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Preface

The C.ILM.E. Session “Arithmetic Theory of Elliptic Curves” was held at
Cetraro (Cosenza, Italy) from July 12 to July 19, 1997.

The arithmetic of elliptic curves is a rapidly developing branch of
mathematics, at the boundary of number theory, algebra, arithmetic alge-
braic geometry and complex analysis. After the pioneering research in this
field in the early twentieth century, mainly due to H. Poincaré and B. Levi,
the origin of the modern arithmetic theory of elliptic curves goes back to
L.J. Mordell’s theorem (1922) stating that the group of rational points on
an elliptic curve is finitely generated. Many authors obtained in more re-
cent years crucial results on the arithmetic of elliptic curves, with important
connections to the theories of modular forms and L-functions. Among the
main problems in the field one should mention the Taniyama-Shimura con-
jecture, which states that every elliptic curve over QQ is modular, and the
Birch and Swinnerton—Dyer conjecture, which, in its simplest form, asserts
that the rank of the Mordell-Weil group of an elliptic curve equals the order of
vanishing of the L-function of the curve at 1. New impetus to the arithmetic
of elliptic curves was recently given by the celebrated theorem of A. Wiles
(1995), which proves the Taniyama-Shimura conjecture for semistable ellip-
tic curves. Wiles’ theorem, combined with previous results by K. A. Ribet,
J.-P. Serre and G. Frey, yields a proof of Fermat’s Last Theorem. The most
recent results by Wiles, R. Taylor and others represent a crucial progress
towards a complete proof of the Taniyama-Shimura conjecture. In contrast
to this, only partial results have been obtained so far about the Birch and
Swinnerton-Dyer conjecture.

The fine papers by J. Coates, R. Greenberg, K. A. Ribet and K. Rubin
collected in this volume are expanded versions of the courses given by the
authors during the C.ILM.E. session at Cetraro, and are broad and up-to-date
contributions to the research in all the main branches of the arithmetic theory
of elliptic curves. A common feature of these papers is their great clarity and
elegance of exposition.

Much of the recent research in the arithmetic of elliptic curves consists
in the study of modularity properties of elliptic curves over Q, or of the
structure of the Mordell-Weil group E(K') of K-rational points on an elliptic
curve E defined over a number field K. Also, in the general framework of
Iwasawa theory, the study of E(K) and of its rank employs algebraic as well
as analytic approaches.

Various algebraic aspects. of Iwasawa theory are deeply treated in
Greenberg’s paper. In particular, Greenberg examines the structure of
the p-primary Selmer group of an elliptic curve E over a Z,-extension of
the field K, and gives a new proof of Mazur’s control theorem. Rubin gives a
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detailed and thorough description of recent results related to the Birch and
Swinnerton-Dyer conjecture for an elliptic curve defined over an imaginary
quadratic field K, with complex multiplication by K. Coates’ contribution is
mainly concerned with the construction of an analogue of Iwasawa theory for
elliptic curves without complex multiplication, and several new results are
included in his paper. Ribet’s article focuses on modularity properties, and
contains new results concerning the points on a modular curve whose images
in the Jacobian of the curve have finite order.

The great success of the C.ILM.E. session on the arithmetic of elliptic
curves was very rewarding to me. I am pleased to express my warmest thanks
to Coates, Greenberg, Ribet and Rubin for their enthusiasm in giving their
fine lectures and for agreeing to write the beautiful papers presented here.
Special thanks are also due to all the participants, who contributed, with
their knowledge and variety of mathematical interests, to the success of the
session in a very co-operative and friendly atmosphere.

Carlo Viola
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Fragments of the GL, Iwasawa Theory
of Elliptic Curves
without Complex Multiplication

John Coates

“Fearing the blast

Of the wind of impermanence,

I have gathered together

The leafiike words of former mathematicians
And set them down for you.”

Thanks to the work of many past and present mathematicians, we now know
a very complete and beautiful Iwasawa theory for the field obtained by ad-
joining all p-power roots of unity to Q, where p is any prime number. Granted
the ubiquitous nature of elliptic curves, it seems natural to expect a precise
analogue of this theory to exist for the field obtained by adjoining to Q all
the p-power division points on an elliptic curve E defined over Q. When E
admits complex multiplication, this is known to be true, and Rubin’s lectures
in this volume provide an introduction to a fairly complete theory. However,
when E does not admit complex multiplication, all is shrouded in mystery
and very little is known. These lecture notes are aimed at providing some
fragmentary evidence that a beautiful and precise Iwasawa, theory also exists
in the non complex multiplication case. The bulk of the lectures only touch
on one initial question, namely the study of the cohomology of the Selmer
group of E over the field of all p-power division points, and the calculation
of its Euler characteristic when these cohomology groups are finite. But a
host of other questions arise immediately, about which we know essentially
nothing at present.

Rather than tempt uncertain fate by making premature conjectures, let
me illustrate two key questions by one concrete example. Let E be the elliptic
curve X;(11), given by the equation

¥+ y=1%-22
Take p to be the prime 5, let K be the field obtained by adjoining the
9-division points on E to (Q, and let Fw be the field obtained by adjoin-
ing all 5-power division points to Q. We write 2 for the Galois group of Fi
over K. The action of {2 on the group of all 5-power division points allows
us to identify {2 with a subgroup of GL;(Zs), and a celebrated theorem of
Serre tells us that {2 is an open subgroup. Now it is known that the Iwasawa
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algebra A(£2) (see (14)) is left and right Noetherian and has no divisors of
zero. Let C(E/Fy) denote the compact dual of the Selmer group of E over
F.o (see (12)), endowed with its natural structure as a left A($2)-module. We
prove in these lectures that C(E/Fu) is large in the sense that

dimg, (C(E/Fw) ®z,Qs) = oo.

But we also prove that every element of C(E/Fs) has a non-zero annihi-
lator in A(f2). We strongly suspect that C(E/Fy) has a deep and interest-
ing arithmetic structure as a representation of A(2). For example, can one
say anything about the irreducible representations of A({2) which occur in
C(E/Fy)? Is there some analogue of Iwasawa’s celebrated main conjecture
on cyclotomic fields, which, in this case, should relate the A({2)-structure of
C(E/Fx) to a 5-adic L-function formed by interpolating the values at s = 1
of the twists of the complex L-function of E by all Artin characters of 27
I would be delighted if these lectures could stimulate others to work on these
fascinating non-abelian problems.

In conclusion, I want to warmly thank R. Greenberg, S. Howson and
Sujatha for their constant help and advice throughout the time that these
lectures were being prepared and written. Most of the material in Chapters
3 and 4 is joint work with S. Howson. I also want to thank Y. Hachimori,
K. Matsuno, Y. Ochi, J.-P. Serre, R. Taylor, and B. Totaro for making im-
portant observations to us while this work was evolving. Finally, it is a great
pleasure to thank Carlo Viola and C.IM.E. for arranging for these lectures
to take place at an incomparably beautiful site in Cetraro, Italy.

1 Statement of Results

1.1 Serre’s theorem

Throughout these notes, F' will denote a finite extension of the rational field
Q, and E will denote an elliptic curve defined over F', which will always be
assumed to satisfy the hypothesis:

Hypothesis. The endomorphism ring of E over Q is equal to Z, i.e. E does
not admit complex multiplication.

Let p be a prime number. For all integers n > 0, we define

Epsi = Ker(E(Q) £ E(Q)), Epe = | Epor-

n20
We define the corresponding Galois extensions of F'

Fo = F(Eps1), Fop = F(Ep=). 1)

Elliptic curves without complex multiplication 3
Write
Zn=G(F°°/F,,), E=G(F00/F) (2)

for .the Galois groups of F,, over Fy,, and F, over F, respectively. Now the
action of X on E,~ defines a canonical injection

i: 5 < Aut(Epe) ¥ GLy(Z,). (3)

When there is no danger of confusion, we shall drop the homomorphism i
from the notation, and identify X' with a subgroup of GL(Z,). Note that i
maps X, into the subgroup of GLy(Z,) consisting of all matrices which are
congruent to the identity modulo p™*1. In particular, it follows that Ly is
always a pro-p-group. However, it is not in general true that X is a pro-p-
[g2ré)]up. The following fundamental result about the size of X is due to Serre

Theorem 1.1.

(i) X is open in GLy(Z,) for all primes p, and
(i) ¥ = GL2(Z,) for all but a finite number of primes p.

Serre’s method of proof in [26] of Theorem 1.1 is effective, and he gives
many beautiful examples of the calculations of X for specific elliptic curves
and specific primes p. We shall use some of these examples to illustrate the
theory developed in these lectures. For convenience, we shall always give the
name of the relevant curves in Cremona’s tables [9].

Example. Consider the curves of conductor 11

11(A1): y*+y=2"-22 - 102 -20 (4)
11(A3) y2+y:$3—2:2. (5)

The first curve corresponds to the modular group Iy(11) and is often de-
poted by Xo(11), and the second curve corresponds to the group Iy (11), and
is often denoted by X (11). Neither curve admits complex multiplication (for
ex?.mple, their j-invariants are non-integral). Both curves have a Q-rational
point of order 5, and they are linked by a Q-isogeny of degree 5. For both
curves, Serre {26] has shown that £ = GLy(Z,) for all primes p > 7. Subse-
qu.ently, Lang and Trotter [21] determined X for the curve 11(A1) and the
primes p = 2,3, 5.

. We now briefly discuss Z-Euler characteristics, since this will play an
1mp<?rtar.1t role in our subsequent work. By virtue of Theorem 11, Y is a
p-.adxc Lie group of dimension 4. By results of Serre [28] and Lazard [22], ¥
will have p-cohomological dimension equal to 4 provided X has no p—torsi’on.
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Since X is a subgroup of GL3(Z,), it will certainly have no p-torsion provided
p > 5. Whenever we talk about £-Euler characteristics in these notes, we shall
always assume that p > 5. Let W be a discrete p-primary X-module. We shall
say that W has finite X-Euler characteristic if all of the cohomology groups
H{(Z,W) (i =0,...,4) are finite. When W has finite Z-Euler characteristic,
we define its Euler characteristic x(X, W) by the usual formula

4

x(Z, W) = [[ (i, wy) . (6)

i=0 -

Example. Take W = Epe. Serre [29] proved that Epe has finite X-Euler
characteristic, and recently he determined its value in [30].

Theorem 1.2. Ifp > 5, then x(Z, Ep=) = 1 and H*(X, Epe) =

This result will play an important role in our later calculations of the Euler
characteristics of Selmer groups. Put

hi(B) = #(H'(Z, Ep=)). (7)

We now give a lemma which is often useful for calculating the h;(E). Let ppn
denote the group of p"-th roots of unity, and put

poo = U ppny, Tp(p) = hm fpn - (8)
n2l

By the Weil pairing, F(pp~) C F(Ep~) and so we can view X' as acting in
the natural fashion on the two modules (8). As usual, define

Epeo(=1) = Epeo ®z, Tp(1)®D, (9)

where
Tp(w)® Y = Hom(Tp(p), Zyp);

here X acts on both groups again in the natural fashion.

Lemma 1.3. Let p be any prime number. Then

(i) ho(E) divides hi(E).
(ii) If X has no p-torsion, we have h3(E) = #H°(X, Epe (—1)).

Corollary 1.4. Ifp 2 5, and h3(E) > 1, then ho(E) >

Indeed, Theorem 1.2 shows that

hl (E)

h3(E)s

Elliptic curves without complex multiplication 5

whence the assertion of the Corollary is clear from (i) of Lemma 1.3. The
corollary is useful because it does not seem easy to compute hy(E) in a
direct manner.

We now turn to the proof of (i) of Lemma 1.3. Let K, denote the cyclo-
tomic Zy-extension of F, and let Epe (Ko ) be the subgroup of Epe which is
rational over K. We claim that FE,~ (K) is finite. Granted this claim, it
follows that

ho(E) = #(H(I, Ep= (Kw))) = #(H' (T, Ep= (K))),

where I" denotes the Galois group of K over F. But HY(I', Eye (K o)) is a
subgroup of H1(X, E ) under the inflation map, and so (i) is clear. To show
that Epe (Koo ) is finite, let us note that it suffices to show that Epe (Hoo)
is finite, where Hy, = F(ppe). Let 2 = G(Fio/Hoo). By virtue of the Weil
pairing, we have {2 = X N SLy(Z,), for any embedding ¢ : X' < GL2(Z))
given by choosing any Z,-basis e1, ez of Tp(E). If Epe (Hy,) was infinite, we
could choose e; so that it is fixed by §2. But then the embedding ¢ would inject
{2 into the subgroup of SL2(Z,) consisting of all matrices of the form (1) T ,
where x runs over Z,,. But this is impossible since 2 must be open in SL2(Z,)
as X' is open in GL3(Z,). To prove assertion (ii) of Lemma 1.3, we need the
fact that X is a Poincaré group of dimension 4 (see Corollary 4.8, [25], p. 75).
Moreover, as was pointed out to us by B. Totaro, the dualizing module for
X is isomorphic to Q,/Z, with the trivial action for X (see Lazard [22],
Theorem 2.5.8, p. 184 when X is pro-p, and the same proof works in general
for any open subgroup of GL2(Z,) which has no p-torsion). Moreover, the
Weil pairing gives a J-isomorphism

Epn(—l) a4 HOm(E n’Z/an).

Using that X' is a Poincaré group of dimension 4, it follows that H3(X, E,»)
is dual to HY(X, Ep» (—1)) for all integers n > 1. As usual, let

Tp(E) = %&nE n .
Passing to the limit as n — oo, we conclude that
H3(X Ep) = li_n)le(Z‘,Epn)
is dual to
HY(Z,Tp(E)(-1)) = lim H'(Z, Ep (-1)). (10)

Write V,(E) = Tp(F) ® Q. Then we have the exact sequence of X-modules

0 — TL(E)(—1) — V(E)(-1) — Epe(-1) — 0.
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Now V,(E)(-1)* = 0 since Epw(H) is finite. Moreover, (10) is finite
by the above duality argument, and so it must certainly map to 0 in the
Q,-vector space H'(Z,V,(E)(-1)). Thus, taking X-cohomology of the above
exact sequence, we conclude that

HY (2, T,(E)(-1)) = H(Z, Ep= (~1)). (11)
As (11) is dual to H3(X, Eye), this completes the proof of (ii) of Lemma 1.3.

Example. Take F = Q, E to be the curve Xo(11) given by (4), and p =*5.
The point (5,5) is a rational point of order 5 on E. As remarked earlier,
Lang-Trotter [21] (see Theorem 8.1 on p. 55) have explicitly determined X
in this case. In particular, they show that

Es = Z/5Z & s

as X-modules. Moreover, although we do not give the details here, it is not
difficult to deduce from their calculations that

ho(E) = h3(E) = 5, and hy(E) > 5°.

1t also then follows from Theorem 1.2 that ha(E) = hy(E).

1.2 The basic Iwasawa module

Iwasawa theory can be fruitfully applied in the following rather general set-
ting. Let Hy denote a Galois extension of F' whose Galois group 2 =
G(Hy/F) is a p-adic Lie group of positive dimension. By analogy with the
classical situation over F', we define the Selmer group S{£/Hy) of E over
Hy by

S(E/Ho) = Ker(H'(Hoo, Epoe) — [[ H' (Hoow» B)), (12)

where w runs over all finite primes of H,, and, as usual for infinite extensions,
H ,, denotes the union of the completions at w of all finite extensions of
F contained in Ho,. Of course, the Galois group {2 has a natural left action
on S(E/H,), and the central idea of the Iwasawa theory of elliptic curves
is to exploit this f2-action to obtain deep arithmetic information about E.
This 2-action makes S(E/H,) into a discrete p-primary left {2-module. It
will often be convenient to study its compact dual

C(E/Hw) = Hom(S(E/Fw), Qo /Zyp), (13)
which is endowed with the left action of §2 given by (o f)(z) = f(o 7 z) for

fin C(E/Hy) and o in £2. Clearly S(E/Hw) and C(E/Hc,) are continuous
médules over the ordinary group ring Z,{£2] of 2 with coefficients in Zp. But,

Eliptic curves without complex multiplication 7

as Iwasawa was the first to observe in the case of the cyclotomic theory, it is
more useful to view them as modules over a larger algebra, which we denote
by A(§2) and call the Iwasawa algebra of {2, and which is defined by

A(2) = ImZ,[0/W), (14)

whef‘e W runs over all open normal subgroups of 2. Now if A is any discrete
p-primary left 2-module and X = Hom(4, Q,/Z,) is its Pontrjagin dual,
then we have

A = gVJAW, X = l(iLn X w,

where W again runs over all open normal subgroups of 2, and Xy denotes
the largest quotient of X on which W acts trivially. It is then clear how to
extend the natural action of Z,[{2] on A and X by continuity to an action of
the whole Iwasawa algebra A(f2).

In Greenberg’s lectures in this volume, the extension H., is taken to
be the cyclotomic Z,-extension of F. In Rubin’s lectures, Hy, is taken to
be the field generated over F' by all p-power division points on E, where
p is now a prime ideal in the ring of endomorphisms of E (Rubin assumes
that E admits complex multiplication). In these lectures, we shall be taking
Hy, = Fy = F(Ep=), and recall our hypothesis that E does not admit
complex multiplication. Thus, in our case, 2 = X' is an open subgroup of
GL3(Z,) by Theorem 1.1.

The first question which arises is how big is S(E/Fw)? The following
result, whose proof will be omitted from these notes, was pointed out to me
by Greenberg.

Theorem 1.5. For all primes p, we have
dimg, (C(E/Fx) ®z,Qp) = 0.

Example. Take F' = Q, E = X;(11), and p = 5. It was pointed out to me
some years back by Greenberg that

C(E/Q(ps=)) =0 (15)

(see his article in this volume, or [7], Chapter 4 for a detailed proof). On the
other hand, we conclude from Theorem 1.5 that

dimg, (C(E/Q(Es=)) ®2,Qs) = oo. (16)

This example is a particularly interesting one, and we make the following
observations now. Since E has a non-trivial rational point of order 5, we have
the exact sequence of G(Q/Q)-modules

0-—Z/5Z — Es — s — 0. (17
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This exact sequence is not split. Indeed, since the j-invariant of E has order
—1 at 11, and the curve has split multiplicative reduction at 11, the 11-adic
Tate period gg of E has order 1 at 11. Hence

Q11 (Es) = Qu (ps, V9E ),

and so we see that 5 must divide the absolute ramification index of every
prime dividing 11 in any global splitting field for the Galois module E5. It
follows, in particular, that [Fp : Q(us)] = 5, where Fo = Q(Es). Moreover,
11 splits completely in Q (s ), and then each of the primes of Q(ps) dividing
11 are totally ramified in the extension Fy/Q(us). In view of (15) and the
fact that Fy/Q(us) is cyclic of degree 5, we can apply the work of Hachimori
and Matsuno [15] (see Theorem 3.1) to it to conclude that the following
assertions are true for the A(I")-module C(E/Fo(ps~)), where I' denotes the
Galois group of Fy(use) over Fy: (i) C(E/Fo(ps)) is A(I")-torsion, (ii) the
p-invariant of C(E/Fy(us~)) is 0, and (iii) we have

dimg, (C(E/Fo(ps=)) ®z5 Qs) = 16 (18)

However, I do not know at present whether E has a point of infinite order
which is rational over Fy. Finally, we remark that one can easily deduce (16)
from Theorem 3.1 of [15], on noting that F;,/Q(us) is a Galois 5-extension
for all integers n > 0.

We now return to the discussion of the size of C(E/Fy) as a left A(X)-
module. It is easy to see (Theorem 2.7) that C(E/Fy) is a finitely generated
left A(Z)-module. Recall that F,, = F(Ey~+1), and that Xy, = G(Foo/Fy).
We define & to be X if p = 2, and to be Xy if p > 2. The following result is
a well known special case of a theorem of Lazard (see [10]).

Theorem 1.6. The Iwasawa algebra A(®) is left and right Noetherian and
has no divisors of 0.

Now it is known (see Goodearl and Warfield [11], Chapter 9) that Theorem
1.6 implies that A(®) admits a skew field of fractions, which we denote by
K(®). If X is any left A(X)-module, we define the A(X)-rank of X by the
formula

A(Z)-rank of X = [—Z,l—éT] dlmK(¢) (K(¢) B A() X) . (19)

This A(X)-rank will not in general be an integer.

It is not difficult to see that the A(X)-rank is additive with respect to
short exact sequences of finitely generated left A(X)-modules. Also, we say
that X is A(X)-torsion if every element of X has a non-zero annihilator in
A(®). Then X is A(X)-torsion if and only if X has A(X)-rank equal to 0.

Elliptic curves without complex multiplication 9

It is natural to ask what is the A(X)-rank of the dual C(E/F.) of the
Selmer group of E over F,,. The conjectural answer to this problem depends
on the nature of the reduction of E at the places v of F dividing p. We
recall that E is said to have potential supersingular reduction at a prime v
of F' if there exists a finite extension L of the completion F, of F at v such
that E has good supersingular reduction over L. We then define the integer
7(E/F) to be 0 or [F, : Q,], according as E does not or does have potential
supersingular reduction at v. Put

w(E/F) = m(E/F), (20)

vlp

where the sum on the right is taken over all primes v of F dividi N
that 7,(E/F) < [F : QJ. e p Tote

Conjecture 1.7. For every prime p, the A(X)-rank of C(E/Fy) is equal to
(E/F).

;t is interesting to note that Conjecture 1.7 is entirely analogous to the con-
jecture made in the cyclotomic case in Greenberg’s lectures. Specifically, if
,K?° denotes the cyclotomic Zy-extension of F, and if I' = G(K /F), th’en
it is conjectured that the A(I")-rank of C(E/K) is equal to 7,(E/F) for all
primes p.

Example. Consider the curve of conductor 50
E=50(A1): y’+ry+y=2>—-z-2 (21)

Take F' = Q. This curve has multiplicative reduction at 2, so that 75 (E/Q) =
0. It has potential supersingular reduction at 5, since it can be shown to
achieve good supersingular reduction over the field Qs (13, ¥/—2 - 5% ). Hence
75(E/Q) = 1. It has good ordinary reduction at 3,7,11,13,17, 19,23,31,...
and so 7,(E/Q) = 0 for all such primes p. It has good supersingular reduc,tion,
at 29,59,..., and ,(E/Q) = 1 for these primes.

Theo.rem 1.8. Let t,(E/F) denote the A(L)-rank for C(E/Fy). Then, for
all primes p > 5, we have

(E/F) < t,(E/F) < [F : Q]. (22)

We remark that the lower bound for t,(E/F) given in (22) is entirely analo-
gous to what is known in the cyclotomic case (see Greenberg’s lectures [13]).
Howg\{er, the upper bound for t,(E/F) in (22) still has not been proven un-
conditionally in the cyclotomic theory. We also point out that we do not at
present know that ¢,(E/F) is an integer.
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Corollary 1.9. Conjecture 1.7 is true for all odd primes p such that E has
potential supersingular reduction at all places v of F dividing p.

This is clear since 7p(E/F) = [F : Q] when E has potential supersingular
reduction at all places v of F dividing p. For example, if we take FE to be the
curve 50(A1) above and F = Q, we conclude that C(E/Fw) has A(X)-rank
equal to 1 for p = 5, and for all primes p = 29,59,... where E has good
supersingular reduction.

We long tried unsuccessfully to prove examples of Conjecture 1.7 when
7,(E/F) = 0, and we are very grateful to Greenberg for making a suggestion
which at last enables us to do this using recent work of Hachimori and Mat-
suno [15]. As before, let Ko, denote the cyclotomic Z,-extension of F', and
let I' = G(Koo/F). Let Y denote a finitely generated torsion A(I')-module.
We recall that Y is said to have p-invariant 0 if (Y)r is a finitely generated
Z,-module, where (Y)r denotes the largest quotient of Y on which I' acts

trivially.

Theorem 1.10. Let p be a prime such that (i) p > 5, (i) &' = G(F/F)
is a pro-p-group, and (iii) E has good ordinary reduction at all places v of
F dividing p. Assume that C(E/Koo) is A(I")-torsion and has p-invariant 0.
Then C(E/Fs) is A(X)-torsion.

Example. Take E = X;(11), F = Q(us), and p = 5. Then E has good ordi-
nary reduction at the unique prime of F' above 5. The cyclotomic Zs-extension
of Q(us) is the field Q(use ). As was remarked earlier, Fy, /F is a 5-extension
for all n > 0, because Fp/F is a cyclic extension of degree 5, and Fy,/Fp is
clearly a 5-extension. Hence X is pro-5 in this case. Hence (15) shows that the
hypotheses of Theorem 1.10 hold in this case, and so it follows that C(E/F)

is A(X')-torsion.
The next result proves a rather surprising vanishing theorem for the coho-

mology of S(E/Fs). If p > 5, we recall that both X and every open subgroup
3" of 5 have p-cohomological dimension equal to 4.

Theorem 1.11. Assume that (i) p > 5, and (ii) C(E/Fw) has A(X)-rank
equal to 7,(E/F). Then, for every open subgroup X' of X, we have

Hi(E', S(E/Foo)) =0 (23)
for alli 2 2.

For example, the vanishing assertion (23) holds for £ = 50(Al) and p =
5,29,59,..., and for E = X;(11) and p =5, with F = Q in both cases.
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1.3 The Euler characteristic formula

Exact formulae play an important part in the Iwasawa theory of elliptic
curves. For example, if the Selmer group S(E/Fy) is to eventually be use-
ful for studying the arithmetic of E over the base field F, we must be able
to recover the basic arithmetic invariants of E over F from some exact for-
mula related to the Z-structure of S(E/Fw ). The natural means of obtaining
such an exact formula is via the calculation of the X-Euler characteristic of
S(E/Fy). When do we expect this £-Euler characteristic to be finite?

Conjecture 1.12. For each prime p > 5 ] ite i
. . 25, x(X, S(E/F, is finit
only if both S(E/F) is finite and 7,(E/F) = 0. Fex)) 15 finite if and

We shall show later that even the finiteness of H*(X, S(E/F,,)) implie

§' (E/F) is finite and 7,(E/F) = 0. However, the ir(nplica(tio/n (c;(f) )t)he cgnj:ctﬁiz
in the ?ther direction is difficult and unknown. The second natural question
to ask is what is the value of x(X, S(E/Fy)) when it is finite? We will now
describe a conjectural answer to this question given by Susan Howson and
myself (see (5], [6]). Let III(E/F) denote the Tate-Shafarevich group of E
over'F. For each finite prime v of F, let Eo(F,) be the subgroup of E(F,)
consisting of the points with non-singular reduction, and put ’

¢ = [E(F,) : Eo(F,)]. (24)

If A is any .abelian group, A(p) will denote its p-primary subgroup. Let |
be the p-adic valuation of , normalized so that |plp = p~*. We then deﬁnep

|

v

-1

P

o (E/F) = #ULE/ D)D)
(#(EF)(p)))
where it is assumed that III(E/F)(p) is finite. If v is a finite place of F, write

ky for the residue field of v and E,, for the reduction of E modulo v. Let JE
denote the classical j-invariant of our curve E. We define

9 = {finite places v of F such that ord,(jg) < 0}. (26)

I¥1 other words, 9 is the set of places of F where E has potential multiplica-
tive reduction. For each v € M, let L,(E, s) be the Euler factor of E at v
Thus L,(E, s? is equal to 1, (1 — (Nv)~%)~! or (1 + (Nv)~*)1 accordiné
as E has additive, split multiplicative, or non-split multiplicativé reduction
at v. The following conjecture is made in [6]:

}(l)‘onjecture. 1.13. Assume that p is a prime such that (i) p > 5, (ii) E
as good ordinary reduction at all places v of F dividing p, and (iii) S (E/F)
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is finite. Then H(Z, S(E/Fw)) is finite for i = 0,1, and equal to 0 for
i=2,3,4, and
-1

TT#EE)*x ] L&D

vip vedm

X(Z, S(E[Fx)) = pp(E[F) % :
P (27)

We remark in passing that Conjecture 1 made in our earlier note [5] is not
correct because it does not contain the term coming from the Euler factors
in 9. We are very grateful to Richard Taylor for pointing this out to us,

Example. Take F = Q and E to be one of the two curves Xo(11) and
X1(11) given by (4) and (5). The conjecture applies to the primes p =
5,7,13,17,23,31,... where these two isogenous curves admit good ordinary

reduction.
We shall simply denote either curve by E when there is no need to dis-

tinguish between them. We have
m={11}, Lu(E,s) =@1-117°"" (28)
and
#(Bs(F5)) =5, Ep(Fp)(p) =0forallp>7withp#11.  (29)
This last statement is true because of Hasse’s bound for the order of E,,(]F,,)

and the fact that 5 must divide the order of E,,(F,,) for all primes p # 5,11.
We also have ¢; = 1 for all ¢ # 11, and

Cu(Xo(ll)) = 5, C]1(X1(11)) =1.

As is explained in Greenberg’s article in this volume, a 5-descent on either
curve shows that

I(E/Q)(5) =0, E(Q) =Z/5L.
Hence we see that Conjecture 1.13 for p = 5 predicts that
X(Z, S(Xo(11)/Fa)) = 5%,  x(Z, S(X1(11)/Foo)) = 5. (30)

In Chapter 4 of these notes (see Proposition 4.10), we prove Conjecture 1.13
for both of the elliptic curves Xo(11) and X;(11) with F = Q and p = 5.
Hence the values (30) are true. Now assume p is a prime 2 7. We claim that

m(E/Q)(p) = 0. . (1)

Indeed, the conjecture of Birch and Swinnerton-Dyer predicts that NI(E/Q)
= 0, and Kolyvagin’s theorem tells us that III(E/Q) is finite since L(E,1) #
0. In fact, Kolyvagin’s method (see Gross [14], in particular Proposition 2.1)
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shows.that (31) holds if we can find an imaginary quadratic field K, in which
11 splits, such that the Heegner point attached to K in E(K) is not divisible
by P;.here we are using Serre’s result [26] that G(Fy/Q) = GLy(F,) for
all primes p # 5. The determination of such a field K is well known by
computation, but unfortunately the details of such a computation do not
seem to have been published anywhere. Granted (31), we deduce from (28)
and (29) that Conjecture 1.13 predicts that

x(Z, S(E[Fx)) =1 (32)

for all primes p > 7 where E has good ordinary reduction. At present, we
cannot prove (32) for a single prime p > 7.

In these notes, we shall prove two results in the direction of Conjecture
1.13, both of which are joint work with Susan Howson.

Theorem 1.14. In addition to the hypotheses of Conj
' jecture 1.13, let p be
such that C(E[Fy) is A(X)-torsion. Then Conjecture 1.13 is valid for p.

Of course, Theorem 1.14 is difficult to apply in practice, since we only have
rath.er weak results (see Theorem 1.10) for showing that C(E/Fy,) is A(X)-
torsion. The next result avoids making this hypothesis, but only establishes
a partial result. Put

&(E[F) = pp(E[F) x H(#(Ev(kv)))2 X H L,(E,1)7! B

v|p veEM

P (33)

Theorem 1.15. 'Let E be a modular elliptic curve over Q such that L(E, 1) #
0. Let p be a prime > 5 -where E has good ordinary reduction. As before,
;;t(II;?(Z: %(E))oo ). Z’i(ze;;}({l%(Hl(Z, S(E/F)) is finite and its order divides
, Epe)), and (ii X, S(E/Fy)) is finite of ezact ord E
#(H(5, Epe)) ) et GER)

We recall that we conjecture that H? (X, S(E/Fy)) = 0for j = 2,3,4 for
all p > 5, but we cannot prove at present that these cohomology gr(;ul;s are
even finite under the hypotheses of Theorem 1.15. Note also that the order
of H*(X, E,~) can easily be calculated using Lemma 1.3. As an example of
Theorem 1.15, we see that for E given either by X(11) or X;(11), we have

HY(Z, S(E/Fx)) = H'(S, S(E/Fx)) = 0 (34)
for all primes p > 7 where E has good ordinary reduction. Indeed, we have

H3(X, Eye) = 0 for all pri
) primes p # 5 because of Lemma, 1.3 and Serre’s result
that G(Fo/Q) = GLy(F,) for all p £ 5.
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2 Basic Properties of the Selmer Group

2.1 Nakayama’s lemma

If G is an arbitrary profinite group, we recall that its Iwasawa algebra A(G)
is defined by

A(G) = lim Z,[G/H], (35)
H

where H runs over all open normal subgroups of G. We endow Z,[G fH ]
with the p-adic topology for every open normal subgroup H. This induces a
topology on A(G) which makes it a compact Z-algebra, in which the ordinary
group ring Z,[G] is a dense sub-algebra. If X is a compact left A(G)-module,
our aim is to establish a version of Nakayama's lemma giving a sufficient
condition for X to be finitely generated over A(G). Balister and Howson (see
[1], §3) have pointed out that there are unexpected subtleties in this question
for arbitrary compact X. Fortunately, we will need only the case when X
is pro-finite, and these difficulties do not occur. We define the augmentation
ideal I(G) of A(G) by

I(G) = Ker(A(G) — Zyp = Z,|G/G)). (36)

Proposition 2.1. Assume that G is a pro-p-group, and that X is a pro-
p-abelian group, which is a left A(G)-module. Then X = 0 if and only if
X/I(G)X =0.

Proof. We have X = Hom(A4, Q,/Z,), where A is a discrete p-primary
abelian group. Moreover, X/I(G)X is dual to AS. Hence we must show that
AC = 0 if and only if A = 0. One implication being trivial, we assume that
AC = 0. Suppose, on the contrary, that A # 0. Since A is a discrete G-module,
it follows that AV # 0 for some open normal subgroup U of G. Hence there
exists a non-zero finite G-submodule B of AU. But then BG/U = 0 since
ASG =0, and so, as G/U is a finite p-group, we have B = 0 by the standard
result for finite p-groups. This is the desired contradiction, and the proof is
complete.

Corollary 2.2. Assume that G is a pro-p-group, and that X is a pro-p-
abelian group, which is a left A(G)-module. If X/I(G)X is a finitely generated
Z,-module, then X is a finitely generated A(G)-module.

Proof. Let z,...,z, be lifts to X of any finite set of Z,-generators of
X/I(G)X. Define Y to be the left A(G)-submodule of X generated by
z1,...,Ts. Then Y is a closed subgroup of X and X/Y is also a pro-p-
abelian group. But

I(G)(X]Y) = I(G)X +Y)]Y = X/Y.
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Hence X =Y by Proposition 2.1, completing the proof.

We make the following remark (see [1]). Let X be a pro-p-abelian group
which is a finitely generated left A(G)-module. If G is isomorphic to Z,,
the structure theory for finitely generated A(G)-modules implies that, if
X/I(G)X is finite, then X is certainly torsion over the Iwasawa algebra A(G).
However, contrary to what is asserted in Harris [16], Balister and Howson [1]
show that the analogue of this assertion breaks down completely if we take
G to be any pro-p open subgroup of GL3(Z,).

2.2 The fundamental diagram

We now return to our elliptic curve E which is defined over a finite extension
F of Q, and does not admit complex multiplication. We use without comment
all the notation of Chapter 1. Thus p denotes an arbitrary prime number,
Fo = F(Ep=), and X the Galois group of Fy, over F. The crucial ingredient
in studying the Selmer group S(E/F) as a module over the Iwasawa algebra
A(X) is the single natural commutative diagram (43) given below. Because
of its importance, we shall henceforth call it the fundemental diagram.

Let T denote any finite set of primes of F which contains all the primes
dividing p, and all primes where E has bad reduction. Let Fr denote the max-
imal extension of F' which is unramified outside of T and all the archimedean
primes of F, and let

Gr = G(Fr/F)

be the corresponding Galois group. We mention in passing that very little is
known about the Galois group Gr beyond the fact that its profinite order
is divisible by infinitely many distinct prime numbers. For example, it is
unknown whether Gt is topologically finitely generated even in the simplest
case when F' = Q and T = {2}, as was remarked to us by Serre.

By our choice of T', we clearly have F, C Fr. If H denotes any interme-
diate field with F C H C Fr, we put

Gr(H) = G(Fr/H). @37

Suppose now that L is a finite extension of F. For each finite place v of F,
we define

Jo(L) = P H'(Lu, E)(p), (38)

wlv

where w runs over all primes of L dividing v. We then have the localization
map

Ar(L) : H' (G1(L), Ep) — €D Ju(L). (39)

veT
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If H is an infinite extension of F, we define

Jo(H) = li_z)nJu(L),

where the inductive limit is taken with respect to the restriction maps, and L
runs over all finite extensions of F' contained in H. We also define Ar(H) to
be the inductive limit of the localization maps Ar(L). The following lemma
is classical:

¥

Lemma 2.3. For every algebraic extension H of F, we have S(E/H) =
Ker(Ar(H)).

Proof. Tt clearly suffices to prove Lemma 2.3 for every finite extension L
of F, and we quickly sketch the proof in this case. By definition, S(E/L) is
given by the exactness of the sequence

0 — S(E/L) — HY(L, Epw) — [[ H'(Lw, E),

where w ranges over all finite places of L. Let

or(L) : H'(L, Bp=) — || H'(Lu, E)
w{T

denote the map given by localization at all finite primes w of L which do not
lie above T. Clearly Lemma 2.3 is equivalent to the assertion

H'(Gr(L), Ep=) = Ker(pr(L))- (40)

The proof of (40) follows easily from two standard classical facts about the
arithmetic of E over local fields. Let w denote any finite prime of L which
does not lie above T. Then E has good reduction at w, and so

H'(G(L™ /L), E(LT")) =0, (41)

where L™ denotes the maximal unramified extension of L. It follows im-
mediately from (41) that the left hand side of (40) is contained in the right
hand side. Next, let P be any point in E(L,), and let P, be any point in
E(L,) such that p"P, = P for some integer n > 0. Then the second fact is
that, because w does not divide p and E has good reduction at w, we have
that the extension Ly, (P,)/L, is unramified. The inclusion of the right hand
side of (40) in the left hand side follows immediately from this second fact
and local Kummer theory on E. This completes the proof of Lemma 2.3.

In view of Lemma 2.3, we have the exact sequence

0 — S(B/Feo) — H (Gr(Fao), Epeo) 25 () Jo(Foo)-
veT (42)
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Taking X-invariants of (42), we obtain the fundamental diagram

0 — S(E/Fo)® — HY(Gr(Foo), Bp)® 2= @ J,(F0)®

veT
e & [E
0— SE/F) — H'(GrEe) 220, gum), W
veT

where the rows are exact, and the vertical maps are the obvious restriction
maps. We emphasize that all of our subsequent arguments revolve around
analysing this diagram. Since v is a direct sum

'Y=®'7vv

veT

where +, .denotes the restriction map from J,(F) to J,(F), we see that
the analy.s15 of Ker(vy) and Coker(y) is a purely local question, whose answer
at the primes v dividing p uses the theory of deeply ramified p-adic fields
developed in [4].

2.3 Finite generation over A(X)

As a first application of the fundamental diagram (43), we shall prove that, for
all primes p, the Pontrjagin duals of both H*(Gr1(F), Ep=) and S(E/Fy)
are finitely generated left A(X)-modules. We begin with a very well known
lemma. If A is a discrete p-primary abelian group, we recall that the Pontr-
Jjagin dual A of A is defined by

A =Hom(4, Q,/Z,).

Lemma 2.4. The Pontrjagin dual of H'(Gr,Ep=) is a finitely generated
Zp-module.

Proof. Taking Gr-cohomology of the exact sequence
0 — Ep, — Epee -3 Epoc — 0,
and putting A = H(Gr, Ep ), we obtain a surjection
H'(Gr,Ep) —» (A)y, (44)

where (A), denotes the elements of 4 of order dividing p. But H!(Gp, M) is
well known to be finite for any finite p-primary Gy-module M. Hence the fact
that (44) is a surjection implies that (A), is finite. Let X be the Pontrjagin
dual of A. Now (A), is dual to X/pX, and so this latter group is finite. But
then, by Nakayama’s lemma, X must be a finitely generated Z-module. This
completes the proof of Lemma 2.4.
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Lemma 2.5. The Pontrjagin dual of Ker(y) is a finitely generated Z,-
module of rank at most [F : Q].

Proof. We recall that the Z,-rank of a Zy,-module X is defined by
rankz (X) = dimg, (X ®z, Q).
Also, if A is an abelian group, we write

A" =lim A/p"A (45)

for the p-adic completion of A. Let Y be the Pontrjagin duz%l of Ker(vy), let
Z, be the dual of J,(F), and let Z = @1 Zv- Since Ker(y) is a sublgroup of
@D, cr Jo(F), it follows that Y is a quotient of Z. By Tate duahEy, H(F,,E)
is dual to E(F,), and so J,(F) = H'(Fy, E)(p) is dual to E(.F,,) ..Bu.t, by the
theory of the formal group of E at v, we have that E(F,)" is finite if v does
not divide p, and that E(F,)* is a finitely generated Z,-module of rank equal
to [F, : Q,] if v does divide p. Hence Z is a finitely generated Z,module of
rank equal to [F' : Q], and so Y must be a finitely generated Z,-module of
rank at most [F : Q] because it is a quotient of Z. This completes the proof
of Lemma 2.5.

Lemma 2.6. For all primes p, we have (i) Ker(f) and.Coker(ﬂ) are
finite, (ii) Ker(a) is finite, and (iii) Coker(a) is dual to a finitely generated
Z ,-module of Zp-rank at most [F : Q).

Proof. By the inflation-restriction sequence, we have thajc K.er(ﬂ) =
HY(X, Ey») and that Coker(8) injects into H?(Z, Epe). Assertion (i) follqws
immediately because H*(X, Eye) is finite for all 1 > 0 (see [29]) Assertion
(ii) is then plain because Ker() injects into Ker(8). Finally, it is clear from
(43) that we have the exact sequence

Im(\7(F)) N Ker(y) — Coker(a) — Coker(8),

and so (iii) follows from (i) and Lemma 2.4. This completes the proof of the
lemma.

Theorem 2.7. The Pontrjagin duals of both H'(Gr(Fw), Ep=) and
S(E/Fy) are finitely generated A(X)-modules.

Proof. As in Chapter 1, let
Fy = F(Ep), ZXo=G(Fwx/F)-

While X is not in general a pro-p-group, Xo always is pro-p since it is isompr-
phic under the injection (3) to an open subgroup of the kernel of .the' reduction
map from GL2(Zp) to GL2(Fp). Let X and Y denote the Pontrjagin duals of
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HY(Gr(Fw), Epeo) and S(E /Fo), respectively. Since A(X)) is a sub-algebra
of A(X), it clearly suffices to show that X and Y are finitely generated left
A(Xo)-modules. We shall establish this using Corollary 2.2. Note first that X
and Y are pro-finite. To prove this, we must show that H'(Gr(Fw), Ey« ) and
S(E/Fy) are inductive limits of finite groups. But clearly H! (Gr(Fo), Epes)
is the inductive limit of the finite groups H!(G1(L), Ey») where L runs over
all finite extensions of F' contained in Fy, and n runs over all integers > 1.
Similarly, S(E/F,) is the inductive limit of the finite groups

S(E/L, p*) = Ker(H'(Gr(L), Epr) — €D Ju(L)),
veT

where L and n run over the same sets. We now appeal to the fundamental
diagram (43), but with the base field F' replaced by Fp, and consequently X
replaced by . Since Ker(8) and Coker(f3) are finite, it follows immediately
from Lemma 2.4 for F and (43) that the dual of

HY(Gr(Fo), Ep )™ (46)

is a finitely generated Z,module. Hence X is a finitely generated A(Zp)-
module by Corollary 2.2, since X/I(5)X is dual to (46). We next claim
that the dual of

S(E[Fo) (47)

is a finitely generated Zj-module. By virtue of (43), it suffices to show that
both the image of a and the cokernel of a are dual to finitely generated Zy
modules. Now (iii) of Lemma 2.6 for Fy gives that Coker() is dual to a finitely
generated Z,-module. Also S(E/Fp) is contained in H*(Gr(Fp), Ep=), and
so we deduce from Lemma 2.4 that Im(a) is also dual to a finitely generated
Zy-module. Having proved the above claim, it again follows from Corollary
2.2 that Y is a finitely generated A(Xs)-module. This completes the proof of
Theorem 2.7.

2.4 Decomposition of primes in F,

We need hardly remind the reader that no precise reciprocity law is known for
giving the decomposition of finite primes of F in F,,. Nevertheless, we collect
together here some coarser elementary results in this direction, which will be
used later in these notes. We have omitted discussing the primes v dividing p
where E has potential supersingular reduction at v, since this involves the
notion of formal complex multiplication (see Serre [27]), and this case will
not be needed in our subsequent arguments.

Let v denote any finite prime of F. For simplicity, we write D(v) for the
decomposition group in X of any fixed prime of F,, above v. Thus D(v) is
only determined up to conjugation in X by v. Now D(v) is itself a p-adic Lie
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group, since it is a closed subgroup of the 4-dimensional p-adic Lie group X.
We can easily determine the dimension of D(v) in many cases.

Lemma 2.8. (i) If v does not divide p, then D(v) has dimension 1 or 2,
according as E has potential good or potential multiplicative reduction at v.
(i) Assume that v does divide p. Then D(v) has dimension 2 if E has poten-
tial multiplicative reduction at v, and dimension 3 if E has potential ordinary
reduction at v.

Since the global Galois group X = G(Fu/F) is a p-adic Lie group of dimen-
sion 4, we immediately obtain the following corollary.

Corollary 2.9. There are infinitely many primes of Foo lying above each
finite prime of F which does not divide p. There are also infinitely many
primes of Fs, lying above each prime of F, which divides p, and where E has
potential ordinary or potential multiplicative reduction.

We now prove Lemma 2.8. Let L denote the completion of F at v, and
let Loo = L(Ep~). We can then identify D(v) with local Galois group {2 =
G(Loo/L). We first remark that the dimension of {2 does not change if we
replace L by a finite extension L', i.e. if we put L, = L'(Epe) and =
G(L.,/L), then £ and 2’ have the same dimension as p-adic Lie groups. This
is clear since restriction to Lo, defines an isomorphism from {2’ onto an open
subgroup of £2. Thus we may assume that E has either good reduction or
split multiplicative reduction over L. We first dispose of the easy case when v
does not divide p. If E/L has good reduction, then L(Epe)/L is unramified,
and 2 plainly has dimension 1. If E/L has split multiplicative reduction, we
write gg for the v-adic Tate period of E. Then L is clearly obtained by
adjoining all p™-th (m = 1,2,...) roots of ¢g to L(p=), and it is then clear
that 2 has dimension 2 as a p-adic Lie group. We now turn to the two cases
when v divides p.

Case 1. Assume that v divides p, and that E/L has good ordinary reduction.
Let E,,oo denote the reduction of Ep~ modulo v, and let Epw be the kernel
of reduction modulo v. As usual, if A is an abelian group, we write Tp(A4) =
l(ix_n (A)pn, where (A),» denotes the kernel of multiplication by p™ on A. Now

we have the exact sequence of f2-modules
0 — Ty(Bpeo ) — Tp(E) — Tp(Epe) — 0, (48)

where the two end groups are free of rank 1 over Z, by our ordinary hy-
pothesis. Let 7 and ¢ denote the characters of {2 with values in Z, giving
its action on Tp(Epm) and T,(Ep= ), respectively. By the Weil pairing ne is
the character giving the action of £2 on Tp(u). Choosing a basis of Tp(Eps)
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whose first element is a basis of T,,(E,,oo), we deduce from (48) an injection
p: 2 = GLy(Z,) such that, for all o € 2, we have

o) = (" 4N, (49

where a(0) € Z,. Since E does not have complex multiplication, it is known
(see Serre [27]) that (48) does not split as an exact sequence of 2-modules
and so we have that a(s) is non-zero for some o € 2. Now let H,, denoté
the maximal unramified extension of L contained in Ly, and put My, =
Hoo(ppe). Thus we have the tower of fields

L CHyw C Mo = Hoo(ptp=) C Loo = L(Epe). (50)

We claim that the three Galois groups G(Hu/L), G(Ms /Hx) and
_G(L(,(J /Ms) are each p-adic Lie groups of dimension 1, whence it follows
immediately that {2 = G(Ls/L) is a p-adic Lie group of dimension 3, as
required. Since E,e is rational over Ho, it is clear that H., must be a finite
e?ctension of the unramified Z-extension of L, whence G(Hy, /L) has dimen-
sion 1. The action of G(M/Hs) on pipe defines an injection of this Galois
group onto an open subgroup of Z;, whence it also has dimension 1. Finally,
since ¢ and 7 are both trivial on G(Ly /M), the map o 5 a(o) defines ar;
injection of G(Leo/Ms) into Z,. But the image of this map cannot be 0 as
we remarked above, and so we conclude that G(Ly /M) is isomorphic to
Zp. This completes the proof that {2 has dimension 3 in this case.

Case 2. Assume that v divides p, and that E/L has split multiplicative
reduction at v. The argument that {2 has dimension 2 is entirely parallel to
that given when E does not divide p. Indeed, let g5 denote the Tate period
of E. Then L is again obtained by adjoining to L(pp=) the p™-th roots
(m =1,2,...) of gg. This completes the proof of Lemma 2.8.

2.5 The vanishing of H*(Gr(Foo), Epe)

We are grateful to Y. Ochi ([24]) for pointing out to us the following basic
fact about the cohomology of E over F,..

Theorem 2.10. For all odd primes p, we have
H2(GT(FOO),E,,°°) =0. (51)

';his is a rare example of a statement which is easier to prove for the extension
0o rathe'r than the cyclotomic Z,-extension of F. Indeed, if Ko, denotes the
cyclotomic Z,-extension of F', then it has long been conjectured that

H*(G1(Koo), Epee) = 0
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for all odd primes p. However, at present this latter assertion has only been
proven in some rather special cases.

We now give the proof of Theorem 2.10. Since Epe is rational over F,
the Galois group G7(Fw) = G(Fr/Fx) operates trivially on Epe, which is
therefore isomorphic to (Q,/Z,)? as a G7(Fi)-module. Hence it suffices to
show that

H*(G1(Feo), Qo /Zp) =0 (52)

for all primes p. But Fu is the union of the fields F = F(Epn+1) (n
0,1,...), and thus it is also the union of the fields Kn oo = Fn(up=) (n
0,1,...), since pp C Foo by the Weil pairing. Hence we have

H*(G1(Foo), Qo /Zp) = li_lngz(GT(Kn,oo), Qo /Zy),

where the inductive limit is taken with respect to the restriction maps. But
each of the cohomology groups in the inductive limit on the right vanishes,
thanks to the following general result due essentially to Iwasawa [19]. Let
K be any finite extension of Q, Ko the cyclotomic Zg-extension of K, and
Kt the maximal extension of K unramified outside T' and the archimedean
primes of K, where T is an arbitrary finite set of primes of K containing all
primes dividing p. Then we claim that

H*(G(Kr/Ko), Qo/Zp) =0 (53)

for all odd primes p. Here is an outline of the proof of (53). Let I' =
G(Ko/K), and write A(I") for the Iwasawa algebra of I'. Let 4;(K) denote
the A(I')-rank of the Pontrjagin dual of H*(G(KT/Kx), @ /Zyp) (i = 1,2).
By a basic Euler characteristic calculation (see [12], Proposition 3), we have

81(K) — 82(K) = r2(K), (54)

where r5(K) denotes the number of complex places of K. On the other hand,
we have

H' (G(K1/Keo), Qp/Zy) = Hom(G(Moo/Koo), Qo /Zs),

where M, denotes the maximal abelian p-extension of Ko, which is unram-
ified outside T' and the archimedean primes. But it follows easily from one of
the principal results of Iwasawa [19] that G(Moo/Koo) has A(I')-rank exactly
equal to r2(K). It follows from (54) that we must have d2(K) = 0. But the
dual of H*(G(K1/Kw), Qp/Zy) is a free A(I')-module for all odd primes p
(see [12], Proposition 4), and so (53) follows. This completes the proof of
Theorem 2.10.

Although we will not have time to give the proof in the present notes, we
mention in passing that Y. Ochi [24] and S. Howson [18] have proven that the
analogue of the Euler characteristic formula also holds for the A(X)-ranks of
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the Pontrjagin duals of the H(Gr(Feo), Ep=) (i = 1,2). Let €;(F) denote
the A(X)-rank of the Pontrjagin dual of H*(G1(Fs), Ep= ), where we recall
that the A(X)-rank is defined by (19). Although it is far from obvious, we
again have

e1(F) —&(F) = [F:Q], (55)

in exact parallel with the result given in Proposition 3 of [12] when Fy, is
replaced by the cyclotomic Z-extension K, of F. Granted (55), we obtain
the following consequence of Theorem 2.10.

Corollary 2.11. For all odd primes p, the Pontrjagin dual of
Hl (GT(Foo); Ep°°)
has A(X)-rank equal to [F : Q).

Since the Selmer group S(E/F) is a submodule of H(Gr(Fw), Ep=), we
see that the upper bound for the A(X)-rank of the dual of S(E/F,,) asserted
in Theorem 1.8 is an immediate consequence of Corollary 2.11.

3 Local cohomology calculations

3.1 Strategy

As always, E denotes an elliptic curve defined over a finite extension F of
Q, which does not admit complex multiplication. Throughout this chapter,
p will denote an arbitrary prime number, F,, = F(E,~), and X will denote
the Galois group of F,, over F. The aim of this chapter is to study the 2-
cohomology of the local terms J,(Fx), for any v € T, which occur in the
fundamental diagram (43). We recall that

Jv(Foo) = h_}m @Hl(Fn,w’E)(p)y

o yly

where F;, = F(Eyn+1), w runs over all places of F, dividing our given v
in T, and the inductive limit is taken with respect to the restriction maps.
Knowledge of the X-cohomology of the J,(F) will, in particular, play a
crucial role in the calculation of the X-Euler characteristic of S(E/Fy) in
the next chapter. These questions are purely local, thanks to the following
well known principle. If w is a place of Fi, we recall that Feow= Un>0 Frw.

Lemma 3.1. For each prime v in T, let w denote a fized prime of Fp
aboz'le v. Let X, C X denote the decomposition group of w over v. Then, for
all i > 0, we have a canonical isomorphism

HY(Z,Jy(Fe0)) = H (Zu, H (Foo,w, E) (D).
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Indeed, this is a simple and well known consequence of Shapiro’s lemma. Let
A, = G(F,/F), and let Ay, C Ay denote the decomposition group of .the
restriction of w to F,,. Then, for all n > 0, Shapiro’s lemma gives a canonical
isomorphism

H (A, Jo(Fn)) 3 H (Anw, H (Fauw, E)(P)) (i 20).

Passing to the inductive limit via the restriction maps asn — oo immediately

gives the assertion of Lemma 3.1. .
When v does not divide p, we shall see that well known classical meth-

ods suffice to compute the cohomology. However, when v divides p, we will
make essential use of the results about the cohomology of elliptic curves over
deeply ramified extensions which are established in [4], noting that in .thlS
case F 4 is indeed deeply ramified because it contains the deeply ramlﬁ'ed
field F,, (up ). All of the material discussed in this chapter is joint work with
Susan Howson.

3.2 A vanishing theorem
Theorem 3.2. Let p be any prime 2 5. Then

HY(Z,Jy(Fx)) =0 (56)
for alli > 1 and all primes v of F.

We break the proof of Theorem 3.2 up into a series of lemmas.
As before, let jg denote the classical j-invariant of E. Thus, fqr any
prime v of F, we have ord,(jg) < 0 if and only if E has potential multiplica-

tive reduction at v.

Lemma 3.3. Let p be any prime, and let v be a place of F such that
ordy(jg) < 0 and v does not divide p. Then Jy(Foo) = 0.

Proof. In view of the definition of J,(Fw), we must show that, under the
hypothesis of Lemma 3.3, we have

HY(Foouw, E)(p) =0 (57)
for all places w of Fy lying above p. Since v does not divide p, we have
E(Foo,w)®Q/Zy=0.
Hence local Kummer theory on E over F ., shows that
HY(Foo,w; Ep=) HY(Foo,uw, E)(P)- (58)

Thus (57) will certainly follow if we can show that the Galois group of F, over
Foo 1w has p-cohomological dimension zero. Let Mo denote the mz_nnma.l pro-
p-extension of F,,. We will show that Fu . contains M, which will certainly
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show that G(F,/ Foo ) has p-cohomological dimension zero. Now recall that,
by the Weil pairing, F,,, ,, contains the field Ho, = F,(ptp), and this latter
field is an unramified extension of F, which contains the unique unramified
Zp-extension of F,. Let F*" denote the maximal unramified extension of F,.
It is well known (see Serre [26]) that the maximal tamely ramified extension
of Fy, has a topologically cyclic Galois group over F"". Now M, is a tamely
ramified extension of F, because v does not divide p. It follows easily from
these remarks that any Galois extension of H,, whose profinite degree over
H is divisible by p®, must automatically contain M. But this latter con-
dition holds for F, ,, thanks to our hypothesis that ord,(jg) < 0. Indeed, to
see this, assume first that E has split multiplicative reduction at v, so that
E is isomorphic over F, to a Tate curve. Let gg denote the Tate period of
E over F,. Then F ,, is obtained by adjoining to H,, the p™-th roots of qg
forn =1,2,..., and thus it is clear that the Galois group of Fi, over Hy
is isomorphic to Z,. If £ does not have split multiplicative reduction at v,
there exists a finite extension L of F, such that E has split multiplicative
reduction over L. But then our previous argument shows that the profinite
degree of LF, 4, over LH, is divisible by p>, whence the same must be true
for the profinite degree of Feo oy Over Hy, since L is of finite degree over F,.
This completes the proof of Lemma, 3.3.

Lemma 3.4. Let p be a prime > 5, and let v be a place of F such that
ord,(jg) = 0 and v does not divide p. Then H'(X,J,(Fx)) =0 for alli > 1.

Proof. Let w be a fixed prime of F,, above v. Since v does not divide p,
the isomorphism (58) is again valid. Combining (58) with Lemma 3.1, we see
that the assertion of Lemma 3.4 is equivalent to

H' (2w, HY (Foo,u, Epe)) = 0 (59)

for all 4 > 1. We will first show that X,, has p-cohomological dimension
equal to 1, which will establish (59) for all i > 2. Now E has potential good
reduction at v since ord,(jg) > 0, and we appeal to the results of Serre-Tate
[31]. It follows from [31] that (i) E has good reduction over the field Fp ,, (here
we need p # 2), and (ii) the inertial subgroup of the Galois group of Fp,,
over F) has order dividing 24. We deduce from (i) that Fi, ,, is an unramified
extension of Fy . Let Lo denote the maximal unramified extension of F,
contained in Fy ,,. By virtue of (ii) and our hypothesis that p > 5, we see
that [Fog, 4 : Loo,y] is finite and of order prime to p. Moreover, L4 contains
the unramified Z,-extension of F, because Loy O F, (tpe= ). It is now plain
that X, has p-cohomological dimension equal to 1.

We are left proving (59) for i = 1. We begin by observing that H?(L, Ey«)
= 0 for all finite extensions L of F,, because H*(L, E,~) is dual by Tate
local duality to H°(L,T,(E)), and this latter group is clearly zero because
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the torsion subgroup of E(L) is finite. On allowing L to range over all finite
extensions of F, contained in Fe ., we deduce that

H?(Foo 1y Ep=) = 0. (60)

In view of (60), we conclude from the Hochschild-Serre spectral sequence
([17], Theorem 3) applied to the extension Feow over Fy that we have the
exact sequence

Ed

H2(Fy, Ep) — H'(Zu, H' (Foow, Ep)) — H(Zw; Bpe)-

(61)

But the group on the left of (61) is zero by the above remark, and the group
on the right is zero because X, has p-cohomological dimension equal to 1.
Hence the group in the middle of (61) is zero, and the proof of Lemma 3.4 is

complete.

Lemma 3.5. Let p be a prime > 5, and let v be any place of F dividing p.
Then HY(X,Jy(Fs)) =0 for alli > 1.

Proof. We must show that
H* (Zwy Hl(Foo,wa E)(p)) =0

for all i > 1, where w is some fixed prime of F, above v. However, the ques-
tion is now much subtler than in the proof of Lemma 3.4 for two reasons,
both arising from the fact that v now divides p. Firstly, X will now have
p-cohomological dimension greater than 1 because it will now be a p-adic Lie
group of dimension greater than 1 (see §2.4). Secondly and more seriously
there is no longer any simple way like that given by the isomorphism (58)
for identifying H'(Fxo w, E)(p) with H!(Foo,w, A) for an appropriate discrete
p-primary Galois module A. Happily, the ramification-theoretic methods de-
veloped in [4] give a complete answer to this latter problem, which we now
explain. Write G, for the Galois group of F, over F,, and I, for the inertial
subgroup of G,. As is explained in [4] (see p. 150), it is easy to see that there
is a canonical exact sequence of G,-modules

0—C — E, o —D—0, (62)

which is characterized by the fact that C is divisible and that D is the maxi-
mal quotient of E,~ by a divisible subgroup such that I, acts on D viaa finite
quotient. We recall that Fwo is deeply ramified in the sense of [4] because
it contains the deeply ramified field F,(ppe). Hence, combining Propositions
4.3 and 4.8 of [4], we obtain a canonical X-isomorphism

Hl(Foo,va)(p)-'—"rHl(Foo,w7D)- (63)
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Now D = 0 if and only if E has potential supersingular reduction at v, and so
we see.that Lemma 3.5 is certainly true in view of (63) when E has potential
supersingular reduction at v.

We note that. G(F,/Fu ) has p-cohomological dimension equal to 1 be-
cause the profinite degree of Fu . over F, is divisible by p™® (see [25]). It
follows that

H'(Fo,w, D) =0 (64)

for all 7 > 2. In view of (64), we conclude from the Hochschild-Serre spectral
sequence ([17], Theorem 3) applied to the extension F,,,, over F, that we
have the exact sequence

H7YY(F,, D) — H¥ (5, H(Foow, D)) — H*2(E,, D) (65)

for all j > 1. We proceed to show that the cohomology groups at both ends
of (65) are zero, which will establish Lemma 3.5 in view of (63). To prove our
claim that

Hi(F,,,D)=O (66)

for all i > 2, we recall that G(F, /F,) has cohomological dimension 2. This im-
plies firstly that (66) is valid for all ¢ > 3, and secondly that, on taking coho-
mology of the exact sequence (62), we obtain a surjection from H?(F,, Epe)
onto H?(F,, D). But, as was explained in the proof of Lemma 2.4, we have
H?*(F,, Epe) = 0, and so (66) also follows for i = 2. Next we claim that

HY(%y,D)=0 (67)

for all ¢ > 3. If F has potential multiplicative reduction at v, then X, has
p-cohomological dimension equal to 2, because X, is a p-adic Lie group of di-
mension 2 (see Lemma 2.8) which has no p-torsion because p > 5. Hence (67)
follows in this case. Suppose finally that E has potential ordinary reduction
at v. Then X, has p-cohomological dimension equal to 3, because X, is a
?-adic Lie group of dimension 3 (see Lemma, 2.8) and has no p-torsion. This
implies that (67) is valid for all < > 4, and also, on taking X,,-cohomology
of the exact sequence (62), that there is a surjection of H3(X,,, Ey=) onto
H?’.(Zw,D). Hence it suffices to show that H3(X,,Ey=) = 0. But X, is a
Poincaré group of dimension 3 since it is a p-adic Lie group of dimension 3.
Moreover, since ¥, is a closed subgroup of X, it is known (see Wingberg
[3.3]) that the dualizing module for T, is just the dualizing module for ¥
Ylewed_as a Xy-module, i.e. Q,/Z, with the trivial action of X,,. But, argu-
1n§ as in the proof of Lemma 1.3, we conclude that H3(X,,, E,~) is dual to
H (Zw, Tp(E)(~1)). On the other hand, since E has potential good reduc-
tlo.n at v, a result of Imai [20] shows that the p-power torsion subgroup of
E in the field F, (ppe-) is finite. Hence it is clear that HO(£,, Tp(E)(~1)) is

zero, and the proof of Lemma 3.5 is complete. This als
o pand the pr p o completes the proof
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3.3 Analysis of the local restriction maps

A crucial element of the analysis of the fundamental diagram (43) is to study
the kernel and cokernel of the restriction maps
Yo i Ju(F) = Hl(Fv, E)(p) — Jv(Foo)E = Hl(Foo,wa E)(p)zw .

(68)

Here v denotes any finite place of F, w is some fixed place of F,, above v,
and ¥, C ¥ is the decomposition group of w. .
We first discuss -y, when v does not divide p. We recall from §1.3 that
¢y = [E(Fy) : Eo(Fy)], and that L,(E,s) denotes the Euler factor of the
complex L-function of E at v. The following lemma is very well known (see

(3], Lemma, 7).

Lemma 3.6. Let v be any finite prime of F which does not divide p. Then
Jo(F) = H*(Fy,, E)(p) is finite, and its order is the exact power of p dividing
¢v/Ly(E, 1).

Proof. If A is an abelian group, we write

A :klnilA/pA

for its p-adic completion. By Tate duality, H 1(F,, E) is canonically dual
to E(F,), from which it follows immediately that H Y(F,,E)(p) is dual to
E(F,)*. Thus we must show that E(F,)* is finite of order the exact power
of p dividing ¢,/Ly(E, 1). Let k, be the residue field of v, and let E, denote
the reduction of E modulo v. We write E,,(k,) for the group of non-singular
points in the set E, (ky)- We have the exact sequence

00— E1(Fv) — EO(Fv) — Ens(kv) — 0,

where E,; (F,) is the kernel of reduction modulo v. Now E, (Fy) can be iden-
tified with the points of the formal group of E at v with coordinates in the
maximal ideal of the ring of integers of F,. As v does not divide p, multi-
plication by p is an automorphism of E;(F,), and thus E; (Fy)* = 0. Hence
the above exact sequence yields an isomorphism from Eo(Fy)* to Ens(ky)*
Define B, by B, = E(F,)/Eo(Fy). Since By is finite, we see easily that the
induced map from Eq(F,)* to E(F,)* is injective, and that we have the exact
sequence
0 — Ey(F,)* — E(F,)" — B, — 0.

Hence E(F,)* is finite, and its order is the exact power of p dividing
Co * #(Ens(ky)). Lemma 3.6 now follows immediately from the well known
fact (see [32]) that

(NU)Lv(E, 1)—1 = #(EnS(kv))-
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Lemma 3.7. 'Let v be any finite prime of F which does not divide p. Let M,
denote an arbitrary Galois extension of F, and write 2o = G(My/F,). Let

7o : H'(F,, B)(p) — H'(Moo, E)(p)*>
denote the restriction map. Then

Ker(*rv) = Hl(ncoa Ep°° (MOO))a

Coker(r,) = H?(£2o0, Epeo (M,)). (69)

Proof. We have the commutative diagram

HY(Fy, Epoo) —2— HY (Mg, Epoo )P

! l

H'(F,,E)(p) —> H'(Mw, E)(p)™,

wht?re 8y is also the restriction map, and the vertical maps are the surjections

d-erlved from Kummer theory on E. But both vertical maps are isomorphisms

since ,
E(F,)® Q/Zp = E(Ms) ® Q/Zp = 0,

because v does not divide p. Thus we can identify Ker(r,) with Ker(s,)
and Coker(r,) with Coker(s,). But, as was already remarked in the proo%
of Lemma 3.4, we have H?(F,, Ep=) = 0 by the Tate duality. Hence the
Hochschild-Serre spectral sequence shows that the assertion (69) holds for s
instead of 7, and the proof of the lemma, is complete. ’

Lemma 3.8. Let v be any finite prime of F which does not divide p. Let
Koo denote the cyclotomic Zy-extension of F,, and put I's, = G(Kx/F,).

Then H YT, Ep (Ko)) 15 a finite group whose order is the ezact power
of p dividing c,.

Proof. Let F" be the maximal unramified extension of F,, and put
W, = H! (G(F|Fy), E(F}™)).

It is well known (see [23]) that W, is the exact orthogonal complement of
.EO(F”) under the dual Tate pairing of H'(F, E) and E(F,). Hence W,(p)
is ﬁnite and its order is the exact power of p dividing c,. Since v does not
divide p, we can apply Lemma 3.7 with 2., = F?", and we conclude that

Wy (p) = H (G(F}" | F,), Epe(Fy)). (70)

But, a'mgain because v does not divide p, Ko is contained in F*", and the
groﬁnlte degree of F" over K, is prime to p. Hence the group on the
right of (70) can be identified under inflation with H!(I's, Epe (Koo )). This
completes the proof of the lemma.
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Proposition 3.9. Let v be any finite prime of F which does not divide p.
Ifordy(jE) < 0, then 7y, is the zero map, and the order of its kernel J,(F) is
the ezact power of p dividing c,/Ly(E,1). If ordy(jg) > 0, and p > 5, then
Yy s an isomorphism.

Proof. The first assertion of the proposition is clear from Lemmas 3.3 and
3.6. Also, applying Lemma 3.7 with Mo, = Fio,w, We see that

Ker('y,,) = Hl (Zw, EP°°)$

Coker(yy) = H*(Zy, Epe). ()
Suppose next that ord, (jg) > 0 and p > 5. By Lemma 2.8, X, is a p-adic Lie
group of dimension 1, and has no p-torsion because p 2 5, whence it has p-
cohomological dimension equal to 1. It follows from (71) that Coker(v,) = 0.
Let Ko, denote the cyclotomic Zg-extension of Fy,, and put I'c = G(Koo/Fy),
oo = G(Feo,w/Ko). Then we have the exact sequence

HY(leo, Epes (Koo)) — Ker(vs) — H' (@0, Epee)- (72)

We claim that the terms at both ends of this exact sequence are zero. Indeed,
the order of the group on the left of (72) is the exact power of p dividing ¢, by
Lemma 3.8. But it is well known [32] that our hypothesis that ord,(jr) > 0
implies that the only primes which divide c, lie in the set {2,3}. The term
on the right of (72) will vanish if we can show that the profinite degree of &5,
is prime to p. But, as was already explained in the proof of Lemma 3.4, the
results of [31) show that E has good reduction over Fo,» = F,(Ep), and that
the order of the inertial subgroup of the Galois group of Fg ,, over F, divides
24. Thus, if L, denotes the maximal unramified extension of F, contained
in Fy w, the degree of Fuo o Over Lo, must divide 24. But K, is the unique
unramified Z -extension of F,, and thus the profinite degree of Lo, over K,
is prime to p. Since p > 5, it follows that the profinite degree of Foo 4 Over
K is prime to p. This completes the proof of Proposition 3.9.

We next consider the situation when our finite prime v of F' divides p. In
this case, Tate duality shows that J,(F) is dual to

E(F,)* 5 L¥ x Ay,

where d, = [F, : @), and A, is the group of p-power torsion in E(F,).
In particular, J,(F) is always infinite. When E has potential multiplicative
reduction at v dividing p, it is conjectured that Ker(v,) is always finite.
However, this is only known at present when F' = Q, and its proof in this
case depends on the beautiful transcendence result of [2].

Lemma 3.10. Let v be any prime of F dividing p. If E has potential su-
persingular reduction at v, then v, is the zero map, whence, in particular,
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I_{e;i(’)’v) is infinite. If E has potential ordinary reduction at v, then Ker(vy,)
s finite.

P.roof. The proof makes use of the theory of deeply ramified extensions
discussed in the proof of Lemma 3.5. Indeed, if E has potential supersingular
reduction at v, the Galois module D appearing in the exact sequence (62) is
zero, and hence (63) shows that J,(F) is zero. This proves the first assertion
of the lemma. To prove the second assertion, it is simplest to use the well
known (see, for example, [4], §5) interpretation of the dual of Ker(,) in
terms of universal norms, namely that the exact orthogonal complement of
HY(Zy, E(Fs,)) in the dual Tate pairing between H'(F,, E) and E(F,) is
the group Ey(Fu ) defined by

EU(Foo,w) = ﬂ NL/F,, (E(L)),
L

where L runs over all finite extensions of F, contained in F,, w, and
Nip,r, denotes the norm map from L to F,. Hence Ker(v,) is’dual to
E(Fy)*/Ey(Foow)*. Suppose now that E has potential ordinary reduction
at v. Thus there exists a finite extension M of F, such that E has good
ordinary reduction over M. The field M, F,(Ep=) is again deeply ramified
because it contains F .. Applying Proposition 3.11, which will be proven
next by an independent argument, to E over M, we conclude that the kernel
of the restriction map (M) from H!(M, E)(p) to H'(My, E)(p) is finite.
Thus, by Tate duality, Ey(Mx)* is of finite index in E(M)*. But clearly

NM/FU(EU(MOO)*) C EU(Foo,w)* C E(Fv)*-

However, it is well known that the norm map sends an open subgroup of
E(M )* to an open subgroup of E(F,)*. Thus Ey(Fe,.)* is also of finite
index in E(F,)*. This completes the proof of Lemma 3.10.

In preparation for our study in Chapter 4 of the X-Euler characteristic
of the Selmer group S(E/F) in the case when E has good ordinary
reduction at all primes of F' dividing p, we now make a more detailed study
of Ker(,) and Coker(y,) when E has good ordinary reduction at a prime v
of F' dividing p. We again write k, for the residue field of v, and E, for the
reduction of E modulo v. Here is the principal result which we will establish.

Proposition 3.11. Assume that p > 3. Let v be a prime of F dividing p,
where E has good ordinary reduction. Then both Ker(7y,) and Coker(7y,) are
finite, and

#(Ker(yy -
;@;k—(}’;—)—)); = (#(Ey (ko) @)))". (73)

The proof is rather long, and will be broken up into a series of lemmas.
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Let O, be the ring of integers of Fy, and let E, be the formal group
defined over O, giving the kernel of reduction modulo v on E. For each finite
extension L of F,, let kz denote the residue field of L, and my, the maximal
ideal of the ring of integers of L. Then reduction modulo v gives the exact

sequence N _
0 — E,(mp) — E(L) — Ey(k) — 0.

Passing to the inductive limit over all finite extensions L of F, which are
contained in F ., We obtain the exact sequence

-+

0 — Ey(moo) — E(Foow) — Evlkos) — 0,

where m denotes the maximal ideal of the ring of integers of Foo,u, and ko
is the residue field of Fiqo -

Lemma 3.12. For alli > 1, we have
H(Zy, By(meo)) = HY(Fy, By (W),
where W denotes the mazimal ideal of the ring of integers of F..
Proof. By one of the principal results of [4] (Corollary 3.2), we have
H(Foow, Eo(M)) =0 (74)

for all i > 1, because Fi 4 is deeply ramified. By the Hochschild-Serre spec-
tral sequence, this vanishing implies that we have the exact sequence

0— Hi(ZunEv(moo)) — Hi(Fv,Ev(m)) — Hi(FOO,WvEU(m))Ew

for all i > 1. But the group on the right is zero by (74) again, and the proof

of the lemma is complete.
To lighten notation, let us define

v = #(Eo(ky)(P))- (75)

Lemma 3.13. Let v be a prime of F dividing p, where E has good ordinary
reduction. Then H! (F,,,E (W)) is finite of order e,. Moreover, for all i > 2,

we have H(F,, E,()) = 0.

Proof. We only sketch the proof (see [7] for more details). For all n > 1, we
have the exact sequence

0— Ev,pn — E,(@) 2= E, (@) — 0.
This gives rise to a surjection

Hi(Fy, By pr) — (H(Fy, By(W)))
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for a.ll z 2. 1; here, if A is an abelian group, (A)p~ denotes the kernel of
multiplication by p” on A. Passing to the inductive limit as n — oo, we
obtain the surjection

H(F,, B, y=) — H'(F,, E,(W))

for all ¢ > 1. Hence the final assertion of the lemma will follow if we can show
that

HY(F,, By pe) =0 (76)

for all 7 > 2. This is automatic from cohomological dimension when ¢ > 3.
For i = 2, we use the well known fact that E, ,~ is its own orthogonal
complement in tlie Weil pairing of E;» X Epn into p,n. Hence, by Tate local
duality, H?(F,, E, y=) is dual to H°(F,,T,(E,)), and this latter group is
zero since only finitely many elements of Ev,poo are rational over F,. This
completes the proof of (76).

We now turn to the first assertion of Lemma 3.13. Taking G(F,/F,)-
cohomology of the exact sequence at the beginning of the proof, and then
taking the inductive limit as n — 0o, we obtain the exact sequence

0 — Ey(mp) ® Qy/Z, — HY(Fy, By peo) — HY(F,, Ey (W) — 0.
(77)

On the other hand, since H 2(F,,,E',,,,,oo) = 0, it follows easily from Tate’s
Euler characteristic theorem that the dual of H!(F,, E,,,poo) is a finitely gener-
ated Zy-module of Z-rank equal to d, = [Fy : Q). Put W = HY(F,, EU P> )s
and let Wy;y be the maximal divisible subgroup of W. Since Wy;y ha,s, Ly
corank equal to d,, and since the elementary theory of the formal group tells
us that the group on the left of (77) is divisible of Z,-corank equal to d,, we
must have

Waiv = Ev(mF) ® Qp/Zp.

fI‘hus, as W/Wyg;, is finite, we conclude that H'(F,, E,, (m)) is finite. We now
introduce the Q,-vector space

Vo(By) = Tp(Ey) @2, Qp-

Clearly the continuous cohomology groups H(F,,V, (E,)) are also Qp-vector
spaces and so in particular divisible for all ¢ > 0. Also, since E,, p~ 18 its own
orthogonal complement under the Weil pairing for all n > 1, Tate local
duality implies that H?(F,, T,(E,)) is dual to H(F,, E 0,0 ) and this latter
group is finite of order e,. Hence taking cohomology of the exact sequence

00— T,,(Ev) — V,,(E,,) — E,,,,,oo — 0,
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we deduce from the above remarks that there is an isomorphism
W/Waiv 3 H2(Fy, Ty(EL)).

The proof of the Lemma is now complete since the group on the left is
isomorphic to H(F,, E,()), and the group on the right has order e,.

Lemma 3.14. Let v be a prime of F dividing p, where E has good ordinary
reduction. Then, for all i > 2, we have an isomorphism -

H (Zw, E(Foo,)) () % H (Zw, Eype). (78)
We also have the ezact sequence

0 — H(F,, Eu(M)) — H (Zu, B(Foo,0)) () — H' (Zw, By o) — 0.
(79)

Proof. We take the X,,-cohomology of the exact sequence
0 — Ey(Moo) — E(Foow) — Ey(koo) — 0,

then take the p-primary part of the corresponding long exact sequence, and
finally apply Lemmas 3.12 and 3.13. This completes the proof of the lemma.

We continue to assume that E has good ordinary reduction at a prime v
dividing p. Then, as we saw in Lemma 2.8, X, is a p-adic Lie group of
dimension 3. Assuming that p > 3, we shall show that X, has no p-torsion,
and hence it will follow that X, has a p-cohomological dimension equal to 3.
If A is a discrete p-primary X,-module, we say that A has finite X,-Euler
characteristic if H*(Z,, A) is finite for all i > 0, and, when this is the case,

we define
3

x(Zun A) = [ (#EH (B0, )T

i=0

I am very grateful to Sujatha for suggesting to me that the following result
should be true (see also Corollary 5.13 of [18]).

Lemma 3.15. Let v be a prime of F dividing p, where E has good ordinary
reduction. Assume thatp > 3. Then E, p= has finite X,,-Euler characteristic,
and

X( By By peo) = 1. (80)

Moreover, H3(Zy, Ey poe ) = 0.
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Be'fore proving Lemma 3.15, let us note that Proposition 3.11 follows
from it and Lemmas 3.13 and 3.14. Indeed, on applying the Hochschild-
Serre spectral sequence to the extension Fi co,w OVer Fy,, and recalling that
H%(F,, Ep) = 0, we deduce immediately that

Ker(y,) = HY(Zw, E(Foo,w))(P),
Coker(yy) = H(Zw, E(Foo 1)) (D).

But, by (78), we have
#(Coker(vy)) = ha,

where we write h; = #(H (L poo)) for ¢ > 0. By (79) and Lemma 3.13,
we have

#(Ker(vy)) = hohs.

Since ho = e,, we see that (73) follows immediately from (80) and the fact
that hs = 1. This completes the proof of Proposition 3.11.

We now turn to the proof of Lemma 3.15. We recall the following elemen-
tary facts which will be used repeatedly in the proof. Let G be a profinite
abelian group which is the direct product of Z,, with a finite abelian group of
order prime to p, and assume that G is topologically generated by a single ele-
ment. Let y denote a topological generator of G. Then G has p-cohomological
dimension equal to 1. If A is a discrete p-primary G-module, we have

HY(G,4) = A/(v-1)A.

Consider now the special case when A = Q, /Z,(¢)), where ¥/ : G —» ZX is a
continuous homomorphism (by Q, /Z (1)) we mean Q, /Z, endowed w1th the
action of G given by o(z) = ¥(0)z for o € G). Then

H'(G, Q/Z,($)) =0 ify#1. (81)

We recall the proof of (81). We have the exact sequence of G-modules

00— Zy(¥)) — Qo (¥) — Q/Zy(y) — 0.

If 4 # 1, then 9(v) # 1, and so y — 1 is an automorphism of Q, (). But this
implies that -y — 1 must be surjective on Q,/Z (%), proving (81).

' Let H,, denote the maximal unramified extension of F,, which is contained
in Foo,u, and put Mo, = Hoo (ppe ). Put

G1 = G(Foo,w/M),
G2 = G(Moo/Hw),
Gs = G(Hw/ Fy).
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Thus we have the tower of fields

,w

3

) Gh

E

) G2

[ee]

=

) Gs
F, 5

As in the proof of Lemma 2.8, we choose a basis of T,(E) whose first element
is a basis of Tp(Ey p=). Then the representation p of X, on T,(E) has the

form
o) = (" 1),

where 7 : X, — ZX is the character giving the action of Xy on Tp(Eyp=),

and ¢ : Ty, = Z) is the character giving the action of Zy on Tp(Ey,pe).
Now we first remark that each of G, G2 and G3 is the direct product of Z,
with a finite abelian group of order prime to p, and is topologically generated
by a single element. This is true for G3 because Hy contains the unique
unramified Z ;-extension of F,. It is true for G because of our hypothesis that
p > 3. Finally, it holds for G; because the fact that E does not have complex
multiplication implies that the map ¢ > a(o) defines an isomorphism from
G, onto Zy,. It now follows by an easy argument with successive quotients
that X, has no p-torsion. Hence H,, has p-cohomological dimension equal
to 3, as required. 5

To simplify notation, let us put W = E, peo. Now H?(G3, W) = 0 be-
cause (5 has p-cohomological dimension equal to 1. Moreover, G3 acts on
W via the character €, and this action is non-trivial. Hence (81) implies that
H'(G3,W) = 0. Hence the inflation-restriction sequence gives

HY(Z\,,W) = Homg, (X, W), (82)

where X = G(Foo,w/Hwx). Again, we have H*(G2, W) = 0 because G has
p-cohomological dimension equal to 1. On the other hand, since G2 acts triv-
ially on W, and is topologically generated by one element, we have H HGo, W)
= W. Thus, applying the inflation-restriction sequence to Hom(X, W), we
obtain the exact sequence

0 — W — Hom(X,W) — Homg, (G1, W) — 0.

Taking G5 invariants of this sequence, and recalling that H'(Gs, W) = 0, we
obtain the exact sequence

0 — W% — Homg, (X, W) — Homy (G, W) — 0, (83)
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where Y = G(M, /F,). To calculate the group on the right of this exact
sequence, we need the following explicit description of the action of Y on G4,
namely that, for 7 € G; and ¢ € Y, we have

o-1=n(0)/e(o)T. (84)

Indeed, recalling that o - 7 = 576!, where & denotes any lifting of o to £,
(84) is clear from the matrix calculation

p@orpe) " = (5 "),

Since G} is isomorphic to Z, with the action of X given by (84), we conclude
that

Hom(G1, W) = Q,/Z(e?/n)- (85)

Put x = €2 /. We claim that  is not the trivial character of Y = G(My/F,).
Let ¢ denote the character giving the action of ¥ on ppe. By the Weil
pairing, we have ¢ = en. Hence, if x = 1, then we would have ¢ = %, which
is clearly impossible since it would imply that 1) is an unramified character
factoring through G3. But then Homy (G, W) must be finite, since it is
annihilated by x(oo) — 1, where gy is any element of Y such that x(oo) # 1.
In view of (82) and (83), this proves the finiteness of H(X,,, W).

We next turn to study H%(X,,W). We have H?(G1,W) = 0 because
G1 has p-cohomological dimension equal to 1. Hence the Hochschild-Serre
spectral sequence gives the exact sequence

H*(Y,W) — H*(Z,,,W) — H(Y, H'(G1,W)) — H3(Y,W).
(86)

Now Y is a p-adic Lie group of dimension 2 without p-torsion, and thus Y
has p-cohomological dimension equal to 2. It follows that H3*(Y,W) = 0.
We also claim that H*(Y,W) = 0. Indeed, H2(G5, W) = 0 because G has
p-cohomological dimension equal to 1. Applying the Hochschild-Serre spectral
sequence, we obtain the exact sequence

H*(G3,W) — HX(Y,W) — HY(G3, HY(G2,W)).

But H?*(G3, W) = 0 because G3 has p-cohomological dimension equal to 1.
On the other hand, G3 acts trivially on G2 since My, is abelian over F,,
whence we have an isomorphism of G3-modules

HY (G2, W) = Qp /Zy(e).
Since ¢ is certainly not the trivial character of G3, it follows from (81) that

HY(Gs, @ /Zy(e)) =0,
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completing the proof that H2(Y,W) = 0. Recalling (85), we deduce from
(85) and (86) that

H*(Zw, W) = H'(Y, Q@ /Z(x)), (87)

where x = 2 /5. We now apply inflation-restriction to the group on the right
of (87). Since G3 has p-cohomological dimension equal to 1, we obtain the
exact sequence

0 — HY(Gs,U) — H'(Y, Q/Zp(x)) — H'(G2, Qp/Zp(x))* _’*?és)

where U = (Q,/Z,(x))®. But the restriction of x to G, is equal to 7!
restricted to G2, and so is certainly not the trivial character of Gs. It follows
that U is finite, and that H(G3, Q,/Z,(x)) = 0. But, since U is finite, it
follows that H'(G3,U) has the same order as H°(G3,U) = Homy (G1, W).
Thus (87) and (88) imply that H%(X,,, W) is finite, and

#(H*(Zy, W) = #(Homy (G1, W)). (89)

Hence our Euler-characteristic formula (80) will follow from {83) and (89)
provided that we can show

H3(Z,, W) =0. (90)

To prove (90), we apply entirely similar arguments to those used above. We
have H*(G1,W) = 0 for i > 2 since G has p-cohomological dimension 1, and
H(Y,W) =0 for i > 3, since Y has p-cohomological dimension 2. Hence the
Hochschild-Serre spectral sequence yields an isomorphism

H(Zy,W) = H*(Y, H'(G,, W)). (91)

We again apply the Hochschild-Serre spectral sequence to the right hand side
of (91). Since G2 and G5 have p-cohomological dimension 1, we deduce using
(85) that

H(Y, H'(G1,W)) = H'(G3, H* (G2, Qu/Zp(x))),

where x = €2 /7. But, as remarked above, x is not the trivial character of G,
and so H(G2, Q,/Z,(x)) = 0. In view of (91), we have now proven (90),
and the proof of Lemma 3.15 is at last complete.

Lemma 3.16. Assume that p > 3. Let v be a prime of F dividing p such
that v is unramified in F/Q, and E has good ordinary reduction at v. Then
Yy 18 surjective.

Proof. By virtue of (78), we must show that, under the hypotheses of the
lemma, we have

H?(5y,, Eype) = 0. (92)
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Now by (87), the group on the left of (92) is equal to
HY(G(Moo/Fy), Qo /Zp(x)),

where x is the character €2/n of G(M /Fy). As explained immediately after
(88), we have

#(H (G(Mwo/F,), Qo /Zp(X))) = #((Q/Zp(x))C Mo/ F)). o)

But M, is the composite of the two fields Hy, and F,(up=), and the inter-
section of these two fields is clearly F, in view of our hypothesis that v is
unramified in F/Q. Hence we can choose ¢ in G(M/F) such that e(o) =1
and x(o) is a non-trivial (p — 1)-th root of unity. But x(¢) — 1 annihilates
the group on the right of (93), and so this group must be trivial since x(o)
is not congruent to 1 mod p. This completes the proof of Lemma 3.16.

4 Global Calculations

4.1 Strategy

Again, E will denote an elliptic curve defined over a finite extension F of
Q, which does not admit complex multiplication; and F,, = F(Ep~). We
shall assume throughout that p > 5, thereby ensuring that ¥ = G(F/F)
has p-cohomological dimension equal to 4, and that all the local cohomology
results of Chapter 3 are valid. Recall that 7" denotes any finite set of primes
of F', which contains both the primes where E has bad reduction and all the
primes dividing p. We then have the localization sequence defining S(E/F,)
(see (42)), namely

0 — S(B/Foo) — H*(Gr(Feo), By) “Z52 €D J(Fic),
veT

where Jy(Foo) = lg)n Jy(L), as L runs over all finite extensions of F' contained
in Fi, and

Jo(L) = @ H (L, E)(p)-

wlv

We believe that the map Ar(F) should be surjective for all odd primes p,
but we are only able to prove this surjectivity in some special, but non-trivial,
cases using the results of Hachimori and Matsuno [15]. We then investigate
consequences of the surjectivity of Ay (Fu) for the calculation of the X-Euler
characteristic of the Selmer group S(E/F,). In the last part of the chapter,
we relate the surjectivity of Ap(Fy) to the calculation of the A{X)-rank of
the dual C(E/Fy) of S(E/Fw). Again, all the material discussed in this
chapter is joint work with Susan Howson.
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4.2 The surjectivity of Ar(Feo)

In this section, we first calculate the X-cohomology of HY(Gr(Fu), Ep>)-
We recall that the Galois group Gr(F) = G(Fr/F) has p-cohomological
dimension equal to 2 for all odd primes p, and so, by a well known result,
every closed subgroup of Gr(F) has p-cohomological dimension at most 2.

Lemma 4.1. Assume that p > 5. Then
H (S, H(Gr(Fu), Bp=)) =0 (94)
for all i > 2. Moreover, if S(E/F) is finite, we have
H'Y(Z, HY(Gr(F), Ep=)) = H*(Z, Ep=). (95)

Proof. We begin by noting that
HY(G1(Fs), Ep) =0

for all k > 2. Indeed, this is the assertion of Theorem 2.10 for k = 2, and it
follows for k > 2 because G1(Fs) has p-cohomological dimension at most 2,
since it is a closed subgroup of Gr(F). Also, we clearly have

HYGr(F), Ep=) =0

for all £ > 3. Hence, for all i > 1, the Hochschild-Serre spectral sequence
([17], Theorem 3) gives the exact sequence

HYY(Gr(F), Epe) = H(Z, H(G1(Feo), Ep=)) = H*?%(3, Epeo) = 0.
(96)

Assertion (94) follows, on recalling that H*(XZ, Epe) = 0 by Theorem 1.2.
Moreover, the next lemma shows that the hypothesis that S(E/F) is finite
implies that H2(Gr(F), Ep=) = 0. Hence (95) also follows on taking i =1
in (96). This completes the proof of Lemma 4.1.

The following lemma about the arithmetic of E over the base field F is
very well known (see Greenberg’s article in this volume, or [7], Chapter 1).
Recall that o

E(F)(p) = Hom(E(F)(p), Qv /Zp)-

Lemma 4.2. Let p be an odd prime, and assume that S(E/F) is finite.

rr—

Then H2(Gr(F), Ep=) = 0, and Coker (A7(F)) = E(F)(p).

Let 5’ denote any open subgroup of X. Applying Theorem 3.2 when the
base field F is replaced by the fixed field of X', we conclude that

HY(E, Jo(Feo)) = 0 (97)
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for alli > 1. Similarly, we conclude from Lemma 4.1 that
H(Z', H(G1(Fx), Ep=)) = 0 (98)

for all 4 > 2. The following result gives a surprising cohomological property
of the Selmer group S(E/F,,).

Prqpqsition 4.3. Assume that p > 5, and that the map Ar(Fy) in (42) is
surjective. Then, for every open subgroup X' of X, we have

H'(Z', S(E[Fx)) =0 (99)

for alli > 2.
Proof. This is immediate on taking X'-cohomology of the exact sequence

0 — S(E/Foo) — H'(Gr(Feo), Eym) 22524 @ J,(F0) — 0,
veT (100)

and using (97) and (98). This completes the proof.

. We now turn to the question of proving the surjectivity of the localiza-
tion map Ar(F). There is one case which is easy to handle, and is already
discussed in (8].

Propqsition 4.4. Assume that p is an odd prime, and that E has potential
supersingular reduction at all primes v of F dividing p. Then Ar(Fy) is
surjective.

Proof. Let v be any prime of F dividing p, and let w be some fixed prime of
Fo above v. As has been explained in the proof of Lemma 3.5, the fact that
Foo,1 is deeply ramified enables us to apply one of the principal results of [4]
to conclude that (63) is valid. But now D = 0 because, by hypothesis, E has
potential supersingular reduction at v. It follows that

f(?r _all primes v of F dividing p. Let T" denote the set of v in T" which do not
divide p. Now it is shown in [8] (see Theorem 2) that the localization map

M (Foo) : H(GT(Fos), Epo) — €D Ju(Fio)
veT’

is surjective for all odd primes p. In view of (101), we conclude that X’ (Fo) =
A7(Fw), and the proof of Proposition 4.4 is complete. (o)

Example. P.roposition 4.4 applies to the curve E = 50(A1) given by (21)
and F' = Q, with p either 5 (where E has potential supersingular reduction) or
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one of the infinite set {29,59,...} of primes where E has good supersingular
reduction. It follows that, if T is any finite set of primes containing {2,5,p},
then Ar(Fso) is surjective and (99) holds.

It seems to be a difficult and highly interesting problem to prove the
surjectivity of Ar(Foo) when there is at least one prime v of F' above p, where
E does not have potential supersingular reduction. We are very grateful to
Greenberg for pointing out to us that one can establish a first result in this
direction using recent work of Hachimori and Matsuno [15]. Let K denote
the cyclotomic Z-extension of K. Put I' = G(Kw/K), and let A(I") denote
the Iwasawa algebra of I'. We recall that S(E/Koo) denotes the Selmer group
of E over K, and C(E/K) denotes the Pontrjagin dual of S(E/Kw).

Theorem 4.5. Let p be a prime number such that (i) p 2 5, (i) ¥ =
G(Fx/F) is a pro-p-group, (iii) E has good ordinary reduction at all
primes v of F dividing p, and (iv) C(E/Ks) is a torsion A(I')-module
and has p-invariant equal to 0. Then Ar(Fy) is surjective.

Proof. The argument is strikingly simple. Let n be an integer > 0. Recall
that F,, = K(Epn+1). Put

Hn,oo = Fn(ﬂp‘”)’ 2, =.G(Hﬂ,00/Fﬂ)'

Since pp C Fn by the Weil pairing, we see that Hp, oo is the cyclotomic Zp-
extension of F,. Now F,, is a finite Galois p-extension of F' by our hypothesis
that ¥ = G(Fw/F) is a pro-p-group. Hence, by the fundamental result of
Hachimori and Matsuno [15], the fact that C(E/Ko) is A(I')-torsion and
has p-invariant equal to 0 implies that C(E/H, n.00) i A(£2,)-torsion, and has
p-invariant equal to 0. Let

Ar(Hn o) : H{GT(Hn,c0)s Epee) — €D Jo(Hn,0)
veT

be the localization map for the field Hy, oo. Since Fy, is plainly the union of
the fields Hyp 0o (n =0,1,...), it is clear that

AT(Foo) = li_n_)m/\T(Hn,oo)a (102)

where the inductive limit is taken with respect to the restriction maps. But
it is very well known (see for example Lemma 4.6 in Greenberg’s article in
this volume) that the fact that C(E/Hn,o0) is A(£2,)-torsion implies that the
map Ar(Hn,o0) is surjective. Hence Ar(Fy) is also surjective because it is an
inductive limit of surjective maps. This completes the proof of Theorem 4.5.

Remark. One can replace hypothesis (iv) of Theorem 4.5 by the following
weaker assumption: (iv)’ E is isogenous over F' to an elliptic curve E' such
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that C(E'/K ) is A(I")-torsion, and has g-invariant 0. Indeed, assuming (iv)’
the z?,b(.)ve argument shows that C(E'/Hpn o) is A(£2,)-torsion for all n > 0,
But it is well known that the fact that C(E'/Hy, o) is A(f2,)-torsion im;jlieé
that C(E/H, ) is A(f2,)-torsion (however, it will not necessarily be true
Fhat C(E / H},,0) has p-invariant 0). Hence we again conclude that Ay (H, )
1s surjective for all n > 0, and thus again Ar(F) is surjective. o

ExamPles. As was explained in Chapter 1, the hypotheses of Theorem 4.5
are satisfied for £ = X, (11) given by equation (5), F = Q(us), and p = 5
.Hence we conclude that the map Ar(Fy) is surjective in this case, where T
is any finite set of primes containing 5 and 11. Moreover, the abm’/e remark
enables us tq conclude that, for T' any finite set of primes containing 5 and
11, Ar(Fo) is surjective for Fo, = Q(Ese), and E the curve Xo(11) given
by (4) or the third curve of conductor 11 given by s

v’ +y =2® - 2% — 7820z — 263580, (103)

which is 11(A2) in Cremona’s table [9]. This is bec
i : ause both
are isogenous over Q to X;(11). ] @ both of these curves

4.3 Calculations of Euler characteristics

Recall that 7,(E/F) is the integer defined by (20). Thus 7, (E/F) = 0 means
thf'a,t E has potential ordinary or potential multiplicativepreduction at each
prime v of F dividing p. If p > 5, Conjecture 1.12 asserts a necessary and
sufficient condition for the X-Euler characteristic of S (E/F) to be ?inite
The necessity of this condition is easy and is contained in the following lemma:

Lemma 4.6. Assume p is an odd pri 0 ]
: prime. If H(X, S(E/F. 3
S(E/F) is finite and ,(E/F) = 0. (5, SBI o)) s finie, then

Proof. We use the fundamental diagram (43). We recall that, by Lemma 2
Ke have that Ker((), OCoker(ﬂ), and Ker(a) are finite for a.il gdd primes g’
) (())tvlvl ;s(sgm}‘e that HO(X, S(E/Foo).) is finite. It follows from (43) that
foh 8 /F) and Coker(a) are finite. Since S(E/F) is finite, we deduce
oon emma, 4.2 that Coker(Ar(F)) is finite. Using the fact that Ker(5)
_0 er()\T(F))Z and Coker(a) are all finite, we conclude from (43) that Ker('y),
—f (<3) I?e.r('.y,,) is finite, where v runs over all places in T. But, if v is a place
of F dividing p where E has potential supersingular reduction, then

Ker(v,) = H'(F,, E)(p). (104)

;htlls is becau§e, as we l.lave remarked on several occasions, (101) holds when
o as potential supersmg'ular reduction at v. Since (104) is clearly infinite
conclude from the finiteness of Ker(y) that E does not have potentiai
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supersingular reduction at any v dividing p. This completes the proof of
Lemma 4.6.

The remainder of this section will be devoted to the study of
X(Z, S(E/Fx))

under the hypotheses that p > 5, S(E/F) is finite, and E has good or-
dinary reduction at all primes v of F dividing p. Of course, this is a case
where 7,(E/F) = 0, so that we certainly expect the Euler characteristic
to be finite. Unfortunately, at present, we can only prove the finiteness of
H{(Z, S(E/Fy)) for i = 0,1, without imposing further hypotheses. We ex-
pect that

HY (Z,S(E[Fx)) =0 (122), (105)

but it is curious that we cannot even prove that the cohomology groups in
(105) are finite. However, if we assume in addition that Ar(Fo) is surjective,
then we can show that (105) holds and that our Conjecture 1.13 for the exact

value of x(X, S(E/F)) is indeed true.
We recall the fundamental diagram (43), and remind the reader that
¥7(Fs) denotes the map in the top right hand corner of the fundamental

diagram.

Lemma 4.7. Assume that (i) p > 5, (i) S(E/F) is finite, and (iii) E
has good ordinary reduction at all primes v of F dividing p. Then both
H%(X, S(E/Fx)) and Coker(yr(Fw)) are finite. Moreover, the order of
HY(X, S(E/Fx)) is equal to

&(B/F) - #(H*(Z, Ep)) - #(Coker(¢r(Feo))), (106)
where &(E/F) is given by (33).

Proof. We simply compute orders using the fundamental diagram (43). We
claim that

Ker(§) = H'(Z, Ep),

Coker(8) = H*(Z, Ep). (107

This follows immediately from the inflation-restriction sequence, on noting
that H2(Gr(F),Ep=) = 0 by Lemma 4.2, since S(E/F) is finite. As in
Chapter 1, write h;(E) for the cardinality of H (%, Ep). Combining (107)
with Serre’s Theorem 1.2, we conclude that

4(Kerf) _ h(E) _ ho(B)
F(CokerB) = ha(B) (108)

hs(E)
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Next we analyse the map v appearing in (43). Combining Propositions 3.9
and 3.11, we see that

II «/L.(E,1)

veEM

#(Ker ) _
#(Cokery) H € X

-1
, (109)
p

where e, denotes the order of the p-primary subgroup of E,,(kv).
.We' now.consider the following commutative diagram with exact rows,
which is derived from the right side of (43), namely

0 — ImAr(Fy) — EBTJ,,(FOO)E — Coker Ar(Fo) — 0
ve

Je K Js

0— ImAp(F) — @TJv(F) — Coker Ar(F) - 0.
veE

(110)

He‘re 4 and ¢ are the obvious induced maps. We have already seen that 7 has
ﬁn-lte kernel and cokernel, and also Lemma 4.2 shows that Coker(Ar(F)) is
finite of order ho(E). Applying the snake lemma to (110), we conclude that
both 4 and & have finite kernels and cokernels, and that

#(Ker §) _ #(Ker~y) #(Coker¢)
#(Coker 8) #(Coker ) #(Kere) - (111)
It also follows that Coker(Ar(Fy)) is finite, and thus
#(Cokere)  #(Coker Ar(F))
(112)

#(Kere) ho(E)
Finally, we also have the commutative diagram with exact rows given by

0 S(E/Fw)” - HYGT(Fy), By )* = Im Ar(Fss) = 0

I [E s

0~ S(E/F) = HYG7(F),Eps) — ImAr(F) — 0. (113)
It follows on applying the snake lemma to this diagram that
#(H°(X, S(E/F))) _ #(CokerB)  #(Kerd)
#EEF) #Kef) * FCokerd) (19

Since S(E/F) is finite, we have S(E/F) = LI(E/F)(p). Also, we recall the
well knpwn fact that ¢, < 4 if v does not belong to the set 9t of places v
of F vs-nt.h ord,(je) < 0 (of course, ¢, = 1 when E has good reduction at v).
fombmlng (108), 5109), (111), (112) and (114), we obtain the formula (106)
or the order of H(X, S(E/Fw)). This completes the proof of Lemma 4.7.
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Lemma 4.8. Assume that (i) p > 5, (ii) S(E/F) is finite, and (iii) E has good
ordinary reduction at all primes v of F dividing p. Then H' (X, S(E/Fx))
is finite, and its order divides

#(H*(Z, Ep)) - #(Coker(yr(Fx)))- (115)
Proof. From (42), we have the exact sequence

0 — S(E/Fs) — HYG1(Fw), Epe) — Im(Ar(F)) — 0.
£116)

Taking 2-cohomology, and recalling (95), we obtain the exact sequence

HY(G1(Foo), Ep)® 5 In(Ar(Fo0))® = HY(Z, S(B/Fw)) = H¥(Z, Ep),
(117)

where 8 is the obvious induced map. But clearly Coker(8) is finite, and its
order divides the order of Coker(17(Fu)). Lemma 4.8 is now plain from
(115), and its proof is complete.

Lemma 4.9. Assume that (i) p > 5, (ii) S(E/F) is finite, (iii) E has good
ordinary reduction at all primes v of F dividing p, and (iv) p is unremified
in F. Then the map y1(Fw) appearing in the fundamental diagram (43) is
surjective.

Proof. Let Ko, denote the cyclotomic Zy-extension of K, and put I' =
G(Koo/K). Now it is well known (see Theorem 1.4 of [13] or [7]) that hy-
potheses (ii) and (iii) of our lemma imply that C(E/K) is a torsion module
over A(I"). As was already used crucially in the proof of Theorem 4.5, this in
turn implies that the localization map Ar(Koo) is surjective (see [13], Lemma
4.6), so that we have the exact sequence

0 — S(E/Keo) — H(Gr(Koo), Bpe) ~Z5= () 7, (Koo) — 0.
veT (118)

In addition, it is well known (see [7], Proposition 4.15 or [13]) that our hy-
potheses that S(E/F) is finite and p is not ramified in F' imply that

HY(I', S(E/Kx)) =0. (119)
Hence we obtain the exact sequence

0 —+ S(E/Koo) — HYGr(Koo), Ep)" Y252 @y 7, (Ko0)T — 0.
veT (120)

Now, by Lemma 3.16, the map « appearing in the fundamental diagram (43)

is surjective, because p is not ramified in F. Hence the vertical map x in the
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commutative diagram

HY(G1(Fu), Bpe)® 2= @ 1, (F0)®
veT

I [+

HY(Gr(Ko), oo )T 22 D Jo(Kee)"

is ajlso .31.1rjective, because +y factors through . But then it is clear that the
surjectivity of ¥7(K) implies the surjectivity of Y7(Fx). This completes
the proof of Lemma 4.9.

Now.take F = Q, and assume that L(E,1) # 0. Since L(E,1) # 0,
Kolyvagin’s theorem tells us that S(E/Q) is finite for every prime p. Thus

Th(;zo;r(;m 1.15 of Chapter 1 is an immediate consequence of Lemmas 4.7,4.8
and 4.9.

Proposi.tion 4.10. Assume that (i) p > 5, (ii) S(E/F) is finite, (iii) E has
gooc-i or.'dmary reduction at all primes v of F dividing p, and (iv) Ar(Fy) is
surjective. Then Conjecture 1.13 holds for E/F and p.

Proof. By virtue of (iv), we know from Proposition 4.3 that
HYX,S(E/Fx)) =0 fori>2.

We z.ilso have the exact sequence (100), and taking X'-cohomology of it, we
obtain the exact sequence

0 — Coker (Y7(Feo)) — H'(Z, S(E, Fy)) — H3(E, Epeo) — 0,
(121)

wherf the term on the right comes from (95). Thus we see that the exact order
of H'(X, S(E/FL)) is given by (115), and so we obtain from Lemma 4.7

#(H°(Z, S(E/Fx))) = &(E/F)-#(H'(Z, S(E/Fx)))-
(122)

Thus (27) is valid, and the proof of Proposition 4.10 is complete.

E).(ar.nple. Take F = Q, and p = 5. Let Ey, E,, E» denote, respectively, the

elliptic curves (4), (5) and (103) of conductor 11. We have just shown that

Ar(Fu) is surjective for all three curves, with T = {5,11}. Hence Proposition

‘vlv.:(:l tells us that Conjecture 1.13 holds for p = 5 and all three curves. Thus
ave

HYZ, S(Ei/F)) =0 (k>2)
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for i = 0,1, 2. Moreover, as was explained in Chapter 1, we have
X(Z, S(Eo/Fx)) =5°, x(Z, S(B1/Fx)) = 5.
Similarly, one can show that
X(Z, S(B2/Fx)) = 5,

noting that

II(E,/Q)(5) =0, Ex(Q) =0. -
Now take F' = Q(us) and p = 5, and take E to be the elliptic curve E,. We
have E; (F)(5) = Z/5Z, and, by a 5-descent (see [7], Chapter 4), we obtain
1I(E; /F)(5) = 0. Now 11 splits completely in F, and Ly (E, s)=(1-11"%)7!
for each of the four primes v of F dividing 11. Hence we conclude that

%(G(Foo /Q(is)), S(Er/Foo)) = 5*.

4.4 Rank calculations

In this last section, we only sketch the relationship between the surjectivity
of A7 (Fso) and Conjecture 1.7. The basic idea is to compute A(X)-ranks (we
recall that the notion of A(X)-rank is defined by (19)) along the dual of the

exact sequence

0 — S(E/Foo) — H'(G1(Fao), Epew) ~2E=h @) 7, (Foo)-
veT (123)

Let t,(E/F) denote the A(X)-rank of C(E/ Fy). It follows immediately from
(123) and Corollary 2.11 that

to(E/F) = [F : Q] — A(Z)-rank of dual of In(Ar(Fxo))-
(124)

Thus the upper bound for t,(E/F) given in Theorem 1.8 is clear. To establish
the lower bound for t,(E/F) in Theorem 1.8, we need to determine the
A(Z)-rank of the dual of J,(Fy) for all v € T. We have already seen on
several occasions that Jy(Fs) = 0 when v divides p, and E has potential
supersingular reduction at v. The following result, which we do not prove
here, is established in Susan Howson’s Ph.D. thesis (see Proposition 6.8 and

Theorem 6.9 of [18]).

Lemma 4.11. Let r, denote the A(X)-rank of the dual of Ju(Foo)- If p
is any prime, and v does not divide p, then r, = 0. If p = 5, v divides p,
and E has potential ordinary or potential multiplicative reduction at v, then

ry = [Fy : Q).
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Now it is clear from (124) that

t(E/F) > [F: Q] — @Pr.

veT

Hence the lower bound for ¢,(E/F) asserted in Theorem 1.8 is clear from
Lemma, 4.11 and the remark made just before Lemma 4.11. This completes
the proof of Theorem 1.8.

Theorem 4.12. Assume p > 5. Then Ar(Fu) is surjective if and only if
C(E/Fw) has A(X)-rank equal to 7p(E/F), where 7,(E/F) is defined by (20).

Proof. If A\r(F) is surjective, it is clear from (124) and the above determina-
tion of the A(X)-rank r, of the dual of J,(Fi), that C(E/Fy) has A(X)-rank
equal to 7,(E/F). Conversely, if C(E/Fw) has A(X)-rank equal to 7,(E/F),
it follows from (124) that the dual of Coker(Ar(F)) has A(X)-rank equal
to 0. This means the following. Let & = G(F/Fp), where Fy = F(E,).
Then the Iwasawa algebra A(®) has no divisors of zero. Thus the dual of
Coker(Ar(Fy)) would be A(®)-torsion. But a very well known argument us-
ing the Cassels-Poitou-Tate sequence shows that there is no non-zero A(®)-
torsion in the dual of Coker(Ar(Fy)) (see [18], Lemma 6.17 or [8], Proposition
11). Hence it follows that Coker(Ar(Fu)) = 0. This completes the proof of
Theorem 4.12.

Finally, we remark that Theorem 1.14 is an immediate consequence of
Theorem 4.12 and Proposition 4.10.
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Iwasawa Theory for Elliptic Curves

Ralph Greenberg

University of Washington

1. Introduction

The topics that we will discuss have their origin in Mazur’s synthesis of the
theory of elliptic curves and Iwasawa’s theory of Z,-extensions in the early
'1970s. We first recall some results from Iwasawa’s theory. Suppose that F
is a finite extension of @ and that F,, is a Galois extension of F such that
Gal(Foo /F) = Z,, the additive group of p-adic integers, where p is any prime.
Equivalently, F, = [Un>0 Fn, where, for n > 0, F, is a cyclic extension of
F of degree p" and F = Fo C F; C--- C F, C F,y; C ---. Let hy denote
the class number of Fy,, p®* the exact power of p dividing h,,. Then Iwasawa
proved the following result.

Theorem 1.1. There ezist integers A, u, and v, which depend only on F, /F,
such that e, = An + up"™ + v for n > 0.

The idea behind the proof of this result is to consider the Galois group
.X = Gal(Loo/Fo), where Lo is the maximal abelian extension of F, which
is unramified at all primes of F, and such that Gal(Ly,/F) is a pro-p group.
In fact, Loo = |Un»0 Ln, where L,, is the p-Hilbert class field of F, for n > 0.
Now L. /F is Galois and I = Gal(F/F) acts by inner automorphisms_ on
the normal subgroup X of Gal(L/F). Thus, X is a Z,-module and I acts
on X continuously and Z,-linearly. It is natural to regard X as a module
over the group ring Z,[I'], but even better over the completed group ring

A =Z,[[I'] = Lim Z,[Gal(F, /F)],

where th'e i.nverse limit is defined by the ring homomorphisms induced by
f;he restr.lctxon maps Gal(Fr,/F) = Gal(F,/F) for m > n > 0. The ring A
is sometimes cal.led the “Iwasawa algebra” and has the advantage of being a
complete local ring,. More precisely, A = Z,[[T]], where T is identified with
Y—1¢€ A. Here € I' is chosen so that 'y| P is nontrivial, and 1 is the identity
:llilim:;llt of I (anfd of the ring A). Then ~ generates a dense subgroup of I"
e action of T = v — 1 on X is “topologically nilpotent.” Thi

one to consider X as a A-module. sy . o allows

Iwasawa proves that X is a finitely generated, torsion A-module. There

is a i
s stru(.:ture thec?rem for such A-modules which states that there exists a
pseudo-isomorphism”

X ~ P A/(H(D),

=1
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where each f;(T) is an irreducible element of A and the a;’s are positive
integers. (We say that two finitely generated, torsion A-r{lodules X andY
are pseudo-isomorphic when there exists a A-homomorphism from XtoY
with finite kernel and cokernel. We then write X ~ Y.) It is natural to try
to recover Gal(L,/Fy) from X = Gal(Leo/Foo)- o

Suppose that F has only one prime lying over p and that thlS. prime is
totally ramified in Fo/F. (Totally ramified in F /F suffices for this.) Then
one can indeed recover Gal(L,/F,) from the A-module X. We have

-

Gal(Ln/Fa) = X/(y"" - 1)X.

The isomorphism is induced from the restriction map X — Gal(Ly [Fp). Here
is a brief sketch of the proof: Gal(F/F,) is topologically generated by 7* ;
one verifies that (v*" — 1)X is the commutator subgroup of G?J(LO? /Fn);
and one proves that the maximal abelian extension of F,, contained in L(?o
is precisely FeoLy,. (This last step is where one uses the fact that there ,13
only one prime of F, lying over p.) Then one notices that Gal([./n [Fn) &
Gal(FwLn/Fso). If F has more than one prime over p, one can still recover
Gal(L,/F,) for n > 0, somehow taking into account the inertia subg.roups
of Gal(Le/F,) for primes over p. (Primes not lying over p are unramified.)
One can find more details about the proof in [Wa2].

The invariants A and g can be obtained from X in the following way.
[0}

Let f(T) be a nonzero element of A: f(T) = 3. c;T?, where ¢; € Z, for

=0
i > 0. Let p(f) > 0 be defined by: p*9)|f(T), but p”(f)+1x}( f(T) in A. Thus,
F(T)p~#) is in A and has at least one coefficient in Z;. Define A(f) 2> 0

to be the smallest i such that ¢;p~#() € Z. (Thus, f(T) € A* if and only
t .

if A(f) = u(f) = 0.) Let f(T) = I[ fi(T)*. The ideal (f(T)) of A is called
=1

the “characteristic ideal” of X. foen it turns out that the A and g occurring
in Iwasawa’s theorem are given by A = A(f), p = p(f). For each ¢, there are
two possibilities: either f;(T’) is an associate of p, in which case uw(fi) = ?,
A(fi) = 0, and A/(fi(T)*) is an infinite group of exponent p*, or fi(T) is
an associate of a monic polynomial of degree A(f;), irreducible over @,, and
“distinguished” (which means that the nonleading coefficients are in pZ,),
in which case u(f;) = 0 and A/(f;(T)*) is isomorphic to Z;}(f Hai as a group.
Then, A\ = Za;\(fi), 4 = Zaip(f;). The invariant A can be de?;crlbed more
simply as A = rankz, (X/Xz,-tors), Where Xz,-tors is the torsion subgroup
of X. Equivalently, A = dimg, (X ®z, Q,). .

The invariants A = AM(Feo/F) and p = p(Fe/F) are difficult to study.
Iwasawa found examples of Z,-extensions Fu,/F where u(Fo/F) > 0. In
his examples there are infinitely many primes of F' which decoTpose com-
pletely in Fyo/F. In these lectures, we will concentrate on the “cyclotomic
Z ,-extension” of F which is defined as the unique subfield Foo of F(_upw)
with I' = Gal(Fuo/F) = Z,. Here fipe denotes the p-power roots of unity. It

Iwasawa theory for elliptic curves 53

is easy to show that all nonarchimedean primes of F are finitely decomposed
in Foo /F. More precisely, if v is any such prime of F, then the corresponding
decomposition subgroup I'(v) of I is of finite index. If v { p, then the inertia
subgroup is trivial, i.e., v is unramified. (This is true for any Z,-extension.) If
v|p, then the corresponding inertia subgroup of I is of finite index. Iwasawa
has conjectured that p(Fy,/F) = 0 if Foo/F is the cyclotomic Z,-extension.
In the case where F is an abelian extension of @, this has been proved by
Ferrero and Washington. (See [FeWa] or [Wa2].)

On the other hand, A(Fi/F) can be positive. The simplest example is
perhaps the following. Let F be an imaginary quadratic field. Then all Z,-
extensions of F are contained in a field F such that Gal(f | F) = Zf,. (Thus,
there are infinitely many Z,-extensions of F.) Letting F,,/F still be the
cyclotomic Zp-extension, one can verify that i’/Foo is unramified if p is a
prime that splits completely in F/Q. Thus in this case, F,, C F C Lo
and hence X = Gal(Ly/F) has a quotient Gal(f’/Foo) = Z,. Therefore,
MFoo/F) > 1if p splits in F/Q. Notice that, since F/F is abelian, the action
of T=v-~1on Gal(ﬁ/Foo) is trivial. Thus, X/T X is infinite. Now if one
considers the A-module Y = A/(f;(T)*), where f;(T) is irreducible in A, then
Y/TY is infinite if and only if f;(T) is an associate of T. Therefore, if F is an
imaginary quadratic field in which p splits and if F, is the cyclotomic Z,-
extension of F, then T'|f(T), where f(T') is a generator of the characteristic
ideal of X. One can prove that T2 { f(T'). (This is an interesting exercise. It
is easy to show that X/T'X has Z,-rank 1. One must then show that X/T2X
also has Z,-rank 1. See [Gr1] for a more general “semi-simplicity” result.)

In contrast, suppose that F is again imaginary quadratic, but that p is
inert in F/Q. Then F has one prime over p, which is totally ramified in the
cyclotomic Z,-extension Fo,/F. As we sketched earlier, it then turns out that
X/TX is finite and isomorphic to the p-primary subgroup of the ideal class
group of F'. In particular, it follows that if p does not divide the class number
of F, then X = TX. Nakayama’s Lemma for A-modules then implies that
X = 0 and hence A(Fi/F) = 0 for any such prime p. In general, for arbitrary
n > 0, the restriction map X — Gal(L,/F,) induces an isomorphism

X/o"X = Ga'l(Ln/Fn)a

where 8, = v*" — 1 = (14 T)?" — 1. We can think of X/6,.X as Xr,, the
maximal quotient of X on which I, acts trivially. Here I}, = Gal(F/Fy)
It is interesting to consider the duals of these groups. Let

Sn = Hom(Gal(L, /F,), Q,/Z,), Soo = Homeont (X, Q,/Z,).

Then we can state that S, = SIn where the isomorphism is simply the
dual of the map X, ) Gal(L,/F,). Here SI» denotes the subgroup of S,
consisting of elements fixed by I',. The map S,, — 8! will be an isomorphism
if F' is any number field with just one prime lying over p, totally ramified in
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F../F. But returning to the case where F is imaginary quadratic and p splits
in F/@Q, we have that S., is infinite. (It contains Hom(Gal(F/Fw), Q,/Zp)
which is isomorphic to Qp/ Z,.) Thus, Sgg is always infinite, but Sy, is finite,
for all n > 0. The groups S, and Sy are examples of “Selmer groups,”
by which we mean that they are subgroups of Galois cohomology groups
defined by imposing local restrictions. In fact, Sy, is the group of cohomology
classes in H!(Gr,,Q,/Z,) which are unramified at all primes of Fy, and
S, is the similarly defined subgroup of H!(GF,,,Q,/Zp). Here, for any field
M, we let G denote the absolute Galois group of M. Also, the action of
the Galois groups on Q,/Z, is taken to be trivial. As is customary, we will
denote the Galois cohomology group H*(Gum, *) by H*(M, ). We will denote
Hi(Gal(K/M), ) by H{(K/M,x) for any Galois extension K/M. We always
require cocycles to be continuous. Usually, the group indicated by * will be
a p-primary group which is given the discrete topology. We will also always
understand Hom( , ) to refer to the set of continuous homomorphisms.

Now we come to Selmer groups for elliptic curves. Suppose that E is an
elliptic curve defined over F. We will later recall the definition of the classical
Selmer group Selg(M) for E over M, where M is any algebraic extension of
F. Right now, we will just mention the exact sequence

0 E(M)® (Q/Z) — Selg(M) — Illg(M) — 0,

where E(M) denotes the group of M-rational points on E and g (M)
denotes the Shafarevich-Tate group for E over M. We denote the p-primary
subgroups of Selg(M), L g(M) by Selg(M)y, I g(M),. The p-primary sub-
group of the first term above is E(M) ® (Q,/Z,). Also, Selg(M), is a sub-
group of H(M, E[p™]), where E[p™] is the p-primary subgroup of E(@). As
a group, E[p™®] & (Q,/Z,)?, but the action of G is quite nontrivial. Let
Foo/F denote the cyclotomic Z,-extension. We will now state a number of
theorems and conjectures, which constitute part of what we call “Iwasawa
Theory for E.” Some of the theorems will be proved in these lectures. We
always assume that Fy is the cyclotomic Zp-extension of F'.

Theorem 1.2 (Mazur’s Control Theorem). Assume that E has good,
ordinary reduction at all primes of F lying over p. Then the natural maps

Selg(Fn)p — Selp(Foo)r™
have finite kernel and cokernel, of bounded order as n varies.

The natural maps referred to are those induced by the restriction maps
HY(F,, E[p®]) & H'(Fo, E[p®]). One should compare this result with the
remarks made above concerning Sy, and SZ». We will discuss below the cases
where E has either multiplicative or supersingular reduction at some primes
of F lying over p. But first we state an important conjecture of Mazur.
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Conjec'ture 1.3. Assume that E has good, ordinary reduction at all primes
of F lying over p. Then Selg(Fe)p is A-cotorsion.

' Here I' = Gal(F, / F) acts naturally on the group H(F,, E[p™]), which
is a torsion Zp-module, every element of which is killed by 7" for some n.
Thus, H'(Fy, E[p*™)) is a A-module. Selg(Fy,), is invariant under the action
of I' and is thus a A-submodule. We say that Selg(Fu)p is A-cotorsion if

XEg(Fo) = Hom(Selp(Feo)p, Qp/ Zyp)

is A-torsion. Here Selg(F ), is a p-primary group with the discrete topology.
Its Pontryagin dual Xg(Fy) is an abelian pro-p group, which we regard as
a A-module. It is not hard to prove that Xg(F,) is finitely generated as a
A-module (and so, Selg(Fy), is a “cofinitely generated” A-module). In the
case where E has good, ordinary reduction at all primes of F' over p, one
can use theorem 1.2. For Xg(F) = Hom(Selg(F),, Q,/Z,) is known to be
finitely generated over Z,. (In fact, the weak Mordell-Weil theorem is proved
by showing that Xg(F)/pXg(F) is finite.) Write X = Xg(F.) for brevity.
Then, by theorem 1.2, X/T'X is finitely generated over Z,. Hence, X/mX is
finite, where m = (p, T') is the maximal ideal of A. By a version of Nakayama’s
Lemma (valid for profinite A-modules X), it follows that Xg(Fy,) is indeed
finitely generated as a A-module. (This can actually be proved for any prime
p, with no restriction on the reduction type of E.) Here is one important case
where the above conjecture can be verified.

Theorem 1.4. Assume that E has good, ordinary reduction at all primes

of F' lying over p. Assume also that Selg(F), is finite. Then Selp(Foo)p is
A-cotorston.

This theorem is an immediate corollary of theorem 1.2, using the following
exercise: if X is a A-module such that X/TX is finite, then X is a torsion
A-module. The hypothesis on Selg(F), is equivalent to assuming that both
the Mordell-Weil group E(F) and the p-Shafarevich-Tate group HIg(F), are
finite. A much deeper case where conjecture 1.3 is known is the following.
The special case where E has complex multiplication had previously been
settled by Rubin [Rul].

Theorem 1.5 (Kato-Rohrlich). Assume that E is defined over Q and is
modulqr. Assume also that E has good, ordinary reduction or multiplicative
reduction at p and that F/Q is abelian. Then Selg(Fy,), is A-cotorsion.

- The case where E has multiplicative reduction at a prime v of F lying over
p is somewhat analogous to the case where E has good, ordinary reduction
at v. In both cases, the G, -representation space Vo(E) = T,(E) ® Q, has
an unr?miﬁed 1-dimensional quotient. (Here T),(E) is the Tate-module ff)r E;
Vp(E) is a 2-dimensional @,-vector space on which the local Galois group Gr, ’
acts, where F, is the v-adic completion of F.) It seems reasonable to believ;
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that the analogue of Theorem 1.2 should hold. This was first suggested by
Manin [Man] for the case F = Q.

Conjecture 1.6. Assume that E has good, ordinary reduction or multiplica-
tive reduction at all primes of F lying over p. Then the natural maps

Selg(Fp)p — Selg(Foo )™

have finite kernel and cokernel, of bounded order as n varies.
-

For F = Q, this is a theorem. In this case, Manin showed that it would
suffice to prove that logp(qE) # 0, where gg denotes the Tate period for
E, assuming that E has multiplicative reduction at p. But a recent theorem
of Barré-Sirieix, Diaz, Gramain, and Philibert [B-D-G-P] shows that ¢g is
transcendental when the j-invariant jg is algebraic. Since jg € Q, it follows
that gep~°"(4=) is not a root of unity and so log,(gr) # 0. For arbitrary
F, one would need to prove that log,(NF,/q, (qg))) # 0 for all primes v
of F lying over p where E has multiplicative reduction. Here F, is the v-
adic completion of F, qg) the corresponding Tate period. This nonvanishing

statement seems intractable at present.
If E has supersingular reduction at some prime v of F, then the “control

theorem” undoubtedly fails. In fact, Selg(Fwo)p Will not be A-cotorsion. More
precisely, let

r(E,F) =Y [F,:Q,,

pss

where the sum varies over the primes v of F where E has potentially super-
singular reduction. Then one can prove the following result.

Theorem 1.7. With the above notation, we have
corank, (Selg(Foo)p) 2 r(E, F).

This result is due to P. Schneider. He conjectures that equality should hold
here. (See [Sch2].) This would include for example a more general version
of conjecture 1.3, where one assumes just that £ has potentially ordinary
or potentially multiplicative reduction at all primes of F lying over p. As a
consequence of theorem 1.7, one finds that

corankz, (Selp(Fuo 1’;") >r(E,F)p"

for n > 0. This follows from the fact that A/f,A4 = Zgn. (The ring A4/0,A is
just Z,[Gal(F,,/F)].) One uses the fact that there is a pseudo-isomorphism
from Xg(Fa) to A" ®Y, where r = rank(Xg(Feo)), which is the A-corank
of Selg(Foo)p, and Y is the A-torsion submodule of Xg(Fx). However, it
is reasonable to make the following conjecture. We continue to assume that
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P /F is the cyclotomic Z,-extension, but make no assumptions on the re-
duction type for E at primes lying over p. The conjecture below follows from
results of Kato and Rohrlich when F is abelian over @ and E is defined over
@ and modular.

Conjecture 1.8. The Z,-corank of Selg(Fy,), is bounded as n varies.

If this is so, then the map Selg(F,), — Selgp(Foo)™ must have infinite co-
kernel when n is sufficiently large, provided that we assume that E has po-
tentially supersingular reduction at v for at least one prime v of F lying
over p. Of course, assuming that the p-Shafarevich-Tate group is finite, the
Zp-corank of Selg(F,), is just the rank of the Mordell-Weil group E(F),).
If one assumes that E(F,) does indeed have bounded rank as n — oo then
one can deduce the following nice consequence: E(F,,) is finitely generated.
Hence, for some n > 0, E(F,) = E(F,). This is proved in Mazur’s article
[Maz1]. The crucial step is to show that E(Fs)ors is finite. We refer the
reader to Mazur (proposition 6.12) for a detailed proof of this helpful fact.
(We will make use of it later. See also [Im] or [Ri].) Using this, one then
argues as follows. Let ¢t = |E(Fe)tors|- Choose m so that rank(E(Fy,)) is
maximal. Then, for any P € E(F.), we have kP € E(F,,) for some k > 1.
Then g(kP) = kP for all g € Gal(Fe/Fy,). That is, g(P)— P is in E(Foc,)—to..s
and hence t(g(P) — P) = Og. This means that tP € E(F,,). Therefore
tE(F) C E(Fy), from which it follows that E(Fy) is finitely generated. ,

On the other hand, let us assume that E has good, ordinary reduction
or multiplicative reduction at all primes v of F lying over p. Assume also
that Selg(F)p is A-cotorsion, as is conjectured. Then one can prove conjec-
glclre(;.B) vt'arrg easily/.\ Let Ag denote the A-invariant of the torsion A-module

E(Fx). That is, Ag = rankz (Xg(F, =

the following result. 7, (o)) = coranke, (Sele(Fo)y). We gt

Theorem 1.9. Under the above assumptions, one has
corankz, (Selg(Fy),) < Ag.

in particular, the rank of the Mordell-Weil group E(F),,) is bounded above by
E-

This result follows from the fact that the maps Selg(F,), —

?lave ﬁ-nite kernel. This turns out to be quite er;.sy toE;()rgng, as wfrglsv(igoge)::
in section 3. Also, the rank of E(Fy,) is the Z,-corank of E(F,) ® (Q,/Z,)
yvhlch is of course bounded above by corankz, (Selg(Fy),). (Equalit}f holpds,
if mE(Fn)p is finite.) Let AY"" denote the maximum of rank(E(F,)) as n
varies, which is just rank(E(Fy)). Let AF' = Ag — AM™". We let up denote
the u.-mva,rla.nt of the A-module Xg(Fy). If necessary to avoid confusion,
we mlght write Ap = Ag(Foo/F), ug = pp(Feso/F), etc. Then we have the
following analogue of Iwasawa’s theorem.
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Theorem 1.10. Assume that E has good, ordinary reduction at all primes of
F lying over p. Assume that Selg(Foo)p s A-cotorsion and that T E(Fn)p i5
finite for all n > 0. Then there exist \, u, and v such that Mg (Fr)p| = P,
where e, = An + pp"™ + v for alln > 0. Here A = A and p = pe.

As later examples will show, each of the invariants A}¥ "%, A{, and pg
can be positive. Mazur first pointed out the possibility that ugr could be
positive, giving the following example. Let £ = Xo(11), p=5, F = @, and
F,, = Q, = the cyclotomic Zs-extension of Q. Then pg = 1. (In_fact,
(fe(T)) = (p).) There are three elliptic curves/Q of conductor 11, all isoge-
nous. In addition to E, one of these elliptic curves has p = 2, another has
p = 0. In general, suppose that ¢ : Ey — E5 is an F-isogeny, where Ey, Ey
are defined over F. Let @ : Selg, (Fw)p — Selg, (Foo)p denote the induced
A-module homomorphism. It is not hard to show that the kernel and cokernel
of & have finite exponent, dividing the exponent of ker(¢). Thus, Selg, (Foo)p
and Selg, (Fw ), have the same A-corank. If they are A-cotorsion, then the A-
invariants are the same. The characteristic ideals of Xg, (Fo) and Xg, (Fyo)
differ only by multiplication by a power of p. If F' = @, then it seems reason-
able to make the following conjecture. For arbitrary F, the situation seems
more complicated. We had believed that this conjecture should continue to
be valid, but counterexamples have recently been found by Michael Drinen.

Conjecture 1.11. Let E be an elliptic curve defined over Q. Assume that
Selp(Q.,)p is A-cotorsion. Then there ezists a Q-isogenous elliptic curve
E' such that g = 0. In particular, if E[p] is irreducible as a (Z/pZ)-
representation of Gq, then ug = 0.

Here E[p] = ker(E(Q) 2, E(@)). P. Schneider has given a simple formula for
the effect of an isogeny on the p-invariant of Selg(F), for arbitrary F and
for odd p. (See [Sch3] or [Pe2].) Thus, the above conjecture effectively predicts
the value of ug for F = Q.

Suppose that Selg(Fu)p is A-cotorsion. Let fg(T) be a generator of the
characteristic ideal of Xg(Fs). Then Ag = AM(fg) and pg = p(fE). We have

t

Xp(Foo) ~ [ 4/(F(T)*)

i=1

where the f;(T)’s are irreducible elements of A, and the a;'s are positive. If
(fi(T)) = (p), then it is possible for a; > 1. However, in contrast, it seems
reasonable to make the following “semi-simplicity” conjecture.

Conjecture 1.12. Let E be an elliptic curve defined over F. Assume that
Selg(Fuoo)p is A-cotorsion. The action of I' = Gal(Feo /F) on XE(Fo)®2,Q,
is completely reducible. That is, a; = 1 for all i’s such that fi(T) is not an
associate of p.
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Assume that E has good, ordinary reduction at all primes of F lying over
p. Theorem 1.2 then holds. In particular, corankz , (Selg(F'),), which is equal
to ran!(zp (XE(Feo)/T X g(Fs)), would equal the power of T dividing fz(T)
assuming the above conjecture. Also, the value of A¥"W would be equal fo
the number of roots of fg(T') of the form ¢ — 1, where ( is a p-power root
of u.nity, if we assume in addition the finiteness of Ilg(F,), for all n. For
conjecture 1.12 would imply that this number is equal to the Z,-rank of
XE(Fs) /00X E(Fy) for n > 0. ’

In section 4 we will introduce some theorems due to B. Perrin-Riou and
to P. Schneider which give a precise relationship between Selg(F), and the
behavior of fg(T) at T = 0. These theorems are important because they
allow one to study the Birch and Swinnerton-Dyer conjecture by using the
so-called “Main Conjecture” which states that one can choose the generator
fE(T) so that it satisfies a certain interpolation property. We will give the
?.tatement of this conjecture for F' = @, which was formulated by B. Mazur
in the early 1970s (in the same paper [Mazl] where he proves theorem 1.2
and also in [M-SwD]).

Conjecture .1.13. Assume that E is an elliptic curve defined over Q which
has good, ordinary reduction at p. Then the characteristic ideal of X E(Qu)
has a generator fe(T') with the properties:

(©) fe(0) = (1 - Bpp™')’L(E/Q, 1)/ 028

(i) fo(d(T)) = (B,)"L(E/Q, b, 1)/ 2pr(6) if & is a fini
FE= Gal(Q./ 6) of( co/n(?iuﬁtoz/p"E;(lq.s) ¥ is a finite order character of

We must explain the notation. First of all, fix embeddings of @ into € and
into Q,,. L(E/Q, s) denotes the Hasse-Weil L-series for F over Q. 25 denotes
the real period for E, so that L(E/Q, 1)/ is conjecturally in Q. (If E is
modular, then L(E/Q, s) has an analytic continuation to the complex plane,
and, in fact, L(E/Q,1)/2g € Q.) Let E denote the reduction of E at p.
The E_uler factor for pin L(E/Q, s) is ((1 - app™®)(1 - B,p~*)) L, where a,,
Bp € Q, apBy = p, ap+ B, = 1+ p—|E(FF,)|. Choose ay to be the p-adic unit
under the fixed embedding @ — @, Thus, Bpp~! = a3 . For every complex-
valued, finite order Dirichlet character ¢, L(E/ Q,q&,g) denotes the twisted
Hasse-Weil L-series. In the above interpolation property, ¢ is a Dirichlet
character whose associated Artin character factors through I'. Using the fixed
embeddingi chosen above, we can consider ¢ as a continuous homomorphism
¢ I’.—-)_(Q;,‘ of finite order, i.e., ¢(y) = {, where ¢ is a p-power root of
unity in Q,. Then ¢(T) = ¢(y — 1) = ¢ — 1, which is in the maximal ideal
of Z,. Hence fg(¢(T)) = fg(¢ — 1) converges in Qp. The complex number
L(E/Q,4,1)/2g should be algebraic. In (i), we regard it as an element of
Q,, as well as the Gaussian sum 7($). For p > 2, conjecture 1.13 has been
proven by Rubin when E has complex multiplication. (See [Ru2].) If E is a
modular elliptic curve with good, ordinary reduction at P, then the existence
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of some power series satisfying the stated interpolation property (i? and (i)
was proven by Mazur and Swinnerton-Dyer in the early 1970s. We will den(?te
it by f2r2(T). (See [M-SwD] or [M-T-T].) Conjecturally, this power series
should be in A. This is proven in [St] if E[p] is irreducible as a Gq-module.
In general, it is only known to be A ®z, @,. That is, ptfarl(T) € A for
some t > 0. Kato then proves that the characteristic ideal at least contains
pm fg“a‘(T) for some m > 0. Rohrlich proves that L(E/Q,,1) # 0 for all
but finitely many characters ¢ of I', which is equivalent to the statement
f2r2(T) # 0 as an element of A ®z, Q,. One can use Kato’s theorem to
prove conjecture 1.13 when E admits a cyclic Q-isogeny of de.gree p, where
p is odd and the kernel of the isogeny satisfies a certain cond1tio¥1 (namely,
the hypotheses in proposition 5.10 in these notes). This will be discussed in
[GrVa). . .
Continuing to assume that E/Q is modular and that p is a prime where
E has good, ordinary reduction, the so-called p-adic L-function L,(E/Q,s)
can be defined in terms of f&"(T). We first define a canonical character

k: I —142pZ,

induced by the cyclotomic character x : Gal(Q(up=)/ Q).ﬁ-) /48 compgsed
with the projection map to the second factor in the canonical decomposition

Z = pp_y x (1 + pZp) for odd p, or Z3 = {+1} x (1 + 4Z,) for p = 2.
»
Thus, & is an isomorphism. For s € Z,, define L,(E/Q, s) by

Ly(E/Q,5) = fF*(s(1)*" = 1).

The power series converges since £(y)*™! — 1 € pZ,. (Note: Let t € Z,
The continuous group homomorphism «¢ : I' = 1 + pZ, can be extended
uniquely to a continuous Zp-linear ring homomorphism kKt :A— Z, We
have k¢(T) = k(7)t — 1 and &*(f(T)) = f(r(y)* — 1) for any f(T) € A.
Thus, Ly(E/Q, s) is x*~(f&"*(T)).) The functional equations for the Hasse-
Weil L-series give a simple relation between the values L(E/(l%,qb, 1) fmd
L(E/Q,$™1,1) occurring in the interpolation property for farai(T). ‘Smce
fg“a' (T) is determined by its interpolation property, one can deduce a.s1mple
relation between f2"21(T') and f&re!((1+T)~! — 1). Omitting the details, one
obtains a functional equation for L,(E/Q,s):

Lp(E/Q,2 - 5) = we(Ng)* "' Ly(E/Q, s)

for all s € Z,. Here wg is the sign which occurs in the functional equation
for the Hasse-Weil L-series L(E/Q, s), Ng is the conductor of E, and (Ng)
is the projection of Ng to 1 + 2pZ, as above. .

The final theorem we will state is motivated by conjecture 1.13 and the
above functional equation for the p-adic L-function L,(E/Q@, s);nzhe func-
tional equation is in fact equivalent to the relation between fb; (T) and
f2nal((147)~ - 1) mentioned above. In particular, f anal(T4) [ f52(T) §hould
be in AX, where T* = (1 + T)~! — 1. The analogue of this statement is true
for fu(T). More generally (for any F), we have:
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Theorem 1.14. Assume that E is an elliptic curve defined over F with good,
ordinary reduction or multiplicative reduction at all primes of F lying over
p. Assume that Selg(Fu)p is A-cotorsion. Then the characteristic ideal of
XEg(Foo) 15 fized by the involution v of A induced by 1(y) =~ forall vy € I'.

A proof of this result can be found in [Gr2] using the Duality Theorems of
Poitou and Tate. There it is dealt with in a much more general context—that
of Selmer groups attached to “ordinary” p-adic representations.

We will prove theorem 1.2 completely in the following two sections. Our
approach is quite different than the approach in Mazur’s article and in Manin’s
more elementary expository article. We first prove that, when E has good, or-
dinary or multiplicative reduction at primes over p, the p-primary subgroups
of Selg(F},) and of Selg(F.,,) have a very simple and elegant description. This
is the main content of section 2. Once we have this, it is quite straightforward
to prove theorem 1.2 and also a conditional result concerning conjecture 1.6
which we do in section 3. In this approach we avoid completely the need to
study the norm map for formal groups over local fields, which is crucial in
the approach in [Mazl] and [Man]. We also can use our description of the
p-Selmer group to determine the p-adic valuation of fg(0), under the assump-
tion that E has good, ordinary reduction at primes over p and that Selg(F),
is finite. Section 4 is devoted to this comparatively easy special case of results
of B. Perrin-Riou and P. Schneider found in [Pel], [Sch1]. Their results give
an expression involving a p-adic height determinant for the p-adic valuation
of (fe(T)/T")|r=0, where r = rank(E(F)), under suitable hypotheses. Fi-
nally, in section 5, (which is by far the longest section of this article) we will
discuss a variety of examples to illustrate the results of sections 3 and 4 and
also how our description of the p-Selmer group can be used for calculation.
We also include in section 5 a number of remarks taken from [Maz1] (some
of which are explained quite differently here) as well as various results which
don’t seem to be in the existing literature. Throughout this article, we have
tried to include p = 2 in all of the main results. Perhaps surprisingly, this
turns out not to be so complicated.

We will have very little to say about the case where E has supersingular
reduction at some primes over p. In recent years, this has become a very
lively aspect of Iwasawa theory. We just refer the reader to [Ped] as an intro-
duction. In [Pe4], one finds the following concrete application of the theory
described there: Suppose that E/Q has supersingular reduction at p and that
Selg(Q), is finite. Then Selg(Q,,), has bounded Z,-corank as n varies. This
is, of course, a special case of conjecture 1.8. In the case where E has good,
ordinary reduction over p, theorem 1.4 gives the same conclusion. Another
topic that we will not pursue is the behavior of the p-Selmer group in other
Z ,-extensions—for example, the anti-cyclotomic Z,-extension of an imagi-
hary quadratic field. The analogues of conjectures 1.3 and 1.8 can in fact be
false. We refer the reader to [Be], [BeDal, 2], and [Maz4] for a discussion
of this topic. We also will not pursue the analytic side of Iwasawa theory—
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questions involving the properties of p-adic L-functions and the p-adic version
of a Birch and Swinnerton-Dyer conjecture. For this, one can learn something
from the articles [M-SwD], [B-G-S], and [M-T-T]. Many of the ideas we dis-
cuss here can be extended to a far more general context. For an introduction
to this, we refer the reader to [CoSc] and to [Gr2,3].

The author is grateful to the Fondazione Centro Internazionale Matema-
tico Estivo and to Carlo Viola for the invitation to give lectures in Cetraro.
This article is an extensively expanded version of those lectures, based con-
siderably on research which was partially supported by the National Sgience
Foundation. The author is also grateful for the support and hospitality of the
American Institute of Mathematics during the Winter of 1998, when many
of the results and examples described in section 5 were obtained. We want to
thank Karl Rubin for many valuable discussions and for his help in the details
of several examples, Ted McCabe for carrying out numerous calculations of
p-adic L-functions which allowed us to verify the main conjecture in many
cases, and Ken Kramer for explaining his results about elliptic curves with
2-power isogenies. We are also grateful to John Coates for many helpful re-
marks and to Y. Hachimori, K. Matsuno and T. Ochiai for finding a number
of mistakes in the text.

2. Kummer Theory for E

Let E be an elliptic curve defined over a number field F. If M is any al-
gebraic extension of F', Kummer theory for E over M leads quite naturally
to the classical definition of the Selmer group Selg(M). The main objective
of this section is to give a simplified description of its p-primary subgroup
Selg(M), under the hypothesis that E has either good, ordinary reduction
or multiplicative reduction at all primes of F lying over p. We will assume
that M is either a finite extension or a Z,-extension of F.

Kummer theory for the multiplicative group M* is quite familiar. Re-
garding M as a subfield of F, a fixed algebraic closure of F' (or Q), we can
define the Kummer homomorphism

k H M)< ® (Q/Z) — Hl(M)’_F—:i)rs

as follows. Let a € MX. Let a = a® (m/n+Z) € M* ® (Q/Z). Choose
b € F* such that b® = a™, using the fact that F* is a divisible group. Then
one defines k(a) to be the class of the 1-cocycle bo given by ¢, (g) = g(b)/b
for all g € Gy = Gal(F/M). The values of ¢, are in FX,,, the group of roots
of unity in F. The Kummer homomorphism is an isomorphism. Injectivity is
easy to verify. Surjectivity is a consequence of Hilbert’s Theorem 90, which
asserts that H'(M,F*) =0.

Since E(F) is divisible, one can imitate the above definition, obtaining
an exact sequence

0 E(M) ® (Q/Z) % H' (M, E(F)ors) — H' (M, E(F)) = 0.
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fa=a®(m/n+Z) c E(M)®(Q/Z), then k(a) is the class of the 1-cocycle
¢a given by ¢ (g) = g(b) —b for all g € G- Here b € E(F) satisfies nb = ma
on E(F). However, in general, H!(M, E(F)) is nonzero. We will fix a prime
p and concentrate on the p-primary subgroups of the above groups. We let
& = Kk denote the corresponding Kummer homomorphism:

& : E(M) ® (Q,/Z,) — H' (M, E[p™)).

If n is any prime of M, we define M, to be the union of the n-adic completions
of all finite extensions of F contained in M. Thus, if 7 lies over the prime v of
F, then M, is an algebraic extension of Fy. By fixing an embedding F->F,
extending the embedding M — M, one can identify G, with a subgroup
of G, which of course is just the decomposition subgroup for some prime
of F' lying over n. We will let s, denote the Kummer homomorphism for E
over M,:

K"I . E(Mn) ® (Qp/zp) - Hl(MﬂaEh)w])

This is (.ieﬁned exactly as above. Now we can give the classical definition of
the p-primary subgroup of the Selmer group for E over M:

Selgp(M), = ker(H' (M, E[p™]) - HHI(M,,,E[p""])/Im(n,,)),
n

where 7 runs over all primes of M and the map is induced by ¢ — (¢]G In

for any 1-cocycle ¢. We will denote the class of a 1-cocycle ¢ by [¢]. Thus
[¢] is in Selg(M), if and only if [¢|GM ] € Im(k,) for all . Obviously,
Im(x) C Selg(M)p. The corresponding qunotient Selg(M)p/Im(x) is, by defi-
nition, Mg (M),.

Faltings has proved that E is determined up to F-isogeny by the Gp-
representation space Vp(E) = T,(E) ® Q,, where T,(E) denotes the p-adic
Tate module for E. More precisely, the Gr-module E[p*°] = V,(E)/T,(E)
determines E up to an F-isogeny of degree prime to p. Now Selg(M), is not
changed by such F-isogenies, and hence one might hope to define it in a way
which involves only the G p-module E[p>]. To do this, it suffices to give such
a description of the subgroup Im(k,) of H(M,, E[p™]) for all primes 7 of
M. We will now proceed to do this under the assumption that E has good
ordinary or multiplicative reduction at all primes of F over p. ,

' Assume at first that M is a finite extension of F. Then 5|v for some
prime v of F, and 7|l for some prime ! of Q (possible [ = 00). If I is a finite
prime, then we have a theorem of Lutz: E(M,) = ZEM":Q’] x U as a group
where U = E(Mp)tors is finite. Now Z; ® (Q,/Zy) =0ifl # p, wherea,s,
Z,3(Q,/Zy) = Q,/Z,. Also, U® (Q,/Z,) =0.If | = oo, then M, =R or
C. In this case, E(M,) = TMaR] 5 7, where T = R/Z and |U| < 2. Since T
is divisible, we have T' ® (Q,,/Zp) = 0. We then obtain the following result.
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Proposition 2.1. If 5t p, then Im(ky) = 0. If n|p, then
Im(k,) & (Q,/Z,) M %],

The first assertion can also be explained by using the fact that, for n { p,
H'(M,, E[p™]) is a finite group. But E(M,) ® (Q,/Z,), and hence Im(x,)
are divisible groups. Even if M, is an infinite extension of Fy, it is clear from
the above that Im(k,) = 0if n{ p.

Assume that E has good, ordinary reduction at v, where v is a prime of
F lying over p. Then, considering E[p™] as a subgroup of E(F,), we have
the reduction map E[p™] — E[p*), where E is the reduction of E modulo
v. Define C, by

C, = ker (E[p°°] - E‘[pw]) .

Now E[p>™] = (Q,/Z,)?, E[p®] = Q,/Z, as groups. It is easy to see that
Cy = Q,/Z,. (In fact, C, = F(m) [p>°], where F is the formal group of height
1 for E and @ is the maximal ideal of the integers of F,.) A characterization
in terms of E[p™] is that C, is GF,-invariant and E[p*]/C, is the maximal
unramified quotient of E[p*°]. Let M be a finite extension of F'. If i is a prime
of M lying above v, then we can consider M, as a subfield of F, containing
F,. (The identification will not matter.) We then have a natural map

Ay o HY (M, Cy) = HY (M, E[p™)).

Here is a description of Im(x,).

Proposition 2.2. Im(xy) = Im(A,)div-

Proof. The idea is quite simple. We know that Im(k,) and Im(},) are p-
primary groups, that Im(k,) is divisible, and has Z,-corank [M,, : Q) It
suffices to prove two things: (i) Im(k,) C Im()\y) and (ii) Im();) has Z,-
corank equal to [M, : Q,]. To prove (i), let ¢ € Im(xy). We show that
¢ € ker(H'(M,, E[p®]) = H'(M,, E[p>])), which coincides with Im(\,).
Let f, denote the residue field of F,, f, its algebraic closure—the residue
field of F,. If b € E(F,), we let b e E(F,) denote its reduction. Let ¢ be a
cocycle representing c. Then ¢(g) = g(b)—bfor all g € G, , where b € E(F).
The 1-cocycle induced by E[p*°] — E[p°°] is ¢, given by a(g) = g(Z) ~b for
all g € Gu,- But @ represents a class ¢ in H? (M,, E[p™®]) which becomes
trivial in H'(M,, E(f,)), ie. & is a 1-coboundary. Finally, the key point is
that E (f,) is a torsion group, E[p“’] is its p-primary subgroup, and hence the
map H! (M,,,E’[p‘”]) — Hl(M,,,E’(?v)) must be injective. Thus, ¢ is trivial,

and therefore ¢ € Im(Ay).
Now we calculate the Z,-corank of Im(},,). We have the exact sequence

E[poo]GM,, - E[poO]GM,, - Hl(Mn,Cu) A—"Hl (MmE[Poo]).
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If m, denotes~the residue field of My, then E [p°]%Mn is just the p-primary
subgroup of E(m,), a finite group. Thus, ker(),) is finite. The following
lemma then suffices to prove (ii). If ¢ : Gr, = Z, is a continuous homomor-

phi'sm, we will let (Q,/Z,)(1) denote the group Q,/Z, together with the
action of Gr, given by 9.

Lemma 2.3. H'(M,,(Q,/Z,)(¥)) has Zp-corank equal to [M, : Q,] + 6,
where § =1 if wl Gra, is either the trivial character or the cyclotomic char-
acter of Gu, and 6 = 0 otherwise.

Remark. Because of the importance of this lemma, we will give a fairly self-
contained proof using local class field theory and techniques of Iwasawa The-
ory. But we then show how to obtain the same result as a simple application
of the Duality theorems of Poitou and Tate.

Pr;oof. The case where 1 is trivial follows from local class field theory. Then
HY (M, (Q,/Z,)(v)) = Hom(Gal(M3*/M,),Q,/Z,). The well-known struc-

ture of M,¢ implies that Gal(M,‘,’b/M,,) o~ ZLM":Q"] x Z x (M )tors, where z
is the profinite completion of Z. The lemma is clear in this case. If 1/;! G
My

is the cyclotomic character, then (Q,/Z,)(¥) = ppe as G, -modules. Then
HY(My, pp) = (M) ® (Q,/Z,), which indeed has the stated Z ,-corank.

Now suppose we are not in one of the above two cases. For brevity, we
will write M for M,,. Let M be the extension of M cut out by ¢, . Thus,
G = Gal(My /M) = Im(¢|GM). If 4 has finite order, one can rgduce to
studying the action of G on Gal(M2%/M,.,) since M,, would just be a finite
extension of Q,. We will do something similar if 1 has infinite order. Then,
G = A x H, where A is finite and H = Z,,. If p is odd, |A| divides p — 1. If
gi =2,]|A| =1or 2. Let C = (Q,/Z,)(s). The inflation-restriction sequence

ves

0—+ HY(G,C) - HY(M,C) - H (M, C)® - H*(G,C).

Now let h be a topological generator of H. Then H'(H,C) = C/(h—1)C =0
because, considering h — 1 as an endomorphism of C, ker(h — 1) is finite and
Im(h 1) is divisible. Thus, H'(G,C) = 0 if p is odd, and has order < 2
lf_ p = 2. On the other hand, H?(H,C) = 0 since H has p-cohomological
dimension 1. Then H%(G,C) = 0 if p is odd, and again has order < 2 if
p = 2. Thus, it is enough to study -

H'(My,C)¢ = Homg(Gal(M2 /M), C).

Lft X = Gal(Loo /M), where Lo, is the maximal abelian pro-p extension
of M.,. We will prove the rest of lemma 2.3 by studying the structure of X
as a module for Zp[[A x H]|] = A[A], where A = Z,[[H]] = Z,[[T]], with
T = h — 1. The results are due to Iwasawa.
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Foranyn > 0,let H, = H ?" . Let M,, = M. The commutator subgroup
of Gal(Leo/M,) is (h?" —1)X and so, if Ly, is the maximal abelian extension
of M,, contained in Loo, then Gal(L,/My,) = H, x (X/(h*" —1)X). But L,
is the maximal abelian pro-p extension of M,, and, by local class field theory,
this Galois group is isomorphic to ZLM":Q”]H x W,,, where W,, denotes the
group of p-power roots of unity contained in Mp. Consequently, if we put
t=[Mo: Q] =|A|-[M:Q,), we have

X/(h?" - 1)X 2 Z7" x W, .

Now, the structure theory for A-modules states that X/ X p-tors is isomorphic
to a submodule of A", with finite index, where r = ranks(X). Also, we have
AJ(RP" - 1A = Z;f" for n > 0. It follows that r = . One can also see
that X p-tors = I(il__n W,,, where this inverse limit is defined by the norm maps

MY — MY for m > n. If W, has bounded order (i-e., if ppo € M),
then X g-tors = 0. Thus, X C A*. To get more precise information about the
structure of X, choose n large enough so that hP" — 1 annihilates At/ X. We
then have

(R -1DX C (" -1AC X C AL

We can see easily from this that A?/X is isomorphic to the torsion subgroup
of X/(h?" —1)X. That is, A*/X = W, where W = M N pipee. On the other
hand, if fipee C Moo, then X g-tors = Zp(1), the Tate module for iy . In this
case, X/ X -tors is free and hence X = A* x Z,(1).

In the preceding discussion, the A-module A’ is in fact canonical. It is the
reflexive hull of X/X g-tors. Thus, the action of A on X gives an action on
At. Examining the above arguments more carefully, one finds that, for p odd,
At is isomorphic to A[A]M:@:]. (One just studies the A-module X ¢ for each
character ¢ of A. Recall that |A| divides p—1 and hence each character ¢ has
values in Z; .) For p = 2, we can at least make such an identification up to a
group of exponent 2. For the proof of lemma 2.3, it suffices to point out that
Hom 4 x g (A[4], C) is isomorphic to Q,/Z, and that Homaxn(Z,(1),C) is
finite. (We are assuming now that C' 2 pipe as G'y-modules.) This completes
the proof of lemma 2.3 and consequently proposition 2.2, since one sees easily
that 6 = 0 when C = C,,. [ |

The above discussion of the A[A]-module structure of X gives a more
precise result concerning H'(M,,(Q,/Z,)(¥)). Assume that p is odd and
that 1 has infinite order. If the extension of M, cut out by the character P
of G, contains jipe, then we see that

H'(M,,C) = (Q,/Zy)M %] x Homg,,, (Z5(1),©), (1)
where as above C = (Q,/Z,)(t). The factor Homay,, (Zy(1),C) is just

"HO(M,,C ® x~ '), where x denotes the cyclotomic character. Even if W is
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ﬁnit.e, we can prove (1). For if go is a topological generator of A x H, then the
tor§:1on subgroup of X/(go —1/(ge))X is isomorphic to the kernel of go —1/(g5)
acting on A*/X = W. (It is seen to be ((g0 — %(g0)) A’ N X)/(g0 — 1(g0)) X .)
But this in turn is isomorphic to W/(go — ¥(go))W, whose dual is easily
identified with Homg,, (Zp(1),(Q,/Zp)(¥))-

We have attempted to give a rather self-contained “Iwasawa-theoretic”
approach to studying the above local Galois cohomology group. This suffices
for the proof of proposition 2.2. But using results of Poitou and Tate is often
easier and more effective. We will illustrate this. Let C = (Q,/Z,)(1). Let T
denote its Tate module and V = T ®z, Q,. The Z,-corank of H'(G,,C)
is just dimg, (HY(M,,V)). (Cocycles are required to be continuous. V' has
its @,-vector space topology. Similarly, T has its natural topology and is
compact.) Letting h; denote dimg, (H *(M,,V)), then the Euler characteristic
for V over M, is given by

ho — hy + hy = —~[M, : Q,]dimq, (V)

for any G pr,-representation space V. We have dimg, (V) = 1 and so the Z,-
'coraflk of H'(M,,(Q,/Z,)(v)) is [M, : Q,) + ho + ha. Poitou-Tate Duality
1mphes that H?(M,, V) is dual to H°(M,,V*), where V* = Hom(V, Q,(1)).
It is easy to see from this that § = hg + hz, proving lemma 2.3 again.

The exact sequence 0 - T'— V — C — 0 induces the exact sequence

H'(M,, V) S H'\(M,,C) 5 H2(M,, T) D HX(M,, V).

The image of a is the maximal divisible subgroup of H'(Gys, ,C). The
kernel of v is the torsion subgroup of H2(M,,T). Of course, c:)ker(a) =
Im(B) = ker(y). Poitou-Tate Duality implies that H?(M,,T) is dual to
HO(M,,Hom(T, pp)) = Homg,, (T, pp=). The action of G, on T is by
%; the action on ppe is by x. Thus, Homg,, (T, up=) can be identified with
the dual of HO(M,,(Q,/Z,)(xy')). If ¢;GM" = XfcMn’ then we find that

H.2(M,,,T) = Zp, Im(B) = 0, and therefore H'(M,, C) is divisible. Other-
wise, we find that H2(M,, T) is finite and that

H' (My,C)/H' (My, C)aiv = (Q,/Zy) (hx "), (2)

which is a finite cyclic group, indeed isomorphic to Homg,, (Z,(1),C). This
argument works even for p = 2. !

We want to mention here one useful consequence of the above discussion.
Again we let C = (Q,/Z,)(y), where ¢ : G, — Z, is a continuous homo-
morphism, v is any prime of F lying over p. If 5 is a prime of F, lying over
v, then (Fi), is the cyclotomic Z,-extension of F,. By lemma 2.3, the Z,-
corank of H'((Fy),,C) differs from [(F,), : F,] by at most 1. Thus, if we let
I, = Gal((Fw)y/F,), then it follows that as n — oo

corankz, (H' ((Feo)n, C)'%" ) = p"[F, : Q,] + O(1).
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The structure theory of A-modules then implies that H!((Fs )y, C) has co-
rank equal to [F, : @] as a Z,[[I},]]-module. Assume that ¢ is unramified
and that the max1ma,l unramified extension of F, contains no p-th roots of
unity. (If the ramification index e, for v over p is < p — 2, then this will be
true. If F = @, this is true for all p > 3.) Then by (2) we see that H*(F,,C)
is divisible. The Zp-corank of H*(F,,C) is [F, : Q,] + 4, where § = 0 if ¢
is nontrivial, § = 1 if 9 is trivial. By the inflation-restriction sequence we
see that H!((Fo)y, C)™ = (Q,/Z, )@ Tt follows that H((Fuo)y, C) is
Z,([I']])-cofree of corank [Fy: Q L), under the hypotheses that 1) is unragpified
and e, < p — 2. These remarks are a special case of results proved in [Gr2].
Now we return to the case where C, = ker(E[p>®] = E[p*]). The action
of Gr, on C, is by a character ¢, the action on E[p‘”] is by a character ¢,
and we have ¢¢ = x since the Weil pairing T,(E) A Tp(E) = Z,(1) means
that x is the determinant of the representation of Gr, on T,(E). Note that
¢ has infinite order. The same is true for ¢ since ¢ and x become equal
after restriction to the inertia subgroup Ggynr. This explains why é = 0 for
wl Gy as used to prove proposition 2.2. In this case, xy~! = ¢ and hence

H °(G M, (Q,/Zp)(x3p™")) is isomorphic to E(m,,)p, where my, is the residue
field for M, These facts lead to a version of proposition 2.2 for some infinite
extensions of F,.

Proposition 2.4. Assume that K is a Galois extension of F,, that
Gal(K/F,) contains an infinite pro-p subgroup, and that the inertia sub-
group of Gal(K/F,) is of finite index. Then Im(kx) = Im(Ak), where
Kk is the Kummer homomorphism for E over K and Ak is the canonical
homomorphism

H(K,C,) — H(K, E[p)).

Proof. Let M run over all finite extensions of F, contained in K. Then
Im(kg) = Iﬂllm(nM), Im(Ag) = QE)IIm(AM), and Im{xpr) = Im(Apsr)div

by proposition 2.2. But Im(Aa)/Im(Aar)giv has order bounded by |E(m),|,
where m is the residue field of M. Now |m| is bounded by assumption. Hence
it follows that Im(\x)/Im(kk) is a finite group. On the other hand, Gk
has p-cohomological dimension 1 because of the hypothesis that Gal(K/F,)
contains an infinite pro-p subgroup. (See Serre, Cohomologie Galoisienne,
Chapitre II, §3.) Thus if C is a divisible, p-primary Gk-module, then the
exact sequence 0 — C[p] - C 5 C — 0 induces the cohomology exact se-
quence HY(K,C)% HY(K,C) - H%*(K,C[p]). The last group is zero and
hence H!(K,C) is divisible. Applying this to C' = C,, we see that Im(Ak) is
divisible and so Im(kk) = Im(Ag). |

If F,, denotes the cyclotomic Zp-extension of F, then every prime v

‘of F lying over p is ramified in Fi, / F. If  is a prime of Fx, Over v, then

Iwasawa theory for elliptic curves 69

K = (Fw), satisfies the hypothesis of proposition 2.4 since the inertia sub-
group of I' = Gal(F, /F) for 7 is infinite, pro-p, and has finite index in I".
Propositions 2.1, 2.2, and 2.4 will allow us to give a fairly straightforward
proof of theorem 1.2, which we will do in section 3. However, in section 4 it
will be useful to have more precise information about Im(},)/Im(,), where
7 is a prime for a finite extension M of F lying over p. What we will need is
the following.

Proposition 2.5. Let M,, be a finite extension of F,,, where v|p. Let m,, be
the residue field for M,,. Then

Im(A,)/Im(x,) = (mn)p

Proof. The proof comes out of the following diagram:

0 — F(m) @ (Q,/Z,) —> H'(M,,C,) —> H'(M,, F(m)), — 0

l I |

0 E(My) ® (Q,/Z,) == H'(M,, E[p®]) — H'(M,, E(F,)), — 0

Here F is the formal group for E (which has height 1), m is the maximal
ideal of M. The upper row is the Kummer sequence for F(m), based on the
fact that F(m) is divisible. The first vertical arrow is surjective since F(m)
has finite index in E(M,). Comparing Z,-coranks, one sees that Im(kx) =
HY (G M,>Cy)div. A simple diagram chase shows that the map

H'(My, Cy)/H' (My, Cy)aiv — Im(Ay) /Im(Ag) aiv )
is surjective and has kernel isomorphic to ker(e). The exact sequence
0 — F(m) - E(F,) = E(f,) = 0

together with the fact that the reduction map E(M,) — E‘(m,,) is surjec-
tive implies that € is injective. (For the surjectivity of the reduction map,
see proposition 2.1 of [Si].) Therefore, the map (3) is an isomorphism. Com-
bining this with the observation preceding proposition 2.4, we get the stated
conclusion. ]

Assume now that F has split, multiplicative reduction at v. Then one has
an exact sequence

0—-Cy = Ep™]—>Q,/Z,—0

vxfhere Cy = ppes. The proof of proposition 2.2 can be made to work and
gives the following result. For any algebraic ertension K of F,, we have
Im(kk) = Im(Ak). It is enough to prove this when [K : F,] < co. Then
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Im(kg) is divisible and has Z,-corank [K:Q,). H'(K,C,) is divisible and
has Z,-corank [K:Q,] + 1. But the kernel of )\K HY(K,C,) - HY(K, E[p™))
is 1somorph1c to Q, / Z,. Thus, Im(Ak) and Im(kg) are both divisible and
have the same Z, —corank The inclusion Im(kx) C Im(Ag) can be seen by
noting that in deﬁmng Kk, one can assume that o € E(K) ® (Q,/Z,) has
been written as a = a ® (1/pt), where a € F(m). Here F is the formal
group for E, m is the maximal ideal for K. Then, since F(m) is divisible, one
can choose b € F(m) so that p'b = a. The 1-cocycle ¢, then has values in
C, = F(m)[p™]. Alternatively, the equality Im(kx) = Im(Ax) can be verified
quite directly by using the Tate parametrization for E.

If E has nonsplit, multiplicative reduction, then the above assertion still
holds for p odd. That is, Im(kx) = Im(Ag) for every algebraic extension K
of F,. We can again assume that [K:F,] < co. If E becomes split over K,
then the argument in the preceding paragraph applies. If not, then lemma 2.3
and (2) imply that H'(K, C,) is divisible and has Z-corank [K:Q,]. Just as
in the case of good, ordinary reduction, we see that Im(kx) = Im(Ak). (It
is analogous to the case where E(k)p = 0, where k is the residue field of K.)
Now assume that p = 2. If [K:F,] < oo and E is nonsplit over K, then we have
HY(K,C,)/H'(K,Cy)aiv = Z/2Z by (2), since ¥x " will be the unramified
character of Gk of order 2. Thus, we obtain that Im(kg) = Im(Ag)aiv and
that [Im(Ax):Im(xkk)] < 2. Using the same argument as in the proof of
proposition 2.5, we find that this index is equal to the Tamagawa factor
[E(K): F(mg)] for E over K. This equals 1 or 2 depending on whether
ordk (jg) is odd or even. Finally, we remark that proposition 2.4 holds when
E has multiplicative reduction. The proof given there works because the index
[Im(Apr) : Im(kas)] is bounded.

For completeness, we will state a result of Bloch and Kato describing
Im(kg) when E has good, supersingular reduction and [K : F,] < oo. It
involves the ring Beis of Fontaine. Define

H} (K, V,(E)) = ker (H' (K, Vp(E)) = H"(K,Vp(E) ® Beris)) -

The result is that Im(xk) is the image of H}(K,Vp(E)) under the canoni-
cal map H'(K,V,(E)) - HY(K,V,(E)/T,(E)), noting that V,(E)/T,(E) is
isomorphic to E[p>)]. This description is also correct if E has good, ordinary
reduction.

If E has supersingular reduction at v, where v|p, and if K is any ramified
Z,-extension of F,, then the analogue of proposition 2.4 is true. In this
case, C, = E[p™] since E[p®] = 0. Thus, the result is that Im(kg) =
HY(K, E[p™®]). Perhaps the easiest way to prove this is to use the analogue
of Hilbert’s theorem 90 for formal groups proved in [CoGr]. If F denotes the
formal group (of height 2) associated to E, then H'(K,F(m)) = 0. (This
is a special case of Corollary 3.2 in [CoGr].) Just as in the case of Kummer
theory for the multiplicative group, we then obtain an isomorphism

F(mk) ® (Q,/Z,)> H' (K, Cy)

Iwasawa theory for elliptic curves 71
because C, = F(m)[p™]. We get the result stated above immediately, since

E(K) ® (Qy/Z,) = F(mk) ® (Qy/Z)-

The assertion that Im(kg) = H!(K, E[p™]) is proved in [CoGr] under the
hypotheses that F has potentially supersingular reduction at v and that
K/F, is a “deeply ramified extension” (which means that K/F, has infinite
conductor, i.e., K ¢ F,ft) for any t > 1, where Fét) denotes the fixed field for
the ¢-th ramification subgroup of Gal(F', /F,)). A ramified Z,-extension K of
F, is the simplest example of a deeply ramified extension. As an illustration of
how this result affects the structure of Selmer groups, consider the definition
of Selg(M), given near the beginning of this section. If E has potentially
supersingular reduction at a prime v of F lying over p and if M,/F, is
deeply ramified for all n|v, then the groups H' (M, E[p*])/Im(k,) occurring
in the definition of Selgp(M), are simply zero. In particular, if M = F,, the
cyclotomic Z,-extension of F, then the primes n of F,, lying over primes
of F' where E has potentially supersingular reduction can be omitted in the
local conditions defining Selg (Foo)p. This is the key to proving theorem 1.7.

One extremely important consequence of the fact that the Selmer group
for an elliptic curve E has a description involving just the Galois represen-
tations attached to the torsion points on E is that one can then attempt to
introduce analogously-defined “Selmer groups” and to study all the natural
questions associated to such objects in a far more general context. We will
illustrate this idea by considering A, the normalized cusp form of level 1,

o0
weight 12. Its g-expansion is A = Z 7(n)q"™, where 7(n) is Ramanujan’s tau

function. Deligne attached to A a compatlble system {V;(A)} of l-adic repre-
sentations of Gg. Consider a prime p such that p{ 7(p). For such a prime p,
Mazur and Wiles have proved that the action of Gq, on V,(4) is reducible

(where one fixes an embedding Q@ — Q identifying GQ with a subgroup of
Gq). More precisely, there is an exact sequence

0 — Wy(A4) = Vp(A) = Up(4) - 0

where W,(A) is 1-dimensional and GQP—mva.rlant the action of Gq, on U,(4)
is unramified, and the action of Frob, on U,(A) is multiplication by op (where
oy is the p—adlc unit root of ¢ — T(p)t + p”) Let Tp(A) be any Gg-invariant
Z,-lattice in V,(A). (It turns out to be unique up to homothety for p {1 7(p),
except for p = 691, when there are two possible choices up to homothety.)
Let A =V,(A4)/Tp(A). As a group, A = (Q,/Z,)*. Let C denote the image
of W,(4) in A. Then C = Q,/Z, as a group. Here then is a definition of the
p-Selmer group S4(Q), for A over Q:

54(@Q)p =ker(H'(Q, 4) » [ H'(Q,, 4)/L.),
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where v runs over all primes of Q. Here we take L, = 0 for v # p, analogously
to the elliptic curve case. One defines L, = Im()\,)q4;y, where

AP : Hl(vaC) - Hl(QpaA)

is the natural map. In [Gr3], one can find a calculation of S4(Q),, and also
S4(Q.)p, for p = 11,23, and 691. One can make similar definitions whenever
one has a p-adic Galois representation with suitable properties.

3. Control Theorems

We will now give a proof of theorem 1.2. It is based on the description of
the images of the local Kummer homomorphisms presented in section 2,
specifically propositions 2.1, 2.2, and 2.4. We will also prove a special case
of conjecture 1.6. Let E be any elliptic curve defined over F'. Let M be an
algebraic extension of F. For every prime 1 of M, we let

HEp(My) = H' (My, E[p*])/Im(x,)-

Let Pg(M) = [[ He(M,), where 7 runs over all primes of M. Thus,
n

Selg(M), = ker (H'(M, E[p™®]) - Pg(M)),

where the map is induced by restricting cocycles to decomposition groups.
Also, we put

Ge(M) = Im (H' (M, E[p™]) =+ Pe(M)).
Let Fo = |J Fy, be the cyclotomic Z,-extension. Consider the following com-

n
mutative diagram with exact rows:

0 — Selg(Fp)p HY\(F,, E[p®]) ——> Gg(F,) —>0

T

0— SelE(Foo)gn - Hl(Fom E'[poo])l'.. —_ gE(FoO)F'l .

Here I, = Gal(F/Fn) = I'*". The maps $,, hn, and g, are the natural
restriction maps. The snake lemma then gives the exact sequence

0 — ker(s,) — ker(hy,) — ker(gn) — coker(s,) — coker(hy).

Therefore, we must study ker(h,), coker(h,), and ker(gn), which we do in a
sequence of lemmas.

Lemma 3.1. The kernel of h,, is finite and has bounded order as n varies.
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Proof. By the inflation-restriction sequence, ker(h,) 2 H'(I,, B), where B
is the p-primary subgroup of E(F,,). This group B is in fact finite and hence
HY(I',,B) = Hom(I,, B) for n > 0. Lemma 3.1 follows immediately. But
it is not necessary to know the finiteness of B. If v denotes a topological
generator of I', then HY(I',,B) = B/(v*" — 1)B. Since E(F,) is finitely
generated, the kernel of v*" — 1 acting on B is finite. Now By;, has finite
Z,-corank. It is clear that

Baiv C (v*" —1)BC B.

Thus, H(I,, B) has order bounded by [B: Bgiyv], which is independent of
n. If we use the fact that B is finite, then ker(h,) has the same order as
HO(I',, B), namely |E(Fy),|- .

Lemma 3.2. Coker(h,) =0.

Proof. The sequence H(F,, E[p>®]) — H'(Fw, E[p®])!* — H?*(I,,B) is
exact, where B = H(F,,, E[p™]) again. But I', = Z,, is a free pro-p group.
Hence H%(I',, B) = 0. Thus, h,, is surjective as claimed. |

Let v be any prime of F. We will let v,, denote any prime of F, lying
over v. To study ker(g,), we focus on each factor in Pg(F,) by considering

Ton :’HE'((Fn)v,.) - HE((Foo)n)

where 7 is any prime of Fy, lying above v,. (Pg(F) has a factor for all
such 7n’s, but the kernels will be the same.) If v is archimedean, then v splits
completely in F, /F, i.e., F, = K,,. Thus, ker(r,, ) = 0. For nonarchimedean
v, we consider separately v{p and v|p.

Lemma 3.3. Suppose v is a nonarchimedean prime not dividing p. Then
ker(r,,) is finite and has bounded order as n varies. If E has good reduction
at v, then ker(r,,) =0 for all n.

Proof. By proposition 2.1, Hg(M,) = H'(M,, E[p®]) for every algebraic
extension M, of F,. Let B, = H°(K, E[p™]), where K = (Fy,),. Since v
is unramified and finitely decomposed in F/F, K is the unramified Z,-
extension of F, (in fact, the only Z,-extension of F,). The group B, is
isomorphic to (Q,/Z,)° x (a finite group), where 0 < e < 2. Let I},, =
Gal(K/(Fy)y, ), which is isomorphic to Z,, topologically generated by 7,,,,
say. Then

ker(r,, ) = Hl(Fvn,B,,) = By/(Y, — 1)By.

Since.E((Fn)vn) has a finite p-primary subgroup, it is clear that (v,, — 1)B,
contains (B, )giv (just as in the proof of lemma, 3.1) and hence

lker(rvn)l < |Bv/(By)divl- 4)



74 Ralph Greenberg

This bound is independent of n and v,. We have equality if n >> 0. Now
assume that E has good reduction at v. Then, since v { p, F,(E[p*™])/Fy is
unramified. It is clear that K C F,(E[p>]) and that A = Gal(F,(E[p*])/K)
is a finite, cyclic group of order prime to p. It then follows that B, = E [p=]4
is divisible. Therefore, ker(r,,) = 0 as stated. ]

One can determine the precise order of ker(r,,), where v,|v and v is
any nonarchimedean prime of F not dividing p where E has bad reduction.
This will be especially useful in section 4, where we will need |ker(r,,)|.‘ The
result is: | ker(r,)| = ¢ where ¢iP) is the highest power of p dividing the
Tamagawa factor ¢, for E at v. Recall that ¢, = [E(Fy) : Eg(Fy)], where
Ey(F,) is the subgroup of local points which have nonsingular reduction
at v. First we consider the case where E has additive reduction at v. Then
HO(1,, E[p>]) is finite, where I, denotes the inertia subgroup of Gf,. Hence
B, is finite because I, C Gk. Also, Eo(F,) is a pro-l group, where 1 is the
characteristic of the residue field for v, i.e., v|l. (Note: Using the notation in
[Si], chapter 5, we have | Ens(fo)| = | ful = a power of | and E;(F,) is pro-l.)
Since | # p, we have P = |E(F,),|, which in turn equals |By /(s — 1)Bo|-
Hence | ker(ry)| = tP) when E has additive reduction at v. (It is known that
¢y < 4 when E has additive reduction at v. Thus, for such v, ker(r,) = 0
if p > 5.) Now assume that E has split, multiplicative reduction at v. Then
¢y = ordy (qg)) = —ord,(jg), where qg) denotes the Tate period for E at v.

Thus, qg) = 7¢ -u, where u is a unit of F;, and my is a uniformizing parameter.
One can verify easily that the group of units in K is divisible by p. By using
the Tate parametrization one can show that B, /(By)div is cyclic of order
P and that I}, acts trivially on this group. Thus, | ker(ry, )| = P for all
n > 0. B, might be infinite. In fact, (By)daiv = Mp= if pp C Fy; (By)aiv = 0if
pp € Fy. Finally, assume that E has nonsplit, multiplicative reduction at v.
Then ¢, = 1 or 2, depending on whether ord,(jg) is odd or even. Using the
Tate parametrization, one can see that B, is divisible when p is odd (and
then ker(r,) = 0). If p = 2, E will have split, multiplicative reduction over

K and so again B,/(By)div has order related to ord, (qg’)). But v, acts by

—1 on this quotient. Hence H(I,, By) has order 1 or 2, depending on the
parity of ord, (qg’)). Hence, in all cases, | ker(ry)| = P,

Now assume that v|p. For each n, we let f, denote the residue field
for (Fp)y, - It doesn’t depend on the choice of v,. Also, since v, is totally
ramified in Fi/F, for n > 0, the finite field f,, stabilizes to frn, the residue

field of (Fio ). We let E denote the reduction of E at v. Then we have
Lemma 3.4. Assume that E has good, ordinary reduction at v. Then
iker(rv..)l = ‘E’(fvn)plz'

‘It is finite and has bounded order as n varies.
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Proof. Let C, = ker(E[p>®] — E[p°°]), where we regard E[p™] as a sub-
group of E(F'). Considering (Fy), as a subfield of F',, we have Im(k,, ) =
Im(Xy, )aiv by proposition 2.2. By proposition 2.4, we have Im(x,) = Im(),)
since the inertia subgroup of Gal(Fy,/F) for v has finite index. Thus, we cZui
factor r, as follows. ’

HY((Fa)u,, E[p™]) [Im(Ay, )aiv ——> HY((Fy)y, , E[p™])/Im(As, )

Tun lbvn

Hl((Foo)na E[Poo])/lm()\n)

Now A, is clearly surjective. Hence [ ker(ry, )| = |ker(ay, )| - | ker(by, )[- By
proposition 2.5, we have | ker(ay, )| = |E(fu, )pl- For the proof of proposition
1.2, just the boundedness of | ker(ay, )| (and of |ker(b,, )|) suffices. To study
ker(b,,) we use the following commutative diagram.

HY(Fa)o, , Co) "2 HY(Fu)o, Ep®]) 55 H(Fn)a, , Bp™]) — 0

T

HY(Fao), Co) <% HY(Foo)s E[p®]) 2> H (B ), B[p]) —= 0

TI;e surjectivity of the first row follows from Poitou-Tate Duality, which gives
H*(M ,_Cv) = 0 for any finite extension M of F,. (Note that C, % ppe for
the action of Gar.) Thus, ker(b,, ) = ker(d,, ). But '

ker(dy,) 2 H'((Foo)a/(Fu)u.> E(f1)p) = E(f2)p/ (o — VE(f,)p

where 1, is a topological generator of Gal((Fy,),/(F, E i
: . oo )y )v.). Now E is
finite and the kernel and cokernel of v, — 1 have th: same order, (njzlx)rfely

|E(fu,)pl- This is the order of ker(d,, ). Lemma 3.4. follows. |

. Let Xy denote the finite set of nonarchimedean primes of F which either
llE? over p or where E has bad reduction. If v ¢ % and v, is a prime of F,

lying over v, then ker(r,,) = 0. For each v € Xy, lemmas 3.3 and 3.4 shov'slr
that | ker(r,, )| is bounded as n varies. The number of primes vy, of F, lying

over any nonarchimedean prime v is also bounded. Cons
. equent]
proved the following lemma. auentiy, we have

Lemma 3.5. The order of ker(gy) is bounded as n varies.

" Lemma 3.1 impl.ies that ker(s,,) is finite and has bounded order no matter
what type of reduction E has at v|p. Lemmas 3.2 and 3.5 show that coker(sy,,)

is finite and of bounded order, assumin i
, g that E has good, ordinary reducti
at all v|p. Thus, theorem 1.2 is proved. ® Y resueron
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Tt is possible for s,, to be injective for all n. A simple sufficient condition
for this is: E(F) has no element of order p. For then E(Fw) will have no
p-torsion, since I' = Gal(Fy/F) is a pro-p group. Thus ker(hs) and hence
ker(s,) would be trivial for all n. A somewhat more subtle result will be
proved later, in proposition 3.9.

It is also possible for s,, to be surjective for all n. Still assuming that E has
good, ordinary reduction at all primes of F' lying over v, here is a sufficient
condition for this: For each v|p, E,(f,) has no element of order p and, Jor
each v where E has bad reduction, E[p®]% is divisible. The first part of this
condition implies that E,(fo,)p = 0 for all v|p and all n, again using the fact
that I' is pro-p. Thus, ker(r,, ) = 0 by lemma 3.4. In the second part of this
condition, I, denotes the inertia subgroup of G, . Note that v }p. It is easy
to see that if E[p™®]l is divisible, the same is true of By = H’((Foo)n, E[p™])
for njv. Thus, ker(r,, ) = 0 for v,|v, because of (4). The second part of this
condition is equivalent to p { cy.

We want to now discuss the case where E has multiplicative reduction
at some v|p. In this case, one can attempt to imitate the proof of lemma
3.4, taking C, = F(m)[p>]. We first assume that E has split, multiplicative
reduction. Then C, = pp and we have an exact sequence

0=+ iy = E[p™) = Q,/Z, = 0

of G, -modules, where the action on @,/Z, is trivial. Then H Y(Fn)vn » tip=)
and hence Im(),,) are divisible. We have Im(k,,) = Im(A,,) as well as
Im(k,) = Im()\,). Thus, ker(ry, ) = ker(by, ), where by, is the map

bur :H* (Fu)un , Ep™]) /Im(A,) = H(Foo)ns Ep™)/Im(Ar).

For any algebraic extension M of F,, we have an exact sequence
HY (M, ) 225 HY(M, E[p®)) ™% H' (M, Q,/Z,) = H*(M, pp=) — 0.

If [M:F,] < 00, then Poitou-Tate Duality shows that H 2(M, ppe) = Q,/Zy,
whereas H2(M, E[p™]) = 0, which gives the surjectivity of 5. Thus, 7 is
not surjective in contrast to the case where E has good, ordinary reduction
at v. We let 7y, = T(p,),.» Ty = T(F.),- Thus, ker(by,) can be identified
with Im(m,, ) Nker(d,, ), where d,, is the map

dy, H' ((F)vn Qp/zp) — Hl((Foo)m Qp/zp)
The kernel of d,, is quite easy to describe. We have
ker(dy, ) = Hom(Gal((Foo)y/ (Fn)v.)> Qp/ Zp)

which is isomorphic to @, /Z, as a group. The image of m,, is more interesting
_to describe. It depends on the Tate period ¢g for E, which is defined by
the equation j(gg) = jg, solving this equation for g& € F)X. Here j(q) =
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-1

g+ 71.14 + 1968§4q +--- for |glv < 1 and jg is the j-invariant for E. Since
JjE€F is algebraic, the theorem of [B-D-G-P] referred to in section 1 implies
that gg is transcendental. Also, we have |gg|, = |jEp|;!. Let

recy : M* — Gal(M® /M)

den_ote the reciprocity map of local class field theory. We will prove the fol-
lowing result.

Proposition 3.6. Let M be a finite extension of F,. Then
Im(mar) = {¢ € Hom(Gal(M** /M), Q,/Z,) | $(recr(qx)) = 0}.
If M is a Z,-extension of F,, then mp is surjective.

Proof. The last statement is clear since G has p-cohomological dimension

1 if M/F, has profinite degree divisible by p®. For the first statement, the
exact sequence ’

0= ppn =+ Ep"| 2 Z/p"Z -0

: (n). n
induces a ‘map.nf}).Hl(M, E[p™]) » HY(M,Z/p"Z) for every n > 1. Because
of the Weil pairing, we have Hom(E[p"], ip») = E[p"]. Thus, by Poitou-Tate

Duality, W(M") is adjoint to the natural map

H'(M, pp) = H'(M, E[p"))

whose kernel is easy to describe. It is generated by the class of the 1-cocycle
¢:Gum — ppe given by ¢(g) = g(?y/qr )/ P\/qE for all g € Gar. The pairing

HY (M, ppn) x H\(M,Z/p"Z) — Z[p"Z

is just (¢g,v) — w(%‘ecM(q)) for ¢ € M*, where ¢, is the 1-cocycle associ-
ate;i to qx as above, i.e., the image of ¢ under the Kummer homomorphism
M* [(M*)?" — HY(M, ppn). This implies that

Im(r{y) = {¢ € Hom(Gal(M® /M), Z/p"Z) | (recas(¢5)) = 0},

f.ror.rtl which the first part of proposition 3.6 follows by just taking a direct
imit.
|

Still assuming that E has split, multiplicative reduction at v. the state-
ment that ker(r,,) is finite is equivalent to the assertion that i«:er(d ) €
Im(7,,). In this case, we show that | ker(ry, )| is bounded as n varies. I;‘]Sr let
0 = recr, (48)|(F..), € Gal((Fwo)n/Fy). Let en = [(Fu), :F,]. Then we have
rec(r,),, (46)|(F.), = 0. It is clear that ’

ker(r,,) = {v € Hom(Gal((Foo)n/(Fn),,"),QP/Z,,) | ¥(c®*) = 0}
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has order equal to [Gal((Feo)n/(Fn)v.): (o¢")]. But Gal((Feo)n/Fo) = Zp.
This index is constant for n > 0. Thus, ker(r,,) is finite and of constant
order as n varies provided that o # id. Let Q;’° denote the cyclotomic Z,-
extension of Q. Then (Fio)y = F,Q,°. We have the following diagram

F} = Gal((Foo)n/ Fu)

lNF,,/QP irest

Q) > Gal(@y/Q,) .
where the horizontal arrows are the reciprocity maps. It is known that the
group of universal norms for QyY°/Q, is precisely p - {(p), where p denotes
the roots of unity in @,. This of course coincides with the kernel of the
reciprocity map @, — Gal(Q;’°/Q,) and also coincides with the. k(?rnel of
log, (where we take Iwasawa’s normalization log,(p) = 0.) Also, _1t is .clea'r
that o # id & o|qy # id. Thus we have shown that ker(r,, ) is finite }f
and only if log,(NF, /q, (¢e)) # 0. The order will then be constant and is

determined by the projection of Np, /Qp(qE) to Z;‘ in the decomposition
Q, = (p) x Z; . One finds that

| er(r,, )| ~ log, (Nr, g, (05))/201Fy N Q5 : Q)

where ~ indicates that the two sides have the same p-adic valuation.
Assume now that p is odd and that E has nonsplit, multiplicative reduc-
tion. We then show that ker(r,,) = 0. We have an exact sequence

where ¢ is the unramified character of G, of order 2. As discussed in section
2, we have Im(k,, ) = Im(\,, ). Also m,, is surjective. We can identify ker(r, )
with ker(d,, ), where d,,, is the map

H' ((Fn)on s (Qp/Zp)(9)) = H' (Foo)n, (Qp/Zp)(4))

whose kernel is clearly zero. Thus, as stated, ker(r,,) = 0. (The value c?f
NE, /@, (gE) is not relevant in this case.) If p = 2, then |Im(./\v? )/ I.m()\vn )div‘l is
easily seen to be at most 2. Hence, if E has nonsplit, multiplicative reductl.on
over (F,)y, , we have | ker(ry, )| < 2. (Note: It can happen that (Foo ) contains
the unramified quadratic extension of F,. Thus E can become split over
(F,)y, for n > 0.) We will give the order of ker(r,) when E has nonsplit,
multiplicative reduction at v|2. The kernel of a, has order [Im(},) : Im(m.,)],
which is just the Tamagawa factor for E at v. (See the discussion followm'g
the proof of proposition 2.5.) On the other hand, ker(by,) = ker(d,) and this
group has order 2. Thus, |ker(ry)| ~ 2¢,, where ¢, denotes the Tamagawa,

factor for E at v. )
The above observations together with lemmas 3.1-3.3 provide a proof of

" the following result in the direction of conjecture 1.6.
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Proposition 3.7. Assume that E is an elliptic curve defined over F which
has good, ordinary reduction or multiplicative reduction at all primes v of F

lying over p. Assume also that log,(NFp, /Q, (qfé’))) # 0 for all v where E has
multiplicative reduction. Then the maps

8n: Selg(Frn)p — Selp(Fuo)l™
have finite kernel and cokernel, of bounded order as n varies.

In the above result, qg’) denotes the Tate period for E over F,. If jg € @,

then so is qg’). Thus, N, /e, (qg’)) = (qg))[p ‘@] is transcendental according

to the theorem of Barré-Sirieix, Diaz, Gramain, and Philibert. Perhaps, it
is reasonable to conjecture in general that Np, /@, (qg’)) is transcendental

whenever jg € F,NQ. Then the hypothesis log,(NF, /@, (qg’))) # 0 obviously
holds. This hypothesis is unnecessary in proposition 3.7, if p is odd, for those
v’s where E has nonsplit, multiplicative reduction. (For p = 2, one needs the
hypothesis when E has split reduction over (Fi),.)

Let X be a profinite A-module, where A = Z,[[T]], T = v -1, as in
section 1. Here are some facts which are easily proved or can be found in
[Wa2].

1) X=TX=X=0.

(2) X/TX finite = X is a finitely generated, torsion A-module.

(3) X/TX finitely generated over Z, = X is finitely generated over A.

(4) Assume that X is a finitely generated, torsion A-module. Let 0,, denote
¥*" —1€ A forn > 0. Then there exist integers a, b, and c such that the
Z,-torsion subgroup of X/0,X has order p*, where e, = an + bp"™ + ¢
forn> 0.

We sketch an argument for (4). Let f(T') be a generator for the characteristic
ideal of X, assuming that X is finitely generated and torsion over A. If we have
F(¢ —1) # 0 for all p-power roots of unity, then X/8,X is finite for all n > 0
and one estimates its order by studying [[ f(¢ — 1), where ¢ runs over the
p"-th roots of unity. One then could take a = A(f), b = u(f) in (4). Suppose
X = A/(h(T)*¢), where h(T) is an irreducible element of A. If h(T') ¢ ,, for
all n, then we are in the case just discussed. This is true for (h(T)) = pA for
example. If h(T')|0,, for some ng > 0, then write 8, = h(T)¢n, for n > no,
where ¢, € A. Since 6, = (1+ T)?" — 1 has no multiple factors, we have
h(T)  ¢,,. Then we get an exact sequence

0-2Y/¢,Y = X/0,X = A/W(T)A -0

for n > ng. Here Y = (A(T))/(A(T)®) = A/(R(T)¢'). Then Y/¢,Y is
finite and one estimates its growth essentially as mentioned above. Now
A/WT)A is a free Z,-module of rank = A(h). Thus the Z,-torsion sub-
group of X/0,X is Y/¢,Y whose order is given by a formula as above. In
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general, X is pseudo-isomorphic to a direct sum of A-modules of the form
A/(R(T)¢) and one can reduce to that case. One sees that b = u(f), where
f = f(T) generates the characteristic ideal of X. Also, a = A(f) — Ao, where
Ao = max(rankz, (X/6,X)). The Z,-rank of X /6, X clearly stabilizes, equal
to g for n > 0.

These facts together with the results of this section have some immediate
consequences, some of which we state here without trying to be as general as
possible. For simplicity, we take @ as the base field.

-
Proposition 3.8. Let E be an elliptic curve with good, ordinary reduction
at p. We make the following assumptions:

(i) p does not divide |E(FF,)|, where E denotes the reduction of E at p.
(ii) If E has split, multiplicative reduction at l, where l #£p, then ptord;(GE)-
If E has nonsplit, multiplicative reduction at 1, then either p is odd or
ord;(jg) ts odd.
(iii) If E has additive reduction at l, then E(Q;) has no point of order p.

Then the map Selp(Q), — Selr(Qu,) is surjective. If Selp(Q)p = 0, then
Selg(Qy)p = 0 also.

Remark. The comments in the paragraph following the proof of lemma 3.3
allow us to restate hypotheses (i) and (iii) in the following way: p{ ¢; for all
| # p. Here ¢; is the Tamagawa factor for E at l. If £ has good reduction at
[, then ¢; = 1. If E has additive reduction at !, then ¢; < 4. Thus, hypothesis
(iii) is automatically satisfied for any p > 5. If £ has nonsplit, multiplicative
reduction at , then hypothesis (ii) holds for any p > 3. On the other hand,
if E has split, multiplicative reduction at [, then there is no restriction on
the primes which could possibly divide ¢;. Hypothesis (i) is equivalent to

ap # 1 (mod p), where ap =1 +p— |E(FF,)|.

Proof. We refer back to the sequence at the beginning of this section. We have
coker(h,) = 0 by lemma 3.2. The surjectivity of the map so would follow from
the assertion ker(go) = 0. But the above assumptions simply guarantee that
the map Pr(Q) = Pr(Q,) is injective and hence that ker(go) = 0. For by
lemma 3.4, (i) implies that ker(rp) = 0. If E has multiplicative reduction

at | # p then (ii) implies that ord, (qg)) is not divisible by p. This means
Q% qg) )/ @, is ramified. Thus H°(L, E[p*]) is a divisible group, where L

denotes the maximal unramified extension of ®;. Now Gal(L/Q,) = Z. The
cyclotomic Z-extension of Q; is (Q)y, Where njl. Thus, (Quoo)n C L. Let
H = Gal(L/(Q,),). Then H acts on H°(L, E[p™]) through a finite cyclic
group of order prime to p. Thus, it is easy to see that H°((Qu)q, E[p™])
is divisible and hence, from (4), we have ker(r;) = 0. Assume now that
_E has additive reduction at ! (where, of course, ! # p). Then E[p>]l is
finite, where I; denotes G, the inertia subgroup of Gq,- We know that
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if E has potentially good reduction at [, then 7; acts on E[p*™] through a
f;uotient of order 2°3%. Thus E[p>®])* = 0 if p > 5, and (iii) is then not
important. If p = 2 or 3, (iii) suffices to conclude that H°((Q,,), E[p*]) = 0
since Qal((Qw)n /Q,) is pro-p. Thus, again, ker(r;) = 0. (Wi:o are essentially
repgatmg some previous observations.) Finally, if Selg(Q), is trivial, then
so is Selp(Q,,)". Let X = Xp(Q,,). Then X/TX = 0, which implies that
X = 0. Hence Selg(Q,,) = 0 as stated. a

If we continue to take F = Q, then we now know that the restriction
map Selg(Q), — Selg(Q,,)] has finite cokernel if E has good, ordinary
or m}lltiplicative reduction at p. (In fact, potentially ordinary or potentially
multiplicative reduction would suffice.) Thus, if Selg(®), is finite, then so is
Selp(Q); - Hence, for X = Xp(Q,,), we would have that X/TX is finite.
Thus, X would be a A-torsion module. In addition, we would have T't fz(T).

Assume that E has good, ordinary reduction at p. If p is odd, then the
map Selg(Q,,), — Selg(Q.,) ™ is actually injective for all n > 0. To see this
let B = H%(Q,,, E[p™]). Then ker(h,) = H' (I}, B). The inertia subgroup,
I, of Gq, acts on ker(E[p] — E[p]) by the Teichmiiller character w. That is,

ker(E[p] - Efp]) &

for the action of I,. On the other hand, I, acts on B through Gal((Q,,),/@Q,)
where 7 denotes the unique prime of @, lying over p. This Galois?o g:ouppis,
pro—p,'being isomorphic to Z,. Since p > 2, w has nontrivial order and this
order is relatively prime to p. It follows that

B Nker(E[p™] - E[p™]) = {Og}

and therefore B maps injectively into E[p°°]. Thus, I, acts trivially on B

Since p is totally ramified in Q. /Q, it is clear that I' = G
) = 1
acts trivially on B. That is, * al(Q./Q) also

B = E(Qy), = E(Q),.

Hence ker(h,,) = Hom(I;,, B) for all n > 0. Now suppose that ¢ is a nontrivial

element of Hom(I,, B). Let I,(,") denote the inertia subgroup of G(q_), . Then
¢ clearly remains nontrivial when restricted to "

HY(I{™, E[p™)) = Hom(I{™, E[p™)).

Bl.lt'this imp.lies that .[¢] ¢ Selg(Q,,),. Hence ker(s,) = ker(h,)NSelg(Q,,), is
trivial as claimed. This argument also applies if E has multiplicative reduction
at p. More generally, the argument gives the following result. We let F be

any number field. For any prime v of F lyin,
' : gover p, we let e
ramification index for F,/Q,,. ? (v/p) denote the

Propc?sition 3.9. Let.E be an elliptic curve defined over F. Assume that
there is at least one prime v of F lying over p with the following properties:
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(i) E has good, ordinary reduction or multiplicative reduction at v,
(ii) e(v/p) <p—2.
Then the map Selg(F,)p = Selg(Fu)p is injective for all n 2> 0.

Theorem 1.10 is also an application of the results described in this section.
One applies the general fact (4) about torsion A-modules to X = Xp(Foo)-
Then, X/6,X is the Pontryagin dual of Selg (Feo II;" . The torsion subgroup of
X/6,X is then dual to SelE(Foo),’;"/(SelE(Fw)gﬂ)div. One compares this to
Selg(Fy)p/ (Selg(Fn)p)aiv, which is precisely g (Fn)p under the assumption
of finiteness. One must show that the orders of the relevant kernels and co-
kernels stabilize, which we leave for the reader. One then obtains the formula
for the growth of |l g(Fp)p|, with the stated A and p.

We want to mention one other useful result. It plays a role in Li Guo’s
proof of a parity conjecture for elliptic curves with complex multiplication.

(See [Gu2].)

Proposition 3.10. Assume that E is an elliptic curve/F and that Selg(Foo)p
is A-cotorsion. Let \g = corankz, (Selg(Fwo)p)- Assume also that p is odd.
Then

corankz, (Sel(F),) = Ap (mod 2).

Proof. The maps H'(F,, E[p]) - H'(Fw, E[p™]) have finite kernels of
bounded order as n varies, by lemma 3.1. Thus, corankz,(Selg(Fy)p) is
bounded above by Ag. Let A denote the maximum of these Z,-coranks.
Then corankz, (Selg(Fn)p) = Mg for all n > no, say. For brevity, we let
Sn = Selg(Fpn)p, Tn = (Sn)div, and Un = w/Tn, which is finite. The

. Gal(F,/F) Gal(F, /F)
restriction map Sp - Sn , and hence the map Tp — Tn ,
have finite kernel and cokernel. Since the nontrivial Qp—irreducible represen-
tations of Gal(F,/F) have degree divisible by p — 1, it follows easily that

corankz, (T,,) = corankz, (To) (mod p — 1). Hence
corankz, (Selg(F),) = X (mod p—1).

Since p is odd, this gives a congruence modulo 2. Let Soo = Selg(Feo)p arlld
let Too = ILnTn, which is a A-submodule of Soo. Also, T, = (QP/Z,,)’\E.
Let Uso = Soo/Too = I_LnUn. The map T,, = Too is obviously surjective for
all n > ng (since the kernel is finite). This implies that

| ker(Un, = Uso)| < | ker(Sn, — Sxo)

for n > ng, which is of bounded order as n varies. Now a well-known theorem
of Cassels states that there exists a nondegenerate, skew-symmetric pairing

Un X Un —+ Qp/zp’
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This forces |Uy| to be a perfect square. More precisely, if the abelian group U,
is decomposed as a direct product of cyclic groups of orders peﬁj ), 1<i< gy,
say, then g, is even and one can arrange the terms so that eg) = esf) >
s> el = 07 We refer to [Gul] for a proof of this elementary result.
(See lemma 3, page 157 there.) Since the kernels of the maps U, — Uy have
bounded order, the Zp-corank u of U, can be determined from the behavior
of the eSf) ’s as n — 0o, namely, the first u of the eSf Vs will be unbounded,

the rest bounded as n — co. Thus u is even. Since u = Ag — X, it follows
that

/\E = /\IE (mOd 2).

Combining that with the previous congruence, we get proposition 3.10. W

Appendix to Section 3. We would like to give a different and rather novel
proof of a slightly weaker form of proposition 3.6, which is in fact adequate
for proving proposition 3.7. We let M denote the composition of all Z,-
extensions of M. For any ¢ € M*, we let ﬂq denote the composition of all
Zp-extensions Mo, of M such that recp(g)|ar,. is trivial, i.e., the image of
¢ under the reciprocity map M* — Gal(M.,/M) is trivial. This means that
g € Ny, ym(M,Y) for all n > 0, where M,, denotes the n-th layer in My /M.
We then say that g is a universal norm for the Z,-extension M., /M. We will
show that

Im(7pr)aiy = Hom(Gal(My, /M), Q,/Z,). (6)
The proof is based on the following observation:

Proposition 3.11. Assume that ¢ € M* is a universal norm for the Z,-

estension Moo /M. Then the image of (q) ® (Q,/Z,) under the composite
map

(@) ®(Qy/Zy) » M* ® (Q,/Zp)= H' (M, pipeo) — H (Moo, pipee)
is contained in H' (Mo, pip=) A-div, where A = Z,[[Gal(Ms,/M)]].

Proof. To justify this, note that the inflation-restriction sequence shows that
the natural map

HY (M, pipeo) — H' (Moo, pp)™

Gal(My /M,). But H'(M,, pyn) is isomorphic to (Q,/Z,)**"*! as a group,
where t = [M:Q,]. Thus, HAI(Moo,upoo)F " is divisible and has Z,-corank
tp"+1.If X = H' (Mo, pip=) ,then X isa finitely generated A-module with

is surjective and has finite kernel. Here I' = Gal(M,, /M), I, = I'*" =
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o g1 Il n > 0, where 8, = 4*" — 1 € 4,
the property that X/0,X = Z for al 20, :
and v is some topological generator of I'. It is not hard to fiedu/ge from this
that X = A x Z,, where Z, = X p-tors is just 4/8oA. Letting A denote the
Pontryagin dual of A, regarded as a discrete A-module, we have

HY (Moo, ppe) = A x (Q,/Z,),

where the action of I" on Q,/Z, is trivial. Thus, H 1 (Moo,u,,?o) A-div E A2,
noting that the Pontryagin dual of a torsion-free A—mO(.iule 1s‘4—fhv1s1ble.
Hence (H'(Myo, pip=) a-div)" has Zp-corank t. The max1m{11 divisible sut:—
group of its inverse image in M* ® (Q,/Z,) is isomorphic to ((Qp_/ Zy)t.
We must show that this “canonical subgroup” of M* ® (Q,/Z,), wl.nch th'e
Z,-extension Mo, /M determines, contains (9®(Q, / Z,) whenever q is a uni-
versal norm for Moo/M. Since Gal(My /M) is torsion-free, we may assumf
that ¢ ¢ (M*)P. For every n > 0, choose ¢, € M,’L‘xso that NM"/M(q,;l) =
g. Fix m > 1. Consider @ = ¢ ® (1/p™). In ]\{n ® (Q,/Zy), we have
Nu,m(an) = a, where an = ¢n ® (1/p™). Let &, an de1'10te the unaigs
of a, an in ME ® (Q,/Z,)/ (Mg, ® (QPN/Z,,))A_diV. Tl‘le. aFtlon"(l)f F ont is
group is trivial. Hence p"a, = a. But an has order d1v1.dmg p™. Since n n:s
arbitrary, we have & = 0, which of course means that the image of q®(1/p™)
is in H'(Meuo, ftpe=) A-div- This is true for any m 2> 1, as claimed. [ ]

We now will prove (6). We know that H'(M, Q,/Z,) has Zp-corglk t+1.
Thus, Im(7ps) has Z,-corank ¢, which is also the Z,-corank of Gal(M,, /M).
To justify (6), it therefore suffices to prove that Hom(Gal(M«/M),Q, LZ,,)
is contained in Im(my) for all Z-extensions My, of M contained in M.
We do this by studying the following diagram

0 —> HY(M, pipw )/ B —— H' (M, E[p™]) —Ms HY(M,Q,/Z,)

T

0 = (H (Moo, ptp=)/ Boo)T == H (Moo, BIp®])T =5 H' (Moo, @,/ Z)"

where B is the image of (gg) ® (Q,/Zp) in H'(M, ppe=), which is the kernel
of the map H'(M, pipee) = H'(M, E[p*)). Thus the first row is exact. We
define B, as the image of B under the restriction map. The exactness of the
second row follows similarly, noting that By is the image of (q;_;) ® (Q,/ Z,.,)
in H'(Myo, pp=). Now ker(c) = Hom(Gal(Moo/M),.Qp/Zp) is 1somorphf
to Q,/Z,. We prove that ker(¢) C Im(mpr) by showing th?t Im(c o oZ:rM)h_
Im(e o b) has Z,-corank t — 1. The first row shpws that HY (M, E[p ])k asf
Z,-corank 2t. Since b is surjective and has finite l/(\ernel, the Z,-coran ?
. HY (Moo, E[p])T is also 2¢. But H' (Moo, pp=) = A X (QK/ZP) and Bc,o is
;:ontained in the A-divisible submodule corresponding to A by proposition
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3.11. One can see from this that H'(Me, pp=)/B is also isomorphic to
At x (Q,/Z,). (This is an exercise on A-modules: If X is a free A-module
of finite rank and Y is a A-submodule such that X/Y has no Z ,-torsion,
then Y is a free A-module too.) It now follows that (H(Moo, ttp=)/Boo)!
has Z,-corank ¢ + 1. Therefore, Im(e) indeed has Z,-corank ¢ — 1.

4. Calculation of an Euler Characteristic

This section will concern the evaluation of f£(0). We will assume that E has
good, ordinary reduction at all primes of F' lying over p. We will also assume
that Selg(F), is finite. By theorem 1.4, Selg(Fu), is then A-cotorsion. By
definition, fg(T) is a generator of the characteristic ideal of the A-module
XEe(Fo) = Hom(Selg(Fo)p, ®,/Z,). Since SelE(Foo)g is finite by theorem
1.2, it follows that Xp(Fu)/TXEg(Fs) is finite. Hence T t fg(T) and so
fE(0) # 0. The following theorem is a special case of a result of B. Perrin-
Riou (if E has complex multiplication) and of P. Schneider (in general). (See
[Pel] and [Sch1].) For every prime v of F' lying over p, we let E, denote the
reduction of E modulo v, which is defined over the residue field fv. For primes
v where E has bad reduction, we let ¢, = [E(F,):Eo(F,)] as before, where
Eo(F,) denotes the subgroup of points with nonsingular reduction modulo v.
The highest power of p dividing ¢, is denoted by cf,” ). Also, if a,b € Q;f, we
write a ~ b to indicate that a and b have the same p-adic valuation.

Theorem 4.1. Assume that E is an elliptic curve defined over F with good,

ordinary reduction at all primes of F lying over p. Assume also that Selg(F)

P
is finite. Then

f80) ~ (T YT 1Eo(£)512)ISele(F)pl/| E(F), 2.

v bad vip

Note that under the above hypotheses, Selg(F), = III E(F)p. Also, we have
|Eo(fo)] = (1 — a)(1 = B,), where a,8, = N@), ay + By = a, € Z, and
P 1 ay. It follows that ay,f, € Qp. We can assume that o, € Z;. Hence
p | |Ey(fu)| if and only if a, = 1 (mod p). We say in this case that v is an
anomalous prime for E, a terminology introduced by Mazur who first pointed
out the interest of such primes for the Iwasawa theory of E. In [Maz1], one
finds an extensive discussion of them.

We will prove theorem 4.1 by a series of lemmas. We begin with a general
fact about A-modules.

Lemma 4.2. Assume that S is a cofinitely generated, cotorsion A-module.
Let f(T) be a generator of the characteristic ideal of X = Hom(S, Q,/Zy).
Assume that ST is finite. Then Sp is finite, £(0) # 0, and f(0) ~ |ST|/|Sr|.
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Remark. Note that H(I',S) = 0 for # > 1. Hence the quantity |S”|/|Sr|
is the Euler characteristic |[H°(I, S)|/|H(I,S)|. Also, the assumption that
ST is finite in fact implies that S is cofinitely generated and cotorsion as a
A-module.

Proof of lemma 4.2. By assumption, we have that X/TX is finite. Now X is
pseudo-isomorphic to a direct sum of A-modules of the form Y = A/(g(T)).
For each such Y, we have Y/TY = A/(T,g(T)) = Zp/(9(0)). Thus, Y/TY
is finite if and only if g(0) # 0. In this case, we have ker(T:Y - Y) = 0.
From this, one sees that X/T X is finite if and only if f(0) # 0, and then
obviously ker(T:X — X) would be finite. Thus, Sr is finite. Since both
Euler characteristics and the characteristic power series of A-modules behave
multiplicatively in exact sequences, it is enough to verify the final statement
when S is finite and when Hom(S, Q,/Z,) = A/(g(T))- In the first case, the
Euler characteristic is 1 and the characteristic ideal is A. The second case is
clear from the above remarks about Y. |

Referring to the diagram at the beginning of section 3, we will denote s,
ho, and go simply by s, h, and g.

Lemma 4.3. Under the assumptions of theorem 4.1, we have
|Sele(Feo)p | = [Sel(F),|l ker(g)|/|E(F)yp-

Proof. We have |(SelE(F°o)£|/|SelE(F)p| = |coker(s)|/] ker(s)|, where all the
groups occurring are finite. By lemma 3.2, coker(h) = 0. Thus, we have an
exact sequence: 0 — ker(s) — ker(h) — ker(g) — coker(s) — 0. It follows
that |coker(s)|/| ker(s)| = | ker(g)|/| ker(h)|. Now we use the fact that E(Fe)p
is finite. Then

ker(h) = Hl(FaE(FOO)p) = (E(Foo)p)r
has the same order as HO(I', E(Fw)p) = E(F),. These facts give the formula

in lemma 4.3. |

The proof of theorem 4.1 clearly rests now on studying |ker(g)|. The
results of section 3 allow us to study ker(r), factor by factor, where r is the
natural map

T: Pe(F) = Pp(Fx)-

It will be necessary for us to replace Pg(x) by a much smailler group. Let X~
denote the set of primes of F' where E has bad reduction or which divide p
or 0o. By lemma 3.3, we have ker(r,) = 0if v ¢ X. Let P§(F) = [ He(Fu),

v
where the product is over all primes of F' in X. We consider ’PEZ;' (F) as a
subgroup of Pg(F). Clearly, ker(r) C Pg(F). Thus |ker(r)] = []|ker(ry)],

v
where v again varies over all primes in X. For v|p, the order of ker(r,) is
given in lemma, 3.4. For v { p, the remarks after the proof of lemma 3.3 show

" that | ker(ry)| ~ ¢{P). We then obtain the following result.
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Lemma 4.4. Assume that E/F has good, ordinary reduction at all v|p. Then
|ker(r)| ~ ( T e?)(IT Bo(fo)pl?)-
v bad vip

Now let GZ(F) = Im (H*(Fg/F, E[p™]) — P£(F)), where Fx denotes
the maximal extension of F' unramified outside of ¥'. Then

ker(g) = ker(r) N GE(F).

We now recall a theorem of Cassels which states that Pg(F)/Gg(F) =
E(F)p. (We will sketch a proof of this later, using the Duality Theorem
of Poitou and Tate.) It is interesting to consider theorem 4.1 in the case
where E(F), = 0, which is of course true for all but finitely many primes
p. Then, by Cassels’ theorem, ker(g) = ker(r). Lemmas 4.3, 4.4 then show
that the right side of ~ in theorem 4.1 is precisely |Selg(Fu)] |- Therefore,
in this special case, by lemma 4.2, theorem 4.1 is equivalent to asserting
that (Selg(Fuoo)p)r = 0. It is an easy exercise to see that this in turn is
equivalent to asserting that the A-module Xg(F) has no finite, nonzero A-
submodules. In section 5 we will give an example where Xg(Fy) does have
a finite, nonzero A-submodule. All the hypotheses of this section will hold,
but of course E(F) will have an element of order p.

The following general fact will be useful in the rest of the proof of theorem
4.1. We will assume that G is a profinite group and that A is a discrete, p-
primary abelian group on which G acts continuously.

Lemma 4.5. Assume that G has p-cohomological dimension n > 1 and that
A is a divisible group. Then H™(G, A) is a divisible group.

Proof. Consider the exact sequence 0 — A[p] — A 2 4 5 0, where the map
A5 A is of course multiplication by p. This induces an exact sequence

H™G,A) 5 HG, A) » H(G, A).

Since the last group is zero, H"(G, A) is divisible by p. The lemma follows
because H"(G, A) is a p-primary group. |

We have actually already applied this lemma once, namely in the proof
of proposition 2.4. We will apply it to some other cases. A good reference
for the facts we use is [Se2]. Let v be a nonarchimedean prime of F, 1 a
prime of F, lying above v. Then Gal((Fi),/Fy) = Z,, as mentioned earlier.
Thus, G(F,,), has p-cohomological dimension 1. Hence H Y((Feo)ny E[p™])
must be divisible, and consequently the same is true for Hg((Fo)n). As
another example, Gal(Fx /F') has p-cohomological dimension 2 if p is any odd
prime. Let A, = E[p*®] ® (k°), where £ : ' — 1 + 2pZ,, is an isomorphism
and s € Z. (A, is something like a Tate twist of the Gg-module E[p*]. One
could even take s € Z,.) It then follows that H?(Fyx/F, A,) is a divisible
group.
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Lemma 4.6. Assume that Selg(Fy,), is A-cotorsion. Then the map
H'(Fg/Fe, E[p™]) = Pg (Foo)
is surjective.

Remark. We must define Pg (Fy,) carefully. For any prime v in X, we define

I

’P(")( Foo) = I%rg’/’g’)(Fn)

where P)(F,) = [1 He((Fu)v,) and Hg(x) is as defined at the beginning
vnlv

of section 3. The maps ’P(”)( Fo) o PY)(F,41) are easily defined, considering

separately the case where v, is inert or ramified in F,4,/F;,, (where one uses

a restriction map) or where v, splits completely in Fi, 4, /F;,, (where one uses

a “diagonal” map). If v is nonarchimedean, then v is finitely decomposed in

F,/F and one can more simply define ’P(v)(Foo) = [ He((Feo)n), where
nlv

n runs over the finite set of primes of Fo, lying over v. If v is archimedean,
then v splits completely in F,/F. We know that Im(&,, ) = 0 for v,|v. Thus,
He((Fp)v,) = He(Fy) = HY(Fy, E[p™]). Usually, this group is zero. But it
can be nonzero if p = 2 and F, = IR. In fact,

H'(F,, B[2%]) = E(F,)/ E(Fy)con,

where E(F,)con denotes the connected component of the identity of E(F,).
Therefore, obviously H!(F,, E[2*]) has order 1 or 2. The order is 2 if E[2]
is contained in E{F,). We have

PYN(F,) = HY(F,, E[2]) ® Z2[Gal(Fy/F)),

which is either zero or isomorphic to (Z/2Z)[Gal(F,/F})). In each of the
above cases, ’P( )( F) can be regarded naturally as a A-module. If v is
nonarchlmedean then the remarks following lemma 4.5 show that, as a group,
’P(Ev)( %) is divisible. If v is archimedean, then usually ’P}(_;;’)(Foo) = 0. But,
if p =2, F, = R, and E[2] is contained in E(F,), then one sees that
PY)(Fo) = Hom(A/24,Z/2Z) as a A-module. (One uses the fact that
'P(”) (Foo)T» = 'Pg’) (Fy,) for all n > 0 and the structure of PY)(F,) men-

tioned above.) Finally, we define ’PE (Feo) = HE (v)( o).
ve

Proof of Lemma 4.6. We can regard Pg (F) as a A-module. The idea of the
proof is to show that the image of the above map is a A-submodule of P§ (Fu)
with finite index and that any such A-submodule must be P§ (Fu). We will
explain the last point first. If p is odd, the remarks above show that each
" factor in PE(Fu) is divisible. Hence Pg (Fy,) is divisible and therefore has
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no proper subgroups of finite index. If p = 2, one has to observe that the factor
PEv )(Fap) of P# (Fo) coming from an archimedean prime v of F is a A-module
whose Pontryagin dual is either zero or isomorphic to (4/24). Since A/24

has no nonzero, finite A-submodules, we see that ’P(”) (Fso) has no proper A-

submodules of finite index. Since the factors ’PE (Fs) for nonarchimedean v
are still divisible, it follows again that P#(Fu) has no proper A-submodules
of finite index.

Now we will prove that the image of the map in the lemma has finite
index. (It is clearly a A-submodule.) To give the idea of the proof, assume
first that Selg(F,), is finite for all n > 0. Then the cokernel of the map
H(Fx/F,,E[p>®]) - Pg(F,) is isomorphic to E(F,), by a theorem of
Cassels. But |E(F,),| is bounded since it is known that E(F,,), is finite.
It clearly follows that the cokernel of the corresponding map over F,, is
also finite. To give the proof in general, we use a trick of twisting the Galois
module E[p™]. We let A, be defined as above, where s € Z. As Gr_ -modules,
A, = E[p*®]. Thus, H (F, A,) = H'(Fw, E[p™]). But the action of I’
changes in a simple way, namely H'(Fu, As) = H!(Feo, E[p™]) ® (k). Now
we can define Selmer groups for A; as suggested at the end of section 2.
One just imitates the description of the p-Selmer group for E. For the local
condition at v dividing p, one uses C, ® (x*). For v not dividing p, we require
1-cocycles to be locally trivial. We let S4, (F,), Sa,(Fs) denote the Selmer
groups defined in this way. Then S4, (Fo) = Selp(Foo)p ® (£°) as A-modules.
Now we are assuming that Selg(F ), is A-cotorsion. It is not hard to show
from this that for all but finitely many values of s, Sa, ( Fyo)™ will be finite
for all n > 0. Since there is a map Sa, (F,) = Sa, (Feo)'™ with finite kernel,
it follows that S4,(F,) is finite for all n > 0. There is also a variant of
Cassels’ theorem for A,: the cokernel of the global-to-local map for the G F,-
module A, is isomorphic to H%(F,, A_,). But this last group is finite and
has order bounded by |E(F,),|- The surjectivity of the global-to-local map
for A, over F, follows just as before. Lemma 4.6 follows since A, & E[p*>]
as G, -modules. (Note: the variant of Cassels’ theorem is a consequence of
proposition 4.13. It may be necessary to exclude one more value of s.) W

The following lemma, together with lemmas 4.2-4.4, implies theorem 4.1.
Lemma 4.7. Under the assumptions of theorem 4.1, we have
[ker(g)| = | ker(r)] |(Sele(Foo)p)r|/|E(F)p-
Proof. By lemma 4.6, the following sequence is exact:
0 = Selg(Fuo)p = H'(Fx/Feo, E[p™]) = PE(Fus) = 0.

Now I' acts on these groups. We can take the corresponding cohomology
sequence obtaining

HY(Fs/Fo, E[p®])" = Pg (Foo)" = (Selg(Foo)p)r = H' (Fs/Foo, E[p*™])r.
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In the appendix, we will give a proof that the last term is zero. Thus we get
the following commutative diagram with exact rows and columns.

H*(Fg/F, E[p]) —%> PE(F) — PE(F)/GE(F) =0
| } |
HY(Fs [ Foo, Elp®)7 5 PE(Foo)T — (Selp(Fso)p)r — 0

| { |

0 0 0
-

The exactness of the first row is clear. The remark above gives the exact-
ness of the second row. The surjectivity of the first vertical arrow is because
I'" has p-cohomological dimension 1. The surjectivity of the second vertical
arrow can be verified similarly. One must consider each v € X' separately,
showing that ’P(")(F) - ’Pg) (Foo)F is surjective. One must take into ac-
count the fact that v can split completely in F,/F for some n. But then
it is easy to see that P (F) P (F,)C2(F~/F). One then uses the fact
that Gal((Foo)n/(Fn)v ) has p-cohomological dimension 1, looking at the
maps 1, for v{por d,,n for v|p. For archimedean v, one easily verifies that
P (F) —)’P(”) (Fs)T. The surjectivity of the third vertical arrow follows. It
is also clear that Im(a) is mapped surjectively to Im(b). We then obtain the
following commutative diagram

0— GE(F) — PE(F) —PE(F)/G5(F) —0
¢g ¢r ¢t
0 — Im(b) — PE (Foo)' — (Selp(Foo)p)r —= 0

| | |

0 0 0

From the snake lemma, we then obtain 0 — ker(g) — ker(r) — ker(t) — 0.
Thus, | ker(g)| = | ker(r)]/| ker(t)|. Combining this with Cassels’ theorem and
the obvious value of | ker(t)| proves lemma. 4.7. ]

The last commutative diagram, together with Cassels’ theorem, gives the
following consequence which will be quite useful in the discussion of various
examples in section 5. A more general result will be proved in the appendix.

Proposition 4.8. Assume that E is an elliptic curve defined over F with
good, ordinary reduction at all primes of F lying over p. Assume that Selg(F),
is finite and that E(F), = 0. Then Selg(Fw)p has no proper A-submodules of
finite indez. In particular, if Selg(Fy)p is nonzero, then it must be infinite.

Proof. We have the map t:E(F), — Selg(Fuwo)r, which is surjective. Since
E(F), = 0, it follows that (Selg(Foo)p)r = 0 too. Suppose that Selp(Feo)p
has a finite, nonzero A-module quotient M. Then M is just a nonzero, fi-
_ nite, abelian p-group on which I" acts. Obviously, Mr # 0. But Mr is a
homomorphic image of (Selg(Foo)p)r, which is impossible. n
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Theorem 4.1 gives a conjectural relationship of fg(0) to the value of
the Hasse-Weil L-function L(E/F,s) at s = 1. This is based on the Birch
and Swinnerton-Dyer conjecture for E over F, for the case where E(F) is
assumed to be finite. We assume of course that III;(F), is finite and hence
so is Selg(F), = IIg(F),. We also assume that L(E/F,s) has an analytic
continuation to s = 1. The conjecture then asserts that L(E/F,1) # 0 and
that for a suitably defined period 2(E/F), the value L(E/F,1)/2(E/F) is
rational and

L(E/F,1)/E/[F) ~ (]] ) ISels(F)y| / |E(F),|* .

vbad

As before, ~ means that the two sides have the same p-adic valuation. If @
denotes the ring of integers in F', then one must choose a minimal Weierstrass
equation for E over O(;), the localization of O at p, to define 2(E/F) (as
a product of periods over the archimedean primes of F). For v|p, the Euler
factor for v in L(E/F,s) is

(1 -ayN@®)™*)(1 - BuN(v)™*%),

where a,,, §, are as defined just after theorem 4.1. Recall that a,, € Z;. (We
are assuming that E has good, ordinary reduction at all v|p.) Then we have

IE(fo)pl ~ (1 - aw) ~ (1= 07?) = (1 - BN (v) 7).

The last quantity is one factor in the Euler factor for v, evaluated at s = 1.
Thus, theorem 4.1 conjecturally states that

5(0) ~ (J](1 - B.N(v) ™)) L(E/F,1)/ 2(E/F).

vlp

For F = Q, one should compare this with conjecture 1.13.

As we mentioned in the introduction, there is a result of P. Schneider
(generalizing a result of B. Perrin-Riou for elliptic curves with complex mul-
tiplication) which concerns the behavior of fg(T) at T = 0. We assume that
E is an elliptic curve/F with good, ordinary reduction at all primes of F
lying over p, that p is odd and that F N Q,, = Q (to slightly simplify the
statement). Let r = rank(E(F)). We will state the result for the case where
r =1 and HIg(F), is finite. (Then Selg(F), has Z,-corank 1.) Since then

fl;l|fE(T), one can write fg(T) = Tgg(T), where gg(T) € A. The result is
that

hp
95(0) ~ ff LTI ) (TT1Bo o)) s (E), 1/ ECEYR)

v bad vip

Here P € E(F) is a generator of E(F)/E(F)iors and hy(P) is its ana-
lytic p-adic height. (See [Sch2] and the references there for the definition
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of hy(P).) The other factors are as in theorem 4.1. Conjecturally, one should
have h,(P) # 0. This would mean that fg(T) has a simple zero at T = 0.
But if h,(P) = 0, the result means that gg(0) = 0, i.e., T?|fe(T). K F = Q
and E is modular, then B. Perrin-Riou [Pe3] has proven an analogue of
a theorem of Gross and Zagier for the p-adic L-function L,(E/Q,s). As-
sume that L(E/Q, s) has a simple zero at s = 1. Then a result of Kolyvagin
shows that rank(E(Q)) = 1 and IIg(Q) is finite. Assume that P generates
E(Q)/E(Q)tors- Assume that hy(P) # 0. Perrin-Riou’s result asserts that
L,(E/Q,s) also has a simple zero at s = 1 and that ”

Li(E/Q,1)/hy(P) = (1 — Bpp~*)’L'(E/Q, 1)/ 2gheo(P)

where hoo(P) is the canonical height of P. If one assumes the validity of
the Birch and Swinnerton-Dyer conjecture, then this result and Schneider’s
result are compatible with conjecture 1.13.

The proof of theorem 4.1 can easily be adapted to the case where E has
multiplicative reduction at some primes of F' lying over p. One then obtains
a special case of a theorem of J. Jones [Jo]. Jones determines the p-adic val-
uation of (fg(T)/T")|T=0, where r = rank(E(F)), generalizing the results of
P. Schneider. He studies certain natural A-modules which can be larger, in
some sense, than Selg(Fo),- Their characteristic ideal will contain T fg(T),
where e is the number of primes of F' where E has split, multiplicative re-
duction. This is an example of the phenomenon of “trivial zeros”. Another
example of this phenomenon is the A-module S, in the case where p splits
in an imaginary quadratic field F. As we explained in the introduction, ST
is infinite. That is, a generator of its characteristic ideal will vanish at T' = 0.
For a general discussion of this phenomenon, we refer the reader to [Gr4].

To state the analogue of theorem 4.1, we assume that Selg(F'), is finite,
that E has either good, ordinary or multiplicative reduction at all primes

of F over p, and that log,(NF,/q, (qg’))) # 0 for all v lying over p where
E has split, multiplicative reduction. (As in section 3, qg’) denotes the Tate
period for E over F,.) Under these assumptions, ker(r,) will be finite for all
v|p. It follows from proposition 3.7 that SelE(Foo)II; will be finite and hence
Selg(Fy)p will be A-cotorsion. In theorem 4.1, the only necessary change

is to replace the factor |Ey(f,)p|? for those v|p where E has multiplicative
reduction by the factor | ker(ry)|/ P, (Note that the factor ¢® for such v

will occur in [] P ).) The analogue of theorem 4.1 can be expressed as
v bad

20) ~ (T C]T &) I1Sele(F)p) J|EE), .

v|p v bad

If E has good, ordinary reduction at v, then I, = |E,, (fu)p|?. Assume that E
has nonsplit, multiplicative reduction at v. If p is odd, then both | ker{ry)| and

, 'cs,p ) are equal to 1. If p = 2, then |ker(r,)| = 2c$,p ), (Recalling the discussion
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concerning ker(r,) after the proof of proposition 3.6, the 2 corresponds to
| ker(by)|, and the ¢{” corresponds to |ker(a,)| = [Im(},) : Im(k,)]. In the
case of good, ordinary reduction at v, both ker(a,) and ker(b,) have order
|Ey(fu)pl-) Thus, if E has nonsplit, multiplicative reduction at v, one can take
ly = 2 (for any prime p). We remark that the Euler factor for v in L(E/F, s)
is (1 + N(v)7*)~1. One should take a, = —1, 8, = 0. Perhaps this factor
l, = 2 should be thought of as (1 —a;!). (This is suggested by the fact that,
for a modular elliptic curve E defined over F = @, the p-adic L-function
constructed in [M-T-T] has a factor (1 — ;') in its interpolation property
when E has multiplicative reduction at p. This is in place of (1 — a;1)? =
(1 - Bpp~")? when E has good, ordinary reduction at p.) ’

Finally, assume that E has split, multiplicative reduction at v. (Then
(1—a;1) would be zero.) We have ¢ = ord, (qg') ). If we let Q" denote the
unramified Z,-extension of @, and Q;" denote the cyclotomic Z,-extension
of @,, then we should take

. = o8 (Nr./a, @) [FnQ:qy)
v . .
ordy(Nr,jq,(af)) 2PN Q7" Q)

(Again, we refer to the discussion of ker(r,) following proposition 3.6. This
time, ker(a,) = 0 and ker(r,) = ker(b,).) We will give another way to define
l,, at least up to a p-adic unit, which comes directly from the earlier discussion
of ker(r,). Let Fy¥¢ and F'™" denote the cyclotomic and the unramified Z,-
extensions of F,,. Fix isomorphisms

03 : Gal(FY[F,) 5 Z,, 687 : Gal(Fy™ /F,) S Z,.

Then 1, ~ 62°(recr, (g5 )| peve ) /632 (reck, (q))| pynr). The value of I, given
above comes from choosing specific isomorphisms.

Appendix to Section 4. We will give a proof of the following important
result, which will allow us to justify the assertion used in the proof of lemma
4.7 that, under the hypotheses of theorem 4.1, H!(Fx/Fy, E[p®])r = 0.
Later, we will prove a rather general form of Cassels’ theorem as well as a
generalization of proposition 4.8.

Proposition 4.9. Assume that Selg(F.,), is A-cotorsion. Then the A-mod-
ule H(Fx [ Fe, E[p™®]) has no proper A-submodules of finite index.

In the course of the proof, we will show that H!(Fx/F,, E[p™]) has A-
corank [F':Q] and also that H2(Fx/Fy, E[p>]) is A-cotorsion. For odd p,
these results are contained in [Gr2]. (See section 7 there.) For p = 2, one
can modify the arguments given in that article. However, we will present a
rather different approach here which has the advantage of avoiding the use
of a spectral sequence. In either approach, the crucial point is that the group

R*(Fg/Fw, E[p™]) = ker(H*(Fx/Foo, E[p®]) = [[ H*((Feo)n, Elp™)))

n|oo
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is zero, under the assumption that Selg(F), is A-cotorsion. (Note: It proba-
bly seems more natural to take the product over all 7 lying over primes in .
However, if 7 is nonarchimedean, then G (.., has p-cohomological dimension
1 and hence H2((Fso )y, E[p™]) =0.)

First of all, we will determine the A-corank of PE(Fu). Now ’Pg’)(Foo)
is A-cotorsion if v { p. This is clear if v is archimedean because ’P(E”) (Fso)
then has exponent 2. (It is zero if p is odd.) If v is nonarchimedean, then
PY(F) = HY(F,, E[p™]) is finite. The map P (F,) = PY (Fuo)T is sur-
jective. Hence ’Pg’)(Foo)F is finite, which suffices to prove that Pg')(foo) is
A-cotorsion, using Fact (2) about A-modules mentioned in section 3. Alter-
natively, one can refer to proposition 2 of [Gr2], which gives a more precise
result concerning the structure of Pg')(Foo). Assume v|p. Let I, C I be the
decomposition group for any prime n of F,, lying over v. Then by proposi-
tion 1 of [Gr2}, H!((Fw )y, E[p™]) has corank equal to 2[F,:Q,] over the ring
Z,([I,)]. Also, H((Feo)n, Cy) has corank [F,:Q,]. Both of these facts could
be easily proved using lemma 2.3, applied to the layers in the Z,-extension
(Fwo)n/Fy- Consequently, Hg((Foo)y) has Z,[[I]]-corank equal to [F,:@,].
It follows that ’Pg’)(Foo) has A-corank equal to [F,:@,]. Combining these
results, we find that

coranks(Pg (Foo)) = [F: @),
using the fact that 3 [F, : Q,] = [F: Q].
vlp

Secondly, we consider the coranks of the A-modules H!(Fx/Fy, E[p™])
and H2(Fx/Fw, E[p™]). These are related by the equation

corank 4 (H' (Fy [ Fy, E[p™]) = coranks(H?(Fx /Fe, E[p™]) + 6,

where § = Y [F, :R] = [F: Q). As a consequence, we have the inequalities

v|oo
corank s (H' (Fx/Fe, E[p™))) > [F: Q).

(For more discussion of this relationship, see [Gr2], section 4. It is essen-
tially the fact that —4 is the Euler characteristic for the Gal(Fx /Fo)-module
E[p™] together with the fact that H°(Fx/Fe, E[p*™]) is clearly A-cotorsion.
This Euler characteristic of A-coranks is in turn derived from the fact that

2
Y " (~1)‘corankz, (H*(Fx/Fn, E[p™))) = —6p"

=0

for all n > 0. That is, —dp" is the Euler characteristic for the Gal(Fx/F,)-
module E[p™].) Recalling the exact sequence

0 = Selg(Foo)p = H(Fg/Fo, E[p®]) = G5 (Feo) = 0,
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we see that Selp(F,,), is A-cotorsion if and only if H'(Fz/Fy, E[p™]) and
G#(Fw) have the same A-corank, both equal to [F: Q). (The last equality
is because [F:@)] is a lower bound for the A-corank of H!(Fx/Fy, E[p™])
and an upper bound for the A-corank of G (Fw) (which is a A-submodule of
PE(Fw)). Thus, if we assume that Selg(Fw ), is A-cotorsion, then it follows
that H'(Fg/Fw, E[p™]) has A-corank [F:Q] and that H?(Fy/Fy, E[p™])
has A-corank 0 (and hence is A-cotorsion). By lemma 4.6, we already would
know that G§(Fw) has A-corank [F: @)].

We will use a version of Shapiro’s Lemma. Let A = Hom(A4, E[p™]). We
consider A as a A-module as follows: if @ € A and 8 € A, then 8¢ is defined
by (6¢)(X) = #(8]) for all X € A. The Pontryagin dual of A is A? and so A
has A-corank 2. We define a A-linear action of Gal(Fx/F) on A as follows: if
6 € Aand g € Gal(Fy/F), then g(@) is defined by g(#)(A) = g(¢(%(g)"*)))
for all A € A. Here K is defined as the composite

Gal(Fx/F) = I' - A*

where the second map is just the natural inclusion of I in its completed
group ring A. The above definition is just the usual way to define the action
of a group on Hom(x,*), where we let Gal(Fx/F) act on A by ¥ and on
E[p®] as usual. The A-linearity is easily verified, using the fact that A is a
commutative ring. For any 6 € A, we will let A[f] denote the kernel of the

map A N A, which is just multiplication by 8. Then clearly
A[6] = Hom(A/ A9, E[p™]).

Let x : I' = 1 4+ 2pZ,, be a fixed isomorphism. If s € Z (or in Z,), then the
homomorphism «* : I' =+ 1+ 2pZ,, induces a homomorphism o, : A = Z, of
Z,-algebras. If we write A = Z,[[T]], where T' = v — 1 as before, then o, is
defined by 0,(T) = £°(y) — 1 € pZ,. We have ker(o,) = (6,), where we have
let 8, = (T — (k*(y) — 1)). Then A/A8, = Z,(x*), a Zp,-module of rank 1 on
which Gal(Fx/F) acts by «°. Then

Alf,] = Hom(Z,(x"), E[p™]) = E[p*] ® (k%) = A,

as Gal(Fy/F)-modules.
The version of Shapiro’s Lemma that we will use is the following.

Proposition 4.10. For all i > 0, H(Fx/Fy, E[p>)) = H(Fx/F, A) as
A-modules.

Remark. The first cohomology group is a A-module by virtue of the natural
action of I" on H*(Fyx/Fy, E[p™]); the second cohomology group is a A-
module by virtue of the A-module structure on A.
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Proof. We let A denote E[p™]. The map ¢ — ¢(1), for each ¢ € A, defines
a Gal(Fy/Fy)-equivariant homomorphism A — A. The isomorphism in the
proposition is defined by

Hi(Fg/F, A) =% H'(Fy/Fp, A) = H'(Fx/Fx, A).

One can verify that this composite map is a A-homomorphism as follows.
Gal(Fx/Fy) acts trivially on A. We therefore have a canonical isomorphism

H(Fs[Fy, A) = Hom(A, H*(Fx [ Fs, A)) » (7

The image of the restriction map in (7) is contained in H*(Fx/Fu, A)T,
which corresponds under (7) to Homp (A, H(Fx/Fs, A)). The action of I
on A is given by K. But this is simply the usual structure of A as a A-module,
restricted to I' C A. Thus, by continuity, we have

H(Fy/Fo, AT = Hom(A, H(Fx/Fw, A))

under (7). Now Hom, (A, H(Fs/Fs, A)) = H'(Fy[Fx,A) as A-modules,
under the map defined by evaluating a homomorphism at A = 1.

To verify that the map H*(Fyx/F, A) - H!(Fx/Fx, A) is bijective, note
that both groups and the map are direct limits:

H(Fz/F, A) = Lim H*(Fg /F, Alp™)),
H(Fg/Feo, A) = Ii:r,lH‘(Fz/Fn,A)-
Here 8™ = (1+T)P" —1 and so A[#(™] = Hom(Z,[Gal(F,/F)], A). On each
term the composite map
H'(Fg/F, A['™]) = H'(Fg/Fn, Al8™)]) - H'(Fz/Fq, A)

defined analogously to (7) is known to be bijective by the usual version of
Shapiro’s Lemma. The map (7) is the direct limit of these maps (which are
compatible) and so is bijective too. [ |

For the proof of proposition 4.9, we may assume that H(Fy/F, A) has
A-corank [F: Q)] and that H2(Fyg/F, A) is A-cotorsion. Let s € Z. The exact

sequence
0 — A[6,] — Al A0
induces an exact sequence
H(Fg/F,A)/8,H (Fx [|F,A) > H*(Fg/F, Al8,)]) b H?(Fg/F, A)[6,)

where of course a is injective and b is surjective. Let X denote the Pontryagin
dual of HY(Fx/F,A). Since X is a finitely generated A-module, it is clear
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that ker(X Lo x ) will be finite for all but finitely many values of s. (Just
choose s so that 6, 4 f(T'), where f(T') is a generator of the characteristic ideal
of X p-tors- The 8,’s are irreducible and relatively prime.) Now Im(a) = ker(b)

is the Pontryagin dual of ker(X by x ). We will show that ker(b) is always
a divisible group. Hence, for suitable s, ker(X Ly x ) =0.Nowif Zisa

nonzero, finite A-module, then ker(Z —o%Z) is also clearly nonzero, since
0s ¢ A*. Therefore, X cannot contain a nonzero, finite A-submodule, which
is equivalent to the assertion in proposition 4.9.

Assume that p is odd. Then Gal(Fx/F) has p-cohomological dimension 2.
Since A[f,] = A_, is divisible, it follows from lemma 4.5 that H2(F;/F, A[6;])
is also divisible. Hence the same is true for H?(Fx/F, A)[f,]. But since
H?(Fs[F,A) is A-cotorsion, H?(Fx/F, A)[8,] will be finite for some value
of s. Hence it must be zero. But this implies that H2(Fx/F, A) = 0, using
Fact 1 about A-modules. Thus ker(b) = H%(Fx/F, A[8;]) for all s and this is
indeed divisible, proving proposition 4.9 if p is odd.

The difficulty with the prime p = 2 is that Gal(Fx/F) doesn’t have finite
p-cohomological dimension (unless F is totally complex, in which case the
argument in the preceding paragraph works). But we use the following fact:
the map

Bn : H*(Gal(Fg/F), M) —» [[ H*(F,, M)

vjoo

is an isomorphism for all n > 3. Here M can be any p-primary Gal(Fx/F)-
module. (This is proved in [Mi], theorem 4.10(c) for the case where M is finite.
The general case follows from this.) The groups H"(F,, M) have exponent
< 2 for all n > 1. The following lemma is the key to dealing with the prime 2.

Lemma 4.11. Assume that M is divisible. Then the kernel of the map

By : H*(Fs/F,M) - [[ H*(F., M)

v|oo
ts a divisible group.

Proof. Of course, if p is odd, then H%(F,,, M) = 0 for v|oo. We already know
that H%(Fx /F, M) is divisible in this case. Let p = 2. For any m > 1, consider
the following commutative diagram with exact rows

H*(Fy/F, M) —*> H*(Fg[F, M) —%—> H%Fs/F, M[2™])
lﬂz 1[32 lﬂ
[1 H2(F,, M) —2> ] H2(F,, M) — [] H*(F,, M[2™))

vjoo v|co v|oo
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induced from the exact sequence 0— M[2™]—+ M 2%, M 0. Since the group
H?*(F,, M) is of exponent < 2, the map v is injective. Since 8 is injective
too, it follows that ker(a) = ker(f3:). Thus ker(3;) = 2™H?(Fyg/F, M) for
any m > 1. Using this for m = 1,2, we see that ker(8;) = 2ker(8z), which
implies that ker(f:) is indeed divisible. u

Now we can prove that b : H2(Fx/F, A6s]) » H?(Fx/F, A) has a divis-
ible kernel even when p = 2. We use the following commutative diagram:
-

0 — R¥(Fx[F, A(0s]) —> H?*(Fx [F, Al0,]) — II'I H%(F,, Al8;))

: } |

0 —= R%(Fy/F, A)[0,) — H*(Fx/F, A)fs] —> II] H?(F,, A)[6;]

The rows are exact by definition. (We define R?(Fy /F, M) as the kernel of the
map H2(Fx/F,M) - [] H?*(F,,M).) The map b is surjective. Now A[f,] =
v]oo

A_, is divisible and hence, by lemma 4.11, R%(Fx; / F, A[f,]) is divisible. Under
the assumption that H2(Fx/F, A) is A-cotorsion, we will show that ker(b)
coincides with the divisible group R?(Fx/F, A[f;]), completing the proof of
proposition 4.9 for all p. Suppose that v|oo. Since v splits completely in
F/|F, we have H'(F,, A) = Hom(A, H'(F,, E[p>])). Of course, this group
is zero unless p = 2 and H(F,, E[2°]) = Z/2Z, in which case H'(F,, A) =
Hom(A, Z/2Z) = (A/24)" . This last group is divisible by 6 for any s, which
implies that the map e must be injective. The snake lemma then implies that
the map d is surjective. Thus R?(Fx/F, A)[f,] is divisible for all s € Z.
But this group is finite for all but finitely many s, since H?(Fg /F, A) is A-
cotorsion. Hence, for some s, R*(Fyx/F, A)[fs] = 0. This implies that the A-
module R?(Fx/F, A) is zero. Therefore, since e is injective, ker(b) = ker(d) =
R%(Fx|F, A[8;)) for all s, as claimed. [

The following proposition summarizes several consequences of the above
arguments, which we translate back to the traditional form.

Proposition 4.12. H'(Fx/Fw, E[p™®]) has A-corank [F:Q] if and only if
H2(Fy | Fp, E[p™)) is A-cotorsion. If this is so, then H'(Fx [ Fs, E[p™]) has
no proper A-submodule of finite index. Also, H*(Fy [Fwo, E[p™]) will be zero
if p is odd and (A/2A)-cofree if p = 2.

In this form, proposition 4.12 should apply to all primes p, since one con-
jectures that H?(Fx/Fy, E[p™]) is always A-cotorsion. (See conjecture 3 in
[Gr2].) If E has potentially good or multiplicative reduction at all primes over
P, then, as mentioned in section 1, one expects that Selg(Foo)p is A-cotorsion,
which suffices to prove that H?(Fx/Fs, E[p™]) is indeed A-cotorsion. For
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any prime p, the conjecture that Selg(Fy), has bounded Z,-corank as n
varies can also be shown to suffice.

We must now explain why H(Fx/Fw, E[p™])r is zero, under the hy-
potheses of theorem 4.1. We can assume that Selg(Fy), is A-cotorsion and
that H'(Fx/F, E[p*™]) has A-corank equal to [F: Q. By proposition 4.9,
it is enough to prove that H(Fx/Fs, E[p*])r is finite. Let

Q = H'(Fx/Feo, E[p™])/H'(Fr/Foo, E[p™]) 4-div-

Thus, @ is cofinitely generated and cotorsion as a A-module. Its Pontryagin
dual is the torsion A-submodule of the Pontryagin dual of H(Fx /Fy,, E[p™]).
We have

HY(Fx/Fe, Ep™]r = Qr-

But Qr and Q' have the same Z,-corank. Also, AT = Q,/Z, has Z,-corank
1. Since the map H'(Fx/F, E[p*]) = HY(Fx/Fs, E[p>])! is surjective and
has finite kernel, we see that

corankz, (H'(Fx /F, E[p™])) = [F : Q] + corankz, (Qr).
Now
Selg(F), = ker(H'(Fs /| F, E[p™®]) = PE(F)).

The Z,-corank of PZ(F) is equal to [F:Q]. Since we are assuming that
Selg(F), is finite, it follows that H!(Fy/F, E[p*]) has Z,-corank [F': Q] and
hence that, indeed, Qr is finite, which completes the argument. We should
point out that sometimes H'(Fx /Fwo, E[p*])r is nonzero. This clearly hap-
pens for example when rankz(E(F)) > [F:Q]. For then H!(Fyx/F, E[p>])
must have Z,-corank at least [F: Q] + 1, which implies that Q@ is nonzero.

We will now prove a rather general version of Cassels’ theorem. Let X be
a finite set of primes of a number field F’, containing at least all primes of F
lying above p and co. We suppose that M is a Gal(Fyx /F)-module isomorphic
to (Qp/Zp)d as a group (for any d > 1). For each v € X, we assume that L,
is a divisible subgroup of H!(F,, M). Then we define a “Selmer group”

Sm(F) = ker(H'(Fz/F, M) —» [ H'(F,, M)/L.).
veX
This is a discrete, p-primary group which is cofinitely generated over Z,. Let
T* = Hom(M, pp)

which is a free Z,-module of rank d. For each v € 2, we define a subgroup U}
of H'(F,,T*) as the orthogonal complement of L, under the perfect pairing
(from Tate’s local duality theorems)

H'(F,, M) x H(F,,T*) - Q,/Z,. (8)
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Since L, is divisible, it follows that H(F,,T*)/U} is Z,-torsion free. Thus
U} contains H!(F,,T*)ors. We define the Selmer group

Sr-(F) = ker(H'(Fg /F,T*) = [[ H'(F,, T*)/U})
veX

which will be a finitely generated Z,-module. Let V* =T* ® Q,,. Let M* =
V*|T* =T*® (Q,/Zp). For each v € X, we can define a divisible subgroup
L* of H'(F,, M*) as follows: Under the map H'(F,,T*) - H'(F,,V*), the
image of U, generates a Q,-subspace of H'(F,,V*). We define L as the
image of this subspace under the map H'(F,,V*) - H*(F,, M*). Thus, we
can define a Selmer group

S+ (F) = ker(H' (Fg/F,M*) - [[ H'(F., M")/L}).
veX

One can verify that the Z,-corank of Sy-(F) is equal to the Z,-rank of

ST‘ (F).
We will use the following notation. Let
P =[] H\(F,, M), P* = [] HY(F,,T*)
veX veX
L= 1] Ly, Ur=T10;.
veX veX

Then (8) induces a perfect pairing P x P* = Q,/Z,, under which L and U*
are orthogonal complements. Furthermore, we let

G =Im (H'(Fg/F,M) - P), G*=Im(H'(Fg/F,T*)— P*).

The duality theorems of Poitou and Tate imply that G and G* are also
orthogonal complements under the above perfect pairing. Consider the map

v:H'(Fg/F,M) - P/L,

whose kernel is, by definition, Sy (F'). The cokernel of 7 is clearly P/GL. But
the orthogonal complement of GL under the pairing P x P* — Q,,/Z, must
be G* NU*. Thus coker(y) = (G*NU*)". Again by definition, St (F) is the
inverse image of U* under the map H'(Fx/F,T*) — P*. Thus clearly G*NU*
is a homomorphic image of St- (F). As we mentioned above, rankz,, (St- (F))
is equal to corankz,(Sam+(F)). On the other hand, since H YEFy, T*)tors is
contained in U for all v € ¥, it follows that

S+ (F)tOrs = HI(FE/F,T*)torsa

which in turn is isomorphic to H°(Fx/F, M*)/H®(Fx/F, M*)qiy. (This last
assertion follows from the cohomology sequence induced from the exact se-
quence 0 = T* = V* = M* — 0.) We denote H°(Fx/F,M*) = (M*)%* by
M*(F) as usual. Then, as a Zy-module, we have

rank, Sars (F
. Spe(F) = (M*(F)/M*(F)qy) x Zy" e v )
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The preceding discussion proves that the Pontryagin dual of the cokernel of
the map < is a homomorphic image of St-(F). In particular, one important
special case is: if Sy« (F) is finite and M*(F) =0, then coker(y) = 0.

We now make the following slightly restrictive hypothesis: M*(F,) =
HO(F,, M*) is finite for at least one v € X. This implies that M*(F) is also
finite. Consider the following commutative diagram.

HO(FE/F,M*)—~>H1(FE/F,T*)tors (9)

l l

HO(FvaM*) - > HI(FvaT*)tors

Since the first vertical arrow is obviously injective, so is the second. Hence the
map H'(Fx/F,T*)iors = P* is injective. It follows that if Sz.(F) is finite,
then

coker(y) 2 (G*NU*)” = Sp-(F)” = H'(Fg/F,T*)tors-

This last group is isomorphic to M*(F). We obtain the following general
version of Cassels’ theorem.

Proposition 4.13. Assume that m* = corankz, (Sely-(F)). Assume also
that H°(F,, M*) is finite for at least one v € X. Then the cokernel of the
map

v:H'(Fg/F,M) » [[ H'(F,, M)/L,
veX

has Zp-corank < m*. Also,
dimgz,,z(coker(y)[p]) < m* + dimz,,z(H°(F, M*[p])).
If m* =0, then coker(y) = H(F,M*)".

It is sometimes useful to know how Im(vy) sits inside of P/L. We can
make the following remark. Let vp be any prime in X' for which H°(F,,, M*)
is finite. Assume that Sps« (F) is finite. Then

Im(y)(H' (Fuy, M)/Ly,) = P/L.

Here H'(F,,, M)/L, is a direct factor in P/L. To justify this, one must just
show that the map

v : HY(Fg/F,M) — | | HY(F,,M)/L,
v§£‘
vVFEUo

is surjective under the above assumptions about Sys. (F) and vg. In the above
arguments, one can study coker(y’) by changing L., to L, = H'(F,,,M)
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and leaving L, for v # v unchanged. Now L| may not be divisible, but
we still have coker(y') = (G* NU™)", where now U; has been replaced
by U;r = 0. Since U™ C U*, the corresponding Selmer group S (F) is
still finite. Thus an element o in S4. (F) is in H'(F5/F,T*)iors and has the
property that or|c,v,,uo is trivial. But the diagram (9) shows that

HI(FE/F, T*)tors - Hl(Fvo,T*)tors

is injective. Hence o is trivial. Thus, Sf. (F) is trivial and hence so is coker(y').
Cassels’ theorem is the following special case of proposition 4.13: =
E[p™], ¥ = any finite set of primes of F' containing the primes lying over p or
oo and the primes where FE has bad reduction, and L, = Im(k,) forallv € X.
Then T* = T,(E) by the Weil pairing. Thus M* = E[p*], L; = Im(x,), and
Sy (F) = Su(F) = Selg(F)p. It is clear that H°(F,, M*) is finite for any
nonarchimedean v € X. Thus, proposition 4.13 implies that

coker(H' (Fx/F,Ep™]) = [[ H'(Fy, Elp™))/Im(k,)) = E(F),
veX

if Selg(F), is finite. (Of course, as a group, E(F); & E(F)p.) In the proof
of lemma 4.6 we need the following case: E is an elliptic curve which we
assume has (potentially) good, ordinary or multiplicative reduction at all v|p,
M = E[p*®]) ® k* where s € Z, L, = Im (HI(F,,,C,, ® K°) = Hl(Fv,M))div
if v|p, L, = 0if v{p. Then T* = Tp(E)®k~*, M* = E[p*]®«7°, and L} is
defined just as L,. Assuming that Selg(Fw)p is A-cotorsion, we can choose
s € Z so that Sy (F) is finite. The hypothesis that H°(F,, M*) is finite for
some v € X is also easily satisfied (possibly avoiding one value of s). Then

the cokernel of the map 7 will be isomorphic to the finite group H°(F, M*) .
We can now prove the following generalization of proposition 4.8.

Proposition 4.14. Assume that E is an elliptic curve defined over F' and
that Selg(Fu), is A-cotorsion. Assume that E(F)p, = 0. Then Selg(Fu)p
has no proper A-submodules of finite indez.

Proof. As in the proof of lemma 4.6, we will use the twisted Galois modules
A, = E[p®]®(k®), where s € Z. Since E(F), = 0, it follows that E(F)p = 0
too. (One uses the fact that I is pro-p.) Since A, = E[p™] as GF,,-modules,
it is clear that HO(F, A,) = 0 for all s. Now E must have potentially ordinary
or multiplicative reduction at all v|p, since we are assuming that Selg(Fu)p
is A-cotorsion. So we can define a Selmer group S4,(K) for any algebraic
extension K of F. If we take K to be a subfield of Fy, then S4,(K) is the
kernel of amap H(Fy /K, A;) — P¥(As, K), where this last group is defined
in a way analogous to Pg (K). As we pointed out in the proof of lemma 4.6,
we have

Sa. (Foo) = Selp(Fx)p ® (K°)
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as A-modules. We also have P (A,, Foo) = Pi (Foo) ® (k°) as A-modules.
The hypothesis that Selg(Fs)p is A-cotorsion implies that S4, (Fwo)', and
hence Sa,(F), will be finite for all but finitely many values of s. (We will
add another requirement on s below.) We let M = A,, where s € Z has been
chosen so that S4_, (F) is finite. Note that M* = A_,. Since Sps-(F) is finite
and M*(F) = 0, we can conclude that the map

v: HY(Fg/F,M) = P¥(M,F)

is surjective. Since I has cohomological dimension 1, the restriction maps
HY(Fg/F,M) — H'(Fg/Fo, M) and P¥ (M, F) - PE¥(M,Fy)" are both
surjective. Hence it follows that the map

HY(Fg/Foo, M)" — P¥(M, Foo)"
must be surjective. We have the exact sequence defining Sy (Fio):
0 = Sa(Fs) = HY(Fx/Foo, M) —» P¥(M, Fy) — 0.

This is just the exact sequence defining Selg(F)p, twisted by x°. The cor-
responding cohomology sequence induces an injective map

SM(Foo)p —)HI(FE/FOQ,M)F.
If we let Q = H'(Fx/Fw, E[p®])/H!(Fx [Fso, E[p™]) A-div, 8s before, then
HY(Fg/Foo,M)r = (Q® (K°))r

and, since Q is A-cotorsion, we can choose s so that (Q ® (k*))r is fi-
nite. (This will be true for all but finitely many values of s.) But since
H'(Fy/Fy, E[p™]) has no proper A-submodules of finite index, neither does
HY(Fx /Fy, M). 1t follows that, for suitably chosen s, H(Fs /Fo, M)r = 0.
Hence Spr(Foo)r = 0. This implies that Sps(Fi) has no proper A-submodules
of finite index, from which proposition 4.14 follows. »

We will give two other sufficient conditions for the nonexistence of proper
A-submodules of finite index in Selg(F)p. We want to mention that a rather
different proof of proposition 4.14 and part of the following proposition has
been found by Hachimori and Matsuno [HaMa}. This proof is based on the
Cassels-Tate pairing for Il(Fy,),. This topic will be pursued much more
generally in [Gr6).

Proposition 4.15. Assume that E is an elliptic curve defined over F' and
that Selg(F)p is A-cotorsion. Assume that at least one of the following two
hypotheses holds:

(i) There is a prime vg of F, vo { p, where E has additive reduction.
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(ii) There ezists a prime vy of F, vo|p, such that the ramification indez e,
of Fy,/Q, satisfies ey, < p — 2 and such that E has good, ordinary or
multiplicative reduction at vo.

Then Selg(Fs)p has no proper A-submodules of finite indeg.

Remark. If condition (i) holds, then H O(IQ‘,0 , E[p>]) is finite. This group will
be zero if p > 5. Then E(F), = 0 and we are in the situation of proposition
4.14.

Proof. We will modify the proof of proposition 4.14. In addition to the
requirements on M = A, occurring in that proof, we also require that
HO(F,,, M*) be finite, which is true for all but finitely many values of s € Z.
Here v is the prime of F satisfying (i) or (ii). (If E has additive reduction
at vg, o { p, then this holds for all s.) Assume first that (i) holds. In this
case, let S4;(F), S, (Feo) denote the Selmer groups where one omits the local
condition at vy (or the primes above vp). If  is a prime of Fi, lying over vy,
then H®((Fs)y, M*) is finite. This implies that H*((Feo)y, M) = 0. Thus,
S14(Fs) = Sm(Fxo). The remark following proposition 4.13 shows that the
map

' : HY(Fx /F,M) - P¥ (M, F)

is surjective, where X' = X — {vg} and pr (M, F) is the product over
all primes of X’'. The proof then shows that Sj;(Fw) has no proper A-
submodules of finite index. This obviously gives the same statement for
SelE (Foo)p

Now assume (ii). We again define S, (Fi) by omitting the local condition
at all primes 7 of F., lying over vo. Just as above, we see that S}, (Fo) has no
proper A-submodules of finite index. Thus, the same is true for Sel;(Foo)p-
By lemma 4.6, we see that

Sel’s(Foo)p/Sele(Foo)p = [ HE((Foo)n)-

njvo

But HE((Foo)n) = H' ((Foo)n, E[p™])/Im(ky) = H'((Feo)y, Dy,) by propo-
sition 2.4 and the analogous statement proved in section 2 for the case
where E has multiplicative reduction at v. Here D,, = E[p*®]/Cy, is an
unramified G, -module isomorphic to @, /Z,. We can use a remark made
in section 2 (preceding proposition 2.4) to conclude that H((Feo)n, Do)
is Z[[Gal((Feo)n/ Fu, )]]-cofree. Proposition 4.15 in case (ii) is then a con-
sequence of the following fact about finitely generated A-modules: Suppose
that X' is a finitely generated A-module which has no nonzero, finite A-
submodules. Assume that Y is a free A-submodule of X'. Then X = X'[Y
has no nonzero, finite A-submodules. The proof is quite easy. By induction,
one can assume that ¥ = A. Suppose that X does have a nonzero, finite
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A-submodule. Then Y C Yy, where [Yp : Y] < 00, Y # Y, and Y} is a A-
submodule of X'. Then Y} is pseudo-isomorphic to A and has no nonzero,
finite A-submodules. Hence Y, would be isomorphic to a submodule of A of
finite index. It would follow that A contains a proper ideal of finite index
which is isomorphic to 4, i.e., a principal ideal. But if f € A, then (f) can’t
have finite index unless f € A%, in which case (f} = A. Hence in fact X has
no nonzero, finite A-submodules. [ |

5. Conclusion

In this final section we will discuss the structure of Selg(F)p in various
special cases, making full use of the results of sections 3 and 4. In particular,
we will see that each of the invariants pg, A¥"W, and A can be positive.
We will assume (usually) that the base field F is @ and that E/Q has good,
ordinary reduction at p. Our examples will be based on the predicted order
of the Shafarevich-Tate groups given in Cremona’s tables. In principle, these
orders can be verified by using results of Kolyvagin.
We start with the following corollary to proposition 3.8.

Proposition 5.1. Assume that E is an elliptic curve/Q and that both E(Q)
and I (Q) are finite. Let p vary over the primes where E has good, ordinary
reduction. Then Selg(Q,)p = 0 ezcept for p in a set of primes of zero density.
This set of primes is finite if E is Q-isogenous to an elliptic curve E' such
that |E'(Q)| > 1.

Remark. Recall that if p is a prime where E has supersingular (or potentially
supersingular) reduction, then Selg(Q,,), has positive A-corank. Under the
hypothesis that E(Q) and Iz (Q) are finite, this A-corank can be shown to
equal 1, agreeing with the conjecture stated after theorem 1.7. If E doesn’t
have complex multiplication, the set of supersingular primes for E also has
zero density.

Proof. We are assuming that Selg(Q®) is finite. Thus, excluding finitely many

primes, we can assume that Selg(Q), = 0. If we also exclude the finite set

of primes dividing []¢;, where ! varies over the primes where E has bad
1

reduction and ¢; is the corresponding Tamagawa factor, then hypotheses (ii)
and (iii) in proposition 3.8 are satisfied. As for hypothesis (i), it is equivalent
to ap = 1(mod p), wherea, =1+ p— IE(IF,,)I. Now we have Hasse’s result
that |a,| < 2,/p and hence a, = 1(mod p) = ap, = 1 if p > 5. By using
the Chebotarev Density Theorem, one can show that {p | a, = 1} has zero
density. (That is, the cardinality of {p | ap = 1, p < z} is o(z/log(z)) as
Zz — 00.) The argument is a standard one, using the Il-adic representation
attached to E for any fixed prime l. The trace of a Frobenius element for p
(# 1) is ap. One considers separately the cases where E does or does not have
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complex multiplication. For the non-CM case, see [Sel], IV-13, exercise 1.
These remarks show that the hypotheses in proposition 3.8 hold if p is outside
a set, of primes of zero density. For such p, Selg(Qc)p = 0. The final part of
proposition 5.1 follows from the next lemma.

Lemma 5.2. Suppose that E is an elliptic curve defined over Q and that p
is a prime where E has good reduction. If E(Q) has a point of order 2 and
p > 5, then a, Z 1 (mod p). If E is Q-isogenous to an elliptic curve E' such
that E'(Q)tors has a subgroup of order ¢ > 2 and if pt g, thenap #1 (mod p).

Proof. Q-isogenous elliptic curves have the same set of primes of bad reduc-
tion. If E has good reduction at p, then the prime-to-p part of E'(®)tors maps
injectively into E'(IF,), which has the same order as E(TF,). For the first part,
ap = 1(mod p) implies that 2p divides |E'(]F,,)|. Hence 2p < 1+ p + 2,/p,
which is impossible for p > 5. For the second part, if a, = 1 (mod p) and p 14,
then gp divides |E‘(]F,,)|. Hence gp < 1+ p + 2,/p, which again is impossible
since q > 2. |

Here are several specific examples.

E = Xo(11). The equation y>+y = z® —z* —10z—20 defines this curve, which
is 11(A1) in [Cre]. E has split, multiplicative reduction at p = 11 and good
reduction at all other primes. We have ords; (jg) = —5, E(Q) = Z/5Z, and
we will assume that Selg(Q) = 0 as predicted. If p # 11, then a, = 1 (mod p)
happens only for p = 5. Therefore, if E has good, ordinary reduction at p # 5,
then Selg(Q,,), = 0 according to proposition 3.8. We will discuss the case
p = 5 later, showing that Selg(Q)p = Hom(A/pA,Z/pZ) and hence that
pEe = 1, Ag = 0. We just mention now that, by theorem 4.1, fg(0) ~ 5. We
will also discuss quite completely the other two elliptic curves/Q of conductor
11 for the case p = 5. If p = 11, then Selg(Q,)p = 0. This is verified in [Gr3],

example 3.

E = Xo(32). This curve is defined by y? = z® — 4z and is 32(A1) in [Cre]. It
has complex multiplication by Z[i]. E has potentially supersingular reduction
at 2. For an odd prime p, E has good, ordinary reduction at p if and only if
p = 1(mod 4). We have E(Q) = Z/4Z, IIg(Q) = 0 (as verified in Rubin’s
article in this volume), and ¢; = 4. By lemma 5.2, there are no anomalous
primes for E. Therefore, Selgp(Q,)p = 0 for all primes p where E has good,
ordinary reduction.

E;:y? =x3+x% -7x+5 and Ez : y? = x® + x? — 647x — 6555. Both of
these curves have conductor 768. They are 768(D1) and 768(D3) in [Cre].
They are related by a 5-isogeny defined over Q. We will assume that Selg, (Q)
is trivial as predicted by the Birch and Swinnerton-Dyer conjecture. This
implies that Selg,(Q), = 0 for all primes p # 5. We will verify later that
this is true for p = 5 too. Both curves have additive reduction at p = 2, and
-split, multiplicative reduction at p = 3. For E, the Tamagawa factors are
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c2 =2, c3 = 1. For E,, they are c; = 2, c3 = 5. We have E;(Q) = Z)27 =~
E»(Q). By lemma 5.2, no prime p > 5 is anomalous for E; or E,. If E
(anq her}ce E;) have ordinary reduction at a prime p > 5, then propositiorlx
3.8 implies that Sel, (Q.,)p = 0 = Selg, (Q)p- Both of these curves have
good, ordinary reduction at p = 5. (In fact, By = By : y? = 23 + 2% + 3z
and one finds 4 points. That is, a5 = 2 and so p = 5 is not anomalous
for Ey or E;.) The hypotheses of proposition 3.8 are satisfied for E; and
p = 5. Hence Selg, (Q,.)s = 0. But, by using either the results of section 3 or
theorem 4.1, one sees that Selg,(Q,.)s # 0. (One can either point out that
coker(Selg, (Q)s — Selg, (Q.,)f) is nonzero or that fg,(0) ~ 5. We remark
that proposition 4.8 tells us that Selg,(Q,,) cannot just be finite if it is
nonzero.) Now if ¢ : B, — E, is a 5-isogeny defined over @, the induced map
® : Selp, (Qy)s — Selg,(Q,,)s will have kernel and cokernel of exponent 5.
Hence Ag, = Ap, = 0 (for p = 5). Since fg,(0) ~ 5, it is clear that ug, = 1.
Below we will verify directly that Selg,(Q,)s = Hom(A/54,2Z/ 52).2 Note
that this example illustrates conjecture 1.11.

E :_y2 +y =x®+x? —12x — 21. This is 67(A1) in [Cre). It has split, mul-
tiplicative reduction at p = 67, good reduction at all other primes. We have
E(Q) = 0 and cg7 = 1. It should be true that Selg(Q) = 0, which we will
assume. According to proposition 3.8, Selg(Q,)p, = 0 for any prime p # 67
wher-e ap # 0, 1(mod p). If a, = 0(mod p), then E has supersingular re-
duction at p, and hence Selg(Q,,), is not even A-cotorsion. (In fact, the
A-corank will be 1.) If a;, = 1 (mod p), then Selg(Q,,), must be nonzero and
hence inﬁriite. (Proposition 4.8 applies.) By proposition 4.1, we in fact have
fE(0) ~ |[E(IF,)|? ~ p?* for any such prime p. (Here we use Hasse’s estimate
on E(IF,)|, noting that 1+ p+ 2,/p < p® for p > 3. The prime p = 2 is
supersingular for this elliptic curve.) Now it seems reasonable to expect that
FE has infinitely many anomalous primes. The first such p is p = 3 (and the
only such p < 100). Conjecture 1.11 implies that pg = 0. Assuming this, we
will later see that A¥"W =0 and Al = 2. ,

E:y? +y =x%—x® - 460x — 11577. This curve has conductor 915. It is
915(A1) in [Cre]. It has split, multiplicative reduction at 5 and 61, nonsplit
at 3. We have c; = c6; = 1 and ¢5 = 7. Selg(Q) = 0, conjecturally. E(Q) =0.
Proposition 3.8 implies that Selg(Q.,)p = O for any prime p where F has
good, ordinary reduction, unless either p = 7 or a, = 1 (mod p). In these two
cases, Selp(Q.,)p must be infinite by proposition 4.8. More precisely, theorem
4.1 implies the following: Let p = 7. Then fg(0) ~ 7. (One must note that
ar =3 # 1(mod 7).) This implies that fg(T') is an irreducible element of A.
On the other hand, suppose ap = 1(mod p) but p # 5 or 61. Then fg(0) ~ p?
The only such anomalous prime p < 100 is p = 43. Assuming the validity
of cc:lr:;jecture 1.11 for E, we will see later that A¥"W = 0 and \I' = 2 for
p=43.
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E:y? +xy = x3 — 3x + 1. This is 34(A1) in [Cre]. Sel (@) should be trivial.
E has multiplicative reduction at 2 and 17, c; = 6, c17 = 1. Also, E(Q) =
Z/6Z. The primep = 3 is anomalous: a3 = —2 and so |E(FF3)| = 6. If pis any
other prime where E has good, ordinary reduction, then a, # 1(mod p) and
we clearly have Selg(Q), = 0. For p = 3, proposition 4.1 gives fe(0) ~ 3.
Thus, fg(T) is irreducible. Let F be the first layer of the cyclotomic Z3-
extension of Q. Then F = Q(8), where 8 = ( + ¢!, ¢ denoting a primitive
9-th root of unity. Notice that 3 is a root of z* — 3z + 1. Thus (8, -B)
is a point in E(F), which is not in E(Q). Now the residue field for,Q,
at the unique prime 7 above 3 is IF3. The prime-to-3 torsion of E(Q,.) is
mapped by reduction modulo 7 injectively into E(IFs3), and thus is Z/27Z.
It is defined over Q. The discussion preceding proposition 3.9 shows that
E(Q,)s = E(Q)s. Thus, E(Q)tors = E(Q)tors- It follows that 8,-8)
has infinite order. Now Gal(F/Q) acts faithfully on E(F) ® Q. It is clear
that this Q;-representation must be isomorphic to pt where p is the unique
9-dimensional irreducible Q-representation of Gal(F/Q) and t > 1. If v
generates I' = Gal(Q,,/Q) topologically, then p(v|F) is given by a matrix
with trace —1, determinant 1. Regarding p as a representation of I' and
letting T = v — 1, p(y — 1) has characteristic polynomial

o=1+T)2+Q+T)+1=T>+3T+3.

Since E(F) ® (Q3/Z3) is a A-submodule of Selg(Q,.)3, it follows that 6%
divides fg(T). Comparing the valuation of 6,(0) and fe(0), we clearly have
t =1 and fg(T) = 61, up to a factor in A*. Therefore AM-W =2 AF =0,
and KE = 0.

When is Selg(Q,,)p infinite? A fairly complete answer is given by the
following partial converse to proposition 3.8.

Proposition 5.3. Assume that E has good, ordinary reduction at p and that
E(Q) has no element of order p. Assume also that at least one of the following

statements is true:

(i) Selg(@), #0.
(ii) ap =1 (mod p).
(iii) There ezists at least one prime l where E has multiplicative reduction
such that a; = 1 (mod p) and ord;(jg) = 0 (mod p).
(iv) There ezists at least one prime | where E has additive reduction such

that E(Q;) has a point of order p.
Then Selg(Q.)p 15 infinite.

Remark. If E has multiplicative reduction at I, then a; = £1. Thus, in (iii),
a; = 1 (mod p) is always true if p = 2 and is equivalent to a; = 1if p is odd.
Also, (iii) and (iv) simply state that there exists an ! such that p|¢;. If E has
additive reduction at I, then the only possible prime factors of ¢; are 2, 3, or
I. Since E has good reduction at p, (iv) can only occur for p =2 or 3.
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I"roof. If Sel (@), is infinite, the conclusion follows from theorem 1.2, or more
simply from lemma 3.1. If Selg(@Q), is finite, then we can apply proposition
4.1 to say that fg(0) is not in Z;. Hence fp(T) is not invertible and so
Xr(Q.) must indeed be infinite. (The characteristic ideal of a finite A-
module is A.) Alternatively, one can point out that since E(Q), = 0, it
follow.s that ker(ho) = 0 and G£(Q) = PE(Q), where X consists of p, 00, and
all primes of bad reduction. Hence, if (i) holds, then Selg(Q,), # 0. If (ii)

(iii), or (iv) holds, then ker(go) # 0. Therefore, since ker(ho) and coker(ho)’
are both zero, we have coker(sq) # 0. This implies again that Selg(@Q_,), # O.
Finally, proposition 4.8 then shows that Sel E(Q)p must be inﬁnitg.o ’ |

_ As our examples show, quite a variety of possibilities for the data going
into thec?rem 4.1 can arise. This is made even more clear from the following
observation, where is a variant on lemma 8.19 of [Maz1].

Proposition 5.4. Let P and L be disjoint, finite sets of primes. Let Q be
any finite set of primes. For each p € P, let a, be any integer satisfying
Ia;l.f 2\/p. For each l € L, let af = +1 or —1. If a] = +1, let cf be any
posztzpe integer. If af = —1, let ¢f = 1 or 2. Then there ezist infinitely many
non-isomorphic elliptic curves E defined over Q such that

(1) For each p € P, E has good reduction at p and a, = ay.
(11) For each | € L, E has multiplicative reduction atl, a; = a}, and ¢; = .
(iit) For each q € Q, Elg] is irreducible as a TF,-representation space of Gq.

Proof. This is an application of the Chinese Remainder Theorem. For each
p € P, a theorem of ~Deuring states that an elliptic curve Ep defined over
IF, exists such Eha.t |Ep(IFp)| = 1+ p — a}. One can then choose arbitrarily
a lifting E; of E, defined by a Weierstrass equation (as described in Tate’s
article [Ta]). We write this equation as f5(z,y) = 0 where f¥(z,y) € Z,[z, ]
Let‘l € L. If af = 41, we let E} denote the Tate curve ovper (’Q, with p]E, =
[=<. Then E} has split, multiplicative reduction at ! and ord, () = —lc*.
If .al* = —1, then we instead take E} as the unramified quadratic twist (l)f
this Tate curve, so that E} has non-split, multiplicative reduction. The index
[Ef (Q,) : E}4(®Q,)] is then 1 or 2, depending on the parity of ¢f. In either
case, we let f7(z,y) = 0 be a Weierstrass equation for E}, where f*(z,y) €
Z[z, y]~ Let ¢ € Q. Then we can choose a prime r = r, # ¢ and ail eliiptic
curve E, defined over IF, such that Er[q] is irreducible for the action of
G]F',.Z If ¢ = 2, this is easy. We take r to be an odd prime and define E,
by y* = g(z), where g(z) € FF,[z] is an irreducible cubic polynomial. Then
E.(F,) has no element of order 2, which suffices. If q is odd, we choose
T to be an odd prime such that —r is a quadratic nonresidue ,mod q. We
can choose E/IF, to be supersingular. Then the action of Frob, € G]l:: on
Igr[q] has characteristic polynomial t2 + r. Since this has no roots in rIF

E,[q] indeed has no proper invariant subspaces under the action of Frob:j
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We can choose a lifting E; of E, defined over @, by a Weierstrass equation
f*(z,y) = 0, where f}(z,y) € Z.[z,y]- For each ¢ € Q, infinitely many
suitable r,’s exist. Hence we can also require that the r,’s are distinct and
outside of PNL. We let R = {r,},cq, choosing one r, for each g € Q. We then
choose an equation f(z,y) = 0 in Weierstrass form, where f(z,y) € Z[z,y]
and satisfies f(z,y) = f%(z,y) (mod m~) for all m € PU LU R, where t,
is chosen sufficiently large. The equation f(z,y) = 0 determines an elliptic
curve defined over @. If p € P, we just take t, = 1. Then E has good

reduction at p, E = E,, and hence a, = ay, as desired. If r € R, then r =1y

for some g € Q. We take t, = 1 again. E has good reduction at r, £ = E,,
and hence the action of a Frobenius automorphism in Gal(Q{E[q])/®) (for
any prime above r) on E[g] has no invariant subspaces. Hence obviously E[q]
is irreducible as an IF,-representation space of Gq. Finally, suppose | € L.
If we take #; sufficiently large, then clearly jg will be close enough to jg; to
guarantee that ord;(jg) = ord;(jg;) = —¢}. In terms of the coefficients of a
Weierstrass equation over Z;, there is a simple criterion for an elliptic curve
to have split or nonsplit reduction at {. (It involves the coset in Q;/(Q;)?
containing the quantity —c4/cs in the notation of Tate.) Hence it is clear that
E will have multiplicative reduction at ! and that a; = a if ¢; is taken large
enough. Thus E will have the required properties. The fact that infinitely
many non-isomorphic E’s exist is clear, since we can vary L and thus the set
of primes where E has bad reduction. [ ]

Remark. We can assume that P U L contains 3 and 5. Any elliptic curve E
defined over @ and satisfying (i) and (ii) will be semistable at 3 and 5 and
therefore will be modular. This follows from a theorem of Diamond [D]. Fur-
thermore, let E4 denote the quadratic twist of E by some square-free integer
d. If we assume that all primes in PU L split in Q(vd), then Ey also satisfies
(i), (i), and (iii). One can choose such d so that L(E4/@, 1) # 0. (See [B-F-H]
for a discussion of this result which was first proved by Waldspurger.) A theo-
rem of Kolyvagin then would imply that E4(Q) and Il g,(Q) are finite. Thus,
there in fact exist infinitely many non-isomorphic modular elliptic curves E
satisfying (i), (i), and (iii) and such that Selg(Q) is finite.

Corollary 5.5. Let P be any finite set of primes. Then there exist infinitely
many elliptic curves E/Q such that E has good, ordinary reduction at p,
ap = 1, and E[p] is an irreducible IF,-representation space for Gq, for all

pEP.

Proof. This follows immediately from proposition 5.4. One takes P = Q,
a;‘;:lforallpeP,andL:Z.

Corollary 5.6. Let p be any prime. Assume that conjecture 1.11 is true
when F = Q. Then Ag is unbounded as E varies over elliptic curves defined
over Q with good, ordinary reduction at p.
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Proof. Take P = {p} = Q. Let a, be such that p { a;. Take L to be a
large finite set of primes. For each ! € L, let af = +1, ¢ =p. Let E/Q be
any elliptic curve satisfying the statements in proposition 5.4. As remarked
above, we can assume E is modular. Now E has good, ordinary reduction
at p. According to Theorem 1.5, Selg(Q,,)p is A-cotorsion. (Alternatively,
we could assume that Selg(Q), is finite and then use theorem 1.4. The rest
of this proof becomes somewhat easier if we make this assumption on E.)
Also up = 0 by conjecture 1.11. We will show that Ag > |L|, which certainly
implies the corollary. Let t = |L|. Let n = corankz, (Selg(Q),). Of course,
AE > n by theorem 1.2. So we can assume now that n < t. Let X be the set of
primes p, 0o, and all primes where E has bad reduction. Then, by proposition
4.13, there are at most p" elements of order p in PF(Q)/G&(Q). Also, for
each [ € L, we have | ker(r;)| = ¢; = p. Thus, the kernel of the restriction map
PE(®) - P£(Q,,) contains a subgroup isomorphic to (Z/pZ)*. 1t follows
that ker(go) contains a subgroup isomorphic to (Z/pZ)* ™. Now ker(ho) =
coker(ho) = 0. Thus it follows that coker(sg) contains a subgroup isomorphic
to (Z/pZ)*". By proposition 4.14, and the assumption that ugz = 0, we have

Sel5(Qe0)p = (Q,/Z,)*".

But Selg(Q,,), contains a subgroup Im(sg)qiy isomorphic to (Q,/Z,)" and
the corresponding quotient has a subgroup isomorphic to (Z/pZ)*™. It fol-
lows that Ag > t, as we claimed. [ |

Remark. If we don’t assume conjecture 1.11, then one still gets the weaker re-
sult that Ag + g is unbounded as E varies over modular elliptic curves with
good, ordinary reduction at a fixed prime p. For the above argument shows
that dimg/ma(XE(Qu)/mXE(Q,,)) is unbounded, where m denotes the
maximal ideal of A. We then use the following result about A-modules: Sup-
pose X is a finitely generated, torsion A-module and that X has no nonzero,
finite A-submodules. Let A and p denote the corresponding invariants. Then

A+ > dimy/ma(X/mX).

The proof is not difficult. One first notes that the right-hand side, which is
g'ust the minimal number of generators of X as a A-module, is “sub-additive”
In an exact sequence 0 - X; — X3 — X3 — 0 of A-modules. Both )\ and
u are additive. One then reduces to the special cases where either (a) X has
exponent p and has no finite, nonzero A-submodule or (b) X has no Z,-
torsion. In the first case, X is a (4/pA)-module. One then uses the fact that
A/pAis a PID. In the second case, A is the minimal number of generators of
X as a Z,-module. The inequality is clear.

We will now discuss the p-invariant pg of Selg(Q,,),. We always assume
that E is defined over @ and has either good, ordinary or multiplicative
.ret.iuction at p. According to conjecture 1.11, we should have ug = 0 if E[p]
is irreducible as a Gg-module. Unfortunately, it seems very difficult to verify
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this even for specific examples. In this discussion we will assume that Ef{p]
is reducible as a Gg-module, i.e., that E admits a cyclic Q-isogeny of degree
p. In [Maz2], Mazur proves that this can happen only for a certain small
set of primes p. With the above restriction on the reduction type of E at p,
then p is limited to the set {2,3,5,7, 13,37}. For p = 2,3,5,7, or 13, there
are infinitely many possible E’s, even up to quadratic twists. For p = 37, FE
must be the elliptic curve defined by y® + 2y +y = 2 + z° — 8z + 6 (which
has conductor 352) or another elliptic curve related to this by a Q-isogeny of
degree 37, up to a quadratic twist. -

Assume at first that E[p] contains a Gq-invariant subgroup @ isomorphic
to p,. We will let X be the finite set consisting of p, 00, and all primes where
E has bad reduction. Then we have a natural map

€: Hl(QE/Qoo’¢) - Hl(QE/Qoan[poo])

It is easy to verify that ker(e) is finite. We also have the Kummer homomor-
phism

:B 'uoo/ugo - Hl(QE/QOO’”’p))

where Uy, denotes the unit group of Q. The map g is injective. Dirichlet’s
unit theorem implies that the (4/pA)-module Uoo /UE, has corank 1. Consider
a prime | # p. Let n be a prime of @, lying over l. Then (®,)y is the
unramified Z,-extension of @; (which is the only Z,-extension of @;). All
units of (Q,,), are p-th powers. Thus, if u € U, then u is a p-th power
in (Q.,)y- Therefore, if ¢ € Im(B), then ¢lgq,,,, 18 trivial. If we fix an
isomorphism & & p,, then it follows that the elements of Im(eo §) satisfy the
local conditions defining Selg(Q,)p at all primes 7 of @, not lying over p or
00. Now assume that p is odd. We can then ignore the archimedean primes
of Q. Since the inertia subgroup Iq, acts nontrivially on p, (because p is
odd) and acts trivially on E[p™]/Cy, it follows that & C Cp. If w denotes the
unique prime of @, lying over p, recall that Im(xx) = Im(\y), where A, is
the map

H'((Quo)r> Cp) = H'(Qoo)r EP™))-

Therefore, it is obvious that if ¢ € Im(e), then ¢lgq_,, € Im(k,). Combining
the above observations, it follows that Im(e o ) C Selg(Qy)p if p is odd.
Thus, Selg(Q,,)p contains a A-submodule of exponent p with (A/pA)-corank
equal to 1, which implies that either ug > 1 or Selg (Qu)p is not A-cotorsion.

We will prove a more general result. Suppose that E[p™] has a Gq-
invariant subgroup @ which is cyclic of order p™, with m > 1. If E has
semistable reduction at p, then it actually follows that E has either good,
ordinary reduction or multiplicative reduction at p. ® has a Gg-composition
series with composition factors isomorphic to $[p]. We assume again that p is
an odd prime. Then the action of I on ®[p] is either trivial or given by the
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Teichmiiller character w. In the first case, @ is isomorphic as a Gg_-module
to a sut.)group of E[p*®]/Cy. The action of Ig_on & is trivial and 50 we say
that Q'IS unramified at p. In the second caset we have & C C, and we say
that & is ramified at p. The action of Gal(C/R) on &[p] determines its action
on ¢. We say that & is even or odd, depending on whether the action of
Gal(C/RR) is trivial or nontrivial. With this terminology, we can state the
following result.

PFoposition 5.7. Assume that p is odd and that E is an elliptic curve/Q
ynth good, ordinary or multiplicative reduction at p. Assume that Selg(Q,)
is A-cotorsion. Assume also that E[p™] contains a cyclic Gg-invariant .csxz;bli
group @ of order p™ which is ramified at p and odd. Then pg > m.

Prf)of. We will show that Selg(Q,,), contains a A-submodule pseudo-isomor-
phic to A[p™)]. Consider the map

€: H(Q5/Qu, ?) = H (Qs/Q.., Ep™)).

T}'le kernel is ﬁnite:. Let I € X, 1 # p or co. There are just finitely many
primes n qf Qoo. lying over I. For each n, H'((Qy)s, ®) is finite. (An easy
way to \lflenfy this is to note that any Sylow pro-p subgroup V of Ga.), is
isomorphic to Z, and that the restriction map H? &) » H'(V.d) i

injective.) Therefore (@eo)n 2 W )is

ker(H(Qz/Qu, ®) = [[ [TH Qo) ®))

lex g
I#p,00 m

has finite index in H'(Qs/Q,,,®). On the other hand, & C C,. Hence
elements in Im(e) automatically satisfy the local condition at 7 ocgurring ir;
the definition of Selg(Q,),- These remarks imply that Im(e) N Selg(Q,,)
has finite index in Im(e) and therefore Selg(Q,,), contains a A-submogillg
pseudo-isomorphic to H!(Q5/Q.,, $).

One can study the structure of H!(Qx/Q,,,®) either by restriction to a
subgroup of finite index in Gal(Qy/Q,,) which acts trivially on & or by using

Euler characteristics. We will sketch the second approach. The restriction
map

Hl(QE/Qn)¢) - HI(QE/QOO’Q)F"

is surjective and its kernel is finite and has bounded order as n — oco. The
Euler characteristic of the Gal(Qz/®,,)-module & is [] |#/#P|~!, where v
[o ]

runs over the infinite primes of the totally real ﬁelvan and Dy, = G(q,), -
By assumption, P = 0 and hence this Euler characteristic is p~mr" "tzo"r
:}llla: t%eO}lTherefore, 1H '(Q5/Q,,®) has order divisible by p™". It follows

: —mod.ule H'(Qy/Q,P), which is of exponent p™ and hence cer-
tainly A-cotorsion, must have y-invariant > m. This suffices to prove that



114 Ralph Greenberg

pe > m. Under the assumptions that Efp] is reducible as a Gg-module
and that Selg(®Q.), is A-cotorsion, it follows from the next propos1t10n
that Selgp(Q,,), contains a A-submodule pseudo-isomorphic to A[p“E] and
that the corresponding quotient has finite Z,-corank. Also, Im(e) must al-
most coincide with H!(Q5/Q, E[p™])[p™]- (That is, the intersection of the
two groups must have finite index in both.) This last A-module is pseudo-
isomorphic to /T[p"‘] according to the proposition below.

If E is any elliptic curve/Q and p is any prime, the weak Leopoldt conjec-
ture would imply that H'(Q5/Q.,, E[p™]) has A-corank equal to 1. That is,
HYQ5/Q.., E[p™]) s-aiv should be pseudo-isomorphic to A. (This has been
proven by Kato if E is modular.) Here we will prove a somewhat more pre-
cise statement under the assumption that E[p] is reducible as a Gg-module.
It will be a rather simple consequence of the Ferrero-Washington theorem
mentioned in the introduction. As usual, X is a finite set of primes of Q
containing p, 0o, and all primes where E has bad reduction.

Proposition 5.8. Assume that E is an elliptic curve defined over Q and that
E admits a Q-isogeny of degree p for some prime p. Then H'(Qg/Q,, E[p™])
has A-corank 1. Furthermore, H*(Q5/Q, E[p™])/H (Qx/Qw, E[P*]) A-div
has p-invariant equal to 0 if p is odd. If p = 2, this quotient has p-invariant
equal to 0 or 1, depending on whether E(IR) has 1 or 2 connected components.

Proof. First assume that p is odd. Then we have an exact sequence
03d -+ Epp|2¥ -0

where Gal(Qy./Q) acts on the cyclic groups $ and ¥ of order p by characters
¢, ¥ : Gal(Qy/Q) — (Z/pZ)¥. We know that H'(Qz/Quo, B[p]) has 4-
corank > 1. Also, the exact sequence

0 — E[p] = E[p®] 5 E[p™] - 0

induces a surjective map H!(Qx/Q., E[p]) = H(Qx/Qq, E[p™])[p] with
finite kernel. Thus, it clearly is sufficient to prove that H'(Q5/Q., E[p]) has
(A/pA)-corank 1. Now the determinant of the action of Gq on E[p] is the
Teichmiiller character w. Hence, ¢y = w. Since w is an odd character, one
of the characters ¢ or 1 is odd, the other even. We have the following exact
sequence:

HI(QE/QOO)Q) - Hl(QE/QootE[p]) — Hl(QZ/Qoo’W)

and hence proposition 5.8 (for odd primes p) is a consequence of the following
lemma.

Lemma 5.9. Let p be any prime. Let © be a Gal(Qy/Q)-module .which is
cyclic of order p. Then H'(Qx/Q.,,O) has (A/pA)-corank 1 if © is odd or
if p = 2. Otherwise, H'(Q5/Q.,,O) is finite. If p = 2, then the map

a: H(Qp/Qy,6) = P57 (Q)
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is surjective and has finite kernel. Here PS(Q,.) = Lim H HY((Q,).,,0).

n Un |00

Remark. We will use a similar notation to that introduced in the remark
following lemma 4.6. For example, ’PC (Q.), which occurs in the following
proof, is defined as L1m [T H'((Q,).,C). If £ is a nonarchimedean prime,

n 'Unll

then P(l)(Qoo) = IIIIH 1((Qo)n, C), since there are only finitely many primes
n

n of Q, lying over £.

Proof. Let 8 be the character (with values in (Z/pZ)*) which gives the
action of Gal(Qx/Q@) on ©. Let C = (Q,/Z,)(8), where we now regard 6 as
a character of Gal(Qy/Q) with values in Z. Then © = C[p]. We have an
isomorphism

Hl(QE/Qom@) HI(QE/QOO’C)[p]

(The surjectivity is clear. The injectivity follows from the fact that
H°(Q5/Q,,,C) is either C or 0, depending on whether # is trivial or non-
trivial.) We will relate the structure of H'(Q5/Q,,,C) to various classical
Iwasawa modules. Let X' = ¥ — {p}. Consider

S6(Quo) = ker(H(Q5/Q0, C) = [] PY(Q))-

ex’

If £ € X' is nonarchimedean, then H!((Q),,C) is either trivial or isomor-
phic to Q,/Z,, for any prime n of Q, lying over £. ’Pg)(Qoo) is then a
cotorsion A-module with p-invariant 0. If £ = oo, then (Q. ), = IR for any
n|¢. H'(R,C) is, of course, trivial if p is odd. But if p = 2, then § is triv-
ial and H'(R,C) = Z/2Z. Thus, in this case, PS(Q,,) is isomorphic to
Hom(A/24,Z/2Z) = /T[2], which is A-cotorsion and has p-invariant 1. It
follows that H'(Qy/Q, C)/St(Qy) is A-cotorsion and has p-invariant 0 if
pis odd. If p = 2, then the p-invariant is < 1.

Assume that p is odd. Let F' be the cyclic extension of @ corresponding
to 6. (Thus, F C @y and 4 is a faithful character of Gal(F/Q).) Then F,, =
FQ, is the cyclotomic Zp-extension of F. We let A = Gal(Fo/Q,) =
Gal(F/Q). Let

X = Gal(Loo/Fo), Y = Gal(Moo/Foo)

where M, is the maximal abelian pro-p extension of F,, unramified at all
primes of F, not lying over p and Lo, is the maximal subfield of My, un-
ramified at the primes of F,, over p too. Now Gal(Fr/Q) = A x I' acts on
both X and Y by inner automorphisms. Thus, they are both A-modules on
which A acts A-linearly. That is, X and Y are A[A]-modules.
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The restriction map H'(Qx/Q,,,C) = HY(Q5/Fu,C)4 is an isomor-
phism. Also, Gal(Qyg/Fw) acts trivially on C. Hence the elements of
HY(Qy/Foo,C) are homomorphisms. Taking into account the local condi-
tions, the restriction map induces an isomorphism

5:(Qy) = Homa(Y,C) = Hom(Y?,C)

as A-modules, where Y? = g;Y, the §-component of the A-module Y. (Here
ep denotes the idempotent for 6 in Z,[A].) Iwasawa proved that Y? is 4A-
torsion if @ is even and has A-rank 1 if 8 is odd. One version of the Ferrezo-
Washington theorem states that the y-invariant of Y? vanishes if 8 is even.
Thus, in this case, H(Q5/Q, C) must be A-cotorsion and have p-invariant
0. It then follows that H!(Q5/Qu,©) must be finite. On the other hand,
if 9 is odd, then S5(Q,) will have A-corank 1. Hence, the same is true
of H'(Q5/Q.,,C) and so H'(Qx/Q,,,C)[p] will have (4/pA)-corank > 1.
We will prove that equality holds and, therefore, H Qs /Qu,©) indeed
has (A/pA)-corank 1. It is sufficient to prove that S¢(Q)[p] has (A/pA)-
corank 1. We will deduce this from another version of the Ferrero-Washington
theorem—the assertion that the torsion A-module X has p-invariant 0. Let
7 be the unique prime of Q. lying over p. Consider

So(Qoo) = ker(Sg (Qos) = H' ((Qoo ) C))-

In the course of proving lemma 2.3, we actually determined the structure
of H'((Q.,)x,C). (See also section 3 of [Gr2].) It has A-corank 1 and the
quotient H((Q . )x, C)/H ((Qeo)x, C) a-div is either trivial or isomorphic to
Q,/Z, as a group. To show that S4(Q)[p] has (A/pA)-corank 1, it suffices
to prove that Sc(Q,,)[p] is finite. Now the restriction map identifies Sc(Qs)
with the subgroup of Homa (Y, C) which is trivial on all the decomposition
subgroups of Y corresponding to primes of Fi lying over p. Thus, Sc(Qu)
is isomorphic to a A-submodule of Homa(X,C) = Hom(X?,C). Since the
p-invariant of X vanishes, it is clear that Sc(Q)[p] is indeed finite. This
completes the proof of lemma 5.9 when p is odd.

Now assume that p = 2. Thus, 0 is trivial. We let Foo = Q. Let My
be as defined above. Then it is easy to see that Mo, = Q- For let Mo be
the maximal abelian extension of Q contained in Mu,. Thus, Gal(Mo/Q,)
Y/TY. We must have My C Q(uz~). But Mo is totally real and so clearly
M, = Q. Hence Y/TY = 0. This implies that ¥ = 0 and hence that
Mo = Q. Therefore, S;(Qy) = 0. It follows that HY (Q5/Q,C) is 4-
cotorsion and has g-invariant < 1. In fact, the y-invariant is 1 and arises
in the following way. Let Uy denote the unit group of Q. Let Ky =
Q. ({V|u € Us}). Then Koo C M, the maximal abelian pro-2 extension
of Q,, unramified outside of the primes over p and oo. Also, one can see that
Gal(KOO/Qoo) = A/2A Thus, Cleaﬂy Hl(QE/Qm’C)[z] = HI(QZ‘/QOO’G)
contains the A-submodule Hom(Gal(Koo/Qoo),Q) which has p-invariant 1.
To complete the proof of lemma 5.9, we point out that K, can’t con-
tain any totally real subfield larger than Q.. since Mo = Q.. That is,
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ker(a) NHom(Gal(K+,/Q,,), ©) is trivial. It follows that ker(a) is finite. We

z;lso see that & must be surjective because ng’) (Qy) is isomorphic to A[2].

W('e must complete the proof of proposition 5.8 for p = 2. Consider the
following commutative diagram with exact rows:

H'(Qz/Qy, %) —> HY(Qx/Qy, E[2]) 2> H (Q5/Q.,, ¥)

(e0) c oo
PE(Q,,) Pl > P(Q)

By lem'ma §.9, both a; and a3 are surjective and have finite kernel. Also,
ker(a) is _ﬁmte. We see that H'(Qx/Q, E[2]) has (A/24)-corank equal to
1or 2 First assume that E(IR) is connected, i.e., that the discriminant of
a Weierstrass equation for E is negative. Then H'(IR, E[2]) = 0, and so

(o0
PE[2% (Qu) = 0. It follows that doas is the zero map and hence Im(b) is finite.

Thus, H'(Qz/Q,, E[2]) is pseudo-isomorphic to H(Qx/Q,,,®) and so has
(A/2:/1)-corank 1. In this case, H(Q5/Q,, F[2*°]) must have A-corank 1
and its maximal A-cotorsion quotient must have p-invariant 0. This proves
proposition 5.8 in the case that E(IR) is connected.

. Now assume that E(IR) has two components, i.e., that a Weierstrass equa-
tion for E has positive discriminant. Then E[2] C E(IR) and H!(R, E[2]) =
(Z/2Z)%. The (4/2A4)-module ’PI(;E;% (Qo) is isomorphic to A[2)2. In this case,
we will see that H'(Qyx/Q, E[2]) has (A/24)-corank 2. This is clear if
E[2] 2 & x ¥ as a Gg-module. If E[2] is a nonsplit extension of ¥ by &
then F = Q(E[2]) is a real quadratic field contained in Q. Let F, = FQ ’
Co.nmdermg the field Koo = Foo ({Vu|u € Up.. }), where U is the groupogf
units of Fo,, one finds that H'(Q s/ Fuo, ) and H(Qx/Feo, ¥) have (A4/24)-
corank 2. Now E[2] = ¢ x ¥ as a Gp-module and so H'(Qy/F, E[2))
ha;s (4/24)-corank 4. The inflation-restriction sequence then will show that
H'(Q5/Q, E[2]) is pseudo-isomorphic to H'(Qy/Fs, E[2])4, where A =
Gal(Fo /Qy)- One then sees that H'(Qg/Qu, E[2]) must have (4/24)-
cora,nk.2. The fact that c is injective and that both a; and a3 have finite
kerflel 'xmplies that a; has finite kernel too. The map a, must therefore be
surjective. Now consider the commutative diagram

HY(Q5/Qu, E[2)) —2> P)(Q.,)

13

H'(Qz/Qu, E[2%]) <5 P52) 1 (Q,)
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Note that Pg[;)w](Qoo) is what we denoted by P& (Q..) in section 4. The
map H!(R, E[2]) = H' (IR, E[2*]) is surjective. (But it’s not injective since
H(R, E[2°]) & Z/2Z when E(IR) has two components.) Hence the‘ma.p e
is surjective. Thus e o a is surjective and this implies that ag is surjective.
In fact, more precisely, the above diagram shows that the restriction of ag

to HY(Qx/Qy, E[2°°])[2] is surjective.
We can now easily finish the proof of proposition 5.8. Clearly

HY (Qz/Qq, E[2%°]) s-aiv € ker(ak)- -

Since ker(ag)[2] has (A/24)-corank 1, it is clear that HI(QE/QOO,E[2.°°])
has A-corank 1 and that ker(ag)/H'(Qx/Qy, E[2°°]) s-aiv has p-invariant
0. Hence the maximal A-cotorsion quotient of H'(Qg/Qu,, E[2*°]) has p-
invariant 1. u

Remark. Assume that E is an elliptic curve/Q which has a Q-isogeny of
degree p. Assuming that Selg(Q,)p is A-cotorsion, the above £esu1ts show
that Selg(Q,,), contains a A-submodule pseudo-isomorphic to A[p#®]. Thus
the p-invariant of Selg(Q,,), arises “non-semisimply” if pg > 1. qu odd. D,
we already noted this before. For p = 2, it follows from the above discussion
of ker(ax) and the fact that Selp(Qq)p C ker(ag). If E has no Q-isogeny of
degree p, then pg is conjecturally 0, although there has been no progress on
proving this.

Before describing various examples where pug is positive, we will prove
another consequence of lemma 5.9 (and its proof).

Proposition 5.10. Assume that p is odd and that E is an elliptic curve/Q
with good, ordinary or multiplicative reduction at p. Assume also that E[p™]
contains a Gq-invariant subgroup & of order p which is either ramified at p
and even or unramified at p and odd. Then Selg(Q.)p is A-cotorsion and

pe =0.
Proof. We will show that Selg(Q)[p] is finite. This obviously implies the
conclusion. We have the exact sequence

HYQ5/ Qo0 8) S H' (Qz/ Qoo Elp)) 2 H (R / Qe ¥)

as before. Under the above hypotheses, both #%@= and W@ are trivial.
Hence H°(Q5/Q.., E[p]) = 0. This implies that

HY(Qx/Qu, Elp}) = H' (Qz/ Qoo ElP™])[P]

under the natural map. Thus we can regard Selg(Q)[p] as a Su.bgroup of
H'(Qy/Q, E[p]). Assume that Selp(Q,)[p] is infinite. Hence either B =
b(Selg(Quo)[p]) or A = Im(a) N Selg(Q)[p] is infinite. Assgme ﬁrst'that
B is infinite. Then, by lemma 5.9, ¥ must be odd. Hence ¥ is unramified,
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® is ramified at p. Let # be any prime of @y lying over the prime 7 of
Q. over p. Then & = C;[p], where Cr is the subgroup of E[p™] occurring
in propositions 2.2, 2.4. (For example, if E has good reduction at p, then
Cr is the kernel of reduction modulo # : E[p>] — E‘[p°°]) The inertia
subgroup Iz of Gal(Q/Q,,) for 7 acts trivially on Dz = E[p™®]/C». Thus,
¥ can be identified with Dz[p]. Let o be a 1-cocycle with values in E[p)
representing a class in Selg(@Q,,)[p]. Let & be the induced 1-cocycle with
values in ¥. Since H!(Iz, Dz) = Hom(Iz,Dz), it is clear that &|;, = 0.
Thus, 6 € H'(Qx/Q,,,¥) is unramified at 7. Now for each of the finite
number of primes 1 of Q, lying over some £ € X, £ # p, H'((Q.)n, F) is
finite. Thus, it is clear that BNH., . (Q5/Q, ¥) is of finite index in B and is
therefore infinite, where H, (Q5/Q,¥) denotes the group of everywhere
unramified cocycle classes. However, if we let F' denote the extension of Q
corresponding to ¥, then we see that

H&nr(QE/Qooa W) = Hom(X¢, Sp)a

where we are using the same notation as in the proof of proposition 5.9. The
Ferrero-Washington theorem implies that H}, (Qs5/Q.,,¥) is finite. Hence
in fact B must be finite. Similarly, if A is infinite, then ¢ must be odd and
hence unramified. Thus, #N Cz = 0. If o is as above, then o|;, must have
values in Cz. But if o represents a class in A, then we can assume that its
values are in @. Thus olr, = 0. Now the map H'(Iz,®) - H(Iz, E[p]) is
injective. Thus, we see just as above, that Hl, (Q5/Q,,, ®) is infinite, again
contradicting the Ferrero-Washington theorem. |

Later we will prove analogues of propositions 5.7 and 5.10 for p = 2.
One can pursue the situation of proposition 5.10 much further, obtaining for
example a simple formula for Ag in terms of the A-invariant of X°, where
6 is the odd character in the pair ¢,7. (Remark: Obviously, ¢ = w. It
is known that X? and Y“%~" have the same \-invariants, when 8 is odd.
Both A-modules occur in the arguments.) As mentioned in the introduction,
one can prove conjecture 1.13 when E/Q has good, ordinary reduction at p
and satisfies the other hypotheses in proposition 5.10. The key ingredients
are Kato’s theorem and a comparison of A-invariants based on a congruence
between p-adic L-functions. We will pursue these ideas fully in [GrVa].

Another interesting idea, which we will pursue more completely elsewhere,
is to study the relationship between Selg(Q,)p and Selg: (@), when E and
E' are elliptic curves/Q such that E[p] & E'[p] as Gg-modules. If E and E’
have good, ordinary or multiplicative reduction at p and if p is odd, then it is
not difficult to prove the following result: if Selg(Q,,),[p] is finite, then so is
Selg (Quo)p[p]. It follows that if Selg(Q,, ), is A-cotorsion and if pg = 0, then
Selg (Qq,)p is also A-cotorsion and g = 0. Furthermore, it is then possible
to relate the A-invariants Ag and A to each other. (They usually will not

be equal. The relationship involves the sets of primes of bad reduction and
the Euler factors at those primes.)
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A theorem of Washington [Wal] as well as a generalization due to E. Fried-
man [F], which are somewhat analogous to the Ferrero-Washington theorem,
can also be used to obtain nontrivial results. This idea was first exploited in
[R-W] to prove that E(K) is finitely generated for certain elliptic curves E
and certain infinite abelian extensions K of Q. The proof of proposition 5.10
can be easily modified to prove some results of this kind. Here is one.

Proposition 5.11. Assume that E and p satisfy the hypotheses of proposi-
tion 5.10. Let K denote the cyclotomic Z-extension of @, where q is gny
prime different than p. Then Selg(K)[p] is finite. Hence

Selg(K)p = (Q,/Z,)" x (a finite group)
for some t > 0.

Washington’s theorem would state that the power of p dividing the class
number of the finite layers in the Z -extension FK/F is bounded. To adapt
the proof of proposition 5.10, one can replace Im(x,) by Im(y) for each prime
n of K lying over p, obtaining a possibly larger subgroup of H YK, E[p™)]).

n

The arguments also work if Gal(K/Q) = [] Z,, where q1,¢2,... ,¢n are
i=1

distinct primes, possibly including p. Then one uses the main result of [F).
One consequence is that E(K) is finitely generated. If E is any modular
elliptic curve/Q, this same statement is a consequence of the work of Kato
and Rohrlich.

We will now discuss various examples where ug > 0. We will take the
base field to be @ and assume always that E is an elliptic curve/Q with
good, ordinary or multiplicative reduction at p. We assume first that p is
odd. Since V,(E) is irreducible as a representation space for Gq, there is a
maximal subgroup ¢ of E[p*] such that & is cyclic, Gg-invariant, ramified
at p, and odd. Define mg by |#| = p™=. Thus, mg > 0. Proposition 5.8
states that ug > mg. It is not hard to see that conjecture 1.11 is equivalent
to the assertion that ug = mg. For p = 2, mg can be 0,1,2,3, or 4. For
p=3or5 mg can be 0, 1, or 2. For p = 7, 13, or 37, mg can be 0 or
1. For other odd primes (where E has the above reduction type), there are
no Q-isogenies of degree p and so mg = 0. In [Mazl], there is a complete
discussion of conductor 11 and numerous other examples having non-trivial
p-isogenies.

Conductor = 11. If E has conductor 11, then E[p] is irreducible except
for p = 5. Let E;, E;, and E3 denote the curves 11A1, 11A2, and 11A3
in Cremona’s tables. Thus E; = Xo(11) and one has E;[5] = us x Z/5Z
as a Gg-module. For E; (which is E;/(Z/5Z)), one has the nonsplit exact
sequence

0 — pus — E2[5] = Z/5Z — 0.
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Now Eg /us = E;1 and so one sees that E5[5%] contains a subgroup ¢ which
is cyclic of order 25, Gq-invariant, ramified at 5, and odd. (& is an extension
of us by ps.) For E3 (which is E; /us), one has a nonsplit exact sequence

0~ Z/5Z — E3[5] = ps — 0.

All of these statements follow from the data about isogenies and torsion
subgroups given in [Cre]. One then sees easily that mg, = 1, mg, = 2, and
mg, = 0. We will show that Selg, (Qy)s = A[5], Selg, (Q.)s = A[5?], and
Selg; (Qu)s = 0. Thus, Ag; =0 and pg, =mg, for 1 <i < 3.

We will let &; = ps and ¥; = Z/5Z as Gg-modules for 1 < ¢ < 3. Then
we have the following exact sequences of Gg-modules

0— &, E, [5] 2} 0

00— ———->E3[5]—>¢3 — (.

These exact sequences are nonsplit. For E;, we have E;[5] = &; x ¥;. As
Gq,-modules, we have exact sequences

0—Cs — Ei[5*°] — Ds —> 0

where D5 is unramified and Cs = use~ for the action of Iq,, the inertia
subgroup of Gq,. There will be no need to index Cs and Dj by i. As Gq,,-
modules, we have exact sequences

0 — Cu1 — Ei[5%°] —> Dy; — 0

where C11 = pse and Dy = Qy/Zs for the action of Gaq,,- It will again
not be necessary to include an index 7 on these groups. The homomorphisms
Ei[5°] — D5 and E;[5°] — Dy, induce natural identifications. As Gq,-
modules, ¥;, W3, ¥3 are all identified with Djs[5]. This is clear from the action
of Gq, on these groups (which is trivial). But, as Gg,,-modules, &;, ¥, ¥,
and &3 are all identified with D,;[5]. One verifies this by using the isogeny
data and the fact that the Tate periods for the E;’s in Q;{ have valuations
5, 1, 1, respectively. For example, if #; or ¥; were contained in C};, then the
Tate period for E; or E3 would have valuation divisible by 5. We will use the
fact that the maps

Hl(Qll,D11[5]) - Hl(Q11aD11)> HI(IQs,D5[5]) — HI(IQB,D5)

are Poth injective. This is so because Gq,, acts trivially on Dy; and Iq, acts
trivially on Ds. Our calculations of the Selmer groups will be in several steps
and depend mostly on the results of section 2 and 3. We take X = {00, 5,11}.
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Selg,(Q)s = 0. Suppose [o] € Selg,(Q)[5]. It is enough to prove that
[7] = 0. We can assume that ¢ has values in E3[5]. (But note that in
this case the map H!(Qs/Q, E3[5]) » H'(Q5/Q, F3[(5°]) has a nontriv-
ial kernel.) The image of o in H*(Q,;,93) = H'(Q;;, D11[5]) must become
trivial in H'(Q,;, D11). Thus this image must be trivial. Now &3 = pus
and HY(Qy/Q, pus) = (Z/5Z)?, the classes for the 1-cocycles associated to
Y517 , 0 < 14,7 < 4. The restriction of such a 1-cocycle to Gq,, is trivial
when 5117 € (Q]})°, which happens only when i = j = 0. Thus, the image
of [o] in H(Qx/Q,$3) must be trivial. Hence we can assume that o hes
values in ¥3 = Z/5Z.

Now HY(Qs/Q,¥3) = (Z/5Z)? by class field theory, but its image in
H(Q5/Q, E[5°)) is of order 5. Since [o] € Selg,(Q)s, it has a trivial image
in H'(Iq,,Ds). Hence, regarding o as an element of Hom(Gal(Qz/Q), ¥3),
it must be unramified at 5 and hence factor through Gal(K/Q), where K
is the cyclic extension of @ of conductor 11. But this implies that [g] = 0
in H'(Qx/Q, E[5*]) because Hom(Gal(K/Q),¥3) is the kernel of the map
HY(Qy/Q,%;3) - H(Qyx/Q, E[5*]). To see this, note that this kernel has
order 5 and that the map H'(Iq,,¥s) — H'(lq,,Ds) is injective. Hence
SelE3 (Q)5 = 0.

Selg,(Q)s = 0. We have H'(Qx/Q, E2[5]) = H'(Qy/Q, E2[5])[5]. Let
[0] € Selg, (Q)[5]. We can assume that o has values in E;[5]. The image of &
in H'(Q/Q, %) must have a trivial restriction to Gg,,. But

HY(Qz/Q,¥,) = Hom(Gal(KL/Q), Z/5Z),

where K is as above and L is the first layer of the cyclotomic Zs-extension
of @. Now 11 is inert in L/Q and ramified in KL/L. Thus it is clear that o
has trivial image in H!(Q/®, ¥2) and hence has values in &3 = us.

Now HY(Qx/Q, us) = (Z/5Z)?, but the map

€0 : H'(Qz/Q, p5) - H'(Qz/Q, Ex[5)) = H'(Qp/Q, E2[5])[5]

has ker(eg) = Z/5Z. Now [o] € Im(€o), which we will show is not contained
in Selg, (Q)s. This will imply that Selg,(Q)s = 0. Consider the commutative
diagram

HY(Qz/Q, pts) ——= H(Qs, pts) ——= H (Q5,C5)

: -

HY(Qg/Q, E2[5)) < HY(Qs, E2[5%))

One sees easily that a is an isomorphism. Also, H!(Qs, #5) = _(Z/ 5Z)% and
b induces an isomorphism H'(Qs, us) = H'(Qg, Cs)[5]. Referring to (2) fol-
lowing the proof of lemma 2.3, one sees that H'(Qs,Cs) = (Qs/Z5) X Z/5Z.
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(One needs the fact that |E»(Z/5Z)| is divisible by 5, but not by 52.) In
section 2, one also finds a proof that the map

HY(Q;5,Cs)/H'(Q5, Cs)aiv = Im(A5)/Im(As )div

is an isomorphism. (See (3) in the proof of proposition 2.5.) If we had Im(eg) C
Selg, (Q)s, then we must have Im(c o €9) C Im()s)giv, which is the image of
the local Kummer homomorphism x5. But this can’t be so because clearly
Im(boa) ¢ H'(Q5, Cs)div- It follows that Selg,(Q)s = 0.

Although we don’t need it, we will determine ker(ep). The discussion in
the previous paragraph shows that ker(ep) is the inverse image under bo a of
H(Qj,Cs5)div[5]. One can use proposition 3.11 to determine this. Let @ be
the unramified character of G, giving the action in D5 = E, [6°°). Since 5
is an anomalous prime for F», one gets an isomorphism

¢:Gal(My/Q5) = 1+ 5Z5
where My, denotes the unramified Z5-extension of Q5. One has
H' (Moo, ps=) 2 R x Qs/Zs,

where now R = Z,[[G]], G = Gal(M/Q;). We have C5 = pse ® 1
and H' (M, Cs) = H' (Moo, ps=) ® ¢~ 1. Now H'(Qs,Cs) 3 H' (M, Cs)C,
by the inflation-restriction sequence. The image of H!(Qjy, Cs)4iv under the
restriction map is H'(Me,C5)$.gi,- But H' (M, Cs)p-aiv coincides with
H'(Mc, pis=) p-div, with the action of G twisted by ¢~!. Let ¢ € QX and
let o, be the 1l-cocycle with values in s associated to §gq. Then g, €
HY(Qs,Cs)aiv if and only if 04|, € H'(Mc, pse)r-div- By proposition
3.11, this means that ¢ is a universal norm for M. /Q;s, i.e., ¢ € ZZ. Now
HY(Qy/Q, pus) consists of the classes of 1-cocycles associated to $/u, where
u = 5'117, 0 < 4,5 < 4. It follows that ker(eo) is generated by the 1-cocycle
corresponding to v/11. There are other ways to interpret this result. The
extension class of Z/5Z by ps given by E»[5] corresponds to the 1-cocycle
associated to ¥/11. The field Q(E:[5]) is Q(us, ¥11). The Galois module
E,[5] is “peu ramifiée” at 5, in the sense of Serre. (This of course must be so
because E; has good reduction at 5.)

Selg, (Q)s = 0. We have an exact sequence
0— HY(Qg/Q,%) - H(Qx/Q, E1[5®]) -+ H(Q5/Q, E5[5%)).

Since Selg, (Q)s = 0, it is clear that Selg, (Q)s C Im(H'(Q5/Q, ¥)). But
¥, = Z/5Z and H(Qyx/Q,?:) = Hom(Gal(KL/Q), Z/5Z), where K and
L are as defined before. Since the decomposition group for 11 in Gal(KL/®)
is the entire group and since ¥, is mapped to Dy;[5], we see as before that
HY(Qg/Q,¥1) - H'(Q,;, E1[5%)) is injective. Hence Selg, (Q)s = 0.
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fg,(T) = 5™B:. We can now apply theorem 4.1 to see that fe, (0) ~ 35,
fE‘ (0) ~ 52, and fg,(0) ~ 1, using the fact that E;(Z/5Z) has ord-er '5. E?ut
wezknow that 5™&: divides fg,(T). Hence it follows that, after multiplication
by a factor in A%, we can take fg, (T) =5, f5,(T) = 52, and fg,(T) =1. We
now determine directly the precise structure of the Selmer groups Selg, (Quo)s
as A-modules.

Selg, (Qy)s = 0. The fact that fg (T') = 1 shows that Selg, (Q.,)s is

finite. Proposition 4.15 then implies that Selg,(Q)s = 0. However,. it' ;
interesting to give a more direct argument. We will show that the restrictién

map 35,3’ : Selg, (Q)s — Selg, (Qu)f is surjective, which thfen implies tl'lat
Selg, (Q,,)f and hence Selg, (.(Qoo)}r> are both zero. Here and in the following
discussions, we will let sg), h((,'), g((,'), and r$) for v € {5,11} denf)te the maps
considered in sections 3 and 4 for the elliptic curve E;, (13)_<_ i < 3. Thus,
ker(s(()i)) =0 for 1 < i < 3, by proposition 3.9. But |ker(hg’)| = 5. We have
the exact sequence

0— ker(hgs)) — ker(gt(,a)) - coker(s(()s)) = 0.

Thus it suffices to show that lker(g(()s))l = 5. We let
A = ker(PE(®Q) = PE, (Qwo)-

C
Now Plz?:s (Q) = HEs (QS) X HEs (Qll)! ’PE;; (Qoo) = HE:«;( gyC) X HE:; (Qll:)ll )
The local duality theorems easily imply that

e, (Qs) = H* (Qs, E3[5°1)/Im(xs) = (Qs/Zs) x Z/5Z
HEy(Qyy) = H (Qyy, Ea[5°]) 2 Z/5Z.

The kernels of the maps 7 : Hg,(Q,) = HE,(QY°) can be3 determined l.)y
the results in section 3. In particular, one finds that Lker(ré ))| = 5%, while
r® is injective. Also, Hg,(QF) = H'(QF"*, Ds) = Afor 1 <i <3 Thus,
Im(réi)) is obviously isomorphic to Q5/Zs for each i. It follows that A ha_s
order 52, A C HE,(Qs), AN HE,(Qs)aiv has order 5, .and AHE, (Q5)aiv =
HE, (Q5). Now GE, (@) has index 5 in PE.(Q) and projects onto Hg(Q1y)-

It follows easily that
|ker(¢$) = 14N GE,(@)] = 5.

As we said, this implies that Selg,(Q)s = 0.

Selg, (Qu.)s = 2[52]. Let & be the Gg-invariant subgroup of Ez [5°°] zhich
is cyclic of order 52. (This & is an extension of #; by $2.) We have E; /& = E3.

Since Selg, (Quo)s = 0, it follows that
Selg, (Quo)s € Im(H' (Qg/Qup, &) = H'(Qz/ Qoo E2[571))-
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The index is finite by proposition 5.7. Thus it is clear that Selg,(Q,.)s is
pseudo-isomorphic to A[5?] and has exponent 52. Since E3(Q) = 0, we have
G%,(Q) = P£ (Q) and ker(h{®) = 0. Hence

coker(s(()2)) = ker(g((f)) = ker(r§2)) X ker(rﬁ)).

Now ker(rﬁ)) = 0 because 5 { ordll(qg2l)), where qg:) denotes the Tate pe-

riod for E; in Q5. Also, Iker(rgz))| = 52. We pointed out earlier that the
Gg-module E,[5] is the nonsplit extension of Z/5Z by us corresponding to
¥11. Since 11 ¢ (@)%, this extension remains nonsplit as a Gg,-module.
Thus, H%(Qs, E2[5%]) = 0. One deduces from this that H(Qg, E3[5%]) =
Qs/Zs5 and HE,(Qs) = Q5/Zs. This implies that ker(réz)) = Z/5*Z. Hence
ker(g((,2) )s coker(s((f)) and hence Selg, (Q,,){ are all cyclic of order 52. There-
fore, Xp,(Q) = Selg,(Qy); is a cyclic A-module of exponent 52. That is,
XE,(Q.) is a quotient of 4/524 and, since the two are pseudo-isomorphic,
it follows easily that Xg,(Q.,) = A/52A. This gives the stated result about
the structure of Selg, (Q,,)s-

Selg, (Q)s = /T[5] Since E; /$; = Ej3, it follows that
Selg, (Qo)s € Im(H' (Qz/Q, $1) & H (Qx/Qu, E1[5%))).

Hence Selg, (Qo,)s has exponent 5 and is pseudo-isomorphic to A[5]. Also,
by proposition 4.15, Selg, (Q,,)s has no proper A-submodules of finite in-
dex. Thus, Xg, (Q,,) is a (4/54)-module pseudo-isomorphic to (4/54) and
with no nonzero, finite A-submodules. Since A/54 is a PID, it follows that
XE,(Qy) = A/5A, which gives the stated result concerning the structure of
SelEl (Qoo)5 .

Twists. Let & be a quadratic character for Q. Then £ corresponds to a
quadratic field Q(v/d), where d = d¢ € Z and |d| is the conductor of £.
We consider separately the cases where ¢ is even or odd. For even ¢, the fol-
lowing conjecture seems reasonable. It can be deduced from conjecture 1.11,

but may be more approachable. We let E¢ denote the quadratic twist of E
by d.

Conjecture 5.12. Let E be an elliptic curve/Q with potentially ordinary or
multiplicative reduction at p, where p is an odd prime. Let £ be an even

quadratic character. Then Selpe(Q,)p and Selp(Qy), have the same p-
tnvariants.

We remark that the A-invariants can certainly be different. For example,
if E is any one of the three elliptic curves of conductor 11, then A\ = 0
for any prime p satisfying the hypothesis in the above conjecture. But if £
is the quadratic character corresponding to Q(v/2) (of conductor 8), then
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rank(E¢(Q)) = 1. (In fact, E¢ is 704(A1, 2, or 3) in [Cre].) Then of course
Age > 1 for all such p.

Assume now that ¢ is an odd character and that £(5) # 0. Let E be
any one of the elliptic curves of conductor 11. Let p = 5. Then Ef[5] is G-
reducible with composition factors us ® £ and (Z/5Z) ® €. The hypotheses
in proposition 5.10 are satisfied and so the p-invariant of Selge (Q)s is zero.
The Minvariant Age is unchanged by isogeny and so doesn’t depend on the
choice of E. It follows from proposition 4.14 that Selge(Q.)s is divisible.
Hence Age, which is the Zs-corank of Selge(Q,)s, is obviously equal to the
(Z /5Z)-dimension of Sel pe (Q, )5[5]. We will not give the verification (which
we will discuss more generally elsewhere), but one finds the following formula:

/\Ee = 2A£ + 6{,

where d = d¢ and )¢ denotes the classical M-invariant A(Feo /F) for the imag-
inary quadratic field F' = Q(v/d) and for the prime p = 5 and where ¢ = 1
if 11 splits in Q(vd)/®, e¢ = 0 if 11 is inert or ramified. By proposition
3.10, it follows that corankz, (Selge(Q)s) = € (mod 2), which is in agree-
ment with the Birch and Swinnerton-Dyer conjecture since the sign in the
functional equation for the Hasse-Weil L-function L(E*/Q,5) = L(E/Q,¢,5)
is (—1)%. As an example, consider the case where £ corresponds to Q(V/-2).
Then EE is 704(K1, 2, or 3). The class number of Q(v/=2) is 1. The prime
p = 5 is inert in F = Q(+/—2). Hence the discussion of Iwasawa’s theorem
in the introduction shows that the A-invariant for this quadratic field is 0.
But 11 splits in F. Therefore, Ag¢ = 1. Since rank(E¢(Q)) = 1, it is clear
that Selge(Qu)s = E4(Q) ® (Q,/Z,). As another example, suppose that
¢ corresponds to F = @Q(v/—1). Then E¢ is 176(B1, 2, or 3) in [Cre]. The
prime 5 splits in F/Q and so A(Feo/F) > 1. In fact, A(Foo /F) = 1. Since 11
is inert in F, we have Age = 2. But E¢(Q) is trivial. If E*(Q;) had positive
rank, one would have rank(E£¢(Q,;)) > 4 (because the nontrivial irreducible
Q-representation of Gal(Q, /@) has degree 4). Hence it is clear that AIE]:IE =2,
AM:W = 0. T. Fukuda has done extensive calculations of A(Fo/F) when F
is an imaginary quadratic field and p = 3,5, or 7. Some of these A-invariants
are quite large. Presumably they are unbounded as F' varies. For p = 5, he
finds that A¢ = 10 if £ corresponds to F = Q(+/=3,624,233). Since 11 splits
in F/Q, we have Age = 21 in this case. However, we don’t know the values
of AMW and L.

We will briefly explain in the case of E¢ (where E and £ are as in the
previous paragraph and p = 5) how to prove conjecture 1.13. Kato’s theorem
states that fg(T) divides f2#/(T), up to multiplication by a power of p.
Thus, A(f222') > Age. Now it is known that A¢ is equal to the A-invariant
of the Kubota-Leopoldt 5-adic L-function Ls(wé, s). The p-invariant is zero
(by [Fe-Wa)]). In [Maz3], Mazur proves the following congruence formula

Ls(E*/Q, 8) = (1 — §A1)11'~*) L (wE, s — 1) Ls(wE, 1 — 5)  (mod 5Zs)
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for all s € Zs. More precisely, one can interpret this as a congruence in the
Iwasawa, algebra A modulo the ideal 5A. The left side corresponds to fg‘;al(T),
and each factor on the right side corresponds to an element of A. The two
sides are congruent modulo 5A. Now, if f(T') € A is any power series with
p(f) = 0, then one has f(T) = uT*¥) (mod pA), where u € A*. Applying
this, we obtain A(f22*!) = 2)¢ + ¢ and therefore A(f22*') = Ag. Since both
f222Y(T) and fg(T) have p-invariant equal to zero, it follows that indeed
(fe(T)) = (f52(T)).

Theorems 4.8, 4.14, and 4.15 give sufficient conditions for the nonexistence
of proper A-submodules of finite index in Selg(Feo)p. In particular, if F = Q
and if E has good, ordinary or multiplicative reduction at p, where p is any
odd prime, then no such A-submodule of Selg(Q,,), can exist. (This is also
true for p = 2, although the above results don’t cover this case completely.)
The following example shows that in general some restrictive hypotheses are
needed. We let F' = Q(us), Foo = Q(us~). Let E = E,, the elliptic curve
of conductor 11 with E(Q) = 0. We shall show that Selg(Fx)s has a A-
submodule of index 5. To be more precise, note that Gal(F, /Q) = A x T,
where A = Gal(Fo/Qo) and I' = Gal(F /F). Now A has order 4 and its
characters are w*, 0 < i < 3. We can decompose Selg(Fy)s as a A-module
by the action of A:

3
Sel5(Foo)s = €D Selp(Fuoo)s"

=0

As we will see, it turns out that SelE(Foo)‘gs = Z/5Z, which of course is a
A-module quotient of Selg(Feo)s. This component is (Selg(Fuo)s ® w™3)4,
which can be identified with a subgroup of H(Qy./Q., E[5®°]®w™?), where
X = {00, 5,11}. For brevity, we let A = E[5*°]®@w~3. We let S4(Q,,) denote
the subgroup of H(Qy/Q,,, A) which is identified with Sel):;(Foo)‘g,’3 by the
restriction map. Noting that w3 = w, we have a nonsplit exact sequence of
Gq-modules

0 — ud* o A[5)] = ps — 0.

This is even nonsplit as a sequence of Gq,-modules or Gg,,-modules. The
Gg-submodule 42 of A[5) is just &, ® w, which we will denote simply by &.
We let ¥ = A[5]/®. We will show that

SA(Qoo) = H! (QE/QOO: dj)

where the isomorphism is by the map € : H*(Qy/Q,,?) - H (Q5/Q., A).
This map is clearly injective. Since & C C5 ® w, it follows that theoolocal
condition defining S4(Q.,) at the prime of Q,, lying over 5 is satisfied by
the elements of Im(e). We now verify that the local condition at the prime of
@, over 11 is also satisfied. This is because # C C,; ®w, which is true because
the above exact sequence is nonsplit over @, . Since 11 splits completely in
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F/Q, wlgg,, is trivial. Thus 4 = E[5%] as Gq,,-modules. One then easily
sees that the map

HY(QF", Cu) = H'(QF", B[5>])

is the zero map. That is, the map H'(Q}°, A) — H! (Qf’l'c,Dl.l). is an iso-
morphism. Elements of Im(e) are mapped to 0 and hence are trivial already

in HY(QY®, A), therefore satisfying the local condition defining S4(Q,,) at

rime over 11.

the Spo it is clear that Im(€) C Sa(Q,,).- We will prove that equality holds a'.nd
that H'(Qy/Qu,®) = Z/5Z. This last assertion is rather easy to verify.
Let F+ = Q(+v/5), the maximal real subfield of F'. By class field theory, one
finds that there is a unique cyclic extension K/F* of degree 5 such that K /Q
is dihedral and K C Qy. Thus, H}(Qz/Q,®) = Hom(Gal(K/F*),®) has
order 5. It follows that H'(Qx/Q..,®) is nontrivial. Also, one can see that
K/F* is ramified at the primes of F* lying over 5 and 11. Illet X' = {00,5}.
Then & is a Gal(Qy, /Q)-module and one can verify that H Qx/ Qoo,.sp) =
0. (It is enough to show that H'(Qx:/Qy,, )" = H* (QE,/Q,Q) \tamshes.
This is clear since K/F* is ramified at 11.) Therefore, the cl;ecstrlcgon map
HY(Q5/Q.,, %) - H(Q, 8) must be injective. But H'(Q1", #) = Z/5Z,
from which it follows that H'(Qx/Q,,®) indeed has order 5. N

It remains to show that Sa(Q.) € Im(e). Let.B = A/®. Then B &
E; [5°]®w and B[5] = p$? x p5 as Gq-modules. We will prove that SB(Qy) =
0, from which it follows that S4(Q.,) € Im(e). Consider SB(Q,)[5], any
element of which is represented by a 1-cocycle o with values in B[5] The
map B[5] = ps sends o to a 1-cocycle & such that [EIGQ?C] is trivial as an

element of H'(QY°, Ds ®w). Thus, [5] is in the kernel of the composite map
Hl (QZ/QOO’ “5) - Hl (ngc, ”5) - Hl(ngc, D5 ® w)-

The second map is clearly injective. If the kernel of the first map were r;on-
trivial, then it would have a nonzero intersection with H Qx/Qurp5)” =
H'(Qy/Q, ps)- One then sees that the map a : H(Qz/Q, us) = Hl(Qs,p@.)
would have a nonzero kernel. But, as we already used before, the map a is
injective. (The elements of H!(Qy/Q, u15) are represented by the 1-cocycles
associated to V51119, 0 < ,j < 3. But 5119 € (Q3)® & i = j = 0.) Thus,
the first map is injective too. Thus [¢] = 0. Hence vge may assume that.or has
values in p@2. Now, in contrast to A, we have p2? ¢ Ci1 ® w. That is, the

map B — D;; induces an isomorphism p@?~ D13 [5). The composite map
HY(Q®, u@?) — H'(Q5Y°, B) » H'(QF", Du1)

is clearly injective. Since [0] becomes trivial in H'(Q3}°, B), it follows that
[o] € ker (H"(Qz/ Qo> §?) = H' (@1, 55%))

But we already showed that this kernel is trivial. (Recall that u®? =~ ¢.)
Hence [0] = 0, proving that Sp(Q,,) = 0 as claimed.
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Conductor = 768. We return now to the elliptic curves 768(D1, D3) which
we denoted previously by E; and E,. We take p = 5. As we mentioned
earlier, Selg, (Q)s = 0 and Selg, (Q,)s = 0. Also, E; and E, are related by
an isogeny of degree 5. Let & denote the Gq-invariant subgroup of E[5%]
such that E,/® = E,, |$| = 5. Let ¥ = F5[5|/9. Then Gq acts on ¢ and ¥
by characters y, 9 with values in (Z/5Z)> which factor through Gal(Q,/Q),
where now o = {00,2,3,5}. Since E; has good, ordinary reduction at 5, one
of the characters ¢, will be unramified at 5. Denote this character by 6.
By looking at the Fourier coefficients for the modular form associated to E,
(which are given in [Cre]), one finds that 8 is the even character of conductor
16 determined by 6(5) = 2 + 5Z. Then 6(3) = 3 + 5Z. Now E; and F,
have split, multiplicative reduction at 3. One has a nonsplit exact sequence
of Gq-modules

03> E5]906-0

which remains nonsplit for the action of GQ3 since the Tate period for E;
over Q; has valuation not divisible by 5. Thus, ¥ = ujs as Gq,-modules.
Thus, ¥(3) = 34 5Z, ¢(3) = 1 + 5Z. Hence we have § = 9. Therefore, ¥
is even and unramified at 5, @ is odd and ramified at 5. By theorem 5.7, we
see that Selg,(Q.,)s has positive p-invariant. But since Selg, (Q.,)s = 0, it
is clear that Selg, (Qy)s C H'(Qx/Qq,P). Thus, ug, = 1 and Selg,(Q,,)s
has exponent 5. One then sees easily (using proposition 4.8 and the fact that
A/5A is a PID) that Selg,(Q.)s & A[5], as we stated earlier. Theorem 4.1
then implies that Selg, (Q)s = 0.

Conductor = 14. Let p = 3. The situation is quite analogous to that for
elliptic curves of conductor 11 and for p = 5. The y-invariants of Selg(Q. )3
if E has conductor 14 can be 0, 1, or 2. The A-invariant is 0.

Conductor = 34. Let p = 3. There are four isogenous curves of conductor
34. We considered earlier the curve E = 34(A1), showing that fg(T) = 6,
up to a factor in A%, where 6; = T? + 3T + 3. The curve 34(A2) is related to
E by a Q-isogeny of degree 2 and so again has p-invariant 0 and M-invariant
equal to 2. The two other curves of conductor 34 have Q-isogenies of degree 3
with kernel isomorphic to u3 as a Gg-module. It then follows that they have
p-invariant 1. Denoting either of them by E', the characteristic ideal of the
Pontryagin dual of Selg/(Q,, )3 is generated by 36;.

Conductor = 306. Take p = 3. We will consider just the elliptic curve
E defined by y* + 2y = 2° — 2 — 927z + 11097. This is 306(B3) in [Cre].
It is the quadratic twist of 34(A3) by the character w of conductor 3. The
Mordell-Weil group E(Q) is of rank 1, isomorphic to Z x (Z/6Z). E has
Potentially ordinary reduction at 3, and has good ordinary reduction over
K = Q(u3) at the prime p lying over 3. The unique subgroup & of E(@) of
order 3 is contained in the kernel of reduction modulo p for E(K). Although
the hypotheses of proposition 5.10 are not satisfied by E, the proof can still
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be followed to show that the u-invariant of Selg (Qoo.)g is 0. pet. F denote the
first layer of Q,,, F = Q(8) where 8 = (+¢ ~1 ( being a PrlmltlYe 'Q-t;h root
of unity. The prime 17 splits completely in F/Q. Using this fact, it is easy to
verify directly that

Hom(Gal(F/@), ®) C Selg(Q)s.

This clearly implies that ker(Selg(Q)3 ~ Selg (Q?o)g) 'is pontrwxal. (Qontrast
this with proposition 3.9.) However, we can explain t}{ls in the following more
concrete way, using the results of a calculation carried out by Karl Rubth.
The point P = (9, 54) on E(Q) is a generator ort E(Q)/E(Q?wrs. Bjut P =3Q,
where Q = (—682 +98+15,158% — 484 +9) is in E(F). .T.hls implies that tl;e
map E(Q) ® (Q3/Z3) — E(F) ® (Q3/Zs3) has a nontru{xal kernel. Let ¢; e
the 1-cocycle defined by ¢(g) = ¢(Q) — Q for g € Gq- This cocycle hashva uels1
in E(F)[3], which is easily seen to be just & = E(Q)[3]., and fa.Lctors t rqugd
Gal(F/Q). Thus it generates Hom(Gal(F/ @), ®) and is certainly containe

in Sel . .
* S;of(g); 1, it turns out that ker(Selp(Q,)s — SelE(Q.oo)3) = 0. T.hlS
can be seen by checking that the local condition at any prime of Q, l.yl.ng
above 17 (which will be inert in Q,/®,,) fails to be satlsﬁefi by a r§on‘tr1v'1a1
element of Hom(Gal(Q.,/®,), #). The fact that E has split, multiplicative
reduction at 17 helps here. The argument given in [HaMa] then shows that
Selg(Q.,)s has no proper A-submodule of finite index. As .remarked 'above,
the p-invariant is 0. A calculation of McCabe for .the p-adic L—f.unctl'on as-
sociated to E combined with Kato’s theorem implies that the ).-m:arlant of
Selp(Q,,)s is 1. It follows that Selp(Qy)s = E(Q,) ® (Q3/Z3) = Q3/Zs,
on which I" acts trivially.

nductor = 26. Consider 26(B1, B2). These curves are related by isogenies
Si(:h kernels isomorphic to p7 and Z/7Z. Let E; be 26(B1). Then Selg, (@)~
should be zero. From [Cre], we have ¢z = 7, ¢13 = 1, a7 = 1, and | E; (Q)|'= 7.
Take p = 7. Theorem 4.1 then implies that fg,(0) ~ 7 Thgs, fe,(T) is an
irreducible element of A. The only nonzero, proper, Glem.rarlant su_bgroup of
Ey[7] is E1(Q) = Z/7Z. Although we haven’t veriﬁeq it, it seems likely that
pe, = 0. (Conjecture 1.11 would predict this.) If this is so, then Ag, > 0.
Let E, be 26(B2). Then ¢z = c13 = 1, a7 = 1, and E2(Q) = 0. (;ne can
verify that Selg,(Q)7 = 0. Then by Theorem 4.}, we }}ave fe,(0) ~ 7%, Sm({(z
(fg,(T)) and (fg,(T)) can differ only by multiplication by a power of 7,. lh
is clear that fg,(T) = 7fg,(T), up to a factor in A. ’.I‘hus, ue, > 1, w.hlc
also follows from proposition 5.7 because F»[7] contains the odd, ramified
Gq-submodule p7.

Conductor = 147. Consider 147(B1, B2), which we denote by E, and
E,, respectively. They are related by isogenies of degree 13. For E;, one has
c3 =c¢7 =1,a13 =1, E1(Q) = 0, and Selg, (Q) = 0. Takep =é3. Byiheoremd
4.1, fg,(0) ~ 13 For E3, one has ¢z = 13, ¢7 = 1, a13 721, 253(12) ; g, an

Selg, (@) = 0. Thus, fg,(0) ~ 13°. Since an isogeny f1 — By of degree
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13 induces a homomorphism Selg, ()13 ~ Selg, (Q.,)13 with kernel and
cokernel of exponent 13, it is clear that fg,(T) = 13fg,(T), up to a factor
in A%. Conjecturally, pg, = 0 and hence ug, = 1. Let ¢ be the quadratic
character of conductor 7, which is odd. Then E% and E§ are the curves
147(C1, C2). Proposition 5.10 implies that SelEf (Do )13 and SeIE§ (Qoo)13

have p-invariant equal to zero. In fact, for both ES and ES, we in fact have
s =cr =1, a3 =-1, B{Q) = E5(Q) =0, Sel ¢ (Q)13 = Selge (@13 = 0.
By proposition 3.8, we have SelEf (Qoo13 = SelEg(Qoo)m =0.

Conductor = 1225. Consider now E; : 42 + oy +y = 23 + 22 — 8z + 6
and also E; : y? + 2y +y = 2% 4 22 — 208083z — 36621194. These curves
have conductor 1225 and are related by a Q-isogeny of degree 37. They have
additive reduction at 5 and 7. Hence the Tamagawa factors are at most 4.
The j-invariants are in Z and so these curves have potentially good reduction
at 5 and 7. We take p = 37. Since asy = 8, E; and E, have good, ordinary
reduction at p. Let # be the Gg-invariant subgroup of E;[37] and let ¥ =
E»[37]/9. Thus, & is the kernel of the isogeny from E; to E;. The real periods
{, £ of Ey, E, are given by: ; = 4.1353..., 2, = .11176.... Since
{7 = 3702, one finds that  must be odd. Let ¢, be the (Z/37Z)*-
valued characters which describe the action of Gq on & and ¥. We can
regard them as Dirichlet characters. They have conductor dividing 5 -7 - 37
and one of them (which we denote by ) is unramified at 37. By examining
the Fourier coefficients of the corresponding modular form, one finds that
6 is characterized by 6(2) = 8 + 37Z, 6(13) = 6 + 37Z. The character 8
is even and has order 12 and conductor 35. But since @ is odd, we must
have 6 = 1. Thus, ¢ is odd and ramified at 37. Therefore, by proposition
5.7, we have ug, > 1. By using the result given in [Pe2] or [Sch3], one finds
that pp, = pp, + 1. Conjecturally, pg, = 1, pp, = 0. In any case, we have
(fE,(T)) = (37f5,(T)). Now E; (@) and E»(Q) have rank 1. It is interesting
to note that the fact that Selg, (Q)s7, Selg,(Q)s7 are infinite can be deduced
from Theorem 4.1. For if one of these Selmer groups were finite, then so
would the other. One would then see that both fg,(0) and fe,(0) would
have even valuation. This follows from Cassels’ theorem that |Selg, (Q)] is a
perfect square for i = 1,2 together with the fact that the Tamagawa factors
for E; at 5 and 7 cannot be divisible by 37. But fg,(0) ~ 37f3,(0), which

gives a contradiction. Similar remarks apply to even quadratic twists of E,;
and Ez.

Now we will state and prove the analogues of propositions 5.7 and 5.10
for p = 2. It is necessary to define the terms “ramified” and “odd” somewhat
more carefully. Assume that E is an elliptic curve/Q with good, ordinary
or multiplicative reduction at 2. Suppose that & is a cyclic Gg-invariant
subgroup of E[2°]. We say that & is “ramified at 2” if & C Cs, where Cy is
the subgroup of E[2*°] which occurs in the description of the image of the
local Kummer map for E over @, given in section 2. (It is characterized by
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Cy = paw for the action of Iq,. Here Iq, is the inertia subgroup of Gq,,
identified with a subgroup of Gq by choosing a prime of @ lying over 2. The.n
D, = E[2°]/C> is an unramified Gq,-module.) We say that & is “odd” if
& C Co, where Co, denotes the maximal divisible subgroup of E[2°°] on
which Gal(C/R) acts by —1 : Coo = (E[2°]7)div- Then Coo = Q2/Z.2 as a
group. Here we identify Gal(C/IR) with a subgroup of Ggq by choosing an
infinite prime of Q. (We remark that Coo = po= a8 Gal((D/]R)—mOfiules. and
that Gal(C/IR) acts trivially on D, = E[2*°]/Cc.) Since & is GQ-m\{anant,
these definitions are easily seen to be independent of the choice of primessof
@ lying over 2 and over co. We now prove the analogue of proposition 5.7.

Proposition 5.13. Suppose that E is an elliptic curve/Q with good, .ordi—
nary or multiplicative reduction at 2. Suppose also that E[2%°] contains a
Gq-invariant subgroup & of order 2™ which is ramified at 2 and odd. Then
the p-invariant of Selg(Q..)2 is at least m.

Proof. The argument is virtually the same as that for proposition 5.7. We
consider Im(e) where € is the map

e: H(Qx/Qu,d) - HY(Q5/Q, E[27)).

The kernel is finite. Since & C Cs, the elements of Im(e) satisfy the local
conditions defining Selg(Q. )2 at the prime of @, lying over 2. AIS(.),. just as
previously, a subgroup of finite index in Im(e) satisfies the local conditions for
all other nonarchimedean primes of Q.,. Now we consider the archimedean
primes of Q. Note that H(IR,Cs) = 0. Since ¢ C Co, it is cle'f).r tlfat
elements in Im(e) are locally trivial in H*({(Qq)y, E[2°°]) for every infinite
prime 75 of Q. Therefore, Im(e) N Selp(Q,, )2 has finite index in II{I(C). ‘

It remains to show that the A-module H*(Qy/Q,, %) has p-invariant
equal to m. Since the Gq-composition factors for ¢ are isomorphic to Z/2Z,
lemma 5.9 implies that the p-invariant for H Y Qs /Qu,P) is at most m.
On the other hand, the Euler characteristic of the Gal(Qy/Q,)-module
is [] |#/®P+|~', where v runs over the infinite primes of Q, and D, =

v]oo
Gal(C/R) is a corresponding decomposition group. Assunzls that m > 1.
Then |&P+| = 2 and so this Euler characteristic is 2=(™~1) " for all n > 0.
Now H(Q/Q,,,®) just has order 2. As for H*(Q5/Q,, ®), it is known that
the map

HYQz/Q., 8) - [[ H*(Q,)v, D)

v|oo

is surjective. (This is corollary 4.16 in [Mi].) Since H?*(D,,®) has order 2, it
follows that |H*(Qx/Q,,, )| > 22". Therefore,

[HY(Qy/Q,,d)| > 2™ 1.

Iwasawa theory for elliptic curves 133

The restriction map H'(Qy/Q,,,%) & H(Qx/Q,,,P)™ is surjective and
has kernel H'(I,,, Z/2Z), which has order 2. Thus,

|H'(Q5/Q,,8) ™| > 27"

for all n. This implies that H!(Qx/Q.,,®) has y-invariant at least m. There-
fore, the p-invariant of H'(Qz/Q,,,P) and hence of Im(e) is exactly m,
proving proposition 5.13. u

Remark. As we mentioned before (for any p), if E admits a Q-isogeny of
degree 2 and if Selg(Q,)2 is A-cotorsion, then Selg(Q,.); contains a A-
submodule pseudo-isomorphic to /T[2“E]. It is known that there are infinitely
many elliptic curves/Q admitting a cyclic Q-isogeny of degree 16, but none
with such an isogeny of degree 32. We will give examples below where the
assumptions in proposition 5.13 are satisfied and |$| = 2™ with m = 0,1, 2, 3,
or 4. For any elliptic curve E/Q, there is a maximal Gg-invariant subgroup
@ which is ramified and odd. Define mg by || = 2™=. Conjecturally, pg =
mg. Thus the possible values of ug as E varies over elliptic curves/Q with
good, ordinary or multiplicative reduction at 2 should be 0, 1, 2, 3, or 4.
Examples where g > 0 are abundant. It suffices to have a point P € E(Q)
of order 2 such that P € C; and P € C, using the notation introduced
earlier. If the discriminant of a Weierstrass equation for E is negative, then
E(R) has just one component. In this case, Co[2] = E(R)[2] and so if
P € E(Q) bas order 2, then & = (P) is automatically odd. (Note that
in this case H'(IR, E[2*°]) = 0 and so the local conditions at the infinite
primes of Q, occurring in the definition of Selg(Q,, )2 are trivially satisfied
anyway.) Similarly, if this discriminant is not a square in Q, then & = (P)
is automatically ramified since then C2{2] = E(Q,)[2].

We now prove the analogue of proposition 5.10, which gives a sufficient
condition for ug = 0 in case p = 2.

Proposition 5.14. Suppose that E is an elliptic curve/Q with good, ordi-
nary or multiplicative reduction at 2. Suppose also that E(Q) contains an
element P of order 2 and that = (P) is either ramified at 2 but not odd or
odd but not ramified at 2. Then Selg(Q, )2 is A-cotorsion and pgp = 0.

Proof. We must show that Selg(®,)2[2] is finite. Consider the map
ap : H'(Qg/Qu, B[2™)) - PE1(Q,)
which occurred in the proof of proposition 5.8. By definition we have

Selg(Q )2 € ker{ag).

Under the hypothesis that E admits a Q-rational isogeny of degree 2 (i.e.,
that E(Q) has an element of order 2), we showed earlier that ker(ag)[2] has
(4/24)-corank equal to 1. Consider the map

€: H*(Qz/Qu, ®) - H'(Qz/Qu, E[2%)).
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Then ker(e) is finite and so, by lemma 5.9, Im(e) also has (4/24)-corank
equal to 1.

Assume first that @ is odd but not ramified at 2. Then ¢ C C. Since we
have H!(IR,Cs) = 0, it is clear that Im(e) C ker(ag). It follows that Im(e)
has finite index in ker(ag)[2]. Thus, it suffices to prove that Im(e)NSelg(Qu )2
is finite. To do this, consider the composite map 8 defined by the commutative
diagram

HYQ5/Qu, 8) —> H(Qz/Qu, E[2°]) —> H' (I, E[2*°)) -
\ l
HY(I,,D,)

where 7 is the unique prime of Q, lying above 2 and I, is the inertia subgroup
of Gq_),- Let B =ker(f). If [o] € H'(Q5/Qq, ®), then the local condition
defining Selg(Q,,)2 at the prime = is satisfied by ¢([o]) precisely when [o] €
B.Since & Z Cs, the map E[2°] — D, induces an isomorphism of ¢ to D;[2].
Also, since I, acts trivially on D, the map H'(Ir, D2[2]) — H(I;,D5) is
injective. Hence

B = ker(H"(Q/Quo, ®) = H' (I, 9)).

If we let H! (Q.,,%) denote the subgroup of H'(Q,,,®) consisting of el-
ements which are unramified at all nonarchimedean primes of @, then
H! (Q.,,®) is a subgroup of B and the index is easily seen to be finite.
(Only finitely many nonarchimedean primes 7 of @, exist lying over primes
in . H'((Qy)n, ®) is finite if n{ 2.) Now Gq_, acts trivially on ¢. Let L,
denote the maximal abelian pro-2 extension of @, which is unramified at all
nonarchimedean primes of Q.. Then

Hyne(Qoo, ) = Hom(Gal(Lg, / Q) &)-

But it is easy to verify that L}, = Q. (For example, one can note that
L* Q. (1)/Qu (i) is everywhere unramified. But Q, (i) = Q(u2=). It is known
that Q(p2) has odd class number for all n > 0. Thus, Q, C L5, C
Q.. (¢), from which L% = Q follows.) Therefore B is finite. Therefore
Im(e) N Selg(Q,. )2 is indeed finite.

Now assume that & is ramified at 2 but not odd. Let € be as above. Since
& is not odd, it follows that E(R) must have two connected components.
Hence, by proposition 5.8, H(Qx/Q., E[2*°]){2] has (A/24)-corank equal
to 2. This implies that the (4/24)-corank of H'(Q5/Qc, E[2]) is 2. On the
other hand, H'((Q.)x, E[2]) also has (4/2A)-corank equal to 2. Consider
the map

a: H(Q5/Q., E[2]) = H (Qu) s E[2])-
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We will show that the kernel is finite. It follows from this that the cokernel
is also finite. We have an exact sequence

0P E[2] 2P >0

f)f Gq, -modules, where & = ¥ = Z/2Z. The finiteness of the group B
introduced earlier in this proof, and the corresponding fact for ¥, implies
rather easily that ker(a) is indeed finite. Consider the map

b: H' ((Quo)r, E[2]) = H' ((Quo)x, D2[2])

induced by the map E[2%°] — D,. Since (Q,,)~ has 2-cohomological dimen-
sion 0, b is surjective. It follows that coker(b o a) is finite. Using the fact
that H'((Qu)r, D2[2]) has (4/2A4)-corank 1, we see that ker(b o a) also has
(A/2A)-corank 1. Consider the map

YE : Hl(QE/Qoan[2oo]) - Hl((Qoo)‘ll'vD2)'

The above remarks imply easily that ker(yg)[2] has (4/2A)-corank equal to 1.

The rest of the argument is now rather similar to that for the first case.
It is clear that Im(e) C ker(yg) since $ C C,. Thus, Im(e) has finite index in
ker(yg)[2]. Also, by definition, we have

Selg(Qy)2 C ker(yr).

It then suffices to show that Im(e) N Selg(Q )2 is finite. To do this, we
consider the composite map d,, defined by the following commutative diagram.

HY(Qz/Qu, ®) = H' (Q5/Quo, E[2]) — H'((Quo), E[2°°))
&

H'((Qoo)n; Doo)

where 7 is any infinite prime of Q. If [0] € H'(Q/Q,,,®P), then the lo-

cal condition defining Selg(Q.,)2 at 7 for the element e([¢]) would imply

that d,([o]) = 0. But since & ¢ Co, ¥ is identified with D.[2). The map

g 1(]I}iDc,c,[2]) — H'(R, Do) is injective since Gal(C/IR) acts trivially on
- Hence

ker(d;) = ker(H'(Q5/Qu, ) = H' (Qo0)n, P))-

By l-emma 5.9, we know that [, ker(d,) is finite, where 5 varies over all
the infinite primes of Q. It follows from this that Im(e) N Selp(Q,, )2 is
also finite. This implies that Selg(Q,)2[2] is finite, finishing the proof of
proposition 5.14. [ |
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We now consider various examples.

Conductor = 15. There are eight curves of conductor 15, all related by
Q-isogenies whose degrees are powers of 2. We will let E; denote the curve
labeled A; in [Cre] for 1 < i < 8. The following table summarizes the situation

for p = 2.

Ey E, E; E, Es Eg Eq Eg

mj = 1 1 1 1 1 1 1 1 :
I = 8 4 8 & 2 2 4 4

cses = 24 22 22 28 21 21 11 11

fe@®~ 2 4 1 4 8 8 1 1

ug, = 1 2 0 2 3 3 0 O

For conductor 15, the Selmer group Selg,(Q.)2 has A-invariant equal to 0
and the p-invariant varies from 0 to 3. Now III = Selg(Q). Its order was
computed under the assumption of the Birch and Swinnerton-Dyer conj'ec—
ture by evaluating L(E;/Q, 1)/ 2g;. The real period {2, was computed using
PARI. [T}, c3, and cs are as listed in [Cre]. Using the fact that az = -1, and
hence |E;(IF3)| = 4 for each i, the fourth row is a consequence of theorem
4.1. In particular, it is clear that fg,(T) € AX. Hence pp; = Ag, = 0. The
A-invariant of Selg, (Q.,)2 is unchanged by a Q-isogeny. Hence Ag; = 0 for
all 5. It is then obvious that fg,(0) ~ 2#5:, which gives the final row.

It is not difficult to reconcile these results with propositions 5.13 and
5.14. For example, consider E3 : y?> + zy +y = z3 + 22 — 5z + 2. We have
E3[2] = (Z/2Z)?. The points of order 2 are (1,-1), (3,-1), and (-3,1).
The second point generates Cz[2]; the third point generates Ceo[2]. (Remark:
It is not hard to find the generator of Ceo[2). It is the point in E(IR)[2]
whose z-coordinate is minimal.) Thus, E3(®)[2] contains a subgroup which
is ramified at 2 but not odd and another subgroup which is odd but not
ramified at 2. Proposition 5.14 implies that pg, = 0. Similarly, one can verify
that pg, = pg, = 0. Both E7(Q)[2] and Es(Q)[2] have order 2. E;(Q)[2] is
ramified at 2 but not odd. Es(Q)[2] is odd but not ramified at 2. Proposition
5.14 again applies.

The p-invariants listed above turn out to be just as predicted by propo-
sition 5.13. One can deduce this from the isogeny data given in [Cre]. One
uses the following observation. Suppose that ¢ : E — E' is a Q-isogeny such
that & = ker(p) is ramified and odd. Suppose also that E'[2™] contains a
Q©-rational subgroup $' which is ramified and odd. Then @~ }(P') is ramified
and odd too. Its order is |®| - |#'|. For example, E(Q) has three subgroups
of order 2, one of which is ramified and odd. There is a Q-isogeny of degree
2 from E» to E;, Es, and Fs. One can verify that E1(@Q), E5(Q), and Eg(Q)
each has a subgroup of order 2 which is ramified and odd. Thus, E2[2%] must
have'a subgroup &' of order 4 which is ramified and odd. Now @ = E5(Q)[2]
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is of order 2, generated by (—1§2,18). This ¢ is ramified and odd. Since
E5/® = E,, it follows that E5[2*°] has a ramified and odd Q-rational sub-
group of order 8. Thus, proposition 5.13 implies that LE, > 3.

Conductor = 69. There are two such elliptic curves £/@Q. Both should
have |IIIg(Q)| = 1 and | E(Q)| = 2. For one of them, we have c3 = 1, ca3 = 2.
For the other, ¢ = 2, ¢33 = 1. We have a; = 1 and so |E(]F2)| = 2. By
theorem 4.1, we have fg(0) ~ 2. Hence fg(T) is an irreducible element of A.
Now let & = E(Q) = Z/2Z. For one of these curves, ¢ is ramified at 2 but
not odd. For the other, ¢ is odd but not ramified at 2. Hence proposition
9.14 implies that ug = 0. Since fg(T) ¢ A%, it follows that Ag > 1. In
fact, it turns out that Ag = AW = 1, Al = 0, and f(T) = T + 2,
up to a factor in A*. To see this, consider the quadratic twist E¢, where
§ is the quadratic character corresponding to Q(v/2). Now E$(Q) has rank
1. Therefore, E(Q(v2)) has rank 1. But Q(v/2) is the first layer in the
cyclotomic Z;-extension Q,,/@Q. Therefore, Selg(Q,, )2 contains the image of
E(Q(v2)) ® (Q,/Z;) under restriction as a A-submodule. Its characteristic
ideal is (T + 2). The assertions made above follow easily.

Conductor = 195. We will discuss the isogeny class consisting of A1-A8
in [Cre]. Some of the details below were worked out by Karl Rubin and myself
with the help of PARL. We denote these curves by Ei,... , Eg, respectively.
We will show that Ag, = AMW =3, AR =0, and that pg, varies from 0 to
4 for 1 < i < 8. Here is a table of the basic data.

E.L E;, E; E, Es E; E; Es
m= 1 1 1 1 1 1 4 1
T|= 4 8 8 4 4 4 2 2

cs, e c3 = 4,11 82,2 4,44 1611 282 228 14,1 1,16,1

fe(0)~ 4 8 16 16 32 32 64 64
pe;= 0 1 2 2 3 3 4 4

As before, we evaluated |III| by assuming the Birch and Swinnerton-Dyer
conjecture. But one could confirm directly that |III,] is as listed, which would
be sufficient for us. [Cre] gives |T| and the Tamagawa factors cs, ¢s, and c;3.
The fourth row is a consequence of theorem 4.1. Since the A E;’s are equal,
clearly the p-invariants must vary. The last row becomes clear if we can show
that up, = 0. Unfortunately, this does not follow from proposition 5.14. The
problem is that & = E(Q)[2] is of order 2, but is neither ramified at 2 nor
odd. In fact, & is generated by (6, —3), which is clearly not in the kernel of
reduction modulo 2 and so is not in Cs. Also, E(IR)[2] has order 4 and (6, —3)
is in the connected component of Op. This implies that (6, —3) ¢ C.

We will verify that pg, = 0 by showing that fg, (T) is divisible by g(T') =
(T + 2)(T? + 2T + 2) in A. Since the characteristic ideals of Selg, (Qu)2
differ only by multiplication by a power of 2, it is equivalent to show that
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g(T") divides fg,(T) for any i. It then follows that (fg,(T)) = (gchi) th(ie
f2,(0) and g(0) have the same valuation. Therefore,' pp, must indee . e
zero. Let F and K denote the first and second layers in the cy'clot}?rmc‘ 9-
extension Q.,/Q. Thus Gal(K/Q) is cyclic of degree 4 and F' is the unique

quadratic subfield of K. In fact, F = Q(2), K = F(V2+V?2). Wet v_nll
show that E;(K)®Q, considered as a Q-representation of Gal(K/Q) cofnt }z:.ms
the two nontrivial, Q-irreducible representations of Gal(K/Q@). One ; (fm
has degree 1 and factors through Gal(F/@). The other has degr;ae an '113
faithful. The fact that g(T') divides fg,(T), and h'ex.lce fe (?“), follows easily.
The equation y2+zy = z°—115z+392 is the minimal Welerstrass qua:tlori
defining E,. It is slightly more convenient to caliculate with .the non}immmaf
equation 32 = (z — 1)(z — 2)(16z + 49), obta.med.by-a sm}ple c a.nge‘ o
variables. We single out the following two points satisfying this equation:

P= (0, 7\/5), Q= (10+9\/§, (123+7s\/§)\/2+\/§> .

Now P is rational over F, Q is rational over K. To study Ez(K), it is useful
to first determine its torsion subgroup. In fact, we have

E2(Qoo)tors = E2(Q)tors = (1/22) X (2/42).

of E is given in [Cre]. It is easy to see that Es (Qm?tors
tlIs‘h: 25_13;;11‘!2;011;1;? grouzp(?ilce %2 has good reduction at 2, 2 is totally ramxﬁei
in Q,,/Q, and |E2(IF2)| = 4. Now @, is totally real and so EZ(QOCi)dto{ls =
Z/2Z x Z/2'Z where t > 2. Assume ¢ > 3. Th.en E2(Qq)tors wou Zve
8 elements of order 8. Since their squares are In .Eg (.Q), the orbit Fln er
I' = Gal(Q,,/Q) of an element of order 8 has cardinality at m.ost 4. .bgﬁze
such an element would be rational over K. We can ?ule out this possi Kl ity
by noting that E, has good reduction at 31, 31 splits completely in K/Q,
E = 40, which is not divisible by 16.
andl‘l]fsz (115)3: )(llea.r that P and @ have infinite order.-Also, Gal(F/ Q) acts. on
(P) by —1 since (0, —7v/2) = —P. Thus, (P) ® Q is a Gal(K/Q)—mv.anantf
subspace of Fz(K) ® @ giving the degree 1, nontrivial representation o
Gal(K/Q). Similarly, Q belongs to ker(Trg;, l:")’ the kernel of th(?dtraci lm:us;:
from E3(K) to Eo(F). Thus, ker(Trg/ F).® Q is nonzero an(.i prO\El (;sl'?K /eQ)
one copy of the 2-dimensional, irreducible Q—representatlon of Gal s 3
Therefore, rank(E2(K)) > 3. Considering the a‘ctlon ofy=1+ Tdon - edlmc—1
age of E3(K) ® (Qy/Zs) in Selp, (Qy)2 make.s it clear that g(T") does (1;) ;ee_
divide fg,(T), as claimed. As noted above, it now follo_ws th.at. { flfl th;
(g(T)). This implies that Ag, = 3, pg, = 0. More prec1sgly, itisc a(;arh at
YW =3, AL = 0. For the Q-isogenous c?;\;()as E;, 1 <i <8, we also ha
M-w _ 3 NI — g but (fg,(T)) = (2#2:g(T))- _

& One can \lrzrify that iI(l this example pg, = MEg;- 120 is n.ot hz;rd to provg
the existence of a Gq-invariant subgroup &; of E;[2%°] w;th t edeerths
order satisfying the hypotheses of proposition 5.13. Just as for conductor 15,
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one uses the Q-isogenies between the E;’s. By direct verification, one finds
that E;[2] contains a ramified, odd Gq-invariant subgroup for i = 2,... 8.
The listed isogenies then imply that F;[4] has a ramified, odd Gg-invariant
subgroup of order 4 for ¢ = 3,... ,8. Then one sees that E; [8] contains such
a subgroup of order 8 for i = 5,...,8. Finally, both E; and Eg admit Q-
isogenies of degree 2 to E5.The kernels of these Q-isogenies are ramified and
odd. The inverse image of the ramified, odd, Gg-invariant subgroup &5 of
E5[8] will be the ramified, odd, Gq-invariant subgroup &; of E;[16] of order
16, for i = 7 or 8.

Ken Kramer has found a description of the family of elliptic curves/Q
which satisfy the hypotheses of proposition 5.13 for m = 1,2,3, and 4. Here we
will give his description for m =1 and m = 4, with the additional condition
that E have square-free conductor. For m = 1, his family is

-1 1-4
E:y* +ay = 2° — az® — dbc + (4a — 1)b, ¢=<(4a4 ’18a)>

where a,b € Z, ged(4a — 1,0) = 1, (4a — 1)2 > 64b, and either a or b is
negative. The last conditions assure that & C Cy. (If b < 0, then E(R)
has only one connected component. Then & is automatically contained in
Cw-If b > 0 and a < 0, then the inequality 1 — 4a > 8v/b implies that the
above generator of & is the element of E(IR)[2] with minimal z-coordinate.)
The discriminant of this equation, which is minimal, is b((4a — 1)? — 64b)2.
If b is odd, then E has good, ordinary reduction at 2. Conjecturally, this
family should give all elliptic curves/Q with good, ordinary or multiplicative
reduction at 2 and square-free conductor such that Selg(Q, )2 has positive
p-invariant. Kramer describes the elliptic curves with square-free conductor

having a subgroup & of order 16 which is ramified and odd by the following
equation:

E:y® = (z+ 2" — d*)(2® + 4(cd)* — 4c%)

where ¢, d are distinct odd, positive integers, ¢ = d (mod 4), and ged(c,d) = 1.
This equation is not minimal, but the discriminant of a minimal Weierstrass
equation for E is (c¢* - d*)c*d'®/16. Interchanging ¢ and d gives a second
elliptic curve, @-isogenous to E, but with discriminant of opposite sign. Thus,
there are an even number of such elliptic curves in a Q-isogeny class. A similar
statement is true for m = 2 or 3, as Kramer shows. We refer to [K] for a more
complete discussion.

We will end this article by returning to some of our earlier examples and
discussing a few other examples, but now using Kato’s theorem in conjunction
with some calculations recently carried out by Ted McCabe. Assume that
E is a modular elliptic curve/Q and that p is a prime where E has good,
ordinary reduction. Kato’s theorem asserts that fz(T) divides pmfEra(TY in
A for some m > 0. Let A3M! and u2"*! denote A( fanaly and p(farel). Kato's

E
theorem implies that Ag < A#rel McCabe has calculated approximations
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to the first few coefficients when f&r®(T) is written asanilpower series in 1:;’
enough to verify that pal = 0 and to det'errn}ne Ay for the ex?mt;;l e
he considers. These calculations allow us to justify several statements that
were made earlier. As previously, we will use the Vfilue of |Sel }i:\/g%)plpw (;ne
is predicted by the Birch and Swinnerton'-Dyer con'Jecture. In [11'- twfv ],rves
finds the results of calculations of the p—adlc1 éb-functlons for the elliptic cu
1 and 17 and all primes < . _

o clir;(éz’cstfc)lrlseolrem reduces the verification of conjecture }.13 to showing ’;Ihat
Ag = X8l and pp = p3*. In a number of the following examples, tfeg,e
equalities can be shown. Before discussing the examples, we want to mention
two situations which occur rather frequently.

Agnal - yanal — 0. This means that feral(T) € A’;.sz Kato’s t?zeorgm,
it follows that Ag = 0. Also, f&r2i(0) = (1 — Bpp™") L(E/Q, 1)/. ils 3
p-adic unit. Kolyvagin’s theorem can then be used to verlfy the Birc Tzliln
Swinnerton-Dyer conjecture, i.e., that Selg(Q) ha;s the predlct.ed ord;r. . /;33
by theorem 4.1, one would obtain that fg (0)-e Z; too. That is, fe(T)
and hence pp = 0 and conjecture 1.13 is valid for F and p.

Agrel= 1, pgrel = 0. We will also assume that p is odd. Sinc:e )\%’i“‘.‘ =t }3,
f2nal(T) has exactly one root: T' = a, where a € pZLp. We ment_ul)ne ! 11’11‘ N e
introduction that famel(T*)/ fana}(T) € A*, where T* = (1 -; T) —c—l - Thus
(1+a)~! —11is also a root of f3!(T). It follows that (?—i.-fz) =1 an2, sglcezé
is odd, a = 0. (For p = 2, we would have another posilnt:lhty: a= Z >(.) : l(lanc
f2&ral(0) = 0 and so T) f2ra}(T). We then must have fg (/T € : te}zlp;
adic L-function Ly(E/®, s) would have a simple zero at §= 1. Assuming zlid
E has good, ordinary reduction at p, the complex P-functlon L.(E /Q,s) wou
have an odd order zero at s = 1. (The “signs” in the functional e.qu;tfloxts
for L,(E/Q,s) and L(E/Q,s) are the same. See [N{-T-T].) Perrgl- Hm;lc:
analogue of the Gross-Zagier formula implies that L'(E/Q,1) T;é 0. p:ET
rank(E(Q)) = 1. Consequently, f£(0) = 0, /\ 5 = 1, anld ﬁ;( )h— ' that,
up to a factor in AX. Furthermore, Perrin-Riou’s formu ah so show
hy(P) # 0, where P is a generator of E(Q)/E(Q)tors, and that

ho(P) ~ p(1 — Bpp™ 1) "2(L'(E/Q,1)/REheo(P)) -

Kolyvagin’s theorem should allow one to verify that L'(E/Q,1)/2ghoo(P) ~
(II g )) |5 (Q),l/|E(Q)p|>. If one then uses Schneider’s result (for the

vbad

case F = Q, r = 1), one would obtain that fg(T) /.T € A, thus verifying
that Ag = 1, pg = 0, and that conjecture 1.13 is valid for E and p.

1 _ ’

Conductor = 67. We consider p = 3. As expecte‘d,.ui’%‘a = 0. We cgn t
verify that ug = 0, as conjecture 1.11 predicts. (E[3) is 1rred1:1c1ble as a Gg-
module.) McCabe finds that A3l = 2. As pointed out earlier, SelE(Q °?)3
is infinite. Hence, assuming that ug = 0, we haj/e Ag > 0. .B).' prlopos;tlon
3.i0, Az must be even. Thus, Ap = 2. Hence, if pg = 0, it is clear from
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Kato’s theorem, that (fg(T)) = (f§"*(T)), i.e., conjecture 1.13 holds for
E and p = 3. In fact, we would have A\}f™™ = 0 and Al = 2. To see this,
suppose that A¥~W > 0. Now I" acts in the finite-dimensional Q-vector space
E(Q) ® Q. The irreducible Q-representations of I" have degrees 1,2,6,...,
237! for n > 1. Since E(Q) is finite and Ag = 2, we would have AW — 9
and rank(E(Q,)) = 2, where Q, is the first layer in Q.,/Q. This would imply
that g(T) = T2 + 3T + 3 divides fg(T'). Hence 9(T) and fg(T) would differ
by a factor in A%, which is impossible since fe(0) ~ 32, g(0) ~ 3.

Conductor = 915. We consider again the elliptic curve E corresponding
to 915(A1) in [Cre]. We take p = 7 or p = 43. In both cases, McCabe finds
that A3"®! = 2. Thus, Agy < 2. It is then clear that AY-W = 0. For the only
irreducible Q-representation of I" with degree < 2 is the trivial representation.
(The nontrivial irreducible Q-representations have degree divisible by p—1.)
But E(Q) is finite in this case. Hence, assuming that pE = 0, we have A\l = 2

for both p = 7 and p = 43. Also, Just as for the preceding example, conjecture
1.13 would hold if pg = 0.

Conductor = 34. We considered before the elliptic curve E correspond-
ing to 34(Al) in [Cre] and found that A¥™W =2, Al = 0, and pg = 0 for
P = 3. In this case, McCabe finds that A3®' = 2 and p2r@! = 0. Thus, Kato’s
theorem again implies conjecture 1.13: (fg(T")) = (f2P*!(T")) for p = 3. There
are four elliptic curves of conductor 34, all Q-isogenous. In general, conjec-
ture 1.13 is preserved by Q-isogeny. The power of p dividing fg(T') changes
in a way predicted by the result of [Sch3] or [Pe2]. The power of p dividing
f2"(T) changes in a compatible way, determined just by the change in £25.
(£2g is the only thing that changes in the definition of F&2l(T).) One can
verify all of this directly. For E, PARI gives 2 = 4.4956.... Let E' be
34(A3) in [Cre], which is related to E by a Q-isogeny of degree 3. Using the
fact that ug = 0, one finds that pup = 1. Therefore, fer(T) = 3fe(T). But
PARI gives 25 = 1.4985... = 2g/3. (This must be exact.) Thus, one sees
that fgn8l(T) = 3£2"2(T'). Conjecture 1.13 is valid for E’ too.

Conductor = 26. We take p = 7. For 26(B1), which we previously
denoted by Ey, McCabe finds that p3® = 0, A2l = 4, and f2r2(0) ~ 7.
Thus, fg*;al(T) is an irreducible element of A. If pp, = 0, as conjecturally
should be true, then Kato’s theorem implies that fg,(T) = f322(T), up to
a factor in 4. Conjecture 1.13 would then be valid for E; (and for E; too).
Thus, in this example, if up, =0, then A\, = 4. Note that proposition 3.10

would tell us only that Ag, is even. Also, just as in the example of conductor
915, we would have A\}*W =0, B =4

Conductor = 147. Let p = 13. We will denote 147(B1, B2) by E; and
E; as earlier. McCabe’s calculation for 147B1 gives p3rel = 0, Aanal = 2,
Proposition 3.10 shows that Ag, is even. If pug, = 0, as conjecture 1.11
predicts, then Ag, > 0. Hence \ B, = 2 and conjecture 1.13 would again follow
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from Kato’s theorem. As in previous examples, we would have A¥"W =0,
M =2

Conductor = 1225. We consider again the two curves E; and Ea of
conductor 1225 discussed earlier. We take p = 37. McCabe finds that /\*}5“13‘ =
1, p32® = 0. Since L(E1/Q,1) = 0, it follows that f2n21(0) = 0 and that
fael(T)/T € A*. As remarked earlier, it then should follow that Ag, = 1,
pE, = 0 and that conjecture 1.13 holds. For E3, we have Ag, =1, pg, = 1.

Conjecture 1.13 holds for E; too.

Conductor = 58. We consider E' : > +zy =2 —z> —z+1land p=5.
In this case, E'(Q) & Z and the predicted order of Illg:(Q) is 1. McCabe
finds that A8 =1, p283l = 0. It then follows that Apr =1, ppr = 0.

-

Conductor = 406. Consider E : y* + zy = 2 + z? — 2124z — 60592.
This is 406(D1) in [Cre]. We take p = 5. We have ¢ = cz9 = 2, 7 = 5,
|E(Q)| = 2, and Selg(Q) is predicted to have order 1. Thus, by theore'rr.l 4.1,
fE(0) ~ 5. Now it turns out that E[5] = E'[5] as Gg-modules, where E' is Fhe
elliptic curve of conductor 58 considered above. One verifies this by comparing
the g-expansions of the modular forms corresponding to these curves. Since
pe = 0, it follows that pg = 0. Therefore, Ag > 1. By proposition 3.10
g must be even. However, 7 splits completely in @, /®, where Q; denotes
the first layer of the cyclotomic Zs-extension @, of Q. (This is beca1.1se
74 = 1(mod 52).) Thus, there are 5 primes of @, lying over 7, each with
Tamagawa, factor equal to 5. The proof of corollary 5.6 can be used to show
that Ag > 5 and hence, since it is even, we must have Ag > 6. McCabe finds
that A3rel = 6, panal = . Therefore, it follows that A = 6, pg = 0, and
conjecture 1.13 holds for E and p = 5. We also can conclude that A¥ "% = 0.
This is so because E(®) is finite, E(Q,) ® @ is a finite dimensional Q-
representation of I', and the nontrivial irreducible Q-representations of I
have degree divisible by 4. Hence Selp(Qq)s = IE(Qy)s and Ag' = 6.

References

[B-D-G-P) K. Barré-Sirieix, G. Diaz, F. Gramain, G. Philibert, Une preuve de la
conjecture de Mahler-Manin, Invent. Math. 124 (1996), 1-9. .

[Be] M. Bertolini, Selmer groups and Heegner points in anticyclotomic
Z,-extensions, Compositio Math. 99 (1995), 153-182.

[BeDal] M. Bertolini, H. Darmon, Heegner points on Mumford-Tate curves,
Invent. Math. 126 (1996), 413-456. ‘

[BeDa2] M. Bertolini, H. Darmon, Nontriviality of families of Heegner points
and ranks of Selmer groups over anticyclotomic towers, Journal of the
Ramanujan Math. Society 13 (1998), 15-25. .

[B-G-S] D. Bernardi, C. Goldstein, N. Stephens, Notes p-adiques sur les courbes
elliptiques, J. reine angew. Math. 351 (1984), 129-170. o

[CoMCc] J. Coates, G. McConnell, Iwasawa theory of modular elliptic curves of

’ analytic rank at most 1, J. London Math. Soc. 50 (1994), 243-269.

[CoGr
[CoSc]
[Cre]
D]

[F]
[FeWa]
[Gr1]
[Gr2]
[Gr3]
[Gr4]
(Gr5)
[Gré]
[GrVa
[Gu1]
[Gu2]
[HaMa)
[Im]
[Jo]

K]
[Man]
[Maz1)
[Maz2)
[Maz3]
[Maz4]

[M-SwD]

Iwasawa theory for elliptic curves 143

J. Coates, R. Greenberg, Kummer theory for abelian varieties over local
fields, Invent. Math. 124 (1996), 129-174.

J. Coates, C.-G. Schmidt, Iwasawa theory for the symmetric square of
an elliptic curve, J. reine angew. Math. 375/376 (1987), 104-156.
J.E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge
University Press (1992).

F. Diamond, On deformation rings and Hecke rings, Ann. of Math. 144
(1996), 137-166.

E. C. Friedman, Ideal class groups in basic Zp, X - - - x Z,,-extensions
of abelian number fields, Invent. Math. 65 (1982), 425-440.

B. Ferrero, L.C. Washington, The Iwasawa invariant u, vanishes for
abelian number fields, Ann. of Math. 109 (1979), 377-395.

R. Greenberg, On a certain [-adic representation, Invent. Math. 21
(1973), 117-124.

R. Greenberg, Iwasawa theory for p-adic representations, Advanced
Studies in Pure Mathematics 17 (1989), 97-137.

R. Greenberg, Iwasawa theory for motives, LMS Lecture Notes Series
153 (1991), 211-233.

R. Greenberg, Trivial zeroes of p-adic L-functions, Contemporary Math.
165 (1994), 149-174.

R. Greenberg, The structure of Selmer groups, Proc. Nat. Acad. Sci.
94 (1997), 11125-11128.

R. Greenberg, Iwasawa theory for p-adic representations I, in prepara-
tion.

R. Greenberg, V. Vatsal, On the Iwasawa invariants of elliptic curves,
in preparation.

L. Guo, On a generalization of Tate dualities with application to Iwa-
sawa theory, Compositio Math. 85 (1993), 125-161.

L. Guo, General Selmer groups and critical values of Hecke L-functions,
Math. Ann. 297 (1993), 221-233.

Y. Hachimori, K. Matsuno, On finite A-submodules of Selmer groups
of elliptic curves, to appear in Proc. Amer. Math. Soc.

H. Imai, A remark on the rational points of abelian varieties with values
in cyclotomic Z,-extensions, Proc. Japan Acad. 51 (1975), 12~16.
J.W. Jones, Iwasawa L-functions for multiplicative abelian varieties,
Duke Math. J. 59 (1989), 399-420.

K. Kramer, Elliptic curves with non-trivial 2-adic Iwasawa u-invariant,
to appear in Acta Arithmetica.

Yu.I. Manin, Cyclotomic fields and modular curves, Russian Math.
Surveys 26 no. 6 (1971), 7-78.

B. Mazur, Rational points of abelian varieties with values in towers of
number fields, Invent. Math. 18 (1972), 183-266.

B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978),
129-162.

B. Mazur, On the arithmetic of special values of L-functions, Invent.
Math. 55 (1979), 207-240.

B. Mazur, Modular curves and arithmetic, Proceedings of the Interna-
tional Congress of Mathematicians, Warszawa (1983), 185-211.

B. Mazur, P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math.
25 (1974), 1-61.



144 Ralph Greenberg

[M-T-T]  B. Mazur, J. Tate, J. Teitelbaum, On p-adic analogues of the conjectures
of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), 1-48.

[Mi] 1.S. Milne, Arithmetic Duality Theorems, Academic Press (1986).

[Mo] P. Monsky, Generalizing the Birch-Stephens theorem, I. Modular
curves, Math. Zeit. 221 (1996), 415-420.

[Pel] B. Perrin-Riou, Arithmétique des courbes elliptiques et théorie d’Iwa-
sawa, Mémoire Soc. Math. France 17 (1984).

[Pe2] B. Perrin-Riou, Variation de la fonction L p-adique par isogénie, Ad-
vanced Studies in Pure Mathematics 17 (1989), 347-358.

[Pe3] B. Perrin-Riou, Points de Heegner et dérivées de fonctions L p-adiquesy
Invent. Math. 89 (1987), 455-510.

[Ped] B. Perrin-Riou, Théorie d'Iwasawa p-adique locale et globale, Invent.
Math. 99 (1990), 247-292.

[Ri] K. A. Ribet, Torsion points of abelian varieties in cyclotomic extensions,
Enseign. Math. 27 (1981), 315-319.

[Ro] D.E. Rohrlich, On L-functions of elliptic curves and cyclotomic towers,
Invent. Math. T5 (1984), 409-423.

[Rul] K. Rubin, On the main conjecture of Iwasawa theory for imaginary
quadratic fields, Invent. Math. 93 (1988), 701-713.

[Ru2] K. Rubin, The “main conjectures” of Iwasawa theory for imaginary

quadratic fields, Invent. Math. 103 (1991), 25-68.

[R-W] K. Rubin, A. Wiles, Mordell-Weil groups of elliptic curves over cyclo-
tomic fields, Progress in Mathematics 26 (1982), 237-254.

[Sch1] P. Schneider, Iwasawa L-functions of varieties over algebraic number
fields, A first approach, Invent. Math. 71 (1983), 251-293.

[Sch2] P. Schneider, p-adic height pairings II, Invent. Math. 79 (1985), 329
374.

[Sch3] P. Schneider, The p-invariant of isogenies, Journal of the Indian Math.
Soc. 52 (1987), 159-170.

[Sel] J.-P. Serre, Abelian I-adic Representations and Elliptic Curves, W.A.
Benjamin (1968).

[Se2) J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics 5,
Springer-Verlag (1964).

[S1] J. Silverman, The Arithmetic of Elliptic Curves, Grad. Tezts in Math.
106, Springer-Verlag (1986).

[St] G. Stevens, Stickelberger elements and modular parametrizations of
elliptic curves, Invent. Math. 98 (1989), 75-106.

[Ta] J. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179~
206.

[Wal] L. C. Washington, The non-p-part of the class number in a cyclotomic
Z,-extension, Invent. Math. 49 (1978), 87-97.

[Wa2] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Tezts in

Math. 83, Springer-Verlag (1982).

Torsion Points on Jo(IN)
and Galois Representations

Kenneth A. Ribet

University of California, Berkeley

To Barry Mazur, for his 60" birthday

Suppose that N is a prime number greater than 19 and that P is a point
on the modular curve Xo(N) whose image in Jo(V) (under the standard
embedding ¢: Xo(N) < Jo(N)) has finite order. In [2], Coleman-Kaskel-
Ribet conjecture that either P is a hyperelliptic branch point of Xo(N)
(so that N € {23,29,31,41,47, 59, 71}) or else that ¢(P) lies in the cusp-
idal subgroup C of Jo(N). That article suggests a strategy for the proof:
assuming that P is not a hyperelliptic branch point of Xo(NV), one should
show for each prime number £ that the ¢-primary part of ¢(P) lies in C. In
[2], the strategy is implemented under a variety of hypotheses but little is
proved for the primes £ = 2 and £ = 3. Here I prove the desired statement
for £ = 2 whenever N is prime to the discriminant of the ring End Jo(V ).
This supplementary hypothesis, while annoying, seems to be a mild one;
according to W. A. Stein of Berkeley, California, in the range N < 5021, it
is false only in case N = 389.

1 Introduction

At the C.ILM.E. conference on the arithmetic of elliptic curves, I lectured
on interrelated questions with a common underlying theme: the action of
Ga.l( Q/Q) on torsion points of semistable abelian varieties over Q. In this
written record of my lectures, I focus on the modular curve Xy(N) and its
Jacobian Jo(N) when N is a prime number. In this special case, X, (N) and
Jo(N) were studied intensively by B. Mazur in [9] and [10], so that we have
a wealth of arithmetic information at our disposal.

The main theorem of this article complements the results of Coleman-
Kaskel-Ribet [2] on the “cuspidal torsion packet” of Xo(N). Recall that
Xo(N) has two cusps, customarily denoted 0 and oo. Selecting the latter

cusp as the more “standard” of the two, we use it to map Xo(N) to Jo(N),

’I-‘he author’s research was partially supported by National Science Founda-
tion contract #DMS 96 22801. The author thanks M. Baker, J. A. Csirik and
H. W. Lenstra, Jr. for helpful conversations and suggestions.
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via the Albanese mapping ¢ which takes a point P of the curve to the class of
the divisor (P) — (0o). This map is injective if the genus of X(N) is non-zero.

Let g be the genus of Xo(N). For the remainder of this preliminary dis-
cussion, make the hypothesis g > 2. (This hypothesis is satisfied if and only
if N > 23.) Then ¢ identifies Xo(N) with a subvariety of Jo(IV) of positive
codimension. The torsion packet in question is the set {2 of points of Xo(N)
whose images in Jo(IV) have finite order. According to the Manin-Mumford
conjecture, first proved by Raynaud in 1983 {13], 2 is a finite set.

The article [2] introduces a strategy for identifying 2 precisely. Clearly,-
0 contains the two cusps 0 and oo of Xo(V), whose images under ¢ have
order n := num(25!) and 1, respectively [9, p- 98]. Further, in the special
case when Xo(IN) is hyperelliptic, we note in [2] that the hyperelliptic branch
points of Xo(N) belong to §2 if and only if N is different from 37. (Results
of Ogg [11, 12] show that Xo(NN) is hyperelliptic if and only if N lies in the
set {23,29,31,37,41,47,59, 71}.) In fact, suppose that Xo(N) is hyperelliptic
and that P is a hyperelliptic branch point on Xo(IV). Then 2(P) = «(0) if
N # 37, but P has infinite order when N = 37.

In [2], we advance the idea that {2 might contain only the points we have

just catalogued:

Guess 1.1. Suppose that P is a point on Xo(N) whose image in Jo(N) has
finite order. Then either P is one of the two cusps of Xo(N), or Xo(N) is a
hyperelliptic curve and P is a hyperelliptic branch point of Xo(N).

In the latter case, (i.e., Xo(IV) hyperelliptic and P a hyperelliptic branch
point with finite order in Jo(INV)), it follows automatically that N is different
from 37.

A reformulation of Guess 1.1 involves the cuspidal subgroup C' of Jo(IV),
i.e., the group generated by the point ¢(0). As we point out in [2], the results
of [10] imply that the intersection of Xo(N) and C (computed in Jo(N))
consists of the two cusps 0 and oo. In words, to prove that a torsion point P
of Xo(NV) is a cusp is to prove that it lies in the group C. For this, it is useful
to decompose P into its primary parts: If P is a torsion point of Jo(N) and
¢ is a prime number, we let P; be the ¢-primary part of P. Thus P = S Py,
the sum being extended over all primes, and we have P € C if and only if
P, € C for all primes £.

Consider the following two statements (in both, we regard Xo (N) as em-

bedded in its Jacobian via ¢):

Statement 1.2. Suppose that P is an element of 2 and that £ is an odd
prime. Then we have Py € C.

Statement 1.3. Suppose that P is an element of 2 and that P> ¢ C. Then
P is a hyperelliptic branch point of Xo(N).
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It is clear that Guess 1.1 is equivalent to the conjunction of Statements 1.2
and 1.3. In.deed, suppose first that (1.1) is correct and that P is an elemer;t
of 'Q. If P is a cuspidal point (i.e., one of 0, c0), then one has P, € C for all
primes £. If P is not a cuspidal point, then P is a hyperelliptic branch point
and N # 37; we then have 2P € C, so that P, € C for all £ > 2 Convefsel
;Fpp(?se thz?t Statements 1.2 and 1.3 are true and that P is an eiement of g,
: Pf) isnot in C, then P 'is a hyperelliptic branch point (and is thus accounteti
aor ! I)Irl :I(l)(; glezs). If P; lies in C, then P, is in C for all primes ¢, so that P is
Cup;pidal pOiI.]ts s0 Iv;va;orgljsr)lfnoned above, this implies that P is one of the two

Our article [2] proves a number of results in the spirit of (1.2). For exam
%e, Ij‘.uppose Fhat P is an element of {2 and ¢ is an odd prime different fron;
Or.if ;tsit?ff{a;: 5be<tI2e genus of Xo(N). Then P; € C if £ is greater than 2g
o s < £ < 2g and at least one of a number of supplementary

.These notfzs prove a theorem in the direction of (1.3). This theorem re-
quires an auxiliary hypothesis concerning the discriminant of the subring T
of End Jo(N) which is generated by the Hecke operators T, (with m >g 1)
on Jo(N). (Many authors write the Hecke operator Ty as U 11:) According to
(9, Prop. 9.5, p. 95, the Hecke ring T is in fact the full endomorphism fin
of Jo(N). Concerning the structure of T, it is known that T is an order in i
product E = [] E; of: to?al%y real number fields. The discriminant disc(T) is
the product of the discriminants of the number fields E;, multiplied by the

uare o t f I m lt nor Illallzatlon. ()UI qullaI ll OtheSIS 1 tlle
al S

Hypothesis 1.4. The discriminant of T is prime to N.

According to William Arthur Stein of B i
erkeley, California, Hypothesi i
false when N = 389 and true for all other primes N < 5011. ypothests 141

’:f‘hgorem 175.. Suppose that P lies in 2 and that P, does not belong

]; . hIn gddztzon, suppose either that the order of P is prime to N or that
ypot esis 1.4 holds. Then Xo(N) is hyperelliptic, and P is a hyperelliptic

branch point of Xo(N). ’

iheorem -1.5 is a direct. consequence of a Galois-theoretic statement which
e prove in §7. Smce this latter theorem is the main technical result of these
notes, we state it now and then show how it implies Theorem 1.5.

T’:leor:?n 1.6. Let N be a prime number, and let J = Jo(N )- Let £ be a

,’;, hme ezﬂe:rent from N. Suppose that P is a point of finite order on Jo(N)

. ose -primary component Py is not defined over Q. Assume that at least

p:;n()f ihe}{;)llozlum(g )hypotheses holds: (1) N is prime to the order of P; (2) ¢ is
elo N —1;(3) N is prime to the discriminant of T. T ere i

o € Gal(Q/Q) such that cP — P has order ¢. T Then there is a
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Note that the hypothesis g > 2 is not needed for Theorem 1.6.

roof that (1.6) implies (1.5). Let P be as in Theorem 1.5. Because P; does
x}:ot lfie in é’, 1)32 is not a rational point of Jo(N) [9, Ch. III, Th. 1.2]. We
apply Theorem 1.6 in this situation, taking ¢ = 2. The theorem shows that
there is a ¢ € Gal(Q/Q) such that the divisor (¢P) — (P) on Xo(N) has
order 2 in Jo(N). Accordingly, the points P and oP are d}stlnct, and there
is a rational function f on the curve Xo(V) whose divisor is 2((oP) ~ (P)).
The function f has a double zero at P, a double pole at P, an.d no other
zeros or poles. It follows that the covering X — P! defined by f is of degree
two and that P is ramified in the covering. Since the genus of X is at least 2,
X is hyperelliptic and P is a hyperelliptic branch point. |

We conclude this discussion with a second statement which will be proved
only below. For this statement and for most of what follow§, we again allow NV
be an arbitrary prime; i.e., we have no need of the assumption that J = Jo(N)
has dimension > 1. As in [9], we consider the Eisenstein ideal .# C T and
form the kernel J[£] C J(Q). Let K = Q(J[.#]) be the ﬁelg glenerated by
the coordinates of the points in J[.#]. Recall that n = num(232). Then we
have:

Theorem 1.7. The field K is the field of 2n*® roots of unity.

Theorem 1.7 is an essential ingredient in our proof of Theorem 1.6 .in the
crucial case where £ = 2. Readers who are familiar with Mazur’s artlcle'[g]
will recognize that Theorem 1.7 follows directly from the results of tl.lat article
if n is not divisible by 4. Moreover, as H. W. Lenstra, Jr. has pomtefi ouF,
Theorem 1.7 may be proved rather easily by elementary argume.nts.lf' n is
divisible by 8. The most difficult case is therefore that for which n is divisible
by 4 but not by 8; this case occurs precisely when N = 17 mod 3?. We
will discuss Lenstra’s observations in §4 and then prove Theorem 1.7 in the
general case in §5 by exploiting Mazur’s “congruence formula for the mod}lla.r
symbol” [9, Ch. II, §18]. An alternative proof of Theorem 1.7 was given
recently by J. A. Csirik [3]. Csirik provides a complete concrete description
of Jo(N)[.#] which yields Theorem 1.7 as a corollary.

2 A local study at N

For the rest of this article, we take N to be a prime number and let J = Jq (N).
The assumption of §1 concerning the genus of Xo(XN) is no longer reqt{lred.
We remind the reader that the results of Deligne and RapoPort [4] imply
that J has purely multiplicative reduction at N. As ex’plained in the Mazur-
Rapoport appendix to [9], the fiber over Fy of the N(t)aron model of J is the
product of a cyclic component group ¢ and a torus Jrpn
The character group of this torus,
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— - 0
& = HomFN (J/FN,Gm),

is a free Z-module of rank dim J which is furnished with compatible actions
of T and the Galois group Gal(Fn/Fy). Here, Fy is of course an alge-
braic closure of the prime field Fy. It will be convenient to choose a prime
dividing N in Q and to let Fy be the residue field of this prime. Then if
D C Gal(Q/Q) is the decomposition group corresponding to the chosen
prime, Gal(Fy/Fy) is the quotient of D by its inertia subgroup I. Using
the quotient map D —+ Gal(Fy/Fn), we view £ as an unramified repre-
sentation of D. As one knows, this action is “nearly” trivial: the generator
z — zV of Gal(Fn/F ) acts on & as an automorphism of order 1 or 2, so
that the group Gal( Fn /F nz) acts trivially on 2. (The group 2 is discussed
in [14, §3] in the more general case where N is replaced by the product of a
prime ¢ and a positive integer which is prime to g.)

As far as the Hecke action goes, the group 2 is a free Z-module whose
rank is the same as that of T, namely the dimension of J. Because T acts
faithfully on £, it is clear that 2°® Q is free of rank 1 over T® Q. Thus 2" is
a “T-module of rank 1” in the sense of {9, Ch. II, §8]. (In [9, Ch. II, Prop. 8.3],
Mazur notes in effect that 2'® Q, is free of rank 1 over T ® Q, for each
prime p # N.) It is natural to ask whether 2 is locally free of rank 1 over T.
In this section, we will answer the question affirmatively, except perhaps for
certain primes (meaning: maximal ideals) of T which divide 2.

In what follows, we consider a maximal ideal m of T. Let p be the char-
acteristic of the finite field T/m. As in [9, Ch. II, §7], we let Ty, = 21_11 T/m”

be the completion of T at m. As usual, we say that m is ordinar; if Ty is
non-zero mod m and supersingular otherwise.

Also, we recall that m is Eisenstein if it divides (i.e., contains) the Eisen-
stein ideal £ of T. This latter ideal is defined (on p. 95 of [9]) as the ideal
generated by the difference Ty ~ 1 and by the quantities g, := 14+£—T; as £
ranges over the set of primes different from N. The natural map Z — T/.#
induces an isomorphism Z/nZ 5 T/.#, where n is the numerator of N1
Thus the Eisenstein primes of T are in 1-1 correspondence with the prime
ideals of Z/nZ and therefore with the prime numbers which divide n.

Next, we write J[m] for the group of points in J(Q) which are killed by
all elements of m (cf. [9, p. 91]). This group is a T/m-vector space which is
furnished with an action of Gal( Q/Q ). Recall the following key result of [9]:

Theorem 2.1. Let m be a mazimal ideal of T. If m divides 2, suppose that
m is either Eisenstein or supersingular. Then J[m] is of dimension two.

Theorem 2.1 is proved in {9, Ch. II]. Note, however, that the discussions for m
Eisenstein and m non-Eisenstein occur in different sections: one may consult
Proposition 14.2 if m is non-Eisenstein and (16.3) if m is Eisenstein. (See also
(17.9) if m is Eisenstein and m divides 2.)
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When m is non-Eisenstein, Theorem 2.1 relates J[m] and the standard
representation pm of Gal( Q/Q) which is attached to m. By definition, pm
is the unique (up to isomorphism) continuous semisimple representation
Gal(Q/Q) — GL(2,T/m) satisfying: (i) detpm is the mod p cyclotomic
character; (i) for each prime £ prime to pN, pm i8 unramified at ¢ and
pm(Frobg) has trace Ty mod m. (The existence and uniqueness of pm are
discussed, for instance, in [14, §5].) The representation pm is irreducible if
and only if m is non-Eisenstein [9, Ch. II, Prop. 14.1 and Prop. 14.2]. The
relation between J[m] and pn is that the former representation is (i.e., de-
fines or affords) the latter representation whenever Jm] is irreducible and
9-dimensional [9, Ch. II, §14]. In particular, if m is non-Eisenstein, then J [m]
affords the representation py, if either p is odd or m is supersingular.

Suppose that py, is irreducible. Following [18, p. 189], we define pn to be
finite at NV if there is a finite flat T/m-vector space scheme ¥ of rank 2 over
Zx such that the restriction of pm to D = Gal(Qp/Qn) is isomorphic to
the two-dimensional representation ¥ ( Q). The following result is obtained
by combining a 1973 theorem of Tate with the author’s level-lowering result.

Proposition 2.2. Let m be a non-Eisenstein prime of T. Then the two-
dimensional Galois representation py is not finite at the prime N.

Proof. Suppose first that m does not divide 2. Assume that pn is finite
at N. Then [14, Th. 1.1] shows that py is modular of level 1. (In applying
[14, Th. 1.1], we take N = N, p = N, and £ = p. Note that condition 2
of the theorem is satisfied except when m divides N. In this case, however,
condition 1 of the theorem holds since we do not have N =1 mod N.) This
is a contradiction, since there are no non-zero weight-2 cusp forms on Ip(1).

Assume now that m does divide 2. Suppose again that pn is finite
at N. Then pp is an irreducible mod 2 two-dimensional representation of
Gal(Q/Q) which is unramified outside of the prime 2. An important theo-
rem of Tate [20] proves, however, that there is no such representation. ]

Note that when p is different from N, py is finite at N if and only if pm
is unramified at N. Thus Proposition 2.2 shows, in particular, that pm is
ramified at N for all m such that pr, is irreducible.

Theorem 2.3. Let m be a mazimal ideal of T. If m divides 2, suppose that
m is either Eisenstein or supersingular. Then & ®1 T is free of rank 1
over Th.

Proof. Since & is of rank 1, 2 ® Ty is free of rank 1 if and only if it is
cyclic. By Nakayama’s lemma, the cyclicity amounts to the statement that
Z /mZ has dimension < 1 over the field T /m.

_To prove this latter statement, i.e., the cyclicity of £ /mZ, we exploit
the relation between 2 and torsion points of J. In the following discussion,
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.for ~each 'integer m > 1, we let J[m] be the group of points of J with values
in Q yvhlch have order dividing m. Thus J[m] is a T{Gal( Q/Q )]-module
Espe.cmlly, we shall view J[m] locally at N, ie., as a T[D]-module. One:
obtains from [6, 11.6.6-11.6.7] a T[D]-equivariant exact sequence

(2.4) 0 = Hom(Z /mZ, pm) > J[m] = & /mZ - 0.

(Sef.z, e.g., {15, pp. 669-670] for a discussion of this exact sequence when
m 18 a prime number.) Especially, there is a natural identification of
Hom(Z /mZ, p,,) with a subgroup of J [m].

In particular, we find an injection

j: Hom(Z'/mZ, pp) = Jlm;

here, p is again the residue characteristi

here, . tic of m. By Theorem 2.1, j i

isomorphism if 2" /m4 is not cyclic. Y e
. On the other hand, it is clear that j cannot be an isomorphism. Indeed

;1 e group Hom(Z /m%Z g pp) is finite at N in the sense of [18] (since Hp is
nite), and we have seen in Proposition 2.2 that J [m] is not finite at N. W

3 The kernel of the Eisenstein ideal

We turn now to a study of the action of Gal(Q/Q) on the Eisenstein kernel
in the Jacobian J = J,?, (-IY ). Let .# again be the Eisenstein ideal of T, and
:flcall that 7; = num(T)_. By J[#] we mean the kernel of .# on J, i.e.
e group of points in J(Q) which are annihilated by all £

: y all elements of .Z.

The anal - i

T :azy/s:lsz(?f [9, Ch. I, §§16-18] shows that J[.#] is free of rank two over
The group J[.#] contains the cuspidal group C, which was mentioned
above, and also the Shimura subgroup X of J [9, Ch. II, §11]. The two
érou;E C and X' are Gal(Q/Q)-stable and cyclic of order n. The actions of
al(Q/ Q) on'these two groups are respectively the trivial action and the
cy.cl.oto'mlc.actlon .(2 N pn). Accordingly, the intersection of C' and ¥ is
f;rlv1al if n is 0dd; in that case, the inclusions of C and ¥ in J[.#] induce an
lcsvorrjn:)‘jr;;lhlsm gf G2a,l( Q/Q)-modules C & ¥ 5 J[#]. If n is even, however
as order 2, and the sum C + X in J[.# ich i cer di ’

b inden 2 T2 n J[.#] (which is no longer direct)
. In m.uch of what follows, the reader may wish to assume that n is even:
when 7 is odd, almost everything that we prove may be deduced immediatel):

from the decomposition J[.#] ~ C & X.
Proposition 3.1. The group J [#] is unramified at N.

Proof. We regard J[.#] as a D-module Q
- , where D = Gal
We have a natural injection (analogous to the map j ab(c)?eISI/QN) s sbove.
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Hom(Z /S X, pn) < I[F];

where & is again the character group associated witl} the I‘edl?CtiOIl of
J mod N. By combining this injection with the inclusion of X' in J[Z],
we obtain a map of D-modules

§: £ @Hom(Z | SX, pn) — J[F).

This map is again injective, in view of Proposition 11.9 of [9, Ch. II].. .

Now by Theorem 2.3, & is free of rank 1 locally at each prime “m
dividing .#. Hence &°/.# 2, and therefore Hom(% /S Z, Un), has order n.
Thus the source of @ has n? elements. Since the target of § has the same
cardinality, we conclude that 8 is an isomorphism of D-modules. The group
Y & Hom(% / F &, pn), however, is unramified; note that D acts on &

through its quotient Gal( Fn/Fn). ]
We continue our study of the action of Gal(Q/Q) on J[.#]:
Proposition 3.2. The Galois group Gal(Q/Q) acts trivially on J[F]/ 2.

Proof. Tt is clear that Jordan-Holder constituents of the Gal{(Q/Q )-quule
J[.#] are all of the form p, or Z/pZ, with p dividing n. Indeed, J[.#] is an
extension of a group whose order divides 2 by a quotient of X C , where tI{e
latter group has the indicated property. Because J[.#] is unramified at N, it
is finite at N in Serre’s sense; it extends to a finite flat group scheme over Z.
In the language of Chapter I of [9], J[.#] is thus an admissible group scheme
over Spec Z[%] which extends to a finite flat group sche.me G over SpecZ.

To analyze G, we follow the proof of Proposition 4.5 in [9, Ch. I].' ’;‘he last
step in the proof of that Proposition uses a result above it (Proposition 4.1)
which applies only to groups of odd order. However, Steps 1-3 are perfectly
applicable; they show that G is an extension of a constant group scheme by
a p-type group (dual of a constant group) H C G.

In particular, there is a subgroup X' of J[.#] with the Property that the
action of Gal(Q/Q) on X' is cyclotomic, whereas the actlf)n of. Gal(Q/Q)
on J[£]/%' is trivial. By [9, Ch. I1I, Th. 1.3], " is conta.mefi in Y. Hence
the action of Gal(Q/Q) on the quotient J[.#]/X is indeed trivial. |

Before studying further the Gal(Q/Q )-action on J[.#], we pause to es-
tablish a converse to Proposition 3.1.

Proposition 3.3. Let P € J (Q) be a torsion point on J for which the finite
extension Q(P)/Q is unramified at N. Then P lies in J[#].

Proof. Let M be the smallest T[Gal(Q/Q )]—submo'dule of :I(Q) which
contains both P and J[.#]. We must prove that M is :?,nnlhllated by £.
Clearly, M is finite; indeed, we have M C J[mn] if m is the order of P.
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Consider the Jordan-Holder constituents of M, regarded as a T[Gal(Q/Q)]-
module. If V' is such a constituent, then the annihilator of V is a maximal
ideal m of T. It follows from the discussion of [9, Ch. II, §14] that V is
1-dimensional over T /m if and only if m is Eisenstein. If m is not Eisenstein,
then V is isomorphic to the irreducible representation py,. (This follows from
the discussion on page 115 of [9]. In fact, the main result of [1] can be used
to prove the more precise fact that J[m] is a direct sum of copies of p,, when
m is non-Eisenstein.) However, Proposition 2.2 shows that p,, is ramified at
N when m is non-Eisenstein. We conclude that all constituents of M belong
to Eisenstein primes of T. These constituents therefore have the form fp O
Z/pZ, with p dividing n.

Returning to the language of [9, Ch. I], we see that M is an admissible
group. As explained in the proof of the proposition above, M must be an
extension of a constant group @ by a p-type group Mp. Since M contains
J[#] and since X is the maximal p-type group in J(Q), we have My = X.
Next, note that the extension of T-modules

022X M-5Q-0

splits. The splitting is obtained as in the argument on p. 142 of [9] which
proves [9, Ch. HII, Th. 1.3]. Namely, specialization to characteristic N provides
a map M — &, where & is the component group of J in characteristic N.
We get a splitting because the restriction of this map to X is an isomorphism
I 5 &. It follows that .# annihilates M if and only if .# annihilates Q.
Since Gal( Q/Q) acts trivially on Q, the Eichler-Shimura relation shows
that Q is annihilated by the differences 7, = 1 + ¢ — T,. To deduce from this
the apparently stronger fact that Q is annihilated by all of .# (which includes
the generator T — 1), write @ as the direct sum D,, @m, where the sum
runs over the set of Eisenstein primes of T. Each summand Q,, is a module
over T/u”, where v is a suitable positive integer. It follows from [9, Ch. 1T,
Th. 18.10] that the image of .# in T/pu” is generated by a single element of
the form 7. Thus Q. is annihilated by .#. Since this statement is true for
each m, Q is annihilated by .#. |

Our next goal is to study J[.#] sufficiently closely to permit identification
of the field Q(J[.#]), i.e., to prove Theorem 1.7. For an alternative proof of
Theorem 1.7, the reader may consult Csirik’s forthcoming article [3], which
determines J[.#] completely by a method generalizing that of [9, Ch. II,
§12-§13).

Recall that the cuspidal group C is provided with a natural generator,
namely the image of the cusp 0 in J. We select generators for certain other
cyclic groups by making use of the place over N that we have chosen in Q. As
explained in §11 of [9, Ch. II], reduction to characteristic N induces isomor-
phisms among C, X' and the group of components of J /Fn - In particular, we
have a distinguished isomorphism C =~ 5. Since C is provided with a gener-
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ator, we obtain a basis of X. (See [5] for a comparison of the isomorphism
C ~ ¥ with a second natural one.)

Since X and J[.#] are free of ranks 1 and 2 over Z/nZ, the group Q=
J[#)/Z is cyclic of order n. The intersection C'N X has order ged(2,n)
[9, Ch. II, Prop. 11.11]. The image of C in Q has order n/ged(2,n). Choose a
generator g of Q such that 2g is the image in Q of th(? chosen ggnerator (?f C.
Finally, note as above that reduction to characterigtlc N provides us YVlth a
splitting of the tautological exact sequence which displays @ as a ql'lotlent of
J[.#). This splitting writes J[.#] as the direct sum 2 & Q. (Said dlfferen;l{y,
J[#] is the direct sum of ¥ and the “toric part” Hpm(.%” / .ﬂ X, pn) of J[F].
The natural map Hom(Z /S %, pn) = Q is an 1sox.norphlsm.) ,

Using the chosen generators of ¥ and Q, we write J [#] = .(Z /nZ)?. In
this model of J[.#], £ is the group generated by (1,0) and C is the group
generated by (1,2). Since Gal(Q/Q) preserves X and operates on X as the
mod n cyclotomic character X, and since Gal( Q/Q) operates trivially on @Q,
the action of Gal{ Q/Q) on J[.#] is given in matrix terms by a map

o — plo) == <>(§ b(f))

Here, the map o — b(c) € Z/nZ is clearly a 1-cocycle: it verifies the identity
b(or) = b(o) + x(o)b(7)

for 0,7 € Gal(Q/Q).

4 Lenstra’s input

The contents of this section were suggested to the author by H. W. Lenstra, Jr.
The author thanks him heartily for his help.

Lemma 4.1. For all 0 € Gal(Q/Q), we have 2b(0) = 1 — x(0).

1 . )
Proof. For each o, p(o) fixes the vector (2) € C. The lemma follows nnme-
diately.
Proposition 4.2. The field Q(J[F]) is an abelian extension of Q which
contains Q(jun) and has degree 1 or 2 over Q(ur)-

Proof. To say that Q(J[.#]) is abelian over Q is to say that the image of p

» —
is abelian. This amounts to the identity b(oT) = b(ra) for o,7 € Qal( Q/Q).
By the cocycle identity, the two sides of the equation are respectlv?ly 13(0) +
x(0)b(r) and b(1) + x(7)b(c). These expressions are indeed equal, in view of
the lemma above.
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It is clear that the field Q(J[#]) contains Q(u,) because the kernel
of p is contained in the kernel of x. Let H be this latter kernel; i.e.,
H = Gal(Q/Q(un)). On H, x = 1; hence we have 2b = 0 in Z/nZ. In

other words, the group p(H) is a subgroup of the group of matrices ((1) al;)

with 2z = 0. Since this group has order gcd(2,n), the extension of Q cut out
by p is an extension of Q(uy) of degree 1 or 2. |

The proof of Proposition 4.2 (or, alternatively, the decomposition J[.#] =
X @ C) shows that Q(J[.#]) = Q(u) if n is odd. Suppose now that n is
even; write n = 2%n,, where n, is the “odd part” and 2* > 2 is the largest
power of 2 dividing n. Then p is the direct sum of representations

p2: Gal(Q/Q) = GL(2,Z/2°Z), po: Gal(Q/Q) - GL(2,Z/n,Z),

which are defined by the actions of Gal(Q/Q) on the 2-primary part and
the odd part of J[.#], respectively. It is evident that the latter representation
cuts out Q(p,,) and that the kernel of the former representation corresponds
to an abelian extension K of Q which contains Q(u,+) and has degree 1 or 2
over this cyclotomic field. Since p; is defined by the action of Gal(Q/Q) on
a group of 2-power division points of J, this representation can be ramified
only at 2 and at N. We have seen, however, that p is unramified at N (Propo-
sition 3.1). Hence K/Q is an abelian extension of Q which is ramified only
at 2; it follows (e.g., from the proof that the “local Kronecker-Weber theo-
rem” implies the usual, global one [21, Ch. 14]) that K is contained in the
cyclotomic field Q(u2e). Hence we have either K = Q(pugx) or K = Q(pgi+1).
Accordingly, we have

Q(un) € QU] € Qluzn)-

In summary, the displayed inclusions hold both in the case when n is
odd and when n is even. In the former case, the two cyclotomic fields are
equal, and they coincide with Q(J[.#]). In the latter case, there remains an
ambiguity which will be resolved by the proof of Theorem 1.7.

Before turning to this proof in the general case, we present a simple proof
of Theorem 1.7 in the case where k is different from 2. To prove the Theorem
is to show that py cuts out the field Q(gyx+1). This is perfectly clear if k = 0,
in which case p, is the trivial representation: the field K = Q is indeed the
field of second roots of 1. If k = 1, p, gives the action of Gal(Q/Q) on the
group D which is described in [9, Ch. II, §12]; Lemma 12.4 of that section
states that the field K is the field of fourth roots of unity.

Suppose now that k is at least 3, and choose ¢ € Gal(Q/Q) so that
x(0) =1+ 2! mod 2* and x(¢) = 1 mod n,. It is evident that x(0?) = 1;
we will show, however, that ps(0?) # 1. These two pieces of information
imply that K is not contained in Q(u,), which is precisely the information
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that we seek. To prove that p,(c?) is different from 1 is to show that b(o?) £0
mod 2%. We have

b(o?) = (1 + x(0))b(o) = 2(1 + 2¥~%)b(0) mod 2

by the cocycle identity and the choice of . Since k is at least 3,.the .factor
(1 + 2¥-2) is odd. Now 2b(0) = 1 — x(¢) = —2*! mod 2* in view of
Lemma 4.1. Thus b(c) is divisible by 2¥~2 but not by 2¥~1. It follows that
b(a?) is divisible by 25! but not by 2*. [ ]

-

5 Proof of Theorem 1.7

We return to the discussion of the general case, _r_emovir}g. the assum.ption
k > 3. Recall that p is the representation of Gal(Q/Q) giving the action of
Gal(Q/Q) on J[.#] and that n¢ =1+ ¢ — T, foreach £ # N.

Lemma 5.1. Let ¢ be a prime number prime to nN. Suppose that
p(Frobg) = 1. Then ny belongs to #2.

Proof. One has T/#? = @ Tm/F*Tn, where the sum is taken over the
Eisenstein primes m of T. We must show that the image of 7 in T / J .’I‘,ﬂ
is 0 for each such m. Fix m, and let p be the corresponding prime divisor
of n. Consider the p-divisible group Jn = |JJ[m"] and its Tate module

Tay := Hom(Qp/Zy, Jn)- Let
Tay, := Homgz,(Tam, Z,) = Hom(Jm, Qp/Zy);

the latter description of Ta), presents this Tate module as the Pontryagin
dual of J,. Note that Tay and Taj, have been shown to be free of rank 2
over Tp [9, Ch. I, Cor. 16.3]. The Tate pairing Ta.p(J) x Tay(J) = Zp.(l)
may be viewed as an isomorphism Tan = Tag (1) which is compatible with
the natural actions of Gal(Q/Q) and T on the two modules.

Let FF = Frob,. Since 1 — F annihilates J[.#], 1 — F annihilates the
Shimura subgroup ¥ =& p, of J, which is contained in J[# ] Hen.ce
¢ = 1 mod n. Accordingly, F acts as the identity on Hom(J [JJ, i) and its
p-primary subgroup Hom(Ju[#], Qp/Zp)(1). We may view this dual as the
quotient Ta%, (1)/.# Tay (1) = Tan/.# Tan. Hence we have

(1 - F)(Tan) C & - Tam.
Since Tay, is free of rank 2 over Ty, we obtain
dety,(1—F | Tam) € F#*Tw.

This proves what is needed, since the determinant we hz'ive calculated is
nothing but 7,; indeed, the determinant and trace of F acting on Ta,, are ¢
and T, respectively. [ |
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Theorem 5.2. Assume that n is even. Let £ # N be a prime number which
satisfies the congruence £ = 1 mod n but not the congruence £ = 1 mod 2n.
Assume further that the image of £ in (Z/NZ)* is a generator of this cyclic
group. Then p(Froby,) # 1.

Proof. Let A be the unique quotient of (Z/NZ)* of order n. To prove our
result, we refer to §18 of [9, Ch. II]. In that section, one finds a homomorphism
et £/ F% 5 HY/FHY andamap p: A — Ht/FH*, both of which prove
to be isomorphisms. The map & := ¢~ 1o €t is an isomorphism .#/.#? 3 A,
The congruence formula for the winding homomorphism yields

K(ne) = 52 -2
Here, £ is the image of £ € (Z/NZ)* in A, and the operator £1 js an
exponent. (One is viewing the multiplicative abelian group A as a Z-module.)
Under our hypotheses, it is clear that “Tl - € has order 2 in A. Thus, by the
congruence formula, 7, is non-zero in #/.#2. Using Lemma 5.1, we deduce
the required conclusion that p(Froby) is different from 1. [ |

We now prove Theorem 1.7, i.e., the statement that Q(J[.#]) coincides
with the cyclotomic field Q(u2n).

As was explained above, the statement to be proved follows from the
decomposition J[.#] = £ & C when n is odd. Assume then that n is even.
As we have discussed, the field Q(J[.#]) is an extension of Q(u,) of
degree dividing 2. Moreover, if Q(J[.#]) is indeed quadratic over Q(uy),
then Q(J[#]) has no choice but to be Q(us2,). To see that the extension
Q(J[#1)/Q(pn) is non-trivial, we use the result above. Using the Chinese
Remainder Theorem and Dirichlet’s theorem on primes in an arithmetic
progression, we may choose £ so as to satisfy the conditions of Theorem 5.2.
A Frobenius element Frob, for £ in Gal(Q/Q) then acts trivially on u,,
but non-trivially on J[.#]. [ |

6 Adelic representations

Let £ be a prime. As usual, we consider the ¢-divisible group J, = |J J[¢*]

and its Tate modules Ta, := Hom(Q¢/Z¢, Jp) and Ta; ®z, Q. The f-adic
representation of Gal( Q/Q) attached to J is the continuous homomorphism

pe: Gal(Q/Q) — Aut(Tas) = Aut(Ta; ® Qp)

which arises from the action of Gal(Q/Q) on Ta,.

This action is T-linear, where T is the Hecke ring introduced above. Thus
Py takes values, for example, in the group Auty,(Ta,), where T, = T ® Z,.
Note that the Z-algebra T, is the product of the completions Ty, of T at
the maximal ideals m of T which divide ¢. The corresponding decomposition
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of Ta, into a product of modules over the individual factors Ty, of Ty is the
natural decomposition of Ta, = [],, Tam, where the Tan are the m-adic Tate
modules which were introduced earlier.

As we have noted, Mazur proves in [9, Ch. II, §15-§18] that Tapy, is free of
rank 2 over Ty, for each maximal ideal m of T which is not simultaneously
ordinary, non-Eisenstein and of residue characteristic 2. Thus, after a choice
of basis, Aut,(Ta,) becomes GL(2, T ® Z;) for each prime ¢ > 2. Thus, if £
is odd, p¢ may be viewed as a homomorphism

Gal(Q/Q) » GL(2, T ® Zy).

Similarly, we may view p; as taking values in GL(2, T®Qz2). Accordingly, the
image G of p; is a subgroup of GL(2, T ® Q) in all cases and a subgroup of
GL(2, T ® Z;) when £ is odd. The determinant of p; is the f-adic cyclotomic

character.
The group G is studied in [16], where the following two results are ob-

tained as Proposition 7.1 and Theorem 6.4, respectively:

Theorem 6.1. The group Gy is open in the matriz group
{M e GL(2,T® Q)| det M € Q;}.

Theorem 6.2. Suppose that £ is at least 5 and is prime to the discriminant
of T. Suppose further that no mazimal ideal m|¢ is an Eisenstein ideal of T
(i.e., that £ is prime to n). Then

Gy={M € GL(2,T®Z;)| det M € Z;}.

Consider next the adelic representation ps := [], p¢, where the product is
taken over the set of all prime numbers £. The image Gy of ps is a subgroup
of the product [, G¢, which in turn is contained in the group

{M € GL(2, T®Q>)|det M € Q}} x [[{M € GL(2, T®Z)|det M € Z}.
££2

According to [16, Th. 7.5], G¢ is open in the latter product.
For each prime £, let H; be the intersection of Gy with the group

1x-+-x1IxGgx1x:-+x1l-e-,

where G, is placed in the ¢th factor. Thus H, is a subgroup of G which
may be viewed as the image of the restriction of p; to the kernel of the

representation [[, ., pe .

Theorem 6.3. Assume that £ satisfies the conditions of Theorem 6.2, i.e.,
that £ is prime to discT and distinct from 2 and 3. Assume further that € is
different from N. Then Hy = Gy = {M € GL(2, T ® Z¢)| det M € Z7}.
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Proof. The proof of this result is explained in the course of the proof of
Theorem 7.5 of [16]: Fix £, and let X be the smallest closed subgroup of
Gal(Q/Q) which contains all inertia groups of Gal(Q/Q) for the prime £.
Since pg (X) = {1} for all primes ¢ # £, p,(X) is a subgroup of H,, which in
turn is contained in G;. As the author observed at the end of §6 of [16], the
d;:s[ifg]d equality p,(X) = G, follows from Theorem 3.4 and Proposition 4.2
o . |

We now present a variant of the result above for the prime £ = N. For this,
we let I' be the subgroup 1+ NZy of Z}, i.e., the N-Sylow subgroup of Z},.

Proposition 6.4. Suppose that N is prime to the discriminant of T. Then
Hp contains the group {M € GL(2,T® Zy)| det M € I' }.

Proof. Let X now be the smallest closed subgroup of Gal(Q/Q) which
contains the wild subgroups (i.e., N-Sylow subgroups) of all inertia groups
for N in Gal(Q/Q). It follows from the exact sequence (2.4) that we have
pe(X) = {1} for all £ # N. (If £ # N, inertia groups at N act unipotently
in the f-adic representations attached to J. Consequently, the image under
pe of an inertia group at N is a pro-£ group.) Hence pn(X) is a subgroup of
Hpy, and it will suffice to show that

pn(X) = {M € GL(2,T®Zy)| det M € I'}.

We note that pn(X) is contained in this matrix group since the image
of pn(X) under the determinant mapping Gy — Z% is a pro-N group.
Since in fact the group detpn(X) is all of I', the equality pn(X)
= {M € GL(2,T® Zn) | det M € I} means that pn(X) contains
SL(2,TQ® Zn).

Because T is unramified at NV, [16, Prop. 4.2] implies that the inclusion

pn(X) D SL(2, T® Zy)

holds if and only if it holds “mod N” in the sense that the image of X
in GL(2,T/NT) contains SL(2, T/NT). To say that this image contains
SL(2,T/NT) is in fact to say that the image coincides with SL(2, T/NT);
indeed, I" maps to the trivial subgroup of (Z/NZ)*. The image in question is
certainly a normal subgroup of SL(2, T/N'T) since X is normal in Gal( Q/Q)
and Gy contains SL(2, T® Zy). The ring T/NT is a product of finite fields
of characteristic N because T is unramified at N; intrinsically, T/NT =
I1.. T/m, where m runs over the maximal ideals of T which divide V.

Fix m for the moment and let pm : Gal(Q/Q) — GL(2,T/m) be the
.mod m reduction of the N-adic Galois representation px. This reduction is an
irreducible two-dimensional representation because m cannot be an Eisenstein
prime; indeed, m does not divide N —~ 1. As we have seen in Proposition 2.2,
Pm cannot be “finite” (or peu ramifiée) in the sense of [18]; recall that the
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Main Theorem of [14] implies that p, would be modular of level 1 if it were
finite. Thus py, is wildly ramified at N, so that the group pn(X) has order
divisible by N. But py(X) is a normal subgroup of SL(2, T /m); we conclude
that pm(X) = SL(2,T/m).

Thus the image of pn(X) in SL(2,T/NT) = [],.SL(2,T/m) is a
normal subgroup of SL(2,T/NT) which maps surjectively to each factor
SL(2, T/m). By taking commutators with elements of the form

I1x---x1xgxlx---x1,

-

we find that pnx(X) maps surjectively to SL(2, T/NT). Therefore, as was
explained above, pn(X) contains SL(2, T ® Zn). ]

Returning briefly to the group Gt, we note that we have
(I 5o < 6: < (]G0
¢ ¢

where the products are taken over all prime numbers £. A theorem of
B. Kaskel [16, Th. 7.3] implies that the image of G in the group GV :=
[1ezn Ge is all of GN. This suggests viewing the full product [], G, as the
binary product GN x Gn. Then Gt is a subgroup of this product which maps
surjectively to each of the two factors. The group Hy may be viewed as the
kernel of the projection map G¢ = GV ; symmetrically, we let HY C G be
the kernel of the second projection map. As is well known (see “Goursat’s
Lemma,” an exercise in Bourbaki’s Algebre, Ch. I, §4), the projections from
Gt onto GV and G induce natural isomorphisms G /HN ~ G¢/(HN x Hy)
and Gi/(H" x Hy) ~ Gn/HN. We obtain as a consequence an isomorphism

a: GN/HN 5 Gn/HN.

The group G contains HY x Hy as a normal subgroup, and the image of
Gt in

(GN X GN)/(HN X HN) = (GN/HN) X (GN/HN)
is the graph of the isomorphism a.

It is worth remarking that Gy is open in GN x Gy by [16, Th. 7.5]. Hence
the groups H™ and Hy are open in GV and Gy respectively. Thus the groups
Gy/(HN x Hy), GN/HY and Gn/Hy are finite groups which have the same
order. The order of (GN x Gn)/(HY x Hp) is the square of the orders of
the three other groups. If N is prime to disc T, then the order of Gn/HN is
a divisor of N — 1 by Prop. 6.4. Moreover as we will see below, the order of
Gn/Hy is always divisible by Mazur’s constant n = num(%51).

Adopting a Galois-theoretic point of view, we let K be the subfield of Q
corresponding to the finite quotient G¢/(HY x Hn) of Gal(Q/Q). Let Kn
be the extension of Q generated by the coordinates of the N-power torsion
points on J and let K be the extension of Q which is defined similarly,
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using prime-to-N torsion points in place of N-power torsion points. Then
the compositum K, = KNKy is the subfield of Q corresponding to the
quotient G of Gal(Q/Q), and it is clear that we have Gal(Ko./Kn) = HNY
and Gal(K./K™) = Hy. Thus

Ge/(HN x Hy) = Gn/Hn = GV /HN = Gal(K/Q).

What information do we have about K? We may restate Proposition 6.4
as follows: If T is unramified at N, then K is contained in the field of Nth
roots of unity. Indeed, in that case, Gn /HNx is a quotient of

{M € GL(2,T®Zy)|det M € Z}}/{M € GL22,T® Zy)| det M € '},

which corresponds (via the determinant) to the Galois group Gal(Q(pn)/Q).
Without the assumption on disc T, we can remark, at least, that K is ramified
only at NV; it is a subfield of K, which is ramified only at N.

We now exhibit the lower bound for [K : Q] which was alluded to above,
proving that K contains the unique subfield of Q(uy) with degree n over Q.
(Since n is 1 only when Xo(IV) has genus 0, it follows that K is a non-trivial
extension of Q whenever Jp(NN) is non-zero.) For this, we note first that Ky
contains the field Q(un) of Nth roots of 1; indeed, Kx contains the field
generated by the N-power roots of 1 in Q, since the determinant of pn is the
N-adic cyclotomic character. The Galois group Gal(Q(un)/Q) = (Z /NZ)*
has a unique quotient of order n. As in the proof of Theorem 5.2, we refer
to this quotient as A; field-theoretically, A corresponds to a Galois extension
Ka of Q with

Ka C Q(pn) C K.

Since Gal(Ka/Q) = 4, [Ka: Q] =n.
Theorem 6.5. The field K contains K 4.

Proof. Let m be an Eisenstein prime (i.e., maximal ideal) of T; let £ be the
corresponding divisor of n. The Tate module Ta,, which was introduced in
the proof of Lemma 5.1 is free of rank two over Tp, the completion of T
at m. The action of Gal(Q/Q) on Tay is given by a representation

Pm: Gal(Q/Q) = GL(2, Tr)

whose determinant is the ¢-adic cyclotomic character; if p is prime to £N, then
the trace of pn (Froby) is Tp € Tw, T, being the pth Hecke operator. Taking
the sum of the pm and then reducing mod .#2, we obtain a representation

p: Gal(Q/Q) - GL(2,T/.#?)
with analogous properties. In particular, for each prime p prime to nN, the

trace and determinant of p(Frob,) are the i f T :
in T/ .22, p(Froby) mages of T, and p, respectively,
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Let n: Gal(Q/Q) — T/#? be the function 1+ det p — tr p. For p prime
to nN, n(Frob,) is the image in S F? of the eleme.nt np =1 +p- t, of J
In particular, the Cebotarev density theorem implies that 7 is a function
Gal(Q/Q) —» #/ 72 _ . ‘

g‘g/we recalled in the proof of Theorem 5.2, there is an isomorphism
k: F /P2 A which satisfies the congruence formula

-1 —
K(np) = B~ P

imes p not dividing nN. In this formula, p represents the impage
f?eraqu 1;he coggruence clas§ of pmod N. Let a: Gal(Q/Q) = J/F 2 be
the composite of: (1) the mod N cyclotomic character XN Gal( Q/Q';[‘)h_)
(Z/NZ)*; (2) the quotient map (Z/NZ)* — A; (3) the inverse of £. Then
we may write alternatively

M = ;1 'a(p)a

where the left-hand side is interpreted in /% 2, If now x = Xa2n is the
mod 2n cyclotomic character, then the formula for 7, and the Cebotarev

density theorem imply the identity
—1
n — X_2_ ['s 4

of & | #2-valued functions on Gal(Q/Q). .

L(/at H be the kernel of p x x. Then n(hg) = n(g) for all g € Gal(Q/Q),
since p(hg) = p(g) in that case. Let h be an element of H and take g to be
a complex conjugation in Gal(Q/Q). Since ‘X(g) = —1 and x(h) =1, .the
equation n(hg) = n(g) amounts to the identity a(hg) = a(g). Since a is a
homomorphism, we deduce that a(h) = 1. o

In other words, if k € Gal(Q/Q) is trivial under p x x, then h is trivial in
Gal(K4/Q). In particular, if pN(h) = 1, then h fixes K A. Accordingly, K A
is contained in the fixed field KV of the kernel of p"N. Since, by constructlor:
K 4 is a subfield of Kn, Ka is contained in K.

Theorem 6.5, which will not be used in the proof .of Theorem 16, sug-
gests the problem of pinpointing K completely. According to Proposition §.4
and Theorem 6.5, we have Ko C K C Q(un) under the appa.rent.ly mll'd
assumption that N does not divide disc(T). Since.z Gal (Q(un)/Ka) is cyclic
of order (N — 1)/n = ged(N — 1,12), to identify K under these circum-
stances is to calculate a divisor of ged(N — 1,12), namely [K : K 4l- In the
cases where Xo(IV) has genus 0 (ie.,, N <1l and N = 13), we clearly have
K=Q=Kjs. Inthecase N =11, K is constrained by our results to be
either Q(p11) or the maximal real subfield of Q(u11)- As was noted by La,n;g;1
and Trotter [8] (see also [17, §5.3]), K = Q(p11) because the field geja\rrxeia‘g;
by the 2-division points of Jo(11) contains Q(\'/ —11).. Ip the'ga.lis.e‘ f_ K,
we have ged(NV — 1,12) = 12, so that there are six a priori poss1f1 ities o‘r .
In fact, Kaskel [7] shows that K is the maximal real subfield of Q(us7); the

divisor in question is 6.
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7 Proof of Theorem 1.6

We recall the statement to be proved: Let P be a point of finite order on J
whose £-primary component Py is not rational point. Assume that at least one
of the following statements is true: (1) N is prime to the order of P; (2) € is
prime to N —1; (3) N is prime to the discriminant of T (i.e., Hypothesis 1.4
holds). Then there is a 0 € Gal(Q/Q) such that oP — P has order ¢.

In the proof that follows, we write P¢ for the sum of the p-primary com-
ponents of P for primes different from ¢. Thus P = P, + P*. Similarly, we
put PN = P — Py.

Consider the extension Q(P;)/Q, which is non-trivial by hypothesis. To
orient the reader, we note that this extension can be ramified only at £ and
at N, the latter prime being the unique prime of bad reduction of J. Accord-
ing to [2, Th. 2.2], Q(P,)/Q is automatically ramified at £ except perhaps
when £ = 2.

On the other hand, it is plausible that Q(P;)/Q is unramified at N. Let
us first deal with this possibility, which turns out to be especially simple;
here the hypotheses (1)-(3) are irrelevant. According to Proposition 3.3, P,
lies in J{Z]. This latter group contains the Shimura subgroup ¥ and the
cuspidal group C of J. The source and target of the resulting natural map
2'®C — J[F] have order n; the kernel and cokernel of this map have order 1
if n is odd and order 2 if n is even.

To fix ideas, we assume for the moment that ¢ is an odd prime. Then P,
lies in the £-primary part of J[.#], which is the direct sum of the {-primary
parts of X and C. Hence P, is the sum of a rational point of .J and an element
of ¢-power order of X' & u,. Since P, is not rational, this latter element is
non-trivial; its order may be written £ with a > 1. Let o be an element
of Gal(Q/Q(pa-1)) which has non-trivial image in Gal(Q(e= )}/ Q(ptga-1)).
Then it is evident that ¢P; — P; has order ¢ on .J. Indeed, this element is
non-trivial since o does not fix Py, but it is of order dividing ¢ since ¢ does
fix £P,. Now the extension Q(fee)/Q(t1ga-1) is ramified at ¢; thus we may
take o to be in an inertia group for a prime of Q(ps.—1) which lies over £.
This choice ensures that P? is fixed by 0. Then 0P — P = 0 P; — Py is a point
of order ¢, as desired.

Next, we suppose that £ = 2; we continue to suppose that P, is unramified
at N. Then J[.#] has even order; i.e., n is even. If P, = P, lies in £ + C, then
things proceed as in the case £ > 2. However, as we recalled above, the sum
2"+ C, which is not direct, represents a proper subgroup of J[.#] (namely,
one of index 2.) Hence we must discuss the case where P,, which is a point
in J[.#], does not lie in the sum X + C.

In this case, the group J[.#] is generated by its subgroup X +C of index 2
together with the point P,. Using Theorem 1.7, we find that

Q(u2n) = QUJI[A)) = K(P),
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where K = Q(£ +C) = Q(pn)- The extension Q(u2,)/Q(pn) is a quadratic
extension which is ramified at 2. We take ¢ in an inertia group for 2 which
fixes K but not P;. Since 2P, lies in X + C, the difference oP; — P, is of
order 2. We have 0P — P = o P, — P in analogy with the situation already
considered.

Having treated the relatively simple case where Q(P,)/Q is unramified
at N, we assume from now on that P; is ramified at N. This assumption
means that there is an inertia subgroup I C Gal(Q/Q) for the prime N
which acts non-trivially on P;. Hence there is a 7 € I such that the ordeg of
7P — P is divisible by £. We seek to construct a ¢ € I for which P — P has
order precisely £.

Assume first that (1) holds, i.e., that the order of P is prime to N. Let m
be this order, and let £d be the order of 7P — P; thus, £d divides m. Recall
the exact sequence of I-modules

(2.4) 0 —» Hom(Z /mZ, pm) = Jm] = £ /mZ — 0.

Since m is prime to N, the two flanking groups are unramified. It follows,
as is well known, that A := 7 — 1 acts on J[m] as an endomorphism with
square 0. By the binomial theorem, we find the equation 7¢ = 1+ d4 in
End J[m]. Therefore

74P — P=dAP =d(r —1)P =d(7P - P)
is a point of order £. We take o = 79.

Next, assume that (2) holds. Arguing as above, we may find an s € I such
that sPN — PN has order £. Moreover, for each i > 1, we have s:PN — PN
= i(sPN — PN). Consider again (2.4), with m replaced by m/, the order
of Py. Let j = ¢(m’') (Euler ¢-function). Then s/ acts trivially on the groups
Hom(Z /m' %, pimy) and Z /m'Z in (2.4), so that si™ fixes Py. By (2),
j is prime to £, and thus i := jm' is prime to ¢ as well. Taking o = s*, we
find that o P — P has order ¢, as required.

We now turn to the most complicated case, that where (3) holds, but
where (1) and (2) are no longer assumed. We change notation slightly, writing
m (rather than m’) for the order of Py. Thus m is a power of N. Let s again
be an element of I such that sP"Y — P¥ has order .

We fix our attention once again on (2.4), which we view as a sequence of
I-modules. Concerning the Hecke action, we note that the two groups

M :=Hom(Z /mZ, pm), M =X /mI

are each free of rank 1 over T/mT in view of Theorem 2.3 and the fact that
T is Gorenstein away from the prime 2. The central group J[m] is free of
rank 2 over T/mT because of [9, Ch. II, Cor. 15.2]. The inertia group I acts
trivially on £ and as the mod m cyclotomic character x on p.,. Thus M' is
unramified, and M is ramified if m is different from 1.
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We will be interested in the value of x(s) € (Z/mZ)*. Let i be the prime-
to-£ part of the order of x(s), and replace s by s*. After this replacement,
the order of x(s) is a power of £. Also, as we have discussed, this replacement
multiplies sPN — PN by i. Since i is prime to £, sPY — PN remains of order £.

If x(s) is now 1, then the situation is similar to that which we just dis-
cussed. Namely, s™ is the identity on J[m], and we may take o = s™.

Assume now that x(s) is different from 1; thus x(s) is a non-trivial
-power root of 1. In this case, the T-module J[m] is the direct sum of two
subspaces: the space where s acts as 1 and the space where s acts as x(s)

(which is not congruent to 1 mod N). Indeed, the endomorphism i—_&(—s)- of
J[m] is zero on M = Hom(Z /m %, p.,) and the identity on M’ = ‘%’X/(rsn).%’
It splits the exact sequence which is displayed above, giving us an isomor-
phism of T-modules:
Jml~ Mo M.

The module M’, viewed as a submodule of J[m], is the fixed part of J[m]
relative to the action of s.

We claim that there is an h € Gal(Q/Q) such that hPN = PN and
such that APy € M'. This claim will prove what is wanted, since the choice
o = h™'sh will guarantee that the difference P — P is the (-division point

R~ (shPN — hPN) + h= (shPy — hPy) = h™1(sPN — PV).

To find the desired h it suffices to produce an element of SLr/mtJ[m] ~
SL(2, T/mT) which maps Py into M’. Indeed, Proposition 6.4 implies that
all such elements arise from Hy, i.e., from elements of Gal(Q/Q) which fix
torsion points of J with order prime to N.

To produce the required element of SL(2, T/mT), we work explicitly.
Choose T/mT-bases €' and e of the free rank 1 modules M’ and M, and
use {¢’,e} as a basis of J[m]. Then M’ is the span of the vector (1,0) and
M is the span of (0,1). Let u and v be the coordinates of Py relative to the
chosen basis. We must exhibit a matrix in SL(2, T/mT) which maps (u,v)
to a vector with second component 0.

Because of the hypothesis that N is prime to disc T, T ® Zn is a finite
product of rings of integers of finite unramified extensions of Qn. Thus T/mT
is a product of rings of the form R = £/m&, where & is the ring of integers
of a finite unramified extension of Q. It suffices to solve our problem factor
by factor: given (u,v) € R?, we must find an element of SL(2, R) which maps
(u,v) into the line generated by (1,0). It is clear that we may write (u,v)
in the form N*(u',v'), where t is a non-negative integer and at least one of
u',v' is a unit in R. Solving the problem for (u',v') solves it for (u,v), so we
may, and do, assume that either u or v is a unit.

If u is a unit, then
1 0\ fu) _ fu
—vu~t 1/ \v) " \0/)"
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If v is a unit, then

(3 ) (=) .
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Elliptic Curves with Complex Multiplication
and the Conjecture of Birch and
Swinnerton-Dyer
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Columbus, Ohio 43210 USA, rubin@math.ohio-state.edu

The purpose of these notes is to present a reasonably self-contained exposition
of recent results concerning the Birch and Swinnerton-Dyer conjecture for
elliptic curves with complex multiplication. The goal is the following theorem.

Theorem. Suppose E is an elliptic curve defined over an imaginary quadrat-
ic field K, with complezx multiplication by K, and L(E, s) is the L-function
of E. If L(E,1) # 0 then

(i) E(K) ts finite,
(ii) for every prime p > 7 such that E has good reduction above p, the p-part

of the Tate-Shafarevich group of E has the order predicted by the Birch
and Swinnerton-Dyer conjecture.

The first assertion of this theorem was proved by Coates and Wiles in
[CW1]. We will prove this in §10 (Theorem 10.1). A stronger version of (it)
(with no assumption that E have good reduction above p) was proved in
[Ru2]. The program to prove (ii) was also begun by Coates and Wiles; it can
now be completed thanks to the recent Euler system machinery of Kolyvagin
[Ko]. This proof will be given in §12, Corollary 12.13 and Theorem 12.19.

The material through §4 is background which was not in the Cetraro lec-
tures but is included here for completeness. In those sections we summarize,
generally with references to [Si] instead of proofs, the basic properties of el-
liptic curves that will be needed later. For more details, including proofs, see
Silverman’s book [Si], Chapter 4 of Shimura’s book [Sh], Lang’s book [La],
or Cassels’ survey article [Ca].

The content of the lectures was essentially §§5-12.
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1 Quick Review of Elliptic Curves

1.1 Notation

Suppose F is a field. An elliptic curve E defined over F is a nonsingular curve
defined by a generalized Weierstrass equation

y? + ayzy + azy = &° + azz® + a4z + ac g)
with ay,as,a3,a4,a¢ € F. The points E(F) have a natura.l, ge9metrically—
defined group structure, with the point at infinity O as the u'it?ntlty. elem'ent.
The discriminant A(E) is a polynomial in the a; and th.e. j-invariant j(E)
is a rational function in the a;. (See §IIL1 of [Si] for explicit formulas.) The

j-invariant of an elliptic curve depends only on the ?somorphi.sm class of that
curve, but the discriminant A depends on the particular Weierstrass model.

Ezample 1.1. Suppose that E is defined by a Weierstrass equation
y? = 2® + agz® + a4z + a6
and d € F*. The twist of E by V/d is the elliptic curve E4 defined by
y? = 1° + aada? + ayd’z + agd®.

Then (exercise:) Eg is isomorphic to E over the field F(Vd), A(Eq) =
d® A(E), and j(Eq) = j(E). See also the proof of Corollary 5.22.

1.2 Differentials

See [Si] §11.4 for the definition and basic background on differentials on curves.

Proposition 1.2. Suppose E is an elliptic curve deﬁned by a Weierstrass
equation (1). Then the space of holomorphic diﬁeren'ttals on E defined over
F is a one-dimensional vector space over F with basis

dz
wE = 2y + a1z +as
Further, wg is invariant under translation by points of E(F).

Proof. See [Si] Propositions IIL.1.5 and IIL5.1. That wg is holomorphic is an
exercise, using that wg is also equal to dy /(3z® + 2a27 + a4 — ary). o
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1.3 Endomorphisms

Definition 1.3. Suppose E is an elliptic curve. An endomorphism of E is a
morphism from E to itself which maps O to O.

An endomorphism of E is also a homomorphism of the abelian group
structure on E (see [Si] Theorem III.4.8).

Ezample 1.4. For every integer m, multiplication by m on E is an endomor-
phism of E, which we will denote by [m]. If m # 0 then the endomorphism
[m] is nonzero; in fact, it has degree m? and, if m is prime to the characteristic
of F then the kernel of [m] is isomorphic to (Z/mZ)?. (See [Si] Proposition
II1.4.2 and Corollary II1.6.4.)

Ezample 1.5. Suppose F is finite, #(F) = q. Then the map ¢, : (z,y,2) —
(z9,y9, 29) is a (purely inseparable) endomorphism of E, called the ¢g-th power
Frobenius morphism.

Definition 1.6. If E is an elliptic curve defined over F, we write Endr(E)
for the ring (under addition and composition) of endomorphisms of E defined
over F. Then Endr(E) has no zero divisors, and by Example 1.4 there is an
injection Z — Endp(FE).

Definition 1.7. Write D(E/F) for one-dimensional vector space (see Propo-
sition 1.2) of holomorphic differentials on E defined over F. The map ¢ — ¢*
defines a homomorphism of abelian groups

L=1LF: Endp(E) - Endp(’D(E/F)) ~F.

The kernel of ¢ is the ideal of inseparable endomorphisms. In particular if F
has characteristic zero, then ¢ is injective.

Lemma 1.8. Suppose char(F) = 0, L is a field containing F, and ¢ €
Endi(E). If ti(¢) € F then ¢ € Endp(E).

Proof. If o € Aut(L/F) then

t(8%) = o(er(9)) = cr(9).

Since L has characteristic zero, ¢, is injective so we conclude that P° = ¢.

Definition 1.9. If ¢ € Endr(E) we will write E[¢] C E(F) for the kernel
of ¢ and F(E[¢]) for the extension of F' generated by the coordinates of the
points in E[¢]. Note that F(E[¢]) is independent of the choice of a Weierstrass
model of E over F. By [Si] Theorem II1.4.10, #(E[¢]) divides deg(¢), with
equality if and only if ¢ is separable.
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Definition 1.10. If £ is a rational prime define the ¢-adic Tate module of E

T(E) = jim B(F"),

inverse limit with respect to the maps ¢ : E[¢"T1] - E[€"]. If £ # char(F)
then Example 1.4 shows that

T E) = Z3.
The Galois group Gr acts Z,-linearly on T;(E), giving a representation <
pe : Gp — Aut(Ty(E)) = GL2(Z)
when £ # char(F).

Theorem 1.11. If E is an elliptic curve then Endp(E) is one of the follow-
ing types of rings.

0 2, |
(ii) an order in an imaginary quadratic field,
(iii) an order in a division quaternion algebra over Q.

Proof. See [Si] §IIL.9. |

Ezample 1.12. Suppose char(F) # 2 and E is the curve y? = £* — dz where
de FI;. Let ¢ be defined by ¢(z,y) = (~z,iy) where i = V=1 € F. Th(?n
¢ € Endp(E), and «(¢) =i so ¢ € Endp(E) & i € F. Also, ¢ has order 4 in
Endz(E)* so we see that Z[¢] = Z[i] C Endp(E). (In fact, Z[¢] = Endp.(E)
if char(F) = 0 or if char(F) = 1 (mod 4), and Endp(E) is an order in a
quaternion algebra if char(F) = 3 (mod 4).) The next lemma gives a converse
to this example.

Lemma 1.13. Suppose E is given by a Weierstrass equation y? = r3+az+b.
If Aut(E) contains an element of order 4 (resp. 3) then b=0 (resp. a =0).

Proof. The only automorphisms of such a Weierstrass elliptic curve are of
the form (z,y) — (u?z,u®y) (see [Si] Remark II1.1.3). The order of such an
automorphism is the order of u in F*, and when u has order 3 or 4 this

change of variables preserves the equation if and only if a =0 (resp. b= 0)Iil

2 Elliptic Curves over C

Remark 2.1. Note that an elliptic curve defined over a field of characteristic
zero can be defined over Q[a1, a2, a3, a4, as), and this field can be: er.nbedded
in C. In this way many of the results of this section apply to all elliptic curves
ir characteristic zero.
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2.1 Lattices

Definition 2.2. Suppose L is a lattice in C. Define the Weierstrass p-
function, the Weierstrass o-function, and the Eisenstein series attached to L

1 1 1
z 2
o(z;L) =z H 1= Z) el#/@)+(z/w)’/2
JI(-3)
1
Gr(L) = Z oF for k even, k > 4.
0#wel

We will suppress the L from the notation in these functions when there is no
danger of confusion. See [Si] Theorem VI.3.1, Lemma VI.3.3, and Theorem
VI.3.5 for the convergence and periodicity properties of these functions.

Theorem 2.3. (i) If L is a lattice in C then the map
z > (p(z L), 9' (2 L)/2)

is an analytic isomorphism (and a group homomorphism) from C/L to
E(C) where E is the elliptic curve y* = 3 — 15G4(L)z — 35G¢(L).
(i) Conversely, if E is an elliptic curve defined over C given by an equation
y? = z+az+b then there is a unique lattice L C C such that 15G4(L) =
—a and 35G(L) = —b, so (i) gives an isomorphism from C/L to E(C).
(iii) The correspondence above identifies the holomorphic differential wg with
dz.

Proof. The first statement is Proposition V1.3.6 of [Si] and the second is
proved in [Sh] §4.2. For (iii), we have that

dz/2y = d(p(2))/$'(2) = dz.

]

Remark 2.4. If E is the elliptic curve defined over C with a Weierstrass model
y?> = 2® + az + b and wp is the differential dz/2y of Proposition 1.2, then the
lattice L associated to E by Theorem 2.3(ii) is

{[wat”y € HI(E,Z)}

P
PH/DJE
o

is the isomorphism from E(C) to C/L which is the inverse of the map of
Theorem 2.3(3).

and the map
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Definition 2.5. If L C C is a lattice define

A(L) = (60G4(L))® — 27(140G4(L))?

§(L) = —1728(60G4(L))*/ A(L).
Then A(L) is the discriminant and j(L) the j-invariant of the elliptic curve
corresponding to L by Theorem 2.3.
Proposition 2.6. Suppose E is an elliptic curve defined over C, correspond-
ing to a lattice L under the bijection of Theorem 2.3. Then the map i of
Definition 1.7 is an isomorphism

Endc(E) =+ {a € C:aL C L}.

Proof. See [Si] Theorem V1.4.1. 0
Corollary 2.7. If E is an elliptic curve defined over a field F of chamcter“-
istic zero, then Endp(E) is either Z or an order in an imaginary quadratic
field.
Proof. If E is defined over a subfield of C then Proposition 2.6 ider.ltlﬁes
Endc(E) with {a € C : aL C L}. The latter object is a discrete subring of

C, and hence is either Z or an order in an imaginary quadrati_c ﬁeld:
Using the principle of Remark 2.1 at the beginning of this section, the

same holds for all fields F of characteristic zero. 0

The following table gives a dictionary between elliptic curves over an
arbitrary field and elliptic curves over C.

over abitrary field over C
(E,wE) (C/L,dz)
T,y p(z; L), 9'(2;L)/2
isomorphism class of E | {aL:a € C*}
Endc(E) {a€C:aLCL}
Autc(E) {a€C*:aL =L}
E[m] m~L/L

3 Elliptic Curves over Local Fields

For this section suppose

- pis a rational prime,

— F is a finite extension of Q,,

— O is the ring of integers of F,

— p is the maximal ideal of F',

— 7 is a generator of p

- k = O/p is the residue field of O

_ p: F = Z U {oo} is the valuation on F, v(m) = 1.

We fix an elliptic curve E defined over F.
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3.1 Reduction
Definition 3.1. A Weierstrass equation (1) for E is minimal if

~ a1,02,0a3,a4,a¢ € O,
— the valuation of the discriminant of this equation is minimal in the set of
valuations of all Weierstrass equations for E with coefficients in O.

Every elliptic curve E has a minimal Weierstrass equation, or minimal model,
and the minimal discriminant of E is the ideal of O generated by the dis-
criminant of a minimal Weierstrass model of E.

The reduction E of E is the curve defined over the residue field k by the
Weierstrass equation

Y2 + Grxy + Gay = 2° + G272 + G4z + g 2

where the a; are the coefficients of a minimal Weierstrass equation for E
and d; denotes the image of a; in k. The reduction E is independent (up
to isomorphism) of the particular minimal equation chosen for E (see [Si]
Proposition VIL.1.3(b)).

The curve E may be singular, but it has at most one singular point ([Si]
Proposition I11.1.4(a)). In that case the quasi-projective curve

E,s = E — {singular point on E}

has a geometrically-defined group law just as an elliptic curve does (see [Si]
Proposition II1.2.5).

If A is the minimal discriminant of E, then one of the following three
possibilities holds (see for example [Si] Proposition II1.2.5):

(i) A€ O* and E is nonsingular, i.e., E = Ey, is an elliptic curve,
(i) A ¢ 0%, E is singular, and Ey(k) 2 k*, or
(iii) A ¢ O, E is singular, and Epg(k) = k.
We say that E has good (resp. multiplicative, resp. additive) reduction if (i)
(resp. (ii), resp. (iii)) is satisfied.
We say that E has potentially good reduction if there is a finite extension
F' of F such that E has good reduction over F’.

Lemma 3.2. (i) E has potentially good reduction if and only if j(E) € O.
(ii) If E has potentially good reduction then E has either good or additive
reduction.

Proof. See [Si] Propositions VIL5.4 and IV.5.5. o
Definition 3.3. There is a natural reduction map
P%(F) = P%(k).

By restriction this defines a reduction map from E(F) to E(k). We define
Eo(F) C E(F) to be the inverse image of Ens(k) and E;(F) C E(F) to be
the inverse image of O € Ey (k).
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Proposition 3.4. There is an ezact sequence of abelian groups
0 = Ey(F) = Eo(F) = Ens(k) > 0

where the map on the right is the reduction map. If E.has good reduction
then the reduction map induces an injective homomorphism

Endrp(E) - Endy(E).
Proof. See [Si] Proposition VIL.2.1. »0

If E has good reduction and ¢ € Endr(E), we will write @ for the endo-
morphism of E which is the reduction of ¢.

Lemma 3.5. If E is defined by a minimal Weierstrass equation then
Ei(F) = {(z,y) € E(F) : v(z) < 0} = {(z,y) € E(F) : v(y) < 0}.
If (z,y) € E;(F) then 3v(z) = 2v(y) <O0.

Proof. It is clear from the definition of the reduction map that (z,9,1) re-
duces to (0,1,0) if and only if v(y) < 0 and v(y) < v(z). If' (=, y) € E'(F")
then, since z and y satisfy a Weierstrass equation with coefficients in O, it is

clear that
v(z) <0&v(y) <0

and in that case v(y) = (3/2)v(z) < v(z). ]

Lemma 3.6. Suppose E has good reduction, ¢ € Endr(E), and é is purely
inseparable. Then

(i) @ is injective on E(k).
(ii) ker(¢) C E1(F)

Proof. Clear. o

3.2 The Formal Group

Theorem 3.7. Fiz a minimal Weierstrass model (1) of E. There is a formal
group E defined by a power series Fg € O[[Z,2']], and a power series

w(Z) = 23+ a2 4 (a? + a3)Z% +--- € O[[Z]],
such that if we define
2(2) = Zjw(Z) € Z720[[Z)),  y(2)=-1/w(2) € Z7°0((Z]]

then
(i) (=(2),y(2)) € E(O((2))),
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(i) (2(2),y(2)) + (2(Z"),9(2") = (&(F&(2, 2")),y(Fe(Z, 2')))

as points on E with coordinates in the fraction field of F((Z,Z")),
(iii) there is ¢ map Endp(E) — End(E) (which we will denote by ¢ —
#(Z) € O[[2)]) such that for every ¢ € Endr(E),

¢((2(2),y(2))) = (2(6(2)),y(¢(2)))
in E(F((Z))).

Proof. See [Ta] or [Si], §IV.1 for an explicit construction of the power series
w(Z) and Fg(Z, Z). The idea is that Z = —z/y is a uniformizing parameter
at the origin of E, and everything (z, y, the group law, endomorphisms) can
be expanded as power series in Z. O

For every n > 1 write E‘(p") for the commutative group whose underlying
set is p”, with the operation (z,2') = Fg(z,2').

Corollary 3.8. With notation as in Theorem 3.7,
Zw- (Z/w(2),-1/w(Z))
is an isomorphism from E(p) to E,(F) with inverse given by
(@,y) = —z/y.

Proof. See [Si] Proposition VIL.2.2. The first map is a map into E,(F) by
Lemma 3.5 and Theorem 3.7(i), and is a homomorphism by Theorem 3.7(ii).
It is injective because the only zero of w(Z) in p is Z = 0. The second map is
clearly a left-inverse of the first, and it maps into p by Lemma 3.5. We only
need show that the second map is also one-to-one.

If we rewrite our Weierstrass equation for E with variables w = —~1/y and
z = —zfy we get a new equation

asw® + (@42 + a3)w? + (a22® + a1z — Dw+ 23 =0.
Fix a value of 2 € p and consider the set S of roots w of this equation. If
(2, w) corresponds to a point in E; (F) then by Lemma 3.5, v(w) = v(23) > 0.

It follows easily that S contains at most one root w corresponding to a point
of Ey(F), and hence the map (z,y) — —z/y is one-to-one on E; (F). O

Corollary 3.9. Suppose #(k) = q, E has good reduction, and ¢ € Endg (E)
reduces to the Frobenius endomorphism ¢, € Endx(E). Then

$(2)= 2% (mod pO[[Z]))-
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Proof. If the reduction of ¢ is ¢, then by Theorem 3.7(iii)

2)),4($(2))) = $((2(2),y(2))) = (2(2)*,3(2)*)
o = (2(29),9(27) (mod pO((2)))-

Since y(Z) is invertible in O((Z)), we conclude that
B(2) = —($(2))/y($(2)) = —2(2%)/y(2%) = Z° (mod pO((2)))-
s

Definition 3.10. Recall that

dz _ dy
T 2y+az+az 3z + 257 + a4 — a1y

WE

is the holomorphic, translation-invariant differential on E from Proposition

1.2. Define
#z2(Z)

2y(Z) + a1z(Z) + a3
Let A4 (Z) be the unique element of Z + Z*F[[Z]] such that LAp(2) = 0(2).

&(2) = € 1+ Z0[[Z]).

Lemma 3.11. (i) The power series Ay is the logarithm map of E, the iso-
morphism from E to the additive formal group G, such that Xg(0) = 1.

(ii) The power series Ag converges on p. If ordy(p) < p— 1 then Az is an
isomorphism from E(p) to the additive group p.

Proof. Let Fi € O[[Z, Z']] be the addition law for E. We need to show that
Ae(FE(Z,2)) = Ae(Z) + Ae(Z').
Since wg is translation invariant (Proposition 1.2),
&(Fe(Z,2")d(Fp(Z,2')) = &(2)dZ

and therefore , )
Lp(Fe(Z,2") = F2e(Z).
Therefore Ag(Fe(Z,Z")) = As(Z) + ¢(Z') with c(Z’) € F[[Z']]. Evaluating

at Z = 0 shows ¢(Z') = Ag(Z') as desired. )
The uniqueness of the logarithm map and (ii) are standard elementary

results in the theory of formal groups. o

Definition 3.12. Define Ag : Ei(F) — F to be the composition of the
inverse of the isomorphism of Corollary 3.8 with Ag.

Corollary 3.13. Iford,(p) < p—1 then Ag : Eo(F ) — p is an isomorphism.
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Proof. This is immediate from Lemma 3.11. O

Recall the map ¢ : Endp(E) — F of Definition 1.7 defined by the action
of an endomorphism on holomorphic differentials.

Proposition 3.14. For every ¢ € Endr(E), ¢(Z) = 1(¢)Z + O(Z?).
Proof. By definition of ¢, @(¢(2)) = 1(¢)(2), i.e.,

d(z(¢(2))) = u¢) d(z(Z))
2y(#(2)) + a1z(¢(2)) + a3 2y(Z) + mz(Z) + a5’

Using the definitions of 2(Z) and y(Z), the right-hand side is (:(¢)+0(Z))dZ,
and the left-hand side is (¢'(0) + O(Z))dZ. This completes the proof. a

3.3 Applications to Torsion Subgroups
Theorem 3.15. Suppose ¢ € Endp(E) and 1(¢) € O*.

(i) ¢ is an automorphism of E|(F). _
(ii) If E has good reduction then the reduction map E[¢]| N E(F) — E(K) is
injective.

Proof. By definition of a formal group, Fz(X,Y) = X +Y +0O(X?, XY, Y?).
Using Proposition 3.14, for every n > 1 we have a commutative diagram

E(pr)/E(pr+t) —— p"/pmt —2 k

¢| «0| |

E(pm)/E(pntl) —= pn/pntl — k

Since «(¢) € O* we see that ¢ is an automorphism of E(p™)/E(p™+1) for ev-
ery n > 1, and from this it is not difficult to show that ¢ is an automorphism
of E(p). Therefore by Corollary 3.8, ¢ is an automorphism of E; (F). This
proves (i), and (ii) as well since E; (F) is the kernel of the reduction map and
(i) shows that E;(F) N E[¢] = 0. ]

Remark 3.16. Theorem 3.15 shows in particular that if E has good reduction
and m is prime to p, then the reduction map E[m]| — E[m)] is injective.

Corollary 3.17. Suppose E has good reduction, ¢ € Endr(E), and 1(¢) €
O*. If P € E(F) and ¢(P) € E(F), then F(E[¢], P)/F is unramified.

Proof. Let F' = F(E[¢],P) and let k' be its residue field. Then F'/F is
Galois and we let I C Gal(F'/F) denote the inertia group.

Suppose ¢ € I. Then the reduction & of ¢ is the identity on k’, so if
R € E(F) and ¢(R) € E(F) then oR — R € E[4] and

o — -

oR—R=6R-R=0.
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By Theorem 3.15(ii), since «(¢) € O we conclude that 6R = R. In other
words o fixes E[¢] and P, so o fixes F', ie., o = 1. Hence I is trivial and
F'/F is unramified. ]

Corollary 3.18. Suppose £ # p, and let I denote the inertia subgroup of
Gr.

(i) If E has good reduction then I acts trivially on T¢(E).
(ii) If E has potentially good reduction then I acts on T,(E) through a finite
quotient.

Proof. This is clear by Corollary 3.17. 0
The converse of Corollary 3.18 is the following.

Theorem 3.19 (Criterion of Néron-Ogg-Shafarevich). Let I C Gr
denote the inertia group.

(i) If £ # p and I acts trivially on Ty(E), then E has good reduction.
(ii) If £ #p and Ty(E)! #0, then E has good or multiplicative reduction.

Proof. See [Si] Theorem VIL7.1 for (i). The proof of (i) is the same except
that we use the fact that if E has additive reduction, then over any unramified
extension F' of F' with residue field k', Eqs(k’) is killed by p and hence has
no points of order £. O

4 Elliptic Curves over Number Fields

For this section suppose F is a number field and E is an elliptic curve defined
over F. Our main interest is in studying the Mordell-Weil group E(F).

If q is a prime of F we say that E has good (resp. potentially good, bad,
additive, multiplicative) reduction at q if E, viewed as an elliptic curve over
the local field F, (F completed at q) does. We will write A(E) for the minimal
discriminant of E, the ideal of F' which is the product over all primes q of
the minimal discriminant of E over F,. This is well-defined because (every
Weierstrass model of) E has good reduction outside of a finite set of primes.

Since F has characteristic zero, the map ¢ : Endp(E) = F of Definition
1.7 (giving the action of Endr(E) on differentials) is injective, and from now
on we will identify Endp(E) with its image O C F. By Corollary 2.7, O is
either Z or an order in an imaginary quadratic field.

If o € O we will also write a for the corresponding endomorphism of E, so
E[a] C E(F) is the kernel of a and F(E[a]) is the extension of F' generated
by the coordinates of the points in Ela].
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Definition 4.1. Su i
f -1. Suppose a € O, a # 0. Multiplication b i jecti
E(F), so there is an exact seque;lce d s suective on

0— Ela] » E(F) = E(F)-0.
Taking G p-cohomology yields a long exact sequence
E(F) = E(F) —» H\(F,E[a]) - H\(F,E) - HY(F,E)
where H'(F, E) = H'(F, E(F)). We can rewrite this as
0 — E(F)/aE(F) - H'(F,E[a]) - H'(F,E), — 0 (3)
where H'(F, E), denotes the kernel of a on H(F, E). Concretely, the con-

necting map E(F 1 : -
deﬁneg by p E(F)/aE(F) < H'(F,E[qa]) is the “Kummer theory” map

P (oc—0Q-Q) )

where Q € E(F) satisfies aQ = P.

In exactly the same way, if q i i i infini
¥, 1f q is a prime (finite or infinite) of F' we can
replace F' by the completion Fy in (3), and this leads to the diagram

0 B(F)/aE(F) ~—— HY(F,Ela]) —— H(F,E)y -0
1 lresq 1x-esq (5)
0 > E(F,)/aB(F,) —— H'(F,,Ela]) — H(F,, E)s — 0.

We define the Selmer group (relative to a)

Sa(E) = Sa(E/r) C H'(F, Ea))
by

Sa(E) = {c € H'(F,E[q]) : resq(c) € image(E(Fy)/aE(Fy)) for every q}
= {c€ H'(F,Ela]) : resq(c) = 0 in H'(F,, E) for every q}.

Proposition 4.2. Suppose o € O, o #
' . , 0. Under the K
Sa(E) contains the image of E(F) [aE(F). o fhe Rummer map (3,

Proof. Clear. a
Remark 4.3. One should think of the Selmer group Sy(FE) as the smallest

subgroup of H!(F, E[a]) defined b P ) )
the image of E(F) /a%). nect by natural local conditions which contains

Proposition 4.4.
finite. Suppose a € O, & # 0. Then the Selmer group S,(E) is
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Proof. Suppose first that E[e] C E(F), so H'(F, Ela]) = Hom(Gp,lj?[a]).
Let L be the maximal abelian extension of F of exponent deg(a) which is
unramified outside of the (finite) set of primes

ZE,a = {p of F : p divides ¢ A(E) or p is infinite}.
If ¢ € So(E) C Hom(GF, E[a]) then c is trivial on

— commutators,
- deg(a)-th powers, -
~ inertia groups of primes outside of X'g q,

the first two because E[a] is abelian and annihilated by deg(a), and the last
because of (4) and Corollary 3.17. Therefore c factors through Gal(L/F), so

Sa(E) ¢ Hom(Gal(L/F), E[a)).

Class field theory shows that L/F is finite, so this proves the proposition in

this case.
In general, the restriction map

0 —» HY(F(E[a))/F, Ele]) - H'(F, E[a]) % HY(F(E[a]), Ela))

sends So(E/F) into Sa(E/p(Ela)))- The case above show§ that_; Sa(E/F(Ela))
is finite, and H'(F(E[a))/F, E[a]) is finite, s0 So(E,F) is finite. 0

Corollary 4.5 (Weak Mordell-Weil Theorem). For every nonzero a €
O, E(F)/aE(F) is finite.

Proof. This is clear from Propositions 4.2 and 4.4. 0
Theorem 4.6 (Mordell-Weil). E(F) is finitely generated.
Proof. See [Si] §VIIL6. ]
Definition 4.7. The Tate-Shafarevich group III(E) of E over F is the sub-
group of H!(F, E(F)) defined by
[I(E) = ker (Hl(F, EF) - [] HI(F,,,E)) .
vof F

Proposition 4.8. Ifa € O, a # 0, then the ezact sequence (3) restricts to
an exact sequence

0 = E(F)/aE(F) = Sx(E) = II(E)a = 0
where III(E), is the subgroup of elements of 10 (E) killed by a.

* Proof. This is clear from the definitions and the diagram (5). O
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5 Elliptic Curves with Complex Multiplication

Fix a subfield F of C and an elliptic curve E defined over F.

Definition 5.1. We say E has complez multiplication over F if Endr(E) is
an order in an imaginary quadratic field, i.e., if Endr(E) # Z.

Assume from now on that E has complex multiplication, and let
O = (Endr(E)) C F.

As in §4 we will use ¢ to identify Endp(E) with O. Let K = QO C F be the
imaginary quadratic field containing O, and denote the full ring of integers
of K by Ok. If a is an ideal of O we will write E[a] = NaeqEal.

Fix an embedding of F into C. Viewing E as an elliptic curve over C and
using Proposition 2.6 we can write

E(C)=C/L where LC KCCand OL = L. (6)

(A priori L is just a lattice in C, but replacing L by AL where A~! € L we
may assume that L C K.) Thus if O = O, then L is a fractional ideal of K.

5.1 Preliminaries

In this section we record the basic consequences of complex multiplication.
Put most simply, if E has complex multiplication over F then all torsion
points in E(F) are defined over abelian extensions of F.

Remark 5.2. It will simplify the exposition to assume that @ = Q. The
following proposition shows that this restriction is not too severe. Two elliptic
curves are isogenous if there is an isogeny (a nonzero morphism sending one
origin to the other) from one to the other.

Proposition 5.3. There is an elliptic curve E', defined over F and isoge-
nous over F to E, such that Endp(E) = Ok.

Proof. Suppose the conductor of O isc,i.e., O = Z+cOxk, and let ¢ = cOx C
O. The subgroup E[c] is stable under G, so by [Si] Proposition III.4.12 and
Exercise II1.3.13 there is an elliptic curve E' over F and an isogeny from E
to E' with kernel Efc]. We only need to check that Endr(E') = Ok.
With the identification (6), E'(C) & C/L' where

L'={2€C:zcC L}.
Suppose a € Ok. For every z € L',

(az)e=2(ac) € 2cC L

so az € L'. Therefore by Proposition 2.6, @ € Endc(E’). By Lemma. 1.8,
since a € K C F we conclude that a € Endg(E'). 0
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From now on we will assume that ¢ is the maximal order Ok.

Proposition 5.4. If a is a nonzero ideal of O then Ea] 2 O/a as O-
modules.

Proof. Using the identification (6) we see that Efa] = a"!L/L where Lis a
fractional ideal of K, and then a™!L/L = O/a. a

Corollary 5.5. If a is a nonzero ideal of O then the action of G ow E[q]
induces an injection

Gal(F(E[a])/F) < (O/a)*.
In particular F(E{a])/F is abelian.

Proof. f3€ 0,0 € Gr,and P € E(F) then, since the endomorphism 8 is
defined over F, o(BP) = B(oP). Thus there is a map

Gal(F(Ela])/F) — Auto(Ela]).
By Proposition 5.4,

Auto(Ea)]) = Auto(O/a) = (Ofa)*.

0
If a is a nonzero ideal of O let E[a®] = U, E[a"].
Corollary 5.6. The action of Gr on E[a™) induces an injection
Gal(F(E[a*®))/F) < (kr__n O/a™)*.
n
In particular for every prime p,
Gal(F(E[p™®]))/F) « (0O ® Zy)*.
0

Proof. Immediate from Corollary 5.5.
Theorem 5.7. Suppose F is a finite extension of Qq for some L.

(i) E has potentially good reduction. o
(ii) Suppose p is a prime of O and n € ZT is such that tfle multiplicative
group 1+ p" O, is torsion-free (where O, is the comp{etwn of ('). atp ). If
p 1 ¢ then E has good reduction over F(E[p™]) at all primes not dividing p.
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Proof. Suppose p is a rational prime. By Corollary 5.6, the Galois group
Gal(F(E[p>])/F(Elp])) is isomorphic to a subgroup of the multiplicative
group 1 + pO ® Z,. If p > 3 then the p-adic logarithm map shows that
14+p0 ®Zy = pO, = Z2. Thus

Gal(F(E[p™])/F(E[p])) = Z¢

with d < 2. If p # ¢, class field theory shows that such an extension is un-
ramified. Thus by the criterion of Néron-Ogg-Shafarevich (Theorem 3.19(i))
E has good reduction over F(E[p]). This proves (i).

The proof of (ii) is similar. Write F, = F(E[p>]) and F, = F(E[p")),
and suppose q is a prime of F}, not dividing p. By (i) and Corollary 3.17, the
inertia group I, of q in Gal(Fu/F,) is finite. But Corollary 5.6 shows that

Gal(Foo/Fn) cl1 +pn0Pa

which has no finite subgroups, so I acts trivially on E[p*]. Therefore by
Theorem 3.19(ii), E has good or multiplicative reduction at q. Since we al-
ready know that the reduction is potentially good, Lemma 3.2(ii) allows us
to conclude that E has good reduction at q. (]

Remark 5.8. The hypothesis of Theorem 5.7(ii) is satisfied with n = 1 if the
residue characteristic of p is greater than 3.

Proposition 5.9. Suppose q is a prime of F where E has good reduction
and ¢ = Np/qq. There is an endomorphism a € O whose reduction modulo

q is the Frobenius endomorphism ¢, of E.

Proof. 1f ¢4 = [m] for some m € Z then the proposition is clear. So suppose
now that ¢, ¢ Z, and write k for the residue field of F at q. Since ¢,
commutes with every endomorphism of E, we see from Theorem 1.11 that
the only possibility is that Endy(E) is an order in an imaginary quadratic
field. But the reduction map Endg(E) — Endx(E) is injective (Proposition
3.4) so its image, the maximal order of K, must be all of Endy(E). This
proves the proposition. O

5.2 The Main Theorem of Complex Multiplication

In this section we study further the action of G on torsion points of E.
We will see that not only are torsion points abelian over F, in fact they are
“almost” abelian over K, so that (using class field theory) we can describe
the action of Gr on torsion points in terms of an action of the ideles of K.
The reference for this section is [Sh] Chapter 5; see also [ST]. We continue
to suppose that E has complex multiplication by the mazimal order of K.
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Definition 5.10. Let A% denote the group of ideles of K. There is a natural
map from A} to the group of fractional ideals of K, and if z € Ay and ais
a fractional ideal of K we will write za for the product of a and the fractional

ideal corresponding to .
If p is a prime of K let O, C K denote the completions of O and K at
p. If a is a fractional ideal of K, write a, = a0} and then

Kla=a® (K/O)=a® (&p(Kp/0p)) = ®pKy/ap. (7

If z = (zp) € Ag then multiplication by z, gives an isomorphismefrom
K, /ap to Ky/zpa, = Kp/(za),, so putting these maps together in (7) we get
an isomorphism

z:K/a— K/za.

The following theorem is Theorem 5.4 in Shimura’s book [Sh]. Let K ab
denote the maximal abelian extension of K and [ - , K®®/K] the Artin map
of global class field theory. If o is an automorphism of C let E° denote the
elliptic curve obtained by applying o to the coefficients of an equation for E.

Theorem 5.11 (Main theorem of complex multiplication). Fiz a
fractional ideal a of K and an analytic isomorphism

¢§:Cla— E(C)
as in (6). Suppose 0 € Aut(C/K) and z € Ay satisfies [z, K*® /K] =0 |gs.

Then there is a unique isomorphism £ : C/z~'a — E°(C) such that the
following diagram commutes

K/a __f__) Eiors

- |-

K/x‘la _E"“) Egors

where Eiors denotes the torsion in E(C) and similarly for EJ,,.
Proof. See [Sh] Theorem 5.4. O
Let H denote the Hilbert class field H of K.

Corollary 5.12. (i) K(j(E))=HCF,

(i) F(E) is an integer of H.

Proof. Suppose 0 € Aut(C/K). With the notation of Theorem 5.11, as in

Proposition 2.6 we see that

J(E) =j(E)’ & EXE° & C/a= C/za & za=Aaforsome A€ C
ere K™ HO;‘ H Ky & [z,H/K] =14 o is the identity on H.

ptoo ploo

This proves (i), and (ii) follows from Theorem 5.7(i) and Lemma 3.2(). 0O
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Corollary 5.13. There is an elliptic curve defined over H with endomor-
phism ring O = Ok.

Proof. By Theorem 2.3(i) there is an elliptic curve E' defined over C with
E'(C) = C/0, and by Proposition 2.6, Endc(E') = ©. Corollary 5.12 shows
that j(E') € H, so (see Proposition III.1.4 of [Si]) there is an elliptic curve
E defined over H with j(E) = j(E'). Hence E is isomorphic over C to E'
so Endg(F) = 0. ,

The map ¢ : End¢(E) — C of Definition 1.7 is injective, so the image is

O C H. By Lemma 1.8 we conclude that Endc(E) = Endg(E). Thus E has
the desired properties. ]

Ezercise 5.14. Let A be the ideal class group of K. If E & C/a, b is an ideal

of K, oy is its image under the isomorphism Ax —+ Gal(H/K), and o € Gk
restricts to oy on H, then

E°(C)=C/b la.
For the rest of this section we suppose that F is a number field.
Theorem 5.15. There is a Hecke character
Y =9Yg: AL /F* - C*
with the following properties.
(i) Ifr€ Af andy = Np gz € A, then
$(2)0 = yg,' (yO) C C.

(ii) {f TE A;‘, is a finite idele (i.e., the archimedean component is 1) and p
is a prime of K, then 1,11(:1:)(N;.~/K:1:);1 € Oy and for every P € E[p™]

[z, F**/F|P = (z)(NF/x z); ' P.

(iii) If q is a prime of F and U, denotes the local units in the completion of
F at q, then

Y(Uy) =1 & E has good reduction at q.

Proof. Suppose z € Af, and let y = Np/kz, 0 = [z,F?®/F). Then o re-
stricted to K 2t is [y, K2*/K] so we can apply Theorem 5.11 with ¢ and y.
Since o fixes F, E° = E so Theorem 5.11 gives a diagram with isomorphisms
§: C/.a = E(C) and ¢’ : C/y~'a — E(C). Then ¢ o¢': C/y~la =5 C/a
is an isomorphism, so it must be multiplication by an element 4, (z) € K *
satisfying ¢qn ()0 = y©. Define

¥(2) = Yo Yan(2).
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It is clear that ¢ : AX/F* — CX is a homomorphism and that (i) is
satisfied. If p is a prime of K and k > 0 then Theorem 5.11 gives a diagram

prap/a,  ——  p*a/a  —— E[p]

Yy ! l v! l ld
p*yplay /ey —S— pFy~lajyla 5 Bp
(where the left-hand square comes from the definition of the action of4 on
K /a) which proves (ii).

Suppose q is a prime of F and p is a rational prime not lying below q.
By (i), if u € Uq then [u, F2°/F] acts on T,(E) as multiplication by t(u).
Since [U,, F2°/F] is the inertia group at g, (iii) follows from Theorem 3.19
and Corollary 3.18(i).

Thus for almost all g, ¢(Uy) = 1. Even for primes q of bad reduction, since
the reduction is potentially good (Theorem 5.7(i)) the action of [Uj, F2b/F)
on T,(E) factors through a finite quotient (Corollary 3.18(ii)) so the argument
above shows that 1 vanishes on an open subgroup of U,. Therefore ¢ is
continuous, and the proof of the theorem is complete. o

Let § = fg denote the conductor of the Hecke character i of Theorem
5.15. We can view ¢ as a character of fractional ideals of F prime to f in the

usual way.
Corollary 5.16. As a character on ideals, ¢ satisfies

(i) #f b is an ideal of F prime to f then 9(b)O = Np/kb,
(i) if q is a prime of F not dividing f and b is an ideal of O prime to q,
then [q, F(E[b])/F] acts on E[b] by multiplication by ¥(q).
(iii) if q is a prime of F where E has good reduction and ¢ = Nrg/qq then
¥(q) € O reduces modulo q to the Frobenius endomorphism ¢q of E.

Proof. The first two assertions are just translations of Theorem 5.15(i) and
(ii). f P € Eiors has order prime to q, P denotes its reduction modulo a
prime of F above q, and a4 = [q, F(E[b])/F], then

$(Q)P = 0P = ¢, P

where the first equality is from (ii) and the second is the definition of the
Artin symbol [q, F(E[b])/F]. Since the reduction map is injective on prime-
to-q torsion (Theorem 3.15) this proves (iii). a

Remark 5.17. Note that Corollary 5.16(iii) gives an explicit version of Propo-
sition 5.9. Proposition 5.9 is one of the key points in the proof of the Main
Theorem of Complex Multiplication, of which Corollary 5.16 is a direct con-
sequence.
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Cgrollary 5.18. Suppose F = K and p is a prime of K such that the map
O* = (O/p)* is not surjective. Then Elp)¢ E(K).

Proof._ll?»y Thiorem 5.15(ii), [0y, K2/K] acts on Elp] via the character
;/)(z)z of Oy, and by Theorem 5.15(i), ¥(OF) C OX. The corollary fol-
ows.

]

Coroll'fn'y 5.19. Suppose F = K. Then the map O* — (O/f)* is injective.
In particular E cannot have good reduction at all primes of K.

Proof. Let u € (?X, u # 1 and let z be the idele defined by zo, = 1 and
zp = u for all finite p. Then 9(z) = Y(u~'z) = u # 1, so by definition of f,
u #1 (mod f). The second assertion now follows from Theorem 5.15(iii). B

If a is an ideal of K let K(a) denote the ray class field of K modulo a.

Corollar).' 5.20. Suppose E is defined over K, a is an ideal of K prime to
6f, and p is a prime of K not dividing 6f.

() Elof] C E(K(af)).
(11) The map Gal(K (E[a])/K)— (O/a)* of Corollary 5.5 is an isomorphism.
(iii) {fb |a then the natural map Gal(K (af)/K (bf)) — Gal(K (E[a])/ K (E[b]))
s an isomorphism.
(iv) K(E[ap™])/K(E[a]) is totally ramified above p.
(v) If the map O% — (O/a)* is injective then K(E[ap™]))/ K (E[a)) is un-
ramified outside of p.

Proof. Suppose z € Ak, z, € O for all finite p and 2o = 1. If z = 1
(.modxf) then Theorem 5.15(ii) shows that [z, K2?/K] acts on Eyo as mul-
tiplication by =*. If z = 1 (mod*a) Theorem 5.15 shows that [z, K*?/K ]
acts on Ela] as multiplication by 1 (z). Thus ’

— if p | f then the kernel of O) — [0}, K(Ela])/K] is the kernel of the
composition O 2 0% (O/a)%;

—if p™ | a and p™*! | a then O /(1 + p"0,) = [OF, K(E[a])/K] —
(O/p™)* is an isomorphism.

All assertions of the corollary follow without difficulty from this. a

Remark 5: 21. Infact, without much more difficulty one can strengthen Corol-
la.ry 5.20(i) (see [CW1] Lemma 4) to show that E[af] = E(K (af)), but we
will not need this.

Corollary 5.22. Suppose q is a prime of F. There is an elliptic curve E’
defined over F, such that

- E' is isomorphic to E over F,
— E' has good reduction at q.
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Proof. Let ¥ be the Hecke character attached to E and U, the group of local
units at q, viewed as a subgroup of A%. By Theorem 5.15(i), ¥e(Uq) C O*.
Therefore we can find a continuous map

X :AR[F* = O

such that x = g on U;. We will take E' to be the twist of E by X! (see

[Si] §X.5).

Explicitly, suppose FE is given by a Weierstrass equation

y*=1°+az+b.

and let w = #(O*). By class field theory we can view x as an element of

Hom(GFp,0) = H'(F, p,,) = F* [(F*)".
In other words, there is a d € F* such that

(d*/*)’ = x(o)d/* for every o € GF.

Define
=2+ dPax+d% fw=2

E' ={y*=1%+daz ifw=4
y:=2z%+db ifw=6
(see Example 1.1). The map
(dz,d®/?y) if w=2

(z,y) — { (@2, d/y) fw=4
(d\3z,dY/%y) fw=6

defines an isomorphism ¢ : E — E' over F(d'/*) (where we are using
Lemma 1.13). If P € E(F) and 0 € GF, then

a(¢(P)) = ¢° (0 P) = x(0) " ¢(a P).

From the definition of the Hecke character ¥z of E' we see that ¢¥p =
x4 g. By construction this is trivial on Uy, so by Theorem 5.15(iii) E' has
good reduction at q. - O

6 Descent

In this section we use the results of §5 to compute the Selmer group of an
elliptic curve with complex multiplication. After some cohomological lemmas
in §6.1, we define an enlarged Selmer group S'(E) in §6.2 which is easier to
compute (Lemma 6.4 and Theorem 6.5) than the true Selmer group S(E).

L
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The main result describing the Selmer group S(E) is Theorem 6.9. The meth-
ods of this section closely follow the original work of Coates and Wiles [CW1]
(see for example [Co)).

We continue to assume that E is an elliptic curve defined over a field F
of characteristic 0, with complex multiplication by the maximal order O of
an imaginary quadratic field K.

6.1 Preliminaries

Lemma 6.1. Suppose p is a prime of K lying above a rational prime p > 3,
andn > 0. Let C be a subgroup of (O/p™)*, acting on O/p™ vie multiplica-
tion. If either C is not a p-group or C is cyclic, then for everyi >0

H{(C,0/p™) = 0.

Proof. If C is cyclic this is a simple exercise. If C’, the prime-to-p-part of C,
is nontrivial, then (O/p™)¢" = 0 and Hi(C',0/p") = 0 for every i, so the
inflation-restriction exact sequence

0 = H{(C/C',(0/p™") - H(C,0/p™) — H(C',0/p")
shows that H*(C,O/p™) = 0. o

Lemma 6.2. Suppose p is a prime of K lying above a rational prime p > 3,
andn > 0.

(i) If Op = Z, or if E[p] & E(F) then the restriction map gives an isomor-
phism

Hl (F, E[pn]) o Hl (F(E[p”]), E[pn])Gal(F(E[p"])/F) .

(ii) Suppose F is a finite extension of Qq for some £ # p. Then the restriction
map gives an injection

H'(F,E)p» — H'(F(E[p"]), B)pn.

Proof. Use Proposition 5.4 and Corollary 5.5 to identify E[p™] with O/p™ and
Gal(F(E[p™])/ F) with a subgroup C of (O/p™)*. Then C is cyclic if O, = Z,,
and C is a p-group if and only if E[p] C E(F) (since Gal(F(E[p])/F) C
(O/p)* has order prime to p). Thus (i) follows from Lemma 6.1 and the
inflation-restriction exact sequence.

The kernel of the restriction map in (ii) is H(F,/F, E(F,))y», where
F, = F(E[p™]). We may as well assume that n > 1, or there is nothing to
prove. By Theorem 5.7(ii), E has good reduction over F,,, so by Proposition
3.4 there is a reduction exact sequence

0 — Ey(F,) = E(F,) - E(k,) =0
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where k,, is the residue field of F,,. Thus E;(F},) is a profinite O-module,
of finite index in E(F,), on which (by Theorem 3.15(i)) every a prime to £
acts invertibly. It follows that the pro-p part of E(F,) is finite, say E{p™] for
some m > n, and hence

H'(Fy/F,E(Fy))y» C H' (Fa/F,E[p™]) = H'(F(E[p™])/ F, E[p"™)).

If E[p] C E(F) then E has good reduction by Theorem 5.7(ii) (and Remark
5.8) so Fy,/F is unramified and hence cyclic. Hence exactly as in (i), Lemma
6.1 shows that H!(F(E[p™])/F, E[p™]) = 0, and (ii) follows. e

6.2 The Enlarged Selmer Group

Suppose for the rest of this section that F is a number field.

Definition 6.3. If a € O define S,(E) = S, (E/r) C H'(F, E[a]) by

S,(E) = {c € H'(F, E[a)) : resq(c) € image(E(F,)/aE(F,)) for every qt a}
= {c € H'(F, E[a)) : resq(c) = 0 in H*(F,, E(F,)) for every qta}

in the diagram (5). Clearly S, (E) C SL(E).

Lemma 6.4. Suppose p is a prime of K not dividing 6, n > 1, E[p"] C E(F)
and p™ = aO. Then

So(E/r) = Hom(Gal(M/F), E[p"])

where M is the mazimal abelian p-extension of F unramified outside of primes
above p.

Proof. Since Ep"] C E(F),
H'(F,E[p"]) = Hom(GF, E[p")), H'(Fy, Elp"]) = Hom(GF,, E[p"]).

Suppose q is a prime of F' not dividing p. By Theorem 5.7(ii), E has good
reduction at p so by (4) and Corollary 3.17, the image of E(Fy)/aE(Fy)
under (5) is contained in Hom(GF, /14, E[p"]), where I, is the inertia group
in GF,, and we have O-module isomorphisms

Hom(Gr, /I, Elp")) = Elp"] = 0/"0.

On the other hand, using Theorem 3.15 and writing k for the residue field of
Fy,
E(F,)/aE(F,) = E(k)/aE(k)= O/p"0.

Thus the image of E(Fy)/aE(F,;) < H(F,, E[p"]) under (5) must be equal
to.Hom(GF, /Iy, E[p"]), and the lemma follows from the definition of S,. 0O
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Theorem 6.5. Suppose E is defined over K, p is a prime of K not dividing
6, n>1, and p"™ = aO. Let K, = K(E[p"]). Then

S.(E k) = Hom(Gal(M,/K,), E[p"])Cel(K~/K)

where M,, is the mazimal abelian p-extension of K, unramified outside of
primes above p.

Proof. Let G = Gal(K,,/K). By Lemma 6.2(ii) and Corollary 5.18, the re-
striction map gives an isomorphism

H'(K,E[p"]) = H' (K., E[p"))°.

Clearly the image of S, (E/ k) under this restriction isomorphism is contained
in S, (Ek, ). Conversely, every class in H' (K, E[p"]) whose restriction lies in
Sa(E/Kk,) already lies in S, (E, k), because by Lemma 6.2(iii) the restriction
map

H'(K,, E(Kq)) = H' (Kq(E[p™)), E(Ky))

is injective for every prime g not dividing p. This proves that
Sa(B/k) = SalEk,)%,

and so the theorem follows from Lemma 6.4. O

6.3 The True Selmer Group

For the rest of this section we will suppose that E is defined over K, i.e.,
F = K. Recall that by Corollary 5.12 this implies that K has class number
one. Fix a prime p of K not dividing 6f and a generator 7 of p. Let Ag :
E,(Kp) = pO, be the logarithm map of Definition 3.12.

Lemma 6.6. The map Ag extends uniquely to a surjective map E(K,)—»pO,
whose kernel is finite and has no p-torsion.

Proof. By Corollary 3.13, Ag : E1(K,) = pO, is an isomorphism, and by
Lemma 3.6(i) and Corollary 5.16(iii), E(K,)/E1(K,) is finite and has no p-
torsion. 8]

Definition 6.7. Foreveryn > 1let K, , = K,(E[p"]) and define a Kummer
pairing
(-5 )an : E(Kp) X Kpp = E[p"]
P,z w[z,K¥/Knp]Q-Q

where [ -, K3% /K, ;] is the local Artin map and Q € E(K,) satisfies 7"Q =
P.
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Lemma 6.8. For every n there is a unique Galois-equivariant homomor-
phism b, : K\, — E[p"] such that if P € E(K,) and z € K,

(P> T)pn = (W_IAE(P))J,,(:E).
Further, if O, , denotes the ring of integers of Knp then §,(05,) = E[p"].
Proof. Define 6,,(z) = (R, )~ where Ag(R) = w, and then everything except
the surjectivity assertion is clear.

First note that by Theorem 5.15(ii), if z € O, then [z, K,, ,/ K;] acts on
E[p™] as multiplication by z~1. Therefore E(K,) has no p-torsion and E[p]
has no proper G, -stable subgroups.

By Lemma 6.6, E(K,)/p"E(K,) — O/p". Since

E(K,)/y"E(Ky) < H (K, E[p"]) = Hom(K;,, E[p"])
is injective (the first map by (5) and the second by Lemmas 6.2(ii) and 6.6),
the image of d,, is not contained in E[p™~!]. Since the image of 4, is stable

under Gk,, it must be all of E[p™]. But 8,(K,,)/0n(Oys) is a quotient of
E[p™] on which Gk, acts trivially, and (as above) such a quotient must be

trivial, 80 8,(Ops) = E[p"] as well. m]

Theorem 6.9. With notation as above, let K, = K(E[p"]) and O,, ils ring
of integers, and define

Wo =KX [ KX [I OF. - ker(6s) C A%,

v|oo vipoo

Then
Spn(E/k) = Hom(Ag /Wi, E[pn])Gal(K,,/K)-

Proof. By definition we have an injective map
E(K,)/n"E(Ky) < Hom(K Y, [ker(8n), Efp™]) 8 (Kno/Ko),

By Lemma 6.6, E(K,)/m"E(K,) = O/p". By Lemma 6.8 K, ker(d,) =
E[p™], and by Theorem 5.15(ii),

Hom(E[p"], E[p"])®*(¥~»/K») = Homo (E[p™], E[p"]) = O/p".

Therefore the injection above is an isomorphism, and the theorem follows
from Proposition 6.5 and class field theory. o

Let A denote the ideal class group of K(E[p]), and £ the group of global
units of K (E[p]).

Corollary 6.10. With notation as above,

S(E) =0 (Hom(A, E[p))C3(KBBD/K) =0 and 6,(E) # o) ,
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Proof. By Corollary 5.20, K (E[p])/ K is totally ramified at p, of degree Np—1.
We identify K, with the completion of K(E[p]) at the unique prime above
p, and let O; , denote its ring of integers and £ the closure of £ in O, ;. Let
V =ker(61) N 05, and A = Gal(K(EI[p])/K). We have an exact sequence

0 OF, JEV = Ak /W1 —+ A" >0

where W, is as in Theorem 6.9 and A’ is a quotient of A by some power of the
class of the prime P above p. Since PNP~! = p is principal, Hom(A', E[p]) =
Hom(A, E[p]). Using Theorem 6.9 we conclude that

Sx(E) =0 ¢ (Hom(A4,E[p))* =0 and Hom(Oy,/EV,E[p)4 =0).

By Lemma 6.8, 4; : le,p/ V — Ef[p] is an isomorphism. Since E[p] has no
proper Galois-stable submodules, it follows that

Hom(OF,/EV,E[p)2 =0 & E¢V & 6&(E)#O.

This completes the proof of the corollary. a

7 Elliptic Units

In this section we define elliptic units and relate them to special values of
L-functions. Elliptic units will be defined as certain rational functions of z-
coordinates of torsion points on a CM elliptic curve. The results of §5 will
allow us determine the action of the Galois group on these numbers, and hence
their fields of definition. We follow closely [CW1] §5; see also [dS] Chapter II
and Robert’s original memoir [Ro].

Throughout this section we fix an imaginary quadratic field K with ring
of integers O, an elliptic curve E over C with complex multiplication by O,
and a nontrivial ideal a of O prime to 6. For simplicity we will assume that
the class number of K is one; see [dS] for the general case.

7.1 Definition and Basic Properties

Definition 7.1. Choose a Weierstrass equation (1) for E with coordinate
functions z, y on E. Define a rational function on E

Opa=a?AEN" [ @-=z(P)~°
P¢E[a]-0

where a is a generator of a and A(E) is the discriminant of the chosen model
of E. Clearly this is independent of the choice of a.

Lemma 7.2. (i) Og, is independent of the choice of Weierstrass model.
(ii) If ¢ : E' =3 E is an isomorphism of elliptic curves then Op: o = O 40 ¢.
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(iii) If E is defined over F then the rational function OF,, is defined over F.
Proof. Any other Weierstrass model has coordinate functions ', y' given by
¢ =vlc+r, y=uly+sz+t

where u € C* ([Si] Remark II1.1.3), and then a} = u'a; and

A(E") = u?A(E).
-
Since #(FE[a]) = Na, this proves (i), and (ii) is just a different formulation of
(i). For (iii) we need only observe that a € F, A(E) € F, and Gr permutes
the set {z(P) : P € E[a] — O}, so GF fixes Op,q. 0

Lemma 7.3. Suppose E is defined over K and p is a prime of K where E
has good reduction. Fiz a Weierstrass model for E which is minimal at p.
Let b and ¢ be nontrivial relatively prime ideals of O and P € E[b)], Q € Elc]
points in E(K) of ezact orders b and ¢, respectively. Fiz an eztension of the
p-adic order ord, to K, normalized so ord,(p) = 1.

(i) Ifn >0 and b = p" then ordy(z(P)) = —2/(Np"~1(Np — 1)).
(ii) If b is not a power of p then ord,(z(P)) > 0.
(iii) If p{ be then ord, (z(P) — =(Q)) = 0.

Proof. Suppose that b = p™ with n > 1. Let E be the formal group over Oy
associated to E in Theorem 3.7. Let = 9g(p), let [v](X) € O[[X]] be the
endomorphism of E corresponding to 7™ for every m, and define

F(X) = [#")(X)/[x")(X) € O[[X]].

Since m reduces to the Frobenius endomorphism of the reduction E of E
modulo p (Corollary 5.16(iii)), it follows from Corollary 3.9 and Proposition
3.14 that

- F(X) = XNP"-Ne"T (o p)
- f(X) =7 (mod X).

Thus by the Weierstrass preparation theorem,

where e(X) is an Eisenstein polynomial of degree Np™~1(Np—1) and u(X) €
ofix]>. )

Since the reduction of m is a purely inseparable endomorphism of E,
Lemma 3.6 shows that E[p"] C Ej(K,). Thus z = —z(P)/y(P) is a root of
£(X), and hence of e(X), so ord, (z(P)/y(P)) = 1/(Np"~*(Np — 1)). Now
(i) follows from Lemma 3.5.
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If b is not a power of p then by Theorem 3.15(i), P ¢ E;(K,). Hence by
Lemma 3.5, ord, (z(P)) > 0, which is (ii). Further, writing P and Q for the
reductions of P and Q, we have

ordy(z(P) ~2(Q)) >0 & z(P) =z(Q) e P=+Q &
sPFQ=0PFQ € Ei(K,).

Since b and c are relatively prime, the order of P + Q is not a power of p. So
again by Theorem 3.15(i), P + Q ¢ E;(K}), and (iii) follows. ]

For every ideal b of O write K(b) for the ray class field of K modulo b.

Theorem 7.4. Suppose b is a nontrivial ideal of O relatively prime to a,
and Q € E[b] is an O-generator of E[b].
(i) Op,4(Q) € K(6).

(ii) Ifcis an ideal of O prime to b, c is a generator of ¢, and o =[c, K (b) /K],

then
O£,.(Q)7* = Op,a(cQ).

(iii) If b is not a prime power then Of «(Q) is a global unit. If b is a power

of a prime p then O 4(Q) is a unit at primes not dividing p.

Proof. Since we assumed that K has class number one, by Corollary 5.13
and Lemma 7.2(i) we may assume that E is defined over K by a Weierstrass
model (1). Then by Lemma 7.2(iii) O, belongs to the function field K(E).

Let 1 be the Hecke character associated to E by Theorem 5.15. Suppose
z € ][, 05 C Ak and £ = 1 mod™b, and let 0, = [z, K*°/K]. By Theorem
5.15, ¥(z) € O* = Aut(E) and 0,Q = 1(z)Q. Therefore

QE,a(Q)h = @E,a(Qa’) = @E,a(w(x)Q) = GE,a(Q)a

the last equality by Lemma 7.2(ii). Since these o, generate Gal(K/K (b)),
this proves (i).

For (ii), let z € Ak be an idele with zO = ¢ and z, = 1 for p dividing
b. Then Theorem 5.15 shows that ¥(z) € cO* and o.Q = ¥(z)Q. So again
using Lemma 7.2(ii),

Og,q(Q)” = Op,a(¥(2)Q) = OF,a(cQ).
This is (ii).
For (iii), let p be a prime of K such that b is not a power of p. By Corollary

5.22 and Lemma 7.2, we may assume that our Weierstrass equation for E has
good reduction at p, so that A(E) is prime to p. Let n = ordy(a). Then

ordy (0p,a(@))/6=—2n~ > ordy(z(Q) — z(P))
PeE[pr]-0

- ) ordy(z(Q) — z(P)).

PEEa]—-E[pn]
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By Lemma 7.3, since b is not a power of p,

ord, (z(Q) — =(P))
_ J—-2/(Np™ — Np™~1) if P has order exactly p™, m >0
o if the order of P is not a power of p.

From this one verifies easily that ordy(Of,.(Q)) = 0. ]

7.2 'The Distribution Relation

Lemma 7.5. Of 4 is a rational function on E with divisor

12Na[0] - 12 Y [P].
P€E(a]
Proof. The coordinate function z is an even rational function with a double

pole at O and no other poles. Thus for every point P, the divisor of  — z(P)
is [P] + [-P] — 2[0] and the lemma follows easily. O

Theorem 7.6. Suppose b is and ideal of O relatively prime to a, and B is a
generator of b. Then for every P € E(K),

H QE,a(P"' R) = OE,a(IBP)-
REE[8]

Proof. Lemmas 7.2(iii) and 7.5 show that both sides of the equation in the
theorem are rational functions on E, defined over K, with divisor

12 ) [Q-12Na ) [B]

QEE[ab] ReE(b}

Thus their ratio is a constant A € K*, and we need to show that A = 1.
Let wg = #(0O*) and fix a generator a of a. Evaluating this ratio at
P = O one sees that

A(E)(Na—l)(Nb—l) _ »
o 12(N6-1) gT2(Na—1) I II @® -=(P)=°=upx

ReE(b] PEE[a]
R#0 P30

A=

with
A(E)(Na—l)(Nb—-l)/wx

— -12
K= SaNe—1)/wk gia(Ne—1)/wk [I®) — z(P))~12/¥x,

where the final product is over R € E[b] — O and P € (Efa] — 0)/ £ 1 (recall
a is prime to 6). Since wg divides 12, all of the exponents in the definition
of p are integers.

Exactly as in the proof of Theorem 7.4(iii), one can show that p € O,
and therefore A = 1. 8]
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Corollary 7.7. Suppose b is an ideal of O prime to a, Q € E[b] has order
ezactly b, p is a prime dividing b, 7 is @ generator of p, and b’ = b/p. If the
reduction map O — (O/b')* is injective then

Or,(rQ) ifp|b

Nk (o)/k(61OE,«(Q) = _
(6)/K (6" OE,a(Q) Opa(1Q) T ifp e

where in the latter case Frob,, is the Frobenius of p in Gal(K(b')/K).

Proof. Let C denote the multiplicative group 1 + b'(0/b). Because of our
hypotheses that O* injects into (O/b'), C is isomorphic to the kernel of
the map

(O/B)* /0™ = (O/b")* JO.
Thus class field theory gives an isomorphism

C = Gal(K (b)/K(b"))

which we will denote by ¢ ~+ .. Therefore

Nk (o)/x(61PE,0(Q) = H OFr,.(Q) = H OF,a(cQ)
ceC ceC

by Theorem 7.4(ii).
One sees easily that

{eQ:c€C}={P e E[b]: 7P =nQ and P ¢ E[b']}

={{Q+R:R€E[p]} ifp| b
{Q+R:Re Ep,R#-Q (mod E[t'))} ifptb’

Thus if p | b’

Ni(o)/k(6)084(Q) = [[ O£.a(Q+R) = 0pq(nQ)
ReE[p)

by Theorem 7.6. Similarly, if p { b’
OE,6(Q + Ro)Nk(s)/k(6)OE,a(Q) = Op,o(7Q)

where Ry € Elp] satisfies Q + Ry € E[b']. But then by Theorem 7.4(ii) (note
that our assumption on b’ implies that b’ # ©)

OF,a(Q + Ro)F™% = O o(1Q + 7 Rop) = O o(rQ)

so this completes the proof. O
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7.3 Elliptic Curves over K

Since the function O , depends only on the isomorphism class of E over C,
we need to provide it with information that depends on E itself to make it
sensitive enough to “see” the value of the L-function of E at 1. Following
Coates and Wiles [CW1] we will write down a product of translates of Op,q
and then show that it has the connections we need with L-values.

From now on suppose that our elliptic curve E is defined over K, 1 is the
Hecke character attached to E by Theorem 5.15, f is the conductor of 9, and
a is prime to f as well as to 6. For P € E(K) let 7p denote translation P¢so
Tp is a rational function defined over K(P).

Fix an O-generator S of E[f]. By Corollary 5.20(i) S € E(K(f)), and we
define

Aga = AEas = H OF,q0Ts.
o€Gal(K(f)/K)

Proposition 7.8. (i) Ag,q is a rational function defined over K.
(ii) If B is a set of ideals of O, prime to af, such that the Artin map
b~ [b, K(f)/K] is a bijection from B to Gal(K(f)/K), then

Ap,a(P) = [] @r.«(¥(8)S + P).
beB

(iii) If v is an ideal of O and Q € Elt], Q ¢ E[f], then Ap.(Q) is a global
unit in K(E[t]).

Proof. The first assertion is clear, (ii) is immediate from Corollary 5.16(ii),
and (iii) follows from Theorem 7.4(iii). O

7.4 Expansions over C

We continue to suppose that E is defined over K. Fix a Weierstrass model
of E (over K) and let L C C be the corresponding lattice given by The-
orem 2.3(ii); then OL = L (Proposition 2.6) so we can choose 2 € C*
such that L = 20. The map £(z) = (p(z; L), p'(2; L)/2) is an isomorphism
C/L = E(C), and we define O, s = Opa 0, i.e.,

Ora(z) =a AN [ (p(= L) - p(u; L)~

u€a~1L/L—0
Definition 7.9. Define

A(L) = n—tarea(C/L),

s2(L) = lim Z w3 w| 7%,
s0% 0AwEL

n(z; L) = A(L)"'Z + s3(L)z,

.0(z; L) = A(L)e‘ﬁn(z Lzg(z; L)'2.
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Lemma 7.10. Oy, o(2) = 8(2; L)N*/8(z;a71L).

Proof. Write f(z) = 0(z; L)N°/6(z;a*L). Note that although 6(z; L) is not
holomorphic (because of the Z in the definition of 1(z; L)), f(z) is holomor-
phic. One can check explicitly, using well-known properties of o(z; L) (see
[dS] §11.2.1), that f(z) is periodic with respect to L and its divisor on C/L
is 12Na[0] ~ 123", ;-1 1/ [v)-

Thus by Lemma 7.5, @, o = Af for some A € C*. At z = 0, both functions
have Laurent series beginning a~12A(L)Ne—1212Na-1) ‘5o A = 1. o

Definition 7.11. For k > 1 define the Eisenstein series

z+w
z + w|?s

Ei(z; L) —hmz|

= — ifk>3
z g URZ
weL(z+w)

where the limit means evaluation of the analytic continuation at s = k.

Proposition 7.12.
Ey1(2; L) =log(o(2; L))’ — s2(L)z — A(L)™'%,
Ea(z;L) = p(z; L) + s2(L),

_1\k k-2
Ex(z; L) = (2 _1)1)! (%) p(z; L) ifk>3.

Proof. The third equality is immediate from the definition of p(z; L). For the
first two, see [CW1] pp. 242-243 or [GS] Proposition 1.5. a

Theorem 7.13. For every k > 1,

k
(Edé) log O a(2) = 12(=1)*"*(k — 1){(NaE(z; L) — Ex(z;a7"L)).

Proof. By Lemma 7.10

d\* d\** d d
(Zl?) logOp,4(2) = (E) (Naalog(O(z;L)) - Ez-log(é?(z;a_lL))) .
The definition of 8 shows that
log(6(z; L)) = log(A(L)) — 6s9(L)2? — 6A(L) 2z + 121log(a(2; L)).

Now the theorem follows from Proposition 7.12. a
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Definition 7.14. Define the Hecke L-functions associated to powers of  to
be the analytic continuations of the Dirichlet series

L@t ) = 3 &8 Nb,,

summing over ideals b of O prime to the conductor of ¥*. If m is an ideal of
O divisible by f and c is an ideal prime to m, we define the partial L-function
La(1*,s,c) be the same formula, but with the sum restricted to ideals of K
prime to m such that (b, K(m)/K] = [¢, K(m)/K].

Recall that 2 € C* is such that L = 20.

Proposition 7.15. Suppose v € KL/L has order m, where m is divisible
by §f. Then for every k > 1,

Ek(’U; L) = v_k')b(c)kLm('lea k, C)

-

where ¢ = 2~ lym.

Proof. Let pu be a generator of m, so that v = af2/u for some o € O prime
to m. For s large,

Z (0+o)*  Np* 02F B*
lo+wf?e Rk |0 i

w€lL BEO, B=a(mod m)

By Corollary 5.16(i), if we define
e(8) = ¥(BO)/B

then € is a multiplicative map from {3 € O : §is prime to f} to O*. By
definition of the conductor, € factors through (O/f)*. Thus if 8 = o« (mod m),

aO
5= 9(80) 22,
Therefore
s £ _ oy 3 o)t
|,3|28 ak Nb*
B€O, B=a (mod m) bCC,[b,K(m)/K]=[aO,K(m)/K]
’(/J(C) m(’l/Jk s, Uc)
and the proposition follows. (]

Definition 7.16. Fix a generator f of f and a set B of ideals of O, prime
to af, such that the Artin map b — [b, K(f)/K] is a bijection from B to
Gal(K(f)/K). Let u= £2/f € 'L and define

Apo(2) = AL,a,5(2) = Ap a6 () = [] Or,e(@(b)u + 2).
beB

By-Proposition 7.8(ii), Ar,s = Ag,e 0 &.
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Theorem 7.17. For every k > 1,

k
(d%) og Ap,a(2) |z=0= 12(=1)¥"1(k — 1)!£*(Na — $(a)*)2~* Ly(5*, k).

Proof. By Theorem 7.13

(;E)kb“w(z) oo = 3

d k
(5) 19862 lcvion

beB
=12(-1)F 1k — 1)! (Na > Ex(@(b)u; L) - Y Ei(4(b)y; a-lL)) )
beB beB

By Proposition 7.15,

Y E@(0)u; L) = Y ((b)u)F(0)* Ly($*, k, b) = u*Li(§*, k).

beB beB

By inspection (and Corollary 5.16(i)) Ex(2;a~1L) = ¢(a)* Ex(y(a)z; L), so

Y Eu(@(b)u; a7 L) = u~kyp(a) Li(*, k).

beB

a

Although we will not use it explicitly, the following theorem of Damerell
is a corollary of this computation.

Corollary 7.18 (Damerell’s Theorem). For every k > 1,
Q7FL(p*, k) € K.

Proof. By Proposition 7.8(i), Ar,(2) is a rational function of p(z;L) and
#'(2; L) with coefficients in K. Differentiating the relation (from Theorem
2.3)

©'(z; L) = 4p(z; L) + dap(z; L) + 4b

shows that all derivatives p(¥)(z; L) also belong to K (p(z; L), p '(2; L)), and
hence A(k) does as well. Thus the corollary follows from Theorem 7.17. O

7.5 p-adic Expansions

Keep the notation of the previous sections. Fix a prime p of K where E
has good reduction, p { 6. Suppose that our chosen Weierstrass model of E
has good reduction at p and that the auxiliary ideal a is prime to p as well
as 6f. Let E be the formal group attached to E over O, as in §3.2, and
z(Z),y(Z) € Oy[[Z]] the power series of Theorem 3.7.
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Definition 7.19. Let A;(Z) € Z + Z2K,[[Z]] be the logarithm map of E
from Definition 3.10, so that X\, (Z) € Oy[[Z]]*, and define an operator D on
O,l[2]] b

p[1Z]] by L4

D= =
N(2) dZ

Proposition 7.20. Identifying (z,y) both with (p(2; L), 19’ (2, L)) and with
(z(Z),y(Z)) leads to a commutative diagram

K(p(),¢'(2)) +—— K(E) —— K(=(2),4(2)) <= K;((2)

4] ! I I

K(p(2),9'(2)) «—— K(E) —— K(z(2),y(2)) <= K((2))
Proof. Differentiating the relation p'(2)? = 4p(2)® + 4ap(2) + 4b shows that
p"(2) = 6p(x)* + 2a € Ky(p(2), 9'(2))-

Thus, since both vertical maps are derivations, we need only check that
D(z(2)) = 2y(Z) and D(y(Z)) = 3z(Z)? + a. (In fact, it would be engn*gh
to check either equality.) Both equalities are immediate from the definition
(Definition 3.10) of & and Ag. a

Definition 7.21. Let A, «(Z) be the image of Ag,q in Kp((Z)) under the
map of Proposition 7.20.

Theorem 7.22. (i) A,,.(2) € Op[[Z]]*.
(i) For everyk > 1,

D*log(Ap.a(2)) |z7=0 = 12(-1)* "' (k - 1)! 5 (Na — p(a)¥) 2 FL(P*, k).

Proof. Fix an embedding K < K, so that we can view z(R) € K, when
R € E[f]. Let R be the ring of integers of K. '

Consider one of the factors z(¥(b)S + P) — z(Q) of Ag,q(P), with Q €
E[a] — O. The explicit addition law for z(P) ([Si] §111.2.3) shows that

— S))?
s + P) - 2(Q) = LDIZLERI — 2(P) —2p(6)8) - 2(Q)

By Lemmas 7.3(ii) and 3.5, z(y(b)S), y(¢(b)S), z(Q) € R. Substituting z(Z)
for z(P), y(Z) for y(P) and using the expansions in Theorem 3.7 to show

o 2(2) € 272+ 20,([2]], y(2) € —Z77 + Oy[(Z]]

gives

s@(®)S +P) —2(Q) + gs0(Z) € R[[Z]]
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under the map of Proposition 7.20, where go o satisfies

96,0(0) = z(1(b)S) — z(Q) € R™

by Lemma 7.3(iii), so go,q(Z) € R[[Z]]*. Also A(E),a € O} since our
Weierstrass equation has good reduction at p and p { a. Thus

Ap.o(Z) = A(B)Ne-V# B~ 12#B) TT g, o(2)~ € R[[Z])*.
b!Q

Since we already know A, o € Kp((Z)), this proves (i).

The second assertion is immediate from Theorem 7.17 and Proposition
7.20. o

8 Euler Systems

In this section we introduce Kolyvagin’s concept of an Euler system (of which
the elliptic units of §7 are an example) and we show how to use an Euler
system to construct certain principal ideals in abelian extensions of K. In
the next section we use these principal ideals (viewed as relations in ideal
class groups) to bound the ideal class groups of abelian extensions of K.

As in the previous section, fix an imaginary quadratic field K and an
elliptic curve E defined over K with complex multiplication by the ring of
integers O of K. Let f be the conductor of the Hecke character 9 of E, and
fix a generator f of f.

Fix a prime p of K not dividing 6f, and for n > 1let K,, = K(E[p"]). Let
p denote the rational prime below p. Fix a nontrivial ideal a of O prime to
6fp. Let R = R(a) denote the set of squarefree ideals of O prime to 6fap, and
if v € R let Ky(r) = Kn(E[t]) = K(E[tp]). The letter q will always denote
a prime of R.

Also as in the previous section, fix a Weierstrass model of E which is
minimal at p, let L = 20 C C be the corresponding lattice given by Theorem
2.3(ii), and define & = (p(-;L),p'(-;L)/2) : C/L = E(C).

8.1 The Euler System
Definition 8.1. If t € R and n > 0 define
() = 042 (6) = Ap, .62/ EGE™) 7' 2)) = Apa(@(p™0) '),
where Ay , is as in Definition 7.16.
Proposition 8.2. Supposer € R and n > 1.

(i) nn(r) is a global unit in K,(t).
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(i) If q is a prime and vq € R, then

—_ -1
Nk, (cq)/Kn(r)Tn{4T) =nn(t)l Frobg '

(iii) N, 1 (c)/Kn(e)ln+1(8) = Mn(5).

Proof. Assertion (i) is just a restatement of Proposition 7 .8(iii), and (ii) and
(iii) are immediate from Corollary 7.7. 0

-
8.2 Kolyvagin’s Derivative Construction

Definition 8.3. Write G; = Gal(Ky(r)/Ky). By Corollary 5.20(ii), G is
independent of n > 1, and we have natural isomorphisms

Gt = Hq)t Gq
Oft) = [lq(O/a).

If q | © this allows us to view G, either as a quotient or a subgroup of G..

By Corollary 5.20 if qv € R then K, (qt)/Ka(t) is cyclic of degree Ngq — 1,

totally ramified at all primes above g and unramified at all other primes.
For every v € R define

N. = Z o€ Z[Gt]
0€G.

so we clearly have

Ne =[] N,

qlt

For every n > 1 and t € R, let 2, be an indeterminate and define X,
to be the Gal(K,(r)/K)-module Yy ./ Zy,,c where

Yo, = €D Z[Gal(Kn(s)/K)|2n.s,

sl

Zne = 3 Z[Gal(Kn(0)/K)] (NgZn,0 — (1 = Frob)zns) C Yo

qs|t

In other words, X, . is the quotient of the free Z|Gal(Kn(r)/K)]-module on
{Zpns: 5|t} by the relations

— G5 acts trivially on Zy 5, and
"= NgZngs =(1- Frobq_l):cn,, if gs | .
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For every prime q € R fix once and for all a generator o, of G and define

Ngq-2
Dy= Y iol € Z[G,]

=1
and forte R
D, =[] D, € Z[G.].

qlc

If M is a power of p and n > 1 define R,, s C R to be the set of ideals
t € R such that for every prime q dividing t,

- q splits completely in K,,/K
- Ng=1 (mod M).

Proposition 8.4. Suppose M is a power of p, n > 1, and vt € R, 1.

(i) X, has no Z-torsion.
(i) DiZny € (Xn,/MX, ).

Proof. For every prime q € R and divisor s of t, define

Bq =Gq - {l}a
B, = IIBq = {ng 1gq € Bq} C G,
q|s qs

B = U,|ng.’13n,tx C Xne

Then one can .show by an easy combinatorial argument (see [Ru2] Lemma
2.1) that X, . is a free Z-module with basis B, which proves (i)
Note that

(04 —1)Dy =Ng—1—- N,

We will prove (ii) by induction on the number of pri ividi
rimes dividing t.
g]t, t=gs. Then p g t. Suppose

(09 = 1)Dezne = (0q = 1)Dg Dy c
= (Ng ~1)Dszp,c — (1 — Frob; ") D,z 4.

Since q € Ry, i, M | Nq—1 and Frob, € G, so by the induction hypothesis

(O'q - I)Dtxn,t E MXn,g.

Since the o4 generate G., this proves the proposition. O
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Definition 8.5. An Euler system is a collection of global units
{n(n,x) € Ku(r)* : n>1, re R}
satisfying
N, (a0 Ka (0 (1 1) = 1, 5) 7%, (8)
Nk, 1(2)/Ka ()0 + 1,7) = 1(n, ). 9)
Equivalently, an Euler system is a Galois equivariant map

n: 1iL)an,, — UKn('C)X

n,t n,c

such that n(zn,) is a global unit for every n and t. We will use these two
definitions interchangeably.
For example, by Proposition 8.2 we can define an Euler system by

n(n,t) = ().

Proposition 8.6. Suppose 1) is an Euler system and q € R is a prime. Write
Nq—1 = dp* with d prime to p. Then for everyn > 1 and every t € R prime
toq,

n(n, qr)® En(n, )0
modulo every prime above q.
Proof. Suppose m > n, and let G = Gal(K,(qt)/Kn(qr)). Fix a prime £ of
Km(qt) above g, and let H be the decomposition group of qin G. Let H' C G
be a set of coset representatives for G/H, and define

Ng=Y v, Nw=) v

YEH YEH'

so that NgNgy = Z'yEG Y.
Since q is totally ramified in K, (qt)/Km(t), the Euler system distribution
relation (8) reduces modulo £ to

n(m, q©)NT" = (n(m, )7 N1 (mod ).

On the other hand, since H is generated by the Frobenius of q, if A denotes
the degree of the residue field extension at q in K,(r)/K then (9) reduces to

n(n,t) = n(m, )NV = (n(m,1)¥)"  (mod O)
and similarly n(n, qt) = (n(m, qt)V#')! (mod 9Q), where
#(H)-1 .
t= > (Ng")'=#(H) (mod Nq-1).

i=0
Recall that p* is the highest power of p dividing Nq — 1. Since the decom-

position group of q in K /K is infinite, for m sufficiently large we will have
p* { t, and then combining the congruences above proves the proposition.

o T
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For the Euler system of elliptic units, one can prove directly, using Lemma
7.3, that the congruence of Proposition 8.6 holds with d = 1.

Definition 8.7. Suppose 7 is an Euler system, n > 1 and v € R. Using the
map X, = Knp(t)* corresponding to n, we define a 1-cocycle ¢ = ¢y n :
G. = Kn(x)* by

e(o) = n((a - l‘llet:cn,r

This is well defined by Proposition 8.4. Since H' (G, K,(t)*) = 0, there is a
B € K,(r)* such that c(o) = 3%/ for every o € G,. Then 7(zys )P /B8M €
K and we define

o, (t) = 1(2n,e) 7 /BM € K J(KOM.

) for o € G,.

Since S is uniquely determined modulo KX, k, am(t) is independent of the
choice of 8.

Remark 8.8. 1t is quite easy to show for every Euler system 7, every n, and
every t € R, um that n(n,t)(*~1DPx is an M-th power (Proposition 8.4(ii)).
The reason for introducing the “universal Euler system” X, . is to show that
7(n,t)(~VP: has a canonical M-th root, even when K,(r) contains M-th
roots of unity (Proposition 8.4(i)). This fact was used to construct the cocycle
¢ above.

We next want to determine the ideal generated by £, a(tr) (modulo M-th
powers).

Definition 8.9. Fix n > 1, a power M of p, and temporarily write F' = K,,,
Rr,m = Rn,m. Let O denote the ring of integers of F' and

Ir =TI =®nZ0

the group of fractional ideals of F', written additively. For every prime q of
K let
Irga=14= @Q|qZQ,

and if y € F* let (y) € 7 denote the principal ideal generated by y, and (y),,
[y], and [y]q the projections of (y) to Zy, Z/MZ, and I,/MZI,, respectively.
Note that [y] and [y]q are well defined for y € F> /(F*)M.

Suppose q € Rr.um, 2 is a prime of F above q, and  is a prime of K
above Q. Recall that £ is completely split in F/K, and totally ramified of
degree Nq — 1 = N — 1 in F(q)/F. Fix a lift oq of 04 to Gk so that og
belongs to the inertia group of . Then there is an isomorphism

Z/MZ =5 pyy,
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given by a +» (7%/M)1=9a where 7 € K is a generator of q. Let Frobg € Gr,
denote a Frobenius of £ and define

¢ : F3/(FHM - Z/MZ
to be the image of Frobg under the composition
Gry = Hom(F}, pp) — Hom(F3,Z/MZ)

where the first map is the Kummer map and the second is induced by the
isomorphism above. Concretely, since ogq belongs to the inertia group, we
have ¢n{a) = a where a is characterized by

(al/M)Frobq—l = (ﬂ_a/M)l—oQ = (ﬂl/M)l—UQ (10)
modulo the maximal ideal of Fyy, where 8 € ng is an element satisfying
ordg (ﬂ) =a.

Finally, define
¢q : F*/(F)M - I,/MI,

by ¢q(a) = ¥ qjq #a(a)Q. It is not difficult to check that ¢q is Gal(F/K)-
equivariant, and that ¢4 induces an isomorphism

¢ : (Or[40F)* [((OF [90F) )M = I, /ML,

Proposition 8.10. Suppose 7 is an Euler system, n > 1, t € Ry, a and q
s a prime of K.

(i) If qt ¢ then [kn m(r)]q = 0.
(ii) If q | v then [kn,m(v)]q = ¢q(Kn,m(t/q)).

Proof. Suppose first that q { v. Then ¢ is unramified in Ky(r)/K,, and
by definition k. pm(t) is a global unit times an M-th power in K, (t)*, so
ordg (kn,m(¥)) =0 (mod M) for every prime Q of K, above q. This proves
@)-

Now suppose q | t, say v = gs. By definition

KM (%) = N(@n,0) 2 /BY,  Knm(8) = n(zns)P /8
where (3, € Kp(r)*, s € Kn(s)* satisfy

g_l =n((o — 1)D.zy:/M), ﬂ:-l =n((0 = 1)DsZpn,s/M)
for every o € G,.

We will use (10) to evaluate ¢4(x(s)). Fix a prime 2 of K, above q, let
og be as in Definition 8.9, and let d be the prime-to-p-part of Nq — 1 as in
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Proposition 8.6. Modulo every prime above £) we have

(e pe ()10 = (Mn,e) )M 1 B) 20700 = e
=n((oq — l)Dta:,,,,/M)d
=n((Nq — 1~ Ny)Dyzp,o/M)*
= n((Na = 1) Dy, /M) n((Frob — 1)Dyzp,/M)*

- d(1—~Frob ?
— (n(zn’t)D.)d(Nq l)/M/,Hs( ob. ")

a - -1
= (n(xn’t)D.)Frobq ld(Nq-l)/M/ﬂg(l Frob 1)

= ((1(zn,s) 2 /521 /M )20 FrobED
= (K,n M(ﬁ)d/M)FrObQ_l

using Proposition 8.6 for the second-to-last congruence. By (10) it follows
that

d ¢ (Kn,m(s)) = dordg (kn,m(x)),
and since d is prime to p, (ii) follows. D

9 Bounding Ideal Class Groups

In this section we describe Kolyvagin’s method of using the Euler system of
elliptic units, or rather the principal ideals deduced from elliptic units as in
* §8.2, to bound the size of certain ideal class groups. For a similar argument
in the case of cyclotomic units and real abelian extensions of Q, see [Rul].
\ Keep the notation of the previous section. Let F' = K; = K(E[p]) and
let pur denote the roots of unity in F. Let A = Gal(F/K), so 4 = (O/p)*
is cyclic of order p— 1 or p* — 1.
Since #(4) is prime to p, the group ring Z,[4] is semisimple, i.e.,

l
|
| Z,(41= ) R,

XEE

where = denotes the set of all irreducible Fp-representations of A and R,
denotes the corresponding direct summand of Z,[A]. (We will also refer to
elements of = as irreducible Z,-representations of A.) Since #(A4) divides
p? — 1, we have two cases:

—dim(x) =1, R, = Z,,
— dim(x) = 2, R, is the ring of integers of the unramified quadratic exten-
sion of Qp, and x splits into two one-dimensional pieces over O,.

If x € = and B is a Z[A]-module, we let M(P) denote the p-adic completion
of M and
Mx = M®) ®z,[4] Bx-

TR,
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Then M(®) = @, c=MX, so we can view MX either as a quotient of M ora
submodule of M)i" . If m € M we write mX for the projection of m into MX.

Lemma 9.1. For every nontrivial x € =, (O [mp)X is free of rank one over
R,.

Proof. The Dirichlet unit theorem gives an exact sequence
0> 0;0Q-Q[4]—-Q—=0 .
and the lemma follows by taking x-components. O

Let A denote the ideal class group of F, and fix a x € £. We wish to
bound the size of AX. Fix a power M of p, which we will later take to be

large, and set Far = F(pys)-
Lemma 9.2. The composition

Hom(A, Z/MZ) — Hom(Gr,Z/MZ) - Hom(GF,,Z/MZ),
given by class field theory and restriction to Gy, i injective.

Proof. The first map is clearly injective, and the kernel of the second is
equal to Hom(Gal(Far/F),Z/MZ). Thus to prove the lemma it suffices to
show that there is no unramified p-extension of F in Fjs. But thf: p-part of
Gal(F/F) is Gal(Fa/F(,,)), which is totally ramified at all primes above
p. This completes the proof. a

Lemma 9.3. The map
F*[(F*)M — Far™ [(Fy™)M
is injective.
Proof. Kummer theory shows that F*/ (FX)M =~ H(F,pp) and simil'arly
for Fy, so the kernel of the map in the lemma is H Y(Fp/F, pps). Since

Gal(Fy/F) is cyclic and acts faithfully on g, and p > 2, it is easy to check
that HY(Far/F, ) = 0. (See also Lemma 6.1.) o

Write R u for Ry, the set of primes of K defined in §8.

Proposition 9.4. Suppose k € F*/(F*)M and o € Hom(A,Z/MZ), a#0.
Then there is a prime q € Rr,m and a prime Q of F above q such that

(i) a(c) # 0, where ¢ denotes the class of Q in A,

(ii) [k]q = O and for every d € Z, dpq(x) =0 & kd € (F*)M.
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Proof. Let t be the order of k in F*/(F*)M and let p € Hom(GF,,, 1)
be the image of x under the Kummer map. We view o as a map on GF,, via
the map of Lemma 9.2. Define two subgroups of Gr,,

Ha = {y€Gr, : alr) = 0},
H, = {v € Gp,, : p(7) has order less than t in p,,}.

Since a # 0, Lemma 9.2 shows that Hy, # GF,,. Similarly it follows from
Lemma 9.3 that H,, # GF,,. Since a group cannot be a union of two proper
subgroups, we can choose a ¥ € Gp,,, v ¢ Ho U H,. Let L be a finite Galois
extension of F' containing Fjs such that both p and a are trivial on Gy,. By
the Cebotarev theorem we can choose a prime Q of L, not dividing 6afp and
such that [k]q = 0, whose Frobenius in L/K is 7. Let 9 and q denote the
primes of F and K, respectively, below . We will show that these primes
satisfy the conditions of the proposition.

First, the fact that v fixes F(u,,) means that q splits completely in
F(pps) and thus g € Rp p.

The class field theory inclusion Hom(A4,Z/MZ) — Hom(Gr,Z/MZ)
identifies a(c) with a(Frobg) = a(7), so (i) follows from the fact that y ¢ H,,.

Since v ¢ Hy, (k'/M)Froba—1 5 3 primitive ¢-th root of unity. Therefore &
has order t(Nq — 1)/M modulo Q, and hence has order at least ¢ (and hence
exactly t) in (Or/qOr)*/((Or/q0F)*)M. Since ¢, is an isomorphism on
(OF/q0F)* [ ((OF/qOF)*)M, this proves (ii). O

Suppose 7 is an Euler system as defined in Definition 8.5. Define ¢ =
Cy C OF to be the group generated over Z[A] by pr and n(1,0).

Theorem 9.5. With notation as above, if ) is an Euler system and x is an
irreducible Z,-representation of A then

#(AX) < #((OF /Cq)X).

Proof. If x is the trivial character then AX is the p-part of the ideal class
group of K, which is zero. Hence we may assume that y # 1.
By Lemma 9.1
(O /C)X = Ry/mRy

for some m € R,. If m = 0 then there is nothing to prove, so we may assume
m # 0. Choose M large enough so that M/m annihilates A. For t € Rp p we
will write (t) for the element x1,a(r) € F* /(F*)M constructed in Definition
8.7.

Number the elements of Hom(AX,Z/MZ) C Hom(A,Z/MZ) so that

Hom(AX,Z/MZ) = {ay,...,a}.

Using Proposition 9.4 we choose inductively a sequence of primes qi, ... ,qx €
RrF,m and 9; of F above q; such that, if ¢; denotes the class of £; in A and
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= HjSiqj for0<i<k,

ai(ci) # 0) (11)
dig, (5(ri-1)X) = 0 & (k(ti_1)¥)* =0 € F*/(F)M (12)

(just apply Proposition 9.4 with & = k(r;—1)* and a = a; to produce g; and
;).

)First we claim that the classes {cX} generate AX. For if not, then there
is an a € Hom(AX,Z/MZ) such that a(c;) = 0 for every j. But a = a;for
some %, so (11) shows this is not the case.

If 1 < i< klet s; denote the order of ¢} in AX/(c},...,c¥ ). Since the
¥ generate AX we have

k
#(AX) = H[Rx : 5iRy].

i==1

If0 <i<k~—1let ¢; denote the order of (t;)X in F*/(F*)M. By (12)
and Proposition 8.10(ii), for « > 1 the order of [£(r;)X]q; is ti—1. In particular
it follows that ¢;_; | ¢;. Since x(to) is the image of (1, 0) in OF/(OF)M,
the exact sequence

0 — Ryr(vo)/mp O Ry(to) = (OF [up(OF)™)* = (OF/C)* =0

shows that M | tom.
For each i we can choose v; € F* /(F*)M such that u,.M/t" = k(v;)X¢ with
¢ € pp. In particular :
(M/t:)vila; = [6(x:)¥]q

so [vi]q; has order t;_y M/t; in (Z4/MZy)X = R, /MR,. Thus, using Propo-
sition 8.10(i), there is a unit u € R} such that

(V,') = u(ti/ti—l)qz( (mod Ifh yooe ,Iq'._l 5 t,‘I).

We know that to | t; and (M/m) | to. Thus by our choice of M, ¢; annihilates
A and we conclude that

(ti/ti_l)cf =0 in Ax/<Ci(, R ,CZ‘_I).
Therefore s; | {t;/t;—1) for every i > 1, so

k
#(AX) = H[Rx : 8;Ry] divides [toRy : tx Ry]-

i=1

Since t; | M and M | tom, this index divides [Ry : mRy]. This proves the
théorem. 0
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Corollary 9.6. Let C, denote the group of (elliptic) units of F generated

over Z,[A)] by pp and by nga). If x is an irreducible Z,-representation of A
then
#(AX) divides #((OF/[Ca)X).

Proof. Apply Theorem 9.5 with the Euler system n(n,t) = nS,") (v). o

Remark 9.7. If Cr denotes the full group of elliptic units of F' (see for example
[Ru2] §1), then one can combine Theorem 9.5 with a well-known argument
using the analytic class number formula to prove that for every ¥,

#(AX) = #((Op [Cr)¥).
See Theorem 3.3 of [Ru2).
Corollary 9.8. With notation as above, if (n{”)X ¢ pE((OF)X)P  then
AX =0.

Proof. Immediate from Corollary 9.6 and Lemma 9.1. o

10 The Theorem of Coates and Wiles

Keep the notation of the previous sections. In this section we will prove the
following theorem.

Theorem 10.1 (Coates-Wiles [CW1]). If L(¥),1) # 0 then E(K) is fi-
nite.

Suppose for the rest of this section that p is a prime of K not dividing
f, of residue characteristic p > 7 (see remark 10.3 below). As in §9 we let
F = K(E[p]), A = Gal(F/K) and A is the ideal class group of F.

Lemma 10.2. There is an ideal a of O, prime to 6pf, such that Na Z 1(a)
(mod p).

Proof. By Corollary 5.18, E[p|¢ E(K). Choose a prime q of K, not dividing
6pf, such that [q, K(E[p])/K] # 1. By Corollary 5.16(ii) we deduce that

%(q) # 1 (mod p), and so P(q) # 1 (mod p). Since p(q)P(q) = Ng, the
lemma is satisfied with a = q. m}

Remark 10.3. Lemma 10.2 is not in general true without the assumption
p > 7, since for small p it may happen that E[p] C E(K).

By Corollary 5.20(iv), F/K is totally ramified at p. Let P denote the
prime of F' above p. By Lemma 3.6 and Corollary 5.16 E[p] C E;(Fp), so
the isomorphism of Corollary 3.8 restricts to an isomorphism

Efp] = Elp} C E(Fp)

where £ is the formal group attached to E. Let Opr,p denote the completion
of Op at P.
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Lemma 10.4. The map
Elp] = Ep] =5 (14 POrp)/(1+P2OFp)
is a A-equivariant isomorphism.

Proof. The map in question is a well-defined homomorphism, and by Lemma
7.3 it is injective. Both groups have order Np, so it is an isomorphism. The

A-equivariance is clear. O
rd

Now fix an ideal a satisfying Lemma 10.2, a generator 2 of the period
lattice of F as in §7.4, and a generator f of the conductor f. With these
choices define the elliptic units 7,(r) as in §8.1. Let n = 71 (O), a global
(elliptic) unit of F which depends on the choice of a.

Definition 10.5. Define
6 : Ofpp — Elp]

to be the composition of the natural projection
OF »»(1+POrp)/(1+P*OFp)

with the inverse of the isomorphism of Lemma 10.4.

Recall that by Corollary 7.18, L(,1)/92 € K.
Proposition 10.6. L(i,1)/12 is integral at p, and

L(1,1)/2=0 (mod p) & d(n) =0.
Proof. Let P = (p(2/4(p); 20), ¢ (2/4(p); 20)/2) € Elp] and
2= —a(P)/y(P) € P,

the image of P in E[p]. Then 5 = Ay o(2), where Ay q is the power series of
Definition 7.21. _
By Theorem 7.22, A, 4(0) € O}, 12f(Na — 9(a))(L(¥,1)/£2) € Oy, and

N = Ap,a(0)(1 + 12f(Na ~ 4(a)) (L(%,1)/2)2) (mod P?).
Thus ~
8(n) = 12f(Na — $(a))(L(y, )/ )P

and with our choice of a, 12f(Na —1(a)) € O,'. This proves the proposition.
a

Definition 10.7. Let xg denote the representation of A on E(p}; by Corol-
lary 5.20 xg is Fp-irreducible. Then in the notation of §9 we have E[p] =
Ry, /pR,; as A-modules.

o ssonses s st e e
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Theorem 10.8. Suppose L(1),1)/12 is a unit at p. Then
AXE = (.
Proof. Since the map 4§ is A-equivariant,
O(n*=) = é(n)*= =4é(n) #0
by Proposition 10.6. Hence
X ¢ ((OF)*=)F.
The Weil pairing (see [Si] Proposition II1.8.1) gives a Galois-equivariant
isomorphism
Elp] = Hom(E[g], ).

If p%* were nontrivial, then E[p]|°% would be nontrivial, and this is impos-
sible by Corollary 5.18. Now the theorem follows from Corollary 9.8. m}

Lemma 10.9. Suppose p splits into two primes in K and Trg,u(p) # 1.
Then

(1) Ky ¢ F’P:
(i) (OFp)X® is free of rank one over Ry .

Proof. By Theorem 5.15(ii), [¢(p), Fp/Kp] = 1. On the other hand, class
field theory over Q shows that [p,Qp(u,)/Qp] = 1. Thus we have (again
using Theorem 5.15(ii))
b, CFp= Fp= Kp(ll'p) = [p/v(p), Fp/Ky] =1
=p/Y(p) =1 (mod p)
= Trx/qy(p) =1 (mod p)
= Trg/qy(p) =1,

the last implication because | Trg Q¥ (p)| < 24/p < p — 1. This proves (i).
We have isomorphisms

Orp ® Qp — Opp ® Qp = Ky[4],

the first one given by the p-adic logarithm map. Together with (i) this proves
(ii)- O

Theorem 10.10. Suppose L(1,1)/12 is a unit at p, p splits into two primes
in K, and Trg,q(p) # 1. Then the natural (injective) map

(OF)X® = (OF p)**

is surjective.
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Proof. As in the proof of Theorem 10.8, §(7X*) = §(n). Thus by Proposition
10.6 (OF)X= ¢ ((OFp)*=)?, so the Theorem follows from Lemma 109. O

Proof (of the Coates- Wiles Theorem 10.1). Using the Cebotarev theorem we
can find infinitely many primes p which split in K and such that Trg /Q¥(p) #
1. Choose one which does not divide 6f or L(¢,1)/£2. Then by Theorems 10.8
and 10.10 and Corollary 6.10, the Selmer group Syp)(E) = 0. In particular

E(K)/pE(K) = 0, so (using the Mordell-Weil Theorem 4.6), E(K) is finite.
a

Remark 10.11. This proof also shows that for primes p satisfying the hy-
potheses of Theorem 10.10, the p-part of the Tate-Shafarevich group HI(F)
is trivial.

Using the Explicit Reciprocity Law of Wiles ([Wil] or [dS] §1.4) one can
show that & = —d; where &; is the map of Lemma 6.8. Together with Propo-
sition 10.6, Theorem 10.8 and Corollary 6.10, this shows that Syp)(E) =0
for every p not dividing 2-3-5-7 - f- (L(#,1)/2). We will prove a stronger
version of this (Corollary 12.13 and Theorem 12.19) in §12.

11 Iwasawa Theory and the “Main Conjecture”

In order to study the Selmer group under more general conditions than in §10,
we need to prove Iwasawa-theoretic versions (Theorem 11.7 and Corollary
11.8 below) of Theorem 9.5 and Remark 9.7. As in the previous sections,
we fix an elliptic curve E defined over an imaginary quadratic field K, with
Endg(E) = O, the ring of integers of K. We fix a prime p of K where E
has good reduction, and for simplicity we still assume that p > 7 (in order

to apply Lemma 10.2).
Write K, = K(E[p"]), n = 0,1,2,... ,00, and let Go = Gal(Koo/K).

By Corollary 5.20(ii), we have
Goo =20, 2AXT

where

A= Gal(K,/K) = (0O/p)*
is the prime-to-p part of G and

I = Gal(Koo /K1) = 1 + pO, = ZIKe:Qsl
is the p-part.
11.1 The Iwasawa Algebra

Define the Iwasawa algebra

A = 2,{[Goo]] = lim Z,[Gal(Kn/K)] = lim Zy[Al[Gal(Kr /K1)
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Then

A= P 4,

X€E
where = is the set of irreducible Z,-representations of A as in §9 and

Ay = A®gz,1a] Bx = By[[T]].

The following algebraic properties of the Iwasawa algebra and its modules
are well-known. For proofs, see for example [Iw] and [Se].

For every irreducible Z,-representation x of A, A, is a complete local
noe.therlan ring, noncanonically isomorphic to a power series ring in Ky : Qp)
V'fmables over R, . In particular A is not an integral domain, but rather is pa
direct sum of local integral domains. Let M denote the (finite) intersection
of all maximal ideals of 4, i.e., M is the kernel of the natural map A—-+F [4].

A A-module M will be called a torsion A-module if it is a.nnihilate’:i by
a.non-zero-divisor in A. A A-module will be called pseudo-null if it is anni-
hilated by an ideal of height at least two in A. If I" = Z, then a module is
pseudo-null if and only if it is finite.

If M is a finitely generated torsion A-module, then there is an injective
A-module homomorphism

@ A/fid—> M
i=1

with pseudo-null cokernel, where the elements f; € A can be chosen to satisfy
f,-+1 | fi for 1 < i <r. The elements f; are not uniquely determined, but the
ideal [, f;4 is. We call the ideal [], f;A the characteristic ideal char(M) of
the torsion A-module M. The characteristic ideal is multiplicative in exact
sequences: if 0 - M' -+ M — M" — 0 is an exact sequence of torsion
A-modules then char(M) = char(M')char(M").

11.2 The Iwasawa Modules
Define

g,, = the p-part of the ideal class group of K,,,

n = the p-adic completion of the local units of K, ® K, (equival

1-units of K, ® Kjy), @ f leauivalently, the

the global units of K,

the p-adic completion of £, (equivalently, since Leopoldt’s conjecture

holds for.K n, the closure of the image of £, in U,),

Cn = t?le elliptic units of K, the subgroup of £, generated over the group
ring Z[Gal'(Kn /K)] by the 7% = p{?(O) (see Definition 8.1) for all

_ choices of ideal a prime to 6pf, and the roots of unity in Kp,,

Ch = the. p-adic completion of C,, (equivalently, the closure of the image of
Cn in Uy,),

SN
o
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e lim &, Coo = limC,
A =limA,, Up =limU,, €ox =liméy, Coo = lmiy,
R~ i~

inverse limits with respect to norm maps. Also define X = .Gal(Moo / Ky)
where My, is the maximal abelian p-extension of K unramified outside of
the prime above p. .

Class field theory identifies Ao, with Gal(Leo/Keo), Where L?o is ‘the
maximal everywhere-unramified abelian p-extension of I.<°°’ and identifies
the inertia group in Xo of the unique prime above p with Us /Eco- Thus

there is an exact sequence of A-modules
0 - Eoo/Co0 = Uoso[Coo = Xoo = Aco — 0. (13)

For every n > 0, let A, = Z,[Gal(K,/K)] and let ‘Jn C A denote ‘?he
kernel of the restriction map A — A,. In particular Jp is the augmentation

ideal of A.

Lemma 11.1. For every n > 1, the natural map

is an isomorphism.

" When I' = Z, this is a standard argument going back ‘?0 .Iwasawa

f;:ﬁ?fus?zg the fact thz(;t only one prime of K ramifies in Ko, and it is totally
ified. .

ram];‘or the general case, consider the diagram of fields belo.w, where L, is
the maximal unramified abelian p-extension of K,, and L' is the fixed field
of JnAco in Loo. Since Koo/ Ky is totally ramified above p, Koo ﬂ'L,', = K},:,
and so Gal(KeLn/Kos) = An and the map Ao/ TnAc = An is just the
restriction map. We will show that KoL, = L!,, and the lemma will follow.

L
\7" AOO
Ly
AN
KooLn
/ Aﬂ
Ln »
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Since Gal(K/K,) acts on Gal(Ly/K) by conjugation, J, Ao is gen-
erated by commutators

Gal(Loo/Ly,) = [Gal(Loo/Kp), Gal(Leo /K oo)].

Such commutators are trivial on Ly, so KoL, C L.

On the other hand, only the unique prime above p ramifies in the abelian
extension Ly, /Ky, and it is totally ramified in Ko /K,. If we write T for
the inertia group of this prime in Gal(L!,/Kp,), the inverse of the projection
isomorphism T — Gal(K,/K,) gives a splitting of the exact sequence

0= Aoo/TnAco = Gal(L,/K,) — Gal(Koo /K ;) — 0.

It follows that L;lz is an abelian, everywhere-unramified p-extension of K,
and hence L}, C L, and so L’ = Koo L. a]

Proposition 11.2. Ay is a finitely-generated torsion A-module.

Proof. By Lemma, 11.1, Ay /Jn A is finite for every n, and the proposition
follows. O

Proposition 11.3. (i) X is a finitely-generated A-module and for every x
ranky XX =[K, : Qp] — 1.
(In particular if K, = Q, then X, is a finitely-generated torsion A-
module.)
(ii) Xo has no nonzero pseudo-null submodules.

Proof. See [Gr]. o

Proposition 11.4. Uy, is a finitely-generated, torsion-free A-module, and
for every x
rank (UX) = [K) : Q).

Further, if [K, : Qp] = 2 then UXE is free of rank 2 over Ay.

Proof. See [Iw] §12 or [Win)]. |

Proposition 11.5. £, is a finitely-generated A-module, and for every x
ranky (£X) =1.

Proof. The natural map £, — Uy is injective, so the proposition follows
from (13) and Propositions 11.2, 11.3 and 11.4. o

Proposition 11.6. CX* is free of rank one over Ayg.
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Proof. Choose an ideal a of O such that ¥(a) # Na (mod p) (Lemma 10.2).
We will show that CXE is generated over A, by {(175.“))%E }n with this choice
of a. Suppose b is some other ideal of O prime to 6pf. It follows from Theorem
7.4(ii) and Lemma 7.10 that for every n

(n'(la))ab -Nb _ (ngb))a.—Na

where o4 = [0, Kn/K), 0 = [b, Ka/K]. Since )(a) # Na (mod p), and 04
acts as 1(a) on E[p] (Corollary 5.16(ii)), we see that o0, — Na acts bijectively
on Elp]. But E[p] = Ay,/My; where M, denotes the maximal ide] of
the local ring A, . Therefore 0, — Na is invertible in Ay, so

{0 }n € Axe{(nf)¥"}n

as claimed. Since U, is torsion-free (Proposition 11.4), CXf must be free of
rank 1. a

11.3 Application of the Euler System of Elliptic Units
Theorem 11.7. char(Ae) divides char(Ex/Coo)-

The rest of this section will be devoted to a proof of this theorem. The
techniques are similar to those of the proof of Theorem 9.5, but messier
and more technically complicated because one needs to study modules over
Z,(Gal(K,/K)] rather than Z,[A]. See [Ru2] for the details which are not
included below, and see [Rul] for the analogous result for cyclotomic fields.

We also record, but will not prove, the following corollary. With a better
definition of elliptic units, it would hold for more representations x of A. See
[Ru2] Theorem 4.1 for a precise statement and [Ru2] §10 (see also [dS] §II1.2)
for the proof, which is an application of the analytic class number formula.

Corollary 11.8. char(AX®) = char(EXF /CXF).

Definition 11.9. Since Ao, is a torsion A-module, we can fix once and for
all an injective A-module map with pseudo-null cokernel

é Al fid = A
i=1

with f; € A, fip1 | fi for 1 <i < r. Let A denote the image of this map, so
Ago = $:=1Ayi - Aoo

where y; € Ay is the image of 1 € A/f;A. Then A% is an “elementary”
submodule of A, and A /A% is pseudo-null.

Let 2 = Keo(ptpeo)- If 0 € G we write [0] € A for the restriction of
& to Leo. Note that if K, # Q, then the Weil pairing (see [Si] Proposition
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I11.8.1) S}.IOWS that 2 = K, and if K, = Q, then 2/ K, is totally ramified
at the prime p/p. Thus in either case the map G — Ay is surjective.

If 0 < k <r, a Frobenius sequence o of length k is a k-tuple (01,...,0k)
of elements of G, satisfying ,

[0','] —Y; € MAgo

for 1 <4 <k, where M is as defined in §11.1, the intersection of all maximal
ideals of A.

Suppose n > 1 and M is a power of p. Recall the subset R

> 2 . M of R
defined in '§8.2. For 0 < k < r we call a k-tuple (#y,... ,7x) of prin’:es of K,
a Kolyvagin sequence (for n and M) if

— the #; lie above distinct primes of K belonging to R, ar, and
— there is a Frobenius sequence o = (01,... ,0%) such that for 1 < i < k,

Frobz, =o; on L,
where L, is the maximal unramified abelian p-extension of K,,.

If w is a Kolyvagin sequence of length k we will write =; for the prime of K
below 7#; and we define

k
t(m) = H7r,- € RoMm-

i=1
IA,let II(k,n, M) be the set of all Kolyvagin sequences of length k for n and
Fix an ideal a so that {(nf,") )X® }n generates CXE, as in the proof of Propo-

sition 11.6. Using the Euler system of elliptic units 5’
: 7n (), for v € Ry, ar we
obtain the Kolyvagin derivative classes i M

kn,m(v) € KX /(KM
as in Definition 8.7. For every n recall that A, = Z,[Gal(K,/K)] and let

’ : n ="V = » Iy
be the ideal of An,» generated by " ne ¥(k,n, M) to

{¥(kn,m(x(w))) : w € H(k,n,M),% € Homy, (An,MEn,m(t(7)), Ap M)}
When k = 0, II(k,n, M) has a single element (the empty sequence) and
¥(0,n, M) D {$(n") (mod M) : 4 € Homy, (En, Ar)} (14)

. IF fpllows f.rom Lemma 11.1 that A./JnAc is finite for every n. From
this it is not difficult to show that A,,/char(As)A, is also finite for every n.

For every n define Ny, to be the product of #(A,) and the smallest power of
p which annihilates A, /char(Ao)An.
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The following proposition is the key to the proof of Theorem 11.7.

Proposition 11.10. There is an ideal B of height at least two in A such that
for everyn > 1, power M of p, and 0 < k<,

BY(k,n, MN)Ap s C fre1¥(k+ 1,0, M).

We will first show how to complete the proof of Theorem 11.7 assuming
Proposition 11.10, and then we will prove Proposition 11.10.

Lemma 11.11. Suppose G is a finite abelian group and B 1is ﬁn'itely'gen-
erated Z,[G]-module with no p-torsion. If f € Zy[G] is not a zero-divisor,
b€ B, and

{(b) : ¢ € Homg,(6)(B, Z,[G])} C fZy[G],

then b€ fB.
Proof. Let B' = Z,[G)b + fB. Since f is not a zero-divisor, we have a com-

mutative diagram

Homg, (¢)(B', fZ,[G]) +/~ Homz,g)(B', Z5[G]) — Homz, (B, Zy)

! ! l

Homg, (¢)(fB, fZ,[G]) & Homg,6)(fB, Z,|G]) = Homz, (fB, Zy)

in which the horizontal maps are all isomorphisms.

Choose ¢ € Homgz, ()(fB, fZ,[G]). Since B has no p-torsion and f is
not a zero-divisor, @ extends uniquely to a map ¢ : B = Z,[G), and by our
assumption, ¢ € Homgz_g)(B', fZ,[G]). Thus all the vertical maps in the
diagram above are isomorphisms. Since B’ and fB are free Z,-modules, the
surjectivity of the right-hand vertical map shows that B’ = fB, which proves
the lemma. O

Proof (of Theorem 11.7, assuming Proposition 11.10). Fix n > 1 and ¢ €
Homy, (€5, An), and let B C A be an ideal of height at least two satisfying
Proposition 11.10. We will show that, for every choice of a,

B y(n®) C char(Aco)An. (15)
Assuming this, Lemma 11.11 applied with B = En/ (€n)tors shows that
Bn® ¢ char(Aco)én + (€n)tors-
Since £, has no A-torsion (Lemma 11.5), it follows that
B {n{*}, C char(Awx)Eco-

Thus B"Co C char(As)€oq, and since BT is an ideal of height at least two
the theorem follows.
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It remains to prove (15). Suppose 0 < k < r and M is a power of p.
Proposition 11.10 shows that

BW(’% n, MN;—k)An,M - fk+1!p(k +1,n, MNﬁ—k—l)An,M;
so by induction we conclude that

B (0,0, MNT) Ap s C (H f,-) W(r,n, M) C char(Aco)Anp.  (16)

i=1
Using (14) it follows that
3’i/i(n£;°))An,M - Char(Aoo)An,M1

and since this holds for every M, it proves (15). This completes the proof of
Theorem 11.7. O

The rest of this section is devoted to proving Proposition 11.10. If & =
(o1,...,0k) is a Frobenius sequence define

k
Ap =) Aloi] C A%,
i=1
Lemma 11.12. If o is a Frobenius sequence of length k then A, is a direct
summand of AS) and A, = &% A/ fiA.

Proof. Recall that A2 = &I_, Ay;. Define Y = Z::k +1 AYi- The image
of Ay + Y, in A% /MAY contains all the y;, so by Nakayama’s Lemma,
Ag +Y; = A% We will show that 4, NY; = 0, and thus A%, = A, @Y} and

A, = A% /Y = @F A/ fiA

For 1 < i < k write
loi] = yi +vi +w;
where v; € M(®;<xAy;) and w; € MYj. Suppose

k
Z ai[ai] €Y,
i=1
with a; € A. Then we must have Zle a;(y; + v;) = 0. We can write this in

matrix form, using the basis y1, ..., yx of Di<rAy;, as

((11,... ,ak)B € (flA, ,fk/l)

where B is a k x k matrix with entries in A, congruent to the identity matrix
modulo M. Therefore B is invertible, and, since fi, | f; for every i < k, we
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conclude that each a; is divisible by fi. But fr annihilates Y, so we deduce

that
k k
Zai[a,-] = Eaiwi =0.
i=1 i=1
This completes the proof of the lemma. O

Recall 2 = Koo (ptpes)-
-
Proposition 11.13. Suppose W is a finite subgroup of KX/ (KX)M for some
n and M. Then Gk acts trivially on the cokernel of the natural Kummer map

Ga — Hom(W, ).

Proof. Let W denote the image of W in 2% /(£2*)M. The map in question
factors
Ga = Hom(W, u);) — Hom(W, p,s).

where the first (Kummer) map is surjective and the cokernel of the second is
Hom(V, pp,) with

V =ker(W = W) C ker(H(Ky, tpr) = H (92, ppg)) = H' (2/ K, tpr)-

Since 2 is abelian over K, Gk acts on V via the cyclotomic character, and
hence Gk acts trivially on Hom(V, pt,s). The proposition follows. O

Let A denote the annihilator in A of Ax /A%, so A is an ideal of height
at least two.

Lemma 11.14. Suppose n > 0, M is a power of p, k < 7, and @ =
{#1,--- s Fe+1} € I(k + 1,n,MN,). Let L} = Tgt1, 4 = Ti41 and t =
q~t(w). If p € A then there is a Galois-equivariant homomorphism

V¥ Ap MmEn,m(tq) = Anm

such that
pdq(kn,pm (t) = frr19(Kn,m(rq))Q  (mod M)

where ¢q : An, MN, Kkn,MN, (t) = An,MN,Q is the map of Definition 8.9.

Proof. Write M' = M N,,, and let o be a Frobenius sequence corresponding
to 7. Let A, denote the quotient of A, by the A,-submodule generated by
the classes of #1,... 7, and let [Q] denote the class of 9 in Aj,. Since the
Frobenius of £ on the Hilbert class field of K, is o, [Q] is the projection of
[0] to A,. By Lemma 11.12 the annihilator of [0] in A% /A, is fry14 and
A, is a direct summand of A%, so the annihilator of [0] in (A% /4)® A,
is' fip14n. By Lemma 11.1, A, = As /(Ao + JnAco) so the kernel of the
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natural map (4%,/A,) ® A, — A, is annihilated by A. Therefore if A’ C A,
is the annihilator of {Q] in A, then

AA' C Je+1440.

. Since #(A,) divides Ny, Proposition 8.10(i) shows that [kn, a(tq)]4 is 0
in A,. Therefore [k, p(tq)]q € A'An,mQ, s0 if p € A then

plbn,m (td)]lq € frt14n, M Q.

Since fi4+1 divides f; and f; divides N, in A,, the map
fk_.:l : An,M’ — An,M

is well-defined, and we will define 4 : A, prkn, ar(tq) = A, M Q by

P (kn,m (t9))2Q = fi}1 plbin,ar (v9)]q-

If we can show that 1 is well-defined, then by Proposition 8.10(ii) we will
have

pbq(Kn,m (t) = plkn,pm (t9)]q = fr+1¥(Kn,m(tq))Q (mod M)

as desired.

We need to show that 9 is well-defined, i.e., if n € A,, and &, p(rq)" €
(KX)M then nplkn m(vq)lq € fes1MAp aQ. But this is essentially the
same argument as above. If ) annihilates K, ar(tq) then &, ar(tq)" = oM
for some o € K. Again using Proposition 8.10(i), [o]q is 0 in A, so
plalq € fr+14n,n,Q and the desired inclusion follows. a

Proof (of Proposition 11.10). Let Ag = Z,[[Gal(2/K)]] and denote by e
both the cyclotomic character Gal(f2/K) — Z and the induced map Ag
Z,. Define

twe : Ap = Ap

to be the homomorphism induced by v ~ e(y)y~! for v € Gal(£2/K).
Recall that A is the annihilator of A, /A%, and define

B = A if Ky =Qp
Atw (MAT) if Ky, #Qp

(recall that 2 = K if K, # Qp). Then B is an ideal of height at least two,
and we will show that Proposition 11.10 holds with this choice of B.

Fix n and M, and write M’ = MN,. Fix a Kolyvagin sequence 7 €
II(k,n,M'"), let t = t(x), and suppose ¥ : An akn,p(t) = Ap ar. We need
to show that

By(kn,m:(v))An,m C fr1¥(k + 1,0, M).
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We will do this by constructing suitable Kolyvagin sequences of length k + 1
extending 7.
There is a Z,-module isomorphism

¢ : Homy,, (An a6, a7 (€)s An ) ® ppge — Homz, (An p6n,m (%), Mar)

induced by

(2%7)®CHC“" .
v
One can check that if ¢ € Homy, (An M En,m (v), Anpr), ¢ € pipyr, and
p € Ag then
pup ® ¢) = (twe(p)9) ® C).

Suppose 7 € G, fix a primitive M’'-th root of unity {u, and let Kump
denote the Kummer map G — Hom(K)S, f15 ). By Proposition 11.13 there
is a y0 € G such that

Kumpr (o) = (7 = De( ® (ur)  on A, mbin, me (%)

Choose p € Ag such that the projection of p to A lies in M.A and let v € Go
be such that v = £ on £22* (we view Gal(2/K) as acting on Gal(£2**/2)

in the usual way).

Let o be a Frobenius sequence corresponding to 7. We define two Frobe-
nius sequences o’ and & of length k + 1 extending o as follows. Let o},
be an element of G such that [}, ,] = Yk+1, and let o}, = 0417y With 7
as above.

Since [] = p[y0] € MAS, both ¢’ and 0" are Frobenius sequences.

Let q' and q" be primes of K whose Frobenius glemen’cs (for some choice
of primes “upstairs”) in Hy(fps, (Ankn,m (£))M')/K are the restrictions
of o' and ¢, respectively, where H,, is the Hilbert class field of K. Let '
and " be primes of K, above q' and q" with these Frobenius elements. It
follows from Definition 8.9 that there are integers a’ and a" such that

Uy ® C3) = Kumppr (0'),  Ugr ® (Grr) = Kumar (o)

where ¢g : Anm/Kn e (t) = Ap,mvQ' is the map of Definition 8.9, by €
Hom(Ap pKn,mr (t), An p) is defined by ¢q = #q'Q', and similarly for q".
Now

(twe(p(r = 1)) ® (mr = pKumps: (7o)
= Kumpp (0") — Kumpp (o)
= 1(a"$g ® Curr — @' g @ ()
and so finally
twe(p(r = 1)) = a"gr — a'dq- (17)
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If K, # Qp, then the tw(p)(e(7)T — 1), with our choices of 7 and p, gen-
erate tw.(MAJ). If K, = Q,, then u, ¢ Ko (since Koo /K is unramified
at p/p) and so we can choose 7 and p so that tw.(p(r — 1)) projects to a unit
in A. Now Lemma 11.14 completes the proof of Proposition 11.10. 0o

12 Computing the Selmer Group

In this section we compute the order of the p-power Selmer group for primes
p > 7 of good reduction, and thereby prove assertion (ii) of the theorem of the
introduction. The computation divides naturally into two cases depending on
whether p splits in K or not.

Keep the notation of the previous section. In particular E is an elliptic
curve defined over an imaginary quadratic field K, with complex multipli-
cation by the full ring of integers of K, and p is a prime of K of residue
characteristic greater than 7 where E has good reduction.

Definition 12.1. Let m = v¢(p) and recall that the n-adic Tate module of E
is defined by
J— 4 n
T-(E) = lé{lE[p 1,

inverse limit with respect to multiplication by w. For every n let 6, : U, —
E[p"] be the map of Lemma 6.8. It is clear from the definition that we have
commutative diagrams

Unir — Efpn+]

NKn+1/Knl 17"

Un LI E[p"],

and we define
boo = PL“‘S" 1 Uso — Tn(E).

n

Recall the Selmer group Sy~ (E) of Definition 4.1 and the extended Selmer
group S, (E) of Definition 6.3. Define

T T !
Speo = h_in)S,,n (E), Shw= h?mS,,n (E).

Thus there is an exact sequence
0 E(K)®Qp/Zy = Spo — II(E)peo — 0. (18)

Proposition 12.2. (i) Sje = Hom(Xoo, E[p*™])%> = Hom(XX®, E[p>])’.
(i) Spw is the kernel of the composition

Ste — Hom(XX2, E[p>®])]" - Hom(ker(doo), E[p™])
induced by (i) and local class field theory.
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Proof. The first assertion is just a restatement of Proposition 6.5, and the
second follows from Theorem 6.9. o

Theorem 12.3 (Wiles’ explicit reciprocity law [Wil]). Suppose x is
an O, -generator of Tx(E), z = (zn) is the corresponding generator of Ty (E),
u = (u,) € Us, and f(Z) € Op[[Z]] is such that f(z,) = un for every n.
Then

).

)

f'(o
bualt) = (W) - Do)
See [Wil] or [dS] Theorem 1.4.2 for the proof.

Corollary 12.4. 65,(Cx) = ﬂ%l—)T,(E).

Proof. Using Theorem 12.3, we see that §oo(Coo) is the ideal of O, generated
by the values (4 ,(0)/Ap,q(0)) where Ay,q is defined in Definition 7.21, and
we allow the 1dea1 a to vary. The corollary now follows from Theorem 7.22(ii)
and Lemma 10.2. a

Remark 12.5. In fact, for every u € Uy, there is a power series fu € Op[[X]]
such that fu(2n) = un for every n as in Theorem 12.3. See [Col] or [dS] §1.2.

Definition 12.6. Let pg : Goo —+ Op be the character giving the action of
Go on E[p™]. We can also view pg as a homomorphism from 4 to Oy, and
we define Ag C A to be the kernel of this homomorphism.

If a,b € K, we will write a ~ b to mean that a/b € O;'.

12.1 Determination of the Selmer Group when K, = Qp
For this subsection we suppose (in addition to our other assumptions) that
Kp = QP‘
If M is a A-module we will write
MA5=0 = {m € M : Apm = 0}.
Proposition 12.7. Suppose that M is a finitely-generated torsion A module.

(i) Hom(M, E[p>®])®~ is finite <& pg(char(M)) # 0 & MA==0 is finite.
(ii) #(Hom(M, E[p>])®=) ~ pg(char(M))#(M#==0).

Proof. Fix an exact sequence of A-modules

k
0—)@A/f,-A—)M—>Z—->O

i=1
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with pseudo-null (in this case, finite) cokernel Z. Fix a topological generator
¥ of Goo = A X I'. Then Ag = (v — pe(7))4, so multiplication by v — pg(7)
leads to a snake lemma exact sequence of kernels and cokernels

k
0= @P(A/£;)A==0 o MA==0 o ZA==0

i=1

k
- @ A/(fid+ Ap) & M/ApM — Z]Ag — 0.

i=1

Also
Hom(M, E[p™])%~ = Hom(M/AeM, E[p*™]).

The map pg induces an isomorphism A/(fid + Ag) — Zp/pE(f:)Zp,
and
(A/£:4)42=° = {g € A,9AE C fiA}/fiA
so since Afg is a prime ideal,
(A/£:0)*==° £ 0 & f; € Ap & (A/fiA)*==0 is infinite.

Since Z is finite, the exact sequence

0— Z45=0 _, 7 ") 7\ ZIARZ 50

shows that #(Z45=%) = #(Z/AgZ). Since char(M) = [], f;A, the lemma,
follows. o

Theorem 12.8. #(S;) = [Z) : pe(char(X))].

Proof. This is immediate from Propositions 12.2(i), 11.3, and 12.7 (note that
if pg(char(Xs)) # O then X22=0 is finite by Proposition 12.7 and hence
zero by Proposition 11.3). o

Theorem 12.9. char(XXE) = char(UXE /CXE).
Proof. Immediate from Corollary 11.8 and (13). 0

Theorem 12.10 (Coates and Wiles). Let D denote the ring of integers
of the completion of the mazimal unramified extension of Qp. Then there is
a p-adic period 2, € D* such that char(Uy, /Coo)D[[Goo]] has a generator Lg
satisfying

L(¢ )

PE(LE) = 25(1 - ¢(p*)/p)
for every k > 1.

Proof. See [CW2] or [dS] Corollary III.1.5. m]
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L(y,1
Corollary 12.11. #(She) ~ (1 - ¢(p)/p)_(%._),
Proof. Immediate from Theorem 12.8, Theorem 12.9, and Theorem 12.10.

a

Proposition 12.12. [Sye : Spe] ~ (1~ 9(p)/P)-
For a proof see [PR] Proposition I1.8 or [Co] Proposition 2 and Lemma 3.

Corollary 12.13. Suppose p{f, p > 7, and K, = Qp. -

() If L(,1) = 0 then Sy is infinite.
(ii) If L(x,1) # 0 then

FII(E)y) ~ HED.

Proof. This is immediate from Corollary 12.11 and Proposition 12.12. (For
(ii), we also use (18).) O

12.2 Determination of the Selmer Group when [K}, : Qp] = 2

For this subsection we suppose that [K} : Qp] = 2, so I' = Z2 and E[p™] =
K, /O, has Zp-corank 2.

Lemma 12.14. There is a decomposition
UXE =Vi o Vs
where Vi and Vy are free of rank one over Ay, 00(V2) =0, and EXF ¢ V3.

Proof. By Proposition 11.4, UXF is free of rank two over A, .. Fix a split-
ting UXF = A, v1 & Aypv2. By Corollary 5.20(ii), pg is surjective, and it
follows that doo(Ayzv1) and doo(Ayv2) are Op-submodules of T (E). Since
doo is surjective (Lemma 6.8) and doo(Uso) = 0oo(UZE), it follows that either
8o (Axgv1) = Tr(E) or doo(Aypv2) = Tx(E).

Thus, by renumbering if necessary, we may assume that deo(Ayzv1) =
T, (E). In particular we can choose g € Ay, 50 that d(v2) = doo(gv1), and
(by adjusting g if necessary by an element of the kernel of pg) we may assume
that £ ¢ Ayg(va — gv1). Now the lemma is satisfied with

‘/1 = AXEUIa ‘/2 = ‘/1)(E(v2 - g'U]_).
0

Definition 12.15. Fix a decomposition of UXF as in Lemma 12.14 and de-
fine

U =UXE/V,, X = XX [image(V2)

where image(Vz) denotes the image of V2 in X under the Artin map of local
class field theory.
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Lemma 12.16. (i) X is a torsion A, 5 -module with no nonzero pseudo-null

submodules. _
(ii) char(X) = char(U/image(CXE)).

Proof. Since £, ¢ V2 and V4 is free, (i) follows from Proposition 11.3. Also,
the exact sequence (13) induces an exact sequence

0 — EXE/CXP — U /image(CXE) - X — AXF -0,
so (ii) follows from Corollary 11.8. 0
Proposition 12.17. Sy = Hom(X, E[p>])T.

Proof. By our choice of V; and Va (Proposition 12.14), we see that ker(doo) =
AgVi + Va. Thus

X/ AEX = Xoo/(AEX oo + image(Va)) = Xoo/(ArXoo + image(ker(6o0)))
and so by Proposition 12.2(ii)
Speo = Hom(Xoo/(AEX oo + image(ker(o0))), E[p™]) = Hom(X, E[p™])’.
0

Proposition 12.18. Suppose M is a finitely-generated torsion Ay, -module
and F is a Zy-extension of K, in K, satisfying

(i) M has no nonzero pseudo-null submodules,
(i) If v generates Gal(K/F) then char(M) ¢ (y — 1)Ay, char(M) ¢

(v — pe(7))Axs, and M/(y — 1)M has no nonzero finite submodules.
Then

#(Hom(M, E[p))") = [0y : pp(char(M))].

Proof (sketch). For a complete proof see [Ru2], Lemmas 6.2 and 11.15.

Let T, = Hom(Tx, 0,), let Ar = Z,[[Gal(F/K)]], and let M denote the
A¥E-module (M ® Ty)/(y — 1)(M ® T}). Using the hypotheses on M and F

it is not difficult to show (see [Ru2] Lemma 11.15) that M has no nonzero
finite submodules. Therefore exactly as in Proposition 12.7,

#(Hom(M, E[p=])T) = #(Hom(M ® Ty, 0,)F)
= #(Hom(M, 0,)C(F/K))
= [0, : I(charp(M))]

where 1 denotes the trivial character and charp (M ) is the characteristic ideal
of M as a A¥®-module.

By an argument similar to the proof of Proposition 12.7, one can show
that charp(M) = char(M ® Ty ) A%Z. Therefore

#(Hom(M, E[p>])") = [0, : U(char(M ® Ty))] = [0, : pr(char(M))].
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Theorem 12.19. Suppose ptf, p> 7, and K, # Q.

(i) If L(¥,1) = 0 then Sp= is infinite.
(ii) If L(,1) # 0 then

#(IL(E)pe=) = [0y : (L(,1)/2)0,).

Proof. Lemma 12.16(i) shows that X satisfies the first hypothesis of Propo-
sition 12.18, and the same argument with K, replaced by F verifies the
second hypothesis for all but finitely many choices of F. Also, U /image(CXF)
satisfies the hypotheses of Proposition 12.18 since it is a quotient of one free
Ay g-module by another (Proposition 11.6). Therefore by Proposition 12.18
and Lemma 12.16(ii),

#(Hom(f(, E[p°°])r) = #(Hom(ﬁ/image(cg‘f),E[p°°])r).

The left-hand side of this equality is #(Sp~) by Proposition 12.17. On the
other hand,

Hom(U /image(CXF), E[p*])" = Hom(U/(image(CX* + AgD)), E[p™)),

and 8y : U/AgU — Ty(E) is an isomorphism (Lemmas 6.8 and 12.14).
Therefore

#(Hom(U /image(CX®), E[p™])") = #(Tr/600(Coo))

and the Theorem follows from Wiles’ explicit reciprocity law (Corollary 12.4)
and (18). 0

12.3 Example

We conclude with one example. Let E be the elliptic curve y? = 23 — . The
map (z,y) — (—z,iy) is an automorphism of order 4 defined over K = Q(7),
so Endk (E) = Z[i]. Let p; denote the prime (1 + ¢) above 2.

Clearly E(Q)ors D E[2] = {0,(0,0),(1,0),(-1,0)}. With a bit more
effort one checks that E(K) contains the point (—i,1 + ¢) of order p3, and
using the Theorem of Nagell and Lutz ([Si] Corollary VIIL7.2) or Corollary
5.18 one can show that in fact E(K )ors = E[p3).

The discriminant of E is 64, so F has good reduction at all primes of K
different from p». Since E[p3] C E(K), if we write g for the Hecke character
of K attached to E, Corollary 5.16 shows that ¢¥r(a) = 1 (mod p3) for every
ideal a prime to ps. But every such ideal has a unique generator congruent
to 1 modulo p3, so this characterizes ¥ and shows that its conductor is p3.

Standard computational techniques now show that

L(1,1) = .6555143885...
2 = 2.622057554...
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Therefore by the Coates-Wiles theorem (Theorem 10.1), E(K) = E[p3] and
E(Q) = E|[2]. Further, L(¢,1)/12 is approximately 1/4. By Proposition 10.6
L(3,1)/ 1 is integral at all primes p of residue characteristic greater than 7. In
fact the same techniques show that L(1), 1)/ is integral at all primes p # ps,
and give a bound on the denominator at p2 from which we can conclude that
L(4,1)/02=1/4.

Therefore by Corollary 12.13 and Theorem 12.19, Syeo = HI(E/ g )p =0
for all primes p of residue characteristic greater than 7, and again the same
proof works for all p # p,. It follows easily from this that III(E/q), = 0
for all odd rational primes. Fermat did the 2-descent necessary to show that
I(E;q)2: = 0 (see [We] Chap. II), so in fact III(E,q) = 0. Together with
the fact that the Tamagawa factor at 2 is equal to 4, this shows that the full
Birch and Swinnerton-Dyer conjecture holds for E over Q.
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CENTER

”Computational Mathematics driven by Industrial
Applications”

is the subject of the first 1999 C.I.M.E. Session.

The session, sponsored by the Consiglio Nazionale delle Ricerche (C.N.R.), the
Ministero dell’'Universita e della Ricerca Scientifica e Tecnologica (M.U.R.S.T.) and
the European Community, will take place, under the scientific direction of Profes-
sors Vincenzo CAPASSO (Universita di Milano), Heinz W. ENGL (Johannes Kepler
Universitaet, Linz) and Doct. Jacques PERIAUX (Dassault Aviation) at the Ducal
Palace of Martina Franca (Taranto), from 21 to 27 June, 1999.

Courses

a) Paths, trees and flows: graph optimisation problems with industrial
applications (5 lectures in English) Prof. Rainer BURKARD (Technische Univer-
sitdt Graz)

Abstract

Graph optimisation problems play a crucial role in telecommunication, production,
transportation, and many other industrial areas. This series of lectures shall give an
overview about exact and heuristic solution approaches and their inherent difficulties.
In particular the essential algorithmic paradigms such as greedy algorithms, shortest
path computation, network flow algorithms, branch and bound as well as branch and
cut, and dynamic programming will be outlined by means of examples stemming from
applications.
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2) R. K. Ahuja, T. L. Magnanti, J.B.Orlin & M. R. Reddy, Applications of Network
Optimization. Chapter 1 in: Network Models (Handbooks of Operations Research and
Management Science, Vol. 7), ed. by M. O. Ball et al., North Holland 1995, pp. 1-83

3) R E. Burkard & E. Cela, Linear Assignment Problems and Extensions, Report
127, June 1998 (to appear in Handbook of Combinatorial Optimization, Kluwer,
1999).
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4) R. E. Burkard, E. Cela, P. M. Pardalos & L. S. Pitsoulis, The Quadratic As-
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Optimization, Kluwer, 1999). Can be downloaded by anonymous ftp from fip.tu-
graz.ac.at, directory /pub/papers/math. :
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b) New Computational Concepts, Adaptive Differential Equations Solvers
and Virtual Labs (5 lectures in English) Prof. Peter DEUFLHARD (Konrad Zuse
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Abstract

The series of lectures will address computational mathematxcal projects that have
been tackled by the speaker and his group. In al! the topics to be presented novel
mathematical modelling, advanced algorithm developments. and efficient visualisa-
tion play a joint role to solve problems of practical relevance. Among the applications
to be exemplified are:

1) Adaptive multilevel FEM in clinical cancer therapy planning;

2) Adaptive multilevel FEM in optical chip design;

3) Adaptive discrete Galerkin methods for countable ODEs in polymer chemistry;

4) Essential molecular dynamics in RNA drug design. -
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elliptic problems, Konrad Zuse Zentrum SC 96-33, 1996.

c) Computational Methods for Aerodynamic Analysis and Design. (5
lectures in English) Prof. Antony JAMESON (Stanford University, Stanford).

Abstradt

The topics to be discussed will include: - Analysis of shock capturing schemes, and
fast solution algorithms for compressible flow; - Formulation of aerodynamic shape
optimisation based on control theory; - Derivation of the adjoint equations for com-
pressible flow modelled by the potential Euler and Navies-Stokes equations; - Analysis
of alternative numerical search procedures; - Discussion of geometry control and mesh
perturbation methods; - Discussion of numerical implementation and practical appli-
cations to aerodynamic design.

d) Mathematical Problems in Industry (5 lectures in English) Prof. Jacques-
Louis LIONS (Collége de France and Dassault Aviation, France).

Abstract

1. Interfaces and scales. The industrial systems are such that for questions of
reliability, safety, cost no subsystem can be underestimated. Hence the need to address
problems of scales, both in space variables and in time and the crucial importance of
modelling and numerical methods.

2. Examples in Aerospace Examples in Aeronautics and in Spatial Industries.
Optimum design.

3. Comparison of problems m Aerospace and in Meteorology. Analogies and
differences

4 Real time control. Many methods can be thought of. Universal decomposition
methods will be presented.

References

1) J. L. Lions, Parallel stabilization hyperbolic and Petrowsky systems, WCCM4
Conference, CDROM Proceedings, Buenos Aires, June 29- July 2, 1998.
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2) W. Annacchiarico & M. Cerolaza, Structural shape optimization of 2-D fi-
nite elements models using Beta-splines and genetic algorithms, WCCM4 Conference,
CDROM Proceedings, Buenos Aires, June 29- July 2, 1998.

3) J. Periaux, M. Sefrioui & B. Mantel, Multi-objective strategies for complez op-
timization problems in aerodynamics using genetic algorithms, ICAS 98 Conference,
Melbourne, September '98, ICAS paper 98-2.9.1

e) Wavelet transforms and Cosine Transform in Signal and Image Process-
ing (5 lectures in English) Prof. Gilbert STRANG (MIT, Boston).

Abstract

In a series of lectures we will describe how a linear transform is applied to the sam-
pled data in signal processing, and the transformed data is compressed (and quantized
to a string of bits). The quantized signal is transmitted and then the inverse trans-
form reconstructs a very good approximation to the original signal. Our analysis
concentrates on the construction of the transform. There are several important con-
structions and we emphasise two: 1) the discrete cosine transform (DCT); 2) discrete
wavelet transform (DWT). The DCT is an orthogonal transform (for which we will
give a new proof). The DWT may be orthogonal, as for the Daubechies family of
wavelets. In other cases it may be biorthogonal - so the reconstructing transform is
the inverse but not the transpose of the analysing transform. The reason for this
possibility is that orthogonal wavelets cannot also be symmetric, and symmetry is
essential property in image processing (because our visual system objects to lack of
symmetry). The wavelet construction is based on a "bank” of filters - often a low
pass and high pass filter. By iterating the low pass filter we decompose the input
space into "scales” to produce a multiresolution. An infinite iteration yields in the
limit the scaling function and a wavelet: the crucial equation for the theory is the re-
finement equation or dilatation equation that yields the scaling function. We discuss
the mathematics of the refinement equation: the existence and the smoothness of the
solution, and the construction by the cascade algorithm. Throughout these lectures
we will be developing the mathematical ideas, but always for a purpose. The insights
of wavelets have led to new bases for function spaces and there is no doubt that other
ideas are waiting to be developed. This is applied mathematics.

References

1) I. Daubechies, Ten lectures on wavelets, SIAM, 1992.

2) G. Strang & T. Nguyen, Wavelets and filter banks, Wellesley-Cambridge, 1996.
3) Y. Meyer, Wavelets: Algorithms and Applications, SIAM, 1993.

Seminars

Two hour seminars will be held by the Scientific Directors and Professor R. Matt-
theij.

1) Mathematics of the crystallisation process of polymers. Prof. Vincenzo
CAPASSO (Un. di Milano).

2) Inverse Problems: Regularization methods, Application in Industry.
Prof. H. W. ENGL (Johannes Kepler Un., Linz).

3) Mathematics of Glass. Prof. R. MATTHEIJ (TU Eindhoven).

4) Combining game theory and genetic algorithms for solving multi-
objective shape optimization problems in Aerodynamics Engineering. Doct.
J. PERIAUX (Dassault Aviation).
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Applications

Those who want to attend the Session should fill in an application to C.LM.E
Foundation at the address below, not later than April 30, 1999. An important
consideration in the acceptance of applications is the scientific relevance of the Ses-
sion to the field of interest of the applicant. Applicants are requested, therefore, to
submit, along with their application, a scientific curriculum and a letter of recommen-
dation. Participation will only be allowed to persons who have applied in due time
and have had their application accepted. CIME will be able to partially support some

?f the youngest participants. Those who plan to apply for support have to mention
it explicitely in the application form.

-

Attendance

No registration fee is requested. Lectures will be held at Martina Franca on June
21, 22, 23, 24, 25, 26, 27. Participants are requested to register on June 20, 1999.

Site and lodging

Martma Franca is a delightful baroque town of white houses of Apulian sponta-
neous arclntecture Martina Franca is the major and most aristocratic centre of the
"Murgia dei Trulli” standing on an hill which dominates the well known Itria valley
spotted with "Trulli” conical dry stone houses which go back to the 15th century. A
masterpiece of baroque architecture is the Ducal palace where the workshop will be
hosted. Martina Franca is part of the province of Taranto, one of the major centres of

Magna Grecia, particularly devoted to mathematics. Taranto houses an outstanding
museum of Magna Grecia with fabulous collections of gold manufactures.

Lecture Notes

Lecture notes will be published as soon as possible after the Session.

Arrigo CELLINA
CIME Director

Vincenzo VESPRI
CIME Secretary

Fondazione C.LM.E. c/o Dipartimento di Matematica 7U. Dini? Viale Morgagni,
67/A - 50134 FIRENZE (ITALY) Tel. +39-55-434975 / +39-55-4237123 FAX +39-
55-434975 / +39-55-4222695 E-mail CIMEQUDINI.MATH.UNIFLIT

Information on CIME can be obtained on the system World-Wide-Web on the file
HTTP: //WWW.MATH.UNIFLIT/CIME/WELCOME.TO.CIME
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INTERNATIONAL MATHEMATICAL SUMMER
CENTER

nIwahori-Hecke Algebras and Representation Theory”

is the subject of the second 1999 C.I.LM.E. Session.

The session, sponsored by the Consiglio Nazionale delle Ricerche (C.N.R.), the
Ministero dell’Universita e della Ricerca Scientifica e Tecnologica (M.U.R.S.T.) and
the European Community, will take place, under the scientific direction of Professors
Velleda BALDONI (Universita di Roma "Tor Vergata”) and Dan BARBASCH (Cor-
nell University) at the Ducal Palace of Martina Franca (Taranto), from June 28 to
July 6, 1999.

Courses

a) Double HECKE algebras and applications (6 lectures in English)
Prof. Ivan CHEREDNIK (Un. of North Carolina at Chapel Hill, USA)
Abstract:
The starting point of many theories in the range from arithmetic and harmonic
analysis to path integrals and matrix models is the formula:

o0
T(k+1/2) = 2 / e 2% dz,
[1}

Recently a g-generalization was found based on the Hecke algebra technique, which
completes the 15 year old Macdonald program.

The course will be about applications of the double affine Hecke algebras (mainly
one-dimensional) to the Macdonald polynomials, Verlinde algebras, Gauss integrals
and sums. It will be understandable for those who are not familiar with Hecke algebras
and (hopefully) interesting to the specialists.

1) g-Gauss integrals. We will introduce a g-analogue of the classical integral for-
mula for the gamma-function and use it to generalize the Gaussian sums at roots of
unity.

2) Ultraspherical polynomials. A connection of the g-ultraspherical polynomials
(the Rogers polynomials) with the one-dimensional double affine Hecke algebra will
be established.

3) Duality. The duality for these polynomials (which has no classical counterpart)
will be proved via the double Hecke algebras in full details.

4) Verlinde algebras. We will study the polynomial representation of the 1-dim.
DHA at roots of unity, which leads to a generalization and a simplification of the
Verlinde algebras.

5) PSLa(Z)-action. The projective action of the PSLz(Z) on DHA and the gen-
eralized Verlinde algebras will be considered for 4, and arbitrary root systems.

6) Fourier transform of the g-Gaussian. The invariance of the g-Gaussian with
respect to the g-Fourier transform and some applications will be discussed.

References:
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1) From double Hecke algebra to analysis, Proceedings of ICM98, Documenta
Mathematica (1998).

2) Difference Macdonald~Mehta conjecture, IMRN:10, 440-467 (1997).

3) Lectures on Knizhnik-Zamolodchikov equations and Hecke algebras, MSJ Mem-
oirs (1997).

b) Representation theory of affine Hecke algebras
Prof. Gert HECKMAN (Catholic Un., Nijmegen, Netherlands)

Abstract.

1. The Gauss hypergeometric equation.

2. Algebraic aspects of the hypergeometric system for root systems.

3. The hypergeometric function for root systems. *

4. The Plancherel formula in the hypergeometric context.

5. The Lauricella hypergeometric function.

6. A root system analogue of 5.

I will assume that the audience is familiar with the classical theory of ordinary dif-
ferential equations in the complex plane, in particular the concept of regular singular
points and monodromy (although in my first lecture I will give a brief review of the
Gauss hypergeometric function). This material can be found in many text books, for
example E.L. Ince, Ordinary differential equations, Dover Publ, 1956. E.T. Whittaker
and G.N. Watson, A course of modern analysis, Cambridge University Press, 1927.

I will also assume that the audience is familiar with the theory of root systems
and reflection groups, as can be found in N, Bourbaki, Groupes et algébres de Lie,
Ch. 4,5 et 6, Masson, 1981. J. E. Humphreys, Reflection groups and Coxeter groups,
Cambridge University Press, 1990. or in one of the text books on semisimple groups.

For the material covered in my lectures references are W.J. Couwenberg, Complex
reflection groups and hypergeometric functions, Thesis Nijmegen, 1994. G.J. Heck-

man, Dunkl operators, Sem Bourbaki no 828, 1997. E.M. Opdam, Lectures on Dunkl
operators, preprint 1998.

c) Representations of affine Hecke algebras.
Prof. George LUSZTIG (MIT, Cambridge, USA)

Abstract

Affine Hecke algebras appear naturally in the representation theory of p-adic
groups. In thwe. lectures we will discuss the reprcsentation theory of affine Hecke
algebras and their graded version using geometric methods such as equivariant K-
theory or perverse sheaves,

References.

1. ' V. Ginzburg, Lagrangian construction of representations of Hecke algebras,
Adv. in Math. 63 (1987), 100-112.

2. D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands conjecture for
Hecke algebras., Inv. Math. 87 (1987), 153-215.

3. G. Lusztig, Cuspidal local systems and graded Hecke algebras, I, IHES Publ.
Math. 67 (1988),145-202; II, in "Representation of groups” (ed. B. Allison and G.
Cliff), Conf. Proc. Canad. Math. Soc.. 16, Amer. Math. Soc. 1995, 217-275.

4. G. Lusztig, Bases in equivariant K-theory, Represent. Th., 2 (1998).
d) Affine-like Hecke Algebras and p-adic representation theory

Prof. Roger HOWE (Yale Un., New Haven, USA)
Abstract
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Affine Hecke algebras first appeared in the study of a special class of represen-
tations (the spherical principal series) of reductive groups with coefficients in p-adic
fields. Because of their connections with this and other topics, the structure and rep-
resentation theory of affine Hecke algebras has been intensively studied by a variety
of authors. In the meantime, it has gradually emerged that affine Hecke algebras, or
slight generalizations of them, allow one to understand far more of the representations
of p-adic groups than just the spherical principal series. Indeed, it seems possible that
such algebras will allow one to understand all representations of p-adic groups. These
lectures will survey progress in this approach to p-adic representation theory.

Topics:

1) Ih()'}enemlit:ies on spherical function algebras on p-adic groups.

2) Iwahori Hecke algebras and generalizations.

3) - 4) Affine Hecke algebras and harmonic analysis

5) - 8) Affine-like Hecke algebras and representations of higher level.

References:

J. Adler, Refined minimal K-types and supercuspidal representations, Ph.D. The-
sis, University of Chicago.

D. Barbasch, The spherical dual for p-adic groups, in Geometry and Representa-
tion Theory of Real and p-adic Groups, J. Tirao, D. Vogan, and J. Wolf, eds, Prog.
In Math. 158, Birkhauser Verlag, Boston, 1998, 1 - 20.

D. Barbasch and A. Moy, A unitarity criterion for p-adic groups, Inv. Math. 98
(1989), 19 - 38.

D. Barbasch and A. Moy, Reduction to real infinitesimal character in affine Hecke
algebras, J. A. M. S.6 (1993), 611- 635.

D. Barbasch, Unitary spherical spectrum for p-adic classical groups, Acta. Appl.
Math. 44 (1996), 1 - 37.

C. Bushnell and P. Kutzko, The admissible dual of GL(N) via open subgroups,
Ann. of Math. Stud. 129, Princeton University Press, Princeton, NJ, 1993.

C. Bushnell and P. Kutzko, Smooth representations of reductive p-adic groups:
Structure theory via types, D. Goldstein, Hecke algebra isomorphisms for tamely

ramified characters, R. Howe and A. Moy, Harish-Chandra Homomorphisms for p-adic
Groups, CBMS Reg. Conf. Ser. 59, American Mathematical Society, Providence, RI,
1985.

R. Howe and A. Moy, Hecke algebra isomorphisms for GL(N) over a p-adic field,
J. Alg. 131 (1990), 388 - 424.

J-L. Kim, Hecke algebras of classical groups over p-adic fields and supercuspidal
representations,], II, III, preprints, 1998.

G. Lusztig, Classification of unipotent representations of simple p-adic groups,
IMRN 11 (1995), 517 - 589.

G. Lusztig, Affine Hecke algebras and their graded version, J. A. M. S. 2 (1989),
599 - 635.

L. Morris, Tamely ramified supercuspidal representations of classical groups, I, II,
Ann. Ec. Norm. Sup 24, (1991) 705 - 738; 25 (1992), 639 - 667.

L. Morris, Tamely ramified intertwining algebras, Inv. Math. 114 (1994), 1 - 54.

A. Roche, Types and Hecke algebras for principal series representations of split
reductive p-adic groups, preprint, (1996).

J-L. Waldspurger, Algebres de Hecke et induites de representations cuspidales pour
GLn, J. reine u. angew. Math. 370 (1986), 27 - 191.

J-K. Yu, Tame construction of supercuspidal representations, preprint, 1998.
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Applications

Those who want to attend the Session should fill in an application to the Director
of C.ILM.E at the address below, not later than April 30, 1999.

An important consideration in the acceptance of applications is the scientific rel-
evance of the Session to the field of interest of the applicant.

Applicants are requested, therefore, to submit, along with their application, a
scientific curriculum and a letter of recommendation.

Participation will only be allowed to persons who have applied in due time and
have had their application accepted.

CIME will be able to partially support some of the youngest pamcxpants Those
who plan to apply for support have to mention it explicitely in the application form.

Attendance

No registration fee is requested. Lectures will be held at Martina Franca on June
28, 29, 30, July 1, 2, 3, 4, 5, 6. Participants are requested to register on June 27,
1999.

Site and lodging

Martina Franca is a delightful baroque town of white houses of Apulian sponta-
neous architecture. Martina Franca is the major and most aristocratic centre of the
Murgia dei Trulli standing on an hill which dominates the well known Itria valley
spotted with Trulli conical dry stone houses which go back to the 15th century. A
masterpiece of baroque architecture is the Ducal palace where the workshop will be
hosted. Martina Franca is part of the province of Taranto, one of the major centres of
Magna Grecia, particularly devoted to mathematics. Taranto houses an outstanding
museum of Magna Grecia with fabulous collections of gold manufactures.

Lecture Notes
Lecture notes will be published as soon as possible after the Session.

Arrigo CELLINA
CIME Director

Vincenzo VESPRI
CIME Secretary

Fondazione C.LM.E. c/o Dipartimento di Matematica U. Dini Viale Morgagni, 67/A
- 50134 FIRENZE (ITALY) Tel. +39-55-434975 / +39-55-4237123 FAX
+39-55-434975 / +39-55-4222695 E-mail CIMEQUDINI.MATH.UNIFLIT

Information on CIME can be obtained on the system World-Wide-Web on the file
HTTP: //WWW.MATH.UNIFLIT/CIME/WELCOME.TO.CIME.

FONDAZIONE C.I.M.E.
CENTRO INTERNAZIONALE MATEMATICO ESTIVO
INTERNATIONAL MATHEMATICAL SUMMER
CENTER

»Theory and Applications of Hamiltonian Dynamics”

is the subject of the third 1999 C.ILM.E. Session.

The session, sponsored by the Consiglio Nazionale delle Ricerche (C.N.R.), the
Ministero dell’Universita e della Ricerca Scientifica e Tecnologica (M.U.R.S.T.) and
the European Community, will take place, under the scientific direction of Profes-
sor Antonio GIORGILLI (Un. di Milano), at Grand Hotel San Michele,Cetraro
(Cosenza), from July 1 to July 10, 1999.

Courses

a) Physical applications of Nekhoroshev theorem and exponential esti-
mates (6 lectures in English)

Prof. Giancarlo BENETTIN (Un. di Padova, Italy)

Abstract

The purpose of the lectures is to introduce exponential estimates (i.e., construction
of normal forms up to an exponentially small remainder) and Nekhoroshev theorem
(exponential estimates plus geometry of the action space) as the key to understand the
behavior of several physical systems, from the Celestial mechanics to microphysics.

Among the applications of the exponential estimates, we shall consider problems
of adiabatic invariance for systems with one or two frequencies coming from mole-
cular dynamics. We shall compare the traditional rigorous approach via canonical
transformations, the heuristic approach of Jeans and of Landau-Teller, and its pos-
sible rigorous implementation via Lindstet series. An old conjecture of Boltzmann
and Jeans, concerning the possible presence of very long equilibrium times in classi-
cal gases (the classical analog of “quantum freezing”) will be reconsidered. Rigorous
and heuristic results will be compared with numerical results, to test their level of
optimality.

Among the applications of Nekhoroshev theorem, we shall study the fast rotations
of the rigid body, which is a rather complete problem, including degeneracy and
singularities. Other applications include the stability of elliptic equilibria, with special
emphasis on the stability of triangular Lagrangian points in the spatial restricted three
body problem.

References:

For a general introduction to the subject, one can look at chapter § of V.L
Arnold, VV. Kozlov and A.I. Neoshtadt, 1n Dynamical Systems III, V.1. Arnold Ed-
itor (Springer, Berlin 1988). An introduction to physical applications of Nekhorshev
theorem and exponential estimates is in the proceeding of the Noto School “Non-
Linear Evolution and Chaotic Phenomena”, G. Gallavotti and P.W. Zweifel Editors
(Plenum Press, New York, 1988), see the contributions by G. Benettin, L. Galgani
and A. Giorgilli.

General references on Nekhoroshev theorem and exponential estimates: N.N.
Nekhoroshev, Usp. Mat. Nauk. 32:6, 5-66 (1977) [Russ. Math. Surv. 32:6, 1-65
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(1977)]; G. Benettin, L. Galgani, A. Giorgilli, Cel. Mech. 37, 1 (1985); A. Giorgilli
and L. Galgani, Cel. Mech. 37, 95 (1985); G. Benettin and G. Gallavotti, Journ.
Stat. Phys. 44, 293-338 (1986); P. Lochak, Russ. Math. Surv. 47, 57-133 (1992);
J. Pschel, Math. Z. 213, 187-216 (1993).

Applications to statistical mechanics: G. Benettin, in: Boltzmann's legacy 150
years afrer his birth, Atti Accad. Nazionale dei Lincei 131, 89-105 (1997); G. Benet-
tin, A. Carati and P. Sempio, Journ. Stat. Phys. 73, 175-192 (1993); G. Benettin,
A. Carati and G. Gallavotti, Nonlinearity 10, 479-505 (1997); G. Benettin, A. Carati
e F. Fasso, Physica D 104, 253-268 (1997); G. Benettin, P. Hjorth and P. Sempio, Ex-
ponentially long equilibrium times in a one dimensional collisional model of a classical
gas, in print in Journ. Stat. Phys. .

Applications to the rigid body: G. Benettin and F. Fassd, Nonlinearity 9, 137-186
(1996); G. Benettin, F. Fassd e M. Guzzo, Nonlinearity 10, 1695-1717 (1997).

Applications to elliptic equilibria (recent nonisochronous approach): F. Fasso, M.
Guzzo e G. Benettin, Comm. Math. Phys. 197, 347-360 (1998); L. Niederman,
Nonlinear stability around an elliptic equilibrium point in an Hamiltonian system,
preprint (1997). M. Guzzo, F. Fasso’ e G. Benettin, Math. Phys. Electronic Journal,
Vol. 4, paper 1 (1998); G. Benettin, F. Fassd e M. Guzzo, Nekhoroshev-stability
of L4 and L5 in the spatial restricted three~body problem, in print in Regular and
Chaotic Dynamics.

b) KAM-theory (6 lectures in English)

Prof. Hakan ELIASSON (Royal Institute of Technology, Stockholm, Sweden)

Abstract

Quasi-periodic motions (or invariant tori) occur naturally when systems with peri-
odic motions are coupled. The perturbation problem for these motions involves small
divisors and the most natural way to handle this difficulty is by the quadratic conver-
gence given by Newton's method. A basic problem is how to implement this method
in a particular perturbative situation. We shall describe this difficulty, its relation
to linear quasi-periodic systems and the way given by KAM-theory to overcome it
in the most generic case. Additional difficulties occur for systems with elliptic lower
dimensional tori and even more for systems with weak non-degeneracy.

We shall also discuss the difference between initial value and boundary value prob-
lems and their relation to the Lindstedt and the Poincaré-Lindstedt series.

The classical books Lectures in Celestial Mechanics by Siegel and Moser (Springer
1971) and Stable and Random Motions in Dynamical Systems by Moser (Princeton
University Press 1973) are perhaps still the best introductions to KAM-theory. The
development up to middle 80’s is described by Bost in a Bourbaki Seminar (no. 6
1986). After middle 80’s a lot of work have been devoted to elliptic lower dimensional
tori, and to the study of systems with weak non-degeneracy starting with the work
of Cheng and Sun (for example “Eristence of KAM-tori in Degenerate Hamiltonian
systems”, J. Diff. Eq. 114, 1994). Also on linear quasi-periodic systems there has
been some progress which is described in my article “Reducibility and point spectrum
for quasi-periodic skew-products”, Proceedings of the ICM, Berlin volume II 1998.

¢) The Adiabatic Invariant in Classical Dynamics: Theory and applica-
tions (6 lectures in English).
Prof. Jacques HENRARD (Facultés Universitaires Notre Dame de la Paix, Namur,
Belgique).
" Abstract
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The adiabatic invariant theory applies essentially to oscillating non-autonomous
Hamiltonian systems when the time dependance is considerably slower than the oscil-
lation periods. It describes "easy to compute” and "dynamicaly meaningful” quasi-
invariants by which on can predict the approximate evolution of the system on very
large time scales. The theory makes use and may serve as an illustration of several
classical results of Hamiltonian theory.

1) Classical Adiabatic Invariant Theory (Including an introduction to angle-action
variables)

2) Classical Adiabatic Invariant Theory (continued) and some applications (in-
cluding an introduction to the "magnetic bottle")

3) Adiabatic Invariant and Separatrix Crossing (Neo-adiabatic theory)

4) Applications of Neo-Adiabatic Theory: Resonance Sweeping in the Solar System

5) The chaotic layer of the "Slowly Modulated Standard Map"

References:

J.R. Cary, D.F. Escande, J.L. Tennison: Phys.Rev. A, 34, 1986, 3256-4275

J. Henrard, in ” Dynamics reported” (n=B02- newseries), Springer Verlag 1993; pp
117-235)

J. Henrard: in " Les méthodes moderne de la mécanique céleste” (Benest et Hroeschie
eds), Edition Frontieres, 1990, 213-247

J. Henrard and A. Morbidelli: Physica D, 68, 1993, 187-200.

d) Some aspects of qualitative theory of Hamiltonian PDEs (6 lectures
in English).

Prof. Sergei B. KUKSIN (Heriot-Watt University, Edinburgh, and Steklov Insti-
tute, Moscow)

Abstract.

I) Basic properties of Hamiltonian PDEs. Symplectic structures in scales of Hilbert
spaces, the notion of a Hamiltonian PDE, properties of flow-maps, etc.

II) Around Gromov’s non-squeezing property. Discussions of the finite-dimensional
Gromov's theorem, its version for PDEs and its relevance for mathematical physics,
infinite-dimensional symplectic capacities.

III) Damped Hamiltonian PDEs and the turbulence-limit. Here we establish some
qualitative properties of PDEs of the form <non-linear Hamiltonian PDE>+<small
linear damping> and discuss their relations with theory of decaying turbulence

Parts I)-II) will occupy the first three lectures, Part III - the last two.

References

(1) S.K., Nearly Integrable Infinite-dimensional Hamiltonian Systems. LNM 1556,
Springer 1993.
[2) S.K., Infinite-dimensional symplectic capacities and a squeezing theorem for Hamil-
tonian PDE’s. Comm. Math. Phys. 167 (1995), 531-552.
(3] Hofer H., Zehnder E., Symplectic invariants and Hamiltonian dynamics. Birkhauser,
1994.
[4} S.K. Oscillations in space-periodic nonlinear Schroedinger equations. Geometric
and Functional Analysis 7 (1997), 338-363.

For 1) see [1] (Part 1); for II) see {2,3]; for III) see [4].”

e) An overview on some problems in Celestial Mechanics (6 lectures in
English)

Prof. Carles SIMO’ (Universidad de Barcelona, Spagna)

Abstract

1. Introduction. The N-body problem. Relative equilibria. Collisions.
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mﬁ. .The 3D restricted three-body problem. Libration points and local stability
ysis.
3. Periodic orbits and invariant tori. Numerical and symbolical computation.

4. Stability and practical stability. Central manifolds and the related stable/unstable
manifolds. Practical confiners.

5. The motion of spacecrafts in the vicinity of the Earth-Moon system. Results
for improved models. Results for full JPL models.

References:

C. Simo, An overview of some problems in Celestial Mechanics, available at

http://www-mal.upc.es/escorial .

Click of "curso completo” of Prof. Carles Simé

Applications

Deadline for application: May 15, 1999.

Applicants are requested to submit, along with their application, a scientific cur-
riculum and a letter of recommendation.

CIME will be able to partially support some of the youngest participants. Those
who plan to apply for support have to mention it explicitely in the application form.

Attendance

No registration fee is requested. Lectures will be held at Cetraro on July 1, 2, 3,
4,5,6,7, 8,9, 10. Participants are requested to register on June 30, 1999.

Site and lodging

The session will be held at Grand Hotel S. Michele at Cetraro (Cosenza), Italy.
Prices for full board (bed and meals) are roughly 150.000 italian liras p.p. day in
a single room, 130.000 italian liras in a double room. Cheaper arrangements for
multiple lodging in a residence are avalajble. More detailed information may be
obtained from the Direction of the hotel (tel. +39-098291012, Fax +39-098291430
email: sanmichele@antares.it. '

Further information on the hotel at the web page www.sanmichele.it

Arrigo CELLINA

Vincenzo VESPRI
CIME Director

CIME Secretary

Fondazione C.LM.E. c/o Dipartimento di Matematica U. Dini Viale Morgagni, 67/A
- 50134 FIRENZE (ITALY) Tel. 4-39-55-434975 / +39-55-4237123 FAX
+39-55-434975 / +39-55-4222695 E-mail CIMEQUDINI.MATH.UNIFLIT

Information on CIME can be obtained on the system World-Wide-Web on the file
HTTP: //WWW.MATH.UNIFLIT/CIME/WELCOME.TO.CIME.

FONDAZIONE C.I.M.E.
CENTRO INTERNAZIONALE MATEMATICO ESTIVO
INTERNATIONAL lélél'\ll‘%IEEMATICAL SUMMER
R

»Global Theory of Minimal Surfaces in Flat Spaces”

is the subject of the fourth 1999 C.L.M.E. Session.

The session, sponsored by the Consiglio Nazionale delle Ricerche (C.N.R.), the
Ministero dell’Universita e della Ricerca Scientifica e Tecnologica (M.U.R.S.T.) and
the European Community, will take place, under the scientific direction of Professor
Gian Pietro PIROLA (Un. di Pavia), at Ducal Palace of Martina Franca (Taranto),
from July 7 to July 15, 1999.

Courses

a) Asymptotic geometry of properly embedded minimal surfaces (6 lec-
ture in English)

Prof. William H. MEEKS, III (Un. of Massachusetts, Amherst, USA).

Abstract:

In recent years great progress has been made in understanding the asymptotic
geometry of properly embedded minimal surfaces. The first major result of this type
was the solution of the generalized Nitsch conjecture by P. Collin, based on earlier
work by Meeks and Rosenberg. It follows from the resolution of this conjecture that
whenever M is a properly embedded minimal surface with more than one end and
E C M is an annular end representative, then E has finite total curvature and is
asymptotic to an end of a plan or catenoid. Having finite total curvature in the
case of an annular end is equivalent to proving the end has quadratic area growth
with respect to the radial function r. Recently Collin, Kusner, Meeks and Rosenberg
have been able to prove that any middle end of M, even one with infinite genus, has
quadratic area growth. It follows from this result that middle ends are never limit
ends and hence M can only have one or two limit ends which must be top or bottom
ends. With more work it is shown that the middle ends of M stay a bounded distance
from a plane or an end of a catenoid.

The goal of my lectures will be to introduce the audience to the concepts in the
theory o f properly embedded minimal surfaces needed to understand the above results
and to understand some recent classification theorems on proper minimal surfaces of
genus 0 in flat three-manifolds.

References

1) H. Rosenberg, Some recent developments in the theory of properly embedded
minimal surfaces in E, Asterisque 208, (19929, pp. 463-535;

2) W. Meeks & H. Rosenberg, The geometry and conformal type of properly em-
bedded minimal surfaces in E, Invent.Math. 114, (1993), pp. 625-639;

3) W. Meeks, J. Perez & A. Ros, Uniqueness of the Riemann minimal ezamples,
Invent. Math. 131, (1998), pp. 107-132;

4) W. Meeks & H. Rosenberg, The geometry of periodic minimal surfaces, Comm.
Math. Helv. 68, (1993), pp. 255-270;

5) P. Collin, Topologie et courbure des surfaces minimales proprement plongees
dans E, Annals of Math. 145, (1997), pp. 1-31;
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6) H. Rosenberg, Minimal surfaces of finite type, Bull. Soc. Math. France 123,
(1995), pp. 351-359;

7) Rodriquez & H. Rosenberg, Minimal surfaces in E with one end and bounded
curvature, Manusc. Math. 96, (1998), pp. 3-9.

b) Properly embedded minimal surfaces with finite total curvature (6
lectures in English)

Prof. Antonio ROS (Universidad de Granada, Spain)

Abstact:

Among properly embedded minimal surfaces in Euclidean 3-space, those that have
finite total curvature form a natural and important subclass. These surfaces have
finitely many ends which are all parallel and asymptotic to planes or catenoids. Al-
though the structure of the space M of surfaces of this type which have a fixed
topology is not well understood, we have a certain number of partial results and some
of them will be explained in the lectures we will give,

The first nontrivial examples, other than the plane and the catenoid, were con-
structed only ten years ago by Costa, Hoffman and Meeks. Schoen showed that if the
surface has two ends, then it must be a catenoid and Lépez and Ros proved that the
only surfaces of genus zero are the plane and the catenoid. These results give partial
answers to an interesting open problem: decide which topologies are supported by this
kind of surfaces. Ros obtained certain compactness properties of M. In general this
space is known to be noncompact but he showed that M is compact for some fixed
topologies. Pérez and Ros studied the local structure of M around a nondegenerate
surface and they proved that around these points the moduli space can be naturally
viewed as a Lagrangian submanifold of the complex Euclidean space.

In spite of that analytic and algebraic methods compete to solve the main problems
in this theory, at this moment we do not have a satisfactory idea of the behaviour of
the moduli space M. Thus the above is a good research field for young geometers
interested in minimal surfaces.

References

1) C. Costa, Ezample of a compete minimal immersion in R® of genus one and
three embedded ends, Bull. SOc. Bras. Math. 15, (1984), pp. 47-54;

2) D. Hoffman & H. Karcher, Complete embedded minimal surfaces of finite total
curvature, R. Osserman ed., Encyclopedia of Math., vol. of Minimal Surfaces, 5-90,
Springer 1997;

3) D. Hoffman & W. H. Meeks III, Embedded minimal surfaces of finite topology,
Ann. Math. 131, (1990), pp. 1-34;

4) F. J. Lopez & A. Ros, On embedded minimal surfaces of genus zero, J. Differ-
ential Geometry 33, (1991), pp. 293-300;

5) J. P. Perez & A. Ros, Some uniqueness and nonezistence theorems for embedded
minimal surfaces, Math. Ann. 295 (3), (1993), pp. 513-525;

6) J. P. Perez & A. Ros, The space of properly embedded minimal surfaces with
finite total curvature, Indiana Univ. Math. J. 45 1, (1996), pp.177-204.

c) Minimal surfaces of finite topology properly embedded in E (Euclidean
3-space).(6 lectures in English)

Prof. Harold ROSENBERG (Univ. Paris VII, Paris, France)

Abstract:

We will prove that a properly embedded minimal surface in E of finite topology
and at least two ends has finite total curvature. To establish this we first prove that
each annular end of such a surface M can be made transverse to the horizontal planes
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( after a possible rotation in space ), [Meeks-Rosenberg]. Then we will prove that such
an end has finite total curvature {Pascal Collin]. We next study properly embedded
minimal surfaces in E with finite topology and one end. The basic unsolved problem
is to determine if such a surface is a plane or helicoid when simply connected. We
will describe partial results. We will prove that a properly immersed minimal surface
of finite topology that meets some plane in a finite number of connected components,
with at most a finite number of singularities, is of finite conformal type. If in addition
the curvature is bounded, then the surface is of finite type. This means M can
be parametrized by meromorphic data on a compact Riemann surface. In particular,
under the above hypothesis, M is a plane or helicoid when M is also simply connected
and embedded. This is work of Rodriquez- Rosenberg, and Xavier. If time permits we
will discuss the geometry and topology of constant mean curvature surfaces properly
embedded in E.

References

1) H. Rosenberg, Some recent developments in the theory of properly embedded
minimal surfaces in E, Asterique 206, (1992), pp. 463-535;

2) W.Meeks & H. Rosenberg, The geometry and conformal type of properly em-
bedded minimal surfaces in E, Invent. 114, (1993), pp.625-639;

3) P. Collin, Topologie et courbure des surfaccs minimales proprement plongées
dans E, Annals of Math. 145, (1997), pp. 1-31

4) H. Rosenberg, Minimal surfaces of finite type, Bull. Soc. Math. France 123,
(1995), pp. 351-359;

5) Rodriquez & H. Rosenberg, Minimal surfaces in E with one end and bounded
curvature, Manusc. Math. 96, (1998), pp. 3-9.

Applications

Those who want to attend the Session should fill in an application to the C.IM.E
Foundation at the address below, not later than May 15, 1999.

An important consideration in the acceptance of applications is the scientific rel-
evance of the Session to the field of interest of the applicant.

Applicants are requested, therefore, to submit, along with their application, a
scientific curriculum and a letter of recommendation.

Participation will only be allowed to persons who have applied in due time and
have had their application accepted.

CIME will be able to partially support some of the youngest participants. Those
who plan to apply for support have to mention it explicitely in the application form

Attendance

No registration fee is requested. Lectures will be held at Martina Franca on July
7, 8,9, 10, 11, 12, 13, 14, 15. Participants are requested to register on July 6, 1999.

Site and lodging

Martina Franca is a delightful baroque town of white houses of Apulian sponta-
neous architecture. Martina Franca is the major and most aristocratic centre of the
Murgia dei Trulli standing on an hill which dominates the well known Itria valley
spotted with Trulli conical dry stone houses which go back to the 15th century. A
masterpiece of baroque architecture is the Ducal palace where the workshop will be
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hosted. Martina Franca is part of the province of Taranto, one of j

¢ X 8 the major centres of
Magna Grecia, paxtxcula.rly flevoted to mathematics. Taranto houses an outstanding
museum of Magna Grecia with fabulous collections of gold manufactures.

Lecture Notes
Lecture notes will be published as soon as possible after the Session.

Arrigo CELLINA

Vincenzo VESPRI
CIME Director

CIME Secretary

Fondazione C.LM.E. c/o Dipartimento di Matematica U. Dini Viale Morgagni, 67/A

- 50134 FIRENZE (ITALY) Tel. +39-55-434975 / +39-55-4237123 FAX
+39-55-434975 / +39-55-4222695 E-mail CIME@UDINI.MATH. UNIFLIT

Information on CIME can be obtained on the system World-Wide-Web on the file
HTTP: //WWW.MATH.UNIFLIT/CIME/WELCOME.TO.CIME.

FONDAZIONE C.I.M.E.
CENTRO INTERNAZIONALE MATEMATICO ESTIVO
INTERNATIONAL MATHEMATICAL SUMMER
CENTER

»Direct and Inverse Methods in Solving Nonlinear Evolution
Equations”

is the subject of the fifth 1999 C.I.M.E. Session.

The session, sponsored by the Consiglio Nazionale delle Ricerche (C.N.R.), the
Ministero dell’Universita e della Ricerca Scientifica e Tecnologica (M.U.R.S.T.) and
the European Community, will take place, under the scientific direction of Profes-
sor Antonio M. Greco (Universita di Palermo), at Grand Hotel San Michele,Cetraro
(Cosenza), from September 8 to September 15, 1999.

a) Exact solutions of nonlinear PDEs by singularity analysis (6 lectures
in English)

Prof. Robert CONTE (Service de physique de l'état condensé, CEA Saclay, Gif-
sur-Yvette Cedex, France)

Abstract

1) Criteria of integrability : Lax pair, Darboux and Bicklund transformations.
Partial integrability, examples. Importance of involutions.

2) The Painlevé test for PDEs in its invariant version.

3) The “truncation method” as a Darboux transformation, ODE and PDE situa-
tions.

4) The one-family truncation method (WTC), integrable (Korteweg-de Vries,
Boussinesq, Hirota-Satsuma, Sawada-Kotera) and partially integrable
(Kuramoto-Sivashinsky) cases.

5) The two-family truncation method, integrable (sine-Gordon, mKdV, Broer-
Kaup) and partially integrable (complex Ginzburg-Landau and degeneracies) cases.

6) The one-family truncation method based on the scattering problems of Gambier:
BT of Kaup-Kupershmidt and Tzitzéica equations.

References

References are divided into three subsets: prerequisite (assumed known by the
attendant to the school), general (not assumed known, pedagogical texts which would
greatly benefit the attendant if they were read before the school), research (research
papers whose content will be exposed from a synthetic point of view during the
course).

Prerequisite bibliography.
The following subjects will be assumed to be known : the Painlevé property for
nonlinear ordinary differential equations, and the associated Painlevé test.

Prerequisite recommended texts treating these subjects are

[P.1] E. Hille, Ordinary differential equations in the complez domain (J. Wiley and
sons, New York, 1976).

{P.2] R. Conte, The Painlevé approach to nonlinear ordinary differential equations,
The Painlevé property, one century later, 112 pages, ed. R. Conte, CRM series in
mathematical physics (Springer, Berlin, 1999). Solv-int/9710020.
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The interested reader can find many applications in the following review, which
should not be read before [P.2] :

(P.3] A. Ramani, B. Grammaticos, and T. Bountis, The Painlevé property and sin-
gularity analysis of integrable and nonintegrable systems, Physics Reports 180 (1989)
159-245.

A text to be avoided by the beginner is Ince’s book, the ideas are much clearer in
Hille’s book.

There exist very few pedagogical texts on the subject of this school.

A general reference, covering all the above program, is the course delivered at a
Cargese school in 1996 :

[G-1] M. Musette, Painlevé analysis for nonlinear partial differential eguations,
The Painlevé property, one century later, 65 pages, ed. R. Conte, CRM series in
mathematical physics (Springer, Berlin, 1999). Solv-int/9804003.

A short subset of [G.1], with effiphasis on the ideas, is the conference report

[G-2] R. Conte, Various truncations in Painlevé analysis of partial differential
equations, 16 pages, Nonlinear dynamics : integrability and chaos, ed. M. Daniel, to
appear (Springer? World Scientific?). Solv-int/9812008. Preprint $98/047.

Research papers.

[R.2] J? Weiss, M. Tabor and G. Carnevale, The Painlevé property for partial
differentiaB equations, J! Math. Phys. 24 (1983) 522-526.

[R.3] Nilmerous articles of Weiss, from 1983 to 1989, all in J. Math. Phys. [singular
manifold method].

[R-4] M. Musette and R. Conte, Algorithmic method for deriving Laz pairs from the
invariant Painlevé analysis of nonlinear partial differential equations, J. Math. Phys. 32
(1991) 1450-1457 [invariant singular manifold method).

[R-5] R. Conte and M. Musette, Linearity inside nonlinearity: ezact solutions to
the complex Ginz-burg-Landau equation, Physica D 69 (1993) 1-17 [Ginzburg-Landau).

[R.6] M. Musette and R. Conte, The two-singular manifold method, I. Modified
KdV and sine-Gordon equations, J. Phys. A 27 (1994) 3895-3913 [Two-singular man-
ifold method).

[R.7] R. Conte, M. Musette and A. Pickering, The two-singular manifold method,
II. Classical Boussinesq system, J. Phys. A 28 (1995) 179-185 [Two-singular manifold
method)].

[R-8] A. Pickering, The singular manifold method revisited, J. Math. Phys. 37
(1996) 1894-1927 [Two-singular manifold method].

[R-9) M. Musette and R. Conte, Béicklund transformation of partial differential
equations from the Painlevé-Gambier classification, I. Kaup-Kupershmidt equation,
J. Math. Phys. 39 (1998) 5617-5630. [Lecture 6].

[R-10] R. Conte, M. Musette and A. M. Grundland, Bicklund transformation of
partial differential equations from the Painlevé-Gambier classification, II. Tritzéica
equation, J. Math. Phys. 40 (1999) to appear. [Lecture 6].

b) Integrable Systems and Bi-Hamiltonian Manifolds (6 lectures in Eng-
lish)

Prof. Franco MAGRI (Universita di Milano, Milano, Italy)

Abstract

1) Integrable systems and bi-hamiltonian manifolds according to Gelfand and Za-
kharevich.

2) Examples: KdV, KP and Sato’s equations.
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3) The rational solutions of KP equation. . .

4; Bi-hamiltonian reductions and completely algebraically integrable systems.

5) Connections with the separabilty theory. ' o - .

6) The r function and the Hirota's identities from a bi-hamiltonian point of view.

mfmm . - . » 3

1) R. Abraham, J.E. Marsden, Foundations of Mechanics,Benjamin/Cummings,
1978 . .

2) P. Libermann, C. M. Matle, Symplectic Geometry and Analytical Mechanics,
Reidel Dordrecht, 1987 o

3) L. A. Dickey, Soliton Egquations and Hamiltonian Systems, World Scientific,
Singapore, 1991, Adv. Series in Math. Phys Vol. 12 ' .

mi)pI?Va.isman, Lectures on the Geometry of Poisson Manifolds, Progress in Math.,

Birkh#user, 1994 N

5) P. C;;sati, G. Falqui, F. Magri, M. Pedroni (1996), The KP theory revisited.
LILHIIV. Technical Reports, SISSA/2,3,4,5/96/FM, SISSA/ISAS, Trieste, 1995

c) Hirota Methods for non Linear Differential and Difference Equations
6 lectures in English)
( Prof. Junkichi SATSUMA (University of Tokyo, Tokyo, Japan)

Abstract

1) Introduction;

2) Nonlinear differential systems;

3) Nonlinear differential-difference systems;

4) Nonlinear difference systems;

5) Sato theory;

6) Ultra-discrete systems.

References. ‘

1) fM.J.Ablowitz and H.Segur, Solitons and the Inverse Scattering Transform,
SIAM, Philadelphia, 1981).
( 2) Y.Ohta, J.Satsuma, D.Takahashi and T.Tokihiro, ” Prog. Theor. Phys. Suppl.
No.94, p.210-241 (1988) . .

3 J?Satsuma, Bilinear Formalism in Soliton Theory, Lecture Notes in Physics
No.495, Integrability of Nonlinear Systems, ed. by Y.Kos¥mnn-Schv|.mrzba.ch,

B.Grammaticos and K.M. Tamizhmani p.297-313 (Springer, Berlin, 1997).

d) Lie Groups and Exact Solutions of non Linear Differential and Dif-

ference Equations (6 lectures in English)
er‘;:of. Pavel WINTERNITZ (Université de Montreal, Montreal, Canada) 3J7

Abstract .

1) Algorithms for calculating the symmetry group of a systen} of .ordu'mry or
partial differential equations. Examples of equations with finite and infinite Lie point
8 et oups; ) ) .
ym;;l Argpfircations of symmetries. The method of s?'mmetry. reduction for partial
differential equations. Group classification of diﬂ'erentxal.equatlons; .

3) Classification and identification of Lie algebras given by their st.mc(:.u:e con-
stants. Classification of subalgebras of Lie algebras. Examples and applications; )

4) Solutions of ordinary differential equations. Lowering the order of the equation.
First integrals. Painlev? analysis and the singularity structure of solutions;

5) Conditional symmetries. Partially invariant solutions.
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6) Lie symmetries of difference equations.

References.

1) P. J. Olver, Applications of Lie Groups to Differential Equations, Springer,1993
2) P. Winternits, Group Theory and Ezact Solutions of Partially Integrable Dif.

ferential Systems, in Partially Integrable Evolution Equations in Physics, Kl
Dordrecht, 1990, (Editors R.Conte and N.Boccara). ysics, Kluwer,

3) P. Winternitz, in " Integrable Systems, Quantum Groups and Quantum Field

Theories”, Kluwer, 1993 (Editors L .A. Ibort and M. A. Rodriguez).

Applications

-

Those who want to attend the Session should fill in an application to the C.LM.E
Foundation at the address below, not later than May 30, 1999.

An important 'consideration in the acceptance of applications is the scientific rel-
evance of the Session to the field of interest of the applicant.

. A;?phcant§ are requested, therefore, to submit, along with their application, a

scientific curriculum and a letter of recommendation.

Partlcnpat_xon will only be allowed to persons who have applied in due time and
have had their application accepted.

CIME will be able to partially support some of the youngest participants. Those
who plan to apply for support have to mention it explicitely in the application form.

Attendance

No registration fee is requested. Lectures will be held at Cetraro o
ested. n September 8§,
9, 10, 11, 12, 13, 14, 15. Participants are requested to register on September 7, 1999.

Site and lodging

The session will be held at Grand Hotel S. Michele at Cetraro (Cos

. . enza), Italy.
Pnfm for full board (bed and meals) are roughly 150.000 italian liras p.p). dayyin
a sm.gle room, 1.'%0.000 italian liras in a double room. Cheaper arrangements for
multiple lodging in a residence are avalaible. More detailed informations may be

obtained from the Direction of the hotel (tel. +39-098291012, F\
email: sanmicheleGantares.it. ( , Fax +39-098291430,

Further information on the hotel at the web page www.sanmichele.it
Lecture Notes

Lecture notes will be published as soon as possible after the Session.

Arrigo CELLINA

Vi A%
CIME Director T eSPRI

CIME Secretary

Fondazione C.LM.E. c/o Dipartimento di Matematica U. Dini Viale Mo i
. rgagni, 67/A
- 50134 FIRENZE (ITALY) Tel. +39-55-434975 / +39-55-4237123 FAX /
+39-55-434975 / +39-55-4222695 E-mail CIMEQUDINI.MATH. UNIFLIT

Information on CIME can be obtained on the system World-Wide-Web on the file
- HTTP: //WWW.MATH.UNIFLIT/CIME/WELCOME.TO.CIME.

Lecture Notes in Mathematics

For information about Vols. 1-1525

please contact your bookseller or Springer-Verlag

Vol. 1526: J. Azéma, P. A. Meyer, M. Yor (Eds.), Séminaire
de Probabilités XX VL. X, 633 pages. 1992.

Vol. 1527: M. 1. Freidlin, J.-F. Le Gall, Ecole d’Eté de
Probabilités de Saint-Flour XX - 1990. Editor: P. L.
Hennequin. VIII, 244 pages. 1992.

Vol. 1528: G. Isac, Complementarity Problems. V1, 297
pages. 1992,

Vol. 1529: J. van Neerven, The Adjoint of a Semigroup of
Linear Operators. X, 195 pages. 1992.

Vol. 1530: J. G. Heywood, K. Masuda, R. Rautmann, S. A.
Solonnikov (Eds.), The Navier-Stokes Equations Il - Theory
and Numerical Methods. IX, 322 pages. 1992.

Vol. 1531: M. Stoer, Design of Survivable Networks. 1V,
206 pages. 1992.

Vol. 1532: J. F. Colombeau, Multiplication of Distributions.
X, 184 pages. 1992.

Vol. 1533: P. Jipsen, H. Rose, Varieties of Lattices. X, 162
pages. 1992,

Vol. 1534: C. Greither, Cyclic Galois Extensions of Com-
mutative Rings. X, 145 pages. 1992.

Vol. 1535: A. B. Evans, Orthomorphism Graphs of Groups.
VIII, 114 pages. 1992.

Vol. 1536: M. K. Kwong, A. Zettl, Norm Inequalities for
Derivatives and Differences. V11, 150 pages. 1992.

Vol. 1537: P. Fitzpatrick, M. Martelli, J. Mawhin, R. Nuss-
baum, Topological Methods for Ordinary Differential
Equations. Montecatini Terme, 1991. Editors: M. Furi,
P. Zecca. VII, 218 pages. 1993.

Vol. 1538: P.-A. Meyer, Quantum Probability for
Probabilists. X, 287 pages. 1993.

Vol. 1539: M. Coornaert, A. Papadopoulos, Symbolic
Dynamics and Hyperbolic Groups. VIII, 138 pages. 1993.
Vol. 1540: H. Komatsu (Ed.), Functional Analysis and
Related Topics, 1991. Proceedings. XXI, 413 pages. 1993.
Vol. 1541: D. A. Dawson, B. Maisonneuve, J. Spencer,
Ecole d” Eté de Probabilités de Saint-Flour XXI - 1991.
Editor: P. L. Hennequin. VIII, 356 pages. 1993.

Vol. 1542: J.Frohlich, Th.Kerler, Quantum Groups, Quan-
tum Categories and Quantum Field Theory. VII, 431 pages.
1993.

Vol. 1543: A. L. Dontchev, T. Zolezzi, Well-Posed Opti-
mization Problems. XII, 421 pages. 1993.

Vol. 1544: M.Schiirmann, White Noise on Bialgebras. VII,
146 pages. 1993.

Vol. 1545 J. Morgan, K. O'Grady. Differential Topology
of Complex Surfaces. VIII, 224 pages. 1993.

Vol. 1546: V. V. Kalashnikov, V. M. Zolotarev (Eds.),

Stability Problems for Stochastic Models. Proceedings, 1991.
VIli, 229 pages. 1993,

Vol. 1547: P. Harmand, D. Werner, W. Werner, M-ideals
in Banach Spaces and Banach Algebras. VIII, 387 pages.
1993.

Vol. 1548: T. Urabe, Dynkin Graphs and Quadrilateral
Singularities. VI, 233 pages. 1993.

Vol. 1549: G. Vainikko, Multidimensional Weakly Singu-
lar Integral Equations. X1, 159 pages. 1993.

Vol. 1550: A. A. Gonchar, E. B. Saff (Eds.), Methods of
Approximation Theory in Complex Analysis and Mathe-
matical Physics IV, 222 pages, 1993.

Vol. 1551: L. Arkeryd, P. L. Lions, P.A. Markowich, S.R.
S. Varadhan. Nonequilibrium Problems in Many-Particle
Systems. Montecatini, 1992. Editors: C. Cercignani, M.
Pulvirenti. VII, 158 pages 1993.

Vol. 1552: J. Hilgert, K.-H. Neeb, Lie Semigroups and their
Applications. X1I, 315 pages. 1993.

Vol. 1553: J.-L- Colliot-Thélene, J. Kato, P. Vojta,
Arithmetic Algebraic Geometry. Trento, 1991. Editor: E.
Ballico. VII, 223 pages. 1993.

Vol. 1554: A. K. Lenstra, H. W. Lenstra, Jr. (Eds.), The
Development of the Number Field Sieve. VIII, 131 pages.
1993.

Vol. 1555: O. Liess, Conical Refraction and Higher
Microlocalization. X, 389 pages. 1993.

Vol. 1556: S. B. Kuksin, Nearly Integrable Infinite-Dimen-
sional Hamilionian Systems. XXVII, 101 pages. 1993.
Vol, 1557: 1. Azéma, P. A. Meyer, M. Yor (Eds.), Séminaire
de Probabilités XXVIIL. VI, 327 pages. 1993.

Vol. 1558: T. I. Bridges, J. E. Furter, Singularity Theory
and Equivariant Symplectic Maps. VI, 226 pages. 1993.
Vol. 1559: V. G. SprindZuk, Classical Diophantine Equa-
tions. XII, 228 pages. 1993.

Vol. 1560: T. Bartsch, Topological Methods for Variational
Problems with Symmetries. X, 152 pages. 1993.

Vol. 1561: 1. S. Molchanov, Limit Theorems for Unions of
Random Closed Sets. X. 157 pages. 1993.

Vol. 1562: G. Harder, Eisensteinkohomologie und die
Konstruktion gemischter Motive. XX, 184 pages. 1993.
Vol. 1563: E. Fabes, M. Fukushima, L. Gross, C. Kenig,
M. Réckner, D. W. Stroock, Dirichlet Forms, Varenna, 1992.
Editors: G. Dell’ Antonio, U. Mosco. VI, 245 pages. 1993.
Vol. 1564: J. Jorgenson, S. Lang, Basic Analysis of Regu-
larized Series and Products. 1X, 122 pages. 1993.

Vol. 1565: L. Boutet de Monvel, C. De Concini, C. Procesi.
P. Schapira, M. Vergne. D-modules, Representation Theory,
and Quantum Groups. Venezia, 1992. Editors: G. Zampieri,
A. D’Agnolo. VII, 217 pages. 1993.

Vol. 1566: B. Edixhoven, J.-H. Evertse (Eds.), Diophantine
Approximation and Abelian Varieties. X111, 127 pages. 1993.
Vol. 1567: R. L. Dobrushin. S. Kusuoka, Statistical Mechan-
ics and Fractals. VI, 98 pages. 1993.





