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Preface 

The C.I.M.E. Session "Arithmetic Theory of Elliptic Curves" was held at 
Cetraro (Cosenza, Italy) from July 12 to July 19, 1997. 

The arithmetic of elliptic curves is a rapidly developing branch of 
mathematics, at the boundary of number theory, algebra, arithmetic alge- 
braic geometry and complex analysis. ~ f t e r  the pioneering research in this 
field in the early twentieth century, mainly due to H. Poincar6 and B. Levi, 
the origin of the modern arithmetic theory of elliptic curves goes back to 
L. J .  Mordell's theorem (1922) stating that the group of rational points on 
an elliptic curve is finitely generated. Many authors obtained in more re- 
cent years crucial results on the arithmetic of elliptic curves, with important 
connections to the theories of modular forms and L-functions. Among the 
main problems in the field one should mention the Taniyama-Shimura con- 
jecture, which states that every elliptic curve over Q is modular, and the 
Birch and Swinnerton-Dyer conjecture, which, in its simplest form, asserts 
that the rank of the Mordell-Weil group of an elliptic curve equals the order of 
vanishing of the L-function of the curve at 1. New impetus to the arithmetic 
of elliptic curves was recently given by the celebrated theorem of A. Wiles 
(1995), which proves the Taniyama-Shimura conjecture for semistable ellip- 
tic curves. Wiles' theorem, combined with previous results by K. A. Ribet, 
J.-P. Serre and G. Frey, yields a proof of Fermat's Last Theorem. The most 
recent results by Wiles, R. Taylor and others represent a crucial progress 
towards a complete proof of the Taniyama-Shimura conjecture. In contrast 
to this, only partial results have been obtained so far about the Birch and 
Swinnerton-Dyer conjecture. 

The fine papers by J. Coates, R. Greenberg, K. A. Ribet and K. Rubin 
collected in this volume are expanded versions of the courses given by the 
authors during the C.I.M.E. session at Cetraro, and are broad and up-to-date 
contributions to the research in all the main branches of the arithmetic theory 
of elliptic curves. A common feature of these papers is their great clarity and 
elegance of exposition. 

Much of the recent research in the arithmetic of elliptic curves consists 
in the study of modularity properties of elliptic curves over Q, or of the 
structure of the Mordell-Weil group E(K) of K-rational points on an elliptic 
curve E defined over a number field K. Also, in the general framework of 
Iwasawa theory, the study of E(K)  and of its rank employs algebraic as well 
as analytic approaches. 

Various algebraic aspects of Iwasawa theory are deeply treated in 
Greenberg's paper. In particular, Greenberg examines the structure of 
the pprimary Selmer group of an elliptic curve E over a Z,-extension of 
the field K, and gives a new proof of Mazur's control theorem. Rubin gives a 



detailed and thorough description of recent results related to the Birch and 
Swinnerton-Dyer conjecture for an elliptic curve defined over an imaginary 
quadratic field K.  with complex multiplication by K . Coates' contribution is 
mainly concerned with the construction of an analogue of Iwasawa theory for 
elliptic curves without complex multiplication. and several new results are 
included in his paper . Ribet's article focuses on modularity properties. and 
contains new results concerning the points on a modular curve whose images 
in the Jacobian of the curve have finite order . 

The great success of the C.I.M.E. session on the arithmetic of elliptic 
curves was very rewarding to me . I am pleased to express my warmest thanks 
to Coates. Greenberg. Ribet and Rubin for their enthusiasm in giving their 
fine lectures and for agreeing to write the beautiful papers presented here . 
Special thanks are also due to all the participants. who contributed. with 
their knowledge and variety of mathematical interests. to the success of the 
session in a very co-operative and friendly atmosphere . 

Carlo Viola 
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Fragments of the GL2 Iwasawa Theory 
of Elliptic Curves 
without Complex Multiplication 

John Coates 

"Fearing the blast 
Of  the wind of impermanence, 
I have gathered together 
The leaflike words of former mathematicians 
And set them down for you." 

Thanks to the work of many past and present mathematicians, we now know 
a very complete and beautiful Iwasawa theory for the field obtained by ad- 
joining all ppower roots of unity to Q, where p is any prime number. Granted 
the ubiquitous nature of elliptic curves, it seems natural to expect a precise 
analogue of this theory to exist for the field obtained by adjoining to Q all 
the ppower division points on an elliptic curve E defined over Q. When E 
admits complex multiplication, this is known to be true, and Rubin's lectures 
in this volume provide an introduction to a fairly complete theory. However, 
when E does not admit complex multiplication, all is shrouded in mystery 
and very little is known. These lecture notes are aimed at providing some 
fragmentary evidence that a beautiful and precise Iwasawa theory also exists 
in the non complex multiplication case. The bulk of the lectures only touch 
on one initial question, namely the study of the cohomology of the Selmer 
group of E over the field of all ppower division points, and the calculation 
of its Euler characteristic when these cohomology groups are finite. But a 
host of other questions arise immediately, about which we know essentially 
nothing at present. 

Rather than tempt uncertain fate by making premature conjectures, let 
me illustrate two key questions by one concrete example. Let E be the elliptic 
curve XI (1 I), given by the equation 

Take p to be the prime 5, let K be the field obtained by adjoining the 
5-division points on E to Q, and let F, be the field obtained by adjoin- 
ing all 5-power division points to Q. We write R for the Galois group of F, 
over K. The action of R on the group of all 5-power division points allows 
us to identify R with a subgroup of GL2(iZ5), and a celebrated theorem of 
Serre tells us that R is an open subgroup. Now it is known that the Iwasawa 
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algebra A(R) (see (14)) is left and right Noetherian and has no divisors of 
zero. Let C(E/F,) denote the compact dual of the Selmer group of E over 
F, (see (12)), endowed with its natural structure as a left A(R)-module. We 
prove in these lectures that C(E/F,) is large in the sense that 

But we also prove that every element of C(E/Fw) has a non-zero annihi- 
lator in A(R). We strongly suspect that C(E/F,) has a deep and interest- 
ing arithmetic structure as a representation of A(R). For example, can one 
say anything about the irreducible representations of A(R) which occur in 
C(E/F,)? Is there some analogue of Iwasawa's celebrated main conjecture 
on cyclotomic fields, which, in this case, should relate the A(R)-structure of 
C(E/F,) to a 5-adic L-function formed by interpolating the values at s = 1 
of the twists of the complex L-function of E by all Artin characters of R? 
I would be delighted if these lectures could stimulate others to work on these 
fascinating non-abelian problems. 

In conclusion, I want to warmly thank R. Greenberg, S. Howson and 
Sujatha for their constant help and advice throughout the time that these 
lectures were being prepared and written. Most of the material in Chapters 
3 and 4 is joint work with S. Howson. I also want to thank Y. Hachimori, 
K. Matsuno, Y. Ochi, J.-P. Serre, R. Taylor, and B. Totaro for making im- 
portant observations to us while this work was evolving. Finally, it is a great 
pleasure to thank Carlo Viola and C.I.M.E. for arranging for these lectures 
to take place at an incomparably beautiful site in Cetraro, Italy. 

1 Statement of Results 

1.1 Serre's theorem 

Throughout these notes, F will denote a finite extension of the rational field 
Q, and E will denote an elliptic curve defined over F, which will always be 
assumed to satisfy the hypothesis: 

Hypothesis. The endomorphism ring of E overQ is equal to Z, i.e. E does 
not admit complex multiplication. 

Let p be a prime number. For all integers n 2 0, we define 

We define the corresponding Galois extensions of F 

Write 

for the Galois groups of F, over Fn, and F, over F, respectively. Now the 
action of C on E,- defines a canonical injection 

When there is no danger of confusion, we shall drop the homomorphism i 
from the notation, and identify C with a subgroup of GL2(Zp). Note that i 
maps En into the subgroup of GL2(Zp) consisting of all matrices which are 
congruent to the identity modulo pn+'. In particular, it follows that & is 
always a pro-pgroup. However, it is not in general true that C is a pro-p 
group. The following fundamental result about the size of C is due to Serre 
[261. 

Theorem 1.1. 

(i) C is open in GL2(Zp) for all primes p, and 
(ii) C = GL2(Zp) for all but a finite number of primes p. 

Serre's method of proof in [26] of Theorem 1.1 is effective, and he gives 
many beautiful examples of the calculations of C for specific elliptic curves 
and specific primes p. We shall use some of these examples to illustrate the 
theory developed in these lectures. For convenience, we shall always give the 
name of the relevant curves in Cremona's tables [9]. 

Example. Consider the curves of conductor 11 

The first curve corresponds to the modular group r o ( l l )  and is often de- 
noted by Xo(ll),  and the second curve corresponds to the group ( l l ) ,  and 
is often denoted by X1(ll). Neither curve admits complex multiplication (for 
example, their j-invariants are non-integral). Both curves have a Q-rational 
point of order 5, and they are linked by a Q-isogeny of degree 5. For both 
curves, Serre [26] has shown that C = GL2(Zp) for all primes p 2 7. Subse- 
quently, Lang and Trotter [21] determined C for the curve ll(A1) and the 
primes p = 2,3,5. 

We now briefly discuss C-Euler characteristics, since this will play an 
important role in our subsequent work. By virtue of Theorem 1.1, C is a 
padic Lie group of dimension 4. By results of Serre [28] and Lazard [22], C 
will have pcohomological dimension equal to 4 provided C has no ptorsion. 
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Since C is a subgroup of GL2(Zp), it will certainly have no ptorsion provided 
p 2 5. Whenever we talk about C-Euler characteristics in these notes, we shall 
always assume that p 2 5. Let W be a discrete pprimary C-module. We shall 
say that W has finite C-Euler characteristic if all of the cohomology groups 
Hi(C,  W) (i = 0,. . . ,4) are finite. When W has finite C-Euler characteristic, 
we define its Euler characteristic x(C,  W) by the usual formula 

Example. Take W = E p m .  Serre 1291 proved that E p m  has finite C-Euler 
characteristic, and recently he determined its value in [30]. 

Theorem 1.2. If p 2 5, then x(C, Epm) = 1 and H4(C,  E , ~ )  = 0. 

This result will play an important role in our later calculations of the Euler 
characteristics of Selmer groups. Put  

We now give a lemma which is often useful for calculating the hi(E). Let pp- 
denote the group of pn-th roots of unity, and put 

- u Pp-, Ppm - T,(p) = lim t ppn . (8) 
n>,l 

By the Weil pairing, F(ppm) c F(Epm) and so we can view C as acting in 
the natural fashion on the two modules (8). As usual, define 

here 27 acts on both groups again in the natural fashion. 

Lemma 1.3. Let p be any prime number. Then 

(i) ho (E) divides hl (E) . 
(ii) If C has no p-torsion, we have h3 (E) = #HO (C, E p m  (- 1)). 

Corollary 1.4. If p 2 5, and h3 (E) > 1, then h2(E) > 1. 

Indeed, Theorem 1.2 shows that 

whence the assertion of the Corollary is clear from (i) of Lemma 1.3. The 
corollary is useful because it does not seem easy to compute h2(E) in a 
direct manner. 

We now turn to the proof of (i) of Lemma 1.3. Let K, denote the cyclo- 
tomic Zp-extension of F ,  and let E,m (K,) be the subgroup of Epm which is 
rational over K,. We claim that E p m  (K,) is finite. Granted this claim, it 
follows that 

where r denotes the Galois group of K, over F. But H1( r ,  Epm (K,)) is a 
subgroup of H1 (E, Epm) under the inflation map, and so (i) is clear. To show 
that Epm(K,) is finite, let us note that it suffices to show that Epm(Hm) 
is finite, where H, = F(p,-). Let R = G(F,/H,). By virtue of the Weil 
pairing, we have R = C n SL2(Zp), for any embedding i : C v GL2(Zp) 
given by choosing any %,-basis el ,  e2 of T,(E). If E p m  (H,) was infinite, we 
could choose el so that it is fixed by 0. But then the embedding i would inject 

R into the subgroup of SL2 (Z,) consisting of all matrices of the form (: 1). 
where z runs over Z,. But this is impossible since 0 must be open in S L ~  (i,) 
as 27 is open in GL2(Zp). To prove assertion (ii) of Lemma 1.3, we need the 
fact that 27 is a Poincar6 group of dimension 4 (see Corollary 4.8, 1251, p. 75). 
Moreover, as was pointed out to us by B. Totaro, the dualizing module for 
27 is isomorphic to Q/Z, with the trivial action for C (see Lazard [22], 
Theorem 2.5.8, p. 184 when C is pro-p, and the same proof works in general 
for any open subgroup of GL2(Zp) which has no ptorsion). Moreover, the 
Weil pairing gives a C-isomorphism 

Using that C is a Poincar6 group of dimension 4, it follows that H3(C,  Epn) 
is dual to H1(C, Epn (-1)) for all integers n 2 1. As usual, let 

T,(E) = lim Epn 
e 

Passing to the limit as n + oo, we conclude that 

H3(E,  Epm) = lim H ~ ( z ~ ,  Epn) --+ 
is dual to 

Write V,(E) = Tp(E) @ Q,. Then we have the exact sequence of E-modules 
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Now V, (E) ( -~)~  = 0 since Ep,(H,) is finite. Moreover, (10) is finite 
by the above duality argument, and so it must certainly map to 0 in the 
Qp-vector space H1(E, Vp(E)(-1)). Thus, taking E-cohomology of the above 
exact sequence, we conclude that 

As (11) is dual to H3(E, Epm), this completes the proof of (ii) of Lemma 1.3. 

Example. Take F = Q, E to be the curve Xo(l l )  given by (4), and p =*5. 
The point (5,5) is a rational point of order 5 on E. As remarked earlier, 
Lang-Trotter [21] (see Theorem 8.1 on p. 55) have explicitly determined C 
in this case. In particular, they show that 

as C-modules. Moreover, although we do not give the details here, it is not 
difficult to deduce from their calculations that 

ho(E) = h3(E) = 5, and hl (E) 2 52. 

It also then follows from Theorem 1.2 that h2(E) = hl (E). 

1.2 The basic Iwasawa module 

Iwasawa theory can be fruitfully applied in the following rather general set- 
ting. Let H, denote a Galois extension of F whose Galois group R = 
G(H,/F) is a padic Lie group of positive dimension. By analogy with the 
classical situation over F ,  we define the Selmer group S(E/H,) of E over 
Hw by 

where w runs over all finite primes of H,, and, as usual for infinite extensions, 
H,,, denotes the union of the completions at w of all finite extensions of 
F contained in H,. Of course, the Galois group R has a natural left action 
on S(E/H,), and the central idea of the Iwasawa theory of elliptic curves 
is to exploit this R-action to obtain deep arithmetic information about E .  
This R-action makes S(E/H,) into a discrete pprimary left R-module. It 
will often be convenient to study its compact dual 

which is endowed with the left action of R given by (of)(%) = f (a-'x) for 
f in C(E/H,) and a in 0. Clearly S(E/H,) and C(E/H,) are continuous 
m6dules over the ordinary group ring Zp[R] of R with coefficients in Z,. But, 

as Iwasawa was the first to observe in the case of the cyclotomic theory, it is 
more useful to view them as modules over a larger algebra, which we denote 
by A(R) and call the Iwasawa algebra of 0, and which is defined by 

where W runs over all open normal subgroups of R. Now if A is any discrete 
pprimary left 0-module and X = Hom(A, U&,/Z,) is its Pontrjagin dual, 
then we have 

A = U A W ,  X = limXw, 
W 

t 

where W again runs over all open normal subgroups of 0, and Xw denotes 
the largest quotient of X on which W acts trivially. It is then clear how to 
extend the natural action of Z,[R] on A and X by continuity to an action of 
the whole Iwasawa algebra A(R). 

In Greenberg's lectures in this volume, the extension H, is taken to 
be the cyclotomic 23,-extension of F .  In Rubin's lectures, H, is taken to 
be the field generated over F by all p-power division points on E, where 
p is now a prime ideal in the ring of endomorphisms of E (Rubin assumes 
that E admits complex multiplication). In these lectures, we shall be taking 
H, = F, = F(Ep-), and recall our hypothesis that E does not admit 
complex multiplication. Thus, in our case, R = .E is an open subgroup of 
GL2 (23,) by Theorem 1.1. 

The first question which arises is how big is S(E/Fw)? The following 
result, whose proof will be omitted from these notes, was pointed out to me 
by Greenberg. 

Theorem 1.5. For all primes p, we have 

Example. Take F = Q, E = X1(ll) ,  and p = 5. It was pointed out to me 
some years back by Greenberg that 

(see his article in this volume, or [7], Chapter 4 for a detailed proof). On the 
other hand, we conclude from Theorem 1.5 that 

This example is a particularly interesting one, and we make the following 
observations now. Since E has a non-trivial rational point of order 5, we have 
the exact sequence of G(Q/Q)-modules 



8 John Coates Elliptic curves without complex multiplication 9 

This exact sequence is not split. Indeed, since the j-invariant of E has order 
-1 at  11, and the curve has split multiplicative reduction at 11, the 11-adic 
Tate period q~ of E has order 1 at 11. Hence 

and so we see that 5 must divide the absolute ramification index of every 
prime dividing 11 in any global splitting field for the Galois module E5. It 
follows, in particular, that [Fo : Q ( P ~ ) ]  = 5, where Fo = Q(E5). Moreover, 
11 splits completely in Q(p5), and then each of the primes of Q(p5) divid& 
11 are totally ramified in the extension Fo/Q(p5). In view of (15) and the 
fact that Fo/Q(p5) is cyclic of degree 5, we can apply the work of Hachimori 
and Matsuno [15] (see Theorem 3.1) to it to conclude that the following 
assertions are true for the A(r)-module C ( E / F O ( P ~ ~ ) ) ,  where r denotes the 
Galois group of Fo (p5m) over Fo: (i) C(E/ Fo ( ~ 5 ~ ) )  is A(r)-torsion, (ii) the 
pinvariant of C(E/F0(p5m)) is 0, and (iii) we have 

However, I do not know at present whether E has a point of infinite order 
which is rational over Fo. Finally, we remark that one can easily deduce (16) 
from Theorem 3.1 of [15], on noting that Fn/Q(p5) is a Galois 5-extension 
for all integers n 3 0. 

We now return to the discussion of the size of C(E/F,) as a left A(C)- 
module. It is easy to see (Theorem 2.7) that C(E/F,) is a finitely generated 
left A(C)-module. Recall that F, = F(Epn+1), and that En = G(Fm/Fn). 
We define @ to be El if p = 2, and to be &, if p > 2. The following result is 
a well known special case of a theorem of Lazard (see [lo]). 

Theorem 1.6. The Iwasawa algebra A(@) is left and right Noetherian and 
has no divisors of 0. 

Now it is known (see Goodearl and Warfield [ll], Chapter 9) that Theorem 
1.6 implies that A(@) admits a skew field of fractions, which we denote by 
K(@). If X is any left A(C)-module, we define the A(Z7)-rank of X by the 
formula 

This A(C)-rank will not in general be an integer. 
It is not difficult to see that the A(C)-rank is additive with respect to 

short exact sequences of finitely generated left A(C)-modules. Also, we say 
that X is A(E)-torsion if every element of X has a non-zero annihilator in 
A(@). Then X is A(C)-torsion if and only if X has A(C)-rank equal to 0. 

It is natural to ask what is the A(C)-rank of the dual C(E/F,) of the 
Selmer group of E over F,. The conjectural answer to this problem depends 
on the nature of the reduction of E at the places v of F dividing p. We 
recall that E is said to have potential supersingular reduction at a prime v 
of F if there exists a finite extension L of the completion F, of F at v such 
that E has good supersingular reduction over L. We then define the integer 
r,(E/F) to be 0 or [F, : Q,], according as E does not or does have potential 
supersingular reduction at v. Put 

where the sum on the right is taken over all primes v of F dividing p. Note 
that rP(E/F) < [F : Q]. 

Conjecture 1.7. For every prime p, the A(C)-rank of C(E/F,) is equal to 
7, (EIF) .  

It is interesting to note that Conjecture 1.7 is entirely analogous to the con- 
jecture made in the cyclotomic case in Greenberg's lectures. Specifically, if 
K, denotes the cyclotomic Z,-extension of F ,  and if r = G(K,/F), then 
it is conjectured that the A(r)-rank of C(E/K,) is equal to rP(E/F) for all 
primes p. 

Example. Consider the curve of conductor 50 

Take F = Q. This curve has multiplicative reduction at 2, so that 72 (EIQ)  = 
0. It has potential supersingular reduction at  5, since it can be shown to 
achieve good supersingular reduction over the field Q5 ( p3, ?-). Hence 
r5(E/Q) = 1. It has good ordinary reduction at 3,7,11,13,17,19,23,31,. . . , 
and so rp(E/Q) = 0 for a11 such primes p. It has good supersingular reduction 
at 29,59,. . . , and rP(E/Q) = 1 for these primes. 

Theorem 1.8. Let tp(E/F) denote the A(r1)-rank for C(E/F,). Then, for 
all primes p 2 5, we have 

We remark that the lower bound for tp(E/F) given in (22) is entirely analo- 
gous to what is known in the cyclotomic case (see Greenberg's lectures [13]). 
However, the upper bound for tp(E/F) in (22) still has not been proven un- 
conditionally in the cyclotomic theory. We also point out that we do not at  
present know that tp(E/F) is an integer. 
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Corollary 1.9. Conjecture 1.7 is true for all odd primes p such that E has 
potential supersingular reduction at all places v of F dividing p. 

This is clear since rp(E/F) = [F : Q] when E has potential supersingular 
reduction at all places v of F dividing p. For example, if we take E to be the 
curve 50(A1) above and F = Q, we conclude that C(E/F,) has A(C)-rank 
equal to 1 for p = 5, and for all primes p = 29,59,. . . where E has good 
supersingular reduction. 

We long tried unsuccessfully to prove examples of Conjecture 1.7 when 
rp(E/F) = 0, and we are very grateful to Greenberg for making a suggestion 
which at  last enables us to do this using recent work of Hachimori and Mat- 
suno [15]. As before, let K, denote the cyclotomic Zp-extension of F, and 
let T = G(K,/F). Let Y denote a finitely generated torsion A(r)-module. 
We recall that Y is said to have p-invariant 0 if (Y)r is a finitely generated 
Zp-module, where (Y)r denotes the largest quotient of Y on which T acts 
trivially. 

Theorem 1.10. Let p be a prime such that (i) p 2 5, (ii) E = G(F,/F) 
is a pro-p-group, and (iii) E has good ordinary reduction at all places v of 
F dividing p. Assume that C(E/K,) is A(r) - tors ion and has p-invariant 0. 
Then C(E/F,) is A(C)-torsion. 

Example. Take E = XI(l l ) ,  F = Q(,u5), and p = 5. Then E has good ordi- 
nary reduction at  the unique prime of F above 5. The cyclotomic Z5-extension 
of Q(p5) is the field Q(p5m ). AS was remarked earlier, F,/F is a 5-extension 
for all n 2 0, because Fo/F is a cyclic extension of degree 5, and F,/Fo is 
clearly a 5-extension. Hence C is pro-5 in this case. Hence (15) shows that the 
hypotheses of Theorem 1.10 hold in this case, and so it follows that C(E/F,) 
is A(C)-torsion. 

The next result proves a rather surprising vanishing theorem for the coho- 
mology of S(E/F,). If p 2 5, we recall that both C and every open subgroup 
C' of C have pcohomological dimension equal to 4. 

Theorem 1.11. Assume that (i) p 2 5, and (ii) C(E/F,) has A(C)-rank 
equal to rp(E/F). Then, for every open subgroup C' of C, we have 

for all i 2 2. 

For example, the vanishing assertion (23) holds for E = 50(A1) and p = 
5,29,59,. . . , and for E = XI (11) and p = 5, with F = Q in both cases. 

1.3 The Euler characteristic formula 

Exact formulae play an important part in the Iwasawa theory of elliptic 
curves. For example, if the Selmer group S(E/Fw) is to eventually be use- 
ful for studying the arithmetic of E over the base field F, we must be able 
to recover the basic arithmetic invariants of E over F from some exact for- 
mula related to the C-structure of S(E/F,). The natural means of obtaining 
such an exact formula is via the calculation of the C-Euler characteristic of 
S(E/F,). When do we expect this C-Euler characteristic to be finite? 

Conjecture 1.12. For each prime p 2 5, x(C, S(E/F,)) is finite if and 
only if both S(E/F)  as finite and rP(E/F) = 0. 

We shall show later that even the finiteness of HO(C, S(E/F,)) implies that 
S(E/F)  is finite and rP(E/F) = 0. However, the implication of the conjecture 
in the other direction is difficult and unknown. The second natural question 
to ask is what is the value of x(C,  S(E/F,)) when it is finite? We will now 
describe a conjectural answer to this question given by Susan Howson and 
myself (see [5], [6]). Let UI(E/F) denote the Tate-Shafarevich group of E 
over F. For each finite prime v of F, let Eo(Fv) be the subgroup of E(F,) 
consisting of the points with non-singular reduction, and put 

If A is any abelian group, A@) will denote its pprimary subgroup. Let ( 1, 
be the padic valuation of Q, normalized so that Iplp = p-l. We then define 

where it is assumed that III(E/F)(p) is finite. If v is a finite place of F, write 
k, for the residue field of v and Ev for the reduction of E modulo v. Let j~ 
denote the classical j-invariant of our curve E. We define 

!73 = (finite places v of F such that o rd , ( j~ )  < 0). (26) 

In other words, !lR is the set of places of F where E has potential multiplica- 
tive reduction. For each v E !73, let L,(E, s) be the Euler factor of E at  v. 
Thus L,(E,s) is equal to 1, (1 - (NV)-~)-' or (1 + (NU)-*)-', according 
as E has additive, split multiplicative, or non-split multiplicative reduction 
at  v. The following conjecture is made in [6]: 

Conjecture 1.13. Assume that p is a prime such that (i) p 2 5, (ii) E 
has good ordinary reduction at all places v of F dividing p, and (iii) S ( E / F )  
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ES finite. Then HYE, S(E/F,)) is finite for i = 0,1, and equal to 0 for 
i = 2,3,4, and 

We remark in passing that Conjecture 1 made in our earlier note [5] is not 
correct because it does not contain the term coming from the Euler factors 
in 17JZ. We are very grateful to Richard Taylor for pointing this out to us,. 

Example. Take F = Q and E to be one of the two curves Xo(l1) and 
Xl(11) given by (4) and (5). The conjecture applies to the primes p = 
5,7,13,17,23,31,. . . where these two isogenous curves admit good ordinary 
reduction. 

We shall simply denote either curve by E when there is no need to dis- 
tinguish between them. We have 

and 

This last statement is true because of Hasse's bound for the order of Ep(IFp) 
and the fact that 5 must divide the order of Ep(IFp) for all primes p # 5,11. 
We also have c ,  = 1 for all q # 11, and 

As is explained in Greenberg's article in this volume, a 5-descent on either 
curve shows that 

Hence we see that Conjecture 1.13 for p = 5 predicts that 

In Chapter 4 of these notes (see Proposition 4.10), we prove Conjecture 1.13 
for both of the elliptic curves Xo(ll)  and X1(ll) with F = Q and p = 5. 
Hence the values (30) are true. Now assume p is a prime 2 7. We claim that 

Indeed, the conjecture of Birch and Swinnerton-Dyer predicts that m ( E / Q )  
= 0, and Kolyvagin's theorem tells us that III(E/Q) is finite since L(E, 1) # 
6. In fact, Kolyvagin's method (see Gross [14], in particular Proposition 2.1) 

shows that (31) holds if we can find an imaginary quadratic field K ,  in which 
11 splits, such that the Heegner point attached to K in E(K)  is not divisible 
by P; here we are using Serre's result [26] that G(Fo/Q) = GL2(Fp) for 
all primes p # 5. The determination of such a field K is well known by 
computation, but unfortunately the details of such a computation do not 
seem to have been published anywhere. Granted (31), we deduce from (28) 
and (29) that Conjecture 1.13 predicts that 

for all primes p 2 7 where E has good ordinary reduction. At present, we 
cannot prove (32) for a single prime p 2 7. 

In these notes, we shall prove two results in the direction of Conjecture 
1.13, both of which are joint work with Susan Howson. 

Theorem 1.14. In addition to the hypotheses of Conjecture 1.13, let p be 
such that C(E/F,) is A(C)-torsion.  Then Conjecture 1.13 is valid for p. 

Of course, Theorem 1.14 is difficult to apply in practice, since we only have 
rather weak results (see Theorem 1.10) for showing that C(E/F,) is A(C)- 
torsion. The next result avoids making this hypothesis, but only establishes 
a partial result. Put 

Theorem 1.15. Let E be a modular elliptic curve over Q such that L(E, 1) # 
0. Let p be a prime 2 5 where E has good ordinary reduction. As before, 
let F, = Q (Ep- ). Then (i) H1 (22, S(E/F,)) is finite and its order divides 
#(H3(C, ~ ~ r n ) ) ,  and (ii) HO(E,  s ( E / F ~ ) )  is finite of ezact order tP(E/Q) x 

#(H3(Z  EPrn)). 

We recall that we conjecture that Hj (E ,  S(E/F,)) = 0 for j = 2,3,4 for 
all p 2 5, but we cannot prove at present that these cohomology groups are 
even finite under the hypotheses of Theorem 1.15. Note also that the order 
of H ~ ( c ,  E p )  can easily be calculated using Lemma 1.3. As an example of 
Theorem 1.15, we see that for E given either by Xo(l1) or X1(11), we have 

for all primes p 2 7 where E has good ordinary reduction. Indeed, we have 
H3(C, Ep-) = 0 for all primes p # 5 because of Lemma 1.3 and Serre's result 
that G(Fo/Q) = GL2(lFp) for all p # 5. 
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2 Basic Properties of the Selmer Group Hence X = Y by Proposition 2.1, completing the proof. 

2.1 Nakayama's lemma 

If G is an arbitrary profinite group, we recall that its Iwasawa algebra A(G) 
is defined by 

where H runs over all open normal subgroups of G. We endow z,[G[H] 
with the padic topology for every open normal subgroup H. This induces a 
topology on A(G) which makes it a compact Zp-algebra, in which the ordinary 
group ring Z,[G] is a dense sub-algebra. If X is a compact left A(G)-module, 
our aim is to establish a version of Nakayama's lemma giving a sufficient 
condition for X to be finitely generated over A(G). Balister and Howson (see 
[I], $3) have pointed out that there are unexpected subtleties in this question 
for arbitrary compact X. Fortunately, we will need only the case when X 
is pro-finite, and these difficulties do not occur. We define the augmentation 
ideal I(G) of A(G) by 

I(G) = Ker (A(G) -+ Z, = iZP[G/G]). (36) 

Proposition 2.1. Assume that G is a pro-p-group, and that X is a pro- 
p-abelian group, which is a left A(G)-module. Then X = 0 if and only if 
X/I(G)X = 0. 

Proof. We have X = Hom(A, Q/Z,), where A is a discrete pprimary 
abelian group. Moreover, X/I(G)X is dual to AG. Hence we must show that 
AG = 0 if and only if A = 0. One implication being trivial, we assume that 
AG = 0. Suppose, on the contrary, that A # 0. Since A is a discrete G-module, 
it follows that A* # 0 for some open normal subgroup U of G. Hence there 
exists a non-zero finite G-submodule B of AU. But then B ~ I ~  = 0 since 
AG = 0, and so, as G/U is a finite pgroup, we have B = 0 by the standard 
result for finite pgroups. This is the desired contradiction, and the proof is 
complete. 

Corollary 2.2. Assume that G is a pro-p-group, and that X is a pro-p- 
abelian group, which is a left A(G)-module. If X/I(G)X is a finitely generated 
Zp-module, then X is a finitely generated A(G)-module. 

Proof. Let X I , .  . . , x, be lifts to X of any finite set of %,-generators of 
X/I(G)X. Define Y to be the left A(G)-submodule of X generated by 
21,. . . ,x,. Then Y is a closed subgroup of X and X/Y is also a pro-p 
abelian group. But 

I(G)(X/Y) = (I(G)X + Y)/Y = X/Y. 

We make the following remark (see [I]). Let X be a pro-pabelian group 
which is a finitely generated left A(G)-module. If G is isomorphic to Z,, 
the structure theory for finitely generated A(G)-modules implies that, if 
X/I(G)X is finite, then X is certainly torsion over the Iwasawa algebra A(G). 
However, contrary to what is asserted in Harris 1161, Balister and Howson [I] 
show that the analogue of this assertion breaks down completely if we take 
G to be any pro-p open subgroup of GL2(Zp). 

2.2 The fundamental diagram 

We now return to our elliptic curve E which is defined over a finite extension 
F of Q, and does not admit complex multiplication. We use without comment 
all the notation of Chapter 1. Thus p denotes an arbitrary prime number, 
F, = F(Ep=), and E the Galois group of F, over F. The crucial ingredient 
in studying the Selmer group S(E/F,) as a module over the Iwasawa algebra 
A(E) is the single natural commutative diagram (43) given below. Because 
of its importance, we shall henceforth call it the fundamental diagram. 

Let T denote any finite set of primes of F which contains all the primes 
dividingp, and all primes where E has bad reduction. Let FT denote the max- 
imal extension of F which is unramified outside of T and all the archimedean 
primes of F ,  and let 

GT = G(FT/F) 

be the corresponding Galois group. We mention in passing that very little is 
known about the Galois group GT beyond the fact that its profinite order 
is divisible by infinitely many distinct prime numbers. For example, it is 
unknown whether GT is topologically finitely generated even in the simplest 
case when F = Q and T = (21, as was remarked to us by Serre. 

By our choice of T,  we clearly have F, c FT. If H denotes any interme- 
diate field with F C H C FT, we put 

Suppose now that L is a finite extension of F. For each finite place u of F, 
we define 

where w runs over all primes of L dividing u. We then have the localization 
map 
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If H is an infinite extension of F, we define 

Ju (H) = 1% Ju (L) , 

where the inductive limit is taken with respect to the restriction maps, and L 
runs over all finite extensions of F contained in H.  We also define XT(H) to 
be the inductive limit of the localization maps XT(L). The following lemma 
is classical: 

?- 

Lemma 2.3. For every algebraic extension H of F ,  we have S(E/H) = 
K ~ ~ ( X T  (HI). 

Proof. It clearly suffices to prove Lemma 2.3 for every finite extension L 
of F, and we quickly sketch the proof in this case. By definition, S(E/L) is 
given by the exactness of the sequence 

0 + S(E/L) -+ H1(L, Epm) --+ 11 H'(L,, E), 
w 

where w ranges over all finite places of L. Let 

denote the map given by localization at all finite primes w of L which do not 
lie above T. Clearly Lemma 2.3 is equivalent to the assertion 

The proof of (40) follows easily from two standard classical facts about the 
arithmetic of E over local fields. Let w denote any finite prime of L which 
does not lie above T. Then E has good reduction at w, and so 

(G(L~,'/L,), E ( L ~ , ' ) )  = 0, (41) 

where L r  denotes the maximal unramified extension of L,. It follows im- 
mediately from (41) that the left hand side of (40) is contained in the right 
hand side. Next, let P be any point in E(Lw), and let Pn be any point in 
~ ( z , )  such that pnPn = P for some integer n 2 0. Then the second fact is 
that, because w does not divide p and E has good reduction at w, we have 
that the extension Lw(Pn)/Lw is unramified. The inclusion of the right hand 
side of (40) in the left hand side follows immediately from this second fact 
and local Kummer theory on E. This completes the proof of Lemma 2.3. 

In view of Lemma 2.3, we have the exact sequence 

Taking C-invariants of (42), we obtain the fundamental diagram 

where the rows are exact, and the vertical maps are the obvious restriction 
maps. We emphasize that all of our subsequent arguments revolve around 
analysing this diagram. Since 7 is a direct sum 

where 7, denotes the restriction map from JV(F) to Ju(Fw), we see that 
the analysis of Ker(7) and Coker(7) is a purely Iocal question, whose answer 
at  the primes v dividing p uses the theory of deeply ramified padic fields 
developed in [4]. 

2.3 Finite generation over A(E)  

As a first application of the fundamental diagram (43), we shall prove that, for 
all primes p, the Pontrjagin duals of both H1(GT(Fw), Epm) and S(E/Fw) 
are finitely generated left A(C)-modules. We begin with a very well known 
lemma. If A_is a discrete pprimary abelian group, we recall that the Pontr- 
jagin dual A of A is defined by 

Lemma 2.4. The Pontrjagin dual of H1(GT, Epm) is a finitely generated 
Z ,-module. 

Proof. Taking GT-cohomology of the exact sequence 

and putting A = H 1 ( G ~ ,  Ep-) ,  we obtain a surjection 

where (A), denotes the elements of A of order dividing p. But H' (GT, M )  is 
well known to be finite for any finite pprimary GT-module M. Hence the fact 
that (44) is a surjection implies that (A), is finite. Let X be the Pontrjagin 
dual of A. Now (A), is dual to X/pX, and so this latter group is finite. But 
then, by Nakayarna's lemma, X must be a finitely generated Z,-module. This 
completes the proof of Lemma 2.4. 
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Lemma 2.5. The Pontrjagin dual of Ker(y) is a finitely generated Z,- 
module of rank at most [F : Q] .  

Proof. We recall that the Zp-rank of a Zp-module X is defined by 

Also, if A is an abelian group, we write 

for the padic completion of A. Let Y be the Pontrjagin dual of Ker(y), let 
Z, be the dual of Ju(F),  and let Z = eUET Zu. Since Ker(y) is a subgroup of eU,, Ju(F),  it follows that Y is a quotient of Z. By Tate duality, H'(F,, E) 
is dual to E(Fu), and so Ju(F)  = H1(Fu, E)@) is dual to E(Fu)*. But, by the 
theory of the formal group of E at  v, we have that E(Fu)* is finite if v does 
not divide p, and that E(F,)* is a finitely generated 23,-module of rank equal 
to [F, : U&] if v does divide p. Hence Z is a finitely generated Zp-module of 
rank equal to [F : Q],  and so Y must be a finitely generated Z,-module of 
rank at most [ F  : Q]  because it is a quotient of 2. This completes the proof 
of Lemma 2.5. 

Lemma 2.6. For all primes p, we have (i) Ker(P) and Coker(P) are 
finite, (ii) Ker(a) as finite, and (iii) Coker(a) is dual to a fie'tely generated 
Z,-module of Z,-rank at most [ F  : Q].  

Proof. By the inflation-restriction sequence, we have that Ker(P) = 
H1(C, E,-) and that Coke@) injects into H2(E,  Epm). Assertion (i) follows 
immediately because Hi(C, Epm) is finite for all i 2 0 (see [29]). Assertion 
(ii) is then plain because Ker(a) injects into Ker(P). Finally, it is clear from 
(43) that we have the exact sequence 

and so (iii) follows from (i) and Lemma 2.4. This completes the proof of the 
lemma. 

Theorem 2.7. The Pontrjagin duals of both H~(G~(F , ) ,  Epm) and 
S(E/F,) are finitely generated A(C)-modules. 

Proof. As in Chapter 1, let 

While 22 is not in general a pro-pgroup, Zo always is pro-p since it is isomor- 
phic under the injection (3) to an open subgroup of the kernel of the reduction 
map from GL2(Z,) to GL2(IFp). Let X and Y denote the Pontrjagin duals of 

H1 (GT(F,), Epm ) and S(E/Fw),  respectively. Since A(.&) is a sub-algebra 
of A(C), it clearly suffices to show that X and Y are finitely generated left 
A(Co)-modules. We shall establish this using Corollary 2.2. Note first that X 
and Y are pro-finite. To prove this, we must show that H1(GT(Fw), Epm) and 
S(E/Fw) are inductive limits of finite groups. But clearly H'(GT(F,), Epm) 
is the inductive limit of the finite groups H 1 ( G ~ ( L ) ,  Epn) where L runs over 
all finite extensions of F contained in F, and n runs over all integers 2 1. 
Similarly, S(E/Fw) is the inductive limit of the finite groups 

where L and n run over the same sets. We now appeal to the fundamental 
diagram (43), but with the base field F replaced by Fo, and consequently C 
replaced by Co. Since Ker(j3) and Coke@) are finite, it follows immediately 
from Lemma 2.4 for Fo and (43) that the dual of 

is a finitely generated Zp-module. Hence X is a finitely generated A(&,)- 
module by Corollary 2.2, since X/I(Eo)X is dual to (46). We next claim 
that the dual of 

is a finitely generated Zp-module. By virtue of (43), it suffices to show that 
both the image of a and the cokerneI of a are dual to finitely generated Zp- 
modules. Now (iii) of Lemma 2.6 for Fo gives that Coker(a) is dual to a finitely 
generated Z,-module. Also S(E/Fo) is contained in H1(GT(Fo), Epm), and 
so we deduce from Lemma 2.4 that Im(a) is also dual to a finitely generated 
Zp-module. Having proved the above claim, it again follows from Corollary 
2.2 that Y is a finitely generated A(Co)-module. This completes the proof of 
Theorem 2.7. 

2.4 Decomposition of primes in F, 

We need hardly remind the reader that no precise reciprocity law is known for 
giving the decomposition of finite primes of F in F,. Nevertheless, we collect 
together here some coarser elementary results in this direction, which will be 
used later in these notes. We have omitted discussing the primes v dividing p 
where E has potential supersingular reduction at v, since this involves the 
notion of formal complex multiplication (see Serre [27]), and this case will 
not be needed in our subsequent arguments. 

Let v denote any finite prime of F .  For simplicity, we write D(v) for the 
decomposition group in C of any fixed prime of F, above v. Thus D(v) is 
only determined up to conjugation in C by v. Now D(v) is itself a padic Lie 
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group, since it is a closed subgroup of the Cdimensional padic Lie group C. 
We can easily determine the dimension of D(v) in many cases. 

Lemma 2.8. (i) If v does not divide p, then D(v) has dimension 1 or 2, 
according as E has potential good or potential multiplicative reduction at v .  
(ii) Assume that v does divide p. Then D(v) has dimension 2 if E has poten- 
tial multiplicative reduction at v ,  and dimension 3 if E has potential ordinary 
reduction at v.  

I 

Since the global Galois group T: = G(F,/F) is a padic Lie group of dimen- 
sion 4, we immediately obtain the following corollary. 

Corollary 2.9. There are infinitely many primes of F, lying above each 
finite prime of F which does not divide p. There are also infinitely many 
primes of F, lying above each prime of F ,  which divides p, and where E has 
potential ordinary or potential multiplicative reduction. 

We now prove Lemma 2.8. Let L denote the completion of F at  u, and 
let L, = L(Epm). We can then identify D(v) with local Galois group 0 = 
G(L,/L). We first remark that the dimension of R does not change if we 
replace L by a finite extension L', i.e. if we put Lb, = L1(Epm) and R' = 
G(Lb,/L), then R and 0' have the same dimension as padic Lie groups. This 
is clear since restriction to L, defines an isomorphism from 0' onto an open 
subgroup of 0 .  Thus we may assume that E has either good reduction or 
split multiplicative reduction over L. We first dispose of the easy case when v 
does not divide p. If E / L  has good reduction, then L(Epm)/L is unramified, 
and R plainly has dimension 1. If E / L  has split multiplicative reduction, we 
write q~ for the v-adic Tate period of E .  Then L, is clearly obtained by 
adjoining all pm-th (m = 1,2, . . . ) roots of q~ to L(p,-), and it is then clear 
that R has dimension 2 as a padic Lie group. We now turn to the two cases 
when v divides p. 

Case 1. Assume that v divides p, and that E I L  has good ordinary reduction. - A 

Let Epm denote the reduction of Ep- modulo v ,  and let E p m  be the kernel 
of reduction modulo v. As usual, if A is an abelian group, we write T,(A) = 
I@ (A),-, where (A)pm denotes the kernel of multiplication by pn on A. Now 

ke  have the exact sequence of 0-modules 

where the two end groups are free of rank 1 over Zp by our ordinary hy- 
pothesis. Let rl and E denote the characters of R with values in Z,X giving 
its action on ~,(Z,rn) and ~,(E,rn), respectively. By the Weil pairing q~ is 
the character giving the action of fl on T,(~L). Choosing a basis of Tp(Epm) 

whose first element is a basis of ~ , ( E ~ r n ) ,  we deduce from (48) an injection 
P : R V GLz(ZP) such that, for all a E R, we have 

where a(a) E Z,. Since E does not have complex multiplication, it is known 
(see Serre [27]) that (48) does not split as an exact sequence of R-modules, 
and so we have that a(a) is non-zero for some a E R. Now let H, denote 
the maximal unramified extension of L contained in L,, and put M, = 
H ,  (pp-), Thus we have the tower of fields 

We claim that the three Galois groups G(H,/L), G(M,/H,) and 
G(L,/M,) are each padic Lie groups of dimension 1, whence it follows 
immediately that R = G(L,/L) is a padic Lie group of dimension 3, as 
required. Since Epm is rational over H,, it is clear that H, must be a finite 
extension of the unramified 25,-extension of L, whence G(H,/L) has dimen- 
sion 1. The action of G(M,/H,) on pp- defines an injection of this Galois 
group onto an open subgroup of Z,X, whence it also has dimension 1. Finally, 
since E and 77 are both trivial on G(L,/M,), the map a e a(a) defines an 
injection of G(L,/M,) into Z,. But the image of this map cannot be 0 as 
we remarked above, and so we conclude that G(L,/M,) is isomorphic to 
Z,. This completes the proof that R has dimension 3 in this case. 

Case 2. Assume that v divides p, and that E/L has split multiplicative 
reduction at  v. The argument that R has dimension 2 is entirely parallel to 
that given when E does not divide p. Indeed, let q~ denote the Tate period 
of E. Then L, is again obtained by adjoining to L(ppm) the pm-th roots 
(m = 1,2, . . . ) of QE. This completes the proof of Lemma 2.8. 

2.5 The vanishing of N 2 ( G ~ ( F , ) ,  Ep-)  

We are grateful to Y. Ochi ([24]) for pointing out to us the following basic 
fact about the cohomology of E over F,. 

Theorem 2.10. For all odd primes p, we have 

This is a rare example of a statement which is easier to prove for the extension 
F, rather than the cyclotomic Zp-extension of F. Indeed, if K ,  denotes the 
cyclotomic Zp-extension of F, then it has long been conjectured that 
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for all odd primes p. However, at present this latter assertion has only been 
proven in some rather special cases. 

We now give the proof of Theorem 2.10. Since EPoo is rational over Fw, 
the Galois group GT(F,) = G(FT/F,) operates trivially on Ep-, which is 
therefore isomorphic to (Qp/Zp)2 as a GT(F,)-module. Hence it suffices to 
show that 

for all primes p. But F, is the union of the fields Fn = F(Ep"+l) (l = 
0,1,. . . ), and thus it is also the union of the fields K,,, = Fn(pp-) (n = 
0,1, . . . ), since pp- c F, by the Weil pairing. Hence we have 

where the inductive limit is taken with respect to the restriction maps. But 
each of the cohomology groups in the inductive limit on the right vanishes, 
thanks to the following general result due essentially to Iwasawa [19]. Let 
K be any finite extension of Q, K, the cyclotomic Zp-extension of K ,  and 
KT the maximal extension of K unramified outside T and the archimedean 
primes of K ,  where T is an arbitrary finite set of primes of K containing all 
primes dividing p. Then we claim that 

for all odd primes p. Here is an outline of the proof of (53). Let r = 
G(K,/K), and write A(r)  for the Iwasawa algebra of r. Let &(K) denote 
the A(r)-rank of the Pontrjagin dual of Hi (G(K~/KW),  Q / Z p )  (i = 1,2). 
By a basic Euler characteristic calculation (see [12], Proposition 3), we have 

where r2(K) denotes the number of complex places of K.  On the other hand, 
we have 

where M, denotes the maximal abelian pextension of K',  which is unram- 
ified outside T and the archimedean primes. But it follows easily from one of 
the principal results of Iwasawa [19] that G(M,/K,) has A(r)-rank exactly 
equal to r2(K). It follows from (54) that we must have d2(K) = 0. But the 
dual of H2(G(KT/Kw), @/Zp) is a free A(r)-module for all odd primes p 
(see [12], Proposition 4), and so (53) follows. This completes the proof of 
Theorem 2.10. 

Although we will not have time to give the proof in the present notes, we 
qention in passing that Y. Ochi [24] and S. Howson [18] have proven that the 
analogue of the Euler characteristic formula also holds for the A(C)-ranks of 

the Pontrjagin duals of the HZ(G~(F,), Epm) (i = 1,2). Let &j(F) denote 
the A(C)-rank of the Pontrjagin dual of H a ( G ~ ( F W ) ,  Ep-), where we recall 
that the A(E)-rank is defined by (19). Although it is far from obvious, we 
again have 

in exact parallel with the result given in Proposition 3 of 1121 when F, is 
replaced by the cyclotomic Zp-extension K, of F. Granted (55), we obtain 
the following consequence of Theorem 2.10. 

Corollary 2.11. For all odd primes p, the Pontrjagin dual of 

has A@)-mnk equal to [F : Q]. 

Since the Selmer group S(E/Fw) is a submodule of H1(GT(F,), Ep-), we 
see that the upper bound for the A(C)-rank of the dual of S(E/Fw) asserted 
in Theorem 1.8 is an immediate consequence of Corollary 2.11. 

3 Local cohomology calculations 

3.1 Strategy 

As always, E denotes an elliptic curve defined over a finite extension F of 
Q, which does not admit complex multiplication. Throughout this chapter, 
p will denote an arbitrary prime number, F, = F(Ep-), and C will denote 
the Galois group of Fw over F. The aim of this chapter is to study the C- 
cohomology of the local terms Jv(Fm), for any v E T,  which occur in the 
fundamental diagram (43). We recall that 

where Fn = F(EPn+l), w runs over all places of Fn dividing our given v 
in T,  and the inductive limit is taken with respect to the restriction maps. 
Knowledge of the C-cohomology of the J,(F,) will, in particular, play a 
crucial role in the calculation of the C-Euler characteristic of S(E/F,) in 
the next chapter. These questions are purely local, thanks to the following 
well known principle. If w is a place of F, , we recall that F,,, = Un2, Fn,, . 

Lemma 3.1. For each prime v in T,  let w denote a fixed prime of F, 
above v .  Let .Zw C C denote the decomposition group of w over v. Then, for 
all i 3 0, we have a canonical isomorphism 
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Indeed, this is a simple and well known consequence of Shapiro's lemma. Let 
A, = G(F,/F), and let A,,, c An denote the decomposition group of the 
restriction of w to F,. Then, for all n 2 0, Shapiro's lemma gives a canonical 
isomorphism 

Passing to the inductive limit via the restriction maps as n + oo immediately 
gives the assertion of Lemma 3.1. 

When v does not divide p, we shall see that well known classical meth- 
ods suffice to compute the cohomology. However, when v divides p, we will 
make essential use of the results about the cohomology of elliptic curves over 
deeply ramified extensions which are established in [4], noting that in this 
case F,,, is indeed deeply ramified because it contains the deeply ramified 
field F,(ppm). All of the material discussed in this chapter is joint work with 
Susan Howson. 

3.2 A vanishing theorem 

Theorem 3.2. Let p be any prime 2 5. Then 

for all i 2 1 and all primes v of F .  

We break the proof of Theorem 3.2 up into a series of lemmas. 
As before, let jE denote the classical j-invariant of E. Thus, for any 

prime v of F, we have Ord,(jE) < 0 if and only if E has potential multiplica- 
tive reduction at v .  

Lemma 3.3. Let p be any prime, and let v be a place of F such that 
0rd,(jE) < 0 and v does not divide p. Then J,(F,) = 0. 

Proof. In view of the definition of J,(F,), we must show that, under the 
hypothesis of Lemma 3.3, we have 

for all places w of F, lying above p. Since v does not divide p, we have 

Hence local Kummer theory on E over F,,, shows that 

Thus (57) will certainly follow if we can show that the Galois group of Fu over 
F,,, has pcohomological dimension zero. Let M, denote the maximal pro- 
+extension of F,. We will show that F,,, contains M,, which will certainly 

show that G(F,/F,,,) has pcohomological dimension zero. Now recall that, 
by the Weil pairing, F,,, contains the field H, = FU(ppm), and this latter 
field is an unramified extension of F, which contains the unique unramified 
Zp-extension of F,. Let F,n' denote the maximal unramified extension of F,. 
It is well known (see Serre [26]) that the maximal tamely ramified extension 
of F, has a topologically cyclic Galois group over F,n'. Now M ,  is a tamely 
ramified extension of F, because v does not divide p. It follows easily from 
these remarks that any Galois extension of H,, whose profinite degree over 
H, is divisible by pW, must automatically contain M,. But this latter con- 
dition holds for F,,, thanks to our hypothesis that ord,(jE) < 0. Indeed, to 
see this, assume first that E has split multiplicative reduction at v ,  so that 
E is isomorphic over F, to a Tate curve. Let q~ denote the Tate period of 
E over Fu. Then F,,, is obtained by adjoining to H, the pn-th roots of q~ 
for n = 1,2, . . . , and thus it is clear that the Galois group of F,,, over H, 
is isomorphic to Z,. If E does not have split multiplicative reduction at v ,  
there exists a finite extension L of F, such that E has split multiplicative 
reduction over L. But then our previous argument shows that the profinite 
degree of LF,,, over LH, is divisible by pa, whence the same must be true 
for the profinite degree of Fa,, over H, since L is of finite degree over F,. 
This completes the proof of Lemma 3.3. 

Lemma 3.4. Let p be a prime 2 5, and let v be a place of F such that 
o r d , ( j ~ )  2 0 and v does not divide p. Then Hi(22, J,(F,)) = 0 for all i 2 1. 

Proof. Let w be a fixed prime of F, above v .  Since v does not divide p, 
the isomorphism (58) is again valid. Combining (58) with Lemma 3.1, we see 
that the assertion of Lemma 3.4 is equivalent to 

for all i 2 1. We will first show that 22, has pcohomological dimension 
equal to 1, which will establish (59) for all i 2 2. Now E has potential good 
reduction at  v since ord,(jE) 2 0, and we appeal to the results of Serre-Tate 
[31]. It follows from [31] that (i) E has good reduction over the field Fo,, (here 
we need p # 2), and (ii) the inertial subgroup of the Galois group of Fo,, 
over F, has order dividing 24. We deduce from (i) that F,,, is an unramified 
extension of Fo,,. Let L,,, denote the maximal unramified extension of F, 
contained in F,,,. By virtue of (ii) and our hypothesis that p 2 5, we see 
that [F,,, : L,,,] is finite and of order prime top.  Moreover, L,,, contains 
the unramified Zp-extension of Fu because L,,, > Fu(ppm). It is now plain 
that Ew has pcohomological dimension equal to 1. 

We are left proving (59) for i = 1. We begin by observing that H2(L, Epm) 
= 0 for all finite extensions L of F,, because H2(L, Epm) is dual by Tate 
local duality to HO(L, Tp(E)), and this latter group is clearly zero because 
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the torsion subgroup of E(L) is finite. On allowing L to range over all finite 
extensions of F, contained in F,,,, we deduce that 

In view of (60), we conclude from the Hochschild-Serre spectral sequence 
(1171, Theorem 3) applied to the extension F,,, over F, that we have the 
exact sequence 

But the group on the left of (61) is zero by the above remark, and the group 
on the right is zero because C, has pcohomological dimension equal to 1. 
Hence the group in the middle of (61) is zero, and the proof of Lemma 3.4 is 
complete. 

Lemma 3.5. Let p be a prime 2 5, and let v be any place of F dividing p. 
Then HYC, J,(F,)) = 0 for all i 2 1. 

Proof. We must show that 

for all i 2 1, where w is some fixed prime of F, above v. However, the ques- 
tion is now much subtler than in the proof of Lemma 3.4 for two reasons, 
both arising from the fact that v now divides p. Firstly, C, will now have 
pcohomological dimension greater than 1 because it will now be a padic Lie 
group of dimension greater than 1 (see 52.4). Secondly and more seriously 
there is no longer any simple way like that given by the isomorphism (58) 
for identifying H1 (F,,,, E)(p) with H1 (F,,,, A) for an appropriate discrete 
pprimary Galois module A. Happily, the ramification-theoretic methods de- 
veloped in [4] give a complete answer to this latter problem, which we now 
explain. Write G, for the Galois group of F, over F,, and I, for the inertial 
subgroup of G,. As is explained in [4] (see p. 150), it is easy to see that there 
is a canonical exact sequence of G,-modules 

which is characterized by the fact that C is divisible and that D is the maxi- 
mal quotient of Epm by a divisible subgroup such that I, acts on D via a finite 
quotient. We recall that F,,, is deeply ramified in the sense of [4] because 
it contains the deeply ramified field F,(pp-). Hence, combining Propositions 
4.3 and 4.8 of [4], we obtain a canonical Cw-isomorphism 

Now D = 0 if and only if E has supersingular reduction at  v, and so 
we see that Lemma 3.5 is certainly true in view of (63) when E has potential 
supersingular reduction at  v. 

We note that G(F,/F,,,) has pcohomological dimension equal to 1 be- 
cause the profinite degree of F,,, over F, is divisible by pm (see [25]). It 
follows that 

for all i 2 2. In view of (64), we conclude from the Hochschild-Serre spectral 
sequence ([17], Theorem 3) applied to the extension F,,, over Fu that we 
have the exact sequence 

for all j 2 1. We proceed to show that the cohomology groups at both ends 
of (65) are zero, which will establish Lemma 3.5 in view of (63). To prove our 
claim that 

for all i 2 2, we recall that G(F,/F,) has cohomological dimension 2. This im- 
plies firstly that (66) is valid for all i 2 3, and secondly that, on taking coho- 
mology of the exact sequence (62), we obtain a surjection from H2(F,, Ep-) 
onto H2(F,, D). But, as was explained in the proof of Lemma 2.4, we have 
H2(F,, Ep-) = 0, and so (66) also follows for i = 2. Next we claim that 

for all i 2 3. If E has potential multiplicative reduction at  v, then C, has 
pcohomological dimension equal to 2, because C,,, is a padic Lie group of di- 
mension 2 (see Lemma 2.8) which has no ptorsion because p 3 5. Hence (67) 
follows in this case. Suppose finally that E has potential ordinary reduction 
at  v. Then C, has pcohomological dimension equal to 3, because C i s a  
padic Lie group of dimension 3 (see Lemma 2.8) and has no ptorsion. This 
implies that (67) is valid for all i 2 4, and also, on taking 27,-cohomology 
of the exact sequence (62), that there is a surjection of H3(Ew, Ep-) onto 
H3(Cw, D). Hence it suffices to show that H3(Cw, Epm) = 0. But Cw is a 
Poincar6 group of dimension 3 since it is a padic Lie group of dimension 3. 
Moreover, since C, is a closed subgroup of C ,  it is known (see Wingberg 
1331) that the dualizing module for C, is just the dualizing module for C 
viewed as a 23,-module, i.e. Q/Zp with the trivial action of C,. But, argu- 
ing as in the proof of Lemma 1.3, we conclude that H3(Cw, Ep-) is dual to 
HO(Cw, T,(E)(- 1)). On the other hand, since E has potential good reduc- 
tion at  v, a result of Imai [20] shows that the ppower torsion subgroup of 
E in the field F, (ppm) is finite. Hence it is clear that HO(Ew, Tp(E)(-1)) is 
zero, and the proof of Lemma 3.5 is complete. This also completes the proof 
of Theorem 3.2. 
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3.3 Analysis of the local restriction maps 

A crucial element of the analysis of the fundamental diagram (43) is to study 
the kernel and cokernel of the restriction maps 

Here v denotes any finite place of F ,  w is some fixed place of F, above v, 
and C, c E is the decomposition group of w. I 

We first discuss y, when v does not divide p. We recall from 51.3 that 
C, = [E(F,) : Eo(F,)], and that L,(E, s) denotes the Euler factor of the 
complex L-function of E at  v. The following lemma is very well known (see 
[3], Lemma 7). 

Lemma 3.6. Let v be any finite prime of F which does not divide p. Then 
J,(F) = H1(F,, E)(p) is finite, and its order is the exact power of p dividing 
cu/Lu(E, 1). 

Proof. If A is an abelian group, we write 

for its padic completion. By Tate duality, H1(F,, E )  is canonically dual 
to E(F,), from which it follows immediately that H1 (F,, E)(p) is dual to 
E(F,)*. Thus we must show that E(F,)* is finite of order the exact power 
of p dividing c, /L, (E, 1). Let k, be the residue field of v, and let E,, denote 
the reduction of E modulo v. We write gns(k,) for the group of non-singular 
points in the set &,(k,). We have the exact sequence 

where E1(F,) is the kernel of reduction modulo v. Now E1(F,) can be iden- 
tified with the points of the formal group of E at  v with coordinates in the 
maximal ideal of the ring of integers of F,. As v does not divide p, multi- 
plication by p is an automorphism of E1(F,), and thus E1(Fu)* = - 0. Hence 
the above exact sequence yields an isomorphism from Eo(Fu)* to Ens(k,)*. 
Define B, by B, = E(F,)/Eo(F,). Since B, is finite, we see easily that the 
induced map from Eo(F,)* to E(F,)* is injective, and that we have the exact 
sequence 

0 -+ Eo(F,)* -+ E(F,)* -+ B: --+ 0. 

Hence E(F,)* is finite, and its order is the exact power of p dividing 

c, . #(gns(k,)). Lemma 3.6 now follows immediately from the well known 
fact (see [32]) that 

Lemma 3.7. Let v be any finite prime of F which does not divide p. Let M, 
denote an arbitrary Galois extension of Fu, and write 0, = G(M,/F,). Let 

denote the restriction map. Then 

Ker(r,,) = H1(-G, Ep- (Ma)), 

Coker(r,) = H 2  (R,, Ep- (M,)). 

Proof. We have the commutative diagram 

where s, is also the restriction map, and the vertical maps are the surjections 
derived from Kummer theory on E .  But both vertical maps are isomorphisms, 
since 

E(Fu) 8 Qp/Zp = E(Mm) @ Q/Zp = 0, 

because v does not divide p. Thus we can identify Ker(r,,) with Ker(s,), 
and Coker(r,) with Coker(s,). But, as was already remarked in the proof 
of Lemma 3.4, we have H2(F,, Epm) = 0 by the Tate duality. Hence the 
Hochschild-Serre spectral sequence shows that the assertion (69) holds for s, 
instead of T,, and the proof of the lemma is complete. 

Lemma 3.8. Let v be any finite prime of F which does not divide p. Let 
K, denote the cyclotomic Zp-extension of F,, and put r, = G(K,/F,). 
Then H1 (r,, Ep- (K,)) is a finite group whose order is the exact power 
of p dividing c,. 

Proof. Let F,"' be the maximal unramified extension of F,, and put 

It  is well known (see [23]) that W, is the exact orthogonal complement of 
Eo (F,) under the dual Tate pairing of H1 (F, E) and E(F,). Hence W,(p) 
is finite and its order is the exact power of p dividing c,. Since v does not 
divide p, we can apply Lemma 3.7 with R, = F y ,  and we conclude that 

But, again because v does not divide p, K, is contained in F,nr, and the 
profinite degree of F,"' over K, is prime to p. Hence the group on the 
right of (70) can be identified under inflation with H1(r,, Ep- (K,)). This 
completes the proof of the lemma. 
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Proposition 3.9. Let v be any finite prime of F which does not divide p. 
If 0rd,(jE) < 0, then y, is the zero map, and the order of its kernel J,(F) is 
the exact power of p dividing c,/L,(E, 1). If ord,(jE) 3 0, and p 2 5, then 
y, is an isomorphism. 

Proof. The first assertion of the proposition is clear from Lemmas 3.3 and 
3.6. Also, applying Lemma 3.7 with M, = Fa,,, we see that 

Suppose next that ord,(jE) 2 0 and p 3 5. By Lemma 2.8, Ew is apad ic  Lie 
group of dimension 1, and has no ptorsion because p 3 5, whence it has p 
cohomological dimension equal to 1. It follows from (71) that Coker(y,) = 0. 
Let K, denote the cyclotomic %,-extension of F,, and put r, = G(K,/F,), 
Qs, = G(F,,,/K,). Then we have the exact sequence 

We claim that the terms at  both ends of this exact sequence are zero. Indeed, 
the order of the group on the left of (72) is the exact power of p dividing c, by 
Lemma 3.8. But it is well known [32] that our hypothesis that ord,(jE) 2 0 
implies that the only primes which divide c, lie in the set {2,3). The term 
on the right of (72) will vanish if we can show that the profinite degree of @, 
is prime to p. But, as was already explained in the proof of Lemma 3.4, the 
results of [31] show that E has good reduction over Fo,, = Fu(Ep), and that 
the order of the inertial subgroup of the Galois group of Fo,, over F, divides 
24. Thus, if L, denotes the maximal unramified extension of F, contained 
in F,,,, the degree of F,,, over L, must divide 24. But K, is the unique 
unramified Zp-extension of F,, and thus the profinite degree of L, over K, 
is prime to p. Since p 2 5, it follows that the profinite degree of F,,, over 
K, is prime to p. This completes the proof of Proposition 3.9. 

We next consider the situation when our finite prime v of F divides p. In 
this case, Tate duality shows that J,(F) is dual to 

where d, = [F, : Q,], and A, is the group of ppower torsion in E(F,). 
In particular, J,(F) is always infinite. When E has potential multiplicative 
reduction at v dividing p, it is conjectured that Ker(y,) is always finite. 
However, this is only known at present when F = Q, and its proof in this 
case depends on the beautiful transcendence result of [2]. 

Lemma 3.10. Let v be any prime of F dividing p. If E has potential su- 
iersingular reduction at v ,  then % is the zero map, whence, in particular, 

Ker(y,) is infinite. If E has ordinary reduction at v ,  then Ker(y,) 
is finite. 

Proof. The proof makes use of the theory of deeply ramified extensions 
discussed in the proof of Lemma 3.5. Indeed, if E has potential supersingular 
reduction at v ,  the Galois module D appearing in the exact sequence (62) is 
zero, and hence (63) shows that J,(F,) is zero. This proves the first assertion 
of the lemma. To prove the second assertion, it is simplest to use the well 
known (see, for example, [4], 55) interpretation of the dual of Ker(y,) in 
terms of universal norms, namely that the exact orthogonal complement of 
H1(Ew, E(F,,,)) in the dual Tate pairing between H'(F,, E) and E(F,) is 
the group Eu(F,,,) defined by 

where L runs over all finite extensions of Fu contained in Fa,,, and 
NLIFv denotes the norm map from L to F,. Hence Ker(y,) is dual to 
E(Fu)*/Eu(F,,,)*. Suppose now that E has potential ordinary reduction 
at  v .  Thus there exists a finite extension M of F, such that E has good 
ordinary reduction over M. The field M,F,(E,-) is again deeply ramified 
because it contains F,,,. Applying Proposition 3.11, which will be proven 
next by an independent argument, to E over M ,  we conclude that the kernel 
of the restriction map y,(M) from H' (M, E )  (p) to H'(M,, E )  (p) is finite. 
Thus, by Tate duality, EU(M,)* is of finite index in E(M)*. But clearly 

However, it is well known that the norm map sends an open subgroup of 
E(M)* to an open subgroup of E(Fu)*. Thus Eu(F,,,)* is also of finite 
index in E(F,)*. This completes the proof of Lemma 3.10. 

In preparation for our study in Chapter 4 of the E-Euler characteristic 
of the Selmer group S(E/F,) in the case when E has good ordinary 
reduction at all primes of F dividing p, we now make a more detailed study 
of Ker(.y,) and Coker(y,) when E has good ordinary reduction at a prime v 
of F dividing p. We again write Ic, for the residue field of v ,  and &, for the 
reduction of E modulo v .  Here is the principal result which we will establish. 

Proposition 3.11. Assume that p 2 3. Let v be a prime of F dividing p, 
where E has good ordinary reduction. Then both Ker(?;) and Coker(y,) are 
finite, and 

The proof is rather long, and will be broken up into a series of lemmas. 
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Let 0, be the ring of integers of F,, and let & be the formal group 
defined over 0, giving the kernel of reduction modulo v on E. For each finite 
extension L of F,, let kL denote the residue field of L, and m~ the maximal 
ideal of the ring of integers of L. Then reduction modulo v gives the exact 
sequence 

0 -+ &(mL) -+ E(L) -+ E U ( h )  -+ 0. 

Passing to the inductive limit over all finite extensions L of F, which are 
contained in F,,,, we obtain the exact sequence 

d 

where m denotes the maximal ideal of the ring of integers of F,,,, and k, 
is the residue field of F,,,. 

Lemma 3.12. For all i 2 1, we have 

where iii denotes the maximal ideal of the ring of integers of F,. 

Proof. By one of the principal results of [4] (Corollary 3.2), we have 

for all i 2 1, because F,,, is deeply ramified. By the Hochschild-Serre spec- 
tral sequence, this vanishing implies that we have the exact sequence 

for all i 2 1. But the group on the right is zero by (74) again, and the proof 
of the lemma is complete. 

To lighten notation, let us define 

eu  = # ( ~ V ) ( P ) ) .  (75) 

Lemma 3.13. Let v be _a prime of F dividing p, where E has good ordinary 
reduction. Then H1 (F, , E,(iii)) is finite of order e , .  Moreover, for all i 2 2, 
we have Hi(F,, Z,(iii)) = 0. 

Proof. We only sketch the proof (see [7] for more details). For all n 2 1, we 
have the exact sequence 

This gives rise to a surjection 

WE,, Eu,pn) -+ (HV,, EU(=))),,, 

for all i 2 1; here, if A is an abelian group, (A),n denotes the kernel of 
multiplication by pn on A. Passing to the inductive limit as n + oo, we 
obtain the surjection 

for all i 2 1. Hence the final assertion of the lemma will follow if we can show 
that 

for all i 2 2. This is automatic from cohomolo~cal dimension when i 2 3. 
For i = 2, we use the well known fact that E u Y p n  is its own orthogonal 
complement in the Weil pairing of Epn x Epn into ppn. Hence, by Tate local 
duality, H 2 ( ~ , ,  E,,,-) is dual to HO(F,, T,(&)), and this latter group is - 
zero since only finitely many elements of E,,,W are rational over F,. This 
completes the proof of (76). 

We now turn to the first assertion of Lemma 3.13. Taking G(F,/F,)- 
cohomology of the exact sequence at the beginning of the proof, and then 
taking the inductive limit as n + oo, we obtain the exact sequence 

On the other hand, since H2(F,, E,,,m) = 0, it follows easily from Tate's 
Euler characteristic theorem that the dual of H1 (F,, E,,,m) is a finitely gener- 
ated Zp-module of Zp-rank equal to d, = [F, : Q]. Put W = H1(F,, Eu,pw), 
and let Wdiv be the maximal divisible subgroup of W. Since Wdiv has Zp- 
corank equal to d,, and since the elementary theory of the formal group tells 
us that the group on the left of (77) is divisible of Zp-corank equal to d,, we 
must have 

Wdiv = &(mF) @ Qp/zp- 
Thus, as W/Wdiv is finite, we conclude that H1(F,, &(iii)) is finite. We now 
introduce the Qp-vector space 

Clearly the continuous cohomology groups Hi(F,, v,(&)) are also Q-vector 
spaces and so in particular divisible for all i 2 0. Also, since E,,,n is its own 
orthogonal complement under the Weil pairing for all n 2 1, Tate local 
duality implies that H2(F,, T,(E,)) is dual to HO(F,, &,,-), and this latter 
group is finite of order e,. Hence taking cohomology of the exact sequence 
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we deduce from the above remarks that there is an isomorphism 

The proof of the Lem-ma is now complete since the group on the left is 
isomorphic to H1 (F,, E,(iE)), and the group on the right has order eu. 

Lemma 3.14. Let v be a prime of F dividing p, where E has good ordinary 
reduction. Then, for all i 2 2, we have an isomorphism I 

We also have the exact sequence 

Proof. We take the 22,-cohomology of the exact sequence 

then take the pprimary part of the corresponding long exact sequence, and 
finally apply Lemmas 3.12 and 3.13. This completes the proof of the lemma. 

We continue to assume that E has good ordinary reduction at a prime v 
dividing p. Then, as we saw in Lemma 2.8, Z, is a padic Lie group of 
dimension 3. Assuming that p 2 3, we shall show that 22, has no ptorsion, 
and hence it will follow that C, has a pcohomological dimension equal to 3. 
If A is a discrete pprimary 22,-module, we say that A has finite 22,-Euler 
characteristic if Hi(Cw, A) is finite for all i 2 0, and, when this is the case, 
we define 

I am very grateful to Sujatha for suggesting to me that the following result 
should be true (see also Corollary 5.13 of [18]). 

Lemma 3.15. Let v be a prime of F dividing p, where E has good ordinary 
reduction. Assume that p >, 3.  Then E,,pm has finite 22,-Euler characteristic, 
and 

Before proving Lemma 3.15, let us note that Proposition 3.11 follows 
from it and Lemmas 3.13 and 3.14. Indeed, on applying the Hochschild- 
Serre spectral sequence to the extension F,,, over Fu, and recalling that 
H2(Fu, Ep-) = 0, we deduce immediately that 

But, by (78), we have 

#(Coker(.y,)) = h2, 

where we write hi = #(Hi(Ew, Ev,poD))) for i 2 0. By (79) and Lemma 3.13, 
we have 

#(Ker(^/,)) = hob. 
Since ho = e,, we see that (73) follows immediately from (80) and the fact 
that h3 = 1. This completes the proof of Proposition 3.11. 

We now turn to the proof of Lemma 3.15. We recall the following elemen- 
tary facts which will be used repeatedly in the proof. Let G be a profinite 
abelian group which is the direct product of Zp with a finite abelian group of 
order prime top, and assume that G is topologically generated by a single ele- 
ment. Let y denote a topological generator of G. Then G has pcohomological 
dimension equal to 1. If A is a discrete pprimary G-module, we have 

H1 (G, A) = A/(y - 1)A. 

Consider now the special case when A = Q,/Zp($), where $ : G + Z,X is a 
continuous homomorphism (by Q, /Zp($) we mean Q, /Zp endowed with the 
action of G given by o(x) = $(a)x for a E G). Then 

We recall the proof of (81). We have the exact sequence of G-modules 

If 11, # 1, then $(y) # 1, and so y - 1 is an automorphism of Qp($). But this 
implies that y - 1 must be surjective on Q,/Zp($), proving (81). 

Let H, denote the maximal unramified extension of Fv which is contained 
in Fm,wl and put M, = H, (ppm ). Put 

- 
Moreover, H3(Ew, Ev,pm) = 0. 
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Thus we have the tower of fields 

As in the proof of Lemma 2.8, we choose a basis of Tp(E) whose first element 
is a basis of T~(&,~.=) .  Then the representation p of Cw on Tp(E) has the 
form 

where r )  : Cw -t Z,X is the character giving the action of C, on T,(&,~.=), 

and E : Ew + Z: is the character giving the action of 8, on T,(&,,~-)). 
Now we first remark that each of GI,  G2 and Gs is the direct product of Zp 
with a finite abelian group of order prime to p, and is topologically generated 
by a single element. This is true for G3 because H, contains the unique 
unrarnified Zp-extension of F,. It is true for G2 because of our hypothesis that 
p 2 3. Finally, it holds for G1 because the fact that E does not have complex 
multiplication implies that the map a ++ a(a) defines an isomorphism from 
G1 onto Z,. It now follows by an easy argument with successive quotients 
that Cw has no ptorsion. Hence Hw has pcohomological dimension equal 
to 3, as required. - 

To simplify notation, let us put W = E v , p m .  Now H2(G3, W) = 0 be- 
cause G3 has pcohomological dimension equal to 1. Moreover, G3 acts on 
W via the character E, and this action is non-trivial. Hence (81) implies that 
H1 (G3, W) = 0. Hence the inflation-restriction sequence gives 

where X = G(F,,,/H,). Again, we have H2 (G2, W) = 0 because G2 has 
pcohomological dimension equal to 1. On the other hand, since G2 acts triv- 
ially on W, and is topologically generated by one element, we have H1(G2, W) 
= W. Thus, applying the inflation-restriction sequence to Hom(X, W), we 
obtain the exact sequence 

Taking G3 invariants of this sequence, and recalling that H1(G3, W )  = 0, we 
obtain the exact sequence 

where Y = G(M,/F,). To calculate the group on the right of this exact 
sequence, we need the following explicit description of the action of Y on GI,  
namely that, for T E G1 and a E Y, we have 

Indeed, recalling that a - T  = ZrZ-', where Z denotes any lifting of a to Cw, 
(84) is clear from the matrix calculation 

Since GI is isomorphic to Zp with the action of 22 given by (84), we conclude 
that 

Put x = c2/q. We claim that x is not the trivial character of Y = G(M,/Fu). 
Let $ denote the character giving the action of Y on pPw. By the Weil 
pairing, we have $ = cr). Hence, if x = 1, then we would have $ = c3, which 
is clearly impossible since it would imply that $ is an unramified character 
factoring through G3. But then Homy(G1, W) must be finite, since it is 
annihilated by ~ ( o o )  - 1, where a 0  is any element of Y such that x(oO) # 1. 
In view of (82) and (83), this proves the finiteness of H1(Cw, W). 

We next turn to study H2(Cw, W). We have H2(G1, W) = 0 because 
G1 has pcohomological dimension equal to 1. Hence the Hochschild-Serre 
spectral sequence gives the exact sequence 

H~ (Y, W) -+ H~ (C,, W) -+ (Y, H' (GI, W)) --+ H3 (Y, w). 

(86) 

Now Y is a padic Lie group of dimension 2 without ptorsion, and thus Y 
has pcohomological dimension equal to 2. It follows that H3(Y, W) = 0. 
We also claim that H2(Y, W) = 0. Indeed, H2(G2, W) = 0 because G2 has 
pcohomological dimension equal to 1. Applying the Hochschild-Serre spectral 
sequence, we obtain the exact sequence 

But H2(G3, W) = 0 because GQ has pcohomological dimension equal to 1. 
On the other hand, G3 acts trivially on G2 since M,  is abelian over Fv, 
whence we have an isomorphism of G3-modules 

Since c is certainly not the trivial character of Gg, it follows from (81) that 
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completing the proof that H2(Y, W) = 0. Recalling (85), we deduce from 
(85) and (86) that 

where x = E ~ / ~ .  We now apply inflation-restriction to the group on the right 
of (87). Since G3 has pcohomological dimension equal to 1, we obtain the 
exact sequence 

where U = ( Q , / Z , ( ~ ) ) ~ Z .  But the restriction of x to G2 is equal to q-l 
restricted to G2, and so is certainly not the trivial character of G2. It follows 
that U is finite, and that H1(G2, Qp/Z,(x)) = 0. But, since U is finite, it 
follows that H1 (G3, U) has the same order as H0 (G3, U) = Homy (GI, W). 
Thus (87) and (88) imply that H2(Zw, W) is finite, and 

Hence our Euler-characteristic formula (80) will follow from (83) and (89) 
provided that we can show 

To prove (go), we apply entirely similar arguments to those used above. We 
have Hi(G1, W) = 0 for i 2 2 since G1 has pcohomological dimension 1, and 
Hi(Y, W) = 0 for i 3 3, since Y has pcohomological dimension 2. Hence the 
Hochschild-Serre spectral sequence yields an isomorphism 

We again apply the Hochschild-Serre spectral sequence to the right hand side 
of (91). Since G2 and G3 have pcohomological dimension 1, we deduce using 
(85) that 

where x = ~ ~ / q .  But, as remarked above, x is not the trivial character of G2, 
and so H1(G2, %/Z,(X)) = 0. In view of (91), we have now proven (go), 
and the proof of Lemma 3.15 is at last complete. 

Lemma 3.16. Assume that p 2 3. Let v be a prime of F dividing p such 
that v is unramified in F/Q, and E has good ordinary reduction at v. Then 
y, is surjective. 

Proof. By virtue of (78), we must show that, under the hypotheses of the 
lemma, we have 

Now by (87), the group on the left of (92) is equal to 

where x is the character e2lq of G(M,/F,). As explained immediately after 
(88), we have 

But M, is the composite of the two fields H, and F,(ppm), and the inter- 
section of these two fields is clearly F, in view of our hypothesis that v is 
unramified in F/Q. Hence we can choose o in G(M,/F) such that &(a) = 1 
and ~ ( u )  is a non-trivial (p - 1)-th root of unity. But ~ ( u )  - 1 annihilates 
the group on the right of (93), and so this group must be trivial since ~ ( u )  
is not congruent to 1 mod p. This completes the proof of Lemma 3.16. 

4 Global Calculations 

4.1 Strategy 

Again, E will denote an elliptic curve defined over a finite extension F of 
Q, which does not admit complex multiplication; and F, = F(Epm). We 
shall assume throughout that p 2 5, thereby ensuring that E = G(F,/F) 
has pcohomological dimension equal to 4, and that all the local cohomology 
results of Chapter 3 are valid. Recall that T denotes any finite set of primes 
of F, which contains both the primes where E has bad reduction and all the 
primes dividing p. We then have the localization sequence defining S(E/F,) 
(see (42)), namely 

where J, (F,) = lim J, (L), as L runs over all finite extensions of F contained + 
in F,, and 

Ju(L) = @ H 1 ( ~ w , ~ ) @ ) .  
4, 

We believe that the map XT(F,) should be surjective for all odd primes p, 
but we are only able to prove this surjectivity in some special, but non-trivial, 
cases using the results of Hachimori and Matsuno [15]. We then investigate 
consequences of the surjectivity of XT(F,) for the calculation of the E-Euler 
characteristic of the Selmer group S(E/F,). In the last part of the chapter, 
we relate the surjectivity of XT(F,) to the calculation of the A(Z)-rank of 
the dual C(E/F,) of S(E/F,). Again, all the material discussed in this 
chapter is joint work with Susan Howson. 
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4.2 The surjectivity of XT(F,) for all i 2 1. Similarly, we conclude from Lemma 4.1 that 

In this section, we first calculate the C-cohomology of H1(GT(Fw), Ep-). 
We recall that the Galois group GT(F) = G(FT/F) has pcohomological 
dimension equal to 2 for all odd primes p, and so, by a well known result, 
every closed subgroup of GT(F) has pcohomological dimension at  most 2. 

Lemma 4.1. Assume that p 2 5 .  Then 

for all i 2 2. Moreover, if S(E/F)  is finite, we have 

H1 (C, H1(GT(~,), E,-)) = H3(C, E ~ - ) .  (95) 

Proof. We begin by noting that 

for all k 2 2. Indeed, this is the assertion of Theorem 2.10 for k = 2, and it 
follows for k > 2 because GT(Fw) has pcohomological dimension at  most 2, 
since it is a closed subgroup of GT(F). Also, we clearly have 

for all k 3 3. Hence, for all i 2 1, the Hochschild-Serre spectral sequence 
([17], Theorem 3) gives the exact sequence 

Assertion (94) follows, on recalling that H4(C, Epm) = 0 by Theorem 1.2. 
Moreover, the next lemma shows that the hypothesis that S(E/F)  is finite 
implies that H2(GT(F), Epm ) = 0. Hence (95) also follows on taking i = 1 
in (96). This completes the proof of Lemma 4.1. 

The following lemma about the arithmetic of E over the base field F is 
very well known (see Greenberg's article in this volume, or [7], Chapter 1). 
Recall that - 

E(F)  (p) = Hom(E(F) (PI 7 QP /ZP) 

Lemma 4.2. Let p be an odd prime, and assume that S(E/F)  is finite. 

Then H 2  (GT(F), Epm ) = 0, and Coker (AT (F)) = E ( F )  (p). 

Let C' denote any open subgroup of C. Applying Theorem 3.2 when the 
base field F is replaced by the fixed field of C', we conclude that 

for all i 2 2. The following result gives a surprising cohomological property 
of the Selmer group S(E/Fw). 

Proposition 4.3. Assume that p 2 5, and that the map XT(F,) in (42) is 
su rjective. Then, for every open subgroup C' of C, we have 

HTC', S(E/Fw)) = 0 

for all i 2 2. 

Proof. This is immediate on taking C'-cohomology of the exact sequence 

and using (97) and (98). This completes the proof. 

We now turn to the question of proving the surjectivity of the localiza- 
tion map X T ( F ~ ) .  There is one case which is easy to handle, and is already 
discussed in [8]. 

Proposition 4.4. Assume that p is an odd prime, and that E has potential 
supersingular reduction at all primes v of F dividing p. Then X T ( F ~ )  is 
surjective. 

Proof. Let v be any prime of F dividing p, and let w be some fixed prime of 
Fw above v. As has been explained in the proof of Lemma 3.5, the fact that 
F,,, is deeply ramified enables us to apply one of the principal results of [4] 
to conclude that (63) is valid. But now D = 0 because, by hypothesis, E has 
potential supersingular reduction at v. It follows that 

for all primes v of F dividing p. Let T' denote the set of v in T which do not 
divide p. Now it is shown in [8] (see Theorem 2) that the localization map 

is surjective for all odd primes p. In view of (101), we conclude that X!,(Fw) = 
XT(F,), and the proof of Proposition 4.4 is complete. 

Example. Proposition 4.4 applies to the curve E = 50(A1) given by (21) 
and F = Q, with p either 5 (where E has potential supersingular reduction) or 
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one of the infinite set {29,59,. . . ) of primes where E has good supersingular 
reduction. It follows that, if T is any finite set of primes containing {2,5,p), 
then XT(F,) is surjective and (99) holds. 

It seems to be a difficult and highly interesting problem to prove the 
surjectivity of XT(F,) when there is at  least one prime v of F above p, where 
E does not have potential supersingular reduction. We are very grateful to 
Greenberg for pointing out to us that one can establish a first result in this 
direction using recent work of Hachimori and Matsuno [15]. Let K, denote 
the cyclotomic 23,-extension of K.  Put r = G(K,/K), and let A(T) dko te  
the Iwasawa algebra of r .  We recall that S(E/K,) denotes the Selmer group 
of E over K,, and C(E/K,) denotes the Pontrjagin dual of S(E/K,). 

Theorem 4.5. Let p be a prime number such that (i) p 3 5, (ii) C = 
G(F,/F) is a pro-p-group, (iii) E has good ordinary reduction at all 
primes v of F dividing p, and (iv) C(E/K,) is a torsion A(r)-module 
and has p-invariant equal to 0. Then XT(F,) is surjective. 

Proof. The argument is strikingly simple. Let n be an integer 3 0. Recall 
that Fn = K(Epn+l) Put 

Since pp c Fn by the Weil pairing, we see that H,,, is the cyclotomic Zp- 
extension of Fn. Now Fn is a finite Galois pextension of F by our hypothesis 
that C = G(F,/F) is a pro-pgroup. Hence, by the fundamental result of 
Hachimori and Matsuno [15], the fact that C(E/K,) is A(r)-torsion and 
has p-invariant equal to 0 implies that C(E/H,,,) is A(&)-torsion, and has 
yinvariant equal to 0. Let 

be the localization map for the field H,,,. Since F, is plainly the union of 
the fields H,,, (n = 0,1,. . . ), it is clear that 

where the inductive limit is taken with respect to the restriction maps. But 
it is very well known (see for example Lemma 4.6 in Greenberg's article in 

I this volume) that the fact that C(E/Hn,,) is A(On)-torsion implies that the I 

map XT(Hn,,) is surjective. Hence XT(F,) is also surjective because it is an 
inductive limit of surjective maps. This completes the proof of Theorem 4.5. 

Remark. One can replace hypothesis (iv) of Theorem 4.5 by the following 
'weaker assumption: (iv)' E is isogenous over F to an elliptic curve E' such 

I. "Ig; 

that C(E1/K,) is A(r)-torsion, and has p-invariant 0. Indeed, assuming (iv)', 
the above argument shows that C(Et/Hn,,) is A(fln)-torsion for all n 3 0. 
But it is well known that the fact that C(E1/Hn,,) is A(On)-torsion implies 
that C(E/Hn,,) is A(&)-torsion (however, it will not necessarily be true 
that C(E/Hn,,) has yinvariant 0). Hence we again conclude that XT(Hn,,) 
is surjective for all n 3 0, and thus again XT(F,) is surjective. 

Examples. As was explained in Chapter 1, the hypotheses of Theorem 4.5 
are satisfied for E = X1(ll) given by equation (5), F = Q(p5), and p = 5. 
Hence we conclude that the map XT(F,) is surjective in this case, where T 
is any finite set of primes containing 5 and 11. Moreover, the above remark 
enables us to conclude that, for T any finite set of primes containing 5 and 
11, XT(F,) is surjective for F, = Q(E5-), and E the curve Xo(l1) given 
by (4) or the third curve of conductor 11 given by 

which is ll(A2) in Cremona's table [9]. This is because both of these curves 
are isogenous over Q to XI (1 1). 

4.3 Calculations of Euler characteristics 

Recall that r,(E/F) is the integer defined by (20). Thus rP(E/ F )  = 0 means 
that E has potential ordinary or potential multiplicative reduction at each 
prime v of F dividing p. If p 3 5, Conjecture 1.12 asserts a necessary and 
sufficient condition for the E-Euler characteristic of S(E/F,) to be finite. 
The necessity of this condition is easy and is contained in the following lemma. 

Lemma 4.6. Assume p is an odd prime. If HO(E, S(E/F,)) is finite, then 
S(E/F)  is finite and r,(E/F) = 0.  

Proof. We use the fundamental diagram (43). We recall that, by Lemma 2.6, 
we have that Ker(P), Coker(P), and Ker(a) are finite for all odd primes p. 
Now assume that HO(C, S(E/F,)) is finite. It follows from (43) that 
both S(E/F)  and Coker(a) are finite. Since S(E/F)  is finite, we deduce 
from Lemma 4.2 that Coker(X~(F)) is finite. Using the fact that Ker(P), 
Coker(b(F)), and Coker(a) are all finite, we conclude from (43) that Ker(y) 
= @ Ker(y,) is finite, where v runs over all places in T. But, if v is a place 
of F dividing p where E has potential supersingular reduction, then 

This is because, as we have remarked on several occasions, (101) holds when 
E has potential supersingular reduction at  v. Since (104) is clearly infinite, 
we conclude from the finiteness of Ker(y) that E does not have potential 
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supersingular reduction at any v dividing p. This completes the proof of 
Lemma 4.6. 

The remainder of this section will be devoted to the study of 

under the hypotheses that p 2 5, S (E /F)  is finite, and E has good or- 
dinary reduction at all primes v of F dividing p. Of course, this is a, case 
where rP(E/F) = 0, so that we certainly expect the Euler characteristic 
to be finite. Unfortunately, at present, we can only prove the finiteness of 
H i ( z ,  S(E/F,)) for i = 0,1, without imposing further hypotheses. We ex- 
pect that 

but it is curious that we cannot even prove that the cohomology groups in 
(105) are finite. However, if we assume in addition that AT(F,) is surjective, 
then we can show that (105) holds and that our Conjecture 1.13 for the exact 
value of x(C, S(E/F,)) is indeed true. 

We recall the fundamental diagram (43), and remind the reader that 
$ T ( F ~ )  denotes the map in the top right hand corner of the fundamental 
diagram. 

Lemma 4.7. Assume that (i) p 2 5, (ii) S (E /F)  is finite, and (iii) E 
has good ordinary reduction at all primes v of F dividing p. Then both 
HO(C,  S(E/F,)) and Coker($JT(F,)) are finite. Moreover, the order of 

I 
HO(C, S(E/F,)) is equal to 

where tp(E/F)  is given by (33). 

Proof. We simply compute orders using the fundamental diagram (43). We 
claim that 

This follows immediately from the inflation-restriction sequence, on noting 

I 
that H2(GT(F), Epm) = 0 by Lemma 4.2, since S(E/F)  is finite. As in 
Chapter 1, write hi(E) for the cardinality of Hi(C, Epm). Combining (107) 

I with Serre's Theorem 1.2, we conclude that 

Next we analyse the map 7 appearing in (43). Combining Propositions 3.9 
and 3.11, we see that 

where e, denotes the order of the pprimary subgroup of &,(k,). 
We now consider the following commutative diagram with exact rows, 

which is derived from the right side of (43), namely 

Here 6 and E are the obvious induced maps. We have already seen that y has 
finite kernel and cokernel, and also Lemma 4.2 shows that Coker(AT(F)) is 
finite of order ho(E). Applying the snake lemma to (110), we conclude that 
both 6 and E have finite kernels and cokernels, and that 

It also follows that Coker(X~(F,)) is finite, and thus 

Finally, we also have the commutative diagram with exact rows given by 

It follows on applying the snake lemma to this diagram that 

Since S(E/F)  is finite, we have S(E/F)  = ILI(E/F)(p). Also, we recall the 
well known fact that c, < 4 if v does not belong to the set 331 of places v 
of F with o rd , ( j~ )  < 0 (of course, c, = 1 when E has good reduction at v). 
Combining (108), (log), ( I l l ) ,  (112) and (114), we obtain the formula (106) 
for the order of HO(C, S(E/F,)). This completes the proof of Lemma 4.7. 
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Lemma 4.8. Assume that (i) p 2 5, (ii) S(E/F)  is finite, and (iii) E has good 
ordinary reduction at all primes v of F dividing p. Then H1(C, S(E/Fw)) 
is finite, and its order divides 

Proof. F'rom (42), we have the exact sequence 

Taking C-cohomology, and recalling (95), we obtain the exact sequence 

where 0 is the obvious induced map. But clearly Coker(0) is finite, and its 
order divides the order of Coker(QT(Fw)). Lemma 4.8 is now plain from 
(115), and its proof is complete. 

Lemma 4.9. Assume that (i) p 2 5, (ii) S(E/F)  is finite, (iii) E has good 
ordinary reduction at all primes v of F dividing p, and (iv) p is unramified 
in F .  Then the map qT(F,) appearing in the fundamental diagram (43) is 
surjective. 

Proof. Let K, denote the cyclotomic %,-extension of K ,  and put r = 
G(K,/K). Now it is well known (see Theorem 1.4 of [13] or [7]) that hy- 
potheses (ii) and (iii) of our lemma imply that C(E/K,) is a torsion module 
over A(r) .  As was already used crucially in the proof of Theorem 4.5, this in 
turn implies that the localization map XT(K,) is surjective (see [13], Lemma 
4.6), so that we have the exact sequence 

In addition, it is well known (see [7], Proposition 4.15 or [13]) that our hy- 
potheses that S (E /F)  is finite and p is not ramified in F imply that 

Hence we obtain the exact sequence 

Now, by Lemma 3.16, the map 7 appearing in the fundamental diagram (43) 
is surjective, because p is not ramified in F. Hence the vertical map n in the 

commutative diagram 

is also surjective, because 7 factors through n. But then it is clear that the 
surjectivity of qT(KW) implies the surjectivity of $T(F,). This completes 
the proof of Lemma 4.9. 

Now take F = Q, and assume that L(E, 1) # 0. Since L(E, 1) # 0, 
Kolyvagin's theorem tells us that S(E/Q) is finite for every prime p. Thus 
Theorem 1.15 of Chapter 1 is an immediate consequence of Lemmas 4.7, 4.8 
and 4.9. 

Proposition 4.10. Assume that (i) p 3 5, (ii) S(E/F)  is finite, (iii) E has 
good ordinary reduction at all primes v of F dividing p, and (iv) XT(F,) is 
surjective. Then Conjecture 1.13 holds for EIF and p. 

Proof. By virtue of (iv), we know from Proposition 4.3 that 

Hi(E,  S(E/F,)) = 0 for i 2 2. 

We also have the exact sequence (loo), and taking E-cohomology of it, we 
obtain the exact sequence 

0 -+ Coker (+T(F')) -+ H1(E, S(E,  F,)) + H3(C, ~ p m )  --+ 0, 

(121) 

where the term on the right comes from (95). Thus we see that the exact order 
of H1(E, S(E/F,)) is given by (115), and so we obtain from Lemma 4.7 

Thus (27) is valid, and the proof of Proposition 4.10 is complete. 

Example. Take F = Q, and p = 5. Let Eo, El, Ez denote, respectively, the 
elliptic curves (4), (5) and (103) of conductor 11. We have just shown that 
XT(F,) is surjective for all three curves, with T = (5,111. Hence Proposition 
4.10 tells us that Conjecture 1.13 holds for p = 5 and all three curves. Thus 
we have 

H ~ ( ( z  S(E;/Fw)) = 0 (k 3 2) 
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for i = 0,1,2. Moreover, as was explained in Chapter 1, we have 

Similarly, one can show that 

Now take F = Q(p5) and p = 5, and take E to be the elliptic curve E l .  We 
have El (F)(5) = 2/52 ,  and, by a 5-descent (see [7], Chapter 4), we obtain 
III(EI/F)(5) = 0. Now 11 splits completely in F ,  and L,(E, s)  = (1- 11-~)-l 
for each of the four primes v of F dividing 11. Hence we conclude that 

4.4 Rank calculations 

In this last section, we only sketch the relationship between the surjectivity 
of XT(F,) and Conjecture 1.7. The basic idea is to compute A(E)-ranks (we 
recall that the notion of A(E)-rank is defined by (19)) along the dual of the 
exact sequence 

Let tp(E/F)  denote the A(E)-rank of C(E/F,). It  follows immediately from 
(123) and Corollary 2.11 that 

Thus the upper bound for tp(E/F)  given in Theorem 1.8 is clear. To establish 
the lower bound for tp(E/F) in Theorem 1.8, we need to determine the 
A(E)-rank of the dual of J,(F,) for all v E T. We have already seen on 
several occasions that J,(F,) = 0 when v divides p, and E has potential 
supersingular reduction a t  v. The following result, which we do not prove 
here, is established in Susan Howson's Ph. D. thesis (see Proposition 6.8 and 
Theorem 6.9 of [18]). 

Lemma 4.11. Let r, denote the A(C)-rank of the dual of J"(F,). If p 
is any prime, and v does not divide p, then r, = 0. If p 2 5, v divides p, 
and E has potential ordinary or potential multiplicative reduction at v, then 
r, = [F, : Q]. 

Now it is clear from (124) that 

Hence the lower bound for tp(E/F) asserted in Theorem 1.8 is clear from 
Lemma 4.11 and the remark made just before Lemma 4.11. This completes 
the proof of Theorem 1.8. 

Theorem 4.12. Assume p 2 5. Then XT(F,) is surjective if and only if 
C(E/F,) has A(Z)-rank equal to rP(E/F), where rp(E/F) is defined by (20). 

Proof. If XT(F,) is surjective, it is clear from (124) and the above determina- 
tion of the A(E)-rank r, of the dual of J,(Fw), that C(E/F,) has A(E)-rank 
equal to rP(E/F).  Conversely, if C(E/F,) has A(E)-rank equal to rP(E/F),  
it follows from (124) that the dual of Coker(X~(F,)) has A(E)-rank equal 
to 0. This means the following. Let @ = G(F,/Fo), where Fo = F(Ep). 
Then the Iwasawa algebra A(@) has no divisors of zero. Thus the dual of 
Coker(AT(F,)) would be A(@)-torsion. But a very well known argument us- 
ing the Cassels-Poitou-Tate sequence shows that there is no non-zero A(@)- 
torsion in the dual of Coker(X~(F,)) (see [18], Lemma 6.17 or [8], Proposition 
11). Hence it follows that Coker(XT(F,)) = 0. This completes the proof of 
Theorem 4.12. 

Finally, we remark that Theorem 1.14 is an immediate consequence of 
Theorem 4.12 and Proposition 4.10. 
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1. Introduction 

The topics that we will discuss have their origin in Mazur's synthesis of the 
theory of elliptic curves and Iwasawa's theory of Pp-extensions in the early 
1970s. We first recall some results from Iwasawa's theory. Suppose that F 
is a finite extension of $ and that F, is a Galois extension of F such that 
Gal(F,/F) 2 Z,, the additive group of padic integers, where p is any prime. 
Equivalently, F, = Un>o F,, where, for n > 0, Fn is a cyclic extension of 
F of degree pn and F = Fo C Fl C - C F, C Fn+l c . . - . Let hn denote 
the class number of Fn, pen the exact power of p dividing h,. Then Iwasawa 
proved the following result. 

Theorem 1.1. There exist integers A, p, and v, which depend only on F,/F, 
such that en = An + ppn + v for n >> 0 .  

The idea behind the proof of this result is to  consider the Galois group 
X = Gal(L,/F,), where L, is the maximal abelian extension of Fw which 
is unrarnified at  all primes of F, and such that Gal(L,/F,) is a pro-p group. 
In fact, L, = Un20 Ln, where Ln is the pHilbert class field of Fn for n 2 0. 
Now L,/F is Galois and r = Gal(F,/F) acts by inner automorphisms on 
the normal subgroup X of Gal(L,/F). Thus, X is a Zp-module and r acts 
on X continuously and Zp-linearly. It  is natural to regard X as a module 
over the group ring ZP[q, but even better over the completed group ring 

where the inverse limit is defined by the ring homomorphisms induced by 
the restriction maps Gal(F,/F) -+ Gal(Fn/F) for m 2 n 2 0. The ring A 
is sometimes called the "Iwasawa algebra" and has the advantage of being a 
complete local ring. More precisely, A S Zp[[T]], where T is identified with 
7- 1 E A. Here y E r is chosen so that A,, is nontrivial, and 1 is the identity 
element of r (and of the ring A). Then -y generates a dense subgroup of r 

" and the action of T = y - 1 on X is "topologically nilpotent." This allows 
one to  consider X as a A-module. 

Iwasawa proves that X is a finitely generated, torsion A-module. There 
is a structure theorem for such A-modules which states that there exists a 
"pseudo-isomorphism" 
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where each fi(T) is an irreducible element of A and the ai's are positive 
integers. (We say that two finitely generated, torsion A-modules X and Y 
are pseudo-isomorphic when there exists a A-homomorphism from X to Y 
with finite kernel and cokernel. We then write X - Y.) It is natural to try 
to recover Gal(Ln/Fn) from X = Gal(L,/F,). 

Suppose that F has only one prime lying over p and that this prime is 
totally ramified in F,/F. (Totally ramified in Fl/F suffices for this.) Then 
one can indeed recover Gal(Ln/Fn) from the A-module X.  We have 

The isomorphism is induced from the restriction map X + Gal(Ln/Fn). Here 
is a brief sketch of the proof: Gal(F,/Fn) is topologically generated by ypn; 
one verifies that (ypn - l ) X  is the commutator subgroup of Gal(L,/Fn); 
and one proves that the maximal abelian extension of Fn contained in L, 
is precisely F,Ln. (This last step is where one uses the fact that there is 
only one prime of Fn lying over p.) Then one notices that Gal(Ln/Fn) F 
Gal(F,L,/F,). If F has more than one prime over p, one can still recover 
Gal(Ln/Fn) for n >> 0, somehow taking into account the inertia subgroups 
of Gal(L,/Fn) for primes over p. (Primes not lying over p are unramified.) 
One can find more details about the proof in [Wa2]. 

The invariants X and p can be obtained from X in the following way. 
03 

Let f (T) be a nonzero element of A: f (T) = C ciTi, where ci E Zp for 
i=O 

i 2 0. Let p(f) 2 0 be defined by: p"(f)l f (T), but pp(f)+l I( f (T) in A. Thus, 

I 
f ( ~ ) ~ - p ( f )  is in A and has at least one coefficient in Z;. Define X(f) 2 0 

i to be the smallest i such that cip-~(f)  E B;. (Thus, f(T) E Ax if and only 
t 

if X(f) = p(f) = 0.) Let f (T) = n f*(T)ai. The ideal (f (T)) of A is called 
a= 1 

the "characteristic ideal" of X. Then it turns out that the X and p occurring 
in Iwasawa's theorem are given by X = X(f), p = p(f). For each i,  there are 
two possibilities: either fa(T) is an associate of p, in which case p(f,) = 1, 
X(f,) = 0, and A/(f,(T)"*) is an infinite group of exponent pa., or f,(T) is 
an associate of a monic polynomial of degree X(f,), irreducible over $,, and 
"distinguished" (which means that the nonleading coefficients are in pZp), 
in which case p(f,) = 0 and A/(f,(T)a*) is isomorphic to ~ t ( ~ ~ ) ~ ~  as a group. 
Then, X = Ca,X(fi), p = Ca,p(f,). The invariant X can be described more 
simply as X = rankzp(X/Xmp-tors), where XzP-to,, is the torsion subgroup 
of X. Equivalently, = dimQp (X @zp $,). 

I The invariants X = X(F,/F) and p = p(F,/F) are difficult to study. 
Iwasawa found examples of Zp-extensions F,/F where p(F,/F) > 0. In 
his examples there are infinitely many primes of F which decompose com- 
pletely in F,/F. In these lectures, we will concentrate on the "~yclotomic 
&,-extensionv of F which is defined as the unique subfield F, of F(pp) 
with r = Gal(F,/F) % Z,. Here pPm denotes the ppower roots of unity. It 

is easy to show that all nonarchimedean primes of F are finitely decomposed 
in F,/F. More precisely, if v is any such prime of F, then the corresponding 
decomposition subgroup r (v)  of I' is of finite index. If v f p, then the inertia 
subgroup is trivial, i.e., v is unramified. (This is true for any Zp-extension.) If 
vlp, then the corresponding inertia subgroup of r is of finite index. Iwasawa 
has conjectured that p(F,/F) = 0 if F,/F is the cyclotomic Zp-extension. 
In the case where F is an abelian extension of $, this has been proved by 
Ferrero and Washington. (See [FeWa] or [Wa2].) 

On the other hand, X(F,/F) can be positive. The simplest example is 
perhaps the following. Let F be an imaginary quadratic field. Then all Zp- 
extensions of F are contained in a field k: such that G ~ ~ ( F / F )  3 $. (Thus, 
there are infinitely many Zp-extensions of F.) Letting F,/F still be the 
cyclotomic Zp-extension, one can verify that F/F, is unramified if p is a 

prime that splits completely in F/$. Thus in this case, F, C C L, 
and hence X = Gal(L,/F,) has a quotient ~a l (F lF , )  E Z,. Therefore, 
X(F, I F )  > 1 if p splits in F/$. Notice that, since @/F is abelian, the action 
of T = y - 1 on ~al(k:/F,) is trivial. Thus, X/TX is infinite. Now if one 
considers the A-module Y = A/( fi (T)ai), where fi (T) is irreducible in A, then 
Y/TY is infinite if and only if fi(T) is an associate of T. Therefore, if F is an 
imaginary quadratic field in which p splits and if F, is the cyclotomic Bp- 
extension of F, then TI f (T), where f (T) is a generator of the characteristic 
ideal of X.  One can prove that T2 I( f (T). (This is an interesting exercise. It 
is easy to show that X/TX has Zp-rank 1. One must then show that X/T2X 
also has Zp-rank 1. See [Grl] for a more general "semi-simplicity" result.) 

In contrast, suppose that F is again imaginary quadratic, but that p is 
inert in F/$. Then F has one prime over p, which is totally ramified in the 
cyclotomic Zp-extension F,/F. As we sketched earlier, it then turns out that 
X/TX is finite and isomorphic to the pprimary subgroup of the ideal class 
group of F. In particular, it follows that if p does not divide the class number 
of F, then X = TX. Nakayama's Lemma for A-modules then implies that 
X = 0 and hence X(F,/F) = 0 for any such primep. In general, for arbitrary 
n > 0, the restriction map X + Gal(Ln/Fn) induces an isomorphism 

where 8, = yp" - 1 = (1 + T)P" - 1. We can think of X/BnX as Xrn, the 
maximal quotient of X on which rn acts trivially. Here rn = Gal(F,/Fn). 
It is interesting to consider the duals of these groups. Let 

Then we can state that Sn 2 5'2, where the isomorphism is simply the 
dual of the map Xrn %Gal(L,/Fn). Here Sz denotes the subgroup of S, 
consisting of elements fixed by rn. The map Sn + S$ will be an isomorphism 
if F is any number field with just one prime lying over p, totally ramified in 
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F,/F. But returning to the case where F is imaginary quadratic and p splits 
in F/$, we have that SL is infinite. (It contains ~orn(~a l (F /F , ) ,  Qp/Zp) 
which is isomorphic to $,/Z,.) Thus, Sfi is always infinite, but Sn is finite, 
for all n 2 0. The groups Sn and S, are examples of "Selmer groups," 
by which we mean that they are subgroups of Galois cohomology groups 
defined by imposing local restrictions. In fact, Sn is the group of cohomology 
classes in H1(GF,,,$,/Zp) which are unramified at  all primes of F,,, and 
S, is the similarly defined subgroup of H1(GF,, Qp/Zp). Here, for any field 
M ,  we let GM denote the absolute Galois group of M. Also, the actim of 
the Galois groups on Qp/Zp is taken to be trivial. As is customary, we will 
denote the Galois cohomology group HYGM, *) by Hi(M, *). We will denote 
H ~ ( G ~ ~ ( K / M ) ,  *) by H"K/M, *) for any Galois extension KIM. We always 
require cocycles to be continuous. Usually, the group indicated by * will be 
a pprimary group which is given the discrete topology. We will also always 
understand Hom( , ) to refer to the set of continuous homomorphisms. 

Now we come to Selmer groups for elliptic curves. Suppose that E is an 
elliptic curve defined over F. We will later recall the definition of the classical 
Selmer group SelE(M) for E over M,  where M is any algebraic extension of 
F. Right now, we will just mention the exact sequence 

where E(M) denotes the group of M-rational points on E and IIIE(M) 
denotes the Shafarevich-Tate group for E over M. We denote the pprimary 
subgroups of SelE (M), LZIE(M) by SelE(M),, DE (M),. The pprimary sub- 
group of the first term above is E(M) @ ($,/Z,). Also, SelE(M), is a sub- 
group of H1 (M, E[pm]), where Elpa] is the pprimary subgroup of E(@). As 
a group, E[pm] % ($p/Zp)2, but the action of GF is quite nontrivial. Let 
F,/F denote the cyclotomic +,-extension. We will now state a number of 
theorems and conjectures, which constitute part of what we call "Iwasawa 
Theory for E." Some of the theorems will be proved in these lectures. We 
always assume that F, is the cyclotomic Zp-extension of F. 

Theorem 1.2 (Mazur's Control Theorem). Assume that E has good, 
ordinary reduction at all primes of F lying over p. Then the natural maps 

have finite kernel and cokernel, of bounded order as n varies. 

The natural maps referred to are those induced by the restriction maps 
H1(Fn, ~[p"])  + H1(F,, E[pm]). One should compare this result with the 
remarks made above concerning S,, and S2. We will discuss below the cases 
where E has either multiplicative or supersingular reduction at some primes 
6f F lying over p. But first we state an important conjecture of Mazur. 

Conjecture 1.3. Assume that E has good, ordinary reduction at all primes 
of F lying over p. Then SelE(F,), is A-cotorston. 

Here r = Gal(F,/F) acts naturally on the group H1(F,, E[pm]), which 
is a torsion Zp-module, every element of which is killed by Tn for some n. 
Thus, H1(F,, E[p00]) is a A-module. SelE(F,), is invariant under the action 
of r and is thus a A-submodule. We say that SelE(F,), is A-cotorsion if 

is A-torsion. Here SelE(F,), is apprimary group with the discrete topology. 
Its Pontryagin dual XE(F,) is an abelian pro-p group, which we regard as 
a A-module. It is not hard to prove that XE(F,) is finitely generated as a 
A-module (and so, SelE(F,), is a "cofinitely generated" A-module). In the 
case where E has good, ordinary reduction at all primes of F over p, one 
can use theorem 1.2. For XE(F) = Horn(Sel~(F),, $,/Z,) is known to be 
finitely generated over 7Zp. (In fact, the weak Mordell-Weil theorem is proved 
by showing that XE(F)/pXE(F) is finite.) Write X = XE(F,) for brevity. 
Then, by theorem 1.2, X/TX is finitely generated over Z,. Hence, X/mX is 
finite, where m = (p, T) is the maximal ideal of A. By a version of Nakayama's 
Lemma (valid for profinite A-modules X) ,  it follows that XE(F,) is indeed 
finitely generated as a A-module. (This can actually be proved for any prime 
p, with no restriction on the reduction type of E.) Here is one important case 
where the above conjecture can be verified. 

Theorem 1.4. Assume that E has good, ordinay reduction at all primes 
of F lying over p. Assume also that SelE(F), is finite. Then sel~(F,), is 
A-cotorsion. 

This theorem is an immediate corollary of theorem 1.2, using the following 
exercise: if X is a A-module such that X/TX is finite, then X is a torsion 
A-module. The hypothesis on SelE(F), is equivalent to assuming that both 
the Mordell-Weil group E(F)  and the pshafarevich-Tate group IIIE(F), are 
finite. A much deeper case where conjecture 1.3 is known is the following. 
The special case where E has complex multiplication had previously been 
settled by Rubin [Rul]. 

Theorem 1.5 (Kato-Rohrlich). Assume that E is defined over $ and is 
modular. Assume also that E has good, ordinary reduction or multiplicative 
reduction at p and that F/$ is abelian. Then SelE(F,), as A-cotorsion. 

The case where E has multiplicative reduction at  a prime v of F lying over 
P is somewhat analogous to the case where E has good, ordinary reduction 
at  v .  In both cases, the GF,-representation space Vp(E) = Tp(E) 8 $, has 
an unramified 1-dimensional quotient. (Here T,(E) is the Tate-module for E; 
Vp(E) is a 2-dimensional $,-vector space on which the local Galois group GF, 
acts, where F, is the v-adic completion of F.)  It seems reasonable to believe 



56 Ralph Greenberg Iwasawa theory for elliptic curves 57 

that the analogue of Theorem 1.2 should hold. This was first suggested by 
Manin [Man] for the case F = $. 

Conjecture 1.6. Assume that E has good, ordinary reduction or multiplica- 
tive reduction at all primes of F lying over p. Then the natural maps 

have finite kernel and cokernel, of bounded order as n varies. * 
For F = $, this is a theorem. In this case, Manin showed that it would 

suffice to prove that logp(qE) # 0, where q~ denotes the Tate period for 
E, assuming that E has multiplicative reduction at p. But a recent theorem 
of Barre-Sirieix, Diaz, Gramain, and Philibert [B-D-G-P] shows that q~ is 
transcendental when the j-invariant jE is algebraic. Since jE E $, it follows 
that U E ~ - O ' ~ ( ~ E )  is not a root of unity and so logp(qE) # 0. For arbitrary -- - 
F ,  one would need to prove that l ~ g ~ ( N ~ ~ ~ ~ ~ ( ~ ~ ) ) )  # 0 for all primes v 
of F lying over p where E has multiplicative reduction. Here F, is the v- 
adic completion of F ,  q;) the corresponding Tate period. This nonvanishing 
statement seems intractable at  present. 

If E has supersingular reduction at  some prime v of F, then the "control 
theorem" undoubtedly fails. In fact, SelE(F,), will not be A-cotorsion. More 
precisely, let 

where the sum varies over the primes v of F where E has potentially super- 
singular reduction. Then one can prove the following result. 1 

Theorem 1.7. With the above notation, we have 
I 

corankn(Sel~(F,),) 2 T(E, F) .  

This result is due to P. Schneider. He conjectures that equality should hold 
here. (See [SchS].) This would include for example a more general version 
of conjecture 1.3, where one assumes just that E has potentially ordinary 
or potentially multiplicative reduction at  all primes of F lying over p. As a 
consequence of theorem 1.7, one finds that 

for n 2 0. This follows from the fact that A/enA E Z:. (The ring A/enA is 
I 

just Zp[Gal(Fn/F)].) One uses the fact that there is a pseudo-isomorphism 
I 

from XE(F,) to A' @ Y, where T = rankA(xE(F,)), which is the A-corank 
of SelE(F,),, and Y is the A-torsion submodule of XE(F,). However, it 
'is reasonable to make the following conjecture. We continue to assume that I 

F,/F is the cyclotomic Zp-extension, but make no assumptions on the re- 
duction type for E at primes lying over p. The conjecture below follows from 
results of Kato and Rohrlich when F is abelian over $ and E is defined over 
$ and modular. 

Conjecture 1.8. The Zp-corank of SelE(Fn), is bounded as n varies. 

If this is so, then the map SelE(Fn), + s e l E ( ~ , ) ~ *  must have infinite co- 
kernel when n is sufficiently large, provided that we assume that E has po- 
tentially supersingular reduction at v for at  least one prime v of F lying 
over p. Of course, assuming that the pshafarevich-Tate group is finite, the 
12,-corank of SelE(Fn), is just the rank of the Mordell-Weil group E(Fn). 
If one assumes that E(Fn) does indeed have bounded rank as n -+ oo then 
one can deduce the following nice consequence: E(F,) is finitely generated. 
Hence, for some n > 0, E(F,) = E(Fn). This is proved in Mazur's article 
[Mazl]. The crucial step is to show that E(F,)tor, is finite. We refer the 
reader to Mazur (proposition 6.12) for a detailed proof of this helpful fact. 
(We will make use of it later. See also [Im] or [Ri].) Using this, one then 
argues as follows. Let t = IE(F,)tor,l. Choose m so that rank(E(Fm)) is 
maximal. Then, for any P E E(F,), we have k P  E E(Fm) for some k 3 1. 
Then g(kP) = k P  for all g E Gal(F,/Fm). That is, g(P) - P is in E(F,)tor, 
and hence t(g(P) - P) = OE. This means that tP  E E(Fm). Therefore, 
tE(F,) E(Fm), from which it follows that E(F,) is finitely generated. 

On the other hand, let us assume that E has good, ordinary reduction 
or multiplicative reduction at  all primes v of F lying over p. Assume also 
that S€!~E(F,), is A-cotorsion, as is conjectured. Then one can prove conjec- 
ture 1.8 very easily. Let XE denote the A-invariant of the torsion A-module 
XE(F,). That is, XE = EL~~z,(XE(F,))  = corank~,(Sel~(F,)~). We get 
the following result. 

Theorem 1.9. Under the above assumptions, one has 

In particular, the rank of the Mordell- Wed group E(Fn) is bounded above by 
XE , 

This result follows from the fact that the maps s e l ~ ( F , ) ~  -+ s e l ~ ( F , ) ~  
have finite kernel. This turns out to be quite easy to prove, as we will see 
in section 3. Also, the rank of E(Fn) is the Hp-corank of E(Fn) €3 (Qp/Zp), 
which is of course bounded above by corank~, (Se1E(Fn),). (Equality holds 
if IIIE(F,), is finite.) Let XEeW denote the maximum of rank(E(Fn)) as n 
varies, which is just rank(E(F,)). Let XY = XE - Xg-W. We let p~ denote 
the yinvariant of the A-module XE(F,). If necessary to avoid confusion, 
we might write XE = XE(F,/F), p~ = ~E(F, /F) ,  etc. Then we have the 
following analogue of Iwasawa's theorem. 
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Theorem 1.10. Assume that E has good, ordinary reduction at  all primes of 
F lying over p. Assume that SelE(F,), is A-cotorsion and that LUE(F,), is 
finite for all n 2 0. Then there exist A, p, and v such that ILUE(F~),I = pen , 
where en = An + ppn + v for all n >> 0. Here X = Xg and p = p ~ .  

As later examples will show, each of the invariants x E - ~ ,  Xg, and p~ 
can be positive. Mazur first pointed out the possibility that p~ could be 
positive, giving the following example. Let E = Xo(l l ) ,  p = 5, F = $, and 
F, = $, = the cyclotomic &-extension of $. Then p~ = 1. (Infact, 
(fE(T)) = (p).) There are three elliptic curves/$ of conductor 11, all isoge- 
nous. In addition to E ,  one of these elliptic curves has p = 2, another has 
p = 0. In general, suppose that + : El + E2 is an F-isogeny, where El ,  E2 
are defined over F. Let @ : SelEl (F,), + SelE,(F,), denote the induced 
A-module homomorphism. It  is not hard to show that the kernel and cokernel 
of @ have finite exponent, dividing the exponent of ker(+). Thus, S e l ~ ,  (F,), 
and SelE2(F,), have the same A-corank. If they are A-cotorsion, then the X- 
invariants are the same. The characteristic ideals of XE, (F,) and XE2 (F,) 
differ only by multiplication by a power of p. If F = $, then it seems reason- 
able to make the following conjecture. For arbitrary F, the situation seems 
more complicated. We had believed that this conjecture should continue to 
be valid, but counterexamples have recently been found by Michael Drinen. 

Conjecture 1.11. Let E be an elliptic curve defined over $. Assume that 
SelE($,), is A-cotorsion. Then there exists a $-isogenous elliptic curve 
E' such that p ~ t  = 0. In particular, if Eb] is irreducible as a (ZIP+)- 
representation of GQ, then p~ = 0. 

I 
Here E b ]  = ker(~($)  3 E($)). P. Schneider has given a simple formula for 
the effect of an isogeny on the p-invariant of SelE(F,), for arbitrary F and 

I 

for odd p. (See [Sch3] or [Pe2].) Thus, the above conjecture effectively predicts 
I 

the value of p~ for F = $. 
Suppose that SelE(F,), is A-cotorsion. Let fE(T) be a generator of the 

characteristic ideal of XE(F,). Then XE = X(~E)  and p~ = p ( f ~ ) .  We have 

where the fi(T)'s are irreducible elements of A, and the ai's are positive. If 
( fi(T)) = (p), then it is possible for ai > 1. However, in contrast, it seems 
reasonable to make the following "semi-simplicity7' conjecture. 

Conjecture 1.12. Let E be an elliptic curve defined over F. Assume that 
SelE(F,), is A-cotorsion. The action of r = Gal(F , /F)  on X E ( F ~ ) @ P ~ $ ,  
is completely reducible. That is, ai = 1 for all i's such that f i (T)  is not an 
associate of p. 

Assume that E has good, ordinary reduction at  all primes of F lying over 
p. Theorem 1.2 then holds. In particular, corankzp(sel~(F),),  which is equal 
to rankap (XE (Fm)/TXE (F,)), would equal the power of T dividing ~ E ( T ) ,  
assuming the above conjecture. Also, the value of XE-W would be equal to 
the number of roots of fE(T) of the form C - 1, where < is a ppower root 
of unity, if we assume in addition the finiteness of UIE(Fn), for all n. For 
conjecture 1.12 would imply that this number is equal to the Z,-rank of 
X ~ ( F o o ) / e n x ~ ( F m )  for n >> 0. 

In section 4 we will introduce some theorems due to B. Perrin-Riou and 
to P. Schneider which give a precise relationship between SelE(F), and the 
behavior of ~ E ( T )  at  T = 0. These theorems are important because they 
allow one to study the Birch and Swinnerton-Dyer conjecture by using the 
so-called "Main Conjecture" which states that one can choose the generator 
~ E ( T )  SO that it satisfies a certain interpolation property. We will give the 
statement of this conjecture for F = $, which was formulated by B. Mazur 
in the early 1970s (in the same paper [Mazl] where he proves theorem 1.2 
and also in [M-SwD]). 

Conjecture 1.13. Assume that E is an elliptic curve defined over $ which 
has good, ordinary reduction at p. Then the characteristic ideal of XE($,) 
has a generator ~ E ( T )  with the properties: 

(i> f ~ ( 0 )  = - p p ~ - l ) ~ L ( E / $ ,  1 ) l . n ~  
(ii) ~E(+(T) )  = (Pp)"L(E/$, 4, ~)/RET(+) if 4 is a finite order character of 

r = Gal($,/$) of conductor pn > 1. 

We must explain the notation. First of all, fix embeddings of into C and 
into a,. L(E/$, s)  denotes the Hasse-Weil L-series for E over $. RE denotes 
the real period for E ,  so that L(E/$,  RE RE is conjecturally in $. (If E is 
modular, then L(E/$, s) has an analytic continuation to the complex plane, 
and, in fact, L(E/$, 1 ) l R ~  E $.) Let E denote the reduction of E a t  p. 
The Euler factor for p in L(E/$, s)  is ((1 - c~,p-~)( l -  ,OPp-"))-l, where a,, - & E Q, a,$ = p, ap +pp =I + p  - IE(Fp)J. Choose ap to be the padic  unit 
under the fixed embedding $ -+ Q,. Thus, p,p-l = a i l .  For every complex- 
valued, finite order Dirichlet character +, L(E/$, +, s)  denotes the twisted 
Hasse-Weil L-series. In the above interpolation property, 4 is a Dirichlet 
character whose associated Artin character factors through r. Using the fixed 
embeddings chosen above, we can consider 4 as a continuous homomorphism 
4 : r + QX of finite order, i.e., 4(y) = C, where C is a ppower root of 
unity in a,. Then +(T) = +(y - 1) = (' - 1, which is in the maximal ideal 
of zp. Hence f ~ ( 4 ( T ) )  = fE(( - 1) converges in $. The complex number 
L(E/$ ,  $ , ~ ) / R E  should be algebraic. In (ii), we regard it as an element of - 
$,, as well as the Gaussian sum T(+).  For p > 2, conjecture 1.13 has been 
proven by Rubin when E has complex multiplication. (See [Ru~].)  If E is a 
modular elliptic curve with good, ordinary reduction at  p, then the existence 
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of some power series satisfying the stated interpolation property (i) and (ii) 
was proven by Mazur and Swinnerton-Dyer in the early 1970s. We will denote 
it by f y l ( ~ ) .  (See [M-SwD] or [M-T-TI.) Conjecturally, this power series 
should be in A. This is proven in [St] if E[p] is irreducible as a GQ-module. 
In general, it is only known to be A @zp $,. That is, p t f y ' ( ~ )  E A for 
some t 2 0. Kato then proves that the characteristic ideal at least contains 
pm f y l  (T) for some m > 0. Rohrlich proves that L(E/$, $,I) # 0 for all 
but finitely many characters $ of r, which is equivalent to the statement 
f y ' ( ~ )  # 0 as an element of A @zp Qp. One can use Kato's theorep to 
prove conjecture 1.13 when E admits a cyclic $-isogeny of degree p, where 
p is odd and the kernel of the isogeny satisfies a certain condition (namely, 
the hypotheses in proposition 5.10 in these notes). This will be discussed in 
[GrVa]. 

Continuing to assume that El$ is modular and that p is a prime where 
E has good, ordinary reduction, the so-called padic L-function Lp(E/$, s) 
can be defined in terms of f g a ' ( ~ ) .  We first define a canonical character 

induced by the cyclotomic character x : Gal($(ppm)/$) N-) Z i  composed 
with the projection map to the second factor in the canonical decomposition 
B X  = pp-1 P 

x (1 + pZp) for odd p, or B,X = {f 1) x (1 + 4Z2) for p = 2. 
Thus, rc is an isomorphism. For s E Z,, define Lp(E/$, s) by 

The power series converges since ~ ( y ) ~ - '  - 1 E pBp. (Note: Let t E Z,. 
The continuous group homomorphism rct : r + 1 + pZp can be extended 
uniquely to a continuous Zp-linear ring homomorphism tct : A + Zp. We 
have rct (T) = ~ ( y ) ~  - 1 and rct (f (T)) = f ( ~ ( y ) ~  - 1) for any f (T) E A. 
Thus, Lp(E/$, s) is r c s - l ( fy l (~ ) ) . )  The functional equations for the Hasse- 
Weil L-series give a simple relation between the values L(E/$, $ , I )  and 
L(E/$, #-I ,  1) occurring in the interpolation property for fgal(T).  Since 
f y l ( ~ )  is determined by its interpolation property, one can deduce a simple 
relation between fEal(T) and f y l ( ( l  + T)-l - 1). Omitting the details, one 
obtains a functional equation for Lp(E/$, s): 

for all s E Z,. Here WE is the sign which occurs in the functional equation 
for the Hasse-Weil L-series L(E/$, s), NE is the conductor of E, and (NE) 
is the projection of NE to 1 + 2pZp as above. 

The final theorem we will state is motivated by conjecture 1.13 and the 
above functional equation for the padic L-function Lp(E/$, s). The func- 
tional equation is in fact equivalent to the relation between f g n a l ( ~ )  and 
f r l ( ( l  +T) -' - 1) mentioned above. In particular, f ~ ~ l ( ~ ~ ) / f ? ' ( T )  should 
be in Ax, where T L  = (1 + T)-l - 1. The analogue of this statement is true 
for fE(T). More generally (for any F), we have: 

Theorem 1.14. Assume that E is an elliptic curve defined over F with good, 
ordinary reduction or multiplicative reduction at all primes of F lying over 
p. Assume that SelE(F,), is A-cotorsion. Then the characteristic ideal of 
XE(Fm) is fied by the involution L of A induced by ~ ( y )  = y-' for all y E r. 

A proof of this result can be found in [Gr2] using the Duality Theorems of 
Poitou and Tate. There it is dealt with in a much more general context-that 
of Selmer groups attached to "ordinary" padic representations. 

We will prove theorem 1.2 completely in the following two sections. Our 
approach is quite different than the approach in Mazur's article and in Manin's 
more elementary expository article. We first prove that, when E has good, or- 
dinary or multiplicative reduction at primes over p, the pprimary subgroups 
of SelE(Fn) and of SelE(F,) have a very simple and elegant description. This 
is the main content of section 2. Once we have this, it is quite straightforward 
to prove theorem 1.2 and also a conditional result concerning conjecture 1.6 
which we do in section 3. In this approach we avoid completely the need to 
study the norm map for formal groups over local fields, which is crucial in 
the approach in [Mazl] and [Man]. We also can use our description of the 
pSelmer group to determine the padic valuation of f~ (0), under the assump- 
tion that E has good, ordinary reduction at  primes over p and that s e l ~ ( F ) ,  
is finite. Section 4 is devoted to this comparatively easy special case of results 
of B. Perrin-Riou and P. Schneider found in [Pel], [Schl]. Their results give 
an expression involving a padic height determinant for the padic valuation 
of ( ~E(T)/T')IT=o, where r = rank(E(F)), under suitable hypotheses. Fi- 
nally, in section 5, (which is by far the longest section of this article) we will 
discuss a variety of examples to illustrate the results of sections 3 and 4 and 
also how our description of the pSelmer group can be used for calculation. 
We also include in section 5 a number of remarks taken from [Mazl] (some 
of which are explained quite differently here) as well as various results which 
don't seem to be in the existing literature. Throughout this article, we have 
tried to include p = 2 in all of the main results. Perhaps surprisingly, this 
turns out not to be so complicated. 

We will have very little to say about the case where E has supersingular 
reduction at some primes over p. In recent years, this has become a very 
lively aspect of Iwasawa theory. We just refer the reader to [Pe4] as an intro- 
duction. In [Pe4], one finds the following concrete application of the theory 
described there: Suppose that El$ has supersingular reduction at p and that 
Sel~($), is finite. Then SelE($,), has bounded Zp-corank as n varies. This 
is, of course, a special case of conjecture 1.8. In the case where E has good, 
ordinary reduction over p, theorem 1.4 gives the same conclusion. Another 
topic that we will not pursue is the behavior of the pSelmer group in other 
Z,-extensions-for example, the anti-cyclotomic Zp-extension of an imagi- 
nary quadratic field. The analogues of conjectures 1.3 and 1.8 can in fact be 
false. We refer the reader to [Be], [BeDal, 21, and [Maz4] for a discussion 
of this topic. We also will not pursue the analytic side of Iwasawa theory- 
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Proposition 2.1. If q i p ,  then Im(n,) = 0. If qlp, then 

The first assertion can also be explained by using the fact that, for q p, 
H1(M,, E[pw]) is a finite group. But E(M,) 8 (Qp/Zp), and hence Im(tc,) 
are divisible groups. Even if M, is an infinite extension of Fv, it is clear from 
the above that Im(n,) = 0 if q i p. 

Assume that E has good, ordinary reduction at v, where v is a prime of 
F lying over p. Then, considering Eb*] as a subgroup of E(Fv) ,  we have 
the reduction map E [ y ]  t E[pm], where E is the reduction of E modulo 
v. Define Cv by 

Cv = ker (E[pm] t E v ] )  . 

Now E[pw] L-. (Qp/Hp)2, E[pw] 2 Qp/ZP as groups. It is easy to see that 
C, Q,/H,. (In fact, C, = 7(ifi)[pm], where 3 is the formal group of height 
1 for E and ifi is the maximal ideal of the integers of Fv.)  A characterization 
in terms of E[pm] is that C, is GF,-invariant and E [ p ] / C ,  is the maximal 
unramified quotient of E[pm]. Let M be a finite extension of F. If q is a prime 
of M lying above v, then we can consider M, as a subfield of Fv containing 
F,. (The identification will not matter.) We then have a natural map 

Here is a description of Im(n,). 
I 

I Proposition 2.2. Im(n,) = Im(A,)di,. 

I 
Proof. The idea is quite simple. We know that Im(n,) and Im(X,) are p 

I1 
primary groups, that Irn(n,) is divisible, and has Z,-corank [M, : Q,]. It 
suffices to prove two things: (i) Im(n,) C Im(A,) and (ii) Im(A,) has Z,- 
corank equal to [M, : Q,]. To prove (i), let c E Im(n,). We show that 

1 c E ker(H1(M,, E[pm]) t H'(M,, k[pw])), which coincides with Im(A,). 
Let f, denote the residue field of F,, 7, its algebraic closure-the residue 
field of Fv. If b E E(F,), we let % E Z(7,) denote its reduction. Let 4 be a 
cocycle representing c. Then +(g) = g(b)- b for all g E GMq , where b E ~ ( 7 ~ ) .  

1 The 1-cocycle induced by E[pm] t E [ p ]  is 8, given by &g) = g@ - % for 
all g E GMV. But 6 represents a class F in H1(M,,E'[pw]) which becomes 

I trivial in H1(M,, A!?@,)), i.e. & is a 1-coboundary. Finally, the key point is 

' ' I  
that k(Tv)  is a torsion group, k[pm] is its pprimary subgroup, and hence the 

i map H1(M,, t H1(M,, k(Tv)) must be injective. Thus, E is trivial, 
and therefore c E Im(A,). 

I 1 Now we calculate the H,-corank of Im(X,). We have the exact sequence 

If rn, denotes the residue field of M,, then E[p"lG~V is just the pprimary 
subgroup of E(rn,), a finite group. Thus, ker(A,) is finite. The following 
lemma then suffices to prove (ii). If $ : GF, t Z,X is a continuous homomor- 
phism, we will let (Q,/Z,)($) denote the group Q,/H, together with the 
action of GF, given by $. 

Lemma 2.3. H1(M,, (Q,/Z,)($)) has Zp-corank equal to [M, : Q,] + 6, 
where 6 = 1 if $1 is either the trivial character or the cyclotomic char- 

GMV 
acter of GM,, and 6 = 0 otherwise. 

Remark. Because of the importance of this lemma, we will give a fairly self- 
contained proof using local class field theory and techniques of Iwasawa The- 
ory. But we then show how to obtain the same result as a simple application 
of the Duality theorems of Poitou and Tate. 

Proof. The case where $ is trivial follows from local class field theory. Then 
H1(M,, ($,/+,)($)) = Hom(Gal(M,ab/M,), $,I%). The well-known struc- . - 

ture of M,X implies that Gal(M;b/M,) 3 ~b~~~~~~ x f x (M;),,.., where f 
is the profinite completion of H. The lemma is clear in this case. If $ I G M -  
is the cyclotomic character, then ($,/Z,)($) 3 p , ~  as GM~-modules. Then 
H1(M,,pp-) (M;) 8 (Q,/Z,), which indeed has the stated +,-corank. 

Now suppose we are not in one of the above two cases. For brevity, we 
will write M for M,. Let M, be the extension of M cut out by $ I G M .  Thus, 
G = Gal(M,/M) 2 lm($lGM). If $ has finite order, one can reduce to 

studying the action of G on G~~(M$/M,) since M, would just be a finite 
extension of Q,. We will do something similar if $ has infinite order. Then, 
G 2 A x H,  where A is finite and H 3 Z,. If p is odd, lA( divides p - 1. If 
p = 2, JAJ = 1 or 2. Let C = ($,/Z,)($). The inflation-restriction sequence 
gives 

Now let h be a topological generator of H .  Then H1 (H, C) = C/(h - l )C  = 0 
because, considering h - 1 as an endomorphism of C, ker(h - 1) is finite and 
Im(h - 1) is divisible. Thus, H1(G, C) = 0 if p is odd, and has order 5 2 
if p = 2. On the other hand, H2(H,C)  = 0 since H has pcohomological 
dimension 1. Then H2(G,C) = 0 if p is odd, and again has order 5 2 if 
P = 2. Thus, it is enough to study 

Let X = Gal(L,/M,), where L, is the maximal abelian pro-p extension 
of M,. We will prove the rest of lemma 2.3 by studying the structure of X 
as a module for +,[[A x HI] = A[A], where A = B,[[H]] E Z,[[T]], with 

= h - 1. The results are due to Iwasawa. 
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For any n > 0, let Hn = H P ~ .  Let M, = MZ. The commutator subgroup 
of Gal(L,/M,) is (hpn - 1)X and so, if L, is the maximal abelian extension 
of Mn contained in L,, then Gal(L,/M,) 2 Hn x (x/(hpn - 1)X). But L, 
is the maximal abelian pro-p extension of M, and, by local class field theory, 

[Mn:Qpl+l x W,, where W, denotes the this Galois group is isomorphic to Z, 
group of ppower roots of unity contained in M,. Consequently, if we put 
t = [Mo : $,I = IAl - [M : $,I, we have 

Now, the structure theory for A-modules states that X/XA-tors is isomorphic 
to a submodule of AT, with finite index, where r = rankA(X). Also, we have 
A/(hpn - 1)A r Z~P" for n > 0. It follows that r = t. One can also see 
that XA-tors r Lim W,, where this inverse limit is defined by the norm maps 

M; -+ M,X for m 2 n. If W, has bounded order (i.e., if ppm $Z M,), 
then XA-tors = 0. Thus, X c At. To get more precise information about the 
structure of X ,  choose n large enough so that hpn - 1 annihilates At/X.  We 
then have 

We can see easily from this that At/X is isomorphic to the torsion subgroup 
of x/(hpn - l ) X .  That is, At/X r W, where W = M$ n pp-. On the other 
hand, if ppm c M,, then XA-tors Z Zp(l) ,  the Tate module for ppm. In this 
case, X/XA-tors is free and hence X Z At x Zp( l ) .  

In the preceding discussion, the A-module At is in fact canonical. It  is the 
reflexive hull of X/XA-t,,s. Thus, the action of A on X gives an action on 
At. Examining the above arguments more carefully, one finds that, for p odd, 
At is isomorphic to A[A][~:QPI.  (One just studies the A-module X @  for each 
character 4 of A. Recall that lAl divides p -  1 and hence each character 4 has 
values in Z t  .) For p = 2, we can at  least make such an identification up to a 
group of exponent 2. For the proof of lemma 2.3, it suffices to point out that 
HornA, H(A[A], C) is isomorphic to $,/Z, and that Homa x H  (Zp(l) ,  C) is 
finite. (We are assuming now that C 9 p,- as GM-modules.) This completes 
the proof of lemma 2.3 and consequently proposition 2.2, since one sees easily 
that b = 0 when C = Cv. 

The above discussion of the A[A]-module structure of X gives a more 
precise result concerning H1(Mq, ($,/Z,)($)). Assume that p is odd and 
that $ has infinite order. If the extension of Mq cut out by the character $J 
of GMq contains p,-, then we see that 

where as above C = (Q,/+,)($). The factor HomcMq (%(l),C) is just 
HO(Mq, C 8 xP1), where x denotes the cyclotomic character. Even if W is 

finite, we can prove (1). For if go is a topological generator of A x  H ,  then the 
torsion subgroup of X/(go - $(go))X is isomorphic to the kernel of go -$(go) 
acting on At/X 2 W. (It is seen to be ((go - $(go))At n X)/(go - $(go))X.) 
But this in turn is isomorphic to W/(go - $(go))W, whose dual is easily 
identified with HorncMq (8, (I), ($,/H,) (+)). 

We have attempted to give a rather self-contained "Iwasawa-theoretic" 
approach to studying the above local Galois cohomology group. This suffices 
for the proof of proposition 2.2. But using results of Poitou and Tate is often 
easier and more effective. We will illustrate this. Let C = ($,/Z,)($). Let T 
denote its Tate module and V = T @zp Q,. The Z,-corank of H1 (GM,, , C) 
is just d i rnQp(H1(~, ,  V)). (Cocycles are required to be continuous. V has 
its $,-vector space topology. Similarly, T has its natural topology and is 
compact.) Letting hi denote dimQp (Hi(Mq, V)), then the Euler characteristic 
for V over M,, is given by 

for any GM,,-representation space V. We have dimQp(V) = 1 and so the Z,- 
corank of H1(Mq, ($,/Z,)($)) is [M, : $,I + ho + h2. Poitou-Tate Duality 
implies that H2(Mq, V) is dual to HO(Mq, V*), where V* = Hom(V, $,(I)). 
It  is easy to see from this that 6 = ho + h2, proving lemma 2.3 again. 

The exact sequence 0 -+ T -+ V -+ C -+ 0 induces the exact sequence 

The image of a is the maximal divisible subgroup of H ' ( G M ~ ,  C). The 
kernel of y is the torsion subgroup of H2(Mq, T). Of course, coker(a) r 
Im(P) 2 ker(y). Poitou-Tate Duality implies that H2(Mq,T)  is dual to 
H'(M,, Hom(T, ppm)) =  horn^^^ (T, ppm). The action of GM,, on T is by 
$; the action on ppm is by X.  Thus, HornGMq (T, ppm) can be identified with 

the dual of HO(M,, ($,/Z,)(X+-I)). If $ l c M v  = then we find that 
H2(Mq,T) S Z,, Im(P) = 0, and therefore H1(Mq, C)  is divisible. Other- 
wise, we find that H2(Mq, T) is finite and that 

which is a finite cyclic group, indeed isomorphic to HomcMq (+,(I), C). This 
argument works even for p = 2. 

We want to mention here one useful consequence of the above discussion. 
Again we let C = ($,/Z,)($), where $ : GF,, -+ Z; is a continuous homo- 
morphism, v is any prime of F lying over p. If 77 is a prime of F, lying over 
v, then (F,), is the cyclotomic Z,-extension of F,. By lemma 2.3, the Z,- 
corank of H1((Fn),, C) differs from [(F,),, : Fv] by at most 1. Thus, if we let 
rv = Gal((F,)q/F,), then it follows that as n -+ oo 

corankzp (HI ((F,)~, ~ ) ~ f  ) = pn[Fv : Q,] + O(1). 
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The structure theory of A-modules then implies that H1((F,),, C) has co- 
rank equal to [F, : $,I as a Z,[[r,]]-module. Assume that $ is unramified 
and that the maximal unrarnified extension of F, contains no p t h  roots of 
unity. (If the ramification index e, for v over p is 5 p - 2, then this will be 
true. If F = $, this is true for all p 2 3.) Then by (2) we see that H1(F,, C) 
is divisible. The Zp-corank of H1(F,, C) is [F, : $,I + 6, where 6 = 0 if $ 
is nontrivial, 6 = 1 if $ is trivial. By the inflation-restriction sequence we 
see that H' ((F,),, C)rv E ( $ , / Z , ) [ ~ ~ : ~ P ~ .  It follows that H1((~,),, C) is 
Z!,[[r,]]-cofree of corank [F, : $,I, under the hypotheses that $ is unrapified 
and e, < p - 2. These remarks are a special case of results proved in [Gr2]. 

Now we return to the case where C, = ker(E[pw] + &PI). The action 
of GF, on C, is by a character $, the action on is by a character 4, 
and we have $$ = x since the Weil pairing T,(E) A T,(E) E Zp( l )  means 
that x is the determinant of the representation of GFv on T,(E). Note that 
q5 has infinite order. The same is true for $ since $ and x become equal 
after restriction to the inertia subgroup GF;nr. This explains why 6 = 0 for 

$ I G ~ - ,  as used to prove proposition 2.2. In this case, X$-l = 4 and hence ..., - 
HO(&, ($p/Z!p)(X+-l)) is isomorphic to E(m,),, where m, is the residue 
field for M,. These facts lead to a version of proposition 2.2 for some infinite 
extensions of F, . 

Proposition 2.4. Assume that K is a Galois extension of F,, that 
Gal(K/F,) contains an infinite pro-p subgroup, and that the inertia sub- 
group of Gal(K/F,) is of finite index. Then Im(nK) = Im(XK), where 
ICK is the Kummer homomorphism for E over K and XK is the canonical 
homomorphism 

1 1  

Proof. Let M run over all finite extensions of F, contained in K .  Then 
Im(nK) = LLmIm(rM), h ( X K )  = LimIm(AM), and Im(nM) = Im(XM)div -+ 

I by proposition 2.2. ~ u t  Im(XM)/Im(XM)div has order bounded by lE(m),l, 
where m is the residue field of M.  Now Iml is bounded by assumption. Hence 

1 it follows that Im(XK)/Im(nK) is a finite group. On the other hand, GK 
has pcohomological dimension 1 because of the hypothesis that Gal(K/F,) 
contains an infinite pro-p subgroup. (See Serre, Cohomologie Galoisienne, 
Chapitre 11, $3.) Thus if C is a divisible, pprimary GK-module, then the 

1 exact sequence 0 + C[p] + C 4 C + 0 induces the cohomology exact se- 
quence H1(K, C)  4 H ~ ( K ,  C) + H ~ ( K ,  C[p]). The last group is zero and 
hence H1 (K, C)  is divisible. Applying this to C = C,, we see that Im(XK) is 
divisible and so Im(nK) = 1 m ( X ~ ) .  

If F, denotes the cyclotomic Zp-extension of F ,  then every prime v 
of F lying over p is ramified in F,/F. If q is a prime of F, over v, then 

K = (F,), satisfies the hypothesis of proposition 2.4 since the inertia sub- 
group of r = Gal(F,/F) for q is infinite, pro-p, and has finite index in r. 
Propositions 2.1, 2.2, and 2.4 will allow us to give a fairly straightforward 
proof of theorem 1.2, which we will do in section 3. However, in section 4 it 
will be useful to have more precise information about Im(X,)/Im(n,), where 
77 is a prime for a finite extension M of F lying over p. What we will need is 
the following. 

Proposition 2.5. Let M, be a finite extension of F,, where vlp. Let m, be 
the residue field for M,. Then 

Proof. The proof comes out of the following diagram: 

Here 3 is the formal group for E (which has height I),  m is the maximal 
ideal of M,. The upper row is the Kummer sequence for 3 (m) ,  based on the 
fact that 3 ( X )  is divisible. The first vertical arrow is surjective since 3 (m)  
has finite index in E(M,). Comparing Zp-coranks, one sees that Im(nF) = 
H1(GMn, Cv)div. A simple diagram chase shows that the map 

is surjective and has kernel isomorphic to ker(e). The exact sequence 

together with the fact that the reduction map E(M,) + E(m,) is surjec- 
tive implies that E is injective. (For the surjectivity of the reduction map, 
see proposition 2.1 of [Si].) Therefore, the map (3) is an isomorphism. Com- 
bining this with the observation preceding proposition 2.4, we get the stated 
conclusion. 

Assume now that E has split, multiplicative reduction at  v. Then one has 
an exact sequence 

where C, S ppm. The proof of proposition 2.2 can be made to work and 
gives the following result. For any algebraic extension K of F,, we have 
I m ( n ~ )  = Im(XK). It  is enough to prove this when [K: F,] < oo. Then 
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~ ( K K )  is divisible and has Z,-corank [K : $,I. H1 (K, C,) is divisible and 
has H,-corank [K:$,] + 1. But the kernel of XK:H1(K, C,) -+ H1(K, E[pm]) 
is isomorphic to $,/Z,. Thus, Im(XK) and Im(rcK) are both divisible and 
have the same Z,-corank. The inclusion Im(nK) Im(XK) can be seen by 
noting that in defining KK, one can assume that a E E(K)  8 ($,/Z,) has 
been written as a = a @ (l/pt),  where a E 3(m) .  Here F is the formal 
group for E ,  m is the maximal ideal for K .  Then, since 3 ( X )  is divisible, one 
can choose b E 3 ( X )  so that ptb = a. The 1-cocycle #J, then has values in 
C, = F(liT)[pw]. Alternatively, the equality Im( rc~)  = h ( k )  can be verified 
quite directly by using the Tate parametrization for E .  

If E has nonsplit, multiplicative reduction, then the above assertion still 
holds for p odd. That is, Im(rcK) = Im(XK) for every algebraic extension K 
of F,. We can again assume that [K:F,] < oo. If E becomes split over K ,  
then the argument in the preceding paragraph applies. If not, then lemma 2.3 
and (2) imply that H1(K, C,) is divisible and has Z,-corank [K:$,]. Just as 
in the case of good, ordinary reduction, we see that Im(nK) = Im(XK). (It 
is analogous to the case where E(k), = 0, where k is the residue field of K.) 
Now assume that p = 2. If [K:F,] < KI and E is nonsplit over K ,  then we have 
H1(K, C,)/H1(K, Cv)div Z / 2 Z  by (2), since $X-l will be the unramified 
character of GK of order 2. Thus, we obtain that Im(rcK) = h(XK)&, and 
that [Im(XK) : Im(rcK)] < 2. Using the same argument as in the proof of 
proposition 2.5, we find that this index is equal to the Tamagawa factor 
[E(K)  : F(mK)] for E over K .  This equals 1 or 2 depending on whether 
ordK(jE) is odd or even. Finally, we remark that proposition 2.4 holds when 
E has multiplicative reduction. The proof given there works because the index 
[Im(XM) : ~ ( K M ) ]  is bounded. 

For completeness, we will state a result of Bloch and Kato describing 
Im(rcK) when E has good, supersingular reduction and [K : F,] < oo. It 
involves the ring Bc,is of Fontaine. Define 

Hf ( K ,  Vp(E)) = ker (H1(K, Vp(E)) --+ H1(K, Vp(E) 8 Bcris)) . 

The result is that Im(rcK) is the image of H;(K,V,(E)) under the canoni- 
cal map H1 (K, V,(E)) -+ H1 (K, V,(E)/T,(E)), noting that V,(E)/T,(E) is 
isomorphic to E[pm]. This description is also correct if E has good, ordinary 
reduction. 

If E has supersingular reduction at  v, where vlp, and if K is any ramified 
Z,-extension of F,,, then the analogue of proposition 2.4 is true. In this 
case, C,, = E[pm] since E[pw] = 0. Thus, the result is that Im(rcK) = 

I 
H1(K, E[pm]). Perhaps the easiest way to prove this is to use the analogue 
of Hilbert's theorem 90 for formal groups proved in [CoGr]. If F denotes the 

I formal group (of height 2) associated to El then H1(K,3(iE)) = 0. (This 
I I  is a special case of Corollary 3.2 in [CoGr].) Just as in the case of Kummer 

I theory for the multiplicative group, we then obtain an isomorphism 

because C, = F(X)[pM]. We get the result stated above immediately, since 

The assertion that Im(tCK) = H1(K, E[pCo]) is proved in [CoGr] under the 
hypotheses that E has potentially supersingular reduction at  v and that 
K/Fu is a "deeply ramified extension" (which means that K/Fu has infinite 
conductor, i.e., K $ Fit) for any t 2 1, where F,(~) denotes the fixed field for 
the t-th ramification subgroup of Gal(F,/F,)). A ramified Z,-extension K of 
F, is the simplest example of a deeply ramified extension. As an illustration of 
how this result affects the structure of Selmer groups, consider the definition 
of SelE(M), given near the beginning of this section. If E has potentially 
supersingular reduction at  a prime v of F lying over p and if M,/F, is 
deeply ramified for all qlv, then the groups H1(M,, E[pw])/Im(rc,) occurring 
in the definition of SelE(M), are simply zero. In particular, if M = F,, the 
cyclotomic Z,-extension of F ,  then the primes 77 of F, lying over primes 
of F where E has potentially supersingular reduction can be omitted in the 
local conditions defining SelE(F,),. This is the key to proving theorem 1.7. 

One extremely important consequence of the fact that the Selmer group 
for an elliptic curve E has a description involving just the Galois represen- 
tations attached to the torsion points on E is that one can then attempt to 
introduce analogously-defined "Selmer groups" and to study all the natural 
questions associated to such objects in a far more general context. We will 
illustrate this idea by considering A, the normalized cusp form of level 1, 

00 

weight 12. Its q-expansion is A = C .r(n)qn, where ~ ( n )  is Ramanujan's tau 
n= 1 

function. Deligne attached to A a compatible system {&(A)) of 1-adic repre- 
sentations of GQ. Consider a prime p such that p 1. ~ ( p ) .  For such a prime p, 
Mazur and Wiles have proved that the action of GQp on VP(A) is reducible 
(where one fixes an embedding Q -+ Q,, identifying GQp with a subgroup of 
GQ). More precisely, there is an exact sequence 

0 -+ w, (A) -+ V,(A) -+ U,(A) -+ 0 

where W,(A) is 1-dimensional and GQp-invariant, the action of GQp on Up(A) 
is unramified, and the action of Frob, on U,(A) is multiplication by a, (where 
a, is the padic unit root of t2 - r(p)t -tpl1). Let T,(A) be any GQ-invariant 
Z,-lattice in V,(A). (It turns out to be unique up to homothety for p + ~ ( p ) ,  
except for p = 691, when there are two possible choices up to homothety.) 
Let A = V,(A)/T,(A). As a group, A E ($p/Zp)2. Let C denote the image 
of W,(A) in A. Then C $ , / Z p  as a group. Here then is a definition of the 
~ S e l m e r  group SA($), for A over $: 
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where v runs over all primes of $. Here we take L, = 0 for v # p, analogously 
to the elliptic curve case. One defines L, = Im(Xp)div, where 

is the natural map. In [Gr3], one can find a calculation of SA($),, and also 
SA($,),, for p = 11,23, and 691. One can make similar definitions whenever 
one has a padic Galois representation with suitable properties. 

3. Control Theorems 

We will now give a proof of theorem 1.2. It is based on the description of 
the images of the local Kummer homomorphisms presented in section 2, 
specifically propositions 2.1, 2.2, and 2.4. We will also prove a special case 
of conjecture 1.6. Let E be any elliptic curve defined over F. Let M be an 
algebraic extension of F. For every prime q of M,  we let 

Let PE(M) = n NE(M,), where q runs over all primes of M. Thus, 
1) 

where the map is induced by restricting cocycles to decomposition groups. 
Also, we put 

Let F, = U F, be the cyclotomic +,-extension. Consider the following com- 
n 

mutative diagram with exact rows: 

Here r, = Gal(F,IF,) = Pn. The maps s,, h,, and g, are the natural 
restriction maps. The snake lemma then gives the exact sequence 

0 + ker(s,) 4 ker(h,) + ker(g,) + coker(s,) + coker(h,). 

Therefore, we must study ker(h,), coker(h,), and ker(g,), which we do in a 
sequence of lemmas. 

Lemma 3.1. The kernel of h, is finite and has bounded order as n varies. 
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Proof. By the inflation-restriction sequence, ker(h,) r H1(rn,  B), where B 
is the pprimary subgroup of E(F,). This group B is in fact finite and hence 
H1 (r,, B) = Hom(r,, B) for n >> 0. Lemma 3.1 follows immediately. But 
it is not necessary to know the finiteness of B. If y denotes a topological 
generator of r, then H1 (I",, B) = B / ( ~ P "  - 1) B. Since E(F,) is finitely 
generated, the kernel of yp" - 1 acting on B is finite. Now Bdiv has finite 
Zp-corank. It is clear that 

Thus, H1(rn,  B) has order bounded by [B:Bdiv], which is independent of 
n. If we use the fact that B is finite, then ker(h,) has the same order as 
H"(rn,B),  namely IE(Fn)pI. 

Lemma 3.2. Coker(h,) = 0. 

Proof. The sequence H1 (F,, E[pw]) -+ H1 (F,, ~ [ p , ] ) ~ -  -+ H2(rn,  B) is 
exact, where B = Ho (F,, E[pW]) again. But r, % H, is a free pro-p group. 
Hence H2(rn ,  B) = 0. Thus, h, is surjective as claimed. 

Let v be any prime of F. We will let v, denote any prime of F, lying 
over v. To study ker(g,), we focus on each factor in PE(F,) by considering 

where q is any prime of F, lying above v,. (PE(F,) has a factor for all 
such q's, but the kernels will be the same.) If v is archimedean, then v splits 
completely in F, IF, i.e., F, = K,. Thus, ker(rUn ) = 0. For nonarchimedean 
v, we consider separately v 1 p and v 1 p. 

Lemma 3.3. Suppose v is a nonarchimedean prime not dividing p. Then 
ker(rvn) is finite and has bounded order as n varies. If E has good reduction 
at v, then ker(rvn) = 0 for all n. 

Proof. By proposition 2.1, 'fl~(M,) = H1(M,, E[pm]) for every algebraic 
extension M, of Fv. Let Bv = H"(K, E[pm]), where K = (F,),. Since v 
is unramified and finitely decomposed in F,/F, K is the unramified Z,- 
extension of Fv (in fact, the only +,-extension of F,). The group B, is 
isomorphic to (Qp/+p)e x (a finite group), where 0 5 e 5 2. Let run = 
Gal(K/(F,),,,), which is isomorphic to H,, topologically generated by y,,,, 
say. Then 

Since E((Fn),,) has a finite pprimary subgroup, it is clear that (yvn - l)Bv 
contains (Bv)div (just as in the proof of lemma 3.1) and hence 
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This bound is independent of n and v,. We have equality if n >> 0. Now 
assume that E has good reduction at  v. Then, since v 1. p, F,(Elpw])/Fu is 
unramified. It  is clear that K c F,(E[pw]) and that A = Gal(F,(Elpm])/K) 
is a finite, cyclic group of order prime top .  It  then follows that B, = Elpm]" 
is divisible. Therefore, ker(r,,) = 0 as stated. 1 

One can determine the precise order of ker(r,, ), where vn 1 v and v is 
any nonarchimedean prime of F not dividing p where E has bad reduction. 
This will be especially useful in section 4, where we will need ( ker(r,)l. The 

(PI result is: I ker(r,)l = c, , where cp)  is the highest power of p dividiG the 
Tamagawa factor c, for E at v. Recall that c, = [E(F,): Eo(F,)], where 
Eo(F,) is the subgroup of local points which have nonsingular reduction 
at  v. First we consider the case where E has additive reduction a t  v. Then 
H O ( ~ , ,  E[pw]) is finite, where I, denotes the inertia subgroup of GF,, . Hence 
B, is finite because I, c GK. Also, Eo(F,) is a pro4 group, where 1 is the 
characteristic of the residue field for v, i.e., v 11. (Note: Using the notation in 
[Si], chapter 5, we have ~Z,,(f,)l = I f u l  = a power of 1 and EI(F,) is pro-1.) 
Since 1 # p, we have c?) = IE(F,),I, which in turn equals (B,/(y, - l)BuI. 
Hence I ker(r,)l = c$') when E has additive reduction a t  v. (It is known that 
c, 5 4 when E has additive reduction at  v. Thus, for such v, ker(r,) = 0 
if p 2 5.) Now assume that E has split, multiplicative reduction at  v. Then 
cv = ord.(g$)) = -ordU(jE), where denotes the Tate period for E at  v. 

Thus, 9;) = n: .u, where u is a unit of F, and nu is a uniformizing parameter. 
One can verify easily that the group of units in K is divisible by p. By using 
the Tate parametrization one can show that B,/(Bv)div is cyclic of order 

I c(P) and that r, acts trivially on this group. Thus, I ker(r.,)( = cp) for all 
n 2 0. B,, might be infinite. In fact, (Bu)div = pp- if pp C F,; (Bu)div = 0 if 
p, F,. Finally, assume that E has nonsplit, multiplicative reduction at  v. 

I Then c, = 1 or 2, depending on whether ord,(js) is odd or even. Using the 
I Tate parametrization, one can see that B, is divisible when p is odd (and 

1 then ker(r,) = 0). If p = 2, E will have split, multiplicative reduction over 
I 
, K and so again B,/(B,)div has order related to ord,(&)). But 7, acts by 

-1 on this quotient. Hence ~ ' ( r , ,  B,) has order 1 or 2, depending on the 
I (PI parity of ord, (9;)). Hence, in all cases, I ker(r,) 1 = c, . 

Now assume that v lp. For each n, we let fun  denote the residue field 
for (F,),,. It doesn't depend on the choice of v,. Also, since v, is totally 
ramified in F,/F, for n >> 0, the finite field fun stabilizes to f,, the residue 

1 field of (F,),. We let denote the reduction of E at  v. Then we have 

I 
Lemma 3.4. Assume that E has good, ordinary reduction at v. Then 

I 1 .It is finite and has bounded order as n varies. 

Proof. Let C, = ker(E[pw] -, &PI), where we regard Elpw] as a sub- 
group of E(Q. Considering (Fn),, as a subfield of F,, we have Irn(~,,) = 
Im(h,)div by proposition 2.2. By proposition 2.4, we have Im(n,) = Im(X,), 
since the inertia subgroup of Gal(F,/F) for v has finite index. Thus, we can 
factor r,, as follows. 

Now a,, is clearly surjective. Hence ( ker(r,, ) 1 = [ ker(a,,) 1 . I ker(b,,) 1. By 
proposition 2.5, we have I ker(a,,)I = ~,@(f,,),l. For the proof of proposition 
1.2, just the boundedness of J ker(a,,)l (and of I ker(b,,)J) suffices. To study 
ker(b,,) we use the following commutative diagram. 

The surjectivity of the first row follows from Poitou-Tate Duality, which gives 
H2(M,C,) = 0 for any finite extension M of F,. (Note that C, P pp- for 
the action of GM.) Thus, ker(bvn) 2 ker(dun). But 

where y,, is a topological generator of Gal((F,),/(F,),,). Now E(f,), is 
finite and the kernel and cokernel of y,, - 1 have the same order, namely 

I P (  This is the order of ker(d,). Lemma 3.4. follows. 1 

Let CO denote the finite set of nonarchimedean primes of F which either 
lie over p or where E has bad reduction. If v @ .Eo and v, is a prime of F, 
lying over v, then ker(r,,) = 0. For each v E Eo, lemmas 3.3 and 3.4 show 
that 1 ker(r,,)) is bounded as n varies. The number of primes v, of F,, lying 
over any nonarchimedean prime v is also bounded. Consequently, we have 
proved the following lemma. 

Lemma 3.5. The order of ker(g,) is bounded as n varies. 

Lemma 3.1 implies that ker(s,) is finite and has bounded order no matter 
what type of reduction E has at  vlp. Lemmas 3.2 and 3.5 show that coker(s,) 
is finite and of bounded order, assuming that E has good, ordinary reduction 

, at  all vlg. Thus, theorem 1.2 is proved. 
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It  is possible for sn to be injective for all n. A simple sufficient condition 
for this is: E ( F )  has no element of order p. For then E(F,) will have no 
ptorsion, since r = Gal(F,/F) is a p r e p  group. Thus ker(hn) and hence 
ker(sn) would be trivial for all n. A somewhat more subtle result will be 
proved later, in proposition 3.9. 

It  is also possible for sn to be surjective for all n. Still assuming that E has 
good, ordinary reduction at  all primes of F lying over v, here is a sufficient 
condition for this: For each vlp, &(f,) has no element of order p and, for 
each v where E has bad reduction, E[pw]'v is divisible. The first part o j  this 
condition implies that &(fun), = 0 for all vJp and all n ,  again using the fact 
that r is prep.  Thus, ker(r,,) = 0 by lemma 3.4. In the second part of this 
condition, I, denotes the inertia subgroup of GF,. Note that v jp.  It  is easy 
to see that if E[pm]'~ is divisible, the same is true of Bu = HO((F,),, E P ] )  
for vlv. Thus, ker(r,,) = 0 for vn(v, because of (4). The second part of this 
condition is equivalent to p { c,. 

We want to now discuss the case where E has multiplicative reduction 
at  some vJp. In this case, one can attempt to imitate the proof of lemma 
3.4, taking C, = 3(E)[pao]. We first assume that E has split, multiplicative 
reduction. Then C, S ppm and we have an exact sequence 

of GF,-modules, where the action on QP/Zp is trivial. Then H1 ((Fn),, , pp-) 
and hence Im(X,,) are divisible. We have I ~ ( K , , )  = Im(X,,) as well as 
Im(rc,) = Im(X,). Thus, ker(r,, ) = ker(b,, ), where bun is the map 

For any algebraic extension M of F,, we have an exact sequence 

If [M:F,] < cm, then Poitou-Tate Duality shows that H2 (M, pp- ) E Qp/Zp, 
whereas H2(M, E[pW]) = 0, which gives the surjectivity of 6 ~ .  Thus, a~ is 
not surjective in contrast to the case where E has good, ordinary reduction 
at  v. We let a,, = a(~,,),, , rq = a(~,),,. Thus, ker(b,,) can be identified 
with Im(a,, ) n ker(d,, ), where dun is the map 

The kernel of d,, is quite easy to describe. We have 

which is isomorphic to Q,/Z, as a group. The image of a,, is more interesting 
, to describe. It  depends on the Tate period q~ for E, which is defined by 
the equation j(qE) = jE, solving this equation for q~ E F c .  Here j(g) = 

9-I -t- 744 + 1968849 + - - for ~ql, < 1 and jE is the j-invariant for E. Since 
j~ E F is algebraic, the theorem of [B-D-G-P] referred to in section 1 implies 
that q~ is transcendental. Also, we have lqElv = ljElul. Let 

denote the reciprocity map of local class field theory. We will prove the fol- 
lowing result. 

Proposition 3.6. Let M be a finite extension of F,. Then 

If M is a +,-extension of F,, then a~ is surjective. 

Proof. The last statement is clear since GM has pcohomological dimension 
1 if M/F, has profinite degree divisible by p". For the first statement, the 
exact sequence 

induces a map aC):H1 (M, E[pn]) + H1 (M, Z/pnZ) for every n 2 1. Because 
of the Weil pairing, we have Hom(E[pn], p,- ) E E[pn]. Thus, by Poitou-Tate 
Duality, ag) is adjoint to the natural map 

whose kernel is easy to describe. It  is generated by the class of the 1-cocycle 
45: GM + ppn given by 4(g) = g ( ~ z ) /  p& for all g E GM. The pairing 

is just (d,, $) + +(recM(q)) for q E M X ,  where 4, is the 1-cocycle associ- 
ated to q as above, i.e., the image of q under the Kummer homomorphism 
M /(MX)pn -+ H1(M, ppn). This implies that 

from which the first part of proposition 3.6 follows by just taking a direct 
limit. 

Still assuming that E has split, multiplicative reduction at  v, the state- 
ment that ker(r,,) is finite is equivalent t o  the assertion that ker(d,J 
Im(n,,). In this case, we show that I ker(r,,)l is bounded as n varies. For let 

= '~CF" (QE)I(F,)~ E Gal((F,),/F,). Let en = [(Fn),, :Fu]. Then we have 
'~C(F,,),,, ( Q E ) ~ ( F ~ ) ,  = aen . It is clear that 
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has order equal to [Gal((F,),/(F,),,):(ae-)]. But Gal((F,),/F,) 2 Z,. 
This index is constant for n > 0. Thus, ker(r,,) is finite and of constant 
order as n varies provided that u # id. Let Q;yC denote the cyclotomic Z,- 
extension of Q,. Then (F,), = F , Q F .  We have the following diagram 

where the horizontal arrows are the reciprocity maps. It  is known that the 
group of universal norms for Q;yC/Qp is precisely p . (p), where p denotes 
the roots of unity in Q,. This of course coincides with the kernel of the 
reciprocity map Q,X -+ Gal(Q~YC/$,) and also coincides with the kernel of 
log, (where we take Iwasawa's normalization logp@) = 0.) Also, it is clear 
that u # id H uIQ;yc # id. Thus we have shown that ker(rUn) is finite if 
and only if logp(NFwlQp(qE)) # 0. The order will then be constant and is 
determined by the projection of NFvIQp(qE) to Z: in the decomposition 
Q," = (p) x Z:. One finds that 

where - indicates that the two sides have the same padic valuation. 
I 
I Assume now that p is odd and that E has nonsplit, multiplicative reduc- 

tion. We then show that ker(rvn) = 0. We have an exact sequence 

where q5 is the unramified character of GFy of order 2. As discussed in section 
I 2, we have Im(rcv,) = Im(X,,). Also fin is surjective. We can identify ker(rUn) 

with ker(d,, ), where dun is the map 

I whose kernel is clearly zero. Thus, as stated, ker(r,,,) = 0. (The value of 
NFvlQp (qE) is not relevant in this case.) I fp  = 2, then ~ I m ( ~ v n ) / I m ( ~ u n ) d i , (  is 
easily seen to be at  most 2. Hence, if E has nonsplit, multiplicative reduction 
over (F,),, , we have ( ker(r,,)( _< 2. (Note: It can happen that (F,), contains 

I  the unramified quadratic extension of F,. Thus E can become split over 
(F,),, for n > 0.) We will give the order of ker(r,) when E has nonsplit, 
multiplicative reduction at  v)2. The kernel of a, has order [Im(X,) : Im(n,)], 
which is just the Tamagawa factor for E at  v. (See the discussion following 
the proof of proposition 2.5.) On the other hand, ker(b,) ker(d,) and this 

1 group has order 2. Thus, I ker(r,)l - 2c,, where c, denotes the Tamagawa 
I I  factor for E at  v. 

~i The above observations together with lemmas 3.1-3.3 provide a proof of 
ihe following result in the direction of conjecture 1.6. 

I 

Proposition 3.7. Assume that E is an elliptic curve defined over F which 
has good, ordinary reduction or multiplicative reduction at all primes v of F 
lying over p. Assume also that iogp(NFuIQp (qg))) # 0 for a11 v where E has 
multiplicative reduction. Then the maps 

have finite kernel and cokernel, of bounded order as n varies. 

( In the above result, q l )  denotes the Tate period for E over F,. If jE E Q,, 
( then so is 9;). Thus, N ~ / ~ ~  (q;)) = (q;))IFvi~pl is transcendental according 

to the theorem of Barre-Sirieix, Diaz, Gramain, and Philibert. Perhaps, it 
is reasonable to conjecture in general that NFvlQp (qg)) is transcendental 

whenever j~ E F, na. Then the hypothesis log, (NFv (q;))) # 0 obviously 
holds. This hypothesis is unnecessary in proposition 3.7, if p is odd, for those 
v's where E has nonsplit, multiplicative reduction. (For p = 2, one needs the 
hypothesis when E has split reduction over (F,),.) 

Let X be a profinite A-module, where A = Z,[[T]], T = y - 1, as in 
section 1. Here are some facts which are easily proved or can be found in 
[Wa2] . 

(1) X = T X  + X = 0. 
(2) X /TX finite * X is a finitely generated, torsion A-module. 
(3) X/TX finitely generated over Zp * X is finitely generated over A. 
(4) Assume that X is a finitely generated, torsion A-module. Let 8, denote 

7," - 1 E A for n 2 0. Then there exist integers a, b, and c such that the 
Z,-torsion subgroup of X/BnX has order pen, where en = a n  + bpn + c 
for n >> 0. 

We sketch an argument for (4). Let f (T) be a generator for the characteristic 
ideal of X ,  assuming that X is finitely generated and torsion over A. If we have 
f (C - 1) # 0 for all ppower roots of unity, then X/&X is finite for all n > 0 
and one estimates its order by studying f (C - l) ,  where C runs over the 
pn-th roots of unity. One then could take a = X(f), b = p(f )  in (4). Suppose 
X = A/(h(T)"), where h(T) is an irreducible element of A. If h(T) + 8, for 
all n, then we are in the case just discussed. This is true for (h(T)) = pA for 
example. If h(T)IOn, for some no > 0, then write 8, = h(T)$,, for n > no, 
where 4, E A. Since 19, = (1 + T)P" - 1 has no multiple factors, we have 
h(T) + 4n. Then we get an exact sequence 

for n > no. Here Y = (h(T))/(h(T)e) S A/(h(T)e-l). Then Y/&Y is 
finite and one estimates its growth essentially as mentioned above. Now 
A/h(T)A is a free Z,-module of rank = X(h). Thus the Hp-torsion sub- 
group of X/&X is Y/&Y whose order is given by a formula as above. In 
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general, X is pseudo-isomorphic to a direct sum of A-modules of the form 
X/(h(T)e) and one can reduce to that case. One sees that b = p(f), where 
f = f (T) generates the characteristic ideal of X. Also, a = X(f) - Xo, where 
Xo = max(rankz, (X/&X)). The Z,-rank of X/BnX clearly stabilizes, equal 
to Xo for n >> 0. 

These facts together with the results of this section have some immediate 
consequences, some of which we state here without trying to be as general as 
possible. For simplicity, we take $ as the base field. 

A 

Proposition 3.8. Let E be an elliptic curve with good, ordinary reduction 
at p. We make the following assumptions: 

(i) p does not divide lE(IFp)l, where E denotes the reduction of E at p. 
(ii) If E has split, multiplicative reduction at 1, where 1 #p, then p 1 ordl ( j ~ ) .  

If E has nonsplit, multiplicative reduction at 1, then either p is odd or 
ordl (jE) is odd. 

(iii) If E has additive reduction at 1, then E($,) has no point of order p. 

Then the map SelE($), + selE($,); is surjective. If  el^($), = 0, then 
SelE($,), = 0 also. 

Remark. The comments in the paragraph following the proof of lemma 3.3 
allow us to restate hypotheses (ii) and (iii) in the following way: p f cl for all 
1 # p. Here cl is the Tamagawa factor for E at 1. If E has good reduction at 
1, then q = 1. If E has additive reduction at  1, then cl 5 4. Thus, hypothesis 
(iii) is automatically satisfied for any p > 5. If E has nonsplit, multiplicative 
reduction at 1, then hypothesis (ii) holds for any p 2 3. On the other hand, 
if E has split, multiplicative reduction at  1, then there is no restriction on 
the primes which could possibly divide cl. Hypothesis (i) is equivalent to 
a, $ l (modp),  where a, = l + p -  IE(IF,)I. 

Proof. We refer back to the sequence at  the beginning of this section. We have 
coker(h,) = 0 by lemma 3.2. The surjectivity of the map so would follow from 
the assertion ker(go) = 0. But the above assumptions simply guarantee that 
the map PE($) -+ PE($,) is injective and hence that ker(go) = 0. For by 
lemma 3.4, (i) implies that ker(r,) = 0. If E has multiplicative reduction 
at 1 # p then (ii) implies that ord1(&)) is not divisible by p. This means 

$,( @ )/Q, is ramified. Thus HO(L, E[pm]) is a divisible group, where L 

denotes the maximal unramified extension of $,. Now Gal(L/$,) Y f. The 
cyclotomic Z,-extension of Q1 is (Q,),, where q11. Thus, (Q,), L. Let 
H = Gal(L/($,),). Then H acts on HO(L, E[pm]) through a finite cyclic 
group of order prime to p. Thus, it is easy to see that HO((Q,),, E[pm]) 
is divisible and hence, from (4), we have ker(r1) = 0. Assume now that 

.E has additive reduction at  1 (where, of course, 1 # p). Then ~ [ p ~ ] h  is 
finite, where Il denotes GL, the inertia subgroup of GQ,. We know that 

I 

if E has potentially good reduction at 1, then 4 acts on E[pwj through a 
quotient of order 2a3b. Thus E[pw]'l = 0 if p 2 5, and (iii) is then not 
important. If p = 2 or 3, (iii) suffices to conclude that HO(($,),, E[pm]) = 0 
since Gal(($,),/Q1) is pro-p. Thus, again, ker(rl) = 0. (We are essentially 
repeating some previous observations.) Finally, if SelE($), is trivial, then 
so is S e l ~ ( $ , ) ~ .  Let X = XE($,). Then XITX = 0, which implies that 
X = 0. Hence Sel~($,) = 0 as stated. 

If we continue to take F = $, then we now know that the restriction 
map SelE($), + selE($,); has finite cokernel if E has good, ordinary 
or multiplicative reduction at p. (In fact, potentially ordinary or potentially 
multiplicative reduction would suffice.) Thus, if SelE($), is finite, then so is 
SelE($,)F. Hence, for X = XE($,), we would have that X/TX is finite. 
Thus, X would be a A-torsion module. In addition, we would have T -f f,y(T). 

Assume that E has good, ordinary reduction at p. If p is odd, then the 
map SelE($,), + SelE($,)m is actually injective for all n 2 0. To see this, 
let B = HO($,, E[poo]). Then ker(h,) = H1 (r,, B). The inertia subgroup 
I, of GQp acts on ker(E[p] + Eb])  by the Teichmiiller character w. That is, 

for the action of I,. On the other hand, I, acts on B through Gal(($,),/$,), 
where q denotes the unique prime of $, lying over p. This Galois group is 
pro-p, being isomorphic to 72,. Since p > 2, w has nontrivial order and this 
order is relatively prime to p. It follows that 

and therefore B maps injectively into E [ p ~ ] .  Thus, I, acts trivially on B 
Since p is totally ramified in $,/$, it is clear that r = Gal($,/$) also 
acts trivially on B. That is, 

Hence ker(h,) = Hom(F,, B) for all n _> 0. Now suppose that 4 is a nontrivial 
element of Hom(r,, B). Let IF) denote the inertia subgroup of G(QJ~. Then 
4 clearly remains nontrivial when restricted to 

But this implies that [q'~] $ SelE($,),. Hence ker(s,) = ker(h,)nsel~($,), is 
trivial as claimed. This argument also applies if E has multiplicative reduction 
at p. More generally, the argument gives the following result. We let F be 
any number field. For any prime v of F lying over p, we let e(v/p) denote the 
ramification index for F,/$,. 

Proposition 3.9. Let E be an elliptic curve defined over F. Assume that 
there is at least one prime v of F lying over p with the following properties: 

i 
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(i) E has good, ordinary reduction or multiplicative reduction at v, 
(ii) e(v/p) 5 p -  2. 

Then the map SelE(Fn), -+ SelE(F,), is injective for all n > 0. 

Theorem 1.10 is also an application of the results described in this section. 
One applies the general fact (4) about torsion A-modules to X = XE(F,) .  
Then, X/&X is the Pontryagin dual of selE(F,)2. The torsion subgroup of 
X/&X is then dual to ~el~(~,)p/(~el~(~,)p)di~. One Compares this to 
SelE (Fn),/ (SelE(Fn)p)div, which is precisely mE (F,), under the assumption 
of finiteness. One must show that the orders of the relevant kernels and CO- 

kernels stabilize, which we leave for the reader. One then obtains the formula 
for the growth of IIIIs(Fn),l, with the stated X and p. 

We want to mention one other useful result. It  plays a role in Li Guo's 
proof of a parity conjecture for elliptic curves with complex multiplication. 
(See [Gu~].)  

Proposition 3.10. Assume that E is an elliptic curve/F and that SelE(F,), 
is A-cotorsion. Let XE = corankzp(SelE(F,),). Assume also that p is odd. 
Then 

corankHp (SeIE(F),) E XE (mod 2). 

Proof. The maps H1(Fn,E[pm]) -+ H1(Fm, E[pm]) have finite kernels of 
bounded order as n varies, by lemma 3.1. Thus, c o r a n k ~ , ( S e l ~ ( F ~ ) ~ )  is 
bounded above by XE. Let Xb denote the maximum of these Z,-coranks. 
Then ~ ~ r a n k ~ , ( S e l ~ ( & ) , )  = Xb for all n > no, say. For brevity, we let 
Sn = SelE(Fn)p, Tn = (Sn)div, and Un = Sn/Tn, which is finite. The 

Gal(FnlF), and hence the map To -+ T:~'(~'"~), restriction map So + Sn 
have finite kernel and cokernel. Since the nontrivial $,-irreducible represen- 
tations of Gal(Fn/F) have degree divisible by p - 1, it follows easily that 
coranknp (T,) - corankap (To) (mod p - 1). Hence 

corankHp ( S e l ~  (F),) Xk (mod p - 1). 

Since p is odd, this gives a congruence modulo 2. Let S, = SelE(F,), and 
let T, = LimT,, which is a A-submodule of S,. Also, T, (Q , / z , )~~ .  
4 

Let U, = S,/T, = Lim Un. The map Tn -+ T, is obviously surjective for 
4 

all n 2 no (since the kernel is finite). This implies that 

for n 2 no, which is of bounded order as n varies. Now a well-known theorem 
of Cassels states that there exists a nondegenerate, skew-symmetric pairing 

This forces (UnI to be a perfect square. More precisely, if the abelian group Un 
is decomposed as a direct product of cyclic groups of orders pet', 1 5 i 5 g,, 
say, then gn is even and one can arrange the terms so that e?) = ek2) > 
. . . > e p n - l )  - (9-1 

- - en . We refer to [Gull for a proof of this elementary result. 
(See lemma 3, page 157 there.) Since the kernels of the maps Un -+ U, have 
bounded order, the Z,-corank u of U, can be determined from the behavior 
of the e?)'s as n --+ m, namely, the first u of the e"'s will be unbounded, 
the rest bounded as n -+ oo. Thus u is even. Since u = XE - Xb, it follows 
that 

XE E Xk (mod 2). 

Combining that with the previous congruence, we get proposition 3.10. W 

Appendix to Section 3. We would like to give a different and rather novel 
proof of a slightly weaker form of pro~osition 3.6, which is in fact adequate 
for proving proposition 3.7. We let M denote the composition of all Zp- 
extensions of M .  For any q E M X ,  we let @ denote the composition of all 
Zp-extensions M, of M such that recM(q)IMm is trivial, i.e., the image of 
q under the reciprocity map M X  -+ Gal(M,/M) is trivial. This means that 
q E NM,IM(Mz) for all n 2 0, where Mn denotes the n-th layer in M,/M. 
We then say that q is a universal norm for the Z,-extension M,/M. We will 
show that 

The proof is based on the following observation: 

Proposition 3.11. Assume that q E M X  is a universal norm for the +,- 
extension M,/M. Then the image of (q) @ ($,/+,) under the composite 
map 

is contained in H1(M,, pPm)*-div, where A = +,[[Gal(M,/M)]]. 

Proof. To justify this, note that the inflation-restriction sequence shows that 
the natural map 

is surjective and has finite kernel. Here r = Gal(M,/M), rn = r p n  = 
Gal(M,/Mn). But H1(Mn,ppn) is isomorphic to (Qp/+,)tp"+l as a group, 
where t = [M : $,I. Thus, H1(M,, P,-)~- is divisible and has Z,-corank 
tpn + 1. If X = H1(Mco, pp- )-, then X is a finitely generated A-module with 
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the property that X/B,X E ZFn" for all n 2 0, where 8, = y ~ n  - 1 E A, 
and y is some topological generator of r. It is not hard to deduce from this 
that X g At x Z,, where Zp = XATtors is just A/O0A. Letting A denote the 
Pontryagin dual of A, regarded as a discrete A-module, we have 

where the action of r on Q,/Z, is trivial. Thus, Hl(M,,p,-)~-~iv it, 
noting that the Pontryagin dual of a torsion-free A-module is A-divisible. 
Hence (H1 (M,, ppm)A-div)r has H,-corank t. The maximal divisible sub- 
group of its inverse image in M X  @ (Qp/Zp) is isomorphic to (&,/%)'. 
We must show that this "canonical subgroup" of M X  @ (&,/Zp), which the 
Zp-extension MJM determines, contains (q) @ ($,/Zp) whenever q is a uni- 
versal norm for M,/M. Since Gal(M,/M) is torsion-free, we may assume 
that q $? (MX),. For every n 2 0, choose q, E M: so that NMnlM(qn) = 
q. Fix m 2 1. Consider a = q @ (l/pm). In M,X @ ($,/Z,), we have 
NMnlM(an) = a, where an = q, @ (l/pm). Let 6, 6, denote the images 
of a, a, in MG @ (Qp/Zp)/(MG @ (Qp/Zp))A-div. The action of r on this 
group is trivial. Hence pnEn = G. But G, has order dividing pm. Since n is 
arbitrary, we have 6 = 0, which of course means that the image of q @ (l/pm) 
is in H1(M,,ppm)A-div. This is true for any m 2 1, as claimed. rn 

We now will prove (6). We know that H1(M, Qp/Zp) has Z,-corank t + 1. 

Thus, Im(rM) has Hp-corank t,  which is also the Zp-corank of ~ a l ( z ~ ~ / ~ ) .  
To justify (6), it therefore suffices to prove that Hom(Gal(M,/M), $,/ZP) - 
is contained in Im(rM) for all +,-extensions M, of M contained in MqE. 
We do this by studying the following diagram 

where B is the image of (qE) @ (Qp/Zp) in H1 (M, ppm), which is the kernel 
of the map H1(M,ppm) --+ H1(M, Elpm]). Thus the first row is exact. We 
define B, as the image of B under the restriction map. The exactness of the 
second row follows similarly, noting that B, is the image of ( q ~ )  €3 (Qp/ZP) 
in H1 (M,, p,-). Now ker(c) = Hom(Gal(M,/M), $,/Z,) is isomorphic 
to Qp/Zp. We prove that ker(c) E Im(rM) by showing that Im(c o TM) = 
Im(e o b) has Z,-corank t - 1. The first row shows that H1(M, EIp*]) has 
Zp-corank 2t. Since b is surjective and has finite kernel, the Z,-corank of 

. X'(M,, ~ l p " ] ) ~  is also 2t. But H1(M,,pp-) 2 it x (Qp/Zp) and B, is 
contained in the A-divisible submodule corresponding to 2 by proposition 

3.11. One can see from this that H1 (M,, p,-)/B, is also isomorphic to 
2 x (Q,/Z,). (This is an exercise on A-modules: If X is a free A-module 
of finite rank and Y is a A-submodule such that X/Y has no Z,-torsion, 
then Y is a free A-module too.) It now follows that (H1 (M,, p,m)/B,)' 
has Zp-corank t + 1. Therefore, Im(e) indeed has Zp-corank t - 1. 

4. Calculation of an Euler Characteristic 

This section will concern the evaluation of f ~ ( 0 ) .  We will assume that E has 
good, ordinary reduction at all primes of F lying over p. We will also assume 
that SelE(F), is finite. By theorem 1.4, SelE(Fm)p is then A-cotorsion. By 
definition, ~ E ( T )  is a generator of the characteristic ideal of the A-module 
XE(F,) = Hom(Sel~(F,),, QP/Zp). Since ~elE(~, ) , r  is finite by theorem 
1.2, it follows that XE(F,)/TX~(F,) is finite. Hence T f ~ E ( T )  and so 
fE(0) # 0. The following theorem is a special case of a result of B. Perrin- 
Riou (if E has complex multiplication) and of P. Schneider (in general). (See 
[Pel] and [Schl].) For every prime v of F lying over p, we let &, denote the 
reduction of E modulo v, which is defined over the residue field f,. For primes 
v where E has bad reduction, we let c, = [E(F,):Eo(F,)] as before, where 
Eo(F,) denotes the subgroup of points with nonsingular reduction modulo v. 
The highest power of p dividing c, is denoted by c?). Also, if a, b E &; , we 
write a - b to indicate that a and b have the same padic valuation. 

Theorem 4.1. Assume that E is an elliptic curve defined over F with good, 
ordinary reduction at all primes of F lying over p. Assume also that s e l ~ ( F ) ,  
is finite. Then 

u bad V I P  

Note that under the above hypotheses, SelE(F), = IIIE(F),. Also, we have - 
IEu(fu)l = (1 - %)(I - Pu), where &UP, = N ( v ) ,  a u  + P u  = au E Z ,  and 
p t a,. It follows that a,, P, E &,. We can assume that a, E q. Hence 

p ( I&,( f,)l if and only if a, - 1 (mod p). We say in this case that v is an 
anomalous prime for E, a terminology introduced by Mazur who first pointed 
out the interest of such primes for the Iwasawa theory of E. In [Mazl], one 
finds an extensive discussion of them. 

We will prove theorem 4.1 by a series of lemmas. We begin with a general 
fact about A-modules. 

Lemma 4.2. Assume that S is a cofinitely generated, cotorsion A-module. 
Let f (T) be a generator of the characteristic ideal of X = Hom(S, QP/Zp). 
Assume that S' is finite. Then Sr  is finite, f (0) # 0, and f (0) - ISrI/ISr 1 .  
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Remark. Note that Hi(I',S) = 0 for i > 1. Hence the quantity ISr(/lSrl 
is the Euler characteristic I H O ( r ,  S )  111 H1 (I', S )  I .  Also, the assumption that 
Sr is finite in fact implies that S is cofinitely generated and cotorsion as a 
A-module. 

Proof of lemma 4.2. By assumption, we have that X / T X  is finite. Now X is 
pseudo-isomorphic to a direct sum of A-modules of the form Y = A/(g(T)). 
For each such Y, we have Y/TY = A/(T,g(T)) = Z,/(g(O)). Thus, Y/TY 
is finite if and only if g(0) # 0. In this case, we have ker(T:Y -+ Y) = 0. 
From this, one sees that X /TX is finite if and only if f (0) # 0, a n d  then 
obviously ker(T : X  + X )  would be finite. Thus, Sr is finite. Since both 
Euler characteristics and the characteristic power series of A-modules behave 
multiplicatively in exact sequences, it is enough to verify the final statement 
when S is finite and when Hom(S, $,/Z,) = A/(g(T)). In the first case, the 
Euler characteristic is 1 and the characteristic ideal is A. The second case is 
clear from the above remarks about Y. I 

Referring to the diagram at  the beginning of section 3, we will denote so, 
ho, and go simply by s ,  h, and g. 

Lemma 4.3. Under the assumptions of theorem 4.1, we have 

Proof. We have I ( ~ e l ~ ( ~ , ) ; l / ( ~ e l ~ ( ~ ) , l  = Icoker(s)l/l ker(s)l, where all the 
groups occurring are finite. By lemma 3.2, coker(h) = 0. Thus, we have an 
exact sequence: 0 -+ ker(s) --+ ker(h) -+ ker(g) + coker(s) + 0. It  follows 
that Icoker(s) I / J  ker(s) 1 = ( ker(g)l/I ker(h)l. Now we use the fact that E(F,), 
is finite. Then 

has the same order as HO(I', E(F,),) = E(F),. These facts give the formula 
in lemma 4.3. I 

The proof of theorem 4.1 clearly rests now on studying I ker(g)l. The 
results of section 3 allow us to study ker(r), factor by factor, where r is the 
natural map 

It will be necessary for us to replace PE(*) by a much smaller group. Let C 
denote the set of primes of F where E has bad reduction or which divide p 
or oo. By lemma 3.3, we have ker(r,) = 0 if v $! C. Let P ~ ( F )  = n?h(FU), 

V 

where the product is over all primes of F in C. We consider P ~ ( F )  as a 
subgroup of PE(F).  Clearly, ker(r) P ~ ( F ) .  Thus I ker(r)l = n I ker(rv) 1, 

V 

where v again varies over all primes in C. For vlp, the order of ker(r,) is 
given in lemma 3.4. For v + p, the remarks after the proof of lemma 3.3 show 
ihat I ker(rv)I - c?). We then obtain the following result. 

Lemma 4.4. Assume that E/F has good, ordinary reduction at all vlp. Then 

I W T ) I  - ( n c P ) ( n  I W ~ ) , I ~ ) .  
v bad V I P  

Now let G ~ ( F )  = Im (H'(F~/F, ~ [ p ~ ] )  -+ P ~ ( F ) ) ,  where FE denotes 
the maximal extension of F unramified outside of C. Then 

We now recall a theorem of Cassels which states that P ~ ( F ) / G ~ ( F )  E 
E(F),. (We will sketch a proof of this later, using the Duality Theorem 
of Poitou and Tate.) It is interesting to consider theorem 4.1 in the case 
where E(F), = 0, which is of course true for all but finitely many primes 
p. Then, by Cassels' theorem, ker(g) = ker(r). Lemmas 4.3, 4.4 then show 
that the right side of - in theorem 4.1 is precisely ISelE(~,);l. Therefore, 
in this special case, by lemma 4.2, theorem 4.1 is equivalent to asserting 
that (SelE(F,)p)r = 0. It  is an easy exercise to see that this in turn is 
equivalent to asserting that the A-module XE(F,) has no finite, nonzero A- 
submodules. In section 5 we will give an example where XE(F,) does have 
a finite, nonzero A-submodule. All the hypotheses of this section will hold, 
but of course E(F)  will have an element of order p. 

The following general fact will be useful in the rest of the proof of theorem 
4.1. We will assume that G is a profinite group and that A is a discrete, p 
primary abelian group on which G acts continuously. 

Lemma 4.5. Assume that G has p-cohomological dimension n 2 1 and that 
A is a divisible group. Then Hn(G, A) is a divisible group. 

Proof. Consider the exact sequence 0 -+ A[p] -+ A 4 A + 0, where the map 
A 3 A is of course multiplication by p. This induces an exact sequence 

Since the last group is zero, Hn(G, A) is divisible by p. The lemma follows 
because Hn(G, A) is a pprimary group. I 

We have actually already applied this lemma once, namely in the proof 
of proposition 2.4. We will apply it to  some other cases. A good reference 
for the facts we use is [Se2]. Let v be a nonarchimedean prime of F ,  q a 
prime of F, lying above v. Then Gal((F,),/F,) S Z,, as mentioned earlier. 
Thus, G(F, )?  has pcohomological dimension 1. Hence H1 ((F,), , E[pm]) 
must be divisible, and consequently the same is true for 3t~((F,),). AS 
another example, Gal(FE/F) has pcohomological dimension 2 if p is any odd 
prime. Let A, = E[pm] @ (d), where tc : I' -+ 1 + 2pHp is an isomorphism 
and s E Z. (A, is something like a Tate twist of the GF-module E[pm]. One 
could even take s E H,.) It  then follows that H2(Fc/F,A,) is a divisible 
group. 
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Lemma 4.6. Assume that s e l ~ ( F , ) ~  is A-cotorsion. Then the map 

is surjective. 

Remark. We must define P~(F,) carefully. For any prime v in C, we define 

where P~)(F, )  = n HE((Fn),,) and HE(*) is as defined at  the beginning 
un I V  

of section 3. The maps Pg)(F,)  + P ~ ) ( F , + ~ )  are easily defined, considering 
separately the case where v, is inert or ramified in Fn+1/Fn (where one uses 
a restriction map) or where v, splits completely in Fn+1/Fn (where one uses 
a "diagonal" map). If v is nonarchimedean, then v is finitely decomposed in 
F,/F and one can more simply define P~)(F,) = n 'HE((F,)~), where 

rllv 

77 runs over the finite set of primes of F, lying over v. If v is archimedean, 
then v splits completely in F,/F. We know that Im(nu,) = 0 for vn lv. Thus, 
HE((Fn)un) = HE(Fu) = H1(Fu, E[pM]). Usually, this group is zero. But it 
can be nonzero if p = 2 and Fu = IR. In fact, 

where E(F,),,, denotes the connected component of the identity of E(Fu). 
Therefore, obviously H1(Fv, E[2"]) has order 1 or 2. The order is 2 if E[2] 
is contained in E(F,). We have 

which is either zero or isomorphic to (Z/2Z)[Gal(Fn/F)]. In each of the 
above cases, P~)(F,) can be regarded naturally as a A-module. If v is 
nonarchimedean then the remarks following lemma 4.5 show that, as a group, 
P$)(F,) is divisible. If v is archimedean, then usually P~)(F,) = 0. But, 
if p = 2, Fu = IR, and E[2] is contained in E(F,), then one sees that 
P~)(F,) r Hom(A/2A,+/2Z) as a A-module. (One uses the fact that 

P~)(F,)P. 2 P$)(F~) for all n > 0 and the structure of P~)(F, )  men- 
tioned above.) Finally, we define P~(F,) = n P~ ' (F , ) .  

W E E  

Proof of Lemma 4.6. We can regard P~(F,) as a A-module. The idea of the 
proof is to show that the image of the above map is a A-submodule of P;(F,) 
with finite index and that any such A-submodule must be PE(F,). We will 
explain the last point first. If p is odd, the remarks above show that each 
factor in P;(F,) is divisible. Hence P~(F,)  is divisible and therefore has 

no proper subgroups of finite index. If p = 2, one has to observe that the factor 
P$) (F,) of P~(F,)  coming from an archimedean prime v of F is a A-module 
whose Pontryagin dual is either zero or isomorphic to (111211). Since 11/24 
has no nonzero, finite A-submodules, we see that P~)(F,) has no proper A- 

submodules of finite index. Since the factors Pk)(F,) for nonarchimedean v 
are still divisible, it follows again that P~(F,)  has no proper A-submodules 
of finite index. 

Now we will prove that the image of the map in the lemma has finite 
index. (It is clearly a A-submodule.) To give the idea of the proof, assume 
first that SelE(F,), is finite for all n > 0. Then the cokernel of the map 
H 1 ( F ~ / F n ,  E[pw]) + Pg(F,) is isomorphic to E(F,), by a theorem of 
Cassels. But IE(F,),I is bounded since it is known that E(F,), is finite. 
It clearly follows that the cokernel of the corresponding map over F, is 
also finite. To give the proof in general, we use a trick of twisting the Galois 
module E[pw]. We let A, be defined as above, where s E Z.  As GF, -modules, 
A, = E[pm]. Thus, H1(F,, A,) = H1(F,, E[pm]). But the action of r 
changes in a simple way, namely H1(F,, A,) = H1 (F,, Elpa]) 8 (nS). Now 
we can define Selmer groups for A, as suggested at the end of section 2. 
One just imitates the description of the pSelmer group for E. For the local 
condition at v dividing p, one uses Cu 8 (6,). For v not dividing p, we require 
1-cocycles to be locally trivial. We let SA* (F,), SA* (F,) denote the Selmer 
groups defined in this way. Then SA, (F,) = SelE(F,), 8 (nS) as A-modules. 
Now we are assuming that S&(F,), is A-cotorsion. It is not hard to show 
from this that for all but finitely many values of s ,  SA, (F,)~, will be finite 
for all n 2 0. Since there is a map SA* (F,) -+ SA, (F,)~, with finite kernel, 
it follows that SA- (F,) is finite for all n 2 0. There is also a variant of 
Cassels' theorem for A,: the cokernel of the global-to-local map for the GF,- 
module A, is isomorphic to HO(Fn, A_,). But this last group is finite and 
has order bounded by IE(Fm)p(. The surjectivity of the global-to-local map 
for A, over F, follows just as before. Lemma 4.6 follows since A, Z E[pm] 
as GF,-modules. (Note: the variant of Cassels' theorem is a consequence of 
proposition 4.13. It may be necessary to exclude one more value of 8 . )  4 

The following lemma, together with lemmas 4.24.4, implies theorem 4.1. 

Lemma 4.7. Under the assumptions of theorem 4.1,  we have 

Proof. By lemma 4.6, the following sequence is exact: 

Now r acts on these groups. We can take the corresponding cohomology 
sequence obtaining 
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In the appendix, we will give a proof that the last term is zero. Thus we get 
the following commutative diagram with exact rows and columns. 

E F G (  H1(FclF ,  E[pMl) p , c ( ~ )  - p, ( )/ ,c F )  -+ 0 

J. J. J. 
H1(Fc/F,, ~ [ p , ] ) ~  -%- P;(F,)~ --t (Sel~(F,),)r + 0 

J. 
0 

J. 
0 

J. 
0 

.* 

The exactness of the first row is clear. The remark above gives the exact- 
ness of the second row. The surjectivity of the first vertical arrow is because 
I' has pcohomological dimension 1. The surjectivity of the second vertical 
arrow can be verified similarly. One must consider each v E C separately, 
showing that p;)(F) -+ P ~ ) ( F , ) ~  is surjective. One must take into ac- 
count the fact that v can split completely in F,/F for some n. But then 
it is easy to see that p;)(F) 9 P ; ) ( F , ) ~ ~ ' ( ~ ~ / ~ ) .  One then uses the fact 
that Gal((F,), / (F,) ) has pcohomological dimension 1, looking a t  the 
maps run for v 1/ p or dun for vlp. For archimedean v, one easily verifies that 
P;) ( F )  9~;) (F,)r. The surjectivity of the third vertical arrow follows. It 
is also clear that Im(a) is mapped surjectively to Im(b). We then obtain the 
following commutative diagram 

From the snake lemma, we then obtain 0 -+ ker(g) -+ ker(r) -+ ker(t) -+ 0. 
Thus, I ker(g) 1 = I ker(r) 1 / 1 ker(t) 1. Combining this with Cassels' theorem and 
the obvious value of I ker(t)I proves lemma 4.7. 

The last commutative diagram, together with Cassels' theorem, gives the 
following consequence which will be quite useful in the discussion of various 
examples in section 5. A more general result will be proved in the appendix. 

Proposition 4.8. Assume that E is an elliptic curve defined over F with 
good, ordinary reduction at all primes of F lying overp. Assume that SelE(F), 
is finite and that E(F), = 0. Then SelE(F,)p has no proper A-submodules of 
finite index. In particular, if SelE(F,), is nonzero, then at must be infinite. 

Proof. We have the map t:E(F), + SelE(F,)r, which is surjective. Since 
E(F) ,  = 0, it follows that (Sel,y(F,),)r = 0 too. Suppose that sel,y(Fm), 
has a finite, nonzero A-module quotient M. Then M is just a nonzero, fi- 

. nite, abelian pgroup on which r acts. Obviously, Mr # 0. But M r  is a 
homomorphic image of (SelE(F,)p)r, which is impossible. rn 

Theorem 4.1 gives a conjectural relationship of f ~ ( 0 )  to the value of 
the Hasse-Weil L-function L(E/F, s)  a t  s = 1. This is based on the Birch 
and Swinnerton-Dyer conjecture for E over F, for the case where E ( F )  is 
assumed to be finite. We assume of course that III,y(F), is finite and hence 
so is Sel,y(F), = LIIE(F),. We also assume that L(E/F, s) has an analytic 
continuation to s = 1. The conjecture then asserts that L(E/F, 1) # 0 and 
that for a suitably defined period O(E/F),  the value L(E/F, l ) /O(E/F)  is 
rational and 

As before, - means that the two sides have the same padic valuation. If O 
denotes the ring of integers in F ,  then one must choose a minimal Weierstrass 
equation for E over O(,), the localization of O at  p, to  define O(E/F)  (as 
a product of periods over the archimedean primes of F) .  For vlp, the Euler 
factor for v in L(E/F, s)  is 

where a,, pv are as defined just after theorem 4.1. Recall that a, E Z;. (We 
are assuming that E has good, ordinary reduction at  all vlp.) Then we have 

lE(fv),l - (1 - a u )  - (1 - a;') = (1 - PvN(v)-l). 

The last quantity is one factor in the Euler factor for v, evaluated at  s = 1. 
Thus, theorem 4.1 conjecturally states that 

For F = $, one should compare this with conjecture 1.13. 
As we mentioned in the introduction, there is a result of P. Schneider 

(generalizing a result of B. Perrin-Riou for elliptic curves with complex mul- 
tiplication) which concerns the behavior of f,y(T) at  T = 0. We assume that 
E is an elliptic curve/F with good, ordinary reduction at  all primes of F 
lying over p, that p is odd and that F n $, = $ (to slightly simplify the 
statement). Let T = rank(E(F)). We will state the result for the case where 
r = 1 and ILIE(F), is finite. (Then SelE(F), has Z,-corank 1.) Since then 
TI fE(T), one can write fE(T) = Tg,y(T), where g,y(T) E A. The result is 
that 

Y v bad 

Here P E E ( F )  is a generator of E(F)/E(F)tOrs and h,(P) is its ana- 
lytic padic height. (See [Sch2] and the references there for the definition 
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of hp(P).) The other factors are as in theorem 4.1. Conjecturally, one should 
have hp(P) # 0. This would mean that fE(T) has a simple zero at T = 0. 
But if hp(P) = 0, the result means that gE(0) = 0, i.e., T21 fE(T). If F = $ 
and E is modular, then B. Perrin-Riou [Pe3] has proven an analogue of 
a theorem of Gross and Zagier for the padic L-function Lp(E/$, s). As- 
sume that L(E/$, s) has a simple zero at  s = 1. Then a result of Kolyvagin 
shows that rank(E($)) = 1 and HIE($)  is finite. Assume that P generates 
E($)/E($)t,,,. Assume that hp(P) # 0. Perrin-Riou's result asserts that 
Lp(E/$, s) also has a simple zero at s = 1 and that N 

where h,(P) is the canonical height of P. If one assumes the validity of 
the Birch and Swinnerton-Dyer conjecture, then this result and Schneider's 
result are compatible with conjecture 1.13. 

The proof of theorem 4.1 can easily be adapted to the case where E has 
multiplicative reduction at  some primes of F lying over p. One then obtains 
a special case of a theorem of J .  Jones [Jo]. Jones determines the padic val- 
uation of ( fE(T)/Tr) where r = rank(E(F)), generalizing the results of 
P. Schneider. He studies certain natural A-modules which can be larger, in 
some sense, than SelE(F,),. Their characteristic ideal will contain Te ~ E ( T ) ,  
where e is the number of primes of F where E has split, multiplicative re- 
duction. This is an example of the phenomenon of "trivial zeros". Another 
example of this phenomenon is the A-module S, in the case where p splits 
in an imaginary quadratic field F. As we explained in the introduction, S& 
is infinite. That is, a generator of its characteristic ideal will vanish at  T = 0. 
For a general discussion of this phenomenon, we refer the reader to [Gr4]. 

To state the analogue of theorem 4.1, we assume that Sek(F), is finite, 
that E has either good, ordinary or multiplicative reduction at all primes 
of F over p, and that logP(NF,,/~Jq(EY))) # 0 for all v lying over p where 

E has split, multiplicative reduction. (As in section 3, q(EY) denotes the Tate 
period for E over F,.) Under these assumptions, ker(r,) will be finite for all 
vlp. It follows from proposition 3.7 that SelE(~,)i will be finite and hence 
SelE(F,), will be A-cotorsion. In theorem 4.1, the only necessary change 
is to replace the factor ~&(f,),1~ for those vlp where E has multiplicative 
reduction by the factor I ker(r,)(/c?). (Note that the factor c?) for such v 
will occur in n tip).) The analogue of theorem 4.1 can be expressed as 

v bad 

If E has good, ordinary reduction at v, then 1, = l&(fv)p12. Assume that E 
has nonsplit, multiplicative reduction at v. Ifp is odd, then both ( ker(r,)( and 

' 'cp) are equal to 1. If p = 2, then ( ker(r,)l = 2cp). (Recalling the discussion 

concerning ker(r,) after the proof of proposition 3.6, the 2 corresponds to 
I ker(b,)l, and the c?) corresponds to I ker(a,)l = [Im(X,) : I ~ ( K , ) ] .  In the 
case of good, ordinary reduction at v, both ker(av) and ker(bv) have order 
~&,(f ,) , l . )  Thus, if E has nonsplit, multiplicative reduction at v, one can take 
1, = 2 (for any prime p). We remark that the Euler factor for v in L(E/F, s) 
is (1 + N(v)-*)-l. One should take a, = -1, PV = 0. Perhaps this factor 
1, = 2 should be thought of as (1 -a;'). (This is suggested by the fact that, 
for a modular elliptic curve E defined over F = $, the padic L-function 
constructed in [M-T-TI has a factor (1 - a;') in its interpolation property 
when E has multiplicative reduction at p. This is in place of (1 - = 
(1 - /3,~-')~ when E has good, ordinary reduction at p.) 

Finally, assume that E has split, multiplicative reduction at v. (Then 
(1 -a;') would be zero.) We have c?) = ord,(&')). If we let $in' denote the 
unramified Zp-extension of $, and $y denote the cyclotomic Zp-extension 
of $,, then we should take 

(Again, we refer to the discussion of ker(r,) following proposition 3.6. This 
time, ker(a,) = 0 and ker(r,) S ker(b,).) We will give another way to define 
l , ,  at least up to apadic  unit, which comes directly from the earlier discussion 
of ker(r,). Let F t y c  and F,Unr denote the cyclotomic and the unramified Zp- 
extensions of F, . Fix isomorphisms 

Then 1. - (rec~,, (t.$)) I ~ ~ Y ~ ) / O ~ ' ( ~ ~ C F ~  (g(')) 1 ~ ~ " ~ ) .  The value of 1, given 
above comes from choosing specific isomorphisms. 

Appendix to Section 4. We will give a proof of the following important 
result, which will allow us to justify the assertion used in the proof of lemma 
4.7 that, under the hypotheses of theorem 4.1, H1(Fc/F,, E[pm])j- = 0. 
Later, we will prove a rather general form of Cassels' theorem as well as a 
generalization of proposition 4.8. 

Proposition 4.9. Assume that SelE(F,), is A-cotorsion. Then the A-mod- 
ule H 1 ( F ~ / ~ , ,  Elpm]) has no proper A-submodules of finite index. 

In the course of the proof, we will show that H1(Fc/F,, E[pca]) has A- 
corank [F : $] and also that H2(Fc/F,, E[pm]) is A-cotorsion. For odd p, 
these results are contained in [Gr2]. (See section 7 there.) For p = 2, one 
can modify the arguments given in that article. However, we will present a 
rather different approach here which has the advantage of avoiding the use 
of a spectral sequence. In either approach, the crucial point is that the group 
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is zero, under the assumption that SelE(F,), is A-cotorsion. (Note: It proba- 
bly seems more natural to take the product over all 77 lying over primes in E. 
However, if 77 is nonarchimedean, then G(F,)q has pcohomological dimension 
1 and hence H2((F,),, E[pM]) = 0.) 

First of all, we will determine the A-corank of P;(Fm). NOW P;)(F,) 
is A-cotorsion if v 1 p. This is clear if v is archimedean because P;)(F,) 
then has exponent 2. (It is zero if p is odd.) If v is nonarchimedean, then 
P ~ ) ( F )  = H1(Fu, E[pw]) is finite. The map P$)(F,) -+ P ~ ) ( F ~ ) '  is sur- 
jective. Hence P ,$ ) (F~)~  is finite, which suffices to prove that P$)(P,) is 
A-cotorsion, using Fact (2) about A-modules mentioned in section 3. Alter- 
natively, one can refer to proposition 2 of [Gr2], which gives a more precise 
result concerning the structure of P;)(F,). Assume vlp. Let r,, C F be the 
decomposition group for any prime 77 of F, lying over v. Then by proposi- 
tion 1 of [Gr2], H1((F,),, E[pm]) has corank equal to 2[FU:$,] over the ring 
+,[[r,]]. Also, H1 ((F,),, C,) has corank [Fv:Qp]. Both of these facts could 
be easily proved using lemma 2.3, applied to the layers in the +,-extension 
(F,),/F,. Consequently, 3tE((F,),) has Z,[[r,]]-corank equal to [F,,:$,]. 

It follows that Pg l (Fm)  has A-corank equal to [F,, :$,I. Combining these 
results, we find that 

using the fact that C[F, : $,I = [F: $1. 
V I P  

Secondly, we consider the coranks of the A-modules H1(Fc/F,, E[pm]) 
and H 2  (Fc/F,, E[pw]). These are related by the equation 

where 6 = C [F, : R] = [F: $1. As a consequence, we have the inequalities 
4c-J 

(For more discussion of this relationship, see [Gr2], section 4. It is essen- 
tially the fact that -6 is the Euler characteristic for the Gal(Fc/F,)-module 
E[pm] together with the fact that HO(Fc/F,, E[pm]) is clearly A-cotorsion. 
This Euler characteristic of A-coranks is in turn derived from the fact that 

for all n 2 0. That is, -6pn is the Euler characteristic for the Gal(Fz/Fn)- 
1 i 

module ElpCO] .) Recalling the exact sequence 
B 
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we see that SelE(F,), is A-cotorsion if and only if H1(Fc/F,, E[pm]) and 
G;(F,) have the same A-corank, both equal to [F:$]. (The last equality 
is because [F:$] is a lower bound for the A-corank of H1(Fc/F,, E[pm]) 
and an upper bound for the A-corank of G;(F,) (which is a A-submodule of 
P~(F,)). Thus, if we assume that SelE(F,), is A-cotorsion, then it follows 
that H1 ( F ~ / F ,  , E[pm]) has A-corank [F:  $1 and that H~(F~/F, ,  E[pm]) 
has A-corank 0 (and hence is A-cotorsion). By lemma 4.6, we already would 
know that G~(F,) has A-corank [F : $1. 

We will use a version of Shapiro's Lemma. Let A = Hom(A, E[pm]). We 
consider A as a A-module as follows: if 4 E A and 6' E A, then 6'4 is defined 
by (&$)(A) = d(6'X) for all X E A. The Pontryagin dual of A is A2 and so A 
has A-corank 2. We define a A-linear action of Gal(Fc/F) on A as follows: if 
4 E A and g E Gal(Fz/F), then g(4) is defined by g($)(X) = g($(iZ(g)-'A)) 
for all X E A. Here Z is defined as the composite 

where the second map is just the natural inclusion of r in its completed 
group ring A. The above definition is just the usual way to define the action 
of a group on Horn(*, *), where we let Gal(Fc/F) act on A by iZ and on 
E[pm] as usual. The A-linearity is easily verified, using the fact that A is a 
commutative ring. For any 6' E A, we will let A[8] denote the kernel of the 

map A 3 A, which is just multiplication by 8. Then clearly 

Let K. : r -+ 1 + 2pBp be a fixed isomorphism. If s E H (or in H,), then the 
homomorphism nS : r -+ 1 + 2pZp induces a homomorphism a, : A -+ H, of 
+,-algebras. If we write A = +,[[TI], where T = y - 1 as before, then a, is 
defined by a,(T) = ns(y) - 1 E pZp. We have ker(o,) = ( O , ) ,  where we have 
let 0, = (T - (ns(y) - 1)). Then A/Ae, E ZP(nS), a Hp-module of rank 1 on 
which Gal(Fc/F) acts by K . ~ .  Then 

as Gal(Fc/F)-modules. 
The version of Shapiro's Lemma that we will use is the following. 

Proposition 4.10. f i r  all i 2 0, Hi(Fc/FM, E[pW]) 2 Hi(Fc/F,  A) as 
A-modules. 

Remark. The first cohomology group is a A-module by virtue of the natural 
action of I' on Hi(Fz/F,, E[pw]); the second cohomology group is a A- 
module by virtue of the A-module structure on A. 
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Proof. We let A denote E[pm]. The map 4 -+ $(I), for each 4 6 A, defines 
a Gal(FE/F,)-equivariant homomorphism A + A. The isomorphism in the 
proposition is defined by 

One can verify that this composite map is a A-homomorphism as follows. 
Gal(Fz/F,) acts trivially on A. We therefore have a canonical isomorphism 

The image of the restriction map in (7) is contained in Hi(Fz/F,,A)r, 
which corresponds under (7) to ~ o m r  (A, Hi(FE/Fm, A)). The action of r 
on A is given by E. But this is simply the usual structure of A as a A-module, 
restricted to r A. Thus, by continuity, we have 

under (7). Now HomA (A, Hi(FZ/F,, A)) 2 H"FZ/F,, A) as A-modules, 
under the map defined by evaluating a homomorphism at X = 1. 

To verify that the map Hi(Fz/F, A) -+ Hi(Fz/F,, A) is bijective, note 
that both groups and the map are direct limits: 

n '  
Hi(FE/F,, A) = ~ i m  Hi(Fz/Fn, A). 

x' 
Here 8(n) = (1 +T)P" - 1 and so = Hom(ZP[Gal(Fn/F)], A). On each 
term the composite map 

defined analogously to (7) is known to be bijective by the usual version of 
Shapiro's Lemma. The map (7) is the direct limit of these maps (which are 
compatible) and so is bijective too. rn 

For the proof of proposition 4.9, we may assume that H1(Fz/F, A) has 
A-corank [F:$] and that H2(Fz/F, A) is A-cotorsion. Let s E Z. The exact 
sequence 

induces an exact sequence 

where of course a is injective and b is surjective. Let X denote the Pontryagin 
d'ual of H1(Fc/F, A). Since X is a finitely generated A-module, it is clear 

that ker(X % X )  will be finite for all but finitely many values of s .  (Just 
choose s so that f (T), where f (T) is a generator of the characteristic ideal 
of XA-tors. The 6,'s are irreducible and relatively prime.) Now Im(a) = ker(b) 

is the Pontryagin dual of ker(X % X). We will show that ker(b) is always 
e 

a divisible group. Hence, for suitable s ,  ker(X 4 X )  = 0. Now if Z is a 
e nonzero, finite A-module, then ker(Z 4 Z) is also clearly nonzero, since 

0, 4 Ax. Therefore, X cannot contain a nonzero, finite A-submodule, which 
is equivalent to the assertion in proposition 4.9. 

Assume that p is odd. Then Gal(Fc/F) has pcohomological dimension 2. 
Since A[O,] = A_, is divisible, it follows from lemma 4.5 that H2(Fc/F, A[O,]) 
is also divisible. Hence the same is true for H2(Fz/F,  A)[B,]. But since 
H 2  (Fc/F, A) is A-cotorsion, H 2  (FzlF,  A) [O,] will be finite for some value 
of s .  Hence it must be zero. But this implies that H2(Fz/F,  A) = 0, using 
Fact 1 about A-modules. Thus ker(b) = H2(Fc/F, A[e,]) for all s and this is 
indeed divisible, proving proposition 4.9 if p is odd. 

The difficulty with the prime p = 2 is that Gal(Fc/F) doesn't have finite 
pcohomological dimension (unless F is totally complex, in which case the 
argument in the preceding paragraph works). But we use the following fact: 
the map 

is an isomorphism for all n > 3. Here M can be any pprimary Gal(Fc/F)- 
module. (This is proved in [Mi], theorem 4.10(c) for the case where M is finite. 
The general case follows from this.) The groups Hn(F,, M) have exponent 
5 2 for all n > 1. The following lemma is the key to dealing with the prime 2. 

Lemma 4.11. Assume that M is divisible. Then the kernel of the map 

is a divisible group. 

Proof. Of course, if p is odd, then H2(F,, M) = 0 for vloo. We already know 
that H2(Fc/F, M)  is divisible in this case. Let p = 2. For any m > 1, consider 
the following commutative diagram with exact rows 
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induced from the exact sequence 0 t M[2m] + M 5 M t 0. Since the group 
H2(F,, M)  is of exponent 5 2, the map y is injective. Since is injective 
too, it follows that ker(a) = ker(P2). Thus ker(P2) = 2mH2 (FE/ F, M )  for 
any m > 1. Using this for m = 1,2, we see that ker(P2) = 2 ker(P2), which 
implies that ker(B2) is indeed divisible. rn 

Now we can prove that b : H 2  (Fz/F, A[B,]) + H2 (Fc/F, A) has a divis- 
ible kernel even when p = 2. We use the following commutative diagram: 

The rows are exact by definition. (We define R2 (Fc / F,  M )  as the kernel of the 
map H ~ ( F ~ / F ,  M )  t fl H2(F,, M).) The map b is surjective. Now A[B,] E 

4, 
A_, is divisible and hence, by lemma 4.11, R2(Fc/F, A[B,]) is divisible. Under 
the assumption that H2(Fx/F, A) is A-cotorsion, we will show that ker(b) 
coincides with the divisible group R2(FE/F, A[B,]), completing the proof of 
proposition 4.9 for all p. Suppose that vloo. Since v splits completely in 
F,/F, we have HI (F,, A) = Hom(A, H1 (F,, E[pm])). Of course, this group 
is zero unless p = 2 and H1(F,, E[2,]) 2 Z/2Z,  in which case H1(F,, A) = 
Hom(A, 2 / 2 2 )  E ( A / ~ A ) - .  This last group is divisible by 8, for any s ,  which 
implies that the map e must be injective. The snake lemma then implies that 
the map d is surjective. Thus R2(Fc/F,A)[Bs] is divisible for all s E Z. 
But this group is finite for all but finitely many s, since H2(Fc/F ,  A) is A- 
cotorsion. Hence, for some s ,  R2(FE/F, A)[Bs] = 0. This implies that the A- 
module R2(Fc/F, A) is zero. Therefore, since e is injective, ker(b) = ker(d) = 
R2(Fc/F, A[Bs]) for all s ,  as claimed. rn 

The following proposition summarizes several consequences of the above 
arguments, which we translate back to the traditional form. 

Proposition 4.12. H1(Fc/F,, E[pm]) has A-corank [F :  $1 zf and only if 
H2(FE/F,, E[pm]) is A-cotorsion. If this is so, then H1 (Fc/F,, E[pm]) has 
no proper A-submodule of finite index. Also, H 2 ( ~ e / ~ , ,  E[pm]) will be zero 
if p is odd and (A/2A)-cofree if p = 2. 

In this form, proposition 4.12 should apply to all primes p, since one con- 
jectures that H2(Fc/F,, E[pm]) is always A-cotorsion. (See conjecture 3 in 
[Gr2].) If E has potentially good or multiplicative reduction at all primes over 
p, then, as mentioned in section 1, one expects that sel~(F,),  is A-cotorsion, 
which suffices to prove that H 2  (F~/F,, E[pm]) is indeed A-cotorsion. For 

any prime p, the conjecture that sel~(F,),  has bounded H,-corank as n 
varies can also be shown to suffice. 

We must now explain why H1(Fc/F,, E[poO])r is zero, under the hy- 
potheses of theorem 4.1. We can assume that S€!lE(F,), is A-cotorsion and 
that (F=/F,, E[pW]) has A-corank equal to [F : $1. By proposition 4.9, 
it is enough to prove that H1(Fz/F,, E[pm])r is finite. Let 

Thus, Q is cofinitely generated and cotorsion as a A-module. Its Pontryagin 
dual is the torsion A-submodule of the Pontryagin dual of H1(Fc/F,, E[pm]). 
We have 

But Qr and Qr have the same Z,-corank. Also, I? r̂ Z Qp/Zp has Zp-corank 
1. Since the map H1(Ft./F, E[pm]) -+ H1 (Fc/F,, E [ ~ o o ] ) ~  is surjective and 
has finite kernel, we see that 

corankzp (H ' (F~/F ,  E[pm])) = [F : $1 + corankzp (Qr ) .  

Now 

The 2,-corank of P ~ ( F )  is equal to [F : $1. Since we are assuming that 
SelE(F), is finite, it follows that H1(Fc/F, E[pM]) has Zp-corank [F:$] and 
hence that, indeed, Qr is finite, which completes the argument. We should 
point out that sometimes H1(Fx/F,, E[pm])r is nonzero. This clearly hap- 
pens for example when rankn(E(F)) > [F :  $]. For then H1 (Fc/F,  E[pW]) 
must have Zp-corank at  least [F : $1 + 1, which implies that Q r  is nonzero. 

We will now prove a rather general version of Cassels' theorem. Let C be 
a finite set of primes of a number field F ,  containing at least all primes of F 
lying above p and oo. We suppose that M is a Gal(Fc/F)-module isomorphic 
to (Q,/Z,)~ as a group (for any d > 1). For each v E C ,  we assume that L, 
is a divisible subgroup of H1(F,, M).  Then we define a "Selmer group" 

This is a discrete, pprimary group which is cofinitely generated over 22,. Let 

which is a free 12,-module of rank d. For each v E C ,  we define a subgroup U,* 
of H1 (F,, T*) as the orthogonal complement of L, under the perfect pairing 
(from Tate's local duality theorems) 
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Since L, is divisible, it follows that H1(Fv, T*)/U; is +,-torsion free. Thus 
U; contains H1 (Fv , T*)tors. We define the Selmer group 

which will be a finitely generated H,-module. Let V* = T* @ Q,. Let M* = 
V*/T* = T* @ ($,/+,). For each v E El we can define a divisible subgroup 
L: of H1(Fv, M*) as follows: Under the map H1(Fw,T*) -+ H1(Fv, V*), the 
image of U,* generates a $,-subspace of H1(Fv,V*). We define L: as the 
image of this subspace under the map H 1 ( ~ , ,  V*) -+ H1(Fw, M*). Thus, we 
can define a Selmer group 

One can verify that the 12,-corank of SM*(F) is equal to the 12,-rank of 
ST* (F).  

We will use the following notation. Let 

Then (8) induces a perfect pairing P x P* -+ $,/+,, under which L and U* 
are orthogonal complements. Furthermore, we let 

G = Im (H1(FZ/F, M) -+ P) , G* = Im (H~(FE/F,T*) --+ P*) . 
The duality theorems of Poitou and Tate imply that G and G* are also 
orthogonal complements under the above perfect pairing. Consider the map 

whose kernel is, by definition, SM(F). The cokernel of y is clearly P/GL. But 
the orthogonal complement of GL under the pairing P x P* -+ Q,/Z, must 
be G* n U*. Thus coker(y) S (G* n u * ) - .  Again by definition, ST* (F)  is the 
inverse image of U* under the map (FC/F, T*) -+ P*. Thus clearly G*nU* 
is a homomorphic image of ST* (F).  AS we mentioned above, rank=, (ST* (F))  
is equal to corankzm (SM* (F)). On the other hand, since H1 (F,, T*)tors is 
contained in U; for all v E C, it follows that 

ST* (F)tors = H1 (FE/F, T*)tors, 

which in turn is isomorphic to HO(FE/F, M*)/HO(FE/F, M*)div. (This last 
assertion follows from the cohomology sequence induced from the exact se- 
quence 0 -+ T* -+ V* -+ M* -+ 0.) We denote HO(Fx/F,M*) = ( M * ) ~ F  by 
M*(F) as usual. Then, as a +,-module, we have 

corankz, ( S M *  (F)) - ST* (F) S (M* (F)/M* (F)di,) x zp 
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The preceding discussion proves that the Pontryagin dual of the cokernel of 
the map y is a homomorphic image of ST* (F). In particular, one important 
special case is: if SM* (F) is finite and M*(F)  = 0, then coker(y) = 0 .  

We now make the following slightly restrictive hypothesis: M*(Fw) = 
HO(Fv, M*) is finite for at least one v E C. This implies that M*(F) is also 
finite. Consider the following commutative diagram. 

Since the first vertical arrow is obviously injective, so is the second. Hence the 
map H1(Fc/F,T*)tors -+ P* is injective. It follows that if ST*(F) is finite, 
then 

coker(y) S (G* n u * ) -  2 ST*(F)- = H ~ ( F ~ / F , T * ) ~ ~ , , .  

This last group is isomorphic to M*(F). We obtain the following general 
version of Cassels' theorem. 

Proposition 4.13. Assume that m* = corankz, (SelM= (F)) .  Assume also 
that HO(Fv, M*) is finite for at least one v E C .  Then the cokernel of the 
map 

has +,-corank I m*. Also, 

If m* = 0, then coker(y) S HO(F, M*)-. 

It is sometimes useful to know how Im(y) sits inside of P/L.  We can 
make the following remark. Let vo be any prime in E for which HO(Fwo, M*) 
is finite. Assume that SM* (F)  is finite. Then 

Here H1(Fv,, M)/Lv is a direct factor in PIL.  To justify this, one must just 
show that the map 

is surjective under the above assumptions about SM* (F) and vo. In the above 
arguments, one can study coker(yl) by changing Lvo to L:, = (Fwo, M) 
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and leaving L, for v # vo unchanged. Now L:, may not be divisible, but 
we still have coker(yf) 2 (G* n u'*)-, where now U:, has been replaced 
by UG = 0. Since Uf* C U*, the corresponding Selmer group Sh,(F) is 
still finite. Thus an element a in S$, ( F )  is in H1(Fz/F,T*)tors and has the 
property that alcFv0 is trivial. But the diagram (9) shows that 

is injective. Hence a is trivial. Thus, S&. (F)  is trivial and hence so is coker(yf). 
Cassels' theorem is the following special case of proposition 4.13: id = 

E[pW], E = any finite set of primes of F containing the primes lying over p or 
cu and the primes where E has bad reduction, and L, = Im(n,) for all v E C. 
Then T* = T,(E) by the Weil pairing. Thus M* = Elp"], LE = Im(nu), and 
SM* (F)  = SM(F)  = SelE(F),. It is clear that HO(Fu,  M*) is finite for any 
nonarchimedean v E E. Thus, proposition 4.13 implies that 

if SelE(F), is finite. (Of course, as a group, E ( F ) ~  2 E(F),.) In the proof 
of lemma 4.6 we need the following case: E is an elliptic curve which we 
assume has (potentially) good, ordinary or multiplicative reduction at  all vlp, 
M = E[pm] @ ns where s E Z ,  L, = Im (H~(F,,C, €3 ns) -+ H1(F,, M))div 
if vlp, Lu = 0 if v t p .  Then T* = Tp(E) @ nPS, M*  = E[pm] @ n-,, and L: is 
defined just as L,. Assuming that SelE(F,), is A-cotorsion, we can choose 
s E Z so that SM* (F)  is finite. The hypothesis that HO(Fu,  M*) is finite for 
some v E E is also easily satisfied (possibly avoiding one value of s).  Then 
the cokernel of the map y will be isomorphic to the finite group HO(F,  M*)- .  

We can now prove the following generalization of proposition 4.8. 

Proposition 4.14. Assume that E is an elliptic curve defined over F and 
that SelE(F,), is A-cotorsion. Assume that E(F), = 0. Then sel~(F,), 
has no proper A-submodules of finite index. 

Proof. As in the proof of lemma 4.6, we will use the twisted Galois modules 
A, = E[p"]@(nS), where s E 12. Since E(F) ,  = 0, it follows that E(F,), = 0 
too. (One uses the fact that T is pro-p.) Since A, 2 E[pm] as GF,-modules, 
it is clear that HO(F, A,) = 0 for all s. Now E must have potentially ordinary 
or multiplicative reduction at  all vlp, since we are assuming that SelE(F,), 
is A-cotorsion. So we can define a Selmer group SA,(K) for any algebraic 
extension K of F .  If we take K to be a subfield of Fz, then SA, (K)  is the 
kernel of a map H1 (Fc / K ,  A,) -+ Pz(A,, K) ,  where this last group is defined 
in a way analogous to PE(K) .  As we pointed out in the proof of lemma 4.6, 
we have 

as A-modules. We also have pC(As, F,) 2 P~(F,) €3 (nu) as A-modules. 
The hypothesis that SelE(F,), is A-cotorsion implies that SA, (F,)~, and 
hence SA, (F) ,  will be finite for all but finitely many values of s. (We will 
add another requirement on s below.) We let M = A,, where s E H has been 
chosen so that SA-, (F )  is finite. Note that M *  = A_,. Since SM* (F) is finite 
and M*(F)  = 0, we can conclude that the map 

is surjective. Since F has cohomological dimension 1, the restriction maps 
H1(Fz/F, M )  -+ H1(Fz/F,, M ) ~  and PC(M,  F )  -+ P C ( ~ ,  F,)~ are both 
surjective. Hence it follows that the map 

must be surjective. We have the exact sequence defining SM(F,): 

This is just the exact sequence defining SelE(F,),, twisted by nS. The cor- 
responding cohomology sequence induces an injective map 

If we let Q = H1 (Fc/F,, E[pm])/H1 (Fc/F,, E[pw]),+div, as before, then 

and, since Q is A-cotorsion, we can choose s so that (Q €3 (ns))r  is fi- 
nite. (This will be true for all but finitely many values of s.) But since 
H1(Fc/F,, Elp"]) has no proper A-submodules of finite index, neither does 
H1 (Fc/F,, M) .  It follows that, for suitably chosen s ,  H1 (Fc/F,, M ) r  = 0. 
Hence SM(Foo)r = 0. This implies that SM(F,) has no proper A-submodules 
of finite index, from which proposition 4.14 follows. 

We will give two other sufficient conditions for the nonexistence of proper 
A-submodules of finite index in SelE(F,),. We want to mention that a rather 
different proof of proposition 4.14 and part of the following proposition has 
been found by Hachimori and Matsuno [HaMa]. This proof is based on the 
Cassels-Tate pairing for LUE(F,),. This topic will be pursued much more 
generally in [Gr6]. 

Proposition 4.15. Assume that E is an elliptic curve defined over F and 
that SelE(F,), is A-cotorsion. Assume that at least one of the following two 
hypotheses holds: 

(i) There as a prime vo of F ,  vo '(p, where E has additive reduction. 
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(ii) There exists a prime vo of F ,  volp, such that the ramification index evo 
of Fvo/$, satisfies e,, 5 p - 2 and such that E has good, ordinary or 
multiplicative reduction at vo . 

Then SelE(FW), has no proper A-submodules of finite index. 

Remark. If condition (i) holds, then HO(IQvo, E[pm]) is finite. This group will 
be zero if p 2 5. Then E(F), = 0 and we are in the situation of proposition 
4.14. 

.+ 

Proof. We will modify the proof of proposition 4.14. In addition to the 
requirements on M = A, occurring in that proof, we also require that 
HO(Fvo, M*) be finite, which is true for all but finitely many values of s E Z.  
Here vo is the prime of F satisfying (i) or (ii). (If E has additive reduction 
at vo, vo + p, then this holds for all s . )  Assume first that (i) holds. In this 
case, let S h ( F ) ,  Sh(Fw) denote the Selmer groups where one omits the local 
condition at vo (or the primes above vo). If 11 is a prime of F, lying over vo, 
then HO((~,),, M*) is finite. This implies that H1((Fw),, M)  = 0. Thus, 
Sb(Fw) = SM(Fm). The remark following proposition 4.13 shows that the 
map 

is surjective, where C' = C - {vo) and pE'(M, F )  is the product over 
all primes of C'. The proof then shows that Sh(Fw) has no proper A- 
submodules of finite index. This obviously gives the same statement for 
SelE (Fw ),. 

Now assume (ii). We again define Sh(Fw) by omitting the local condition 
at  all primes 77 of Fw lying over vo. Just as above, we see that Sh(Fw) has no 
proper A-submodules of finite index. Thus, the same is true for Sel&(F,),. 
By lemma 4.6, we see that 

But %E((F,),) H1((Fw),, E[pw])/Im(~,) H1((Fw),, Duo) by prop@ 
sition 2.4 and the analogous statement proved in section 2 for the case 
where E has multiplicative reduction at v. Here Dvo = E[pw]/Cuo is an 
unramified GFmo-module isomorphic to $,/Z,. We can use a remark made 
in section 2 (preceding proposition 2.4) to conclude that H1((Fw),, Duo) 
is Zp[[Gal((Fw),/Fuo)]]-cofree. Proposition 4.15 in case (ii) is then a con- 
sequence of the following fact about finitely generated A-modules: Suppose 
that X' is a finitely generated A-module which has no nonzero, finite A- 
submodules. Assume that Y is a free A-submodule of X' .  Then X = X'/Y 
has no nonzero, finite A-s~bmodules. The proof is quite easy. By induction, 
one can assume that Y r A. Suppose that X does have a nonzero, finite 

A-submodule. Then Y E Yo, where [Yo : Y] < oo, Y # Yo, and Yo is a A- 
submodule of X'. Then Yo is pseudo-isomorphic to A and has no nonzero, 
finite A-submodules. Hence Yo would be isomorphic to a submodule of A of 
finite index. It would follow that A contains a proper ideal of finite index 
which is isomorphic to A, i.e., a principal ideal. But i f f  E A, then (f) can't 
have finite index unless f E AX, in which case (f) = A. Hence in fact X has 
no nonzero, finite A-submodules. 

5. Conclusion 

In this final section we will discuss the structure of SelE(FW), in various 
special cases, making full use of the results of sections 3 and 4. In particular, 
we will see that each of the invariants p ~ ,  Xg-W, and XF can be positive. 
We will assume (usually) that the base field F is $ and that El$ has good, 
ordinary reduction at p. Our examples will be based on the predicted order 
of the Shafarevich-Tate groups given in Cremona's tables. In principle, these 
orders can be verified by using results of Kolyvagin. 

We start with the following corollary to proposition 3.8. 

Proposition 5.1. Assume that E is an ellaptic curve/$ and that both E($) 
and IIIE($) are finite. Let p vary over the primes where E has good, ordinary 
reduction. Then Sel~($,), = 0 except forp in a set of primes of zero density. 
This set of primes is finite if E is $-isogenous to an elliptic curve E' such 
that I El($)( > 1. 

Remark. Recall that if p is a prime where E has supersingular (or potentially 
supersingular) reduction, then SelE($,), has positive A-corank. Under the 
hypothesis that E($) and LUE($) are finite, this A-corank can be shown to 
equal 1, agreeing with the conjecture stated after theorem 1.7. If E doesn't 
have complex multiplication, the set of supersingular primes for E also has 
zero density. 

Proof. We are assuming that Sel~($)  is finite. Thus, excluding finitely many 
primes, we can assume that Sel&($), = 0. If we also exclude the finite set 
of primes dividing n q ,  where 1 varies over the primes where E has bad 

1 
reduction and q is the corresponding Tarnagawa factor, then hypotheses (ii) 
and (iii) in proposition 3.8 are satisfied. As for hypothesis (i), it is equivalent 
to a, E 1 (mod p), where a, = 1 + p - J ~ ( F , ) I .  Now we have Hasse's result 
that la,l < 2,/jj and hence a, 1 (mod p) + a, = 1 if p > 5. By using 
the Chebotarev Density Theorem, one can show that {p I a, = 1)  has zero 
density. (That is, the cardinality of {p I a, = 1, p < x )  is o(x /  log(x)) as 
x + oo.) The argument is a standard one, using the 1-adic representation 
attached to E for any fixed prime 1 .  The trace of a Frobenius element for p 
(# 1) is a,. One considers separately the cases where E does or does not have 
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complex multiplication. For the non-CM case, see [Sell, IV-13, exercise 1. 
These remarks show that the hypotheses in proposition 3.8 hold if p is outside 
a set of primes of zero density. For such p, SelE($,), = 0. The final part of 
proposition 5.1 follows from the next lemma. 

Lemma 5.2. Suppose that E is an elliptic curve defined over $ and that p 
is a prime where E has good reduction. If E($) has a point of order 2 and 
p > 5, then ap $ 1 (mod p). If E is $-isogenous to an elliptic curve El such 
that E'($)t,,, has a subgroup of order q > 2 and if p { q, then a, $ 1 (mod * p). 

Proof. $-isogenous elliptic curves have the same set of primes of bad reduc- 
tion. If E has good reduction at  p, then the prime-to-p part of E1($)tors maps 
injectively into 3 ( F p ) ,  which has the same order as E(F,). For the first part, 
a, r 1 (mod p) implies that 2p divides lE(lF,)l. Hence 2p < 1 + p + 2&, 
which is impossible for p > 5. For the second part, if a, = 1 (mod p) and p I( q, 
then qp divides ~E(F,)I .  Hence qp < 1 + p + 2,/3, which again is impossible 
since q > 2. m 

Here are several specific examples. 

E = X o ( l l ) .  The equation y2+y = x3 -x2 -102-20 defines this curve, which 
is ll(A1) in [Cre]. E has split, multiplicative reduction at  p = 11 and good 
reduction a t  all other primes. We have ordll(jE) = -5, E($)  r Z/5Z ,  and ' we will assume that SelE($) = 0 as predicted. If p # 11, then a, = 1 (mod p) 
happens only for p = 5. Therefore, if E has good, ordinary reduction at  p # 5, 
then SelE($,), = 0 according to proposition 3.8. We will discuss the case 
p = 5 later, showing that SelE($,), 2 Hom(A/pA, Z/pZ)  and hence that 

I p~ = 1, XE = 0. We just mention now that, by theorem 4.1, fE(0) - 5. We 
will also discuss quite completely the other two elliptic curves/$ of conductor 
11 for the case p = 5. If p = 11, then SelE($,), = 0. This is verified in [Gr3], 
example 3. 

E = Xo(32). This curve is defined by y2 = x3 - 4x and is 32(A1) in [Cre]. It  
has complex multiplication by Z[i]. E has potentially supersingular reduction 
at  2. For an odd prime p, E has good, ordinary reduction at p if and only if 
p E 1 (mod 4). We have E($) r Z/4Z ,  IIIE($) = 0 (as verified in Rubin's 
article in this volume), and c2 = 4. By lemma 5.2, there are no anomalous 
primes for E. Therefore, SelE($,), = 0 for all primes p where E has good, 
ordinary reduction. 

El : y2 = x 3 + x 2  - 7 x + 5  and E2 : y2 = x 3 + x 2  -647x-6555.Bothof 
these curves have conductor 768. They are 768(D1) and 768(D3) in [Cre]. 
They are related by a 5-isogeny defined over $. We will assume that S e l ~ ,  (Q)  

i is trivial as predicted by the Birch and Swinnerton-Dyer conjecture. This 
implies that SelE,($), = 0 for all primes p # 5. We will verify later that 
this is true for p = 5 too. Both curves have additive reduction at p = 2, and 
.split, multiplicative reduction a t  p = 3. For El,  the Tamagawa factors are 

c2 = 2, c3 = 1. For E2, they are c2 = 2, c3 = 5. We have El($) r 2 / 2 2  s 
E2($). By lemma 5.2, no prime p > 5 is anomalous for El or E2. If El 
(and hence Ez) have ordinary reduction at  a prime p > 5, then proposition 
3.8 implies that S e l ~ ,  (Q,), = 0 = S e l ~ ,  ($,1,. Both of these curves have - 
good, ordinary reduction at  p = 5. (In fact, El = E2 : y2 = x3 + x2 + Zx 
and one finds 4 points. That is, a5 = 2 and so p = 5 is not anomalous 
for El or E2.) The hypotheses of proposition 3.8 are satisfied for El and 
p = 5. Hence S e l ~ ,  ($,), = 0. But, by using either the results of section 3 or 
theorem 4.1, one sees that Sel~,($,)5 # 0. (One can either point out that 
coker(Sel~, ($)5 -+ S e l ~ ,  ($,):) is nonzero or that f ~ ,  (0) - 5. We remark 
that proposition 4.8 tells us that Sel~,($,) cannot just be finite if it is 
nonzero.) Now if 4 : El 4 E2 is a 5-isogeny defined over $, the induced map 
@ : S e l ~ ,  ($,)5 4 Sel~,($,)5 will have kernel and cokernel of exponent 5. 
Hence XE, = X E ~  = 0 (for p = 5). Since f ~ ,  (0) - 5, it is clear that p ~ ,  = 1. 
Below we will verify directly that Sel~,($,)5 r Hom(A/5A,2/5Z). Note 
that this example illustrates conjecture 1.11. 

E : y2 + y = x3 + x2 - 12x - 21. This is 67(A1) in [Cre]. It has split, mul- 
tiplicative reduction at  p = 67, good reduction at  all other primes. We have 
E($) = 0 and C G ~  = 1. It  should be true that SelE($) = 0, which we will 
assume. According to proposition 3.8, Sel~($,), = 0 for any prime p # 67 
where a, f 0, 1 (mod p). If a, = 0 (mod p), then E has supersingular re- 
duction at  p, and hence Sel~($,), is not even A-cotorsion. (In fact, the 
A-corank will be 1.) If a, 1 (mod p), then SelE($,), must be nonzero and 
hence infinite. (Proposition 4.8 applies.) By proposition 4.1, we in fact have 

fE(0) - IE(IF,)I~ p2 for any such prime p. (Here we use Hasse's estimate 
on ~E(F,) 1, noting that 1 + p + 2J i j  < p2 for p 2 3. The prime p = 2 is 
supersingular for this elliptic curve.) Now it seems reasonable to expect that 
E has infinitely many anomalous primes. The first such p is p = 3 (and the 
only such p < 100). Conjecture 1.11 implies that p~ = 0. Assuming this, we 
will later see that Xg-W = 0 and XF = 2. 

E : y 2  + y = x3 - x2 - 460x - 11577. This curve has conductor 915. It  is 
915(A1) in [Cre]. It has split, multiplicative reduction at  5 and 61, nonsplit 
a t  3. We have CQ = ~ 6 1  = 1 and c5 = 7. S e l ~ ( $ )  = 0, conjecturally. E($) = 0. 
Proposition 3.8 implies that SelE($,), = 0 for any prime p where E has 
good, ordinary reduction, unless either p = 7 or a, E 1 (mod p). In these two 
cases, Sel~($,), must be infinite by proposition 4.8. More precisely, theorem 
4.1 implies the following: Let p = 7. Then f ~ ( 0 )  - 7. (One must note that 
a7 = 3 f 1 (mod 7).) This implies that f,y(T) is an irreducible element of A. 
On the other hand, suppose a, E 1 (mod p) but p # 5 or 61. Then f ~ ( 0 )  p2 
The only such anomalous prime p < 100 is p = 43. Assuming the validity 
of conjecture 1.11 for E, we will see later that X E - ~  = 0 and Xg = 2 for 
p = 43. 
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E : yZ + xy = x3 - 3x + 1. This is 34(A1) in [Cre]. SelE($) should be trivial. 
E has multiplicative reduction at  2 and 17, c2 = 6, s7 = 1. Also, E($) 2 
Z/6Z. The prime p = 3 is anomalous: a3 = -2 and so = 6. If p is any 
other prime where E has good, ordinary reduction, then a, $1  (mod p) and 
we clearly have SelE($,), = 0. For p = 3, proposition 4.1 gives f ~ ( 0 )  - 3. 
Thus, fE(T) is irreducible. Let F be the first layer of the cyclotomic Z3- 
extension of $. Then F = $(P), where /3 = 5 + C-', denoting a primitive 
9-th root of unity. Notice that P is a root of x3 - 3x + 1. Thus (P, -P) 
is a point in E(F), which is not in E($). Now the residue field forx$, 
at the unique prime q above 3 is IF3. The prime-to-3 torsion of E($,) is 
mapped by reduction modulo q injectively into E(IF~) ,  and thus is Z/2Z. 
It is defined over $. The discussion preceding proposition 3.9 shows that 
E(Q,)3 = E($)3. Thus, E($,)tom = E($)tors. It follows that (P, -0) 
has infinite order. Now Gal(F/$) acts faithfully on E(F)  @ Q3. It is clear 
that this $,-representation must be isomorphic to pt where p is the unique 
2-dimensional irreducible $,-representation of Gal(F/$) and t 2 1. If y 
generates r = Gal($,/$) topologically, then p(yIF) is given by a matrix 
with trace -1, determinant 1. Regarding p as a representation of T' and 
letting T = y - 1, p(y - 1) has characteristic polynomial 

O1 = ( 1 + ~ ) ~ + ( 1 + ~ ) + 1 = ~ ~ + 3 ~ + 3 .  

Since E(F)  @ (Q3/Z3) is a A-submodule of SelE($,)3, it follows that 8; 
divides fE(T). Comparing the valuation of el (0) and f ~ ( 0 ) ,  we clearly have 
t = 1 and fE(T) = el, up to a factor in AX. Therefore ~ g - ~  = 2 7 hm E -  - 0 , 
and p~ = 0. 

When is SelE($,), infinite? A fairly complete answer is given by the 
following partial converse to proposition 3.8. 

Proposition 5.3. Assume that E has good, ordinary reduction at p and that 
E($) has no element of orderp. Assume also that at least one of the following 
statements is true: 

(i) SelE($)p # 0. 
(ii) a, E 1 (mod p). 
liii) There exists at least one prime 1 where E has multiplicative reduction , , 

such that a1 r 1 (mod p) and ordl (jE) E 0 (mod p). 
(iv) There exists at least one prime 1 where E has additive reduction such 

that E ( Q )  has a point of order p. 

Then SelE($,), is infinite. 

Remark. If E has multiplicative reduction at 1, then a1 = f 1. Thus, in (iii), 
a1 E 1 (mod p) is always true if p = 2 and is equivalent to a1 = 1 if p is odd. 
Also, (iii) and (iv) simply state that there exists an 1 such that plcl. If E has 
additive reduction at 1, then the only possible prime factors of cl are 2, 3, or 
1. Since E has good reduction at p, (iv) can only occur for p = 2 or 3. 

Proof. If SelE ($), is infinite, the conclusion follows from theorem 1.2, or more 
simply from lemma 3.1. If SelE($), is finite, then we can apply proposition 
4.1 to say that fE(0) is not in z:. Hence ~ E ( T )  is not invertible and so 
XE($,) must indeed be infinite. (The characteristic ideal of a finite A- 
module is A.) Alternatively, one can point out that since E($), = 0, it 
follows that ker(ho) = 0 and GE($) = Pg($), where C consists of p, oo, and 
all primes of bad reduction. Hence, if (i) holds, then Sel~($,), # 0. If (ii), 
(iii), or (iv) holds, then ker(go) # 0. Therefore, since ker(ho) and coker(ho) 
are both zero, we have coker(so) # 0. This implies again that Sel~($,), # 0. 
Finally, proposition 4.8 then shows that Sel~($,), must be infinite. H 

As our examples show, quite a variety of possibilities for the data going 
into theorem 4.1 can arise. This is made even more clear from the following 
observation, where is a variant on lemma 8.19 of [Mazl]. 

Proposition 5.4. Let P and L be disjoint, finite sets of primes. Let Q be 
any finite set of primes. For each p E P ,  let a; be any integer satisfying 
(azl < 2JjS. For each 1 E L, let af = +1 or -1. If af = +1, let cf be any 
positive integer. If a: = -1, let cf = 1 or 2. Then there exist infinitely many 
non-isomorphic elliptic curves E defined over $ such that 

(i) For each p E P ,  E has good reduction at p and a, = a:. 
(ii) For each 1 E L, E has multiplicative reduction at 1, a1 = at ,  and q = cf. 

(iii) For each q E Q, E[q] is irreducible as a IFq-representation space of GQ. 

Proof. This is an application of the Chinese Remainder Theorem. For each 
p E P, a theorem of Deuring states that an elliptic curve Ep defined over 
IF, exists such that ($(F,)J = 1 + p - a:. One can then choose arbitrarily 

a lifting E; of Ep defined by a Weierstrass equation (as described in Tate's 
article [Ta]). We write this equation as f,+(x, y) = 0 where f,+(x, y) E Zp[x, y]. 
Let 1 E L. If a; = +1, we let E; denote the Tate curve over Q1 with j ~ ;  = 
I-(;. Then E; has split, multiplicative reduction at 1 and ord1(jE) = -cf. 
If a; = -1, then we instead take E; as the unramified quadratic twist of 
this Tate curve, so that E; has non-split, multiplicative reduction. The index 
[E;(Q1) : Eco(Q1)] is then 1 or 2, depending on the parity of c;. In either 
case, we let f: (x, y) = 0 be a Weierstrass equation for E;, where f; (x, y) E 
4 [ x ,  y]. Let q E Q. Then we can choose a prime r = r, # q and an elliptic 
curve i, defined over IF, such that E,[q] is irreducible for the action of 
Gp,. If q = 2, this is easy. We take r to be an odd prime and define E,. 
by y2 = g(x), where g(x) E F,[x] is an irreducible cubic polynomial. Then 
%(IF,) has no element of order 2, which suffices. If q is odd, we choose 
r to be an o_dd prime such that -r is a quadratic nonresidue mod q. We 
can choose E/F, to be supersingular. Then the action of Frob, E GIFp on 
E,[ql has characteristic polynomial t2 + r. Since this has no roots in IFq, 
iT[q] indeed has no proper invariant subspaces under the action of Rob,. 
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We can choose a lifting E,* of E, defined over $, by a Weierstrass equation 
f,*(x, y) = 0, where f,*(x, y) E Z,[x, y]. For each q E Q, infinitely many 
suitable rq's exist. Hence we can also require that the rq's are distinct and 
outside of P n L .  We let R = {rqIqEQ, choosing one rq for each q E Q. We then 
choose an equation f (x, y) = 0 in Weierstrass form, where f (x, y) E Z[X, y] 
and satisfies f (x, y) = fk(x ,  y) (mod mtm) for all m E P U L U R, where t, 
is chosen sufficiently large. The equation f (x, y) = 0 determines an elliptic 
curve defined over $. If p E P, we just take t, = 1. Then E has good 
reduction at  p, E = &, and hence a, = a;, as desired. If r E R, then r =*rq 

for some q E Q. We take t, = 1 again. E has good reduction at  r ,  $ = $, 
and hence the action of a Frobenius automorphism in Gal($(E[q])/$) (for 
any prime above r )  on E[q] has no invariant subspaces. Hence obviously E[q] 
is irreducible as an IFq-representation space of GQ. Finally, suppose 1 E L. 
If we take tr sufficiently large, then clearly jE will be close enough to jE; to 
guarantee that ordl (jE) = ordl (jEi ) = -c;. In terms of the coefficients of a 
Weierstrass equation over Z l ,  there is a simple criterion for an elliptic curve 
to have split or nonsplit reduction at  I .  (It involves the coset in $r/($lx)2 
containing the quantity -c4/c6 in the notation of Tate.) Hence it is clear that 
E will have multiplicative reduction at  1 and that al = a; if tl is taken large 
enough. Thus E will have the required properties. The fact that infinitely 
many non-isomorphic E's exist is clear, since we can vary L and thus the set 
of primes where E has bad reduction. 

Remark. We can assume that P U L contains 3 and 5. Any elliptic curve E 
defined over $ and satisfying (i) and (ii) will be semistable at  3 and 5 and 
therefore will be modular. This follows from a theorem of Diamond [Dl. Fur- 
thermore, let Ed denote the quadratic twist of E by some square-free integer 
d. If we assume that all primes in PU L split in $(a), then Ed also satisfies 
(i), (ii), and (iii). One can choose such d so that L(Ed/$, 1) # 0. (See [B-F-H] 
for a discussion of this result which was first proved by Waldspurger.) A theo- 
rem of Kolyvagin then would imply that Ed($) and IIIE,($) are finite. Thus, 
there in fact exist infinitely many non-isomorphic modular elliptic curves E 
satisfying (i), (ii), and (iii) and such that SelE($) is finite. 

Corollary 5.5. Let P be any finite set of primes. Then there exist infinitely 
many elliptic curves El$ such that E has good, ordinay reduction at p, 
a, = 1, and Eb] is an irreducible IF,-representation space for GQ, for all 
p E P. 

Proof. This follows immediately from proposition 5.4. One takes P = Q, 
a: = 1 for all p E P, and L = 0. 

Corollary 5.6. Let p be any prime. Assume that conjecture 1.11 is true 
when F = $. Then XE as unbounded as E varies over elliptic curves defined 
ov'er $ with good, ordinary reduction at p. 

Proof. Take P = {p) = Q. Let a; be such that p f a;. Take L to  be a 
large finite set of primes. For each 1 E L, let a; = +1, c; = p. Let El$ be 
any elliptic curve satisfying the statements in proposition 5.4. As remarked 
above, we can assume E is modular. Now E has good, ordinary reduction 
a t  p. According to Theorem 1.5, SelE($,), is A-cotorsion. (Alternatively, 
we could assume that SelE($), is finite and then use theorem 1.4. The rest 
of this proof becomes somewhat easier if we make this assumption on E.) 
Also p~ = 0 by conjecture 1.11. We will show that XE 2 JLJ ,  which certainly 
implies the corollary. Let t = ILI. Let n = corank~,(Sel~($),). Of course, 
XE > n by theorem 1.2. So we can assume now that n 5 t. Let C be the set of 
primes p, oo, and all primes where E has bad reduction. Then, by proposition 
4.13, there are at  most pn elements of order p in P;($)/Gz($). Also, for 
each 1 E L, we have I ker(r1)J = cl = p. Thus, the kernel of the restriction map 
P:($) -+ P;($,) contains a subgroup isomorphic to (Z/PZ)~.  It  follows 
that ker(go) contains a subgroup isomorphic to ( Z / P Z ) ~ - ~ .  Now ker(ho) = 
coker(ho) = 0. Thus it follows that coker(so) contains a subgroup isomorphic 
to ( Z / P Z ) ~ - ~ .  By proposition 4.14, and the assumption that p~ = 0, we have 

But SelE($,), contains a subgroup Im(so)di, isomorphic to ($p/Zp)n and 
the corresponding quotient has a subgroup isomorphic to (Z/pZ)t-n. It fol- 
lows that XE 2 t, as we claimed. rn 
Remark. If we don't assume conjecture 1.11, then one still gets the weaker re- 
sult that XE + p~ is unbounded as E varies over modular elliptic curves with 
good, ordinary reduction a t  a fixed prime p. For the above argument shows 
that dimAlmn(X~($,)/mX~($,)) is unbounded, where m denotes the 
maximal ideal of A. We then use the following result about A-modules: Sup- 
pose X is a finitely generated, torsion A-module and that X has no nonzero, 
finite A-submodules. Let X and p denote the corresponding invariants. Then 

The proof is not difficult. One first notes that the right-hand side, which is 
just the minimal number of generators of X as a A-module, is "sub-additive" 
in an exact sequence 0 -+ XI -+ X2 -+ X3 -+ 0 of A-modules. Both X and 
p are additive. One then reduces to the special cases where either (a) X has 
exponent p and has no finite, nonzero A-submodule or (b) X has no Zp- 
torsion. In the first case, X is a (A/pA)-module. One then uses the fact that 
A/pA is a PID. In the second case, X is the minimal number of generators of 
X as a Z,-module. The inequality is clear. 

We will now discuss the p-invariant p~ of Sel~($,),. We always assume 
that E is defined over $ and has either good, ordinary or multiplicative 
reduction a t  p. According to conjecture 1.11, we should have p~ = 0 if Eb] 
is irreducible as a GQ-mOdule. Unfortunately, it seems very difficult to  verify 
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this even for specific examples. In this discussion we will assume that E[p] 
is reducible as a GQ-module, i.e., that E admits a cyclic $-isogeny of degree 
p. In [Maza], Mazur proves that this can happen only for a certain small 
set of primes p. With the above restriction on the reduction type of E at  p, 
then p is limited to the set {2,3,5,7,13,37). For p = 2,3,5,7, or 13, there 
are infinitely many possible E's, even up to quadratic twists. For p = 37, E 
must be the elliptic curve defined by y2 + xy + y = x3 + x2 - 82 + 6 (which 
has conductor 352) or another elliptic curve related to this by a $-isogeny of 
degree 37, up to a quadratic twist. .A. 

Assume at  first that E[p] contains a GQ-invariant subgroup @ isomorphic 
to p,. We will let C be the finite set consisting of p, ca, and all primes where 
E has bad reduction. Then we have a natural map 

It is easy to verify that ker(c) is finite. We also have the Kummer homomor- 
phism 

where U, denotes the unit group of $,. The map @ is injective. Dirichlet's 
unit theorem implies that the (A/pA)-module U,/U& has corank 1. Consider 
a prime 1 # p. Let q be a prime of $, lying over 1. Then ($,), is the 
unramified Zp-extension of Q1 (which is the only Zp-extension of Q l ) .  All 
units of ($,), are p t h  powers. Thus, if u E U,, then u is a p t h  power 
in (Q,),. Therefore, if cp E Im(P), then is trivial. If we fix an 

isomorphism @ E p,, then it follows that the elements of Im(c o P) satisfy the 
local conditions defining SelE($,), at  all primes 7 of $, not lying over p or 
ca. Now assume that p is odd. We can then ignore the archimedean primes 
of $,. Since the inertia subgroup IQp acts nontrivially on p, (because p is 
odd) and acts trivially on E[pm]/Cp, it follows that @ C_ C,. If .n denotes the 
unique prime of $, lying over p, recall that Im(n,) = Im(A,), where A, is 
the map 

Therefore, it is obvious that if cp E Im(e) , then ,* E Im(lc,). Combining 

the above observations, it follows that Im(c o P) Sel~($,), if p is odd. 

Thus, SelE($,), contains a A-submodule of exponent p with (AlpA)-corank 
equal to 1, which implies that either p~ >_ 1 or SelE($,), is not A-cotorsion. 

We will prove a more general result. Suppose that E[pOO] has a GQ- 
invariant subgroup @ which is cyclic of order pm, with m >_ 1. If E has 
semistable reduction at  p, then it actually follows that E has either good, 
ordinary reduction or multiplicative reduction at p. @ has a GQ-composition 
series with composition factors isomorphic to @[p]. We assume again that p is 
an odd prime. Then the action of IQp on @[p] is either trivial or given by the 

Teichmiiller character w. In the first case, @ is isomorphic as a GQp-module 
to a subgroup of E[pw]/Cp. The action of IQp on @ is trivial and so we say 
that @ is unramified at p. In the second case, we have @ E C, and we say 
that @ is ramified at p. The action of Gal(G/R) on @[p] determines its action 
on @. We say that @ is even or odd, depending on whether the action of 
Gal(G/IR) is trivial or nontrivial. With this terminology, we can state the 
following result. 

Proposition 5.7. Assume that p is odd and that E is an elliptic curve/$ 
with good, ordinary or multiplicative reduction at p. Assume that SelE($,), 
is A-cotorsion. Assume also that E[pm] contains a cyclic GQ-invariant sub- 
group @ of order pm which is ramified at p and odd. Then p~ > m. 

Proof. We will show that SelE($,), contains a A-submodule pseudo-isomor- 
phic to jî [prn]. Consider the map 

The kernel is finite. Let 1 E 22, 1 # p or oo. There are just finitely many 
primes q of $, lying over I .  For each q, H1(($,)q,@) is finite. (An easy 
way to verify this is to note that any Sylow p r e p  subgroup V of G ( Q ~ ) ,  is 
isomorphic to +, and that the restriction map H1 ((Q,), , @) + H1 (V, @) is 
injective.) Therefore 

has finite index in H1($,/$,,@). On the other hand, @ E C,. Hence, 
elements in Im(c) automatically satisfy the local condition at  n occurring in 
the definition of Sel~($,),. These remarks imply that Im(c) n Sel~($,), 
has finite index in Im(e) and therefore SelE($,), contains a A-submodule 
pseudo-isomorphic to H1 ($,I$,, @). 

One can study the structure of H1($,/$,, @) either by restriction to a 
subgroup of finite index in Gal(QE/$,) which acts trivially on @ or by using 
Euler characteristics. We will sketch the second approach. The restriction 
map 

is surjective and its kernel is finite and has bounded order as n + m. The 
Euler characteristic of the Gal($,/$,)-module @ is n I-', where v 

4, 
runs over the infinite primes of the totally real field $, and D, = G ( Q ~ ) " .  
By assumption, djDv = 0 and hence this Euler characteristic is p-mpn for 
all n 1 0. Therefore, H1($,/$,,@) has order divisible by prnpn. It follows 
that the A-module H~($,/$,, @), which is of exponent pm and hence cer- 
tainly A-cotorsion, must have p-invariant 2 m. This suffices to prove that 
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p~ > m. Under the assumptions that Elp] is reducible as a GQ-module 
and that SelE($,), is A-cotorsion, it follows from the next proposition 
that SelE(Q,), contains a A-submodule pseudo-isomorphic to x[p"~] and 
that the corresponding quotient has finite 2,-corank. Also, Im(c) must al- 
most coincide with H1 (QE/$,, E[pm])[pm]. (That is, the intersection of the 
two groups must have finite index in both.) This last A-module is pseudo- 
isomorphic to ;i[pm] according to the proposition below. 

If E is any elliptic curve/$ and p is any prime, the weak Leopoldt conjec- 
ture would imply that H1(QE/$,, E[pm]) has A-corank equal to 1. That b, 
H1(QE/$,, E [ P ~ ] ) ~ - ~ ~ ,  should be pseudo-isomorphic to d (This has been 
proven by Kato if E is modular.) Here we will prove a somewhat more pre- 
cise statement under the assumption that E[p] is reducible as a GQ-module. 
It will be a rather simple consequence of the Ferrero-Washington theorem 
mentioned in the introduction. As usual, C is a finite set of primes of $ 
containing p, ca, and all primes where E has bad reduction. 

Proposition 5.8. Assume that E is an elliptic curve defined over $ and that 
E admits a $-isogeny of degreep for some prime p. Then H1($E/$,, E[pm]) 
has -4-corank 1. Furthermore, H1 E[pw])/H1 ($E/$,, E[pw])n-di~ 
has p-invariant equal to 0 if p is odd. If p = 2, this quotient has p-invariant 
equal to 0 or 1, depending on whether E ( R )  has 1 or 2 connected components. 

Proof. First assume that p is odd. Then we have an exact sequence 

where Gal(QE/$) acts on the cyclic groups Q, and 9 of order p by characters 
p ,  $J : Gal(QE/$) + (Z/pZ)'. We know that H'($~/$,, E[pm]) has A- 
corank > 1. Also, the exact sequence 

induces a surjective map E[p]) + H1 E[pm])b] with 
finite kernel. Thus, it clearly is sufficient to prove that H1 E[p]) has 
(A/pA)-corank 1. Now the determinant of the action of GQ on E[p] is the 
Teichmiiller character w. Hence, p$J = w. Since w is an odd character, one 
of the characters ip or $J is odd, the other even. We have the following exact 
sequence: 

and hence proposition 5.8 (for odd primes p) is a consequence of the following 
lemma. 

Lemma 5.9. Let p be any prime. Let Q be a Gal($E/$)-module which is 
cyclic of order p. Then H1(QE/$,, 0 )  has (A/pA)-corank 1 if 8 is odd or 
if p = 2. Otherwise, H1 (QE/$,, Q) is finite. If p = 2, then the map 

is surjective and has finite kernel. Here (Q,) = Lim n H1 ((Q,),, ,0). 
-2 u * b  

Remark. We will use a similar notation to that introduced in the remark 
(e) following lemma 4.6. For example, PC (Q,), which occurs in the following 

proof, is defined as Lim n H1(($,),,, C). If C is a nonarchimedean prime, 
-2 

then P~'(Q,) = n H1((&,),, C), since there are only finitely many primes 
sle 

q of $, lying over C. 

Proof. Let 8 be the character (with values in ( 2 / p 2 ) X )  which gives the 
action of Gal($E/$) on @. Let C = ($,/2,)(8), where we now regard 8 as 
a character of Gal($=/$) with values in Z;. Then Q = Cb].  We have an 
isomorphism 

(The surjectivity is clear. The injectivity follows from the fact that 
HO(QE/$,, C)  is either C or 0, depending on whether 8 is trivial or non- 
trivial.) We will relate the structure of H1(QE/$,,C) to various classical 
Iwasawa modules. Let C' = E - {p). Consider 

If C E E' is nonarchimedean, then H1 ((Q,),, C) is either trivial or isomor- 
phic to $,/Z,, for any prime q of $, lying over e.  P$)($,) is then a 
cotorsion A-module with p-invariant 0. If C = ca, then ($,), = R for any 
q1e. H1(R,  C) is, of course, trivial if p is odd. But if p = 2, then 8 is triv- 
ial and H1(R,  C)  2 2 / 2 2 .  Thus, in this case, Pim)($,) is isomorphic to 
Hom(A/2A, 2 / 2 2 )  = ii^[2], which is A-cotorsion and has p-invariant 1. It  
follows that H1(QE/$,,C)/S&($,) is A-cotorsion and has p-invariant 0 if 
p is odd. If p = 2, then the yinvariant is 5 1. 

Assume that p is odd. Let F be the cyclic extension of $ corresponding 
to 8. (Thus, F E Qc and 8 is a faithful character of Gal(F/$).) Then F, = 
FQ, is the cyclotomic 2,-extension of F. We let A = Gal(F,/$,) % 
Gal(F/$). Let 

where M,  is the maximal abelian pro-p extension of F, unramified at  all 
primes of F, not lying over p and L, is the maximal subfield of M, un- 
ramified at  the primes of F, over p too. Now Gal(F,/$) r A x I' acts on 
both X and Y by inner automorphisms. Thus, they are both A-modules on 
which A acts A-linearly. That is, X and Y are A[A]-modules. 
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The restriction map H1(Q,/Q,, C) -+ H1(Qc/F,, C)A is an isomor- 
phism. Also, Gal(Q,/F,) acts trivially on C. Hence the elements of 
H1(Qz/F,, C) are homomorphisms. Taking into account the local condi- 
tions, the restriction map induces an isomorphism 

S&($,) N-t HornA (Y, C)  = H O ~ ( Y ' ,  C)  

as A-modules, where Yo = egY, the 8-component of the A-module Y. (Here 
ee denotes the idempotent for 6' in Zp[A].) Iwasawa proved that Y O  is A- 
torsion if 8 is even and has A-rank 1 if 8 is odd. One version of the Ferrw-  
Washington theorem states that the p-invariant of Yo vanishes if 8 is even. 
Thus, in this case, H1 ($,/$,, C) must be A-cotorsion and have p-invariant 
0. It then follows that H1(Qz/Q,,@) must be finite. On the other hand, 
if 8 is odd, then S&(Q,) will have A-corank 1. Hence, the same is true 
of H1 (Q,/Q,, C) and so H1 ($,/$,, C)b] will have (A/pA)-corank > 1. 
We will prove that equality holds and, therefore, H1 (Q,/Q,, 0) indeed 
has (A/pA)-corank 1. It is sufficient to prove that S&(Q,)[p] has (A/pA)- 
corank 1. We will deduce this from another version of the Ferrero-Washington 
theorem-the assertion that the torsion A-module X has p-invariant 0. Let 
r be the unique prime of Q, lying over p. Consider 

Sc(Q,) = ker(S&(Q,) -, H1((Q,),, C)). 

In the course of proving lemma 2.3, we actually determined the structure 
of H1(($,),,C). (See also section 3 of [Gr2].) It has A-corank 1 and the 
quotient H1 ((Q,), , C)/H1 ((Q,), , C)n-di., is either trivial or isomorphic to 
Qp/Z, as a group. To show that S&(Q,)[p] has (A/pA)-corank 1, it suffices 
to prove that Sc(Q,)[p] is finite. Now the restriction map identifies Sc(Q,) 
with the subgroup of Homa(Y, C) which is trivial on all the decomposition 
subgroups of Y corresponding to primes of F, lying over p. Thus, Sc(Q,) 
is isomorphic to a A-submodule of HornA (X, C) = H O ~ ( X ' ,  C). Since the 
yinvariant of X vanishes, it is clear that Sc(Q,)[p] is indeed finite. This 
completes the proof of lemma 5.9 when p is odd. 

Now assume that p = 2. Thus, 8 is trivial. We let F, = Q,. Let M, 
be as defined above. Then it is easy to see that M, = Q,. For let Mo be 
the maximal abelian extension of Q contained in M,. Thus, Gal(Mo/Q,) 
Y/TY. We must have Mo c Q(p2m). But Mo is totally real and so clearly 
Mo = Q,. Hence Y/TY = 0. This implies that Y = 0 and hence that 
M, = Q,. Therefore, S&(Q,) = 0. It follows that H1(Q,/Q,,C) is A- 
cotorsion and has yinvariant < 1. In fact, the yinvariant is 1 and arises 
in the following way. Let U, denote the unit group of Q,. Let K, = 
$,({& 1 u E U,)). Then K, c M&, the maximal abelian pro-2 extension 
of Q, unrarnified outside of the primes over p and oo. Also, one can see that 
Gal(K,IQ,) E 41211. Thus, clearly H1($13/Qm,C)[21 = H1(Q,/Q,,Q) 
contains the A-submodule Hom(Gal(K,/Q,), O )  which has p-invariant 1. 
To complete the proof of lemma 5.9, we point out that K, can't con- 
tain any totally real subfield larger than $,, since & = $,. That is, 

ker(a) r l  Hom(Gal(K,/$,), @) is trivial. It follows that ker(a) is finite. We 
also see that u must be surjective because P&~)(Q,) is isomorphic to 2[2]. 

We must complete the proof of proposition 5.8 for p = 2. Consider the 
following commutative diagram with exact rows: 

By lemma 5.9, both al and a s  are surjective and have finite kernel. Also, 
ker(a) is finite. We see that H1(QE/Q,, E[2]) has (A/2A)-corank equal to 
1 or 2. First assume that E(IR) is connected, i.e., that the discriminant of 
a Weierstrass equation for E is negative. Then H1(R, E[2]) = 0, and so 
PLE; (Q,) = 0. It follows that doa2 is the zero map and hence Im(b) is finite. 
Thus, H1(Q,/Q,, E[2]) is pseudo-isomorphic to H1(Q,/Q,, 9 )  and so has 
(A/2A)-corank 1. In this case, H1(Qz/Q,, E[2"]) must have A-corank 1 
and its maximal A-cotorsion quotient must have p-invariant 0. This proves 
proposition 5.8 in the case that E ( R )  is connected. 

Now assume that E(R)  has two components, i.e., that a Weierstrass equa- 
tion for E has positive discriminant. Then E[2] C E ( R )  and H1(R, E[2]) E 

(Z/2Z)2. The (A/2A)-module PL~~(Q,) is isomorphic to ;1^[2j2. In this case, 
we will see that H1(Qc/Q,, E[2]) has (A/2A)-corank 2. This is clear if 
E[2] E 9 x P as a GQ-module. If E[2] is a nonsplit extension of P by 9, 
then F = Q(E[2]) is a real quadratic field contained in Q,. Let F, = FQ,. 
Considering the field K, = F, ({& 1 u E UF, )), where UF, is the group of 
units of F,, one finds that H1(Qz/F,, 9 )  and H1(Q,/F,, P)  have (111211)- 
corank 2. Now E[2] E 9 x P as a GF-module and so H1(Qz/F,, E[2]) 
has (A/2A)-corank 4. The inflation-restriction sequence then will show that 
H1 (QE/$,, E[2]) is pseudo-isomorphic to ($,/Fa, ~ [ 2 ] ) " ,  where A = 
Gal(F,IQ,). One then sees that H1(Q,/Q,, E[2]) must have (111211)- 
corank 2. The fact that c is injective and that both u l  and a s  have finite 
kernel implies that a 2  has finite kernel too. The map a 2  must therefore be 
surjective. Now consider the commutative diagram 
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Note that P ~ ~ ) _ ~ ( $ , )  is what we denoted by P ~ ~ ) ( $ , )  in section 4. The 

map H1(IR, E[2]) -+ H1(R, E[2,]) is surjective. (But it's not injective since 
H1(IR, E[2,]) E Z/2Z when E(R)  has two components.) Hence the map e 
is surjective. Thus e o a2 is surjective and this implies that (YE is surjective. 
In fact, more precisely, the above diagram shows that the restriction of (YE 

to H1(Qc/$,, E[2,])[2] is surjective. 
We can now easily finish the proof of proposition 5.8. Clearly 

Since ker(aE)[2] has (A/2A)-corank 1, it is clear that H1($c/$,, E[2"]) 
has A-corank 1 and that ker(crE) / H1 ($,/$,, E[2°"]),i-div has p-invariant 
0. Hence the maximal A-cotorsion quotient of H' ($,/$,, E[2*]) has p- 
invariant 1. 

Remark. Assume that E is an elliptic curve/$ which has a $-isogeny of 
degree p. Assuming that SelE($,), is A-cotorsion, the above ,. results show 
that SelE($,), contains a A-submodule pseudo-isomorphic to A P E ] .  Thus 
the p-invariant of SelE($,), arises "non-semisimply" if p~ > 1. For odd p, 
we already noted this before. For p = 2, it follows from the above discussion 
of ker(crs) and the fact that SelE($,), C ker(crE). If E has no $-isogeny of 
degree p, then p~ is conjecturally 0, although there has been no progress on 
proving this. 

Before describing various examples where p~ is positive, we will prove 
another consequence of lemma 5.9 (and its proof). 

Proposition 5.10. Assume that p is odd and that E is an elliptic curve/$ 
with good, ordinary or multiplicative reduction at p. Assume also that Ebm] 
contains a GQ-invariant subgroup I of order p which is either ramified at p 
and even or unramified at p and odd. Then SelE($,), is A-cotorsion and 
p~ = 0. 

Proof. We will show that SelE($,)b] is finite. This obviously implies the 
conclusion. We have the exact sequence 

as before. Under the above hypotheses, both IG'Q- and !PG'Q- are trivial. 
Hence H0 Elp]) = 0. This implies that 

under the natural map. Thus we can regard Sel~($,)b] as a subgroup of 
H1 (QZ/$,, Eb]). Assume that SelE($,)b] is infinite. Hence either B = 
b(SelE($,)[p]) or A = Im(a) n SelE($,)lp] is infinite. Assume first that 
B is infinite. Then, by lemma 5.9, 9 must be odd. Hence 9 is unramified, 

!@ is ramified at p. Let ?i be any prime of $, lying over the prime .rr of 
$, over p. Then !@ = C,b], where Cii is the subgroup of E[pm] occurring 
in propositions 2.2, 2.4. (For example, if E has good reduction at  p, then 
C, is the kernel of reduction modulo ?i : Ebm] + & P I . )  The inertia 
subgroup I, of Gal($,/$,) for if acts trivially on D* = E[pw]/CF. Thus, 
9 can be identified with Diib]. Let a be a 1-cocycle with values in Eb] 
representing a class in SelE($,)b]. Let 5 be the induced 1-cocycle with 
values in 9. Since H1(I,, Dii) = Hom(Iii, D*), it is clear that 511, = 0. 
Thus, 5 E H1($,/$,,9) is unramified at  ?i. Now for each of the finite 
number of primes q of $, lying over some l E E, e # p, H1(($,),, 9 )  is 
finite. Thus, it is clear that Bfl  Hi,,($,/$,, 9 )  is of finite index in B and is 
therefore infinite, where H~,,($,/$,, 9 )  denotes the group of everywhere 
unramified cocycle classes. However, if we let F denote the extension of $ 
corresponding to $J, then we see that 

where we are using the same notation as in the proof of proposition 5.9. The 
Ferrero-Washington theorem implies that H&,,($,/$,, 9 )  is finite. Hence 
in fact B must be finite. Similarly, if A is infinite, then I must be odd and 
hence unramified. Thus, I n C, = 0. If a is as above, then air, must have 
values in (7%. But if a represents a class in A, then we can assume that its 
values are in I .  Thus all, = 0. Now the map H1(I,,I) + H1(Ie, E b ] )  is 
injective. Thus, we see just as above, that H~,,($,/$,, @) is infinite, again 
contradicting the Ferrero-Washington theorem. 

Later we will prove analogues of propositions 5.7 and 5.10 for p = 2. 
One can pursue the situation of proposition 5.10 much further, obtaining for 
example a simple formula for AE in terms of the A-invariant of xe, where 
13 is the odd character in the pair q,$. (Remark: Obviously, q$J = w. It 
is known that xe and ywe-' have the same &invariants, when 8 is odd. 
Both A-modules occur in the arguments.) As mentioned in the introduction, 
one can prove conjecture 1.13 when El$ has good, ordinary reduction at p 
and satisfies the other hypotheses in proposition 5.10. The key ingredients 
are Kato's theorem and a comparison of A-invariants based on a congruence 
between padic L-functions. We will pursue these ideas fully in [GrVa]. 

Another interesting idea, which we will pursue more completely elsewhere, 
is to study the relationship between Sel~($,), and S e l ~ l  (Q,), when E and 
E' are elliptic curves/$ such that Eb] E E'b] as GQ-modules. If E and E' 
have good, ordinary or multiplicative reduction at p and if p is odd, then it is 
not difficult to prove the following result: if Sel~($,),[p] is finite, then so is 
Selp ($,),lp]. It follows that if Sel~($,), is A-cotorsion and if p~ = 0, then 
Selp (Q,), is also A-cotorsion and ~ E I  = 0. Furthermore, it is then possible 
to relate the A-invariants AE and AEt to each other. (They usually will not 
be equal. The relationship involves the sets of primes of bad reduction and 
the Euler factors at those primes.) 
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A theorem of Washington [Wall as well as a generalization due to E. F'ried- 
man [F], which are somewhat analogous to the Ferrero-Washington theorem, 
can also be used to obtain nontrivial results. This idea was first exploited in 
[R-W] to prove that E(K) is finitely generated for certain elliptic curves E 
and certain infinite abelian extensions K of $. The proof of proposition 5.10 
can be easily modified to prove some results of this kind. Here is one. 

Proposition 5.11. Assume that E and p satisfy the hypotheses of proposi- 
tion 5.10. Let K denote the cyclotomic +,-extension of $, where q is p y  
prime diflerent than p. Then SelE(K)[p] is finite. Hence 

SelE(K)p z ($,/+p)t x (a finite group) 

for some t > 0. 

Washington's theorem would state that the power of p dividing the class 
number of the finite layers in the +,-extension F K I F  is bounded. To adapt 
the proof of proposition 5.10, one can replace Im(n,) by Im(X,) for each prime 
q of K lying over p, obtaining a possibly larger subgroup of H1(K, Elpw]). 

n 

The arguments also work if Gal(K/$) Z n Z,, where 41~92,. . . , qn are 
i= 1 

distinct primes, possibly including p. Then one uses the main result of [F]. 
One consequence is that E(K)  is finitely generated. If E is any modular 
elliptic curve/$, this same statement is a consequence of the work of Kato 
and Rohrlich. 

We will now discuss various examples where p~ > 0. We will take the 
base field to be $ and assume always that E is an elliptic curve/$ with 
good, ordinary or multiplicative reduction at p. We assume first that p is 
odd. Since Vp(E) is irreducible as a representation space for GQ, there is a 
maximal subgroup Q, of E[pw] such that Q, is cyclic, GQ-invariant, ramified 
at  p, and odd. Define m~ by 1Q,1 = pmE. Thus, m~ > 0. Proposition 5.8 
states that p~ > mE. It is not hard to see that conjecture 1.11 is equivalent 
to the assertion that p~ = mE. For p = 2, mE can be 0,1,2,3, or 4. For 
p = 3 or 5, mE can be 0, 1, or 2. For p = 7, 13, or 37, mE can be 0 or 
1. For other odd primes (where E has the above reduction type), there are 
no $-isogenies of degree p and so mE = 0. In [Mazl], there is a complete 
discussion of conductor 11 and numerous other examples having non-trivial 
pisogenies. 

Conductor = 11. If E has conductor 11, then Elp] is irreducible except 
for p = 5. Let El ,  E2, and E3 denote the curves 11A1, llA2, and l lA3 
in Cremona's tables. Thus El = Xo(ll)  and one has E1[5] Z p5 x + I 5 2  
as a GQ-module. For E2 (which is E1/(Z/5Z)), one has the nonsplit exact 
sequence 

Now E2/p5 = El and SO one sees that E2[57  contains a subgroup Q, which 
is cyclic of order 25, GQ-invariant, ramified at 5, and odd. (@ is an extension 
of p5 by p5.) For E3 (which is El/p5), one has a nonsplit exact sequence 

All of these statements follow from the data about isogenies and torsion 
subgroups given in [Cre]. One then sees easily that mEl = 1, m ~ ,  = 2, and 
m ~ ,  = 0. We will show that S e l ~ ,  ($,)5 E ;1 [̂5], SelE2($,):, E ;1 [̂52], and 
S e l ~ , ( $ ~ ) 5  = 0. Thus, XEi = 0 and p,yi = mEi for 1 _< i 5 3. 

We will let Q,i = p5 and % = Z/5Z as GQ-modules for 1 _< i 5 3. Then 
we have the following exact sequences of GQ-modules 

These exact sequences are nonsplit. For El, we have E1[5] = $1 x PI. As 
GQ5-modules, we have exact sequences 

where D5 is unramified and C5 E / ~ , m  for the action of IQ5, the inertia 
subgroup of GQ5. There will be no need to index C5 and D5 by i. AS GQ,,- 
modules, we have exact sequences 

where Cll E p5- and Dll Z Q5/Z5 for the action of GQll . It will again 
not be necessary to include an index i on these groups. The homomorphisms 
Ei[5w] + D5 and Ei[Sw] + Dl1 induce natural identifications. As GQ,- 
modules, PI, P2, P3 are all identified with D5 [5]. This is clear from the action 
of GQ, on these groups (which is trivial). But, as GQll-modules, @I,  %, S, 
and Qi3 are all identified with D11[5]. One verifies this by using the isogeny 
data and the fact that the Tate periods for the Ei's in have valuations 
5, 1, 1, respectively. For example, if $1 or IEl were contained in C11, then the 
Tate period for E2 or E3 would have valuation divisible by 5. We will use the 
fact that the maps 

are both injective. This is so because GQ,, acts trivially on Dl1 and IQ5 acts 
trivially on 0 5 .  Our calculations of the Selmer groups will be in several steps 
and depend mostly on the results of section 2 and 3. We take 22 = {m, 5,111. 
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S e l ~ , ( $ ) ~  = 0. Suppose [a] E SelE3($)[5]. It is enough to prove that 
[a] = 0. We can assume that a has values in E3[5]. (But note that in 
this case the map H1($,/$, ~ 3 [ 5 ] )  -+ H1($,/$, E3[5,]) has a nontriv- 
ial kernel.) The image of a in H1(Ql1, Pi3) = H1 (Qll, D1l [5]) must become 
trivial in H1(Ql1, Dl1). Thus this image must be trivial. Now Pi3 = p5 
and H1($,/$, p5) r (Z/5Z)2, the classes for the 1-cocycles associated to 
fi, 0 5 i, j 5 4. The restriction of such a 1-cocycle to GQll is trivial 
when 5 i l l j  E ($1:)5, which happens only when i = j = 0. Thus, the image 
of [a] in H1($,/$,Pi3) must be trivial. Hence we can assume that a bas 
values in !P3 = Z/5Z. 

Now H1($,/$, !P3) E (Z/5Z)2 by class field theory, but its image in 
H1($,/$, E[5,]) is of order 5. Since [a] E S e l ~ , ( $ ) ~ ,  it has a trivial image 
in H1 (IQ5, 05). Hence, regarding a as an element of Hom(Gal($,/$), P3), 
it must be unramified at  5 and hence factor through Gal(K/$), where K 
is the cyclic extension of $ of conductor 11. But this implies that [a] = 0 
in H1 ($,/$, E[5*]) because Hom(Gal(K/$), !P3) is the kernel of the map 
H1($,/$,!P3) -+ H1($,/$,E[5m]). To see this, note that this kernel has 
order 5 and that the map H1 (IQ5, !P3) -+ H1 (IQ5, D5) is injective. Hence 
Se1E3($)5 = 0. 

S e l ~ , ( $ ) ~  = 0. We have H1($,/Q, E2[5]) E H1($,/$, E2[5°0])[5]. Let 
[a] E S e l ~ ,  ($)[5]. We can assume that a has values in E2 [5]. The image of a 
in H1($,/$, !P2) must have a trivial restriction to GQl,. But 

where K is as above and L is the first layer of the cyclotomic Z5-extension 
of $. Now 11 is inert in L/$ and ramified in KL/L. Thus it is clear that a 
has trivial image in H1($,/$, !P2) and hence has values in Pi2 = p5. 

Now H1($,/$, p5) r (Z/5Z)2, but the map 

has ker(eo) r Z/5Z. Now [a] E Im(eo), which we will show is not contained 
in S e l ~ , ( $ ) ~ .  This will imply that S e l ~ , ( $ ) ~  = 0. Consider the commutative 
diagram 

One sees easily that a is an isomorphism. Also, H ~ ( $ ~ ,  p5) (2/5Z)' and 
b induces an isomorphism H1(Q5, pg) H1(Q5, C5)[5]. Referring to (2) fol- 
lowing the proof of lemma 2.3, one sees that HI (Q5, C5) ($5/n5) X 2/5Z.  

(One needs the fact that l g 2 ( ~ / 5 Z ) l  is divisible by 5, but not by 52.) In 
section 2, one also finds a proof that the map 

is an isomorphism. (See (3) in the proof of proposition 2.5.) If we had Im(eo) E 
Sel~,($)5, then we must have Im(c o €0) Im(A5)div, which is the image of 
the local Kummer homomorphism n5. But this can't be so because clearly 
Im(b o a) $! H1 ($,, C5)div. It follows that S e l ~ , ( $ ) ~  = 0. 

Although we don't need it, we will determine ker(eo). The discussion in 
the previous paragraph shows that ker(co) is the inverse image under b o a of 
H1(Q5, C5)div[5]. One can use proposition 3.11 to determine this. Let cp be 
the unramified character of GQ5 giving the action in D5 = k 2 [ 5 ~ ] .  Since 5 
is an anomalous prime for E2, one gets an isomorphism 

where M, denotes the unramified Z5-extension of Q5. One has 

where now R = Z,[[G]], G = Gal(M,/$,). We have Cg r p5m @I (p-l 

and H1(Mm, C5) = H1(Mm, ps-) @ cp-'. NOW H1(Q5, C5)-H1(Mm, C5)G, 
by the inflation-restriction sequence. The image of H1(Q5, C ~ ) ~ i v  under the 
restriction map is (M,, C5)$diV. But (M,, C5)R-div coincides with 
H1(M,,p5-)~-di~, with the action of G twisted by cp-l. Let q E $2 and 
let a, be the 1-cocycle with values in p5 associated to @. Then a, E 
H1(Q5, C5)div if and only if u,lcMoo E H1(M,, p5m)R-div. By proposition 
3.11, this means that q is a universal norm for Mm/Q5, i.e., q E Z;. Now 
H1($,/$, p5) consists of the classes of 1-cocycles associated to fi, where 
u = 5i l l j ,  0 5 i, j 5 4. It follows that ker(e0) is generated by the 1-cocycle 
corresponding to m. There are other ways to interpret this result. The 
extension class of Z/5Z by p5 given by E2[5] corresponds to the 1-cocycle 
associated to m. The field $(E2[5]) is Q(p5, m ) .  The Galois module 
E2[5] is "peu ramifike" at 5, in the sense of Serre. (This of course must be so 
because E2 has good reduction at  5.) 

S e l ~ ,  ($)5 = 0. We have an exact sequence 

Since S e l ~ ,  ($)5 = 0, it is clear that S e l ~ ,  ($)5 5 Im(H1($,/$, !PI)). But 
Pi = Z/5Z and H'($E/$,@I) = Hom(Gal(KL/$), Z/5Z), where K and 
L are as defined before. Since the decomposition group for 11 in Gal(KL/$) 
is the entire group and since !Pi is mapped to D11[5], we see as before that 
H1 ((I$=/$, !PI) -+ H1(Ql1, El [5°01) is injective. Hence SelE, ( Q 5  = 0. 
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fEi (T) = 5mEi . We can now apply theorem 4.1 to see that fEl (0) - 5, 
fE2(0) - 52, and fE3(0) - 1, using the fact that $(H/~z)  has order 5. But 
we know that 5mEi divides fEi (T). Hence it follows that, after multiplication 
by a factor in AX, we can take fEl (T) = 5, f ~ ,  (T) = 52, and f ~ ,  (T) = 1. We 
now determine directly the precise structure of the Selmer groups SelEi ($,)5 
as A-modules. 

selE3 (Q,), = 0. The fact that fE3 (T) = 1 shows that SelE3 is 

finite. Proposition 4.15 then implies that SelE3($,)5 = 0. However, it is 
interesting to give a more direct argument. We will show that the restrictih 
map sf )  : SelE3($)5 + SelE3($,)c is surjective, which then implies that 
SelE3($,)[ and hence SelE3 are both zero. Here and in the following 

discussions, we will let s r ) ,  h r ) ,  g:), and r?) for u E {5,11) denote the maps 
considered in sections 3 and 4 for the elliptic curve Ei, 1 5 i 5 3. Thus, 
ker(sr1) = 0 for 1 5 i 5 3, by proposition 3.9. But I ker(hf1)1 = 5. We have 
the exact sequence 

Thus it suffices to show that I ker(gfl)l = 5. We let 

The kernels of the maps r?) : 7 - l ~ ~  (0,) + %E< ($7') can be determined by 
the results in section 3. In particular, one finds that (ker(rr))l = 52, while 
r!;) is injective. Also, NEi (Qgyc) 2 H1(QEyC, D5) e 11̂  for 1 5 i 5 3. Thus, 
lm(rF1) is obviously isomorphic to Q5/Z5 for each i. It follows that A has 
order S2, A C %E3($5), A I I  %!~~($~)div has order 5, and A % ~ ~ ( $ ~ ) d i v  = 
'HE, (Q5). Now Gg3 (Q) has index 5 in pg3($) and projects onto %E,(%~). 
It follows easily that 

As we said, this implies that SelE3($,)5 = 0. 

SelE2 s 11̂ [52]. Let @ be the GQ-invariant subgroup of E2[5,] which 
is cyclic of order 52. (This @ is an extension of $1 by @z .) We have E2 /@ Y E3. 
Since SelE3 (QW)5 = 0, it follows that 

The index is finite by proposition 5.7. Thus it is clear that Sel~,($,)5 is 
pseudo-isomorphic to 11̂ [52] and has exponent 52. Since E2($) = 0, we have 

Gg2 ($) = Pg2 (Q) and ker(hg)) = 0. Hence 

Now ker(r!il) = 0 because 5 { ordll (qgZ1)), where qgZ1) denotes the Tate pe- 

riod for E2 in $rl. Also, (ker(rf))l = 52. We pointed out earlier that the 
GQ-module E2[5] is the nonsplit extension of 2 / 5 Z  by pg corresponding to 
m. Since 11 $! (Ql)5,  this extension remains nonsplit as a GQ,-module. 
Thus, H0(Q5, E 2  [5,]) = 0. One deduces from this that H1 ($,, E2[5"]) E 

Q5/& and %E,($~) E This implies that ker(rfl) S 2 / 5 2 2 .  Hence 
ker(gf)), coker(sl-2)) and hence S e l ~ ,  ($,)[ are all cyclic of order 52. There- 
fore, XE,($,) = SelE,($,)i is a cyclic A-module of exponent 52. That is, 
XE,($,) is a quotient of A/52A and, since the two are pseudo-isomorphic, 
it follows easily that XE,($,) Z ~ l / 5 ~ A .  This gives the stated result about 
the structure of S e l ~ ,  ($,)5. 

S e l ~ ,  ($,)5 2 11̂ [5]. Since El/@1 EZ E3, it follows that 

Hence S e l ~ ,  ($,)5 has exponent 5 and is pseudo-isomorphic to 11̂ [5]. Also, 
by proposition 4.15, Sel,ql($,)5 has no proper A-submodules of finite in- 
dex. Thus, XE, ($,) is a (A15.4)-module pseudo-isomorphic to (A/5A) and 
with no nonzero, finite A-submodules. Since A/5A is a PID, it follows that 
XE, ($,) 2 45-4, which gives the stated result concerning the structure of 
SeL, ($,)5. 

Twists. Let < be a quadratic character for $. Then < corresponds to a 
quadratic field $(&), where d = dt E + and Id1 is the conductor of <. 
We consider separately the cases where < is even or odd. For even <, the fol- 
lowing conjecture seems reasonable. It can be deduced from conjecture 1.11, 
but may be more approachable. We let EC denote the quadratic twist of E 
by d. 

Conjecture 5.12. Let E be an elliptic curwe/$ with potentially ordinary or 
multiplicative reduction at p, where p is an odd prime. Let < be an even 
quadratic character. Then SelEc($,), and SelE($,), have the same p- 
invariants. 

We remark that the A-invariants can certainly be different. For example, 
if E is any one of the three elliptic curves of conductor 11, then XE = 0 
for any prime p satisfying the hypothesis in the above conjecture. But if 6 
is the quadratic character corresponding to $(a) (of conductor 8) ,  then 
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rank(E[($)) = 1. (In fact, E[ is 704(A1, 2, or 3) in [Cre].) Then of course 
AEE 2 1 for all such p. 

Assume now that ( is an odd character and that ((5) # 0. Let E be 
any one of the elliptic curves of conductor 11. Let p = 5. Then Ec[5] is GQ- 
reducible with composition factors p5 @ ( and (Z/5B) @ 5. The hypotheses 
in proposition 5.10 are satisfied and so the p-invariant of SelE, is zero. 
The A-invariant AEe is unchanged by isogeny and so doesn't depend on the 
choice of E. It follows from proposition 4.14 that SelE~($,):, is divisible. 
Hence AEE, which is the Z5-corank of SelEE ($,)5, is obviously equal to the 
(H/5H)-dimension of SelE€ ($,)5[5]. We will not give the verification (which 
we will discuss more generally elsewhere), but one finds the following formula: 

where d = d[ and A€ denotes the classical A-invariant A(F,/F) for the imag- 
inary quadratic field F = $(&) and for the prime p = 5 and where e[ = 1 
if 11 splits in $(a)/$, 61 = 0 if 11 is inert or ramified. By proposition 
3.10, it follows that c ~ r a n k ~ , ( S e l ~ ~ ( $ ) ~ )  - EF (mod 2), which is in agree- 
ment with the Birch and Swinnerton-Dyer conjecture since the sign in the 
functional equation for the Hasse-Weil L-function L(Ec/$, 5) = L(E/$, (, 5) 
is (-1)'~. As an example, consider the case where ( corresponds to $(-). 
Then E[ is 704(K1, 2, or 3). The class number of $(-) is 1. The prime 
p = 5 is inert in F = $(p). Hence the discussion of Iwasawa's theorem 
in the introduction shows that the A-invariant for this quadratic field is 0. 
But 11 splits in F. Therefore, A E ~  = 1. Since rank(E[($)) = 1, it is clear 
that SelE~($,)5 = Ec($) CXI ($,/Z,). As another example, suppose that 
( corresponds to F = $(fl). Then E[ is 176(B1, 2, or 3) in [Cre]. The 
prime 5 splits in F/$ and so A(F,/F) > 1. In fact, A(F,/F) = 1. Since 11 
is inert in F, we have XEC = 2. But E[($) is trivial. If EC($~) had positive 
rank, one would have rank(E[($,)) > 4 (because the nontrivial irreducible 
$-representation of Gal($, /$) has degree 4). Hence it is clear that AFE = 2, As-W = 0. T.  Fukuda has done extensive calculations of A(F,/F) when F 
is an imaginary quadratic field and p = 3,5, or 7. Some of these A-invariants 
are quite large. Presumably they are unbounded as F varies. For p = 5, he 
finds that A[ = 10 if ( corresponds to F = $(d-3,624,233). Since 11 splits 
in F/$, we have AE< = 21 in this case. However, we don't know the values 
of Ag[W and Age. 

We will briefly explain in the case of E t  (where E and ( are as in the 
previous paragraph and p = 5) how to prove conjecture 1.13. Kato's theorem 
states that f h ( ~ )  divides f F 1 ( T ) ,  up to multiplication by a power of p. 
Thus, A ( f F 1 )  2 AEt. NOW it is known that A[ is equal to the A-invariant 
of the Kubota-Leopoldt 5-adic L-function L5(w[, s). The p-invariant is zero 
(by [Fe-Wa]). In [Maz3], Mazur proves the following congruence formula 

for all s E B5. More precisely, one can interpret this as a congruence in the 
Iwasawa algebra A modulo the ideal 54. The left side corresponds to f r l ( ~ ) ,  
and each factor on the right side corresponds to an element of A. The two 
sides are congruent modulo 511. Now, if f (T) E A is any power series with 
p(f) = 0, then one has f(T) - u ~ ~ ( f )  (mod PA), where u E A X .  Applying 
this, we obtain A(fsa') = 2 4  + q and therefore A(f%') = AEE. Since both 
f ~ l ( T )  and ~ E ( T )  have p-invariant equal to zero, it follows that indeed 
(fE(T)) = (fSB1(T)). 

Theorems 4.8,4.14, and 4.15 give sufficient conditions for the nonexistence 
of proper A-submodules of finite index in SelE(F,),. In particular, if F = $ 
and if E has good, ordinary or multiplicative reduction at  p, where p is any 
odd prime, then no such A-submodule of SelE($,), can exist. (This is also 
true for p = 2, although the above results don't cover this case completely.) 
The following example shows that in general some restrictive hypotheses are 
needed. We let F = $(p5), F, = $(p5m). Let E = E2, the elliptic curve 
of conductor 11 with E($) = 0. We shall show that SelE(F,)5 has a A- 
submodule of index 5. To be more precise, note that Gal(F,/$) = A x r, 
where A = Gal(F,/$,) and r = Gal(F,/F). Now A has order 4 and its 
characters are wi, 0 5 z 5 3. We can decompose Sel~(F,)5 as a A-module 
by the action of A: 

As we will see, it turns out that s ~ I E ( F , ) ~  Z H/5Z, which of course is a 
A-module quotient of s e l ~ ( F , ) ~ .  This component is (Sel~(F,)5 C3 w-~)" ,  
which can be identified with a subgroup of H1(Qz;./$,, E[5,] @ w - ~ ) ,  where 
C = {m, 5 , l l ) .  For brevity, we let A = E[5,] C3 w - ~ .  We let SA($,) denote 
the subgroup of H1(Qc/$,, A) which is identified with ~ e l ~ ( ~ , ) f  by the 
restriction map. Noting that w-3 = w, we have a nonsplit exact sequence of 
GQ-modules 

This is even nonsplit as a sequence of GQ5-modules or GQ,,-modules. The 
GQ-submodule pf2 of A[5] is just @ W, which we will denote simply by @. 
We let 9 = A[5]/@. We will show that 

where the isomorphism is by the map e : H1(QC/$,, @) -+ H ~ ( $ ~ / $ , ,  A). 
This map is clearly injective. Since @ C C5 @ W, it follows that the local 
condition defining SA($,) at  the prime of $, lying over 5 is satisfied by 
the elements of Im(c). We now verify that the local condition at the prime of 
$, over 11 is also satisfied. This is because @ E Cl, @w, which is true because 
the above exact sequence is nonsplit over $,,. Since 11 splits completely in 
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F/$, W I G Q ~ ,  is trivial. Thus A = E[5,] as GQll-modules. One then easily 
sees that the map 

is the zero map. That is, the map H1($iy,A) + HI($;?, D11) is an iso- 
morphism. Elements of Im(e) are mapped to 0 and hence are trivial already 
in H1($;7, A), therefore satisfying the local condition defining SA($,) at 
the prime over 11. 

So it is clear that Im(e) C SA($,). We will prove that equality holds a d  
that H1($,/$,,@) 2 / 5 2 .  This last assertion is rather easy to verify. 
Let F+ = $(A), the maximal real subfield of F. By class field theory, one 
finds that there is a unique cyclic extension K/F+  of degree 5 such that K/$ 
is dihedral and K C $,. Thus, H1($,/$,@) = Hom(Gal(K/F+),@) has 
order 5. It follows that H1($,/$,,@) is nontrivial. Also, one can see that 
KIFf  is ramified at the primes of F+ lying over 5 and 11. Let C' = {m, 5). 
Then @ is a Gal($,, /$)-module and one can verify that H1 ($,, I$,, 9) = 
0. (It is enough to show that H' (Qc, I$,, @)r = H1 ($,, /$, @) vanishes. 
This is clear since K/F+  is ramified at 11.) Therefore, the restriction map 
H1($,/$,,@) + H1(Q;y,@) must be injective. But H1(&;iC,@) 2 2 / 5 2 ,  
from which it follows that H1($,/$,, @) indeed has order 5. 

It remains to show that SA($,) C Im(e). Let B = A/@. Then B E 
El [5m]@w and B[5] r pF2 xp5 as GQ-modules. We will prove that SB($,) = 
0, from which it follows that SA($,) C Im(e). Consider SB($,)[~], any 
element of which is represented by a 1-cocycle u with values in B[5]. The 
map B[5] -+ p5 sends a to a 1-cocycle Z such that [ZIGQ,,,] 5 is trivial as an 

element of H1 ($zyc, D5 €3 W) . Thus, [Z] is in the kernel of the composite map 

The second map is clearly injective. If the kernel of the first map were non- 
trivial, then it would have a nonzero intersection with H1 p5lr = 
H1(Qa/$, pa). One then sees that the map a : H1(Qr/Q, p5) -+ H1(Q5, w )  
would have a nonzero kernel. But, as we already used before, the map a is 
injective. (The elements of H1 ($,I$, p5) are represented by the 1-cocycles 
associated to m, 0 5 i, j 5 3. But 5311j E ($c)5 e~ i = j = 0.) Thus, 
the first map is injective too. Thus [Z] = 0. Hence we may assume that u has 
values in pF2. Now, in contrast to A, we have pF2 Cll €3 w. That is, the 
map B -+ Dll induces an isomorphism ,up2 N--) Dl1 [5]. The composite map 

is clearly injective. Since [a] becomes trivial in H'($:?, B), it follows that 

[o] E ker (H1 ($,/Q,, pp2) + H1 (QF, pF2)) 

But we already showed that this kernel is trivial. (Recall that pF2 2 @.) 
~ e n c e  [a] = 0, proving that SB(Qoo) = 0 as claimed. 

Conductor = 768. We return now to the elliptic curves 768(D1, D3) which 
we denoted previously by El and E2. We take p = 5. As we mentioned 
earlier, SelE1 ($)5 = 0 and SelE, ($,)5 = 0. Also, El and E2 are related by 
an isogeny of degree 5. Let @ denote the GQ-invariant subgroup of E2[5,] 
such that E2/@ C El ,  I @ I  = 5. Let !P = E2[5]/@. Then GQ acts on @ and !P 
by characters cp, $ with values in (2152) which factor through Gal(Qc/$), 
where now a = {00,2,3,5). Since E2 has good, ordinary reduction at  5, one 
of the characters cp,$ will be unramified at  5. Denote this character by 8. 
By looking at the Fourier coefficients for the modular form associated to E2 
(which are given in [Cre]), one finds that 8 is the even character of conductor 
16 determined by 8(5) = 2 + 5 2 .  Then 8(3) = 3 + 52 .  Now El and E2 
have split, multiplicative reduction at  3. One has a nonsplit exact sequence 
of GQ-modules 

which remains nonsplit for the action of GQ3 since the Tate period for El 
over Q3 has valuation not divisible by 5. Thus, 9 C pg as GQ3-modules. 
Thus, $(3) = 3 + 5Z, ~ ( 3 )  = 1 + 52.  Hence we have 8 = $. Therefore, 9 
is even and unramified at 5, @ is odd and ramified at 5. By theorem 5.7, we 
see that Sel~,($,)5 has positive pinvariant. But since SelE, ($,)5 = 0, it 
is clear that S e l ~ , ( $ ~ ~ ) 5  E H1($c/$,,@). Thus, p ~ ,  = 1 and Sel~,($,)~ 
has exponent 5. One then sees easily (using proposition 4.8 and the fact that 
4 5 . 4  is a PID) that S e l ~ , ( $ ~ ) a  Z ;1̂ [5], as we stated earlier. Theorem 4.1 
then implies that SelE, ($)5 = 0. 

Conductor = 14. Let p = 3. The situation is quite analogous to that for 
elliptic curves of conductor 11 and for p = 5. The yinvariants of SelE($,), 
if E has conductor 14 can be 0, 1, or 2. The A-invariant is 0. 

Conductor = 34. Let p = 3. There are four isogenous curves of conductor 
34. We considered earlier the curve E = 34(A1), showing that ~ E ( T )  = 81, 
up to a factor in AX, where 81 = T2 + 3T + 3. The curve 34(A2) is related to 
E by a $-isogeny of degree 2 and so again has p-invariant 0 and A-invariant 
equal to 2. The two other curves of conductor 34 have $-isogenies of degree 3 
with kernel isomorphic to p3 as a GQ-module. It then follows that they have 
p-invariant 1. Denoting either of them by El, the characteristic ideal of the 
Pontryagin dual of Selp ($,)3 is generated by 3e1. 

Conductor = 306. Take p = 3. We will consider just the elliptic curve 
E defined by y2 + xy = x3 - x2 - 9272 + 11097. This is 306(B3) in [Cre]. 
It is the quadratic twist of 34(A3) by the character w of conductor 3. The 
Mordell-Weil group E($) is of rank 1, isomorphic to 2 x (2/62) .  E has 
potentially ordinary reduction at 3, and has good ordinary reduction over 
K = Q(p3) at the prime p lying over 3. The unique subgroup @ of E($) of 
order 3 is contained in the kernel of reduction modulo p for E(K) .  Although 
the hypotheses of proposition 5.10 are not satisfied by E, the proof can still 
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be followed to show that the p-invariant of Sel,g($,)s is 0. Let F denote the 
first layer of $,, F = $(P) where p = C + (-', < being a primitive 9-th root 
of unity. The prime 17 splits completely in F/$. Using this fact, it is easy to 
verify directly that 

Hom(Gal(F/$), @) C Sel~($)s. 

This clearly implies that ker(SelE($)3 -+ Sel~($,)~) is nontrivial. (Contrast 
this with proposition 3.9.) However, we can explain this in the following more 
concrete way, using the results of a calculation carried out by Karl R u b .  
The point P = (9,54) on E($) is a generator of E($)/E($)tors. But P = 3Q, 
where Q = (-6p2 + 9p + 15, 15P2 - 48P + 9) is in E(F). This implies that the 
map E(Q) @ (Q3/Z3) + E(F)  @ (Q3/Z3) has a nontrivial kernel. Let 4 be 
the 1-cocycle defined by $(g) = g(Q) - Q for g E GQ. This cocycle has values 
in E(F)[3], which is easily seen to be just @ = E($)[3], and factors through 
Gal(F/$) . Thus it generates Hom(Gal(F/$) , @) and is certainly contained 
in SelE ($)a. 

For n > 1, it turns out that ker(SelE($,)3 + Sel~($,)~) = 0. This 
can be seen by checking that the local condition at any prime of $, lying 
above 17 (which will be inert in $,/$,) fails to be satisfied by a nontrivial 
element of Hom(Gal($, I$,), @). The fact that E has split, multiplicative 
reduction at  17 helps here. The argument given in [HaMa] then shows that 
SelE($,)3 has no proper A-submodule of finite index. As remarked above, 
the yinvariant is 0. A calculation of McCabe for the padic L-function as- 
sociated to E combined with Kato's theorem implies that the A-invariant of 
SelE($,)3 is 1. It follows that Sel~($,)~ = E($,) @ (Q3/Z3) S Q3/23, 
on which r acts trivially. 

Conductor = 26. Consider 26(B1, B2). These curves are related by isogenies 
with kernels isomorphic to p7 and 2 / 7 2 .  Let El be 26(B1). Then S e l ~ ,  ($)7 

should be zero. From [Cre], we have c2 = 7, q 3  = 1, a7 = 1, and I El ($) ( = 7. 
Take p = 7. Theorem 4.1 then implies that f ~ ,  (0) - 7. Thus, ~ E , ( T )  is an 
irreducible element of A. The only nonzero, proper, GQ-invariant subgroup of 
E1[7] is El($) E Z/72.  Although we haven't verified it, it seems likely that 
p ~ ,  = 0. (Conjecture 1.11 would predict this.) If this is so, then AE, > 0. 
Let E2 be 26(B2). Then c2 = ~ 1 3  = 1, a7 = 1, and E2($) = 0. One can 
verify that SelE2($)? = 0. Then by Theorem 4.1, we have f ~ , ( 0 )  - 72. Since 
(fE1(T)) and (fE2(T)) can differ only by multiplication by a power of 7, it 
is clear that fE2 (T) = 7fE1 (T), up to a factor in AX. Thus, p ~ ,  > 1, which 
also follows from proposition 5.7 because E2[7] contains the odd, ramified 
GQ-submodule p7. 

Conductor = 147. Consider 147(B1, B2), which we denote by El and 
E2, respectively. They are related by isogenies of degree 13. For El, one has 
CQ = c7 = 1, a13 = 1, El($) = 0, and SelEl($) = 0. Takep = 13. By theorem 
4.,1, fEl(0) - 1 3 ~ .  For E2, one has c3 = 13, c7 = 1, a13 = 1, E2($) = 0, and 
SelE2($) = O. Thus, fE,(0) - 133. Since an isogeny El -t E2 of degree 

13 induces a homomorphism SelEl ($,)13 -+ Sel~,($,)l3 with kernel and 
cokernel of exponent 13, it is clear that ~ E , ( T )  = 13 f ~ ,  (T), up to a factor 
in Ax. Conjecturally, p ~ ,  = 0 and hence p~~ = 1. Let < be the quadratic 
character of conductor 7, which is odd. Then ~f and E; are the curves 
147(C1, C2). Proposition 5.10 implies that SelE$Q,)~3 and SelE;(Q,)13 

have p-invariant equal to zero. In fact, for both ~f and E;, we in fact have 

c3 = c7 = 1, a13 = -1, E ~ ( Q )  = E ~ ( Q )  = 0, SelE;(Q)13 = SelE$$)13 = 0. 
By proposition 3.8, we have SelE: (Q,)13 = SelE; = 0. 

Conductor = 1225. Consider now El : y2 + xy + y = x3 + x2 - 8x + 6 
and also E2 : y2 + xy + y = x3 + x2 - 208083~ - 36621194. These curves 
have conductor 1225 and are related by a $-isogeny of degree 37. They have 
additive reduction at 5 and 7. Hence the Tamagawa factors are at most 4. 
The j-invariants are in 2 and so these curves have potentially good reduction 
at 5 and 7. We take p = 37. Since a37 = 8, El and E2 have good, ordinary 
reduction at p. Let @ be the GQ-invariant subgroup of E2[37] and let !P = 
E2[37]/@. Thus, @ is the kernel of the isogeny from E2 to El. The real periods 
01, 0 2  of El ,  E 2  are given by: 6'1 = 4.1353.. . , 0 2  = .11176.. . . Since 
01 = 3702, one finds that @ must be odd. Let cp,$ be the (2/37Z)X- 
valued characters which describe the action of GQ on @ and P. We can 
regard them as Dirichlet characters. They have conductor dividing 5 - 7 . 3 7  
and one of them (which we denote by 8) is unramified at 37. By examining 
the Fourier coefficients of the corresponding modular form, one finds that 
8 is characterized by 8(2) = 8 + 372, 8(13) = 6 + 372. The character 8 
is even and has order 12 and conductor 35. But since cp is odd, we must 
have 8 = $. Thus, @ is odd and ramified at 37. Therefore, by proposition 
5.7, we have p ~ ,  > 1. By using the result given in [Pe2] or [SchS], one finds 
that p ~ ,  = p ~ ,  + 1. Conjecturally, p ~ ,  = 1, p~~ = 0. In any case, we have 
( f ~ ~  (T)) = (37 f ~ ,  (T)). Now El ($) and E2 (0) have rank 1. It is interesting 
to note that the fact that S e l ~ ,  ($)37, S e l ~ ,  ($)37 are infinite can be deduced 
from Theorem 4.1. For if one of these Selmer groups were finite, then so 
would the other. One would then see that both f ~ , ( 0 )  and fE2(0) would 
have even valuation. This follows from Cassels' theorem that lSelEi ($)I is a 
perfect square for i = 1,2 together with the fact that the Tamagawa factors 
for Ei at 5 and 7 cannot be divisible by 37. But f ~ , ( 0 )  - 37f3,(0), which 
gives a contradiction. Similar remarks apply to even quadratic twists of El 
and E2. 

Now we will state and prove the analogues of propositions 5.7 and 5.10 
for p = 2. It is necessary to define the terms "ramified" and "odd" somewhat 
more carefully. Assume that E is an elliptic curve/$ with good, ordinary 
or multiplicative reduction at 2. Suppose that @ is a cyclic GQ-invariant 
subgroup of E[2"]. We say that @ is "ramified at 2" if @ C2, where C2 is 
the subgroup of E[2"] which occurs in the description of the image of the 
local Kummer map for E over 0, given in section 2. (It is characterized by 
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C2 2 p2- for the action of IQ2. Here IQ2 is the inertia subgroup of GQ,, 
identified with a subgroup of GQ by choosing a prime of $ lying over 2. Then 
Dz = E[2"]/C2 is an unramified GQ,-module.) We say that Pi is "odd" if 
Pi C,, where C, denotes the maximal divisible subgroup of E[2,] on 
which Gal(C/R) acts by -1 : C, = (E[2"]-)diV. Then C, 2 Q2/B2 as a 
group. Here we identify Gal(C/R) with a subgroup of GQ by choosing an 
infinite prime of @. (We remark that C, 2 p p  as Gal(C/R)-modules and 
that Gal(C/R) acts trivially on D, = E[2CO]/C,.) Since @ is GQ-invariant, 
these definitions are easily seen to be independent of the choice of primesrof - 
$ lying over 2 and over ca. We now prove the analogue of proposition 5.7. 

Proposition 5.13. Suppose that E is an elliptic curve/$ with good, ordi- 
nary or multiplicative reduction at 2. Suppose also that E[2*] contains a 
GQ-invariant subgroup @ of order 2m which is ramified at 2 and odd. Then 
the p-invariant of SelE($,)2 is at least m. 

Proof. The argument is virtually the same as that for proposition 5.7. We 
consider Im(E) where E is the map 

The kernel is finite. Since @ C C2, the elements of Im(E) satisfy the local 
conditions defining SelE($,)2 at  the prime of $, lying over 2. Also, just as 
previously, a subgroup of finite index in Im(c) satisfies the local conditions for 
all other nonarchimedean primes of Q,. Now we consider the archimedean 
primes of $,. Note that H1(R,C,) = 0. Since @ C C,, it is clear that 
elements in Im(t) are locally trivial in H1 ((Q,), , E [2,]) for every infinite 
prime rj of $,. Therefore, Im(t) n SelE($,)2 has finite index in Im(t). 

It remains to show that the A-module H~ (Qz/$,, @) has p-invariant 
equal to m. Since the GQ-composition factors for @ are isomorphic to +/2+, 
lemma 5.9 implies that the p-invariant for H1(Qc/$,,Pi) is at most m. 
On the other hand, the Euler characteristic of the Gal(&/$,)-module Pi 
is n I@/@"* I-l, where v runs over the infinite primes of $, and Dv = 

4, 
Gal(C/R) is a corresponding decomposition group. Assume that m 2 1. 
Then ICD*I = 2 and so this Euler characteristic is 2-(m-1)2" for all n 2 0. 
Now HO(Qc/$,,Pi) just has order 2. As for H2(QC/$,, Pi), it is known that 
the map 

is surjective. (This is corollary 4.16 in [Mi].) Since H2(DV, @) has order 2, it 
follows that IH2(Qz/Qn, @)( > 22n. Therefore, 

The restriction map H1(Qc/$,, Pi) + ($,/$,, is surjective and 
has kernel H1 (r,, B/22), which has order 2. Thus, 

for all n .  This implies that H1 (Qc/$.,, Pi) has p-invariant at  least m. There- 
fore, the yinvariant of H1(Qz/$,, @) and hence of Im(6) is exactly m, 
proving proposition 5.13. rn 
Remark. As we mentioned before (for any p), if E admits a $-isogeny of 
degree 2 and if SelE($,)2 is A-cotorsion, then Sel~($,)~ contains a A- 
submodule pseudo-isomorphic to X[2pE]. It is known that there are infinitely 
many elliptic curves/$ admitting a cyclic $-isogeny of degree 16, but none 
with such an isogeny of degree 32. We will give examples below where the 
assumptions in proposition 5.13 are satisfied and [Pi1 = 2m with m = 0,1,2,3, 
or 4. For any elliptic curve El$, there is a maximal GQ-invariant subgroup 
Pi which is ramified and odd. Define mE by = 2mE. Conjecturally, p~ = 
mE. Thus the possible values of p~ as E varies over elliptic curves/$ with 
good, ordinary or multiplicative reduction at 2 should be 0, 1, 2, 3, or 4. 
Examples where p~ > 0 are abundant. It suffices to have a point P E E($) 
of order 2 such that P E C2 and P E C,, using the notation introduced 
earlier. If the discriminant of a Weierstrass equation for E is negative, then 
E(IR) has just one component. In this case, C,[2] = E(R)[2] and so if 
P E E($) has order 2, then Pi = (P) is automatically odd. (Note that 
in this case H1(R, E[2,]) = 0 and so the local conditions at the infinite 
primes of $, occurring in the definition of SelE($,)z are trivially satisfied 
anyway.) Similarly, if this discriminant is not a square in $;, then @ = (P) 
is automatically ramified since then Cz[2] = E(Q2)[2]. 

We now prove the analogue of proposition 5.10, which gives a sufficient 
condition for p~ = 0 in case p = 2. 

Proposition 5.14. Suppose that E is an ellaptic curve/$ wath good, ordi- 
n a y  or multiplicative reduction at 2. Suppose also that E($) contains an 
element P of order 2 and that @ = ( P )  is either ramified at 2 but not odd or 
odd but not ramified at 2. Then Sel.~($,)2 is A-cotorsion and p~ = 0. 

Proof. We must show that Sel~($,)~[2] is finite. Consider the map 

which occurred in the proof of proposition 5.8. By definition we have 

Under the hypothesis that E admits a $-rational isogeny of degree 2 (i.e., 
that E($) has an element of order 2), we showed earlier that ker(a~)[2]  has 
(A/2A)-corank equal to 1. Consider the map 
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Then ker(6) is finite and so, by lemma 5.9, Im(6) also has (A/2A)-corank 
equal to 1. 

Assume first that @ is odd but not ramified at  2. Then @ E C,. Since we 
have H1(R, C,) = 0, it is clear that Im(6) C ker(aE). It follows that Im(6) 
has finite index in ker(aE)[2]. Thus, it suffices to prove that Im(c)nSelE($,)2 
is finite. To do this, consider the composite map /3 defined by the commutative 
diagram 

where n is the unique prime of $, lying above 2 and I, is the inertia subgroup 
of G(Qmlm. Let B = ker(P). If [a] E H1 (Qc/$, , @), then the local condition 
defining SelE($,)2 at  the prime n is satisfied by €([a]) precisely when [a] E 
B. Since @ g C2, the map E[2,] -+ D2 induces an isomorphism of @ to  D2[2]. 
Also, since I, acts trivially on D2, the map H1(I,, Dz[2]) -+ H1(I,, D2) is 
injective. Hence 

If we let H;,,($,, @) denote the subgroup of H1($,,@) consisting of el- 
ements which are unramified a t  all nonarchimedean primes of $,, then 
H;,,($,,@) is a subgroup of B and the index is easily seen to be finite. 
(Only finitely many nonarchimedean primes q of $, exist lying over primes 
in C. H1(($,),, @) is finite if q + 2.) Now GQm acts trivially on @. Let L k  
denote the maximal abelian pro-2 extension of $, which is unramified at  all 
nonarchimedean primes of $, . Then 

But it is easy to verify that L k  = $,. (For example, one can note that 
LZ,$,(i)/$,(i) is everywhere unramified. But $,(i) = $(p2m). It is known 
that $(p2n) has odd class number for all n 2 0. Thus, $, C LZ, C 
$,(i), from which L& = $, follows.) Therefore B is finite. Therefore 
Im(c) 17 Sel~($ , )~  is indeed finite. 

Now assume that @ is ramified at  2 but not odd. Let 6 be as above. Since 
@ is not odd, it follows that E ( R )  must have two connected components. 
Hence, by proposition 5.8, H1($,/$,, E[2,])[2] has (A/2A)-corank equal 
to 2. This implies that the (A/2A)-corank of H'($~/$,, E[2]) is 2. On the 
other hand, H1(($,),, E[2]) also has (A/2A)-corank equal to 2. Consider 
the map 

We will show that the kernel is finite. It  follows from this that the cokernel 
is also finite. We have an exact sequence 

of GQm-modules, where @ E' 9 E' Z/22. The finiteness of the group B 
introduced earlier in this proof, and the corresponding fact for 9 ,  implies 
rather easily that ker(a) is indeed finite. Consider the map 

induced by the map E[2,] -+ D2. Since (Q,), has 2-cohomological dimen- 
sion 0, b is surjective. It follows that coker(b o a)  is finite. Using the fact 
that H1 ((Q,),, D2[2]) has (A/2A)-corank 1, we see that ker(b o a) also has 
(A/2A)-corank 1. Consider the map 

The above remarks imply easily that ker(y~)[2] has (A/2A)-corank equal to 1. 
The rest of the argument is now rather similar to that for the first case. 

It is clear that Im(6) C k e r ( y ~ )  since @ C C2. Thus, Im(6) has finite index in 
ker(y~)[2]. Also, by definition, we have 

It  then suffices to show that Im(6) rl SelE($,)2 is finite. To do this, we 
consider the composite map 6, defined by the following commutative diagram. 

where 7 is any infinite prime of $,. If [a] E H1($,/$,,@), then the lo- 
cal condition defining Sel~($,)s at  q for the element €([a]) would imply 
that 6,([a]) = 0. But since @ g C,, @ is identified with D,[2]. The map 
H1(R,  D,[2]) -+ H1(R, D,) is injective since Gal(C/R) acts trivially on 
Dm. Hence 

By lemma 5.9, we know that 0, ker(6,) is finite, where q varies over all 
the infinite primes of 0,. It  follows from this that Im(c) n Sel~($,)2 is 
also finite. This implies that Sel~($,)~[2] is finite, finishing the proof of 
proposition 5.14. 
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We now consider various examples. 

Conductor = 15. There are eight curves of conductor 15, all related by 
$-isogenies whose degrees are powers of 2. We will let Ei denote the curve 
labeled Ai in [Cre] for 1 5 i 5 8. The following table summarizes the situation 
for p = 2. 

For conductor 15, the Selmer group SelE, ($,)2 has A-invariant equal to 0 
and the p-invariant varies from 0 to 3. Now III = Sel~($).  Its order was 
computed under the assumption of the Birch and Swinnerton-Dyer conjec- 
ture by evaluating L(Ei/$,  RE^. The real period REi was computed using 
PARI. ITI, c3, and c5 are as listed in [Cre]. Using the fact that a2 = - 1, and 
hence (&(lF2)l = 4 for each i, the fourth row is a consequence of theorem 
4.1. In particular, it is clear that fE, (T) E AX. Hence p ~ ,  = AE3 = 0. The 
X-invariant of SelEi is unchanged by a $-isogeny. Hence hi = 0 for 
all i. It is then obvious that fEi (0) N 2pEi, which gives the final row. 

It is not difficult to reconcile these results with propositions 5.13 and 
5.14. For example, consider E3 : y2 + xy + y = x3 + x2 - 52 + 2. We have 
E3[2] 2 (H/2+)2. The points of order 2 are (1, -I), ( q ,  -;), and (-3,l). 
The second point generates C2 [2]; the third point generates C,[2]. (Remark: 
It is not hard to find the generator of C,[2]. It is the point in E(R)[2] 
whose x-coordinate is minimal.) Thus, E3($)[2] contains a subgroup which 
is ramified at 2 but not odd and another subgroup which is odd but not 
ramified at 2. Proposition 5.14 implies that p~~ = 0. Similarly, one can verify 
that p ~ ,  = p~~ = 0. Both E7($)[2] and E8($)[2] have order 2. E7($)[2] is 
ramified at  2 but not odd. Es($)[2] is odd but not ramified at 2. Proposition 
5.14 again applies. 

The p-invariants listed above turn out to be just as predicted by propo- 
sition 5.13. One can deduce this from the isogeny data given in [Cre]. One 
uses the following observation. Suppose that cp : E + E' is a $-isogeny such 
that Pi = ker(cp) is ramified and odd. Suppose also that E1[2"] contains a 
$-rational subgroup P which is ramified and odd. Then cp-'(Pi') is ramified 
and odd too. Its order is 1Pi1 . IVI. For example, E2($) has three subgroups 
of order 2, one of which is ramified and odd. There is a $-isogeny of degree 
2 from E2 to El ,  E5, and Es. One can verify that El (&), E5 (&), and E6 ($) 
each has a subgroup of order 2 which is ramified and odd. Thus, E Z [ ~ ~ ]  must 
havepa subgroup Pi' of order 4 which is ramified and odd. NOW Pi = E5($)[2] 

is of order 2, generated by (-y, y). This Pi is ramified and odd. Since 
E5/@ Z E2, it follows that E5[2w] has a ramified and odd $-rational sub- 
group of order 8. Thus, proposition 5.13 implies that /.LE~ 2 3. 

Conductor = 69. There are two such elliptic curves El$. Both should 
have IUIE(Q)I = 1 and I E($)I = 2. For one of them, we have c3 = 1, ~ 2 3  = 2. - 
For the other, c3 = 2, ~ 2 3  = 1. We have a2 = 1 and so IE(F2)1 = 2. By 
theorem 4.1, we have f ~ ( 0 )  N 2. Hence f,y(T) is an irreducible element of A. 
Now let Pi = E($) E Z/2Z. For one of these curves, Pi is ramified at  2 but 
not odd. For the other, Pi is odd but not ramified at 2. Hence proposition 
5.14 implies that p~ = 0. Since fE(T) 4 AX, it follows that XE 2 1. In 
fact, it turns out that AE = Ag-W = 1 A* = 0 

E , and ~ E ( T )  = T + 2, 
up to a factor in AX. To see this, consider the quadratic twist Ec, where 
E is the quadratic character corresponding to ~ ( f i ) .  Now Ec($) has rank 
1. Therefore, ~($(f i ) )  has rank 1. But $ ( a )  is the first layer in the 
cyclotomic Z2-extension $,I$. Therefore, Sel~($ , )~  contains the image of 
E ( Q ( ~ ) )  €4 (Q2/Z2) under restriction as a A-submodule. Its characteristic 
ideal is (T + 2). The assertions made above follow easily. 

Conductor = 195. We will discuss the isogeny class consisting of A1-A8 
in [Cre]. Some of the details below were worked out by Karl Rubin and myself 
with the help of PARI. We denote these curves by El,. . . , E8, respectively. 
We will show that A E ~  = = 3, Ag = 0, and that p~~ varies from 0 to 
4 for 1 5 i 5 8. Here is a table of the basic data. 

As before, we evaluated lIUl by assuming the Birch and Swinnerton-Dyer 
conjecture. But one could confirm directly that IUI2 1 is as listed, which would 
be sufficient for us. [Cre] gives IT1 and the Tamagawa factors cg, cg, and C13. 

The fourth row is a consequence of theorem 4.1. Since the A E ~ ' s  are equal, 
clearly the p-invariants must vary. The last row becomes clear if we can show 
that pfll = 0. Unfortunately, this does not follow from proposition 5.14. The 
problem is that Pi = E($)[2] is of order 2, but is neither ramified at  2 nor 
odd. In fact, Pi is generated by (6, -3), which is clearly not in the kernel of 
reduction modulo 2 and so is not in C2. Also, E(R)[2] has order 4 and (6, -3) 
is in the connected component of OE. This implies that (6, -3) 4 C,. 

We will verify that p ~ ,  = 0 by showing that f ~ ,  (T) is divisible by g(T) = 
(T + 2 ) ( ~ ~  + 2T + 2) in A. Since the characteristic ideals of S e l ~ ,  ($,)2 
differ only by multiplication by a power of 2, it is equivalent to show that 
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g(T) divides fEi (T) for any i. It then follows that ( f ~ ,  (T)) = (g(T)) since 
fEl(0) and g(0) have the same valuation. Therefore, p ~ ,  must indeed be 
zero. Let F and K denote the first and second layers in the cyclotomic 25- 
extension $,/$. Thus Gal(K/$) is cyclic of degree 4 and F is the unique 
quadratic subfield of K .  In fact, F = $ ( a ) ,  K = F( J ~ J Z ) .  We will 
show that E2 (K) @ $, considered as a $-representation of Gal(K/$) contains 
the two nontrivial, $-irreducible representations of Gal(K/$). One of them 
has degree 1 and factors through Gal(F/$). The other has degree 2 and is 
faithful. The fact that g(T) divides f,g,(T), and hence fEl (T), follows easily. 

The equation y2+xy = x3-115x+392 is the minimal Weierstrass equation 
defining E2. It is slightly more convenient to calculate with the nonminimal 
equation Y2 = (x - 1)(x - 2)(16x + 49), obtained by a simple change of 
variables. We single out the following two points satisfying this equation: 

P =  ( 0 , 7 f i ) ,  Q = (10 + 9&, (123 + 1 8 f i )  J=) . 

Now P  is rational over F, Q is rational over K.  To study E2(K), it is useful 
to first determine its torsion subgroup. In fact, we have 

E2($,)tors = E2($)tors ( Z / W  x (H/4Z). 

The structure of E2($) is given in [Cre]. It is easy to see that E2($,)tors 
is a 2-primary g p p  since E2 has good reduction at 2, 2 is totally ramified 
in $,/$, and IE2(P2)1 = 4. Now Q, is totally real and so E2($,)tor. E 

+/22  x Z/2 tZ  where t > 2. Assume t > 3. Then E2($,)tors would have 
8 elements of order 8. Since their squares are in E2($), the orbit under 
F = Gal($,/$) of an element of order 8 has cardinality at most 4. Hence 
such an element would be rational over K. We can rule out this possibility 
by noting that E2 has good reduction at  31, 31 splits completely in K/$ ,  
and (E2(~31)1 = 40, which is not divisible by 16. 

It is now clear that P and Q have infinite order. Also, Gal(F/$) acts on 
(P) by -1 since (0, - 7 a )  = -P. Thus, ( P )  @ $ is a Gal(K/$)-invariant 
subspace of E2(K) @ $ giving the degree 1, nontrivial representation of 
Gal(K/$). Similarly, Q belongs to ker(TrKIF), the kernel of the trace map 
from E2 (K) to E2 (F). Thus, ker(TrKIF) 8 $ is nonzero and provides at  least 
one copy of the 2-dimensional, irreducible $-representation of Gal(K/$). 
Therefore, rank(E2(K)) > 3. Considering the action of y = 1 + T on the im- 
age of E2(K) @ (Q2/Z2) in SelE,($,)2 makes it clear that g(T) does indeed 
divide fE,(T), as claimed. As noted above, it now follows that (~E,(T))  = 
(g(T)). This implies that XEl = 3, p,y1 = 0. More precisely, it is clear that 
~ g - ~  = 3, XE = 0. For the Q-isogenous curves Ei, 1 < i < 8, we also have 
Xg-W = 3, XE 0, but ( f ~ ~  (T)) = (2P~ig(T)). 

One can verify that in this example p ~ ;  = mEi. It is not hard to prove 
the existence of a GQ-invariant subgroup Gi of Ei[2,] with the expected 
order satisfying the hypotheses of proposition 5.13. Just as for conductor 15, 

one uses the $-isogenies between the Ei's. By direct verification, one finds 
that Ei[2] contains a ramified, odd GQ-invariant subgroup for i = 2,. . . ,8. 
The listed isogenies then imply that &[4] has a ramified, odd GQ-invariant 
subgroup of order 4 for i = 3 , .  . . ,8. Then one sees that Ei[8] contains such 
a subgroup of order 8 for i = 5,. . . ,8. Finally, both E7 and E g  admit $- 
isogenies of degree 2 to E5 .The kernels of these $-isogenies are ramified and 
odd. The inverse image of the ramified, odd, GQ-invariant subgroup 9 5  of 
E5[8] will be the ramified, odd, GQ-invariant subgroup @ji of Ei[16] of order 
16, for i = 7 or 8. 

Ken Kramer has found a description of the family of elliptic curves/$ 
which satisfy the hypotheses of proposition 5.13 for m = 1,2,3, and 4. Here we 
will give his description for m = 1 and m = 4, with the additional condition 
that E have square-free conductor. For m = 1, his family is 

where a, b E Z ,  gcd(4a - 1, b) = 1, (4a - > 64b, and either a or b is 
negative. The last conditions assure that 9 c C,. (If b < 0, then E ( R )  
has only one connected component. Then 9 is automatically contained in 
C,. If b > 0 and a < 0, then the inequality 1 - 4a > 8& implies that the 
above generator of @ is the element of E(R)[2] with minimal x-coordinate.) 
The discriminant of this equation, which is minimal, is b((4a - 1)2 - 64b)2. 
If b is odd, then E has good, ordinary reduction at 2. Conjecturally, this 
family should give all elliptic curves/$ with good, ordinary or multiplicative 
reduction at 2 and square-free conductor such that Sel~($,)2 has positive 
yinvariant. Kramer describes the elliptic curves with square-free conductor 
having a subgroup 9 of order 16 which is ramified and odd by the following 
equation: 

where c, d are distinct odd, positive integers, c = d (mod 4), and gcd(c, d) = 1. 
This equation is not minimal, but the discriminant of a minimal Weierstrass 
equation for E is (c4 - d4)c4d16/16. Interchanging c and d gives a second 
elliptic curve, $-isogenous to E, but with discriminant of opposite sign. Thus, 
there are an even number of such elliptic curves in a $-isogeny class. A similar 
statement is true for m = 2 or 3, as Kramer shows. We refer to [K] for a more 
complete discussion. 

We will end this article by returning to some of our earlier examples and 
discussing a few other examples, but now using Kato's theorem in conjunction 
with some calculations recently carried out by Ted McCabe. Assume that 
E is a modular elliptic curve/$ and that p is a prime where E has good, 
ordinary reduction. Kato's theorem asserts that ~ E ( T )  divides pm f y l ( T )  in 
A for some m > 0. Let XFa1 and p~~~ denote X ( f r l )  and p ( f y l ) .  Kato's 
theorem implies that XE < Xa,""'. McCabe has calculated approximations 
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to the first few coefficients when f F a l ( ~ )  is written as a power series in T, 
enough to verify that p y l  = 0 and to determine X r 1  for the examples 
he considers. These calculations allow us to justify several statements that 
were made earlier. As previously, we will use the value of (SelE($),I which 
is predicted by the Birch and Swinnerton-Dyer conjecture. In [M-SwD], one 
finds the results of calculations of the padic L-functions for the elliptic curves 
of conductors 11 and 17 and all primes < 100. 

Kato's theorem reduces the verification of conjecture 1.13 to showing that 
XE = Xgal and p~ = , u ~ ~ l .  In a number of the following examples, thege 
equalities can be shown. Before discussing the examples, we want to mention 
two situations which occur rather frequently. 

Ainal = psnal = 0. This means that f g n a l ( ~ )  E AX. By Kato's theorem, 
it follows that XE = 0. Also, f ~ l ( 0 )  = (1 - ppp-')2L(E/$, l ) / f l~  is a 
padic unit. Kolyvagin's theorem can then be used to verify the Birch and 
Swinnerton-Dyer conjecture, i.e., that SelE($), has the predicted order. Then 
by theorem 4.1, one would obtain that fE (0) E Hz too. That is, ~ E ( T )  E AX 
and hence p~ = 0 and conjecture 1.13 is valid for E and p. 

A>na1 = 1, pknal = 0. We will also assume that p is odd. Since Xgal = 1, 
fgnal(T) has exactly one root: T = a, where a E pH,. We mentioned in the 
introduction that fT1(T ' ) /  fFa1(T) AX,  where T1 = (1 + T)-' - 1. Thus 
(1 +a)-' - 1 is also a root of fgna l (~) .  It follows that (1 +a) l  = 1 and, since p 
is odd, a = 0. (For p = 2, we would have another possibility: a = -2.) Hence 
fgn"(0) = 0 and so TI f r l ( T ) .  We then must have fgnal(T)/T E AX. The p 
adic L-function Lp(E/$, s) would have a simple zero at s = 1. Assuming that 
E has good, ordinary reduction at p, the complex L-function L(E/$, s) would 
have an odd order zero at  s = 1. (The "signs" in the functional equations 
for Lp(E/$,s) and L(E/$,s) are the same. See [M-T-TI.) Perrin-Riou's 
analogue of the Gross-Zagier formula implies that L1(E/$, 1) # 0. Hence 
rank(E($)) = 1. Consequently, fE(0) = 0, XE = 1, and ~ E ( T )  = f E T ,  
up to a factor in AX. Furthermore, Perrin-Riou's formula also shows that 
h,(P) # 0, where P is a generator of E($)/ E($)tors, and that 

hp(P) - p(1- ~pp-1)-2(~ ' (E/$ ,  l)/fl~h,(P))-l.  

Kolyvagin's theorem should allow one to verify that L' (El$, l) /Rshm (P)  - 
( n cg)) 1111~($)pl/l E ( Q ) ~ ~ ~ .  If one then uses Schneider's result (for the 
v bad 

case F = $, r = l ) ,  one would obtain that fE(T)/T E Ax, thus verifying 
that XE = 1, p~ = 0, and that conjecture 1.13 is valid for E and p. 

Conductor = 67. We consider p = 3. As expected, p y l  = 0. We can't 
verify that p~ = 0, as conjecture 1.11 predicts. (E[3] is irreducible as a GQ- 
module.) McCabe finds that X y 1  = 2. As pointed out earlier, Sel~($ , )~  
is infinite. Hence, assuming that p~ = 0, we have XE > 0. BY proposition 
3.10, XE must be even. Thus, XE = 2. Hence, if p~ = 0, it is clear from 

Kato's theorem, that (fE(T)) = ( f y l ( T ) ) ,  i.e., conjecture 1.13 holds for 
E and p = 3. In fact, we would have = 0 and AZ = 2. To see this, 
suppose that XgmW > 0. NOW r acts in the finite-dimensional Q-vector space 
E($,) @I $. The irreducible $-representations of r have degrees 1,2,6,.  . . , 
2.3"-' for n 2 1. Since E($) is finite and XE = 2, we would have Xg-w = 2 
and rank(E($,)) = 2, where Q1 is the first layer in $,/$. This would imply 
that g(T) = T2 + 3T + 3 divides ~ E ( T ) .  Hence g(T) and ~ E ( T )  would differ 
by a factor in AX, which is impossible since f ~ ( 0 )  - 32, g(0) .v 3. 

Conductor = 915. We consider again the elliptic curve E corresponding 
to 915(A1) in [Cre]. We take p = 7 or p = 43. In both cases, McCabe finds 
that A?' = 2. Thus, XE 5 2. It is then clear that = 0. For the only 
irreducible $-representation of r with degree 5 2 is the trivial representation. 
(The nontrivial irreducible Qrepresentations have degree divisible by p - 1.) 
But E($) is finite in this case. Hence, assuming that p~ = 0, we have X z  = 2 
for both p = 7 and p = 43. Also, just as for the preceding example, conjecture 
1.13 would hold if p~ = 0. 

Conductor = 34. We considered before the elliptic curve E correspond- 
ing to 34(A1) in [Cre] and found that Xg-W = 2 , XIU - - 0 , a n d p ~ = O f o r  
p = 3. In this case, McCabe finds that Xa,"al = 2 and pa,"al = 0. Thus, Kato's 
theorem again implies conjecture 1.13: ( fE(T)) = ( f p l ( ~ ) )  for p = 3. There 
are four elliptic curves of conductor 34, all $-isogenous. In general, conjec- 
ture 1.13 is preserved by $-isogeny. The power of p dividing fE (T) changes 
in a way predicted by the result of [Sch3] or [Pe2]. The power of p dividing 
f p l ( ~ )  changes in a compatible way, determined just by the change in RE. 
(RE is the only thing that changes in the definition of f y l ( T ) . )  One can 
verify all of this directly. For E, PAR1 gives RE = 4.4956.. . . Let E' be 
34(A3) in [Cre], which is related to E by a $-isogeny of degree 3. Using the 
fact that p~ = 0, one finds that p ~ t  = 1. Therefore, fE,(T) = 3fE(T). But 
PAM gives RE) = 1.4985. . . = 0 ~ 1 3 .  (This must be exact.) Thus, one sees 
that fgal (T)  = 3 fgal(T).  Conjecture 1.13 is valid for E' too. 

Conductor = 26. We take p = 7. For 26(Bl), which we previously 
denoted by El, McCabe finds that p z l  = 0, X r l  = 4, and f r l ( 0 )  - 7. 
Thus, f r l ( T )  is an irreducible element of A. If BE, = 0, as conjecturally 
should be true, then Kato's theorem implies that ~ E , ( T )  = f r l ( ~ ) ,  up to 
a factor in AX. Conjecture 1.13 would then be valid for El (and for E2 too). 
Thus, in this example, if p ~ ,  = 0, then .AE1 = 4. Note that proposition 3.10 
would tell us only that XE, is even. Also, just as in the example of conductor 
915, we would have Xg-w = 0, XE = 4. 

Conductor = 147. Let p = 13. We will denote 147(B1, B2) by El and 
E2 as earlier. McCabe's calculation for 147Bl gives p r 1  = 0, X r l  = 2. 
Proposition 3.10 shows that XE, is even. If p ~ ,  = 0, as conjecture 1.11 
predicts, then XE, > 0. Hence XE, = 2 and conjecture 1.13 would again follow 
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from Kato's theorem. As in previous examples, we would have ~ g - ~  = 0, 

= 2. 

Conductor = 1225. We consider again the two curves El and E2 of 
conductor 1225 discussed earlier. We take p = 37. McCabe finds that AT' = 

ma' = 0. Since L(E1/$, 1) = 0, it follows that f r l ( 0 )  = 0 and that  1, C L E ~  
f r l ( T ) / T  E A x .  As remarked earlier, it then should follow that XEI = 1, 
p~~ = 0 and that conjecture 1.13 holds. For E2, we have XE, = 1, p~~ = 1. 
Conjecture 1.13 holds for E2 too. 

Ir 

Conductor = 58. We consider E' : y2 + xy = x3 - x2 - x + 1 and p = 5. 
In this case, El($) Z Z and the predicted order of LUE~($) is 1. McCabe 
finds that  Xga' = 1, p T 1  = 0. It  then follows that XEf = 1, p ~ '  = 0. 

Conductor = 406. Consider E : y2 + xy = x3 + x2 - 2124x - 60592. 
This is 406(D1) in [Cre]. We take p = 5. We have c2 = ~ 2 9  = 2, CT = 5, 
IE($)( = 2, and SelE($) is predicted t o  have order 1. Thus, by theorem 4.1, 
fE(0) N 5. NOW it  turns out that E[5] 2 E1[5] as GQ-modules, where E' is the 
elliptic curve of conductor 58 considered above. One verifies this by comparing 
the q-expansions of the modular forms corresponding to  these curves. Since 
p p  = 0, i t  follows that p~ = 0. Therefore, XE 2 1. By proposition 3.10 
XE must be even. However, 7 splits completely in $,/$, where $, denotes 
the first layer of the cyclotomic Z5-extension $, of $. (This is because 
74 I 1 (mod S2).) Thus, there are 5 primes of $, lying over 7, each with 
Tamagawa factor equal to 5. The proof of corollary 5.6 can be used to show 
that  XE 2 5 and hence, since it is even, we must have XE 2 6. McCabe finds 
that  = 6, p y l  = 0. Therefore, it follows that XE = 6, p~ = 0, and 
conjecture 1.13 holds for E and p = 5. We also can conclude that ~ g - ~  = 0. 
This is so because E($) is finite, E($,) 8 $ is a finite dimensional $- 
representation of r, and the nontrivial irreducible $-representations of r 
have degree divisible by 4. Hence S e l ~ ( $ , ) ~  = m ~ ( $ , ) 5  and Xg = 6. 
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Torsion Points on Jo ( N )  
and Galois Representations 
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To B a n y  Mazur, for his 6oth birthday 

Suppose that N is a prime number greater than 19 and that P is a point 
on the modular curve Xo(N) whose image in Jo(N) (under the standard 
embedding L : Xo(N) v Jo(N)) has finite order. In [2], Coleman-Kaskel- 
Ribet conjecture that either P is a hyperelliptic branch point of Xo(N) 
(so that N E {23,29,31,41,47,59,71}) or else that L(P) lies in the cusp- 
idal subgroup C of Jo(N). That article suggests a strategy for the proof: 
assuming that P is not a hyperelliptic branch point of Xo(N), one should 
show for each prime number C that the C-primary part of L(P) lies in C. In 
[2], the strategy is implemented under a variety of hypotheses but little is 
proved for the primes e = 2 and L = 3. Here I prove the desired statement 
for C = 2 whenever N is prime to the discriminant of the ring End Jo(N). 
This supplementary hypothesis, while annoying, seems to be a mild one; 
according to W. A. Stein of Berkeley, California, in the range N < 5021, it 
is false only in case N = 389. 

1 Introduction 

At the C.I.M.E. conference on the arithmetic of elliptic curves, I lectured 
on interrelated questions with a common underlying theme: the action of 
G a l ( g / ~ )  on torsion points of semistable abelian varieties over Q. In this 
written record of my lectures, I focus on the modular curve Xo(N) and its 
Jacobian Jo(N) when N is a prime number. In this special case, Xo(N) and 
Jo(N) were studied intensively by B. Mazur in [9] and [lo], so that we have 
a wealth of arithmetic information at our disposal. 

The main theorem of this article complements the results of Coleman- 
Kaskel-Ribet [2] on the "cuspidal torsion packet" of Xo(N). Recall that 
Xo(N) has two cusps, customarily denoted 0 and oo. Selecting the latter 
cusp as the more "standard" of the two, we use it to map Xo(N) to Jo(N), 
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tion contract #DMS 96 22801. The author thanks M. Baker, J. A. Csirik and 
H. W. Lenstra, Jr. for helpful conversations and suggestions. 
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via the Albanese mapping L which takes a point P of the curve to the class of 
the divisor (P) - (03). This map is injective if the genus of Xo(N) is non-zero. 

Let g be the genus of Xo(N). For the remainder of this preliminary dis- 
cussion, make the hypothesis g 2 2. (This hypothesis is satisfied if and only 
if N 2 23.) Then L identifies Xo(N) with a subvariety of Jo(N) of positive 
codimension. The torsion packet in question is the set R of points of Xo(N) 
whose images in Jo(N) have finite order. According to the Manin-Mumford 
conjecture, first proved by Raynaud in 1983 [13], R is a finite set. 

The article [2] introduces a strategy for identifying R precisely. Clearly, 
R contains the two cusps 0 and oo of Xo(N), whose images under L have 
order n := n u m ( w )  and 1, respectively 19, p. 981. Further, in the special 
case when Xo(N) is hyperelliptic, we note in [2] that the hyperelliptic branch 
points of Xo(N) belong to R if and only if N is different from 37. (Results 
of Ogg [ l l ,  121 show that Xo(N) is hyperelliptic if and only if N lies in the 
set {23,29,31,37,41,47,59,71).) In fact, suppose that Xo(N) is hyperelliptic 
and that P is a hyperelliptic branch point on Xo(N). Then ~ L ( P )  = ~ ( 0 )  if 
N # 37, but P has infinite order when N = 37. 

In PI, we advance the idea that 0 might contain only the points we have 
just catalogued: 

Guess 1.1.  Suppose that P is a point on Xo(N) whose image in Jo(N) has 
finite order. Then either P is one of the two cusps of Xo(N), or Xo(N) is a 
hyperelliptic curve and P is a hyperelliptic branch point of Xo(N). 

In the latter case, (i.e., Xo(N) hyperelliptic and P a hyperelliptic branch 
point with finite order in Jo(N)), it follows automatically that N is different 
from 37. 

A reformulation of Guess 1.1 involves the cuspidal subgroup C of Jo(N), 
i.e., the group generated by the point ~ (0 ) .  AS we point out in [2], the results 
of [lo] imply that the intersection of Xo(N) and C (computed in Jo(N)) 
consists of the two cusps 0 and oo. In words, to prove that a torsion point P 
of Xo(N) is a cusp is to prove that it lies in the group C. For this, it is useful 
to decompose P into its primary parts: If P is a torsion point of Jo(N) and 
C is a prime number, we let P! be the C-primary part of P. Thus P = C Pe, 
the sum being extended over all primes, and we have P E C if and only if 
Pe E C for all primes C. 

Consider the following two statements (in both, we regard Xo(N) as em- 
bedded in its Jacobian via L): 

Statement 1.2 .  Suppose that P is an element of R and that C is an odd 
prime. Then we have Pe E C. 

Statement 1.3. Suppose that P is an element of R and that P2 4 C .  Then 
P a6 a hyperelliptic branch point of Xo(N). 

It is clear that Guess 1.1 is equivalent to the conjunction of Statements 1.2 
and 1.3. Indeed, suppose first that (1.1) is correct and that P is an element 
of R. If P is a cuspidal point (i.e., one of 0, oo), then one has Pe E C for all 
primes C. If P is not a cuspidal point, then P is a hyperelliptic branch point 
and N # 37; we then have 2 P  E C, so that Pe E C for all C > 2. Conversely, 
suppose that Statements 1.2 and 1.3 are true and that P is an element of 0. 
If P 2  is not in C, then P is a hyperelliptic branch point (and is thus accounted 
for by the guess). If P2 lies in C, then Pe is in C for all primes C, so that P is 
a point of C. As was mentioned above, this implies that P is one of the two 
cuspidal points on Xo(N). 

Our article [2] proves a number of results in the spirit of (1.2). For exarn- 
ple, suppose that P is an element of R and C is an odd prime different from 
N. Let g again be the genus of Xo(N). Then Pe E C if C is greater than 29 
or if C satisfies 5 < C < 29 and at  least one of a number of supplementary 
conditions. 

These notes prove a theorem in the direction of (1.3). This theorem re- 
quires an auxiliary hypothesis concerning the discriminant of the subring T 
of End Jo(N) which is generated by the Hecke operators T,,, (with m 2 1) 
on Jo(N). (Many authors write the Hecke operator TN as UN.) According to 
[9, Prop. 9.5, p. 951, the Hecke ring T is in fact the full endomorphism ring 
of Jo(N). Concerning the structure of T, it is known that T is an order in a 
product E = n Et of totally real number fields. The discriminant disc(T) is 
the product of the discriminants of the number fields Ei, multiplied by the 
square of the index of T in its normalization. Our auxiliary hypothesis is the 
following statement: 

Hypothesis 1.4. The discriminant of T is prime to N 

According to William Arthur Stein of Berkeley, California, Hypothesis 1.4 is 
false when N = 389 and true for all other primes N < 5011. 

Theorem 1.5. Suppose that P lies in R and that P2 does not belong 
to C. In addition, suppose either that the order of P is prime to N or that 
Hypothesis 1.4 holds. Then Xo(N) is hyperelliptic, and P is a hyperelliptic 
branch point of Xo(N). 

Theorem 1.5 is a direct consequence of a Galois-theoretic statement which 
we prove in 57. Since this latter theorem is the main technical result of these 
notes, we state it now and then show how it implies Theorem 1.5. 

Theorem 1.6. Let N be a prime number, and let J = Jo(N). Let C be a 
prime different from N.  Suppose that P is a point of finite order on Jo(N) 
whose C-primary component Pl is not defined over Q .  Assume that at least 
one of the following hypotheses holds: (1) N is prime to the order of P; (2) e is 
prime to N - 1; (3) N is prime to the discriminant of T .  Then there is a 
o E Gal(Q/Q) such that UP - P has order C. 
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Note that the hypothesis g 2 2 is not needed for Theorem 1.6. 

Proof that (1.6) implies (1.5). Let P be as in Theorem 1.5. Because P2 does 
not lie in C, P2 is not a rational point of Jo(N) [9, Ch. 111, Th. 1.21. We 
apply Theorem 1.6 in this situation, taking e = 2. The theorem shows that 
there is a a E G a l ( q / ~ )  such that the divisor (UP) - (P) on Xo(N) has 
order 2 in Jo(N). Accordingly, the points P and UP are distinct, and there 
is a rational function f on the curve Xo(N) whose divisor is ~ ( ( o P )  - (P)). 
The function f has a double zero at  UP, a double pole at P, and no othe5 
zeros or poles. It follows that the covering X 4 P1 defined by f is of degree 
two and that P is ramified in the covering. Since the genus of X is at least 2, 
X is hyperelliptic and P is a hyperelliptic branch point. 

We conclude this discussion with a second statement which will be proved 
only below. For this statement and for most of what follows, we again allow N 
be an arbitrary prime; i.e., we have no need of the assumption that J = Jo(N) 
has dimension > 1. As in [9], we consider the Eisenstein ideal 9 T and 
form the kernel J[9] C J ( Q ) .  Let K = Q(J[9])  be the field generated by 
the coordinates of the points in J [ 9 ] .  Recall that n = n u m ( q ) .  Then we 
have: 

Theorem 1.7. The field K is the field of 2nth roots of unity. 

Theorem 1.7 is an essential ingredient in our proof of Theorem 1.6 in the 
crucial case where e = 2. Readers who are familiar with Mazur's article [9] 
will recognize that Theorem 1.7 follows directly from the results of that article 
if n is not divisible by 4. Moreover, as H. W. Lenstra, Jr. has pointed out, 
Theorem 1.7 may be proved rather easily by elementary arguments if n is 
divisible by 8. The most difficult case is therefore that for which n is divisible 
by 4 but not by 8; this case occurs precisely when N r 17 mod 32. We 
will discuss Lenstra's observations in $4 and then prove Theorem 1.7 in the 
general case in 55 by exploiting Mazur's "congruence formula for the modular 
symbol" [9, Ch. 11, $181. An alternative proof of Theorem 1.7 was given 
recently by J.  A. Csirik [3]. Csirik provides a complete concrete description 
of Jo(N) [S] which yields Theorem 1.7 as a corollary. 

2 A local study at N 

For the rest of this article, we take N to be a prime number and let J = Jo(N). 
The assumption of $1 concerning the genus of Xo(N) is no longer required. 

We remind the reader that the results of Deligne and Rapoport [4] imply 
that J has purely multiplicative reduction at N. As explained in the Mazur- 
Rapoport appendix to [9], the fiber over FN of the NCron model of J is the 
product of a cyclic component group @ and a torus JyFN. 

The character group of this torus, 

is a free Z-module of rank dim J which is furnished with compatible actions 
of T and the Galois group G ~ ( F N / F N ) .  Here, FN is of course an alge- 
braic closure of the prime field FN. It will be convenient to choose a prime 
dividing N in Q and to let FN be the residue field of this prime. Then if 
D C Gal(g_/Q) is the decomposition group corresponding to the chosen 
prime, Gal(FN/FN) is the quotient of D by its inertia subgroup I. Using 
the quotient map D -+ G a l ( F N / F ~ ) ,  we view X as an unramified repre- 
sentation of D. As one knows, this action is "nearly" trivial: the generator 
x I+ xN of Gal(FN/FN) acts on % as an automorphism of order 1 or 2, so 
that the group Gal(FN/FNZ) acts trivially on X. (The group % is discussed 
in [14, $31 in the more general case where N is replaced by the product of a 
prime q and a positive integer which is prime to q.) 

As far as the Hecke action goes, the group X is a free Z-module whose 
rank is the same as that of T ,  namely the dimension of J. Because T acts 
faithfully on X, it is clear that X@ Q is free of rank 1 over T@Q.  Thus X is 
a "T-module of rank 1" in the sense of [9, Ch. 11, $81. (In [9, Ch. 11, Prop. 8.31, 
Mazur notes in effect that X@ Qp is free of rank 1 over T 18 Q, for each 
prime p # N.) It is natural to ask whether X is locally free of rank 1 over T. 
In this section, we will answer the question affirmatively, except perhaps for 
certain primes (meaning: maximal ideals) of T which divide 2. 

In what follows, we consider a maximal ideal m of T. Let p be the char- 
acteristic of the finite field T/m. As in [9, Ch. 11, $71, we let T, = 1 2  T/mU 

V 
be the completion of T at m. As usual, we say that m is ordinary if Tp is 
non-zero mod m and supersingular otherwise. 

Also, we recall that m is Eisenstein if it divides (i.e., contains) the Eisen- 
stein ideal 3 of T. This latter ideal is defined (on p. 95 of [9]) as the ideal 
generated by the difference TN - 1 and by the quantities qe := 1 + e- Te as e 
ranges over the set of primes different from N. The natural map Z + T / 9  
induces an isomorphism Z/nZ T /9 ,  where n is the numerator of 9. 
Thus the Eisenstein primes of T are in 1-1 correspondence with the prime 
ideals of Z/nZ and therefore with the prime numbers which divide n. 

Next, we write J[m] for the group of points in J ( Q )  which are killed by 
all elements of m (cf. [9, p. 911). This group is a T/m-vector space which is 
furnished with an action of Gal(Q/Q). Recall the following key result of [9]: 

Theorem 2.1. Let m be a maximal ideal of T .  If m divides 2, suppose that 
m is either Easenstein or supersingular. Then J[m] is of dimension two. 

Theorem 2.1 is proved in [9, Ch. 111. Note, however, that the discussions for m 
Eisenstein and m non-Eisenstein occur in different sections: one may consult 
Proposition 14.2 if m is non-Eisenstein and (16.3) if m is Eisenstein. (See also 
(17.9) if m is Eisenstein and m divides 2.) 
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When m is non-Eisenstein, Theorem 2.1 relates J[m] and the standard 
representation pm of Gal(Q/Q) which is attached to m. By definition, p, 
is the unique (up to isomorphism) continuous semisimple representation 
Gal(Q/Q) + GL(2, T/m) satisfying: (i) det p, is the mod p cyclotomic 
character; (ii) for each prime C prime to pN, pm is unramified at C and 
pm(Frobe) has trace T! mod m. (The existence and uniqueness of p, are 
discussed, for instance, in [14, 551.) The representation pm is irreducible if 
and only if m is non-Eisenstein [9, Ch. 11, Prop. 14.1 and Prop. 14.21. The 
relation between J[m] and p, is that the former representation is (i.e., &- 
fines or affords) the latter representation whenever J[m] is irreducible and 
2-dimensional [9, Ch. 11, 5141. In particular, if m is non-Eisenstein, then J[m] 
affords the representation p, if either p is odd or m is supersingular. 

Suppose that p, is irreducible. Following [18, p. 1891, we define p, to be 
finite at N if there is a finite flat T/m-vector space scheme Y of rank 2 over 
ZN such that the restriction of p, to D = Gal(QN/QN) is isomorphic to 
the two-dimensional representation Y ( g N ) .  The following result is obtained 
by combining a 1973 theorem of Tate with the author's level-lowering result. 

Proposition 2.2. Let m be a non-Eisenstein prime of T. Then the two- 
dimensional Galois representation p, is not finite at the prime N. 

Proof. Suppose first that m does not divide 2. Assume that p, is finite 
at N. Then [14, Th. 1.11 shows that p, is modular of level 1. (In applying 
[14, Th. 1.11, we take N = N,  p = N,  and C = p. Note that condition 2 
of the theorem is satisfied except when m divides N. In this case, however, 
condition 1 of the theorem holds since we do not have N 1 mod N.) This 
is a contradiction, since there are no non-zero weight-2 cusp forms on ro( l ) .  

Assume now that m does divide 2. Suppose again that p, is finite 
at N. Then pm is an irreducible mod 2 two-dimensional representation of 
Gal(Q/Q) which is unramified outside of the prime 2. An important theo- 
rem of Tate [20] proves, however, that there is no such representation. . 
Note that when p is different from N,  p, is finite at  N if and only if p, 
is unramified at N. Thus Proposition 2.2 shows, in particular, that p, is 
ramified at N for all m such that p, is irreducible. 

Theorem 2.3. Let m be a maximal ideal of T. If m divides 2, suppose that 
m is either Eisenstein or supersingular. Then X @T T, is free of rank 1 
over T,. 

Proof. Since X is of rank 1, X 8 T, is free of rank 1 if and only if it is 
cyclic. By Nakayama's lemma, the cyclicity amounts to the statement that 
X I m X  has dimension 5 1 over the field T/m. 

To prove this latter statement, i.e., the cyclicity of %/m%, we exploit 
the relation between X and torsion points of J. In the following discussion, 

for each integer m 2 1, we let J[m] be the group of points of J with values 
in Q which have order dividing m. Thus J[m] is a T[Gal(Q/Q)]-module. 
Especially, we shall view J[m] locally at N ,  i.e., as a T[D]-module. One 
obtains from [6, 11.6.6-11.6.71 a T[D]-equivariant exact sequence 

(See, e.g., [15, pp. 669-6701 for a discussion of this exact sequence when 
m is a prime number.) Especially, there is a natural identification of 
Hom(X/mX,  p,) with a subgroup of J[m]. 

In particular, we find an injection 

here, p is again the residue characteristic of m. By Theorem 2.1, j is an 
isomorphism if %/m% is not cyclic. 

On the other hand, it is clear that j cannot be an isomorphism. Indeed, 
the group Hom(X/mX, p,) is finite at N in the sense of [18] (since p, is 
finite), and we have seen in Proposition 2.2 that J[m] is not finite at N. . 
3 The kernel of the Eisenstein ideal 

We turn now to a study of the action of Gal(Q/Q) on the Eisenstein kernel 
in the Jacobian J = Jo(N). Let 9 again be the Eisenstein ideal of T, and 
recall that n = n u m ( q ) .  By J [ 9 ]  we mean the kernel of 9 on J, i.e., 

. , 

the group of points in J ( Q )  which are annihilated by all elements of 9 .  
The analysis of [9, Ch. 11, $516-181 shows that J[9] is free of rank two over 
T / 9  x ZlnZ. 

The group J[9] contains the cuspidal group C, which was mentioned 
above, and also the Shimura subgroup C of J [9, Ch. 11, $111. The two 
groups C and C are Gal(Q/Q)-stable and cyclic of order n. The actions of 
Gal(Q/Q) on these two groups are respectively the trivial action and the 
cyclotomic action ( C  a pn). Accordingly, the intersection of C and C is 
trivial if n is odd; in that case, the inclusions of C and C in J [ 9 ]  induce an 
isomorphism of Gal(Q/Q)-modules C $ C 7 J[9]. If n is even, however, 
C n C has order 2, and the sum C + E in J[9] (which is no longer direct) 
has index 2 in Jr91. 

In much of what follows, the reader may wish to assume that n is even; 
when n is odd, almost everything that we prove may be deduced immediately 
from the decomposition J [ 9 ]  a C $ C. 

Proposition 3.1. The group J[9] is unramified at N. 

Proof. We regard J [ 9 ]  as a D-module, where D = Gal(g,/QN) as above. 
We have a natural injection (analogous to the map j above) 
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where % is again the character group associated with the reduction of 
J mod N. By combining this injection with the inclusion of E in J [ 9 ] ,  
we obtain a map of D-modules 

This map is again injective, in view of Proposition 11.9 of [9, Ch. 111. 
Now by Theorem 2.3, LK is free of rank 1 locally at each 

dividing 9. Hence X/9%, and therefore H o m ( X / S X ,  pn), has order n. 
Thus the source of 8 has n2 elements. Since the target of 8 has the same 
cardinality, we conclude that 8 is an isomorphism of D-modules. The group 
C $ Hom(%/SLK, p,),_however, is unramified; note that D acts on X 
through its quotient Gal(Fr,r/FN). rn 

We continue our study of the action of Gal(Q/Q) on J [9 ] :  

Proposition 3.2. The Galois group Gal(Q/Q) acts trivially on J [ 9 ] / C .  

Proof. It is clear that Jordan-Holder constituents of the Gal(Q/Q)-module 
J [ 9 ]  are all of the form pp or ZlpZ, with p dividing n. Indeed, J [ 9 ]  is an 
extension of a group whose order divides 2 by a quotient of C @ C, where the 
latter group has the indicated property. Because J [ 9 ]  is unramified at  N ,  it 
is finite at N in Serre's sense; it extends to a finite flat group scheme over Z. 
In the language of Chapter I of [9], J [ 9 ]  is thus an admissible group scheme 
over Spec z[+] which extends to a finite flat group scheme G over Spec Z. 

To analyze G, we follow the proof of Proposition 4.5 in [9, Ch. I]. The last 
step in the proof of that Proposition uses a result above it (Proposition 4.1) 
which applies only to groups of odd order. However, Steps 1-3 are perfectly 
applicable; they show that G is an extension of a constant group scheme by 
a p-type group (dual of a constant group) H G. 

In particular, there is a subgroup C' of J [ 9 ]  with the property that the 
action of ~ a l ( Q 1 Q )  on C' is cyclotomic, whereas the action of ~ a l ( q / Q )  
on J [9 ] /Z1  is trivial. By [9, Ch. 111, Th. 1.31, C' is contained in 27. Hence 
the action of Gal(Q/Q) on the quotient J [ S ] / C  is indeed trivial. 

Before studying further the Gal(Q/Q)-action on J [ 9 ] ,  we pause to es- 
tablish a converse to Proposition 3.1. 

Proposition 3.3. Let P E J ( Q )  be a torsion point on J for which the firrite 
extension Q(P)/Q is unramified at N. Then P lies in J[9] .  

Proof. Let M be the smallest T [ G ~ ~ ( Q / Q ) ] - s u b  of J(Q) which 
contains both P and J[9]. We must prove that M is annihilated by 9. 
Clearly, M is finite; indeed, we have M J[mn] if m is the order of P .  

Consider the Jordan-Holder constituents of M,  regarded as a T [ G ~ ~ ( Q / Q ) ] -  
module. If V is such a constituent, then the annihilator of V is a maximal 
ideal m of T. It follows from the discussion of [9, Ch. 11, $141 that V is 
1-dimensional over T/m if and only if m is Eisenstein. If m is not Eisenstein, 
then V is isomorphic to the irreducible representation p,. (This follows from 
the discussion on page 115 of [9]. In fact, the main result of [I] can be used 
to prove the more precise fact that J[m] is a direct sum of copies of p, when 
m is non-Eisenstein.) However, Proposition 2.2 shows that p, is ramified at  
N when m is non-Eisenstein. We conclude that all constituents of M belong 
to Eisenstein primes of T. These constituents therefore have the form p, or 
Z/pZ, with p dividing n. 

Returning to the language of [9, Ch. I], we see that M is an admissible 
group. As explained in the proof of the proposition above, M must be an 
extension of a constant group Q by a p-type group Mo. Since M contains 
J [ 9 ]  and since 22 is the maximal p-type group in J (  a), we have Mo = 22. 
Next, note that the extension of T-modules 

splits. The splitting is obtained as in the argument on p. 142 of [9] which 
proves [9, Ch. 111, Th. 1.31. Namely, specialization to characteristic N provides 
a map M + @, where @ is the component group of J in characteristic N. 
We get a splitting because the restriction of this map to ,E is an isomorphism 
E 7 9. It follows that 9 annihilates M if and only if 9 annihilates Q. 

Since Gal(Q/Q) acts trivially on Q, the Eichler-Shimura relation shows 
that Q is annihilated by the differences ql = 1 + t! - Tt. To deduce from this 
the apparently stronger fact that Q is annihilated by all of 9 (which includes 
the generator TN - I), write Q as the direct sum $, Q,, where the sum 
runs over the set of Eisenstein primes of T. Each summand Q, is a module 
over T/pV, where Y is a suitable positive integer. It follows from [9, Ch. 11, 
Th. 18.101 that the image of 9 in T/pY is generated by a single element of 
the form ql. Thus Qm is annihilated by 9 .  Since this statement is true for 
each m, Q is annihilated by 9. 

Our next goal is to study J [ 9 ]  sufficiently closely to permit identification 
of the field Q(J[9]) ,  i.e., to prove Theorem 1.7. For an alternative proof of 
Theorem 1.7, the reader may consult Csirik's forthcoming article [3], which 
determines J [ 9 ]  completely by a method generalizing that of [9, Ch. 11, 
$12-$131. 

~ e c &  that the cuspidal group C is provided with a natural generator, 
namely the image of the cusp 0 in J. We select generators for certain other 
cyclic groups by making use of the place over N that we have chosen in Q. As 
explained in $11 of [9, Ch. II], reduction to characteristic N induces isomor- 
phisms among C, ,E and the group of components of JIFN. In particular, we 
have a distinguished isomorphism C I!. Since C is provided with a gener- 
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ator, we obtain a basis of C. (See [5] for a comparison of the isomorphism 
C M C with a second natural one.) 

Since CI and J[9] are free of ranks 1 and 2 over ZlnZ, the group Q := 
J [ 9 ] / C  is cyclic of order n. The intersection C n E has order gcd(2,n) 
[9, Ch. 11, Prop. 11.111. The image of C in Q has order nJgcd(2, n). Choose a 
generator g of Q such that 29 is the image in Q of the chosen generator of C. 
Finally, note as above that reduction to characteristic N provides us with a 
splitting of the tautological exact sequence which displays Q as a quotient of 
J[9]. This splitting writes J[9] as the direct sum C @ Q. (Said different&, 
J[9] is the direct sum of C and the "toric part" Hom(%/SX,  b) of J [ 9 ] .  
The natural map Hom(%/9%, pn) -+ Q is an isomorphism.) 

Using the chosen generators of C and Q, we write J[9] = ( Z l n ~ ) ~ .  In 
this model of J[9], C is the group generated by (1,O) and C is the group 
generated by (1,2). Since G a l ( g / ~ )  preserves C and operates on C as the 
mod n cyclotomic character X, and since ~ a l ( g / ~ )  operates trivially on Q, 
the action of Gal(Q/Q ) on J [ 9 ]  is given in matrix terms by a map 

Here, the map a I+ b(a) E Z/nZ is clearly a 1-cocycle: it verifies the identity 

for a, r E ~ a l ( q / ~ ) .  

4 Lenstra's input 

The contents of this section were suggested to the author by H. W. Lenstra, Jr. 
The author thanks him heartily for his help. 

Lemma 4.1. For all a E G ~ ( Q / Q ) ,  we have 2b(a) = 1 - ~ ( a ) .  

Proof. For each a ,  p(a) fixes the vector E C. The lemma follows imme- 

diately. 

Proposition 4.2. The field Q ( J [ f ] )  is an abelian extension of Q which 
contains Q(pn) and has degree 1 or 2 over Q(pn). 

Proof. To say that Q(J [9 ] )  is abelian over Q is to say that the image of p 
is abelian. This amounts to the identity b(ar) b(ra) for a , ~  E G a l ( w ~ ) .  
By the cocycle identity, the two sides of the equation are respectively b(o) + 
x(u)b(r) and b(r) + ~ ( r ) b ( a ) .  These expressions are indeed equal, in view of 
the lemma above. 

It is clear that the field Q(J [9 ] )  contains Q(pn) because the kernel 
of p is contained in the kernel of X. Let H be this latter kernel; i.e., 
H = G a l ( Q / ~ ( p ~ ) ) .  On H,  x = 1; hence we have 2b = 0 in ZlnZ. In 

other words, the group p(H) is a subgroup of the group of matrices t 3 
\ / 

with 22 = 0. Since this group has order gcd(2, n), the extension of Q cut out 
by p is an extension of Q(pn) of degree 1 or 2. 

The proof of Proposition 4.2 (or, alternatively, the decomposition J[9] = 
.E @ C) shows that Q ( J [ 9 ] )  = Q(pn) if n is odd. Suppose now that n is 
even; write n = 2kn0, where no is the "odd part" and 2k 2 2 is the largest 
power of 2 dividing n. Then p is the direct sum of representations 

which are defined by the actions of Gal(Q/Q) on the 2-primary part and 
the odd part of J[9], respectively. It is evident that the latter representation 
cuts out Q(pno) and that the kernel of the former representation corresponds 
to an abelian extension K of Q which contains Q(p2k) and has degree 1 or 2 
over this cyclotomic field. Since p:! is defined by the action of Gal(Q/Q) on 
a group of 2-power division points of J, this representation can be ramified 
only at 2 and at N. We have seen, however, that p is unramified at N (Propo- 
sition 3.1). Hence K/Q is an abelian extension of Q which is ramified only 
at  2; it follows (e.g., from the proof that the "local Kronecker-Weber theo- 
rem" implies the usual, global one [21, Ch. 141) that K is contained in the 
cyclotomic field Q(p2-). Hence we have either K = Q(p2k) or K = Q(p2k+1). 
Accordingly, we have 

In summary, the displayed inclusions hold both in the case when n is 
odd and when n is even. In the former case, the two cyclotomic fields are 
equal, and they coincide with Q(J[9]) .  In the latter case, there remains an 
ambiguity which will be resolved by the proof of Theorem 1.7. 

Before turning to this proof in the general case, we present a simple proof 
of Theorem 1.7 in the case where k is different from 2. To prove the Theorem 
is to show that p2 cuts out the field Q(p2k++'). This is perfectly clear if k = 0, 
in which case p2 is the trivial representation: the field K = Q is indeed the 
field of second roots of 1. If k = 1, p2 gives the action of Gal(Q/&) on the 
group D which is described in [9, Ch. 11, $121; Lemma 12.4 of that section 
states that the field K is the field of fourth roots of unity. 

Suppose now that k is at least 3, and choose a E G a l ( q / Q )  so that 
~ ( u )  1 + 2"' mod 2k and ~ ( a )  r 1 mod no. It is evident that x(u2) = 1; 
we will show, however, that p2(a2) # 1. These two pieces of information 
imply that K is not contained in Q(pn), which is precisely the information 
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that we seek. To prove that p2(u2) is different from 1 is to show that b(a2) f 0 
mod 2&. We have 

b(u2) = (1 + x(u))b(u) = 2(1+ 2k-2)b(u) mod 2& 

by the cocycle identity and the choice of a. Since k is at  least 3, the factor 
(1 f 2k-2) is odd. Now 2b(u) = 1 - ~ ( u )  -2&-' mod 2& in view of 
Lemma 4.1. Thus b(u) is divisible by 2k-2 but not by 2&-l. It follows that 
b(u2) is divisible by 2&-l but not by 2k. 

S 

5 Proof of Theorem 1.7 

We return to the discussion of the general case, removing the assumption 
k 2 3. Recall that p is the representation of G a l ( q / ~ )  giving the action of 
Gal(Q/Q) on J [ 9 ]  and that qe = 1 + L) - Tt for each e # N. 

Lemma 5.1. Let C be a prime number prime to nN. Suppose that 
p(Frobe) = 1. Then ve belongs to Y2. 

Proof. One has ~ 1 9 ~  = @T,/Y2T,, where the sum is taken over the 
Eisenstein primes m of T. We must show that the image of q in T,/Y2T, 
is 0 for each such m. Fix m, and let p be the corresponding prime divisor 
of n. Consider the pdivisible group J, = U J[mY] and its Tate module 

V 

Tam := Hom(Q,/Z,, Jm). Let 

Ta: := Hornz, (Ta,, Z,) = Hom(J,, Qp/Zp); 

the latter description of Ta: presents this Tate module as the Pontryagin 
dual of J,. Note that Tam and Ta: have been shown to be free of rank 2 
over T, [9, Ch. 11, Cor. 16.31. The Tate pairing T+(J) x T+(J) + Zp(l) 
may be viewed as an isomorphism Ta,,, m Ta:(l) which is compatible with 
the natural actions of G a l ( q / ~ )  and T on the two modules. 

Let F = Frobe. Since 1 - F annihilates J [ 9 ] ,  1 - F annihilates the 
Shimura subgroup Z = p, of J, which is contained in J [9 ] .  Hence 
C 1 mod n. Accordingly, F acts as the identity on Hom(J[S], p,) and its 
pprimary subgroup Hom(J,[S], Q,/Z,)(l). We may view this dual as the 
quotient Ta: (1) / 9 T a i  (1) Ta,,, / 9 Tam. Hence we have 

Since Ta,,, is free of rank 2 over T,, we obtain 

This proves what is needed, since the determinant we have calculated is 
nothing but w; indeed, the determinant and trace of F acting on Ta,,, are 1 
and Te, respectively. 

Theorem 5.2. Assume that n as even. Let e # N be a prime number which 
satisfies the congruence C 1 mod n but not the congruence C E 1 mod 2n. 
Assume further that the image o f t  in (Z/NZ)* is a generator of this cyclic 
group. Then p(Fkobe) # 1. 

Proof. Let A be the unique quotient of (Z/NZ)* of order n. To prove our 
result, we refer to 518 of [9, Ch. II]. In that section, one finds a homomorphism 
8: 9 / Y 2  -+ H + / 9 H +  and a map cp: A 4 H+/YH+,  both of which prove 
to be isomorphisms. The map n := c p - l o  c+ is an isomorphism 9 / Y 2  3 A. 
The congruence formula for the winding homomorphism yields 

Here, i is the image of l E (ZINZ)' in A, and the operator 9 is an 
exponent. (One is viewing the multiplicative abelian group A as a Z-module.) 
Under our hypotheses, it is clear that 2 has order 2 in A. Thus, by the 
congruence formula, qe is non-zero in 9 / Y 2 .  Using Lemma 5.1, we deduce 
the required conclusion that p(Fr0be) is different from 1. 

We now prove Theorem 1.7, i.e., the statement that Q(J[Y]) coincides 
with the cyclotomic field Q(~12~) .  

As was explained above, the statement to be proved follows from the 
decomposition J [Y]  = 22 @ C when n is odd. Assume then that n is even. 
As we have discussed, the field Q(J [9 ] )  is an extension of Q(p,) of 
degree dividing 2. Moreover, if Q(J [9 ] )  is indeed quadratic over Q(p,), 
then Q ( J [ 9 ] )  has no choice but to be Q(p2,). TO see that the extension 
Q(J[S])/Q(p,) is non-trivial, we use the result above. Using the Chinese 
Remainder Theorem and Dirichlet's theorem on primes in an arithmetic 
progression, we may choose C so as to satisfy the conditions of Theorem 5.2. 
A Frobenius element Frobe for C in G a l ( g / ~ )  then acts trivially on p,, 
but non-trivially on J[9]. 

6 Adelic representations 

Let 1 be a prime. As usual, we consider the Ldivisible group Je = U J [CV]  
V 

and its Tate modules Tat := Hom(Qe/Ze, Je) and Tat @z, Qe. The l-adic 
representation of G a l ( q / ~ )  attached to J is the continuous homomorphism 

which arises from the action of Gal( Q/Q ) on Tat. 
This action is T-linear, where T is the Hecke ring introduced above. Thus 

pe takes values, for example, in the group A u t ~ ,  (Tat), where Te = T 8 Ze. 
Note that the Ze-algebra Te is the product of the completions T, of T at 
the maximal ideals m of T which divide l.  The corresponding decomposition 
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of Tae into a product of modules over the individual factors Tm of Te is the 
natural decomposition of Tat = nm Tam, where the Tam are the m-adic Tate 
modules which were introduced earlier. 

As we have noted, Mazur proves in [9, Ch. 11, $15-5181 that Tam is free of 
rank 2 over Tm for each maximal ideal m of T which is not simultaneously 
ordinary, non-Eisenstein and of residue characteristic 2. Thus, after a choice 
of basis, AutTt (Tae) becomes GL(2, T 8 Ze) for each prime C > 2. Thus, if C 
is odd, pe may be viewed as a homomorphism 

Similarly, we may view p2 as taking values in GL(2, T 8 Q 2 ) .  Accordingly, the 
image Ge of pe is a subgroup of GL(2, T 8 Qe) in all cases and a subgroup of 
GL(2, T 8 Ze) when C is odd. The determinant of pe is the C-adic cyclotomic 
character. 

The group Ge is studied in [16], where the following two results are ob- 
tained as Proposition 7.1 and Theorem 6.4, respectively: 

Theorem 6.1. The group GL is open in the matrix group 

{M E GL(2,T 8 Qe) I det M E Qe*). 

Theorem 6.2. Suppose that C is at least 5 and is prime to the discriminant 
of T .  Suppose further that no maximal ideal mJC is an Eisenstein ideal of T 
(i .e. ,  that C is prime to n ) .  Then 

Ge = {M E GL(2, T 8 Ze) 1 det M E Z;). 

Consider next the adelic representation pf := nepe,  where the product is 
taken over the set of all prime numbers C. The image Gf of pf is a subgroup 
of the product ne Ge, which in turn is contained in the group 

According to [16, Th. 7.51, Gf is open in the latter product. 
For each prime C, let He be the intersection of Gf with the group 

where Ge is placed in the Cth factor. Thus He is a subgroup of Ge which 
may be viewed as the image of the restriction of pe to the kernel of the 
representation nelZe pp . 

Theorem 6.3. Assume that C satisfies the conditions of Theorem 6.2, i.e., 
that C is prime to disc T and distinct from 2 and 3. Assume fvrther that C is 
different from N.  Then He = Ge = {M E GL(2, T t3 Ze) I det M E ZZ). 

Proof. The proof of this result is explained in the course of the proof of 
Theorem 7.5 of [16]: Fix I, and let X be the smallest closed subgroup of 
G a l ( Q 1 ~ )  which contains all inertia groups of G a l ( Q 1 ~ )  for the prime C. 
Since per (X) = (1) for all primes C' # C, pe(X) is a subgroup of He, which in 
turn is contained in Ge. As the author observed at the end of $6 of [16], the 
desired equality pc(X) = Ge follows from Theorem 3.4 and Proposition 4.2 
of [16]. 

We now present a variant of the result above for the prime C = N. For this, 
we let r be the subgroup 1 + NZN of Z;, i.e., the N-Sylow subgroup of Z;. 

Proposition 6.4. Suppose that N is prime to the discriminant of T .  Then 
HN contains the group { M  E GL(2, T @ ZN) I det M E r ). 

Proof. Let X now be the smallest closed subgroup of G a l ( g / ~ )  which 
contains the wild subgroups (i.e., N-Sylow subgroups) of all inertia groups 
for N in Gal(Q/Q). It follows from the exact sequence (2.4) that we have 
pe(X) = (1) for all C # N .  (If C # N, inertia groups at  N act unipotently 
in the C-adic representations attached to J. Consequently, the image under 
pe of an inertia group at N is a pro-C group.) Hence ~ N ( X )  is a subgroup of 
HN, and it will suffice to show that 

~ N ( X )  = {M E G L ( 2 , T @  ZN) I det M E r ) .  

We note that pN(X) is contained in this matrix group since the image 
of pN(X) under the determinant mapping GN -i Z& is a pro-N group. 
Since in fact the group d e t p ~ ( X )  is all of r ,  the equality ~ N ( X )  
= { M E GL(2, T 8 ZN) I det M E r ) means that ~ N ( X )  contains 
SL(2, T @ ZN). 

Because T is unrarnified at  N ,  [16, Prop. 4.21 implies that the inclusion 

holds if and only if it holds "mod N" in the sense that the image of X 
in GL(2, TINT)  contains SL(2, TINT) .  To say that this image contains 
SL(2, TINT)  is in fact to say that the image coincides with SL(2,TINT); 
indeed, r maps to the trivial subgroup of (Z/NZ)*. The image in question is 
certainly a normal subgroup of SL(2, TINT)  since X is normal in Gal(Q/Q ) 
and GN contains SL(2, T @ ZN). The ring T I N T  is a product of finite fields 
of characteristic N because T is unramified at N; intrinsically, T I N T  = nm T/m, where m runs over the maximal ideals of T which divide N. 

Fix m for the moment and let pm : Gal(Q/Q) -+ GL(2,TIm) be the 
mod m reduction of the N-adic Galois representation p ~ .  This reduction is an 
irreducible two-dimensional representation because m cannot be an Eisenstein 
prime; indeed, m does not divide N - 1. As we have seen in Proposition 2.2, 
Pm cannot be "finite" (or peu ramafike) in the sense of [18]; recall that the 
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Main Theorem of [14] implies that p, would be modular of level 1 if it were 
finite. Thus p, is wildly ramified at  N ,  so that the group p,(X) has order 
divisible by N. But pm(X) is a normal subgroup of SL(2, T/m); we conclude 
that p,(X) = SL(2, T/m). 

Thus the image of pN(X) in SL(2,TINT) = n, SL(2,T/m) is a 
normal subgroup of SL(2,TINT) which maps surjectively to each factor 
SL(2, T/m). By taking commutators with elements of the form 

we find that pN(X) maps surjectively to SL(2,TINT). Therefore, as was 
explained above, pN(X) contains SL(2, T 8 ZN). 

Returning briefly to the group Gf, we note that we have 

where the products are taken over all prime numbers L. A theorem of 
B. Kaskel [16, Th. 7.31 implies that the image of Gf in the group GN := nrZN Gt is all of GN. This suggests viewing the full product nI Gr as the 
binary product GN x GN. Then Gf is a subgroup of this product which maps 
surjectively to each of the two factors. The group HN may be viewed as the 
kernel of the projection map Gf + GN; symmetrically, we let H N  c GN be 
the kernel of the second projection map. As is well known (see "Goursat's 
Lemma," an exercise in Bourbaki's Alghbre, Ch. I, 54), the projections from 
Gf onto GN and GN induce natural isomorphisms G N / ~ N  R G ~ / ( H ~  x HN) 
and Gf/(HN x HN) R GN/HN. We obtain as a consequence an isomorphism 

The group Gf contains H N  x HN as a normal subgroup, and the image of 

is the graph of the isomorphism a. 
It is worth remarking that Gf is open in GN x GN by [16, Th. 7.51. Hence 

the groups H~ and HN are open in G~ and GN respectively. Thus the groups 
G f / ( ~ N  x HN), G N / ~ N  and GN/HN are finite groups which have the same 
order. The order of (GN x G N ) / ( H ~  x HN) is the square of the orders of 
the three other groups. If N is prime to discT, then the order of GN/HN is 
a divisor of N - 1 by Prop. 6.4. Moreover as we will see below, the order of 
GN/HN is always divisible by Mazur's constant n = n u m ( y ) .  

Adopting a Galois-theoretic point of view, we let K be the subfield of a 
corresponding to the finite quotient Gf/(HN x HN) of Gd(Q/Q). Let KN 
be the extension of Q generated by the coordinates of the N-power torsion 
points on J and let K~ be the extension of Q which is defined similarly, 

using prime-to-N torsion points in place of N-power torsion points. Then 
the compositum Km = K ~ K ~  is the subfield of Q corresponding to the 
quotient Gr of G a l ( g / ~ ) ,  and it is clear that we have Gal(Km/KN) = H~ 
and Gal(Km/KN) = HN. Thus 

What information do we have about K?  We may restate Proposition 6.4 
as follows: If T is unramified at N ,  then K is contained in the field of Nth 
roots of unity. Indeed, in that case, GN/HN is a quotient of 

which corresponds (via the determinant) to the Galois group Gal(Q(pN)/Q). 
Without the assumption on disc T, we can remark, at least, that K is ramified 
only at  N; it is a subfield of KN, which is ramified only at N. 

We now exhibit the lower bound for [K : Q] which was alluded to above, 
proving that K contains the unique subfield of Q ( ~ N )  with degree n over Q. 
(Since n is 1 only when Xo(N) has genus 0, it follows that K is a non-trivial 
extension of Q whenever Jo(N) is non-zero.) For this, we note first that KN 
contains the field Q ( ~ N )  of Nth roots of 1; indeed, KN contains the field 
generated by the N-power roots of 1 in Q, since the determinant of p~ is the 
N-adic cyclotomic character. The Galois group Gal(Q(pN)/Q) = (Z/NZ)* 
has a unique quotient of order n. As in the proof of Theorem 5.2, we refer 
to this quotient as A; field-theoretically, A corresponds to a Galois extension 
KA of Q with 

KA E Q ~ N )  c KN. 

Since Gal(K4IQ) = A, [Ka : Q] = n. 

Theorem 6.5. The field K contains KA. 

Proof. Let m be an Eisenstein prime (i.e., maximal ideal) of T; let L be the 
corresponding divisor of n. The Tate module Tam which was introduced in 
the proof of Lemma 5.1 is free of rank two over T,, the completion of T 
at  m. The action of G a l ( g / ~ )  on Tam is given by a representation 

whose determinant is the L-adic cyclotomic character; ifp is prime to LN, then 
the trace of p,(F'robp) is Tp E T,, T, being the pth Hecke operator. Taking 
the sum of the p, and then reducing mod Y 2 ,  we obtain a representation 

with analogous properties. In particular, for each prime p prime to nN, the 
trace and determinant of p(Frobp) are the images of Tp and p, respectively, 
in T/92. 
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Let q :  ~ a l ( q / ~  ) + T/92  be the function 1 + det p - t r  p. For p prime 
to n N ,  q(F'robp) is the image in 9 / Y 2  of the element qp = 1 + p - tp of 9. 
In particular, the Cebotarev density theorem implies that q is a function 
G a l ( Q 1 ~ )  + 9/92. 

As we recalled in the proof of Theorem 5.2, there is an isomorphism 
n: 9 / Y 2  7 A which satisfies the congruence formula 

n(qp) = 9 p 

for all primes p not dividing nN. In this formula, p represents the i w g e  
in A of the congruence class of p mod N. Let a :  ~ a l ( q / ~ )  -+ 9 / Y 2  be 
the composite of: (1) the mod N cyclotomic character XN : Gal(Q/Q) + 
(Z/NZ)*; (2) the quotient map (Z/NZ)* + A; (3) the inverse of n. Then 
we may write alternatively 

qp = 9 .cub), 

where the left-hand side is interpreted in 9 / Y 2 .  If now x = xzn is the 
mod 2n cyclotomic character, then the formula for qp and the Cebotarev 
density theorem imply the identity 

? ] = X A a  2 

of 9 /92-valued  functions on G ~ ~ ( Q / Q  ). 
Let H be the kernel of p x X. Then q(hg) = q(g) for all g E ~ a l ( g / ~ ) ,  

since p(hg) = p(g) in that case. Let h be an element of H and take g to be 
a complex conjugation in G a l ( Q 1 ~ ) .  Since ~ ( g )  = -1 and ~ ( h )  = 1, the 
equation q(hg) = q(g) amounts to the identity a(hg) = a(g). Since cu is a 
homomorphism, we deduce that a(h) = 1. 

In other words, if h E G a l ( q / ~ )  is trivial under p x X ,  then h is trivial in 
Gal(KA/Q). In particular, if pN(h) = 1, then h fixes KA.  Accordingly, KA 
is contained in the fixed field K N  of the kernel of pN. Since, by construction, 
KA is a subfield of KN, K A  is contained in K .  rn 

Theorem 6.5, which will not be used in the proof of Theorem 1.6, sug- 
gests the problem of pinpointing K completely. According to Proposition 6.4 
and Theorem 6.5, we have KA K 5 Q(pN) under the apparently mild 
assumption that N does not divide disc(T). Since Gal ( $ ( p ~ ) / K n )  is cyclic 
of order ( N  - l ) / n  = gcd(N - 1,12), to  identify K under these circum- 
stances is to calculate a divisor of gcd(N - 1,12), namely [K : KA]. In the 
cases where Xo(N) has genus 0 (i.e., N < 11 and N = 13), we clearly have 
K = Q = K A .  In the case N = 11, K is constrained by our results to be 
either Q(pl l )  or the maximal real subfield of Q(p11). As was noted by Lang 
and Trotter [8] (see also [17, $5.3]), K = Q(pll) because the field generated 
by the 2-division points of Jo(ll) contains Q(-). In the case N = 37, 
we have gcd(N - 1,12) = 12, so that there are six a priori possibilities for K. 
In fact, Kaskel [7] shows that K is the maximal real subfield of Q(pS7); the 
divisor in question is 6. 

7 Proof of Theorem 1.6 

We recall the statement to be proved: Let P be a point of finite order on J 
whose C-primary component Pe is not rational point. Assume that at least one 
of the following statements is true: (1) N is prime to the order of P; (2) C is 
prime to N - 1; (3) N is prime to the discriminant of T (i.e., Hypothesis 1.4 
holds). Then there is a a E Gal (Q/Q)  such that aP - P has order C. 

In the proof that follows, we write pe for the sum of the pprimary com- 
ponents of P for primes different from C. Thus P = Pe + P'. Similarly, we 
put PN = P - PN. 

Consider the extension Q(Pe)/Q, which is non-trivial by hypothesis. To 
orient the reader, we note that this extension can be ramified only a t  C and 
at  N ,  the latter prime being the unique prime of bad reduction of J. Accord- 
ing to [2, Th. 2.21, Q(Pe)/Q is automatically ramified at  C except perhaps 
when C = 2. 

On the other hand, it is plausible that Q(Pe)/Q is unramified at  N. Let 
us first deal with this possibility, which turns out to be especially simple; 
here the hypotheses (1)-(3) are irrelevant. According to Proposition 3.3, Pe 
lies in J[9]. This latter group contains the Shimura subgroup C and the 
cuspidal group C of J. The source and target of the resulting natural map 
C @ C  -+ J[9] have order n; the kernel and cokernel of this map have order 1 
if n is odd and order 2 if n is even. 

To fix ideas, we assume for the moment that C is an odd prime. Then Pe 
lies in the C-primary part of J[Y], which is the direct sum of the C-primary 
parts of C and C. Hence Pe is the sum of a rational point of J and an element 
of C-power order of Z x p,. Since Pe is not rational, this latter element is 
non-trivial; its order may be written Ca with a 2 1. Let a be an element 
of G a l ( Q / ~ ( p ~ . - l ) )  which has non-trivial image in Gal(Q(pe.)/Q(pe.-I)). 
Then it is evident that ape - Pe has order C on J .  Indeed, this element is 
non-trivial since a does not fix Pe, but it is of order dividing C since a does 
fix ePe. Now the extension Q(pp)/Q(pp-I)  is ramified at  e; thus we may 
take a to be in an inertia group for a prime of Q(pea-I) which lies over C. 
This choice ensures that pe is fixed by a .  Then UP - P = ape - Pe is a point 
of order C, as desired. 

Next, we suppose that e = 2; we continue to suppose that Pe is unramified 
at N.  Then J[9] has even order; i.e., n is even. If Pe = P 2  lies in C+ C,  then 
things proceed as in the case C > 2. However, as we recalled above, the sum 
C + C, which is not direct, represents a proper subgroup of J[9] (namely, 
one of index 2.) Hence we must discuss the case where P2, which is a point 
in J [ 9 ] ,  does not lie in the sum C + C. 

In this case, the group J[9] is generated by its subgroup C + C  of index 2 
together with the point P2. Using Theorem 1.7, we find that 
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where K = Q(C + C) = Q(pn). The extension Q ( / J ~ ~ ) / Q ( / J ~ )  is a quadratic 
extension which is ramified at  2. We take a in an inertia group for 2 which 
fixes K but not P2. Since 2P2 lies in C + C, the difference up2 - P2 is of 
order 2. We have UP - P = aP2 - P2 in analogy with the situation already 
considered. 

Having treated the relatively simple case where Q(Pe)/Q is unramified 
at  N, we assume from now on that Pe is ramified at  N. This assumption 
means that there is an inertia subgroup I c Gal(Q/Q) for the prime N 
which acts non-trivially on Pe. Hence there is a T E I such that the ordeg of 
TP - P is divisible by C. We seek to construct a a E I for which UP - P has 
order precisely C. 

Assume first that (1) holds, i.e., that the order of P is prime to N. Let m 
be this order, and let Cd be the order of TP - P ;  thus, Cd divides m. Recall 
the exact sequence of I-modules 

Since m is prime to N,  the two flanking groups are unramified. It follows, 
as is well known, that A := r - 1 acts on J[m] as an endomorphism with 
square 0. By the binomial theorem, we find the equation rd = 1 + dA in 
End J[m]. Therefore 

is a point of order C. We take a = rd.  
Next, assume that (2) holds. Arguing as above, we may find an s E I such 

that s P N  - pN has order C. Moreover, for each i 2 1, we have s i p N  - pN 
= i (sPN - pN) .  Consider again (2.4), with m replaced by m', the order 
of PN. Let j = +(rnf) (Euler &function). Then d acts trivially on the groups 
Hom(X/mlX,  pmt) and X / m ' X  in (2.4), so that dm' fixes PN. By (2), 
j is prime to C, and thus i := jm' is prime to C as well. Taking a = s$ we 
find that UP - P has order C, as required. 

We now turn to the most complicated case, that where (3) holds, but 
where (1) and (2) are no longer assumed. We change notation slightly, writing 
m (rather than m') for the order of PN. Thus m is a power of N. Let s again 
be an element of I such that s P N  - pN has order C. 

We fix our attention once again on (2.4), which we view as a sequence of 
I-modules. Concerning the Hecke action, we note that the two groups 

are each free of rank 1 over T / m T  in view of Theorem 2.3 and the fact that 
T is Gorenstein away from the prime 2. The central group J[m] is free of 
rank 2 over T / m T  because of [9, Ch. 11, Cor. 15.21. The inertia group I acts 
trivially on X and as the mod m cyclotomic character x on pm. Thus M' is 
&ramified, and M is ramified if m is different from 1. 

We will be interested in the value of ~ ( s )  E (Z/mZ)*. Let i be the prime- 
to-C part of the order of ~ ( s ) ,  and replace s by s'. After this replacement, 
the order of ~ ( s )  is a power of L. Also, as we have discussed, this replacement 
multiplies s P N  - pN by i. Since i is prime to C, s P N  - PN remains of order C. 

If ~ ( s )  is now 1, then the situation is similar to that which we just dis- 
cussed. Namely, sm is the identity on J[m], and we may take a = sm. 

Assume now that ~ ( s )  is different from 1; thus ~ ( s )  is a non-trivial 
C-power root of 1. In this case, the T-module J[m] is the direct sum of two 
subspaces: the space where s acts as 1 and the space where s acts as ~ ( s )  

(which is not congruent to 1 mod N). Indeed, the endomorphism 3 - *(.I Of 

1 - x(s) 
J[m] is zero on M = Hom(X/mX,  pm) and the identity on M' = X l m X .  
It splits the exact sequence which is displayed above, &ing us an isomor- 
phism of T-modules: 

J[m] M M @ MI. 

The module M', viewed as a submodule of J[m], is the fixed part of J[m] 
relative to the action of s. 

We claim that there is an h E Gal(Q/Q) such that hPN = PN and 
such that ~ P N  E M'. This claim will prove what is wanted, since the choice 
a = h-lsh will guarantee that the difference UP - P is the C-division point 

To find the desired h it suffices to produce an element of SLTImTJ[m] a 
SL(2, TImT)  which maps PN into M'. Indeed, Proposition 6.4 implies that 
all such elements arise from HN, i.e., from elements of G a l ( Q 1 ~ )  which fix 
torsion points of J with order prime to N. 

To produce the required element of SL(2, TImT),  we work explicitly. 
Choose TlmT-bases e' and e of the free rank 1 modules M' and M,  and 
use {el, e) as a basis of J[m]. Then M' is the span of the vector (1,O) and 
M is the span of (0,l). Let u and v be the coordinates of PN relative to the 
chosen basis. We must exhibit a matrix in SL(2, TImT) which maps (u, v) 
to a vector with second component 0. 

Because of the hypothesis that N is prime to disc T, T @ ZN is a finite 
product of rings of integers of finite unramified extensions of QN. Thus T I m T  
is a product of rings of the form R = OlmB, where 0 is the ring of integers 
of a finite unramified extension of QN. It suffices to solve our problem factor 
by factor: given (u, v) E R2, we must find an element of SL(2, R) which maps 
(u, v) into the line generated by (1,O). It is clear that we may write (u, v) 
in the form Nt(u',v'), where t is a non-negative integer and at least one of 
u', v' is a unit in R. Solving the problem for (u', v') solves it for (u, v), so we 
may, and do, assume that either u or v is a unit. 

If u is a unit, then 
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If v is a unit, then 
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Elliptic Curves with Complex Multiplication 
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The purpose of these notes is to present a reasonably self-contained exposition 
of recent results concerning the Birch and Swinnerton-Dyer conjecture for 
elliptic curves with complex multiplication. The goal is the following theorem. 

Theorem. Suppose E is an  elliptic curve defined over an imaginary quadrat- 
ic field K ,  with complex multiplication by K ,  and L ( E ,  s )  is the L-function 
of E .  If L ( E ,  1) # 0 then 

(i) E (K)  is B i t e ,  
(ii) for every prime p > 7 such that E has good reduction above p, the p-part 

of the Tate-Shafarevich group of E has the order predicted by  the Birch 
and Swinnerton-Dyer conjecture. 

The first assertion of this theorem was proved by Coates and Wiles in 
[CWl]. We will prove this in $10 (Theorem 10.1). A stronger version of (ii) 
(with no assumption that E have good reduction above p) was proved in 
[ R u ~ ] .  The program to prove (ii) was also begun by Coates and Wiles; it can 
now be completed thanks to the recent Euler system machinery of Kolyvagin 
[KO]. This proof will be given in $12, Corollary 12.13 and Theorem 12.19. 

The material through $4 is background which was not in the Cetraro lec- 
tures but is included here for completeness. In those sections we summarize, 
generally with references to [Si] instead of proofs, the basic properties of el- 
liptic curves that will be needed later. For more details, including proofs, see 
Silverman's book [Si], Chapter 4 of Shimura's book [Sh], Lang's book [La], 
or Cassels' survey article [Ca]. 
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1 Quick Review of Elliptic Curves 

1.1 Notation 

Suppose F is a field. An elliptic curve E defined over F is a nonsingular curve 
defined by a generalized Weierstrass equation 

with a l ,  a2, a3, a4, a6 E F. The points E(F)  have a natural, geometrically- 
defined group structure, with the point a t  infinity 0 as the identity element. 
The discriminant A(E) is a polynomial in the ai and the j-invariant j(E) 
is a rational function in the ai. (See 5111.1 of [Si] for explicit formulas.) The 
j-invariant of an elliptic curve depends only on the isomorphism class of that 
curve, but the discriminant A depends on the particular Weierstrass model. 

Example 1 . I .  Suppose that E is defined by a Weierstrass equation 

and d E FX. The twist of E by & is the elliptic curve Ed defined by 

Then (exercise:) Ed is isomorphic to E over the field F(&), A(Ed) = 
dad(E), and j(Ed) = j(E). See also the proof of Corollary 5.22. 

1.2 Differentials 

See [Si] 511.4 for the definition and basic background on differentials on curves. 

Proposition 1.2. Suppose E is an elliptic curve defined by a Weierstrass 
equation (1). Then the space of holomorphic di#erentials on E defined over 
F is a one-dimensional vector space over F with basis 

Further, WE is invariant under translation by points of E(F). 

Proof. See [Si] Propositions 111.1.5 and 111.5.1. That WE is holomorphic is an 
exercise, using that WE is also equal to dy/(3x2 + 2.22 + a4 - ~ I Y ) .  0 

1.3 Endomorphisms 

Definition 1.3. Suppose E is an elliptic curve. An endomorphism of E is a 
morphism from E to itself which maps 0 to 0. 

An endomorphism of E is also a homomorphism of the abelian group 
structure on E (see [Si] Theorem 111.4.8). 

Example 1.4. For every integer m, multiplication by m on E is an endomor- 
phism of E, which we will denote by [m], If m # 0 then the endomorphism 
[m] is nonzero; in fact, it has degree m2 and, if m is prime to the characteristic 
of F then the kernel of [m] is isomorphic to (Z/mZ)2. (See [Si] Proposition 
111.4.2 and Corollary 111.6.4.) 

Example 1.5. Suppose F is finite, #(F) = q. Then the map cpq : (x, y, z) I+ 

(xq, y9, zq) is a (purely inseparable) endomorphism of E, called the q-th power 
Frobenius morphism. 

Definition 1.6. If E is an elliptic curve defined over F ,  we write EndF(E) 
for the ring (under addition and composition) of endomorphisms of E defined 
over F. Then EndF(E) has no zero divisors, and by Example 1.4 there is an 
injection Z v EndF(E). 

Definition 1.7. Write D(E/F) for one-dimensional vector space (see Propo- 
sition 1.2) of holomorphic differentials on E defined over F. The map q5 I+ 4' 
defines a homomorphism of abelian groups 

The kernel of i is the ideal of inseparable endomorphisms. In particular if F 
has characteristic zero, then i~ is injective. 

Lemma 1.8. Suppose char(F) = 0, L is a field containing F, and 4 E 
 end^ (E). If LL (4) E F then q5 E  end^ (E). 

Proof. If o E AU~(LIF) then 

Since L has characteristic zero, LL is injective so we conclude that qY' = q5. 

Definition 1.9. If 4 E EndF(E) we will write E[$] C E(F) for the kernel 
of q5 and F(E[+]) for the extension of F generated by the coordinates of the 
points in E[q5]. Note that F(E[q5]) is independent of the choice of a Weierstrass 
model of E over F. By [Si] Theorem 111.4.10, #(E[4]) divides deg(4), with 
equality if and only if q5 is separable. 
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Definition 1.10. If C is a rational prime define the C-adic Tate module of E 

Te(E) = lim E[Cn], 
f;r 

inverse limit with respect to the maps C : E[Cn+'] + E[Cn]. If C # char(F) 
then Example 1.4 shows that 

The Galois group GF acts ZL-linearly on Te(E), giving a representation 

when C # char(F). 

Theorem 1.11. If E i s  an  elliptic curve then EndF(E) is one of the follow- 
ing types of rings. 

6)  z ,  
(ii) an order i n  an imaginary quadratic field, 

(iii) an order i n  a division quaternion algebra over Q. 

Proof. See [Si] $111.9. 0 

Example 1.12. Suppose char(F) # 2 and E is the curve y2 = x3 - dx where 
d E F X .  Let 4 be defined by 4(x, y) = (-x,iy) where i = E P .  Then 
4 E Endp(E), and ~ ( 4 )  = i so 4 E EndF(E) e~ i E F. Also, 4 has order 4 in 
Endp(E)' so we see that Z[$] E Z[i] C EndE(E). (In fact, Z[$] = Endp(E) 
if char(F) = 0 or if char(F) =- 1 (mod 4), and Endp(E) is an order in a 
quaternion algebra if char(F) - 3 (mod 4) .) The next lemma gives a converse 
to this example. 

Lemma 1.13. Suppose E is given by a Weierstrass equation y2 = x3+ax+b. 
If Aut(E) contains an element of order 4 (resp. 3) then b = 0 (resp. a = 0) .  

Proof. The only automorphisms of such a Weierstrass elliptic curve are of 
the form (x, y) H ( U ~ X , U ~ ~ )  (see [Si] Remark 111.1.3). The order of such an 
automorphism is the order of u in FX, and when u has order 3 or 4 this 
change of variables preserves the equation if and only if a = 0 (resp. b = 0). 

0 

2 Elliptic Curves over C 

Remark 2.1. Note that an elliptic curve defined over a field of characteristic 
zero can be defined over Q[al,  a2, as, ad, as], and this field can be embedded 
in C .  In this way many of the results of this section apply to all elliptic curves 
in characteristic zero. 

2.1 Lattices 

Definition 2.2. Suppose L is a lattice in C .  Define the Weierstrass p 
function, the Weierstrass cr-function, and the Eisenstein series attached to L 

1 
Gk(L) = - for k even, k > 4. 

O f w E L  
w k 

We will suppress the L from the notation in these functions when there is no 
danger of confusion. See [Si] Theorem VI.3.1, Lemma VI.3.3, and Theorem 
VI.3.5 for the convergence and periodicity properties of these functions. 

Theorem 2.3. (i) I f  L is a lattice i n  C then the map 

is an analytic isomorphism (and a group homomorphism) from C / L  to 
E(C)  where E is the elliptic curve y2 = x3 - 15G4(L)x - 35G6(L). 

(ii) Conversely, i f  E is an elliptic curve defined over C given by an  equation 
Y2 = x3+ax+b then there is a unique lattice L C C such that 15G4(L) = 
-a and 35G6(L) = -b, so (i) gives an isomorphism from C / L  to E(C). 

(iii) The correspondence above identifies the holomorphic diflerential W E  with 
dz. 

Proof. The first statement is Proposition VI.3.6 of [Si] and the second is 
proved in [Sh] $4.2. For (iii), we have that 

dx/2y = d(p(z))/pl(z) = dz. 

Remark 2.4. If E is the elliptic curve defined over C with a Weierstrass model 
y2 = x3 +ax  + b and W E  is the differential dx/2y of Proposition 1.2, then the 
lattice L associated to E by Theorem 2.3(ii) is 

and the map 

is the isomorphism from E(C)  to C / L  which is the inverse of the map of 
Theorem 2.3(i). 
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Definition 2.5. If L C C is a lattice define 

Then A(L) is the discriminant and j(L) the j-invariant of the elliptic curve 
corresponding to L by Theorem 2.3. 

Proposition 2.6. Suppose E is an elliptic curve defined over C,  correspond- 
ing to a lattice L under the bijection of Theorem 2.3. Then the map L of 
Definition 1.7 is an isomorphism 

I' 

Endc(E) 4 {a E C : a L  C L). 

Proof. See [Si] Theorem VI.4.1. 0 

Corollary 2.7. If E is an elliptic curve defined over a field F of character- 
istic zero, then EndF(E) is either Z or an order in an imaginary quadratic 
field. 

Proof. If E is defined over a subfield of C then Proposition 2.6 identifies 
Endc(E) with {a E C : a L  C L). The latter object is a discrete subring of 
C ,  and hence is either Z or an order in an imaginary quadratic field. 

Using the principle of Ftemark 2.1 at  the beginning of this section, the 
same holds for all fields F of characteristic zero. 0 

The following table gives a dictionary between elliptic curves over an 
arbitrary field and elliptic curves over C .  

over abitrary field 

(E, W E )  

3 Elliptic Curves over Local Fields 

over C 

(CIL, dz)  

x7 Y 
isomorphism class of E 

Endc (E) 

Autc (El 

E[ml 

For this section suppose 

642; L), ~ ' ( 2 ;  L)I2 
{aL : a E CX ) 

{ a ~ c : a L c L )  

{a E C X  : a L =  L) 

m-I L/ L 

- p is a rational prime, 
- F is a finite extension of Q,, 
- O is the ring of integers of F ,  
- p is the maximal ideal of F ,  
- .rr is a generator of p 
- k = O / p  is the residue field of O 
- v : F + Z U {co) is the valuation on F, V(T) = 1. 

w e  fix an elliptic curve E defined over F .  

3.1 Reduction 

Definition 3.1. A Weierstrass equation (1) for E is minimal if 

- al,a2,a3,a4,a6 E 6, 
- the valuation of the discriminant of this equation is minimal in the set of 

valuations of all Weierstrass equations for E with coefficients in 0 .  

Every elliptic curve E has a minimal Weierstrass equation, or minimal model, 
and the minimal discriminant of E is the ideal of O generated by the dis- 
criminant of a minimal Weierstrass model of E. 

The reduction E of E is the curve defined over the residue field k by the 
Weierstrass equation 

where the ai are the coefficients of a minimal Weierstrass equation for E 
and 6, denotes the image of ai in k. The reduction E is independent (up 
to isomorphism) of the particular minimal equation chosen for E (see [Si] 
Proposition VII. 1.3(b)). 

The curve E may be singular, but it has at most one singular point ([Si] 
Proposition III.1.4(a)). In that case the quasi-projective curve 

Ens = E - {singular point on E) 

has a geometrically-defined group law just as an elliptic curve does (see [Si] 
Proposition 111.2.5). 

If A is the minimal discriminant of E, then one of the following three 
possibilities holds (see for example [Si] Proposition 111.2.5): 

(i) A O X  and E is nonsingulq, i.e., E = Ens is an elliptic curve, 
(ii) A 4 O " , E is singular, and Ens (k) k X ,  or 

(iii) A 4 O X ,  E is singular, and Ens (k) 2 k. 

We say that E has good (resp. multiplicative, resp. additive) reduction if (i) 
(resp. (ii), resp. (iii)) is satisfied. 

We say that E has potentially good reduction if there is a finite extension 
F' of F such that E has good reduction over F'. 

Lemma 3.2. (i) E has potentially good reduction if and only if j (E) E 0. 
(ii) If E has potentially good reduction then E has either good or additive 

reduction. 

Proof. See [Si] Propositions VII.5.4 and IV.5.5. 0 

Definition 3.3. There is a natural reduction map 

p2 (F) -+ p2 (k). 

By restriction this defines a reduction map from E ( F )  to ~ ( k ) .  We define 
Eo(F) C E(F)  to be the inverse image of ~ ~ , ( k )  and El(F)  C E ( F )  to be 
the inverse image of 6 E EnS(k). 
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Proposition 3.4. There is an exact sequence of abelian groups 

where the map on the right is the reduction map. If E has good reduction 
then the reduction map induces an injective hornomorphism 

EndF (E) -+ ~ n d t  (E) . 

Proof. See [Si] Proposition V11.2.1. r 0 

If E has good reduction and 4 E EndF(E), we will write 4 for the endo- 
morphism of E which is the reduction of 4. 

Lemma 3.5. If E is defined by a minimal Weierstrass equat~on then 

El(F) = {(x, y) E E(F)  : v(x) < 0) = {(x, y) E E(F)  : v(y) < 0). 

If (x, y) E E1(F) then 3v(x) = 2v(y) < 0. 

Proof. It is clear from the definition of the reduction map that (x, y, 1) re- 
duces to (O,I,O) if and only if v ( ~ )  < 0 and v ( ~ )  < v ( ~ ) .  If (x, y) E E ( F )  
then, since x and y satisfy a Weierstrass equation with coefficients in O, it is 
clear that 

v(x) < 0 * v(y) < 0 

and in that case v(y) = (3/2)v(x) < v(x). 0 

Lemma 3.6. Suppose E has good reduction, 4 E EndF(E), and 4 is purely 
inseparable. Then 

(i) 4 is injective on ~ ( k ) .  
(ii) ker(4) c El(F) 

Proof. Clear. 0 

3.2 The Formal Group 

Theorem 3.7. Fix a manimal Weierstrass model (1) of E .  There is a formal 
group E defined by  a power series FE E O[[Z, Z']], and a power series 

such that if we define 

x(Z) = Z/w(Z) E z-~O[[Z]], y(Z) = -I/w(Z) E z-30[[z]] 

as points on E with coordinates in the fraction field of F((Z, Z')), 
(iii) there is a map EndF(E) 4 ~ n d ( ~ )  (which we will denote by  4 e 

4(Z) € O[[Z]]) such that for every 4 E EndF(E), 

Proof. See [Ta] or [Si], sIV.1 for an explicit construction of the power series 
w(Z) and ~ E ( Z ,  2). The idea is that Z = -x/y is a uniformizing parameter 
at the origin of E, and everything (x, y, the group law, endomorphisms) can 
be expanded as power series in Z. 

For every n 2 1 write E(pn) for the commutative group whose underlying 
set is pn, with the operation (z,zl) e ~ E ( z ,  2'). 

Corollary 3.8. With notation as in Theorem 3.7, 

is an isomorphism from ~ ( p )  to El (F) with inverse given by 

Proof. See [Si] Proposition VII.2.2. The first map is a map into El (F) by 
Lemma 3.5 and Theorem 3.7(i), and is a homomorphism by Theorem 3.7(ii). 
It is injective because the only zero of w(Z) in p is Z = 0. The second map is 
clearly a left-inverse of the first, and it maps into p by Lemma 3.5. We only 
need show that the second map is also one-to-one. 

If we rewrite our Weierstrass equation for E with variables w = -l/y and 
z = -x/y we get a new equation 

Fix a value of z E p and consider the set S of roots w of this equation. If 
(z, w) corresponds to a point in El (F) then by Lemma 3.5, v(w) = v(z3) > 0. 
It follows easily that S contains at  most one root w corresponding to a point 
of El (F),  and hence the map (x, y) H -x/ y is one-to-one on El (F). 0 

Corollary 3.9. Suppose #(k) = q, E has good reduction, and 4 E E ~ ~ K ( E )  
reduces to the fiobenius endomorphism cpq E ~ n d k ( ~ ) .  Then 

4(Z)  = Zq (mod pO[[Z]]). 
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Proof. If the reduction of 4 is cpq then by Theorem 3.7(iii) 

Since y(Z) is invertible in O((Z)), we conclude that 

Definition 3.10. Recall that 

is the holomorphic, translation-invariant differential on E from Proposition 
1.2. Define 

G(Z) = $@> E 1 + ZO[[Z]]. 
2y(Z) + alx(Z) + a3 

Let X,(Z) be the unique element of Z+ Z2 F[[Z]] such that &Xg(Z) = G(Z). 

Lemma 3.11. (i) The power series At is the logarithm map of E, the iso- 
morphism from E to the additive formal group G ,  such that XL(0) = 1. 

(ii) The power series Ad converges on p. If ordp(p) < p - 1 then Xg is an 
isomorphism from E(p) to the additive group p. 

Proof. Let FE E O[[Z, Z']] be the addition law for E. We need to show that 

Since WE is translation invariant (Proposition 1.2), 

Therefore XE(FE(Z, 2')) = XE(Z) + c(Z1) with c(Zt) E F[[Zt]]. Evaluating 
at Z = 0 shows c(Z1) = XE(Z1) as desired. 

The uniqueness of the logarithm map and (ii) are standard elementary 
results in the theory of formal groups. 0 

Definition 3.12. Define XE : E1(F) + F to be the composition of the 
inverse of the isomorphism of Corollary 3.8 with Xg. 

Corollary 3.13. If ordp(p) < p-  1 then XE : El(F)  + p is an isomorphism. 

Proof. This is immediate from Lemma 3.11. 0 

RRcall the map L : EndF(E) + F of Definition 1.7 defined by the action 
of an endomorphism on holomorphic differentials. 

Proposition 3.14. For every 4 E E ~ ~ F ( E ) ,  +(Z) = ~(q5)Z + 0(Z2) .  

Proof. By definition of L, 3(q5(2)) = ~ ( 4 ) 3 ( 2 ) ,  i.e., 

Using the definitions of x(Z) and y (Z), the right-hand side is ( ~ ( 4 )  +O(Z))dZ, 
and the left-hand side is (+'(O) + O(Z))dZ. This completes the proof. 

3.3 Applications to Torsion Subgroups 

Theorem 3.15. Suppose 4 E  end^ (E) and 44) E O X .  

(i) is an automorphism of E1(F). 
(ii) If E has good reduction then the reduction map E[#] n E(F)  + ~ ( k )  is 

injective. 

Proof. By definition of a formal group, .FE(X, Y) = X + Y + 0(X2,  XY, Y2). 
Using Proposition 3.14, for every n 2 1 we have a commutative diagram 

Since ~ ( 4 )  E O X  we see that 4 is an automorphism of e(pn)/e(pn+') for ev- 
ery n 2 1, and from this it is not difficult to show that 4 is an automorphism 
of ~ ( p ) .  Therefore by Corollary 3.8, 4 is an automorphism of El(F).  This 
proves (i), and (ii) as well since El (F)  is the kernel of the reduction map and 
(i) shows that El (F)  n E[4] = 0. 0 

Remark 3.16. Theorem 3.15 shows in particular that if E has good reduction 
and m is prime to p, then the reduction map E[m] + ~ [ m ]  is injective. 

Corollary 3.17. Suppose E has good reduction, q5 E EndF(E), and ~ ( 4 )  E 
O X .  If P E E(F) and 4(P) E E(F) ,  then F(E[+], P ) /  F is unramified. 

Proof. Let F' = F(E[4], P )  and let k t  be its residue field. Then F1/F is 
Galois and we let I c Gal(F1/F) denote the inertia group. 

Suppose o E I .  Then the reduction 8 of u is the identity on kt, so if 
R E E(F) and +(R) E E(F)  then UR - R E E[+] and 
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By Theorem 3.15(ii), since ~ ( 4 )  E OX we conclude that UR = R. In other 
words u fixes E[$] and P, so u fixes F',  i.e., u = 1. Hence I is trivial and 
F'/F is unramified. 0 

Corollary 3.18. Suppose C # p, and let I denote the inertia subgroup of 
GF . 

(i) If E has good reduction then I acts trivially on Te(E). 
(ii) If E has potentially good reduction then I acts on Te(E) through a finite 

quotient. 

Proof. This is clear by Corollary 3.17. 0 

The converse of Corollary 3.18 is the following. 

Theorem 3.19 (Criterion of N6ron-Ogg-Shafarevich). Let I C GF 
denote the inertia group. 

(i) If C # p and I acts trivially on Tl(E), then E has good reduction. 
(ii) If C # p and T~(E)* # 0, then E has good or multiplicative reduction. 

Proof. See [Si] Theorem VII.7.1 for (i). The proof of (ii) is the same except 
that we use the fact that if E has additive reduction, then over any unramified 
extension F' of F with residue field k', ~ ~ ~ ( l k ' )  is killed by p and hence has 
no points of order C. 0 

4 Elliptic Curves over Number Fields 

For this section suppose F is a number field and E is an elliptic curve defined 
over F. Our main interest is in studying the Mordell-Weil group E(F).  

If q is a prime of F we say that E has good (resp. potentially good, bad, 
additive, multiplicative) reduction at q if E, viewed as an elliptic curve over 
the local field Fq ( F  completed at q) does. We will write A(E) for the minimal 
discriminant of E, the ideal of F which is the product over all primes q of 
the minimal discriminant of E over Fq. This is well-defined because (every 
Weierstrass model of) E has good reduction outside of a finite set of primes. 

Since F has characteristic zero, the map L : EndF(E) + F of Definition 
1.7 (giving the action of EndF(E) on differentials) is injective, and from now 
on we will identify EndF(E) with its image 13 C F. By Corollary 2.7, 0 is 
either Z or an order in an imaginary quadratic field. 

If a E 13 we will also write a for the corresponding endomorphism of E, so 
E[a] c E(F) is the kernel of a and F(E[a]) is the extension of F generated 
by the coordinates of the points in E[a]. 

Definition 4.1. Suppose a E 0, a # 0. Multiplication by a is surjective on 
~ ( p ) ,  so there is an exact sequence 

Taking GF-cohomology yields a long exact sequence 

where H'(F, E) = H1(F, E(F)). We can rewrite this as 

0 + E(F)/aE(F)  + H'(F, E[a]) + H1(F, E), -+ 0 

where H1(F, E), denotes the kernel of a on H1(F, E). Concretely, the con- 
necting map E(F) /aE(F)  v H1 (F, E[a]) is the "Kummer theory" map 
defined by 

where Q E E(F) satisfies a Q  = P. 
In exactly the same way, if q is a prime (finite or infinite) of F we can 

replace F by the completion Fq in (3), and this leads to the diagram 

0 + E(F)/aE(F)  ---+ H1(F, ~ [ a ] )  4 H1(F, E), + 0 

We define the Selmer group (relative to a )  

S,(E) = {c E H'(F, E[a]) : resq(c) E image(E(F,)/aE(F,)) for every q)  

= { c  E H1 (F, E[a]) : resq (c) = 0 in H1 (Fq , E) for every q) . 
Proposition 4.2. Suppose a E 13, a # 0. Under the Kummer map (3), 
S,(E) contains the amage of E(F)/aE(F).  

Proof Clear. 
0 

Remark 4.3. One should think of the Selmer group &(E) as the smallest 
subgroup of H1(F, E[a]) defined by natural local conditions which contains 
the image of E(F) /aE(F) .  

Proposition 4.4. Suppose a E 0, a # 0. Then the Selmer g~oup S,(E) 2s 
finite. 
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Proof. Suppose first that E[a] C E(F),  so H1 (F, E[a]) = Hom(GF, E[a]). 
Let L be the maximal abelian extension of F of exponent deg(a) which is 
unramified outside of the (finite) set of primes 

= {p of F : p divides aA(E) or p is infinite). 

If c E Sa(E) C Hom(GF, E[a]) then c is trivial on 

- commutators, 
- deg(a)-th powers, c' 

- inertia groups of primes outside of C E , ~ ,  

the first two because E[a] is abelian and annihilated by deg(a), and the last 
because of (4) and Corollary 3.17. Therefore c factors through Gal(L/ F),  so 

Class field theory shows that L I F  is finite, so this proves the proposition in 
this case. 

In general, the restriction map 

sends Sa(EIF) into S,(EIF(E[,I)). The Case above shows that S~(E/F(E[,])) 
is finite, and H1 (F(E[a])/F, E[a]) is finite, SO Sa (EIF) is finite- 0 

Corollary 4.5 (Weak Mordell-Weil Theorem). For every nonzero a E 
0, E(F)/aE(F) is finite. 

Proof. This is clear from Propositions 4.2 and 4.4. 0 

Theorem 4.6 (Mordell- Weil) . E(F)  is finitely generated. 

Proof. See [Si] 5VIII.6. 0 

Definition 4.7. The Tate-Shafarevich group ILI(E) of E over F is the sub- 
group of H1(F, E(F)) defined by 

Proposition 4.8. If a E 0 ,  a # 0, then the exact sequence (3) restricts to 
an exact sequence 

where IU(E), is the subgroup of elements of m ( E )  kalled by a. 

' Proof. This is clear from the definitions and the diagram (5). 0 

5 Elliptic Curves with Complex Multiplication 

Fix a subfield F of C and an elliptic curve E defined over F. 

Definition 5.1. We say E has complex multiplication over F if EndF(E) is 
an order in an imaginary quadratic field, i.e., if EndF(E) # Z. 

Assume from now on that E has complex multiplication, and let 

As in 54 we will use L to identify EndF(E) with O. Let K = Q O  C F be the 
imaginary quadratic field containing 0 ,  and denote the full ring of integers 
of K by OK. If a is an ideal of O we will write E[a] = naEaE[a]. 

Fix an embedding of F into C. Viewing E as an elliptic curve over C and 
using Proposition 2.6 we can write 

E(C) S C / L  where L C  K C C and O L =  L. (6) 

(A priori L is just a lattice in C ,  but replacing L by XL where X-l E L we 
may assume that L c K.) Thus if O = OK, then L is a fractional ideal of K.  

5.1 Preliminaries 

In this section we record the basic consequences of complex multiplication. 
Put most simply, if E has complex multiplication over F then all torsion 
points in E(F) are defined over abelian extensions of F. 

Remark 5.2. It will simplify the exposition to assume that O = OK. The 
following proposition shows that this restriction is not too severe. Two elliptic 
curves are isogenous if there is an isogeny (a nonzero morphism sending one 
origin to the other) from one to the other. 

Proposition 5.3. There as an elliptic curve E', defined over F and isoge- 
nous over F to E, such that EndF(E) Z OK. 

Proof. Suppose the conductor of O is c, i.e., O = Z+COK, and let c = COK C 
0. The subgroup E[c] is stable under GF, so by [Si] Proposition 111.4.12 and 
Exercise 111.3.13 there is an elliptic curve E' over F and an isogeny from E 
to E' with kernel E[c]. We only need to check that EndF(E1) = OK. 

With the identification (6), E1(C) E CIL' where 

L' = {z E C :  zc C L). 

Suppose a E OK. For every z E L', 

so az E L'. Therefore by Proposition 2.6, a E Endc(Et). By Lemma 1.8, 
since a E K C F we conclude that a E EndF(E1). 0 
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From now on we will assume that 8 is the maximal order OK. 

Proposition 5.4. If a is a nonzero ideal of O then E[a] S' :'/a as O- 
modules. 

Proof. Using the identification (6) we see that E[a] % ~ - ' L / L  where L is a 
fractional ideal of K, and then a-lL/L 2 Ola. 0 

Corollary 5.5. If a is a nonzero ideal of O then the action of GF owE[a] 
induces an injection 

In particular F(E[a])/F is abelian. 

Proof. If /3 E 0, o E GF, and P E E(F) then, since the endomorphism /3 is 
defined over F, o(j3P) = @(UP). Thus there is a map 

Gal(F(E[a])/F) v Auto (E[a]). 

By Proposition 5.4, 

If a is a nonzero ideal of O let E [aw] = U, E[an] . 

Corollary 5.6. The action of GF on E[am] induces an injection 

Gal(F(E[aw])/F) v (lim O/an) X .  

%- 

In particular for every prime p, 

Proof. Immediate from Corollary 5.5. 

Theorem 5.7. Suppose F is a finite extension of QL for some C. 

(i) E has potentially good reduction. 
(ii) Suppose p is a prime of O and n E Z+ is such that the multiplicative 

group 1 + pnOp is torsion-free (where Op is the completion of 0 at p). 0 
p e then E has good reduction over F(E[pn]) at all primes not dividing p. 

Proof. Suppose p is a rational prime. By Corollary 5.6, the Galois group 
Gal(F(E[pm])/F(E[p])) is isomorphic to a subgroup of the multiplicative 
group 1 + pO €4 Z,. If p > 3 then the padic logarithm map shows that 
1 + p O  €4 Z, % p o p  E Zi. Thus 

with d 5 2. If p # C, class field theory shows that such an extension is un- 
ramified. Thus by the criterion of NCron-Ogg-Shafarevich (Theorem 3.19(i)) 
E has good reduction over F(E[p]). This proves (i). 

The proof of (ii) is similar. Write F, = F(E[pw]) and Fn = F(E[pn]), 
and suppose q is a prime of Fn not dividing p. By (i) and Corollary 3.17, the 
inertia group Iq of q in Gal(Fw/Fn) is finite. But Corollary 5.6 shows that 

which has no finite subgroups, so I,, acts trivially on E[pw]. Therefore by 
Theorem 3.19(ii), E has good or multiplicative reduction at q. Since we al- 
ready know that the reduction is potentially good, Lemma 3.2(ii) allows us 
to conclude that E has good reduction at q. 0 

Remark 5.8. The hypothesis of Theorem 5.7(ii) is satisfied with n = 1 if the 
residue characteristic of p is greater than 3. 

Proposition 5.9. Suppose q is a prime of F where E has good reduction 
and q = NFlqq. There is an endomorphism CY E O whose reduction modulo 
q is the Fkobenius endomorphism cp, of E. 

Proof. If cp, = [m] for some m E Z then the proposition is clear. So suppose 
now that cp, $ Z, and write k for the residue field of F at  q. Since cp, 
commutes with every endomorphism of E, we see from Theorem 1.11 that 
the only possibility is that ~ n d k ( E )  is an order in an imaginary quadratic 
field. But the reduction map EndF(E) + Endk(E) is injective (Proposition 
3.4) so its image, the maximal order of K ,  must be all of ~ n d k ( ~ ) .  This 
proves the proposition. 0 

5.2 T h e  Main Theorem of Complex Multiplication 

In this section we study further the action of GF on torsion points of E .  
We will see that not only are torsion points abelian over F, in fact they are 
"almost" abelian over K ,  so that (using class field theory) we can describe 
the action of GF on torsion points in terms of an action of the ideles of K. 

The reference for this section is [Sh] Chapter 5; see also [ST]. We continue 
to suppose that E has complex multiplication by the mazimal order of K .  
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Definition 5.10. Let A; denote the group of ideles of K. There is a natural 
map from A: to the group of fractional ideals of K ,  and if x E A; and a is 
a fractional ideal of K we will write xa for the product of a and the fractional 
ideal corresponding to x. 

If p is a prime of K let Op c Kp denote the completions of O and K at 
p. If a is a fractional ideal of K ,  write ap = aOp and then 

If x = (xp) E A: then multiplication by xp gives an isomorphismdrom 
Kp/ap to Kp/xp ap = Kp/(xa)p, SO putting these maps together in (7) we get 
an isomorphism 

x : K/a 7 Klxa. 

The following theorem is Theorem 5.4 in Shimura's book [Sh]. Let Kab 
denote the maximal abelian extension of K and [ . , Kab/K] the Artin map 
of global class field theory. If u is an automorphism of C let Em denote the 
elliptic curve obtained by applying a to the coefficients of an equation for E. 

Theorem 5.11 (Main theorem of complex multiplication). Fix a 
fractional ideal a of K and an analytic isomorphism 

5 : C/a + E(C) 

as in (6). Suppose a E Aut(C/K) and x E A: satisfies [x, K ~ ~ / K ]  = u IK.t.. 

Then there is a unique isomorphism Q : C/x-'a + EU(C) such that the 
following diagram commutes 

K/xdla " r Era, 

where Eto, denotes the torsion in E(C) and similarly for EFo,. 

Proof. See [Sh] Theorem 5.4. 

Let H denote the Hilbert class field H of K. 

Corollary 5.12. (i) K(j(E)) = H C F, 
(ii) j(E) is an integer of H.  

Proof. Suppose u E Aut(C/K). With the notation of Theorem 5.11, as in 
Proposition 2.6 we see that 

j(E) = j(E)O & E Ei Eu & C/a S C/xa t) xa = Xa for some E C 

t) x E K x  n, n K r  o [x, H/K] = 1 w u is the identity on H. 
p t m  ploo 

This proves (i), and (ii) follows from Theorem 5.7(i) and Lemma 3.2(i). 

Corollary 5.13. There is an elliptic curve defined over H with endomor- 
phism ring O = OK. 

Proof. By Theorem 2.3(i) there is an elliptic curve El defined over C with 
E1(C) Z C/O, and by Proposition 2.6, Endc(E1) 2 0. Corollary 5.12 shows 
that j(E1) € H ,  so (see Proposition 111.1.4 of [Si]) there is an elliptic curve 
E defined over H with j(E) = j(E1). Hence E is isomorphic over C to El, 
so Endc(E) Z 0. 

The map L : Endc(E) + C of Definition 1.7 is injective, so the image is 
O C H. By Lemma 1.8 we conclude that Endc(E) = E ~ ~ H ( E ) .  Thus E has 
the desired properties. 0 

Exercise 5.14. Let A be the ideal class group of K.  If E E C/a, b is an ideal 
of K ,  ub is its image under the isomorphism AK 7 Gal(H/K), and u E GK 
restricts to Ub on H,  then 

For the rest of this section we suppose that F is a number field. 

Theorem 5.15. There is a Hecke character 

with the following properties. 

(i) If x A; and y = NFIKx E A;, then 

(ii) If x E A; is a finite idele (i.e., the archimedean component is 1) and p 
is a prime of K ,  then $(x) (NF/K x);' E OpX and for every P E E[pm] 

(iii) If q is a prime of F and Uq denotes the local units in the completion of 
F at q, then 

$(Uq) = 1 e E has good reduction at q. 

Proof. Suppose x E A:, and let y = NFIKx, u = [x, F ~ ~ / F ] .  Then u re- 
stricted to K~~ is [y, K ~ ~ / K ]  so we can apply Theorem 5.11 with u and y. 
Since a fixes F ,  Eu = E so Theorem 5.11 gives a diagram with isomorphisms 
t : C/a + E(C) and t1 : ~ / y - ' a  + E(C). Then 5-' o t1 : C/y-'a 7 C/a 
is an isomorphism, so it must be multiplication by an element $fin(x) E K X  
satisfying $fin(x)O = YO. Define 
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It is clear that $ : A;/FX -+ C X  is a homomorphism and that (i) is 
satisfied. If p is a prime of K and k > 0 then Theorem 5.11 gives a diagram 

(where the left-hand square comes from the definition of the action o f 5  on 
Kla)  which proves (ii). 

Suppose q is a prime of F and p is a rational prime not lying below q. 
By (ii), if u E Uq then [u, Fab/ F]  acts on Tp(E) as multiplication by $(u). 
Since [Uq, Fab/F] is the inertia group at q ,  (iii) follows from Theorem 3.19 
and Corollary 3.18(i). 

Thus for almost all q ,  $(Uq) = 1. Even for primes q of bad reduction, since 
the reduction is potentially good (Theorem 5.7(i)) the action of [Uq, Fab/F] 
on Tp(E) factors through a finite quotient (Corollary 3.18(ii)) so the argument 
above shows that $ vanishes on an open subgroup of U,. Therefore $ is 
continuous, and the proof of the theorem is complete. 0 

Let f = fE denote the conductor of the Hecke character $ of Theorem 
5.15. We can view $ as a character of fractional ideals of F prime to f in the 
usual way. 

Corollary 5.16. As a character on ideals, $ satisfies 

(i) if b is an ideal of F prime to f then $(b)O = NFIKb, 
(ii) if q is a prime of F not dividing f and b is an ideal of O prime to q, 

then [q, F(E[b])/F] acts on E[b] by multiplication b y  $(q). 
(iii) if q is a prime of F where E has good reduction and q = NFlqq then 

$(q) E O reduces modulo q to the Fkobenhs endomorphism cpq of E .  

Proof. The first two assertions are just translations of Theorem 5.15(i) and 
(ii). If P E Et,,, has order prime to q,  P denotes its reduction modulo a 
prime of F above q,  and a, = [q, F(E[b])/F], then 

where the first equality is from (ii) and the second is the definition of the 
Artin symbol [q, F(E[b])/F]. Since the reduction map is injective on prime- 
to-q torsion (Theorem 3.15) this proves (iii) . 0 

Remark 5.1 7. Note that Corollary 5.16(iii) gives an explicit version of Propo- 
sition 5.9. Proposition 5.9 is one of the key points in the proof of the Main 
Theorem of Complex Multiplication, of which Corollary 5.16 is a direct con- 
Sequence. 

Corollary 5.18. Suppose F = K and p is a prime of K such that the map 
O X  -+ (8/p) is not surjective. Then E[p]$E(K). 

Proof. By Theorem 5.15(ii), [OpX , K ~ ~ / K ]  acts on E[p] via the character 
$(x)x-l of OpX, and by Theorem 5.15(i), $(OpX) C O X .  The corollary fol- 
lows. 0 

Corollary 5.19. Suppose F = K .  Then the map O X  -+ (O/f)' is injective. 
In particular E cannot have good reduction at all primes of K .  

Proof. Let u E O X ,  u # 1 and let x be the idele defined by x, = 1 and 
xp = u for a11 finite p. Then $(x) = $(u-lx) = u # 1, so by definition of f ,  
u $ 1 (mod f). The second assertion now follows from Theorem 5.15(iii). 

If a is an ideal of K let K(a) denote the ray class field of K modulo a. 

Corollary 5.20. Suppose E is defined over K ,  a is an ideal of K prime to 
6f, and p is a prime of K not dividing 6f. 

(i) Ebfl C E(K(af)). 
(ii) The map Gal(K(E[a])/K) -+ ( 0 1 ~ ) ~  of Corollary 5.5 is an isomorphism. 

(iii) If b 1 a then the natural map Gal(K(af)/K(bf)) -+ Gal(K(E[a])/K(E[b])) 
is an isomorphism. 

(iv) K(E[apn])/K(E[a]) is totally ramified above p. 
(v) If the map O X  + ( 0 1 ~ ) ~  is injective then K(E[apn])/K(E[a]) is un- 

ramified outside of p. 

Proof. Suppose x E A:, xp E OpX for all finite p and x, = 1. If x = 1 
(modxf) then Theorem 5.15(ii) shows that [x, Kab/K] acts on Etors as mul- 
tiplication by x-l. If x = l (modxa) Theorem 5.15 shows that [x, K ~ ~ / K ]  
acts on E[a] as multiplication by $(x). Thus 

- if p I f then the kernel of OpX -+ [O: , K(E[a])/K] is the kernel of the 

composition OpX O X  -+ (O/a)X; 
- if pn I a and pn+' -1. a then OpX /(1 + pnOp) v [OpX, K(E[a])/K] v 

(O/pn) is an isomorphism. 

All assertions of the corollary follow without difficulty from this. 0 

Remark 5.21. In fact, without much more difficulty one can strengthen Corol- 
lary 5.20(i) (see [CWl] Lemma 4) to show that E[af] = E(K(af)), but we 
will not need this. 

Corollary 5.22. Suppose q is a prime of F. There is an elliptic curve El 
defined over F, such that 

- E' is isomorphic to E over F ,  
- El has good reduction at q .  
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Proof. Let qE be the Hecke character attached to E and Uq the group of local 
units at q, viewed as a subgroup of A;. By Theorem 5.15(i), $E(U~) C O X .  
Therefore we can find a continuous map 

such that x = on Uq. We will take E' to be the twist of E by x-l (see 
[Si] 5X.5). 

Explicitly, suppose E is given by a Weierstrass equation ir 

and let w = #(OX). By class field theory we can view x as an element of 

In other words, there is a d E FX such that 

(dllw)" = X(u)dllw for every u E GF. 

Define 
y2 = x 3  +d2ax+d3b if w = 2 

i f w = 4  

y2 = x3 + db i f w = 6  

(see Example 1.1). The map 

(dx, d3I2y) if w = 2 

(d1/2x,d3/4y) if w = 4 
(d1/3x, d1I2y) if w = 6 

defines an isomorphism 4 : E 7 E' over ~ ( d l l " )  (where we are using 
Lemma 1.13). If P E E(F)  and u E GF, then 

From the definition of the Hecke character $El of E' we see that = 

X-l$E. By construction this is trivial on Uq, SO by Theorem 5.15(iii) E' has 
good reduction at q. 0 

6 Descent 

In this section we use the results of 55 to compute the Selmer group of an 
elliptic curve with complex multiplication. After some cohomological lemmas 
in 56.1, we define an enlarged Selmer group S1(E) in 56.2 which is easier to 
compute (Lemma 6.4 and Theorem 6.5) than the true Selmer group S(E). 

The main result describing the Selmer group S(E)  is Theorem 6.9. The meth- 
ods of this section closely follow the original work of Coates and Wiles [CWl] 
(see for example [Co]). 

We continue to assume that E is an elliptic curve defined over a field F 
of characteristic 0, with complex multiplication by the maximal order O of 
an imaginary quadratic field K. 

6.1 Preliminaries 

Lemma 6.1. Suppose p is a prime of K lying above a rational prime p > 3, 
and n 2 0. Let C be a subgroup of (O/pn) ', acting on O/pn via multiplica- 
tion. If either C is not a p-group or C is cyclic, then for every i > 0 

Proof. If C is cyclic this is a simple exercise. If C', the prime-to-ppart of C, 
is nontrivial, then ( ~ / p ~ ) ~ '  = 0 and Hi(C',O/pn) = 0 for every i, so the 
inflation-restriction exact sequence 

shows that HYC, O/pn) = 0. 

Lemma 6.2. Suppose p is a prime of K lying above a rational prime p > 3, 
and n 2 0. 

(i) If Op = Z, or if E[p] E(F)  then the restriction map gives an isomor- 
phism 

(ii) Suppose F is a finite extension of Qe for some C # p. Then the restriction 
map gives an injection 

Proof. Use Proposition 5.4 and Corollary 5.5 to identify E[pn] with O/pn and 
Gal(F(E[pn])/F) with a subgroup C of (O/pn) X .  Then C is cyclic if Op = Z,, 
and C is a pgroup if and only if E[p] c E(F)  (since Gal(F(E[p])/F) C 
( 0 1 ~ ) ~  has order prime to p) .  Thus (i) follows from Lemma 6.1 and the 
inflation-restriction exact sequence. 

The kernel of the restriction map in (ii) is H1 (Fn/F, E(Fn))pn, where 
F, = F(E[pn]). We may as well assume that n 2 1, or there is nothing to 
prove. By Theorem 5.7(ii), E has good reduction over Fn, so by Proposition 
3.4 there is a reduction exact sequence 
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where kn is the residue field of Fn. Thus E1(Fn) is a profinite 0-module, 
of finite index in E(Fn), on which (by Theorem 3.15(i)) every a prime to e 
acts invertibly. It follows that the pro-p part of E(Fn) is finite, say E[pm] for 
some m 2 n, and hence 

If E[p] c E(F)  then E has good reduction by Theorem 5.7(ii) (and Remark 
5.8) so Fn/F is unramified and hence cyclic. Hence exactly as in (i), Lemma 
6.1 shows that H1(F(E[pm])/F, E[pm]) = 0, and (ii) follows. & 

0 

6.2 The Enlarged Selmer Group 

Suppose for the rest of this section that F is a number field. 

Definition 6.3. If a E 0 define SL(E) = SL(EIF) c H1(F, E[a]) by 

Sk(E) = {c E H'(F, E[a]) : resq(c) E image(E(Fq)/aE(Fq)) for every q f a }  

= {C E H'(F, E[a]) : resq(c) = 0 in H1(Fq, E(F~) )  for every q f a) 

in the diagram (5). Clearly S, (E) c SL (E). 

Lemma 6.4. Suppose p is a prime of K not dividing 6, n 2 1, E[pn] c E(F)  
and pn = a0. Then 

where M is the maximal abelian p-extension of F unramified outside of primes 
above p. 

Proof. Since E[pn] c E(F) ,  

Suppose q is a prime of F not dividing p. By Theorem 5.7(ii), E has good 
reduction at p so by (4) and Corollary 3.17, the image of E(Fq)/oE(Fq) 
under (5) is contained in Horn(G~, /Iq, E[pn]), where Iq is the inertia group 
in GF,, and we have 0-module isomorphisms 

On the other hand, using Theorem 3.15 and writing k for the residue field of 

F4 7 

E(Fq)/aE(Fq) S ~ ( k ) / o ~ ( k )  E O/pnO. 

Thus the image of E(Fq)/aE(Fq) v H1 (Fq , E[pn]) under (5) must be equal 
to.Hom(GF, /Iq, E[pn]), and the lemma follows from the definition of S&. 

Theorem 6.5. Suppose E is defined over K ,  p is a prime of K not dividing 
6, n 2 1, and pn = a0. Let Kn = K(E[pn]). Then 

where Mn is the maximal abelian p-extension of Kn unrarnified outside of 
primes above p. 

Proof. Let G = Gal(Kn/K). By Lemma 6.2(ii) and Corollary 5.18, the re- 
striction map gives an isomorphism 

Clearly the image of SL(EIK) under this restriction isomorphism is contained 
in S;(EIK,). Conversely, every class in H1 (K, E[pn]) whose restriction lies in 
SL(EIKn) already lies in SL(EIK), because by Lemma 6.2(iii) the restriction 
map 

H1 ( 4 ,  E(Kq)) -+ H1(K,(E[pnl), E(Kq)) 

is injective for every prime q not dividing p. This proves that 

and so the theorem follows from Lemma 6.4. 

6.3 The True Selmer Group 

For the rest of this section we will suppose that E is defined over K ,  i.e., 
F = K. Recall that by Corollary 5.12 this implies that K has class number 
one. Fix a prime p of K not dividing 6f and a generator w of p. Let XE : 
El (Kp) -+ pOp be the logarithm map of Definition 3.12. 

Lemma 6.6. The map X E  extends uniquely to a surjective map E(Kp)+pOP 
whose kernel is finite and has no p-torsion. 

Proof. By Corollary 3.13, XE : El (Kp) + pop  is an isomorphism, and by 
Lemma 3.6(i) and Corollary 5.16(iii), E(Kp)/E1(Kp) is finite and has no p- 
torsion. 0 

Definition 6.7. For every n 2 1 let Kn,p = Kp (E[pn]) and define a Kummer 
pairing 

( - , . )nn : E(Kp) x K c p  + E[pn] 
P 9 x I+ [ x ,  K::p /Kn,p]Q - Q 

where [ . , K $ o / ~ n , p ]  is the local Artin map and Q E E ( K ~ )  satisfies nnQ = 
P. 
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Lemma 6.8. For every n there is a unique Galois-equivariant homomor- 
phism 6, : Kip -+ E[pn] such that if P E E(Kp)  and x E Kz,p, 

Further, if On,p denotes the ring of integers of Kn,p then 6n(O:,p) = E[pn]. 

Proof. Define 6,(x) = (R, x ) , ~  where AE(R) = r, and then everything except 
the surjectivity assertion is clear. 

First note that by Theorem 5.15(ii), if x E OpX then [x, Kn,p/ Kp] acv on 
E[pn] as multiplication by x-I. Therefore E(Kp) has no p-torsion and E[p] 
has no proper GKp-stable subgroups. 

By Lemma 6.6, E(Kp)/pnE(Kp) 7 O/pn. Since 

is injective (the first map by (5) and the second by Lemmas 6.2(ii) and 6.6), 
the image of 6, is not contained in E[pn-'1. Since the image of 6, is stable 
under GK,, it must be all of E[pn]. But 6,(K,lp)/dn(0&) is a quotient of 
E[pn] on which GK, acts trivially, and (as above) such a quotient must be 
trivial, so 6n(0,&,) = E[pn] as well. 0 

Theorem 6.9. With notation as above, let Kn = K(E[pn]) and On its ring 
of integers, and define 

Then 

Proof. By definition we have an injective map 

By Lemma 6.6, E(Kp) /PE(Kp)  Y O/pn. By Lemma 6.8 K,lp/ker(an) Y 
E[pn], and by Theorem 5.15(ii), 

Therefore the injection above is an isomorphism, and the theorem follows 
from Proposition 6.5 and class field theory. 0 

Let A denote the ideal class group of K(E[p]), and & the group of global 
units of K(E[p]). 

Corollary 6.10. With notation as above, 

S,(E) = 0 o ( H O ~ ( A ,  E [ ~ ] ) G ~ ' ( K ( E B I ) / ~ )  = 0 and dl(&) # 0) . 

Proof. By Corollary 5.20, K(E[p])/K is totally ramified at  p, of degree Np-1. 
We identify K I , ~  with the completion of K(E[p]) at the unique prime above 
p, and let Dl,, denote its ring of integers and t? the closure of & in 0 1 , ~ .  Let 
V = ker(dl) r l  O,lp and A = Gal(K(E[p])/K). We have an exact sequence 

where Wl is as in Theorem 6.9 and A' is a quotient of A by some power of the 
class of the prime P above p. Since p N p - '  = p is principal, Hom(Af, E[p]) = 
Hom(A, E[p]). Using Theorem 6.9 we conclude that 

SK(E) = 0 * ( H O ~ ( A ,  ~ [ p ] ) ~  = 0 and H ~ r n ( O ~ ~ / t ? v ,  ~ [ p ] ) ~  = 0) . 

By Lemma 6.8, 61 : O,lp/V + E[p] is an isomorphism. Since E[p] has no 
proper Galois-stable submodules, it follows that 

This completes the proof of the corollary. 

7 Elliptic Units 

In this section we define elliptic units and relate them to special values of 
L-functions. Elliptic units will be defined as certain rational functions of x- 
coordinates of torsion points on a CM elliptic curve. The results of $5 will 
allow us determine the action of the Galois group on these numbers, and hence 
their fields of definition. We follow closely [CWl] $5; see also [dS] Chapter I1 
and Robert's original memoir [Ro]. 

Throughout this section we fix an imaginary quadratic field K with ring 
of integers 0, an elliptic curve E over C with complex multiplication by 0, 
and a nontrivial ideal a of O prime to 6. For simplicity we will assume that 
the class number of K is one; see [dS] for the general case. 

7.1 Definition and Basic Properties 

Definition 7.1. Choose a Weierstrass equation (1) for E with coordinate 
functions x, y on E. Define a rational function on E 

where cr is a generator of a and A(E) is the discriminant of the chosen model 
of E. Clearly this is independent of the choice of a. 

Lemma 7.2. (i) eE,, is independent of the choice of Weierstrass model. 
(ii) If 4 : E' 7 E as an isomorphism of elliptic curves then @El,@ = @ E , ~ o  4. 

I 
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(iii) If E is defined over F then the rational function @E,a is defined over F. 

Proof. Any other Weierstrass model has coordinate functions XI ,  y1 given by 

where u E C X  ([Si] Remark III.1.3), and then a: = uiai and 

Since #(E[a]) = Nu, this proves (i), and (ii) is just a different formulation of 
(i). For (iii) we need only observe that a E F, A(E) E F, and GF permutes 
the set {x(P) : P E E[u] - O), so GF fixes @E,a. 0 

Lemma 7.3. Suppose E ds defined over K and p is a prime of K where E 
has good reduction. Fix a Weierstrass model for E which is minimal at p. 
Let b and c be nontrivial relatively prime ideals of O and P E E[b], Q E E[c] 
points in E(K) of exact orders b and c, respectively. Fix an extension of the 
p-adic order ordp to K ,  normalized so ordp(p) = 1. 

(i) If n > 0 and b = pn then ordp(x(P)) = -2/(Npn-l(Np - 1)). 
(ii) If b is not a power of p then ordp(x(P)) 2 0. 
(iii) If p I bc then ordp(x(P) - x(Q)) = 0. 

Proof. Suppose that b = pn with n 2 1. Let E be the formal group over Op 
associated to E in Theorem 3.7. Let .rr = IlrE(p), let [nm](X) E O[[X]] be the 
endomorphism of E corresponding to .rrm for every rn, and define 

Since n reduces to the F'robenius endomorphism of the reduction E of E 
modulo p (Corollary 5.16(iii)), it follows from Corollary 3.9 and Proposition 
3.14 that 

Thus by the Weierstrass preparation theorem, 

where e(X) is an Eisenstein polynomial of degree Npn-l(Np - 1) and u(X) E 
O[[XIl " - 

Since the reduction of .rr is a purely inseparable endomorphism of E, 
Lemma 3.6 shows that E[pn] c E ~ ( K ~ ) .  Thus z = -x(P)/y(P) is a root of 
f (X), and hence of e(X), so ordp (x(P)ly(P)) = l / ( ~ p " - l ( N p  - 1)). Now 
(i) follows from Lemma 3.5. 

If b is not a power of p then by Theorem 3.15(i), P 4 E ~ ( K ~ ) .  Hence by 
Lemma 3.5, ordp (x(P)) 2 0, which is (ii). Further, writing P and Q for the 
reductions of P and Q, we have 

Since b and c are relatively prime, the order of P f Q is not a power of p. So 
again by Theorem 3.15(i), P f Q 4 E~ (Kp), and (iii) follows. 0 

For every ideal b of 8 write K(b) for the ray class field of K modulo b. 

Theorem 7.4. Suppose b is a nontrivial ideal of O relatively prime to a, 
and Q E E[b]  is an 0-generator of E[b]. 

(i) @E,a(Q) E K(b)- 
(ii) If c is an ideal of Oprime to b, c is a generator of c, and uc = [c, K(b)/K], 

then 
@ E , ~ ( Q ) ~ '  = @~,a(cQ).  

(iii) If b is not a prime power then @E,a(Q) is a global unit. If b is a power 
of a prime p then @E,~(Q) is a unit at primes not dividing p. 

Proof. Since we assumed that K has class number one, by Corollary 5.13 
and Lemma 7.2(i) we may assume that E is defined over K by a Weierstrass 
model (1). Then by Lemma 7.2(iii) @ E , ~  belongs to the function field K(E) .  

Let 11, be the Hecke character associated to E by Theorem 5.15. Suppose 
x E np OpX C A; and x - 1 modx b, and let u, = [x, K ~ ~ / K ] .  By Theorem 
5.15, $(x) E O X  = Aut(E) and u,Q = 11,(x)Q. Therefore 

the last equality by Lemma 7.2(ii). Since these u, generate G a l ( ~ / ~ ( b ) ) ,  
this proves (i). 

For (ii), let x E A: be an idele with x 0  = c and xp = 1 for p dividing 
b. Then Theorem 5.15 shows that $(x) E cOX and uCQ = 11,(x)Q. So again 
using Lemma 7.2 (ii) , 

This is (ii). 
For (iii), let p be a prime of K such that b is not a power of p. By Corollary 

5.22 and Lemma 7.2, we may assume that our Weierstrass equation for E has 
good reduction at p, so that A(E) is prime to p. Let n = ordp(a). Then 
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By Lemma 7.3, since b is not a power of p, 

ordp (4Q)  - 4 P ) )  

-2/(Npm - Npm-l) if P has order exactly pm, m > 0 

= {O 
if the order of P is not a power of p. 

From this one verifies easily that ordp (OE+ (Q)) = 0. 0 

k 

7.2 The Distribution Relation 

Lemma 7.5. OE+, is a rational function on E with divisor 

Proof. The coordinate function x is an even rational function with a double 
pole at  0 and no other poles. Thus for every point P, the divisor of x - x(P) 
is [PI + [-PI - 2[0] and the lemma follows easily. 0 

Theorem 7.6. Suppose b is and ideal of 0 relatively prime to a, and /3 is a 
generator of 6. Then for every P E E(K), 

Proof. Lemmas 7.2(iii) and 7.5 show that both sides of the equation in the 
theorem are rational functions on E ,  defined over K ,  with divisor 

Thus their ratio is a constant X E K X ,  and we need to show that X = 1. 
Let W K  = #(OX) and fix a generator a of a. Evaluating this ratio at 

P = 0 one sees that 

where the final product is over R E E[b] - 0 and P E (E[a] - 0 ) /  f 1 (recall 
a is prime to 6). Since W K  divides 12, all of the exponents in the definition 
of 1.1 are integers. 

Exactly as in the proof of Theorem 7.4(iii), one can show that p E O X ,  
&d therefore X = 1. 0 

Corollary 7.7. Suppose b is an ideal of 8 prime to a ,  Q E E[b] has order 
exactly 6, p is a prime dividing 6, n is a generator of p, and 6' = b/p. If the 
reduction map OX + (O/bf)' is injective then 

where in the latter case Frobp is the Robenius of p in Gal(K(bl)/K). 

Proof. Let C denote the multiplicative group 1 + bf(O/b). Because of our 
hypotheses that O X  injects into (O/bl)', C is isomorphic to the kernel of 
the map 

(O/b)X/OX -+ (O/b')X/OX. 

Thus class field theory gives an isomorphism 

which we will denote by c I+ cc. Therefore 

by Theorem 7.4(ii). 
One sees easily that 

{cQ : c E C )  = {P E E[b] : n P  = nQ and P 4 E[bf]) 

= i {Q + R : R E E[P]) if p 1 6' 

{Q + R : R E E[p], R f -Q (mod E[bf])) if p + 6' 

Thus if p I 6' 

by Theorem 7.6. Similarly, if p { 6' 

where & E E[p] satisfies Q + & E E[bl]. But then by Theorem 7.4(ii) (note 
that our assumption on b' implies that 6' # 0 )  

so this completes the proof. 
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7.3 Elliptic Curves over K Lemma 7.10. OL,,(z) = B(z; L ) ~ ~ / B ( ~ ;  a-'L). 

Since the function @E,a depends only on the isomorphism class of E over C ,  
we need to provide it with information that depends on E itself to make it 
sensitive enough to "see" the value of the L-function of E at 1. Following 
Coates and Wiles [CWl] we will write down a product of translates of @ ~ , a  

and then show that it has the connections we need with L-values. 
From now on suppose that our elliptic curve E is defined over K ,  $ is the 

Hecke character attached to E by Theorem 5.15, f is the conductor of $, and 
a is prime to f as well as to 6. For P E E(K) let r p  denote translation PTSO 
r p  is a rational function defined over K(P) .  

Fix an 0-generator S of E[f]. By Corollary 5.20(i) S E E(K(f)) ,  and we 
define 

AE,. = AE,.,S = n @..a 0 TS-. 
c€Gal(K(f ) lK)  

Proposition 7.8. (i) AEta is a rational function defined over K .  
(ii) If B is a set of ideals of 0, prime to af, such that the Artin map 

b I+ [b, K(f)/K] is a bijection from B to Gal(K(f)/K), then 

(iii) If t is an ideal of 0 and Q E E[t], Q 4 E[f], then AE,,(Q) is a global 
unit in K(E[t]). 

Proof. The first assertion is clear, (ii) is immediate from Corollary 5.16(ii), 
and (iii) follows from Theorem 7.4(iii). 0 

7.4 Expansions over C 

We continue to suppose that E is defined over K .  Fix a Weierstrass model 
of E (over K )  and let L c C be the corresponding lattice given by The- 
orem 2.3(ii); then 0 L  = L (Proposition 2.6) so we can choose R € C X  
such that L = 0 0 .  The map c(z) = (p(z; L), pl(z; L)/2) is an isomorphism 
C/L  2 E(C),  and we define @ L , ~  = e E , a  0 c, i.e., 

Definition 7.9. Define 

Proof. Write f (z) = B(z; L ) ~ ~ / B ( ~ ;  a-'L). Note that although B(z; L) is not 
holomorphic (because of the z in the definition of ~ ( z ;  L)), f (z) is holomor- 
phic. One can check explicitly, using well-known properties of a(z; L) (see 
[dS] $II.2.1), that f (z) is periodic with respect to L and its divisor on C I L  
is 12Na[0] - 12 CVEa-lL,L[~]. 

Thus by Lemma 7.5, OL,, = X f for some X E C X  . At z = 0, both functions 
have Laurent series beginning a-12~(~)Na- 'z '2(Na-1) ,  SO X = 1. 0 

Definition 7.11. For k 5 1 define the Eisenstein series 

where the limit means evaluation of the analytic continuation at s = k. 

Proposition 7.12. 

Proof. The third equality is immediate from the definition of p(z; L). For the 
first two, see [CWl] pp. 242-243 or [GS] Proposition 1.5. 0 

Theorem 7.13. For every k > 1, 

Proof. By Lemma 7.10 

The definition of 6 shows that 

I 

i log(8(~; L)) = l o g ( d ( ~ ) )  - ~ S ~ ( L ) Z ~  - GA(L)-~ZZ + 12log(a(z; L)). 

Now the theorem follows from Proposition 7.12. 
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Definition 7.14. Define the Hecke L-functions associated to powers of $ to 
be the analytic continuations of the Dirichlet series 

summing over ideals b of O prime to the conductor of qk. If m is an ideal of 
O divisible by f and c is an ideal prime to m, we define the partial L-function 
L,($~, S, C) be the same formula, but with the sum restricted to ideals of K 
prime to m such that [b, K(m)/K] = [c, K(m)/K]. 

if 

Recall that R E CX is such that L = RO. 

Proposition 7.15. Suppose v E KL/L has order m, where m is divisible 
by f. Then for every k 2 1, 

where c = R-lvm. 

Proof. Let p be a generator of m, so that v = a R / p  for some a E O prime 
to m. For s large, 

( B + w ) ~  NpS Ok 
- Pk 

C lv + " I Z S  ,!ik (R12s wEL PEO, P z a  (mod m) 

By Corollary 5.16(i), if we define 

then E is a multiplicative map from {P  E (3 : /3 is prime to f )  to O X .  By 
definition of the conductor, E factors through (Olf)  X .  Thus if ,8 = a (mod m), 

Therefore 

Pk $1Cl(aOIk C iaii;=- C $@Ik 
a k  

PEO, (mod m) Kc, [b,K(m)lKl=[a~,K(m)/Kl 
NbS 

and the proposition follows. 0 

Definition 7.16. Fix a generator f of f and a set B of ideals of 0, prime 
to of, such that the Artin map b I+ [b, K(f)/K] is a bijection from B to 
Gal(K(f)/K). Let u = R/f E f-lL and define 

By. Proposition 7.8(ii), = o [. 

Theorem 7.17. For every k 2 1, 

($) logAL,.(z) 12(-l)"l(k - l)! f k ( ~ a  - $ ( U ) ~ ) ) R - ~ L ~ ( $ ~ ,  k). 

Proof. By Theorem 7.13 

By Proposition 7.15, 

By inspection (and Corollary 5.16(i)) Ek(z; a-'L) = $(a)k E k  ($(a)z; L), so 

Ek($(b)u; U-~L)  = U - ~ $ ( ~ ) ~ L ~ ( $ ~ ,  k). 
bEB 

Although we will not use it explicitly, the following theorem of Damerell 
is a corollary of this computation. 

Corollary 7.18 (Damerell's Theorem). For every k 2 1, 

Proof. By Proposition 7.8(i), AL,,(z) is a rational function of p(z; L) and 
pt(z; L) with coefficients in K.  Differentiating the relation (from Theorem 
2.3) 

pt(z; L ) ~  = 4p(z; L ) ~  + 4ap(z; L) + 4b 

shows that all derivatives k 3 ( k ) ( ~ ;  L) also belong to K(g(z; L), pf(z; L)), and 

hence A F ~  does as well. Thus the corollary follows from Theorem 7.17. 0 

7.5 p-adic Expansions 
I 
I 

Keep the notation of the previous sections. Fix a prime p of K where E 
has good reduction, p + 6. Suppose that our chosen Weierstrass model of E 
has good reduction at p and that the auxiliary ideal a is prime to p as well 
as 6f. Let E be the formal group attached to E over Op as in $3.2, and 
x ( Z ) ,  y (2) E Op [[Z]] the power series of Theorem 3.7. 
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Definition 7.19. Let hb(Z) E Z + Z2Kp[[Z]] be the logarithm map of E 
from Definition 3.10, so that Xh(Z) E Op[[Z]]X, and define an operator D on 

0, [[Zll by 
1 d 

D=-- 
X g z )  dZ ' 

Proposition 7.20. Identifying (x, y) both with (g(z; L), $pl(z; L)) and with 
(x(Z), y(Z)) leads to a commutative diagram 

Proof. Differentiating the relation p ' ( ~ ) ~  = 4g~(z )~  + 4ag(z) + 4b shows that 

Thus, since both vertical maps are derivations, we need only check that 
D(x(Z)) = 2y(Z) and D(y(Z)) = ~ x ( Z ) ~  + a. (In fact, it would be enough 
to check either equality.) Both equalities are immediate from the definition 
(Definition 3.10) of G and A&. 0 

Definition 7.21. Let Ap,,(Z) be the image of AE,, in Kp((Z)) under the 
map of Proposition 7.20. 

Theorem 7.22. (i) Ap,,(Z) E Op[[Z]IX 
(ii) For every k 2 1, 

Proof. Fix an embedding K ct Kp so that we can view x(R) E KP when 
R E E[f]. Let R be the ring of integers of K,. 

Consider one of the factors x($(b)S + P )  - x(Q) of AE,,(P), with Q E 
E[a] - 0. The explicit addition law for x(P) ([Si] $111.2.3) shows that 

By Lemmas 7.3(ii) and 3.5, x($(b)S), y($(b)S), x(Q) E R. Substituting x(Z) 
for x(P), y(Z) for y(P) and using the expansions in Theorem 3.7 to show 

under the map of Proposition 7.20, where g b , ~  satisfies 

by Lemma 7.3(iii), so CJ~,Q(Z) E R[[Z]IX. Also A(E), a E OpX since our 
Weierstrass equation has good reduction at  p and p { a. Thus 

Since we already know A,,, E Kp((Z)), this proves (i). 
The second assertion is immediate from Theorem 7.17 and Proposition 

7.20. 0 

8 Euler Systems 

In this section we introduce Kolyvagin's concept of an Euler system (of which 
the elliptic units of $7 are an example) and we show how to use an Euler 
system to construct certain principal ideals in abelian extensions of K .  In 
the next section we use these principal ideals (viewed as relations in ideal 
class groups) to bound the ideal class groups of abelian extensions of K. 

As in the previous section, fix an imaginary quadratic field K and an 
elliptic curve E defined over K with complex multiplication by the ring of 
integers O of K. Let f be the conductor of the Hecke character $ of E ,  and 
fix a generator f of f. 

Fix a prime p of K not dividing 6f, and for n 2 1 let Kn = K(E[pn]). Let 
p denote the rational prime below p. Fix a nontrivial ideal a of O prime to 
6fp. Let R = R(a) denote the set of squarefree ideals of O prime to Gfap, and 
if r E R let Kn(r) = Kn(E[r]) = K(E[rpn]). The letter q will always denote 
a prime of R. 

Also as in the previous section, fix a Weierstrass model of E which is 
minimal at p, let L = RO C C be the corresponding lattice given by Theorem 
2.3(ii), and define ( = (Q( - ; L), g'( . ; L)/2) : C/L 7 E(C).  

8.1 The Euler System 
4 
I I 4  

Definition 8.1. If r E R and n 2 0 define 

~ n ( t )  = q?)(r) = ~E,a,<(~/f)(t($(p"~)-'~)) = A~,a( '+(~nr)-lR).  

where AL,, is as in Definition 7.16. 

Proposition 8.2. Suppose r E R and n _> 1. 

(i) ~n (r) is a global unit in Kn (r) . 
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(ii) If q is a prime and rq E R, then 

Proof. Assertion (i) is just a restatement of Proposition 7.8(iii), and (ii) and 
(iii) are immediate from Corollary 7.7. 0 

C 

8.2 Kolyvagin's Derivative Construction 

Definition 8.3. Write G, = Gal(Kn(r)/Kn). By Corollary 5.20(ii), Gr is 
independent of n 2 1, and we have natural isomorphisms 

If q 1 r this allows us to view G, either as a quotient or a subgroup of G,. 
By Corollary 5.20 if qr E R then Kn(qr)/Kn(r) is cyclic of degree Nq - 1, 
totally ramified at all primes above q and unramified at  all other primes. 

For every t E R define 

so we clearly have 

For every n 2 1 and r E R, let x,,, be an indeterminate and define X,,, 
to be the Gal(K,(r)/K)-module Yn,,/Zn,t where 

In other words, X,,, is the quotient of the free Z[Gal(K,(r)/K)]-module on 
{x,,, : 5 I r) by the relations 

- G,,, acts trivially on x,,~, and 
' - Nqxn,,, = (1 - l30bq')~n,s if qti 1 t. 

For every prime q E R fix once and for all a generator a, of G, and define 

and for r E R 

D, = n Dq € Z[G.]. 
41, 

If M is a power of p and n > 1 define Rn,M C R to be the set of ideals 
r E R such that for every prime q dividing r, 

- q splits completely in Kn/K 
- Nq z 1 (mod M). 

Proposition 8.4. Suppose M as a power of p, n > 1, and r E Rn,M. 

Proof. For every prime q E R and divisor 5 of r, define 

Then one can show by an easy combinatorial argument (see [Ru2] Lemma 
2.1) that X,,, is a free Z-module with basis B,  which proves (i). 

Note that 

(0, - l)Dq = N q  - 1 - Nq. 

We will prove (ii) by induction on the number of primes dividing r. Suppose 
q 1 r, r = qs. Then 

Since q E Rn,M, M I Nq - 1 and Frob, E G,, so by the induction hypothesis 

Since the oq generate G,, this proves the proposition. 
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Definition 8.5. An Euler system is a collection of global units 

{q(n,r) E ~ , ( r ) '  : n 2 1, r E R) 

satisfying 

Equivalently, an Euler system is a Galois equivariant map 

such that q(x,,,) is a global unit for every n and r. We will use these two 
definitions interchangeably. 

For example, by Proposition 8.2 we can define an Euler system by 

Proposition 8.6. Suppose q is an Euler system and q E R is a prime. Write 
Nq - 1 = dpk with d prime to p. Then for every n 2 1 and every r E R prime 
to q, 

q(n, dd r) 
dFrobT1 

modulo every prime above q.  

Proof. Suppose m 2 n, and let G = Gal(Km(qr)/Kn(qr)). Fix a prime 12 of 
Km(qr) above q,  and let H be the decomposition group of q in G. Let H' C G 
be a set of coset representatives for GIH, and define 

so that N H N ~  = CTEG 7. 
Since q is totally ramified in Km(qr)/Km(r), the Euler system distribution 

relation (8) reduces modulo Q to 

q(m, qr)N4-1 (q(m, r)Frob-l 1 Nq-l (mod Q). 

On the other hand, since H is generated by the Frobenius of q, if h denotes 
the degree of the residue field extension at q in K,(r)/K then (9) reduces to 

v(n, r) = 4% r) N ~ ' N H  = ( q ( m , t ) N ~ r ) t  (modQ) 

and similarly q(n, qr) = (q(m, q t ) N ~ r ) t  (mod Q), where 

#(HI-1 

t = ( N ~ ~ ) ~  r #(H) (mod Nq - 1). 
i=O 

Recall that pk is the highest power of p dividing Nq - 1. Since the decom- 
position group of q in K,/K is infinite, for m sufficiently large we will have 
pk j t, and then combining the congruences above proves the proposition. 

For the Euler system of elliptic units, one can prove directly, using Lemma 
7.3, that the congruence of Proposition 8.6 holds with d = 1. 

Definition 8.7. Suppose q is an Euler system, n 2 1 and r E R. Using the 
map X,,, + Kn(r)X corresponding to q ,  we define a 1-cocycle c = c,,,,, : 

Gr + Kn(r) by 

This is well defined by Proposition 8.4. Since H1 (G,, K,(r) X ,  = 0, there is a 
p E ~ n ( t ) '  such that c(a) = pulp for every a E Gr Then q ( ~ , , , ) ~ ~ / / 3 ~  E 
K,X and we define 

Since p is uniquely determined modulo K,X, K,,M(~) is independent of the 
choice of p. 

Remark 8.8. It is quite easy to show for every Euler system q ,  every n, and 
every r E R n , ~  that q ( n , r ) ( ~ - l ) ~ ~  is an M-th power (Proposition 8.4(ii)). 
The reason for introducing the "universal Euler system" X,,, is to show that 
q(n,r)(u-l)Dr has a canonical M-th root, even when K,(r) contains M-th 
roots of unity (Proposition 8.4(i)). This fact was used to construct the cocycle 
c above. 

We next want to determine the ideal generated by &,,M(r) (modulo M-th 
I 

I powers). 
~ Definition 8.9. Fix n 2 1, a power M of p, and temporarily write F = K,, 

R F , ~  = Let OF denote the ring of integers of F and 
I 

ZF = Z =  ei2ZQ 

the group of fractional ideals of F ,  written additively. For every prime q of 
K let 

Z F , ~  = Zq = @alqZQ, 

and if y E FX let (y) E Z denote the principal ideal generated by y, and ( Y ) ~ ,  
[y], and [yIq the projections of (y) to Zq, Z/MZ, and Iq/MZq, respectively. 
Note that [y] and [ylq are well defined for y E F / (FX)M. 

.i Suppose q E RF,M, Q is a prime of F above q ,  and d is a prime of K 
above Q. Recall that Q is completely split in F /K,  and totally ramified of 
degree Nq - 1 = NQ - 1 in F(q)/F.  Fix a lift a D  of aq to GK SO that on 
belongs to the inertia group of d. Then there is an isomorphism 
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given by a t - i  ( T ~ / ~ ) ~ - " Q  where T E K is a generator of q. Let Froba E G F ~  
denote a Frobenius of Q and define 

to be the image of Frobu under the composition 

where the first map is the Kummer map and the second is induced by the 
isomorphism above. Concretely, since UQ belongs to the inertia group, we 
have +u(a) = a where a is characterized by 

modulo the maximal ideal of 6, where P E & is an element satisfying 
ordu (P) = a. 

Finally, define 
4q : F ~ / ( F ~ ) ~  4 Z,/MZ, 

by 4,(a) = CuJq $Q(~)Q. It is not difficult to check that 4, is Gal(F/K)- 
equivariant, and that 4, induces an isomorphism 

Proposition 8.10. Suppose q is an Euler system, n 2 1, r E Rn,M and q 
is a prime of K .  

Proof. Suppose first that q f r. Then q is unramified in Kn(r)/Kn, and 
by definition nn,M(r) is a global unit times an M-th power in Kn(r)X, so 
~ r d ~ ( ~ , , ~ ( r ) )  = 0 (mod M) for every prime Q of Kn above q. This proves 
. . 
(i). 

Now suppose q 1 r, say r = qs. By definition 

kn,M (r) = q ( ~ n , r ) ~ ' / ~ ? ,  ~ , M ( s )  = ~ ( x n , s ) ~ '  /P: 

where p, E Kn(r) ', Pn E Kn (5) satisfy 

P,"-' = ~ ( ( 0  - l)Drzn,r/M), P,"-l = ~ ( ( u  - l)Dsxn,s/M) 

for every a E G,. 
We will use (10) to evaluate 4q(n(s)). Fix a prime CZ of Kn above q, let 

a* be as in Definition 8.9, and let d be the prime-tuppart of Nq - 1 as in 

Proposition 8.6. Modulo every prime above 0 we have 

using Proposition 8.6 for the second-to-last congruence. By (10) it follows 
that 

d 4 0  ( ~ , M ( s ) )  = dordu ('ha-M (r)), 

and since d is prime to p, (ii) follows. 0 

9 Bounding Ideal Class Groups 

In this section we describe Kolyvagin's method of using the Euler system of 
elliptic units, or rather the principal ideals deduced from elliptic units as in 
$8.2, to bound the size of certain ideal class groups. For a similar argument 
in the case of cyclotomic units and real abelian extensions of Q, see [Rul]. 

Keep the notation of the previous section. Let F = K1 = K(E[p]) and 
let p~ denote the roots of unity in F. Let A = Gal(F/K), so A 2 ( 0 1 ~ ) ~  
is cyclic of order p - 1 or p2 - 1. 

Since #(A) is prime to p, the group ring Zp[A] is semisimple, i.e., 

where E denotes the set of all irreducible Fp-representations of A and Rx 
denotes the corresponding direct summand of Zp[A]. (We will also refer to 
elements of E as irreducible Zp-representations of A.) Since #(A) divides 
p2 - 1, we have two cases: 

- dim(x) = 1, R, = Z,, 
- dim(x) = 2, Rx is the ring of integers of the unramified quadratic exten- 

sion of Q,, and x splits into two one-dimensional pieces over Op. 

If x E E and B is a Z[A]-module, we let M(p) denote the padic completion 
of M and 

MX = M(P) @ Z,[A] R ~ .  



210 Karl Rubin 

Then M(P) = $ ESMX, SO we can view MX either as a quotient of M or a 
submodule of M~P) .  If m E M we write mX for the projection of m into MX. 

Lemma 9.1. For every nontrivial x E c", (O;/pF)X is free of rank one over 
Rx. 

Proof. The Dirichlet unit theorem gives an exact sequence 

and the lemma follows by taking X-components. 0 

Let A denote the ideal class group of F, and fix a x E c". We wish to 
bound the size of AX. Fix a power M of p, which we will later take to be 
large, and set FM = F(pM) .  

Lemma 9.2. The composition 

given by class field theory and restriction to GFM, is injective. 

Proof. The first map is clearly injective, and the kernel of the second is 
equal to Hom(Gal(FM/F), ZIMZ). Thus to prove the lemma it suffices to 
show that there is no unrarnified pextension of F in FM. But the ppar t  of 
Gal(FM/F) is Gal(FM/F(pp)), which is totally ramified at all primes above 
p. This completes the proof. 0 

Lemma 9.3. The map 

is injective. 

Proof. Kummer theory shows that FX / ( F ' ) ~  2 H'(F, p M )  and similarly 
for FM, SO the kernel of the map in the lemma is H 1 ( F ~ / F ,  pM).  Since 
Gal(FM I F )  is cyclic and acts faithfully on pM, and p > 2, it is easy to check 
that H1 (FM/F, pM)  = 0, (See also Lemma 6.1.) 0 

Write R F , ~  for R 1 , ~ ,  the set of primes of K defined in 58. 

Proposition 9.4. Suppose n E F ' / ( F ' ) ~  and a E Hom(A, ZIMZ), a#O. 
Then there is a prime q E R F , ~  and a prime Q of F above q such that 

(i) a(c) # 0, where c denotes the class of Q in A, 
(ii) [nIq = 0 and for every d E Z, d4,(n) = 0 o nd E ( F ' ) ~ .  
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Proof. Let t be the order of n in F X / ( F X ) M ,  and let p E Hom(GFM,pM) 
be the image of n under the Kummer map. We view a as a map on GF, via 
the map of Lemma 9.2. Define two subgroups of GF, 

Ha = {y E GF, : ( ~ ( 7 )  = O), 

HK = {y E GF, : p(y) has order less than t in pM). 

Since a # 0, Lemma 9.2 shows that Ha # GFM. Similarly it follows from 
Lemma 9.3 that H, # GFM. Since a group cannot be a union of two proper 
subgroups, we can choose a y E GF,, y @ Ha U H,. Let L be a finite Galois 
extension of F containing FM such that both p and a are trivial on GL. By 
the Cebotarev theorem we can choose a prime fi of L, not dividing 6afp and 
such that [nIq = 0, whose Frobenius in L/K is y. Let U and q denote the 
primes of F and K ,  respectively, below fi. We will show that these primes 
satisfy the conditions of the proposition. 

First, the fact that y fixes F (pM)  means that q splits completely in 
F (pM)  and thus q E RF,M. 

The class field theory inclusion Hom(A, ZIMZ) L, Hom(GF, ZIMZ) 
identifies a(c) with a(Frobu) = a(y), so (i) follows from the fact that y @ Ha. 

Since y @ H,, ( K ~ / ~ ) " o ~ Q - '  is a primitive t-th root of unity. Therefore n 
has order t(Nq - 1) lM modulo U, and hence has order at  least t (and hence 
exactly t )  in ( O ~ / ~ O ~ ) ~ / ( ( O F / ~ C ? ~ ) ~ ) ~ .  Since 4, is an isomorphism on 
(OFI~OF)  ' /((OF/qOF) X)M, this proves (ii). 0 

Suppose q is an Euler system as defined in Definition 8.5. Define C = 
C, c 0; to be the group generated over Z[A] by /.LF and q(1,O). 

Theorem 9.5. With notation as above, if q is an Euler system and x is an 
irreducible Z,-representation of A then 

Proof. If x is the trivial character then AX is the ppar t  of the ideal class 
group of K ,  which is zero. Hence we may assume that x # 1. 

By Lemma 9.1 
(0; /C)X Z Rx/mRx 

for some m E R,. If m = 0 then there is nothing to prove, so we may assume 
m # 0. Choose M large enough so that Mlm annihilates A. For r E RF,M we 
will write n(r) for the element nl,M(r) E F X / ( F X ) M  constructed in Definition 
8.7. 

Number the elements of Hom(Ax, ZIMZ) C Hom(A, ZIMZ) so that 

Using Proposition 9.4 we choose inductively a sequence of primes q l ,  . . . , q k  E 
RF,M and Qi of F above qi  such that, if c, denotes the class of Qi in A and 
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(just apply Proposition 9.4 with n = ~ ( r ~ - ~ ) x  and a = ai to produce qi  and 
Qi). 

First we claim that the classes {c r )  generate Ax. For if not, then there 
is an a E Hom(AX, Z/MZ) such that a(cj) = 0 for every j. But a = a i h r  
some i, so (11) shows this is not the case. 

If 1 < i 5 k let si denote the order of cf in Ax/(c:, . . . , CF-~). Since the 
c: generate AX we have 

If 0 < i 5 k - 1 let ti denote the order of n(ti)X in F~ /(FX)M. By (12) 
and Proposition 8.10(ii), for i 2 1 the order of [n(ti)Xlqi is tiwl. In particular 
it follows that tiv1 I ti. Since n(ro) is the image of q(1,O) in O;/(O;)M, 
the exact sequence 

shows that M I tom. 
For each i we can choose 4 E F X / ( F X ) M  such that elti = n(ti)x< with 

C E pF. In particular 
(M/ti)[vi]qi = [~(ti)']qi 

so [v,Iqi has order ti-lM/ti in (Zq/MZq)x Z R,/MRx. Thus, using Propo- 
sition 8.10(i), there is a unit u E Rz such that 

( )  ( / t i - )  (mod I,,, . . . , Zqi-, , tiZ). 

We know that to 1 ti and (Mlm) I to. Thus by our choice of M,  ti annihilates 
A and we conclude that 

Therefore sj  I (ti/ti-l) for every i 2 1, SO 

k 

#(AX) = n [ ~ ,  : siRx] divides [toRX : tkRx]. 
i=l 

Since tk 1 M and M I tom, this index divides [R, : mRx]. This proves the 
theorem. 0 

Corollary 9.6. Let Ca denote the group of (elliptic) units of F generated 
over Zp[A] by p, and by qia). If x is an irreducible Zp-representation of A 
then 

#(Ax) divides #((O; /C,)X). 

Proof. Apply Theorem 9.5 with the Euler system q(n, t) = q?)(r). 0 

Remark 9.7. If CF denotes the full group of elliptic units of F (see for example 
[Ru2] $I) ,  then one can combine Theorem 9.5 with a well-known argument 
using the analytic class number formula to prove that for every X, 

#(Ax) = #((O; /~F)~) .  

See Theorem 3.3 of [Ru~] .  

Corollary 9.8. With notation as above, if   via))^ $! pg((6;)X)P then 
AX = 0. 

Proof. Immediate from Corollary 9.6 and Lemma 9.1. 0 

10 The Theorem of Coates and Wiles 

Keep the notation of the previous sections. In this section we will prove the 
following theorem. 

Theorem 10.1 (Coates-Wiles [CWl]).  If L($, 1) # 0 then E(K) is fi- 
nite. 

Suppose for the rest of this section that p is a prime of K not dividing 
f ,  of residue characteristic p > 7 (see remark 10.3 below). As in $9 we let 
F = K(E[p]), A = Gal(F/K) and A is the ideal class group of F .  

Lemma 10.2. There is an ideal a of 0, prime to 6pf, such that NU f $(a) 
I (mod PI. 

Proof. By Corollary 5.18, E[@]CE(K). Choose a prime q of K ,  not dividing 
6pf, such that [q, K(E[@])/K] # 1. By Corollary 5.16(ii) we deduce that 
$(q) f 1 (mod @I, and so $(q) f 1 (mod Since $(q)lCl(q) = Nq, the 
lemma is satisfied with a = q. 0 

Remark 10.3. Lemma 10.2 is not in general true without the assumption 

~ p > 7, since for small p it may happen that E[@] c E(K). 

By Corollary 5.20(iv), F / K  is totally ramified at p. Let P denote the 
prime of F above p. By Lemma 3.6 and Corollary 5.16 E[p] c E1(Fp), so 
the isomorphism of Corollary 3.8 restricts to an isomorphism 

where E is the formal group attached to E .  Let  OF,^ denote the completion 
of OF at  P .  

P 
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Lemma 10.4. The map Theorem 10.8. Suppose L($, 1) lR is a unit at p. Then 

is a A-equivariant isomorphism. 

Proof. The map in question is a well-defined homomorphism, and by Lemma 
7.3 it is injective. Both groups have order Np, so it is an isomorphism. The 
A-equivariance is clear. 

C 
0 

Now fix an ideal a satisfying Lemma 10.2, a generator R of the period 
lattice of E as in $7.4, and a generator f of the conductor f. With these 
choices define the elliptic units qn(r) as in $8.1. Let q = ql(0),  a global 
(elliptic) unit of F which depends on the choice of a. 

Definition 10.5. Define 
6 : o;,, + E[pl 

to be the composition of the natural projection 

with the inverse of the isomorphism of Lemma 10.4. 

Recall that by Corollary 7.18, L($,l) /R E K. 

Proposition 10.6. L($, 1)/R is integral at p, and 

L($,l)/R z 0 (mod p) e b(q) = 0. 

the image of P in ~ [ p ] .  Then q = Ap,,(z), where Ap,, is the power series of 
Definition 7.21. 

By Theorem 7.22, A,,,(O) E OpX, 12f (Na - $(a))(L($, 1)lR) E Op, and 

and with our choice of a, 12 f (Na - $(a)) E 0;. This proves the proposition. 
0 

Definition 10.7. Let X E  denote the representation of A on E[p]; by Corol- 
lary 5.20 X E  is Fp-irreducible. Then in the notation of 59 we have E[p] r 
Ri, /pRxE as A-modules. 

Proof. Since the map 6 is A-equivariant, 

by Proposition 10.6. Hence 

The Weil pairing (see [Si] Proposition 111.8.1) gives a Galois-equivariant 
isomorphism 

Eblr Hom(E[~l, ~1,). 

If pp were nontrivial, then E [ ~ ] ~ K  would be nontrivial, and this is impos- 
sible by Corollary 5.18. Now the theorem follows from Corollary 9.8. 0 

Lemma 10.9. Suppose p splits into two primes in K and TrKIQ$(p) # 1. 
Then 

0)  PP c FP, 
(ii) (OgYp)XE is free of rank one over RxE. 

Proof. By Theorem 5.15(ii), [$(p), Fp/Kp] = 1. On the other hand, class 
field theory over Q shows that [p, Qp(pp)/Qp] = 1. Thus we have (again 
using Theorem 5.15(ii)) 

the last implication because ITrK/~$(p)I < 2Jir < p - 1. This proves (i). 
We have isomorphisms 

the first one given by the p-adic logarithm map. Together with (i) this proves 
(ii) . 0 

Theorem 10.10. Suppose L($, l ) /R  is a unit at p, p splits into two primes 
in K ,  and TrKIQ$(p) # 1. Then the natural (injective) map 

is surjective. 
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Proof. As in the proof of Theorem 10.8,6(qXE) = 6(q). Thus by Proposition 
10.6 (Og)xE @ ((Og,p)XE)P, SO the Theorem follows from Lemma 10.9. 0 

Proof (of the Coates- Wales Theorem 10.1). Using the Cebotarev theorem we 
can find infinitely many primes p which split in K and such that TfKIQ+(p) # 
1. Choose one which does not divide 6f or L($, 1)lR. Then by Theorems 10.8 
and 10.10 and Corollary 6.10, the Selmer group S+(,,)(E) = 0. In particular 
E(K)/pE(K) = 0, so (using the Mordell-Weil Theorem 4.6), E(K)  is finite. 

IT' 

0 

Remark 10.11. This proof also shows that for primes p satisfying the hy- 
potheses of Theorem 10.10, the p-part of the Tate-Shafarevich group LU(E) 
is trivial. 

Using the Exdicit Reciprocity Law of Wiles ([Will or [dS] $1.4) one can " 
show that 6 = -S1 where 6; is the map of ~emma6.8.  Together with Propo- 
sition 10.6, Theorem 10.8 and Corollary 6.10, this shows that S+(p)(E) = 0 
for every p not dividing 2 . 3 . 5  , 7 .  f - (L($,l)lR). We will prove a stronger 
version of this (Corollary 12.13 and Theorem 12.19) in $12. 

11 Iwasawa Theory and the "Main Conjecture" 

In order to study the Selmer group under more general conditions than in $10, 
we need to prove Iwasawa-theoretic versions (Theorem 11.7 and Corollary 
11.8 below) of Theorem 9.5 and Remark 9.7. As in the previous sections, 
we fix an elliptic curve E defined over an imaginary quadratic field K ,  with 
EndK(E) = 0, the ring of integers of K .  We fix a prime p of K where E 
has good reduction, and for simplicity we still assume that p > 7 (in order 
to apply Lemma 10.2). 

Write K, = K(E[pn]), n = 0,1,2,. . . ,oo, and let G, = Gal(K,/K). 
By Corollary 5.20(ii), we have 

G , ~ O , X ~ A X ~  

where 
A r Gal(K1/K) = (0111)' 

is the prime-to-p part of G, and 

r = G ~ ~ ( K , / K ~ )  r 1 + pop r zlfCp:Qpl 

is the ppart .  

11.1 The Iwasawa Algebra 

Define the Iwasawa algebra 

, A = Zp[[Goo]] = lirn Z,[Gal(K,/K)] = lim Zp[A][Gal(Kn/~~)1. 
%- '% 

Then 

where E is the set of irreducible Zp-representations of A as in $9 and 

The following algebraic properties of the Iwasawa algebra and its modules 
are well-known. For proofs, see for example [Iw] and [Se]. 

For every irreducible Zp-representation x of A, Ax is a complete local 
noetherian ring, noncanonically isomorphic to a power series ring in [Kp : Q,] 
variables over Rx. In particular A is not an integral domain, but rather is a 
direct sum of local integral domains. Let M denote the (finite) intersection 
of all maximal ideals of A, i.e., M is the kernel of the natural map A+Fp[A]. 

A A-module M will be called a torsion A-module if it is annihilated by 
a non-zero-divisor in A. A A-module will be called pseudo-null if it is anni- 
hilated by an ideal of height at  least two in A. If r 2 Zp then a module is 
pseudo-null if and only if it is finite. 

If M is a finitely generated torsion A-module, then there is an injective 
A-module homomorphism 

with pseudo-null cokernel, where the elements f, E A can be chosen to satisfy 
fi+l 1 fi for 1 5 i 5 r. The elements f, are not uniquely determined, but the 
ideal fiA is. We call the ideal n, fiA the characteristic ideal char(M) of 
the torsion A-module M. The characteristic ideal is multiplicative in exact 
sequences: if 0 + M' + M + M" + 0 is an exact sequence of torsion 
A-modules then char(M) = char(Mt)char(M"). 

11.2 The Iwasawa Modules 

Define 

A, = the ppar t  of the ideal class group of Kn, 
U, = the padic completion of the local units of K, 18 Kp (equivalently, the 

1-units of K, QD Kp), 
En = the global units of K,, 

= the padic completion of En (equivalently, since Leopoldt's conjecture 
holds for K,, the closure of the image of En in U,), 

C, = the elliptic units of Kn, the subgroup of En generated over the group 
ring Z[Gal(K,/K)] by the q?) = q?)(0) (see Definition 8.1) for aN 
choices of ideal a prime to 6pf, and the roots of unity in K,, 

Cn = the padic completion of C, (equivalently, the closure of the image of 
Cn in Un), 
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inverse limits with respect to norm maps. Also define X, = Gal(M,/K,) 
where M, is the maximal abelian pextension of K, unramified outside of 
the prime above p. 

Class field theory identifies A, with Gal(L,/K,), where L, is the 
maximal everywhere-unramified abelian pextension of K,, and identifies 
the inertia group in X, of the unique prime above p with Ud&,. Thus 
there is an exact sequence of A-modules 

For every n 2 0, let A, = Zp[Gal(Kn/K)] and let Jn c A denote the 
kernel of the restriction map A -+ A,. In particular Jo is the augmentation 
ideal of A. 

Lemma 11.1.  For every n 2 1 ,  the natural map 

is an isomorphism. 

Proof. When r = Zp this is a standard argument going back to Iwasawa 
[Iw], using the fact that only one prime of K ramifies in K, and it is totally 
ramified. 

For the general case, consider the diagram of fields below, where L, is 
the maximal unramified abelian pextension of K,, and L; is the fixed field 
of JnA, in L,. Since K,/K, is totally ramified above p, K, n L, = Kn7 
and so Gal(K,L,/K,) = An and the map A,/JnA, -+ A, is just the 
restriction map. We will show that K,L, = LL, and the lemma will follow. 

Since Gal(K,/K,) acts on Gal(L,/K,) by conjugation, &A, is gen- 
erated by commutators 

Such commutators are trivial on L,, so K,Ln C Lk. 
On the other hand, only the unique prime above p ramifies in the abelian 

extension L;/K,, and it is totally ramified in K,/K,. If we write Z for 
the inertia group of this prime in Gal(L;/K,), the inverse of the projection 
isomorphism 1 7 Gal(K,/K,) gives a splitting of the exact sequence 

It follows that L;' is an abelian, everywhere-unramified pextension of K,, 
and hence L;' C L, and so L; = K,L,. 13 

Proposition 11.2. A, is a finitely-generated torsion A-module. 

Proof. B y  Lemma 11.1, A,/JnA, is finite for every n ,  and the proposition 
follows. 13 

Proposition 11.3. (i) X, is a finitely-generated A-module and for every x 

(ii 

(In particular if Kp = Q, then X, is a finitely-generated torsion A- 
module.) 

) X, has no nonzero pseudo-null submodules. 

Proof. See [Gr]. 13 

Proposition 11.4. U, is a finitely-generated, torsion-free A-module, and 
for every x 

ranknx (U&) = [Kp : Qp]. 

Further, if [Kp  : Q,] = 2 then UZE is free of rank 2 over Ax. 

Proof. See [Iw] $12 or [Win]. 0 

Proposition 11.5. &, is a finitely-generated A-module, and for every x 

Proof. The natural map &, -+ U, is injective, so the proposition follows 
from (13) and Propositions 11.2, 11.3 and 11.4. 0 

Proposition 11.6. C&E is free of rank one over Ax,. 
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Proof. Choose an ideal a of 0 such that $(a) $ Na (mod p) (Lemma 10.2). 
We will show that C&E is generated over A,, by { ( q k ) ) ~ ~ } ,  with this choice 
of a. Suppose b is some other ideal of 0 prime to 6pf. It follows from Theorem 
7.4(ii) and Lemma 7.10 that for every n 

where ua = [a, Kn/K], 0 6  = [b, Kn/K]. Since $(a) f Na (mod p), and ua 
acts as $(a) on E[p] (Corollary 5.16(ii)), we see that ua - Na acts bijectively 
on E[p]. But E[p] s Ax,/MxE where M,, denotes the maximal idea of 
the local ring A,,. Therefore a, - Na is invertible in A,,, SO 

as claimed. Since U ,  is torsion-free (Proposition 11.4), CsE must be free of 
rank 1. 0 

11.3 Application of the Euler System of Elliptic Units 

Theorem 11.7. char(A,) divides char(£, I&). 

The rest of this section will be devoted to a proof of this theorem. The 
techniques are similar to those of the proof of Theorem 9.5, but messier 
and more technically complicated because one needs to study modules over 
Zp[Gal(Kn/K)] rather than Zp[A]. See [Ru2] for the details which are not 
included below, and see [Rul] for the analogous result for cyclotomic fields. 

We also record, but will not prove, the following corollary. With a better 
definition of elliptic units, it would hold for more representations x of A. See 
[Ru2] Theorem 4.1 for a precise statement and [Ru2] $10 (see also [dS] $111.2) 
for the proof, which is an application of the analytic class number formula. 

Corollary 11.8. char(ALE ) = char(&&, /C&E). 

Definition 11.9. Since A, is a torsion A-module, we can fix once and for 
all an injective A-module map with pseudo-null cokernel 

with fi E A, fi+l I fi for 1 5 i 5 r .  Let A: denote the image of this map, so 

where yi E A, is the image of 1 E A/ fin. Then A% is an "elementary" 
submodule of A, and A,/AL is pseudo-null. 

Let R = K,(pp,). If u E Go we write [u] E A, for the restriction of 
u to L,. Note that if Kp # Qp then the Weil pairing (see [Si] Proposition 

Elliptic curves with complex multiplication 221 

111.8.1) shows that R = K,, and if K,, = Qp then RIK, is totally ramified 
at  the prime plp. Thus in either case the map Gn + A, is surjective. 

If 0 5 k 5 r, a Fkobenius sequence a of length k is a k-tuple (ul, . . . , uk) 
of elements of Gn satisfying 

for 1 5 i 5 k, where M is as defined in $1 1.1, the intersection of all maximal 
ideals of A. 

Suppose n 2 1 and M is a power of p. Recall the subset R,,M of R 
defined in 58.2. For 0 < k < r we call a k-tuple (iil,. . . , iik) of primes of K, 
a Kolyvagin sequence (for n and M )  if 

- the iii lie above distinct primes of K belonging to Rn,M,  and 
- there is a Frobenius sequence a = (a1 , . . . , uk) such that for 1 < i 5 k, 

where L, is the maximal unrarnified abelian pextension of Kn. 

If rr is a Kolyvagin sequence of length k we will write ni for the prime of K 
below iii and we define 

Let n ( k ,  n, M) be the set of all Kolyvagin sequences of length k for n and 
M. 

Fix an ideal a so that {(q?))xE), generates C&,, as in the proof of Propo- 
sition 11.6. Using the Euler system of elliptic units T,$) (r), for t E RnYM we 
obtain the Kolyvagin derivative classes 

as in Definition 8.7. For every n recall that An = Z,[Gal(K,/K)] and let 
&,M = (Z/MZ)[Gal(Kn/K)] = An/MAn. If 0 5 k < r define P(k, n, M) to 
be the ideal of A,,M generated by 

When k = 0, n ( k ,  n, M) has a single element (the empty sequence) and 

It follows from Lemma 11.1 that A,/JnA, is finite for every n. From 
this it is not difficult to show that A,/char(A,)A, is also finite for every n. 
For every n define Nn to be the product of #(An) and the smallest power of 
p which annihilates A,/char(A,)A,. 
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The following proposition is the key to the proof of Theorem 11.7. 

Proposition 11.10. There is an ideal B of height at  least two in A such that 
for every n > 1, power M of p, and 0 5 k < r ,  

We will first show how to complete the proof of Theorem 11.7 assuming 
Proposition 11.10, and then we will prove Proposition 11.10. 

Lemma 11.11. Suppose G is a finite abelian gmup and B is finitelflgen- 
erated Zp[G]-module with no p-torsion. If f E Zp[G] is not a zero-divisor, 
b E B,  and 

{@(b) : @ E HO~Z, [G]  (B, Zp[G])) C f Zp[G], 

then b E f B .  

Proof. Let B' = Zp[G]b + f B .  Since f is not a zero-divisor, we have a com- 
mutative diagram 

in which the horizontal maps are all isomorphisms. 
Choose @ E Homzp[Gl (f B ,  f Zp[G]). Since B has no ytorsion and f is 

not a zero-divisor, @ extends uniquely to a map cp : B -+ Zp[G], and by our 
assumption, cp E H O ~ ~ ~ [ ~ ] ( B ' ,  f Zp[G]). Thus all the vertical maps in the 
diagram above are isomorphisms. Since B' and f B  are free Zp-modules, the 
surjectivity of the right-hand vertical map shows that B' = f B,  which proves - 
the lemma. U 

Proof (of Theorem 11.7, assuming Proposition 12.10). Fix n > 1 and $ E 
Hornn, (En, A,), and let B c A be an ideal of height at  least two satisfying 
Proposition 11.10. We will show that, for every choice of a, 

Assuming this, Lemma 11.11 applied with B = Cn/(Cn)tors shows that 

Since &, has no A-torsion (Lemma 11.5), it follows that 

Thus BPC, c char(A,)&,, and since BP is an ideal of height a t  least two 
the theorem follows. 
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It  remains to prove (15). Suppose 0 5 k < r and M is a power of p. 
Proposition 11.10 shows that 

so by induction we conclude that 

Using (14) it follows that 

and since this holds for every M ,  it proves (15). This completes the proof of 
Theorem 11.7. 0 

The rest of this section is devoted to proving Proposition 11.10. If a = 
(01, . . . , uk) is a Frobenius sequence define 

Lemma 11.12. If a is a Frobenius sequence of length k then A, is a direct 
summand of A: and A, = A/ fin. 
Proof. Recall that A: = nui. Define Yk = Cl=k+l Ayi. The image 
of A, + Yk in AO,/MA: contains all the yi, so by Nakayama's Lemma, 
A, + Yk = A:. We will show that A, n Yk = 0, and thus A: = A, @ Yk and 

For 1 5 i 5 k write 
[oil = Yi  + V i  + Wi 

where Vi E M (@i<k Ayi) and Wi E M Yk . Suppose 

with ai E A. Then we must have c:=, ai(yi + vi) = 0. We can write this in 
matrix form, using the basis yl, . . . , yk of @ilkAyi, as 

where B is a k x k matrix with entries in A, congruent to the identity matrix 
modulo M. Therefore B is invertible, and, since f k  I fi for every i I k, we 
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conclude that each ai is divisible by fk.  But fk annihilates Yk, so we deduce 
that 

k k 

This completes the proof of the lemma. 0 

Recall R = K, (p,, ) . 
r 

Proposition 11.13. Suppose W is a finite subgroup of K,X / ( K , X ) ~  for some 
n and M. Then GK acts trivially on the cokernel of the natural Kummer map 

Proof. Let w denote the image of W in RX/(RX)M.  The map in question 
factors 

Gn -+ Hom(W, pM)  -+ Hom(W, pM). 

where the first (Kummer) map is surjective and the cokernel of the second is 
Hom(V, pM)  with 

Since R is abelian over K ,  GK acts on V via the cyclotomic character, and 
hence GK acts trivially on Hom(V, pM). The proposition follows. 0 

Let A denote the annihilator in A of A,/A&, so A is an ideal of height 
at least two. 

Lemma 11.14. Suppose n 2 0, M is a power of p, k < r ,  and ?r = 
{ifl,. . . ,jik+l) E 17(k + l , n ,  MNn). Let U = iik+l, q = ?rk+l and r = 
q-'r(?r). If p E A then there is a Galoas-equivariant homomorphism 

where 4, : L!n,MNnnn,~jvn (r) -+ A,,MN,U is the map of Definition 8.9. 

Proof. Write M' = MN,, and let a be a Frobenius sequence corresponding 
to ?r. Let A, denote the quotient of A, by the A,-submodule generated by 
the classes of ifl,. . . , ifk, and let [Q] denote the class of U in A,. Since the 
Frobenius of Q on the Hilbert class field of K, is a ,  [U] is the projection of 
[a] to A,. By Lemma 11.12 the annihilator of [a] in A:/& is fk+lA and 
A, is a direct summand of A&, so the annihilator of [a] in (A:/A,) €3 A, 
is' fk+lAn. By Lemma 11.1, A, = A,/(A, + JnAoo) SO the kernel of the 
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natural map (ALIA,) 8 A, + A, is annihilated by A. Therefore if A' c A, 
is the annihilator of [a] in A,, then 

Since #(A,) divides N,, Proposition 8.10(i) shows that [n,,~t(rq)], is 0 
in A,. Therefore [&,,MI (rq)lq E AfAn,~ tU,  SO if p E d then 

Since f k + l  divides fl and fl divides Nn in A,, the map 

is well-defined, and we will define $ : An,MkCn,M(tq) -+ by 

If we can show that T+!J is well-defined, then by Proposition 8.10(ii) we will 
have 

as desired. 
We need to show that T+!J is well-defined, i.e., if q E A, and n, ,~(rq)? 

(K:)M then qp[n,,~l(rq)], E fk+lMAn,~lQ. But this is essentially the 
same argument as above. If q annihilates n , ,~ ( tq )  then ~ , , ~ I ( r q ) '  aM 
for some a E K:. Again using Proposition 8.10(i), [aIq is 0 in A,, so 
p[a], E fk+lA,,~,U and the desired inclusion follows. 0 

Proof (of Proposition 11.10). Let An = Z,[[Gal(R/K)]] and denote by e 
both the cyclotomic character Gal(R/K) -+ Z,X and the induced map An -+ 
Z,. Define 

tw, : An -+ An 

to be the homomorphism induced by 7 I+ - , ( ~ ) - y - ~  for 7 E Gal(R/K). 
Recall that A is the annihilator of A,/A&, and define 

(recall that R = K, if KP # Qp). Then B is an ideal of height at least two, 
and we will show that Proposition 11.10 holds with this choice of B. 

Fix n and M, and write M' = MN,. Fix a Kolyvagin sequence ?r E 
n(k ,n ,  MI), let r = t (x),  and suppose $J : An,Mt~n,Ml(r) -+ An,M'. We need 
to show that 

BT+!J(&,M1(r))&,M C fk+l*(k + l,'%M). 
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We will do this by constructing suitable Kolyvagin sequences of length k + 1 
extending ?r. 

There is a Zp-module isomorphism 

induced by 

One can check that if 4 E Homn, (A,,MIK.~,M: (t), An,M'), C E p ~ t ,  and 
p E An then 

~ 4 4  @ C) = L ( ( ~ w € ( P ) ~ )  @ C). 

Suppose r E GK, fix a primitive MI-th root of unity and let K U ~ M I  
denote the Kummer map Gn + Hom(K,X, pM,). By Proposition 11.13 there 
is a yo E Gn such that 

Choose p E An such that the projection of p to A lies in M A  and let y E Go 
be such that y = $ on Oab (we view Gal(O/K) as acting on Gal(Oab/R) 
in the usual way). 

Let a be a Frobenius sequence corresponding to ?r. We define two Frobe- 
nius sequences a' and a" of length k + 1 extending a as follows. Let a;+, 
be an element of Gn such that [a;+l] = yk+l, and let a!+, = a;+,y with y 
as above. 

Since [y] = p[yo] E MA:, both a' and a" are Frobenius sequences. 
Let q' and q" be primes of K whose Frobenius elements (for some choice 

of primes "upstairs") in Hn(pMt ,  ( A ~ ~ c ~ , ~ I  ( t ) ) ' l M ' ) / ~  are the restrictions 
of a' and a", respectively, where Hn is the Hilbert class field of Kn. Let Q' 
and Q" be primes of Kn above q' and ql' with these Frobenius elements. It 
follows from Definition 8.9 that there are integers a' and a" such that 

where 4,. : A n , M , ~ n , ~ , ( t )  + An,MIQ' is the map of Definition 8.9, 4,. E 
H o ~ ( A ~ , ~ I K ~ , M ~ ( ~ ) ,  is defined by 4,) = $,tQ1, and similarly for q". 
Now 

and so finally 
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If Kp # Q,, then the tw,(p)(~(r)r - I), with our choices of r and p, gen- 
erate tw, (MA&). If Kp = Q,, then pP $2 K, (since K,/K is unramified 
at ~ / p )  and so we can choose T and p so that t w , ( ~ ( r  - 1)) projects to a unit 
in A. Now Lemma 11.14 completes the proof of Proposition 11.10. 0 

12 Computing the Selmer Group 

In this section we compute the order of the ppower Selmer group for primes 
p > 7 of good reduction, and thereby prove assertion (ii) of the theorem of the 
introduction. The computation divides naturally into two cases depending on 
whether p splits in K or not. 

Keep the notation of the previous section. In particular E is an elliptic 
curve defined over an imaginary quadratic field K,  with complex multipli- 
cation by the full ring of integers of K ,  and p is a prime of K of residue 
characteristic greater than 7 where E has good reduction. 

Definition 12.1. Let n = +(p) and recall that the n-adic Tate module of E 
is defined by 

T, (E) = lim E[pn], 
%- 

inverse limit with respect to multiplication by n. For every n let hn : Un + 
E[pn] be the map of Lemma 6.8. It is clear from the definition that we have 
commutative diagrams 

and we define 
6, = lim 6, : U, + T, (E). 

%- 
Recall the Selmer group ST, (E) of Definition 4.1 and the extended Selmer 

group Sk, (E) of Definition 6.3. Define 

Sp- = lim 2 Sp (E), SLm = lim Sk, (E). 
2 

Thus there is an exact sequence 

Proposition 12.2. (i) S;, = HO~(X, ,  ~ [ p , ] ) ~ ~  = H o ~ ( X & ~ ,  ~ [ p " ] ) ~ .  
(ii) S p m  is the kernel of the composition 

induced by (i) and local class field theory. 
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Proof. The first assertion is just a restatement of Proposition 6.5, and the 
second follows from Theorem 6.9. 0 

Theorem 12.3 (Wiles' explicit reciprocity law [Will). Suppose x is 
an Op -generator of T,(E), z = (2,) is the corresponding generator of T, (E), 
u = (u,) E U,, and f (2) E Op[[Z]] is such that f(z,) = u, for every n. 
Then 

See [Will or [dS] Theorem 1.4.2 for the proof. 

Corollary 12.4. b, (C,) = - 
R 

Proof. Using Theorem 12.3, we see that b, (C,) is the ideal of Op generated 
by the values (AL,,(0)/Ap,,(O)) where Ap,, is defined in Definition 7.21, and 
we allow the ideal a to vary. The corollary now follows from Theorem 7.22(ii) 
and Lemma 10.2. 0 

Remark 12.5. In fact, for every u E U, there is a power series f, E Op [[XI] 
such that f,,(z,) = u, for every n as in Theorem 12.3. See [Col] or [dS] 51.2. 

Definition 12.6. Let p~ : G, -+ 0; be the character giving the action of 
G, on E[pw]. We can also view p~ as a homomorphism from A to Op, and 
we define AE c A to be the kernel of this homomorphism. 

If a, b E Kp we will write a N b to mean that a/b E 0;. 

12.1 Determination of the Selmer Group when K p  = Q, 

For this subsection we suppose (in addition to our other assumptions) that 
Kp = Qp. 

If M is a A-module we will write 

Proposition 12.7. Suppose that M is a finitely-generated torsion A module. 

(i) Hom(M, ~ [ p , ] ) ~ m  is finite @ p~(char(M)) # 0 @ M'E=O is finite. 
(ii) #(Hom(M, E[pm])G-) p ~ ( c h a r ( ~ ) ) # ( ~ ~ " = O ) .  

Proof. Fix an exact sequence of A-modules 
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with pseudo-null (in this case, finite) cokernel Z. Fix a topological generator 
7 of G, = A x T. Then AE = (7 - p~(y))A,  SO multiplication by 7 - pE(7) 
leads to a snake lemma exact sequence of kernels and cokernels 

k 

0 -+ @ ( n / f , ~ ) A ~ = o  -+ M ~ E = O  -+ Z ~ E = O  
i=l 

k 

+ @ A / ( f J  + A s )  + MIAEM + Z/AE -+ 0. 
i= 1 

Also 
Hom(M, ~ [ p ~ ] ) ~ ~  = Hom(M/AEM, E[pw]). 

The map p~ induces an isomorphism A/(fjA + AE) 7 Zp/pE(fi)zp, 
and 

( A l f i ~ ) ~ " "  = {g E A, ~ A E  c fin)/ fiA 

so since AE is a prime ideal, 

( ~ / f i A ) ~ " "  # 0 @ f j  E AE @ (A/~~A)~"'O is infinite. 

Since Z is finite, the exact sequence 

shows that #(ZAE=O) = #(Z/AEZ). Since char(M) = ni fin, the lemma 
follows. 0 

Theorem 12.8. #(S&) = [Z, : ps(char(X,))]. 

Proof. This is immediate from Propositions 12.2(i), 11.3, and 12.7 (note that 
if pE(chm(X,)) # 0 then x$=O is finite by Proposition 12.7 and hence 
zero by Proposition 11.3). 0 

Theorem 12.9. char(XkE ) = char(UZE /CLE). 

Proof. Immediate from Corollary 11.8 and (13). 0 

Theorem 12.10 (Coates and Wiles). Let V denote the ring of integers 
of the completion of the maximal unramified extension of Q,. Then there is 
a p-adic period Rp E VX such that char(U,/C,)V[[G,]] has a generator LE 
satisfying 

for every k > 1. 

Proof. See [CW2] or [dS] Corollary 111.1.5. 
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L($? 1) Corollary 12.11. #(S&) (1 - $ J ( ~ ) / P ) ~ .  

Proof. Immediate from Theorem 12.8, Theorem 12.9, and Theorem 12.10. 
0 

Proposition 12.12. [Si, : S p m ]  (1 - $J(p)/p). 

For a proof see [PR] Proposition 11.8 or [Co] Proposition 2 and Lemma 3. 

Corollary 12.13. Suppose p t f, p > 7, and Kp = Qp. s 

(i) If L($, 1) = 0 then S p m  is infinite. 
(ii) If L($,l) # 0 then 

L($, 1) 
# ( ~ E ) P - )  7. 

Proof. This is immediate from Corollary 12.11 and Proposition 12.12. (For 
(ii), we also use (18).) 0 

12.2 Determination of the Selmer Group when [ K p  : Qp] = 2 

For this subsection we suppose that [Kp : Qp] = 2, so r Z; and E[pW] 
Kp/Op has Zp-corank 2. 

Lemma 12.14. There is a decomposition 

where Vl and V2 are free of rank one over A,,, 6,(V2) = 0, and &&E Qt V2. 

Proof. By Proposition 11.4, U$, is free of rank two over A,,. Fix a split- 
ting U&E = AXEvl @ AXEv2. By Corollary 5.20(ii), p~ is surjective, and it 
follows that 6, (A,, vl ) and 6, (AXE v2) are Op-submodules of T,, ( E ) .  Since 
6, is surjective (Lemma 6.8) and 6,(U,) = 6,(UgE), it follows that either 
6, (AxEVl) = T,(E) or 6C0(AXEv2) = Tn(E). 

Thus, by renumbering if necessary, we may assume that 6,(Ax,vl) = 
T, (E). In particular we can choose g E A,, so that 6, (v2) = 6, (gvl ), and 
(by adjusting g if necessary by an element of the kernel of p ~ )  we may assume 
that E, $ AXE(v2 - gvl). NOW the lemma is satisfied with 

Definition 12.15. Fix a decomposition of UgE as in Lemma 12.14 and de- 
fine 

I?= UgE/T/2, X =  XzE/image(V2) 

where image(V2) denotes the image of V2 in X, under the Artin map of local 
c lk s  field theory. 
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Lemma 12.16. (i) x is a torsion AXE -module with no nonzero pseudo-null 
submodules. 

(ii)  char(^) = char(0/image(C!&~)). 

Proof. Since E, (t V2 and Vz is free, (i) follows from Proposition 11.3. Also, 
the exact sequence (13) induces an exact sequence 

0 + + 0/irnage(C!&~) + x + Ag -+ 0, 

so (ii) follows from Corollary 11.8. 0 

Proposition 12.17. Sp- = H O ~ ( X ,  ~ [ p , ] ) ~ .  

Proof. By our choice of Vl and V2 (Proposition 12.14), we see that ker(6,) = 
d ~ V 1  + V2. Thus 

and so by Proposition 12.2(ii) 

Proposition 12.18. Suppose M is a finitely-generated torsion A,, -module 
and F is a Zp-extension of KI in K, satisfying 

(i) M has no nonzero pseudo-null submodules, 
(ii) If y generates Gal(K,/F) then char(M) (t (y - l)A,,, char(M) (t 

(y - ~E(Y))A,,, and M/(y - l ) M  has no nonzero finite submodules. 

Then 
# ( H o m ( ~ ,  ~ [ p , ] ) ~ )  = [Op : p~(char(M))] .  

Proof (sketch). For a complete proof see [ R u ~ ] ,  Lemmas 6.2 and 11.15. 
Let T,, = Hom(T,,, Op), let AF = Z,[[Gal(F/K)]], and let M denote the 

Ap-module ( M  @I T,)/(y - 1)(M @ T,,). Using the hypotheses on M and F 
it is not difficult to show (see [Ru2] Lemma 11.15) that M has no nonzero 
finite submodules. Therefore exactly as in Proposition 12.7, 

where Il denotes the trivial character and charF(M) is the characteristic ideal 
of M as a Ap-module. 

By an argument similar to the proof of Proposition 12.7, one can show 
that charF (M) = char(M @ T,,) AF . Therefore 
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Theorem 12.19. Suppose p t f, p > 7 ,  and Kp # Qp. 

(i) If L(4 , l )  = 0 then Spoo is infinite. 
(ii) If L ( 4 , l )  # 0 then 

Proof. Lemma 12.16(i) shows that x satisfies the first hypothesis of Propo- 
sition 12.18, and the same argument with K, replaced by F verifies the 
second hypothesis for all but finitely many choices of F. Also, O/image(c,?$) 
satisfies the hypotheses of Proposition 12.18 since it is a quotient of one free 
A,,-module by another (Proposition 11.6). Therefore by Proposition 12.18 
and Lemma 12.16(ii), 

The left-hand side of this equality is #(Sp-) by Proposition 12.17. On the 
other hand, 

and 6 ,  : f i / d ~ O  + T,(E) is an isomorphism (Lemmas 6.8 and 12.14). 
Therefore 

and the Theorem follows from Wiles' explicit reciprocity law (Corollary 12.4) 
and (18). 0 

12.3 Example 

We conclude with one example. Let E be the elliptic curve y2 = x3 - x. The 
map (x, y) I+ (-2, iy) is an automorphism of order 4 defined over K = Q(i), 
so E ~ ~ K ( E )  = Z[i]. Let p2 denote the prime (1 + i) above 2. 

Clearly E(Q)tOrs > E[2] = (0, (0, O), (1, O), (-1,O)). With a bit more 
effort one checks that E (K)  contains the point (-i, 1 + i) of order pg, and 
using the Theorem of Nagell and Lutz ([Si] Corollary VIII.7.2) or Corollary 
5.18 one can show that in fact E(K)tors = E[pg]. 

The discriminant of E is 64, so E has good reduction a t  all primes of K 
different from pa. Since E[&] c E(K),  if we write GE for the Hecke character 
of K attached to E, Corollary 5.16 shows that $E(a) + 1 (mod pg) for every 
ideal a prime to p2. But every such ideal has a unique generator congruent 
to 1 modulo pi, so this characterizes GE and shows that its conductor is pi. 

Standard computational techniques now show that 
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Therefore by the Coates-Wiles theorem (Theorem 10.1), E ( K )  = E[pi] and 
E(Q)  = E[2]. Further, L($, 1 ) l R  is approximately 114. By Proposition 10.6 
L($, 1 ) lR  is integral a t  all primes p of residue characteristic greater than 7. In 
fact the same techniques show that L($,l)/R is integral at  all primes p # p2, 
and give a bound on the denominator at  p2 from which we can conclude that 
L($, l ) / R  = 114. 

Therefore by Corollary 12.13 and Theorem 12.19, Spa = m(EIK)pm = 0 
for all primes p of residue characteristic greater than 7, and again the same 
proof works for all p # p2. It  follows easily from this that II.I(EIQ), = 0 
for all odd rational primes. Fermat did the 2-descent necessary to show that 
~ ( E / Q ) ~  = 0 (see [We] Chap. II), so in fact III(EIq) = 0. Together with 
the fact that the Tamagawa factor a t  2 is equal to 4, this shows that the full 
Birch and Swinnerton-Dyer conjecture holds for E over Q.  
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CENTER 

"Computational Mathematics driven by Industrial 
Applications" 

is the subject of the first 1999 C.I.M.E. Session. 
The session, sponsored by the Consiglio Nazionale delle Ricerche (C.N.R), the 

Minister0 dell'UniversitA e della Ricerca Scientific8 e Tecnologica (M.U.RS.T.) and 
the European Community, will take place, under the ecienti6c direction of Profea- 
sors Vincenm CAPASSO (UniversitA di Milano), Heinz W. ENGL (Johannes Kepler 
Universitaet, Linz) and Doct. Jacques PERIAUX ( D m u l t  Aviation) at the Ducal 
Palace of Martina Ranca (Wanto), from 21 to 27 June, 1999. 

Courses 

a) Paths, trees and flows: graph optimiaation problems with industrial 
appfications (5 lectures in English) Prof. Rainer BURKARD (Technische Univer- 
siat  Graz) 

Abstract 
Graph optimisation problems play a crucial role in telecommunication, production, 

transportation, and many other industrial areas. This series of lectures shall give an 
Overview about exact and heuristic solution approaches and their inherent difticulties. 
In particular the essential algorithmic paradigms such as greedy algorithms, shortest 
path computation, network flow algorithms, branch and bound as well as branch and 
cut, and dynamic programming will be outlined by means of examples stemming from 
applications. 

Refmnces 
1) R K. Ahuja, T. L. Magnanti & J. B. Orlin, Network Flow: Theory, Algorithms 

and Applicntiona, Prentice Hall, 1993 
2) R. K. Ahuja, T. L. Magnanti, J.B.Orlin & M. R Reddy, Applicntions of Network 

Optimization Chapter 1 in: Network Modela (Handbooks of Operations Resear& and 
Management Science, Vol. 7), ed. by'M. 0. Ball et al., North Holland 1995, pp. 1-83 

3) R E. Burkard & E. Cela, Linear Assignment Pmblenu and Extensions, Report 
127, June 1998 (to appear in Handbook of Comb'itorial Optimization, Kluwer, 
1999). 

Can be downloaded by anonymous ftp from 
ftp.tu-graz.ac.at, directory/pub/ppers/math 
4) R E. Burkard, E. Cela, P. M. Pardalos & L. S. Pitsoulis, The Quadratic As- 

signment Problem, Report 126 May 1998 (to appear in Handbook of Corhbinatorial 
Optimization, Kluwer, 1999). Can be downloaded by anonymous ftp from ftp.tu- 
graz.ac.at, directory /pub/papers/math. 

5) E. L. Lawler, J. K. Lenstra, A. H. G.Rinnooy Kan & D. B. Shmoya (Eds.), The 
lhwlling Sdesman Rvblem, Wdey, Chicheater, 1985. 

b) New Computational Concepts, Adaptive Diererentid Equations Solvers 
and Virtual Labs (5 lectures in English) Prof. Peter DEUFLHARD (Konrad Zuse .. - .. . 



Abstract 
The series of lectures will address computational mathematical projects that have 

been tackled by the speaker and his group. In a]! the topics to be presented novel 
mathematical modelling, advanced algorithm developments. and efficient viedim- 
tion phy a joint role to solve problems of practical relevance. Among the applications 
to be exemplified are: 

1) Adaptive multilevel FEM in clinical cancer therapy planning; 
2) Adaptive multilevel FEM in optical chip design; 
3) Adaptive discrete Galerkin methods for countable OD& in polymer chemistry; 
4) Easedial molecular dynamics in RNA drug design. + 

Ref- 
1) P. De-d & A Hohmann, Numerid Analysis. A first Course in Scientific 

Computation, Verlag de Gruyter, Berlin, 1995 
2) P. Dedlhard et al A nonlinear multigrid eigenprublem solver for the complex 

Helmoltz equation, Konrad Zuse Zentrum Berlin SC 97-55 (1997) 
3) P. Deuflhard et al. Recent developments in chemical computing, 
Computers in Chemical Engineering, 14, (1990),pp.1249-1258, 
4) P. Deuahard et al. (eds) Computational molecular dynamics: challenges, meth- 

ods, ideas, Lecture Notes in Computational Sciences and Engineering, vo1.4 Springer 
Verlag, Heidelberg, 1998. 

5) P.Deufihard & M. Weiser, Global inexact Newton multilevel FEM for nonlinecrr 
elliptic problems, Konrad Zuse Zentrum SC 96-33, 1996. 

c) Computational Methods for Aerodynamic Analysis and Design. (5 
lectures inEnglish) Prof. Antony JAMESON (Stanford University, Stanford). 

Abstldt 
The topics to be discussed will include: - Analysis of shock capturing schemes, and 

fast solution algorithms for compressible flow; - Formulation of aerodynamic shape 
optimisation based on control theory; - Derivation of the adjoint equations for com- 
pressible flow modelled by the potential Euler and Navies-Stokes equations; - Analysis 
of alternative numerical search procedures; - Discussion of geometry control and mesh 
perturbation methods; - Discussion of numerical implementation and practical appli- 
cations to aerodynamic design. 

d)  Mathematical Problems in Industry (5 lectures in English) Prof. Jacques- 
Louis LIONS (Collbge de fiance and Dassault Aviation, nance). 

Abstrcrct 
1. Interfaces and scales. The industrial systems are such that for questions of 

reliability, safety, cost no subsystem can be underestimated. Hence the need to address 
problems of scales, both in space variables and in time and the crucial importance of 
modelling and numerical methods. 

2. Examples in Aerospace h p l e s  in Aeronautics and in Spatial Industries. 
Optimum design. t 

3. Comparison of problems in Aerospace and in Meteorology. m o g i e s  and 
differences 

4 Real time control. Many metbods can be thought of. Universal decomposition 
methods will be presented. 

Refeences 
1) J. L. Lions, Parallel stabilization hyperbolic and Petmwky ~ s t e ? ~ ~ ,  WCCM4 

~o~herence, CDROM Proceedings, Buenos Aires, June 29- July 2, 1998. 

2) W. Annacchiarico & M. & o h ,  S h t u n a l  shape optimization of 2-D fi- 
nite elements modelc wing Beta-splines and genetic algorithms, WCCM4 Conference, 
CDROM Proceedings, Buenos Aires, June 29- July 2, 1998. 

3) J. Periaux, M. Sefrioui & B. Mantel, Multi-objective strotegiea for complez op- 
timization problem in d p m i w  wing genetic algorithms, ICAS '98 Conference, 
Melbourne, September '98, ICAS paper 98-2.9.1 

e) Wavelet transforms and Cosine 'lkansform in Signal and Image Process- 
ing (5 lectures in Englhh) Prof. Gilbert STRANG (MIT, Boeton). 

-Abstract 
In a series of lectures we will describe how a linear transform is applied to the sam- 

pled data in signal processing, and the transformed data is c o m p r d  (and quantized 
to a string of bits). The quantized signal is transmitted and then the inverse trans- 
form reconstructs a very good approximation to the original signal. Our d y s i s  
concentrates on the construction of the transform. There are several important con- 
structions and we emphasii two: 1) the discrete cosine transform (DCT); 2) discrete 
wavelet transform (DWT). The DCT is an orthogonal transform (for which we will 
give a new proof). The DWT may be orthogonal, as for the Daubechies family of 
wavelets. In other cases it may be biorthogonal - so the reconstructing transform is 
the inverse but not the transpose of the analysing transform. The reason for this 
possibility is that orthogonal wavelets cannot also be symmetric, and symmetry is 
essential property in image processing (because our visual system objects to lack of 
symmetry). The wavelet construction is based on a "bank" of lilters - often a low 
pass and high pass filter. By iterating the low pass lilter we decompose the input 
space into "scales" to produce a multiresolution. An infinite iteration yields in the 
limit the scaling function and a wavelet: the crucial equation for the theory is the re- 
finement equation or dilatation equation that yields the scaling function. We discuss 
the mathematics of the refinement equation: the existence and the smoothness of the 
solution, and the construction by the cascade algorithm. Throughout these lectures 
we will be developing the mathematical ideas, but always for a purpose. The insights 
of wavelets have led to new bases for function spaces and there is no doubt that other 
ideas are waiting to be developed. This is applied mathematics. 

References 
1) I. Daubechies, Ten lecturw on wavelets, SIAM, 1992. 

2) G. Strang & T. Nguyen, Wavelets and filter banks, Wellesley-Cambridge, 1996. 
3) Y. Meyer, Wavelets: AlgoriULN and Applicatiom, SIAM, 1993. 

Seminars 

Two hour seminars will be held by the Scientific Directors and Professor R Matt- 
theij. 

1) Mathematics of the crystallisation process of polymers. Prof. Vincenzo 
CAPASSO (Un. di Milano). 

2) Inverse Problems: Regularization methods, Application in Industry. 
Prof. H. W. ENGL (Johanues Kepler Un., Linz). 

3) Mathematica of Glms. Prof. R. MATTHEIJ (TU Eindhoven). 
4) Combining game theory and genetic algorithms for solving multi- 

objective shape optimization problems in  Aerodynamics Engineering. Doct. 
J. PERZAUX (Dassauit Aviation). 



Applications 

Thaw who want to attend the Seseion should fill in an application to C.1.M.E 
Wuadation at the a d d m  below, not later than April 30, 1999. An important 
consideration in the acceptance of applications is the scientific relevance of the Ses- 
sion to the field of interest of the applicant. Applicants ata requested, therefore, to 
submit, along with their application, a scientific curriculum and a letter of recommen- 
dation. Participation will only be allowed to persona who have applied in due time 
and have had their application accepted. CIME will be able to partially support some 
of the youngest participants. Those who plan to apply for support have to mention 
it explicitely in the application form. 

z. 

Attendance 

No registration fee is requested. Lectures will h held at Martina Ranca on June 
21, 22, 23, 24,25, 26, 27. Participants are requested to register on June 20, 1999. 

Site and lodging 

Martina Ranca is a delightful baroque town of white houses of Apulian sponta- 
neous architecture. Martina Ranca is the major and most aristocratic centre of the 
"Mwgia dei Trullin standing on an hill which dominates the well known Itria valley 
spotted with "'Ikullin conical dry stone houses which go back to the 15th century. A 
masterpiece of baroque architecture is the Ducal palace where the workshop will be 
hoeted. Martina Ranca is part of the province of Taranto, one of the major centres of 
Msgna Grecia, particularly devoted to mathematics. Taranto houses an outstanding 
muaeum of Magna Grecia with fabulous collections of gold manufactures. 

Lecture Notes 

Lecture notes will be published as soon as possible after the Session. 

Arrigo CELLINA 
CIME Director 

Vicenzo VESPRI 
CIME Secretary 

Fondazione C.I.M.E. c/o Dipartimento di Matematica ?U. Dini? Vide Morgagni, 
67/A - 50134 FIRENZE (ITALY) Tel. f39-55434975 / +39-55-4237123 FAX +39- 
55-434975 / +39-554222695 Email CIMEQUDINI.MATH.UNIFI.IT 

Information on CIME can be obtained on the system World-Wide-Web on the 6le 
HTTP: //WWW.MATH.UNIFI.IT/CIME/WELCOME.TO.ClME 

FONDAWONE C.I.M.E. 
CENTRO INTERNAZIONALE MATEMATICO ESTNO 

INTERNATIONAL MATHEMATICAL SUMMER 
CENTER 

"Iwahori-Hecke Algebras and Representation Theory" 

is the subject of the second 1999 C.I.M.E. Seasion. 
The seasion, sponsored by the Consiglio Nazionale delle Ricerche (C.N.R), the 

Ministem dd'Universit8 e della Ricerca ScientSca e Tecnologica (M.U.RS.T.) and 
the European Community, will take place, under the scientific direction of Professors 
V e U h  BALDONI (Universitil di Roma "Tor Vergatan) and Dan BARBASCH (Cor- 
nell University) at the Ducal Palace of Martina Ranca (%anto), from June 28 to 
July 6,1999. 

a) Double HECKE algebras and applications (6 lectures in English) 
Prof. Ivan CHEREDNIK (Un. of North Carolina at Chapel Hill, USA) 

Abstract: 
The starting point of many theories in the range horn arithmetic and harmonic 

analysis to path integrals and matrix models is the formuh 

Recently a q-generalization was found based on the Hecke algebra technique, which 
completes the 15 year old Macdonald program. 

The course will be about applications of the double afiine Hecke algebras (mainly 
one-dimensional) to the Macdonald polynomials, Verlinde algebras, Gauss integrals 
and sum. It will be understandable for those who are not familiar with Hecke algebras 
and (hopefully) interesting to the specialists. 

1) q-Gaws integds. We will introduce a q-analogue of the classical integral for- 
mula for the gemma-function and use it to generalize the Gaussian sums at roots of 
unity. 

2) l l l t ~ ~ p h ~ c o l  polynomials. A connection of the q-ultraspherical polynomials 
(the Rogers polynomials) with the one-dimemional double f i e  Hecke algebra will 
be established. 

3) Duality. The duality for these polynomials (which has no classical counterpert) 
will be proved via the double Hecke algebras in fu!l .details. 

4) Verlinde algebms. We will study the polynomial representation of the 1-dim. 
DHA at roots of unity, which leeds to a generalization and a simpliiication of the 
Verlinde algebras. 

5) PSh(Z)-action The projective action of the PSLz(Z) on DHA and the gen- 
eralized Verlinde algebras will be considered for A1 and arbitrary root eysteme. 

6) Fourier trunsform of the q-Caw~ian The invariance of the q-Gaussian with 
reapect to the q-Fourier transform and some applications will be discussed. 



1) Rum double Hecke algebra to analyJis, Proceedings of ICM98, Documents 
Mathematics (1998). 

2) Diflerence Macdonald-Mehta wnjectwre, IMRN:lO 449-467 (1997). 
3) Lectures on Knizhnik-Zamolodchikov equutiom and Hecke algebnw, MSJ Mem- 

oirs (1997). 

b) Representation theory of &e Hecke algebras 
Prof. Gert HECKMAN (Catholic Un., Nijmegen, Netherlands) 

Abstmct. 
1. The Gauss hypergeometric equation. 
2. Algebraic aspects of the hypergeometric system for root systems. 
3. The hypergeometric function for root systems. I 

4. The Plancherel formula in the hypergeometric context. 
5. The Lauricella hypergeometric function. 
6. A root system analogue of 5. 
I win assume that the audience is familiar with the classical theory of ordinary dif- 

ferential equations in the complex plane, in particular the concept of regular singular 
points and monodromy (although in my first lecture I will give a brief review of the 
Gauss hypergeometric function). This material can be found in many text books, for 
example E.L. Ince, Ordinary differential equations, Dover Publ, 1956. E.T. Whittaker 
and G.N. Watson, A course of modem analysis, Cambridge University Press, 1927. 

I will also assume that the audience is familiar with the theory of root systems 
and reflection groups, as can be found in N. Bourbaki, Groupes et algbbres de Lie, 
Ch. 4,5 et 6, Masson, 1981. J. E. Humphreys, Reflection groups and h e t e r  groups, 
Cambridge University P r w ,  1990. or in one of the text books on semisimple groups. 

For the material covered in my lectures references are W.J. Couwenberg, Complex 
refiection group and hypergeometric functions, Thesis Nijmegen, 1994. G.J. Heck- 
man, Dunkl operators, Sem Bourbaki no 828,1997. E.M. Opdam, Lectures on Dunkl 
operators, preprint 1998. 

c) Representations of afiine Hecke algebras. 
Prof. George LUSZTIG (MIT, Cambridge, USA) 

Abstmct 
m e  Hecke algebras appear naturally in the representation theory of padic 

groups. In these lectures we wiU discw the repwentation theory of &e Hecke 
algebras and their graded version using geometric methods such as equimiant K- 
theory or perverse sheaves. 

References. 
1. V. Ginzburg, Lagrrrn@an wnstruction of representatiotw of Hecke algebnrp, 

Adv. in Math. 63 (1987), 100-112. 
2. D. Kazhdan and G. Lusztig, Proof of the Deligne-Lunglands conjecture for 

Hecke algebnrs., Inv. Math. 87 (1987), 153-215. 
3. G. Lusztig, h p i d a l  local system and gmded Hecke algebras, I, IHES Publ. 

Math. 67 (1988),145202; 11, in "Representation of group" (ed B. Allison and G. 
Cliff), Cod Proc. Canad. Math. Soc.. 16, Amer. Math. Soc. 1995, 217-275. 

4. G. Lusztig, Bases in equimriant K-theory, Repwsent. Th, 2 (1998). 

d)  m e - l i k e  Hecke Algebras and padic representation theory 
Prof. Roger HOWE (Yale Un., New Haven, USA) 

Abstract 

Mine Hecke algebras firat appeared in the study of a special class of represen- 
tations (the spherical principal series) of reductive group with coefficients in pa& 
fields. Because of their connections with this and other topics, the structure and r e p  
resentation theory of afiine Hecke algebras has been intensively studied by a variety 
of authors. In the meantime, it has gadunlly emerged that a fbe  Hecke algebras, or 
slight generalizations of them, d o w  one to understand far more of the representations 
of padic group than just the spherical principal series. Indeed, it seem possible that 
such algebras will allow one to understand all representations of padic group. These 
lectures will survey progress in this approach to padic representation theory. 

Topics: 
1) Generalities on spherical function algebras on gadic groups. 
2) Iwahori Hecke algebras and generalizations. 
3) - 4) AfEne Hecke algebras and harmonic analysis 
5) - 8) Afline-like Hecke algebras and repreaentations of higher level. 
References: 
J. Adler, ReJined minimal K-types and supempidal representations, PbD. The- 

sis, University of Chicago. 
D. Barbasch, The spherical dual for p-adac grmrps, in Geometry and Representa- 

tion Theory of Real and padic Group, J. Tirao, D. Vogan, and J. Wolf, eds, Prog. 
In Math. 158, Birkhauser Verlag, Boston, 1998, 1 - 20. 

D. Barbasch and A. Moy, A unitarity criterion for p-adac groups, Inv. Math. 98 
(1989), 19 - 38. 

D. Barbasch and A. Moy, Reduction to red infitesimal chanacter in afine Hake 
dgebnrs, J. A. M. S.6 (1993), 611- 635. 
D. Barbasch, Unitary spherical spectrum for p-adic classical groups, Acta. Appl. 

Math. 44 (1996), 1 - 37. 
C. BushneU and P. Kutzko, The admissible dual of CL(N) via open subgroups, 

AM. of Math. Stud. 129, Princeton University Press, Princeton, NJ, 1993. 
C. BushneU and P. Kutzko, Smooth representations of reductive p-adac groups: 

Structure theory via types, D. Goldstein, Hecke algebm isomorphisms for tamely 
mmtfied chamcters, R. Howe and A. Moy, Harish-Chandra Homomorphism for p-adic 
Croups, CBMS Reg. Cod. Ser. 59, American Mathematical Society, Providence, RI, 
1985. 

R Howe and A. Moy, Hecke algebm isomorphism for GL(N) over a p-adic field, 
J. Alg. 131 (1990), 388 - 424. 

J-L. Kim, Hecke algebras of classical groups over p-adic fields and s u p m p i d a l  
wpresentations,I, II, III, preprints, 1998. 

G. Lusztig, Classification of unipotent repmentatim of simple p-adic gmps, 
IMRN 11 (1995), 517 - 589. 

G. Lusztig, Afine Hecke algebnrs and their grad& version, J. A. M. S. 2 (1989), 
599 - 635. 

L. Morris, Tcunely nzmafied supercuspidol reventation3 of classical groups, I, 11, 
Ann. Ec. Nom. Sup 24, (1991) 705 - 738; 25 (1992), 639 - 667. 

L. Morris, Tamely ramified intertwining algebms, Inv. Math. 114 (1994), 1 - 54. 
A. Roche, ! Q ~ s  and Hecke algebras for principal series representatiom of split 

ductive p-adic groups, preprint, (1996). 
J-L. Waldspurger, Algebw de Heclce et induites de qnwentcrtaons cuspidales pour 

CLn, J. reine u. angew. Math. 370 (1986), 27 - 191. 
J-K. Yu, Tame wrutruction of mpemwpidal repmentatioru, preprint, 1998. 



Applications 

Thoee who want to attend the Session should 6ll in an application to the Director 
of C.1.M.E at the addreea below, not later than April 30, 1999. 

An important consideration in the acceptance of applications is the scientific rel- 
evance of the Seeaion to the field of interest of the applicant. 

Applicants are requested, therefore, to submit, along with their application, a 
scientific curriculum and a letter of recommendation. 

Participation will only be allowed to persons who have applied in due time and 
have had their application accepted. 
CIME will be able to partially support some of the youngest participan? Those 

who plan to apply for support have to mention it explicitely in the applicatron form. 

Attendance 

No registration fee is requested. Lectures will be held at Martina Ranca on June 
28, 29, 30, July 1, 2, 3, 4, 5, 6. Participants are requested to register on June 27, 
1999. 

Site and lodging 

Martina Ranca is a delightful baroque town of white houses of Apulian sponta- 
neous architecture. Martina Ranca is the major and most aristocratic centre of the 
Mwgia dei llulli standing on an hill which dominates the well known Itria valley 
spotted with lhlli conical dry stone houses which go back to the 15th century. A 
masterpiece of baroque architecture is the Ducal palace where the workshop will be 
hoeted. Martina Fkanca is part of the province of Ta~anto, one of the major centres of 
Magna Grecia, particularly devoted to mathematir-s. 'nuanto housea an outstanding 
museum of Magna Grecia with fabulous collections of gold manufactures. 

Lecture Notes 

Lecture notes will be published as soon as possible after the Session. 

Arrigo CELLINA 
CIME Director 

Vincenu, VESPRl 
CIME Secretary 

Fondazione C.I.M.E. c/o Dipnrtirnento di Matematica U. Di Vide Morgagni, 67/A 
- 50134 FIRENZE (ITALY) Tel- +39-55434975 / t39-554237123 FAX 

+3455-434975 / +39-55-4222695 Email CIMEQUDINI.MATH.UNIFI.IT 

Information on CIME can be obtained on the system World-Wide-Web on the file 
H'ITP: //WWW.MATH.UNIFI.IT/CIME/WLCOME.TO.CIME. 

FONDAZIONE C.I.M.E. 
CENTRO INTERNAZIONALE MATEMATICO ESTIVO 

INTERNATIONAL MATHEMATICAL SUMMER 
CENTER 

"Theory and Applications of Hamiltonian Dynamicsw 

is the subject of the third 1999 C.I.M.E. Seasion. 
The session, sponsored by the Consiglio Nazionaie delle Ricerche (C.N.R), the 

Minister0 dell'universitil e della Ricerca Scientific8 e Tecnologica (M.U.RS.T.) and 
the European Community, will take place, under the scientific direction of Profes- 
sor Antonio GIORGW (Un. di Milano), at Grand Hotel San Michele,Cetraro 
(Cosenza), from July 1 to July 10, 1999. 

Courses 

a)  Physical applications of Nekhoroshev theorem and exponential errti- 
mates (6 lectures in English) 

Prof. Giancarlo BENE'ITIN (Un. di Padova, Italy) 
Abstmct 
The purpose of the lectures is to introduce exponential estimates (i.e., construction 

of normal forms up to an exponentially small remainder) and Nekhoroshev theorem 
(exponential estimates plus geometry of the action space) as the key to understand the 
behavior of several physical systems, from the Celestial mechanics to microphysics. 

Among the applications of the exponential estimates, we shall consider problems 
of adiabatic invariance for systems with one or two frequencies coming from mole 
cular dynamics. We shall compare the traditional rigorous approach via canonical 
transformations, the heuristic approach of Jeans and of Landau-Teller, and its pos- 
sible rigorous implementation via Lidstet series. An old conjecture of Boltwnann 
and Jeans, concerning the possible presence of very long equilibrium times in classi- 
cal gases (the classical analog of "quantum freezing") will be reconsidered. Rigorous 
and heuristic results will be compared with numerical results, to test their level of 
optimality. 

Among the applications of Nekhoroahev theorem, we shall study the fast rotations 
of the rigid body, which is a rather complete problem, including degeneracy and 
singularities. Other applications include the stabity of elliptic equilibria, with special 
emphasis on the stability of triangular Lagrangim points in the spatial restricted three 
body problem. 

Referema: 
For a general introduction to the subject, one can look at chapter 5 of V.I. 

Arnold, W. Kozlov and A.I. Neoshtadt, in Dynamical Systems III, V.I. Arnold Ed- 
itor (Springer, Berlin 1988). An introduc%on to physical applications of Nekhorshev 
theorem and exponential estimates is in the proceeding of the Noto School "Non- 
Lmea~ Evolution and Chaotic Phenomena", G. Gallavotti and P.W. Zweifel Editors 
(Plenum Press, New York, 1988), see the contributions by G. Benettin, L. Galgani 
and A. Giorgilli. 

General references on Nekhoroshev theorem and exponential estimates: N.N. 
Nekhomhev, Usp. Mat. Nauk. 32:6, 566 (1977) [Russ. Math. S w .  32:6, 1-65 



(1977)l; G. Benettin, L. Galgani, A. Giorgilli, Cel. Me&. 37, 1 (1985); A. Giorgilli 
and L. Galgani, Cel. Mech. 37, 95 (1985); G. Benettin and G. Gallavotti, Journ. 
Stat. Phys. 44, 293-338 (1986); P. Lochak, Ruse. Math. Sunr. 47, 57-133 (1992); 
J. PUechel, Math. Z. 213, 187-216 (1993). 

Applications to statistical mechanics: G. Benettin, in: Boltzmann's legacy 150 
yeam his birth, Atti Accad. Ntwionale dei Lincei 131, 89-105 (1997); G. Benet- 
tin, A. Carati and P. Sempio, Journ. Stat. Phys. 73, 175-192 (1993); G. Benettin, 
A. Carati and G. Gallavotti, Nonlinearity 10, 474505 (1997); G. Benettin, A. Carati 
e F. M, Phyaica D 104,253-268 (1997); G. Benettin, P. Hjorth and P. Sempio, Ex- 
ponentially long equilibrium t h  in a one dimensional collisional model of a classical 
gas, in print in Journ. Stat. Phys. 

Applications to the rigid body: G. Benettin and F. W, Nonlinearity 9,@137-186 
(1996); G. Benettin, F. J%ssd e M. Guzzo, Nonlinearity 10, 16951717 (1997). 

Applications to elliptic equilibria (recent nonisochronous approach): F. W, M. 
Guzzo e G. Benettin, Comm. Math. Phys. 197, 347-360 (1998); L. Niederman, 
Nonlinear stability around an elliptic equilibrium point in an Hamiltonian system, 
preprint (1997). M. Guzzo, F. Fbsso' e G. Benettin, Math. Phys. Electronic Journal, 
Vol. 4, paper 1 (1998); G. Benettin, F. Fkd e M. Guzzo, Nekhoroshev-stability 
of LA and L5 in the spatial restricted three-body problem, in print in Regular and 
Chaotic Dynamics. 

b) KAM-theory (6 lectures in English) 
Prof. Hakan ELIASSON (Royal Institute of Technology, Stockholm, Sweden) 
Abstrcrct 
Quasi-periodic motions (or invariant tori) occur naturally when systems with peri- 

odic motions are coupled. The perturbation problem for these motions involves small 
divisors and the moet natural way to handle this difficulty is by the quadratic conver- 
gence given by Newton's method. A basic problem is how to implement this method 
in a particular perturbative situation. We shall describe this difficulty, its relation 
to linear quasi-periodic systems and the way given by KAM-theory to overcome it 
in the most generic case. Additional difficulties occur for systems with elliptic lower 
dimensional tori and even more for systems with weak non-degeneracy. 

We shall also discuse the difference between initial value and boundary value prob 
lems and their relation to the Liidetedt and the Poincar&Lindstedt aeries. 

The classical books Lectures in Celestial Mechanics by Siege1 and Moser (Springer 
1971) and Stable and Random Motions in Dynamical Systems by Moser (Princeton 
University Press 1973) are perhaps still the best introductions to KAM-theory. The 
development up to middle 80's is described by B a t  in a Bourbaki Seminar (no. 6 
1986). After middle 80's.a lot of work have been devoted to elliptic lower dimensional 
tori, and to the study of systems with weak non-degeneracy starting with the work 
of Cheng and Sun (for example "Mtence of KAM-tori in Degenerrrte Hamiltonian 
systemn, J. M. Eq. 114, 1994). Also on linear quasi-periodic systems there has 
been some progress which is described in my article "Reducibility and point spectrum 
for qucui-periodic skew-pductsn, Proceedings of the ICM, Berlin volume I1 1998. 

c) The Adiabatic Invariant in Classical Dynamics: Theory and applica- 
tions (6  lecture^ in English). 

Prof. Jacques HENRARD (F8cultb Universitaires Notre Dame de la Paix, Namur, 
Bekique). 

' Abstrcrct 

The adiabatic invariant theory applies essentially to o d h t i n g  non-autonomous 
Hamiltonian systems when the time dependance is conaidexably slower than the d- 
lation periods. It describe8 "easy to computen and "dynamicaly meaaingful" quasi- 
invariants by which on can predict the appmximate evolution of the system on vwy 
large time scales. The theory makee uae and may eem M an illustration of several 
clesaical results of Hamiltonian theory. 

1) Classical Adiabatic h i a n t  Theory (Including an introduction to angle-action 
variables) 

2) Classical Adiabatic Invariant Theory (continued) and some applications (in- 
cluding an introduction to the "etic bottlen) 

3) Adiabatic Invariant and Separatrix Croaaing (Naadiabatic theory) 
4) Applications of Neo-Adiabatic Theory: Resonance Sweeping in the Solar System 
5) The chaotic layer of the "Slowly Modulated Standard Mapn 
Refmnce~: 
J.R Cary, D.F. Esccmde, J.L. Tenniaon: Phys.Rev. A, 34, 1986,325614275 
J. Henrard, in " Dyurmics reportedn (n=BO2- newseries), Springer Verlag 1993; pp 

117-235) 
J. Henrard: in "Les dthodes modeme de la mhnique dlarten (Benest et Hroeachle 

eds), Edition fiontieres, 1990, 213-247 
J. Henrard and A. Morbidelli: Physica D, 68,1993, 187-200. 
d) Some aspects of qualitative theory of Hamiltonian PDEe (6 lectures 

in English). 
Prof. Sergei B. KUKSIN (Heriot-Watt University, Edinburgh, and Steklw Insti- 

tute, Moscow) 
Abstwt. 
I) Basic properties of Hamiltonian PDEs. Syrnplectic structures in scales of Hilbert 

spaces, the notion of a Hamiltonian PDE, properties of flow-maps, etc. 
11) Around Gromov's non-squeezing property. Discussions of the finitedimensional 

Gromov's theorem, its version for PDEs and its relevance for mathematical physics, 
infinite-dimensional aymplectic capacities. 

111) Damped Hamiltonian PDEs and the turbulence-limit. Here we establish some 
qualitative properties of PDEs of the form <non-linear Hemiltonian PDE>+<small 
linear damping> and discuss their relations with theory of decaying turbulence 

Parts I)-11) will occupy the first three lectures, Part I11 - the last two. 
Refmnces 
[I) S.K., Neariy Integmble Infinite-dimensional Hamdtonian System. WM 1556, 

Springer 1993. 
(21 S.K., Infinite-dimeruwnal ayzplectic copacitiecr and a squeezing themm for Hamil- 
tonian PDE's. Chmm. Math. Phys. 167 (1995), 531-552. 
[3] Hofer H., Zehnder E., Synplectic inmriants and Hamiltonicrn dyamiw. Bikhauser, 
1994. 
[4) S.K. Oscillatioru in space-periodic nonlinear Schroedinger equations. Geometric 
and E t n d i o d  Analysis 7 (1997), 338363. 

For I) see [I] (Part 1); for II) see [2,3]; for 111) see [4]." 

e) An overview on some problems in Celestial Mechanics (6 lectures in 
English) 

Prof. Carles SIMO' (Universidad de Barcelona, Spagna) 
Abstnact 
1. Introduction. The N-body problem. Relative equilibria Collisions. 



2. The 3D restricted three-body problem. Libration points and local stability 
analyeis. 

3. Periodic orbita and invariant tori. Numerical md symbolical computation. 
4. Stability and practical stability. Central manifolds and the related stable/unrrtable 

manifolds. Practical confiners. 
5. The motion of spacecrafts in the vicinity of the Earth-Moon system. Results 

for improved models. Results for full JPL models. 
References: 
C. Simd, An overview of some pmblems in Celestial Mechanacs, available at 
http://www-mal.upc.es/escorial . 
Click of "curso complete" of Prof. Carles Sim6 

I' 

Applications 

Deadline for application: May 15, 1999. 
Applicants are requested to submit, along with their application, a scientific cur- 

riculum and a letter of recommendation. 
CIME will be able to partidy support some of the youngest participants. Those 

who plan to apply for support have to mention it explicitely in the application form. 

Attendance 

No registration fee is requested. Lectures will be held at Cetraro on July 1, 2, 3, 
4, 5, 6, 7, 8, 9, 10. Participants are requested to register on June 30, 1999. 

Site and lodging 

The session will be held at Grand Hotel S. Michele at Cetraro (Cosenza), Italy. 
Prices for full board (bed and meals) are roughly 150.000 italian liras p.p. day in 
a single room, 130.000 italian l ira  in a double room. Cheaper arrangements for 
multiple lodging in a residence are avalaible. More detailed information may be 
obtained from the Direction of the hotel (tel. +39-098291012, Fax +39-098291430, 
email: sanmicheleQantares.it. 

h t h e r  information on the hotel at the web page www.sanmichele.it 

Arrigo CELLINA Vincenzo VESPRJ 
CIME Director CIME Secretary 

Fondazione C.I.M.E. c/o Dipartimento di Matematica U. Dini Vide Morgagni, 67/A 
- 50134 FIRENZE (ITALY) Tel- +39-55434975 / +39-554237123 FAX 

+39-55434975 / +39-554222695 Email CIMEOUDINI.MATH.UNIFI.IT 

Information on CIME can be obtained on the system World-Wide-Web on the 6le 
HTI'P: //WWW.MATH.UNIFI.IT/CIME/WELCOME.TO.CIME. 

FONDAZIONl3 C.I.M.E. 
CENTRO INTERNAZIONALE MATEMATICO ESTIVO 

INTERNATIONAL MATHEMATICAL SUMMER 
CENTER 

9yGlobal Theory of  Minimal Surfaces in Flat Spaces" 

is the subject of the fourth 1999 C.I.M.E. Session. 
The session, sponsored by the Comiglio Naziode delle Ricerche (C.N.R), the 

Ministero dell'Universit8 e d e b  Ricerca Scientificrr e Tecnologica (M.U.RS.T.) and 
the European Comunity, will take place, under the scientific direction of Professor 
Gian Pietro PIROLA (Un. di Pavia), at Ducal Palace of Martina Ranca ('Igranto), 
from July 7 to July 15,1999. 

Courses 

a) Asymptotic geometry of properly embedded minimal surfaces (6 lec- 
ture in English) 

Prof. William H. MEEKS, I11 (Un. of M d u s e t t s ,  Amherst, USA). 
Abstrcrct: 
In recent years great progress has been made in understanding the asymptotic 

geometry of properly embedded minimal surfaces. The &st major result of this type 
was the solution of the generalized Nitsch conjecture by P. Collin, based on earlier 
work by Meeks and k n b e r g .  It follows from the resolution of this conjecture that 
whenever M is a properly embedded minimal surface with more than one end and 
E c M is an annular end representative, then E has finite total curvature and is 
asymptotic to an end of a plan or catenoid. Having finite total curvature in the 
case of an annular end is equivalent to proving the end has quadratic area growth 
with respect to the radid function r. Recently C o h ,  Kusner, Meeks and Rusenberg 
have been able to prove that any middle end of M, even one with infinite genus, has 
quadratic area growth. It follm from this result that middle ends are never limit 
ends and hence A4 can only have one or two limit ends which must be top or bottom 
ends. With more work it is shown that the middle ends of M stay a bounded distance 
from a plane or an end of a catenoid. 

The goal of my lectures will be to introduce the audience to the concepts in the 
theory o f properly embedded minimal surface3 needed to understand the above results 
and to understand some recent classification theorems on proper minimal surfaces of 
genus 0 in flat threemanifolds. 

References 
1) H. Rosenberg, Some recent developments in the theory of properly embedded 

minimal surface8 in E, Asterieque 206, (19929, pp. 463-535; 
2) W. Meeks k H. Rosenberg, The geometry and w n f d  type of properly em- 

bedded m i n i d  surface8 in E, 1nvent.Math. 114, (1993), pp. 625639; 
3) W. Meeks, J. Perez & A. b, Uniqueness of the Riemann minimal ezamples, 

Invent. Math. 131, (1998), pp. 107-132; 
4) W. Meeks & H. Rosenberg, The geometry of periodic m a n i d  surfaces, Comm. 

Math. Helv. 68, (1993), pp. 255-270; 
5) P. Collin, Topologie et mrbure des surfaces minimales pmprement plongees 

&w E, Annals of h4ath. 145, (1997), pp. 1-31; 



6) H. Rosenberg, Minimal surfaces of finite type, Bull. Soc. Math. fiance 123, 
(1995), pp. 351-359; 

7) Rodriquez & H. Roaenberg, Minimal mrfacu in E with one end and bounded 
cunmtu ,  Manusc. Math. 96, (1998), pp. 3-9. 

b) Properly embedded minimal surfaces with finite total curvature (6 
lectures in Eqlish) 

Prof. Antonio ROS (Universidad de Granada, Spain) 
Abstact: 

Among properly embedded minimal surfaces in Euclidean %space, those that have 
finite total curvature form a natural and important subclass. These surfaces have 
finitely many ends which are all parallel and asymptotic to planes or catenoids. Al- 
though the structure of the space M of surfaces of this type which have a lixed 
topology is not well understood, we have a certain number of partial results and some 
of them will be explained in the lectures we will give. 

The first nontrivial examples, other than the plane and the catenoid, were con- 
structed only ten years ago by Custa, Hoffman and Meeks. Schoen showed that if the 
surface has two ends, then it must be a catenoid and Upez and Rm proved that the 
only surfaces of genus zero are the plane and the catenoid. These results give partial 
answers to an interesting open problem: decide which topologies are supported by this 
kind of surfaces. Roa obtained certain compactness properties of M. In general this 
space is known to be noncompact but he showed that M is compact for some lixed 
topologies. PBrez and Roe studied the local structure of M around a nondegenerate 
surface and they proved that around these points the moduli space can be naturally 
viewed as a Lagrangian submanifold of the complex Euclidean space. 

In spite of that analytic and algebraic methods compete to solve the main problems 
in this theory, at this moment we do not have a satisfactory idea of the behaviour of 
the moduli space M. Thus the above is a good research field for young geometers 
interested in minimal surfaces. 

References 
1) C. Costa, Ezcrmple of a compete minimal immersion in It3 of genw one and 

t h e  embedded emla, Bull. SOc. Brm. Math. 16, (1984), pp. 47-54; 
2) D. Hoffman & H. Karcher, Complete embedded minimal surfaces of finite total 

curvature, R Osserman ed., Encyclopedia of Math., vol. of Minimal Surfaces, 6-90, 
Springer 1997; 

3) D. Hoffman & W. H. Meeks 111, Embedded minimal surfaces of finite topology, 
Ann. Math. 131, (1990), pp. 1-34; 

4) F. J. Mpez & A. Rm, On embedded minimal surfaces of genw z m ,  J .  Differ- 
ential Geometry 33, (1991), pp. 293-300; 

5) J. P. Perez & A. Roe, Some uniqueness and nonexistence theowns for embedded 
minimal surfaces, Math. Ann. 295 (3), (1993), pp. 513-525; 

6) J. P. Perez & A. Rm, The space of properly embedded minimal surfaces with 
finite total curuaturre, Indiana Univ. Math. J. 45 I : (1996), pp.177-204. 

c) Minimal surfaces of Anite topology properly embedded in E (Euclidean 
%space).(b lectures in English) 

Prof. Harold ROSENBERG (Univ. Paria VII, Paris, Rance) 
Abstmct: 
We will prove that a properly embedded minimal surface in E of finite togblogy 

and at least two ends has finite total curvature. 'Ib eatabliah this we first prove that 
each annular end of such a surface M can be made trans- to the horizontal planes 

( afta a poeaible rotation in apace ), [Meeks-Rosenkg]. Then w will prove that such 
an end has finite total curvature [Pascal Collin]. We next study properly embedded 
minimal surfaces in E with finite topology and one end The bseic u n s o l d  problem 
is to determine if such a surface ia a plane or helicoid when simply connected. We 
will describe partial results. We will prove that a properly immersed minimal surface 
of finite topology that meets some plane in a finite number of connected components, 
with at most a finite number of singularities, is of finite conformal type. If in addition 
the curvature is bounded, then the surface is of finite type. This means M can 
be parametrized by meromorphic data on a compact Riemann surface. In particular, 
under the above hypothesis, M is a plane or helicoid when M is also simply connected 
and embedded. This is work of Rodriquez- Rosenberg, and Xavier. If time permits we 
will discuss the geometry and topology of constant mean curvature surfaces properly 
embedded in E. 

Refmnces 
1) H. Rmenberg, Some merit developments in the theory of properly embedded 

minimal surfaces in E, hterique 206, (1992), pp. 463-535; 
2) W.Meeke & H. Rosenberg, The geometry and conformal type of properly em- 

bedded minimal surfaces in E, Invent. 114, (1993), pp.625639; 
3) P. Collin, Topologie et courbure des surfarm minimales pmprement plongdes 

&m E, Annals of Math. 145, (1997), pp. 1-31 
4) H. Rosenberg, Minimal surfaces of finite type, Bull. Soc. Math. Fkance 123, 

(1995), pp. 351-359; 
5) Rodriquez & H. Rosenberg, Minimal surfaces in E with one end and bounded 

curnature, Manusc. Math. 96, (1998), pp. 3-9. 

Applications 

Those who want to attend the Session should M in an application to the C.1.M.E 
Foundation at the address below, not later than May 15, 1999. 

An important consideration in the acceptance of applications is the scientific rel- 
evance of the Session to the field of interest of the applicant. 

Applicanta are requested, therefore, to submit, along with their application, a 
scientific curriculum and a letter of recommendation. 

Participation will only be allowed to persons who have applied in due time and 
have had their application accepted. 

CIME will be able to partially support some of the youngest participants. Those 
who plan to apply for support have to mention it explicitely in the application form 

Attendance 

No registration fee is requested. Lectures will be held at Martina Ranca on July 
7, 8, 9, 10, 11, 12, 13, 14, 15. Participants are requested to register on July 6, 1999. 

Site and lodging 

Martha Ranca is a delightful baroque town of white houses of Apulian sponta- 
neous architecture. Martina Ranca is the major and most aristocratic centre of the 
Murgia dei Tkulli standing on an hill which dominatea the well known Itria valley 
spotted with Tkulli conical dry stone houses which go back to the 15th century. A 
masterpiece of baroque architecture is the Ducal palace where the workshop will be 



hasted. Martine Ranca is part of the province of Taranto, one of the major centrea of 
Magna Grecia, particularl~ devoted to mathematics. 'Ibranto h o w  an outstanding 
museum of Magna Grecia with fabuloua collections of gold manufactura. 

Lecture Notea 

Lecture notea will be published as soon as possible after the Session. 

Arrigo CELLINA Vicenzo VESPRl 
ChE Director CIME Secretary 
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Fondmione C.I.M.E. c/o Dipartimento di Matematica U. Dini Vide Morgagni, 67/A 
- 50134 FIRENZE (ITALY) Tel. +39-55434975 / +34554237123 FAX 

+39-55434975 / +39-554222695 E d  CIMEQUDINI.MATH.UMFI.IT 

Information on CIME can be obtained on the system World-Wide-Web on the file 
H'ITP: //WWW. MATH. UNIFI.IT/CIME/WELCOME.TO. CIME. 

FONDAZIONE C.I.M.E. 
CENTRO INTERNAZIONALE MATEMATICO ESTIVO 

INTERNATIONAL MATHEMATICAL SUMMER 
CENTER 

"Direct and Inverse Methods in Solving Nonlinear Evolution 
Equat ionsv 

is the subject of the fifth 1999 C.I.M.E. Session. 
The session, sponsored by the Consiglio Nazionale delle Ricerche (C.N.R), the 

Minister0 dell'UniversitB e della Ricerca Scientifica e Tecnologica (M.U.RS.T.) and 
the European Community, will take place, under the scientific direction of Profes- 
sor Antonio M. Greco (UniversitB di Palermo), at Grand Hotel San Michele,Cetraro 
(Cosenza), from September 8 to September 15, 1999. 

a) Exact solutions of nonlinear PDEs by singularity analysis (6 lectures 
in English) 

Prof. Robert CONTE (Service de physique de IUtat conden&, CEA Saclay, Gif- 
sw-Yvette Cedex, Rance) 

Abstmct 
1) Criteria of integrability : Lax pair, Darboux and BWund transformations. 

Partial integrability, examples. Importance of involutions. 
2) The Painled test for PDEs in its invariant version. 
3) The "truncation methodw as a Darboux transformation, ODE and PDE situa- 

tions. 
4) The one-family truncation method (WTC), integrable (Korteweg-de Vries, 

Boussinesq, Hirota-Satsuma, Sawada-Kotera) and partially integrable 
(Kwamoto-Sivashinsky) cases. 

5) The two-family truncation method, integrable (sineGordon, mKdV, Broer- 
Kaup) and partially integrable (complex Gibwg-Landau and degeneracies) cases. 

6) The one-family truncation method based on the scattering problems of Gambier: 
BT of KaupKupershmidt and Tzitdica equations. 

References 
References are divided into three subeets: prerequisite (assumed known by the 

attendant to the school), general (not assumed known, pedagogical tarts which would 
greatly benefit the attendant if they were read before the school), research ( r m c h  
papers whose content will be exposed from a synthetic point of view during the 
course). 

Prerequisite bibliography. 
The following subjects will be assumed to be known : the Painled property for 
nonlinear ordinary differential equations, and the associated Painlev6 test. 

Prerequisite recommended texts treating these subjects are 
(P.11 E. Hille, Ordinary diffmntial equations in the wmplez domain ( J .  Wiey and 

sons, New York, 1976). 
[P.2] R Conte, The Painlev6 appnmch to nonlinear ordinary diffmntial quatiom, 

The Painlev6 property, one century later, 112 pages, ed. R Conte, CRM series in 
mathematid physics (Springer, Berlin, 1999). Solv-int/9710020. 



The interested reader can find many applications in the following review, which 
ahould not be read before [P.2] : 

(P.31 A. Ftamani, B. Grammaticos, and T. Bountis, The Paanled property a d  din- 
gularity arualysw of integrable and nonintegrable 8y8k?W, Physics Reports 180 (1989) 
159-245. 

A text to be avoided by the beginner is Ince's book, the ideas are much clearer in 
Hille's book. 

There exist very few pedagogical texts on the subject of this school. 
A general reference, covering all the above program, is the course delivered at a 

Carghe school in 1996 : 
[G.l] M. Musette, Painlev6 analysis for nonlinear partial diflenentid epwtim, 

The Painled pmperty, one century later, 65 pages, ed. R Conte, CRM series in 
mathematical physics (Springer, Berlin, 1999). Solv-int/9804003. 

A short s u k t  of (G.11, with emhasis on the ideas, is the conference report 
IG.2) R Conte, Various truncutions in Painled analysis of partial diflmntial 

equatim, 16 pages, Nonlinear dynamics : integrability and chaos, ed. M. Daniel, to 
appear (Springer? World Scientific?). Solv-int/9812008. Preprint S98/047. 

Research papers. 
[R2] J?  Weias, M. q b o r  and G. Carnevale, The Painled property for partial 

diflrential!equations, Jf Math. Phh. 24 (1983) 522-526. 
[R3] Nberous articles of Weisa, from 1983 to 1989, all in J. Math. Phys. [singular 

manifold method]. 
[R4] M. Musette and R Conte, Algorithmic method for deriving Lw pairs jivm the 

invariant Painled analysis of nonlinear partial diflrential equations, J. Math. Phys. 32 
(1991) 1450-1457 [invariant singular manifold method]. 

[R5] R Conte and M. Musette, Linearity insiti~ nonlinearity: exact solutions to 
the complex Ginz-burg-Lundau equation, Physics D 69 (1993) 1-17 [Ginzburg-Landau]. 

[R6] M. Musette and R Conte, The two-singular manifold method, I. Modified 
Kd V and sine-Gordon equations, J. Phys. A 27 (1994) 3895-3913 [Twoaingular man- 
ifold method]. 

[R7] R Conte, M. Musette and A. Pickering, The two-singular manifold method, 
II. Classical Boussinesq system, J. Phys. A 28 (1995) 179-185 [Two-singular manifold 
method]. 

[R8] A. Pickering, The singular manifold method nevisited, J. Math. Phys. 37 
(1996) 1894-1927 [Two-eingular manifold method]. 

[R9] M. Musette and R Conte, Backlund tm~ufonnation of partial diflerential 
equations j b m  the Painlevd-Cambier cla~sification, I. Kaup-Kupershmidt equation, 
J. Math. Phys. 39 (1998) 56174630. [Lecture 61. 

[RlO] R Conte, M. Mueette and A. M. Grundland, Backlund trunsfownation of 
partial diflenential equations h m  the Painled-Gambier cl~sijkatwn, II. TziMiccr 
eqwtion, J. Math. Phys. 40 (1999) to appear. [Lecture 61. 

b) Integrable Systems and Bi-Hamiltonian Manifolds (6 lectures in Eng- 
lish) 

Prof. Ranco MAGRI (Universitil di Milano, Milano, Italy) 

Abstmct 
1) Integrable systems and bi-hamiltonian manifolds according to Gelfand and Za- 

kharevich. 
'2) Examples: KdV, KP and Sato's equations. 

3) The rational solutions of KP equation. 
4) Bi-hamiltonian reductions and completely algebraically integrable ayatans. 
5) Connections with the separab'ity theory. 
6) The r function and the Hirota's identities bom a bi-hamiltonian point of view. 
&fm- 
1) R Abraham, J.E. Marsden, Foundations of M c c h c n i a , B e q j a m i n / C ~ ,  

1978 
2) P. Libermann, C. M. Marle, Symplectic Geometry and Arurlflid Mechanics, 

Reidel Dordrecht, 1987 
3) L. A. Dickey, Soliton Equations and Hamiltottian System, World Scientific, 

~in&ore, 1991, ~ d v .  Series in Math. Phys VoL 12 
4) I. Vaisman, Lecturw on the Geometry of Poisson Manifolds, Progresa in Math., 

 irku user, 1994 
5) P. Casati, G. Mqui, F. Magi, M. Pedroni (1996). The KP Uvay mvisitd. 

I,II,III,IV. Technical Reports, SISSA/2,3,4,5/96/FM, SISSA/lSAS, 'Eeste, 1995 

c) Hirota Methods for non Linear Differential and Difference Eqwtiolv 
(6 lectures in English) 

Prof. Junkichi SATSUMA (University of Tokyo, Tokyo, Japan) 

Abstract 
1) Introduction; 
2) Nonlinear differential systems; 
3) Nonlinear differential-difference systems; 
4) Nonlinear difference systems; 
5) Sato theory; 
6) Ultra-discrete systems. 
References. 
1) M.J.Ablowitz and H.Segur, Solitons and the Inverse Scattering Iltansfonn, 

(sL&, Philadelphia, 1981). 
2) Y.Ohta, J.Satsuma, D.lBkrhashi and T.Tokihiro, " Prog. Theor. Phys. Suppl. 

~0.9'4, p.210-241 (1988) 
3) J.Satsuma, Bilinear Formalism in Soliton Theory, Lecture Notea in Physics 

No.495, Integrability of Nonlinear Systems, ed. by Y.Kosmann-Schwarzbad, 
B.Grammaticoa and K.M.T8mizhmani p.297-313 (Springer, Berlin, 1997). 

d) Lie Group and Exact Solutions of non L i i  Diaenntial and DY 
ference Equations (6 lecturea in English) 

Prof. P a d  WINTERNITZ (UniveraitB de Montreal, Montreal, Canada) 357 

Abstract 
1) Algorithms for calculating the symmetry group of a system of ordinary or 

partial differential equations. Ekamples of equations with finite and infinite Lie point 
symmetry groups; 

2) Applications of symmetries. The method of symmetry reduction for partial 
differential equations. Group clessificstion of differential equations; 

3) Clasa'ication and identification of Lie algebras given by their structure con- 
stants. Classification of subalgebras of Lie algebras. Examples and applications; 

4) Solution8 of ordinary differential equationti. Inwring the order of the equation. 
F i t  integrsls. Painled analysis and the singularity structure of solutions; 

5) Conditional symmetries. Partially invariant solutions. 



6) Lie symmetries of difference equations. 
Refmnca. 
1) P. J. Olver, Applicutions of Lie Groups to Diflerential Equutions, Springer,l993, 
2) P. Witernitz, Gmup Theory and Exact Solutions of Partially Integrable Dif- 

fmnt id  Sptenu, in Partially Integrable Evolution Equations in Physics, Kluwer, 
Dordrecht, 1990, (Editors RConte and NBoccara). 

3) P. Winternitz, in "Integmble Systems, Quantum Groups and Quantum Field 
Theories", Kluwer, 1993 (Editors L .A. Ibort and M. A. Rodriguez). 

Applications 
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Those who want to attend the Session should fill in an application to the C.1.M.E 
Foundation at the address below, not later than May 30, 1999. 

An important consideration in the acceptance of applications is the scientific rel- 
evance of the Session to the field of interest of the aaplicant. 

Applicants are requested, therefore, to submit, along with their application, a 
scientific curriculum and a letter of recommendation. 

Participation will only be allowed to persons who have applied in due time and 
have had their application accepted. 

CIME will be able to partidy support some of the youngest participants. Those 
who plan to apply for support have to mention it explicitely in the application form. 

At tendance 

No registration fee is requested. Lectures will be held at Cetraro on September 8, 
9, 10, 11, 12, 13, 14, 15. Participants are requested to register on September 7, 1999. 

Site and lodging 

The session will be held at Grand Hotel S. Michele at Cetraro (Cosenza), Italy. 
Prices for full board (bed and meals) are roughly 150.000 itdian liras p.p. day in 
a single room, 130.000 italian liras in a double room. Cheaper arrangements for 
multiple lodging in a residence are avalaible. More detailed informations may be 
obtained from the Direction of the hotel (tel. +39-098291012, Fax +39-098291430, 
email: sanmicheleQantares.it. 

Further information on the hotel at the web page www.sanmichele.it 

Lecture Notes 

Lecture notes will be published as soon es possible after the Session. 

Arrigo CELLINA 
CIME Director 

Vincenzo VESPRl 
CIME Secretary 

Fondazione C.I.M.E. c/o Dipartimento di Matematica U. Dini Vide Morgegni, 67/A 
- 50134 FIRENZE (ITALY) B1. +39-55434975 / +39-554237123 FAX 

+3955434975 / +39-55-4222695 Email CIMEQUDIM.MATH.UNIFI.IT 

Information on CIME can be obtained on the system World-Wide-Web on the file 
. HTTP: //WWW.MATH.UNIFI.IT/CIME/WELCOME.TO.CIME. 

Lecture Notes in Mathematics 
For information about Vols. 1-1525 
please contact your bookseller or Springer-Verlag 

Vol. 1526: J. Aztma, P. A. Meyer, M. Yor (Eds.), Stminaire 
de Probabilitts XXVI. X, 633 pages. 1992. 

Vol. 1527: M. I. Freidlin, J.-F. Le Gall, Ecole d'Et6 de 
Probabilitts de Saint-Flour XX - 1990. Editor: P. L. 
Hennequin. VIII, 244 pages. 1992. 

Vol. 1528: G. Isac, Complementarity Problems. VI, 297 
pages. 1992. 

Vol. 1529: J. van Neerven, The Adjoint of a Semigroup of 
Linear Operators. X, 195 pages. 1992. 

Vol. 1530: J. G. Heywood, K. Masuda, R. Rautmann, S. A. 
Solonnikov (Eds.), The Navier-Stokes Equations 11 -Theory 
and Numerical Methods. IX, 322 pages. 1992. 

Vol. 1531: M. Stoer, Design of Survivable Networks. IV, 
206 pages. 1992. 

Vol. 1532: J. F. Colombeau, Multiplication of Distributions. 
X, 184 pages. 1992. 

Vol. 1533: P. Jipsen, H. Rose, Varieties of Lattices. X, 162 
pages. 1992. 

Vol. 1534: C. Greither, Cyclic Galois Extensions of Com- 
mutative Rings. X, 145 pages. 1992. 

Vol. 1535: A. B. Evans, Ortbomorphism Graphs of Groups. 
VIII, 114 pages. 1992. 

Vol. 1536: M. K. Kwong, A. Zettl, Norm Inequalities for 
Derivatives and Differences. VII, 150 pages. 1992. 

Vol. 1537: P. Fitzpatrick, M. Martelli, J. Mawhin, R. Nuss- 
baum, Topological Methods for Ordinary Differential 
Equations. Montecatini Terme, 1991. Editors: M. Furi, 
P. Zecca. VII, 218 pages. 1993. 

Vol. 1538: P.-A. Meyer, Quantum Probability for 
Probabilists. X, 287 pages. 1993. 

Vol. 1539: M. Coornaert, A. Papadopoulos, Symbolic 
Dynamics and Hyperbolic Groups. V111, 138 pages. 1993. 

Vol. 1540: H. Komatsu (Ed.), Functional Analysis and 
Related Topics, 1991. Proceedings. XXI, 413 pages. 1993. 

Vol. 1541: D. A. Dawson, B. Maisonneuve, J. Spencer, 
Ecole d' Ett de Probabilitks de Saint-Flour XXI - 1991. 
Editor: P. L. Hennequin. VIII, 356 pages. 1993. 

Vol. 1542: J.Frohlich, Th.Kerler, Quantum Groups, Quan- 
tun1 Categories and Quantum Field Theory. VII, 431 pages. 
1993. 

Vol. 1541: A. L. Dontchev. T. Zolezzi, Well-Posed Opti- 
mization Problems. XII, 421 pages. 1993. 

Vol. 1544: MSchiirmann, White Noise on Bialgebras. VII, 
146 pages. 1993. 

Vol. 1545: J .  Morgan, K. O'Grady. Differential Topology 
of Complex Surfaces. VIII, 224 pages. 1993. 

Vol. 1546: V. V. Kalasbnikov, V. M. Zolotarev (Eds.), 
Stability Problems for StochasticModels. Proceedings. 1991. 
VIII, 229 pages. 1993. 

Vol. 1547: P. Harmand, D. Werner, W. Werner, M-ideals 
in Banach Spaces and Banach Algebras. VI11, 387 pages. 
1993. 

Vol. 1548: T. Urabe, Dynkin Graphs and Quadrilateral 
Singularities. VI, 233 pages. 1993. 

Vol. 1549: G. Vainikko, Multidimensional Weakly Singu- 
lar Integral Equations. XI, 159 pages. 1993. 

Vol. 1550: A. A. Gonchar, E. B. Saff (Eds.), Methods of 
Approximation Theory in Complex Analysis and Mathe- 
matical Physics IV, 222 pages, 1993. 

Vol. 1551: L. Arkeryd, P. L. Lions, P.A. Markowich, S.R. 
S. Varadhan. Nonequilibrium Problems in Many-Particle 
Systems. Montecatini, 1992. Editors: C. Cercignani, M. 
Pulvirenti. VII, 158 pages 1993. 

Vol. 1552: J. Hilgert, K.-H. Neeb, Lie Semigroups and their 
Applications. XII, 3 15 pages. 1993. 

Vol. 1553: J.-L- Col l io t -Tht lhe ,  J .  Kato, P. Vojta. 
Arithmetic Algebraic Geometry. Trento, 1991. Editor: E. 
Ballico. VII, 223 pages. 1993. 

Vol. 1554: A. K. Lenstra, H. W. Lenstra, Jr. (Eds.), The 
Development of the Number Field Sieve. VIII, 131 pages. 
1993. 

Vol. 1555: 0 .  Liess, Conical Refraction and Higher 
Microlocalization. X, 389 pages. 1993. 

Vol. 1556: S. B. Kuksin, Nearly Integrable Infinite-Dimen- 
sional Hamiltonian Systems. XXVII, 101 pages. 1993. 

Vol. 1557: J .  Adma, P. A. Meyer, M. Yor (Eds.), Seminaire 
de Probabilitts XXVII. VI, 327 pages. 1993. 

Vol. 1558: T. J. Bridges, J. E. Furter. Singularity Theory 
and Equivariant Symplectic Maps. VI. 226 pages. 1993. 

Vol. 1559: V. G. Sprindiuk, Classical Diophantine Equa- 
tions. XII, 228 pages. 1993. 

Vol. 1560: T. Bartsch, Topological Methods for Variational 
Problems with Symmetries. X. 152 pages. 1993. 

Vol. 1561: 1. S. Molchanov, Limit Theorems for Unions of 
Random Closed Sets. X. 157 pages. 1993. 

Vol. 1562: G. Harder. Eisensteinkoho~nologie und die 
Konstruktion gemischter Motive. XX, 184 pages. 1993. 

Vol. 1563: E. Fabes, M. Fukushima, L. Grosq, C. Kenig, 
M. Rockner, D. W. Stroock, Dirichlct Forms. Varenna, 1992. 
Editors: G. Dell'Antonio, U.  Mosco. VII, 245 pages. 1993. 

Vol. 1564: J. Jorgenson, S. Lang, Basic Analysis of Regu- 
larized Series and Product$. IX. 122 pages. 1993. 

Vol. 1565: L. Boutet de Monvel, C. De Conctni, C. Procesi. 
P. Schapira, M. Vergne. D-modules, Representation Theory, 
and Quantum Groups. Venezia, 1992. Editors: G. Zampieri, 
A. D'Agnolo. VII, 217 pages. 1993. 

Val. 1566: B. Edixhoven, J.-H. Evertse (Eds.), Diophantine 
Approximation and Abelian Varieties. XIII, 127 pages. 1993. 

Vol. 1.567: R. L. Dobrushin. S. Kusuoka. Statistical Mechan- 
ics and Fractals. VII, 98 pages. 1993. 




