:x;:0:...:0)for j <.

infinite Grassmann manifold A Grassmann
manifold is the set of all subspaces of a vector
space V that haveagivendimensionk. When V
isareal (or complex) vector space, thissetisin-
deed areal (or complex) manifold. If thedimen-
sion of V isn, the dimension of the Grassmann
manifold is k(n — k). An infinite Grassmann
manifold is a generalization of thisobject for V
of infinitedimension, but for it to beamanifold,
care must be taken that there exist local coordi-
nates. Typically, the condition for asubspace W
to be apoint of an infinite Grassmann manifold
isthat it be commensurable to afixed subspace
H of V,inasuitable sense, either involving the
dimensionsof (H+ W)/H and W/(HNW) or
some more analytic properties.

infiniteset  Any set that is not finite. Equiv-
alently, an infinite set is a set whose cardinality
is not anatural number. Seefinite set.

infinite Stiefel manifold  Theinfinite Stiefel
manifold V;, of k-framesisthedirect limit (union)
of the spaces V,, , of k-framesin real or com-
plex n-dimensional space. More precisely, let
F = R (resp., C*) denote the vector space of
infinite sequencesx = (x1, x2, ...) of real (resp.,
complex) numbers that have only finitely many
nonzeroterms. Thenthe Stiefel manifold Vi (F)
of k-framesin F istheopen subset of F* consist-
ing of k-tuples of linearly independent vectors
inF.

infinity ~ The symbol oo was first used by
the English mathematician John Wallis (1616-
1703) to denote infinity. While not a number it-
self, oo isusually used to denote a quantity that
is larger than every number. There are a num-
ber of ways mathematicians have attempted to
“quantify” infinity. For instance, a set S is fi-
nite if there is a nonnegative integer n and a
bijection f : § — {1,2,3,...,n} (that is, if
S has n elements) and S is infinite, otherwise.
Alternatively, a set isinfinite if thereis a bijec-
tion from the set to a proper subset of itself. In
his theory of transfinite numbers, Georg Can-
tor dealt with various “sizes’ of infinity, dis-
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tinguishing between countably and uncountably
infinite sets, for example.

initial object  Anobject I inacategory C with
the property that, for any object X in C there
exists a unique morphism f € Home (1, X).

initial ordinal  If @ isan ordinal, let || de-
note the cardinality of {t : T < «}. Theini-
tial ordinal corresponding to a fixed cardinal «
is the minimum ordinal « such that |¢| = «.
For example, w istheinitial ordinal correspond-
ing to Rg even though there are infinitely many
different ordinals whose cardinality is Rg. See
ordinal.

initial segment A subset of a well-ordered
set W which hastheform {x € W : x < w},
wherew € W.

injection (1) A one-to-onefunction between
two sets X and Y. See one-to-one function.

(2) The functioni : X — Y between two
setsX andY,with X C Y, definedby i (x) = x.

See also function.

integer  Anelement of theset{... , —4, —3,
-2,-1,0,1,2,3,4,...} consigting of all
wholenumbers. Theset of al integersisusually
denoted Z or Z.

integral curvature If S isasurface in Eu-
clidean spaceand A isameasurable subset of S,
thentheintegral curvature of A istheareaof its
image under the Gauss map to the unit sphere.
That is, it is the area of the set of unit vectors
that are outer normals to support planes of the
surface at points of A. For smooth surfaces,
it can be computed intrinsically by integrating
the Gaussian curvature over the region A. For
a polyhedron, the integral curvature is concen-
trated at the vertices.

interior angle If Pisasimpleclosed polygon
enclosing aregion R, then the interior angle at
avertex V is measured by the magnitude of the
rotation that carries one edge of P adjacentto V
to the other edge, the rotation performed within
R.



interior of closed curve

interior of closed curve  The bounded com-
ponent of the complement of a simple closed
curve. By the Jordan Curve Theorem, the com-
plement of the curve consists of exactly two con-
nected components.

interior of polygon  Thebounded component
of the complement of a polygon P, which, asa
curve, is closed and has no self-intersections.
Any two pointsin the interior can be joined by
a continuous curve that does not intersect P,
while any two pointsin the other component of
the complement of P (the exterior of the poly-
gon) can be joined by a continuous curve that
doesnot intersect P. But no point intheinterior
can be joined to any point in the exterior by a
continuous curvethat does not intersect P. This
fact isthe content of the Jordan Curve Theorem
for polygons.

interior of polyhedron A closed connected
polyhedral surface in Euclidean space R® has a
complement consisting of two path-connected
components. One of these two, the bounded
component, is called the interior of the polyhe-
dron.

intersection of sets  If X and Y are sets, then
theintersectionof X and Y, denoted XNY, isthe
set consisting of al el ementsthat arecommonto
both X and Y. Symbolically, XNY ={z:z €
X and z € Y}. Moregeneraly, if {X,}qer isa
family of sets, then theintersection (), o X« iS
the set consisting of all elements that are com-
montoall X,. Seealso Booleanalgebra, lattice.
inverse correspondence  See inverse func-
tion.

inversefunction Let X, Y be sets and sup-
pose that f € X x Y isafunction. If f is
one-to-one (f(x1) = f(x2) implies x1 = x2),
thentheinversefunction £~ istheuniquefunc-
tion obtained by interchanging the coordinates
in the ordered pairs belonging to f. Symboli-
caly, /=1 = {(y,x) : (x,y) € f}. It canbe
verifiedthat f~1f(x) = x and ff1(y) = y
foral x € X and dl y intherange of f. The
function £~ is also one-to-one and its inverse
satisfies (f~1)~1 = f. If f isnot one-to-one,
then f~Lisnot afunction. See function.
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inverse morphism  Suppose that C is a cat-
egory. If f € Homg(A, B) is an invertible
function, then the inverse morphism f 1 isthe
unique morphism in Home (B, A) satisfying

(i) fft=1s,
(i) f~f =14

inverserelation  Let X, Y be sets and sup-
posethat R C X x Y isarelation. Theinverse
relation R~ is the relation obtained by inter-
changing the coordinates of all ordered pairsin
R. Symbolically, R™1 = {(y,x) € ¥ x X :
(x,y) € R}. Seerdlation.

involute A curve associated with a given
curveC asfollows: thetangent linestothecurve
form asurface, aninvoluteisacurve onthissur-
face which is orthogonal to the tangent lines. If
C isparameterized by arclength s, thentheinvo-
lutesaregivenby I.(s) = C(s)+ (c —s)C'(s), ¢
a constant.

involution A transformation that is its own
inverse. In geometry, the reflection across a
straight line is an involution of the plane.

irrational number A rea number that is not
rational. That is, area number that cannot be
expressed asaquotient of integers. Examples of
irrational numbersare i, ¢ (the base of the nat-
ural logarithm), +/2, and v/6 (in fact, the square
root of any integer, other than a perfect square,
will beirrational).

irreduciblequadraticpolynomial  Thepoly-
nomia ax? + bx + ¢ with rea coefficients is
irreducible (over the field of real numbers) if
it cannot be expressed as the product of two
non-constant polynomia swith real coefficients.
This occursif and only if b2 — 4ac < O.

Any polynomial with real coefficients can be
factored (using only real coefficients) into the
product of linear factors and irreducible qua-
dratic polynomials.

irreflexiverelation A relation R € X x X
on a set X such that thereisno x € X with
(x,x) € R. For example, if R consists of all
ordered pairs of real numbers (a, b) such that
a < b, then R isirreflexive.



isosceles triangle

isolated point A point x in a topological
space X such that the singleton set {x} is open
in X. Equivaently, x ¢ X \ {x}. Thus, x isiso-
latedin X if and only if itisnot an accumulation
pointin X.

More generally, x is an isolated point of a
subset A € X if x € A and there is an open
UCXwithUNA = {x}. Thatis,x ¢ A\ {x},
and so x isan isolated point of A if and only if
itisin A but isnot an accumulation point of A.

isometric surfaces  Two surfaces S and §,
for whichthereisabijectionfrom S to S’, which
takes every curve in S to a curve in S’ of the
same length. Assuming the surfaces are dif-
ferentiable, they are isometric if there is a dif-
feomorphism from S to S” which pulls the first
fundamental form of S’ back to the first funda-
mental form of S. Seefirst fundamental form.

isomorphicorderings Twoorderings(X, <)
and (X', <’) such that there exists a bijection
from X to X’ which is order-preserving. More
precisely, theorderingsareisomorphicif thereis
abijection f : X — X’ suchthatif x1,x2 € X
and x1 < x2, then f(x1) <’ f(x2).

isomorphism  Let £ beafirst order language,
andlet A and B bestructuresfor £, where A and
B are the universes of 4 and B, respectively.
A function 2 : A — B is an isomorphism of
structuresif 4 isinjective and surjective, and
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(i.) for each n-ary predicate symbol P and
eveyasi,...a, € A,

(a1, ...,ay) € pA
& (h(ar), ..., hay)) € PB |

(ii.) for each constant symbol c,
h(cA) = cB,

and
(iii.) for each n-ary function symbol f and
everyay...,a, € A,

h(f A, ... an) = fB(ha), ..., hian)).

If there is an isomorphism of .4 onto B, then
A and B are isomorphic structures (notation:
A = B).

isoperimetric  For two curves, C and C’, the
property of having thesamelength. Theisoperi-
metric inequality in the plane statesthat, among
all curvesisoperimetric to agiven simple closed
curve C, the circle encloses the maximum area.

isosceles  Anisosceles polygon is a polygon
possessing two sides of the same length. The
termisusually appliedtotrianglesor trapezoids.
Inthe case of atrapezoid, the sidesare generally
taken to be opposite sides.

isoscelestriangle A triangle possessing two
sides of equal length. See also isosceles.



jump

J

jump  Let A beaset of natural numbers. The
jump of A (also called the Turing jump of A) is
the halting set, relativized to A; i.e., the jJump
of Aistheset {e : ¢/ (e) isdefined}, where ¢!
denotesthepartial A—computable (A—recursive)
function with Gédel number e. The jump of A
isdenoted by A’.
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Kurepa tree

K

K3 surface An agebraic surface that is
smooth, has a global holomorphic 2-form, and
first homology group of rank 0. Part of an im-
portant class of surfaces in algebraic geometry,
named after three mathematicians: Kummer,
Kéhler, and Kodaira. An example is the inter-
section of three generic quadric hypersurfaces
in P°. See hypersurface.

Kirby calculus A method of specifying
surgery operations on amanifold in terms of the
identifications to be performed on the meridian
of a solid torus embedded in the manifold.

Kleene's hierarchy  Alternate (rarely used)
terminology for the arithmetical hierarchy. See
arithmetical hierarchy.

Kleinian group A subgroup G of the group
of Mobius transformations, with the property
that there exists some point z of the extended
plane C U {oo} at which G acts discontinuously,
i.e., the stabilizer G, isfinite, and there exists a
neighborhood U of z which is fixed by all the
elements of G, but whose only fixed point un-
der any element of G isz. Seelinear fractional
function. Examplesare given by thefirst homo-
topy group of Riemann surfaces.
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Kodaira dimension A rational invariant of
a smooth projective variety V, named after the
Japanese mathematician Kunihiko Kodaira. It
is the maximum of the dimensions of ¢, (V),
where ¢, is the rational map associated to the
nth power of the canonical bundle, over all pos-
itive integers n for which this power has global
sections. If no such n exists, the Kodaira dimen-
sion is defined to be —oo.

k-perfect number A positive integer n hav-
ing the property that the sum of its positive di-
Visorsis kn, i.e., o(n) = kn. Thus, a 2-perfect
number is the same as a perfect number. The
smallest 3-perfect number is 120. The smallest
4-perfect number is 30,240.

Kurepa tree A tree of height w1 with no
uncountable levels but at least w> uncountable
branches. Thus, for eacha < w1, thea-level of
T, Lev,(T), given by

{t € T :ordertype(fs € T : s < 1}) = a}

iscountable, Lev,,, (T) isthefirst empty level of
T,andthereareat least wy differentsets B C T
totally ordered by < (branches) that are uncount-
able. Kurepa'sHypothesis(KH) isthat there ex-
ists aKurepa tree, but KH isindependent of the
axioms of set theory. Infact, KH isindependent
of ZFC+GCH.

For any regular cardinal «, a k-Kurepa tree
isatree of height « in which al levelshave size
less than « and there are at least ¥ branches
with length «. See also Aronszajn tree, Sudlin
tree.



Lie group

L

Latinsquare Annxn array of numbessuch
tha eat row and columm of the array contains
the same numbes and eady numbe appeas ex-

actly oncein every row ard column For exam-

ple,

12 3 1 2 3

2 31 and 31 2

312 2 31
lattice A non-empy sd X, togethe with two

binary operatios U, N on X (called union and
intersectionrespedtely), which satisf thefol-
lowing conditiorsfor all A, B, C € X:

(i) (AUBY)UC =AU (BUC);

(i) ( ANB)NC=AN(BNC);

(ii.) AUB = BU 4;

(iv) ANB=BnNA,

(V) (AUB)NA = A;

(Vi) ANB)UA = A.

leaf A manifold tha is amaximd integral
submanifodl of an integrabke distribution. Gi-
ven amanifold M, a distribution A assigis to
ead point P in M ak-dimensionasubspae of
thetangemspaeat P. Itisintegrabkif theman-
ifold is the union of k-dimensionaimmersed
submanifoldssuc tha the k-plare A (p) isthe
tangen plare of the k-manifold throuch p. A
leaf is amaximd connectd integrd submani-
fold of the distribution.

least common multiple For two nonzero
integers a and b, the smalles posiive integer
L tha is amultiple of both ¢ ard b, is de-
noted LCM(a, b). Equivalently, LCM(a, b) is
the unique posiive integer tha is a multiple
of both ¢ ard b ard is adivisor of all other
comma multiples of a and b. For example,
LCM(14,8) = 56 ard LCM(3,5) = 15. Note
tha theleast common multiple of two nonzero
integers will always be adivisor of the product
of the two integers In fact the produd of the
greatescomman divisor ard the leag common
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multiple of two integeisisthe produd of thetwo
integers(i.e., ab = gad(a, b) - LCM(a, b).) See
greatescomman divisor.

least element  Given a setd with an ordering
<onA, an element € A is said to be deast
element of A if, for all x € A,/ < x. Note
that if A has a least element, then it is unique.
Compare with greatest element.

least upper bound  Let A be an ordered set
and letB € A. Anelementu € A is said to

be aleast upper bound (or supremum) for B if

it is an upper bound foB (i.e., for allx € B,

x < u) and it is the least element in the set of
all upper bounds foB (i.e., for ally € A, if for

all x € B, x < y, thenu < y). Note that if

a set has a least upper bound, then it is unique.
Compare with greatest lower bound.

left adjoint functor Let C and D be cate-
gories with functorsF : C — D andG :

D — C such that ifX is an object ofC andY
isan object oD, we have a bijection of hom-sets

home (X, G(Y)) = homp(F(X), Y)

which is natural in bottX andY. ThenF is a
left adjoint for G andG is a right adjoint forF'.

Example: The forgetful functor from Abel-
ian groups to sets which forgets the group struc-
ture has left adjoint given by taking the free
Abelian group on the elements of the set. Note
that this isnot an “inverse” functor.

leg Inaright triangle, either of the two sides
incident to the right angle.

level (of atree)  Theath level of a treeT,
Lev, (T), is the set of all elements @ whose
predecessors have order typeThat is, for any
t € T, the set of predecessorsof{s € T :
s < t}, must be well ordered, and the levelrof
is given by their order type.

Levo(T) is the set of elements i with no
predecessors, while Le{T') is the set of ele-
ments with exactly one predecessor (which must
come from level 0).

Liegroup A group that is also a differen-
tiable manifold and for which the product and
inverse maps are infinitely differentiable (and is



Lie line-sphere transformation

therefoe atopologica group). See topological
group

Example Considetheunitcircleinthecom-
plex numbers all points of the form e/* for x
real Thisisaliegroup.

Lie line-sphere transformation A corre-
spondene betwea lines in spae R, sa&/, and
sphersin acorrespondig spae S, namel after
the Norwegian mathematicia Marius Sophus
Lie. A point (X, Y, Z) € S determins alinein

R by the two equations:

(X +iY)—zZ—-x=0
(X —iY)+Z—y=0

For any fixed line! in R, the se of sud lines
tha med [ correspondto aspheein S (whose
cente and/a radius may be compkx numbers).

limit cardinal A cardind X, whos index «
isalimit ordinal. See limit ordinal

limit ordinal  Anordind « that isnot asuc-
cessoordinal Thereforea hastheformsupg :
B <a} =g, B (Itshoutl benoted that Ois
also alimit ordinal; we defiresup @ = 0.) See
successoordinal ordinal

linebundle A tem usalinthetheow of vec-
tor bundles A vecta bundle over atopological
spae X consiss of a spae E called the total
space a vecta spae F called the fiber, and a
mg w : E — X. The spae X has acover-
ing by open set U; with homeomorphiss ¢;
from E; = n~1(U;) to U; x F. The projection
map 7 respect thes produd structures i.e.,
mo¢ t(x, V) = x. Whenx € U;NU,, themap
gij(x) : F — F defina by (x, g;;(x)(V)) =
¢ (@ *(x, V)) is require to be linea. This
implies that 7 ~1(x) has the structue of a vec-
tor space A line bundle is avecta bundle
with one-dimensioridiber. Usually the field is
eithe thered numbesor the compkex numbers.

line of curvature A cuwve C on asufface,
having the propery that at eat point C(r) on
the curve, thetangemvecta C’'(¢) is aprincipal
vecta of the sufaee at C(¢), tha is, an eigen-
vecta of the Weingarte map.
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line segment  All points P on the line de-
terminel by two given points A ard B, lying
betwea A and B in the plane For sudh apoint
P, thepoints A ard B lie on differert raysfrom
P. This definition also makes seng in hype-
bolic plare geomety but not in elliptic geom-
etry, where betweennesis nat a well-defined
concept.

linear fractional function A bijection of the
extendal compkx planeC U {oo} definal by
z > %L for given complex numbesa, b, ¢, d
sudtha ad — bc # 0. Theinverseisgiven by
z > L2 Also called Mébiustransformation,
linear fractiond transformationlinear transfa-

mation.

linearly ordered set A sd A with alinear
orderirgon A. Seelinear ordering

linear ordering A partid orderirg < onaset
A inwhich every pair of distind elemens of A
iscomparablei.e, forall x,y € A, if x # y,
thenx < y or y < x. If the partid orderirg is
of the < type (see partid ordering, then < isa
linear ordering if, for all x,y € A, if x # y,
thenx <yory < x.

Theusudorderirg < onQ, thesd of rational
numbersis alinear ordering.

A linear orderirg isalso called atotd orde-

ing.

link A link of n components in R3 is asub-
set of R which is homeomorphi to » distinct
copies of S1. Individud componerg may be
knotted with themseles or with othe compo-
nents.

More generaly, a link of n componerg in
R"+2 js an m embeddig of a finite number
of copies of §” in R™*2 or §”+2, Two links
L, Ly are equvalert if there is ahomeomo-
phism h : R"*2 — R™*2 (or h : §"+2 —
§™+2) suchtha h(L1) = Lo.

linking number A numericé invariart of
linksin 3 spa@ which measursthe numbe of
times pairs of componerg of a link wrap about
ead othe. Seelink.

For alink of 2 components = o U g in R?,
thelinking number of o with 8, lk(«, B8), is the
sum of the signhed undercrossingsxofiith 8 in



logical consequence

aregular projection of @ U 8. The sign (£1) of
an undercrossig is determind by a choice of
an orientation at the undercrossings.

For example thelinking of atwo-component
link (the Hopf link) is given in the figure with a
choice of undercrossig orientations.

Vv +1

-1

Left: Oriented undercrossings; Right: lk(a, B) =
-1

Liouville's function The arithmett func-
tion, denotel X, which, for any posiive inte-
gern = pit... pt, returrsthe numbe A(n) =
(—1)irtFik (Seearithmett function) For ex-
ample (540 = 1(22-33.5) = (-1 =1. It
is completely multiplicative.

locally n-connected topological space A

topological space such that, for every point
every neighborhood op contains a smaller
neighborhood ofp which is n-connected. A
connected topological spack is n-connec-
ted if for everyk < n, every map of thek-

dimensional sphere int& is homotopic to a

logical connective  Used to build new propo-
sitional (sentential) or first-order formulas from
existing ones. The usu#bgical connectives
areA (and),v (or), — (not), — (implies), and
< (if and only if). For example, ifA and B
are well-formed propositional formulas, then so
are(A A B), (AVv B), (—A), (A — B) and
(A < B).

The truth tables for these logical connectives
are as follows, wher€ is interpreted as true and
F isinterpreted as false.

A | (=A)
T F
FI T
A|B|(AAB)
T|T T
T|F F
FIT F
FIF F
A|B]|(AVB)
T|T T
T|F T
FIT T
FIF F
A|B]| (A= B
T|T T
T|F F
FIT T
F|F T
A|B| (A< B)
TT T
T|F F
FIT F
F|F T

logical consequence  In propositional (sen-
tential) logic, a well-formed formulg is alog-
ical consequence of a well-formed formulax
if « logically impliesg; i.e., if every truth as-
signment that satisfies also satisfieg. For

constant map. For example, any manifold is example, ifA andB are sentence symbols, then

locally n-connected for every, as is every lo-

cally finite simplicial complex. The one point
union of infinitely manyn-spheres, with the
weak topology, is locally: — 1-connected but
not locallyn-connected.
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A is a logical consequence 6A A B). In ad-
dition, B is a logical consequence of a gebf
well-formed formulas ifl" logically implies g;

i.e., if every truth assignment that satisfies every
member ofl” also satisfie®.



logically equivalent

For first order logic, let £ be afirst orde lan-
guageard let o ard 8 bewell-formed formulas
of L. Then g isalogicd consequereof « if
o logically implies g; i.e., if, for every structure
A for £ ard for evety s : V. — A, wherever
A satisfies o with s, A als satisfies 8 with s.
(Herg V isthe s& of variables of £ and A is
the universe of 4.) In addition g is alogical
consequereof asd I' of well-formed formulas
of £ if T logically implies 8; i.e,, if, for every
structue A for £ ard for evety s : V. — A,
wherever A satisfisevery membe of " with s,
A also satisfies 8.

logically equivalent  In propositiona (sen-
tentia) logic, well-formed formules « and g
arelogically equivalent if « logically implies
B and B logically implies «; tha is, if every
truth assignmeneithe satisfies both « and 3,
or both —« and —g. For example if A and
B are sentene symbols then (—(A v B)) and
((—mA) A (—B)) arelogically equvalent.

For first order logic, let £ be afirst orde lan-
guageard let « and 8 be well-formed formulas
of L. Then « ard 8 are logically equivalert if
o logically implies 8 and g logically implies«;
tha is, if for every structue A for £ and for ev-
erys:V — A, Asatisfis o with s if and only
if A satisfies 8 with s. (Here V isthe se of
variables of £ and A isthe universe of A.)

logically implies  In proposition& (senten-
tial) logic, awell-formed formulacx logicallyim-
plies anothe well-formed formula 8 (notation:
a | B) if every truth assignmenthat satisfies
o alo satisfies 8. A se I' of well-formed for-
mulas logically implies awell-formed formula
B (notation T = B) if every truth assignment
that satisfissevery membe of I' also satisfies 8.
For example if A, B, and C are sentene sym-
bols ' = {A,(A — B)},ard 8 = B, thenT’
logically implies 8. Thisnotionin propositional
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logicis called “tautologicall implies’ by some
authors.

For first orde logic, let £ be afirst orde lan-
guage and let « and 8 be well-formed formu-
las of £. Then « logically implies g (notation:
a = ) if, for every structue A for £ ard for
every s : V — A sud tha A satisfies o with
s, A al9 satisfies 8 with s. (Here V isthe set
of variables of £ and A is the universe of A.)
A sa T" of well-formed formulas of £ logically
implies awell-formed formula g of £ (notation:
' = p)if, for every structue A for £ and for
every s : V. — A sud tha A satisfies every
membe of " with s, .4 als satisfies 8 with s.

Loop Theorem A theoren addressig the
conditiorsin which aloop in the bounday of a
three-dimensioriananifold whichiscontractible
within the manifold has an equvalert embed-
ding which bound adisk.

Specificali, let M be a compat three-
dimensiond manifold ard let N be acompo-
nert of itsbounday. If the kernd of the homo-
morphisn 71(N) — m1(M) isnon-tivial, then
there exists adisk D?> C M suctha D% ¢ N
is asimpleloop tha isnot homotopc to zem in
M.

lower bound  Let S be asubseof a partially
order@sd (P, <). Anelemenx € P isalower
bound for Sif x < s forall s € S.

lower limit topology  See Sargenfey line.

Luzin space  An uncountal® regular topo-
logicd spae tha has no isolatal points and in
which every nowhere den® sd is countable A
Luzin space is hereditariy ccc and heredita-
ily Lindelof. (See countabé chain condition)

Because of this, Luzin spaces are related to L-

spaces, which are hereditarily Lindel6f but not
hereditarily separable.



mean curvature

M

magicsquare A squarearray of positiveinte-
gers such that the sum of al its rows, columns,
and diagonals are equal. Often an additional
condition is added; namely, that the entries of
the n x n magic square include all of the inte-
gers1, 2, ..., n% Anexampleof a3 x 3magic
square of thistypeis

H W oo
© o1
NN O

Mangoldt function ~ Thearithmetic function,
denoted A, whichisdefined asfollows. A(n) =
log p if n = p' for some prime number p
and positive integer i, and A(n) = 0 other-
wise. (See arithmetic function.) For example,
A(8) =log 2, A(15) = 0. Thisfunction plays
an important part in elementary proofs of the
prime number theorem.

manifold A topological space M with the
property that each point P possessesaneighbor-
hood that is homeomorphic to Euclidean space
R", for some n. If M is connected, the dimen-
sionn isconstant, and M isann-manifold. Usu-
ally, but not always, itisdesirableto assumeal so
that M is Hausdorff and metrizable.

mapping  Seefunction.

mapping cylinder Givenamap f : X — Y
between topological spaces, the mapping cylin-
der | of f isthe quotient space of the disjoint
unionof X x [0, 1]and Y obtained by identifying
each point (x,0) € X x Owith f(x) € Y. The
space | ¢ is homotopy equivalent to Y and the
map f : X — Y ishomotopically equivalent to
the natural inclusioni : X — | y. The mapping
cylinder thus justifies the statement that, in ho-
motopy theory, “every map is equivaent to an
inclusion.” Thereisalso an algebraic version of
the mapping cylinder when X and Y are chain
complexes.
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Martin’sAxiom (MA) If Pisapartial order
with the countable chain condition and D is a
collection of fewer than continuum-many dense
subsetsof P, thereisafilter G € P which meets
every D € D. That is, aslong as P has no un-
countable collections of incompatible elements
(antichains), generic filters are able to meet any
set D of dense subsets with |D| < 2¢. In apar-
tial order, D C P isdenseif forany p € P there
isag € Dwithg < p. Atopological equivalent
is: if D isacollection of fewer than continuum-
many dense open sets of a compact Hausdorff
space X with the countable chain condition, then
NDisdensein X.

For an infinite cardinal «, MA, is the state-
ment that if D isacollection of dense subsets of
a ccc partial order P with |D| < «, then there
isafilter G € P suchthat G N D # ¢ for
each D € D. Thus, Martin’s Axiom (MA) isthe
assertion that for al k < 2%, MA,.

MA , isatheorem of ZFC, and so the Contin-
uum Hypothesis implies MA. However, MA is
also consistent with —=CH. Some conseguences
of MA,, are Sudin’s Hypothesis (there are no
Suslin lines or trees), the union of w1 Measure
Zero sets has measure zero, and the union of w1
meager setsis meager.
mathematical induction  Seeinduction.
maximal element  Givenaset A and an or-
dering < on A, m € A issaid to be amaximal
element of A if there doesnot exist x € A with
m < x. Alternatively, m € A isamaximal e-
ement of A if, foral x € A, if m < x, then
m = x. Notethat if A has a greatest or maxi-
mum element, thenitisunique, anditisalso the
uniquemaximal element of A. If A hasnogreat-
est element, then A may have more than one, or
no, maximal elements. See greatest element.

maximum element A greatest element of a
set A with an ordering <. See greatest element.

mean curvature  The arithmetical mean of
the principal curvatures of the surface S at P. It
is half the trace of the second fundamental form
of thesurfaceat P. (Somewriters do not divide
by 2.) More generally, the mean curvature at P
inahypersurface S of R"*1 is 1 timesthetrace
of the second fundamental form.



mediant

mediant  The mediant of two rational num-
bers £ and £ is the rational number f;% For
example, the mediant of § and 3 is §13 = £.
The mediant of two positive rational numbersis
always between the two rational numbers.

member of aset  Any object that belongs to
agiven set, that is, isan element of that set. For
example, the number 5 is a member of the set
{a, 5, 2}. Notation: x € S (x isamember of S),
and x ¢ S (x isnot amember of S).

meridian of asphere  Aninclusion of §"~1
in $"” which splits §" into two equal size halves.
The equator is ameridian of the sphere 52.

Mersenne number A number of the form
M, = 2" — 1, wheren isapositiveinteger. De-
termining which Mersenne numbers are prime
has long interested mathematicians. See also
Mersenne prime.

Mersenne prime A number of the form M,
= 2" — 1, where n is a positive integer, which
is prime. For example, M, = 3 and Ms =
31 are Mersenne primes. If M, isaMersenne
prime, then n is prime. However, the converse
isnot true: M11 = 23 - 89. In fact, Mersenne
primes are rare. There are currently 35 known
Mersenne primes, the largest being M139g269. It
is unknown whether there are infinitely many
Mersenne primes.

Mersenne primes are named for Marin Mer-
senne, a 17th century monk who made a con-
jecture regarding which primes p < 257 are
suchthat M, isaMersenne prime. Hewas|later
shown to have made errors of both commission
and omission in his conjecture.

metric  Afunctiond : X x X — R satisfying

(i,)d(x,y)>0ifx #y;d(x,x) =0,

(ii.) d(x,y) =d(y, x) and

(iii) d(x,y) +d(y,z) < d(x,z), for dl
x,y,z € X.

A metric may be interpreted as a distance
function on the set X.

metricspace A topological space X equipped
withametricd suchthat thetopology of X isthat
induced by d. See metric. Specifically, given
x € X definethes-ball about x by B, (x) = {y :
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d(x,y) < e}. Then the ¢-balls B.(x) for all
x € X and ¢ > O form abasis for the topology
of X.

metrizablespace A topological space X such
that there exists a metric d on X for which the
topology on X is the metric topology induced
by d. See metric, metric space.

Meyer-Vietoris sequence A long exact se-
guencein homology (or cohnomology) that isob-
tained when a topological space X isthe union
of two subspaces X; and X, such that the in-
clusion (X1, X1 N X2) — (X, X2) (viewed as
amap of pairs) induces an isomorphism in rel-
ative homology. The exact sequence is of the
form

= Hp(X1NX2) — Hp(X1) ® Hp(X2) —
Hy(X) > Hp—1(X1N X2) = -+

The Mayer-Vietoris sequence is closely related
to the Excision Theorem for singular theory.

microbundle A pairof mapsi : B — E
and j : E —> B such that ji is the identity
map on B and for each b in B, there are open
neighborhoods U of band V of ib withiU C V
and jV c U and ahomeomorphism#i : V —
U x R"™ with the following properties.

(i.) Themap ki restrictedto U includes U as
U x{0}inU x R",

(ii.) The map & followed by projection onto
U isequal to therestriction of j totheset V.

Theinteger n iscalled the fiber dimension of
the microbundle.

Microbundles were introduced in an attempt
to construct tangent bundles on manifolds with-
out differentiable structures. J. Milnor (Micro-
bundles I. Topology 3 (1964) suppl. 1, 53-80)
uses microbundles to show that there is a topo-
logical manifold M such that no Cartesian prod-
uct M x M’ has a differentiable structure that
agrees with the original topological structure.

minimal element  Given aset A and an or-
dering <on A, m € A issad to beaminimal
element of A if there does not exist x € A with
x < m. Alternatively, m € A isaminimal d-
ement of A if, foral x € A, if x < m, then
m = x. Note that if A has aleast or mini-
mum element, thenitisunique, anditisasothe



model complete

unique minimal element of A. If A hasno least
element, then A may have more than one, or no,
minimal elements. See least element.

minimal surface A surfacein R® with mean
curvature vanishing at every point. (See mean
curvature.) Equivalently, a minimal surface is
a critical point for the surface area functional.
This definition generalizesto surfacesin higher
dimensional spacesor moregeneral Riemannian
manifolds. A subtlety of thetermisthe fact that
aminimal surface need not minimize area; such
surfaces are called stable minimal surfaces.

minimum element A least element of a set
A with an ordering <. Seeleast element.

mixed area A useful concept in convex ge-
ometry, based on the observation that one can
form a weighted average of convex figures to
obtain a new convex figure. If M and M, are
convex figuresinthe planeand 0 < s < 1, the
mixed figure M; is formed by taking all points
sP + tQ for which P isapointin M, Q is
apointin My,andt = 1— 5. If A(M;) is
the area of the convex figure My, then A(My) =
s?A(M)+2st A(M, M1) +1?A(My), wherethe
number A(M, M1) isthe mixed area of M and
M.

Mdbiusband  Therectangle {(x, y) € R x
R : 0 < x,y < 1}, with the identification
©0,y) ~ 11—y for0 <y < 1 With
the usual topology, the Mdbius band is a non-
orientable manifold.
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Mdbius function The arithmetic function,
denoted w, whichisdefined asfollows. (1) =
1; w(n) = (=¥ if n is square-free and has k
distinct prime divisors; and u(n) = O if n is
not square-free. (See arithmetic function.) For
example, 1(30) = (—1)3 = —1, u(18) = 0. It
is multiplicative.

Mdbiusinversionformula Let f beanarith-
metic function. Define the arithmetic function

F by
Fin =Y f@-s(5)
d

where d ranges over the positive divisors of n.
Then

fo) =2 F@- u(3).

where 1 isthe Mobiusfunction. In other words,
F isthe Dirichlet convolution of f and u (the
unit function) if and only if f isthe Dirichlet
convolutionof F and . See arithmeticfunction.
M 6biustransformation  See linear fractional
function.

M 6biustransformation group  The projec-
tive linear group PL(2, C) of all M&bius trans-
formations. See linear fractional function.
Named after the German mathematician August
Ferdinand M&bius.

model  Let £ be afirst order language, o be
a sentence of £, and A be a structure for L.
If A satisfies o with some (and hence every)
s :V —> A then Aisamode of o, and o is
true in A. (Here, V is the set of variables of
L and A isthe universe of A.) If T isaset of
sentences of £, then Aisamodel of X if Aisa
model of every sentencein X.

The term model is sometimes synonymous
with the term structure. See also structure.

model complete A theory T of afirst order
language £ such that, for al structures A and 5
which aremodelsof T, if A isasubstructure of
B, then A is an elementary substructure of 5.
As an example, let £ be the first order lan-
guage with equality, whose only predicate sym-
bol is <, and let R bethe structure for £ whose



modus ponens

universeisthe set R of real numbers and where
< is interpreted in the usual way. Then the
theory of R, the set of al sentences truein R,
ismodel complete.

modusponens  Thelogical rule of inference
“from A and (A — B), infer B.” Here, A and
B can be any well-formed propositional (sen-
tential) or first order formulas. Literally, modus
ponens means “the positing method”, where “to
posit” means “to present asafact” or “to postu-
late”.

morphism A category has objects and mor-
phisms. Though a morphism is a primitive no-
tion in category theory, it can be understood as
an abstraction of the notion of function. The
following categories are standard exampl es (the
objects are listed first, the morphisms second):
topological spaces and continuous functions;
Abelian groups and group homomorphisms;
rings and ring homomorphisms; partialy
ordered sets and monotone functions; complex
Banach spaces and bounded linear transforma-
tions; sets and injective functions; sets and sur-
jective functions.

motion  An element of the group of motions.
See group of motions.
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multiple  The integer ¢ is a multiple of the
integer a if thereexistsaninteger b sothat ab =
c. Thatis, cisamultiple of a if a isadivisor of
c. Seealso divisor.

multiplicativefunction  An arithmetic func-

tion f having the property that f (mn) = f(m)-

f(n) whenever m and n are relatively prime.

(See arithmeticfunction.) Many important func-
tions, including the Euler phi function and the
Mabius function u, are multiplicative. The val-

ues of a multiplicative function depend only on
itsvaluesat powersof primes: if n = p* - - pt

and f ismultiplicative, then

f)y=foph - fl.

See also completely multiplicative function,
strongly multiplicative function.

mutually relatively prime set of integers

A set of integers such that there is no integer d
greater than 1 which isadivisor of all members
of the set. For instance, the set {2, 3, 4} is mu-
tually relatively prime since the only common
positive divisor of 2, 3, and 4 is 1. Note that
the set is not pairwise relatively prime since the
greatest common divisor of 2 and 4 is2. See
also pairwise relatively prime numbers.



normal space

N

natural equivalence  Seenaturdtransforma-

tion.

natural isomorphism  See naturd transfa-
mation

natural number A posiiveintege. The set
of natural numbersisdenotedN or N,

natural transformation Let C, D be cat-
egories ard let F, G: C — D be functors.
A natural transformation is acorresponderep
tha sendsevery objed A of C to amorphisn ¢4
of D sudh that, for every morphisn f: A — B
of C, the diagram

FA) Y FB)
ol L¢s
G 5 GMB)
commutes The correspondere¢ is a natu-
ral equivalence (or natural isomorphism) if, in
addition ¢4 is an isomorphisn in D, for each
objed A of C.
negative number A red numbe tha isless
than 0.

negative of anumber  If n is anumbe, then
negativen (also referred to asthe opposite of n),
isthenumbe —n = (—1) x n (i.e., the product
of —1 ard n). Alternaively, —n isthe addiive
inverse of the integer n (the unique integer k£ so
than + k = 0).

neighborhood A neighborhood of a point x
in atopologicd spae X is asd U sut tha U
contairs an open subsé V of X withx € V.

neutral geometry  The portion of geometry
that can be deiived without the use of Euclid's
parallé postulate This is alo referral to as
“absolue geometry’ a term coined by Janos
Bolyai.
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non-Euclidean  Not satisfyirg the postulates
from Euclid's Elements.

non-Euclidean geometry A clasof geomet-
rical systens not satisfyirg the postulats from

Euclid's Elements. Includes elliptic geomety,

hyperbolt geomety, projectve geomety, and
spherichgeomety.

non-Euclidean space A spa@satisfyirg ax-
iomsthat contradi¢ the postulatefrom Euclid's
Elements.

non-Euclidean surface A sufface tha isa
subsé of a non-Euclidea space. See non-
Euclidean space

nonprincipal ultrafilter An ultrafilter 2/
over a Boolea algeba B withno b € B such
thalf ={x € B : b < x}.

normal bundle = When a manifold is con-
tainad in R", the directiors perpendiculato the
tangemdirectiorsarenormal Forming avector
spae at ead point of the manifold thes direc-
tionsyield anormal bundle over the manifold.

Example Let M denot aMdbius bard in
R3. Thenormd bundle of M in R® can be visu-
alized by looking at the pat of the bundle over
the middle circle of M: this pat of the bundle
is aganh a Mobius band One can see this by
taking anormd direction (perpendiculato the
sufface of the Mobius bang at any point and
walking arourd the bard alorng the middle cir-
cle. The normd vecta will be pointing in the
opposiedirection Thisisnat truefor the cylin-
der (S x RY). See M6bius band

normal curvature Ata pointP on asurface,
the curvature (with proper choice of sign) of the
curve formed by the intersection of the surface
with the plane through the normal vector Rt
and a unit vector in the tangent plane.

normalized vector A vector made to be of
length one by multiplying the vector by the re-
ciprocal of its length.

normal space  Atopological spacé& satisfy-
ing the following: given any two disjoint closed
subsets” and D of X, there exist disjoint open



normal to plane

subses U ard V of X sudhtha U > C and
V O D.

normal to plane A vecta or line, passing
through agiven point intheplane perpendicular
toall linesintheplarepassig throug thepoint.
If the plarein spa@is given by the equation

a(x —x0) +b(y —yo) +c(z—20) =0,

then the vecta (a, b, ¢) is normal to the plane
at the poirt (xo, yo, z0)-

normal topological space A topological
spae X in which one-poin ses are closel and,
given any two closed disjoint subses A1, Ao of
X, there exist disjoint open subset Uy ard Uz
of X suhtha A1 c U; and A2 C Uz. Exam-
ples of normd spacsinclude metric spacsand
compat Hausdoff spaces.

normal tosurface  Atapoint onthe sufface,
thevecta orthogonato thetangenvecta space
a the point.

normal vector A vecta at apoint of amani-
fold (containelin R™) tha isperpendiculatoall
tangem vectos at that point For example the
north pole is normd to the surface of the earth.

nowheredensesubset A subsé A of atopo-
logicd spa@ X sud that the closue of A con-
tains no nonempy open subses of X. Any dis-
cree sd isnowhere den®in aHausdoff space.
A more interestilg exampk is the Canto Set,
whichisnat discree ard yet isanowhere dense
subset of the unit interval [0, 1]. See Canto set

n-spherebundle A fiber bundle whos fiber
is the n-dimensiona sphere and whose struc-
turegroyis asubgroy of the orthogonagroup
O(n +1). It consiss of a bae spae B, atotal
spae E, and aprojectimmg 7 : E — B.
Ther is acovering of B by open ses U; and
homeomorphism¢; : U; x §" — 7~ (U;)
sudt tha 7 o ¢;(x,q) = x. This identifies
7~ 1(x) with the n-sphere When two set U;
ard U; overlap the two identificatiors are re-
lated by orthogoné transformatios g;;(x) of
S". For exampleg if M is asuffacein R3, then
the spae of vectoss of length onetangemnto the

© 2001 by CRC Press LLC

suiface form the totd spae of a 1-sphee bun-
dle.

null object  Seezem object

null set  Seeempl set

number field  See algebrat numbe field.
number of distinct primedivisorsfunction
The arithmett function, denotel w, which, for
any positveinteger n, returrsthenumbe of dis-
tinct prime divisors of n. (See arithmett func-
tion.) For example w(12) = w(24) = 2 ({2, 3}
isthesd of distind primedivisorsinboth cases).
Itisaddiive.

number of divisorsfunction  Thearithmetic
function usually denota z or d, which, for any
posiive integer n, returrs the numbe of posi-
tivedivisorsof n,i.e, t(n) =#{a : 1 <a <
n ardaln }. (See arithmett function) For ex-
ample 7(12) = 6 ({1, 2, 3, 4, 6, 12} is the set
of divisors) It is multiplicative; its value at a
prime power is given by

t(pHh=i+1.
See also sum of kth powers of divisorsfunction

number system A logically organizel meth-
od for expressiig numbes which may be visual
(usirg writing or hard signs) ord (spdken), or

tactile (e.g, the Braille system) A variely of

number systems have been useal throughot his-

tory. The numbe systen usal by mod cultures
today is apositionad base-D system. See base
of numbe system

number theoretic function  See arithmetic
function

number theory  That branch of mathemat-

ics involving the study of the integers and their

generalizations.

numeral A physical representation of a num-
ber, often in written form.
numerator  The numbew in the fractions.

numerical  Of or relating to numbers or com-
putations involving numbers.



one-to-one correspondence

O

object A category has objects and mor-
phisms. Though the notion of an object is a
primitive in category theory, objects can be un-
derstood as generalizing or abstracting concrete
mathematical entities. Thefollowing categories
are standard examples (the objects are listed
first, themorphismssecond): topological spaces
and continuous functions, Abelian groups and
group homomorphisms; rings and ring homo-
morphisms; partialy ordered setsand monotone
functions; complex Banach spaces and bounded
linear transformations; sets and injective func-
tions; sets and surjective functions.

oblique
tal.

Neither perpendicular nor horizon-

obliqgue angle
180°, or 270°.

Any angle that is not 0°, 90°,

obliquecylinder A cylinder thatisnot aright
cylinder.

obliquetriangle A trianglethat doesnot con-
tain aright angle.

obstruction class A cohomology class or
homotopy class of maps for which being null-
homol ogous or homotopic to zero is equivalent
to the existence of the extension of some map.

Example: Suppose X isformed from aspace
A by attachingann-cell D" to A alongitsbound-
ary; thatis, X istheunion of A and D" witheach
point in $"~1, the boundary of D", identified
with somepointin A by amapé. Let f : A —
Y beamap; it will extendtoamap X — Y
exactly when the class given by f o § is zero
in the cohomology group H" (X, A; t,—1(Y)).
In particular, a map from a sphere §” 1 can be
extended to a map from the disk D" exactly
when its class in H*(D", "1, ,_1(Y)) =
H"(S"; m,_1(Y)) isthe zero class.
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obstruction cocycle A cocycle that repre-
sents an obstruction class in cohomology. See
obstruction class.

obtuse angle
less than 180°.

An angle greater than 90° and

obtusetriangle A triangle containing an ob-
tuse angle. See obtuse angle.

octagon A polygon having eight sides.
octahedron A polyhedron with eight faces.
The regular octahedron, one of the five platonic

solids, has 8 triagonal faces, 12 edges, and 6
vertices.

omits A model A of atheory T omitsatype
@ if and only if it does not redize it. That is,
A omits @ if and only if there is no n-tuple a
of elements of A suchthat A |= ¢ (a) for every
(X)) in ®(%).

one (1) Thesmallest positiveinteger, denoted
1

(2) Themultiplicativeidentity of thecomplex
numbers (and therefore of the real numbers, the
rational numbers, and the integers). That is, if z
isacomplex number,thenl.-z =z -1=z.

one-point compactification A compact
space X, obtained from a given topological
space X by adjoiningasinglepointooto X. The
definition of the topology on X requiresthat X
bealocally compact Hausdorff space. The open
setsin X, are then defined to be the open sets
of X and any set of theform V U {co} where V
is an open subset of X whose complement in X
is a compact set. Note that X is a subspace of
X.. The one-point compactification of the rea
lineis homeomorphic to acircle, while the one-
point compactification of the plane is homeo-
morphic to asphere. Thelatter exampleisespe-
cialy important in complex analysis where the
homeomorphism is called stereographic projec-
tion. See stereographic projection.

one-to-one correspondence  Any function
that is both one-to-one (injective) and onto (sur-
jective); also known as a bijective function, or a
bijection. For example, thefunction f : R —> R



one-to-one function

given by f(x) = 3x — 2 isaone-to-one corre-
spondence.

one-to-onefunction  Any function f : A —
B, where A and B are arbitrary sets, such that
forevery x,y € A, f(x) = f(y) impliesx =
y. Also known as an injective function, or an
injection. For example, thefunction f : N - R
given by f(n) = /n isone-to-one.

onto If A and B arearhitrary sets, any func-
tion f : A — B suchthat for every y € B there
exists x € A satisfying f(x) = y is an onto
function. Also known as a surjective function,
or as a surjection. For example, the function
f:R — Rgivenby f(x) = x3isonto.

open ball In a metric space X, any set of
the foom B = {y : d(x,y) < r}, for some
center x € X and radiusr > 0. In a metric
space, the set of open balls forms a basis for
the metric topology. For example, in R® with
the usual distance metric, the open balls are just
the interiors of spheres.

open cover  An open cover of a subspace A
of a topological space X is a collection {U,}
of open subsets of X such that the union of al
the U, contains A. Open covers figure in the
definition of compactness. See compact.

opendisk  Anopenball in R? with the usual
distance metric. See open ball. That is, D isan
open disk with center x = (x1,x2) € R? and
radiusr > Oif

D={yeR?:d(x,y) <r}

= {01, y2) : \/(xl —yD?+ (2 = y2)2 <r}.

openformula A well-formed formula«x of a
first order language £ such that « is quantifier-
free; i.e., o does not have any quantifiers.

open map A function f : X — Y such that
the image f(U) of any open set U of X isan
opensetinY. If fisinvertible, then f isanopen
map if and only if /=1 :Y — X iscontinuous.

openn-ball  Anopenball inR" withtheusual
distance metric. Seeopen ball. That is, B isan
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open n-ball with center
x=(x1,x2,...,x,) € R?

andradiusr > Oif
B={yeR":d(x,y) <r},

where
dx,y) =

\/(X1—y1)2+(X2—y2)2+-~+(xn —wm)?.

open set A subset U of atopological space
X which belongs to the topology on X.

open simplex  The interior Int(c) of asim-
plex o. Specificaly, Int(o) = o\ Bd(o), where
Bd(o), the boundary of o, is the union of all
proper faces of o. For example, an open 1-
simplex is an open interval, while an open 2-
simplexistheinterior of atriangle. Seesimplex.

open star  If S isasimplicial complex and
v isavertex of S, the open star of the vertex v
is defined to be the union of the interiors of all
simplices o of S that have v as a vertex. See
simplicial complex.

opposite angles  Two angles on a polygon
(having an even number of sides) havinganequal
number of angles between them, regardless of
the direction around which one counts.

oppositeangle/side A sideandanangleona
polygon (with an odd number of sides) havingan
equal number of sides between them, regardless
of the direction around which one counts.

opposite sides A pair of sides on a poly-
gon (having an even number of sides) having an
equal number of sides between them, regardless
of the direction around which one counts.

ordered n-tuple A list of n arbitrary objects
with aspecified order, viewed asasingle object.
The first component of the n-tuple is the object
listed first, thenth component isthe object listed
last, etc. For example, (10, 10, 7, /2, b) is an
ordered 5-tuple; the third component is .



orientation

ordered pair  Anordered list of two objects.
Thefirst (second) component of the ordered pair
is the object listed first (second). For example,
(—1, A) isan ordered pair with —1 and A asits
first and second components, respectively.

ordered set  Seepartialy ordered set.

ordered triple  Anordered n-tuple withn =
3. See ordered n-tuple.

ordering A partial ordering (onaset A). See
partial ordering.

order topology  Thetopology onaset X, with
alinear order relation, with abasis consisting of
al intervals of the form (a, b) for any a,b €
X. If X has either a minimal element m or a
maximal element M, then the sets [m, b) and
(a, M areincluded aswell. Onthereal line, the
order topology is the standard topology; that is,
the topology with abasis consisting of the open
intervals.

order type(of awell-ordered set) Theunique

ordina number that is order-isomorphic to the

given well-ordered set. Thus, theset {—2, 1, 5},

which iswell ordered by therelation —2 < 1 <

5, has order type 3. The set N U {#}, which is

well ordered by therdation0 <1 <2 <3 <
- < #, has order type w + 1.

ordinal (or ordinal number) A transitive
set that is strictly well ordered by the element
relation €. For example, the ordinal number 3
istheset {0, 1, 2}; itisatransitive set and it is
well ordered by €.

ordinary helix A curve lying on a cylinder
which forms a constant angle with the elements
of the cylinder.

ordinate  The y-coordinate of a point in the
Cartesian xy-plane isthe ordinate of that point.
For example, the ordinate of the point (2, —3)
is—3.

orientable fiber bundle A fiber bundle
F — E — B, with F aconnected compact
n-manifold, such that it is possible to choose
elements in the homology H,(F}) of the fiber
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above each point » in B so that around each
point there is a neighborhood U and a genera-
tor of the homology H, (E|y) of E restricted to
U so that theinclusion of thefiber into E|y in-
duces amap that takes the (chosen) generator of
H, (F}) to the (chosen) generator of H,(E|y).

Examples. Any trivial bundle over an ori-
entable manifold is again orientable. But the
Mébius band, as a bundle over S, is not ori-
entable.

orientation A specific choiceof directionfor
avector space, simplex, or cell. The definitions
of orientation for these objectsextendto givethe
important notions of an orientation on a mani-
fold, smplicial complex, or cell complex.

(1) For an n-dimensional vector space V,
an orientation is determined by the choice of
an ordered basis {v1, ..., v,}. A second basis
{wi1, ..., w,} gives the same orientation pre-
cisely when the determinant of the change of ba-
sismatrix from{vy, ..., vy} to{ws, ..., w,}is
positive.  For example, the ordered basis
{(1,0,0),(0,1,0), (0,0, 1)} gives the orienta-
tion of R3 known as the right-handed orienta-
tion.

(2) An orientation of asimplex is a specific
ordering of itsvertices; two orderings are equiv-
alent if oneis an even permutation of the other.

(3) An orientation of a cell ¢, (homeomor-
phicto ann-dimensiona ball) isachoiceof gen-
erator for the infinite cyclic relative homology
group H, (e,, Bd(e,)).

(4) Given amanifold M, each point is con-
tained in an open set that is homeomorphic to
R". Thus, using the definition of orientation
for vector spaces above, M can be covered by
open sets such that each open set has an orien-
tation. If two such open sets U and V are not
digoint, we may ask if the orientationon U NV
inherited from U is the same or opposite to that
inherited from V. If theorientationon U NV is
the same either way, wesay U and V are coher-
ently oriented. An orientation on amanifold M
is defined to be a choice of coherently oriented
open sets that cover M.

(5) Similarly, inasimplicial or cell complex,
each pointiscontainedinasimplex or cell which
can be given an orientation. An orientation of
the complex is a coherent choice of orientation
for each cell or simplex.



orientation preserving mapping

Note that if a manifold or complex can be
given one orientation, then it can aso be given
the reverse orientation. Many manifolds and
complexes cannot be oriented. For example,
an open Mdbius band cannot be oriented. See
M 6bius band.

orientation preserving mapping  Any map
between oriented bundles or oriented manifolds
which maps the orientation of the domain to the
orientation of thecodomain. (Sincehomology is
natural, amap between manifoldsinducesamap
from the homology of one bundle or manifold
to the other.)

orientation reversing mapping  Any map
between oriented bundles or oriented manifolds
which maps the orientation of the domain to the
negative orientation of the codomain. Example:
Any reflection reverses orientation: the map
§2 — §? given by reflection in the equator
(horizontal plane) sendsthegenerator of H(S52)
to its negative generator.

oriented complex A simplicia or cell com-
plex with an orientation. See orientation.

orthocenter  The point of intersection of the
three atitudes of atriangle.

orthogonal At right angles.

orthogonal complement  Given a subspace
W of avector space V, the unique subspace U
of V suchthat V = U @ W and every vector in
U isperpendicular to every vector in W.

orthogonal coordinatesystem A coordinate
system in which, whenever i # j, the vector
with a 1 in the ith position and zeros in every
other is orthogonal to the vector with a1 in the
jth position and zerosin every other.
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orthogonal frame In differential geometry,
the ordered set (x, vi,...,V,) consisting of a
point x and orthonormal vectorsvs, ..., V,.

orthogonal group  The group of al n x n
orthogonal matrices under multiplication. An
orthogona matrix is one whose inverse equals
its transpose.

orthogonal projection A linear transforma-
tion T : V — V from an inner product space
V toitself suchthat 7 = T2 = T*, where T*
denotes the adjoint of T'.

orthogonal transformation A linear trans-
formation whose matrix A isan orthogonal ma-
trix, i.e, A7t = A’
orthogonal vectors A set of vectorsthat are
pairwise orthogonal.

orthonormal A set of vectors that are or-
thogonal and have magnitude 1.

orthonormalization A process by which a
set of independent vectors may be transformed
into an orthonormal set of equal sizewhile span-
ning the same space.

osculatingcircle  Givenapoint P onacurve,
the circle that is the limit (if this exists) as a
point Q approaches P along the curve of circles
passing through Q and tangentto C at P.

osculating process A method, due to P.
Koebe(1912), of provingtheexistenceof Green's
function on any simply or multiply connected
domain in the complex plane.

oval  Any egg-shaped curve. Moregeneraly,
the boundary of a convex body in R?.

ovaloid
RS,

The boundary of a convex body in
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P

pair of relatively primeintegers  Two inte-
gers whose greatest common divisor is 1. For
example, 6 and 25 are relatively prime since
gcd(6,25)= 1. Seegreatest common divisor.

pairwisedisjoint A collectionof setsinwhich
any two distinct sets are digoint is a pairwise
digoint family. For example, {[2n,2n + 1) :
n € N} isacollection of pairwise disoint sets
(where each interval [2n, 2n + 1) is the set of
real numbersx suchthat2n < x < 2n + 1).

pairwise relatively prime numbers A set
of integers with the property that no two sharea
common divisor greater than 1.

parabola Theset of pointsin the plane equi-
distant from a given point and agiven line. Al-
ternatively, a conic section formed by the inter-
section of acircular cone with a plane such that
the intersection is connected but unbounded.

paraboloid  The surface given by the set of
solutionsin R3 to an equation of the form ;‘—j +

N

¥ = 7 (elliptic paraboloid) o & — 2 = 2
(hyperbolic paraboloid).

paracompad topologicd space A Haus
dorff space with the property that each open
cover has a localy finite open refinement that
covers X. Seerefinement of a cover. Metric
spaces are paracompact but, of course, not gen-
erally compact. Paracompactness is important
in the theory of manifolds because it is a suffi-
cient condition onaspaceto construct apartition
of unity.

parallel  Equidistant, in some sense. In Eu-
clidean space, two lines are parallel if they do
not intersect and there is a plane in which they
both lie.

parallelepiped
are parallelograms.

A polyhedron whose faces
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parallelizable manifold A manifold whose

tangent bundleis trivial.

parallelogram A four-sided polygon having
opposite sides parallel.

Parallel Postulate  Thefifth postulate of Eu-
clid’'sElementswhich requiresthat, if twolines
are cut by athird, and if the sum of the interior
angles on one side of the third islessthan 180°,
then the two lines will meet on that side of the
third.

partially ordered set A set with a partia
ordering. See alsopartia ordering. A partialy
ordered set is sometimes called a poset

partial ordering A binary relation on a set
A (i.e., asubset of A x A), often denoted by <,
which isreflexive (for all x € A, x < x), anti-
symmetric(forall x,y € A,ifx <yandy < x,
then x = y), and transitive (for all x, y,z € A,
ifx < yandy < z,thenx < z). Givenapartial
ordering<onAandx,y € A, x < yisdefined
tomeanx < y and x # y. Notethat if <isa
partial ordering on A, then it is not necessarily
the case that every two distinct elements of A
are comparable; i.e., there may exist x,y € A
withx #yandx £ yandy £ x.

Sometimes one sees an alternative definition
of partia ordering, where < is defined first and
< isdefined in terms of <.

A partial ordering on aset A isabinary re-
lation on A, often denoted by <, which is an-
tireflexive (for al x € A, x # x) and trangitive.
Given apartial ordering <on Aandx,y € A,
x < yisdefinedtomeanx < yorx = y. Us
ing this definition of partial ordering, one can
provethat < isantisymmetric. Notethat if < is
apartial ordering on A, then it isnot necessarily
the case that every pair of distinct elements are
comparable; i.e., there may exist x, y € A with
x#yandx £yandy #£ x.

Regardless of the choice of defining < from
< or < from <, the respective notions of < and
< arethe same.

Oneexample of apartial orderingisthe usual
ordering < on the natural numbers N. This par-
tial ordering isin fact atotal, or linear ordering.
Seelinear ordering. Let P(N) be the power set
of the set of natural numbers; that is, the set of
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all subsets of N. Then set containment C is a
partial ordering onP(N) whichisnot alinear or-
dering, as {1, 2} and {3} are not C-comparable;
i.e, {1,2} £ {3}and {3} Z {1, 2}.

partial recursvefunction  All functionsmen-
tioned are functions on the natural numbers N;
ann-ary functionispartial if itsdomain issome
subset of N” (i.e., the function may not be de-
fined on al inputs). The notion of a partial
recusive functionis a formalization (Kleene,
1936) of the notion of an intuitively computable
partial function. An n-ary partial function ¢
is partial recursive if it can be derived from a
certain set of initial functions by finitely many
applications of composition, recursion, or the
w-operator; i.e., there is afinite sequence

¢07¢17-~-9(pk:(p

of functionssuch that forall i, 0 <i <k,
(i.) ¢; isaninitial function or
(ii.) ¢; can be obtained from {gp; : 0 < j <
i} by composition, recursion, or the p.-operator.
Thefollowing functionsareinitial functions.

e S(x) = x + 1 (the successor function)

e CM(x1,...,x,) =i, for al natural num-
bersi, n > 0 (the constant functions)

* P'(x1,...,x,) = x;, foral natural num-
bersn > 1and 1 < i < n (the projection
functions).

Letgs,..., g f ben—ary functionsand let
h be ak-ary function; let X denote an n—tuple
X1,...,X%,. Thefunction f is obtained from
g1, ..., g and h by composition if for all nat-
ural numbersx1, ..., x,, f(X) = h(g1(X), ...,
8k(x)).

Let f be an n-ary function, n > 1, g be an
(n—21)-ary function, 4 bean (n+1)-ary function,
andy denotethe (n—1)-tupleys, ..., y,—1. The
function f isobtained from g and & by recursion

if for all natural numbersx, y1, ..., yn—1,
Oy = g0
Sx+1y) = hx, f(x,),Y).

Let f be an n-ary function and let g be an
(n + 1)-ary (possibly partial) function. Let x
denote an n-tuple x1, ..., x,, and let u be the
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least number operator; i.e., (ux)[---] denotes
the least natural number x satisfying property
[---1. Let | bean abbreviation of the phrase“is
defined”. If for all natural numbersxy, . . ., x,,

f&@ = (g, y)
= 0AWMz<YIgXx,2) 11,

then f isobtained from g by the w-operator.

If an n-ary function is partia recursive and
total (i.e., the domain of the function is all of
N™), thenthefunctioniscalled recursive (or total
recursive).

Any primitive recursive function (seeprimi-
tive recursive function) is recursive; for exam-
ple, the function f(x1, x2) = x1 + x2 iSrecur-
sive. However, it is not the case that every (to-
tal) recursivefunctionisprimitiverecursive. An
example of arecursive function that is not prim-
itive recursive is Ackermann’s function, which
is defined informally by “double recursion”, as
follows.

AQ,y) = SO
Ax+1,0 = A(x,1D
Ax+1Ly+1) = AKx,AXx+1,y)).

Ackermann’sfunction growsfaster thanany prim-
itive recursive function.

By the Church-Turing Thesis, any intuitively
computable partial function (seeChurch-Turing
Thesis, computable) is partial recursive. The
function

o= 1 if go(e) isdefined
V(@ =1 Undefined if g, (e) is undefined,

where ¢, is the partia recursive function with
Godel number e, is partial recursive.

partition (1) Of aset. A pairwise digoint
collection of nonempty subsets of the given set,
whose union is the given set. For example,
{{3, a}, {—2}} isapartition of theset {3, a, —2}.
Also, {[n,n + 1) : n € Z} isapartition of R
(where each interval [n, n + 1) isthe set of real
numbers x suchthatn < x < n + 1). See
quotient set.

(2) Of a posgitive integer. If n is a pos-
itive integer, a partition of n is a sequence
(k1, ko2, ..., k) of positive integers such that
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ki >kp>--->k,andky+ko+-- -+ k- =n.
For example, (4, 3) and (2, 2, 2, 1) are two par-
titions of 7.

Pascal’'s triangle A specific triangular
array of numbers, named after the 19th century
French mathematician/philosopher Blaise Pas-
cal, thefirst few rows of which are given below:

1 3 31
146 41

If the first row is labeled the “Oth row” (for
example, the 4throw is1 4 6 4 1) and
call the first entry (on the left) of each row the
“0Oth” entry (so the 6 in the middle of the 4th row
is the 2nd entry of that row), then the kth entry
of the nth row is the binomial coefficient (7).

Although this array is known as Pascal’s tri-
angle,it has been found in Chinese manuscripts
that were printed 500 years before Pascal’ sbirth.

path A pathfrom apoint x toapoint y ina
topological space X isany continuous function
f:10,1] - X with f(0) = x and (1) = y.
Intuitively, the path is the image of the function
f.

Peano space A compact, connected locally
connected metric space. By the famous Hahn-
Mazurkiewicz Theorem, Peano setsareprecisely
those setsthat occur as continuousimages of the
unit interval.

Peano’s Postulates A set of axioms for de-
veloping the properties (using naive set theory)
of the natural numbers. The axioms were pub-
lished by Peano in 1889 and were based on work
by Dedekind.

There are five Peano Postul ates.

(i.) Oisanatura number.

(ii.) For every natural number n, thereis a
natural number n’, called the successor of n.

(iii.) For every natural number n, n’ # 0.

(iv.) For any natura numbers m and n, if
m’' =n',thenm = n.

(v.) If I isany subset of the natural numbers
such that

(&) 0e I and
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(b) for any natural number n, if
nel, thenn el,
then I contains all natural numbers.

Thislast postul ate is the Principle of Mathe-
matical Inductionandisapplicableto each of the
uncountably many subsets of the natural num-
bers.

Peano’s Postulatesiniquely determine the
set of natural numbersinthesensethat if M isa
set that satisfies the five postulates above (with
the phrase “n is a natural number” replaced by
“n € M"), then M isthe set of natural numbers.

pedal triangle  The triangle within a given
triangle formed by connecting the non-vertex
endpoints of the altitudes of the given triangle.

Pell's equation  Theequation x2 — dy? =k,
where x and y are unknown variablesand d and
k areintegers. Pell's equationis an example of
a Diophantine equation (an equation for which
one searches for integer or rational solutions).
The integer d is usually assumed to be square-
free (that is, if p is a prime divisor of d, then
p? is not a divisor of d) and positive because
otherwise the equation has only finitely many
integer solutionsfor x and y, if any.

pencil of circles  The collection of all circles
in a plane passing through two given points.

pencil of lines (1) The collection of all lines
in a given plane which pass through a given
point.

(2) The collection of al lines parallel to a
given line.

pencil of planes  The collection of al planes
in space containing agiven line.

pencil of spheres Thecollectionof al spheres
containing a given circle.

pentadecagon A polygon having 15 sides.
pentagon A polygon having five sides.
pentagonal number  Any positive integer of

the form 3”27‘" (i.e., any entry in the sequence,
1,5,12,22, 35,...).
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pentahedon A polyhedron with five faces.
percent  From the Latin for “per hundred”,
percentages are used as alternatives to fractions
or decimalsto represent ratios of numerical val-
ues. For example, 50% (read “fifty percent”)
represents = or .50. Thus, 35% of 250 is

.35 x 250 = 87.5 (since 1 = 5L3).

perfect number A positiveinteger n having
the property that the sum of its positive divi-
sorsis2n, i.e, o(n) =2n. Thus, 6 is aperfect
numbersince 1 4+ 2 + 3+ 6 = 2(6). The next
two perfect numbers are 28 and 496. All even
perfect numbers have been characterized as be-
ing of theform 27~1(27 — 1), where both p and
27 —lareprime(i.e., where2” —lisaMersenne
prime). There are no known odd perfect num-
bers. See alsoabundant number, deficient num-
ber, Mersenne prime.

perfect set A topological space X with the
property that every point of X is an accumula
tion point of X. That is, given any x € X and
any neighborhood U of x, the set (U N X)\{x}
is nonempty. All intervals on the rea line are
perfect. An example of a perfect subset of the
real linewhich isnot an interval isfurnished by
the Cantor set. SeeCantor set.

perfect square  Aninteger a for which there
exists another integer b such that « = b2. For
example, 36 = 62 and 289 = 172 are perfect
squaes.
perigon A 360° angle.
perimeter (1) The length of aclosed curve,
especially when considered as the boundary of
aplanefigure.

(2) The closed curve forming the boundary
of aplanefigure.

periodic continued fraction A continued
fraction
by
ap + n by
“ az+ b3
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for which there exist positive integers p and N
sothatforall k > N,ax+p = ax andbk+,, = bg.

perpendicular (1) The relative position of
apair of lines that intersect so that they form a
pair of equal adjacent angles.

(2) The relative positon of aline and a plane
such that the lineis perpendicularto every line
with which it intersectsin the plane.

(3) The relative position of a pair of planes
that intersect so that aline in oneis perpendic
ular to both the line of intersection and to aline
in the other which is perpendicular to theline of
intersection.

perpendicular bisector A line or line seg-
ment that bisects a given line segment and is
perpendicular to it. Seeperpendicular.

pi A number, denoted 7, equa to the ra
tio between the circumference and diameter of
any circle. It is aso the ratio of the area of a
circle to the square of its radius. It is known
that 7 is a transcendental (and therefore irra
tional) number. Thevaueof 7 isapproximately
3.14159265358979 and, although the value of
everydigit in the decimal expansion of 7 isnot
known, in 1989 David and Gregory Chudnovsky
calculated r t01,011,196,691 decimal place ac-

curacy.

point at infinity A point of the hyperplane
at infinity. Seehyperplane at infinity.

polar coordinates  Two numbers (r, 0) that
determineapoint P inthe (x, y)-plane, r being
the distance fromthe origin O and0 < 6 < 27
the angle that the ray O P makes with the pos-
itive x-axis, measured in radians and counter-
clockwise, except if P = O, which is associ-
ated to the number zero only; thus x = r cos6,
y = rsing. If r is dlowed to be negative,
the pair (—r, 0) gives the same point as the pair
(r,0 +m).

Polish space A topological space X that is
separableand completely metrizable. Thatis, X
has a countable dense subset, and thereisamet-
ricd inducing thetopology on X for which every
Cauchy seguence converges. Polish spacesre
the natural setting for descriptive set theory. Ex-
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amples of Polish spacesinclude R, R", C, C",
the Cantor space 2N, and the Baire space NN.

Pollard rhomethod A method for factoring
an integer which is known to be composite (us-
ing one of the pseudoprime tests, for example).
The method is based in part on the fact that,
although it is difficult to find factors to large
numbers, it isrelatively easy (using Euclid’s a-
gorithm) to find the greatest common divisor of
two integers.

Let m be a positive composite integer and
define the sequence {u; } recursively asfollows:

(i) uo=1,

(ii.) u;j41 istheuniqueinteger sothat u; 11 =

u? + 1(modm) and 0 < u; 11 < m.
(Ingeneral, ug could be any positiveinteger and
ui+1 = f(u;) for some nonlinear polynomial,
f). Next, compute D,, = gcd(uz, — u,,, m) for
n=1223, ... If D, # 1forany n, then D, is
adivisor of m.

Toillustratethemethod, letm = 1771. Then
thefirst few terms of the sequence (starting with
u1) definedbyug = landu; 1 = uiz—i—l(modm)
are2,5,26,677,1412, ... Noticethat gcd(uz—
uy, 1771) = ged(3, 1771) = 1, and gcd(ug —
up, 1771) = gcd(672, 1771) = 7, so 7 isadi-
visor of 1771 (asis 1771 + 7 = 253). Since 7
is prime and 253 is composite, we could repeat
Pollard’s method to show that 253 is the prod-
uct of the primes 11 and 23, thus compl eting the
factorization of 1771.

The Pollard rho methodwas introduced by
J. M. Pollard in 1975.

polygond number A positive integer n so
that n dots can be arranged in a specified polyg-
ona pattern. Also called afigurate number. See
alsotriangular number, pentagonal number.

polynomial A finite sum of multiplesof non-
negative integer powers of an indeterminate x,
with coefficientsin agiven set R. For example,
3x° — 4x3 4 x? 4+ 7x — 12 isapolynomialwith
coefficientsin Z.

posé  Seepartially ordered set.

positivenumber
than O.

A real number that isgreater
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positive orthant The set of points (x1, x2,
...,xp)inR"suchthatx; > 0,1<i <n.In
the case of the plane, this is the positive quad-
rant.

postulatesof Euclid  Euclid based hisgeom-
etry on five basic assumptions, known as The
Postulates. The first four postulates assert that
one can join any two points by a straight line,
extend straight lines continuously, and draw a
circlewith any given center and radius, and that
al right anglesare equal. Thefifth postulate as-
serts the uniqueness of astraight line, through a
point, parallel to agiven line.

power sd (of aset) The set of all subsets of
agiven set. The power set of S is denoted by
P(S) or 25. For example, if S = {3, 5} then
P(S) = {D, {3}, {5}, {3, 5}}. The power set of
any set S, together with the operations of union,
intersection, and complementation with respect
to S, forms a Boolean algebra. The unit and
zero element of this Boolean algebra are S and
@, respectively. See also Cantor’s Theorem.

predicate calculus  The syntactical part of
firstorder logic. A predicatcalculusisaformal
system consisting of afirst order language, the
set of al well-formed formulas, a particular set
A of well-formed formulas, which are called
logical axioms, and alist of rules of deduction.

Thewell-formed formulasthat arelogical ax-
ioms should bevalid formulas. A typical axiom
that might occur in apredicate calculusis

Vx(a — B) > (Vxa — Vxp),

where o and g8 are any well-formed formulas,
or, if the language contains equality,

x=y— (@ — o),

where« isan atomic formula, and &’ isobtained

from « by replacing the variable x in « in zero

or more places by the variable y. A typical rule

of deduction in a predicate calculus is modus
ponens Seemodus ponens.

A predicate calculus is used to prove theo-
rems. Se=alsoproof, theorem. Whilethe actual
choice of logical axioms and rules of deduction
is not important, it isimportant that a predicate
calculus be both sound (i.e., any well-formed
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formulawhich is provable in the formal system
should be alogical consequence of the logical
axioms) and complete (i.e., any logical conse-
guence of thelogical axioms should be provable
in the formal system).

Predicate calculus is sometimes called first
order predicate calculus.

predicatelogic  Seefirst order logic.

primary cohomolog operation A natura
transformation of functors

H' (X, A; M) — H'V (X, A;N);

an operation may be defined for many choices
of i and j and many choices of Abelian groups
M and N, or only for specific choices. Opera-
tionsare often additive. The squaring operation,
which takesu tou?, isnot additive; the Steenrod
square operations (also called reduced squares)
are additive.

Cohomology operations also exist on gen-
eralized cohomology theories, for example K -
theory and cobordism theories. Adams opera-
tions on K -theory are cohomology operations.
See alsosecondary cohomology operation.

primefactor A prime p that isadivisor of
an integer n. For example, the prime factars of
24 are 2 and 3. Seedivisor.

prime ideal Let S beaset. Anideal I on S
isaprime idealif, for al X C S, either X € I
or S\X 1.

prime number (1) An integer with exactly
two positive integer factors (including itself and
1). For example, 5 is prime because its positive
integer factorsare 1 and 5, while 6 is not prime
because the positive integer factors of 6 are 1,
2, 3, and 6. Note that the integer 1 is not prime
since it has only one positive integer factor, it-
self.

(2) More generdly, an element p of aring
is prime (or irreducible) if it is not a unit and
all of itsfactors (in the ring) are associates (unit
multiples) of p.

Prime Number Theorem If 7(x) denotes
the number of prime numberslessthan or equal
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to the positive real number x, then

m(x)

lim =1.

X—>00 X
0g(x)

Thatis, if x islarge, 7 (x) ~ m. An equiva

lent formulation of the theorem is that
. T(X _ . _rx dx
XILngo Do = 1, where Li(x) = [, g0 (the

so-calledlogarithmicintegral). ThePrime Num-
ber Theoremwas first proved, independently,

by Jacques Hadamard and Charles de la Valée

Poussin in 1896.

primitive recursive function  All functions
mentioned are functions on the natural numbers.
An n-ary function f is primitive recursivef it
can be derived from a certain set of initial func-
tions by finitely many applications of composi-
tionand recursion; i.e., thereisafinite sequence

fo. fi..... fi=f

of functions such that for all i,0 <i <k,

(i) f; isaninitia function or

(ii.) fi canbeobtainedfrom{f; :0<j <
i} by composition or recursion.

Thefollowing functionsareinitial functions.

e S(x) = x + 1 (the successor function)

* C!'(x1,...,x,) =i, for al natural num-
bersi, n > 0 (the constant functions)

* P'(x1,...,x,) = x;, foral natural num-
bersn > 1and 1 < i < n (the projection
functions).

Let g1,..., gk, f ben-ary functions and let
h be a k-ary function; let x denote an n-tuple
X1,...,Xx,. The function f is obtained from
g1, ..., g and h by composition if for al nat-
ural numbersx1, ..., x,, f(xX) = h(g1(x), ...,
8k (X)).

Let f be an n-ary function, n > 1, g be an
(n—21)-ary function, h bean (n+1)-ary function,
andy denotethe (n—1)-tupleys, ..., y,—1. The
function f isobtained from g and i by recursion

if for al natural numbers x, y1, ..., yu—1,
f@©,y) g(»)
fx+1Yy) = hlx, f(x,9),)).
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For example, the function f(x,y) = x +y
is primitive recursive. Informally, the recursion
equationsfor f are

fQOy) =y
fx+1y) S(f(x, y)).

More formally,

fQOy) =
fx+1y) =

Pi(y)
h(x, f(x,),y),

where i(x, y, 2) = S(P3(x, y, 2)).

principal curvature If Pisapointinasur-
face S in R3, then the principal curvatuesat P
are the minimum and maximum values of the
curvatures of the curves formed by intersecting
S with a plane through P containing the nor-
mal vector to the surfaceat P. Equivalently, the
principal curvatures are the eigenvalues of the
Weingarten map at P.

principal fiber bundle A fiber bundlewhose
fiber isatopological group G and whose struc-
ture group is aso G, acting on itself by (left)
multiplication. Seefiber bundle. It consists of
a base space B, atotal space E, and a projec-
tionmap r : E — B. Thereis a covering
of B by open sets U; and homeomorphisms ¢; :
U;xG — 7~ 1(U;) suchthat wog; (x, ¢) = x.
This identifies 7 ~1(x) with G as a topologi-
cal space. Examples of principal fiber bun-
dlesare constructed by taking the quotient map
7 : L — (L/G) fromaliegroup L to the
guotient space of L by aclosed subgroup G. A
universal coveringmap = : E —> B isaprin-
cipa bundle with the fundamental group of B
(with the discrete topology) as fiber and group.

principal ideal  Let S be anonempty set and
let P(S) bethe power set of S. Anideal 7 on S
isaprincipal ideal if there existsaset A C S
suchthat I = {X € P(S) : X C A}.

principal type A type ®(x) of atheory T
in alanguage L such that thereisan L-formula
6(x) in ®(x) suchthat T I VX (6(x) — ¢ (X))
for every ¢ (x) € ®(x). That is, under T, the
single formula 6 generates the entire set ®.
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principal ultrafilter An ultrefilter U over a
Boolean algebra B such that thereisab € B
suchthatf = {x € B : b < x}.

principle of dependent choices Suppose R
isabinary relation on anonempty set S, and that,
for every x € S, there exists y € S such that
(x,y) € R. Then there exists a countable se-
guence xg, X1, ... , Xu, ... (n € N) of elements
in S such that (x,, x,+1) € R, foral n € N.
This principle is also known as the Axiom of
Dependent Choice. It is a consequence of, but
is weaker than, the Axiom of Choice, and it is
the usua replacement of the Axiom of Choice
if the Axiom of Determinacy is assumed.

principle of inclusion-exclusion A combi-
natorial formulafor the cardinality of the union
of afinite collection of finite sets. In the case of
two sets, theformulais|A U B| = |A| + |B| —
|A N B|. For r arbitrary finitesets Ay, ... , A,
theformulais

|A1U"'UAr| =
Yt (CDMEY A NN Ay |

where the second sum ranges over al n-tuples
of natural numbers (k1, ... , k,) such that 1 <
ki< <k, <r.

product  The genera term used for the re-
sult obtained by applying some operation, usu-
ally called multiplication. For example, product
of natural numbers, product of complex num-
bers, product of real-valued functions, Cartesian
product of sets, product of matrices, product of
cardina numbers, product of ordinal numbers,
product of elements of a group, product of ob-
jectsin acategory.

product bundle  Formed by taking the tensor
product of the fibers (of two vector bundles E
and E’ over B) over each point of B. Thus, the
tensor product of two linebundlesisagainaline
bundle. Line bundles over a space form agroup
with respect to this product; the group identity
isthetrivial bundle B x R — B.

product category Let Cq,...,C, be cate-
gories. TheproductC1 x - - - x C,, isthe category
whoseobjectsaren-tuples(Ay, ..., A,), where
each A; is an object of C;, and the morphisms



product metric

are n-tuples (f1, ..., fn), with each f; a mor-
phism of C;; morphism composition is defined
componentwise: (f1,..., fu)o(g1, ..., &) =
(fiog1, ..., fnogn). Theproduct of an arbi-
trary number of categoriesis defined similarly.

product metric  The metric on afinite prod-
uct of metric spaces, defined by the formula

d((x1, ..., %), (Y1, .-+ 5 Yn))
dl l L
= Yo A
where d; is ametric on X; and (x1, ..., x,),

(y1, ..., yn) € X1X---x X,. Seametric space.
This definition shows that a finite product of
metrizable spaces is metrizable.

product of cardinal numbers  The product
of some cardinal numbersisthe cardinal number
that is equinumerous with the Cartesian product
of the given cardina numbers. If ¥ and A are
cardinal numbers, k - A denotes their cardinal
product. For example, 3-2 = 6 and X3 - 17 =
N17.

product of objects  Suppose C is a category
and {A; : i € I} isafamily of objects of C,
where I issomeindex set. Let p;: A — A; be
amorphism for eachi € 1. Thetuple (A; p; :
i € I) isthe product of this family if, for ev-
ery object B of C and every set of morphisms
fi: B — A;, fori € I, thereisaunique mor-
phism f: B — A suchthat p; o f = f;, for
al i € 1. The morphisms p; are usually called
projection morphisms

product space  The Cartesian product of
an arbitrary collection of topological spaces
{Xo}aeca, With the product topology. Seeprod-
uct topology.

product topology  The standard topology for
theproduct [ |, X, of topological spaces. A ba-
sisisgiven by setsof theform [ [, U, where Uy,
is an open subset of X, and U, = X, for al
but finitely many indices «. The produd topol-
ogy isthe coarsest topol ogy on the product space
whichmakesall the projection mapscontinuous.
Seeprojection map.

projectionmap  Themaps p,, fromtheCarte-
sian product [],.4 X Of topological spaces,
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into X, defined, for each «, by p, ({xg}) = xg-
See alsoproduct space, product topology.

projective geometry  An axiomatic system
that grew out of perspective drawing during the
Renaissance; one characterization axiom says
that any two lines in the projective plane have
exactly one point in common. Analytically, the
projective space P" of dimension n can begiven
projective coordinates (xg : ... : x,) which de-
termine apoint uptorescaling (Axp : ... : Axy)
by a non-zero number A, and satisfy the condi-
tion that at least one x; is non-zero. Thus, the
set of lines containing the origin in R2 gives a
model for the projective plane P2. In it, lines
correspond to planes through the origin and the
point of intersection to the line common to two
planes.

projective set  Theprojective setformahier-
archy extending the Borel hierarchy in any Pol-
ish space X. Let X denote the collection of all
analyticsetsin X. Forn > 1, let

l—facx:x\4aexh

and then let Erl1+l be the collection of al pro-

jections of IT} setsin X x NN, where NN isthe
Baire space. Let AL =3in 1‘[l Then the sets

in
P=J=r=Jm;
n n

are the projective sets. They form a hierarchy
because for eachn > 1,

1 1 1

TRUMR AL, =S NTTgy, .

In addition,
A} = Bord .

The projective classes £}, T}, and A} arealso
known as Lusin point cIas@es

proof  Infirst order logic, let £ be afirst or-
der language and consider a particular predicate
calculus for £, with A the set of logica ax-
ioms. Let « be a well-formed formula of L.
A proof of « in the predicate calculus is a se-
guenceas, a2, ..., o, of well-formed formulas
of £ such that o, = « and such that for all i,
1<i <n,either
(i.) @i € A (i.e, «; isalogical axiom) or
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(ii.) thereexist 1 < j1 < --- < jix < i such
that o; can be deduced frome,, ..., aj, using
arule of inference. (The value of k depends on
the rule of inference; for example, if the rule of
inference is modus ponens, then k = 2.)

Theformula« isprovable from the predicate
calculus (notation: + «) if thereis a proof of «
from the predicate calculus.

If ' is aset of well-formed formulas of L,
then a proof of « from I is a sequence a1, a2,
..., a, of well-formed formulas of £ such that
o, = o andsuchthatforali,1 <i < n,either

(i)aseTUAOr

(ii.) thereexistl < ji < --- < ji < i such
that «; can be deduced frome;,, ..., aj, using
arule of inference.

Theformulaa isprovablefrom ™ inthepred-
icate calculus (notation: I' - «) if there is a
proof of o from I' in the predicate calculus.

The notion of proof in propositional logic is
entirely analogous.

The notion of proof in formal logic is aso
called formal proof or deduction.

proper fraction A positive rational number
% wherea and b are positiveintegersanda < b.
For example, 22 is a prope fraction, while £

isan improper fraction.

properly discontinuoustransformation group
A group G acts properly discontinuously on a
space X if, for each x in X, there is an open
neighborhood U so that whenever g is not the
identity in G, U N gU isempty.
Properlydiscontinuostransformatiogroups

are useful for studying covering spaces, which
are given by maps X — Y such that any point
in Y has a (connected) neighborhood U whose
inverse image is the digoint union of open sets
of X each homeomorphicto U. A particular in-
stance of thisisthe covering of a homogeneous
spaceby alLiegroup: aninclusion of Liegroups
H — G has coset space G/H which inherits
the quotient topology from G; the quotient map
G — G/H isacovering map.

proper subse (of a set) A set Sisaproper
subsebf aset T if Sisasubset of T but S isnot
equal to T'. Thus, asetisnever aproper subset of
itself. For example, {3, 10} isaproper subset of
{3, 10, 47}. Thenotationisnot entirely uniform.
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If S isaproper subset of 7', many authorsdenote
thisby S C T, whereas others choose to denote
it by Si T or S?T, for example. Compae with
subset.

propositiond calculus  The syntactical part
of propositional logic. A propositionad calculus
isaformal system, consisting of analphabet (see
propositional logic), the set of al well-formed
formulas, aparticular set of well-formed formu-
las, which are called axioms, and alist of rules
of deduction.

The well-formed formulas that are axioms
are formulas that are intuitively obvious, and
should be tautologies. A typical axiom that
might occur in a propositional calculus would
be

(@ = (B = a)),

where o and B are any well-formed proposi-
tional formulas (thisisactually called an axiom
scheme, rather than an axiom, sincetherearein-
finitely many axioms of this form, one for each
different choice of « and 8). A typical rule of
deduction in a propositional calculus is modus
ponens Seemodus ponens.

A propositional calculus, using the axioms
and rules of deduction, is used to prove theo-
rems. Seealsoproof, theorem. Whilethe actual
choice of axioms and rules of deduction is not
important, it is important that a propositional
calculus be both sound (i.e., any well-formed
formulathat can be proved from the formal sys-
tem should be a tautology) and complete (i.e.,
any tautology should be provable from the for-
mal system).

Propositional calculusis also called senten-
tial, or statement calculus.

propositional logic A formal logic with the
following alphabet of symbols:

(i) ;) (parentheses)

(ii.) =, v, A, =, < (logica connectives)

(iii.) A1, Ag, As, ... (nonlogical symbols).

Often the list of logical connectives in item
(ii.) isshortened to some completelist of logical
connectives, such as {—, —}. The symbol A,
is caled the nth propositional symbol, or nth
sentential or sentence symbol.

The propositional symbols have no mean-
ing, although using truth assignments they can
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be interpreted as either true or false. Propo-
sitiond logic has rules that tell which expres-
sions from the language are well-formed for-
mulas. The propositiona calculus (sentential
calculus) is used to produce theorems of propo-
sitional logic. Seepropositional calculus, proof.
Truth assignments lead to a semantic notion of
truth in propositional logic, while the proposi-
tional calculusgivesasyntactical notion of prov-
ability. Propositional logicisalso called senten-
tial logic.

pseudocompact topological space A topo-
logical space X with the property that every
real-valued continuous function defined on X
is bounded. Pseudocompact spaces play a sig-
nificant role in the theory of C*-algebras.

pseudomanifold A simplicial complex S
which is a union of n-simplices (for some n)
and satisfies

(i.) each n — 1-simplex of S is the face of
exactly two n-simplices, and

(ii.) given two n-simplices o and o’ there
exists a sequence of n-simplices o = oy, o1,
...,0r = 0o’ witho; No;41 ann — 1 simplex
of S.
Psuedomanifoldshare akey homological prop-
erty with actual manifolds; namely, H,(S) = Z
if Sisorientableand H, (S) = 0 otherwise.

pseudoprime (1) An odd composite integer,

n, with the property that 2" = 2 (mod n). That
is, n isapseudopriméf » isadivisor of 2" — 2.
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The name is derived from the fact that if p is
a prime number, then a”? = a (mod p) for all
integersa.

(2) A composite integer n so that a" = a
(mod n) for al integersa isan absolute pseudo-
prime.

Pythagorean field A field, F, in which the
sum of the squares of any two elementsfrom the
field is the square of an element from the field.
Thatis, F isPythagoreanif, for every a and b in
F,thereexistsacin F sothat a®+b? = ¢2. The
rational numbersare not Pythagorean since 1%+
12 = 2 is not the square of a rational number.
However, the real numbers are a Pythagorean
field since v/a? + b2 isarea number whenever
aand b areredl.

Pythagorean triple A triple of positiveinte-
gers (a, b, ¢) satisfying the equation a? + b? =
¢?. For example, (6, 8, 10) is a Pythagorean
triple since 62 + 8% = 102. If (a,b,¢) isa
Pythagorean triple and a, b, and ¢ are pairwise
relatively prime, then (a, b, ¢) is known as a
primitive Pythagorean triple ((3,4,5) and
(5, 12, 13) are primitive Pythagorean triples).

It can be shown that either a or b (or both)
must be eveniif (a, b, ¢) isaPythagorean triple.
In fact, (a, b, ¢) is a Pythagorean triple if and
only if there exist positive integers k, m, and n
so that ged(m, n) = 1, exactly one of m or n
iseven, a = (m2 — nz)k, b = 2mnk, and ¢ =
(m? + n?)k, providing aformulafor generating
all Pythagorean triples.
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guantifier  Quantifiers are used in order to
guantify if elementswith acertain property exist
in a particular universe. The quantifiers are de-
noted symbolically by 3 (the existential quanti-
fier) and V (the universal quantifier). Theinter-
pretation of theexistential quantifier (Ix)[...]is
that there exists an object x (possibly more than
one) inthe universewith property [.. . ]. Thein-
terpretation of theuniversal quantifier (Vx)[. .. ]
isthat all objects x inthe universe have property
[...].
Note that only one quantifier suffices, since

(Vx)[...lislogicaly equivalentto—(3x)—[...].

A typical use of quantifiersoccursamong the
axioms for group theory. Given aset G with a
binary operation - on G (i.e., a function from
G x GtoG),

Fe)(Vx)[x e =e-x = x]

is the axiom that states that there is an element
of G that functions as an identity, while

Vx)@xM)[x - x* =x"-x =¢]

isthe axiom that states that every element of G
hasan inversein G. Here, the quantifiers range
over the universe (group) G.

Alsonotethat order of quantifiersisessential.
The statement (Vx)(3y)[. . . ] does not necessar-
ily havethe samemeaning as (3y) (Vx)[...]. In
the first statement, the y that exists may depend
onthechoiceof x, whileinthe second statement,
the y that exists does not depend on x.

quantifier elimination  Let £ beafirst order
language. A theory T of £ admits quantifier
elimination if, for every well-formed formula ¢
of L, there is a quantifier-free formula ¢ of £
suchthat (¢ <> ¥)isatheoremof T (T F (¢ <

V)

qguasicomponent  Given atopological space
X, define an equivalence relation ~ on X by
setting x ~ y if thereareno open setsU and V
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of Xwithx e U,ye V,and X = U U V. The
guasicomponent of x in X is the equivalence
class of x under this equivalence relation.

guotient category  If C isacategory and ~
is a congruence relation on C, the quotient cat-
egory of C with respect to ~ is the category C’
whose objects are the objects of C and whose
morphisms are the equivalence classes of mor-
phismsof C (with respect to ~); morphism com-
positionsinC’ isgivenby f15 f2 = fio fa,
where f; is the equivalence class of f; with re-
spect to ~.

quotientmap A surjectivefunctionp : X —
Y between topological spaces such that a subset
U isopeninY if and only if p~1(U) isopenin
X.

If ~isan equivalencerelation on X, thenthe
mapgq : X — X/ ~,sendingpointsof X totheir
equivalence classes, is sometimes referred to as
a quotient map. This agrees with the present
definition for the equivalence relation given by
x ~yifandonlyif p(x) = p(y).

guotient object  If A isan object of a cate-
gory C, a quotient object A is an ordered pair
(f, A"), where A’ isan object of C and f isan
epimorphism f: A — A’. For example, in the
category of groups and group homomorphisms,
a quotient object of the additive group Z isthe
pair (f,Z>2), where f is the group homomor-
phism that sends even integersto 0 and odd in-
tegersto 1. Thedual notion of aquotient object
is the notion of a subobject. See subobject.

quotient set A set that is apartition of some
other set. In practice, a quotient set is obtained
as the collection of equivalence classes of an
equivalence relation on some set. For example,
the set

{{all even integers}, {all odd integers}}

isaquotient set sinceit isa partition of Z. The
equivalence relation on Z that gives rise to this
quotient set is: a ~ bif andonly if a — b is
even.

quotient space  Let X beatopological space
and ~ an equivalencerelation on X. Let X* be
the set of distinct equivalence classes [x] of X.
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Define p : X — X* by p(x) = [x] and give
the set X* the quotient topology corresponding
to the surjective map p. See quotient topology.
Then X* is called aquotient space of X. Notice
that equivalent points of X are identified to a
singlepointin X*. Thisconstructionthusgivesa
topological method for factoring out subspaces
of a space X analogous to the quotient group
construction in group theory.

© 2001 by CRC Press LLC

guotient topology  Given a surjective func-
tion p : X — Y where X isatopological space
and Y is a set, the quotient topology on Y in-
duced by p isthetopology that makes p aquo-
tient map. (See quotient map.) That is, a subset
U of Y is defined to be an open set of Y if and
only if p~1(U) isan open subset of the topolog-
ical space X.
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radical  Seeroot of a number.

radiusof regular polygon  Theradiusof the
unique circle passing through all the vertices of
aregular polygon.

radiusof regular polyhedron  Theradius of
the unique sphere passing through al the ver-
tices of aregular polyhedron.

radix A synonym for base. Seebase of num-
ber system. For example, thedecimal expansion
of areal number isalso known asitsbase 10 ex-
pansion or its expansion to the radix 10.

range (1) Range of afunction. The set of
all values attained by a function. The range of
afunction f is often denoted by ran( f). Thus,
if f: A — Bisafunction, ran(f) = {y €
B : (3x € A) f(x) = y}. For example, if
f: R — Risthefunctiongivenby f(x) = x2,
therange of f is[0, co). Compare with image.

(2) Range of avariable. The set of al values
agiven variable can attain.

(3) Range of abinary relation. If R isabi-
nary relation, the range of R, often denoted by
ran(R), istheset {x : (3y) (x, y) € R}.

rank  Therank of aset x istheleast ordina
a such that x € Vy41. In particular, for any
ordina «, rank(a) = «.

The same notion can be defined using e-
recursion:

rank(x) = sup{rank(y) +1:y € x},
assuming sup{#} = 0.

rational function A functionthat isexpress-
ible as a quotient of polynomials.

rational number A real number that can be
expressed as a quotient of integers. Further-
more, the digits of the decimal expansion of a
real number will consist of a sequence which,
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eventually, repeatsperiodicaly if and only if the
number is arational number. The set of all ra-
tional numbersis normally denoted Q or Q.

real analytic fiber bundle A fiber bundle
such that the base space B isareal analytic man-
ifold, the group G isaLie group, and the coor-
dinatetransformations g;; : Ui NU; — G are
real analytic maps. See fiber bundle.

realizes A modd A of atheory T realizesa
type @ if thereis a set of elementsin A which
satisfies every formulain ®. More precisely, A
realizes® (x),wherex = {x1, ..., x,} contains
all freevariablesoccurringintheformulasin &,
if and only if thereisan n-tuplea of el ements of
A suchthat A = ¢ (a) for every ¢ (x) in @ (x).

real number A number that has an infinite
decimal representation, which may or may not
terminate or repeat. If the decimal representa-
tion repeats or terminates, the real number isa
rational number; otherwiseitisirrational.

The set of real numbers (usualy denoted R
or R) can be constructed as the completion of
therational numbers, in the sensethat every real
number is the limit of an infinite sequence of
(not necessarily distinct) rational numbers.

reciprocal  If risanonzerorea number, then
itsreciprocal isthe number } For example, the
reciprocal of % is 3 and the reciprocal of v/2 is
1 _ V2

BT

recursion Let f beann-aryfunction(n > 1),
g bean (n — 1)-ary function, 2 bean (n + 1)-
ary function, and y denote the (n — 1)-tuple
y1, ..., yn—1 (a8l functions are functions on the
natural numbers). The function f is obtained
from g and & by recursionif, for al natural num-

beI’Sy]_, vy Yn—1»
£@0,y) g()
f&x+1y) = hx, f(x,3),Y).

The function f(x,y) = x + y can be de-
fined by recursion as follows. Let S(x) be the
successor function; i.e., S(x) = x + 1for al x.
Informally, the recursion equations for f are

fO,y) =y
fOx+1y) = S(f(x,y).
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More formally, f is obtained from g and h
by recursion as

fO,y) = g
fx+Lly) = hx, f(x,),y),

where g istheidentity function g(y) = y for al
Yy hx,y,2) = S(P3(x, y, 2)), and P3(x, y, 2)
=yfordlux,y,z.

Similarly, the factoria function p(n) = n!
for al n is obtained by recursion informally as

o0 =1
n+1D! = m+21-n.

recursive A function f on the natural num-
bers which is total (i.e., the domain of f isthe
set of all natural numbers) and partial recursive.
See partial recursive function. By the Church-
Turing Thesis, the phrase “ f is recursive” can
mean f istotal and computable in any formal
sense. See Church-Turing Thesis, computable.

A set A of natural numbers is recursive if
its characteristic function is recursive; i.e., the
function

1 if neA
XA =109 if nga

isrecursive.
Theset A = {n € N : nisprime} is recur-
sive.

recursively enumerable A set A of natura
numberswhich isthe domain of some partial re-
cursive function. Equivalently, A isrecursively
enumerableif itistheempty set or it istherange
of some (total) recursive function; i.e, if A is
non-empty, then there is a computable function
f : N — N which“lists’ the elements of A. If
A isthedomain of the partial recursive function
with Godel number e, then A is denoted by W,,
the eth recursively enumerable set.
For example, the halting set

K = {e : ¢.(e) isdefined}

(the set of al numbers e such that the partial
recursivefunctionwith Godel number e oninput
e is defined) is recursively enumerable, but not
recursive. The set

{e : (Vx)[g.(x) isdefined]}
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is not recursively enumerable.

The term computably enumerable (c.e) is
synonymous with recursively enumerable.

reductioad absurdum  Literaly, “aleading
back to the nonsensical”. In mathematics, re-
ductio ad absurdum means proof by contradic-
tion. In a proof by contradiction, one assumes
the hypotheses of the statement to be proved,
as well as the negation of the statement to be
proved. The proof is complete when a contra
diction (i.e., a Situation where both a statement
A and its negation —A aretrue) is encountered,
and one then concludesthe statement which was
to be proved.

reduction of alanguage Let £1 and L5 be
first order languages. The language £1 isare-
duction of Ly if £1 C Lo; i.e, if Ly isan ex-
pansion of £1. See expansion of alanguage.

reduct of astructure Let £1 and £, befirst
order languages such that £, is a reduction of
Lo. Let A beastructure for £,. The reduct of
A to £, isthe structure obtained from .4 which
gives only the interpretations of the predicate,
constant, and function symbolsin £1 (al inter-
pretations of the additional symbolsin £, are
discarded). See expansion of a structure.

Reebfoliation A Reebfoliation of the sphere
$3 is a codimension-one foliation in which one
leaf isatorus ST x S, dividing the sphere into
two solid tori, and each remaining leaf diffeo-
morphic to the plane R2. Thus, the sphere is
represented as a union of surfaces, only one of
which is compact, such that at each point there
isalocal coordinate system in which each plane
{z = constant} iscontained in asingle surface.

Reeb Stability Theorem  Let M beasmooth
manifold with a codimension-one foliation in
which one of the leaves is diffeomorphic to the
sphere 52. Then al leaves of the foliation must
be spheres or projective planes and the manifold
M must be §2 x S or the connected sum of two
copies of real projective space RPS.

refinement of a cover Given a cover {Ay}
of atopological space X (that is, X C UA),
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asecond cover {Bg} is a refinement of {Ay} if
each Bg is contained in some A, .

reflexive relation A binary relation R on
someset S suchthat (x, x) € R,foreveryx € S.
For example, < on Z, theusual order relation on
the set of integers, is areflexive relation.

regular cardinal A cardinal « such that the
cofinality of k is«x. Thus, « isregular if, for any
increasing sequence of ordinas y, < « whose
length islessthan «, supy, isaso lessthan «.
For example, any successor cardina is regular
(assuming the axiom of choice), whereas R, is
not.

regular covering A concept arising in the
theory of covering spaces. Assumethat B isan
arcwise connected, locally arcwise connected
space. A continuous function 7 : E — B
is a covering map if each point in B has an
arcwise connected neighborhood U such that
each component of 7 ~1(U) is open in E and
is mapped homeomorphically onto U by . If
y : [0, 1] — Bisacurve, andif 7 (e) = y (0),
then thereisauniquecurve y’ : [0,1] — E
with y/(0) = e and 7 (y'(t)) = y (). y’is
called a lift of y. The covering is regular if
whenever y isaclosed curve in B, then either
every lift of y toacurvein E isclosed or no lift
of y isclosed. For aregular covering, the cov-
ering transformationsarein 1-1 correspondence
with 7 =1(b), for b any point in B.

regularly homotopic immersions  Anim-
mersion is a differentiablemap f : M — N,
whose derivative d f (m) isnonsingular at every
point p. Itislocaly an embedding, but it need
not be globally 1-1. Two such immersions, fo
and f1, areregularly homotopic if thereisadif-
ferentisblemap H : M x [0,1] — N with
H(m,0) = fo(m) and H(m,1) = f1(m) for
al min M, suchthatif f; isdefined by f;(m) =
H(m, 1), then f; isan immersion for each 7 in
[0, 1]. Thus, the immersion fp can be contin-
uously deformed through immersionsto f1 in
such away that tangent vectorsto M vary con-
tinuously through the deformation. This rules
out untying aknot by pulling it tight.
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regular neighborhood A regular neighbor-
hood N of asubcomplex L inasimplicial com-
plex K is a neighborhood of L that is formed
from the simplices of the second derived subdi-
vision of K.

If {o”} is the collection of simplices of the
second derived subdivision of K, then the reg-
ular neighborhood of L, denoted N (L) is the
collection of simplexes

N(L)={c":0"NL #0}.

regular polygon A (convex) polygon whose
sides have equal length, in which case the ver-
tices lie on a circle. The n vertices of a
regular n-gon can be taken to be the points
(cosZ sinZi) i =0,...,n.

regular polyhedron A (convex) polyhedron
all of whosefacesare congruent and all of whose
vertices belong to the same number of faces.
There exist only five types, the Platonic solids:
tetrahedron, hexahedron, octahedron, dodeca-
hedron, icosahedron (resp. 4,6,8,12,20 faces).

regular topological space A topological
space X in which one-point sets are closed and,
givenany closed subset A of X andapointx € X
notin A, there exist digoint open subsets U and
Vof Xsuchthat A Cc Uandx € V.

relation (1) n-ary relation. A set of n-tuples.

(2) Binary relation. A set of ordered pairs.

(3) Ternary relation. A set of ordered triples.

(4) Binary relationonaset. If Sisanarbitrary
set, Risabinaryrelationon S if R isasubset of
S x §. For example, the relation “m dividesn”
isabinary relation onthe set of natural numbers,
since it isthe set {(m, n) : m divides n} which
isasubset of N x N.

relative complement of a set (with respect to
another set)  The relative complement of a
set S, with respect to a set U, denoted by U\ S
or U — S, isthe set of elementsthat arein U but
not in S. For example, the relative complement
of the set of even integers with respect to Z is
the set of odd integers.

relative computability  Let N be the set of
natural numbers, ¢ be a (possibly partial) func-



relative computability

tion on N and f be atota function on N. (A
functionispartial if itsdomain is some subset of
N; afunctionistotal if itsdomainisall of N.) In-
tuitively, thefunction ¢ iscomputablerelativeto
fif thereisan algorithm, or effective procedure,
which, given n € N asinput, produces ¢(n) as
output, in finitely many steps, if n € dom(yp),
where the algorithm is alowed to make finitely
many queries about values f (y1), ..., f (y) of
f. Similarly, aset A of natural numbersiscom-
putable relative to aset B of natural numbers if
there is some agorithm which, givenn € N as
input, outputs “yes’ if n € A or“no” if n ¢ A
after finitely many steps, where the algorithm
is allowed to make finitely many queries about
membership y1 € B?, ..., yx € B?in B.

Toformalizethenotion of relativecomputabil -
ity withamathematical definition, onerelativizes
one of the formal definitions of computability
(seecomputable, partial recursivefunction). For
example, let ¢ beapartial function on N and let
A beaset of natural numbers. Thefunctiong is
partial recursivein A (or partia recursive, rel-
ative to A) if it can be derived from the initial
functions, together with x4 (the characteristic
function of A), by finitely many applications of
composition, recursion, or the p-operator. A
set B of natural numbersisrecursivein A if its
characteristic function x g ispartial recursivein
A. Seepartia recursive function. Similarly, the
function ¢ is Turing computablein A (or Turing
reducible to A, or Turing computable, relative
to A) if there is some oracle Turing machine
which computesit, using an oraclefor A. A set
B isTuring computablein A if its characteristic
function x g is Turing computablein A.

An oracle Turing machine is a Turing ma-
chine with a bi-infinite, read-only oracle tape,
which is separate from its work tape (where the
input is originally written), on which is written
the characteristic function x4 of A; i.e., thetape
looks like

...Bnonino ...,

whereforali > 0,n; = 1ifi € A, n; =0if
i ¢ A,and... Bindicatesthat all cellstotheleft
of thevalueof x 4 (0) areblank. Theoperation of
the Turing machine is the same, except that the
transition function is modified to account for the
character being scanned on the oracle tape. In
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otherwords, if Q istheset of machinestates, Sis
thework tape alphabet, and O = {B, 0, 1} isthe
oracle tape a phabet, then thetransition function
8 has domain some subset of QO x § x O and
range contained in Q x S x {R, L}, and where
8(q,a, b) = (q, a, m) meansthat if themachine
isin state ¢, scanning symbol a onitswork tape
and b onitsoracletape, thenitreplacesa by a on
itswork tape, movesthe read head on both tapes
one cell to the left or right, depending on the
value of m, and goes into state g. Computation
of a partial function is the same as for a non-
oracle Turing machine; at the beginning of the
computation, the read head on the oracle tapeis
positioned on the cell giving the value of x 4 (0).
See computable for a description of a Turing
machine.

By arelativized version of the Church-Turing
Thesis, al formalizationsof rel ative computabil -
ity capture the intuitive notion of relative com-
putability, and so the phrase ¢ is computable,
relativeto A (or ¢ isrecursivein A, or ¢ is A-
computable, or ¢ is A-recursive) means that ¢
is computable relative to A in any such formal-
ization. The notation ¢ <7 A meansthat ¢ is
computable, relativeto A. The relation <7 is
called Turing reducibility.

As an example, note that for any set of natu-
ral numbers A, its complement A in N is com-
putable, relative to A. In addition, any recur-
sively enumerable (computably enumerable) set
B is computable relative to the halting set K =
{e : p.(e) is defined}, where ¢, denotesthe par-
tial recursive function with Godel number e.

relative homology group Given a topo-
logical space X and a subspace A, the nth
relative singular homology group H, (X, A) is
the nth homology group of the chain complex
{S;(X)/S4(A)} obtained by taking the group
S4(X) of chains on X modulo the group S, (A)
of chainsonthe subspace A. If X isasimplicia
(or cellular complex) and A is a subcomplex,
the nth simplicial (or cellular) relative homol-
ogy group H, (X, A) isjust the ordinary homol-
ogy of the complex X/A with the subcomplex
A identified to a point. A long exact sequence
of the form

- > Hy(A) >— H,(X) > H,(X, A)
> Hya(A) = -



Riemann zeta function

relates the relative to the ordinary homology
groups.

relative homotopy group  Given atopolog-
ical space X and a subspace A, the nth relative
homotopy group =, (X, A) is the set of homo-
topy equivalence classes of maps f from the n-
dimensional ball B" to X such that £ ("~ 1)
A where $"~1, then — 1-sphere, isthe boundary
of B". A homotopy between two such maps f
and g isrequiredtocarry S"~Linto A forall ¢. If
A C B C X, thenthereisalong exact sequence
of the form

> (X, B) >— (X, A) > 1,(B, A)

- mp-1(X,B) —> --- .

relatively open set A subset U of atopolog-
ical space X such that U isaproper subset of a
subspace A of X and U isan open subset of A.

relativetopology  Thetopology onasubset A
of atopological space X that isthe collection of
all intersections of A with open setsin X. That
is, U C A isopen in the relative topology on A
if thereisanopenset V C X withU =V N A.
Therelativetopology makesany set A € X into
a subspace of X.

repeatingdecimal A decimal representation
...agasaza1a9.a—14—2a_3. . .

of a real number for which there exist posi-
tive integers P and N, so that for every n >
N,a_, = a_,_p, Where a_,, (resp. a_,_p)
is the digit in the 107" (resp. 107"~ F) place
in the decimal expansion of the number. For
example, the decimal expansion of the number
¥4 is1.532323. . ., where the sequence 32 re-

peatsforever (thisisoftenwritten % = 1.532,
where the bar over 32 means that this sequence
repeatsforever). It canbeshownthat areal num-
ber has either arepeating or terminating decimal
representation if and only if that number isara-
tional number. Note that a terminating decimal
representation could be said to have “repeating
zeros’ and therefore be arepeating decimal rep-
resentation as well.

representative of an equivalenceclass Any
element of an equivalence class.
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restriction of afunction If f: A — Bisa
function, therestriction of f toaset S (usually
S isasubset of the domain), denoted by £1S, is
{x,y):y=f(x)and x € S}.

retract A subspace A of atopologica space
X such that there exists aretraction r : X —
A. (Seeretraction.) Retracts are important in
algebraic topology because they cause the long
exact homology and cohomology sequences to
split as short exact sequences.

retraction A continuousfunctionr : X — A
from a topological space X to a subspace A is
aretraction of A if r(a) = a fordla € A.
Equivalently, r is aleft inverse to the inclusion
A — X.

Riemann Hypothesis  Theconjecturethat all
of thenontrivial zeros of the Riemann zetafunc-
tion havereal part % (i.e., areof theformx + iy
where x = 3). Bernhard Riemann stated in his
memoirs that it seemed likely to be true and if
proved could likely be used to prove that there
are infinitely many twin prime pairs. David
Hilbert listed it asone of the most important out-
standing problems facing mathematicians at the
dawn of the 20th century. Although it isknown
that there are infinitely many zeros of the zeta
function with real part 3, it isstill an open prob-
lem as this book is printed at the dawn of the
21st century. See also Riemann zeta function,
generalized Riemann hypothesis.

Riemannian geometry  The study of the ge-
ometric properties of locally Euclidean mani-
folds. A Riemannian manifold is a manifold
whose tangent space at each point p possesses
a positive definite inner product g(p)(X,Y),
which varies continuously (usualy smoothly)
with the point p. This structure allows one
to define lengths, angles, and other geometric
guantities. The term Riemannian geometry is
sometimes used to refer specifically to eliptic
geometry, which is a non-Euclidean geometry
inwhich the parallel postulateisreplaced by the
postulate that straight lines always intersect.

Riemann zetafunction  TheDirichlet series
o0
c(s) = Y ni defined for (extendible to) all

n=1
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complex numbers s # 1. It can be shown that
¢(—2n) = 0O for al positive integers n. It is
conjectured that the only other zeros are of the
forms = 1 + iy (that is, have real part equal
to %). This conjecture is known as the Riemann
Hypothesis.

right adjoint of afunctor  Let C and D be
categories,andlet F: C — D, G: D — C be
functors. G is the right adjoint of F (and F
isthe left adjoint of G) if thereis abijection 6
between the collection of morphismsfrom F(A)
to B and the collection of morphisms from A
to G(B) that is natural for objects A of C and
objects B of D. Hence, this bijection 6 sends
every morphism f: F(A) — B toamorphism
0(f): A — G(B) so that both conditions (i.)
8(foF(g) = ©O(f)og and(i) b(ho f) =
(G(h)) o (B(f)) are setisfied, for every pair of
morphisms g: A’ — Aand f: B — B’. For
example, if C isthecategory of groupsand group
homomorphisms, D is the category of sets and
functions, theforgetful functor G: ¢ — Disthe
right adjoint to the free group functor F: D —
C.

rigidmotion  Aneventransformation of (Eu-
clidean) space which preserves lengths and an-
gles. A rigid motion takes any geometric figure
to one which is congruent to itself. Because a
symmetry of the plane reverses orientation, itis
not considered a rigid motion of the plane, al-
though it is so viewed when the planeis thought
of as a subset of three-dimensional space. The
rigid motions form a group under composition;
it is the component of the identity in the group
of isometries.

root of anumber (1) If nisapositiveinteger
and a isacomplex number, an nth root of a isa
complex number r such that r" = a.

(2) If n is a positive integer and r is a real
number, the nth root of a, denoted /a, is the
unique real number r so that r* = aq, if such
anumber exists. If n isodd, {/a aways exists
(and is positive when a is positive and negative
when a is negative), while if n is even and a
is negative, /a does not exist, within the real
numbers.
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root of equation A number that, when sub-
stituted in a given equation, makes the equation
valid. For example, the real numbers +/2 and
—+/2 are roots of the equation x2 = 2, since
x = ++/2 are solutions to the equation. A root
of a polynomial p(x) isaroot of the equation
px) =0.

rotation A rigid motion of the plane which
fixes exactly one point, or a rigid motion of
three-dimensional space which fixes the points
onexactly oneline, whichistheaxisof rotation.

ruled surface  An agebraic surface, bira-
tional to C x P!, where C isasmooth projective
curve. For example, a smooth quadric in P3,
which isisomorphic to Pt x PL.

Russell’s Paradox A paradox of naive (in-
formal) or non-axiomatic set theory. In naive
set theory, itispossibleto formtheset A = {x :
x ¢ x}. Notethatif A € A,then A ¢ A, and
if A ¢ A, then A € A. This contradiction is
called Russell’s Paradox.

Russell’s Paradox was discovered by Ber-
trand Russell in 1901 and published by him in
1903. Thediscovery of thisand other paradoxes
revealed that set theory could not be used as a
language to formalize mathematics in a naive
fashion, so that an axiomatic approach, giving
rulesfor which sets could exist, needed to be de-
veloped in order to avoid contradictions. There
are several axiomatizations of set theory, in-
cluding ZF (Zermelo-Fraenkel set theory) and
NBG (von Neumann-Bernays-Godel set the-
ory).

Prior to the discovery of Russell’sParadox, it
was believed that any definable collection; i.e.,
any collection {x : P(x)} of objectsx satisfying
aproperty P(x), isaset. Thedifficulty withthis
(and with Russell’s Paradox) is that some col-
lections are, in some sense, “too big” to be sets.
In Z F set theory, only definable collections that
are aready subsets of existing sets can be sets
(thisisthe Axiom of Comprehension, or Axiom
of Subsets). In this set theory, the collection
A above cannot be a set, since assuming it isa
set leads to a contradiction. The NBG set the-
ory differentiates between classes and sets. In
this set theory, the collection A aboveisaclass
whichisnot a set.



s-cobordism

S

satisfiable  Let £ be afirst order language,
and let T beaset of well-formed formulas of L.
Theset I is satisfiableif there exists astructure
A for £ and amapping s : V — A such that
for each formulay € T, A satisfies y with s.
(Here, V isthe set of variablesof £ and A isthe
universe of A.)

satisfy  Let £ beafirst order language, o bea
well-formed formula of £, A be a structure for
L, V bethe set of variablesof £,ands : V —
A (i.e., s assigns each variable in the language
to some element of the universe of 4). The
functions canbeextendedtoafunctions : 7 —
A from the set T of all terms of £ into A, by
induction, as follows.
(i.) If x isavariable of £, then

s(x) =s(x) .
(ii.) If c isaconstant symbol of £, then
s(c) = cA ,

where ¢ is the element of A assigned to ¢ by
A.

@iii.) If £1, ..., 1, aretermsof £ and f isan
n-ary function symbol of £, then

S, ) = fAGM), ..., 5(t)

where 4 is the n-ary function on A assigned
to f by A.

The structure A satisfies o with s (notation:
E4 «fs]) and is defined by induction on the
complexity of o asfollows.

(i) f o = (11 = 1), wherer; and 1, are
terms of £, then A satisfies (11 = o) with s if
s(r1) = 5(22)-

@ii.) fa = P(t1,...,t,), Wherery, ..., 1,
aretermsof £ and P isan n-ary predicate sym-
bol of £, then A satisfies P(t4, ..., t,) withs if
(1), ...,5(ty) € PA, where PAisthen-ary
relation on A assignedto P by A.

(@iii.) If @ = (=), then A satisfies (—8) with
s if A doesnot satisfy 8 with s.
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(iv) If @ = (B — y), then A satisfies (8 —
y) withs if A satisfies (—8) with s or A satisfies
y withs.

(v.) If « = Vo, then A satisfies Vv with s
if forala € A, A satisfies 8 with the following
modified versions, : V — A of s:

s i o x #w
sa(x)—{ a if x=v.
Let a1,...,a, € A and let ¢ be a well-

formed formulawith free variables from among
V1,...,Uy. The notation =4 ¢la,...,a]
means that thereisans : V — A withs(v;) =
a;,forl <i < n, and A satisfies ¢ with s.

saturated model A model A that realizes as
many types as possible. More precisaly, if A is
amodel in the language L and X is any subset
of A, let Lx bethe expansion of L which adds
a constant symbol ¢, for each x € X. Then for
acardina «, A is k-saturated if for any X C
A of size less than «, every type ®(x) in the
language L x whichisconsistent with the theory
of A (using Ly) isredlizedin A. That is, there
issomea € A suchthat A = ¢(a) for every
¢ € d.

A model A issaturated if it is|A|-saturated.
Therationalsareasaturated model of thetheory
of dense linear orderings without endpoints.

Schauder Fixed-Point Theorem Let X bea
closed convex subset of a Banach space. Then
any continuous map f : X — X for which the
closure of f(X) is compact must have a fixed
point; thet is, thereisan x € X with f(x) = x.
In particular, any continuous mapping from a
compact convex subset of a Banach space into
itself has afixed point.

Schroder-Bernstein Theorem See Cantor-
Bernstein Theorem.

s-cobordism A geometric notion of equiv-
alence for piecewise linear manifolds. An h-
cobordism is a manifold W with boundary the
digoint union of two manifolds My and M3, in
which the inclusion mapsig : Mg — W and
i1 : M1 — W are homotopy equivalences.
This can be refined using the notion of simple
homotopy. If (K,L) isapair of smplicial com-
plexeswith K = L U B, with B aclosed n-cell
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and BN L isaface of B, then K issaid to col-
lapseto L, and L expandsto K. This generates
an equivalencerelation on polyhedracalled sim-
ple homotopy equivalence. An s-cobordismis
an h-cobordism in which the inclusions ig and
i1 are simple homotopy equivalences.

s-Cobordism Theorem Let W be an
s-cobordism, with boundary the digoint union
of two manifolds Mg and M7. Then, if the di-
mension of W isat least 6, W is actually equiv-
alent (as a polyhedral manifold) to the product
manifold Mg x [0, 1]. This would be false if
the inclusion maps were only homotopy equiv-
alences.

secondary cohomology operation  Anim-
ageof alift of acohomology classuin H (Y; A),
formed in the following manner. Theclassu is
represented by amapu : Y — K(A,i). Let
o be a cohomology operation corresponding to
themap @ : K(A,i) — K (B, j) for which
au = 0. Let X represent the two-stage Post-
nikov tower given by «, so that

KB,j—1) — X — K(A,i) — K(B,j)

isafibrationwithmapsi, p, and «, respectively.
Let 8 : X — K(G,n) represent a class in
H"(X; G). Sinceau = 0, thereisamap v such
that v composed withthemap X — K (A, i)
is homotopic to u. The cohomology class in
H"(Y; G) given by composing Bu is the sec-
ondary cohomol ogy operation given by thispro-
cedure evaluated on u.

This operation is only determined up to a
coset. If everything is done in the stable range,
then the indeterminacy is due only to the choice
of v; any two choices may differ by any el-
ement of H"(Y, G) which is in the image of
i*(a) : H=Y(Y; By — H"(Y; G). One usu-
ally only uses secondary operationsin the stable
range (j and n less than 2i — 1) because inde-
terminacy is difficult to determine otherwise.

These are operations that arise from the re-
lations among primary cohomology operations.
The Ademrelation S¢3S¢1 + S¢2Sq% = O gen-
erates a secondary cohomology operation that
showsthat ;2 isessential (not homotopictozero),
where 1 represents the Hopf map $3 — §2 (in
the Hopf bundle) or any suspension of that map.
Note that a secondary cohomology operation is
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not defined on the whole cohomology group in
general. See Adem relations. See also primary
cohomology operation.

second category space A topologica space
X which is not first category; that is, X is not
equal to the union of a countable collection of
closed subsets with empty interiors.

second countabletopological space A topo-
logical space that has a countable basis for its
topology. For example, the real line (with its
standard topology) is second countable since
open intervals with rational endpoints form a
basis.

semicircle  Anarcof acircle, connecting two
points on adiameter, for example {(x, y) : x2+
=1 y=0}.

sentence A well-formed formula of a first
order language having no free variables. See
free variable.

sentential calculus
lus.

See propositional calcu-

sentential logic  See propositional logic.
separable topological space A topological
space with a countable, dense subset. For ex-
ample, thereal line (with its standard topol ogy)
is separable, since the set of rational numbersis
countable and dense in the reals.

separated sets  Two subsets A and B of a
topological space X which satisfty ANB = BN
A = ¢, where A and B denote the closure of A
and B.

separation axioms A system of axioms for
topological spaces X which measure, inincreas-
ing fashion, the extent to which points and sub-
sets are separated by the topology on X. The
standard axioms are caled the Ty, Th, T, T3,
and T, axioms. Other axioms, including com-
pletely regular, Tychonoff, and Urysohn spaces,
refine and extend this list.

separation by a continuous function  The
property of a continuous function f : X —
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[0, 1] that, for two subsets A, B C X, we have
f(A) = {0} and f(B) = {1}.

set (1) In naive set theory. A set isany col-
lection of arbitrary objects. When such a col-
lection is seen asasingle entity, it is considered
aset. Alternativeterms: collection or family (in
particular, these terms are often used for sets of
sets, setsof setsof sets, and so on; so aset of sets
is often called a family of sets, or a collection
of sets). Sets are determined by their elements
(their members). Standard set notation defines
aset by listing or describing its elements within
curly brackets: {,}. For example, the set whose
only elements are the number 3 and the letter
Q is written in list form as {3, Q} or {0, 3}
(the order of listing does not matter). The set
{2,4,6, 8} (list form) can also be expressed in
description formas {2n : n = 1,2,3,4} or as
{2n|n=1,2 3,4}

(2) In axiomatic set theory. A formal mathe-
matical object whose existenceisaconseguence
of the axiomatic system with which oneiswork-
ing. For example, in Zermelo-Fraenkel set the-
ory, sets are built using axioms such as Union,
Comprehension, Power Set, etc. See Zermelo-
Fraenkel set theory, Bernays-Godel set theory.

set theory (1) Axiomatic set theory. The
branch of mathemati cswhose purposeisto study
setswithin aformal axiomatic framework. Also
known as the foundation of mathematics, refer-
ring to the notion that all of mathematics can
be carried out within set theory. For example,
Zermelo-Fraenkel set theory models mathemat-
icsinanatural way. See also Zermelo-Fraenkel
set theory, Bernays-Godel set theory.

(2) Naive set theory. The practice of deal-
ing with sets as arbitrary collections of objects
and performing operations on such sets without
appealing to axioms.

sexagesimal number system A number sys-
tem, used by theancient Babyloniancivilization,
that was a base 60 positional system, in con-
trast to the base 10 positional system commonly
used today. The value of a particular number
depends both on the numerals used in its repre-
sentation and the placement of these numerals.
Using the symbols | and < to represent 1 and
10 respectively, one can denote the number 34
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as<<< ||||, 154 isexpressed as|| <<< ||||
(2 x 60+ 34),and 5000 isrepresented by | <<
|| << ((1x60%)+(23x 60)+20). A highbase
such as 60 is useful for dealing with large num-
bers, since the “place values’ represent powers
of the base (60), namely, 1, 60, 3600, 216000,
... One of the difficulties is the fact that there
must be 60 “digits’ (representing the values O
to 59). In fact, the Babylonians did not have a
symbol for zero so the number << ||||||] < ||
could represent 1663 ((27 x 60) + 13) or 97213
(27 x 3600) + (0 x 60) + 13). See also base of
number system.

sheaf A structure F on atopological space
X, which assigns an object F(U) to each open
subset U of X, and for each inclusion U in V
of open setsin X, F assigns a restriction map
rvu @ F(V) — F(U) so that ry y is the
identity on F(U) andwhenever U inV in W are
nested open sets, rv.uorw,y =Tw,u- Further,
whenever U = U, U, isacovering of U by
opensetsU,, and{ f,} isacollection of elements
fa In F(U,) such that the restrictions of f, and
frtoU,NU, areequal, thereisauniqueelement
fin F(U) such that the restriction ry, ¢, (f) to
each U, isjust f,.

Example: The collection of open sets of a
space X isasheaf with F(U) = U. One may
also use sheaves as coefficients in homology of
X.

sieve of Eratosthenes A method (named &f -
ter the Greek mathematician Eratosthenes) for
“sifting” out the prime numberslessthan afixed
integer N. It relies on the fact that if n isapos
itive integer less than or equal to N, then n is
either a prime number or has a prime factor that
islessthan or equal to v/N.

To find the primes less than or equal to N,
first list the integers from 2 to N. Then, circle
2 and cross out al of the other multiples of 2
since we know they cannot be primes (they are
divisible by 2). Notice that the smallest integer
left that is not circled or crossed out is 3 (the
next prime number). Circle 3 and cross out the
remaining multiplesof 3. Now, circlethesmall-
est integer that is neither circled nor crossed out
(5) and cross out al its other multiples. Con-
tinue this process until the smallest integer that
is neither circled nor crossed out is greater than
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V/N. Circle the remaining integers in the list;
theintegersthat have been circled arethe primes
less than or equal to N.

simple closed curve A topological space C
that is homeomorphic to the unit circle. Intu-
itively, this meansthat C does not crossiitself.

simple homotopy equivalence A homotopy
equivalence f : S1 — S» between two simpli-
cial complexes which is obtained as a composi-
tion of elementary contractions and expansions.
Givenann-simplex o of asimplicial complex §
such that o istheface of auniquen + 1-simplex
7, an elementary contraction of S isthe map that
collapses o and t to a point. An elementary
expansion of S isthe inverse of an elementary
contraction.

simplex Let {ao,...,a,} be a geometri-
cally independent subset of R”. The n-simplex
o spanned by {ao, ... , a,} istheset of al points

n n
x=Ztkak, where Ztkzl,
k=0 k=0

and 7, > Ofor all k. The points {ag, ... , a,}
are called the vertices of . The 1, are caled
the barycentric coordinates for o. Any simplex
spanned by a subset of {ao, ... ,a,} iscaled a
face of 0. For example, aO-simplex isapoint, a
1-simplex isaline segment, and a 2-simplex is
atriangle.

simplicial approximation Let f : S1 —
S> be a continuous function between simplicial
complexes. A simplicial mapping g : S1 — S2
isasimplicial approximationfor f if f(St(v)) C
St(g(v)) for every vertex v of S1 where St(v) de-
notes the star of the vertex v.

simplicial complex A set V of vertices, to-
gether with aset K of finite subsets of V called
simplices, satisfying thecondition: if o isasim-
plex and t isasubset of o, then T isalsoasim-
plex.

simply connected domain A subset D of a
topological space X which is open, connected,
and simply connected as a subspace of X. See
simply connected space. That is, D must be
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path-connected and have a trivial fundamental
group, 1(D), as asubspace of X.

simply connected space A topological space
X whichispath-connected and hastrivial funda-
mental group r1(X). That is, any closed pathin
X ishomotopicto aconstant path. For example,
acircular disc in the plane is simply connected,
while an annulus is not because there are paths
in it (going around the annulus) which cannot
be continuously deformed to a constant path.

singleton set  Any set with exactly one ele-
ment. For example, {7} isasingleton.

singular cardinal A cardinal number whose
cofinality is smaller than itself. Thus, if x isa
singular cardinal, « isnot regular and cf(x) <
«. For example, R, isasingular cardinal. Com-
pare with regular cardinal.

singular complex  For X atopological space,
the chain complex S(X) = {S,(X)} of free
Abelian groups (or free modules over aring R),
generated by singular simplices. Seechain com-
plex. The standard k-simplex is the set o =
{(x0, x1,...,xr) € RK+1 x0+ ...+ xp =1,
each x; > 0}. A singular k-simplex is a con-
tinuous function ¢ : oy —> X. For each
n > 0, S,(X) is the free module generated by
the singular k-simplices. The boundary map
O @ Sp(X) —> Sr_1(X) isconstructed by tak-
ing asingular smplex ¢ to the aternating sum
of the (k — 1) — simplices determined by re-
stricting ¢ to its faces.

singular homology A graded Abelian group
H(X) = {H,(X)}, determined by a space X.
The group Hi(X) is the quotient of the sin-
gular cycles Zp(X) = kerdy : Sp(X) —
Sr—1(X) modulo the boundaries Bi(X) =
k+1(Sk+1(X)). Thesingular homology groups
are fundamental invariants of X.

singular n-boundary  If {S,(X)} isthesin-
gular complex of aspace X, then the nth bound-
ary group B, (X) isthe subgroup of S, (X) con-
sisting of elements of the form dc¢ for ¢ in
Sy+1(X). The elements of B, (X) are singular
n-boundaries.



smooth structure

singular n-chain  Anelement of thefree Abel-
ian group (or, more generally, the free module
over aring R) S,(X), alinear combination of
singular n-simplices in a topological space X.
See singular n-simplex.

singular n-simplex  The standard n-simplex
isthe set

on = {(x0, x1, ... ,x,) € R"L

x0+...+x, =1 eachx; >0} .

A singular n-simplex in aspace X isacontinu-
ousfunction ¢ : 0, — X.

skew lines  Two lines that do not meet in
projective geometry, which can occur in P" for
n > 3only.

Skolem expansion (1) The Skolem ex-
pansion of a language L is L U {fy
dx¢ isaformulain L}, where each f; is a
Skolem function for ¢. See Skolem function.

(2) The Skolem expansion of atheory T in
thelanguage L is T together with the set of sen-
tences

Vi(3xg(x, ) = ¢ (f5(53), 7))

for each Skolemfunction f of L. Thelanguage
of the expanded theory isthe Skolem expansion
of L.

(3) A Skolem expansion of a structure A in
the language L isamodel A’ which addsto A
consistent interpretations of the Skolem func-
tionsof L. That is, for each Skolem function fs
of L,

A EVY([Ex¢(x, 3) = ¢(f6(3). ) -

The language of the expanded model A’ is the
Skolem expansion of L.

Skolem function  If 3x¢(x, y) isaformula
with al its free variablesin y = {y1, ..., yu},
then a Skolem function for ¢, fy, satisfies

Vi(3xd (x, §) = ¢ (f5(5). V) -

In effect, the symbol £, (¥) names a witness of
the existential statement 3x¢ (x, y) for each y
which has one.
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Skolem hull  If X isasubset of an L-structure
A, the Skolemhull of X isthe smallest submodel
of the Skolem expansion of A which contains X.
Equivalently, it isthe smallest subset of A con-
taining X whichisclosed under the operationsof
the Skolem expansion. Any nonempty Skolem
hull is an elementary submodel of the original
model A. See Skolem expansion.

Skolem normal form A formula ¢ isin
Skolemnormal formif ¢ = Vx3y¢ (x, y), where
¢ is quantifier-free.

Skolem theory A theory T in the language
L whichisitsown Skolem expansion; that is, T
contains

Vi (3xp(x, 7) = ¢(f3(3), 9))

for each Skolem function f; of L. See Skolem
function.

smoothing A smooth structure on atopolog-
ical manifold M, which induces the given topo-
logical structure. A smoothing of a piecewise
linear manifold is a smooth structure in which
each simplex is smooth.

smoothing problem  The problem of deter-
mining the existence or non-existence of a
smoothing of atopological or piecewise linear
manifold M. See smoothing. The problem al-
ways has an affirmative solution in dimensions
less than or equal to three, but there are many
counterexamplesin higher dimensions, both for
existence and uniqueness of smoothings.

smooth manifold A real manifold whose
transition functions are smooth, or C®-
differentiable, for k > 1. Namely, a space
M with an open covering {U,} and identifica-
tions ¢ : U, — R", where n is the dimen-
sion of the manifold and the transition func-
tions ¢y : Uy N Ug — U, N Up are such that
du = ¢p o pop Where they are all defined.

smooth structure A maximal collection of
local coordinate systems on amanifold with the
property that the coordinate transformation be-
tween any two overlapping coordinate systems
is differentiable with differentiable inverse.



Sorgenfrey line

Sorgenfrey line  Thereal linewith the topol-
ogy given by taking the collection of al half-
open intervals [a, b) (or (a, b]) asabasis. Itis
also known as the lower (or upper) limit topol-
ogy.

The Sorgenfrey line is normal and Lindel 6f
but not second countable. Its product with itself
(the Sorgenfrey plane) isneither normal nor Lin-
delof. Thus, it is an example showing that the
product of normal spaces need not be normal,
and the product of Lindel6f spaces need not be
Lindel6f. See normal space.

Sorgenfrey plane  See Sorgenfrey line.
space of complex numbers  The complex
numbers, visualized as a plane with rea and
imaginary axes, together with the usua (prod-
uct) topology of theplane, isatopol ogical space.
The set of purely imaginary numbers forms a
subspace homeomorphic to the real line.

The imaginary axis, considered a subspace,
is homeomorphic to the real numbers.

space of imaginary numbers  See space of
complex numbers.
space of irrational numbers A subspace

of the space of real numbers. closeness, as de-
scribed by open sets, is determined by open in-
tervals in the real numbers intersected with the
respective set. The space is dense in the space
of real numbers; that is, its closure is the space
of real numbers.

spaceof rational numbers A subspace, usu-
ally denoted Q or Q, of the space of real num-
bers: closeness, as described by open sets, isde-
termined by open intervals in the real numbers
intersected with the respective set. The space Q
is densein the space of real numbers; that is, its
closure is the space of real numbers.

space of real numbers  The set of real num-
bers together with the usual real line topology
generated by open intervals, usually denoted
R, R, R or EL. Intuitively, open sets describe
closeness, and typical uses of the real numbers
require a topology where decreasing intervals
around a point describe points strictly closer to
that point. R is aso a metric space with dis-
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tance function d(x, y) = |x — y|. Seealsored
number.

span  Thesmallest subspace of avector space
F containing agiven set C of vectorsin F.

sphere (1) Thesubspace S” of R**1 consist-
inzg of al points (x1, ..., x,4+1) Withx? 4 ... +
An+1 = 1

(2) More generally, a space homeomorphic
to S".

spherical distance  Thegreatest lower bound
of thelengths of all paths between two points p
and ¢ lying on the (unit) sphere. It isthe length
of the short great circle arc joining p to g.

spherical polygon A closed curve onthesur-
face of the sphere made up of afinite number of
great circle arcs.

spherical triangle A closed curve consisting
of three points A, B, and C on the sphere, to-
gether with a great circle arc joining each pair
of points. Sometimesthe arcsarerequired to be
shortest arcs.

square-freeinteger  Aninteger that isnot di-
visible by any perfect square other than 1. The
prime factorization of a square-freeinteger con-
tains no exponent greater than 1. Thus, 21 is
square-free, but 20 is not, since 22 is a divisor
of 20.

squarenumber  Aninteger that equalsn? for
some integer n.

squareroot (1) (Of anon-negativerea num-
ber r) The unique non-negative real number s so
that s% = r, denoted /7.

(2) If z and w are complex numbers such that
w? = z, then w is said to be a square root of z
(therewill betwo squarerootsof agivennonzero
complex number, since if w is a square root of
z, S0 is —w and by the Fundamental Theorem
of Algebra, the equation x? = z hasat most two
distinct solutions).

stable(primary) cohomology operation  Let
¥ X denotethe suspension of aspace X (S1A X).
Then HY(X) is isomorphic to H1t1(Z X) by



Stone-Cech compactification

an isomorphism called the suspension isomor-
phism (here denoted X), natural in X.

A cohomology operation P is stable when
Y P = PX, that is, P commutes with the sus-
pension isomorphism. The Steenrod square and
power operations are examples of stable (pri-
mary) cohomology operations. See Steenrod
square operation.

stablerange  Some algebraic invariants be-
havewell with respect to suspension, sometimes
with connectivity restrictions. For example, if
X is(n — 1)-connected and i < 2n — 2, then
7;(X) isisomorphic to 7;+1(X X). Thisrange
is called the stable range of X.

In homotopy theory, one may be concerned
with the stable range in calculating homotopy
groups or the effect of conomology operations.

stablesecondary cohomology operation  See
stable (primary) cohomology operation.

stably parallelizable manifold A smooth
manifold M such that the Whitney sum of the
tangent bundle of M and atrivial bundle over M
isatrivial bundle. For example, thetangent bun-
dleof thesphere S2 isnot trivial, but its Whitney
sum with a 1-dimensional trivial bundle is triv-
ial. Thus, 52 isstably paralelizable.

stationary set A setof ordinals S € « which
meets every closed unbounded setink;i.e, SN
C # ¢ for each closed and unbounded C C «.
Sationary setsaresomewhat large; for example,
they are unbounded because for each @ < «,
Cy = [a, 1) isclosed and unbounded.

Steenrod algebra  The algebra of all coho-
mology operations for ordinary mod p coho-
mology, for aprime p. When p = 2, the Steen-
rod square operations Sq' generate the Steenrod
algebra. For odd primes p, the analog of the
squares are the pth power operations P'; these
together with the Bockstein operation generate
the Steenrod algebrafor p odd.

The Steenrod squares are defined as additive
cohomology operations

Sq' : H1(X, A) — HIT (X, A)
(additive natura transformations

Sq' : H(—=) — HI(-))
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for which
(i.) Sq°istheidentity;
(ii.) foruin Hi(X, A), Sqiu =uUu = u?
(iii.) foru in H (X, A)andi > k, Sg*u = 0;
(iv.) foru in H4(X, A) and v in H(Y, B),
the effect on uv in H*(X x Y, A x B) isgiven
by the Cartan formula:

qu(u X V) = Z Sqiu X quv .
i+j=k

Thepower operationsaredefined by similar prop-
erties. See also Bockstein operation.

The cohomology of a space is a comodule
over the Steenrod algebra. This structure (coac-
tion) is preserved by many (not al) construc-
tions and calculational techniques, and hence
can be used to cal culate the cohomology of cer-
tain spaces, for example, Eilenberg MacLane
spaces (whose cohomology can be calculated
using the Serre spectral sequence).

Steenrod pth power operation  SeeSteenrod
algebra.
Steenrod squareoperation  See Steenrod al-

gebra.

stereographic projection  An identification
of the plane with the sphere minus a point, N,
say, obtained by projecting from N a point P
on the sphere different from N. If the sphere
of radius 1 touches the (x, y) coordinate plane
at the originand N = (0, 0, 2), the projection
sends (x, y, z) to (2%2, 22—_)2)

Sometimes, instead, the entire sphereisiden-
tified with the complex plane, together with the
point at infinity. See also complex sphere.

Stirlingnumber  Thenumber S} forn > m,
which denotes the number of partitions of a set
of n objects into m non-empty subsets. These
numbers are given by the recurrence relations
Sp=1=S"and St = Skt +kSk for
1<k<n.

Stone-Cech compactification The unique
largest compactification S(X) of a completely
regular topological space, X. Its usefulness de-
rives from the fact that any continuous function
from X to a compact Hausdorff space may be
extended uniquely and continuously to 8(X).



strong induction

To construct 8(X), let F be the set of all
continuous functions from X to the closed unit
interval, [0, 1]. Then the product space [0, 117,
of one copy of the unit interval for each f € F,
is a compact Hausdorff space by Tychonoff’s
Theorem. Imbed X in [0, 117 by mapping x €
X to the element of the product with f(x) inits
f-coordinate. B(X) isthe closure of the image
of X under thisimbedding. See also one-point
compactification.

strong induction A method of proof over
well-ordered sets. In practice, strong induction
istypically used over the set of natural numbers.
Strong induction hasabase-case, likeinduction,
but a different inductive step. Expressed in for-
mal notation, the base-case is P (ng), for some
no; theinductive step has the form:

(VOI(Vn < k) P(n)] — P(k+1)].

From these the conclusion is (Vk > ng) P (k),
where P (k) is some statement and ng, n, k are
natural numbers. Strong induction is equivalent
to induction. Seeinduction.

strongly multiplicative function A multi-
plicative function f having the property that
f(p') = f(p) for al primes p and all positive
integers i. For example, the function f(n) =
%”), where¢ isthe Euler phi function, isstrongly
multiplicative. See multiplicative function, Eu-
ler phi function. Seealsocompletely multiplica-
tive function.

strong pseudoprime  See pseudoprime.
structure A mapping .A, which assigns val-
ues to the quantifier symbol, the predicate sym-
bols, the constant symbols, and thefunction sym-
bols of afirst order language L, asfollows.

(i.) A assigns to the quantifier symbol Vv a
nonempty set A (sometimes denoted by |A|),
called the universe of A.

(ii.) For each n-ary predicate symbol P, A
assigns P to an n-ary relation PA C A",

(iii.) For each constant symbol ¢, A assigns
¢ to an element ¢4 of A.

(iv.) For each n-ary function symbol f, A
assigns f to an n-ary function f4 : A" — A.

For example, if £ isthe language of elemen-
tary number theory (see first order language),
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then one possible structure for £ isthe intended
structure N, which assignsthe quantifier Vto N,
the set of natural numbers, and <, 0, S, +, -, E
to their intended interpretations on N. There
are other (non-standard) structures for this lan-
guage.

A structure is sometimes called amodel.

subbasisfor atopology A collection of sub-
sets of atopological space X whose set of finite
intersectionsforms abasis for the topology t of
X. For example, the set of al open intervals of
theform (—oo, a) or (a, co) isasubbasisfor the
usual topology on R because each basic open set
(a, b) can be written as (—oo, b) N (a, 00).
Any collection S of subsets of a nonempty
set X generates atopology on X by declaring S
to be asubbasis. That is, the topology isthe set
of al unions of finite intersections of elements
from S. The topology generated in thisway is
the smallest topology on X which contains S.

subbundle A bundle F¥ — E’ — B
contained agiven bundle F — E — B.

The tangent bundle and normal bundle of a
manifold M embedded in R" are both subbun-
dles of the trivial bundle M x R".

subcategory ('’ is a subcategory of a cate-
gory C if (i.) every object of C’ is an object of
C, (ii.) for every pair of objects A, B of (', if
f: A — Bisamorphismof C/, then f isa
morphism of C, and (iii.) for every pair f, g of
morphisms of C’, the compositions fo. g and
fo.g arethesamemorphismsinC andC’. C' is
afull subcategory of C if, in addition, for every
pair A, B of objectsof C’, f: A — Bisamor-
phism of C’ if and only if f is a morphism of
C. For example, the category of sets and bijec-
tive functions is a subcategory of the category
of sets and injective functions; the category of
Abelian groups and group homomorphismsisa
full subcategory of the category of groups and
group homomorphisms.

subobject  If A isanobject of acategory C, a
subobject of A isan ordered pair ( f, A), where
A’ isan object of C and f is a monomorphism
f: A" - A. For example, in the category of
groups and group homomorphisms, a subobject
of the additive group Z is (f, E), where E is
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the additive group of even integersand f isthe
inclusion map f: E — Z. The dua notion of
subobject is the notion of quotient object. See
guotient object.

subset (of aset) A setSisasubsetof aset X if
al elementsof S areasoelementsof X. If Sisa
subset of X, thenotationisS C X, or sometimes
S C X. For example, {4, -2} C {-2,5, 4}.
Every set is a subset of itself. Compare with
proper subset.

subspace  Any subset of atopological space
X, with the relative topology inherited from X.
Seerelativetopology. For example, besidescon-
taining all its open subintervals, the subspace
topology ontheunit interval [0, 1] also includes
the half-open intervals [0, b) with » < 1 and
(a, 1] witha > 0.

substructure  Thestructure A for thefirst or-
der language L isasubstructure of the structure
B for L (notation: A C B) if

(i.) A € B,where A and B arethe universes
of A and B, respectively,

(ii.) for each n-ary predicate symbol P, the
n-ary relation P4 istherestriction of P8 to A”;
ie, PA=PBNA",

(iii.) for each constant symbol ¢, ¢* = ¢B,
and

(iv.) for each n-ary function symbol 7, fA
isthe restriction of £5 to A”.

If A isasubstructure of B, then B is called
an extension of A.

Sometimestheterm submodel issynonymous
with substructure.

successor cardinal A cardinal number « such
that there exists some other cardinal A such that
1t = k. For example, 817 is a successor car-
dinal since 8], = Ri7; R17 is alimit ordinal.
Compare with limit cardinal, successor ordinal.

successor of acardinal  If k isacardinal, the
cardinal successor of «, denoted by « T, isthe
least cardinal thatisgreater than«. For example,
3t =4and R} = R;. Compare with successor
of an ordinal.

successor of an ordinal If o isan ordinal,
the ordinal successor of «, denoted by o + 1,
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isa U {a}; itistheleast ordinal that is greater
than «.. For example, 3+ 1 = 4 and the ordinal
successor of w isw+1. Comparewith successor
of acardinal.

successor of a set
isSU{S}.

If S isany set, itssuccessor

successor ordinal  Anordinal number o such
that there exists some other ordinal 8 such that
B + 1 = a. For example, »® + 5 isasuccessor
ordinal since (w® + 4) + 1 = w® + 5. The car-
dinal number R4 is asuccessor cardina but not
a successor ordina. Compare with successor
cardinal, limit ordinal.

sum of cardinal numbers  Thecardina num-
ber that is equinumerous with the dioint union
of the summands. For example, 1+ 1 = 2, and
No + N3 = N3.

sum of divisorsfunction  Thearithmeticfunc-
tion, denoted o, which, for any positive integer
n, returns the sum of the positive divisors of n,
i.e,om) =3 4,d. (Seeaithmetic function.
For example, 0(10) = 1+ 2+ 5+ 10 = 18.
It ismultiplicative; its value at a prime power is
given by

i+l_1
-1

o(piy="L

Seealso multiplicativefunction, sum of kth pow-
ers of divisors function.

sum of kth powers of divisors function
The family of arithmetic functions, denoted oy,
which, for any positive integer n and a fixed
nonnegative integer k, returns the sum of the
kth powers of the positive divisors of =, i.e,
or(n) = Y4, d*. (See arithmetic function.)
For example,

02(8) =12+ 22+ 42+ 82 =85.

The function og is the number of divisors func-
tion 7, and o7 is the sum of divisors function
o. Thefunctions oy, are all multiplicative; their
value at a prime power is given by

pk(i+l) -1

iy —
or(p’) = 1



surd

surd  Another name for the radical sign /.
Seealso radical.

surjection A function f : A — B such that
the image (range) of f isall of B; that is, for
any b € B thereisana € A with f(a) = b.

Sudin line A dense linear ordering (L, <)
which in the order topology has the countable
chain condition but is not separable. That is, L
hasno countabl e dense subset, but any collection
of pairwise digoint nonempty open setsin L is
countable.

It is possible to characterize the real line R
as the unique dense linear order without end-
points which is complete and separable. The
guestion arose as to whether separability could
be replaced by the countable chain condition,
and so the existence of a Suslin linewould mean
that this new set of conditions does not charac-
terize R. However, the existence of aSudlin line
is independent of the axioms of set theory, and
thus, so is the characterization. See also Suslin
tree.

Sudin’shypothesis  The assertion that there
isno Suslin line. See Sudlin line. That is, there
is no dense linear ordering which in the order
topology has the countable chain condition but
is not separable. Soudlin’s hypothesis (abbre-
viated SH) is independent of the axioms of set
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theory: it is a consequence of Martin’s Axiom,
but —SH isaconsequenceof Diamond (<>), which
holds in the constructible universe. These re-
sults are usually obtained indirectly, by consid-
ering Sudlin trees rather than Sudlin lines. See
also Martin’s Axiom.

Sudlin tree A tree of height w1, which has
no uncountable antichains or branches. That is,
any subset A € T consisting of incomparable
elements (antichain) or any set B C T totally
ordered by < (branch) must be countable. The
existence of Sudlin trees is independent of the
axioms of set theory. In fact, Suslin trees pro-
videaway to provetheindependence of Sudlin’s
hypothesis (SH) because a Sudlin tree exists if
and only if aSudlin line exists. See Sudlin line.

For any infinite cardinal «, ax-Suslintreeis
a tree of height « in which al antichains and
branches have size less than «..

See also Aronszajn tree, Kurepatree.

symmetricdifference  The symmetric differ-
ence of two sets A and B, written AAB, isthe
set (A\ B) U (B \ A). Thatis, it is the set of
all elementsthat belong to either A or B but not
both.

symmetricrelation A binary relation R such
that (x, y) € Rimplies(y, x) € R, foral x, y.
For example, the equality relation is symmetric.



terminal object

T

To space A topologicd spae X sud that,
for any two distind pointsof X, thereis aneigh-
borhoal of onewhich doesnat contantheotha.
Thatis, forall x, y in X, withx # y, therisan
opensd U sut tha eithe x e Uardy ¢ U,
oryeUardx ¢ U. Ty spaces are also known
as Kolmogowov spaces.

T1 space A topologicd spae X sud that,
for any two distind pointsof X, thereareneigh-
borhood of both which do nat contan the othe.
Tha is, for all x, y in X, with x # y, there are
opensesU ard V suththax e Uandy ¢ U,
whiley € V amd x ¢ V. Thisisequvalert to
ead singleton {x} being closed in X.

Tospace Atopologicaspae X sudtha any
twodistind pointscanbeseparatéby open sets.
Tha is, for all x, y in X, withx # y, there are
opensesU ad V sudhthax € U,y € V,
ard U NV = . Seealso Hausdoff topological
space

T3% space A topologicad spae X sud that
X is aTy spae and points and closad sesin X
can be separatd by continuots functions That
is, for all closed C € X ard x ¢ C, therisa
continuoss f : X — [0, 1] suchtha f(x) =0
ard f(c) = 1forall ¢ € C. Includingthecondi-
tion Ty ensure Ts% C T3. Seealso completely

regular topologicd spaceT1 space

T3 space A topologicd spae X whichisa
T1 spaeand suchtha pointsand closed sescan
be separatd by open sets Tha is, for all closed
C C Xardx ¢ C, ther are open ses U and
Vsuhthax e U,C C V,adU NV = 0.

Includingthecondition 77 ensure 73 C T>. See
also regular topologicd spaceT1 space

T4 space A topologicd spa@ X whichisa
T1 spaeard sud tha disjoint closed sescan be
separate by open sets That is, for all closal C
ard D containgin X, if C N D = @, thenthere
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areopensesU andV suhtha C C U, D C V,
ard U NV = . Including the condition 71
ensurs 7, C TS%. See also normd topological

spaceT; space

Ts space A topologicd spae X whichisa
T:1 spae and sud tha any two separate sets
can be separate by disjoint open sets Tha is,
for all subset A ard B of X, if

ANB=ANB=4y

(A and B areseparatedthentherare open sets
UadVwithACU,BCV,adUNV = .
Including thecondition 71 ensure Ts C T4. For
any T1 spae X, Ts is equvalert to hereditary
normality. Seealso T1 space

tautology  Inproposition&(sententigllogic,
awell-formed propositionaformulais atautol-
ogy if itistrue unde every truth assignmetfor
the sentene symbokin the formula For exam-
ple, if A and B are sentene symbols then

—(AV B) < ((=A) A (—B)),

(whichisone of DeMorgaris Laws) is atautol-
ogy.

In first orde logic, let £ be afirst orde lan-
guage A tautolog is any well-formed formula
of Lwhichisobtainel from atautolog of propo-
sitiond logic by replacirg ead sentenesymbol
in the tautology with awell-formed formula of
L.

term  Let £ be afirst orde language The set
of terms of £ isdefina inducively as foll ows.

(i.) If c is aconstahsymbd of £, thenc isa
term.

(ii.) If vis avariabkof £, then v is aterm.

(iii.) If f isann-placefunction symbd of £
ardr, ..., t, aretermsof £, then f(r1, ..., 1,)
is aterm of L.

(iv.) The sd of termsis generatd by rules
(i.), (ii.), and (iii.).

For example in the first orde langua@ of
elementay numbe theowy (see first orde lan-
guage, S(0) isatem (whichisintendaltoname
the natural number 1).

terminal object  An objectA of a category
suchthat, for every obje@ of C, there is exactly



terminating decimal

onemorphisn f of C sudhtha f: B — A. For
example in the caigory of sesand functions a
singleto is aterminal object. The dud notion
of termind objed is initial object.

terminatingdecimal A decima representa-
tion

...0403020100.0-14_20_3 . . .

of ared numbe sudt tha thereisan integer N
witha_, = Oforall n > N. A red numbe r
has aterminatirg decima representatioif and
only if there is an integer ¢ and anonregaive
integer N so tha r = 5. Clearly, any real
numbe with aterminatirg decima representa-
tion istherefoe arationd numbe.

ternary number system  The red numbers
in bage b = 3 notation. See bae of number
system

theorem  Infirstorde logic, let £ be afirst or-
der languageand conside aparticula predicate
calculssfor L. Let o be awell-formed formula
of L. Then « is atheorem of (or is deducible
from) the predicag calculws (notation + «) if
there is aprod of « in the predicae calculus.
See proof. If T is ase of well-formed formu-
lasof £, then « is atheoren of (or isdeducible
from) I" (in the predicae calculug if therisa
prod of « from I (notation I' + «).

The notion of theorem in proposition&logic
is entirely analogous.

theory A sd T of sentenceof a first order
langua@ £ which isclosa unde logicd impli-
cation i.e,, if o is asentene of £ whichisa
logicd consequereof T, theno € T (in nota-
tion, T = o implieso € T). Equvalently, T
is atheow if it isclosed unde deductioni.e,, if
o isprovable from T, then o € T (in notation,
T + o implieso € T).

For some authors the word theory simply
mears asd of sentencesard the notion above
istha of aclosed theos.

Let A be astructue for £. The theowy of A
isthe se of sentenceof £ which aretruein A
(i.e, the theow of A isthe sd of sentenceo
such tha A is amodé of o). Thetheowy of A
isdenotel Th(A) and is acompleetheory. See
compleetheoy.
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Thom complex Let E —> M be ared vec-
tor bundleonamanifold M. Theris adisk bun-
dle D — M which is given by the open unit
disk in ead fiber of the vecta bundle E. The
Thom construction is formed from E — M
by identifying all pointsin E outsice of D to a
single point, called the point at infinity.

Example ConsidetheMobiusbardas aline
bundle over thecircle S1. TheThom complex of
thisbundleisthered projectve plane.

This constructio is usal in the calculation
of cobordisn groups See R. Stong, Notes on
Cobordism Theory, Princeta University Press,
PrincetonNJ, 1968.

topological dimension  Let X be atopolog-

ical space Thetopological dimension of X is

thesmallesnon-regatveinteger n sudhthat for

every open cover A of X, thereisan open cover

Btharefines A (i.e, A € B), with the property
that sore point of X liesinan elemenof B and

no point of X liesin morethan n + 1 elements
of B.

topological group  Atopologicdspa@which
is also agroy sud tha the inverse ard prod-
uct maps are both continuous That is, the maps
g — g lfromG to G and (g1, 82) — g182
from G x G to G are continuous.

Any discreegroyisconsiderdto beatopo-
logical group with the discree topology that
states any single elemet subseis an open set.

topological invariant A propery preseved
by homeomorphismsThat is, P is atopologi-
cal invariant if, given any homeomorphis f :
X — Y, the spae X has propery P if and
only if Y has propery P. For example con-
nectednessseparabiliy, and normality are all
topologica invariants.

total ordering  Seelinea ordering

totient function  See Euler phi function
transcendental number  Seealgebrat num-
ber.

transfinite cardinal Any infinite cardinal
number. For exampleys is atransfinite car-
dinal.



truth table

transfinite induction A methd of proof.

Suppos P(«) issomne statementhat describes
apropery of o, where « isan ordinal Suppose
tha all of the following conditiors hold: (i.)

P (ap), forsomeayp, (ii.) P(«)impliesP(a+1),

forall @ > g, ard (iii.) (V8 < A) P(B) implies

P (%), for any nonzeo limit ordind A. From

thes three the conclusim is tha P(«) holds
for all ordinab o > «g. Transfinite induction is

ageneralizatia of induction.

transfiniteordinal  Any ordind that is infi-
nite. For example w 4 3is atransfinite ordinal.

transfinite recursion A methal of defin-
ing some function also known asdefinition by
transfinite recursion, or sometims asdefinition
by transfinite induction. For any function g
on the universe of sets ther exists a unique
function f on the class of ordinak suc that
f(a) = g(fla), for all ordinab «. See also
recursion

transitiverelation A binaly relation R such
tha [(x, y) € RIA[(y, 2) € R]implies(x, z) €
R, for all x, y, z. For example < is atransitve
relationon N sineeif n < m amdm < k, then
n<k.

transitive set A sd A sud that wherever
B e A, thenB C A.

tree A partid orde (T, <) in which, for any
t € T, the sa of predecessarof ¢, {s € T :
s < t}, iswell orderal by <. Tha is, any non-
emply subseéof {s € T : s < t} has aleast
element An exampk of atreeisthe se of all
finite sequenceof naturd numbersordera by
extension s < ¢ if t extends s. Othe exam-
plesinclude Aronszap trees Kuremtrees and
Susli trees. See Aronsza tree Kurem treg
Susln tree.

triangular number

The integers in the se-
quence 13, 6,10, ... (whichrepresentthe num- {ryth table

truth assignment  In propositional logic, a
functionv : § — {T, F} mapping a set of
sentence symbols tff", F'}, whereT is inter-
preted as true anfl is interpreted as false. For
example, ifS = {A1, A2, A3}, then a possible
truth assignment would be: S — {T, F} by
v(A1) = F,v(A2) =T, andv(A3) = T. Note
that there are eight possibleuth assignments
for this particular set of sentence symbols, since
there are two choices'(or F) for each value
of the function on an element ¢f In general,
if S hasn sentence symbols, then there afe 2
possible truth assignments 8n

A truth assignment : S — (T, F} is ex-
tended using a recursive definition to a truth
assignmen® on the setS of all well-formed
propositional formulag: which have sentence
symbols froms, as follows:
(i.) If « is a sentence symbol i§) then

() = v().
(i) If @« = (—p), then

[T fup=F
”(“)_{ F ifoB)=T.

(ii.) If @ = (B A y), then

T v =vy)=T
Vi) = { F otherwise.

(iv) If a = (B Vv y), then

T ifvB)=Torv(y)=T

V@ =15 otherwise.

(V) If o = (B — y), then

T ifv(B)=Forv(y)=T

V@ =1 g otherwise.

(vi.) If @ = (B < y), then

| T ifup) =1y
”(“)‘{ Fifu(B) £0(y).

A table of truth values for a well-

ber of lattice pOintS in the plane that lie on the formed propositiona| formu|a, based on as-
perimeter of isosceles right triangles having in- signments of truth values for the sentence sym-

teger length legs).

bols in«. In general, if there ara sentence

The triangular numbers are integers of the symbols in«, then thetruth table will have 2

form Y _q k.
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rows. The truth tables for the formulas built up



tubular neighborhood

from the logicd connedives (here A ard B are
well-formed propositiondformulag are as fol-
lows, where T is interprete as true ard F' is
interpretel as false.

A (—A)
T

Fl T
A|B|(AAB)
TT T
T|F F
FIT F
FIF F
A|B|(AVB)
TT T
T|F T
FIT T
FIF F
A|B| (A= B)
T T T
T|F F
FIT T
FI|F T
A|B| (A< B)
T T T
T|F F
FIT F
F|F T

A truth table for the more complicatel well-
formed propositiondformula ((A v B) — C),
where A, B, C are sentene symbols is as fol-
lows.

A[B|C|(AVB) | (AVB) > C)
T(T|[T| T T
T|IT|F| T F
TIF|T| T T
TIF|IF| T F
FIT|T|] T T
FIT|F| T F
FIF|T| F T
FIF|F| F T

tubular neighborhood A tubular neighbor-
hood of asimpleclosalcurve L ¢ $2is aneigh-

More generaly, a tubular neighborhod of
an [-dimensiondsubmanifol L ¢ M in an n-
dimensionhmanifold M is aneighborhod of
L homeomorptito L x B™ .,

Turingcompleteset A sé A of naturdnum-
bers which is recursvely enumerat# and for
any recursvely enumerald s¢ B, B <7 A;
i.e., B iscomputablerelaiveto A.

An exampk of a Turing complete set is the
haltingse K = {e : ¢.(e) isdefined, where ¢,
denotethepartid recursvefunctionwith Godel
numbe e.

Turingcompleeissometimasimply referred
to ascomplete.

Turing equivalent  Two ses A ard B of nat-
urd numbes suc tha A is Turing reducibkto
B (A <y B) ard B is Turing reducibk to A
(B <r A). Intuitively, Turing equvalert sets
are ses that code the sane information Turing
equvalene (notation A =7 B) isan equva-
lence relation on the class of all set of natural
numbers The equvalene classs of =; are
called Turing degrees or degrees of unsovabil-
ity.

Asan example any two Turingcompleesets
areTuring equivalent.

Turing reducibility  Let ¢ be apartid func-

tiononN; i.e., itsdoman is sone subsé of N,

ard let A be asé of naturd numbers Thefunc-

tion ¢ is Turing reducible to A if ¢ is (Turing)

computable relaive to A. See relaive com-

putability. The notation ¢ <7 A means thap

is Turing reducible taA. If B is a set of nat-
ural numbers, them is Turing reducible toA

(B <t A) if its characteristic functioryp is

Turing reducible tA.

For example, given any sdtof natural num-
bers,A <7 A whereA is the complement of
in N. If B is any computably enumerable (re-
cursively enumerable) set arid is the halting
set{e : . (e) is defined, wherey, is the partial
recursive function with Godel number then
B <r K.

twin primes  Two odd prime numberg and
q so thaty = p + 2. For example, 3 and 5 are

borhoal of L homeomorphito L x B? where
L x {0} isidentified with the curve L.

twin primes, as are 5 and 7, 11 and 13, 17 and
19, and 29 and 31. Twin primes with over 3300
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type

digits have been disaovered but it is unknown
whethe or not thete are infinitely twin prime
pairs Thetriple (3, 5, 7) formsthe only “prime
triplet” sinceat leag oneof any tripleof theform
(n,n + 2,n + 4) mug be divisible by 3.

Tychonoff Fixed-Point Theorem  Suppose
X is alocally convex linear topologica space
ard C C X iscompat and convex. Then any

continuots function f : C — C has afixed

point That is, therisac € C with f(c) = c.

Any normel vecta spa@ can be mack into a

locally convex linear topologicd spa@ by us-
ing the metric topology generatd by the norm:

dx,y) = llx =yl

Tychonoff space See completey regulartopo-
logicd space

Tychonoff Theorem The produd of
any numbe of compat topologicad spacs is

© 2001 by CRC Press LLC

compat in the produd topology. For example,

sincetheunitinterval [0, 1] iscompactany cube

[0, 1]¢ is also compact It is this theoren that

makesthe produd (Tychondf) topology impor-

tant The Tychonoff Theorem is equivalert to

the Axiom of Choice.

Tychonoff topology ~ See produd topology.

type Atypeofatheoryr is any set of formu-

las that is realized in some modelBf That is,

if T is a (possibly empty) theory in the language

L, then a set of_-formulas® (k) is ann-type

of Tif x = {x1,..., x,} contains all free vari-

ables occurring in the formulas df, and there

isamodelA of T and am-tuplea of elements of

A such thatA = ¢ (a) for every¢ (x) in @ (x).
Some authors require types to be complete,

meaning they are maximally consistent.



uniform space

U

ultrafilter A subset I/ of a Boolean algebra
B, which is afilter, not properly contained in
any other filter on B. As afilter, &/ must be
nonempty, closed under A, not contain 0, and
be closed upwards: for all u € & and b € B, if
u < bthenb € U. The maximality conditionis
equivalent to requiring that for all b € B, either
belUor—-bel.

Any filter can be extended to an ultrafilter,
and, using aweak form of the Axiom of Choice,
any subset of a Boolean algebra with the finite
intersection property can be extended to an ul-
trafilter.

ultrapower An ultrapower of an L-struc-
ture A is areduced product [[,, A, where !/ is
an ultrafilter over the index set 7. The reduced
product is formed by declaring, for x and y in
the Cartesian product [ [, A, that x =, y if and
only if the set of coordinateswherex and y agree
isinthe ultrafilter -

liel:x(i)=y@))el.

The reduced product [ [;, A isthen the set of all
equivalence classes under =.

The fundamental property of ultrapowersis
that, for any L-sentence ¢, [[;; A = ¢ if and
onlyif {i e I : A = ¢} € U. But because U
is an ultrafilter, ¥ ¢ U and I € U, and so, the
ultrapower models ¢ if and only if the original
structure A models ¢. Thus, [, A = A.

See also ultraproduct.

ultraproduct  Anultraproduct of aset of L-
structures {A; : i € I} is areduced product
[T/ Ai, wherel/ is an ultrafilter over the index
set 1. See ultrapower.

The fundamental property of ultraproductsis
that for any L-sentence ¢, [[;; A; = ¢ if and
onlyif{iel:A; =¢}el.

umbilical point  Let M beasurfaceinR3, and

let k1 > ko bethe principal curvature functions.
See principa curvature. An umbilical point is
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apoint where k1 = kp. On the complement of
the set of umbilical points, the principal curves
form a pair of orthogonal fields of curves on
the surface; the umbilical points are the places
where these fields become singular.

unboundedset A setof ordinasC C « such
that, forany o < «, thereisag witha < 8 < «
and B € C. See also closed set, stationary set.

uncountable A setthat isinfinite but not de-
numerable. For example, R and C are uncount-
able sets.

undecidable A set of objects of some sort,
which it is not decidable. See decidable.

uniformly continuous function A function
f : R — R such that, for any ¢ > 0, thereis
ad > Osuchthat for x and x’ in R, | f(x) —
f (x| < € whenever |x — x’| < §. Any contin-
uous f : [a, b] — Risuniformly continuous.

Moregeneraly, afunction f from onemetric
space (X, dx) to another (Y, dy) is uniformly
continuousif forany ¢ > 0, thereisas > Osuch
that, for al x and x" in X, dy (f(x), f(x")) <
¢ whenever dx(x,x’) < §. If X is compact,
then any continuous f : X — Y isuniformly
continuous.

Further generalization of the notion is possi-
ble in auniform space. See uniform space.

uniformspace A set X with thetopology in-
duced by a uniformity ¢{. Informally, a unifor-
mity is away of capturing closeness in a topo-
logical space without a metric; that is, it pro-
vides a generdization of a metric. Formally, a
nonempty collection ¢/ of subsetsof X x X is
a uniformity if it satisfies the following condi-
tions:

(i) foral U e U, A C U, where A =
{(x,x):x € X}isthediagonal of X;

(i) foral U e, Ut e U, where U1 =
{(y,x): (x,y) €U}

(iii.) fordlUand VinU, U NV eld;

(iv.) foreach U € U thereisaV € U with
VoV CU,where

VoV =

{x,2):IyeX (x,y) e Vand(y,2) € V};



uniform topology

and

(v) fordl U e U,ifU C V,thenV € U.
Theideaisthat x and y will be considered U-
close to each other if (x,y) € U. Then, for
example, condition (i.) statesthat x is always
U-closeto itsdlf.

A uniformity ¢/ generates a topology on X
(the uniform topology) by considering the sets
Ulx] = {y: (x,y) € U} asbasic open sets for
eacchU eldandx € X.

uniform topology (1) See uniform space.
(2) The uniformtopology on R isthe topol-
ogy induced by the bounded sup metric

8(x,y) = sup{min{|xg — ypl. 1} : B < a}.

Thistopology is the same as the product topol-
ogy if « isfinite if « isinfinite, the uniform
topol ogy refines the product topology.

union (1) Theunion of any set X, denoted by
UX, isthe set whose elements are the members
of the members of X. That is, a € UX if and
only if thereexists § € X suchthata € S. For
example, U{(0,k) : k € Z} = RT. If X isan
indexed family of sets {S, : @ € I}, where I is
some index set, the union of X is often denoted
by Uyer Sa-

(2) The union of sets A and B, denoted by
A U B, isthe set of al elements that belong to
at least one of A and B. Thisis a special case
of the previous definition,asA U B = U{A, B}.
For example, {3, 10} U {3,5} = {3, 10, 5} and
N UR = R. Seealso Axiom of Union.

unit function  The arithmetic function, de-
noted u, which returnsthevalue 1 for al positive
integers, i.e., u(n) = 1for al integersn > 1.
(See arithmetic function.) It is completely (and
strongly) multiplicative.

universal bundle A bundle EG — BG
with fiber G is a universal bundle with struc-
turegroup G if EG iscontractible and every G
bundle over X is the equivalent to the bundle
formed by the pullback of EG — BG along
somemap X —> BG.

Example: The universal redl line bundle is
EO(1) — BO(1) equivalent to the covering of
BO(1) = RP® (infinite dimensional rea pro-
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jective space) by S°°, the union over al n of
spheres ™, under the action of Z/2 = O(1).

universal element  If C isany category, S is
the category of setsand functions, and F: C —
S is a functor, a universal element of F is a
pair (A, B), where A isan object of C and B €
F(A), such that for every pair (A’, B’), where
B’ € F(A’), there exists a unique morphism
f: A— A of Cwith (F(f))(B) = B'.

universal mapping property  The notion of
auniversal mapping property isnot arigorously
defined one, as many variations exist. A com-
mon pattern that appears in many instances can
be described as follows. A triple (p, A, A”),
where A and A’ are objects of a category C and
p: A — A’ is amorphism of C, has a uni-
versal mapping property if, for every morphism
f: X — A of C, there exists a unique mor-
phism f': X — A’ of C suchthat /' = po f.
In most cases, a universal mapping property is
used to defineanew object. A standard example
of defining a tuple having a universal mapping
property is the product of objectsin a category.
See product of objects.

universal quantifier  See quantifier.
universal sentence A sentenceo of afirstor-
der language £ whichhastheformvvs . .. Vu,«,
where « is quantifier-free, for somen > 0.

universe of sets  The collection of al sets.
In Zermelo-Fraenkel set theory (ZFC), the uni-
verse of sets, usually denoted by V, can be ex-
pressed by the abbreviation V = |, Vi, Where
each V,, is a set from the cumulative hierarchy.
It is important to note that this union does not
defineaset in ZFC, rather, the above equationis
simply an abbreviation for the following state-
ment which is provable in ZFC: (Vx)(Ja) x €
V. See also cumulative hierarchy.

unordered pair A set with exactly two el-
ements. For example, {3, —5} is an unordered
pair. Compare with ordered pair.

upper limit topology  See Sorgenfrey line.



Urysohn’s Metrization Theorem

Urysohn’s Lemma For any two digoint
closed subsets A and B of anormal topological
space X, thereisacontinuous f : X — [0, 1]
such that f(a) = O for every a € A and
f() = 1lfor every b € B. That is, normal-
ity impliesdigoint closed sets may be separated
by continuousfunctions. Theconverseiseasier:
if f iscontinuous and separates A and B, then
£7H10, 3)) and £71((3, 11) are digioint open
sets containing A and B, respectively. Thus,
normality is equivalent to separation by contin-
uous functions for Hausdorff spaces.
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Urysohn'sLemmaisavital part of the proofs
of Tietze's Extension Theorem and Urysohn’s
Metrization Theorem.

Urysohn’sMetrization Theorem  Any regu-
lar, second countabl etopol ogical spaceismetriz-
able. In other words, if X isregular and has a
countable basis, then there is a metric that in-
duces the topology on X. The proof relies on
Urysohn's Lemma and imbeds X in the cube
[0, 1]*, which is also separable. See also
Urysohn's Lemma.



von Mangoldt function

V

valid Let £ beafirst order language and let
o be awell-formed formula of L. If, for every
structure A for £ and forevery s : V. — A, A
satisfiesa with s, then « isvalid or isavalidity.
(Here, V isthe set of variablesof £ and A isthe
universe of A.)

Asanexample, let £ bethelanguage of equal-
ity, =. Theformula

(vi=v2AV2=v3) > V1 =13
isvalid.

validity  Seevalid.

Venn diagram A schematic device used to
verify relations among sets contained within a
universal set U.

The universal set U may be represented by a
closedfiguresuchasarectangle. AsetA C Uis
then represented by the interior of some closed
region within U, while the statement x € A
isindicated as a point within theregion A. The
relation A C B isdepicted by placing theregion
representing A within that of B.

The union A U B of two sets may be repre-
sented by shading the combined regionsinclud-
ing both A and B. The intersection A N B is
indicated by shading the overlapping portions
of the regions A and B and the complement of
A or A’ isindicated by shading theregion within
U whichisoutside A.

Therelation (AU B) = A’ N B’ isshownin
thefigure. Thetop diagramindicatesby shading
theset (AU B)’ and the bottom diagramindicates
the common elements of A’ and B'.

von Mangoldt function
tion.

See Mangoldt func-
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Top: (AU B)'. Bottom: A’ N B’



well-ordering

W

Wang exact sequence Let F — E —
S" be a fiber bundle with n > 2 and F path
connected. Then thereis along exact sequence

oo —> HYE) — HY(F) — H*"tY(F)

— HYYE) — ...

called the Wang exact sequence.

This sequence is derived from the spectral
sequence for the fiber bundle, whichin this case
hasonly one non-trivial differential. Thereisan
analogous sequence for homology. One can use
the Wang sequence to compute the homol ogy of
the based |oop space of a sphere.

wedge Theone-point union of two spaces; in
other words, the wedge product of two spacesis
formed from their digjoint union by identifying
one chosen point in the first space with achosen
point in the second. In the category of pointed
spaces (spaces together with a base point), the
chosen point isthe base point. For example, the
wedge of two circlesisafigure eight.

well-formed formula  In propositional (sen-
tential) logic, awell-formed formula (or wff) sat-
isfies the following inductive definition.

(i.) If Aisasentencesymbol, then A isawff.

(ii.) If « and B are wffs, then so are (—a),
(@A B), (VB (a— p),and (a < B).

(iii.) Theset of well-formed formulasisgen-
erated by rules (i.) and (ii.).

For example, if A, B, and C are sentence
symbols, then ((A A B) v C) is a wff, while
AN is not a wff. Informally, the parentheses
used in defining wffs are often omitted when
doing so does not affect the readability of the
formula; in particular, it is always assumed that
-, A, and v apply to as little as possible. For
example, if A, B, and C are sentence symbols,
then =A A B — C means (((—mA) A B) — C).

In first order logic, with a given first order
language L, the set of wffs of £ is defined in-
ductively.
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(i.) If « isan atomic formula, then « isawff.

(ii.) If @ and B arewffs, then so are (—«) and
(ax = B).

(iii.) If « isawff and v is a variable, then
Yva isawff,

(iv.) The set of well-formed formulasis gen-
erated by rules (i.), (ii.), and (iii.).

Since {—, —} is a complete set of logical
connectives, it is possible to use the other con-
nectives informally in well-formed formulas as
abbreviations for formulas in the actual formal
language L. In particular, if « and g are well-
formed formulas of £, then

(i.) (@ v B) abbreviates ((—a) — B).

(ii.) (o A B) abbreviates (—(a — (—p))).

(iii.) (« < B) abbreviates((@« — B)A(B —
a)).

Informally, the parentheses used in defining
wffsareoften omitted when doing so doesnot af -
fect thereadability of theformula, or even added
when doing so aids the readability of the for-
mula. It isaways assumed that V appliesto as
littleaspossible. For example, Vva — B means
(Yva — B), rather than Vu(a — B).

For example, in the language of elementary
number theory (seefirst order language), Vv1 (<
(v1, S(v1))) isawell-formed formula, although
< (v1, S(v1)) is usudly informally written as
v1 < S(vy).

well-founded relation A partial ordering R,
on aset S, such that every nonempty subset of
S has an R-minimal element. For example, the
relation”m dividesn”, onthe set of natural num-
bers, is well-founded; the relation < on the set
of real numbersis not well founded.

well-founded set A set X onwhichthemem-
bership relation is well founded. That is, any
nonempty subset of X contains an e-minimal
element. A well-founded set cannot contain it-
self as amember.

well-ordered set A pair (S, <) such that <
isawell-ordering of S. For example, (N, <) is
awell-ordered set. Also called woset.

well-ordering A linear ordering < of some
set S such that every nonempty subset of S has
a minimum element. For example, the usual



Well-Ordering Theorem

linear ordering < for numbersisawell-ordering
of N but it is not awell-ordering of R.

Well-Ordering Theorem  Every set can be
well ordered; i.e., for every set thereexistsanor-
dering on that set which is awell-ordering. See
well-ordering. The WEII-Ordering Theorem is
equivalent to the Axiom of Choice. See Axiom
of Choice. Consequently, the Well-Ordering
Theorem is independent of the axioms of ZF
(Zermelo-Fraenkel set theory); that is, it can nei-
ther be proved nor disproved from Z F.

© 2001 by CRC Press LLC

Whitney sum  The sum of two vector bun-
dlesover amanifold, formed by taking thedirect
sum of the vector spaces over each point. The
Mobius band M can be thought of as a vector
bundle over the circle (since the unit interval
(0, 1) ishomeomorphic to R). This vector bun-
dleisdistinct from thetrivial bundle E = R! x
S1, but both Whitney sums E @ E and M & M
are equivalent to the trivial bundle R x S1.

wholenumber A non-negative integer.

woset  Seewell-ordered set.



Zorn’s Lemma

VA

Zermelo hierarchy  See cumulative hierar-

chy.

Zermelo set theory  Zermelo-Fraenkel set
theory without the Axiom of Replacement. Ab-
breviated by the letter Z. See Zermelo-Fraenkel
set theory.

Zermelo-Fraenkel set theory The for-
mal theory whose axioms are: the Axiom of
Extensionality, the Axiom of Regularity, the Ax-
iom of Pairing, the Axiom of Separation, the
Axiom of Union, the Axiom of Power Set, the
Axiom of Infinity, the Axiom of Replacement,
and the Axiom of Choice. This axiomatic the-
ory is often abbreviated as ZFC (the letter Cis
for the Axiom of Choice).

zero  Symbol: O

(1) A symbol representing the absence of
guantity.

(2) The additiveidentity of an Abelian group
A. The element denoted as 0 € A which has
the property that 0+ a = a + 0 = a for every
elementa € A.

© 2001 by CRC Press LLC

zeroobject  Anobject A of acategory C that
is both terminal and initial is a zero object of
C. Such an object is usually denoted by 0 or x,
and is also called a null object of the category.
For example, in the category of Abelian groups
and group homomorphisms, ({0}, +) is a zero
object. Any two zero objects are isomorphic.

zero section A map M — E of avector
bundle E — M over a manifold M, which
takes each point m in M to the zero in the vector
space which is the fiber over m. That this map
is well defined follows from the definition of
vector bundle.

Example: For any trivial bundle M x R",
M x {0} isthe zero section.

The term zero section can aso refer to the
image of the section map.

ZF  Zermelo-Fraenkel set theory without the
Axiom of Choice. See Zermelo-Fraenkel set
theory.

ZFC  SeeZermelo-Fraenkel set theory.

Zorn’sLemma If (P, <) isanonempty par-
tial order in which every chain has an upper
bound, then P has a maximal element. In other
words, if for every linearly ordered C C P there
isap. € Psuchthat g < p. foradl g € C,
then there isone p € P such that ¢ < p for
al g € P. Zorn's Lemma is equivaent to the
Axiom of Choice.
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