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PREFACE TO THE ENLARGED EDITION 

Originally, in the first edition of this work, it was the author's purpose 
to provide a self-contained treatment of Curvature and Homology. Sub- 
sequently, it became apparent that the more important applications are 
to Kaehler manifolds, particularly the Kodaira vanishing theorems, 
which appear in Chapter VI. To make this chapter comprehensible, 
Appendices F and I have been added to this new edition. In these Appen- 
dices, the Chern classes are defined and the Euler characteristic is given 
by the Gauss-Bonnet formula-the latter being applied in Appendix G. 
Several important recent developments are presented in Appendices E 
and H. In Appendix E, the differential geometric technique due to 
Bochner gives rise to an important result that was established by Siu and 
Yau in 1980. The same method is applied in Appendix H to F-structures 
over negatively curved spaces. 

S. I .  GOLDBERG 
Urbana, Illinois 
February, 1998 





PREFACE 

The purpose of this book is to give a systematic and "self-contained" 
account along modern lines of the subject with which the title deals, 
as well as to discuss problems of current interest in the field. With this 
statement the author wishes to recall another book, "Curvature and 
Betti Numbers," by K. Yano and S. Bochner; this tract is aimed at 
those already familiar with differential geometry, and has served 
admirably as a useful reference during the nine years since its appearance. 
In the present volume, a coordinate-free treatment is presented wherever 
it is considered feasible and desirable. On the other hand, the index 
notation for tensors is employed whenever it seems to be more adequate. 

The book is intended for the reader who has taken the standard courses 
in linear algebra, real and complex variables, differential equations, and 
point-set topology. Should he lack an elementary knowledge of algebraic 
topology, he may accept the results of Chapter I1 and proceed from 
there. In Appendix C he will find that some knowledge of Hilbert space 
methods is required. This book is also intended for the more seasoned 
mathematician, who seeks familiarity with the developments in this 
branch of differential geometry in the large. For him to feel at home 
a knowledge of the elements of Riemannian geometry, Lie groups, and 
algebraic topology is desirable. 

The exercises are intended, for the most part, to supplement and to 
clarify the material wherever necessary. This has the advantage of 
maintaining emphasis on the subject under consideration. Several might 
well have been explained in the main body of the text, but were omitted 
in order to focus attention on the main ideas. The exercises are also 
devoted to miscellaneous results on the homology properties of rather 
special spaces, in particular, &pinched manifolds, locally convex hyper- 
surfaces, and minimal varieties. The inexperienced reader should not be 
discouraged if the exercises appear difficult. Rather, should he be 
interested, he is referred to the literature for clarification. 

References are enclosed in square brackets. Proper credit is almost 
always given except where a reference to a later article is either more 
informative or otherwise appropriate. Cross references appear as (6.8.2) 
referring to Chapter VI, Section 8, Formula 2 and also as (VI.A.3) 
referring to Chapter VI, Exercise A, Problem 3. 

The author owes thanks to several colleagues who read various parts 
of the manuscript. He is particularly indebted to Professor M. Obata, 
whose advice and diligent care has led to many improvements. Professor 
R, Bishop suggested some exercises and further additions. Gratitude is 

vii 



. . . 
V l l l  PREFACE 

also extended to Professors R. G. Bartle and A. Heller for their critical 
reading of Appendices A and C as well as to Dr. L. McCulloh and 
Mr. R. Vogt for assisting with the proofs. For the privilege of attending 
his lectures on Harmonic Integrals at Harvard University, which led 
to the inclusion of Appendix A, thanks are extended to Professor 
L. Ahlfors. Finally, the author expresses his appreciation to Harvard 
University for the opportunity of conducting a seminar on this subject. 

I t  is a pleasure to acknowledge the invaluable assistance received in 
the form of partial financial support from the Air Force Office of 
Scientific Research. 

S. I. GOLDBERG 
Urbana, Illinois 
February, 1962 
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The symbols used have gained general acceptance with some ex- 
ceptions. In particular, R and C are the fields of real and complex 
numbers, respectively. (In 5 7.1, the same letter C is employed as an 
operator and should cause no confusion.) The commonly used symbols 
E, V, n, g, sup, inf, are not listed. The exterior or Grassman algebra 
of a vector space V (over R or C) is written as A(V). By AP(V) is 
meant the vector space of its elements of degree p and A denotes 
multiplication in A(V). The elements of A(V) are designated by 
Greek letters. The symbol M is reserved for a topological manifold, 
T p  its tangent space at a point P E M (in case M is a differentiable 
manifold) and T,X the dual space (of covectors). The space of tangent 
vector fields is denoted by T and its dual by T*. The Lie bracket of 
tangent vectors X and Y is written as [X, Y]. Tensors are generally 
denoted by Latin letters. For example, the metric tensor of a Riemann- 
ian manifold will usually be denoted by g. The covariant form of X 
(with respect to g) is designated by the corresponding Greek symbol 6. 
The notation for composition of functions (maps) employed is flexible. 
I t  is sometimes written as g f and at other times the dot is not present. 
The dot is also used to denote the (local) scalar product of vectors 
(relative to g). However, no confusion should arise. 
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INTRODUCTION 

The most important aspect of differential geometry is perhaps that 
which deals with the relationship between the curvature properties of a 
Riemannian manifold and its topological structure. One of the beautiful 
results in this connection is the generalized Gauss-Bonnet theorem 
which for orientable surfaces has long been known. In recent years there 
has been a considerable increase in activity in global differential geometry 
thanks to the celebrated work of W. V. D. Hodge and the applications 
of it made by S. Bochner, A. Lichnerowicz, and K. Yano. In the decade 
since the appearance of Bochner's first papers in this field many fruitful 
investigations on the subject matter of "curvature and betti numbers" 
have been inaugurated. The applications are, to some extent, based on a 
theorem in differential equations due to E. Hopf. The Laplace-Beltrami 
operator A is elliptic and when applied to a function f of class 2 defined 
on a compact Riemannian manifold M yields the Bochner lemma: "If 
Af 2 0 everywhere on M, then f is a constant and Af vanishes identi- 
cally." Many diverse applications to the relationship between the curvature 
properties of a Riemannian manifold and its homology structure have 
been made as a consequence of this "observation." Of equal importance, 
however, a "dual" set of results on groups of motions is realized. 

The existence of harmonic tensor fields over compact orientable 
Riemannian manifolds depends largely on the signature of a certain 
quadratic form. The operator A introduces curvature, and these properties 
of the manifold determine to some extent the global structure via 
Hodge's theorem relating harmonic forms with betti numbers. In 
Chapter 11, therefore, the theory of harmonic integrals is developed to 
the extent necessary for our purposes. A proof of the existence theorem 
of Hodge is given (modulo the fundamental differentiability lemma C.l 
of Appendix C), and the essential material and informati09 necessary 
for the treatment and presentation of the subject of curvature and 
homology is presented. The idea of the proof of the existence theorem 
is to show that A-'-the inverse of the closure of A-is a completely 
continuous operator. The reader is referred to de Rham's book ''VariCth 
Diffkrentiables" for an excellent exposition of this result. 

The spaces studied in this book are important in various branches 
of mathematics. Locally they are those of classical Riemannian geometry, 
and from a global standpoint they are compact orientable manifolds. 
Chapter I is concerned with the local structure, that is, the geometry of 
the space over which the harmonic forms are defined. The properties 
necessary for an understanding of later chapters are those relating to the 
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differential geometry of the space, and those which are topological 
properties. The topology of a differentiable manifold is therefore dis- 
cussed in Chapter 11. Since these subjects have been given essentially 
complete and detailed treatments elsewhere, and since a thorough 
discussion given here would reduce the emphasis intended, only a 
brief survey of the bare essentials is outlined. Families of Riemannian 
manifolds are described in Chapter 111, each including the n-sphere and 
retaining its betti numbers. In particular, a 4-dimensional &pinched 
manifold is a homology sphere provided 6 > 2. More generally, the 
second. betti number of a &pinched even-dimensional manifold is zero 
if 6 > *. 

The theory of harmonic integrals has its origin in an attempt to 
generalize the well-known existence theorem of Riemann to every- 
where finite integrals over a Riemann surface. As it turns out in the 
generalization a 2n-dimensional Riemannian manifold plays the part of 
the Riemann surface in the classical 2-dimensional case. although a 
Riemannian manifold of 2 dimensions is not the same as a Riemann 
surface. The essential difference lies in the geometry which in the latter 
case is conformal. In  higher dimensions, the concept of a complex analytic 
manifold is the natural generalization of that of a Riemann surface in the 
abstract sense. In this generalization concepts such as holomorphic 
function have an invariant meaning with respect to the given complex 
structure. Algebraic varieties in a complex projective q a c e  Pn have a 
natural complex structure and are therefore complex manifolds provided 
there are no "singularities." There exist, on the other hand, examples 
of complex manifolds which cannot be imbedded in a Pn. A complex 
manifold is therefore more general than a projective variety. This 
approach is in keeping with the modern developments due principally 
to A. Weil. 

It  is well-known that all orientable surfaces admit complex structures. 
However, for higher even-dimensional orientable manifolds this is not 
the case. I t  is not possible, for example, to define a complex structure 
on the 4-dimensional sphere. (In fact, it was recently shown that not 
every topological manifold possesses a differentiable structure.) For a 
given complex manifold M not much is known about the complex 
structure itself; all consequences are derived from assumptions which 
are weaker-the "almost-complex" structure, or stronger-the existence 
of a "Kaehler metric." The former is an assumption concerning the 
tangent bundle of M and therefore suitable for fibre space methods, 
whereas the latter is an assumption on the Riemannian geometry of M, 
which can be investigated by the theory of harmonic forms. The material 
of Chapter V is partially concerned with a development of hermitian 
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geometry, in particular, Kaehler geometry along the lines proposed by 
S. Chern. Its influence on the homology structure of the manifold is 
discussed in Chapters V and VI. Whereas the homology properties 
described in Chapter I11 ar8 similar to those of the ordinary sphere 
(insofar as betti numbers are concerned), the corresponding properties 
in Chapter VI are possessed by P, itself. Families of hermitian manifolds 
are described, each including P, and retaining its betti numbers. One 
of the most important applications of the effect of curvature on homology 
is to be found in the vanishing theorems due to K. Kodaira. They are 
essential in the applications of sheaf theory to complex manifolds. 

A conformal transformation of a compact Riemann surface is a holo- 
morphic homeomorphism. For compact Kaehler manifolds of higher 
dimension, an element of the connected component of the identity of 
the group of conformal transformations is an isometry, and consequently 
a holomorphic homeomorphism. More generally, an infinitesimal con- 
formal map of a compact Riemannian manifold admitting a harmonic 
form of constant length is an infinitesimal isometry. Thus, if a compact 
homogeneous Riemannian manifold admits an infinitesimal non-iso- 
metric conformal transformation, it is a homology sphere. Indeed, it is 
then isometric with a sphere. The conformal transformation group is 
studied in Chapter 111, and in Chapter VII groups of holomorphic as 
well as conformal homeomorphisms of Kaehler manifolds are in- 
vestigated. 

In Appendix A, a proof of de Rham's theorems based on the concept 
of a sheaf is given although this notion is not defined. Indeed, the proof 
is but an adaptation from the general theory of sheaves and a knowledge 
of the subject is not required. 





CHAPTER I 

RIEMANNIAN MANIFOLDS 

In seeking to generalize the well-known theorem of Riemann on the 
existence of holomorphic integrals over a Riemann surface, W. V. D. 
Hodge 1391 considers an n-dimensional Riemannian manifold as the 
space over which a certain class of integrals is defined. Now, a Riemannian 
manifbld of two dimensions is not a Riemann surface, for the geometry 
of the former is Riemannian geometry whereas that of a Riemann surface 
is conformal geometry. However, in a certain sense a 2-dimensional 
Riemannian manifold may be thought of as a Riemann surface. More- 
over, conformally homeomorphic Riemannian manifolds of two dimen- 
sions define equivalent Riemann surfaces. Conversely, a Riemann 
surface determines an infinite set of conformally homeomorphic 2-dimen- 
sional Riemannian manifolds. Since the underlying structure of a 
Riemannian manifold is a differentiable structure, we discuss in this 
chapter the concept of a differentiable manifold, and then construct 
over the manifold the integrals, tensor fields and differential forms 
which are basically the objects of study in the remainder of this book. 

1 .l. Differentiable manifolds 

The differential calculus is the main tool used in the study of the 
geometrical properties of curves and surfaces in ordinary Euclidean 
space E9. The concept of a curve or surface is not a simple one, so that 
in many treatises on differential geometry a rigorous definition is lacking. 
The discussions on surfaces are further complicated since one is interested 
in those properties which remain invariant under the group of motions 
in @. This group is itself a 6-dimensional manifold. The purpose of 
this section is to develop the fundamental concepts of differentiable 
manifolds necessary for a rigorous treatment of differential geometry. 

Given a topological space, one can decide whether a given function 
1 



2 I. RIEMANNIAN MANIFOLDS 

defined over it is continuous or not. A discussion of the properties of 
the classical surfaces in differential geometry requires more than 
continuity, however, for the functions considered. By a regular closed 
surface S in'P is meant an ordered pair {So, X} consisting of a topological 
space So and a differentiable map X of So into I!?. As a topological space, 
So is to be a separable, Hausdorff space with the further propetties: 

(i) So is compact (that is X(So) is closed and bounded); 
(ii) So is connected (a topological space is said to be connected if it 

cannot be expressed as the union of two non-empty disjoint open 
subsets) ; 

(iii) Each point of So has an open neighborhood homeomorphic 
with EZ: The map X : P -+ (x (P), y(P), z(P)), P E So where x(P), y(P) 
and z(P) are differentiable functions is to have rank 2 at each point 
P E SO, that is the matrix 

of partial derivatives must be of rank 2 where u, u are local parameters 
at P. Let U and V be any two open neighborhoods of P homeomorphic 
with E2 and with non-empty intersection. Then, their local parameters 
or coordinates (cf. definition given below of a differentiable structure) 
must be related by differentiable functions with non-vanishing Jacobian. 
It  follows that the rank of X is invariant with respect to a change of 
coordinates. 

That a certain amount of differentiability is necessary is clear from 
several points of view. In the first place, the condition on the rank of X 
implies the existence of a tangent plane at each point of the surface. 
Moreover, only those local parameters are "allowed" which are related 
by differentiable functions. 

A regular closed surface is but a special case of a more general concept 
which we proceed to define. 

Roughly speaking, a differentiable manifold is a topological space in 
which the concept of derivative has a meaning. Locally, the space is to 
behave like Euclidean space. But first, a topological space M is said to be 
separable if it contains a countable basis for its topology. I t  is called a 
Hausdorff space if to any two points of M there are disjoint open sets each 
containing ixactly one of the points. 

A separable Hausdorff space M of dimension n is said to have a 
dtj'kmtiable structure of class k > 0 if it has the following properties: 

(i) Each point of M has an open neighborhood homeomorphic with 
an open subset in Rrr the (number) space of n real variables, that is, 
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there is a finite or countable open covering {U,} and, for each a a homeo- 
morphism u, : U, -+ Rn of U, onto an open subset in R n ;  

(ii) For any two open sets U, and Up with non-empty intersection 
the map usu;;l : ua(Ua n Us) -+ Rn is of class k (that is, it possesses 
continuous derivatives of order k) with non-vanishing Jacobian. 

The  functions defining u, are called local coordinates in U,. Clearly, 
one may also speak of structures of class c;o (that is, structures of class k 
for every positive integer k) and analytic structures (that is, every map 
uBu;' is expressible as a convergent power series in the n variables). The 
local coordinates constitute an essential tool in the study of M. However, 
the geometrical properties should be independent of the choice of local 
coordinates. 

The  space M with the property (i) will be called a topological mani- 
fold. We shall generally assume that the spaces considered are connected 
although many of the results are independent of this hypothesis. 

Examples: 1. The Euclidean space En is perhaps the simplest example 
of a topological manifold with a differentiable structure. The identity 
map I in En together with the unit covering (Rn, I )  is its natural differen- 
tiable structure: (U,, u,) = (Rn, I). 

2. The (n - 1)-dimensional sphere in En defined by the equation 

I t  can be covered by 2n coordinate neighborhoods defined by xi > 0 
and xi < 0 (i = 1, ..., n). 

3. The general linear group: Let V be a vector space over R (the real 
numbers) of dimension n and let (el, ..., en) be a basis of V. The group 
of all linear automorphisms a of V may be expressed as the group of all 
non-singular matrices (a:) ; 

called the general linear group and denoted by GL(n, R). We shall also 
denote it by GL(V) when dealing with more than one vector space. 
(The Einstein summation convention where repeated indices implies 
addition has been employed in formula (1.1.2) and, in the sequel we 
shall adhere to this notation.) The multiplication law is 

GL(n, R) may be considered as an open set [and hence as an open 
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submanifold (cf. $IS)] of E ~ ~ .  With this structure (as an analytic 
manifold), GL(n, R) is a Lie group (cf. $3.6). 

Let f be a real-valued continuous function defined in an open subset 
S of M. Let P be a point of S and Ua a coordinate neighborhood 
containing P. Then, in S n Ua, f can be expressed as a function of the 
local coordinates ul, ..., un in Ua. (If xl, .. ., xn are the n coordinate func- 
tions on Rn, then ui(P) = xi(ua(P)), i = 1, ..., n and we may write 
ut = xi u,). The function f is said to be diflerentiable at P if f(ul, ..., un) 
possesses all first partial derivatives at P. The partial derivative of f 
with respect to ui at P is defined as 

This property is evidently independent of the choice of Ua. The function f 
is called diflerentiable in S ,  if it is differentiable at every point of S. 
Moreover, f is of the form g ua if the domain is restricted to S n Ua 
where g is a continuous function in ua(S n U,) c Rn. Two differentiable 
structures are said to be equivalent if they give rise to the same family 
of differentiable functions over open subsets of M. This is an equivalence 
relation. The family of functions of class k determines the differentiable 
structures in the equivalence class. 

A topological manifold M together with an equivalence class of 
differentiable structures on M is called a dzgerentiable manqold. I t  has 
recently been shown that not every topological manifold can be given 
a differentiable structure [44]. On the other hand, a topological manifold 
may carry differentiable structures belonging to distinct equivalence 
classes. Indeed, the 7-dimensional sphere possesses several inequivalent 
differentiable structures [60]. 

A differentiable mapping f of an open subset S of Rn into Rn is called 
sense-preserving if the Jacobian of the map is positive in S. If, for any 
pair of coordinate neighborhoods with non-empty intersection, the 
mapping usu;l is sense-preserving, the differentiable structure is said to 
be oriented and, in this case, the differentiable manifold is called orientable. 
Thus, if fs,(x) denotes the Jacobian of the map uauil at xi(ua(P)), 
i = 1, ..., n, then fYB(x) fSa(x) = fYa(x), P E Ua n Us n U,,. 

The 2-sphere in E3 is an orientable manifold whereas the real 
projective plane (the set of lines through the origin in E3) is not 
(cf. I.B. 2). 

Let M be a differentiable manifold of class k and S an open subset of 
M. By restricting the functions (of class k) on M to S ,  the differentiable 
structure so obtained on S is called an induced structure of class k. 
In  particular, on every open subset of El there is an induced structure 
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1.2. Tensors 

To every point P of a regular surface S there is associated the tangent 
plane at P consistihg of the tangent vectors to the curves on S through P. 
A tangent vector t may be expressed as a linear combination of the 
tangent vectors Xu and X, "defining" the tangent plane: 

t = t l X u + p X , , ,  P E R ,  i = 1 , 2 .  (1 -2.1) 

At this point, we make a slight change in our notation: We put u1 = u, 
u2 = v ,  XI = Xu and X, = X,, so that (1.2.1) becomes 

Now, in the coordinates zil, zi2 where the zii are related to the d by means 
of differentiable functions with non-vanishing Jacobian 

where 8 = X(ul (zil, ii2), u2 (zil, 3). If we put 

equation (1.2.3) becomes 
t = pxj. 

In classical differential geometry the vector t is called a contravariant 
vector, the equations of transformation (1.2.4) determining its character. 

Guided by this example we proceed to define the notion of contravariant 
vector for a differentiable manifold M of dimension n. Consider the 
triple (P, U,, p) consisting of a point P E M, a coordinate neighborhood 
U, containing P and a set of n real numbers ti. An equivalence relation 
is defined if we agree that the triples (P, U,, e) and (P, Up, p) are 
equivalent if P = P and 

where the u%re the coordinates of u,(P) and iii those of ue(P), P E U p  Up. 
An equivalence class of such triples is called a contravariant vector at P. 
When there is no danger of confusion we simply speak of the 
contravariant vector by choosing a particular set of representatives 
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(i = 1, ..., n). That the contravariant vectors form a linear space over R 
is clear. In  analogy with surface theory this linear space is called the 
tangent space at P and will be denoted by Tp. (For a rather sophisticated 
definition of tangent vector the reader is referred to $3.4.) 

Let f be a differentiable function defined in a neighborhood of 
P E Ua n Ug. Then, 

Now, applying (1.2.6) we obtain 

The equivalence class of "functions" of which the left hand member 
of (1.2.8) is a representative is commonly called the directional derivative 
off along the contravariant vector e. In  particular, if the components 
e ( i  = 1, ..., n) all vanish except the kth which is 1, the directional 
derivative is the partial derivative with respect to uk and the corres- 
ponding contravariant vector is denoted by a/auk. Evidently, these vectors 
for all k = 1, ..., n form a base of Tp called the natural base. On the 
other hand, the partial derivatives off  in (1.2..8) are representatives of 
a vector (which we denote by df) in the dual space T,* of Tp. The 
elements of T,* are called covariant vectors or, simply, covectors. In  the 
sequel, when we speak of a covariant vector at P, we will occasionally 
employ a set of representatives. Hence, if T~ is a covariant vector and e 
a contravariant vector the expression is a scalar invariant or, simply 
scalar, that is 

and so, 

are the equations of transformation defining a covariant vector. We 
define the inner product of a contravariant vector v = e and a covariant 
vector w* = 7, by the formula 

(0 ,  w*) = Tip. (1.2.11) 

That the inner product is bilinear is clear. Now, from (1.2.10) we obtain 

where the d u q i  = 1, ..., n) are the differentials of the functions ul, ..., un. 



1.2. TENSORS 7 

The invariant expression q,dui is called a linear (dzyerential) form or 
1-form. Conversely, when a linear (differential) form is given, its coeffi- 
cients define an element of T$. If we agree to identify T,* with the space 
of 1-forms at P,  the dui at P form a base of T,* dual to the base a/ad 
(i = 1, ..., n) of tangent vectors at P: 

where 6j is the 'Kronecker delta', that is, 6j = 1 if i = j and 8j = 0 if i # j. 
We proceed to generalize the notions of contravariant and covariant 

vectors at a point P E M. To  this end we proceed in analogy with the 
definitions of contravariant and covariant vector. Consider the triples 
(P, U,, gl-irjl...j,) and (P, Up, ~l.-i~jl...j8). . They . are said to be equivalent 
if P = P and if the nr+. constants ,$'1.-'rjl..,, are related to the nr+. 
constants @-..irjl--j, by the formulae 

An equivalence class of triples (P, U,, @...irjl..,j.) is called a tensor of type 
(r, S) over Tp contravariant of order r and covariant of order s. A tensor 
of type (r, 0) is called a contravariant tensor and one of type (0, s) a 
covariant tensor. Clearly, the tensors of type (r, s) form a linear space- 
the tensor space of tensors of type (r, s). By convention a scalar is a tensw 
of type (0,O). 

If the components fi-.+i*jl...j, of a tensor are all zero in one local coor- 
dinate system they are zero in any other local coordinate system. This 
tensor is then called a zero tensor. Again, if fi...irjl...j, is symmetric or skew- 
symmetric in &, i, (or in j,, j,), ~l-irj l . , . j ,  has the same property. These 
properties are therefore characteristic of tensors. The tensor @,'r (or 

is said to be symmetric (skew-symmetric) if it is symmetric (skew- 
symmetric) in every pair of indices. 

The product of two tensors (P, U,, @-..irjl...j.) and (P, U,, qil...i~;l...j8,) 
one of type (r, s) the other of type (r', sf) is the tensor (P, U,, @-.'rjl...j, . . q'r+l...'r+r' . 

j,+,*) of type (r + r', s + sf). In  fact, 

aa . 
I,... l ,  v k r + ~ * * . k r + r ,  l,+l..'Z.+,~- 
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I t  is also possible to form new tensors from a given tensor. In  fact, 
let . (P, . U,, ~l-irjl-..j.) be a tensor of type (r, . The triple (P, U,, eel ... I ,. .. s i,...ja:..j.) where the indices i, and j, are equal (recall that repeated 

indices ~ c d ~ c a t e  summation from 1 to n) is a rLpesentative of a tensor 
of type (r - 1, s - 1). For, 

since 

This operation is known as contraction and the tensor so obtained is 
called the contracted tensor. 

These operations may obviously be combined to yield other tensors. 
A particularly important case occurs when the tensor Ci j  is a symmetric 
covariant tensor of order 2. If qC is a contravariant vector, the quadratic 
form f i j  qi r) j  is a scalar. The property that this quadratic form be 
positive definite is a property of the tensor CU and, in this case, we call 
the tensor positive dejinite. 

Our definition of a tensor of type (I, s) is rather artificial and is 
actually the one given in classical differential geometry. An intrinsic 
definition is given in the next section. But first, let v be a vector 
space of dimension n over- R and let V* be the dual space of V. A 
tensor of type (r, s) over V, contravariant of order r and covariant 
of order s, is defined to be a multilinear map of the direct product 
V x ... x V x V* X ... x V* (V:s times, V*:r times) into R. All tensors of 
type (r, s) form a linear space over R with respect to the usual addition 
and scalar multiplication for multilinear maps. This space will be 
denoted by Ti. In  particular, tensors of type (1,O) may be identified with 
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elements of V and those of type (0,l) with elements of V* by taking 
into account the duality between V and V*. Hence Ti V and V*. 

The tensor space T,1 may be considered as the vector space of all 
multilinear maps of V X  ... x V (r times) into V. In fact, given f E Tt, 
a multilinear map t: V x . . . x V -+ V is uniquely determined by the 
relation 

(t(vl, ..., vr),v*) = f(vl, ..., vr,v*) E R (1 -2.15) 

for all v,, ..., v, E V and v* E V*, where, as before, ( , ) denotes the 
value which v* takes on t(vl, ..., v,). Clearly, this establishes a canonical- 
isomorphism of T,1 with the linear space of all multilinear maps of 
V x  ...x V into V. In particular, Ti may be identified with the space 
of all linear endomorphisms of V. 

Let (e,) and (e*k) be dual bases in V and V*, respectively: 

These bases give rise to a base in Ti  whose elements we write as 
kl...k, = ef l...ir eil @ ... @ eir @ e*k1 @ ... @ e*ke (cf. I. A for a defini- 

tion of the tensor product). A tensor t G Ti  may then be represented in 
the form 

t = @..Ar kl...k8, 
kl,..k,%l...ir (1.2.17) 

that is, as a linear combination of the basis elements of T,'. The coefficients 
&..*. kl...k, then define t in relation to the bases {ei} and {c*~). 

1.3. Tensor bundles 

In differential geometry one is not interested in tensors but rather . 
in tensor fields which we now proceed to define. The definition given 
is but one consequence of a general theory (cf. I. J) having other 
applications to differential geometry which will be considered in 5 1.4 
and 5 1.7. Let Ti(P) denote the tensor space of tensors of type (r, s) 
over Tp and put 

9'-i = (J TI(P). 
PEM 

We wish to show that 9; actually defines a differentiable manifold and 
that a 'tensor field' of type (r, s) is a certain map from M into F f ,  that 
is a rule which assigns to every P E M a tensor of type (r, s) on the 
tangent space Tp. Let V be a vector space of dimension n over R and T: 
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the corresponding space of tensors of type (Y ,  s)., If we fix a base in v, 
a base of T' is determined. Let U be a coordinate neighborhood and u 
the corresponding homeomorphism from U to En. The local coordinates 
of a point P E U will be denoted by (ui(P)); they determine a base 
{dui(P)} in T: and a dual base {ei(P)} in Tp. These bases give rise to a 
well-defined base in T,Z(P). Consider the map 

where yU(P, t), P E U, t E ?''; belongs to TI(P) and has the same com- 
ponents fi...irjl:.Jl relative to the (natural) base of T'(P) as t has in c. 
That y, is 1-1 is clear. Now, let V be a second coordinate neighborhood 
such that U n V # (the empty set), and consider the map 

is a 1-1 map of ?",Z onto itself. Let (v!(P)) denote the local coordinates of P 
in V. They determine a base {dv"P)} in T,* and a dual base Cfi(P)} 
in Tp. If we set 

f = gcrv(p)t, (1.3.3) 
it follows that 

c~v(P,i) = ~v(P,t).  (1.3.4) 
Since 

V~(P,F) = &*--ir jl...ja eil...ir il...ia (p) 
(1.3.5) 

and 

~v (P , t )  = &.-ir jl...jH ftl,..irjl-.j~ p )  (1 J.6) 

where {eil.. ,,jl..Ja(P)} and { fil.. ,"...jl(P)) are the induced bases in 
w'), 

These are the equations defining gUv(P). Hence gu,(P) is a linear 
automorphism of TI. If we give to Tl the topology and differentiable 
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structure derived from the Euclidean space of the components of its 
elements it becomes a differentiable manifold. Now, a topology is 
defined in 9-1 by the requirement that for each U, qu  maps open sets 
of U x T: into open sets of F:. In this way, it can be shown that Fi 
is a separable Hausdorff space. In fact, .Ti is a differentiable manifold 
of class k - 1 as one sees from the equations (1.3.7). 

The map gUv: U n V -t G L ( c )  is continuous since M is of class 
k 5 1. Let P be a point in the overlap of the three coordinate neighbor- 
hoods, U,V,W U n V n W # 0. Then, 

and since 

these maps form a topological subgroup of G L ( T ~ .  The family of 
maps guv for U n V # $. where U, V, ... is a covering of M is called 
the set of transition functions corresponding to the given covering. 

Now, let 
m : q - + M  

be the projection map defined by ?r(c(P)) = P. For 1 < k, a map 
f: M -+ c of class 1 satisfying n f = identity is called a tensor field of 
type (r, s) and class 1. In particular, a tensor field of type (1,O) is called 
a vector field or an injinitesimal transformation. The manifold 9-i is called 
the tensor bundle over the base space M with structural group GL (nr+8, R) 
and j 3 r e  c. In the general theory of fibre bundles, the map f is called 
a cross-section. Hence, a tensor field of type (r, s) and class 1 < k is a 
cross-section of class 1 in the tensor bundle c over M. 

The bundle is usually called the tangent bundle. 
Since a tensor field is an assignment of a tensor over Tp for each 

point P E M, the components - af/aur (i = 1, ..., n) in (1.2.8) define a 
covariant vector field (that is, there is a local cross-section) called 
the gradient off. We may ask whether differentiation of vector fields 
gives rise to tensor fields, that is given a covariant vector field ti, for 
example (the ti are the components of a tensor field of type (O,l)), do 
the n2 functions agt/auj define a tensor field (of type (0,2)) over' U ?  We 
see from (1.2.12) that the presence of the term (a2uj/atikari3fj in 

yields a negative reply. However, because of the symmetry of i and k 
in the second term on the right the components +jrk - +jkt define a skew- 
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symmetric tensor field called the curl of the vector 6,. If the 6, define 
a gradient vector field, that is, if there exists a real-valued function f 
defined on an open subset of M such that 6, = (af/dui), the curl must 
vanish. Conversely, if the curl of a (covariant) vector field vanishes, the 
vector field is necessarily a (local) gradient field. 

1.4. Differential forms 

Let M be a differentiable manifold of dimension n. Associated to each 
point P E M, there is the dual space Tp* of the tangent space Tp at P. 
We have seen that T$ can be identified with the space of linear differential 
forms at P. Hence, to a 1-dimensional subspace of the tangent space 
there corresponds a linear differential form. We proceed to show that 
to a p-dimensional subspace of Tp corresponds a skew-symmetric 
covariant tensor of type (0, p), in fact, a 'differential form of degree P'. 
To this end, we construct an algebra over Tp* called the Grassman or 
exterior algebra: 

An associative algebra A (V) (with addition denoted by + and 
multiplication by A) over R containing the vector space V over R 
is called a Grassman or exterior algebra if 

(i) A (V) contains the unit element 1 of R, 

(ii) A (V) is generated by 1 and the elements of V, 
(iii) If x E V, x A x = 0, 
(iv) The dimension of A (V) (as a vector space) is 2n, n =dim V. 
Property (ii) means that any element of A (V) can be written as a 

linear combination of 1 E R and of products of elements of V, that is 
A (V) is generated from V and 1 by the three operations of the algebra. 
Property (iii) implies that x A y = - y A x for any two elements 
x, y E V. Select any basis (el, ..., en} of V. Then, A (V) contains all 
products of the e, (i = 1, ..., n). By using the rules 

we can arrange any product of the e, so that it is of the form 

or else, zero. The latter case arises when the original product contains 
a repeated factor. It  follows that we can compute any product of two 
or more vectors alel + ... + anen of V as a linear combination of the 
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dccomposabb p-vectors eil A ... A eiB. Since, by assumption, A (V) 
is spanned by 1 and such products, it follows that A (V) is spanned by 
the elements eil A ... A ei9 where (i,, ..., 6 )  is a subset of the set 
(1, ..., n) arranged in increasing order. But there are exactly 2n subsets 
of (1, ..., n), while by assumption dim A (V) = 2n. These elements 
must therefore be linearly independent. Hence, any element of A (V) 
can be uniquely represented as a linear combination 

where now and in the sequel (il ... 6 )  implies i, < ... < &. An element 
of the first sum is called homogeneous of degree p. 

I t  may be shown that any two Grassman algebras over the same 
vector space are isomorphic. For a realization of A (V) in terms of the 
'tensor algebra' over V the reader is referred to (I.C.2). 

The elements x,, ..., x, in V are linearly independent, if and only if, 
their product x, A ... A x, in A (V) is not zero. The proof is an easy 
exercise in linear algebra. In particular, for the basis elements el, ..., e, 
of V, el A ... A en # 0. However, any product of n + 1 elements of 
V must vanish. 

All the elements 

for a fixed p span a linear subspace of A (V) which we denote by 
Ap(V). This subspace. is evidently independent of the choice of base. 
An element of AP(V) is called an exterior p-vector or, simply a p-vector. 
Clearly, A1(V) = V. We define AO(V) = R. As a vector space, A (V) 
is then the direct sum of the subspaces Ap(V), 0 5 p 5 n. 

Let W be the subspace of V spanned by y,, ..., y, E V. This gives 
rise to a p-vector q = yl A ... A yp which is unique up to a constant 
factor as one sees from the theory of linear equations. Moreover, any 
vector y E W has the property that y A q vanishes. The subspace W 
also determines its orthogonal complement (relative to an inner product) 
in V, and this subspace in turn defines a 'unique' (n - p)-vector. Note 
that for eachp, the spaces Ap(V) and An-p(V) have the same dimensions. 
Any p-vector 5 and any (n 2 p)-vector q determine an n-vector 5 A q 
which in terms of the basis e = el A ... e, of An(V) may be expressed 
as 

f  A 7 = ( f , ~ )  e (1.4.3) 

where (5, q) E R. It can be shown that this 'pairing' defines an iso- 
morphism of AP(V) with ( A ~ - P ( ~ ) ) *  (cf. 1.5.1 and 1I.A). 
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Let V* denote the dual space of V and consider the Grassman 
algebra A (V*) over V*. I t  can be shown that the spaces Ap(V*) are 
canonically isomorphic with the spaces (AP(V))* dual to Ap(V). The 
linear space AP(V*) is called the space of exterior p-forms over V; 
its elements are called p-forms. The isomorphism between AP(V*) and 
p-p(V*) will be considered in Chapter 11, 5 2.7 as well as in 1I.A. 

We return to the vector space T$ of covariant vectors at a point P 
of the differentiable manifold M of class k and let U be a coordinate 
neighborhood containing P with the local coordinates ul, ..., un and 
natural base dul, ..., dun for the space T$. An element a(P) E ~p(Tp*) 
then has the following representation in U: 

a(P) = a( i,, (P) duil(P) A ... A duip(P). (1.4.4) 

If to each point PE U we assign an element a(P) E Ap(T$) in such a way 
that the coefficients ail...% are of class 1 2 I (1 < k) then or is said to be a 
dt#erential form of degree p and class 1. More precisely, an exterior 
dtflerential polynomial of class 1 k - 1 is a cross-section or of class 1 
of the bundle 

A*(M) = A(T*) = U A (T:), 
PEM 

that is, if .n is the projection map: 

defined by T(A(T$)) = P ,  then or : M -+ A * ( M )  must satisfy m ( P )  = P 
for all P E M (cf. 5 1.3 and I. J). If, for every P E M, a(P) E Ap(T$) 
for some (fixed) p, the exterior polynomial is called an exterior dz#erential 
form of degree p, or simply a p-form. In  this case, we shall simply write 
or E AP(T*). (When reference to a given point is unnecessary we shall 
usually write T and T* for Tp and T,* respectively). 

Let M be a differentiable manifold of class k 2 2. Then, there is a map 

d : A (T*) -+ A (T*) 

sending exterior polynomials of class 1 into exterior polynomials of class 
1 - 1 with the properties: . 

(i) For p = 0 (differentiable functions f), df is a covector (the 
differential off),  

(ii) d is a linear map such that d( AP(T*)) C Ap+l(T*), 

(iii) For a E Ap(T*), /3 E AQ(T*), 



(iv) d(dn = 0. 
To  see this, we need only define 

where 
u = a(i i,) duil A ... A duit. 

In fact, the operator d is uniquely determined by these properties: 
Let d* be another operator with the properties (i)-(iv). Since it is linear, 
we need only consider its effect upon @ = fduil A ... A dui*. By 
property (iii), d*@ = d*f A duil A ... A dui* + fd*(duil A ... A dui9). 
Applying (iii) inductively, then (i) followed by (iv) we obtain the desired 
conclusion. 

I t  follows easily from property (iv) and (1.4.5) that d(&) = 0 for 
any exterior polynomial a of class 2 2. 

The operator d is a local operator, that is if a and @ are forms which 
coincide on an open subset S of M, then da = dp on S. 

The elements A,P(T*) of the kernel of d: AP(T*) -+ AP+l (T*) are 
called closed p-forms and the images A,P(T*) of AP-'(T*) under d are 
called exact p-forms. They are clearly linear spaces (over R). The 
quotient space of the closed forms of degree p by the subspace of exact 
p-forms will be denoted by D ( M )  and called the p - d i d 1  coho- 
mology group of M obtained ust'ng dzjbvntial forms. Since the exterior 
product defines a multiplication of elements (cohomology classes) in 
D ( M )  and D(M) with values in D+o(M) for all p and q, the direct sum 

becomes a ring (over R) called the cohomology ting of M obtained using 
differential forms. In fact, from property (iii) we may write 

closed form A closed form = closed form, 
closed form A exact form = exact form, (1.4.7) 
exact form A closed form = exact form. 

Examples : Let M be a 3-dimensional manifold and consider the 
coordinate neighborhood with the local coordinates x, y, 2. The linear 
differential form 

u=pc ix+qdy+rds  (1 A.8) 
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where p, q, and r are functions of class 2 (at least) of x, y, and s h h  for 
its differential the 2-form 

Moreover, the 2-form 

has the differential 

In more familiar language, da is the curl of a and dp its divergence. 
That dda = 0 is expressed by the identity 

div curl a = 0. 

We now show that the coefficients ails.,, of a differential form u 
can be considered as the components of a skew-symmetric tensor field 
of type (0,p). Indeed, the a, ,, are defined for i, < ... < 4. They 
may be defined for all values of the iadices by taking account of the 
anti-commutativity of the covectors dug, that is we may write 

That the a81...C are the components of a tensor field is easy to show. 
In the sequel, we will absorb the factor l/p! in the expression of a 
p-form except when its presence is important. 

In  order to express the exterior product of two forms and the 
differential of a form (cf. (1.4.5)) in a canonical fashion the Kronecker 
symbol 

will be useful. The important properties of this symbol are: 

(i) 82::::: is skew-symmetric in the i, and j,, 
( i ~ - - * f p '  $1 ( i )  8 ,  . = i i ,  

This condition is equivalent to 
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and (ii)' is equivalent to 

(ii)" 

where agl...,p is a p-vector. 
The condition (ii)" shows that the Kronecker symbol is actually a 

tensor of type (p ,  p). 
Now, let 

a = a(il...ip) duil A ... A duip 

Then, 
a A P = c ~ , . . . ~ , , ,  duil A ... A duh+q 

where 

and 
j ( i  l . . . ip) " ( i l . . . ~  (P + I)! da = Skl . . .kp+l  - au j dukl A ... A dukp+l. (1.4.1 1 )  

From (1.4.10) we deduce 

1.5. Submanifolds 

The set of differentiable functions F (of class k) in a differentiable 
manifold M (of class k) forms an algebra over R with the usual rules 
of addition, multiplication and scalar multiplication by elements of R. 
Given two differentiable manifolds M and M', a map 4 of M into M' 
is called differentiable, if f' . 4 is a differentiable function in M for 
every such function f' in M'. This may be expressed in terms of local 
coordinates in the following manner: Let ul, ..., un be local coordinates 
at P E M and vl, ..., vm local coordinates at +(P) E M'. Then 4 is a 
differentiable map, if and only if, the vi(+(ul, ..., un)) = vi(ul, ..., un) are 
differentiable functions of ul, ..., un. The map 4 induces a (linear) 
differentiable map 4, of the tangent space Tp at P E M into the tangent 
space TH4 at P' = #(P) E M'. Let X E Tp and consider a differentiable 
function f' in the algebra F' of differentiable functions in M'. The 
directional derivative off' 4 along X is given by 
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where the are the (contravariant) components of X in the local 
coordinates ul, ..., un. This, in turn is equal to the directional derivative 
off' along the contravariant vector 

at 4P). By mapping X in Tp into X' in Tp, we get a linear map of 
Tp into THPt This is the induced map 4,. The map 4 is said to be regulm 
(at P) if the induced map +, is 1 - 1. 

A subset M' of M is called a submanifold of M if it is itself a differenti- 
able manifold, and if the injection +' of M' into M is a regular 
differentiable map. When necessary we shall denote M' by (+', M'). 
Obviously, we have dim M' I; dim M. The topology of M' need not 
coincide with that induced by M on M'. If M' is an open subset of M, 
then it possesses a naturally induced differentiable structure. In  this case, 
M' is called an open subma&fold of M. 

Recalling the definition of regular surface we see that the above 
univalence condition is equivalent to the condition that the Jacobian 
of 4 is of rank n. 

By a clbsed submanifold of dimension r is meant a submanifold M' with 
the properties: (i) 4'(Mf) is closed in M and (ii) every point P E +'(Mf) 
belongs to a coordinate neighborhood U with the local coordinates 
ul, ..., un such that the set +' (Mf)  n U is defined by the equations 
ur+l = 0, ..., un = 0. The definition of a regular closed surface given 
in 5 1.1 may be included in the definition of closed submanifold. 

We shall require the following notion: A parametrized curwe in M 
is a differentiable map of class k of a connected open interval of R into M. 

The differentiable map + : M -+ M' induces a map +* called the dual 
of 4, defined as follows: 

The map +* may be extended to a map which we again denote by +* 

as follows: Consider the pairing (vl A ... A vi ,  w: A ... A w:) defined by 

( ~ 1  A ... A v,, w,* A ... A w,*) = p! det ((v,, w:)) (1.5.1) 



and put 

Clearly, +* is a ring homomorphism. Moreover, 

that is, the exterior differential operator d commutes with the induced 
dual map of a differentiable map from one differentiable manifold into 
another. 

1.6. Integration of differential forms 

It is our intention in this section to sketch a proof of the formula of 
Stokes not merely because of its fundamental importance in the theory 
of harmonic integrals but because of the applications we make of it 
in later chapters. However, a satisfactory integration theory of differential 
forms over a differentiable manifold must first be developed. 

The classical definition of a p-fold integral 

of a continuous function f = f(ul, ..., UP) of p variables defined over 
a domain D of the space of the variables ul, ..., up as given, for example, 
by Goursat does not take explicit account of the orientation of D. The 
definition of an orientable differentiable manifold M given in 5 1.1 
together with the isomorphism which exists between Ap(T,*) and 
An-p(T,*) at each point P of M (cf. 5 2.7) results in the following 
equivalent definition: 

A differentiable manifold M of dimension n is said to be orientable 
if there exists over M a continuous differential form of degree n which 
is nowhere zero (cf. 1.B). 

Let a and f i  define orientations of M. These orcentations are the same 
if /3 =fa where the function f is always positive. An orientable manifold 
therefore has exactly two orientations. The manifold is called oriented 
if such a form a # 0 is given. The form or induces an orientation in the 
tangent space at each point P E M. Any other form of degree n can theh 
be written as f(P)a and is be -said to be > 0, < 0 or = 0 at P provided 
that f(P) > 0, < 0 or = 0. This depends only on the orientation of M 
and not on the choice of the differential form defining the orientation. 

The carrier, carr (a) of a differential form or is the closure of the set 
of points outside of which or is equal to zero. The following theorem 
due to J. Dieudonnk is of crucial importance. (Its proof is given in Appen- 
dix D.) 



20 I. RIEMANNIAN MANIFOLDS 

To a locally finite open covering {U*} of a differentiable manifold of 
class k 2 1 there is associated a set of functions kj} with the properties 

(i) Each g j  is of class k and satisfies the inequalities 

everywhere. Moreover, its carrier is compact and is contained in one 
of the open sets U*, 

(iii) Every point of M has a neighborhood met by only a finite number 
of the carriers of g,. 

The gj are said to form a partition of unity subordinated to {U*} that is, 
a partition of the function 1 into non-negative functions with small 
carriers. Property (iii) states that the partition of unity is locally finite, 
that is, each point P E  M has a neighborhood met by only a finite number 
of the carriers of gj. If M is compact, there can be a finite number of gj; 
in any case, the gj form a countable set. With these preparations we can 
now prove the following theorem: 

Let M be an oriented differentiable manifold of dimension n. Then, 
there is a unique functional which associates to a continuous differential 
form a of degree n with compact carrier a real number denoted by JMa 
and called the integral of a. This functional has the properties: 

(ii) If the carrier of a is contained in a coordinate neighborhood U 
with the local coordinates ul, ..., un such that dul A ... A dun > 0 (in U )  
and a = a,..., dul A ... A dun where ct ,... , is a function of ul, ..., un, then 

where the n-fold integral on the right is a Riemann integral. 
Since carr (a) c U we can extend the definition of the function a,.., to 

the whole of En, so that (1.6.1) becomes the the n-fold integral 

In  order to define the integral of an n-form a with compact carrier S 
we take a locally finite open covering {U4} of M by coordinate neighbor- 
hoods and a partition of unity {gj} subordinated to {U*}. Since every 
point P E S has a neighborhood met by only a finite number of the 



carriers of the g,., these neighborhoods for all P E S form a covering of S. 
Since S is compact, it has a finite sub-covering, and so there is at most 
a finite number of gj  different from zero. Since $gja is defined, we put 

That the integral of a over M so defined is independent of the choice 
of the neighborhood containing the carrier of gj as well as the covering 
{(Ii} and its corresponding partition of unity is not difficult to show. 
Moreover, it is convergent and satisfies the properties (i) and (ii). 
The uniqueness is obvious. 

Suppose now that M is a compact orientable manifold and let /3 be 
an (n - 1)-form defined over M. Then, 

To prove this, we take a partition of unity (g,) and replace /3 by &$. 
This result is also immediate from the theorem of Stokes which we 
now proceed to establish. 

Stokes' theorem expresses a relation between an integral over a 
domain and one over its boundary. Its applications in mathematical 
physics are many but by no means outstrip its usefulness in the theory 
of harmonic integrals. 

Let M be a differentiable manifold of dimension n. A domain D 
with regular boundary is a point set of M whose points may be classified 
as either interior or boundary points. A point P of D is an interior point 
if it has a neighborhood in D. P is a boundary point if there is a coordinate 
neighborhood U of P such that U n D consists of those points Q E U 
satisfying un(Q) 2 un(P), that is, D lies on only one side of its boundary. 
That these point sets are mutually exclusive is clear. (Consider, as an 
example, the upper hemisphere including the rim. On the other hand, 
a closed triangle has singularities). The boundary aD of D is the set of 
all its boundary points. The following theorem is stated without proof: 

The boundary of a domain with regular boundary is a closed sub- 
manifold of M. Moreover, if M is orientable, so is aD whose orientation 
is canonically induced by that of D. 

Now, let D be a compact domain with regular boundary and let h 
be a real-valued function on M with the property that h(P) = 1* if 
P E D and is otherwise zero. Then, the integral of an n-form a may be 
defined over D by the formula 
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Although the form ha is not continuous the right side is meaningful 
as one sees by taking a partition of unity. 

Let a be a differential form of degree n - 1 and class k 2 1 in M. 
Then 

where the map i sending aD into 
orientation canonically induced by 

M is the identity and aD has the 
that of D. This is the theorem of 

Stoker. In order to prove it, we select a countable open covering of M 
by coordinate neighborhoods {U,) in such a way that either UZ does 
not meet aD, or it has the property of the neighborhood U in the 
definition of boundary point. Let kj) be a partition of unity subordinated 
to this covering. Since D and its boundary are both compact, each of 
them meets only a finite number of the carriers of gj. Hence, 

and 

These sums being finite, it is only necessary to establish that 

for each i, the integrals being evaluated by f~rmula (1.6.1). To complete 
the proof then, choose a local coordinate system ul, ..., un for the 
coordinate neighborhood Ui in such a way that dul A ... A dun > 0 
and put 

where the functions a, are of class 2 1. Then, 

Compare with (1.4.9). The remainder of the proof is left as an exercise. 
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1.7. Affine connections 

We have seen that the partial derivatives of a function with respect to a 
given system of local coordinates are the components of a covariant 
vector field or, stated in an invariant manner, the differential of a function 
is a covector. That this case is unique has already been shown (cf. 
equation 1.3.10). A similar computation for the contravariant vector 
field X = ti(a/ ad )  results in 

where 

in U n t'?. Again, the presence of the second term on the right indicates 
that the derivative of a contravariant vector field does not have tensor 
character. Differentiation may be given an invariant meaning on a 
manifold by introducing a set of n2 linear differential forms wj = qk duk 
in each coordinate neighborhood, so that in the overlap U n 7? of 
two coordinate neighborhoods 

A direct computation shows that in the intersection of three coordinate 
neighborhoods one of the relations (1.7.3) is a consequence of the 
others. In terms of the n3 coefficients qk, equations (1.7.3) may be 
written in the form 

These equations are the classical equations of transformation of an 
affine connection. With these preliminaries we arrive at the notion 
we are seeking. We shall see that the wj permit us to define an invariant 
type of differentiation over a differentiable manifold. 

An afine connection on a differentiable manifold M is defined by 
prescribing a set of n2 linear differential forms wf in each coordinate 
neighborhood of M in such a way that in the overlap of two coordinate 
neighborhoods 
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A manifold with an affine connection is called an aflnely connected 
manqold. 

The existence of an affine connection on a differentiable manifold 
will be shown in 5 1.9. In the sequel, we shall assume that M is an 
affinely connected manifold. Now, from the equations of transformation 
of a contravariant vector field X = fC(a/aui) we obtain by virtue of the 
equations (1.7.5) 

dfi = dp: + P: dfj 

= (w: - 6: P;) f j  + +j dp .  
(1.7.6) 

By rewriting these equations in the symmetrical form 

we see that the quantity in brackets transforms like a contravariant 
vector field. We call this quantity the covariant dzflmential of X and 
denote it by D X  Its jth component d p  + oi f k  will be denoted by 
( D W .  In terms of the natural base for covectors, (1.7.7) becomes 

aP' ay + 8";) duj = p;(w + p rg) :)dug. 
(33 

We set 

and call it the covariant derivative of X with respect to u'. That the 
components%, (J transform like a tensor field of type (1,l) is clear. 
In fact, it follows from (1.7.8) that 

where the 1.h.s. denotes the covariant derivative of X with respect to z2. 
A similar discussion in the case of the covariant vector field ti permits 

us to define the covariant derivative of fi as the tensor field Dj& of 
type (0,2) where 

D, Ei = - 2; - tk r;. (1.7.1 1) 

The extension of the above argument to tensor fields of type (r, s) is 
straightforward-the covariant derivative of the tensor field @...irjl...j, 

with respect to uk being 
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The covariant derivative of a tensor field being itself a tensor field, we 
may speak of second covariant derivatives, etc., the result again being 
a tensor field. 

Since Euclidean space En, considered as a differentiable manifold, 
is covered by one coordinate neighborhood, it is not essential from 
our point of view to introduce the concept of covariant derivative. 
In  fact, the affine connection is defined by setting the rJ; equal to 
zero. The underlying affine space An is the ordinary n-dimensional 
vector space-the tangent space at each point P of En coinciding ' 

with An. Indeed, the linear map sending the tangent vector a/aud t o ,  
the vector (0, ..., 0, 1,0, ..., 0) (1 in the zTh place) identifies the tangent 
space Tp with An itself. Let P and Q be two points of An. A tangent 
vector at P and one at Q are said to be parallel if they may be identified 
with the same vector of An. Clearly, the concept of parallelism (of 
tangent vectors) in An is independent of the curve joining them. 
However, in general, this is not the case as one readily sees from the 
differential geometry of surfaces in E3. We therefore make the following 
definition: 

Let C = C(t) be a piecewise differentiable curve in M. The tangent 
vectors 

are said to be parallel along 
vanishes in the direction of 

C if the covariant derivative DX(t) of X(t) 
C, that is, if 

A piecewise differentiable curve is called an auto-parallel curve, if its 
tangent vectors are parallel along the curve itself. 

The equations (1.7.14) are a system of n first order differential 
equations, and so corresponding to the initial value X = X(to) at t = to 
there is a unique solution. Geometrically, we say that the vector X(t,) 
has been given a parallel displacement along C. Algebraically, the parallel 
displacement along C is a linear isomorphism of the tangent spaces at 
the points of C. By definition, the auto-parallel curves are the integral 
curves of the system 

Hence, corresponding to given initial values, there is a unique auto- 
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parallel curve through a given point tangent to a given vector. Note 
that the auto-parallel curves in An are straight lines. 

Affine space has the further property that functions defined in it 
have symmetric second covariant derivatives. This is, however, not the 
case in an arbitrary differentiable manifold. For, let f be a function 
expressed in the local coordinates (ui). Then 

from which 

If we put 

T j t  = qk - qjS 

it follows that the Tjki are the components of a tensor field of type (1,2) 
called the torsion tensor of the affine connection rjk. We remark at this 
point, that if 6; = ck duk are a set of n2 linear differential forms in 
each coordinate neighborhood defining another affine connection on M, 
then it follows from the equations (1.7.4) that rtk - f j k  is a tensor field. 
I n  particular, if we put pjk = Tij, that is, if 3; = rijduk, - Gj 
is a tensor field. When we come to discuss the geometry of a Riemannian 
manifold we shall see that there is an affine connection whose torsion 
tensor vanishes. However, even in this case, it is not true that covariant 
differentiation is symmetric although for (scalar) functions this is certainly 
the case. In fact, a computation shows that 

where 

(In the case under consideration the components Tjkz are zero). Clearly, 
Pjk, is a tensor field of type (1,3) which is skew-symmetric in its last 
two indices. It is called the curvature tensor and depends only on the 
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affine connection, that is, the functions R$k,, are functions of the qk 
only. More generally, for a tensor of type (r, s) 

Now, if both the torsion and curvature tensors vanish, covariant 
differentiation is symmetric. I t  does not follow, however, that the 
qi vanish, that is, the space is not necessarily affine space. 

An affinely connected manifold is said to be locally afine or locallyflat 
if a coordinate system exists relative to which the coefficients of con- 
nection vanish. Under the circumstances, both the torsion and curvature 
tensors vanish. Conversely, if the torsion and curvature are zero it can be 
shown that the manifold is locally flat (cf. 1.E). 

1.8. Bundle of frames 

The necessity of the concept of an affine connection on a differentiable 
manifold has been clearly established from an analytical point of view. 
A geometrical interpretaticn of this notion is desirable. Hence, in this 
section a realization of this very important concept will be given in 
terms of the bundle of frames over M. 

By a frame x at the point P E M is meant a set {XI, ..., X,} of linearly 
independent tangent vectors at P. Let B be the set of all frames x at all 
points P of M. Every element a E GL(n, R) acts on B to the right, that 
is, if a denotes the matrix (a:) and x = {XI, ..., X,}, then x a = 
@{XI, ..., aiXj} E B is another frame at P. The map ir : B +  M of 
B onto M defined by ~ ( x )  = P assigns to each frame x its point of origin. 
In terms of a system of local coordinates ul, ..., un in M the local 
coordinates in B are given by (uj, ffiJ-the n2 functions C:,, being 
defined by the n vectors Xi of the frame: 
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Clearly, the fz,, i, k = 1, ..., n are the elements of a non-singular 
matrix (2yd ,). Conversely, every non-singular matrix defines a frame 
expressed in the above form. The set of all frames at all points of M 
can be giv'en a topology, and in fact, a differentiable structure by taking 
d, ..., un and (fFi ,) as local coordinates in n-l(U). The differentiable 
manifold B is called the bundle of frames' or bases over M with structural 
p p  q n ,  R). 

Let (f:)) denote the inverse matrix of (f:,,). In the overlap of two 
coordinate neighborhoods, (ud, f:,) and (Cd, [:,) are related by 

I t  follows that 

Hence, for each i, the function 41tf) assigns to every point x of n-l(U) 
a 1-form ad = f7)duj at ~ ( x )  in U. Defining 8C = n*ad, i = 1, ..., n 
we obtain n linearly independent l-forms 8C on the whole of B. Now, 
we take the covariant differential of each of the vectors Xd. From (1.7.7) 
and (1.7.8) we obtain 

and so from (1.8.3) 

Denoting the common expression in (1.8.6) by or," we see that the or," 
define n2 linear differential forms 8 = w*at on the whole of the 
bundle B. 

The n2 + n forms 8C, 8: in B are vector-valued differential forms in B. 
To see this, identify B with the collection of vector space isomorphisms 
x : IF-* Tp; namely, if x is the frame {XI, ..., Xn) at P, then x(al, ..., an) 
= aCXe Now, for each t E T,, define 8 to be an Rn-valued l-form by 



As an exercise we leave to the reader the verification of the formulae 
for the exterior derivatives of the 0j and 0{: 

dei - e: A e: = @, 
where 

and 

-the P,,,? and Sj,, being functions on B whereas the torsion and 
curvature tensors are defined in M. Equations (1.8.7) - (1.8.9) are called 
the equations of structure. They are independent of the particular choice 
of frames, so that if we consider only those frames for which 

and 

dwi - w: A w{ = - #pi, du' A durn. (1.8.12) 

Differentiating equations (1.8.7) and (1.8.8) we obtain the Bianchi 
identities: 

We have seen that an affine connection on M gives rise to a complete 
parallelisability of the bundle of frames B over M, that is the affine 
connection determines n2 + n linearly independent linear differential 
forms in B. Conversely, if nd linear differential forms 0: are given in B 
which together with the n-forms 81 satisfy the equations of structute, 
they define an affine connection. The proof of this important fact is 
omitted. 

Let a be an element of the structural group GL(n, R) of the bundle 
of frames B over M. It  induces a linear isomorphism of the tangent 
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space T, at x E B onto the tangent space T,.,. This, in turn gives rise 
to an isomorphism of T:., onto T,*. On the other hand, the projection 
map w induces a map T* of T: (the space of covectors at P E M). An 
affine connection on M may then be described as follows: 

(i) T,* is the direct sum of W,* and w*(T,*) where Wz is a linear 
subspace at x E B and n(x) = P; 

(ii) For every a E GL(n, R )  and x E B, is the image of c., by 
the induced map on the space of covectors. 

In other words, an aflne connection on M is a choice of a subspace W*, 
in T,* at each point x of B subject to the conditions (2') and (it]. Note that 
the dimension of W,* is n2. Hence, it can be defined by prescribing n2 
linearly independent differential forms which together with the 85 
span Tz. 

1.9. Riemannian geometry 

Unless otherwise indicated, we shall assume in the sequel that we are 
given a differentiable manifold M of dimension n and class 00. 

A Riemannian metric on M is a tensor field g of type (0,2) on M subject 
to the conditions: 

(i) g is a symmetric tensor field, and 

(ii) g is positive definite. 

This tensor field is called the fundamental tensor field. When a Riemannian 
metric is given on M the manifold is called a Riemannian manifold. 
Geometry based upon a Riemannian metric is called Riemannian 
geometry. A Riemannian metric gives rise to an inner (scalar) product 
on each tangent space Tp at P E M: the scalar product of the contra- 
variant vector fields X = 64(a/hc) and Y = qi(a/aui) at the point P 
is defined to be the scalar 

The positive square root of X X is called the length of the vector X. 
Since the Riemannian metric is a tensor field, the quadratic differential 
form 

d.@ = gjk duj duk ( 1  .9.2) 

(where we have written duj duk in place of duj @ duk for convenience) 



is independent of the choice of local coordinates ui. In this way, if we 
are given a parametrized curve C(t), the integral 

where X(t) is the tangent vector to C(t) defines the length s of the arc 
joining the points (ui(t,,)) and (uyt,)). 

Now, every differentiable manifold M (of class k) possesses a Rieman- 
nian metric. Indeed, we take an open covering (Ua} of M by coordinate 
neighborhoods and a partition of unity (gal subordinated to U,. Let 
&:(= Ern_, dui dui) be a positive definite quadratic differential form 
defined in each U, and let the carrier of g, be contained in U,. Then, 
Zagah: defines a Riemannian metric on M. 

Since the dui dui have coefficients of class k - 1 in any other coor- 
dinate system and the g, can be taken to be of class k the manifold M 
possesses a Riemannian metric of class k - 1. 

I t  is now shown that there exists an affine connection on a differentiable 
manifold. In fact, we prove that there is a unique connection with ihe 
properties: (a) the twsion tensor is zero and (b) the scalar product (relative 
to some metric) is preserved during parallel displacement. To  show this, 
assume that we have a connection I'jk satisfying conditions (a) and (b). 
We will obtain a formula for the coefficients r;i in terms of the metric 
tensor g of (b). Let X(t) = g?(t)(a/aui) and Y(t) = qi(t)(a/a~i) be 
tangent vectors at the point (ui(t)) on the parametrized curve C(t). The 
condition that these vectors be parallel along C(t) are 

and 

By condition (b), 
d --,(fir 13 =Os 

Since (1.9.6) holds for any pair of vectors X and Y and any parametrized 
curve C(t), 

- % = .!?u G k  + gi, rh (1.9.8) 
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By permuting the indices i,  j, and k ,  two further equations are obtained: 

We define the contravariant tensor field gjk by means of the equations 

Adding (1.9.8) to (1.9.9) and subtracting (1.9. lo), one obtains after 
multiplying the result by gjm and contracting 

where 

and 

(Although the torsion tensor vanishes, it will be convenient in § 5.3 
to have the formula (1.9.12)). Hence, since the torsion tensor vanishes 
(condition (a)), the connection qk is given explicitly in terms of the 
metric by formula (1.9.13). That the b',) transform as they should is an 
easy exercise. This is the connection of Lewi Civita. We remark that 
condition (b) says that parallel displacement is an isometry. This follows 
since parallel displacement is an isomorphic linear map between tangent 
spaces. 

A Riemannian metric gives rise to a submanifold f) of the bundle of 
frames over M. This is the bundle of all orthonormal frames over M. 
An orthonormal frame at a point P of M is a set of n mutually per- 
pendicular unit vectors in the tangent space at P. In this case, the 
structural group of the bundle is the orthogonal group. A connection 
defined by a paralleliaation of f) gives a parallel displacement which is an 
isometry-the Levi Civt'ta connection being the only one which is torsion free. 
If we denote by Bi, Bij, e4$, Sf(kl the restrictions of P, B;, q, Silk, to 
the orthonormal frames (cf. § 1.8), then by 'developing' the frames along 
a parametrized curve C into affine space An (see the following paragraph), 
it can be shown that 
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(cf. I.GS), 

where the forms 4 and Oij (i< j) are linearly independent; moreover, 
the functions Sijk, (cf. (1.8.9)) have the symmetry properties 

Equations (1.9.16) and (1.9.17) are the restrictions to B of the cor- 
responding equations (1 3.7) and (1.8.8). 

Consider the bundle of frames over C(t) and denote once again the 
restrictions of 8,, Oij to the submanifold over C(t) by the same symbols. 
To  describe this bundle we choose a family of orthonormal frames 
(Al(t), ..., A,(t)) along C(t)-one for each value of t. Then, for a given 
value of t the vectors Xl(t), ..., Xn(t) of a general frame are given by 

The frames (Xl(t), ..., Xn(t)) can be mapped into frames in the bundle 
An of frames over An so that their relative positions remain unchanged. 
In particular, frames with the same origin along C(t) are mapped into 
frames with the same origin in An. This follows from the fact that 
under the mapping the 8, and Oij are the dual images of corresponding 
differential forms in An (cf. I.F. I). 

Let C(tl) and C(t2) be any two points of C(t). A vector of Tcct) is 
given by xiAi(t). Consider the map which associates with a vector 
xgAi(tl) E Tc(t,) the vector $Ai(t2) E T C , q  defined by 

where the prime denotes the image in An of the corresponding vector 
with origin on C(t) and Cf(t) is the image of C(t). In this way, the 
various tangent spaces along C(t) can be 'compared'. This situation may 
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be geometrically described by saying that the tangent spaces along C(t) 
are developed into An and compared by means of the development. 

An eleme~lt of fi over P E M is a set of n mutually perpendicular unit 
vectors XI, ..., Xn in the tangent space at P. The frames along C are 
developed into affine space An and, as before, the images are denoted 
by a prime, so that P -+ P' and X, -+ Xi (i = 1,2, ..., n). In this way, 
a scalar product may be defined in An by identifying An with one of its 
tangent spaces and putting 

Since the Levi Civita parallelism is an isometric linear map f, between 
tangent spaces, the scalar product defined in An has an invariant meaning; 
for, f,X f ,  Y = X Y. 

Since the vectors of a frame are contravariant vectors, they determine 
a set of n linearly independent vectors in the space of covectors at the 
same point P, and since this latter space may be identified with A~(T;) 
a frame at P defines a set of independent 1-forms 8, at that point. We 
make a change in our notation at this stage: Since we deal with a 
development of the tangent spaces along C into the vector space An 
we shall denote by P,{ee,, ..., en) a typical frame in B over P so that the 
image frame P1,{e;, ..., eA)(P -+ P') in An is a 'fixed' basis for the frames 
in An. Now, consider the vectorial 1-form X?,, 8,e; in An (cf. I.A.6) which 
we denote by the 'displacement vector' dP'. Since An may be covered by 
one coordinate neighborhood Rn with local coordinates ul, ..., un, 
we may look upon dP' as the vector whose components are the 
differentials dul, ..., dun. Moreover, the ei are the natural basis vectors 
alaut (i = 1 ,  ..., n). Now, in affine space it is not necessary to introduce 
the concept of covariant differential, and so the differential dei is a 
vectorial 1-form for each i, and we may write 

Differentiating the equations 

ei . e, = 

and applying (1.9.23) we obtain the first of equations (1.9.15) (cf. I.G). 
The remaining formulae follow from those in 5 1.8 as well as (1.9.15). 

We remark that the tensor RUk, = g i m e j k ,  satisfies the relations 
(1 -9.19) - (1 -9.21). 

The forms 8, and 841 are determined by the Riemannian metric 
of the manifold. If we are given two such metrics dF2 and df2 in the local 
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coordinates (ui) and (Bi), respectively, then it can be shown that if f 
is a local differentiable homeomorphism f : U -+ 0 such that f*(&2) = 
h 2 ,  then f *8, = 0, and f *oij = Oij, and conversely, if we write 

= 0, @ 0,, i = 1, ..., n where @ denotes the tensor product of 
covectors (cf. 1.A) 

f*(e: + -.. + e,z) = q + -.. + 9; 

where f* is the induced dual map. (The forms 4 ,  i = 1, ..., n are 
vectors determined by duality from the vectors e, by means of the 
metric). Therefore, f induces a homeomorphism of the bundles 8, 
and Bit of orthonormal frames over U and 0, respectively. 

I t  follows that the forms 0i and Oij are intrinsically associated with the 
Riemannian metric in the sense that the dual of the homeomorphism 
8, -+ Do maps the 8, into the 0, and the 8,1 into the 0,, and for this 
reason they account for the important properties of Riemannian 
geometry. 

1 .lo. Sectional curvature 

In a 2-dimensional Riemannian manifold the only non-vanishing 
functions Sijkl are S1212 = - Slezl = - Szl12 = S,,,,. We remark 
that the Sijkr are not the components of a tensor but are, in any case, 
functions defined on the bundle 8 of orthonormal frames. Moreover, 
the quantity - S,,,, is the Gaussian curvature of the manifold. We 
proceed to show that the value of the function - S,,,, at a point P 
in an n-dimensional Riemannian manifold M is the Gaussian curvature 
at P of some surface (2-dimensional submanifold) through P. T o  this end, 
consider the family 9 of orthonormal frames {el, ..., en) at a point P 
of M with the property that the 'first' two vectors of each of these frames 
lie in the same plane .rr through P. Let S be a 2-dimensional submanifold 
through P whose tangent plane at P is .rr. The surface S is said to be 
geodesic at P if the geodesics (cf. 9 1.1 1) through P tangent to .rr all 
lie on S. We seek the condition that S be geodesic at P. Let C be a 
parametrized curve on S through P tangent to the vector z:,, x,e, at P 
and develop the frames along C into En. If we denote the image of a 
frame {el, ..., en) by {e; , ..., e;}, we have 

In order that C be a geodesic, Z:,, xa 0,, must vanish, and since this 
holds for arbitrary initial values of the xa, the forms Oa, (1 5 a 5 2, 
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3 5 r 5 n) are equal to zero at P. Conversely, if the Oar vanish at P, 
then from (1.9.16) and (1.9.17) 

These are the equations which hold on S. Hence, the quantity - S1,,, 
at a point P of a Riemannian manifold is equal to the Gaussian curvature 
at P of the surface tangent to the plane spanned by the first two vectors 
and which is geodesic at P. 

The Gaussian curvature at a point P of the surface geodesic at P 
and tangent to a plane w in the tangent space at P is called the sectional 
curvatur~ at (P, W) and is denoted by R(P, w). If p, qi are two ortho- 
normal vectors which span W, it follows from (1.8.1 1) that 

since R$jkl = g$nhpjkl* 
Let f*C, r)*i be any two vectors spanning W. Then, 

where ad - bc # 0. In terms of the vectors f*i, rl*t, 

R(P,r) = - (ad - bc)2 Rijkl f*i ?*j f*k 7*l, 

where llad - bc: is the oriented area of the parallelogram with (*i, q*i 
as adjacent sides: 

If we drop the asterisks, we obtain the following formula for the sectional 
curvature at (P, v): 

Now, assume that R(P, W) is independent of W, that is, suppose that 
the sectional curvature at (P, W) does not depend on the two-dimensional 
section passing through this point. Then, from (1 .lO.3), we obtain 
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where K denotes the common value of R(P, n) for all planes n. By 
(1 -8.1 1) 

Sijkl = ' f h  f&) f t 0  (RPr gzla - gas gpr) ( 1 . 1 0 . 5 )  
= K ( S j k  Si t  - S i k )  

since the frames are orthonormal. Equation (1.10.5) may be rewritten 
by virtue of the second of equations (1.8.9) as 

If we assume that at every point P E M, R(P, n) is independent of 
the plane section n, then, by substituting (1.10.6) into (1.9.18) and 
applying (1.9.16) we get 

dK A Oi A Oj  = 0. 

Hence, d K  must be a linear combination of B, and 0, from which d K  = 0 
if n 2 3. This result is due to F. Schur: If the sectional curvature at 
every point of a Riemannian manqold does not depend on the two-dimenst'mal 
section passing through the point, then it is constant over the manyold. 
Such a Riemannian manifold is said to be of constant curwature. 

Assume that the constant sectional curvature K vanishes. We may 
conclude then that the tensor R f k l  vanishes, and so the manifold is 
locally flat. This means that there is a coordinate system with the 
property that relative to it the components ck) of the Levi Civita 
connection vai,iqh. For, the equations 

obtained from (1.7.4) by putting rf, = 0 are completely integrable. 
Hence, there is a coordinate system in which the r& vanish. I t  follows 
that the components gjk of the fundamental tensor are constants. Thus, 
we have a local isometry from the manifold to En. Conversely, if such 
a map exists, then clearly Pjk, vanishes. 

Let X, = ff4)(a/Chk) (i = 1, ..., n) denote n mutually orthogonal unit 
vectors at a point in a Riemannian manifold with the local coordinates 
ul, ..., un. Then from (1.9.1) 

It  follows from the equations (1.9.1 1) that 
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The sectional curvature K,, determined by the vectors X ,  and X, 
is given by 

K T ,  = - &kt Sf,)  &I Sf",, &. (1.10.9) 

Taking the sum of both sides of this equation from s = 1 to s = n 
we obtain 

2 Krs = Rik St, 5:,, (1.10.10) 
8-1 

where we have put Rik = - gj1RU,,, that is 

The tensor Rf,  is called the Ricci curvature tensor or simply the Ricci 
tensor. Again, 

where we have put 
R = gik Rik. 

The scalar Rik (t,., (f,, is called the Ricci curvature with respect to the 
unit tangent vector X,. The scalar R determined by equation (1.10.12) 
is independent of the choice of orthonormal frame used to define it. 
I t  is called the Ricci scalar curvature or simply the scalar curvature. 
The Ricci curvature K in the direction of the tangent vector is 
defined by 

I t  follows that 

( R j k  - ~ 8 j k )  f j  Sk = 0. 

The directions which give the extrema of K are given by 

In general, there are n solutions (f, ,, ..., &, of this equation which are 
mutually orthogonal. These directions are called Ricci directions. A 
manifold for which the Ricci directions are indeterminate is called 
an Einstein manifold. In  this case, the Ricci curvature is given by 
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If we multiply both sides of this equation by gjk, we obtain 

(In the sequel, the operation of multiplying the components of a tensor 
by the components of the metric tensor and contracting will be called 
trattsolection.) It follows that 

Now, the Bianchi identity (1.8.14), or rather (1.9.18) can be expressed as 

where Df denotes covariant differentiation in terms of the Levi Civita 
connection. Transvecting this identity with gim we obtain --- 

which upon transvection with gjk results in 

Substituting (1.10.19) into (1.10.22) and noting that 

we see that for n > 2, the scalar curvature is a constant. Hence, in an 
Einstkn mani~old the scalar curvature is constant (n  > 2). 

It should be remarked that the tensor Rjk is symmetric. In fact, from 
equations (1.8.11) and (1.9.2 1) we obtain 

Contracting (1.10.24) with respect to i and I gives 

by virtue of the symmetry relations (1.9.19) and the definition (1.10.1 1). 
Hence, the Ricci curvature tensor is symmetric. 
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1.1 1. Geodesic coordinates 

In this section we digress to define a rather special system of local 
coordinates at an arbitrary point Po of a Riemannian manifold M of 
dimension n and metric g. But first, we have seen that the differential 
equations of the auto-parallel curves uf = uuf(t), i = 1, ..., n of an affine 
connection o$ = qk duk are given by 

and that any integral curve of (1.11.1) is determined by a point Po 
and a direction at Po. If the affine connection is the Levi Civita connection, 
a geodesic curve (or, simply, geodesic) is defined as a solution of (1.1 1.1) 
where the parameter t denotes arc length. 

We define a local coordinate system (Ci) at Po as follows: At the pole Po 
the partial derivatives of the components f i j  of the metric tensor vanish, 
that is 

Hence, the coefficients rf, of the canonical connection also vanish at Po: 

Such a system of local coordinates is called a geodesic coordinatesystem. 
Thus, at the pole of a geodesic coordinate system, covariant differentiation 
is identical with ordinary differentiation. On the other hand, from 
(1.11.1) 

-a property enjoyed by the geodesics of En relative to a system of 
cartesian coordinates. These are the reasons for exhibiting such coor- 
dinates at a point of a Riemannian manifold. Indeed, in a given com- 
putation substantial simplifications.may result. 

The existence of geodesic coordinates is easily established. For, if we 
write the equations of transformation (1.7.4) of an affine connection 
in the form 



EXERCISES 

and define the n functions ril, ..., zin by 

where the a; are n2 constants with non-vanishing determinant, then 

It follows that the right side of (1.11.4) vanishes at Po. Consequently, 
by (1 9 .8 )  the equations (1.1 1.2) are satisfied. 

Incidentally, there exists a geodesic coordinate system in terms of 
which (g4j)po = 6;. For, we can find real linear transformations of the 
(r2), i = 1, ..., n with constant coefficients so that the fundamental 
quadratic form may be expressed as a sum of squares. 

EXERCISES 

A. The tensor product 

Let V and W be vector spaces of dimension n over the field F and denote 
by V* and W* the dual spaces of V and W, respectively. Let L(V*, W*; F) 
denote the space of bilinear maps of V* x W* into F. This vector space is 
defined to he the tensor product of V and W and is denoted by V @ W. 

1. Define the map u : V x W + V @ W as follows: 

u(v, w) (v*, w*) = <v, v*) (w ,  w*). Then, u is bilinear and u(V x W )  
generates V @ W. Denote u(v, w) by v @ w and call u the natural map. u is 
onto but not 1-1. 

Hint: To prove that u is onto choose a basis e,, ..., en for V and a basis fl, ..., fn 

for W. 

2. Let Z be a vector space over F and 8 : V x W 4  Z a bilinear map. Then, 
there is a unique linear map 8 : V @I W-+ Z such that 8 . u = 8. 

This property characterizes the tensor product as is shown in the following 
exercise. 
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3. If P is a vector space over F, z i  : V  x W-+ P is a bilinear map onto P, and 
if for any vector space Z , 8  : V  x W-h Z (8, bilinear), there is a unique linear 
rnapB:p-+Z with B . l i = e ,  

li 
v x w -  P 

then P and V  @ W are canonically isomorphic. 

We are now able to give an important alternate construction of the tensor 
product. The importance of this construction rests in the fact that it is a typical 
example of a more general process, viz., dividing free algebras by relations. 

4. Let Fvx , be the free vector space generated by V x Wand consider V  x W 
as a subset of Fvx with the obvious imbedding. Let K be the subspace of 

FYx generated by elements of the form 

Then, (FV, ,)/K together with the projection map u : V  x W +  (FVx ,)/K 
satisfies the characteristic property for the tensor product of V  and W. In 
particular, u is bilinear. I t  follows that (FV, ,)/K is canonically isomorphic 
with V @ W. 

In the following exercise we discuss the concept of a tensorial form. 

5. By a tensmal p-form of type (r, s) at a point P of a differentiable manifold 
M we shall mean an element of the tensor product of the vector space TJ(P) 
of tensors of type (r, s) at P with the vector space AP(Tp) of p-forms at P. 
A tensorial p-form of type (r, s) is a map M -+ T,' @ Ap(T) assigning to each 
P E M an element of the tensor space T,'(P) @ AqTp). A tensorial p-form of 
type (0,O) is simply a p-form and a tensorial 1-form of type (1,O) or vectorial 
l-form may be considered as a 1-form with values in T. 

Show that a tensorial p-form of type (r,s) may be expressed as a p-form 
whose coefficients are tensors of type (r, s) or as a tensor field of type (r;s) 
with p-forms as coefficients. - 
6. The notation of the latter part of 5 1.9 is employed in this exercise. We shall 
use the symbol P' to denote the position vector OP' relative to some fixed 
point 0 E An. Then, the vectors e; may be expressed as 
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If P' moves along the curve C'(t), we have 

that is, 
dP' = e;dui = (dud) e;. 

Thus, dP' is a vectorial 1 -form. Show that dP' may be considered as that vectorial 
1-form giving the identity map of An into itself. 

Differentiating the relations (*) with respect to uj we obtain 

Again, since ei is a function of the parameter t along C'(t), 

that is, 

The de; (i = 1, ..., n) are vectorial 1-forms. Hence, in terms of the basis 
{ei @ duj}, 

where the cj are the components of de; relative to this basis. Put 

Then, 

Show that the matrix (8:) defines a map of the tangent space at P' + dP' onto 
the tangent space at P'. Consequently, the functions rfj are the coefficients of 
connection relative to the natural basis. 

B. Orientation 

1. Show the equivalence of the two definitions of an orientation for a differenti- 
able manifold. Assume that the form ar of 5 1.6 is differentiable. 

Hint: Use a partition of unity. 
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2. If 0, + denote polar coordinates on a sphere in ES the manifold can be covered 
by the neighborhoods 

with coordinates 
0 0 

u1 = tan - cos 4, uB = - tan - sin 4 .  2 2 
and 

0 0 
utl = cot - cos 4, ula = cot - sin 4 ,  2 2 

respectively. Show that the sphere is orientable. 
On the other hand, the real projective plane PZ is not an orientable manifold. 

For, denoting by x, y ,  z rectangular cartesian coordinates in ES, P2 can be 
covered by the neighborhoods: 

with the corresponding coordinates 

and 

Incidentally, the compact surfaces can be classified as spheres or projective 
planes with various numbers of handles attached. 

C. Grassman algebra 

1. Let E be an associative algebra over the reds R with the properties: 
1) E is a graded algebra (cf. 5 3.3), that is E = Eo @ El @ ... @ En @ ..., 

where the operation @ denotes the direct sum; each E, is a subspace of E and 
for e, E Ei, ej E Ej, ei A ej E Ei+, where A denotes multiplication in E ;  

2) El = V where V is a real n-dimensional vector space and Eo = R; 
3)  El together with the identity 1 E R generates E; 
4) x A x = O ,  x e E 1 ;  
5 )  pxl A .., A x,, = 0 ,  x1 A ... A x, # 0, x,, ..., xn E El implies p = 0 .  

Then E is isomorphic to A (V) .  
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2. The algebra E can be realized as T(V)/Ze, where T(V) is the tensor algebra 
over V and I, is the ideal generated by the elements of the form x @ x, x E V. 

D. Frobenius' theorem [23] 

The ensuing discussion is purely local. To  begin with, we operate in a 
neighborhood of the origin 0 in R". Let 8 be a 1-form which is not zero at 0. 
The problem considered is to find conditions for the existence of functions f 
and g such that 

8 = fdg, 

that is, an integrating factor for the differential equation 

is required. If 8 = fdg, then f(0) # 0. Thus, d8 = df A dg = df A 8/f or 

df dB = o A 8 where w = - *  

Hence, 
f 

8 A do = 0. 

Observe that if 8 = fdg, the equation 8 = 0 implies & = 0 and conversely. 
Consequently, the solutions or integral surfaces of 8 = 0 are the hypersurfaw 
g = const. 

As an example, let n = 3 and consider the 1-form 

where (x, y, z) are rectangular coordinates of a point in Rs. Then, d8 = y di A dx 
+ x d.z A dy. It follows that d8 = dz/z A 8. However, o = di/z is singular 
along the z-axis. To  avoid this, we may take o = - y dx - x dy. The function 
g may be determined. by employing the fact that the integral surfaces g = const. 
are cut by the plane x = at, y = bt in the solution z of g(0, 0, z) = const. 
On this plane, the equation 8 = 0 becomes 

The solution of this ordinary differential equation with the initial condition 
4 0 )  = c is 

2 = c e - a q  
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Since abt" xy, these curves span a surface 

If we think of a, b, c as variables and make the transformation x = a, y = b, 
x = ce-*, it is seen that the integral surfaces are 

Apply the above procedure to the form 

and show that on the planes x = at, y = bt the surfaces 2 = f xy + y  + c 
are obtained whereas on the parabolic cylinders x = at, y = bP, the surfaces 
obtained are 2 = xy + y + c. (This is not the case in the first example.) 
Show that the reason integral surfaces are not obtained is given by 8 A do # 0. 

1. Let P be a point of the n-dimensional differentiable manifold M of class 
k and V, an r-dimensional subspace of the tangent space Tp at P. Put q - -n-r .  
Let x(r, P) be a frame at P whose last r vectors eA(A, R, ... = q + 1, ..., n) 
are in V,. Then, V, may be defined in terms of the vector3 81, ..., 8C of the dual 
space T:, that is by the system of equations 

The vectors of any other frame $(r,,P) satisfying these conditions may be 
expressed in terms of the vectors of x(r, P )  as follows: 

It follows that af4 = 0 for i = 1, ..., q and A = q + 1, ..., n. Hence, the cor- 
responding coframes (cf. D. 2) are given by 

where the matrix (a:) c GL(q, R). 
2. Conversely, let 81, ..., 8 9  be q linearly independent (over R) pfff in  forms at P. 
Let (P'), A = q + 1, ..., n be r pfaffian forms given in such a way that the 
(P), u = 1, ..., n define a coframe (that is, the dual vectors form a frame). 
The system of equations 8' = 0, ..., 69 = 0 then determines uniquely an 
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r-dimen3ional subspace V,. of Tp. In order that the systems (BL), (Bi) give rise 
to the same r-dimensional subspace it is necessary and sufficient that there 
exist a matrix (a:) E GL(q, R)  satisfying 

3. Let D be a domain of M. A pfa#an system of rank q and class l(2 I; 1 S k - 1) 
is defined, if, for every covering of D by coordinate neighborhoods {u} and 
every point P of U a system of q linearly independent pfaffian forms is given 
such that for P E U n 0 

where the matrix (a;) E GL(q, R) is of class 1. 
A pfaffian system of rank q(= n - r) on D defines an r-dimensional subspace 

of the tangent space Tp  at each point P E D, that is, afield of r-planes of class 1. 
A manifold may not possess pfaffian systems of a given rank. For example, 
the existence of a pfaffian system of rank n - 1 is equivalent to the existence 
of a field of directions. This is not possible on an even-dimensional sphere. 

4. Suppose a pfafin system of rank q and class 1 is defined on the coordinate 
neighborhood U by the 1-forms P, i = 1, ..., q. This system is said to be 
completely integrable if there are q functions of class 1 + 1 such that 

0' = a; df '. (a;) E GL(q,R). 

The pfaffian system may then be defined by the q differentials dfi. Under the 
circumstances the functions f form afirst integral of the system. 

The following result is due to Frobenius: 
In order that a p f a m  system (BL)  be completely integrable it is necessary and 

s u m t  that dBL A O1 A ... A iB = 0 for every i = 1, ..., q. 
The necessity is clear. The sufficiency may be proved by employihg a result 

on the existence of a 'canonical p f h n  system' in P and then proceeding by 
induction on r [23]. Since a pfaffian system of rank q on U defines and can be 
defined by a non-zero decomposable form 8 of degree q determined up to a 
non-zero factor this result may be stated as follows: 

If a pfaflan system of rank q hos the p r o p t y  that at every point P E M there 
is a local coordinate system such that the form 63 can be chosen to involve only q 
of these coordinates, the system is completely integrable. 

5. If 8 = 8' A ... A Oq, the condition 
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is equivalent to the condition 

d @ = w A B  
for some 1-form w. 

6. The linear subspaces of dimension r of Tp are in 1-1 correspondence 
with the classes of non-zero decomposable r-vectors-each class consisting 
of r-vectors differing from one another by a scalar factor. The set of r-vectors 
can be given a topology by means of the components relative to some basis. 
This defines a topology and, in fact, a differentiable structure in the set of 
subspaces denoted by Gr(Tp) of dimension r of Tp The manifold so obtained 
is called the GYUSS~~UM manifold over T p  The Grassman manifold Gr(Tp*) over 
the dual space may be similarly defined. There is a 1-1 correspondence 

This map is independent of the choice of a basis in A"(Tp*). Evidently then, 
it is a homeomorphism. 

Define the fibre bundle 

over M and show that it can be given a topology and a differentiable structure 
of class k - 1. 

7. A cross section 

F : M -+ Gr(M) 

of this bundle is a pfaffian system of rank q sometimes called a diflerGntial system 
of dimension r or r-distribution. A differential system of dimension r therefore 
associates with every point P of M a linear subspace of dimension r of T p  
By means of the correspondence Gr(Tp) -* GQ(T:), F defines (up to a non- 
zero factor) a decomposable form of degree q. 

8. A submanifold (Q, M') is called an integral manifold of F if, for every P' E M', 

The dimension of an integral manifold is therefore I; r. Show that F is com- 
pletely integrable if every P E M has a coordinate neighborhood with the local 
coordinates ul, ..., un such that the 'coordinate slices' 

u1 = const., ..., u9 = const. 

are integral manifolds of F. 
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Consider a completely integrable pfaffian system. The manifold (9, M') 
is an integral manifold, if on every neighborhood U of M such that U n M' # 0 
the pfafKan forms el, ..., OQvanish. If P E M', the tangent space to M' at P 
is the r-plane defined by the p f a k  system. 

9. The Frobenius theorem is a generalization of well-known theorems on total 
differential equations. Consider, for example, the case n = 3, r = 2 with the 
f o m  8 considered above given in the local coordinates x, y, a by 

By Frobenius' theorem, a necessary and sufficient condition for complete 
integrability is given by 

d e  A 8 = 0, 

E. Local flatness 1231 

1. If the curvature and torsion of an affineiy connected manifold M are both 
zero, show that the manifold is locally flat. 

Hint: By means of the equations (1.7.5) it suffices to show the existence of a 
local coordinate system (G) such that 

dzii = p: du' 
and 

dp: = 9: w:. 

Use Frobenius' theorem. 
This may also be seen as follows: From the structural equations it is seen that 

zero curvature implies that the distribution of horizontal planes in B given 
by Bf = 0 is completely integrable. An integral manifold is thus a covering of M. 
Since the torsion is also zero the other structural equation gives d@ = 0, 
i = 1, ..., n on the integral mmifold. Consequently, P = dui, where (ul, ..., un) 
is a flat coordinate system. 

F. Development of frames along a parametrized curve into An [23] 

1. In the notation of 9 1.9 show that the frames {Xl(t), ..., Xn(t)} can be mapped 
into An in such a way that the pfaffian forms Bi, 8,, are dual images of cor- 
responding forms in An : 

Let X;(t), ..., X;(t) denote the images of the frame vectors under the mapping. 
In the notation of 5 1.9 a typical frame along C is denoted by p,{e1, ..., en} 
and its image vectors in An by P',{e;, ..., ei}. If the 9, and 8, are the dual imagea 
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of corresponding forms in An the position vector P' together with the vectors 
e; satisfy the pfaffian system 

(cf. equations (1.9.23)). The variables of this system are t, x,! and the components 
of the vectors P', e;, ..., ei. Since the curvature forms Bij are quadratic in the 
differentials of the local coordinates, they vanish along a parametrized curve. 
It follows that there exists a local differentiable homeomorphism f from the 
bundle of frames over the submanifold C(t) to the bundle of frames over 
C'(t)-the submanifold defined by the image of C(t) in A", such that 

where 4, dij denote the forms in. An corresponding to ei, 8,. Show that the 
conditions in Frobenius' theorem are satisfied by this system and hence that 
it is completely integrable. As a consequence of this, show that there is exactly 
one set of vectors P', e;, ..., ei satisfying (*) and taking arbitrary initial values 
for t = to and x,! = 8;. If e;, ..., ei are linearly independent for t = to show that 
they are independent for all values of t, that is, for all t,{e;, ..., e:} is a frame 
on Ct(t). 

1. Denote the f i n e  transformation defined by equation (1.9.22) by Ttatl 

Show that Ttat1 is not, in general, a linear map. Define the linear map 

TP(t1) -+ TP(t,) 

sending the vector xiAi(t3 E Tp(tl)  into the vector ZiA4tg) E Tp(ta, by means 
of the equation 

xiAi(tl) = SiA;(t,). 

Show that Ttat1 is independent of (a) the choice of initial frame 4 = 8: for t = to 
and.@) the choice of the family {Al(t), ..., A;(t)} of frames along C(t). 
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2. Let 0 be an arbitrary point of M and {y} the family of closed parametrized 
curves on M with 0 as origin. The map 

associates with each y E iY} an affine transformation T, of the tangent space at 0. 
These transformations fbrm a group denoted by Ho-called the holonomy p p  
at 0. The restricted holonomy group Hi consisting of the afKne linear maps Ti 
is similarly defined. Show that the group Ho when considered as an abstract 
group is independent of the choice of 0. 

Hint: M is arcwise connected. 

3. An affine connection is called a metrical connection if its restricted holonomy 
group leaves invariant a positive definite quadratic form. Let M be an affinely 
connected manifold with a metrical connection and assume that the scalar 
product of two vectors is defined at some point 0 of M. Show that the scalar 
product may be defined everywhere on M. 

Hint: Let P be an arbitrary point of M, C a parametrized curve joining 0 
and P and T& the affine linear map from To to I;D along C. Define the scalar 
product at P by 

and show that this definition is independent of the choice of C. 

4. Show that the Levi Civita connection is a metrical connection. 

5. Establish the equations (1.9.15). 
One may proceed as follows: Develop the frames along C into affine space An. 

Let X(to) and Y(to) be two vectors at C(to) and X'(to), Y1(t0) the corresponding 
vectors at C'(to). Define a scalar product at C1(t0) by 

By identifying An with one of its tangent spaces, a scalar product is defined in An. 
From G.3, this scalar product is independent of the choice of to. In this way, 
it follows that the orthonormal frames along C can be developed into An in 
such a way that 

where 

The equations (1.9.15) follow by differentiating the last relation and 
applying 1.F. 



52 I. RIEMANNIAN MANIFOLDS 

The idea of translating, wherever possible, problems of Riemannian geometry 
to problems of Euclidean geometry is due to E. Cartan [Le~ons uur la ghrndtrie 
des espaces de Riernann, Gauthier-Villars (1928; 2nd edition, 194611. 

He Geodesic coordinates 

1. Show that at the pole of geodesic coordinates (uf) the Riemannian curvature 
tensor has the components 

Hence, the curvature tensor has the symmetry property (1.9.20). 

I. The curvature tensor 

1. The curvature tensor (which we now denote by L) of a Riemannian manifold 
with metric tensor g is completely determined by the sectional curvatures. 

To see this, consider L as a transformation 

The relation (a) says that as a function of the first two variables L depends only 
on X A Y. Thus, we may write 

The metric tensor g may be extended to an inner product on Az(T) as follows: 

Mll A Xl*, X*l A Xm) = det g(Xfj9 XP,*) 

for any vectors Xll, XI,, X,, X, E T where i , j  = 1,2; l *  = 2, 2* = 1. Then, 
(b) says that g(L(X A Y,Z),W) is a function of Z A W only. Hence, there is a 
unique Q X  A Y) E AYT) such that 

The relation (c) says that is a symmetric transformation of AYT). 
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By the usual 'polarization trick': 

(2g(X,Y) = g(X + Y, X + Y) - g(X,X) - g(Y,Y)), a symmetric linear 
transformation is determined by the quadratic form corresponding to it. Hence 
L is determined by 

&E), n 
where the bivector f runs through Aa(T). It is sufficient to consider only 
decomposable t. Consequently, L is determined by the sectional curvatures 

of the planes spanned by X and Y for all X,Y E T. 
2. Put 

R(X, Y)Z = L(X A Y,Z) 

and show that R(X,Y) is a tensor of type (1,l). The sectional curvature deter- 
mined by the vectors X and Y may then be written as 

For any set {xi, Xj, X,, X,} of orthonormal vectors, show that 

3. Show that the curve C in the orthogonal group of Tp  given by the matrix 

(C(t)i) defining the parallel translation of Tp  around the coordinate square 
with corners (a) ui = udP), uj = uXP), (b) ui = uAP) + d< uj = u,(P), 
(c) ui = uAP) + .\/i;, uj = uXP) + .\/i; (d) ui = ui(P), u, = uXP) + 4 6  all 
other u's constant has derivative 

J. Principal fibre bundles 

1. Given a differentiable manifold M and Lie group G we define a new 
differentiable manifold B = B(M,G) called a principal fibre bundle with base 
space M and strwtwal group G as follows: 

(i) The group G acts differentiably on B without fixed points, that is the 
map (x,g) -+ xg, x E B, g E G from B x G + B is differentiable; 

(ii) The manifold M is the quotient space of B by the equivalence relation 
defined by G; 

(iii) The canonical projection w : B -+ M is differentiable; 
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(iv) Each point P E M has a neighborhood U such that c l ( U )  is isomorphic 
with U x G, that is, if x E v1(U) the map x - +  (~(x) ,  +(x)) from r l ( U )  + U x G 
is a differentiable isomorphism with $(xg) = +(x)g, g E G. 

Show that M x G is a principal fibre bundle by allowing G to act on M x G 
as follows: (P,g)h = (P,gh), P E M, g, h E G. 

2. The submanifold &(P) associated with each P E M is a closed submanifold 
of B(M,G) differentiably isomorphic with G. It is called the fibre over P. If 
M' is an open submanifold of M, show that .rr-l(Mf) is a principal fibre bundle 
with base space M' and structural group G. 

3. Let {u,} be an open covering of M. Show that the map n-l(Ua n Up) + G 
defined by 

+&xg) (+a(xg))-l = +B(x) (+a(x))-'c X E rfl(Ua n Ug) 

is constant on each fibre. Denote the induced maps of Ua n Ug + G by fga. 
For Ua n UB # the fs, are called the transition functions corresponding to 
the covering {u,}. They have the property 

4. Let {ua} be an open covering of M and fg, : Ua n Up -P G, Ua n Up # 
a family of differentiable maps satisfying the above relation. Construct a principal 
fibre bundle B(M,G) whose transition functions are the fga. 

Hint: Define Na = Ua x G for each open set Ua of the covering {Ua} and 
put N = U Na. If we take as open sets in N the open sets of the Na, N becomes 

a 

a differentiable manifold. Define an equivalence relation - in N in the following 
way: (P,g) - (P,h), if and only if h = fga(P)g. Finally, define B as the quotient 
space of N by this equivalence relation. Let wl(Ua) be an open submanifold of B 
differentiably homeomorphic with Ua x G. In this way, B becomes a differenti- 
able manifold and one may now check conditions (i) - (iv) above. 
5. Show that the homogeneous space G/H of the Lie group G by the closed 
subgroup H defines a principal fibre bundle G(G/H,H) with base space G/H 
and structural group If (cf. VI. E. 1). 
6. Show that the bundle of frames with group G = GL(n,R) is a principal' 
fibre bundle. 

7. Consider the principal fibre bundle B(M,G) and let F be a differentiable 
manifold on which G acts differentiably, that is the map (g,v) -+g v from 
G x F + F is differentiable. The group G can be made to act differentiably 
on B x F in the following manner: (x,v) + (x,v)g = (xg,g-'v). Denote by E 
the quotient space (B x F)/G; the points of E are the classes [(x,~)], x E B, 
v E F. Denote by 'srg the canonical projection of B onto M. A projection Q 

of E onto M is defined by ~Q[(x,v)] = wB(x). For each P E M, the fibre 
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TZI(P) C E of E is the set of points represented by the class [(x,v)] where x 
is an arbitrary point of B satisfying wB(x) = P and v is an arbitrary point of F. 
Show that E is a differentiable manifold by considering ri l(U) as an open 
submanifold of E which may be identified with U x F. In terms of the 
differentiable structure given to E the map TE is differentiable. The manifold E 
is known as the associated Jibre bundle of B with base space M, standard f i e  
F and structural group G. Note that E and B have the same base spaces and 
structural groups. 

8. Let F be an n-dimensional vector space with the fixed basis (v,, ..., v,). 
The group G = GL(n,R) acts on F by g vi = vj. The tangent bundle is the 
associated fibre bundle of R with F as standard fibre. Show that the tangent 
bundle is the bundle of contravariant vectors of 5 1.3. 

It is surprising indeed that a manifold structure can be defined on the set 
of all tangent vectors, for there is no a pt.iori relation between tangent spaces 
defined abstractly. Moreover, the idea of a vector varying continuously in a 
vector space which itself varies is a prkwi remarkable. 

9. Let M be a (connected) differentiable manifold and B its universal covering 
space. By considering the action of the fundamental group -(M) on B, show 
that B is a principal fibre bundle with base space M and structural group 
.rr,(M). Show also that any covering space is an associated fibre bundle of B 
with discrete standard fibre. 

K. Riemannian metrics 

1. It has been shown that a (connected) differentiable manifold M admits 
a Riemannian metric (cf. 5 1.9). With respect to a Riemannian metric, a natural 
metric d may be defined as follows: d(P, Q) is the greatest lower bound of the 
lengths of all piecewise differentiable curves joining P and Q. A Riemannian 
manifold is therefore a metric space. I t  is a complete metric space if the metric d 
is complete (cf. fj 7.7). In this case the Riemannian metric is said to be complete. 
Every differentiable manifold carries a complete Riemannian metric. If every 
Riemannian metric carried by M is complete, M is compact [86]. A Riemannian 
manifold is said to be complete if its metric is complete. 



CHAPTER II 

TOPOLOGY OF  DIFFERENTIABLE MANIFOLDS 

In Chapter I we studied the local geometry of a Riemannian manifold 
M. In  the sequel, we will be interested in how the local properties of M 
affect its global behaviour. The Grassman algebra of exterior forms is a 
structure defined at each point of a differentiable manifold. I n  the theory 
of multiple integrals we consider rather the Grassman bundle which, 
as we have seen, is the union of these algebras taken over the manifold. 
I t  is the purpose of this chapter to describe a class of differential forms 
(the harmonic forms) which have important topological implications. 
T o  this end, we describe the topology of M insofar as it is necessary 
to define certain algebraic characters, namely the cohomology groups 
of M. These groups are, in fact, topological invariants of the 
manifold. The procedure followed is similar to that of Chapter I where 
the Grassman algebra was first defined over an 'arbitrary' vector space 
and then associated with a differentiable manifold via the tangent space 
at each point of the manifold. We begin then by defining an abstract 
complex K over which an algebraic structure will be defined. We will 
then associate K with a related construction K' on M. The cor- 
responding algebra over K' will yield the topological invariants we seek. 
The chapter is concluded with a theorem relating the class of forms 
referred to above with these invariants. 

2.1. Complexes 

A closure finite abstract ~o&~nplex K is a countable collection of objects 
{q), i = 1, 2, called simplexes satisfying the following properties. 

(i) T o  each simplex Sip there is associated an integer p >= 0 called its 
dim-on ; 

(ii) T o  the simplexes Sf and ST-' is associated an integer denoted 
by [Sr : 4-7, called their incidence number; 

5 6 
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(iii) There are only a finite number of simplexes Sr-I such that 
[R : S?-'] # 0; 

(iv) For every pair of simplexes Sf+', Sr-I whose dimensions differ 
by two 

We associate with K an integer dim K (which may be infinite) called 
its dimension which is defined as the maximum dimension of the 
simplexes of K. 

An algebraic structure is imposed on K as follows: The  p-simplexes 
are taken as free generators of an abelian group. A (formal) finite sum 

where G is an abelian group is called a p - d i d ~ a l  chain or, simply 
a p-chain. Two p-chains may be added, their sum being defined in the 
obvious manner: 

In  this way, the p-chains form an abelian group which is denoted by 
Cp(K, G). This group can be shown to be isomorphic with Cp(K, 2) @ G 
where Z denotes the ring of integers, that is, the tensor product (see 
below) of the free abelian group generated by K with the abelian group G. 

Let A be a ring with unity 1. A A-module is an (additive) abelian 
group A together with a map ( A ,  a) -+ ha of A x A -+ A satisfying 

(iii) (hlh2)a = hl(&a), 

(iv) lcc = a. 

Since the ring A operates on the group A on the left such a module is 
called a left A-module. A rkht  A-module is defined similarly; indeed, 
one need only replace ha by ah and (iii) becomes 

(iii)' a(hlX2) = (ah#,. 

For commutative rings no distinction is made between left and right 
A-modules. 
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Note that a 2-module is simply an abelian group and that for every 
integer n 

na = a + + a (n times). 

Let A be a right A-module and B a left A-module. Denote by 
FA,, the free abelian group having as basis the set A x B of pairs 
(a, b), a E A, b E B and by r the subgroup of FAX, generated by the 
elements of the form 

(41 + - (a,,@ - (a2949 

The quotient group FAxB/r is known as the tensor product of A and B 
and is evidently an abelian group (cf. I.A.4). 

There is an operation which may be applied to a p-chain to obtain 
a (p - 1)-chain called the boundary operation. I t  is denoted by 8 and 
is defined by the formula 

where C, = Xi g, ST and g,[ST : ST-l] is defined by considering G as a 
2-module. Moreover, it is linear in Cp(K, G) and hence defines a 
homomorphism 

a : C,(K,G) -+ C,-,(K,G). 

The kernel of a is denoted by Zp(K, G), the elements of which are 
called p-cycles. As a consequence of (iv) in the definition of a complex, 
a(aC,) = 0 for any C,. The image of C,+,(K, G) under a denoted by 
BJK, G) is called the group of bounding p-cycles of K over G and its 
elements are called bounding p-cycles or simply boundaries. The quotient 
group 

H,(K,G) = Z,(K,G)IB,(K,G) 

is called the pth homology group of K with coefficient group G. The 
elements of H,(K, G) are called homology classes. Clearly, a p-cycle 
determines a well-defined homology class. Two cycles I'T and rl in 
the same homology class are said to be homologous and we write 
r f  - I'f. Obviously, Tf - I'f, if and only if, Ff - r: is a boundary. 

Assume now that G is the group of integers 2 and write Cp(K) = 
Cp(K, Z), etc. The elements of CJK) are called (finite) integral p-chains 
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of k. A linear function f P  defined on CJK) with values in a com- 
mutative topological group G: 

is called a p-dimensional cochain or simply a p-cochain. We define groups 
dual to the homology groups: The sum of two p-cochains f p and gp is 
defined by the formula 

for any p-chain C, E C,(K). With this definition of addition the 
p-cochains form a group CP(K, G). The  inverse of the cochain f p  is 
the cochain - f P  defined by 

where - C, is the p-chain (- 1)C,. (This group is actually a topological 
group with the following topology: For a p-simplex Sr and an open set 
U of G a neighborhood (Sr,  U) in O ( K ,  G) is defined as the set of 
cochains f p such that f p(Sr) E U). Since the Sip are free generators of 
the group CJK),  a p-cochain f p  defines a unique homomorphism of 
CJK) into G. 

An operator a* dual to 8 and called the coboundary operator is defined 
on the p-cochains as follows: 

The image of f P ux?der a* is a (p + 1)-cochain called the coboundary 
off p. The operator a* has the properties: 

(i) a*(p + gv) = a * p  + a*gv, 

(ii) a*(a*fP) = 0. 

This latter property follows from the corresponding property on chains. 
That a* defines a homomorphism 

is clear. The  kernel of a* is denoted by Zp(K, G) and its elements are 
called p-cocycles. The image of 0 - l ( K ,  G) under a* denoted by 
Bp(K, G) is called the group of coboundingp-cycles or, simply, coboundaries. 
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The quotient group 

is called the pth cohomology group of K with coefficient group G. (It 
carries a topology induced by that of D ( K ,  G)). Th? elements of 
Hp(K, G) are called cohomology classes. Evidently, a p-cocycle determines 
a well-defined cohomology class. Two cocycles f p  and gp in the same 
cohomology class are said to be cohomologous and we write the 
~cohomology' f p -gp. Obviously, f p wgp, if and only if, f p - gp 
is a coboundary. 

2.2. Singular homology 

By a geometric realization KE of an abstract complex K we mean a 
complex whose simplexes are points, open line segments, open triangles, 
... in an Euclidean space E of sufficiently high dimension corresponding, 
respectively, to the 0, 1,2, ***-dimensional objects in K in such a way 
that distinct simplexes of K correspond to disjoint simplexes of KE. 
The point-set union of all the simplexes of the complex KE written 
I KE I is called a polyhedron and the complex K is said to be a covering 
of I KE I. Two complexes K and K t  are said to be isomorphic if there is 
a 1 - 1 correspondence between their simplexes Sip t-+ Sip preserving 
the incidences (cf. definition of an abstract complex). When K and K t  
are isomorphic it can be shown that there is an induced homeomorphism 
&: I KE I + I KL I where KE and K i  are geometric realizations of the 
complexes K and Kt,  respectively such that +Sip = SIP where Sip is 
the simplex corresponding to Sip under the isomorphism +. It is indeed 
remarkable that the corresponding homology groups of any two covering 
complexes of a polyhedron are komorphic. Hence, they are topological 
invariants of the polyhedron. 

If the coefficients G in the definition of the homology groups form a 
ring F, these groups become modules over F. The rank of Hp(K, F)  
as a module over F is called the pth betti number bp(K) (= bJK, F)) 
of the complex K. If F is a field of characteristic zero, these modules are 
vector spaces over F. Thus, bJK, F) is the dimension of the vector space 
Hp(K, F),  that is the maximum number of p-cycles over F linearly 
independent of the boundingp-cycles. The expression Z$zoK ( - l)p bp(K) 
is called the Euler-Poincart characteristic of K. 

Since the homology groups of a covering complex of a polyhedron 
are topological invariants of the polyhedron so are the betti numbers 
and hence also the Euler-PoincarC characteristic. This, in turn implies 
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that if I KIP I and I K i  I are homeomorphic, the corresponding homology 
groups of K and K' are isomorphic and their betti numbers coincide. 

By a p-simplex [p, : Sp], p = 0, 1,2, on a differentiable manifold M 
is understood an Euclidean p-simplex S* (point, closed line segment, 
closed triangle, -..) together with a differentiable map g, of S P  into M. 
More precisely, let R* denote the vector space whose points are infinite 
sequences of real numbers (xl, . . a ,  xn, * * * )  with only a finite number 
of coordinates xn # 0. The finite-dimensional vector spaces Iip are 
canonically imbedded in R". Consider the ordered sequence of points 
(Po, - * - ,  Pp) (necessarily linearly independent) in R"D and denote by 
A(Po,***, P,) the smallest convex set containing them, that isA(Po,-**, Pp) = 

@,,Po + + r,P, I r, 2 O,ro + + r, = 1). Let n(Po, *** ,  P,) = 

(r; Po + + rb Pp 1 r; + -.* + 7; = 11, that is, the plane determined 
by the P,, i = 0, *..,p. The numbers r;, -, r; are called bmycentk 
coordinates of a vector in n(Po, -, P,). By a singular p-simplex on M 
we mean a map p, of class 1 of A(Po, P,) into M. A singular p-chain 
is a map of the set of all singular p-simplexes into R usually written as 
a formal sum Zg& (gi E 2) with the singular simplexes indexed in 
some fixed manner. 

We denote by Is* I the support of s*, that is the set of pointsy(A(PO,-*-, P,)). 
A chain is called locally finite if each compact set meets only a finite 
number of supports with g, # 0. We consider only locally finite chains. 
A singular chain is said to be finite if there are only a finite number of 
non-vanishing g,. The support of a p-chain is the union of all I sr I with 
gt # 0. Singular chains may be added and multiplied by scalars (elements 
of R) in the obvious manner. Infinite sums are permissible if the result 
is a locally finite chain. 

The facu of a p-simplex sp [p,: Po,..., Pp] ( p  > 0) are the simplexes 
4-1 = [p,: Po, P,-,, Pi+,, P,]. A boundary operator a is defined 
by putting 

For p = 0 we put as0 = 0. The extension to arbitrary singular chains is 
by linearity. I t  is easily checked that the condition of local finiteness 
is fulfilled. Moreover, aa  = Q. Note that [sp: $-I] = (- I),. 

Cycles and boundaries are defined in the usual manner. Let S, denote 
the vector space of all finite p-chains, SC, the subspace of p-cycles and 
Si the space of boundaries of finite (p + 1)-chains. The quotient 
Sg/Si is called the pth singular homology space a group of M and is 
denoted by SH,. 

In this way, it is possible to associate with M a covering complex K, 
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that is a complex such that every point of M lies on exactly one simplex 
of K and every simplex of K lies on M. This important theorem was 
proved by Cairns [17]. The complex K is, of course, not unique. It  
follows that M is a polyhedron, that is, M is homeomorphic with I K 1. 
Hence, the invariants described above are topological invariants of the 
manifold. In the sequel, we shall therefore writte Hp(M, R) for 
Hp(K, R), etc. 

2.3. Stokes' theorem 

Let g, be a singular p-simplex and a a p-form on t5e differentiable 
manifold M. Since tp is continuous, the intersection of the carrier of a 
and the support df p, is compact. Define the integral of a over 
sp = [g, : PO, a * * ,  Pp] 

r 

For Cp = Xi g, sr, define the 

by linear extension, that is 

C 

integral of a over Cp 

la. Jc, 

Now, let a be a (p - 1)-form over the differentiable manifold M of 
dimension n and C, a p-chain of a covering complex K of M. Then, 
it can be shown in much the same way as the Stokes' formula was 
established in 5 1.6 that 

Consider the functional L, defined as follows: 

Clearly, La: CJK) -t R is a linear functional, that is La is a p-cochain 
with real coefficients. In this way, to a p-form a there corresponds a 



p-cochain La. It follows from (2.3.1) that if or is a closed form, La is a 
cocycle. Moreover, to an exact form there corresponds a coboundary. 
This correspondence between differential forms and cochains may be 
extendec! by defining a satisfactory product theory for complexes 
(cf. Appendix B). 

2.4. De Rham cohomology 

Since any two covering complexes of a differentiable manifold M 
determine isomorphic homology and cohomology groups we shall call 
them the homology and cohomology groups, respectively, of M. Now, 
for a fixed closed differential form or of degree p on M the integral 
Jr9u is a linear functional on SHp. To see this, put ri = rp + aC,,; 
then, 

by Stokes' theorem. Hence, there is a unique cohomology class 
UP} E HP(M) (= HP(M, R)) such that 

for all {rp} E SHp where f P' is a cocyde belonging to the cohomology 
class up}. A theorem due to de Rham (cf. Appendix A and [651) implies 
that the correspondence or -+ Cfp) establishes an isomorphism (provided 
M is compact), that is 

(cf. $2.6). Moreover, the cohomology class associated with the exterior 
product of two closed differential forms is the cup product of their 
cohomology classes (cf. Appendix B). Hence, the isomorphism is a 
ring isomorphism. Since the p~ betti number bp(M) of M is the 
dimension of the group HP(M), it follows that bp(M) is equal to 'the 
number of linearly independent closed dzflerential forms of degree p modulo 
the exact forms of depee p. In the remaining sections of this chapter 
we shall see how this result was extended by Hodge to a more restricted 
class of forms. 
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2.5. Periods 

General line integrals of the form 

are often studied as functionals of the arc (or chain) C under the 
conditions that the functions p = p(x, y) and q = q(x, y) are of class 
k 2 1 in a plane region D and that C is allowed to vary in D. A 
particularly important type of line integral has the characteristic property 
that the integral depends only on its end points, that is if C and C' 
have the same initial and terminal points 

This is equivalent to the statement that 

over any closed curve (or cycle) r. Now, a necessary and sufficient 
condition that the line integral (2.5.1) be a function of the end-points 
of C is that the differential p dx + q dy be an exact differential, or, 
in the language of Chapter I that the linear differential form a = p dx + 
q dy be an exact differential form. The most important consequence is 
Cauchy's theorem for simply connected regions. If a & a holomorphic 
dijgerential and D a simply connected region, then 

If we put 

then f is a linear functional (or cochain) and, in general 

f (c') = f (c) + f (r) (2.5.6) 

where I' is the cycle C' - C. The integral f ( r )  is called a period of the 
form a. Hence (2.5.6) may be stated as follows: The values of the 
line integral (2.5.1) along various chains with the same initial and 
terminal points are equal to a given value of the integral plus a period. 



Conversely, every such sum represents a value of the integral. The study 
of the cochain f becomes a topological problem by virtue of this result, 
that is, the problem is to investigate the cycles. As a matter of fact, 
homology theory has its origin in this fundamental problem. Another 
important property of the cochain f is the following: If a cycle r may be 
continuously deformed to a point, then f ( r )  = 0. This is certainly 
the case if D is simply connected. 

Now, if r - r ' ,  f ( r )  = f ( r t )  or, more generally, we may consider 
the homology 

I' - nl rl + - * -  + nz r r ,  ni E Z (2.5.7) 
and it implies that 

where the o, are the periods of the form a over the cycles ri. The 
values of the line integral are then all of the form f(C) + 2:iF) n p ,  
where bl(D) is the first betti number of D. This is a well-known expres- 
sion in analysis. The Cauchy theorem for multiply connected regions 
may now be stated: If a is a holomorphic dz#erential and D is a mult+ly 
connected region, then 

(2.5.9) 

for every cycle r - 0 in D. 

2.6. Decomposition theorem for compact Riemann surfaces 

The following generalizations can be made here. In the first place, 
it is possible to consider in place of D a surface with suitably related 
integrals. The classical example is the study of abelian integrals 

where R(z, w) is a rational function and w = w(z) is an algebraic 
function, the integral being evaluated along various paths in the z-plane. 
A branch of the function w(z) is chosen at z, and a path from z, to x. 
The value of w(z) is then determined by analytic continuation along 
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the path of integration. Instead- of considering the z-plane we may 
consider a surface S on which the function w(z) is defined and single- 
valued. The surface S is called the Riemann surface of the algebraic 
function w(z). It  can be shown that the Riemann surface of any algebraic 
function is homeomorphic to a sphere with g handles. On the other 
hand, we may consider such a surface and ask for those functions on the 
surface which correspond to single-valued analytic functions in the 
x-plane. In this way, we obtain a classification of analytic functions 
according to their Riemann surfaces. Moreover, the behavior of the 
integrals of the algebraic functions may be determined from a knowledge 
of the functions themselves, as well as the topology of the surface. This 
is Riemann's approach to the study of algebraic functions and their 
integrals. Since the first betti number of a compact Riemann surface 
S is 2g, it can be shown that the periods of an everywhere analytic 
(henceforth, called holomorphic) integral on S are linear combinations 
of 2g periods. By constructing integrals with prescribed periods on 2g 
independent 1-cycles of a compact Riemann surface S, it can be shown 
that the de Rham cohomology group D1(S) is isomorphic to the group 
H1(S). This is de Rham's isomorphism theorem for compact Riemann 
surfaces. 

Consider now the linear differential form 

over a Riemann surface S and define the operator * by 

That *a has an invariant meaning over S is easily seen by choosing a 
conformally related coordinate system (x', y'): 

that is 
ax ay ax -- _- -- ay _ - -  
ax, ayt ' ay, ax' ' 

and checking the transformation law. The operator * has the following 
properties: 

(i) *(a+P) =*a+*& *(fa) =f(*a), 

(ii) **a = *(*a) = - a, 

(iv) a A *a = 0, if and only if, a = 0. 



Since df = ( af / ax) dx + (af/ 9) dy, we can define the operator *d for 
functions by 

Define 
(*d)a = - d(*a) 

for 1 -forms. 

If we put 

then 

A function f of class 2 is called harmonic on S if Af vanishes on S. 
Locally, then 

A linear differential form a of class 1 on S is called a harmonic form if, 
for each point P of S there is a coordinate neighborhood U of P such 
that ar is the total differential of a harmonic function f in U. This implies 
that *a is closed. In  fact, a = df and d*df = 0 in U, that is d*a = 0. 
Conversely, da = 0 implies that a = df, locally (cf. 4 A. 6). Moreover, 
d*a = 0 implies that d(*df) = 0. Hence, f is harmonic. We have shown 
that a linear differential form a of class 1 is harmonic, if and only if, 
da = 0 and d*a = 0. 

A harmonic differential form a = p dx + q dy on S ,  that is a form 
which satisfies da = 0 and d*a = 0 defines a holomorphic function 
p - iq (locally) of a = x + iy (i = 1/ - 1). Indeed, 

aP 34 0 = d*a = (= + 5) dx A dy, 

and so we have locally (splay) = (aqlax) and (aplax) = - (aqlay), 
which are the Cauchy-Riemann equations for the functions P and - q. 
(A function f of class 1 is holomorphic on S if locally f(x, y) = u(x, y) + 
iv(x, y) and the functions u and v satisfy the Cauchy-Riemann 
equations). It  is an easy matter to show that f is holomorphic on S, 
if and only if *df = - idf, that is, if and only if, the differential 
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df is w e  (of bidegree (1,O) cf. 5 5.2). A linear differential form a on S is 
said to be a holomorphic dtperenticzl if, in each coordinate neighborhood U 
it is the differential of a holomorphic function in U. A linear differential 
form a is locally exact, if and only if, da = 0. Locally, then a = df and in 
order that f be holomorphic *df = - idf or * a  = - iu. A differential 
form satisfying this latter condition is said to be pure. Hence, a linear 
dzperential form of class 1 is holomorphic on S, i f  and only i f  it is closed 
and pure (cf. 5 5.4). We remark that if a is holomorphic, it is a harmonic 
form. This is clear from the previous statement. 

The formal change of variables z = x + iy, 5 = x - iy and the 
resulting equations * d z  = - idz, *d5 = id5 clarify the nature of 
pureness: a is pure, if and only if, it is expressible in terms of d z  only. 

A differential form of class 1 will be called a regular dz~erential form. 
Now, the regular harmonic forms on a compact Riemann surface S 
form a group H(S) under addition. I t  can ,be shown that if u is a closed 
linear differential form on S, then there is a unique harmonic 1-form 
homologous to a, that is H(S) is isomorphic to the de Rham cohomology 
group D1(S). This is Hodge's theorem for a compact Riemmn surface. 
The proof is based on a decomposition of a into a sum of two forms, 
one of which is exact and the other harmonic. (More generally, a l-form 
on a Riemannian manifold may be decomposed into a sum of an exact 
form, a form which may be expressed as *df for some f and a harmonic 
form (cf. 5 2.7). This is the decomposition theorem applied to 1-forms). 
The de Rham isomorphism theorem together with the Hodge theorem 
for compact Riemann surfaces implies that the first betti number of a 
compact Riemunn surface is equal to the number of linearly independent 
harmoni'c I-forms on the surface. 

2.7. The star isomorphism 

The geometry of a Riemann surface is conformal geometry. As a 
possible generalization of the results of the previous section, one might 
consider more general surfaces, for example, the closed surfaces of 
5 1 .l, the geometry being Riemannian geometry. One might even go 
further and consider as a -replacement for the Riemann surface an 
n-dimensional Riemannian manifold. To begin with, consider the 
Euclidean space En and let (ul, * * * ,  un) be rectangular cartesian coor- 
dinates of a point. Let f be a function defined in En which is a potential 
function in some region of the space. In the language of vector analysis, 

div grad f = 0, (2.7.1) 



where grad f is the vector field with the components af/hi relative 
to the given coordinate system and - div grad f is the scalar 

Now, in a Riemannian manifold M, the equation 

may hold in a given coordinate neighborhood but it does not have an 
invariant meaning over M, that is, the left hand side is not a tensor field. 
A generalization of the concept of a harmonic function is immediately 
suggested, namely, instead of ordinary (partial) differentiation employ 
covariant differentiation. Hence, grad f is the covariant vector field DJ 
and the divergence of this vector field is the scalar - Af defined by 

where gj, is the metric tensor field of M and covariant derivatives afe 
taken with respect to the connection canonically defined by the metric. 
I t  follows that 

or, alternatively 
Pf - A f = gij (- - 3 {ik,}) 

Hence, Laplace's equation Af = 0 is a tensor equation and reduces to 
(2.7.2) in a Euclidean space in which the ui (i = 1, ..., n) are rectangular 
cartesian coordinates. 

Equation (2.7.4), namely, the condition that the function f be a 
harmonic function is the condition that the (n - 1)-form 

be closed 
and G = 
pretation' 

1 8  n where ci is the skew-symmetric tensor 
det (gij). +he discussion of 5 2.6 together with the 'inter- 
of a harmonic function as a certain closed (n - 1)-form 

suggests the introduction of an operator (defined in terms of the metric) 
which associates to a p-form or an (n - p)-form *or defined as follows: 
Let 

a = a(il...i,) duil A ... A duis. (2.7.7) 
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Then 
*a = a*(jl...jn-p) dujl A ... A du**-P (2.7.8) 

where 
a* - a(il . . . ip).  

j l . .  -j,,-# ' ( i l . .  . i p ) j l . .  . j,+p (2.7.9) 

In the last sum, only the terms corresponding to the values of i,, * - - ,  $ 
which are different from j,, . . a ,  j,, can be non-zero. The form *a 1s 
called the adjoint of the form a. That the form (2.7.6) is the adjoint of 
the form df = (af/aui) dui is an easy exercise. The adjoint of the (constant) 
function 1 (considered as a form of degree 0) is the volume element 

The adjoint of any function, considered as a 0-form, is its product with 
the volume element. 

If A and B are vectors in E3 with,the natural orientation, and the 
* operation is defined in terms of the natural Riemannian structure of ES, 
then * (A A B) is usually called the vector product of A and B. In E2, 
the * operator applied to vectors is essentially the operation of a rotation 
through 4 2  radians. 

As in 5 2.6 the operator * has the-properties: 

(i) *(a + /3) = * a  + */3, *dfor )  =f(*a), 
(ii) **a = *(*a) = (- l)W+Pa, 

(iii) a A */3 = /3 A *a,  

(iv) a A *a  = 0, if and only if, a = 0 where a and /3 are forms of 
degree p and f is a 0-form (function). 

Let 
OL = a(i l . . . ip)  duil A ... A duiv, 

and 
B = b (il  p, duil A ... A dui.; 

The proof of property (ii) and (2.7.11) follows by choosing an ortho- 
normal coordinate system at a point. Hence, the relation between a 
and *a is symmetrical, save perhaps for sign. 

We define the (global) scalar product (a, /3) of a and /3 as the (real) 
number 



whenever the integral converges as will always be the case in the sequel. 
(It is assumed that M is orientable and that an orientation of M has been 
chosen). The scalar product evidently has the properties: 

where a, a,, a,, P, /I1 and P2 have the same degree. 
If (a, P) = 0, a and P are said to be orthogonal. 
I t  should be remarked that the r operation is an isomorphism between 

the spaces AP (Tg) and A"-P(T,*) at each point P of M. 

2.8. Harmonic forms. The operators 6 and A 

There are several well-known examples from classical physics 
(potential theory) where relations analogous to Laplace's equation hold. 
The electrical potential due to a system of charges or the vector potential 
due to a system of currents is not uniquely determined. T o  the former 
an arbitrary constant may be added and to the latter an arbitrary vector 
with vanishing curl. In  defining electrical potential we begin with a 
vector field E representing the electrical intensity which satisfies the 
equation curl E = 0. This is the condition that the electric field be 
conservative. A function f is then defined as follows: 

where r denotes the position vector of a point in E3 and the . denotes 
the inner product of vectors in ES. I t  follows that E = grad f and f 
is determined to within an additive constant. 

In  defining the vector potential, on the other hand, we begin with 
the magnetic induction B which satisfies the equation div B = 0. As it 
turns out, this is a sufficient condition for the existence of a vector 
field A (unique up to a vector field whose curl vanishes) satisfying 
B = curl A. 

We now re-write the above equations as tensor equations in E3. We 
may distinguish between covariant and contravariant tensor fields 
provided the coordinate system is not Euclidean. Let Ei denote the 
components of the covariant vector field E and Bi the components of 
the contravariant vector field B. Then, 

D, E, - D, E, = 0 (2.8.2) 



and 

locally. 
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Ei = D,f, 

Moreover, 
D i p = ( )  

and 
Bij = DjA, - DiAj 

where the skew-symmetric tensor field 

In the language of differential forms, if we denote by 7 and a the 
1-forms defined by E and A and by f i  the 2-form defined by the 
bivector Bij, then the equations (2.8.2) - (2.8.5) become 

- p = da (locally). 

We note that f i  = * p  where p is the 1-form corresponding to the 
covariant vector field gijBj where gij is the metric tensor of 8. 

Now, the theorems of classical potential theory, namely, (a) if 7 is 
closed, then 7 is exact and (b) if is closed, then f i  is exact are not 
necessarily true in an arbitrary 3-dimensional differentiable manifold 
since the first and second betti numbers may not vanish (cf. 5 2.4). 

We digress for a moment and consider a Riemannian manifold of 
dimension n. To  a p-form or on M we associate a (p - 1)-form 8or 
defined in terms of the operators d and *: 

The form 8a ig called the co-dzj(gerentia1 of a and has the properties: 

(i) 8(or + ;8) = Sor + sfi, 
(ii) 88or = 0, 
(iii) *8or = (- l)P dm,  *da = (- l)p+l 8 *or. 

The form a is said to be co-closed if its co-differential is zero. This is 
equivalent to the statement that its adjoint is closed. If or = 8fi we say 
that or coboundi and that or is co-exact; 

It  should be remarked that in contrast with the differential operator d, 



the co-differential operator 6 involves the metric structure of M in an 
essential way. 

A form a is said to be harmonic (or a harmonic field) if it is closed and 
co-closed. This is the definition given by Hodge. K. Kodaira [4q,  on 
the other hand calls a form ar harmonic if Aa = 0 where A is the 
(Laplace-Beltrami) operator d8 + Sd. I t  is evident that the harmonic 
forms of a given degree form a linear space. However, since the operator 
A is not, in general, a derivation, they do not form an algebra. 

If ar is the form of degree 1 in E3 associated with the vector V, then 
the forms d8a and 8da are associated with the vectors grad div V and 
curl curl V and hence the form Aa is associated with the vector field 
VZ V = grad div V - curl curl V. Now, in the above example, at any 
point of E3 where there is no current, the vector potential A satisfies 
the equation curl curl A = 0. Regarding the vector field E, the 1-form 
associated with it is harmonic, and so from the equation (2.8.1) we 
conclude that the potential difference between two points in an electrical 
field is given by the integral of the harmonic form 77 along 'any' path 
connecting the points. Moreover, the integral & A  dr of the vector 
potential in the magnetic field round a bounding cycle r is equal to 
the integral of the 2-form #I over 'any' 2-chain C with r = aC, that is, 

In§ 2.10 we shall sketch a proof of the statement that there are harmonic 
p - f a  (0 < p < n) on an n-dimensional Riemannian manifold M with 
the property that the integral 

has mbitrariZy prescribed periods on b,(M) independent p-cycles of M.  
This generalizes the above results for the forms 7 and #I. 

2.9. Orthogonality relations 

We shall assume in the remaining sections of this chapter that the 
Riemannian manifold M is compact and orientable. Let or and /I be 
forms of degree p and p + 1, respectively. Then, by Stokes' theorem 
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from which 

By (2.8.7), this may also be written as 

Two linear operators A and A' are said to be dual if (Aa, p) = (a, A'p) 
for every pair of forms a and p for which both sides of the relation are 
defined. Thus, the operators d and 8 are dual. 

In  the same way, we see that, if /3 is of degree p - 1, then 

Hence, in order that a be closed, it is necessary and sufient that it be 
orthogonal to all co-exact forms of degree p. 

The condition is indeed necessary; for, if da = 0, then (a, Sp) = 0 
for any ( p  + 1)-form p. Suppose that a is orthogonal to all co-exact 
forms of degree p. Then, (a, Sda) = 0, and so (da, da) = 0. Hence, 
from property (i), p. 71, it follows that da = 0. 

In  order that a form be co-closed, it is necessary and sujickt that it be 
orthogonal to all exact forms. I t  follows that if ar and p are two p-forms, 
a being exact and co-exact, then (a, 8)  = 0. 

We now show that in a compact Riemannian manifold the defznitions 
of a harmonic form given by Hodge and Kodaira are equivalent. Assume 
that a is a harmonic form in the sense of Kodaira. Then, 

Hence, since (da, da) 2 0 and (Sa, Sa) 2 0, it follows that da = 0 and 
Sa = 0. The  converse is trivial. 

I n  particular, a harmonic function in a compact Riemannian manifold is 
necessarily a constant. 

We have seen that a harmonic form on a compact manifold is closed. 
This statement is false if the manifold is not compact. For, a closed form 
of degree 0 is a constant while in En there certainly exist non-constant 
harmonic functions. 

The  differential forms of degree p form a linear space AP(T*) over R. 
Denote by AP,(T*), A$(T*) and AMT*) the subspaces of AP(T*) 
consisting of those forms which are exact, co-exact and harmonic, 
respectively. Evidently, these subspaces are orthogonal in pairs, that is 
forms belonging to distinct subspaces are orthogonal. A prform 
orthogonal to the three subspaces is necessarily zero (cf. 5 2.10). In  other 
words, the subspaces A,P(T*), Ai(T*) and AL(T*) form a complete 
system in AP(T*). (We have previously written A,P(T*) for AZ(T*)). 
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2.10. Decomposition theorem for compact Riemannian manifolds 

Let be a p-form on a compact, orientable Riemannian manifold M. 
If there is a p-form a such that Aa = p, then, for a harmonic form y, 

Therefore, in order that there exist a form a (of class 2) with the 
property that Aa = p, it is necessary that p be orthogonal to the sub- 
space A ~ ( T * ) .  This condition is also sufficient, the proof being given 
in Appendix C. The original proof given by Hodge in [39] depends 
largely on the Fredholm theory of integral equations. 

The  dimension of A&(T*) being finite (cf. Appendix C) we can find 
an orthonormal basis ..., 9h} for the harmonic forms of degree p: 

Any other harmonic p-form may then be expressed as a linear com- 
bination of these basis forms. Let a be any p-form. The form 

is harmonic and a - a~ is orthogonal to A&(T*). In  fact, 

I t  follows that there exists a form y such that A y  = a - a,. If we set 
ad = day and a, = ady, we obtain ad + a, = a - a,, that is 

where ad E A $(T*), ad E /I\g(T*) and a~ E A s(T*). That this decom- 
position is unique may be seen as follows: Let a = a; + a: + 4 
where a; E A;(T*), ad E AC(T*) and a& E A ~ T * )  be another decom- 
position of a. 
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and therefore, by the completeness of the system of subspaces AP,(T*), 
A$(TT) and A&(T*) in AD(T*), a; = ad, a; = a,, a; = a ~ .  We have 
proved: 

A regular form a of degree p may be uniquely decomposed into the sum 

where ad E A$(T*), a, E A$(T*) and a~ E API(T*). 
This is the Hodge-de Rham decomposition theorem [39]. 

2.1 1. Fundamental theorem 

At this stage it is appropriate to state the existence theorems of & 
Rham [65]-the proofs of which appear in Appendix A. 

(R,) Let {q} (i = 1, * * * ,  b,(M)) be a base for the (rational) p-cych 
of a compact dz#eeentiable manifold M and wk (i = 1 ,  ., b,(M)) be bp 
arbitrary real constants. Then, there exists a regular, closed p-form a on 
M having the wk ar periods, that is 

(R,) A closed form having zero perrbdc is an exact form. 
We now establish the existence theorem due to Hodge which is at 

the very foundation of the subject matter of curvature and homology. 
There exists a unique harmonic form a of degrree p having arbitrarily 

assigned periods on bp independent p-cycles of a compact and orientable 
Riemannian manifold. 

Indeed, let a be a closed p-form having the given periods. The 
existence of a is assured by the first of de Rham's theorems. By the 
decomposition theorem a = ad + am (Since or is closed, a, is zero and 
consequently a is orthogonal to A$(T*)). Since ord E A$(Tt) its periods 
are zero. Hence the periods of a, are those of a. The uniqueness 
follows from (R,) since a harmonic form whose periods vanish is the 
zero form. 

Let M be a compact and orientable Riemannian manifold. Then, the 
number of linearly independent real harmonic forms of degrec p is equal to the 
pth betti number of M. 

For, let vd denote the harmonic p-form whose periods are zero except 
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for the Ch which is equal to 1, that is, if {I*,} (i 7 1, m e * ,  b,(M)) is a base 
for the rational p-cycles of M, then 

The existence of the v4 is assured by the above theorem. The rp, (i = 
1, ..., b,) clearly form a basis for the harmonic forms of degree p and the 
fundamental theorem is proved. 

Although not explicitly mentioned it should be emphasized that the 
existence theorems of de Rham are valid only for orientable manifolds. 

The theorem (R,) may be deduced from (R,) and the decomposition 
theorem of 5 2.10. 

2.12. Explicit expressions for d, 5, and A 

In the sequel, unless written otherwise, a p-form a will have the 
following equivalent representations: 

in the local coordinates ul, -.-, un. We proceed to obtain formulae for 
the operators d, 8, and A in a Riemannian manifold-the details of the 
computations being left as an exercise. In the first place, 

If we write (cf. (1.4.1 1)) 

then 

and 
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where 
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Then, the Laplace-Beltrarni operator 

A = d8 + 8d 
is given by 

(2.12.4) 
P-1 

In an Euclidean space, the curvature tensor vanishes, and so if the 
ul, un are rectangular coordinates, gii = St and 

On the other hand, in a Riemannian manifold M, if we apply A to a 
function f defined aver M, we obtain Beltrami's differential operator 
of the second kind: 

Af = - gfj Dj Di f 

(cf. formula (2.7.3)). The operator A is therefore the usual Laplacian. 

EXERCISES 

A. The star operator 

The following seven exercises give rise to an alternate definition of the Hodge 
star operator. 

1. Let V be an n-dimensional vector space over R with an inner product y: 
V x V + R. If a = v, A ... A vD and /3 = w, A ... A w, are two decomposable 
p-vectors, let (a, /3) = det (tp(vi, wj)). Prove that this pairing defines an inner 
product on AP(V). 
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2. Let M be an n-dimensional Riemannian manifold with metric tensor g. 
In terms of a system of local coordinates (uf), let a = a(fl,..f,l dufl A ... A duf. 
and = b(il...f,l duil A ... A dui, be two (anti-symmetrized) p-forms in AYV?), 
P being in the given coordinate neighborhood. Show that 

where the inner product Q is defined by g. 

3. Let V* = V @ ... @ V (p times) and define A* : V* Vp by 

the summation being taken over all permutations of the set ( I ,  ***,p).  D e b  
the map 

7 : Ap(V) Ap(V9) 
by 

~ ( s  A ... v,,) = A*(vl @ ... @up); 

q is an isomorphism. Furthermore, if we extend Q to an inner product on VP by 

(.I @ *** @ v,, w1@ * * *  O .I,) = (V,,W~) ***  (vp,wp>, 
then P! (a,B> = (7(4,4B)>* 

We have used the notation dv,w) = (v,w), v,w E V. (The correspondence 
between w E V and w* E V* given by the condition 

defines an isomorphism between V and V*.) 

4. Show that (AP(V))* A*(V*) under the pairing 

<vl A ... A v,, w: A ... A w,*) = det ((vf, w:)). 

5. If the manifold M is oriented, there is a unique n-form e* in An(V;), 
P E  M such that (e*,e*) = 1 where e* is positive with respect to the 
orientation. (Note that the metric tensor g defines an inner product on V;). 

6. Define h : Ap(Vp) _t A~-~(V;) by 

and let a =a(fl...fr)(8/hil) A ... A (8/hfs) be an element of AP(Vp), where 
the coefficients are anti-symmetrized. Then, 

and G = det(g,,). 
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7. Define themapp:AP(V*)-tAn-P(V*) by p = h o y ,  wherey: AP(V*) 
+ (V) is the natural identification map determined by the inner product 
in AP(V*). Then, p is the star operation of Hodge. 

8. Let V be a vector space (over R) with the properties: 
(i) V is the direct sum of subspaces Vp where p runs through non-negative 

integers and 
(ii) V has a coboudary operator that is an endomorphism d of V such that 

d,Vv C V9+l with d,,,d, = 0 where d, denotes the restriction of d to Vr. 
The vector space 

kernel d, 
Hp(V) = 

image d,, 

is called the p* cohomology vector space (or group) of V. A theory based on V 
together with the operator d is usually called a cohomology theory or d-cohomology 
theory when emphasis on the coboundary operator is required. We have seen 
that the Grassman algebra A(T*) with the exterior differential operator d gives 
rise to the de Rharn cohomology theory. On the other hand, a cohomology 
theory is defined by the pair (A(T*),6) on a Riemannian manifold by setting 
A-9 = A 9, p = 0,1,2, * - *  . Prove that the * operator induces an isomorphism 
between the two cohomology theories. 

B. The operators H and G on a compact manifold 

1. Show that for any a E AP(T*) there exists a unique p-form H[a] in A UT*) 
with the property (a#) = (H[or],/3) for all /3 E A T*). 
2. Prove that H[H[u]] = H[a] for anyp-form a. 

3. For a given p-form a there exists a p-form /3 satisfying the differential 
equation A/3 = a - H[a]. Show that any two solutions differ by a harmonic 
p-form and thereby establish the existence of a unique solution orthogonal to 
A&(T*). Denote this solution by Ga and show that it is charaderized by the 
conditions 

a = AGa + H[a] and (Ga,/3) = 0 

for any E AHT*). 
The operator G is called the Green's operator. 

4. Prove that H[Ga] vanishes for any p-form a. 

5. Prove: 
(a) The operators H and G commute with d, 6, A and *; 
(b) G is sey-dud, that is 

(Ga,B) = (a,G/3) 
for any a, /3 of degree P; 
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(c) G is hermitian positive, that is 

(GV) B 0, 

equality holding, if and only if, a is harmonic. 

C. The second existence theorem of de Rham 

1. Establish the theorem (R*) of 5 2.1 1 from the decomposition theorem of 
g 2.10. 



CHAPTER Ill 

CURVATURE AND HOMOLOGY 
OF RIEMANNIAN MANIFOLDS 

The explicit expression in terms of local coordinates of the Laplace- 
Beltrami operator A (cf. 9 2.12) involves the Riemannian curvature 
tensor in an essential way. I t  is natural to expect then that the curvature 
properties of a Riemannian manifold M will affect its homology structure 
provided we assume that M is compact and orientable. I t  will be seen 
that the existence or rather non-existence of harmonic forms of degree p 
depends largely on the signature of a certain quadratic form defined 
in terms of the curvature tensor. Hence, by Hodge's theorem (cf. § 2.1 l ) ,  
if there are no harmonic p-forms, the pth betti number of the manifold 
vanishes. 

3.1. Some contributions of S. Bochner 

If l@ is a covering manifold of M which is also compact 

where n = dim M. 
This may be seen as follows: If a is a p-form defined on M, then it 

has a periodic extension & onto l@, that is i%(y P)  = a(P) for each element 
y in the fundamental group of M and each point P E M where P E i@ 
lies over P. More simply, -if n :  l@+ M is the projection map, then, 
& = n*(a). Moreover, non-homologous p-forms on M have non- 
homologous periodic extensions. 

Suppose that M is a manifold of positive constant curvature. Then, 
it can be shown that its universal covering space is the ordinary 
sphere. Hence b , ( a )  vanishes for all p (.O < p < n) and consequently 
from (3.1.1), bJM) = 0 (0 < p  < n). These spaces are of interest 

82 
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'. 

since they provide a source of examples of topological manifolds. They 
are perhaps the simplest and geometrically the most important 
Riemannian manifolds. However, constancy of curvature is a very 
specialized requirement. If, on the contrary, the sectional curvatures 
are not equal but rather vary within certain definite limits, that is, if the 
manifold is &pinched, the betti numbers of the sphere are retained [I]. 
On the other hand, one of the many applications of the theory of harmonic 
integrals to global differential geometry made by S. Bochner is to 
describe families of Riemannian manifolds which from a topological 
standpoint are homology spheres. For example, a Riemannian manifold 
of constant curvature is conformally flat (cf. 5 3.9). However, the converse 
is not true. In any case, the betti numbers b, (0 < p < n) of a con- 
formally flat, compact, orientable Riemannian manifold vanish provided 
the Ricci curvature is positive definite, that is, the manifold is a homology 
sphere [6, 511. In fact, the same conclusion holds even for deviations 
from conformal flatness provided the deviation is but a fraction of the 
Ricci (scalar) curvature [6, 74. 

In the sequel, by a homology sphere we shall mean a homology sphere 
over the real numbers. 

We recall that on a Riemann surface the harmonic differentials are 
invariant under conformal changes of coordinates. Consider the Riemann 
surface S of the algebraic function defined by the algebraic equation 

The surface is closed and orientable and the (local) geometry is con- 
formal geometry. In fact, in the neighborhood of a 'place' P on S for 
which z = a let (u, v) be the local coordinates. Then, 

if the place is the origin of a branch of order m. If z is infinite at the 
place, z - a is replaced by z-l. Any other local coordinate system 
(zi, 6) at P must have the property that ii + iv' is a holomorphic function 
of the complex variable u + iv which is simple in the neighborhood 
of the place. The local coordinates (u, a)  and (zi, d) at P are therefore 
related by analytic functions 

that is as functions of u and v, zi and v' satisfy the Cauchy-Riemann 
equations. We conclude that 

for some (real) analytic function p. In this way, a geometry is defined 
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on S in which distance plays no role but angle may be defined, that is 
angle is invariant under a conformal change of coordinates. After 
performing a birational transformation of the equation R(z, w )  = 0 a 
new algebraic equation is obtained. The Riemann surface S' of the 
algebraic function thus obtained is homeomorphic to S. Let f : S -+ S' 
denote the homeomorphism and (u, v), (u', v') the local coordinates 
at P E S and P' = f(P) E S', respectively. The functions 

are then analytic, that is f is a holomorphic homeomorphism. I t  follows 
that 

dut2 + dvIa = a2(dua + d$) 

where a is an analytic function of u and v,  that is the homeomorphism 
is a conformal map of S onto Sf. 

Conversely, functions whose Riemann surfaces are conformally 
homeomorphic are birationally equivalent. Their Riemann surfaces 
are then said to be equivalent. 

A 2-dimensional Riemannian manifold and a Riemann surface are 
both topological 2-manifolds. As differentiable manifolds however, 
they differ in their differentiable structures-the former allowing 
systems of local parameters related by functions with non-vanishing 
Jacobian whereas in the latter case only those systems of local para- 
meters which are conformally related are permissible. Clearly then, 
they differ in their local geometries-the former being Riemannian 
geometry whereas the latter is conformal geometry. To  construct a 
Riemann surface from a given 2-dimensional Riemannian manifold M 
we need only restrict the systems of local coordinates so that in the 
overlap of two coordinate neighborhoods the coordinates are related 
by analytic functions defining a conformal transformation. That such a 
covering of M exists follows from the possibility of introducing isothermal 
parameters on M. The manifold is then said to possess a complex 
(analytic) structure. We conclude that conformally homeomorphic 
2-dimensional Riemannian manifolds defne equivalent Riemann surfaces. 
The concept of a complex structure on an n(= 2m)-dimensional 
topological manifold will be discussed in Chapter V. 

Two n-dimensional Riemannian manifolds M and M' of class k are 
said to be isometric if there is a differentiable homeomorphism f (of 
class k) from M onto M' which maps one element of arc into the other. 
I t  can be shown that a simply connected, complete Riemannian manifold 
of constant curvature K is isometric with either Euclidean space (K = O), 
hyperbolic space (K < 0), or spherical space (K > 0). Hence, the 
universal covering manifold of a complete Riemannian manifold of 



constant curvature K is Euclidean space (K = 0), hyperbolic space 
(K < 0), or spherical space (K > 0). 

Suppose M and M' are not isometric but rather that the map f defines 
a homeomorphism which reproduces the metric except for a scalar 
factor. We then say that M and M' are conformally homeomorphic. 

A Riemannian manifold of constant curvature is called a space form. 
The problem of determining the space forms becomes by virtue of the 
above remarks a problem in the determination of (discontinuous) groups 
of motions. A space form may then be regarded as a homogeneous space 
G/H where G is the group of motions and H the isotropy subgroup 
leaving a point fixed. It  is therefore not surprising that the curvature 
properties of a compact Riemannian manifold determine to some extent the 
structure of its group of motions. In fact, it is shown that the existence or 
rather non-existence of l-parameter groups of motions as well as 
1-parameter groups of conformal transformations is dependent upon 
the Ricci curvature of the manifold [4]. On the other hand, the existence 
of a globally defined l-parameter group of non-isometric conformal 
transformations of a compact homogeneous Riemannian manifold is a 
sufficient condition for it to be a homology sphere. Indeed, it is then 
isometric with a sphere [79]. 

3.2. Curvature and betti numbers 

At this point, it is convenient to employ the symbol denoting a form 
in the coefficients of the form as well. 

Let a be a harmonic l-form of class 2 defined on a compact, orientable 
Riemannian manifold M and consider the integral 

(Aa, a )  = d a  A *a (3.2.1) 

I over M. Since a is a harmonic form, Aa vanishes, and so 
I 

/ M ~ a ~ * a = O .  (3.2.2) 
I 
1 The expression of the integrand in local coordinates is given by 

Aa A *a = (- gjk Dk Dj ai + ~ ! a , )  E , ~ ~ . . . ~ ~ - ,  a8 dui I\ du*l A ... A d~jn-1 
= (- aigik Dk Dj ai + Rig ai a') *1 (3,2.3) 

by virtue of the formulae (2.7.8), (2.7.9), and (2.12.4). 

Lemma 3.2.1. For a regular I-form a on a compact and orientable 
Riemannian manifold M 
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For, 
JM 8a A *l = (8% 1) 

= (a, dl) 

= (a, 0) = 0. 

In  the sequel, we employ the notation (t, t') to mean the (local) 
scalar product of the tensors t and t' of type (0, s) in case t and t' are 
simultaneously symmetric or skew-symmetric, that is 

If t and t' are skew-symmetric tensors, (t, t') = (a, a') where a and 
a' denote the corresponding s-forms (cf. II.A.2). From (2.7.11) 

(a, d )  = JM (a, d) *l. 

Now, consider the integral 

whose value is zero by (3.2.4). Indeed, if we put f l  = d(a4g), 

Then, 

where we have put 
Dj = gjk Dk. 

Hence, 

- jM aigjk Dk Dj a, *1 = j M ~ j  mi D) d *I, 

and so if a is a harmonic 1-form (3.2.2) becomes 



Denote by Q the operator on 1-forms defined by 

and assume that the quadratic form 

is positive definite. Since the second term in the integrand of (3.2.5) is 
non-negative we conclude that 

from which a = 0. Since a is an arbitrary harmonic 1-form we 
have proved 

Theorem 3.2.1. The first betti number of a compact and orientable 
Riemannian manifold of positive definite Ricci curvature is zero [4, 621. 

If we assume only that (Qa, a) is non-negative, then from (3.2.5) 
(Qa, a) as well as DjaiDjai must vanish. It  follows that Djai vanishes, 
that is the tangent vectors 

are parallel along any parametrized curve ui = uC(t), i = 1, a* . ,  n. 
A vector field with this property is called a parallel vector field. 

Theorem 3.2.2. In  a compact and orientable Riemannian manfold a 
harmonic vector field for which the quadratic form (3.2.6) is positive semi- 
definite is necessarily a parallel vector field [q. 

Theorem 3.2.3. In  a coordinate n&ghborhood of a compact and mientable 
Riemannian manvold with the local coordinates ul, ..a, un, a necessary and 
suflcient condition that the 1-form a = aiduf be a harmonic form is given by 

Piai - g f k  Dk D, ai = 0 (3.2.7) 

1731 
Clearly, if a is harmonic, (3.2.7) holds. Conversely, if the 1-form a 

is a solution of equation (3.2.7) then, by (3.2.3), A a  A +a = 0. Hence, 

0 = (Aa, a) = (da, da) + (Sa, Sa), 

from which da = 0 and 6a = 0. 
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We now seek a result analogous to theorem 3.2.1 for b, (0 < p < n). 
T o  this end, let a = (l/p!)ql...,p duil A A duiv be a harmonic form of 
degree p. Then, again 

0 = (Aa, a) = A a  A *a, 
IM 

and so from (2.12.4) and (2.7.11) we obtain the integral formula 

Now, 

It follows 

Setting 

we obtain 

Theorem 3.2.4. If on a compact and orientable Riemannian manifold 
M the quadratic form F(a) is positive de$nite, 



Corollary. The betti numbers b, (0  < p < n) of a compact and orientable 
Riemannian manifold M of positive constant curvature vanish, that is M 
is a homology sphere. 

I Indeed, since the sectional curvatures R(P, w )  are constant for all 
two-dimensional sections ?r at all points P of M the Riemannian curva- 
ture tensor is given by 

where K = const. is the common sectional curvature. Substituting 
(3.2.11) into (3.2.10) we obtain 

= p! (n  - 1 )  K(a, a )  - p! ( p  - 1 )  K(a, a )  = p! (n - p)  K(a, a). 

Since K > 0 the result follows. 
If K = 0 it follows from (3.2.9) that 

Since the manifold is locally flat there is a local coordinate system 
ul, --, un relative to which the coefficients of affine connection v3 
vanish. I n  these local coordinates (3.2.12) becomes 

Thus, there are at most (:) independent harmonic p-forms over M. 

Theorem 3.2.5. The pth betti number of a compact, orientable, locally 
flat Riemannian manifold is at most the binomial coeficient (i). 

Corollary. The pL  betti number of an n-dimensional torus is (i). 
An n-dimensional manifold M is said to be completely parallelisable 

if there exist n linearly independent differentiable vector fields at each 
point of M. 

Corollary. The torus is completely parallelisable. 
This follows from the fact that M is locally flat with respect to the 

metric canonically induced by En. For, the torus is the quotient space 
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of En by a subgroup of translations and is therefore locally equivalent 
to ordinary affine space where there is no distinction made between 
vectors and covectors. 

Consider the sectional curvature determined by the plane n defined 
by the orthonormal tangent vectors X = e(a/aui) and Y = ?li(a/aut) 
at P. Then, 

Assume that for all planes w at all points P of M there are constants 
Kl and K, such that 

Let {XI, ..., Xn) be an orthonormal frame at P where Xj  = (&(a/a~$)  
(j = 1, .--, n). Then, since 

r, s = 1,2, ..., n, it follows that 

the inequalities holding for arbitrary unit tangent vectors X,. Hence, 
for any tangent vector X = p(a/auc) 

(n  - 1 )  Kl 5'" ti 4 Rik 5i tk 5 (a - 1) K2 5i &. (3.2.15) 

I t  follows from 5 1.2 (by taking tensor products) that 

for any tensor whose components are expressed in the given local 
coordinates. In  terms of the bivector 

where X and Y are orthonormal tangent vectors, the inequalities (3.2.14) 
become by virtue of (3.2.13) 

(The curvature tensor defines a symmetric linear transformation of the 
space of bivectors (cf. 1.1.1). These inequalities say that it is positive 



definite with eigenvalues between 2K1 and 2K2). Unfortunately, however, 
we cannot conclude that for any two independent tangent vectors X and Y 

Assuming that these inequalities are valid for any skew-symmetric 
tensor field or bivector we may conclude that 

where &l...C are the components of a tensor, skew-symmetric in its 
first two indices. 

Now, let o = a,,l...,p,duil A ... A duip be a harmonic form of 
degree p. Then, by the inequalities (3.2.16) and (3.2.17) 

= p !  [(n - 1) Kl - ( p  - 1) KJ (a, a). 

The quadratic form F(a) is positive definite if we assume that 
(n - l)Kl > ( p  - 1)K,, that is 

Since 

F(a) is a positive definite quadratic form for 0 < p $ ['I provided 
K2 = 2K1. 

Theorem 3.2.6. If the curvature tensor of a compact and orientable 
Riemannian manifold M satisfies the inequalities 

for any bivector pj,  then bp(M) = 0 , 0  < P 5 n - 1 [ I q .  
The conclusion on the betti numbers bp(M) for p > [it] follows by 

PoincarC duality. 
An application of this theorem is given in (III.A.2). 
A sharper result in terms of the sectional curvatures is now derived 

although only partial information on the betti numbers is obtained [I]. 
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A Riemannian manifold with metric g is said to be 8-pinched if for 
any 2-dimensional section R 

For a suitable normalization of g, the above inequalities may be expressed 

We shall assume this normalization in the sequel. 

Theorem 3.27. The second betti number of a 8-pinched, n-dimensional 
compact and &table Riemannian manifold vanishes if, either n = 2m 
and 6 > 3, a n = 2m + 1 and 8 > 2(m - 1)/(8m - 5 ) .  

The proof is based on theorem 3.2.4 (with p = 2 )  by obtaining 
suitable estimates for the various terms in (3.2.10). 

Let (XI ,  ..a. X,) be an orthonormal frame in T p  and put 

where n is the plane spanned by the vectors X,  and X, (i # j). Then, 
by g 1.10 

K(&, 4) = - Rijij, i # j 
or 

K, = - Ri,ij, i # j- 
From the inequalities 

where a, b are any two real numbers, we may derive the inequalities 

from which we deduce 



1 I j I 5 ( 1  - 6 )  i # j , k *  

In order to obtain estimates for the R4jk, ((i, j) # (k ,  I ) ,  i < j, k < I )  
we consider the inequalities 

for any orthonormal set of vectors {Xi, X j ,  X,., X,)  and a, b, c, d E R. Put 

The function F may be considered as a polynomial in a, b, c and d. 
As such it is of degree 4 but only of degree 2 in the a, b, c, d taken 
by themselves. The polynomial 

contains only terms in a2c2, a2d2, bec2, b8d2 and abed. Now, put 

By employing the identities (1.10.24) and (1.9.20) in the term involving 
abed then, by virtue of (3.2.18) and (3.2.19), the polynomial H may be 
expressed as 

H = Aa2c2 + Ba2d2 + Cb2c2 + Dbed2 + 2Eabcd 2 0 (3.2.20) 
where 

A = Kir + Kit - 26, B = Kj j  + Kit - 26, 

By a suitable choice for a and b the inequality (3.2.20) gives rise to 

ACc' + ( A D  + BC - &?)8dB + BDd' 2 0. 

Since this inequality holds for any c and d 
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Another estimate is obtained from the inequalities 

by following a similar procedure. In fact, 

I R~~~~ I I; # ( A ' D ' ) ~ ~ ~  + ( B ' c ' ) ~ ~ ~ ]  (3.2.22) 
where 

A ' = 2 - K i j - K i , ,  B ' = 2 - K i j - . K i k ,  

C' = 2  - Klk - Klj ,  D' = 2  - Kk, - Kk,. 

From (3.2.21) and (3.2.22) we deduce 

This estimate for the components of the curvature tensor is now 
applied to (3.2.10). Indeed, for p = 2 

The right hand side may be evaluated more readily by choosing an 
orthonormal basis (X,, X,,), s = 1, . . a ,  m such that only those components 
of a of the form a,,, are different from zero. (The existence of such a 
basis is a - :andard fact in linear algebra.) Hence, 

Consequently, since K, >= S, K,,, 2 S for all s and i we obtain by 
virtue of (3.2.23) 
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for n = 2m and 

for n = 2m + 1 .  Finally, from 

we obtain 

for n = 2m and 

for n = 2m + 1 from which for n = 2m and 6 > 3 or n = 2m + 1 
and 6 > 2(m - 1)/(8m - 5) 

This completes the proof. 
The following statement is immediately clear from theorem 3.2.1 

and PoincarC duality: 

Corollary. A 5-dintettssbnal! 8-pPSnched compact and orientable Riemannian 
manifold is a homology sphere for 6 > 211 1 .  

The even dimensional case of the theorem should be compared with 
theorem 6.4.1. 

3.3. Derivations in a graded algebra 

The tensor algebra of contravariant (covariant) tensors and the 
Grassman algebra of differential forms are examples of a type of algebraic 
structure known as a graded algebra. A graded algebra A over a field K 
is defined by prescribing a set of vector spaces AP ( p  = 0, 1 ,  a * . )  over K 
such that the vector space A is the direct sum of the spaces AP; further- 
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more, the product of an element of Ap and one of AQ is an element 
of Ap*, and this product is required to be associative. 

The tensor product A @ B of the underlying spaces of the graded 
algebras A and B can be made into a graded algebra by defining a suitable 
multiplication and graduation in A @ B. 

The exterior differential operator d is an anti-derivation in the ring 
of exterior differential polynomials, that is for a p-form a and q-form /9 : 

where 2; = (- 1)Pa. For an element a of Ap the involutive auto- 
morphism: a + d = (- 1)Pa is called the bar operation. An endomor- 
phism 8 of the additive structure of A is said to be of degree r if for 
each p, 8(AP) C AP+r. As an endomorphism the operator d is of 
degree + 1. An endomorphism 8 of A of even degree is called a 
derivation if for any a and b of A 

It  is called an anti-derivation if it is of odd degree and 

Evidently, if 8 is an anti-derivation, 88 is a derivation. If 8, and 8, are anti- 
derivations Ole2 + O2Ol is a derivation. The bracket [el, 8J = Ole, - 
of two derivations is again a derivation. Moreover, for a derivation 8, 
and an anti-derivation 82, [el, 0J is an anti-derivation. 

If the algebra A is generated by its elements of degrees 0 and 1, a 
derivation or anti-derivation is completely determined if it is given in 
A0 and A1. 

Let X be an infinitesimal transformation on an n-dimensional 
Riemannian manifold M. In terms of the natural bases {a/ @ul, . .a ,  a/ @un} 
and {dul, a - 0 ,  dun) relative to the local coordinates ul, .--, un write 
X = e(a/aug) and = &dug, 5 being the covariant forin of X. Now, 
for any p-form a, we define the exterior product operator ~(4): 

Clearly, .(a is an endomorphism of A(T*). For any ( p  + 1)-form 
P on M, 

€(S)Q A *B = (- 1)P a A 45)*/3 
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where *-I denotes the inverse of the star operator: 

for p-forms. We define the operator i(X) on p-forms as follows: 

That i(X) is an endomorphism of A(T*) is clear. Since 

we conclude that i(X) is the dual of the exterior product by 6 operator. 
Evidently, i(X) lowers the degree by one. The operator i(X) is called 
the interior product by X. From (3.3.5) we obtain 

~ ( 5 )  = (- 1 ~ 9 + ~ + l  * i (x)*  

on forms of degree p. 

Lemma 3.3.1. For every 1-form or and infinitesimal transformation X 

i (X)  a = ( X ,  a) .  
From (3.3.5) 

Lemma 3.3.2. i(X), X E T is an anti-derivation of the algebra A(T*). 
For, let (XI, .-:, X,) and (wl, --., wn) be dual bases. Then, by (1.5.1) 

and (II.A.l) 

where or1, ..., arp are any covectors in T*. Moreover, from (1.5.1) 

( X I  A ... A Xi A ... A X,, a1 A ... A 04 A ... A aP)  = det((Xi, d)) .  

Hence, for any decomposable element X, A ... A X, E A(T), if we 
apply (3.3.6) and then develop the determinant by the row i = 1 

( X ,  A ... A Xi A ... A X,, i(Xl)  ( a l A  ... A ari A ... A a,)) 
= (w" ... A wi r\ ... A wp, ;(xl) (a1 A ... A O11 A ... A a,)) 
= (e(w1)wS A ... A wi A ... A wp, a1 A ... A aj A ... A aP)  

= ( X I  A ... A Xi A ... A X,, a' A ... A d A ... A aP) 
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the circumflex over aj indicating omission of that symbol. We conclude 
by linearity that 

for any X E T, and the lemma now follows easily. 
We have shown that a tangent vector field X on M defines an 

endomorphism i(X) of the exterior algebra A(T*) of degree - 1. I t  is 
the unique anti-derivation with the properties: 

(i) i (Xy  = 0 for every function f on M, and 
(ii) i(X)a = (X, a) for every X E T and a E T*. 
We remark that i(X) is an anti-derivation whose square vanishes. 

This is seen as foliows: i(X)i(X) is a derivation annihilating AP(T*) 
for p = 1,2. Hence, since A(T*) is a graded algebra, it is annihilated 
by i(X)i(X)- 

3.4. Infinitesimal transformations 

Relative to the system of local coordinates ul, . . a ,  un at a point P of the 
differentiable manifold M, the contravariant vectors (a/aul),, -.., 
form a basis for the tangent space Tp at P. If F denotes the algebra of 
differentiable functions on M and f E F,  the scalar (af/aui), e (P )  is the 
directional derivative off at P along the tangent vector Xp at P whose 
components in the local coordinates (ui(P)) are given by fl(P), ..-, fn(P). 
We define a linear map which is again denoted by X, from F into R : 

Evidently, it has the property 

In this way, a tangent vector at P may be considered as a linear map of F 
into R satisfying equation (3.4.2). 

Now, an infinitesimal transformation or vector field X is a map 
assigning to each P E M a tangent vector Xp E Tp (cf. 5 1.3). If we define 
the function Xf by (Xf) (P) = Xpf for all P E M, the infinitesimal 
transformation X may be considered as a linear map of F into the algebra 
of all real-valued functions on M with the property 
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The infinitesimal transformation X is said to be dzgerentiable of class 
k - 1 if Xf is differentiable of class k - 1 for every f of class k 2 1. 

We give a geometrical interpretation of vector fields on M  in terms 
of groups of transformations of M which will prove particularly useful 
when discussing the conformal geometry of a Riemannian manifold 
as well as the local geometry of a compact semi-simple Lie group (cf. 
Chapter IV). For a more detailed treatment of the results of this section 
the reader is referred to [27, 631. T o  this end, we define a (global) 
1-parameter group of diflerentiable transformations of M denoted by 
9, ( - oo < t < oo) as follows: 

(i) 9, is a differentiable transformation (cf. 5 1.5) of M (- oo < t < a)) ; 
(ii) The map (t, P )  -+ y,(P) is a differentiable map from R x M 

into M ;  

The 1-parameter group 9, induces a (contravariant) vector field X on M 
defined by the equation 

(Xf) (P) = lim f (~t(p)) - f (PI 
t-r 0 t 

(f: an arbitrary differentiable function) the limit being assured by 
condition (ii). Under the circumstances, the vector field X is said to be 
complete. On the other hand, a vector field X on M is not necessarily 
induced by a global 1-parameter group 9, of M. However, associated 
with a point P of M there is a neighborhood U of P and a constant 
E > 0 such that for I t I < E there is a (local) 1-parameter group of 
transformations F, satisfying the conditions: 

(i)' 9, is a differentiable transformation of U onto ?,(U), I t I < E ;  

(ii)' The map (t, P )  + v,(P) is a differentiable map from (- E ,  E) x U 
into U ;  

(iii)' 9,+,(P) = cp,(cp,(P)), P E U provided I s I, I t I and I s + t 1 
are each less than E. 
Moreover, 9, induces the vector field X, that is equation (3.4.3) is 
satisfied for each P E U and differentiable function f. The vector field X 
is then said to generate 9,. The proof is omitted. (We shall occasionally 
write cpx(P, t) for cp,(P) (cf. 1II.C)). The uniqueness of the local group 9, 
is immediate. Hence the existence of a 'flow' in a neighborhood of P 
is equivalent to that of a 'field of directions' at P. 

If M is compact it may be shown that every vector field is complete 
and in our applications this will usually be the case. 
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Lemma 3.4.1. Let $ be a dzflerentiable map sending M into M' and X 
a vector field on M. Then, the vector field $,(X) on M' generates the 
I-parameter group $ y ,  $-l where yt is the I-parameter group generated 
by x. 

The  proof is entirely straightforward. 
A vector field X on M is said to be invariant by + : M + M if 

$,(X) = X. Therefore, by the lemma, X is invariant by $, if and only 
if $ commutes with cp, for every t. 

Lemma 3.4.2. Let f be a dzrerentiable function (of class 2) defined in a 
neighborhood of 0 E R. Assume f(0) = 0. Then, there is a dzrerentiable 
function g defined in the same neQhborhood such that f(t)  = tg(t) and 
g(0) = f'(0) where f' = df/dt. 

We remark that the lemma is trivial i f f  is analytic. The proof is 
given by setting 

g(t) = '(ts)dr. 
0 

The function g is of class one less than that o f f  in general. I t  is 
important that f be of class 2 at least. For, otherwise g may not be 
differentiable. T o  see this, let 

t2, t 2 0, 
f( ' )  = 1 - t2, t 5 0. 

Then, g(t) = I t 1. 

Corollary. Let f be a dzrerentiable function on U x M where U is 
a neighborhood of 0 E R and M is a d~flerentiable manifold. If f(0,  P )  
= 0 for every P E M, then there is a dz;f)cerentiable function g on 
U x M with the property that f ( t ,  P )  = tg(t, P )  and (af /at),,,p, = g(0, P )  

for every P E M. 
This is an immediate consequence of lemma 3.4.2. 
For any two infinitesimal transformations X and Y of M, Y X  is 

not in general an infinitesimal transformation. In fact, if M = En and 
Xf = af/aul, Y f  = af/au2, we have Y X f  == a2f/au2au1. Clearly, the map 
f -+ (a2f/au2&& ( P  E En) is not a tangent vector on En. However, 
one may easily check that the map X Y  - Y X  is a vector field on M. 
We shall denote this vector field by [ X ,  Y]. The bracket [ X ,  Y ]  evidently 
satisfies the Jacobi identity 

and so the (diflerentiable) vector Jields on M form a Lie algebra over R. 
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Lemma 3.4.3. For any two infinitesimal tran.fo~mations X and Y on M, 

= lim 
t+O 

for any f E F where tpt is the 1 -parameter group generated by X. 
Associated with any f E F, there is a differentiable family of functions 

g, on M such that f tp, = f + tg, where go = Xf. This follows from 
lemma 3.4.2 by putting f(t, P )  = f(tp,(P)) - f(P). Hence, if we set 
0)t' = (tpt)* and tpt*Y= tpt*(Y) 

Corollary. If qt and $I are the I-parameter groups generated by X and Y, 
respectively, then [X, Y] = 0, if an only if tp, and $, commute fm every 
s and t. 

3.5. The derivation B(X) 

We have seen that to each tangent vector field X E T on a Riemannian 
manifold M there is associated an anti-derivation i(X) of degree - 1 
(called the interior product by X)  of the exterior algebra A(T*) of 
differential forms on M. A derivation B(X) of degree 0 of the Grassman 
algebra A(T) as well as A(T*) may be defined, and in fact, completely 
characterized for each X E T as follows (cf. III.B.3): 

(i) 8(X)d = de(X), 
(ii) 6(X)f = i(X)df, f E EAT*), and 
(iii) 6(X) Y = [X, Y]. 
Indeed, 6(X)f = i(X)df = (X, df) = @(a/ aui), (aflauj) du*) = 
( af/ aui) = Xf and 6(X)df = dB(X)f = dXf; since A (T*) is gener- 

ated (locally) by its homogeneous elements of degrees 0 and 1 the 
derivation 6(X) may be extended to differential forms of any degree. 
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On the other hand, by conditions (ii) and (iii), 8(X) may be extended to 
all of A(T). In fact, O(X) may be extended to the tensor algebras of 
contravariant and covariant tensors by insisting that (for each X) it be a 
derivation of these algebras. For example, by lemma 3.4.3 

4X)Y = lim Y - 9t.Y 
t* t 

where q ~ ,  is the 1-parameter group generated by X. Hence, for any 
tensor t of type (p ,  0) 

t - 9:. t B(X) t = lim 
s-r6 S 

where q~:, = @ @ vs. ( p  times) is the induced map in T:. (For 
any XI, -, X, E T, &(XI @ *.. @ Xp) = (pl.(X1) @ @ va.(Xg)). 

Since [8(X), 8(Y)] = 8(X) 8(Y) - B(Y) 8(X) is a derivation, it follows 
from the Jacobi identity that the map x L.B(X) is a representation 
of the Lie algebra of tangent vector fields. 

Lemma 3.5.1. The derivations d, i(X), and B(X) are d a t e d  by the 
formula 

B(X) = i(X)d + di(X). (3.5.1) 

Since both sides are derivations, and since the Grassman algebra of 
differential forms is generated by its homogeneous elements of degrees 
0 and 1, the relation need only be established for differential forms of 
degrees 0 and 1 : 

Lemma 3.5.2. For a I-form u on M and any tangent vector jieldr X 
and Y on M : 

<X A Y, da) = Xar(Y) - Yar(X) - a([X,Y]). (3.5.2) 

The right hand side is meaningful since at each point P of M, Tp 
and T,* are dual vector spaces. Thus, u is a linear map from T into F. 
By linearity, it is sufficient to prove the relation for X = a/ihi, 
Y = a/au* and u = gdf where f and g are functions expressed in the 
coordinates (3). In fact, if the relation holds for a, j3 E A1(T*), it holds 
for u + /3 and fa where f is a differentiable function. We may therefore 
assume u = duk and in this case, both sides vanish. 



Equation (3.5.2) indicates a (local) relationship between the derivations 
B(X) and d. Indeed, if we write 

1 
d d  =-cikCUj A &Jk, cifk f cij = O  2 (3.5.3) 

and 

@(Xj) x, = - bif, X*, b:, + b:, = 0, (3.5.4) 

where {X*} and {uk) are dual bases, then 

from which by (1.5.1), (3.5.3) and (3.5.4) 

The reader is referred to Chapter IV where this relationship is exploited 
more fully. We remark that equation (3.5.2) has important implications 
in the theory of connections as well [63]. 

3.6. Lie transformation groups [TI,  631 

A Lie poup G is a group which is simultaneously a differentiable 
manifold (the points of the manifold coinciding with the elements of the 
group) in which the group operation (a, b) -+ ab-I (a, b E G) is a 
differentiable map of G x G into G. It  is well-known that as a manifold 
G admits an analytic structure in such a way that the group operations 
in G are analytic. I t  follows that the map x -+ ax is analytic. We denote 
this map by La and call it the left translation in G by a. Hence, every 
left translation La is an analytic homeomorphism of G (as an analytic 
manifold) with itself. It  follows that if x and y are any two elements 
of G, there exists an element a = yx-I such that the induced map 
La. = (La), maps T, isomorphically onto T,. 

An infinitesimal transformation X on G is said to be left invariant 
if for every a €  G, La ,Xe = X,. Hence, associated with an element AE Te, 
where e E G is the identity, there is a unique left invariant infini- 
tesimal transformation X which takes the value A at e. It  can be shown 
that every left invariant infinitesimal transformation is analytic. Let fi 
denote the set of left invariant infinitesimal transformations of G; 
L is a vector space over R of dimension equal to that of G. In fact, if 
to a tangent vector Xe E Te we associate the infinitesimal transformation 
X E L  defined by Xu = La,Xe (a E G) it is seen that as vector spaces 



T, and L are isomorphic. Moreover, the conditions X EL,  Y E L  
imply [X, EL. In fact, 

It  follows that the left invariant infinitesimal transformations of the 
Lie group G form a Lie algebra L called the Lie algebra of G. That the 
right invariant infinitesimal transformations also form a Lie algebra is 
clear. However, this Lie algebra is isomorphic with L (cf. Chapter IV). 

To  an element A of L we associate the local 1-parameter group of 
transformations 9, generated by A in a neighborhood of e E G. We show 
that vt is a global 1-parameter group of transformations on G and that 
it defines a 1-parameter subgroup of G. Since A is invariant by L,, 
(x E G), it follows from lemma 3.4.1 that y ,  commutes with L, for 
every x E G. Hence, A generates a global 1-parameter group of trans- 
formations ?, on G. The subgroup a, of G defined by a, = rpde) satisfies 
at+. = a t  as; moreover, v,(x) = Rap(= x a 3  for every x E G. We call 
a, the I-parameter subgroup of G generated by A. 

More generally, we define a Lie subgroup G' of G to be a subgroup 
of G which is simultaneously a submanifold of G. G' is itself a Lie 
group with respect to the differentiable structure induced by G. Evidently, 
the subspace L' of left invariant infinitesimal transformations cor- 
responding to the tangent vectors at e E G' is a subalgebra of L, namely, 
the Lie algebra of G'. 

Let f be an element of the group of automorphisms of a Lie group G. 
Then, f, is an automorphism of L: Since f(e) = e, if we identify the 
vector space L with T, we see that f, induces an endomorphism of T,. 
Since f-I f = identity automorphism of G, it follows that f, is an 
automorphism. In particular, if f is an inner automorphism: x -+ axa-l 
defined by a E G, the induced automorphism of L is called the adjoint 
representation of G and is denoted by ad(a). For an element B EL,  
ad(a)B = Ra-i*B, since axa-I = Ra-I Lax. If a, is the 1-parameter 
subgroup of G generated by A E L we conclude from lemma 3.4.3 that 

for every B E L. 
Consider a differentiable manifold M on which a connected Lie group 

G acts differentiably. G is said to be a Lie transformation group on M 
if the following conditions hold: 

(i) To each a E G there corresponds a homeomorphism R, of M 
onto itself such that RaRb = R,; 



(ii) The point P. a = R, P, P E M  depends differentiably on a E G 
and P where Ra P = Ra (P). 

Clearly, Re is the identity transformation of M. Hence, Ra(Ra-I(P)) 
= P for every a E G and P E M. The group G is said to act effectively 
if Ra P = P for every P E M implies a = e. 

Let A be an element of the Lie algebra L of G and a, the 1-parameter 
subgroup of G generated by A. A is a left invariant infinitesimal trans- 
formation of G. The corresponding 1-parameter group of trans- 
formations Rat on M induces a differentiable vector field A* on M. 
Let a denote the map sending A E L  to A* EL*  (the Lie algebra of 
differentiable vector fields on M). 

Lemma 3.6.1. The map a : L -+ L* is a homomorphism. 
Indeed, for any P E M denote by a, the map from G to M defined 

by U ~ X )  = P x. Then 

where is the induced map in T, (the tangent space at e E G). 
Clearly, a is linear. For any two elements A and B of L, set A* = o(A) 
and B* = o(B). Then, from lemma 3.4.3 

B* - R,; B* 
[A*, B*] = lim 

t-ro t 

u+B, - ~p.ad(a;-~)B, 
[A*, B*Ip = lim 

t+O t 

B, - ad(ayl) B, 
= a+ lim 

t-ro t 

If G acts effectively on M, a is an isomorphism. Indeed, if 4 A )  = 0 
for some A EL,  the associated 1-parameter subgroup Rag is trivial. 
Since G is effective we have a, = e, from which A = 0. 

We remark that the derivations O(A*) correspond to the action of 
G on M. 
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3.7. Conformal transformations 

Let M be an n-dimensional Riemannian manifold and g the tensor field 
of type (0,2) defining the Riemannian metric on M. Locally, the metric 
is given by 

d-sa = gif dug duf 

where the gij are the components of g with respect to the natural frames 
of a local coordinate system (ui). A metric g* on M is said to be con- 
formally related t o g  if it is proportional to g, that is, if there is a function 
p > 0 on M such that g* = p2g. By a conformal transformation of M 
is meant a differentiable homeomorphism f of M onto itself with the 
property that 

f *(a'$) = p2 ds2 

where f*  is the induced map in the bundle of frames and p is a positive 
function on M. Clearly, the set of conformal transformations of M forms 
a group. In fact, it can be shown that it is a Lie transformation group. 
Let G denote a connected Lie group of conformal transformations of M 
and L its Lie algebra. T o  each element A E L  is associated the l-para- 
meter subgroup a, of G generated by A. The corresponding 1-parameter 
group of transformations Rat on M induces a (right invariant) differenti- 
able vector field A* on M. A* in turn defines an infinitesimal trans- 
formation O(A*) of the tensor algebra over M corresponding to the action 
on M of a,. From the action on the metric tensor g, it follows from (3.7.1) 
that 

8(A*)g = hg (3.7.2) 

where A is a function depending on A*. On the other hand, a vector field 
X on M which satisfies (3.7.2) is not necessarily complete (cf. 5 3.4). 
However, X does generate a 1-parameter local group, and for this reason 
X is called an infinitesimal conformal transformation of M. In  our applica- 
tions the manifold M will be compact and therefore the infinitesimal 
conformal transformations will be complete. In any case, they form a 
Lie algebra L with the usual bracket [X, YJ = O(X)Y. 

If the scalar A vanishes, that is, if O(X)g = 0, the metric tensor g is 
invariant under the action of O(X). The vector field X is then said to 
define an injinitesimal motion. The infinitesimal motions define a sub- 
algebra of the Lie algebra L. For, O([X, YJ)g = O(X)O(Y)g - O(Y)O(X)g 
= 0. Moreover, it can be shown that the group of all the isometries of 
M onto itself is a Lie group (with respect to the natural topology). 

If 6 is the 1-form on M dual to X we shall occasionally write O(6) 
for O(X). 
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Proposition 3.7.1. For any vector jeld X 

where 6 is the I-form on M dual to X. 
Let U be a coordinate neighborhood with the local coordinates 

ul, -.- un. The vector fields a/aul, .--, a/aun form a basis of the F-module 
of vector fields in U where F is the algebra of differentiable functions 
on U. Denoting the components of the metric tensor g by gij we have 
g = gij dui @ duj. Applying the derivation B(X) to g we obtain 

I t  follows that 
ag 3 a tk a tk 

(e(&) i~ = P j$ + +kj a + +ik 9 

and, since the right hand side is equal to Djf i  + Diej we may write 

Corollary. A n  infinitesimal conformal transformation X on an 
n-dimensional Riemannian manifold satisfies the equation 

Transvecting this equation with gij 

Corollary. A necessary and sufficient condition that an infinitesimal 
conformal transformation X be a motion is given by S t  = 0. 

If the vector field X has constant divergence, that is, if S f  = const., 
the transformation is said to be homothetic. 
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Assume that the vector field X defines an infinitesimal motion on M. 
Then, 8(X)g vanishes, that is 

Dj ti + Di f j  = O* 
It follows that 

Hence, applying the Bianchi identity (1.10.24) and the interchange 
formula (1.7.19) for covaria'nt derivatives 

We conclude that 

(This means that the Lie derivative of the affine connection vanishes 
or, what is the same, 8(X) commutes with the operator of covariant 
differentiation (cf. 5 3.10)). On the other hand, if X is a solution 
of these equations it need not be an infinitesimal motion (cf. 5 3.10). 

In the case where M is En, if we choose a cartesian coordinate system 
(xl, ..., xn) equations (3.7.5) and (3.7.6) reduce to 

a fi @ ti - + - = O  and -- 
axj axi ax, a* - O- 

Integrating, we obtain 

The vector whose components are the a, is the translation part of the 
motion whereas the tensor with components aij defines a rotation about 
the origin. 

The infinitesimal motion X is usually called a Killing vector fild. 
Let L be a subalgebra of- the Lie algebra T of tangent vector fields 

on M. A p-form on M is said to be L-invariant if it is a zero of all the 
derivations 8(X)  for X E L. Clearly, the L-invariant differential forms 
constitute a subalgebra of the Grassman algebra of differential forms 
on M. Moreover, this subalgebra is stable under the operator d. This 
follows from property (i) of 5 3.5. 

Let a and f i  be any two p-forms on the compact and orientable 
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Riemannian manifold M. Then, by Stokes' theorem and formula 
(3.5.1), if X is an infinitesimal transformation 

Since B(X) is a derivation, 

If, therefore, we put 
*&x) = - B(x)*, 

that is 

It  follows that the operator &X)  is the dual of B(X). One thus obtains 

where 5 is the covariant form for X. Since the operators B(X) and d 
commute, so do their duals as one may easily see from (3.7.10): 

Moreover, if g denotes the metric tensor of M 

where the are the coefficients of or in the local coordinates (ui). 
The proof of (3.7.11) is a lengthy but entiiely straightforward com- 

putation and is therefore left as an exercise for the reader. 

Theorem 3.7.1. The harmonic forms on a compact and orientable 
Riemannian manifold M are K-invariant diferential forms where K is 
the Lie algebra of infinitesimal motions on M[73,35]. 

The proof depends on the fact that B(X) + B(X), X E K annihilates 
differential forms. Indeed, since X is an infinitesimal motion, B(X)g = 0 
and, therefore, 65 = 0. Let a be a harmonic form. Then, dB(X)a = 
B(X)da = 0 and SB(X)a = - SB(X)a = - B(X)Sa = 0. Hence, B(X)a 
is a harmonic form; but B(X)a = di(X)a, from which by the Hodge- 
de Rham decomposition of a differential form (cf. 5 2.10), B(X)a = 0. 
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Corollary. In  a compact and orientable Riemannian manifold the inner 
product of a harmonic vector Jield and a Killing vector Jield is a constant. 

In fact, if a is a harmonic l-form and X an element of K, 0 = B(X)a = 
di(X)a. 

The  corollary may be generalized as follows: 

Theorem 3.7.2. The inner product of a K-invariant closed I-form and 
an element X of K is a constant equal to < X, H[a] >. 

For, 0 = B(X)a = di(X)a. By the Hodge-de Rham decomposition 
of a 1-form, a = df + H[a] for some function f, from which 0 = B(X)a 
= B(X)df = di(X)df. Hence, (X, df) = k = const. We conclude that 
(5, d n  = J*k = 0 since (5, d n  = (65 ,n  = 0. 

Let X be an element of the Lie algebra L of infinitesimal conformal 
transformations of M. Then, equation (3.7.11) reduces to 

in view of formula (3.7.4), and we have the following generalization of 
theorem 3.7.1 : 

Theorem 3.7.3. Let M be a compact and orientable Riemannian manvold 
of dimension n. Then, a harmonic k-form a is L-invariant, if and only if, 
n = 2k or, a is co-closed [35]. 

Corollary. On a compact and orientable 2-dimensional Riemannian 
manifold the inner product of a harmonic vector field and an infinitesimal 
transformation defining a I-parameter group of conformal trattsfmmations 
is a constant. 

This is clearly the case if M is a Riemann surface (cf. Chap. V). 
Since formula (3.7.12) is required in the proof of theorem 3.7.5 

and again in Chapter VII a proof of it is given below: 
Applying B(X) to (a, 8) = g41j1- giJp %l..,d BUl..Jpl we obtain 

We also have 
O(X)*l = - Sf *I. 

From (3.7.13) and (3.7.14), we obtain 
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The integral of the left side of (3.7.15) over M vanishes by Stokes' 
theorem. Hence, integrating (3.7.15) gives 

Thus, 

and so, since a and fl are arbitrary 

e(x), + #(x)~ = (I - :) 86 + a. 

Let M be a Riemannian manifold, Co(M) the largest connected group 
of conformal transformations of M and Io(M) the largest connected 
group of isometries of M. (Note that L and K are the Lie algebras of 
Co(M) and Io(M), respectively.) We shall prove the following: 

Theorem 3.7.4. Let M be a compact Riemnnian ntanifold. If Co(M) # 
Zo(M), then, there is nu hamtonic form of degree p, 0 < p < n (n = dim M) 
whose length is a non-zero constant [78]. 

Since a harmonic form on a compact Riemannian manifold is invariant 
by Io(M), a harmonic form on a compact homogeneous Riemannian 
manifold (cf. VI. E) is of constant length. (A Riemannian homogeneous 
mansjCold is a Riemannian manifold whose group of isometries is transi- 
tive.) Hence, as an immediate consequence of theorem 3.7.4 we have 

Theorem 3.7.5. Let M be a compact homogeneous Riemannian mat$old. 
If Co(M) Sf. Io(M), then M is a homology sphere [78]. 

Since we are interested in connected, groups, the hypothesis of 
theorem 3.7.4 may be replaced by the fdlowing: Let M be a compact 
Riemannian manzjold admitting an injinitesinal non-isometric conformal 
transformation. We may also assume that M is orientable; for, if M is 
not orientable, we need only take an orientable two-fold covering space 
of M. 

Proof of Theorem 3.7.4. Let or be a harmonic form of degree p. We 
shall first prove 

(&x) a, 0(X) a) = 0. 

Since or is closed, 6(X) or = di(X) a. On the other hand, since a is 
co-closed, M(X) o: = &X) 601 = 0. Thus, 
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Applying (3.7.12) and (3.7.16) we obtain 

= (1 - :) jM8f  (a, e(x) a) $1. 

From now on, we assume that a is not only harmonic but is also of 
constant length, that is, (a, a) is constant. Hence, B(X) (a, a) = 0, 
and so, from (3.7.13) 

<o(x) a, a) = - P-- 6~ (a, a). 
n 

(3.7.18) 

Substituting (3.7.18) into (3.7.17) we obtain 

If 2p 5 n, the right hand side of (3.7.19) is non-positive; but the left 
hand side is non-negative. Consequently, B(X) a = 0 and by (3.7.18) 
either 86 = 0 or a = 0. If X is not an infinitesimal isometry, 86 # 0. 
We have therefore proved that if M admits an infinitesimal non-isometric 
conformal transformation, then there is no harmonic form of constant 
length and degree p, 0 < p 5 42.  If a is a harmonic form of constant 
length and degree p > n/2, then its adjoint *a is a harmonic form of 
constant length and of degree n - p < 42.  This completes the proof. 

By employing theorem 3.7.5, it can be shown that M is, in fact, 
isometric with a sphere (cf. 111. F). 

3.8. Conformal transformations (contin ukd) 

In this section we characterize the infinitesimal conformal trans- 
formations and motions of a compact and orientable Riemannian 
manifold M as solutions of a system of differential equations on M. 
Moreover, we investigate the existence of (global) 1-parameter groups 
of conformal transformations of M and find that when the Ricci curvature 
tensor is positive definite no such groups except {e} exist. 

For a l-form a on M we define the symmetric tensor field 



of type (0,2) where we have written O(U) for O(A)-the vector field A 
being defined by duality. Clearly, the elements A of L satisfy the equation 
t(u) = 0. In a coordinate neighborhood U with local coordinates 
ul, -., un the tensor t(u) has the components 

the divergence of which is given by 
2 

( W Y ) ) ,  = gik Dk(Dj a, + Di a,) + , p a ) ,  

since 

The operator 6' is used in place of - 8 since t(u) is symmetric. From 
the Ricci identity (1.7.19) we obtain 

Now, since the tensor t(a) is symmetric and is annihilated by g, that is, 
since (g,t(u)) = 0, 

Integrating both sides of this relation and applying Stokes' formula we 
obtain the integral formula 

An application of (3 A.2) together with (3.8.3) yields: 
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Theorem 3.8.1. There are no non-trivial (global) 1-parameter groups 
of conformal transformations on a compact and orientable Riernam'an 
manifold M of dimension n 2 2 with negative definite Ricci curvature 
[4, 731. 

For, let X be the infinitesimal conformal transformation induced 
by a given 1-parameter group of conformal transformations of M and 8 
the 1-form defined by X by duality. Then t(5) vanishes, and so by 
(3.8.2) and (3.8.3) 

(Af + (1 - A)d8f - 2Qf, f) = 0. 
n 

A computation gives 

and consequently, if (Q5, 5) 5 0 then, for n 2, we must have 

(Qt.,f) = 0, Sf = 0, DX = 0. 

Moreover, if the Ricci curvature is negative definite we conclude that 
5 = 0, that is X vanishes. 

We have proved in addition that if the Ricci quadratic form is negative 
semi-definite, then a vector field X on M which generates a I-parameter 
group of conformal transformations of M is necessarily a parallelcfield. 

Corollary. There are no (globat) 1-parameter groups of motions on a 
compact and orientable Riemannian manifold of negative definite Ricci 
m a t u r e .  

We have seen that an infinitesimal conformal transformation on a 
Riemannian manifold M must satisfy the differential equation 

Conversely, if M is compact and orientable, and 8 is a 1-formon M 
which is a solution of equation (3.8.4), then by (3.8.2) and (3.8.3) 
(t(f), t(5)) = 0 from which t(5) = 0, that is 8(f)g + (2/n)(65)g = 0. It  
follows that the vector field X dual to 5 is an infinitesimal conformal 
transformation. We have proved [73] 

Theorem 3.8.2. On a compact and orientable Riemannian manifold a 
necessary and suflcient condition that the vector field X be an infinitesimal 
conformal transformation i s  given by 

At .  + (1 - 2)dSf n = 2Qf. 
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Corollary. On a compact and orientable Riemannian manifold, a necessary 
and suflcient condition that the infinitesimal transformation X generate a 
I-parameter group of motions is given by the equations 

A 5 = 2 Q 5  and S [ = O .  

3.9. Conformally flat manifolds 

Let M be a Riemannian manifold with metric tensor g. Consider the 
Riemannian manifold M* constructed from M as follows: (i) M* = M 
as a differentiable manifold, that is, as differentiable manifolds M and 
M* have equivalent differentiable structures which we identify; (ii) the 
metric tensor g* of M* is conformally related to g, that is, g* = p2g 
(p > 0). Since the quadratic form ds2 for n = 2 is reducible to the 
form h [ (d~ l )~  + ( d ~ ~ ) ~ ]  (in infinitely many ways) the metric tensors of 
any two 2-dimensional Riemannian manifolds are conformally related. 
In the sequel, we shall therefore assume n > 2. 

For convenience we write p = eo. It  follows that the components gi, 
and g*i, of the tensors g and g* are related by the equations 

The components of the Levi-Civita connections associated with the 
metric tensors g and g* are then related as follows: 

A computation gives 

Transvecting (3.9.2) with g4' we see that the components of the cor- 
responding Ricci tensors are related by 

Again, transvecting (3.9.3) with gjk we obtain the following relation 
between the scalar curvatures R and R*: 
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Eliminating Aa from (3.9.3) and (3.9.4) we obtain 

- ' (do, do) gw 
2 

Transvecting (3.9.2) with g*ir and substituting (3.9.5) in the resulting 
equation we obtain C * h l  = Cjk, where 

Evidently, the qkl are the components of a tensor called the Weyl con- 
fotmal m a t u r e  tensor. Moreover, this tensor remains invariant under 
a conformal change of metric. The case n = 3 is interesting. Indeed, 
by choosing an orthogonal coordinate system (gij = 0, i # j) at a point 
(cf. § 1.1 l), it is readily shown that the Weyl conformal curvature 
tensor vanishes. 

Consider a Riemannian manifold M with metric g and let g* be a 
conformally related locally flat metric. Under the circumstances M 
is said to be (locally) conformally pat. Clearly then, the Weyl conformal 
curvature tensor of M vanishes. Conversely, if the tensor CjFl is a zero 
tensor on M, there exists a function a such that g* = e2"g is a locally 
flat metric on M. For, from (3.9.6) 

Applying (1.10.2 1) and (1.10.22) we deduce 

Di P j k ,  = (n - 3 L l  
where we have put 

Hence, for n > 3, Cijk = 0. 
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I If g* = ee"g is a locally flat metric, both R*$, and R* vanish, and so 
from (3.9.5) 

The integrability conditions of the system (3.9.9) are evidently given by 

It follows after substitution from (3.9.9) into (3.9.10) that Cgjk = 0. 
Thus, the equations (3.9.9) are integrable. 

Proposition 3.9.1. A necessary and su-t cod t ion  that a Riemannian 
manqold of dimension n > 3 be conformally jlat is that its Wcyl confotmal 
m a t u r e  t m o r  vanish. For n = 3, it is necessary and s u . t  that the 
tensor Cijk = 0. 

The conformal curvature tensor of a Riemannian manifold of constant 
curvature is readily seen to vanish. Thus, 

Corollary. A Riemannian manifold of constant curvature is conformally 
$at poetidid n 2 - 3. 

We now show that a compact and orientable conformally flat 
Riemannian manifold M whose Ricci curvature is positive definite is a 
homology sphere. This is certainly the case if M is a manifold of positive 
constant curvature. 

Indeed, since M is conformally flat, its Weyl conformal curvature 
tensor vanishes. Hence, from formula (3.2.10), for a harmonic p-form a 

n - 2p 
F(a) = - R, aii:...is aft*, .is + p! 

n - 2  
- ' R(a, a).  (3.9.1 1 )  

(n - 1 )  (n - 2) 

Since the operator Q is positive definite let A,, denote the greatest lower 
bound of the smallest eigenvalues of Q on M. Then, for any 1-form 8, 
(Qp, 8) 2 A,, (8, /3) and the scalar curvature R = gij &, 2 n A,, > 0. 
This latter statement follows from the fact that at the pole of a geodesic 
coordinate system the scalar curvature R is the trace of the matrix (Rij), 
(gij(p) = 4j). 

Again, at a point P E M if a geodesic coordinate system is chosen 
it follows from (3.9.1 1) that 
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at P from which we conclude that F(a) is a positive definite quadratic 
form. We thus obtain the following generalization of cor., theorem 3.2.4: 

Theorem 3.9.1. The betti numbers b,(O < p < n) of a compact and 
orientable conformally flat Riemannian mani$old of positive definite Ricci 
curvature vanish [6,51]. 

For n = 2,3  this is, of course, evident from theorem 3.2.1 and 
Poincart duality. 

If M is a Riemannian manifold which is not conformally flat, that is, 
if for n > 3 its conformal curvature tensor does not vanish, we may 
introduce a quantity which measures its deviation from conformal 
flatness and ask under what conditions M remains a homology sphere. 
To this end, let 

for all skew-symmetric tensors of type (2,O) at all points P of M. C is a 
measure of the deviation of M from conformal flatness. Substituting for 
the Riemannian curvature tensor from (3.9.6) into equation (3.2.10) 
we find 

(P - 1)R P - 1  
+ P !  (n - l ) ( n  - 2) (a, a) + 7 C t ( k l  &ia...ip akzC...i,, 

where a is a harmonic p-form. Applying (3.9.12) and (3.9.13) we have 
at the pole P of a geodesic coordinate system 

2 p! - p+ c) (a,  a). 

Hence, F(a) is a positive definite quadratic form provided ((n - p)/(n - I))& 
> ( ( p  - 1)/2)C and, in this case, if M is compact and orientable, 
b,(M) = 0. 



Theorem 3.9.2. Let M be a compact and orientable Riemannian mani$old 
of positive Ricci curvature. If 

then, bJM) vanishes [6, 74. 

Corollary. M is a homology sphere if (3.9.14) hol& for all p, 0 < p < n. 
This generalizes theorem 3.9.1. 

3.10. Affine collineations 

Let M be a Riemannian manifold with metric tensor g and C = C(t) 
a geodesic on M defined by the parametric equations ui = ui(t), 
i = 1, ..*, n. Denoting the arc length by s, that is ds2 =gadurdu*, the 
equations of C are given by 

where A(t) = (d2s/dt2)/(&/dt) and the rf, are the coefficients of the 
Levi Civita connection (associated with the metric). By an afine 
collineation of M we mean a differentiable homeomorphism f of M onto 
itself which maps geodesics into geodesics, the arc length receiving 
an affine transformation: 

for some constants a # 0 and b. Clearly, i ff  is a motion it is an a f h e  
collineation. The converse, however, is not true in general, but, if we 
assume that M is compact and orientable, an affine collineation is neces- 
sarily a motion (theorem 3.10.1). 

It  can be shown that the affine collineations of M form a Lie group. 
Let G denote a connected Lie group of affine collineations of M and L 
its Lie algebra. To each element A of L we associate the 1-parameter 
subgroup a, of G generated by A. The corresponding 1-parameter 
group of transformations R,, on M induces a (right invariant) vector 
field A* on M. The vector field A* in turn defines an infinitesimal 
transformation 8(A*) of M corresponding to the action on M of a,. 
Since the elements of G map geodesics into geodesics the Lie derivative 
of the left hand side of (3.10.1) with s as parameter must vanish. 
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We evaluate the Lie derivative of the Levi Civita connection forms 
COT with respect to a vector field X defining an infinitesimal affine collinea- 
tion: 

Consequently, 

Hence, by (3.10.3) for an infinitesimal affine collineation X = fi(a/aui) 

Transvecting (3.10.4) with g ik  we see that 

Again, if we transvect (3.10.4) with 6$ we obtain D,D4p = 0, that is 
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Hence, if M is compact and orientable 

0 = (dV, 5) = (85, 85) 

from which 85 = 0. We conclude (by theorem 3.8.2, cor.) 

Theorem 3.10.1. In a compact and orientable Riemannian manifold an 
infinitesimal aflne collineation is a motion [73]. 

Corollary. There exist no (non-trivial) I-parameter groups of aflne 
collineations on a compact and orientable Riemannian manifold of negative 
definite Ricci curvature. 

This follows from theorem 3.8.1. 
More generally, it can be shown that an infinitesimal affine collineation 

defined by a vector field of bounded length on a complete but not 
compact Riemannian manifold is an infinitesimal motion. We remark 
that compactness implies completeness (cf. 5 7.7). 

3.1 1. Projective transformations 

We have defined an affine collineation of a Riemannian manifold M 
as a differentiable homeomorphism f of M onto M preserving the 
geodesics and the affine character of the parameter s denoting arc length 
along a geodesic. If, more generally, f leaves the geodesics invariant, 
the affine character of the parameter s not necessarily being preserved, 
f is called a projective transformation. 

A transformation f of M is aflne, if and only 'if 

where w is the matrix of forms defining the affine connection of M, or, 
equivalently in terms of a system of local coordinates 

where the r f k  are given by f *wj = r*:, duk, f * denoting the induced 
dual map on forms. A transformation f of M is projective, if and only if 
there.exists a covector pV) depending on f such that 

where the p , (n  are the components of pV) with respect to the given 
local coordinates. Under the circumstances, o and f*w are called 
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projectively related affine connections. On the other hand, two affine 
connections o and w* are said to be projectively related if there exists 
a covariant . vector field p, such that in the given local coordinates 

Let M be a Riemannian manifold with metric g. If there exists a 
metric g* on M such that the connections o and w* canonically defined 
by g and g* are projectively related, then, by means of a straightforward 
computation, the tensor w whose components are 

is an invariant of the projectively related affine connections, that is, 
the tensor w* corresponding to the connection o *  projectively related 
to o coincides with w. This tensor is known as the Weyl projective 
curvature tensor. Its vanishing is of particular interest. Indeed, if w = 0, 
the curvature of M (relative to g or g*) has the representation 

Hence, 
1 

R,kl = ( R j ~ l , l  - Rjl girl 

from which, by the symmetry properties of the Riemannian curvature 

Transvecting with gil we deduce that 

Substituting the expression (3.1 1.4) for the Ricci curvature in (3.1 1.3) 
eives 

Thus, M is a manifold of constant curvature. 
Conversely, assume that M (with metric g or g*) has constant curva- 

ture. Then, its curvature has the representation (3.11.5) and its Ricci 
curvature -is given by (3.1 1.4). Substituting from (3.1 1.4) and (3.1 1.5) 
into (3.1 1.2), we conclude that the tensor w vanishes. 
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Let M be a Riemannian manifold with metric g. If Ml may he given 
a locally flat metric g* such that the Levi Civita connections w and w* 
defined by g and g*, respectively, are projectively related, then M is 
said to be locally projectively pat.  Under the circumstances, the geodesics 
of the manifold M with metric g correspond to 'straight lines' of the 
manifold M with metric g*. For n > 3, it can be shown that a necessary 
and sufficient condition for M to be locally projectively flat is that its 
Weyl projective curvature tensor vanishes. Thus, a necessary and suficient 
condition for a Riemannian manifold to be locally projectively fEat is that 
it have constant curvature. 

We have shown that a compact and orientable Riemannian manifold M 
of positive constant curvature is a homology sphere. Moreover, (from 
a local standpoint) M is locally projectively flat, that is its Weyl projective 
curvature tensor vanishes. It  is natural, therefore, to inquire into the 
effect on homology in the case where this tensor does not vanish. With 
this purpose in mind, a measure W of the deviation from projective 
flatness is introduced. Indeed, we define 

2W = sup I Wiikl ti* f k z  I 
fcAr(*)  G, 0 

the least upper bound being taken over all skew-symmetric tensors of 
order 2. 

Theorem 3.11.1. In a compact and orientable Riemannian manifold of 
dimension n with positive Ricci curvature, if 

(where h, has the meaning previously given) for all p = 1, * * *  , n - 1, 
then M is a homology sphere [6, 74. 

Indeed, substituting for the Riemannian curvature tensor from 
(3.1 1.2) into equation (3.2.10) we obtain 

by virtue of the fact that at the pole of a geodesic coordinate system 

and ... Wijk, a%...i~ akZis.., 2 - p! W (a, a). 



Hence, F(a) is non-negative provided 

If strict inequality 

Corollary. Under 

n -  - + A , , ~ ~ W .  P - 1  
n - 

holds, M is a homology sphere. 

the conditions of the theorem, if 

2)b 
(n - 1) (n - 2) * 

M tk a homology sphere. 
We have proved that the betti numbers of the sphere are retained 

even for deviations from projective flatness, that is from constant 
curvature. This, however, is not surprising as we need only compare 
with theorem 3.2.6. In  a certain sense, however, theorem 3.11.1 is a 
stronger result. Indeed, the function W need only be bounded above 
but need not be uniformly bounded below. 

Theorem 3.1 1 .I implies that the homology structure of a compact 
and orientable Riemannian manifold with metric of positive constant 
curvature is preserved under a variation of the metric preserving the 
signature of the Ricci curvature as well as the inequality (3.1 1.6), that 
is, a manifold carrying the varied metric is a homology sphere. 

EXERCISES 

A Locally convex hypersurfaces 158, 141. Minimal varieties [4] 

1. Let M be a Riemannian manifold of dimension n locally isometrically 
imbedded (without singularities) in En+] with the canonical (Euclidean) metric. 
The manifold M is then said to be a local hypersurface of E"+f. Let aij denote 
the codficienta of the second fundamental form of M in terms of the cartesian 
coordinates of E"+l. Then, the curvature of M is given by the (Gauss) equations 

M is said to be k d y  c o m a  if the second fundamental form is definite, that is, 
if the principal curvatures q,, are of the same sign everywhere. Under the 
circumstances, every point of M admits a neighborhood in which the vectors 
tangent to the lines of curvature are the vectors of an orthonormal frame. 



EXERCISES 

Consequently, 
au = K ( ~ )  &,, (i: not summed) 

from which we derive 

By employing theorem 3.2.4 show that if M is compact and orientable, then 
bl(M) = bdM) = 0. 

2. If at each point of M, the ratio of the largest to the smallest principal curvature 
is at most a, M is a homology sphere. 

Hint: Apply theorem 3.2.6. 

3. If M is locally isometrically imbedded in an (n + 1)-dimensional space of 
positive constant curvature K, the Gauss equations are given by 

Show that the assertions in A.l and A.2 are also valid in this case. 

4. If the mean curoatwe of the hypersurface vanishes, that is, if, in terms of the 
metric g of M, 

g Z j  a, = 0 

then, from the representation of the curvature tensor given in A.1 

where 

In this case, M is called a minimal hypersurface or a minimal variety of @+I, 

Show that the only groups of motions of a compact and orientable minimal 
variety are groups of translations. 

5. Show that the only groups of motions of a compact and orientable minimal 
variety (hypersurface of zero mean curvature) imbedded in a manifold of 
constant negative curvature are translation groups. 

6. If all the geodesics of a hypersurface M are also geodesics of the space in 
which it is imbedded, M is called a totally gcodwic hyperwface. It is 
known that a totally geodesic hypersurface is a minimal variety. Hence, if it is 
compact and orientable and, if the imbedding space is a manifold of constant 
non-positive curvature its only groups of motions are translation groups. 
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B. 1-parameter local groups of local transformations 

1. Let P be a point on the differentiable manifold M and U a coordinate 
neighborhood of P on which a vector field X # 0 is given. Denote the com- 
ponents of X at P with respect to the natural basis in U by ti. There exists at P 
a local coordinate system vl,---, vn such that the corresponding parametrized 
curves with v1 as parameter have at each point Q the vector XQ as tangent vector. 
If we put v1 = t, the equations 

ui = ui(v2, .-. , vn, t), i = 1, *.. , n 

defining the coordinate transformations at P are the equations of the 'integral 
curves' (cf. I. D.8) when the vi, i = 2, ..., n are regarded as constants and t as 
the parameter, that is, the coordinate functions ui, i = 1, *** ,  n are solutions of 
the system of differential equations 

with ('(0) = p, the point P corresponding to t = 0. More precisely, it is 
possible to find a neighborhood U(Q) of Q and a positive number E(Q) for every 
Q E U such that the system (*) has a solution for I t 1 < a(Q). Denoting this 
solution by 

ut(v2, , vn, t) = exp (tX)ui(v2, ... , vn, 0) 

show that 

provided both sides are defined. In this way, we see that the 'exp' map defines 
a local 1-parameter group exp(tX) of (local) transformations. 

2. Conversely, every 1-parameter local group of local transformations tp, may be 
so defined. Indeed, for every P E M put 

and consider the vector field X defined by the initial conditions 

(or, rYp = (dP(t)/dt),,,). It follows that 

3. The map exp(tX) is defined on a neighborhood U(Q) for I t I < c(Q) and 
induces a map exp(tX), which is an isomorphism of Tp onto Tp(,,-the tangent 
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space at P(t) = exp(tX)P. The induced dual map exp(tX)* sends A(T&) 
into A (T;). For an element E /\"(Tp*,t,) 

is an element of AP(T,*). Show that 

and that consequently 

for any elements a, B E A *(T). 
Hint: Show that 

C. Frobenius' theorem and infinitesimal transformations 

1. Show that the conditions in Frobenius theorem (I. D.4) may be expressed 
in the following form: If the basis of the tangent space Tp at P E M is chosen 
so that the subspace F(P) of Tp of dimension r is spanned by the vectors 
XA(A = q + 1, ... , n) then, if we take 8 = e1 A ... A 89 the conditions of 
complete integrability are given by 

This is equivalent to the condition that [XA,XB] is a linear combination of 
Xu+,, .-. , X, only. In other words, F is completely integrable, if and only if, 
for any two infinitesimal transformations X,Y such that Xp, Yp' E F(P) for all 
P E U the bracket [X, YIP E F(P). 

2. Associated with the vector fields X and Y are the local one parameter groups 
vX(P,t) and vy(P,t). Then, [X,YIP is the tangent at t = 0 to the curve 

t t  t t 
WX. d P ,  t ) = v Y  (vx (?Y (vx (p, T ) 9  z), - 3), - ?) 

This formula shows, geometrically, the necessity of the integrability conditions 
for F. For, if Xp and Yp are contained in F(P) for all P E U and F is integrable, 
the integral curves of X and Y must be contained in the integral manifold. 
Hence, the formula shows that the above curves must also be contained in the 
integral manifold from which it follows that [X,YJp E F(P). 
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D. The third fundamental theorem of Lie 

By differentiating the equations (3.5.3), the relations 

are obtained. Conversely, assuming ~ constants c h  are given with the property 
that 

c:k + = 0, 

show that the conditions (3.D.1) are sufficient for the existence of n linear 
differential forms, linearly independent at each point of a region in R", and 
which satisfy the relations (3.5.3). 

This may be shown in the following way: 
Consider the system 

of n% linear partial differential equations in ns variables hi in the space R"+l of 
independent variables t, al, -, @-the al, go- ,  @ being treated as parameters. 
Given the initial conditions 

the equations (3.D.2) have unique (analytic) solutions hxt, a', -*, @) valid 
throughout R"+l. 

Observe that 

Hence, 

In particular, 

Now, define n linear differential forms of by 

In terms of the of,  2-forms hi and 1-forms af (both sets independent of dt) are 
defined by the equations 

dof = hi + dt A a*. (3.D.3) 
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Indeed, 

Differentiating the equations (3.D.3) we obtain 

dA' = dt A dai. 

On the other hand, 

It follows that 
a 

i ( T )  daj = akcirar 

and 
a 

i (=) dAj = cirak A wr + akQr - akc~ac;,wt A wa. 

Thus, 
a i (T) d t ~  = akckp. 

On the other hand, by setting 

afik - arci p -- 
at r a  jk* 

(3.D.4) 

Since hX0, a', -, an) = 0, it follows that fL(0, a', -, an) = 0. Consequently, 
by (3.D.4) the flk vanish for all t, and so the V vanish identically. Hence, 

K = A wk. 

Now, consider the map - 
+R"-cR"+' 

defined by 
+(XI, ***, X") = (1, Xl, ***, X") 

and set 
d = d*w'. 
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Then, the oi are 1-forms in R" and 

The linear independence of the oi is shown by making use of the fact that 
when a' = 0, i = 1, -, n, 

E. The homogeneous space SU(3)/S0(3) 

1. Show that a compact symmetric space admitting a vector field generating 
globally a 1-parameter group of non-isometric conformal transformations is 
isometric with a sphere. 

Hint: Apply the following theorem: If a compact simply connected symmetric 
space is a rational homology sphere, it is isometric with a sphere except for 
SU(3)/S0(3) [82]. The exceptional case may be disposed of as follows: Let G 
be a compact simple Lie group, o # identity an involutary automorphism of G 
(cf. VI.E.1) and H the subgroup of G consisting of all elements fixed by a.  Then, 
there exists a unique (up to a constant factor) Riemannian metric on G/H 
invariant under G. With respect to this metric, GIH is an irreducible symmetric 
space (that is, the linear isotropy group is irreducible). Hence, G/H is an Einstein 
space. But a compact Einstein space admitting a non-isometric conformal transforma- 
tion is isometric with a sphere [77]. 

Let G be the Lie algebra of SU(3) consisting of all skew-hermitian matrices 
of trace 0 and H the Lie algebra of SO(3) consisting of all real skew-hermitian 
matrices of trace 0. Let o denote the map sending an element of SU(3) into 
its complex conjugate. Since SU(3)/S0(3) is symmetric and simply connected, 
its homogeneous holonomy group is identical with G/H. It follows that the 
action of SO(3) on G/H is irreducible. Hence SU(3)/S0(3) is irreducible. 

That SU(3)/S0(3) does not admit a non-isometric conformal transformation 
is a consequence of the fact that it is not isometric with a sphere in the given 
metric. 

F. The conformal transforination group [79] 

1. Show that a compact homogeneous Riemannian manifold M of dimension 
n > 3 which admits a non-isometric conformal transformation, that is, for 
which Co(M) # Io(M) (cf. 93.7) is isometric with a sphere. 

To see this, let G = Io(M) and M = GIK. The subgroup K need not be 
connected. Since G is compact, it can be shown that the fundamental group 
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of M is finite. Indeed, the first betti number of M is zero by theorem 3.7.5. 
Secondly, M is conformally flat provided n > 3. For, if X is an infinitesimal 
conformal transformation 

4 
= - 86 (C, C) 

n 

where C is the conformal curvature tensor. This formula is an immediate 
consequence of (3.7.4) and the fact that B(X) C = 0. The manifold M being 
homogeneous, and the tensor C being invariant by Io(M), (C, C) is a constant. 
Therefore, if X is not an infinitesimal isometry, 86 # 0, from which (C, C) = 0, 
that is, C must vanish. Hence, if n > 3, M is conformally flat. 

Let I@ be the universal covering space of M. Since, the fundamental group 
of M is finite, i@ is compact. Since M is conformally flat, so is I@. Thus, I@ 
is isometric with a sphere. We have invoked the theorem that a compact, simply 
connected, conformally f i t  Riemannian manfold is conformal with a sphere [83]. 
The manifold M is consequently an Einstein space. I t  is therefore isometric 
with a sphere (cf. 111.32.1). 



CHAPTER IV 

COMPACT LIE GROUPS 

The results of the previous chapter are now applied to the problem 
of determining the betti numbers of a compact semi-simple Lie group G. 
On the one hand, we employ the facts on curvature and betti numbers 
already established, and on the other hand, the theory of invariant 
differential forms. I t  turns out that the harmonic forms on G are precisely 
those differential forms invariant under both the left and right trans- 
lations of G. The conditions of invariance when expressed analytically 
reduce the problem of the determination of betti numbers to a purely 
algebraic one. No effort is made to compute the betti numbers of the 
four main classes of simple Lie groups since this discussion is beyond 
the scope of this book. However, for the sake of completeness, we give 
the PoincarC polynomials in these cases omitting those for the five 
exceptional simple Lie groups. 

Locally, G has the structure of an Einstein space of positive curvature 
and this fact is used to prove that the first and second betti numbers 
vanish. These results are also obtained from the theory of invariant 
differential forms. The existence of a harmonic 3-form is established 
from differential geometric considerations and this fact allows us to 
conclude that the third betti number is greater than or equal to one. 
I t  is also shown that the Euler-PoincarC characteristic is zero. 

4.1. The Grassman algebra of a Lie group 

Consider a compact (connected) Lie group G. Its Lie algebra L 
has as underlying vector space the tangent space Te at the identity e E G. 
We have seen (§ 3.6) that an element A E Te determines a unique left 
invariant infinitesimal transformation which takes the value A at e; 
moreover, these infinitesimal transformations are the elements of L. 
Let Xa(a = 1, ..a, n) be a base of the Lie algebra L and oa(a = 1, ..., n) 
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the dual base for the forms of Maurer-Cartan, that is the base such that 
wa(X,) = 6; (a, = 1, - a ,  n). (In the sequel, Greek indices refer to vectors, 
tensors, and forms on T, and its dual.) A differential form a is said 
to be left invariant if it is invariant by every L,(a E G), that is, if L,*a = a 
for every a E G where L: is the induced map in A(T*). The forms of 
Maurer-Cartan are left invariant pfaffian forms. For an element X E L  
and an element a in the dual space, a(X) is constant on G. Hence, by 
lemma 3.5.2 

where X, Y are any elements of L and a any element of the dual space. 
If we write 

[X8, Xy] = cp,Q Xa, (4.1.2) 

then, from (4.1.1) 

The constants CBya are called the cmtanis of structure of L with respect 
to the base {XI, .-., XJ. These constants are not arbitrary since they 
must satisfy the relations 

a, /3, y = 1, n, that is 

and 

Capp CYpd + CbYP CWd + Cy/ cDPd = 0. (4.1.7) 

The equations (4.1.3) are called the equations of Maurer-Cartan. 
Since the induced dual maps L,* (a E G) commute with d, we have 

for any Maurer-Cartan form a, that is, if a is a left invariant 1-form, 
dor is a left invariant 2-form. This also follows from (4.1.3). More 
generally, if Aal.. are any constants, the p-form A, . wal A . .. A was 
is a left invariant differential form on G. That any feft rnvariant diffe- 
rential form of degree p > 0 may be expressed in this manner is clear. 
A left invariant form may be considered as an alternating multilinear 
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form on the Lie algebra L of G. We may therefore identify the left 
invariant forms with the homogeneous elements of the Grassman algebra 
associated with L. The number of linearly independent left invariant 
p-forms is therefore equal to (%). 

Lemma 4.1 .l. The underlying manifold of the Lie group G is orientable. 
Indeed, the n-form o1 A ... A un on G is continuous and different 

from zero everywhere. G may then be oriented by the requirement 
that this form is positive everywhere (cf. $ 1.6). 

The Lie group G is thus a compact, connected, orientable analytic 
manifold. 

4.2. Invariant differential forms 

For any X EL,  let ad(- be the map Y -+ [X, YJ of L into itself. 
It  is clear that X -t ad(X) is a linear map, and so, since 

we conclude that X -+ ad(X) is a representation. It  is called the adjoint 
representation of L (cf. 5 3.6). 

Let 8(X) be the (unique) derivation of A(Te) which coincides with 
ad(X) on T, = A l(T,) defined by 

O(X) (XI A ... A X,) = f: Xl A ... A [X,X,J A ... A X,. 
a=l 

Define the endomorphism B ( X )  ( X  E L) of A (T:) by 

where or1, . .a ,  a P  are any elements of A'(T,*) (cf. II.A.4). 

Lemma 4.2.1. B(X) is a derivation. 
If A; denotes the minor obtained by deleting the row a and column 
of the matrix ((X,, aa)); 

= ( 8 ( ~ )  (XI A ... A X,), or1 A ... A orp) 



= (ad(X) Xp, aa) A: 

= (XP,  - e(x) a") AP, 
P 

= (XI  A ... A Xp, a1 A ... A - 9(X) a y  A ... A ap). 
Y =l 

It follows that 

that is, O(X) is 

Lemma 4.2.2. 
Indeed, 

Lemma 4.2.3. 
It suffices to verify this formula for forms of degree 0 and 1 in A(T,*) 

-the Grassman algebra associated with L. The identity is trivial for 
forms of degree 0 since they are constant functions. In degree 1 we 
need only consider the forms ma. Then, 9(XB)wa = CyBawY. But, 

Corollary 4.2.3. O(X)d = de(X). 

Lemma 4.2.4. d = &(wa)O(Xa). 
It is only necessary to verify this formula for the forms of degrees 

0 and 1 in A(T,*). Again, since the forms of degree 0 are the constant 
functions on G both sides vanish. For a form of Maurer-Cartan wB 
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Let /3 be an element of Ap(T,*). Then, /3 is a left invariant p-form on G, 
and so may be expressed in the form = B %... , ual I\ ... A map 
where the coefficients are constants. Applying lemma 4.2.2 we obtain 
the formula 

I t  follows from lemma 4.2.4 that 

An element /3 of the Grassman algebra of G is said to be L-invariant 
or, simply, invariant if it is a zero of every derivation O ( X ) ,  XE L, that is, 
if B(X)#3 = 0 for every left invariant vector field X. Hence, an invariant 
differential form is bi-invariant. 
Proposition 4.2.t. An invariant form is a closed fonn. 

This is an immediate consequence of lemma 4.2.4. 
Remark: Note that the operatol? B ( X )  of 3.5 coincides with the 

operator B(X) defined here on forms only. 

4.3. Local geometry of a compact semi-simple Lie group 

From (4.1.2) it is seen that the structure constants are the components 
of a tensor on T, of type (1,2). A new tensor on T, is defined by the 
components 

gag = CaoP CP; 

relative to the base Xa(u = 1, . .a ,  n). I t  follows from (4.1.6) and (4.1.7) 
that this tensor is symmetric. I t  can be shown that a necessary and 
sufficient condition for G to be semi-simple is that the rank of the matrix 
(g@) is n. (A Lie group is said to be semi-simple if the fundamental 
bilinear symmetric form-trace ad X ad Y is non-degenerate). Moreover, 
since G is compact it can be shown that (g4) is positive definite. 

The tensor defined by the equations (4.3.1) may now be used to raise 
and lower indices and for this purpose we consider the inverse matrix 
(fl. The structure constants have yet another symmetry property. 
Indeed, if we multiply the identities (4.1.7) by Coba and contract we 
find that the tensor 

Cagy = gyo C*' (4.3.2) 
is skew-symmetric. 
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In terms of a system of local coordinates ul, ..., un the vector fields 
X& = 1, ..., n) may be expressed as Xa = fi(a/aui). Since G is 
completely parallelisable, the n x n matrix (6;) has rank n, and so, if 
we put 

g" = ft f; (4.3.3) 

the matrix (gij) is positive definite and symmetric. We may therefore 
define a metric g on G by means of the quadratic form 

where thegjk are elements of the matrix inverse to (gjk). Again, the metric 
tensor g may be used to raise and lower indices in the usual manner. 
It should be remarked that the metric is completely determined by 
the group G. 

We now define n covariant vector fields va(a = 1, . .a,  n) on G with 
components f?(i = 1, .-., n) (relative to the given system of local 
coordinates) by the formulae 

c = gap 4 gu. 

I t  follows easily that 

However, it does not follow that, in the metric g the X,(a = 1, . . a ,  n) are 
orthonormal vectors at each point of G. 

A set of n2 linear differential forms oj = c&uk is introduced in 
each coordinate neighborhood by putting 

By virtue of the equations (4.3.6) the qk may be written as 

It  is easily verified that equations (1.7.3) are satisfied in the overlap 
of two coordinate neighborhoods. The d forms oj in each coordinate 
neighborhood define therefore an affine connection on G. The torsion 
tensor Tjkf of this connection may be written as 

(The factor is introduced for reasons of convenience (cf. 1.7.18)). 
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Since the equations (4.1.2) may b e  expressed in terms of the local 
coordinates (u" in the form 

it is easy to check that 

i P Y  T,: = g,3; 5. 6, Z k  

from which we conclude that the covariant torsion tensor 

Tjkl = gig G k i  

is skew-symmetric. It  follows from (1.9.12) that 

where the u,} are the coefficients of the Levi Civita connection. Hence, 
from (4.3.7) 

Lemma 4.3.1. The elements of the Lie algebra L of G a'ejne translations 
in G. 

Indeed, from (4.3.12) and (4.3.8) 

where D, is the operator of covariant differentiation with respect to the 
Levi Civita connection. Multiplying these equations by and con- 
tracting we obtain 

- f: Dk e: = T,:. 

Again, if we multiply by 6; and contract, the result is 

These equations may be rewritten in the form 

Dk 6; = T,: 8 
from which we conclude that 8(XB)g = 0. 
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4.4. Harmonic forms on a compact semi-simple Lie group 

In terms of the metric (4.3.4) on G the star operator may be defined 
and we are then able to prove the following 

Proposition 4.4.1. Let a be an invariant p-form on G. Then, 

(i) da is invariant; 
(ii) *a is invariant, and 
(iii) if a = d/3, /3 is invariant. 

Let X be an element of the Lie algebra L of G. Then, B(X)da = 
dB(X)a = 0; B(X)*a = *B(X)a = 0 by formulae (3.7.7) and (3.7.11). 
Hence, (i) and (ii) are established. By the decomposition theorem of 5 2.9 
we may write a = d8Ga where G is the Green's operator (cf. II.B.4). 
Since 6 = (- l)np+n+l*d* on p-forms we may put a = d*dy where y 
is some (n - p)-form. Then, 0 = B(X)a = 9(X)d*dy = dB(X)*dy 
= dd(X)dy = d*dB(X)y, from which 8dO(X)y = (- l)np+l*d*dO(X)y 
= 0. Since (SdB(X)y, B(X)y) = (dB(+, dB(X)y) and B(X)dy = dB(+, 
dy is invariant. Thus, from (ii), *dy is invariant. This completes 
the proof of (iii). 

Proposition 4.4.2. The harmonic forms on G are invariant. 
This follows from lemma 4.3.1 and theorem 3.7.1. 

Proposition 4.4.3. The invariant forms on G are harmonic. 
Indeed, if /3 is an invariant p-form it is co-closed. For, by lemma 4.2.4, 

Hence, by prop. 4.2.1, /3 is harmonic. 
Note that prop. 4.4.1 is a trivial consequence of prop. 4.4.3. 
Therefore, in order to find the harmonic forms /3 on a compact Lie 

group G we need only solve the equations 

where /3 = B4.. ' r a l  A ... A ' r a p .  The problem of determining the 
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betti numbers of G has as a result been reduced to purely algebraic 
considerations. 

Remarks : In proving prop. 4.4.3 we obtained the formula 

thereby showing that 6 is an anti-derivation in A(Tz) .  (The proposition 
could have been obtained by an application of the Hodge-de Rham 
decomposition of a form). I t  follows that the exterior product of harmonic 
form on a compact semi-simple Lie group is ako harmonic. 

Theorem 4.4.1. The Jirst and second betti numbers of a compact semi- 
simple Lie group G vanish. 

Let /? = Bawa be a harmonic 1-form. Then, from (4.4.2), B,, Gal$ = 0. 
Multiplying these equations by CyMl = Cypal and contracting results 
in By = 0, y = 1, .-., n. 

If a = A4 wa A w@ is a harmonic 2-form, then by (4.4.2) 

Permuting ar, /3 and y cyclically and adding the three equations obtained 
gives 

ApB Ca,P + ApO Cy$ + Ap y Cpap = 0, 

and so from (4.4.3) 

Multiplying these equations by Cd4 results in Ayd = 0 (y, S = 1, ..., n). 
Suppose G is a compact but not necessarily semi-simple Lie group. 

We have setn that the number of linearly independent left invariant 
differential forms of degree p on G is (g). Tf we assume that bJG) = (g), 
then the Euler characteristic x(G) of G is zero. For, 

(This is not, however, a special implication of b,(G) = (g) (cf. theorem 
4.4.3)). 

A compact (connected) abelian Lie group G has these properties. 
For, since G is abelian so is its Lie algebra L. Therefore, by (4.1.2) 
its structure constants vanish. A metric g is defined on G as follows: 
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Now, by lemma 4.2.2, B(XP)wa = 0, a, = 1, --, n, that is the wa are 
invariant. Hence, by the proof of prop. 4.4.3 they are harmonic with 
respect to g. Since B(X), X E L is a derivation, B(X)& = 0 for any left 
invariant p-form a. We conclude therefore that b,(G) = (i). 

Theorem 4.4.2. A compact connected abelian Lie group G is a multi-torus. 
T o  prove this we need only show that the vector fields X&(a = 1, -, n) 

are parallel in the constructed metric. (This is left as an exercise for the 
reader.) For, by applying the interchange formulae (1.7.19) to the 
X,(u = 1, a * . ,  n) and using the fact that the Xa are linearly independent 
vector fields we conclude that G is locally flat. However, a compact 
connected group which is locally isomorphic with En (as a topological 
group) is isomorphic with the n-dimensional torus. 

We have seen that the Euler characteristic of a torus vanishes. I t  is 
now shown that for a compact connected semi-simple Lie group G, 
x(G) = 0. Indeed, theaproof given is valid for any compact Lie group. 
Let v, denote the number of linearly independent left invariant p-forms 
no linear combination of which is closed; v,, is then the number 
of linearly independent exact p-forms. Since the dimension of AP(T,*) 
is (g) we have by the decomposition of a p-form 

= (- lp+l v,, - Yo, 

and so, since v, = v, = 0, x(G) = 0. 

Theorem 4.4.3. The Euler characteristic of d compact connected Lie 
group vanishes. 

4.5. Curvature and betti numbers of a compact semi-simple Lie 
group G 

In this section we make use of the curvature properties of G in order 
to prove theorem 4.4.1. We begin by forming the curvature tensor 
defined by the connection (4.3.7). Denoting the components of this 
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tensor by Eijkl with respect to a given system of local coordinates 
ul, - a ,  un we obtain 

where the Ri,,, are the components of the Riemannian curvature tensor. 
Since the Ejkl all vanish and since D,Tj," 0, it follows from the 
Jacobi identity that 

By virtue of the equations (4.3.1) and (4.3.10) 

Hence, forming the Ricci tensor by contracting on i and 1 in (4.5.1) 
we conclude that 

R j k  = h , k *  

It follows that G is locally an Einstein space with positive scalar curvature, 
and so by theorem 3.2.1, the first betti number of G is zero. 

In order to prove that b,(G) is also zero we establish the following 

Lemma 4.5.1. In a coordinate naghborhood U of G with the local 
coordinates (ui) (i = 1, . s o ,  n), we have the inequalities 

where the fij = - fji are functions in U defining a skew-symmetric 
tensor $eld f of type (0,2) andf = t(ij, dui A duj [74. 

In general, the curvature tensor defines a symmetric linear trans- 
formation of the space of bivectors (cf. 1.1.). The above inequality says 
it is negative definite with eigenvalues between 0 and - 4. 

Since the various sides of the inequalities are scalar functions on G 
the lemma may be proved by choosing a special system of local 
coordinates. In fact, we fix a point 0 of G and choose (geodesic) 
coordinates so that at 0, gij = 8;. Then, since 

and so the 21/Z TI, (r < s, j = I ,  a m . ,  n) represent n orthonormal vector 



fields in En(n-l)J2. We denote by TA,, (r < s, A = n + 1, ---, n(n - 1)/2), 
(n(n - 1)/2) - n orthonormal vectors in En(n-1)/2 orthagonal to the 
vectors Tj,. Hence, 

for i < j, k < I ( S ( i l ) ( k l )  = 1 if i = k, j = I and vanishes otherwise), 
and so 

n(n-l)/% 

8 2 (2 Tij. + 2 (2 T i j ~  fij)l = 2 
s=l i d  A=n+l ici i < j  

We may therefore conclude that 

This completes the proof. 
A straightforward application of theorem 3.2.4 shows that b2(G) = 0 

by virtue of the lemma and formula (4.5.2). 

Theorem 4.5.1. b3(G) 5 1. 
For, the torsion tensor (4.3.1 1) defines a harmonic 3-form on G. 
For more precise information on b3(G) the reader is referred to 

(1V.B). 

4.6. Determination of the betti numbers of the simple Lie groups 

We have seen that a p-form on a compact semi-simple Lie group G 
is harmonic, if and only if, it is invariant and therefore, in order to 
find the harmonic forms /3 on G, it is sufficient to solve the equations 
(4.4.2) for the coefficients Ba ap of 8. 

A semi-simple group is the direct product of a finite number of simple 
non-commutative groups. (A Lie group is said to be simple if there are 
no non-trivial normal subgroups). Hence, in order to give a complete 
classification of compact semi-simple Lie groups it is sufficient to 
classify the compact simple Lie groups. There are four main classes 
of simple Lie groups: 

1) The group A, of unitary transformations in (1 + 1)-space of 
determinant + 1 ; 
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2) The group B,: this is the orthogonal group in (21 + 1)-space the 
elements of which have determinant + 1 ; 

3) The group C,: this is the symplectic group in 21-space, that is C ,  
is the group of unitary transformations leaving invariant the skew- 
symmetric bilinear form Z&, auxtyi where the coefficients are given by 

- a,-,,, - - a ,,,-I = 1 with all other a,* = 0;  

4) The group Dl of orthogonal transformations in 21-space (1 = 3, 
4, * e m ) ,  the elements of which have determinant + 1. 

There are also five exceptional compact simple Lie groups whose 
dimensions are 14, 52, 78, 133, and 248 commonly denoted by G,, 
F,, E,, E,, and E,, respectively. 

The polynomial pG(t) = b, + b,t + + b,tn where the b4 (i = 
0, - a ,  n) are the betti numbers of G is known as the Poincard polynomial 
of G. Let G = G, x x G, where the Gd (i = 1, ..., k) are simple. 
Then, it can be shown that 

where pGI(t) is the PoincarC polynomial of G,. Therefore, in order to 
find the betti numbers of a compact semi-simple Lie group we first 
express it as the direct product of simple Lie groups, and then compute 
the PoincarC polynomials of these groups, after which we employ the 
formula (4.6.1). 

Regarding the topology of a compact simple Lie group we already 
know that (a) it is orientable; (b) b, = b, = 0, b3 2 1 and, therefore, 
since the star operator is an isomorphism (or, by PoincarC duality) 
bn-, = bn-, = 0, b,-, 2 1 ; (c) the Euler characteristic vanishes. 

We conclude this chapter by giving (without proof) the PoincarC 
polynomials of the four main classes of simple Lie groups: 

Remark : A, = B1 = C1, B, = C2 and A3 = Ds. 



EXERCISES 

EXERCISES 

A. The second betti number of a compact semi-simple Lie group 

1. Prove that b,(G) = 0 by showing that if a is an harmonic 2-form, then i(X)a 
vanishes for any X E L .  Make use of the fact that b,(G) = 0. 

B. The third betti number of a compact simple Lie group [48] 

1. Let Q(L) denote the vector space of invariant bilinear symmetric forms on L, 
that is, the space of those forms q such that 

for any X,Y,Z E L. To  each q E Q(L) we associate a 3-form a(q) by the condition 

Evidently, the map 
4 -+ 4 4 )  

is linear. 

2. For each q E Q(L) show that a(q) is invariant, and hence harmonic. 

3. Since the derived algebra [L,L] = {[x,Y] I X,Y E L )  coincides with L, 
the map q -t a(q) of 

QtL) + A: (T*) 

is an isomorphism into. Show that it is an isomorphism onto. Hence, b,(G) = 
dim Q(L). 

Hint: For any element a E A ~ ( T * )  and X E L, i(X)a is closed. Since b,(G) = 0, 
there is a 1-form /3 = Px such that i(X)a = dPs Now, show that 

that is 

Finally, show that the bilinear function 

qtX,Y) = - (X, BY) 
is invariant. 

4. Prove that if G is ;r simple Lie group, then b,(G) = 1. 



CHAPTER V 

In a well-known manner one can associate with an irreducible curve V ,  
a real analytic manifold M2 of two dimensions called the Riemann 
surface of Vl. Since the geometry of a Riemann surface is conformal 
geometry, M2 is not a Riemannian manifold. However, it is possible to 
define a Riemannian metric on M Z  in such a way that the harmonic 
forms constructed with this metric serve to establish topological in- 
variants of Me. In his book on harmonic integrals 1391, Hodge does 
precisely this, and in fact, in seeking to associate with any irreducible 
algebraic variety V, a Riemannian manifold MZn of 2n dimensions he is 
able to obtain the sought after generalization of a Riemann surface 
referred to in the introduction to Chapter I. The metric of an Mw has 
certain special properties that play an important part in the sequel 
insofar as the harmonic forms constructed with it lead to topological 
invariants of the manifold. The approach we take is more general and 
in keeping with the modern developments due principally to A. Weil 
[70, 721. We introduce first the concept of a complex structure on a 
separable Hausdorff space M in analogy with 5 1 .l. In terms of a 
given compl&x structure a Riemannian metric may be defined on M. 
If this metric is torsion free, that is, if a certain 2-form adsociated with 
the metric and complex structure is closed, the manifold is called a 
Kaehler manifold. As examples, we have complex projective n-space P, 
and, in fact, any projective variety, that is irreducible algebraic variety 
holomorphically imbedded without singularities in P,. 

The local geometry of a Kaehler manifold is studied, and in Chapter VI, 
from these properties, its global structure is determined to some extent. 
In Chapter VII we further the discussions of Chapter I11 by considering 
groups of transformations of Kaehler manifolds-in particular, Kaehler- 
Einstein manifolds. It  may be said that of the diverse applications of the 
theory of harmonic integrals, those made to Kaehler manifolds are 
amongst the most interesting. 
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5.1. Complex manifolds 

A complex analytic or, simply, a complex manifold of complex dimension 
n is a 2n-dimensional topological manifold endowed with a complex 
analytic structure. This concept may be defined in the same way as the 
concept of a differentiable structure (cf. $ 1.1)-the notion of a holo- 
morphic function replacing that of a differentiable function. Indeed, 
a separable Hausdorff space M is said to have a complex analytic structure, 
or, simply, a complex structure if it possesses the properties: 

(i) Each point of M has an open neighborhood homeomorphic 
with an open subset in Cn, the (number) space of n complex variables; 
that is, there is a finite or countable open covering {U,), and for each 
a, a homeomorphism u, : U, -+ C,, ; 

(ii) For any two open sets U, and Up with non-empty intersection 
the map up;l : ua(Ua n Up) --+ Cn is defined by holomorphic functions 
of the complex coordinates with non-vanishing Jacobian. 

The n complex functions defining u, are called local complex coordinates 
in U,. The concept of a holomorphic function on M or on an open subset 
of M is defined in the obvious way (cf. V.A.). Every open subset of M 
has a complex structure, namely, the complex structure induced by 
that of M (cf. $ 5.8). 

A complex manifold possesses an unhlying real analytic structure. 
Indeed, corresponding to local complex coordinates zl, .-., zn we have 
real coordinates xl, a s - ,  xn, yl, -.. , yn where 

moreover, in the overlap of two coordinate neighborhoods the real 
coordinates are relateai by analytic functions with non-vanishing 
Jacobian (cf. V.A.). 

Any real analytic function may be expressed as a formal power 
series in zl, , zn, i?, , Zn by putting 

where Zk denotes the complex -conjugate of zk. Consequently, whenever 
real analytic coordinates are required we may employ the coordinates 
.$, ... , zfi, 51, * - * ,  zn. 

For reasons of motivation we sacrifice details in the remainder of 
this section, clarifying any misconceptions beginning with $5.2. 

We consider differential forms of class 00 with complex values on a 
complex manifold. Let U be a coordinate neighborhood with (complex) 
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coordinates zl, ..-, zn. Then, the differentials dzl, -.., dzn constitute a 
(complex) base for the differential forms of degree 1. It  follows that a 
differential form of degree p may be expressed in U as a linear 
combination (with complex-valued coefficients of class w) of exterior 
products of p-forms belonging to the sets {dzi} and {dZi}. A term 
consisting of q of the {dzi} and r of the {dZi} with q + r = p is said 
to be of bidegree (q, r). A differential form of bidegree (q, r) is a sum 
of terms of bidegree (q, r). The notion of a form of bidegree (q, r) is 
independent of the choice of local coordinates since in the overlap of 
two coordinate neighborhoods the coordinates are related by holo- 
morphic functions. A differential form on M is said to be of bidegree 
(q, r) if it is of bidegree (q, r) in a neighborhood of each point. 

I t  is now shown that a complex manifold is orientable. For, let zl, ..a, zn 
be a system of local complex coordinates and set zk = sL + C y k .  

Then, the xi and yJ together form a real system of local coordinates. 
Since dzk A dZk = - 2 G l d 2  A dyk, 

It  follows that the form 

is real. That M is orientable is a consequence of the fact that 8 is defined 
globally up to a positive factor. For, let wl, ..., wn be another system 
of local complex coordinates. Then, 

dwl A ... A dwn = Jdzl A ... A dzn 
where 

qwl, ..., wn) J = det 
qzl, ...,P) 

Hence, dfil A ... A dGn = jdZ1 A ... A dZn from which 

To  define 8 globally we choose a locally finite covering and a partition 
of unity subordinated to the covering. 

We have seen that a complex manifold is by definition even dimensional 
and have proved that it is orientable. These topological properties 
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however, are not sufficient to ensure that a separable Hausdorff space 
has a complex structure as may be shown by the example of the 4-sphere 
due to Hopf and Ehresmann [30]. It is beyond the scope of this book 
to display this example as it involves some familiarity with the theory 
of characteristic classes. 

Examples of complex manifolds : 

1) The space of n complex variables Cn: It  has one coordinate neigh- 
borhood, namely, the space of the variables zl, .-*, zn. 

2) An oriented surface S admits a complex structure. For, consider a 
Riemannian metric ds2 on S. Locally, the metric is 'conformal', that is, 
there exist isothermal parameters u, v such that ds2 = A(du2 + dv2) with 
h > 0. We define complex (isothermal) coordinates z, 5 by putting 
z = u + iv where the orientation of S is determined by the order (u, v). 
In these local coordinates ds2 = h dz d5. In terms of another system 
of isothermal coordinates (w, 6), dsZ = p dw d6.  Since dw = a dz + b d5 
it follows that a6 = a'b = 0, from which, by the given orientation b = 0 
and dw = a dz. We conclude that w is a holomorphic function of z. 
Hence, condition (ii) for a complex structure is satisfied. 

3) The Riemann sphere S2: Consider SZ as C v 00, that is as the one 
point compactification of the complex plane. A complex structure is 
defined on S2 by means of the atlas: 

(U,, 24,) = (C, 6) where i is the identity map of C, 

In the overlap I/; n U2 = C - 0, u2ui1 is given by the holomorphic 
function 5 = llx. 

4) Complex projective space P,: Pn may be considered as the space 
of complex lines through the origin of Cn,, (cf. 5 5.9 for details). It is 
the proper generalization to n dimensions of the Riemann sphere PI. 

5) Let r be a discrete subgroup of maximal rank of the group of 
translations of Cn and consider the manifold which is the quotient of 
Cn by I'; this is a complex multi-torus-the coordinates of a point of C, 
serving as local coordinates of Cn / r  (cf. $5.9). 

6) Senm1 x S1: Let G denote the group generated by the trans- 
/ formation of Cn - 0 given by (a1, ... , zn) + (29, ..- ,229. Evidently, 
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(Cn - O)/G is homeomorphic with Sari-I x S1 and has a complex 
structure induced by that of Cn - 0. The group G is properly dis- 
continuous and acts without fixed points (cf. 5 5.8). The quotient 
manifold (Cn- O)/G is called a Hopf manifold (see p. 167 and VII D). 

7) Every covering ot a complex manifold has a naturally induced 
complex structure (cf. 5 5.8). 

5.2. Almost complex manifolds 

The concept of a complex structure is but an instance of a more 
general type of structure which we now consider. This concept may be 
defined from several points of view-the choice made here being 
geometrical, that is, in terms of fields of subspaces of the complexified 
tangent space. Indeed, a 'choice' of subspace of the 'complexification' 
of the tangent space at each point is made so that the union of the sub- 
space and its 'conjugate' is the whole space. The given subspace is then 
said to define a complex structure in the tangent space at the given 
point. More precisely, if at each point P of a differentiable manifold, 
a complex structure is given in the tangent space at that point, which 
varies differentiably with P, the manifold is said to have an almost 
complex structure and is itself called an almost complex manifold. 

With a vector space V over R of dimension n we associate a vector 
space Vc over C of complex dimension n called its complexification as 
follows: Let Vc be the space of all linear maps of V* into C where, as 
usual, V* denotes the dual space /$ V. Then, VC is a vector space over 
C, and since (V*)* can be idedified with V, VC3 V. An element 
v E Vc belongs to V, if and only if, for all a E V*, a(v) E R. Briefly, 
Vc is obtained from V by extending the field R to the field C. -- 

Let 4 be an isomorphism of C, onto VC. The vector B = +($-l(v)), 
v E Vc is called the conjugate of v. The vector v is said to be real if 
B = v. Clearly, the real vectors of Vc form a vector space of dimension 
n over R. To  a linear form a on Vc we associate a form & on Vc defined by 

The map a -+ 6 is evidently an involutory automorphism of (Vc)*. 
On the space VC, tensors may be defined in the obvious way. The 

involutory automorphism v + 6, v E VC defines an involutory auto- 
morphism t 4 i, t E (VC)L (the linear space of tensors of type (r, 0) on 
Vc). Every tensor on V (relative to GL(n, R)) defines a tensor on Vc, 
namely, the tensor coinciding with its conjugate, with which it may be 
identified. Such a tensor on Vc is said to be real. 



Now, let V be a real vector space of even dimension 2n. A subspace. Wc 
of the complexification Vc of V of complex dimension n is said to 
define a complex structure on V if 

where rc is the space consisting of all conjugates of vectors in We. 
In this case, an element v E VC has the unique representation 

Since 
v = W1 + fz,, W1, W, E WC. 

a = fzl + w,, 

the (real) vectors v of V are those elements of Vc which may be written 
in the form 

v=w+ciii, WEWC. 

We proceed to show that a complex structure on V may be defined 
equivalently by means of a certain tensor on V. Indeed, to every vector 
v E V there corresponds a real vector Jv E V defined by 

where v = w + 6, w E Wc. 
The operator J has the properties: 
(i) J is linear 

and 
(ii) JZv s J(Jv) = - v. 

Moreover, J may be extended to Vc by linearity. The operator J.is a 
'quadrantal versor', that is, it has the effect of multiplying w by l/=i 
and 6 by --2/:1. Thus- Wc is the eigenspace of J for the eigenvalue 
-1 and Pc that for the eigenvalue -47. Hence, a complex 
structure on V defines a linear endomorphism J of V, that is, by 5 1.2, 
a tensor on V, with the property 

Je = - I, (5.2.2) 

where I is the identity opergtor on V. 
Conversely, let V be a real vector space of dimension m and J a 

linear endomorphism of V satisfying (5.2.2). Since a tensor on V defines 
a real tensor on the complexification Vc of V, J may be extended to Vc- 
We seek the eigenvectors and eigenvalues in Vc of the operator 1. 
For this purpose put 

Jv = m, v E VC. 
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Applying J to both sides of this relation gives 

Hence, the eigenvalues are I /  - 1 and - <-7, and so since J is a 
real operator, that is JY= Jc, the eigenvectors of - -1 are the 
conjugates of those of 1/?. The vector space V must therefore be 
even dimensional, that is m = 2n. The eigenvectors of 1 / 7  form a 
vector space of complex dimension n which we denote by F0 and those 
corresponding to - I/? form the vector space VOgl = V1sO; moreover, 

that is Vc = Po @ VOJ (direct sum). Thus, the tensor J defines a 
complex structure on V. 

An element of the eigenspace V p o  will be called a vector of bidegree 
(or type) (1,O) and an element of VOJ a vector of bidegree (or type) (0,l). 

A complex structure may be defined on the dual space of V in the 
obvious manner. The tensor product 

may then be decomposed into a direct sum of tensor products of vector 
spaces each identical with one of the spaces V1sO, VJ, V*lpO and V*Osl. 
A term in this decomposition is said to be a pure tensor space and an 
element of such a space is called a tensor of type ($2) if Po occurs 
q, times, ' V O t l  - r, times, V*lsO - q, times and V*OJ - r,  times. 
A skew-symmetric tensor or, equivalently, an element of the Grassman 
algebra over Vc (or (VC)*) is a sum of pure forms each of which is said 
to be of bidegree (q,, r,) (or (q,, r,)). For example, 

that is, an element of the tensor space VC @ Vc is a sum of tensors 
of types (i g), (: i) and (g 9. We denote by //gpr the space of forms of 
bidegree (q, r). 

In the sequel, we shall employ the following systems of indices unless 
otherwise indicated: upper case Latin letters A, B, ..- run from 1, ..., 2n 
and lower case Latin letters i, j, run from 1, .-., n; moreover, i* = i + n 
and (i + n)* = i. 

Let {e,, . . a ,  e,) be a basis of V1pO. Denote the conjugate vectors Zd 
by ed,, i = 1, ..., n. Apparently, they form a basis of VOJ, and since 
VC = P C  @ Pa1, the 2n vectors {ed, e,,} form a basis of VC. Such a 



basis will be called a J-basis where J is the linear endomorphism defining 
the complex structure of V. Any two J-bases {ei, e,.), {ei, el.} are 
related by equations of the form 

where (a:) is a non-singular n x n matrix with complex coefficients, 
that is (a:) is an element of the general linear group GL(n, C) satisfying 
a:: = a:. With respect to a J-basis the tensor J has components FBA 
where 

F,' = F: = - ~XS:, F,: = Fji* = 0. (5.2.4) 

Hence, an element v E V (as a subset of Vc) has the components (vi, vi*) 
where vi* = Ci and its image by J the components (Jv)' = d q v i ,  
(Jv)i* = - d q v i * .  

Consider the real basis Cfi, fi,) defined in terms of the J-basis 
{e,, e5*) of Vc: 

Since 

the vectors {fi, fi.}, i = 1, ..., n define a basis of Vc as well as V. Con- 
versely, from a basis of V of the type (fi, f,,), where&, = Jf, we obtain 
from (5.2.6) a basis of Vc, since gi = e,,. 

If the matrix (a:) in (5.2.3) is written as (a2 = (bj) + d?(ci) 
where (b;), (cj) are n x n matrices, any two real bases of the type defined 
by (5.2.5) are related by a matrix of the form 

called the real representation of the matrix (a:). We remark that the 
determinant of the real representation of (a:) is I det(a:) I 2  > 0. 

With respect to the real basis Cfi, fie) the tensor J is given by the matrix 
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I t  is easy to see that an element of GL(2n, R) belongs to the real repre- 
sentation of GL(n, C), if and only if, it commutes with J,. 

A metric may be defined on V by prescribing a positive definite 
symmetric tensor g on V (cf. § 1.9). In terms of a given basis of V we 
denote the components of g by gA,. Suppose V is given the complex 
structure J. Then, an hermitian structure is given to V by insisting 
that J be an isometry, that is, for any v E V 

An equivalent way of expressing this in terms of the prescribed base is 

The tensors g and J are then said to commute. The space V endowed 
with the hermitian structure defined by J and the hermitian metric g 
is called an hermitian vector space. I t  is immediate from (5.2.7) and 
J2 = - I that for any vector a, the vectors v and Jv are orthogonal. 

Let FAB = FAC gBC and consider the 2-form 52 on V defined in terms 
of a given basis of V by 

l2 =&FABwA A wB (5.2.9) 

where the uA(A = 1, ..., 2n) are elements of the dual base. We define 
an operator which is again denoted by J on the space of real tensors t 
of type (092) by 

( JZ)AB = ~ A C  FB'. (5.2.10) 

Denoting by J once again the induced map on 2-forms and taking 
account of (5.2.8) we may write JSZ = g. 

The metric of any Euclidean vector space with a complex structure 
can be modified in such a way that the space is given an hermitian 
structure. To see this, let V be an Euclidean vector space with a complex 
structure defined by the linear transformation J. Define the tensor k 
in terms of J and the metric h of V as follows: 

Since the metric of V is positive definite, so is the quadratic form k 
defined by h, and therefore, the metric defined by 

is also positive definite. A computation yields 



The 2-form 52 defined by J and g has rank 2n. Indeed, the coefficients 
of 52 are given by FAB = FAC. 

Relative to a J-basis the metric tensor g has gtj, = gj., as its only 
non-vanishing components as one may easily see from (5.2.8) and (5.2.4). 
Moreover, since g is a real tensor 

The tensor g on VC is then said to be self adjoint. 
More generally, let t be a tensor and denote by J* the operation o 

starring the indices of its components (with respect to a J-basis). Then, 
if t the tensor t is said to be self adjoint. Evidently, this is 
equivalent to saying that t is a real tensor. 

From (5.2.4) one deduces that the only non-vanishing components 
of the covariant form of the tensor J with respect to a J-basis are 

F, = d - 7  g,* , Fj*, = --<I gj* ,. (5.2.1 1) 

The form 52 then has the following representation 

Q =agij* w' A d ' .  (5.2.12) 

We also consider the tensor FAB = f C F c B .  From (5.2.4) and 
(5.2.1 1) its only non-vanishing components (with respect to a J-basis) 
are 

F; = - 8:, F$ = 6 1  8:. 

Evidently, 
FAB = - pBA 

and 

Thus, the tensor FAB defines a complex structure J on V called the 
conjugate of J. 

Let v, and v, be any orthogonal vectors on the hermitian vector 
space V. If we insist that v; be orthogonal to Jv, as well, then, from 
(5.2.7), v,, v,, Jv, and Jv, are mutually orthogonal. 

I,et Cf,, f,.), i = 1, .-., n where f,, = Jf, be a real orthonormal basis 
of V. Such a basis is assured by the hermitian structure defined by 
J and g. Then, in terms of the J-basis (ez, e,,) defined by (5.2.6) 
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that is gij. = g(ei, e,.) = 4,. The form S) may then be written as 

A differentiable manifold M is said to possess an almost complex 
structure if it carries a real differentiable tensor field J of type (1, 1) 
(and class k) satisfying 

J" - 1. 

(By 5 1.2, the tensor field J may be considered as a linear endomorphism 
of the space of tangent vector fields on M). It follows that an almost 
complex structure is equivalently defined by a field of subspaces WE 
(of class k and dimension n) of TC (the complexification of the space 
of tangent vector fields) such that 

A manifold with an almost complex structure is said to be an almost 
complex manifold. 

Evidently, an almost complex manifold is even ditnett~t'onal. 
We now show that a complex mantjCbld M is almost complex. Indeed, 

let U be a coordinate neighborhood of M with the local complex 
coordinates zl, a - ,  P. We have seen that M possesses an underlying 
real analytic structure and that relative to it zl, -.-, zn, 9, -., Zn may be 
used as local coordinates. Following the notation of 5 5.1, we define 

Let P be a point of U. Then, the differentials dzl, . -, dzn, d 9 ,  . -, dZn 
at P define a frame in the complexification (Tg)* of the dual space T,* 
of the tangent space Tp at P and by duality a frame {a/azi, a/a$) in TE, 

If P belongs to the intersection U n U' of the coordinate neighbor- 
hoods U and U' the differentials (dzi) and (dzti) are related by 

and their duals (a/&+), (a/ azfi) by 

where (a;) E GL(n, C) is the matrix of coefficients 



I t  follows that the n vectors ( a / a ~ i ) ~  define a subspace W: of Pp and that 

that is, these vectors determine a complex structure on Tp. Hence, at 
each point P E M a complex structure is defined in the tangent space 
at that point. Moreover, at a given point any two frames are related 
by equations of the form (5.2.3), that is, only those frames {XI, *-, X,, 
XI,, -, X,,) are allowed which are obtained from the frame 

Hence, the complex structure on M defines a real analytic tensor field 
J of type (1, 1) on M. 

One may easily check that if a differentiable manifold possesses two 
complex structures, giving rise to the same almost complex structure, 
they must coincide. 

We have seen that a complex manifold is orientable. An almost 
complex manifold also enjoys this property, this being a consequence 
of the fact that for every neighborhood U of a point P of the manifold 
and at every point Q of U there exists a set of real vectors XI, **., X, 
such that XI, a * . ,  X,, JX,, ..., JX, are independent vectors; moreover, 
from (5.2.3) and (5.2.5) any two real bases of this type are related by a 
matrix of positive determinant. In other words, the existence of a J-basis 
(cf. 5.2.6) at each point ensures that the almost complex manifold is 
orientable (cf. 5 5.1 for the dual argument). 

Let M be an almost complex manifold with the almost complex 
structure J. The almost complex structure is said to be intepabb if M 
can be made into a complex manifold so that in a coordinate neighbor- 
hood with the complex coordinates (&) operating with J is equivalent to 
transforming a/azi and a/aZl into a / a ~ i  and - .\/- a/aZi, 
respectively. It  is not difficult to see that if the almost complex 
structure which is equivalently defined by the tensor field FAB of type 
(1, 1) in the (real) local coordinates (uA) = (zi, 50 is integrable, then 
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One merely considers a J-basis with respect to which the functions 
FAB are given by (5.2.4). 

Conversely, if the almost complex structure given by J is of class 
1 + a (0 < a < I), that is, the derivatives are Holder continuous with 
exponent a, and if the structure tensor satisfies the (integrability) 
conditions (5.2.18), it is integrable [85]. The proof of this important fact 
is patterned after that of Newlander and Nirenberg [84] who assumed 
that the structure is of class 211 + a. Hence, in order that an almost 
complex structure. define a complex structure it is not necessary that it 
be analytic or even of class w. For real analytic manifolds with real 
analytic FAB the above result follows from a theorem of Frobenius 
(cf. I.D.4). For n = 1 the problem is equivalent to that of introducing 
isothermal parameters with respect to the metric 

and Chern showed that this is possible even if the structure is of class a. 

5.3. Local hermitian geometry 

If at each point P of the complex manifold M of complex dimension n 
the tangent space Tp is endowed with an hermitian metric so that (as 
functions of local coordinates) the metric tensor g is of class w, M is 
said to be an hermitian manifold. Evidently, such a manifold is also 
Riemannian. On the other hand, since the complex structure is defined 
by a tensor field J of type (1, l), if the complex manifold M is given an 
'arbitrary' Riemannian metric, a new metric g can be found which com- 
mutes with J. The metric g together with the tensor field J is said to 
define an hermitian structure on M (cf. 5.2.8). In  this way, it is seen 
that every complex manifold possesses an hermitian metric. The (local) 
geometry of an hermitian manifold is called hermitian geometry. 

In the same way as the bundle of frames with the orthogonal group 
as structural group is natural for the study of Riemannian geometry, 
the bundle of unitary frames, that is, the bundle of frames with the 
unitary group U(n) as structural group, is natural for hermitian geometry. 
Indeed, by a unitary frame at the point P E M we shall mean a J-basis 
{XI, ---, X,, XI,, ..., X,,) at P of the type satisfying (5.2.13), that is 

where Xi Xj, = g(X*, XI,). 
The collection of all such frames at all points P E M forms a fibre 

bundle B over M with U(n) as structural group. A frame at P,  that is an 
element of the fibre over P may be determined by means of a system of 
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local complex coordinates (ai) at P by the natural basis {a/az?, 
i = 1, ..., n of T>O and the group U(n). In the notation of 5 1.8, we put 

Since the vector Xi. E q v l  is the conjugate of Xi E TioO, k:) = f$) 
where we have written fk:,, for c,. By putting f:; = t&., = 0 these 
equations may be written in the abbreviated form 

a 
XA = f(21 A, B = 1, -, n, 1 *, -, n*. 

The coefficients f,;, are the elements of a matrix in Gqn ,  C). However, 
they are not independent. For, they must satisfy the relation 

where gkl. = g( a/ a/ a9). 
Let (('A,)) denote the inverse matrix of (f&). AS in 5 1.8 it  defines 2n 

linearly independent differential forms 8A in B: In the overlap of the 
coordinate neighborhoods with the local coordinates (ad, f&) and 
(atA, we have by (1.8.3) 

Hence, by (5.2.17) 

The 2n covariant vector fields f';) therefore define 2n independent 
I-forms BA = (P, P*) in B with Bi* = & (i = 1, - e m ,  n). In terms of the 
local coordinates (ai), they may be expressed by 

where T :  B + M is the projection map. 
By analogy they form a 'frame' in T$ and for this reason this frame is 
called a coframe. 

There are several ways of defining a metrical connection in M. We 
propose to do this in a manner compatible with the complex and 
hermitian structures since this approach seems to be natural for 
hermitian manifolds. Indeed, as in 5 1.7 we prescribe (2n)Z linear 
differential forms U; = I'&dzc in each coordinate neighborhood of a 
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covering in such a way that in the overlap of two coordinate neighbor- 
hoods related by holomorphic functions the equations (1.7.5) are satisfied 
by the n2 forms of given below. We then insist that the 2n2 forms 
oi, 4: be given by 

from which it follows that ck = I&; the remaining 2n2 forms are 
set equal to zero. 

In terms of this connection we take the covariant differential of each 
of the vectors 5,;) thereby obtaining as in 5 1.8 the forms a? . Their 
images in B will be denoted by O8,. By (1.8.6) and (1.8.5) 

4 = (d&d + &(:I) I!! 
from which, by (5.3.2) 

dei = ek A eik + ei 

-the torsion forms being given by 

@ i s -  * [(;) [O &:I ~~j oZ A em, ~~j = r; - T:~. 

This is the first of the equations of structure. The forms pB 
independent, but rather, are related by 

- e: + B :  =O, 8:= e;. 

(5.3.3) 

(5.3.4) 

(5.3.5) 

are not 

For, from (5.3.3) 

Since, 

(5.3.7) becomes 

5'; f dt(:) 5';' + f(i t(h &k1* = 0' (5.3.9) 
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Evaluating the differential of the metric tensor g as in 5 1.9 we obtain 

This is precisely the condition that the wij must satisfy in order to 
define a metrical connection. Hence, for a metrical connection 

Substituting from (5.3.9) into (5.3.6), applying (5.3.11) and observing 
that 

we obtain the desired relation. 
The second of the equations of structure (1.8.8) 

dOB, - 6 A 19% = @% 
splits into 

by virtue of the decomposition TC = TIJJ @ P1. 
Denote the curvature forms in the local coordinates (xi, 2 )  by LP,, 

that is, the Qj, are the forms @ji pulled down to M by means of the 
cross-section M -t {( a/ ( a/ ai i ) , )  . Consequently, in much the 
same way as above, it may be shown that if they are locally given by 

then, in the bundle of unitary frames, the curvature forms are the 83,. 
Since cd, = r:, dzk, the equations (5.3.14) become 
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Thus, if we put 

- @ ,  = R',, dzZ A dzm + RjiZm* dzz A drm 
where 

R;lm + p < m z =  0 
we have 

and 

Its only non-vanishing components are 

For, substituting (5.3.1 1) into (5.3.16) and (5.3.17) and applying the 
relation d(gij* giek) = 0, we derive 

Since Pik = rfZk* the curvature tensor is self adjoint. 
Transvecting (5.3.18) with gjr. we obtain 

Hence, the only non-vanishing 'covariant' components of the curvature 
tensor are 

Rij*kl*, &j*k* 1 ,  Rf* jkl* ,  &jk* l* 

Again, by virtue of the given splitting the Bianchi identities have the 
form 

together with the conjugate relations. 
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In a complex coordinate system the first of (5.3.20) are given by 

and their conjugates together with the Jacobi identities 

and their conjugates where as usual Di denotes covariant differentiation 
with respect to the connection (5.3.11). From the second Bianchi 
identity we derive the relations 

together with their conjugates. 
Since the connection is a metrical connection 

Dk gij* = Dk* gij* = 0. (5.3.24) 
Hence, from (5.3.23) 

Dm Ri* jkl* - Dk Rt* jml+ = Ri* jrg* Tm: (5.3.25) 

together with the conjugate relations. 
In terms of the hermitian metric, the torsion tensor has the com- 

ponents 

Thus, a necessary and sufficient condition that the torsion forms vanish 
may be given in terms of the hermitian metric tensor g by the system 
of differential equations 

In this case, g is said to defi-ne a Kaehler metric. A complex manifold 
endowed with this particular metric is called a Kaehler manifold. 

If the metric of an hermitian manifold is given by 

(locally) for some real-valued function f, then, clearly, from (5.3.27) 
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it is a Kaehler metric. Conversely, the metric of a Kaehler manifold is 
locally expressible in this form. For, since the equations (5.3.27) must 
be satisfied, the equations 

are completely integrable. If p, is a solution, the general solution is 
given by 

where the t,b6 are arbitrary functions of the variables (2). Consider the 
system of first order equations 

The integrability conditions of this system are given by 

Differentiating these equations with respect to Zj we find, after applying 
the conditions (5.3.27), that functions t,bi can be chosen satisfying the 
integrability conditions. That f may be taken to be real is a consequence 
of the fact that f is also a solution of the system. 

We remark that an even-dimensional analytic Riemannian manifold M 
with a locally Kaehlerian metric, that is, whose metric in local complex 
coordinates satisfies the equations (5.3.27) is not necessarily a Kaehler 
manifold. For, consider the cartesian product of a circle with a compact 
3-dimensional Euclidean space form whose first betti number is zero [24. 
I t  can be shown that such a space form exists; in fact, there is only one. 
This manifold is compact, orientable, and has a locally flat metric. The 
last property implies that its metric is locally Kaehlerian. (We have 
invoked the theorem that an even-dimensional locally flat analytic 
Riemannian manifold is locally Kaehlerian). Since its first betti number 
is one it cannot be a Kaehler manifold (cf. theorem 5.6.2). 

An hermitian metric g is expressible in the local coordinates (z,, 9) 
by means of the positive definite quadratic form 
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If g is a Kaehler metric, the real 2-form 

canonically defined by this metric, is closed. conversely, if Q is closed, 
g is a Kaehler metric. 

In an hermitian manifold, the 2-form Q is called the fundamental form. 
We remark that the tensor field g as well as the fundamental form can be 
given a particularly simple representation in terms of the 2n forms 
(ai, Ci) on M. For, from (5.3.2) and (5.3.8) 

and 

From the equations (5.3.4) and (5.3.13) we deduce the equations of 
structure of a Kaehler manifold M: 

dei = ek A e: 
and 

where the 2-forms Bf define the curvature of the manifold. They are 
locally expressible in terms of local complex coordinates by 

The Ricci tensor of M is given locally by 

and so from (5.3.17) it may be expressed explicitly in terms of the 
metric g by 

Rkl* = - aa log det G 
&+ a,$ 9 G = (&*I* (5.3.36) 

Now, from (5.3.34) 

nd, = Rkl* dzk A d2' 
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and from (5.3.33) 
gti = doi+ 

It follows that c l  dOii is a (real) closed 2-form in the bundle of 
frames over M. Moreover, 

Since the operator d is real (that is, it sends real forms into real forms), 
2/=i Oi, defines a real 1-form (which we denote by 2 q )  on the bundle 
B of unitary frames. Let ?r : B + M denote the projection map and put 

Then, ?r*+ = - dx. The 2-form + defines the lat Chwn class of M 
(cf. § 6.12). 

In contrast with Kaehler geometry there are three distinct contractions 
of the curvature tensor in an hermitian manifold with non-vanishing 
torsion. They are called the Ricci tensors and are defined as follows: 

kl* RU* = gkl* Ripkj*, S u e  = gkl*  R,*~,*, Ti,* = g Rkpij*. 

If the contracted torsion tensor vanishes, that is if Tjgi = 0, Tij, = Rij,. 
This is one of two rather natural conditions that can be imposed on 
the torsion, the other being that the torsion forms be holomorphic. 
From (5.3.21) we see that the latter condition implies the symmetry 
relation 

Rijkl* = Rikjl*. (5.3.39) 

Since the curvature tensor is skew-symmetric in its last two indices the 
symmetry relation (5.3.39) shows that Sij* = Rij*. 

Now, from (5.3.21) we obtain 

where Ti& = g,,, Ti,'. Hence, the conditions i3Tiki/aZ1 = 0 imply 
the symmetry relations 

Rij*kl* = Rkpij* (5.3.41) 

as in a Riemannian manifold. We conclude that Sij.  = T,., that is 
the Ricci curvature tensors coincide as in a Kaehler manifold. That 
they need not be the same may be seen by the following example [15]. 
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Consider the cartesian product of a 1-sphere and a 3-sphere: 
M = S1 x S3. In example 6 of 5 5.1 it was shown that M is a complex 
manifold. A natural metric is given by 

so that 

A computation yields 

from which we obtain 

Summarizing, we see that the curvature tensor defined by a con- 
nection with holomorphic torsion has the same symmetry properties 
as the curvature tensor defined by a Kaehler metric. 

The condition that the torsion be holomorphic is a rigidity restriction 
on the manifold. Indeed, if the manifold is compact, it is actually 
Kaehlerian [32]. 

One may also consider a connection which carries holomorphic 
tensor fields into holomorphic tensor fields (cf. 5 6.5). Such a connection 
must satisfy 

and, for this reason, the connection is said to be holomorphic. From 
(5.3.17) it follows that the curvature tensor of a holomorphic connection 
must vanish. 

In an hermitian manifold M with non-vanishing torsion, if the Ricci 
tensor Ri5* defines a positive definite quadratic form, then it defines an 
hermetian metric g on M. Erom the second of equations (5.3.20) it 
follows that the form 8ii is closed, and hence g is a Kaehler metric. 

A complex manifold M of complex dimension n is said to be complex 
parallelisable if there are n linearly independent holomorphic vector fields 
defined everywhere over M (cf. p. 247). In an hermitian manifold, it is not 
difficult to prove that the vanishing of the curvature tensor is a necessary 
condition for the manifold to be complex parallelisable. (Hence, the 
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connection of a complex parallelisable manifold is holomorphic.) In 
Chapter VI it is shown, if the manifold is simply connected, that this 
condition is also sufficient. Hence, for a complex manifold the existence 
of a metric with zero curvature is a somewhat weaker property than 
parallelisability . 

5.4. The operators L and A 

Let M be a complex manifold of complex dimension n and denote 
by A *C(M) the bundle of exterior differential polynomials with complex 
values. From 5 5.1, a p-form a E A *C(M) may be represented as a sum 

where a*,, is of degree q in the d z h n d  of degree r in the conjugate 
variables. The coefficients of a when expressed in terms of real coor- 
dinates are complex-valued functions of class 00. Thus, there is a 
canonically defined map 

obtained from d by extending the latter to r\*C(IM) by linearity, that is, 
if a = X + F l p  where X and p are real forms, then 

Clearly, d6 = &, that is d is a real operator. In the sequel, we shall 
write d in place of d with no resulting confusion. 

The exterior differential operator d maps a form a of bidegree (q, r) 
into the sum of a form of bidegree (q + 1, r) and one of bidegree 
(q, r + 1). For, if 

The term of bidegree (q + 1, r) will be denoted by d'a and that of 
bidegree (q, r + 1) by d"a. Symbolically we write 
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and say that d' is of type (1,O) and d" of type (0,l). By linearity, we 
extend d' and d" to all forms. (An operator on A *C(M) is said to be 
of type (a, b) if it maps a form of bidegree (q, r) into a form of bidegree 
(q + a, r + b)). Both d' and d" are complex operators, that is if a is 
real, d'a and d"a are complex. 

Since 
0 = dd = d'd' + (d'd" + dud') + dud" 

it follows, by compaf ng types, that 

and 
d'd" + dud' = 0. 

We remark that the operators d' and d" define cohomology theories in 
the same manner as d gives rise to the de Rham cohomology (cf. 6.10). 

Iff is a holomorphic function on M, dl'fvanishes. A holomorphic form 
a of degree p is a form of bidegree (p, 0) whose coefficients relative to 
local complex coordinates are holomorphic functions. This may be 
expressed simply, by the condition, d"a = 0. I t  follows that a closed 
form of bidegree (p, 0) is a holomorphic form. 

At this point it is convenient to make a slight change in notation 
writing Of in place of 8t. 

Let (O,, ..-, 8,) be a base for the forms of bidegree (1,O) on M. Then, 
the conjugate forms 8,, ..., 8, comprise a base for the forms of bidegree 
(0, 1). Suppose M has a metric g (locally) expressible in the form 

The operator * may then be defined in terms of the given metric. 
Our procedure is actually the following: As originally defined * was 
applied to real forms and played an essential role in the definition of the 
global scalar product on a compact manifold or, on an arbitrary 
Riemannian manifold when one of the forms has a compact carrier. 
In order that the properties of the global scalar product be maintained 
we extend * to complex differential forms by linearity, that is 

Hence, if M is compact (or, one of a, has a compact carrier) we define 
the global scalar product 
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so that, in general, (a, /3) is complex-valued. However, (a, a) 2 0, 
eqaality holding, if and only if, a = 0. Two p-forms a and /3 are 
said to be orthogonal if (a, /3) = 0. Evidently, if a and ,8 are pure forms 
of different bidegrees they must be orthogonal. 

The dual of a linear operator is defined as in ' s  2.9. 
The operator * maps a form of bidegree (q, r) into a form of bidegree 

(n - r, n - q). The dual of the exterior differential operator d is the 
operator 6 which maps p-forms into ( p  - 1)-forms. We define operators 
8' and 8" as follows: 

6' =: -*&'* and 6" = -*&* 
(cf. formula 2.8.7). 

Clearly, then, 6' is of type (- 1,O) and 6" of type (0, - 1). Moreover, 

For, 6 = -*d* = -*dt* -*dJ'*. 
If M is compact or, one of a, /3 has a compact carrier, 

(#a, P) = (a, S'P) and (Pa ,  13) = (a, ti"@) 

where a is a p-form and /3 a ( p  + 1)-form. For, 

If or is of bidegree (q, r), /3 is of bidegree (q + 1, r); for, otherwise d'a 
and /3 are orthogonal. In this way, it is evident that the desired relations 
hold. Hence, 6' and 6" are the duals of d' and d", respectively. 

Evidently, 
6' 6' = 0, 6'' 6" = 0, 6' 6" + 6" 6' = 0. 

In terms of the basis forms {BI) and {b} (i = 1, ..., n), the fundamental 
form SZ is given by 

We define the operator L on p-forms a of bidegree (q, r) as follows: 

Hence, La is of bidegree (q + 1, r + l), that is, L is of type (1, 1). Fox 
a p'-form /3 

L a A * P = a  AL*F=a A **-'L*P=(- 1)9'aA **L*/3. 

We define an operator A of type (- 1, - 1) in terms of L as follows: 
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on p-forms. The operator A is therefore dual to L and lowers the degree 
of a form by 2 whereas the operator L raises the degree by 2. 

Moreover, if a is of bidegree (q, r), Aa is of bidegree (q - 1, r - I). 
Evidently, Aa = 0 for p-forms a of degree less than 2. From (5.4.1) 

where i(f) is the interior product operator, that is, the dual of the 
operator 4). Following (3.3.4), we define 

where a is a p-form, and, by (3.3.5) 

where X is the tangent vector dual to the 1-form 6. 
Since i(8,) is an anti-derivation, A52 = n. The operator A is not 

a derivation. For, since a form a of bidegree (q, r) may be expressed as a 
linear combination of the forms Ojl A ... A Ojq A Ok1 A ..- A OkT, and 
A is linear, one need only examine the effect of A on such forms. 
Indeed, since i(8,) is an anti-derivation 

a similar statement holds for i(B,). Hence, 

for 1 = jl = k1 and is zero for I + j,, j,, k,, - a * ,  k,. Thus, 
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In particular, 

Alejl A * * *  A eja A okl  A * * a  A okr A Q) 

Thus, for any p-form a, A(a A Sd) = Aa A 52 + (n - p)a. This result 
will prove useful in the sequel. 

consider the space 
zl ,  .-., zn and metric 

C, of i complex variables with complex coordinates 

Let a = ajl.. .,&.. ddl A A dda A dZk1 A . * -  A dzkr and denote 
by a, the operator which replaces each coefficient aj .. .jh.. .kr by the 
coefficient of dal in daf , In a similar way we dehne the operator 
&. The forms aim an&"::;';:: each of bidegree (p, r). Moreover, the 
operators af and - 2$ are duals, that is, (a,@, /3) = - (a, E@). If we 
put 8, = dzf ,  then 

and, since 6' and 8" are dual to d' and d", respectively, 

8 = - 2, i ) ,  8'. = - a, @,), 
i j 

Consider, for example, the linear differential form a = afdzf + bfd9.  
Then, since {dzi) and {a/azf)  are dual bases 
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Lemma 5.4.1. In C, 

and 

In the first place, it is easily checked that 

and 

Pre-multiplying the first of these equations by i(8,) and post-multiplying 
the second by i(9,) one obtains after subtracting and summing with 
respect to k 

Ad - d/l = g ( 8 '  - 8'3 

since i(9,) commutes with a,. The desired formulae are obtained by 
separating the components of different types. 

5.5. Kaehler manifolds 

Let M be a complex manifold with an hermitian metric g. Then, 
in general, there does not exist at each point P of M a local complex 
coordinate system which is geodesic, that is a local coordinate system 
(29 with the property that g is equal to 22, dsi @ dZi modulo terms 
of higher order. (Two tensors coincide up to the order k at P E M 
if their coefficients, as well as their partial derivatives up to the order k, 
coincide at P. A complex geodesic coordinate system at P should have 
the property that g coincide with 2& dzi @ up to the order 1 at P.) 

We seek a condition to ensure that such local coordinates exist. 
Let&, . .a,  8,) be a base for the forms of bidegree (1,O) on M with 

the property that g may be expressed in the form 

(cf. 5.3.30). 
Our problem is to find n 1-forms w, of bidegree (1,O) such that 

(i) wi(P) = 8,(P), i = 1, -, n; 
(ii) g = 2 2, wt @ (3% modulo terms of higher order; and 
(iii) dw,(P) = 0, i = 1, --, n. 



1 74 V. COMPLEX MANIFOLDS 

This latter condition is the requirement that in the sought after coor- 
dinates, the coefficients of connection vanish at P, that is, in terms of 
the metric tensor g, dgij.(P) = 0 (cf. 5.3.3, 5.3.32 and 5.3.10). 

Let (zi) be a system of local complex coordinates at P such that 
zi(P) = 0, i = 1, - . a ,  n and ei(P) = dzi(P). We put 

and look for the relations satisfied by the coefficients aitk and bijk in 
order that (i), (ii), and (iii) hold. For condition (ii) to hold it is necessary 
and sufficient that 

ai jk  + 6 k j f  = 0. (5.5.3) 

Now, put 

Then, (iii) is satisfied, if and only if 

Substituting in (5.5.3), we derive 

These are the necessary conditions that a complex geodesic local 
coordinate system exists at P. 

Conversely, assume that there exist cijk, ctijk satisfying cijk = Etjn - 
E'yi. If we put aUk = - Elkj, and bijk = ctijk the relations (5.5.3) and 
(5.5.4) are satisfied. If we define the forms Oi by (5.5.2), the conditions (i), 
(ii), and (iii) for a complex geodesic local coordinate system are satisfied. 

We recall that an hermitian metric is a Kaehler metric if the associated 
2-form SZ = 1/---1 Xi@{ A 8, is closed and, in this case, M is a Kaehler 
manifold. Hence, at iaih point of a Kaehler manifold th&e exists a system 
of local complex coordinates which is geodesic. This property of the Kaehler 
metric leads to many significant topological properties of compact 
Kaehler manifolds which we now pursue. 



5.6. Topology of a Kaehler manifold 

The formulae (5.4.7) hold in a Kaehler manifold as one easily sees 
by choosing a complex geodesic coordinate system (z i )  at a point P. 
Indeed, for C,, we may take g = 2 I=( dzi @ d 9 .  Since the metric of a 
Kaehler manifold has this form modulo terms of higher order, and 
since only first order terms enter into the derivation of the formulae 
(5.4.7) they must also hold in a Kaehler manifold. 

Lemma 5.6.1. In a Kaehler manifold 

and 
Ad' - d'A = - l/---Zi 

(5.6.1) 
Ad" - d"A = 6 1  6'. 

These formulae are of fundamental importance in determining the 
basic topological properties of compact Kaehler manifolds. 

Lemma 5.6.2. In a Kaehler manifold the operators A and 6 commute. 
Hence, by comparing types A commutes with 8' and 6". 

Clearly, the operators L and d commute. Hence, 

that is 
*d**-l L* = *L**-1 d*, 

SA = 116. 

Several interesting consequences may be derived from lemmas 5.6.1 
and 5.6.2 for a complex manifold with a Kaehler metric. To begin with 
we have 

Lemma 5.6.3. In a Kaehler manifold 

d' 6" + 6" d' = 0 and d" 6' + 6' d = 0. 

The proof is immediate from lemma 5.6.1. 

Lemma 5.6.4. In a Kaehler manifold 

For, from lemma 5.6.1 the expression 
- <l(d'~d"- d"Adl + dUd'A - A d ' d )  is equal to 8' 6" + 6" d" 
from the first relation and to d' 6' + 6' d' from the second. 
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Lemma 5.6.5. In a Kaehler manifold the Laplace-Beltrami operator 
A = d 6 + 6 d has the expressions 

A = 2(d' 8' + 8' d') = 2(d" 6" + 6" d ) .  (5.6.3) 

For, 
A = d8 + Sd 

= (d' + d") (8' + 8") + (8' + Sf') (d' + d") 
= (d' 8' + 8' d') + (d" 8" + 8" d") 

by lemma 5.6.3. Applying lemma 5.6.4, the result follows. 
A complex p-form a is called harmonic if A a  vanishes. 
Since a p-form may be written as a sum of forms of bidegree (q, r) 

with q + r = p we have: 

Lemma 5.6.6. A p-fanr is har11~0l[tic, if and only if its various tmns of 
bidegree (q, r) with q + r = p are 'ehamumic. 

This follows from the fact that A is an operator of type (0,O). Indeed, 
d' is of type (1,O) and 8' of type (- 1,O). Moreover, a p-form is zero, if 
and only if its various terms of bidegree (q, r) vanish. 

Lemma 5.6.7. In a Kaehler manz~old A commutes with L and A. Hence, 
if a is a harmonic form so are La and Aa. 

This follows easily from lemmas 5.6.1 and 5.6.2 since 8' 8" + 8" 8' 
= 0 and *A = A * .  

Lemma 5.6.8. In a Kaehler mantfold the fm Q" = Sa A A S2 
(p times) fw every integer p 5 n are harmonic of &pee 2p. 

The proof is by induction. In the first place, ASZ = 0 since the manifold 
is Kaehlerian. For, by lemma 5.6.1,tjtSZ = 8"Q = 0 since d'S2 = d"S2 = 
0 and WE = n. Now, 

Lemma 5.6.9. The cohomology groups H@(M, C) of a compact Kaehler 
manifold M with complex coeficients C are dtferent from zero for 
p = 0, 1, -, n. 

Indeed, by the results of Chapter 11, Ha(M, C) is isomorphic with 
the space of the (complex) harmonic forms of degree q on M. Since 
the constant functions are harmonic of degree 0, the lemma is proved 
for p = 0. The proof is completed by applying the previous lemma 
and showing that LP # 0 for p < n. In fact, we need only show that 
LP # 0, and this is so, since SZ" defines an orientation of M (cf. 5 5.1). 



Theorem 5.6.1. A holomorphic form on a K a e h k  manifold is harmonic. 
For, if a is a holomorphic form, it is of bidegree ( p ,  0); moreover 

d"ar vanishes. Now, since 8" is an operator of type (0, - I), S"a is a 
form of bidegree (P, - l), that is S"a = 0. It  follows that 

Corollary. A holomorphic form on a compact K a e h k  manifold is closed. 
Conversely, a harmonic form of bidegree (p, 0) on a compact hermitian 

manifold is holomorphic. For, a harmonic form is closed and a closed 
form of bidegree (p, 0)  is holomorphic. 

The term of bidegree (P, 0) of a harmonic p-form ar is holomorphic. 
Similarly, the conjugate of the term of bidegree (0, p) is holomorphic. 
For, let 

the subscripts indicating 
the manifold is compact 

the bidegree. Then, since ar is harmonic and 

Since the terms on the left side of this equation are of different bidegrees 
they must vanish individually. In particular, 

- 
Similarly, d l % ,  = 0 implies d'ao,, = d''a,,, = 0. 

Let A g  be the linear space of complex harmonic forms of degree p. 
Then, by lemma 5.6.6, A$ is the direct sum of the subspaces A g  of 
the harmonic forms of bidegree (q, r )  with q + r = P. The pth b,etti 
number bJM) of the Kaehler manifold M is equal to the sum 

where b,,, is the complex dimension of Aff. Now, if a E A%', its 
conjugate 6 E A>,, and conversely. For, 
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and, since a + E is real, (5.6.4) is also the (real) dimension of the space 
of real harmonic forms of degree p. 

Since 

we have shown that 

Hence, the number of holomorphic p-forms is majorized by half the p" 
betti number. 

Moreover, from (5.6.5) we may also conclude that bJM) is even if p is 
odd. Summarizing, we have: 

Theorem 5.6.2. The pth betti number of a compact Kaehler manifold 
is even if p is odd. The first betti number is twice the dimension of the-space 
of holomorphic I-forms sometimes called abelian differentials of the first 
kind. The men-dimett~t*onal betti numbers b, ( p  $ Zn) are dz'jkrent from 
zero. 

The last part follows from lemma 5.6.9. 
The number Xi, (- l)@bob,, is an important invariant of the complek 

structure called the arithmetic genus. 
In the next section it is shown that for p 5 n - 1 ,  bp 5 bP+,. 
Since the first betti number of the Riemann sphere S2  is zero there are 

no holomorphic l-forms on S2.  
Consider the torus (cf. 5 5.8) with the complex structure induced by C. 

Since b, = 2, the differential d z  is (apart from a constant factor) the 
only holomorphic differential on the torus. 

Let M be a compact (connected) Riemann surface. Put b, = 2g;  the 
integer g is called the genus of M. It is equal to the number of in- 
dependent abelian differentials of the first kind on M. Since there are 
2g independent l-cycles and g independent abelian differentials the 
periods of an abelian differential may not be arbitrarily prescribed on a 
basis of l-cycles. However, it may be shown that a unique abelian 
differential exists with prescribed real parts of the periods. 

Let a be a p-form. Then, by (II.B.4) and lemma 5.6.5 

= 2(d1 8' Ga + 8' d' Ga) + H[a] 

= 2(d" 8" Ga + 8" d" Ga) + H[a] 
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where the operators H and G are the complex extensions of the cor- 
responding real operators. Moreover, since the Green's operator G 
commutes with d and S it commutes with d', d", S f 3  St '  as one sees by 
comparing types. 

Since A commutes with d, it also commutes with d' and d" as one 
sees by comparing types. This result is very important since it relates 
harmonic forms with the cohomology theories arising from d' and d". 

5.7. Effective forms on an hermitian manifold 

There is a special class of forms defined as the zeros of the operator A 
on the (1inear)space of harmonic forms. They are called effective harmonic 
forms and the dimension of the space determined by them is a topological 
invariant. More precisely, the number e, of linearly independent effective 
harmonic forms of degree p on a compact Kaehler manifold M is 
equal to the differenct bp - bp-, for p n + 1 where dim M = 2n. This 
important result hinges on a relation measuring the defect of the operator 
LkA from ALk where Lkor = or A @. The fact that these operators 
do not commute is crucial for the determination of the invariants $. 

Lemma 5.7.1. For any p-form or on an hwmitian manifold M 

It was shown in § 5.4 that 

Hence, proceeding by induction on the integer k 

This completes the proof. 
In the remainder of this section a subscript on a given form will 

indicate its degree; thus deg cq, = p. 
A form a is said to be effective if it is a zero of the operator A, that is, 

if nor = 0. Since A annihilates ~ ( T c * )  for p = 0,l the elements of 
these spaces are effective. 
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Lemma 5.7.2. If % is an effective fonn, then, for any s 2 0 

This follows inductively from the preceding lemma. 

Corollary. T h e  are no effctive p-form for p 2 n + 1. 
This is an immediate consequence, if we take k = n + 1 and 

$ 2  n - p +  1. 

Theorem 5.7.1. Evmy p-fonn %(p 5 n + 1) a an hermitian manifold of 
complex dimet~~thn n has a unique representation as a sum 

where the vpp,_,, 0 k r are egective forms and r = ['I. 
The theorem is trivial for p = 0,l. Proceeding inductively, assume 

its validity for p S n - 1. Then, to any p-form & is associated a unique 
p-form 4 such that 

A L a 9 = & ,  p s n - 1 .  
For, 

where the forms $p,,_w are effective,. Now, by (5.7.1) 

Since p 5 n - 1, n - P + k # 0. Consequently, in 
hold, it is sufficient to take - 

(5.7.2) 

and lemma 5.7.1 

order that (5.7.2) 

and by uniqueness, this is also necessary. Now, let &+, be an arbitrary 
(p + 2)-form and put A &+, = & in (5.7.2). 
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Then, the form xP+, = Fp+, - Lap is effective, and 

is the representation sought for Pp+, thereby completing the induction. 
The uniqueness is evident from that of g. For, let 

be another decomposition for Pp+,. Then, ( ~ 6 + ,  - xp+3 + L ( 4  - a,) 
= 0. Applying the operator A to this relation we obtain A L 4  = A Lap SF &+, - xP+, is effective. Applying (5.7.2), we conclude that 
g = e$ from which Xk+g = xP+,. 

Corollary 5.7.1. A L is an automorphism of AP(TC*) for p 5 n - 1. 
For, if q E AP(P*), 4 E AP(Tc*). Conversely, by (5.7.2) for 

any Fp there is an or, such that 4 = &. Moreover, ALg = 0 implies 
5 = 0. 

Corollary 5.7.2. L is an isomorphism of AP(TC*) into AP+=(P*) for 
p S n - 1 .  

Indeed, L q  = 0 implies A L q  = 0 from which by the preceding 
corollary g must vanish. 

Assume now that M is a Kaehler manifold. Then, since A commutes 
with the operator L (cf. lemma 5.6.7) we may conclude 

Corollary 5.7.3. Every harmonic p-form q ( p  5 n + 1) on a Kaehler 
I manifold may be uniquely reptesented as a sum 

where the tpp-ek(O $ k 5 r) are eflective harmonic forms and r = [p/2]. 
Let M be a compact Kaehler manifold. Then, from lemma 5.6.7 

and corollary 5.7.2, it follows that 

b,(M) I b,+,(M), p I n - 1 (5.7.3) 

Corollary 5.7.4. The betti numbers bp for p 5 n - 1 of a compact 
Kaehler manifold satisfy the monotonicity condition (5.7.3). Moreover, 
b,, # 0 for s $ n. 
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The difference bp - bp-, may be measured in terms of the number ep 
of effective harmonic forms of degree p, p 5 n + 1 and is given by 
the following 

Theorem 5.7.2. On a compact Kaehler mani$old 

e, = b, - b,-, 
for p 5 n +  1. 

To  see this, denote by A& the linear subspace of of effective 
harmonic p-forms. Then, by corollary 5.7.3 

A:, = A= LA&-;-' @ ... @ LrAg2r (5.7.4) 

where r = Cp/2], and 

where r = [p/2] + 1. 
Applying the operator L to the relation (5.7.4) we obtain 

Combining (5.7.5) and (5.7.6) 

A&+2 = /I,+, @ L A )  H H' 

Since L is an isomorphism from A'(Tc*) into AV+~(TC*) (p j n - 1) and 
since A commutes with L, dim L A &  = dim A&. Hence, 

dim ARC2 = dim i\gP + dim A& 

that is bp+, = eP+, + bp,p 5 n - 1 or b, - bp-, = ep fo rp  n + 1. 

5.8. Holomorphic maps. l nduced structures 

Let M and M' be complex~manifolds. A differentiable map f : M -+ M' 
is said to be a holomorphic map if the induced dual map f*: A *C(M') + 

A*'(M) sends forms of bidegree (1,O) into forms of bidegree (1,O). 
Under the circumstances, f* preserves types, that is, it maps forms of 
bidegree (q, r) on M' into forms of bidegree (q, r) on M. For, since f* 
is a ring homomorphism we need only examine its effect on the decom- 
posable forms (cf. 1 S). 



If f :  M+ M' and g: M' + M" are holomorphic maps, so is the 
composed map g f : M + M". By a holomorphic isomorphism f : M + M' 
is meant a 1-1 holomorphic map f together with a differentiable 
map g : M' -t M such that both f g and g f are the identity maps on 
M' and M ,  respectively. I f f  is a holomorphic isomorphism, it follows 
that the inverse map g is also a holomorphic isomorphism. 

Lemma 5.8.1. Let M be a complex manifold and f a complex-valued 
dflerentiable function on M. In order that f be a holomorphic map of M 
into C (considered as a complex manifold), it is necessary and suflcient that 
f be a holomorphic function. 

Since dz  is a base for the forms of bidegree (1,O) on C, in order that f 
be a holomorphic map, it is necessary and sufficient that f*(d2) = df 
be of bidegree (1,O). Hence, since df = d'f + d " f ,  it is necessary and 
sufficient that d f ' f  vanish. 

Lemma 5.8.2. The induced dual map of a holomorphic map sends holo- 
morphic f m  into hlomorphic form. 

Let f :  M -+ M' be a holomorphic map and a a form of bidegree 
(p, 0 )  on M'. Then, since f* preserves bidegrees, f*(a) is a form of 
bidegree (p, 0) on M. Hence, since f * and d commute, so do fr and d". 
Thus, if a is holomorphic, so is f*(a). 

Proposition 5.8.3. Let i@ be a cwering space of the complcs matu~old M 
and IT the canonical projection of l@ onto M. ( We denote this covering space 
by (I@, IT).) Then, there exists a uniqu complex structure on l@ with respect 
to which IT is a holomorphic map. 

For, let {Val be an open covering of l@ such that for every a the 
restriction sr, of IT to V a  is a homeomorphism of V a  onto v(Va).  Such 
a covering of A? always exists. To  each a is associated a complex structure 
operator Ja on V a  in terms of which IT, : V a  + M is holomorphic. To  
see this, we need only define ra,- J ,  = J .  wa, . On the intersection V a  n Vp, 
the complex structure operators Ja and Jp coincide since wB-l IT, is the 
identity map on V a  n V B ,  and as such is holomorphic. Thus, the 
operator on Icl having the Ja as its restrictions defines a complex 
structure on M. With resptct to this complex structure on l@ the 
projection IT is evidently a holomorphic map. The uniqueness is clear. 

Corollary. Let (I@, n) be a cwering space of the Kaehler manifold M. 
Then, (.a, I T )  has a canonically dejined Kaehler structure. 

For, let IR be the Kaehler 2-form of M canonically defined by the 
Kaehler metric dF2 of M. Let IT* denote the induced dual map of IT. 
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Then, since rr*(ds2) is positive and hermitian and 

the result follows. rr*(dse) is positive since the Jacobian of the map is 
different from zero. 

Conversely, suppose that the covering space (m, rr) of the manifold M 
has a complex structure. Moreover, assume that every point of M has 
an open connected neighborhood U such that each component of 
rr-l(U) is open in I@, that is, the union of disjoint open sets Va on each 
of which rr induces a homeomorphism tr, of Va onto U in such a way 
that for any a and p, nB-l rra is a holomorphic isomorphism of Va 
onto Vg with respect to the complex structures induced on Va and VB 
by that of I@. Then, U has a complex structure induced by the maps 
wa-the complex structure being independent of the choice of a. We 
conclude that M has a complex structure called the quotient complex 
structure of that on I@ by the relation of equivalence w(P) = rr(Pf), 
P and P' being points of I@. 

If ( a ,  w) has a Kaehlerian structure, then by exactly the same argument 
as given above M has a canonically defined Kaehlerian structure. 

Consider the important case where the manifold M is the quotient 
space a / G  of the complex manifold i'@ by the relation of equivalence 
determined by a properly discontinuous group G of homeomorphisms 
of I@ onto I@ without fixed points. In other words, by the relation for 
which the equivalence class of the point P E fl is the set of transforms 
g(P) of P by the elements g of G such that every point of I@ has a neigh- 
borhood V with the property (A): V n gV is empty for all g E G other 
than the identity. Then, fl is a covering space of M = i@/G. Indeed, 
any point P E M has a neighborhood U such that n-l(U) is the union 
of disjoint open sets V, on each of which rr induces a homeomorphism 
rr, of Va onto U. T o  see this, take a point p E .I@ such that P = ~ ( g ) ;  
then, take U = n(V) where V is a neighborhood of g with the property 
(A). Moreover, for the neighborhoods Va take the transforms gV of V 
for all g E G. 

In order that M = dT/G have a complex structure it is necessary and 
sufficient that G be a group of holomorphic isomorphisms. 

If I@ has a Kaehlerian structure the above condition i$ also necessary 
and sufficient for M to have a Kaehlerian structure. 

5.9. Examples of Kaehler manifolds 

1. A complex manifold of complex dimension 1 is usually called a 
Riemann surface. Let S be a Riemann surface with an hermitian metric 
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ds2 = p2dz d2 where p is a real, positive function (of class 00) of the 
local coordinates x, y(z = x + iy), i = GI. The fundamental 2-form 
52 = (272) p2dz A dE is the element of area of S. Clearly, dl2 = 0 since 
dim S = 2. The real unit tangent vectors which are given by 

determine a sub-bundle 8 of the tangent bundle called the circle bundle. 
We define a differential form o of bidegree (1,O) by the formula 

u = e-fpp dz. 

Evidently, (e(tp), w )  = 1. Conversely, o is uniquely determined by 
the conditions: (i) it is of bidegree (1,O) and (ii) its inner product with 
the vectors of 8 is 1. Consider the 1-form 8 on 8 defined as follows: 

One may easily check that 8 is real and satisfies the differential equation 

In fact, 8 is the only real-valued linear differential form satisfying this 
differential equation with the property that 8 E - dtp (mod (dz, dE)). 
Hence, 8 is globally defined in 8 ,  independent of the choice of local 
coordinates. Moreover, 

a2 log p 
de = - 2i- 

az a2 d2 A d5. 

Now, the Gaussian curvature K of S is given by 

4 a2 log p K =  --- 
~2 az a5 

from which 

de = KQ. 

It is known that a compact Riemann surface can be given an hermitian 
metric of constant curvature and that such surfaces may be classified 
according to whether K is positive, negative or zero. 

Incidentally, besides the Riemann sphere (K > 0) and the torus 
(K = 0) any other compact Riemann surface can be considered as the 
quotient space of the unit disc by some Fuchsian group. 



186 V. COMPLEX MANIFOLDS 

2. Consider C,, with the metric 

The fundamental 2-form in this case is given by 

Clearly, this form is closed, and so the metric defines a Kaehler structure 
on C,. 

3. Let r be a discrete subgroup of maximal rank of the additive group 
of C,, and denote by T, the quotient space Ci/l'; I' is actually the discrete 
additive group (over R) generated by 2n independent vectors. It  is 
clear that l' is a properly discontinuous group without fixed points. 
As a topological space, C,/r is homeomorphic with the product of a 
torus of dimension 2n and a vector space over R. However, CJI' is 
compact since r has rank 2n, and so it is isomorphic as a topological 
group with the torus. Since the complex structure on C, is invariant 
under l' (cf. 5 5.8) one is able to define a complex structure (and one 
only) on the quotient space T,. With this complex structure the 
manifold T, = C,/r is called a complex multi-torus. 

Let n denote the natural projection of C,, onto T,. Then, n is a 
holomorphic map. The metric of Cn defined in example 2 is invariant by 
the translations of r. We are therefore able to define a metric on T, in 
such a way that n is locally an isometry. Since the property of a 
complex manifold which ensures that it be Kaehlerian is a local 
property, T, is a Kaehler manifold. 

We describe the homology properties of the multi-torus T,: The 
projection 7 induces a canonical isomorphism n* of the space of 
differential forms on T, onto the space of differential forms on C, 
invariant by the translations of I'. Since the isomorphism n* commutes 
with the operators d and 8, n* defines an isomorphism of the space 
AZ(T,,) of the harmonic forms on T, onto AiC(Cn)-the vector sub- 
space of A*c(C,) generated by (dzA) and their exterior products. For, 
the elements of A p(C,) are-harmonic and invariant by the translations 
of l'. Conversely, every form a on C, may be expressed as 

where the coefficients are complex-valued functions. If a is the image 
by n* of a harmonic form on T, it is harmonic and invariant by r, that 
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is, its coefficients ail.. sl j,. . . j, are harmonic functions which are invariant 
by r. Consequently, these functions are the images by v* of harmonic 
functions on T,. But a harmonic function on a compact manifold is a 
constant function, and so clr E r\?(Cn). 

4. On a bounded open set M contained in C, there exists a well- 
defined 2-form invariant by the group of complex automorphisms of M. 
This is a consequence of the theory of Bergman. One can construct 
canonically from this form a 2-form R having the Kaehler property, 
namely, dR = 0 [72]. 

5. Complex projective n-space P,: By identifying pairs of antipodal 
points of the sphere 

n 

contained in C,,, we obtain P,. For every index j, let Uj be the open 
subspace of P, defined by ti # 0 where to, t l ; - . ,  tn denote the homo- 
geneous coordinates of the points of P,. The map 

is a holomorphic isomorphism of Uj onto C,. I t  is easily checked that 
these maps for j = 0, 1, ..., n define a complex structure on P,. 

Consider the functions y j  = 2 a?: defined in each open set Uj 
i = O  

of the covering. On U,n Uk we have 

z,! = Z:/Z; (k not summed) 
and 

n n 

vk = 2 z y k  = 2 (&:)zkL = vjz&j (j, k not summed) 
i = O  6-0 

where zi is a holomorphic function in Uk, and hence in Uj n Uk. The 
yj  define a real closed form R of bidegree (1,l) on P,. Indeed, in Uj n Uk 

d'd"(l0g tpj - log 9,) = 0. 
Hence, R is given by 

A2 = 47 d'd" log 9, 

in each open set Ui. In particular in Uo 

SZ = 1/---i d'd" log g+,. 
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Clearly, 52 is a closed 2-form, and since 

The associated metric tensor g (sometimes called the Fubini metric) is 
given by 

or, more explicitly by 

We remark that the fundamental form 52 of any Kaehler manifold may 
be written in the form (5.9.1). For, by 5 5.3, since the metric tensor g is 
(locally) expressible as 

ay 
gij* = 

for some real-valued function f, 

6. Let M be a Kaehler manifold and M' a complex manifold holo- 
morphically imbedded (that is, without singularities) in M. The metric g 
on M induces an hermitian metric on M'. The associated 2-form 52' 
on M' coincides with the form induced by 52 and is therefore closed. 
In this way, the induced complex structure on M' is Kaehlerian 
(cf. 5 5.8). 

7. Let G(n, k) denote the Grassman manifold of k-dimensional projective 
subspaces of P, [24. It can be shown that it is a non-singular irreducible 
rational variety in a P, for sufficiently large N. Moreover, its odd- 
dimensional betti numbers vanish whereas b,, is the number of partitions 
of p = a, + a, + .*. + a, (a,: integers) such that 0 I a, a, $ .-. 
S a , S n - k .  
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Example 6 in 5 5.1 cannot be given a Kaehler structure except for 
P x S1 since in all other cases b, is zero. It  may be shown by employing 
the algebra of Cayley numbers (cf. V.B.7) that the 6-sphere S8 possesses 
an almost complex structure. However, since b,(S6) = 0, S8 does not 
have a Kaehlerian structure. 

Besides S2, the only sphere which may carry a complex structure is S8. 
However, it can be shown that the almost complex structure defined 
by the Cayley numbers is not integrable. 

EXERCISES 

A Holomorphic functions [SO] 

1. Let S be an open subset of Cn. In order that f e F (the algebra of difirentiable 
functions on S )  be a holomorphic function it is necessary and sufficient that 

where xi = xi + drlyi. Put f = u + d r l o .  Then, 

au av = -  av a u .  
and - - ay" a = 1,-,n. 

axi ayi axi - - - 

These are the Cauchy-Riemann equations. Prove that the holomorphic functions 
on S are those functions which may be expanded in a convergent power series 
in the neighborhood of every point of S. 

If f is a holomorphic function and a = (a1, we., an) E S, the'n, for every 
b = (br, ma., bn) E C,, the function 

is a holomorphic function in a neighborhood of 2 = 0 E C. 
2. (a) Let f be a holomorphic function on the complex manifold M. If, for every 
point P with local coordinates (zl, *** ,  zn) in a neighborhood of Po with the local 
coordinates (a1, ***,an), I f(zl, -.., zn) 1 5 I f(al, *-*,an) I, then f(xl, *-,zn) = 
f(al, a * * ,  an) for all P in a neighborhood of Po. Hence, if M is compact (and 
connected), a holomorphic function is necessarily a constant. 

(b) A compact connected submanifold of Cn is a point. 
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3. Show that a holomorphic function on a (connected) complex manifold M 
which vanishes on some non-empty open subset must vanish everywhere on M. 

4. Let a be a holomorphic 1-form on the Riemann sphere SB. Then, in C,-the 
complex plane, a = f(2)d.z where f(x) is an entire function. By employing the 
map given by 112 at oo show that f(l/z)l/xa has a pole at the origin unless 
f(a) = 0. In this way, we obtain a direct proof of the fact that SB is of genus 0. 

B. Almost complex manifolds [SO] 

1. Let X and Y be any two vector fields of type (0,l) on the almost complex 
manifold M. Then, in order that M be complex it is necessary that [X, Y] be of 
type (0,l). Denote by T1-O and TO-' the spaces of tangent vector fields of types 
(1,O) and (0,1), respectively, on M. 

2. On an almost complex manifold M the following conditions are equivalent: 

(a) [TO*l, TO**] C P I ;  

(b) d Aq*C c A Q+lsr @ A Qer+' for every q and r ; 

(c) h(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] - [ JX, JYI = 0 for any vector 
fields X and Y where J is the almost complex structure operator of M. 

Hence, in order that M be complex it is necessary that h(X,Y) = 0, for 
any X and Y. Show that the condition (c) is equivalent to (5.2.18). 

3. h(X,Y) is a tensor of type (1,2) with the properties: 

(i) h(X + Y,Z) = h(X,Z) + h(Y,Z), 
(ii) h(X, Y) = - h(Y,X), 

(iii) h(X, f Y) = f h(X, Y) 

for any X,Y,Z E T and f E F. 

4. If dim M = 2, M is complex. 
Hint: h(X, JX) = 0 for all X. 

5. Let G be a 2n-dimensional Lie group, L the Lie algebra of left invariant 
vector fields on G and J an almost complex structure on G. If the tensor field 
J of type (1,l) on G is left invariant, that is, if J is a left invmiattt almost complex 
structure, then JL = L. The integrability condition may consequently be 
expressed as h(X, Y)=O for any X, Y E L. Since every bi-invariant (that is, both 
left and right invariant) tensor field on a Lie group is analytic it follows that 
every left invariant almost complex structure on an abelian Lie group defines a 
complex structure on the underlying manifo!d. (It is known that a bi-invariant 
almost complex structure on any Lie group is integrable.) 

6. Show that any two complex structures on a differentiable manifold which 
define the same almost complex structure coincide. 
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7. Let C denote the algebra of Cayby numbers: I t  has a basis (l,eO,el, . a * ,  e6) 
where I is the unit element and the multiplication table is 

the other ei ej being given by permuting the indices cyclically. The algebra C 
is non-associative. 

Any element of C may be written as 

x I + X ,  X E R  
where 

If x = 0, the element is called a purely imaginary Cayley number. These numbers 
form a 7-dimensional subspace E7 C C. The product X . Y of X = E!, xiei E E7 
and Y = E:, yie, E E7 may be expressed in the form 

X . Y = - ( X , Y ) I + X x  Y 

where 

is the scalar product in E7, and 

is the vector product of X and Y. The vector product has the properties: 

(i) (axl  + bX2) x Y = a(Xl x Y) + b(X, x Y), 

(i)' X x (cYl + dY,) = c(X x Yl) + d(X x Y,) 

for any a, b, c, d E R; 

(ii) (X,X x Y) = (Y,X x Y) = 0 and 

(iii) X x Y = - Y x X. - 

Consider the unit 6-sphere S6 in E7: 

S6 = {X E E7 I (X,X) = 1). 

Let g denote the (canonically) induced metric on S6. The tangent space Tx 
at X E S6 may be identified with a subspace of E7. 
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Define the endomorphism 

Jx : Tx-* T x  

by 
J x Y = X x Y ,  Y E T =  

It has the properties: 

for Y,Z E Tx.  
Property (i) implies that S6 has an almost complex structure whereas (ii) says 

that the metric on Sb is hermitian. Under the circumstances, S6 is said to possess 
an almost hermitian structure. 

8. Consider the 3-dimensional subspace ES C E7 spanned by the vectors 
e,,e,,e, E F. S6 n EB is a 2-sphere S2. Show that SZ is an invariant submanifold 
of S6, that is, for any X E SZ the tangent space Tx to S%t X is invariant under 
Jx. 

C. Hermitian manifolds [SO] 

1. Let M be a Riemannian manifold with metric tensor g. Show that there 
exists a mapping 

X-+ Dx 

of T into the space of endomorphisms of T with the properties: 

(a) Zg(X, Y) - g(DzX, Y) - g(X,DzY) = 0 
(parallel translation is an isometry); 

(b) DxY - D ,X = [X, Y] 

(torsion is zero) 

for any X,Y,Z E T. 

Hint: Assume the existence of this map and show that 

for any X,Y and Z E T. Conversely, this relation defines for every Y,Z E T 
an element DZY E T. The map Z-* DZ is thus unique. For every Z E T, DZ 
is called the operation of cw&t dz@vntiation with respect to Z. 
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2. Establish the identities: 

(i) Dx+y = DX + DY, 

(ii) D,xY = f (DxY), 
(iii) Dx(Y + 2) = DxY + DxZ, 

(iv) Df iY)  = (Xf)Y +f(DxY), 
(v) D ~ Y  = D ~ Y  (if M is almost complex) 

for all X, Y, Z E T and f E F-the algebra of differentiable functions on M; 

where the rg are the coefficients of the Levi Civita connection. 
From (ii) it follows that for any point P,  DxY(P) depends only on X(P) and Y, 

that is, if Xl(P) = X,(P), then Dxl Y(P) = Dx, Y(P). 

3. A p-form a on M may be considered as an alternating multilinear form on 
the F-module T with values in F, that is a(Xl, ..., X,) E F for any XI, ..., X, E T. 
T o  a p-form a on M we may associate a p-form Dxa on M called the cowariant 
derivative of a with respect to X by putting 

Show that the map 

so defined is a derivation. 
The map Dx may be extended in the obvious way to tensors on M of type 

( 0 , ~ )  which are not necessarily skew-symmetric. Hence, the covariant derivative 
of the metric tensor g with respect to the vector field X vanishes, that is 

DJ& = o  
for all X E T. 

4. Establish the equivalence of the following statements for an hermitian 
manifold with metric g whose complex structure is defined by J: 

( 4  W J Y )  = J(DxY), 
(b) DxQ = 0 where Q(X, Y) = g( JX, Y), 

(c) dl2 = 0 

for any X,Y E T. 
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Hint: In a Riemannian parallelisable manifold, the map 

where {Xi} and { P )  are dual bases is an anti-derivation. Show that d and d agree 
on AO(M) and Al(M), and hence on A(M). 

If any of these conditions is satisfied, the manifold is Kaehlerian and 52 is the 
fundamental form defining the Kaehlerian structure. Note that 

g(X, JY) + g( J X Y )  = 0- 

Incidentally, from the formula 

we may derive the formula 

Hence, (&) (X, Y) = Xa(Y) - Ya(X) - a([X, Y]) (cf. formula (3.5.2)). 
5. If M is Kaehlerian, show that DxA qer(M) C A Qmr(M) for every pair of inte- 
gers (w) and any X E T* 
6. Let M be a complex manifold, J the linear endomorphism of T defining the 
complex structure of M and 52 a real form of bidegree (1,l) on M. Then, 

for any X,Y E T. Show that the 'metric' g defined by 

is symmetric, hermitian and real; hence if 8 is closed and g is positive definite, 
the metric is Kaehlerian. 

D. The 2-form D 

1. The form 

8 = 1 / T d ' d " f  

where f is a real-valued function of class oo on the complex manifold M is real, 
closed and of bidegree (1,l). Let {(I,) be an open covering of M. For each i 
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let fi be a real-valued function of class 00 with no zeros in Ui. If, for each 
pair of integers (i, j) there exists a holomorphic function hij on Ui n U j  such that 

then, there exists a real closed form Q of bidegree (1,l) on M such that 

Q = 2/--li d'd" log f, 
on each open set Ui. 

2. Let {u,} be an open covering of M by coordinate neighborhoods with complex 
coordinates (xi) and Y a real 2n-form of maximal rank 2n on M. Then, the 
restriction Yi of Y to each Ui is given by 

where fi is either a real or purely imaginary function with no zeros in Ui; 
moreover, on Ui n U j  

where hi, is a holomorphic function on Ui n U,. Show that Y determines a 
real, closed Zform of bidegree (1,l) and maximal rank on M. 

Bergman has shown that on every bounded open subset S of C, there exists 
a well-defined real form of degree 2n invariant under the complex automor- 
phisms of S and independent of the imbedding. With respect to this form we 
may construct a 2-form Q on S whose associated metric is Kaehlerian. 

E. The fundamental commutativity formulae. Topology of Kaehler 
manifolds [SO, 721 

1. Let M be an hermitian manifold with metric g. Assume that T1eO is a free 
F-module; this is certainly the case if M is holomorphically isomorphic 
with an open subset of Cn. Let {x,, ---, Xn} be a basis of TIw0; then, {XI, . a * ,  x,,} 
is a basis of TOe1. By employing the Schmidt orthonormalization process the 
Xi, i = 1, .-., n may be chosen so that 

(cf. equations (5.2.13) and (5.3.1)). Consider this basis of TC = T1*O @ TOJ 
and denote by {&,&I, i = 1, . - a ,  n the dual basis. Then, 

and 
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Establish the formulae 

and 

Hint: Employ C.4. 

2. Using the above formulae for d',d",S1, and 8" as well as formula (5.4.2) 
derive the fundamental lemma 5.6.1. 

3. Establish the formulae 

S'L - LS' = a d " .  
and 

S"L - La" = - d'. 

These relations are the duals of those in lemma 5.6.1. 

4. For a complex manifold M, A*C(M) is a direct sum of the subspaces A a*', 
that is any u E A*C(M) may be uniquely expressed as a sum of pure forms +,, 
of bidegrees (q,r), respectively. Consider the map 

sending u into ua,,. If M is Kaehlerian denote by A the algebra of operators 
generated by *, d, L, and P,,,. Show that A belongs to the center of A. If M is 
compact prove that the operators H and G associated with the underlying 
Riemannian structure also belong to the center. In particular, A, H and G 
commute with d', d", S', S", and A. 
5. Prove that the harmonic part H[a] of a pure form a of bidegree (q,r) on a 
compact hermitian manifold is itself of bidegree (q,r) (cf. II.B.3). 

6. Let DQ*'(M) denote the quotient space of the space of d-closed forms of 
bidegree (q,r) on the compact Kaehler manifold M by the space of exact forms 
of bidegree (q,r). Prove that D'(M) is the direct sum of the spaces Dqer(M) 
with q + r = p. (Note that this decomposition is independent of the Kaehler 
metric.) 

The map a -+ & induces an isomorphism of DQvV(M) onto Dr*"M). Hence, 
b,,, = b,,, where b,,, = dim DQ-,(M). 

In terms of the complex structure on DHM) (the pth cohomology space 
constructed from the subspace of real forms) induced by that of M, it may be 
shown once again that b, is even for p odd. 

Hint: Extend the complex structure J of M to p-forms on M and prove that 
p = (- lyI where j denotes the induced map on A'; then, prove that 
j and A commute. 



CHAPTER VI 

CURVATURE AND HOMOLOGY 
OF KAEHLER MANIFOLDS 

It is a classical theorem that compact Riemann surfaces belong to 
one of three classes (cf. example 1, § 5.9). However, for several complex 
variables the situation is not quite so simple. In any case, there is the 
following generalization, namely, if M is a compact Kaehler manifold 
of constant holomorphic curvature k (cf. 5 6.1), its universal covering 
space is either complex projective space P,(k > O), the interior of a 
unit sphere B,(k < 0), or the space Cn of n complex variables (k = 0). 
These spaces are of interest in algebraic geometry; indeed, they provide 
a source of examples of algebraic varieties. In analogy with the real case 
(cf. 5 3.1) a (compact) Kaehler manifold of constant holomorphic 
curvature is called elliptic, if k > 0, hyperbolic, if k < 0 and parabolic 
if k = 0. By an appIication of the results of Chapter V it is shown that an 
elliptic space is homologically equivalent to complex projective space. 
I t  is, in fact known, in this case, that M is actually Pn itself. If the 
manifold M is parabolic it can be represented as the quotient space 
C,/D where D is a discrete group of motions in Cn, namely, the 
fundamental group. The group r in example 5, 5 5.1 is a normal sub- 
group of D of finite index with 2n independent generators. The complex 
torus Tn = C n / r  is then a covering space of M. 

On the 1-dimensional (complex) torus TI there is essentially only one 
holomorphic differential, namely, dz in contrast with the Riemann 
sphere on which none exist (cf. 5 5.6). In higher dimensions there is the 
analogous situation, that is, on Tn there are n independent holomorphic 
pfaffian forms whereas in the elliptic case there are no holomorphic 
1-forms. More generally, on a compact Kaehler manifold of positive 
definite Ricci curvature, there do not exist holomorphic p-forms 
(0 < p 5 n) [58]. 

The reader is referred to 5 5.9, example 3 for a description of the 
complex torus. Now, the torus has 'zero curvature' and this fact is decisive 



from a geometrical standpoint in describing its homology. More 
generally, a compact hermitian manifold M of zero curvature has as its 
universal covering space l@ a complex Lie group. If D (the fundamental 
group) is a discrete group of covering transformations of M whose 
elements are isometries acting without fixed points, then M is homeo- 
morphic with WD. If M is simply connected, a necessary condition 
for zero curvature is complex parallelisability by means of a parallel 
field of orthonormal frames, that is, the existence of n globally defined 
linearly independent holomorphic vector fields which are parallel with 
respect to the connection defined in fj 5.3. On the other hand, a complex 
parallelisable manifold has a natural hermitian metric of zero curvature. 
The existence of a metric with zero curvature is consequently a weaker 
property than parallelisability. The problem of determining those 
manifolds with a locally flat hermitian metric is considered. It  is shown 
that a compact hermitian manifold of zero curvature is homeomorphic 
with a quotient space of a complex Lie group modulo a discrete 
subgroup. I t  is Kaehlerian, if and only if, it is a multi-torus [69]. 

The hyperbolic spaces will be considered from the point of view of 
the problem of imbedding into a locally flat space. Our interest lies in 
the local properties of a manifold for which a holomorphic imbedding 
which induces the metric is possible. If the Ricci curvature is positive, 
it is not possible to define such an imbedding. On the other hand, negative 
Ricci curvature is not sufficient to guarantee this. For, one need only 
consider the classical hyperbolic space defined by the metric g(x, 2) = 
(1 - ~ 2 ) - ~  in the unit circle I z I < 1. Such imbeddings consequently 
appear rather remote and can only occur if the Ricci curvature is not 
positive [5]. 

Whereas positive Ricci curvature yields information on homology, 
negative curvature is of interest in the study of groups of transformations 
(cf. Chap. 111). Chapter VII is concerned essentially with the study of 
groups of holomorphic and conformal homeomorphisms of Kaehler 
manifolds, and so some of the results for negative curvature are post- 
poned until then. In any case, the elliptic and parabolic spaces are 
particularly interesting from our point of view in that their homology 
properties may be described by the methods of Chapters I11 and V. 

For negative curvature no holomorphic contravariant tensor fields of 
bidegree ( p ,  0) can exist. Hence, in particular (as already observed), 
the manifold is not complex parallelisable. A generalization may be 
obtained by assuming that the 1" Chern class is negative definite 
(cf. VIi.A.4). 

The Gauss-Bonnet formbla is also particularly interesting from our 
point of view. In fact, if M is a compact Kaehler manifold on which there 
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are 'sufficiently many' holomorphic pfaffian forms, then (- l), x(M) 2 0 
where X(M) is the Euler characteristic. An example is provided by T, 
for which it is clear that x(T,) = 0 [8]. 

Denote by the pair (M, g) a Kaehler manifold with metricg and under- 
lying complex manifold M. Consider the Kaehler manifolds (M, g) 
and (M, g'). If the connections o and o' canonically defined by g and g', 
respectively, are projectively related, a certain tensor w (the complex 
analogue of the Weyl projective curvature tensor) is an invariant of 
these connections. Its vanishing is of interest. For, if w = 0, the manifold 
(M, g) (or (M, g')) has constant holomorphic curvature. Conversely, for a 
manifold of constant holomorphic curvature, w = 0. In this way, constant 
holomorphic curvature is seen to be the complex analogue of constant 
curvature in a Riemannian manifold [33]. (A Kaehler manifold of 
constant curvature is of zero curvature). The homological structure of 
elliptic space is, as previously mentioned, identical with that of P,. 
However, the betti numbers of P, are retained even for deviations from 
projective flatness [7]. 

An important application of the results of Chapter I11 is sketched 
in 5 6.14 where the so-called vanishing theorems of Kodaira are obtained. 
These theorems are of interest in the applications of sheaf theory 
to complex manifolds since it is important to know when certain 
cohomology groups vanish. 

6.1. Holomorphic curvature 

Let M be a Kaehler manifold of constant curvature K whose complex 
dimension is n. Then, from (1.10.4) the curvature tensor is given by 

(The same systems of indices as in Chapter V are maintained throughout.) 
In  terms of local complex coordinates these equations take* the form 

Substitution of this last set of equations into (5.3.39) gives 
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Hence, 

Theorem 6.1 .l. A Kaehler manifold of constant curvature is locally flat 
provided n > 1. 

If, instead of insisting that all sectional curvaturb at a given point 
are equal, we require that only those determined by any two orthogonal 
vectors in the tangent space at each point are equal, the same conclusion 
prevails, since the bundle of orthogonal frames suffices to determine the 
Riemannian geometry. For complex manifolds, however, it is natural 
to consider only those Zdimensional subspaces of the tangent space 
defined by a vector and its image by the linear endomorphism ] giving 
the complex structure. Indeed, to each tangent vector Xp at a point P 
of the hermitian manifold M, one may associate the tangent vector ( JX)p 
at P orthogonal to Xp. The section determined by these vectors will be 
called a holomorphic section since it is defined by the complex structure. 
We shall denote the sectional curvature defined by the holomorphic 
section determined by the vector X p  by R(P, X )  and call it the 
holomorphic sectional curvature defined by X,. 

We seek a formula in local complex coordinates for R(P, X). To  
begin with, if 

a a a x = P = h i s  + ti* xi, 
then, from (5.2.4) 

Hence, from (1.10.4) 

where qi = 6 1  5' and q p  = - GI e*. Now, it is easy to see that 

Consequently, 
R(P,X) = 

Rij*kl* p [j* f k  5.' 
gij* gkl* P ti* Sk Sz* 

which, by reasons of symmetry, may be expressed in the form 



Suppose that R(P, X) is independent of the tangent vector X chosen 
to define it. Then, the curvature tensor at P has the representation 

where k = k(P) denotes the common value of R(P, X) for all tangent 
vectors X at P. For, by assumption, the equation 

is satisfied by the 2n independent variables (e, p*). Hence, since 
both sides of (6.1.1) are symmetric in the pairs (i, k) and (j, I )  we have 
the desired conclusion. 

Theorem 6.1.2. If the holomorphic sectional curvatures at each point of a 
Kaehler manifold are independent of the holomorphic sections passing 
through the point, they are constant met. the manifold. 

We wish to show that the function k appearing in (6.1.1) is a constant. 
By assumption, the curvature tensor has this form at each point of M. 
Transvecting (6.1.1 ) with gk'* we derive 

that is M is a '(Kaehler-) Einstein' space (cf. 5 6.4). Hence, from 
(5.3.29) and (5.3.38) the 1"' Chern class of M is given by 

+-"+la. 
4rr 

Since ab is closed. 

from which by corollary 5.7.2, dk must vanish for n 2 2.. 
If at each point of a Kaehler manifold the holomorphic sectional. 

curvature is independent of the tangent vector defining it, the manifold 
is said to have constant holomorphic curvature. 

Theorem 6.1.3. P, may be given a metric g in terms of which it is a 
manifold of constant holomorphic curvature. 

Indeed, we give to P, the Fubini metric g of example 5 ,  5 5.9: 

in the coordinate neighborhood U,. 
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At the origin of this system of local complex coordinates glj. = atl. 
Hence, from (5.3.19), a straightforward computation yields 

and so from the covering of P, given in § 5.9, since 

d' d" log To = d' d" log vj 

for every index j = 1, . . a ,  n, the curvature tensor has this form every- 
where. In other words, since there eiists a transitive Lie group of 
holomorphic homeomorphisms preserving the metric, the curvature 
tensor has the prescribed form everywhere. 

Corollary. The holomorphic sectional curvature with respect to g of 
complex projective space is positive. 

An application of theorem 3.2.4 in conjunction with theorem 5.7.2 
yields the betti numbers of a compact Kaehler manifold with the 
Fubini metric (6.1.3) and, in particular, those of P,. 

Theorem 6.1.4. The betti numbers b, of a compact Kaehler manifold M 
of positive constant holomorphic curvature vanish if p is odd and are equal 
t o 1  ifpiseeren: 

btr = 1, bar+, =0, 0 b r  bn. 

To see this, let f i  be an effective harmonic p-form on M. Then, 
is a harmonic p-form, and since 

(cf. 5 5.4 for the definition of * for complex differential forms), it is 
also effective. It  follows that 

.=g+P 

is a real effective harmonic p-form. Now, put o = aAl. ..A9 d#l A A dad. 
and compute F(a) (cf. formula (3.2.10)). In the first place, from 
(6.1.2) 



Next, we derive an explicit fornula for Aar in local complex 
coordinates (zi). From (5.4.2) and (5.3.12) 

Hence, since the interior product operator is an anti-derivation 

Returning to equation (6.1 S) ,  we conclude that 

RABCDaABA."'APaCDAsI I .AP = - 2kaij*As"'AVaij* .Ap . 
Combining (6.1.4) and (6.1 S) ,  the quadratic form 

F(a) = (n + 1) koijAs-A~aijA,..Ap + (n - p + 2) kaij*As-.A~a. r j  *A,...A, 

> 0 ,  O c p S n ,  

that is, there are no non-trivial real effective harmonic p-forms for 
p 5 n. Hence, by theorem 5.7.2 

6,-, = b,, p 5 n + 1. 
Now, by theorem 3.2.1, since the Ricci curvature is positive definite 

(by virtue of the fact that k is positive), b, vanishes. Thus 

b2,41 = 0 ,  2r S n .  

On the other hand, since M is connected, b, = 1, and so 

The desired conclusion then follows by Poincare duality. 



Corollary 1. The betti numbers of Pn are 

Since P, is connected, it is only necessary to show that Pn is compact. 
The following proof is instructive: In  Cn+, with the canonical metric g 
define the sphere 

Consider the equivalence relation 

eb - eo 

defined by 

where g, is a real-valued function. Pn is thus the quotient space of S2"+l 
by this equivalence relation. In  fact, P, may be identified with the 
quotient space U(?t + l)/U(n) x U(1). T o  see this, consider the unitary 
frame (eA, e,,), A = 0, 1, - . a ,  n obtained by adjoining to eo, n vectors 
e, in such a way that the frames obtained from (eA, eA,) by a trans- 
formation of U(n + 1) are unitary. Since the frames obtained from 
(ec, e,,), i = 1, . . a ,  n by means of the group U(n) are unitary, Pn has 
the given representation. That Pn is compact now follows immediately 
from the fact that the unitary group is compact [27]. 

Incidentally, this gives another proof that P,, is a Kaehler manifold. 
For, by the compactness of U(n + 1) we may construct an invariant 
hermitian metric by 'averaging' over U(n + I). The  fundamental form 
52 is thus invariant. Hence, since U(n + 1)/ U(n) x U(1) is a symmetric 
space, that is, the curvature tensor associated with this metric has 
vanishing covariht derivative, 52 is closed (cf. V1.E for the definition 
of a symmetric space). We have invoked the theorem that an invariant 
form in a symmetric space is closed. (That Pn is a symmetric space 
follows directly from the fact that with the Fubini metric it is a manifold 
of constant holomorphic curvature). The  reader is referred to V1.E 
for further details. 

Corollary 2. There are no holomorphic p-forms, 0 < p 5 n on Pn. 
In  degree 0 the holomorphic forms are constant functions. 

Indeed, by (5.6.4) the pth betti number 



Since the even-dimensional betti numbers are each one and b,,, = b,,, 
we conclude that 

with all remaining b,,, zero. In particular, 

b,,, = 0 for p # 0. 

By employing the methods of theorem 3.2.7, it can be shown that a 
4-dimensional &pinched compact Kaehler manifold is homologically P2 
provided S is strictly greater than zero (st>dy positive curvature). 
The reader is referred to V1.D for details. Hence, S2 x SZ considered 
as a Kaehler manifold cannot be provided with a metric of strictly 
positive curvature. In fact, it is still an open question as to whether 
S 2  x S 2  can be given a Riemannian structure of strictly positive 
curvature. For more recent results the reader is referred to [90] and [94l. 

The n-sphere, complex projective n-space, quaternionic projective 
n-space and the Cayley plane are the only known examples of compact, 
simply connected manifolds which may be endowed with a Riemannian 
structure of strictly positive curvature [I]. 

6.2. The effect of positive Ricci curvature 

Since the Ricci curvature associated with the Fubini metric of P,, is 
positive it is natural to ask if corollary 2 of the previous section can be 
extended to any compact Kaehler-Einstein manifold with positive Ricci 
curvature. An examination of the proof of theorem 6.1.4 reveals more, 
however. For, if ,8 is a holomorphic form of degree p, 

is a real p-form ; in fact, a is harmonic since /3 and j7 are harmonic. Hence, 
since a is the sum of a form of bidegree (p, 0) and one of bidegree (0, p) 
it follows from the symmetry properties of the curvature tensor that 

Let M be a compact Kaehler manifold of positive definite Ricci 
curvature. Then, by theorem 3i2.4, since a is harmonic, and F(u) is 
positive definite, a must vanish. 
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We have proved 

Theorem 6.2.1. On a compact Kaehler manifold of positive definite 
Ricci curvature, a holomorphic form of degree p, 0 < p  5 n i s  necessarily 
zero [4, 581. 

6.3. Deviation from constant holomorphic curvature 

In this section a class of compact spaces having the same homology 
structure as Pn and of which Pn is itself a member is considered. They 
have one common local property, namely, their Ricci curvatures are 
positive. Aside from this their local structures can be quite different- 
their classification being made complete, however, by means of a 
condition on the projective curvature tensors associated with these 
spaces. They need not have constant holomorphic curvature. If instead, 
a measure W of their deviation from this property is given, and if the 
function W associated with a space M satisfies a certain inequality 
depending on the Ricci curvature of the space, M is a member of the 
class. 

Consider the Kaehler manifolds (M,g) and (M,gf)  of complex 
dimension n. If the matrices of connection forms w and o' canonically 
defined by g and g', respectively are projectively related their coefficients 
of connection are related by 

pi 
j k = I l f k + p j 8 : + p k S :  (6.3.1) 

(cf. 5 3.1 1 ). Since 

It follows easily that the tensor w with components 

is an invariant of the connections w and of. For this reason we shall call 
it the projective curvature tensor of (M, g) (or (M, g')). It is to be noted 
that w vanishes for n = 1. Its vanishing for the dimensions n > 1 is 



of some interest. For, if w = 0, the curvature of M (relative to g or g') 
has the representation 

1 Rikl* = - - 
n + l  (Rj,* 6: + Rkl* 6:) 

from which 
1 

Rekl* = - 
n + l  gkj* + Rkl* gtj*). 

Applying the symmetry relation (5.3.41) we obtain 

Rf,* gkj* + Rkl* gij* = Rkf* git* + Rtj* gkl* 

which after transvection with gf'* may be written as 

Substituting for the Ricci curvature in (6.3.4) results in 

Thus (M, g) (or (M, g')) is a manifold of constant holomorphic curvature. 
Conversely, assume that (M, g) is a manifold of constant holomorphic 

curvature. Then, its curvature has the representation (6.3.5). Sub- 
stituting for the curvature from (6.3.5) into (6.3.3) we conclude that 
the tensor w vanishes. 

Hence, a necessary and suflcient condition that a Kaehler manifold be of 
constant holomorphic curvature is given by the vanishing of the projective 
curvature tensw w. 

It is known (cf. theorem 6.1.4) that a compact Kaehler manifold of 
positive constant holomorphic curvature (w = 0) is homologically 
equivalent with complex projective space. It  is of some interest to inquire 
into the effect on homology in the case where w does not vanish. Under 
suitable restrictions we shall see that the betti numbers of P, are retained. 
Indeed, the homology structure of a compact manifold of positive 
constant holomorphic curvature is preserved under a variation of the 
metric preserving the signature of the Ricci curvature and the inequality 
(6.3.7) given below. To this end, we introduce a function 

where Wfj.,,. = - grj.U7rfkl., the least upper bound being taken over 
all skew-symmetric tensors of type (t t). 



Theorem 6.3.1. In a compact Kaehler manifold M of complex dimension n 
with positive de3nite Ricci curvature, if 

fw a l lp  = 1, -..,n where 
(96 s> h, = inf- 

6 <&5> 

the greatest lower bound being taken over all (non-trivial) forms of degree I, 
M is homologically equivalent with P, [a. 

The idea of the proof, as in theorem 6.1.4, is to show that under the 
circumstances there can be no non-trivial effective harmonic p-forms 
on M for p 5 n. Once this is accomplished the result follows by PoincarC 
duality. 

Let a = aA ... ,,dzAl A - - -  A dsd9 be a real effective harmonic 
p-form on M. ?hen, from (3.2. lo), (6.3.3), and (6.3.6), 

Since A,, > 0 the desired conclusion follows. 

Corollary. Under the conditions of the theorem, if 

M is homologically equivalent with complex projective n-space. 

6.4. Kaehler-Einstein spaces 

In a manifold of constant holomorphic curvature k, the general section- 
al curvature K is dependent, in a certain sense, upon the value of the 
constant k. In fact, if k > 0 (< 0), so is K; moreover, the ratio of the 



smallest (largest) to the largest (smallest) value of K is 2 provided k > 0 
(< 0). T o  see this, let K = K(X, Y) denote the sectional curvature 
determined by the vector fields X = tAa/ axA and Y = rlAi3/azA. 
Then, 

where < X , Y )  = gij&j* denotes the (local) scalar product of the 
vector fields e'ia/azi and #* a/aZi in that order. 

If we put 

then 

Hence, since 0 5 r 5 1, 

from which we conclude that 

if k is positive, and if k is negative 

Theorem 6.4.1. The general- sectional curvature K in a manifold of 
constant holomorphic curvature k satisjies the inequalqties (6.4.1 ) for k > 0 
and (6.4.2) for k < 0 where the upper limit in (64.1) and the lower limit 
in (6.4.2) are attained when the section is holomorphic [5]. 

Thus, for k > 0 the manifold is *-pinched. This result should be 
compared with theorem 3.2.7. 
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From 1.10.4 it is seen that the Ricci curvature K in the direction of 
the tangent vector X is given by 

(QX, X )  
= (X, X) 

Therefore, in analogy with 5 1.10 a Kaehler manifold for which the 
Ricci directions are indeterminate is called a Kaehler-Einstein manifold 
and the Ricci curvature is given by 

or, in terms of the fundamental form $2 
the 1" Chern class, y5 is proportional to 

Since y5 is closed, d~ A $2 = 0. Thus, 

and. the 2-form y5 determining 
$2, that is 

if n > 1, K is a constant. 

6.5. Holomorphic tensor fields 

We have seen that there exist no (non-trivial) holomorphic p-forms 
on a compact Kaehler manifold with positive Ricci curvature. In this 
section this result is generalized to tensor fields of type (,P :) as follows: 
Denote by A,, and Amin the algebraically largest and smallest eigen- 
values of the Ricci operator & (cf. 5 3.2), respectively. Then, for a 
holomorphic tensor field t of type (t g), if 

everywhere and is strictly positive at least at one point, t must vanish, 
that is no such tensor fields exist. 

The idea of the proof is based on a part of the 'Bochner lemma' 
(cf. V1.F) which for our purposes is easily established. (The non- 
orientable case is more difficult to prove. The applications of this lemma 
made by Bochner and others have led to many important results on the 
homology properties of Riemannian manifolds). We shall state it as 

Proposition 6.5.1. Let f be a function of class 2 on a compact and orientable 
Riemannian manifold M. Then, if A f 0 (5  0) on M, Af vanishes 
identically. 



Corollary. If A f 2 0 (2 0) on M, then f is a constant. 
The proof is an easy application of lemma 3.2.1. For, 

In order to establish the above result, we put f equal to the 'square 
length' of the tensor field t .  But first, a tensorjield of type (i z) is said to be 
holomorphic if its components (with respect to a given system of local 
complex coordinates) are holomorphic functions. This notion is evidently an 
invariant of the complex structure. Since the rjk and qk are the only 
non-vanishing coefficients of connection, the tensor field 

of type (t 3 is holomorphic, if and only if, the covariant derivatives of t 
with respect to 2 for all i = 1, a * - ,  n are zero. 

Consider the tensor field t + f. If t is holomorphic, 

Applying the interchange formula (1.7.21) it follows that 

Transvecting (6.5.1) with gkl* we obtain 

- t 1 - l p + l P j ,  . jq RGr. 
p=l 

Now, put 



2 12 VI. CURVATURE AND HOMOLOGY: KAEHLER MANIFOLDS 

then, since t + t is self adjoint, f is a real-valued function, and since the 
opetator A is real, Af is real-valued. Moreover, 

- *Af = figABDBDA f = g(j*Dj.Di f 

- - gilr; ...gi9~g~1'~..g~~d~gk1*~ktil~~~i~jII,,jQ~1tr1111p~8111,~Q + G(t) (6.5.3) 

where 

Expanding G(t)  by (6.5.2) gives 

Since the first term on the right in 6.5.3 is non-negative we may conclude 
that Af 5 0, provided we assume that the function G is non-negative. 
Hence, as a consequence of proposition 6.5.1 

Theorem 6.5.1. Let t be a holomorphic tensorjkld of type (t @. Then, a 
necessary and suflcient condition that the (self adjoint) tensorfield t + f 
on a compact Kaehler manifold be parallel is given by the inequality 

On the other hand, if G( t )  is positive somewhere, t must vanish, that is 
there exists no holomorphic tensor field of the prescribed type [ I l l .  

An analysis of the expression (6.5.4) for the function G yields without 
difficulty 

Corollary 1. Let t be a holomorphic tensor jkld of type (t g) on the 
compact Kaehler manifold M. Then, if 

t is a parallel tensor field. If strict inequality holds at least at one point of M, 
t must vanish. 
If M is an Einstein space, 
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Denoting the common value by h we obtain 

Corollary 2. There exzit no holomorphic te71~orfields t of type (,P :) on a 
compact Kaehler-Einstein manifold in each o f  the cases : 

(i) q > p and h > 0, 
(ii) q < p and h < 0. 

In either case, for h = 0 ,  t is a parallel tensor Jield. 

6.6. Complex parallelisable manifolds 

Let S be a compact Riemann surface (cf. example 1, 5 5.8). The genusg 
of S is defined as half the first betti number of S ,  that is bl(S) = 2g. 
By theorem 5.6.2, g is the number of independent abelian differentials 
of the first kind on S. 

We have seen (cf. 5 5.6) that there are no holomorphic differentials on 
the Riemann sphere. On the other hand, there is essentially only one 
holomorphic differential on the (complex) torus. On the multi-torus Tn 
there exist n abelian differentials of the first kind, there being, of course, 
no analogue for the n-sphere, n > 2. The Riemann sphere has positive 
curvature and this accounts (from a local point of view) for the distinction 
made in terms of holomorphic differentials between it and the torus 
whose curvature is zero. 

Since the torus is locally flat (its metric being induced by the flat 
metric of Cn) the above facts make it clear that it is complex parallelisable. 
Indeed, there is no distinction between vectors and covectors in a 
manifold whose metric is locally flat. On the other hand, a complex 
parallelisable manifold can be given an hermitian metric in ierms of 
which it may be locally isometrically imbedded in a flat space provided 
the holomorphic vector fields generate an abelian Lie algebra and, in 
this case, the manifold is Kaehlerian. 

Theorem 6.6.1. Let M be a -complex parallelisable manifold of complex 
dimensibn n. Then, by de$nition, there exists n (globally defined) linearly 
independent holomorphic vector Jields XI, -.-, Xn on M. If the Lie algebra 
they generate is abelian, M is Kaehlerian and the metric canonically defined 
by the Xi, i = 1, .-a, n, is locally flat [ l o ] .  

Let Or, r = 1, ..-, n denote the 1-forms dual to XI ,  a * . ,  X,,. Thus, 
they form a basis of the space of covectors of bidegree (1,O). In 
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terms of these pfaffian forms, the fundamental form $2 has the expression 

If we put (cf. V, B. 1) 

then, by (3.5.3) and (3.5.4) 

Hence, since the Lie algebra of holomorphic vector fields is abelian, 
the Oi are d'-closed for all i = 1, n. (Referring to the proof of theorem 
6.7.3, we see that they are also d"-closed.) This being the case for the 
conjugate forms as well 

that is, M with the metric 2 ZOr @ 8' is a Kaehler manifold. Moreover, 
the fact that the Bi are closed allows us to conclude that M is locally 
flat. To  see this, consider the second of the equations of structure 
(5.3.33): 

sij = deij - ek, A ei,. 

Taking the exterior product of these equations by O j  (actually .rr*Oj, 
cf. 5 5.3) and summing with respect to the index j, we obtain 

Indeed, from the first of the equations of structure (5.3.32), O j  A Okj 
vanishes since the Oi are closed. Moreover, 

e j  A dekj = - d(8' A ekj )  = 0. 

If we pull the forms eij down to M and apply the equations (5.3.34), 
we obtain 

Riikl* dzk r\ dZ1 A dzj = 0, 

and so, since the curvature tensor is symmetric in j and k, it must vanish. 
In $6.9, it is shown that if M is compact, it is a complex torus. 



6.7. Zero curvature 

In this section we examine the effect of zero curvature on the properties 
of hermitian manifolds-the curvature being defined as in 5 5.3. 

Theorem 6.7.1. The curvature of an hermitian manifold.vanishes, if and 
only if, it is possible to choose a parallel field of orthonormal holomorphic 
frames in a naghborhood of each point of the manifold. 

By a field of frames on the manifold M or an open subset S of M 
is meant a cross section in the (principal) bundle of frames over M or S, 
respectively. The field is said to be parallel if each of the vector fields 
is parallel. 

We first prove the sufficiency. If the curvature is zero, the system of 
equations w5, = 0 is completely integrable. Therefore, in a suitably 
chosen coordinate neighborhood U of each point P it is possible to 
introduce a field of orthonormal frames P, (el, .--, e,, ll, --., which 
are parallel and are uniquely determined by the initially chosen frame 
at P. For, by 5 1.9 the vector fields e, satisfy the differential system 

de, = di e,. 

(The metric being locally flat, the e, may be thought of as covectors.) 
Of course, we also have the conjugate relations. Since the e, are of 
bidegree (l,O), the condition &, = 0 implies d"e, = 0, that is the e, 
are holomorphic vector fields. Hence, the condition that the curvature 
is zero implies the existence of a field of parallel orthonormal holo- 
morphic frames in U. 

Conversely, with respect to any parallel field of orthonormal frames 
the equations 

imply Rjikl, = 0. The curvature tensor must therefore vanish for all 
frames. 

Let us call the neighborhoods U of the theorem admissible neighbor- 
hoods. Parallel displacement of a frame at P along any path in such a 
neighborhood IJ of P is independent of the path since the system 
wij = 0 has a unique solution through U coinciding with the given 
frame at P E U. (In the remainder of this section we shall write U(P) 
in place of U). 

Now, given any two points Po and PI of the manifold and a path C 
joining them, there is a neighborhood U(C) = U U(Q) of C such 

QEC 



that the displacement of a frame from Po to P ,  is the same along any 
path from Po to P ,  in U(C) .  We call U ( C )  an admissible neighborhood. 
Let Co and C ,  be any two homotopic paths joining Po to P I  and denote 
by {C,)  (0 5 t 5 1) the class of curves defining the homotopy. Let S 
be the subset of the unit interval I corresponding to those paths C ,  
for which parallel displacement of a frame from Po to PI is identical 
with that along Co. Hence, 0 E S. That S is an open subset of 1 is clear. 
We show that S is closed. If S # I, it has a least upper bound s'. 
Consequently, since U(C,e) is of finite width we have a contradiction. 
For, S is both open and closed, and so S = I. We have proved 

Theorem 6.7.2. In an hermitian manifold of zero curvature, parallel 
dikplacemettt along a path depends only on the homotopy class of the 
path [ I q .  

Corollary. A simply connected hermitian manifold of zero curvature is 
(complex) parallelisable by means of parallel orthonormal frames. 

I t  is shown next that a complex parallelisable manifold has a canonically 
defined hermitian metric g with respect to which the curvature vanishes. 
Indeed, in the notation of theorem 6.6.1 let 

with respect to the system (zi) of local complex coordinates. In terms 
of the inverse matrix (P:)) of (&:,) the n 1-forms 

define a basis of the space of covectors of bidegree (1,O). We define the 
metric g by means of the matrix of coefficients 

Hence, since (X,., Be) = 8,d, 



In terms of the metric g, the connection defined in § 5.3 is given by the 
coefficients 

Differentiating with respect to 5' we conclude that Rf,,. = 0. 

Theorem 6.7.3. A complex parallelisable manifold has a natural hermitian 
metric of zero curvature. 

Since 

(Dj  denoting covariant differentiation with respect to the given con- 
nection), it follows that 

Multiplying these equations by I;, and taking account of the relations 

we conclude that 

Dj 5':) = 0, Y = 1, -*, n. 

Thus, we have 

Corollary. A complex parallelisable manifold has a natural hermitian 
metric with respect to which the given field of frames is parallel. 

The results of this section are interpreted in V1.G. 

6.8. Compact complex parallelisable manifolds 

Let M be a compact complex parallelisable manifold. Since the 
curvature of M (defined by the connection (6.7.1)) vanishes, the con- 
nection is holomorphic; hence, so is the torsion, that is, in the notation 
of 5 5.3 

d " D  =0,  i =  1;- ,n  
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where the Qi are the forms 6* pulled down to M by means of the cross 
section M + { ( a l a ~ j ) ~ ,  (a/aZj)p). Denoting the components of the 
torsion tensor by Tfli as in 5 5.3, put 

then, f is a real-valued function. 

Lemma 6.8.1, The Tjki are the constants of structure of a local Lie group. 

For, 

- *Sdf = gT8*D, D, f 

Hence, since the curvature is zero, an application of the interchange 
formula (1.7.2 1) gives 

- $Sdf = grl' D T  i D Tjk r jk s i' 

Therefore, by proposition 6.5.1, 

Af = Sdf r 0, 

from which we conclude that the D,Tjki vanish. Consequently, from 
(5.3.22) they satisfy the Jacobi identities 

Since M is complex parallelisable, it follows from the proof of 
theorem 6.7.3 that there exists n linearly independent holomorphic 
pfaffian forms 01, . a * ,  8n defined everywhere on M. Therefore, their 
exterior products 8" A O j  (i < j) are also holomorphic and linearly 
independent everywhere (cf. lemma (6.10.1)). Moreover, since there are 
n(n - 1)/2 such products they form a basis of the space of pure forms 
of bidegree (2,O). 

It  is now shown that d8i is a holomorphic 2-form, i = 1, ..-, n. Indeed, 
8i is of bidegree (1,0), and so since d8i = d'Oi (by virtue of the fact that 
the 8i are holomorphic), d8i is a pure form of bidegree (2,O). On the 
other hand, dud@ = d"d'8i = 0 since d'd" + d"d' = 0. 

We conclude that the d8i may be expressed linearly (with complex 
coefficients) in terms of the products O j  A Ok, and since M is compact 
these coefficients (as holomorphic functions) are necessarily constants. 
That the coefficients are proportional to the Tjki is easily seen from 



equations (5.3.3) - (5.3.5) by restricting to parallel orthonormal frames 
(cf. proof of theorem 6.7.1). Consequently, 

Equations (6.8.1) and (6.8.2) imply that the Bi (i = 1, a * . ,  n) define a 
local Lie group. This group cannot, in general, be extended to the 
whole of M. For this reason we consider the universal covering space 
A? of M. For, A? is simply connected and has a naturally induced 
hermitian metric of zero curvature (cf. theorem 6.7.2, cor., and prop. 
5.8.3). We prove 

Theorem 6.8.1. The universd covering space M of a compact complex 
parallelisable manifold M is a complex Lie group [69]. 

In the first place, since the projection rr: i@ -t M is a holomorphic 
map, i@ has a naturally induced complex structure (cf. prop. 5.8.3). 
On the other hand, rr is a local homeomorphism; hence, it is (1-1). 
Consequently, the n forms 

0' = ,*(@) 

are linearly independent and holomorphic, the latter property being 
due to the fact thatrr is holomorphic (cf. lemma 5.8.2). Moreover, 

dB' = d(,*@) = w*(dOi) 

Hence, the & define a local Lie group. The BL being independent we 
define the (hepitian) metric 

on I@. That this metric is not, in general Kaehlerian follows from the 
fact that the Bi are not necessarily df-closed. 

With respect to this metric, A? may be shown to be complete (cf. 5 7.7). 
T o  see this, since M is compact it is complete with respect to the metric 

The completeness of fl now follows from that of M. 
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For, 
R" = IT*& 

Hence, (!@, ,f) is a 'hermitian covering space' of (M, g), that is, the 
holomorphic projection map n induces the metric of M. 

The universal covering space AT of a compact complex parallelisable 
manifold therefore has the properties: 

(i) there are n independent abelian differentials of the first kind on a; 
(ii) they satisfy the equations of Maurer-Cartan ; 
(iii) l@ is simply connected, and 
(iv) AT is complete (with respect to 2). 
Under the circun~stances, i@ can be given a group structure in such 

a way that multiplication in the group is holomorphic. Moreover, the 
abelian differentials are left invariant pfaffian forms. We conclude 
therefore that A?! is a complex Lie group. 

That compactness is essential to the argument may be seen from the 
following example: 

Let M = C2 - 0. Define the holomorphic pfaffian forms e1 and e2 
on M as follows: 

Denote by XI and X2 their duals in TC. The components of the torsion 
tensor with respect to this basis are given by (6.8.2), namely, 

Although Xl and X2 form parallel frames, these components are not 
constant. 

6.9. A topological characterization of compact complex parallelisable 
manifolds 

In  this section, a compact complex parallelisahle manifold M is 
characterized as the quotient space of a complex Lie group. In fact, it is 
shown that M is holomorphically isomorphic with l@/D where D is the 
fundamental group of lq. As a consequence of this, it follows that M 
is Kaehlerian, if and only if, it is a multi-torus. 

Let D be the fundamental group of the universal covering space 
(i@, w )  of the compact complex parallelisable manifold M, that is, the 



group of those homeomorphisms o of I@ with itself such that n - o = n 

for every element a E D. Then, 

where o* is the induced dual map on A*c(.@). Hence, 

that is the & are invariant under D. It follows that a is a left translation 
of m, and so D may be considered as a discrete subgroup of the complex 
Lie group f@. With this identification of D, M is holomorphically 
isomorphic with MID. Thus, 

Theorem 6.9.1. A compact complex parallelisable manifold is holo- 
morphically isomorphic with a complex quotient space of u complex Lie 

I 
group modulo a discrete subgroup [69]. 

Corollary. A compact complex parallelisable manifold is Kaehbian, if 
and only if, it is a complex multi-torus. 

A complex torus is compact, Kaehlerian, and complex parallelisable 
(cf. example 3, 5 5.9). Conversely, if M = G/D is Kaehlerian, the left ' 

invariant pfaffian forms on the complex Lie group G must be closed. 
It follows that G is abelian. Therefore, M is a complex torus. 

Theorem 6.9.1 may be strengthened by virtue of theorem 6.7.1. For, 
zero curvature alone implies that the TI> satisfy the equations of 
Maurer-Cartan. I t  follows that the 8t are the left invariant pfaffian forms 
of a local Lie group. 

Theorem 6.9.2. A compact hermitian manifold of zero curvature is 
holomorphically isomorphic with a complex quotient space of a complex Lie 
group modulo a discrete subgroup. 

Corollary. A compact hermitian manqold M of zero curvature cannot be 
simply connected. 

For, otherwise the left invariant pfaffian forms on M are closed. 
Thus, M is an abelian Lie group, and hence is a complex torus. This, 
of course is impossible. - 

We have seen that d" is a differential operator on the graded module 
A *"(M) (cf. 5 5.4) where M is a complex manifold. In this way, since 
dU2 = 0, it is possible to define a cohomology theory analogous to the 
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de Rham cohomology (d-cohomology) of a differentiable manifold. 
The reason for considering cohomology with the differential operator d" 
is clear. Indeed, it yields information regarding holomorphic forms. 

We remark that in this section to every statement regarding the 
operator d" there is a corresponding statement for the operator d'. 
Thus, there is a corresponding cohomology theory defined by d'. 

Lemma 6.10.1. For every form a of bidegree (q, Y )  and any f l  

To see this, it is only necessary to apply the operator d to a A f l  
and compare the bidegrees in the resulting expansion. 

Let Ag*r denote the linear space of forms of bidegree (q, r) on M. 
Consider the sequence of maps 

where for the moment we write dl;,, = d" I Aqvr.. Now, put 

~ , r  M kernel d " ,  , 
H' ( ) = image d\r-l ' 

then, 

Proposition 6.10.1. 

H;*'(M) = kernel d",, . 
For, if a E image d",,,-, it must come from a form of bidegree 

(q, r - 1). Let a be a form of bidegree (p, 0). Then, its image by 
d''q,r-l must be 0. 

Corollary. Hf*O(M;) is the linear space of holomorphic p-forms. 
Now, by lemma 6.10.1 if a and fl are holomorphic forms, so is a A p. 

Define 

then, by the remark just made, H,(M). has a ring structure. 
It  is now shown that the d"-cohomology ring of a compact complex 

parallelisable manifold A4 depends only upon the local structure of its 
universal covering space. 



Indeed, every holomorphic p-form a on M has a unique representation 

where the coefficients are holomorphic functions, Since M is compact, 
the coefficients must be constants. Hence, -*(a) is a left invariant 
holomorphic p-form on (M, n)-the universal covering space of M. 
On the other hand, a left invariant p-form on i@ has constant coefficients. 
Thus, T* defines a ring isomorphism from the exterior algebra of holo- 
morphic forms on M onto the exterior algebra of left invariant differential 
forms on I@. Moreover, since 

r* induces an isomorphism between their cohomology rings. Now, 
since the cohomology ring of a compact (connected) Lie group is 
isomorphic with the cohomology ring of its Lie algebra L [48], we 
conclude that the d"-cohomology ring of M is isomorphic with the 

I cohomology ring of L. We have proved 

Theorem 6.10.1. The d' '-cohomology nng of a compact complex parallelis- 
able manqold is isomorphic with the cohomology dttg of the (complex) Lie 
algebra of its universal covering space [69]. 

6.1 1. Complex imbedding 

In this section, the problem of imbedding a Kaehler manifold M 
holomorphically into a locally flat space is considered. More precisely, 
we are interested i : ~  establishing necessary conditions for such im- 
beddings to be possible. Moreover, only locally isometric imbeddings are 
considered. If the Ricci curvature of M is positive, M cannot be so 
imbedded. On the other hand, negative Ricci curvature is not sufficient 
as we shall see by considering the classical hyperbolic space defined 
by means of the metric 

in the unit circle I z I < I. The possiblity of such imbeddings thus 
appears to be rather remote. 

Let U be a coordinate neighborhood on the complex manifold M 



with local complex coordinates (zl, .-., zn) and assume the existence 
on U of N 2 n holomorphic 1-forms 

independent at each point, satisfying the further conditions 
d'ar =0 ,  r = 1, -a ,  N. (6.1 1.3) 

Since d = d' + d" we have assumed the existence on U of N closed 
forms art. Thus, the real 2-form 

on U is closed and, since it is of maximal rank, the differential forms arr 
define a (locally) Kaehlerian metric on U. This metric is not globally 
defined, that is, we do not assume the existence of N (globally defined) 
holomorphic 1-forms on M but rather on the coordinate neighborhood U. 

The conditions (6.1 1.3) are the integrability conditions of the system 
of differential equations 

where the f' are holomorphic functions. 
Consider the map f : U -+ CN defined in terms of local coordinates by 

wr = f2(a1, -, zn), r = 1, -., N. (6.1 1.6) 

Since l2 is of maximal rank, this map is (1-1). Hence, the metric g of U: 

is induced by the flat Kaehler metric 

of CN. For, 



Computing the Ricci curvature with respect to the metric (6.1 1.7), 
we obtain 

For, from (5.3.19) the Ricci curvature is given by 

Substituting for gG, from (6.1 1.7) and applying (5.3.1 l), the desired 
formula for RU, follows. 

Clearly, then, the Ricci curvature defines a negative semi-definite 
quadratic form since 

We have proved 

Theorem 6.1 1 .l. Let M be a Kaehler matu~old locally holomorphically 
isometrically imbedded in C ,  with the flat metric (6.1 1.8). Then, its Ricci 
curvature is non-positive [5]. 

If M is compact we may draw the following conclusion from cor. 1, 
theorem 6.5.1. 

Theorem 6.11.2. If the Ricci curvature is strictly negative there are no 
holomorphic contravariant tensor Felds of bidegree (p ,  0 ) ;  otherwise, a 
tensor fiGld of this type must be a parallel tensor field. In particdar, for 
negative Ricci curvature there are no holomorphic vector fields on M. 

Since a complex torus T, is locally flat (with respect to the metric 
of (6.7.1)), we may draw the obvious conclusion: 

Corollary. If a compact KaeIiIer manifold can be locally holomorphically 
( I - I )  imbedded in some T,, and its metric g can be obtained directly from 
the imbedding, a holonrorphic contravariant tensor Jield of bidegree ( p, 0)  (if 
it exists) must be parallel with respect to the connection (6.7.1) of the metricg. 

If the Ricci curvature is negative, local imbeddings of the type 
considered in theorem 6.1 1.1 are not always possible. The hyperbolic 



space defined by the metric (6.11.1) in the unit circle shows that this is 
the case. This is a consequence of the following 

Proposition 6.11.2. Let U be a coordinate neighborhood of complex 
dimension I endowed with the metric 

where the function g has the special form 

If U can be holomorphically, isometrically mapped into CN(N 2 1) with 
the flat metric (6.11.8), then, the power series (6.11.10) is a polynomial. 

For, since U is holomorphically, isometrically imbedded in CN, the 
imbedding is given by the functions 

cQ 

wT = p(z) = 2 brP zp, r = 1, .-, N 
p=l 

with the property 

Hence, 

Now, for each p the sequence of numbers 

is a vector in C,. But, by (6.11.12) any two are orthogonal; hence, at 
most N of them can be different from zero. We conclude that at most 
N2 of the brp are different from zero, that is the mapping functions f (a) 
are polynomials. Comparing (6.1 1.10) with (6.1 1.1 I) ,  g(z, 5) must be 
a (finite) polynomial. 

Consider the metric 
1 g(z,a) = - 

(1 - ~ 2 ) ~  (6.11.13) 

in the unit circle I a I < 1. Hence, from the proposition just proved, 
the interior of the disc I a 1 < 1 cannot be isometrically imbedded in 



some C ,  with the flat metric. It  is not difficult to see that the Ricci 
curvature of g is given by 

R(z,a) = - ---- <O. 
(1 - zq2  (6.1 1.14) 

From (6.1 1.13) and (6.11.14) we obtain immediately that the scalar 
curvature is - 2. Thus, g has constant negative curvature, that is g is 
a hyperbolic metric. 

Another example is afforded by the higher dimensional analogue, 
namely, the interior of the unit ball Zr-, I xi l 2  < 1 with the hyperbolic 
metric 

E I dzi l 2  - C I zi l a  ZI I dzj l a  + I ZIZi dzi I 2  
(1 - C I xi 12)= 

6.12. Euler characteristic 

In the previous section we considered manifolds M on which N 2 n 
holomorphic functions f'(r = 1, -.., N) are 'locally' defined. Mare 
precisely, in a coordinate neighborhood U of M we assumed the 
existence of N independent holomorphic 1-forms ar satisfying d'ar = 0. 
Now, in this section, we assume that on the complex manifold M there 
exists N 2 n 'globally' defined holomorphic differentials 

aT = a':' dz', r = 1, -, N ,  rank (a(:)) = n everywhere, 

which are simultaneously d'-closed. The fundamental form 

of M is then closed and of maximal rank. The distinction made here is 
that we now have a globally defined Kaehler metric 

In terms of the curvature of this metric, and by means of the generalized 
Gauss-Bonnet theorem, if M-is compact 

where x(M) denotes the Euler characteristic of M. Moreover, x(M) 
vanishes, if and only if the nth Chern class vanishes. Incidentally, the 
vanishing of x(M) is a necessary and sufficient condition fcr the existence 
of a continuous vector field with no zeros (on M). 



A representative c, of the (n  - r + 1)"t Chern class of an hermitian 
manifold is given in terms of the curvature forms 83 by means of the 
formula 1211 

The theorem invoked above may be stated as follows: 
The Euler characteristic of a compact hermitian manifold M is given 

by the Gauss-Bonnet formula 

As in 9 6.11, in each coordinate neighborhood U there exists N 
holomorphic functions f' such that 

by means of which M is mapped locally, (1-1) into CN.  Moreover, the 
metric g of M defined by the matrix of coefficients 

is induced by the flat Kaehler metric 

of C ,  where 

is the rth abelian integral of the first kind on M. 
T o  compute the curvature tensor of the metric g we proceed as 

follows: In the first place, from (5.3.19) the only non-vanishing com- 
ponents are given by 

From (6. l U ) ,  
holomorphic, 

since the functions a(: ) ,  r = 1, ..., N; i = 1, -.-, n are 



and 

Substituting in (6.12.5) and making use of the fact that 

I we obtain 

1 Now, since 

and 

But 

1 from which we conclude that 

Summing (6.12.7) with respect to r and comparing the result with 
(6.12.6) we obtain 
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Thus, 

where the SZk, are the forms Qk, pulled down to M. (The Qif. are defined 
by the above relations.) 

From 6.12.1 we deduce that 

- - - l n  det (R,.) 
(27r 

N 
- __r - det (x Dka(;) Dp(;) dak A dzz). 

(27r m ) n  7-1 

where, for simplicity, we have writen Qii, for its image in B (cf. 5 5.3). 
Now, put 

Then, 
N 

c1 = det (2 p(;) 
(27r rn)" ,--1 

where Q) is the matrix (&)) and 'Q) denotes its transpose. 
The  result follows after expressing Q) in terms of real analytic coordi- 

nates (xi, yi) with ai = xi + d 3  yi, since dai A di i  = - 2 d*' A dyi. 

Theorem 6.12.1. The Euler characteristic of a compact complex manifold 
of complex d immon n on which there exists N 2 n closed holomorphic 
dz~erentials a$) dzg such that rank(a(i))= n satikfis the inequality 

(- 1)" x(M) 2 0. 

Moreover, x(M) vanishes, if: and only if, the nth Chern class vanishes [8]. 

6.13. The effect of sufficiently many holomorphic differentials 

I t  was shown in 5 6.1 1 that the existence of sufficiently many inde- 
pendent holomorphic differentials which are, at the same time, d'-closed 
precludes the existence of holomorphic contravariant tensor fields of 



any order provided the Ricci curvature defined by the given differentials 
is negative. In fact, the condition that the differentials be df-closed 
ensured the existence of a Kaehler metric relative to which the Ricci 
curvature was non-positive. By restricting the independence assumption 
on the holomorphic differentials we may drop the restriction on the 
curvature entirely, thereby obtaining interesting consequences from an 
algebraic point of view. 

We consider a compact complex manifold M of complex dimension n. 
No assumption regarding a metric will be made, that is, in particular, 
M need not be a Kaehler manifold. Let a be a holomorphic form of 
bidegree (1,O) and X a holomorphic (contravariant) vector field on M. 
Then, since M is compact 

i(X)a = const., 

for, i(X)a is a holomorphic function on M. If we assume that there are 
N > n holomorphic 1-forms al, ..., aN defined on M, then 

where the cr, r = 1, --., N are constants. If, for any system of constants 
cr (not all zero) the linear equations (6.13.1) are independent, that is, 
if the rank of the matrix 

is n + 1 at some point, the holomorphic vector field X must vanish. 
Now, let t be a holomorphic contravariant tensor field of order p on M. 

Then, under the conditions, the same conclusion prevails, that is, t must 
vanish. Indeed, it is known for p = 1. Applying induction, assume the 
validity of the statement for holomorphic contravariant tensor fields of 
order p - 1 and consider the holomorphic tensor field 

are the components of N holomorphic contravariant tensor fields of 
order p - 1. By the inductive assumption they must vanish. But, we 
have assumed that at least n of the differentials ar are independent. Thus, 
the coefficients of the a(;: in the system of linear equations 

must vanish. 



Theorem 6.1 3.1. Let ar, r = 1, -.-, N be N > n holomorphic dzyerentials 
on the compact complex manifold M with the property : For any system 
of constants cr, r = 1, ---, N(not all zero) the rank of the matrix (a(:), cr), r = 
1, -.-, N; i = 1, -.., n has its maximum value n + 1 a t  some point. Then, 
there do not exist (non-trivial) holomorphic contravariant tensor Jields of 
any order on M. In  particular, there are no holomorphic vector fields 
on M [9]. 

This result is generalized in Chapter VII. In  particular, it is shown 
that if b,,,(M) = 2, M cannot admit a transitive Lie group of holo- 
morphic homeomorphisms. 

6.14. The vanishing theorems of Kodaira 

A complex line bundle B over a Kaehler manifold M (of complex 
dimension a) is an analytic fibre bundle over M with fibre C-the complex 
numbers and structural group the multiplicative group of complex 
numbers acting on C. Let Aq(B) be the 'sheaf' (cf. 5 A.2 with r = 
Ag(B)) over M of germs of holorhorphic q-forms with coefficients in B 
(see below). Denote by Hp(M, Ag(B)) the pth cohomology group of M 
with coefficients in Aq(B) (in the sense of 5 A.2). It is known that these 
groups are finite dimensional [47]. I t  is important in the applications of 
sheaf theory to complex manifolds to determine when the cohomology 
groups vanish. By employing the methods of 5 3.2, Kodaira [47] was 
able to obtain sufficient conditions for the vanishing of the groups 
Hp(M, Aq(B)). I t  is the purpose of this section to state these conditions 
in a form which indicates the connection with the results of 5 3.2. The 
details have been omitted for technical reasons-the reader being 
referred to the appropriate references, principally [97]. 

In  terms of a sufficiently fine locally finite covering 4"1 = {Ua} of M 
(cf. Appendix A), the bundle B is determined by the system Cf,B) 
of holomorphic functions fa,, (the transition functions) defined in Ua n Ue 
for each a, /3. In  Ua n Ue n U,,, they satisfy fae fey fya = 1. Setting 

-- 1 faS l a ,  it is seen that the functions {aaJ define a principal fibre 'a8 - 
bundle over M (cf. I. J) with structural group the multiplicative group 
of positive real numbers. This bundle is topologically a product. Hence, 
we can find a system of positive real functions {aa} of class m defined in 
(UJ such that, for each pair a, /3 



Since the functions fa8 are holomorphic in Ua n U8, it follows that 

a2 log a, - a2 log a@ --- 
azi a ~ i  asi a$ in U, n Ug. 

Thus, the 2-form 
a2 log a, yij* dz' A d 9  = = dzi A d 9  
azi a 9  

is defined over the whole manifold M (cf. V.D). 
4 form 4 (form of bidegree (p, 9)) with coefficients in B is a system 

{$,I of differential forms (forms of bidegree (p, q)) defined in {U,} such 
that 

Following 5 5.4 we define complex analogs d', d", 8' and 6" of the 
operators d and 6 for a form 4 = {+,I with coefficients in B: 

(a : not summed)-the star operator * being defined as usual by the 
Kaehler metric of M. In terms of these operators it can be shown that 

A = 2(d'S1 + S'd') 

is the correct operator for the analogous Hodge theory - being called 
harmonic if it is a solution of A$ = 0. 

If M is compact it is known that Hp(M, A@(B)) g HqpP(B)-the vector 
space of all harmonic forms of bidegree (q, p) with coefficients in B [47]. I t  
follows that dim Hp(M, A q(B)) is finite for all p and q. 

Since fa@ fay fya = 1 in Ua n Up n U,, 

is a constant in U, n Ug n U,, where caBy E 2. The system {cap,) C Z 
defines a 2-cocycle on the nerve N( 8) of the covering % (cf. Appendix A 
and [72]). I t  therefore determines a cohomology class cN E H2(N( a), 2); 
indeed, by taking the direct limit 

H2(M,Z) = lim H2(N(%),Z) 
4 

we obtain an element c = c(B) E H2(M, Z )  called the characteristic class 
of the principal bundle associated with B. 
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Lemma 6.14.1 [47]. The real closed 2-form 

on M is a representative of the characteristic class c(B). Conversely, if y 
is a real closed form of bidegree ( 1 , I )  on M belonging to the characteristic 
class c(B), there exists a system of positive functions a, of class oo such 
that for each pair at, /3 

and 
4 7  a2 log a, y=-- 

27T azi a59 dzi A dzj. 

T h e  2-form y is said to  be positive ( y  > 0 )  i f  the corresponding 
hermitian quadratic form is positive definite at each point o f  M. Let 

be a differential form o f  bidegree (p,  q) with coefficients in  B and denote 
by P * q ( y ,  v )  the quadratic form (corresponding to  F(at) in  5 3.2-the 
operator A being given b y  A = 2(d'6' + 6'df)), 

-orks.. .kpp  ,:. . .p68kr.-kT ii--i: 

where yiej, = gM' ykj.. 
W e  now state the vanishing theorems: 

Theorem 6.14.1. If the characteristic class c(B) contains a real closed form 

with the property that the guadratic form P*q(y ,  v )  is positive definite 
at each point of M ,  then 

HQ(M, A '(B)) = (01, q = 1, -*, n. 

Theorem 6.14.2. If the form y > 0 ,  

HQ(M, A ~ ( B ) )  = {o}, q = 1 ,  -, n. 



The proof of theorem 6.14.1 is an immediate consequence of the fact 
that Hq(M, AP(B)) g Hppq(B). For, by lemma 6.14.1, we may choose 
the system of functions {aa} satisfying a, = I fd 12ap in such a way that 
(471272)  (a2 log aa/ azi Z j )  dzi A d 9  = y (cf. VI. H. 2). Then, by 
the argument given below Fp.q(y, 4a) = 0, q = I ,  a-, n holds for any 
form 4 = {+,I E Hppq(B). The result now follows since FP*q(y, 4J > 0 
unless 4, vanishes. 

Let - B denote the complex line bundle defined by the system 
{f;;}. Then, the map 4 + 4' defined by 

' 1  
+ a = -  

a a 
*Ba 

maps Hp,q(B) isomorphically onto Hn-Ppn-q(- B). Hence, 
HQ(M, A "(B)) -- Hn-q(M, A n-p(- R)). 

Corollary 6.1 4.1. Under the hypothesis of theorem 6.14.1 

Hn-q(M, An-P(- B)) = (01, q = 1, *.-, n. 

Corollary 6.14.2. If the form y > 0, 

Hn-q(M, AO(- B)) = {0), q = 1, ..-, n. 

By the canonical bundle,K over M is meant the complex line bundle 
defined by the system of Jacobian matrices ka8 = a(z;, -, z ~ ) / a ( z ~ ,  --p:), 
where the (2:) are complex coordinates in Ua. I t  can be shown that the 
characteristic class c(- K )  of - K is equal to the first Chern class of M. 

The characteristic class c(B) is said to be positive definite if it can be 
represented by a positive real closed form of bidegree (1,l). We are now 
in a position to state the following generalization of theorem 6.2.1. 

Theorem 6.14.3. There are no (non-trival) holomorphic p-forms (0 < p 
5 n) on a compact Kaehler manifold with positive definite first Chern class. 

This is almost an immediate consequence of theorem 6.14.2 (cf. 1471). 
I t  is an open question whether there exists a compact Kaehler manifold 

I 

with positive definite first Chern class whose Ricci curvature is not 
positive definite. 

Proof of Theorem 6.14.1. Since M is compact, the requirement that 
E HPpq(B) is given by the equations d"4, = 6"4, = 0 for each a. 

In  the local complex coordinates (zi), 4, has the expression 



Hence, 

and if I is the identity operator on forms 
a log 

glm*(D1 + pal ' I )  +akl...k,m*i;...ia = 01 Pal = - ' 

Thus, for a harmonic form of bidegree (p, q) with coefficients in B 

Consider the l-form 
5' = S m * d g m  

of bidegree (0,l) where 

I t  is easily checked that it is a globally defined form on M. We compute 
its divergence: 

- 65' gh*D1f,* = G(+) + X (6.14.3) 
where 

1 
G(+) = glrn*[(Da + Pal * I  Dm*#akl...kpi;...iG 1 $akl...kpi;...~ (6.14.4) 

and 
1 

= -glm*Dm*dakl...kpi~...i~ *a . ~,*+~k~...k~ii...i; 

Formula (6.14.3) should be compared with (6.5.3). 
Note that equations (6.14.1)-(6.14.4) are vacuous unless q 2_ 1. 
Now, by the Hodge-de Rham decomposition of a 1-form 
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where f is a real-valued function on M. Then, 

sf = Sdf, 
and so, from (6.14.3) 

Assume G(+) 2 0. Then, since A 2 0, Gdf 5 0. Applying VI.F.3, we 
see that Gdf vanishes identically. Thus G(+) = - A S 0. Consequently, 
G(+) = 0 and A = 0. Finally, if P * Q ( y ,  v )  is positive definite at each 
point of M, 4 must vanish. For, by substituting (6.14.1) into (6.14.4), 
we derive 

qP*Q(y,v) = G(v). 

Remark: If the bundle B is the product of M and C, B = M x C, 
the usual formulas are obtained. 

EXERCISES 

A. &pinched Kaehler manifolds [2] 

1. Establish the following identities for the curvature tensor of a Kaehler 
manifold M with metric g (cf. I. I): 

(a) R(X, Y) = R(JX JY), 
(b) K(X,Y) = K(JX,JY), 
(c) K(X, JY) = K(JX, Y), 

and when X, Y, JX, JY are orthonormal 

(d) g(R(X, JX) Y, JY) = - K(X, Y) - K( JX, Y). 

To prove (a), apply the interchange formula (1.7.21) to the tensor J defining 
the complex structure of M (see proof of lemma 7.3.2); to prove (b), (c), and (d) 
employ the symmetry properties (1.1. (a) - (d)) of the curvature tensor. 

2. If the real dimension of M is 2n(n > I), and M is &pinched, then S I 2. 
To see this, let {X,]X,Y, JY) be an orthonormal set of vectors in the tangent 

space Tp at P E M. Then, from (3.2.23) 

Applying (1 .(d)) we obtain 

1 
8 5 K(X,Y) $7 (2 - 58) 

from which we conclude that 8 5 3. 
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3. The manifold M is said to be A-holomorphically pinched if, for any holo- 
morphic section there exists a positive real number Kl (depending on g) 

The metric g may be normalized so that Kl = 1, in which case, 

A &pinched Raehler manifold is S(88 + l)/(l - 6) -holomorphically 
pinched. 

T o  see this, apply the inequality 

I Rijkl I 5 f [(PS)"' + (QR)"'] (1) 

valid for any orthonormal set of vectors { X i , ~ j , ~ k , ~ , } ,  i, j,k,l = 1, -, 2n where 

This inequality is proved in a manner analogous to that of (3.2.21); indeed, set 

L(a,i;b,k;c, j;d,l) = G(a,i;b,k;c, j;d,l) + G(a,i;b,l;c, j; - d,k) 

and show that 

L = Pa2$ + Q a 2 d q  Rb2c2 + SbZd2 + 6Rijkl abcd. 

Put Xs* = JXi(i = 1, ..., n) (cf. (5.2.6)) and apply (1) with j = i* and 1 = k*. 
Hence, from 1 .(b) - (d) 

from which 
[(Kip - 6) (Kkp - 6)]1/2 2 Kfk + Kip + 4. 

Since Ki, 2 6, Kik, 2 6 and Kk,, $ 1, we conclude that 

(Note that a manifold of constant holomorphic curvature is 4 - pinched.) 

4. Prove that if M is A-holomorphically pinched, then M is 3(7X-5)/8(4-A)- 
pinched. 

In the first place, for any orthonormal vectors X and Y, g(aX + by, a x  + by) 
= az + b2. Applying l.(b) and (c) as well as (1.1. l(d)), 

(a2 + b2)2K(aX + b Y, J(aX + b Y)) = dK(X, ]X) + b4K(Y, JY) 

+ 2a2b2[K(X, Y) - 3g(R(Y, JX)Y, JX)] 

+ 4a&(R(Y, JY)X, JY) + 4aJbg(R(X, ]x)x,  IY). 



EXERCISES 

Put g(Y, JX) = sin 8; then, 

g(R(Y, JX)Y, JX) = - K(Y, JX) eoss8. 
Hence, since 

h 5 K(aX + by, J(aX + by)) 5 1, 
h(as + b2)= 5 d K(X, JX) + 2asba [K(X,Y) + 3K(Y, JX) cos'fl 

+ P K(Y, JY) 5 (as + be)' 

for any a, b E R, and so 

2h - 1 5 K(X,Y) + 3K(Y, JX) cos28 5 2 - h . 
Similarly, from 

5 K(aX + b JY,J(aX + b JY)) 5 1, 
we deduce 

Consequently, 

for any X and Y. In particular, Kt JX,Y) 2 i(3h - 2), and so from (3) 

5. Show that for every orthonormal set of vectors {x,Y, Jx, JY} 

B. Reduction of a real 2-form of bidegree (1.1) 

1. At each point P E M, show that there exists a basis of Tp of the form 

(i = 1,3, . .a,  2p - 1 ; k = 2p + 1, ..., n) such that only those components of a 
real 2-form a of bidegree (1,l) of the form a,,,, ai+l,(i+l) +, at.i+l = ai+.(i+l) 
a,,, may be different from zero. 

To see this, observe that Tp may be expressed as the direct sum of the 
2-dimensional orthogonal eigenspaces of a. Since a is real and of bidegree (1,1), 
,1(X,Y) = a( JX, JY) for any two vectors X and Y (cf. V. C.6). Let V be such a 
subspace. Put v = V + JV. In general, JV ;f V; however, JV = v. Tpis a 
direct sum of subspaces of the type given by v. Only two cases are possible for v: 
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(a) v is generated by X and JX. Then, a(X,Z) = a(JX,Z) = 0 for any 
Z E {X, Jx}~-the orthogonal complement of the space generated by X and JX. 

(b) v is generated by X, JX,Y, JY where X and Y have the property that 
a(X,Z) = a(Y,Z) = 0 for any Z E {x, Y] : Put Y = a JX + b W where W is 
a vector defined by the condition that {x, Jx, W, JW} is an orthonormal set. 
The only non-vanishing components of a on v are given by a(X, JX), a(W, JW), 
a(X, W) = a( JX, JW). Therefore, when Z E PA, a(X,Z) = a( JX,Z) = a(W,Z) = 
a(JW,Z) = 0. 

C. The Ricci curvature of a A-holomorphically pinched Kaehler manifold 

1. The Ricci curvature of a bpinched manifold is clearly positive. Show that 
the Ricci chrvature of a A-holomorphically pinched Kaehler manifold is positive 
for h 2 4. 

In the notation of (1.10.10) 

Choose an orthonormal basis of the form {X, JX) u {Xi, JXi} (i = 2, -, n) 
and apply (A. 5). 

D. The second betti number of a compact &pinched Kaehler manifold [2] 

1. Prove that for a 4-dimensional compact Kaehler manifold M of strictly 
positive curvature, bdM) = 1. 

In the first place, by theorem 6.2.1 a harmonic 2-form a is of bidegree. (1,l). 
By cor. 5.7.3, a = r52 + p, Y E R where 52 is the fundamental 2-form of M 
and p is an effective form (of bidegree (1,l)). Since a basis may be chosen so 
that the only non-vanishing components of p are of the form pi,,, then, by 
(3.2.10), 

Applying (A. l(d)) we obtain 

Finally, since Kij + Kij, > 0 and p is effective, it must vanish. 

2. If M is A-holomorphically pinched with A > 4, then b,(M) = 1. 
Hint: Apply AS. 

3. Show that (D.2) gives the best possible result. (It has recently been shown 
that a 4-dimensional compact Kaehler manifold of strictly positive curvature 
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is homeomorphiic with P,--the methods employed being essentially algebraic 
geometric, that is, a knowledge of the classification of surfaces being necessary.) 

D.l has been extended to all dimensions by R. L. Bishop and S. I. Goldberg 

Pol* 
E. Symmetric homogeneous spaces [26] 

1. Let G be a Lie group and H a closed subgroup of G. The elements a, b E G 
are said to be congruent modulo H if aH = bH. This is an equivalence relation 
-the equivalence classes being left cosets modulo H. The quotient space G/H 
by this equivalence relation is called a homogeneous space. 

Denote by n : G-+ G/H the natural map of G onto G/H (n assigns to a E G 
its coset modulo H). Since G and H are Lie groups G/H is a (real) analytic 
manifold and * is an analytic map. H acts on G by right translations: (x,a) +- xn, 
x E G, a E H. On the other hand, G acts on G/H canonically, since the left 
translations by G of G commute with the action of H on G. The group G is a 
Lie transformation group on G/H which is transitive and analytic, that is, for 
any two points on G/H, there is an element of G sending one into the other. 

Let o be a non-trivial involutary automorphism of G : 9 = I, a # I. Denote 
by G, the subgroup consisting of all elements of G which are invariant under o 
and let denote the component of the identity in Go. If H i s  aclosed subgroup 
of G with G: as its component of the identity, G/H is called a syrnmetrk homogeneous 

Epace* 
Let G/H be a symmetric homogeneous space of the compact and connected 

Lie group G. Then, with respect to an invariant Riemannian metric on G/H 
an invariant form (by G) is harmonic, and conversely. 

In the first place, since G is connected it can be shown by averaging over G 
that a differential form a on G/H invariant by G is closed. (Since G is transitive, 
an invariant differential form is uniquely determined by its value at any point 
of M). Let h be a Riemannian metric on G/H and denote by a*h the transform 
o f h b y a ~ G . P u t  

Then, g is a metric on G/H invariant by G. In terms of g, *a is also invariant 
and therefore closed. Thus, a is a harmonic form on G/H. 

2. Show that 

P,, = U(n + 1)/ U(n) x U(1) 

is a symmetric homogeneous space. 
To  see this, we define an involutory automorphism u of U(n + 1) by 
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Then, 

3. Prove that the curvature tensor (defined by the invariant metric g) of a 
symmetric space has vanishing covariant derivative. 

Hint: Make essential use of the fact that an illvariant form on a symmetric 
space is a closed form. 

F. Bochner's lemma [4] 

1. Let M be a differentiable manifold and U a coordinate neighborhood of M 
with the local coordinates (ul, ..., un). Consider the elliptic operator 

on F(U)-the algebra of differentiable functions of class 2 on U,  where the 
coefficients gjk, hi are merely assumed to be continuous functions on U. (The 
condition that L is elliptic is equivalent to the condition that the matrix V k )  
is positive definite). If for an element f E F : (a) Lf 2 0 and (b) f(ul, *.-, un) 5 
f (a1, .. ., an) for some point Po E U with coordinates (a1, . ., an), then f (ul, .., un) 
= f(al, -.., an) everywhere in U. 

This maximum principle is due to E. Hopf [40]. The corresponding minimum 
principle is given by reversing the inequalities. This result should be compared 
with (V. A. 2). 
2. If M is compact and f e F(M) is a differentiable function (of class 2) for 
which Lf 2 0, then f is a constant function on M. 

3. If M is a compact Riemannian manifold, then a function f E F(M) for which 
Af 2 0 is a constant function on M. 

This is the Bochner lemma [#I. 
Note that M need not be orientable. By applying the Hopf minimum principle 

the statements 2 and 3 are seen to be valid with the inequalities reversed. 

G. Zero curvature 

1. The results of 5 6.7 may be described in the following manner: 
Zero curvature is the integrability condition for the pfaffian system given 

by the connection forms on the bundle B of unitary frames over M. Hence, 
there exist integral manifolds; a maximal integral submanifold through a point 
will be a covering space of the manifold M. These manifolds are locally isometric 

i since the mapping from the horizontal part of the tangent space of B to the 
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tangent space of M is always an isometry (cf. the last paragraph of § 1.8 where 
in the description of an affine connection W, is the horizontal part of T,, 
by definition, and (r*(T$))* is the vertical part). Since B is parallelisable 
into horizontal and vertical fields, the horizontal parallelization yields a local 
parallelization on M which is covariant constant by the properties of the 
horizontal parallelization. 

An integral manifold is called a maximal integral manifold if any integral 
manifold containing it coincides with it [27]. 

H. The vanishing theorems 

1. Theorem 3.2.1 is a special case of Myers' theorem [62]: The fundamental 
group of a compact Riemannian manifold M of positive dejnite Ricci m a t u r e  is 
finite. The proof depends on his theorem on conjugate points which was estab- 
lished by means of the second variation of the length integral. I t  has recently 
been shown that i f  M is Kaehhian, it is simply connected [81]. The proof depends 
on theorem 6.14.1 and the theorem of Riemann-Roch [80]. 
2. Given a real closed form y of bidegree (1, 1) belonging to c(B) there exists 
a system -(aa} of positive functions of class 00 satisfying a, = I fd12ap in U, n Up 
such that 47 d'd" log a,  = 2ny. 

To see this, let {a:} be a system of positive functions satisfying a: = I fd ['a; 
and set 2% = 2 9  - d 7  d'd" log a: Then, since H[yo] = 0, yo = 2 d"SMGy,. 
Applying (5.6.1), show that yo = 2 a d'd" AGyo. Finally, put 
a, = a: exp (- hAGy,,). 
3. Show that the first betti number of a compact Kaehler manifold with 
positive definite first Chern class is zero. 

I. Cohomology 

1. For a compact Kaehler manifold, show that the cohomology groups defined 
by the differential operators d,  d', and d are canonically isomorphic. 

In the case of an arbitrary complex manifold, it can be shown that the de Rham 
isomorphism theorem is valid for d"-cohomology. 



CHAPTER VII 

GROUPS OF TRANSFORMATIONS OF KAEHLER 
AND ALMOST KAEHLER MANIFOLDS 

In Chapter 111 the study of conformal transformations of Riemannian 
manifolds was initiated. Briefly, by a conformal map of a Riemannian 
manifold M is meant a differentiable homeomorphism preserving the 
metric up to a scalar factor. If the metric is preserved, the trans- 
formation is an isometry. The group of all the isometries of M onto itself 
is a Lie group (with respect to the natural topology). It  was shown that 
the curvature properties of M affect the structure of its group of 
motions. More precisely, if M is compact, the existence or, rather, non- 
existence of 1-parameter groups of conformal maps is dependent upon 
the Ricci curvature of the manifold. 

In 5 3.8, an infinitesimal conformal transformation of a compact and 
orientable Riemannian manifold was characterized as a solution of a 
system of differential equations. This characterization is dependent 
upon the Ricci curvature, so that, if the curvature is suitably restricted 
there can be no non-trivial solutions of the system. In an analogous way, 
an infinitesimal holomorphic transformation X of a compact Kaehler 
manifold may be characterized as a solution of a differential system. 
Again, since this system of equations involves the Ricci curvature 
explicitly, conditions may be given in terms of this tensor under which 
X becomes an isometry. For example, if the 1" Chern class determined 
by the 2-form t,b (cf. (5.3.38)) is preserved (@(X)t,b = 0), X defines an 
isometry [58]. 

On the other hand, if the scalar curvature is a (positive) constant, the 
holomorphic vector field X may be expressed as a sum Y + JZ where 
both Y and Z are Killing vector fields and J is the almost complex 
structure defining the complex structure of the manifold. If K denotes 
the subalgebra of Killing vector fields of the Lie algebra La of 
infinitesimal holomorphic transformations, then, under the conditions, 
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La = K + JK. In  this way, it is seen that the Lie algebra of the group 
of holomorphic homeomorphisms of a compact Kaehler manifold with 
constant scalar curvature is reductive [58]. 

Moreover, for a compact Kaehler manifold M, with metric h, let 
A,(M) denote the largest connected group of holomorphic homeomor- 
phisms of M and G a maximal compact subgroup. Suppose that the 
Lie algebra La of A,(M) is semi-simple. For every a E G, let a*h denote 
the transform of h by a. Then, since a is a holomorphic homeomorphism 
a*h is again a Kaehlerian metric of M and g = $o(a*h)da is a Kaehlerian 
metric invariant by G. Since G is a maximal compact subgroup of A,(M), 
the subalgebra K of La corresponding to the subgroup G of A,(M) 
coincides with the Lie algebra generated by the Killing vector fields of 
the Kaehler manifold defined by M and g. Since La is a complex and 
semi-simple Lie algebra, and G is a maximal compact subgroup of A,(M), 
the complex subspace of La generated by K coincides with La, that is 
La = K + JK. 

Let M be a compact complex manifold whose group of holomorphic 
homeomorphisms A(M) is transitive. If the fundamental group of M 
is finite and its Euler characteristic is different from zero, A(M) is 
semi-simple [59]. 

By an application of theorem 6.13.1, it is shown that a compact 
complex manifold for which b,,, = 2 does not admit a complex Lie 
group of holomorphic homeomorphisms which is transitive [9]. 

Now, a conformal transformation of a Riemann surface is a holo- 
morphic homeomorphism. For complex manifolds of higher dimension 
this is not necessarily the case. However, if M is a compact Kaehler 
manifold of complex dimension n > 1, an infinitesimal conformal 
transformation is holomorphic, if and only if, it is an infinitesimal 
isometry. 

By an automorphism of a Kaehler manifold is meant a holomorphic 
homeomorphism preserving the symplectic structure. Hence, by 
theorem 3.7.1, the largest connected Lie group of conformal trans- 
formations of a compact Kaehler manifold coincides with the largest 
connected group of automorphisms of the Kaehlerian structure provided 
n > 1. For n = 1, it coincides with the largest connected group of 
holomorphic homeomorphisms [58, 361. 

The problem of determining the most general class of spaces for which 
an infinitesimal conformal transformation is an infinitesimal isometry 
is considered. T o  begin with, a (real analytic) manifold M of 2n real 
dimensions which admits a closed 2-form SZ of maximal rank everywhere 
is said to be symplectic. Let g be a Riemannian metric of M which 
commutes with In (cf. (5.2.8)). Such an inner product exists at each 
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point of M. Assume that the operator J : tk -+ (i(X)Q)k acting in the 
tangent space at each point defines an almost complex structure on M 
and, together with g, an almost hermitian structure. If the manifold is 
symplectic with respect to 52, the almost hermitian structure is called 
almost Kaehlerian. I n  this case, M is said to be an almost Kaehler 
manifold. Regarding conformal maps of such spaces, it is shown that 
the largest connected Lie group of conformal transformations coincides 
with the largest connected group of isometries of the manifold provided 
the space is compact and n > 1 [3q. More generally, if M is a compact 
Riemannian manifold admitting a harmonic form of constant length, 
then C,(M) = I,(M) (cf. 5 3.7-and [78]). 

- 

By considering infinitesimal transformations whose covariant forms 
are closed the above results may be partially extended to non-compact 
manifolds. Indeed, let X be a vector field on a Kaehler manifold whose 
image by J is an infinitesimal conformal map preserving the structure. 
The vector field X is then 'closed', that is its covariant form (by the 
duality defined by the metric) is closed. In general, a 'closed conformal 
map' is a homothetic transformation. In fact, a closed conformal map X 
of a complete Kaehler manifold (of complex dimension n > 1) which 
is not locally flat is an isometry [45l.' In the locally flat case, if X is of 
bounded length, the same conclusion prevails [42]. 

7.1. Infinitesimal holomorphic transformations 

In § 5.8, the concept of a holomorphic map is given. Indeed, a 
differentiable map f : M -+ M' of a complex manifold M into a complex 
mainfold M' is said to be holomorphic if the induced dual map f* : 
A*C(M') -+ A*C(M) sends forms of bidegree (1,O) into forms of the same 
bidegree. I t  follows from this definition that f* maps holomorphic 
forms into holomorphic forms. The connection with ordinary holo- 
morphic functions was given in lemma 5.8.1: If M'  = C, f is a holo- 
morphic map, if and only if, it is a holomorphic function. 

Let f be a holomorphic map of M (that is, a holomorphic map of M 
into itself) and denote by J the almost complex structure defining its 
complex structure. The structure defined by J is integrable, that is, in a 
coordinate neighborhood with the complex coordinates (zi) operating 
with J is equivalent to sending a/azi and a/aai into d? a/azi and 
- 6 7  a/azi, respectively. Hence, ] is a map sending vector fields 
of bidegree (1,O) into vector fields of bidegree (1,0), so that at each 
point P E M 

~*PJP = J,(PI~*P (7.1.1) 



where f ,  denotes the induced map in the tangent space T p  at P and J p  
is the linear endomorphism defined by J in Tp.  Since two complex 
structures which induce the same almost complex structure coincide, 
the map f is holomorphic, if and only if, the relation (7.1.1) is satisfied. 
If the manifold is compact, it is known that the largest group of holo- 
morphic transformations is a complex Lie group, itself admitting a 
natural complex structure [13]. 

Let G denote a connected Lie group of holomorphic transformations 
of the complex manifold M. T o  each element A of the Lie algebra of G 
is associated the 1-parameter subgroup a ,  of G generated by A. The 
corresponding 1-parameter group of transformations Rat on M(Rat P = 
P. a,, PE M) induces a (right invariant) vector field X on M. From the 
action on the almost complex structure J, it follows that B(X) J vanishes 
where B(X) is the operator denoting Lie derivation with respect to the 
vector field X and J denotes the tensor field of type (1,l) defined by the 
linear endomorphism J. On the other hand, a vector field on M 
satisfying the equation a 

O(X) J = 0 (7.1.2) 

generates a local 1 -parameter group of local holomorphic transformations 
of M. 

An infinitesimal holomorphic transformation or holomorphic vector field X 
is an infinitesimal transformation defined by a vector field X satisfying 
(7.1.2). 

In order that a connected Lie group G of transformations of M be a 
group of holomorphic transformations, it is necessary and sufficient that 
the vector fields on M induced by the 1-parameter subgroups of G 
define infinitesimal holomorphic transformations. If M is complete, an 
example due to E. Cartan [I91 shows that not every infinitesimal holo- 
morphic transformation generates a 1-parameter global group of 
holomorphic transformations of M. 

Let La denote the set of all holomorphic vector fields on M. I t  is a 
subalgebra of the Lie algebra of all vector fields on M. If M is compact, 
La is finite dimensional and may be identified with the algebra of the 
group A ( M )  of holomorphic transformations of M. 

Lemma 7.1.1. Let X be an infinitesimal holomorphic transformation of a 
Kaehler manifold. Then, the vector field X satisjies the system of differential 

where, in terms of a system of local coordinates (uA), A = 1, ..., 2n, 
X = f A  a/auA, the FAB denote the components of the tensor field defined 
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by J, and DA indicates covariant dtflerentiation with respect to the connection 
canonically defned by the Kaehler metric. 

We denote by the same symbol J the tensor field of type (1,l) defined 
by the linear endomorphism J: 

(Note that we have written J in place of the tensor j of 5 5.2.) Then, 

Since the connection is canonically defined by the Kaehler metric, and 
Fij* = C l  gij* in terms of a J-basis (cf. (5.2.11)), D,F$ = 0. Finally, 
since X is a holomorphic vector field, 8(X) J vanishes. 

Corollary 1. A n  infnitesimal holomorphic transformation X of a Kaehler 
manifold satisfies the relation 

e (x ) jy  = je(x)y 
fm any vector Jield Y. 

Indeed, for any vector fields X and Y 

Taking account of the fact that the covariant derivative of J vanishes 
the relation follows by a straightforward computation. 

Corollary 2. In  terms of a system of local complex coordinates a holo- 
morphic vector feld satisjies the system of dzperential equations 
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This follows from the fact that the coefficients of connection Tii*  
vanish. 

I t  is easily checked that 
4 J X )  J = J W )  J* 

Therefore, if X is an infinitesimal holomorphic transformation, so is 
JX, and dim La is even. 

In  the sequel, we denote the covariant form of 0(X) J by t ( X ) ,  that is 

Lemma 7.1.2. For any vector Jield X on a Kaehler manifold with metric 
g and fundamental 2-form SZ 

t ( X )  = JV)R + NX)Q, 

where by 0(X)SZ we mean here the covariant t m o r  Beld dejined by the 
2-form 0(X)S2. 

For, 

'c D 5c - t ( x ) , ~  = ~ B ( D c  f A  - DA [C + D~ [c) + * A B 

Lemma 7.1.3. A vector _field X defines an infinitesimal holomorphic 
transformation of a Kaehler mantjcold, if and only if, 

that is, when applied to the fundamental form the operators 8(X)  and J 
commute or, when applied to the metric tensor, they commute. 

This follows from the previous lemma, since JS2 = g. 
Let X be an infinitesimal holomorphic transformation of the Kaehler 

manifold M. Then, by the second corollary to lemma 7.1.1, a p / H  = 0. 
Rut these equations have the equivalent formulation 

since the coefficients of connection Pij. vanish. Hence, a necessary 
and sufficient condition that the vector field X be an infinitesimal 
holomorphic transformation is that it be a solution of the system of 
differential equations 

D, ti = 0. (7.1.4) 
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With this formulation (in local complex coordinates) of an infinitesimal 
holomorphic transformation we proceed to characterize these vector 
fields as the solutions of a system of second order differential equations. 

T o  every real 1 -form a, we associate a tensor field a(a) whose vanishing 
characterizes an infinitesimal holomorphic transformation (by means of 
the duality defined by the metric). Indeed, if a = aAda', we define 
a(.) by 

~ ( a ) ~  = Di aj ,  a(a)ij* = a(a) j* = 0, ~ ( O L ) ~ +  j+ = Die a,.. . 
Now, from 

( A ~ ) A  = - gBCDCDBaA + RpRaB 

we obtain 

(Aa)i = - gj*kDkDj*ai - gjk*Dk* Djai + Rif+aj*. (7.1.5) 

Transvecting the Ricci identity 

with gkj' we obtain 

Hence, from (7.1.5) and (7.1.6) 

From the definition of a(a), it follows that 

Hence, if a(a) = 0, A a  = 2Qa. If M is compact, the converse is also true. 
To see this, define the auxiliary vector field b(a) by 

Then, by means of a computation analogous to that of $3.8 

I 
2Sb(a) = (Aar - 2Qa,a) - 4 (a(a), a(&)). 

i f  we assume that M is compact, then, by integrating both sides of 
this relation and applying Stokes' formula, we obtain the integral formula 

(Aa - 2Qa,a) = 4(a(a), a(a)). (7.1.7) 
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Theorem 7.1.1. On a compact Kaehler manifold, a necessary and suficient 
condition that a I - form dejine an injinitesimal holontorphic transformation 
(by means of the duality dejined by the metric) is that it  be a solution of the 
equation 

A [  = 2125. (7.1.8) 

The fact that this equation involves the Ricci curvature (of the Kaehler 
metric) explicitly will be particularly useful in the study of the structure 
of'the group of holomorphic transformations of Kaehler manifolds 
with specific curvature properties. 

If a vector field X generates a 1-parameter group of motions of a 
compact Kaehler manifold, then, by theorem 3.8.2, cor. 

A6 = 2Qf and 86 = 0. 

Hence, 

Corollary. An injinitesimal isometry of a compact Kaehler manifold is a 
holomorphic transformation. 

In terms of the 2-form t,b defining the 1" Chern class of the compact 
Kaehler manifold M 

Q[ = - 27r i (JXN 

for any vector field X on M. The equation (7.1.8) may then be written 
in the form 

A6 = - 4m(JX)$. (7.1.10) 

Taking the exterior derivative of both sides of this relation we obtain, 
by virtue of the fact that $ is a closed form, 

Let Y = JX be an infinitesimal holomorphic transformation pre- 
serving t,b. Then, since X = - JY, equation (7.1.1 1) yields 

Hence, 8(Y)SZ is a harmonic 2-form. But O(Y)Q = di(Y)Q. Thus, since 
a harmonic form which is exact must vanish, i(Y)SZ is a closed 1-form. 
Applying the Hodge-de Rham decomposition theorem 

for some real function f of class co. 
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Define the map C : A1(M) --+ A1(M) associated with J as follows 

Ce = i(0Q. 

Since Ff Fj, = - a:, 
C2= C C =  - I .  

The relation (7.1.12) may now be re-written as 

where 7 is the covariant form for Y. Applying the operator C to (7.1.13) 
we obtain 

7 = - Cdf + CH[C7]. 

Since df is a gradient field and HICrl] is a harmonic 1-form, aq vanishes 
(cf. lemma 7.3.2). We have proved 

Theorem 7.1.2. If an infinitesimal holomorphic transformation of a 
compact Kaehler manifold preserves the Is' Chern class it  is an infinitesimal 
isometry 1.581. 

7.2. Groups of holomorphic transformations 

The set La of all holomorphic vector fields on a compact complex 
manifold is a finite dimensional Lie algebra. As a vector space it may be 
given a complex structure in the following way: If X, Y E La so do 
JX and JY, and by lemma 7.1.1 (see remark in VII. A. I), 

the complex structure is defined by putting m X  = J X  for every 
X E La. Clearly, then, J 2 X  = - X for all X, that is J2 = - I on La. 

~ e t  K denote the ~ i e  algebra of Killing vector field; on the compact 
Kaehler manifold M. Since M is compact it follows from the corollary 
to theorem 7.1.1 that K is a subalgebra of La. We seek conditions on the 
Kaehlerian structure of M in order that the complex subspace of La 
generated by K coincides with La. 

Let K be an arbitrary subalgebra of a Lie algebra L. The derivations 
B(X), X E K define a linear representation of K with representation 
space A(L)-the Grassman algebra over L. If this representation is 
completely reducible, K is said to be a reductive subalgebra of L or to 
be reductive in L. A Lie algebra L is said to be reductive if, considered 
as a subalgebra of itself, it is reductive in I, [48]. 



Let K be a reductive subalgebra of L and H a subalgebra of L 
containing K .  For every X E K ,  the extension 4 : A(H) + A(L) of 
the identity map of H into L satisfies 

M X )  = @(+XM* 

Since + is an isomorphism, it follows that the inverse image by + of 
an irreducible subspace of A(L) invariant by K is an irreducible sub- 
space of A(H) invariant by K .  We conclude that K is reductive in H. In 
particular, a reductive subalgebsa of L is reductive. 

I t  can be shown, if L is the Lie algebra of a compact Lie group, that 
every subalgebra of L is a reductive subalgebra. In particular, L is then 
also reductive. 

Now, let M be a compact Kaehler manifold and assume that its Lie 
algebra of holomorphic vector fields La is generated by the subalgebra K 
of Killing fields. More precisely, assume that 

La = K + JK. 
Then, the complex subspace of La generated by K coincides with La. 
Since M is compact, the largest group of isometries is compact. Hence, 
the Lie algebra K is reductive; in addition, its complexification KC is 
also reductive. Since La = K + JK, there is a natural homomorphism 
of KC on La and, therefore, La is a reductive Lie algebra. The last 
statement follows from the fact that the homomorphic image of a 
reductive Lie algebra is a reductive Lie algebra. 

Lemma 7.2.1. If the Lie algebra La of holomorphic vector jields on a 
compact Kaehler manifold can be represented in the form 

where K is the Lie algebra of Killing vector _fields, then La is a reductive Lie 
algebra. 

As a consequence, if the manifold is a Kaehler-Einstein manifold, 
we may prove 

Theorem 7.2.1. The Lie algebra of the group of holomorphic trans- 
formations of a compact Kaehler-Einstein manifold is reductive [59]. 

For an element X E&, A[ = 2Q4 = cf  for some constant c since the 
manifold is an Einstein space. By the Hodge decomposition of a 1-form 
5' = df + Gar + H [ a  for some function f of class - and 2-form a. 
Applying A to both sides of this relation, we obtain A( = dAf + GAa 
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and, since Af = cf, dAf + &la = dcf + Scor 4- cH[f]. Thus, d(Af - cf) 
+ 8(Aa - car) - H[cf] = 0 ;  again, by the decomposition theorem, 
d(Af - cfl = 0 and 8(Aa - ca) = 0, that is Adf = cdf, Adsa = c6a. 
Consequently, the (contravariant) vector fields defined by df and 6a 
(due to the duality defined by the metric) are holomorphic. But dsdsa = 0, 
and so by the corollary to theorem 3.8.2, 7 = Scu defines a Killing vector 
field. Since df is a gradient field, the 1-form - 5 = Cdf has zero 
divergence. Thus, 

5 = .I + a + H[51 

where 7 and 5 define Killing fields. 
If c > 0, H[f] vanishes by theorem 3.2.1. If c = 0, the Ricci curvature 

vanishes, and therefore Af = 2Qf = 0. f is thus harmonic, and so 
85 = 0, that is, f defines a Killing field. If c < 0, 7 = 5 = 0 by theorem 
3.8.1, that is f is harmonic, and consequently defines a Killing field. 
In  all cases, f is of the form 7 + CC. 

Conversely, if 7 and 5 define Killing fields, f = 7 1- C[ defines a 
holomorphic vector field. 

Lemma 7.2.2. A necessary and suficient condition that a Lie algebra L 
over R be reductive is that it be the direct sum of a semi-simple Lie algebra 
and an abelian Lie algebra [48]. 

If L is reductive, the endomorphisms ad(X) which are the restrictions 
of B(X) to Al(L) define a completely reducible linear representation of L. 
The L-invariant subspaces of A1(L) are therefore the ideals of L. 
Moreover, L is the direct sum of the derived algebra L' of I; and an 
ideal C (supplementary to I,') belonging to the center of L. Let K be 
the radical of L'. Since K is an ideal of L, there exists an ideal of L 
supplementary to K. Therefore, the derived algebra K' of K is the 
intersection of K with L'. Hence, K'  = K and thus K = {O). We 
conclude that L' is semi-simple and C the center of L. 

Conversely, let L be the direct sum of a semi-simple Lie algebra and 
an abelian Lie algebra. Then, the endomorphisms B(X) define a linear 
representation of the semi-simple part since B(X) vanishes on the 
abelian summand. Since this representation is completely reducible, 
L is reductive. 

We have seen that the Lie*algebra of the group of holomorphic trans- 
formations of a compact Kaehler-Einstein manifold is reductive. I t  is 
now shown that the group A ( M )  of holomorphic transformations of a 
compact complex manifold M, with no restriction on the metric, but 
with the topology of the manifold suitably restricted, is a semi-simple 
Lie group, and hence the Lie algebra of A(M)  is reductive. 
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Theorem 7.2.2. If the group of holomorphic transformations A(M) of a 
compact complex manifold M with Jinite fundamental group and non- 
vanishing Eltier characteristic is transitive, it is a semi-simple Lie group [59]. 

Since M is a connected manifold and A(M) is transitive, the com- 
ponent of the identity A,(M) of A(M) is transitive on M. Let G be a 
maximal compact subgroup of A,(M). Then, since M is compact and 
has a finite fundamental group, G is also transitive on M [61]. Let B 
be the isotropy subgroup of G at a point P of M. Since the Euler 
characteristic of M is different from zero, B is a subgroup of G of 
maximal rank [41]. Since G is effective on M it  must be semi-simple; 
for, otherwise B contains the center of G. Applying a theorem due to 
Koszul [49], M admits, as a result, a Kaehler-Einstein metric invariant 
by G. I t  follows from the proof of theorem 7.2.1 that La = K + J K  
where La is the Lie algebra of A,(M) and K the Lie algebra of G. 
Finally, since K is semi-simple, La is also semi-simple. 

7.3. Kaehler manifolds .with constant Ricci scalar curvature 

The main results of the previous section are now extended to manifolds 
with metric not necessarily a Kaehler-Einstein metric. 

T o  begin with let r(X) denote the 2-form corresponding to the skew- 
symmetric part of t ( X )  (cf. $7.1). Then, by a straightforward application 
of lemma 7.1.2 and equation (3.7.1 1) we obtain 

Lemma 7.3.1. For any vector jeld X on a Kaehler manifold 

We shall require the following 

Lemma 7.3.2. On a Kaehler manyold 

AC = CA and QC = CQ. 

The first relation follows from the fact that the covariant derivative 
of J vanishes, and the second is a consequence of the relation 

which may be established as follows. In  the first place, 
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Hence, 
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that is, 

or, 

Thus, in terms of a J-basis 

The desired result is obtained by transvecting with gij*. 
This may also be seen as follows: Since the affine connection preserves 

the almost complex structure J, and the curvature tensor (which, as we 
have seen is an endomorphism of the tangent space) is an element of the 
holonomy algebra [63], it becomes clear that J and R(X, Y) commute 
(cf. VI.A.1). 

As an immediate consequence, we obtain a previous result: 

Corollary 1. If X is a holomorphic vector @ld so is JX. 

Corollary 2. On a compact Kaehler manfold the operotors C and H 
commute. 

This follows from the fact that 5 = AGt + H[fl for any p-form 5. 
For, then, Ce = ACGf + CH[[]. But Cf = AGCt + H[C5]. Hence, 
A(GC5 - CG5) = CH[a - H[C(], and so, by 5 2.10, the right-hand 
side is orthogonal to A&(TC*) and therefore must vanish. 

Let X E La--the Lie algebra of holomorphic vector fields on the 
compact Kaehler manifold M. Then, as in the proof of theorem 7.2.1, 
decompose the 1-form 5 : 

where r)  is co-closed and 5 exact, that is 1 = 6or + H [ f ]  and 5 = df. 
We show that 8(77)52 vanishes. Indeed, by lemma 7.3.1 

Applying 8 to both sides of this relation, we derive 
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(see proof of theorem 7.5.1). Hence, from (7.3.1), GO(q)SZ + SO(<)SZ 
= Cd65. Taking the global scalar product of this relation with Crl, 

I !  e(dQ 11" ( W Q ,  B(T)Q) = 0 

where we have employed the notation 1 1  a 1 l 2  = Jm a A *a. But 
(0(5p, e(q)Q) = ( ~ 5 ,  ~ 7 )  = (~dcdf ,  = (dcdf, = (cddf, ~ 7 )  
= (Adf, q) = (Adf, 6a + H[(]) = (Adf, Ga) = (dAdf, a) = (Addf, a) = 0. 

6ince O(q)SZ = dCq, it follows that 

D,*qi + DiTj* = 0. 

Consequently, since 

we deduce from the previous statement that 

26Q7 = - (7, dR).  

Hence, assuming R = const., 

6Qr] = 0. 

Thus, since Arl is co-closed, so is 

A5 - 2Q5 = - (AT - 2Q.1). 

I Applying formula (7.1.7) to the 1-form 5, we obtain 
I 

since 5 is exact. Hence, 5 defines a holomorphic vector field, and 
consequently so does q. In  fact, q defines a Killing vector field. 

We show that H[f] has vanishing covariant derivative. In the first 
place, since dCq = 0 and Cq = C6a + H[Ct], CGa is closed. Thus, 

= Sf + H[CSa] where 5' is exact. I t  follows, as above, that 
H[Cf + CGa] defines a holomorphic vector field. Hence, H[f + 6a] 
defines a holomorphic vector field. But H[f + Gal = H[[]. Applying 
(7.1.4), the result follows. 
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Summarizing, we have the following generalization of theorem 7.2.1: 

Theorem 7.3.1. The Lie algebra of the group of holomorphic transforma- 
tions of a compact Kaehler manifold with (positive) constant scalar curvature 
is reductive. Moreover, the harmonic part of a 1-farm dejining an infini- 
tesimal holomorphic transformation has zero covariant differential [58]. 

Corollary. If M is a homogeneous Kaehlerian space of a compact Lie 
group G of holomorphic transformations of M,  the Lie algebra of G is 
reductive. 

This follows from the fact that the manifold M with the invariant 
Kaehlerian metric (by G) constructed from the (original) metric of M 
has constant scalar curvature (cf. VI.E.l and proof of theorem 3.7.5). 

In particular, if the group of holomorphic transformations A(M) 
is transitive and the fundamental group of M is finite, M is a homo- 
geneous Kaehlerian space of a compact Lie group G [58]. For, then, 
a maximal compact subgroup G of the component of the identity of the 
group A(M) operates transitively on M. 

7.4. A theorem on transitive groups of holomorphic transformations 

In  this section, it is shown if the dimension of the vector space of 
holomorphic n-forms of a compact complex manifold M of complex 
dimension n is suitably restricted, M cannot admit a transitive group 
of holomorphic transformations. 

T o  begin with, we state the special case of theorem 6.13.1: 
Let ar = a(;)dzi, r = 1, w e . ,  N be N > n holomorphic differentials 

on the compact complex manifold M with the property: 'For any 
system of constants cr (not all zero), the rank of the matrix 
(a$), cr) ,,,,...,,;,, , ,...,n has its maximum value n + 1 at some point.' 
Then, there are no (non-trivial) holomorphic vector fields on M. 

We generalize this statement in the following manner: 
Let t and t' be holomorphic tensor fields of type (s, r) and (r, s), 

respectively. They each have nr+8 components which we denote by 6, 
and qa, respectively, a = 1, -.-a,  TI^+^, in a fixed ordering, that is, by 6, we 
mean the component I&',,, a(r+l). . .a(r+s) and by q" the component 
qa(l)...a(r)a(r +l). . Now, since t and t' are holomorphic, the product 
eaqu is a constant. Thus, 

Theorem 7.4.1. Let tm, m = 1, m e - ,  N be N > nr+~olomorphic tensor 
fields of type (r, s) on the compact complex manifold M with the property : 
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'For any system of constants cm (not all zero) the rank of the matrix 
([(z) ,  cm) ,,LD .. . ,N ;d l=1 , .  , . , n ~ + s  is nr+$ + 1 a t  some point.' Then, there are no 
(non-trivial) holomorphic tensor jields of type (s, r) on M [9]. 

If the tensor fields have symmetries, the integer N can be reduced. 
In particular, if c $ ~ ,  m = 1,2 are two holomorphic n-forms, the number of 
components of the coefficients of each is essentially one, and we 
have 

Corollary 1. A compact complex manijiold for which b,,,(M) = 2 cannot 
carry a (non-trivial) skew-symmetric holomorphic contravariant tensor jield 
of order n. 

Corollary 2. A compact complex manifold for which b,,,(M) = 2 does 
not admit a transitive Lie group of holomorphic transformations. 

For, by the previous corollary, M does not admit n independent 
holomorphic vector fields (locally). 

7.5. Infinitesimal conformal transformations. Automorphisms 

Conformal transformations of Riemannian manifolds were studied 
in Chapter 111. The problem of determining when an infinitesimal 
conformal transformation is an infinitesimal isometry was omitted. In  
this, as well as the following section, this problem is studied for compact 
manifolds. Indeed, it is shown that for a rather large class of Riemannian 
manifolds, an infinitesimal conformal transformation is an infinitesimal 
isometry. This class includes the so-called almost Kaehler manifolds 
which, as the name signifies, are more general than Kaehler manifolds. 

Consider a 2n-dimensional real analytic manifold M admitting a 
2-form 52 of rank 2n everywhere. If 52 is closed, the manifold is said to be 
symplectic. Assume that M admits a metric g such that 

that is, assume g defines an -hermitian structure on M admitting Q as 
fundamental 2-form-the 'almost complex structure' J being determined 
by g and R: g(X, Y) = Q(X,  JY) (cf. VI1.B). The manifold M with 
metric g and almost complex structure J is called an almost hermitian 
manifold (52 need not be closed). If the manifold is symplectic with 
respect to 52, the almost hermitian structure is said to be almost 
Knehlerian. In  this case, M is called an almost Kaehler manifold. 
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Lemma 7.5.1. In an almost Kaehler manifold with metric g the 
fundamental form R is both closed and co-closed. 

In the first place, the Riemannian connection of g is defined by the 
(self adjoint) forms BAB : 

in the bundle of unitary frames (cf. 5 5.3). Since this connection is 
torsion free 

d e A = & / \ e A C ;  

consequently, in terms of the complex coframes (@, @*), i = 1, ..a, n 

We put 

r, = ~ ~ 8 ~ .  

Then, since 

FiP = Gg,,* 

(where the g , ,  are the components of g with respect to the coframes 
(@, Bi*)), and the connection is a metrical connection 

where D, denotes covariant differentiation with respect to the Rieman- 
nian connection. Moreover, it can be shown that DkF%. = 2 -\/T rj*, 
and Dk.FjYI. = 2 2/I-i I':,x,. Hence, since R is closed, it follows from 
(2.12.2) that 

Thus, since Dk 15;3* = 0, 

Dj*Fki = 0. 
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In conclusion, then, 

If J defines a completely integrable almost complex structure, M is 
Kaehlerian (cf. 5 5.2). A Kaehler manifold is therefore an hermitian 
manifold which is symplectic for the fundamental 2-form of the hermitian 
structure. 

We have seen that on a compact and orientable Riemannian manifold 
M the Lie derivative of a harmonic form with respect to a Killing 
vector field X vanishes. If M is Kaehlerian, the 1-parameter group of 
isometries v, generated by X preserves the fundamental 2-form Q, 
that is 

Moreover, from theorem, 7.1.1, cor., v, is a holomorphic transformation 
for each t ,  and so from (7.1.1) c~TJQ = JtpTQ. This may also be seen 
in the following way 

by (7.5.1). 
A holomorphic transfdrmation f preserving the symplectic structure 

(that is, for which f*Q = 52) will be called an automorphism of the 
Kaehlerian structure. A holomorphic vector field satisfying the equation 
O(X)Q = 0 will be called an infinitesimal automorphism of the Kaehlerian 
structure. 

Now, an infinitesimal isometry is an infinitesimal conformal trans- 
formation. The converse, however, is not necessarily true. For, a 
conformal map X of a Riemann surface S with the conformally invariant 
metric (see p. 158) need not be an infinitesimal isometry. In any case, the 
vector field X defines an infinitesimal holomorphic transformation of S. 
For higher dimensional compact manifolds however, we prove 

Theorem 7.5.1. An infinitesimal conformal transformation of 4 compact 
Kaehler manvold o f  complex dimension n > I i s  an injinitesimal isometry 
[57, 351. 

This statement is also an immediate consequence of theorem 3.7.4. 
From equation (3.7.12) 
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Applying the operator 8 to both sides of this relation we derive since 
8(X)  and 6 commute and IR is co-closed 

Taking the global scalar product with C t ,  we have 

Thus, for n > 1, since one side is non-positive and the other non-negative, 
we conclude that 8(X)Q vanishes. For n > 2, it is immediate that 
6 t  - 0, that is, X is an infinitesimal isometry, whereas for n = 2, a 
previous argument gives the same result. 

Corollary. The largest connected Lie group of conformal transformations 
of a compact Kaehler manifold of complex dimension n > I coincides with 
the largest connected group of automorphisms of the Kaehlerian structure. 
For n = I ,  i t  coincides with the largest connected group of holomorphic 
transformations. Moreover, in this case, in terms of the norm I I I I deJined 
by the Kaehler metric, 

I I  O(X)Q I I  = I 1  84' 1 1 .  

This is an immediate consequence of lemma 7.1.3 ; for, an infinitesimal 
automorphism of a Kaehler manifold is an infinitesimal isometry. 

We give a proof of theorem 7.5.1 which, although valid only for the 
dimensions 4k is instructive since it involves the hermitian structure 
in an essential way [35]. In the first place, by lemma 5.6.8, Qk is a 
harmonic 2k-form. Applying theorem 3.7.3, it follows that 8(X)Qk = 0. 
Now, since 8(X)  is a derivation, 8(X)Qk = k0(X)Q A Qk-l, and so by 
corollary 5.7.2, Lk-28(X)S2 vanishes. I t  follows by induction that 8(X)Q 
vanishes, that is X defines an infinitesimal isometry of the manifold. 



The operators L and A do not commute, in general, for almost 
Kaehlerian manifolds. However, it can be shown that SZk is harmonic 
in this case as well. 

Theorem 7.5.1 may be extended to the almost Kaehler manifolds 
without restriction. For, the proof of this theorem does not involve the 
complex structure of the manifold, but rather, its almost complex 
structure. In fact, insofar as the fundamental form is concerned only 
the facts that it is closed and co-closed are utilized. That the covariant 
differential of Q vanishes has no bearing on the result. Hence, 

Theorem 7.5.2. An infinitesimal conformal transformation of a compact 
almost Kaehler manifold of dimension 2n, n > 1 is an infnitesimal 
isometry [36, 681. 

Note that theorem 7.5.2 follows directly from theorem 3.7.4. For, 
SZ is harmonic and (Q, S;) )  is a constant. 

Corollary. The largest connected Lie group of conformal transformations 
of a compact almost Kaehler manifold of dimension 2n, n > I coincides 
with the largest connected group of isometries of the manifold. 

Remarks: For almost Kaehlerian manifolds, the conditions O(X)SZ = 0 
and O(X) J = 0 (X is an infnitesimal automorphism) are sufficient 
in order to conclude that 8(X)g = 0. Conversely, if X is an infinitesimal 
isometry, it does not follow that O(X) J = 0. For, the first term on the 
right in 

a 
e(X)  J = (fCDCFAB + FACDB - F E D C  f A )  - @ duB au A 

does not vanish. Moreover, one cannot conclude that O(X)Q vanishes. 
In  fact, the best that can be said is that <O(X)SZ, S Z )  vanishes. 

7.6. Conformal maps of manifolds with constant scalar curvature 

With respect to the left invariant metricg, we have seen that the 
Ricci scalar curvature of a compact semi-simple Lie group is a positive 
constant. Moreover, with respect to g, an infinitesimal conformal trans- 
formation is an infinitesimal isometry.'The same statements are valid 
for complex projective space .P,(n > 1) with the Fubini metric. How- 
ever, the n-sphere may be given a metric of positive (constant) scalar 
curvature relative to which there exist infinitesimal non-isometric 
conformal transformations. On the other hand, for compact manifolds 
of constant non-positive scalar curvature we show, with no further 
restriction, that the only infinitesimal conformal maps are infinitesimal 
isometries [MI. 
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T o  begin with, an infinitesimal conformal transformation must 
satisfy equation (3.8.4): 

Hence, since dSa + Sda = Aa, 

Taking the divergence of both sides of this relation, we obtain 

(2  - $) A& = 2SQa. 
Therefore, since 

1 aR = [= aj + p j ( D p i  + D,Q j ) ]  

it follows that 

But R = const., and so 

Hence, since this constant is non-positive, by taking the global scalar 
product of the last relation with Sa, we obtain the desired conclusion. 

Theorem 7.6.1. If M is -a  compact Riemannian manifold of constant 
non-positive scalar curvature, then Co(M) = Io(M). 

Let M be a compact Riemannian manifold of positive constant 
scalar curvature. If M admits a non-isometric infinitesimal conformal 
transformation it is not known whether M is isometric with a sphere. 
In  fact, it is not even known whether M is a rational homology sphere 
(cf. theorem 3.7.5). 
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7.7. Infinitesimal transformations of non-compact manifolds 

Let X be a vector field on a Kaehler manifold whose image by the 
almost complex structure operator J (inducing the complex structure 
of the manifold) is an infinitesimal transformation preserving the 
Kaehlerian structure. The vector field X is then 'closed', that is 
its covariant form (by the duality defined by the metric) is closed. 
We show that a closed conformal map X (that is, an infinitesimal con- 
formal transformation whose covariant form ( is closed) is a homothetic 
transformation. 

Indeed, since 8 is closed 

that is t(X) is a symmetric tensor field. On the other hand, since 
8(X)g = - l ln 65 . g, it follows from lemma 7.1.2 that 

Hence, t(X) is also skew-symmetric and must therefore vanish. There- 
fore, 

Thus, for n > 1, we may conclude that dS5 vanishes, that is, the vector 
field X defines a homothetic transformation. 

Moreover, we have proved that a closed conformal map is an 
infinitesimal holomorphic transformation. However, it need not be an 
infinitesimal isometry, as in the compact case. For, by lemma 7.3.1 

Applying S to both sides of this relation, we obtain 

Consequently, B(X)Q is both closed and co-closed, that is harmonic. But, 
although it is exact, it need not vanish; for, the decomposition theorem 
is valid for compact manifolds and, in the case of open manifolds 
further restrictions are necessary [31]. Conversely, an infinitesimal 
isometry need not be a holomorphic transformation. Thus, an infini- 
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tesimal isometry of a Kaehler manifold need not be an automorphism 
of the Kaehlerian structure. The best that can be said in this context 
is given by 

Theorem 7.7.1. A closed conformal map of a Kaehler manifold is a 
holomarphic homothetic transformation [36]. 

Conditions may be given in order to ensure that a closed conformal 
map X be an infinitesimal isometry. Indeed, if the manifold is complete 
but not locally flat this situation prevails [45]. In  the locally flat case, 
if X is of bounded length, the same conclusion may be drawn [42]. 

A Riemannian manifold M can be shown to be complete if every 
geodesic may be extended for infinitely large values of the arc length 
parameter. By a well-known theorem in topology this assertion can be 
shown to be equivalent to the statement: "Every infinite bounded set 
(with respect to d,  cf. I.K.1) of M has a limit point." For the 
relationship with complete vector fields, the reader is referred to [63]. 

EXERCISES 

A. Groups of holomorphic transformations 

Hint: Express J[X ,  Y] and [X, JY] in local complex coordinates. Inciden- 
tally, one may then show that cor. 1, lemma 7.1.1 and its converse hold for 
complex manifolds, in general. 

2. If b,(M) = 0 prove that La = K + JK, if and only if, 

where L,* is the dual space of La. 

3. If M has constant scalar curvature show that 

dim La = 2 dim K - dim Kc 

where Kc C K is the ideal determined by the elements of K* which are 
closed [58]. Indeed, 

KE = {a€ A1(Tc*) I Dxa = 0 ,  X E  T). 
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I t  can be shown that 

(i) dim K 5 n2 + 2n, 2n = dim M ;  hence, the maximum dimension attained 
by L, is 2(n2 + 2n). 

(ii) The largest connected group of isometries of Pn is SU(n + 1); hence, 
for Pn (since dim SU(n + 1) = n2 + 2n) 

dim La = 2(n2 + 2n). 

4. Prove that there are no holomorphic vector fields on a compact Kaehler 
manifold with negative definite Ricci curvature. 

S. Nakano has shown that the hypothesis of negative definite Ricci curvature 
can be replaced by negative definite 1st Chern class [cf. 5 6.14 and K. Kodaira- 
D. C. Spencer, On deformations of complex analytic structures I, Ann. 
Math. 67, 328-401 (1958)l. Moreover, the group of holomorphic transformations 
of a compact Kaehler manifold with negative definite lSt Chern class is finite [S. 
Kobayashi, On the automorphism group of a certain class of algebraic manifolds, 
TGhoku Math. J. 1 1, 184-190 (1959)l. 

B. Almost hermitian metric 

1. Let 52 be an element of A2(T$) of maximal rank 2n (dim T = 2n) and h 
an inner product in Tp. Construct an inner product g which is hermitian relative 
to SZ, that is 

g( JX9 JY)  = g(X9 Y) 

for any X, Y E T p  where J is the tensor of type (1,l) defined by 52 and h [56]. 
(As usual J denotes the linear transformation defined by the tensor J with 

components F~~ = h A C ~ C B  relative to a given base of Tp-the FCB being the 
coefficients of 52). 

Proceed as follows: Define the inner product k in terms of h by 

Next, compute the eigenvalues and eigenvectors of the matrix k = (AAB). 
Let X be an eigenvector corresponding to the eigenvalue X2(X > 0): 

kX = X2X, 
that is 

kAB XB = -A2XA (kAB = hACkCB). 

Then, JX is also an eigenvector of X2 and 

The linear operator ( l / A ) J  therefore defines a complex structure on the eigen- 
space of X2. Denote by A;, S, (p  = 1, . a - ,  r) the eigenvalues and corresponding 
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eigenspaces of k of the 
decomposition 

-the S, being invariant 
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kind prescribed. The vector space Tp then has the 

by J and orthogonal in pairs. Hence, for p # o 

FApBa =O,  / I d p B a = O  

in terms of a basis of Tp defined by this decomposition. Moreover, 

The required inner product g is given by 

C. Automorphisms 

1. For any infinitesimal automorphisms X and Y of an almost Kaehler manifold, 
[X,Y]  is also an infinitesimal automorphism. 

2. Denote the covariant forms of X, Y and Z = [X, Y] by 6, -q and 5, respectively. 
Hence, show if the Lie algebra of infinitesimal automorphisms is abelian 

Hint: 

- const. i(S A -q)Q - 

C5 = 4 5  A SP. 
3. Show that an infinitesimal automorphism of an almost Kaehler manifold 
is not, in general, an infinitesimal isometry. 

D. A non-Kaehlerian hermitian manifold 

1. Consider the shell between the spheres (cf. example 6,s  5.1). 

Z ( X * ( ~ = ~ ,  q z q a = 2  

in C, and denote by M the manifold obtained by identifying points on the 
spheres lying on the same radial lines. Let G denote the properly discontinuous 
group of automorphisms of C, - 0 consisting of the homothetic transformations 

( 9 ,  -a ,  2") -c (2kz1, --, 2kP)  
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for each integer k. The compact manifold M is a fundamtal danrain for this 
group. ~ince'the quotient space (C, - O)/G has a complex structure, M can 
be endowed with a natural real analytic structure. By showing that b,(M) = 0 ,  
(n > 1) prove that M is not Kaehlerian for n > 1. In fact, 

b, = b1 = 1, 

b, = 0 ,  2 $ p  <2n - 1, 

bBnel = ban = 1. 

Note that b1 is odd whereas in a Kaehler manifold all odd dimensional betti 
numbers atc even (cf. theorem 5.6.2). 

For a differential geometric characterization of a Hopf manifold see [98]. 



APPENDIX A 

DE RHAM'S THEOREMS 

The idea of the proof of the existence theorems of de Rham given 
below is due to A. Weil [71], The method employed is due to Leray, 
namely, his theory of sheaves Without developing the general theory, 
a proof adapted to the object under consideration, namely, the de Rham 
sheaf, is given. 

A.1. The lldimensional case 

The existence theorems of de Rham are concerned with the periods 
of a closed differential form over the singular cycles of a compact 
differentiable manifold M. The periods are definite integrals. Let a be 
a closed 1-form and r a singular 1-cycle. We proceed to show how the 
period 

is related to an indefinite integral. 
To this end, let @ = {U,} be a (countable open) covering of M by 

coordinate neighborhoods such that each U, corresponds to an open 
ball in Rn. (We make a slight change in notation at this point so as to 
avoid confusion. In Chapters I and V Greek letters were generally 
employed as subscripts). Now, subdivide r until each 1-simplex is 
contained in some U,. We may then represent l' as a sum 

where each r, is a chain contained in some U,. Moreover, each boundary 
ari is a 0-chain which may also be subdivided into parts each of which 
belongs to a Uk. It is important that each 0-simplex is assigned to a Uk 

270 



independently of the boundaries art containing it. For example, let r be 
a closed curve and consider the diagram 

Then, it is easily seen that a has an integral in each U,. By the PoincarC 
lemma (cf. 5 A.6) a = df, in each U, for some function f, depending 
on a and U,, and so 

Ira = [fi(Pi+d - fi(pi)I = 2 ( f i - I  - -6) (pi) 
I 

since the first sum is cyclic. More precisely, since there may be more 
than one Pj in a given U, 

where k, is the index chosen such that Uki is the neighborhood for Pi. 
Since dfkg = dfki in Uki n Uk fk6 - fkiw1 is constant on the inter- 
section. 1; this way, the integration has been reduced to the trivial case 
of integrating closed 0-forms (constants) over 0-chains (points). 

The same general idea prevails in higher dimensions, although the 
situation there is more involved. 

A.2. Cohomology 

The above considerations motivate the theory to be developed below. 
Indeed, we shall consider (local) forms and chains defined only in U, 
or U, n Uj where again 4? = (U,) is any countable open covering of M. 



The nerve of @, denoted by N(@) is the simplicia1 complex whose 
vertices (0-simplexes) are the elements of 4% and where any finite number 
of vertices span a simplex of N( e), if and only if, they have a non-empty 
intersection. By a p-simplex o = A(io, - - -  4) we mean an ordered finite set 
(i,, -.-, ip) of indices such that Uio n ..- n Uip # 0. If Uo, . a * ,  Up are 
the vertices of a p-simplex o, their intersection Uo n ... n Up will 
occasionally be denoted by nu. By hypothesis na # 0. 

For any open sets U and V, U 3 V, let puv denote the restriction map 
on differential forms 

defined by 
puv(.) = a I v, a E A @(U). 

These maps have the following property: if U 3 V 3 W, then 
Puw = PvwPuv. 

A p-cochain of N( 42) is a function f which assigns to each p-simplex a 
an element of an abelian group or vector space r(nu). In the sequel 
r (U)  will be one of the following: 

(i) R : the real numbers, 
(ii) Aq = Aq(U) : the space of q-forms over U, 
(iii) A: = Az(U) : the space of closed q-forms over U. 

It  is important that r is allowed to depend on the simplex. This 
generalizes the usual definition in which to each simplex an element 
of a fixed module or abelian group is assigned (cf. § 2.1). More precisely, 
(a) for every open set U there is a vector space r (U)  and (b) if U 3 V, 
then p.,,: r (U)  -+ r(V). (The map r (U)  -+ r(V) need not be a mono- 
morphism, that is an isomorphism into r(V)). The value f(io, -.., i,) = 
f(A(io, ..., 4)) of a p-cochain is an element of r(Uio n --• n Us). 

If a = A(io, a * . ,  ip), let the faces of a be the simplexes uj = A(&, -.., ij-,, 
ij+l, ---, G), j = 0, -.-, p. Then, naj 3 n o  and there is a homomorphism 

defined by the restriction map, that is p,j,o f(d)  = f(d)  1 n o  is an 
element of the vector space r(no). (In case f(oj) is a real number 
consider f(oj) as a constant function). 

I f f  and g are p-cochains of N(42) with values in the same abelian 
group I"(na), then cochains f + g and r f, r E R are defined by 

for each simplex a E N(4%). In this way, the p-cochains form a vector 
space over the reals (cf. 5 2.1) which we denote by CP(N(@), 27). (NO 
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confusion should arise between the r employed here and the one in 
4 2.1 denoting a cycle.) The coboundary operator 6, (not to be confused 
with the operator 6 employed previously) assigning a cochain 6f to 
each p-cochain f is defined by 

Thus 6 : CP(N( @), r) -, Cp+l(N( %), ; in fact, 6f can be different 
from zero only on the (p + 1)-simplexes of N(%). I t  is easily checked 
that 66f = 0. In  the usual manner one may therefore define the 
p-dimensional cohomology group HP(N(@), r )  as the quotient of 
ZP(N( %), r)-the p-cocycles by P ( N (  %), r)-the p-coboundaries: 

In  particular, if M is connected 

For, a 0-cochain f assigns to each U G % an element au of r(U). The  
condition 6f = 0 requires that if f(V) = orv E P(V), V E %, and 
U n V # 0, then 

Pv,u n V ~ V  = PU,U n vav. 
Conversely, for any globally defined or (eAQ(M)),  a 0-cochain satisfying 
6f = 0 is given by defining f(U) = p,~or, U E 42 (and f(u) = 0 for all 
other a E N(@)) .  That the map I'(Mi) -+ HO(N(%), r) is a mono- 
morphism is left as an exercise. 

A 1-cochain is defined by f(U, V) = oruv E r ( U  n V). I t  is a cocycle 
if ~ u n v , u n v n w ~ u v - ~ w n  v , u n v n w ~ w v f  ~ w n u , u n v n w ~ w u = 0 ,  
oruv, orwv, awU E r ( U  n V n W). If U = V = W, we conclude that 
or,, = 0 from which it follows that auv = - orvu. The cocycle oruv is a 
coboundary, if it can be expressed as a, - a,. 

In  the sequel, we shall write (8f) (u) = Z(- l ) j  f(uj) for simplicity. 
A covering Y = (V} of M is called a refinement of % if there is a map 

defined by associating with each V E Y a set U E % such that V c U.  
If c = (Vo, a * . ,  Vp) E N(Y), let +a = (+Vo, ...,+ V,). Then, A+ 3 n o  

f and +a is an element of N(@). Hence, there is (simplicial) map 

This map in turn induces a map 6 sending each cochain f E @(N(@), r )  
to a cochain $f 6 ECN(Y), r )  where for each u E N(Y)  



The map 4 is not unique. However, all such maps are contiguous and 
therefore induce the same homomorphisms (see below) 

Moreover, if W = (W) is a refinement of V ,  the combined homo- 
morphism 

is equal to the direct homomorphism 

since a map N(W) + N(V) + N(@) is contiguous to any direct map 
N(W) + N( a). 

To show that 4* depends only on the pair %, V we proceed as 
follows: Let 4' be another choice for 4. For p = 0, the assertion is clear. 
For p 2 1 let Af be the ( p  - 1)-cochain on V defined by 

Then, 

and 



I t  follows that 

Hence, iff  is a cocycle, $f - $y is a coboundary, that is +* = +'*. 
In  the sequel we denote the homomorphism +* by +,+ 
The set of all coverings of M is partially ordered by inclusion where 

V is contained in @, if and only if, V is a refinement of @. If V is a 
refinement of @ we shall write 7Cr < @. I t  is not difficult to show 
that any two coverings have a common refinement. 

If W < V < @, it is readily shown that 

The  direct limits 

of the groups HP(N( @), r), p = 0,1,... are defined in the following way: 
Two elements hi E HP(N( @$), r ) ,  i = 1,2 are said to be equivalent if 
there exists an element h, E HP(N(4V3), r )  with @3 < @$, i = 1,2 such 
that h, = h$, i = 1,2 ; the direct limit is the set of these equivalence 
classes. 

The sum of two cohomology classes of HP(M, r )  is defined as follows: 
If hi E HP(N(4Yi), r ) ,  i = 1,2 are the elements to be added, we first find 
a common refinement @, of 92, and 42, and then form the element 

4s h1 + +*, 4s h2. Multiplication by elements of R is clear. An 
element h E Hp(N(%), r) represents the zero cohomology class, if and 
only if, there is a V < @ such that +,+,- h = 0. We may therefore 
conclude that HP(M, r )  is a vector space for each p = 0,1, ... . 

Finally, a cochain f will be called afinite cochain if there exists a com- 
pact set S such that f(i,, a . . ,  ip) = 0 whenever Uio n -.. n Uin n S = 0. 
One may construct a cohomology theory in terms of finite cochains. 

A.3. Homology 

In  this section we develop a theory dual to that of 5 A.2. Indeed, we 
associate as in the previous section with every open set U E % a vector 
space which is again denoted by r (U)  (see (i)-(iii) below). Our first 



distinction now arises, namely, if V C U, then pvu: r(V) + F(U), 
that is r ( V )  is identified with a subspace of I'(U). (As before, the 
map r (V)  - r (U)  need not be a monomorphism). 

By a p-chain g is meant a formal sum 

where A(&, --, i,) is a p-simplex on N(@) and (i) implies summation on 
( i ,  .-, 4). Whereas the values of a p-cochain are in r(Uio n ..- n Ui), 
the coefficients of a p-chain lie in r(Uio n *.. n U,). In the applications 
r will be either 

(i) R : the real numbers, 
(ii) S,(U): the space of finite singular chains (cf. 5 2.2) with support in 

U, or 
(iii) Si(U): the subspace of finite singular cycles. 
A boundary operator a mapping p-chains into ( p  - 1)-chains is 

defined on p-simplexes as follows: 

and on p-chains by linear extension, that is 

(In order to simplify notation we have written g(io, - - 0 ,  4)  for the 
corresponding images p.. g(io, . a * ,  ip)). Denoting the coefficients of 
ag by (ag)(j,, - * - ,  jP-3 we obtain 

where i runs over all indices for which the corresponding intersection 
is not empty. In order that this sum be finite it is assumed that the 
covering @ of M is locally finite, that is every point of M has a neighbor- 
hood meetinponly a finite number of Us E @ (cf. §§ A. 10- 1 1). 

It is easily checked that sag = 0. One may then define thep-dimensional 
homology group H,(N(4) ,  r )  as the quotient of Zp(N(42), 0-the 
p-cycles by Bp(N( a), 0-the p-boundaries: 
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Let V = (V) be a refinement of 4. Then, as in the previous section 
there is a map +: V -+ @ defined by associating with each V E V a set 
U E @ such that V C U. To a p-chain g on Y one may then assign 
a chain t$g on 4 as follows: 

Evidently, cycles are mapped into cycles and boundaries into boundaries. 
Hence, t$ induces a homomorphism 

I As before, this homomorphism does not depend on + but rather on the 
pair V ,  @ and so, we denote +, by +Ye. Moreover, if W < Y < a, 
it is easily checked that +- = +ye +wy. The inverse limits 

H,(M,r) = lim H,(N(@),r)  
4Y 

of the groups Hp(N( Q), 0 ,  p = 0,1,-.. are defined as follows: Two 
elements hi E H,(N(@*), I"), i = 1,2 are equivalent if there exists an 
element h, E Hp(N( eS), 0 with 4Y3 < e i ,  i = 1,2 such that hi = 

I 
4Yt &, i = 1,2; the inverse limit is the set of these equivalence classes. 

I 

With the obvious definitions of addition and scalar multiplication 
HJM, r )  is a vector space for each p = 0,1, . 

A.4. The groups HP(M, AQ) 

It is now shown that in the cases r = AQ, q = O,l, ..-, the 
cohomology groups HP(M, Aa) vanish for all p > 0 provided M is 
compact (see remarks at end of § A.10 its well as at the end of this 
appendix). By the definition of the direct limit, it is sufficient to show that 
every covering 4 has a refinement Y such that HP(N(V), A 3  = (0) 
for all q, and p > 0. 

A refinement Y of 4 is called a strong rejinement if each (the 
closure of V) is compact and contained in some U. In this case, we write 
Y < @, and for a pair V, U(+: V + U) we write V C U. 

Lemma A.4.1. For a compact dzfwentiable manvold M, 

for all p > 0 and q = 0,1, ... . 



Let -Y be a locally finite strong refinement of the open covering 4 
of M and {ej) a partition of unity subordinated to V (cf. Appendix D). 
For an element f E CP(N(V), Aq) let fj = ejf. Then, 6fi = (Sf)*, 
and so if f is a cocycle, so is ejf. 

Let f be a p-cocycle, p > 0. By definition, f = C h  is a locally finite 
sum. We shall prove that each cocycleh is a coboundary, that i s h  = Sg, 
where gj(Vo, Vp-,) = 0 if Vo n n Vp-, does not intersect Vj. This 
being the case, g = Xgj is well-defined and f = C fj = C Sgj = Sg. 

To  this end, consider a fixed j and put 

if Vj n Vo n n Vp-, # and gj = 0, otherwise. In the first case, 

Since fj is a cocycle, 

each term on the right is either zero, by the definition of gj, or else it is 
the restriction of fj(Vj, Vo, -.-, V+,, Vi+,, -.., Vp) to the set Vo n ... n Vp 
and, since ej vanishes outside of Vj, the value is again zero. 

We conclude that = 8gj in all cases, and so by the above remark, 
the proof is complete. 

A.5. The groups Hp(M, Sq) 

Since the groups H,(M, Sq) are in a certain sense dual to the groups 
HP(M, Aq),, it is to be expected by the result of the previous section 
that they also vanish for p > 0. It is the purpose of this section to show 
that this is actually the case. To this end, it is obviously sufficient to 
show that for any open covering 4 of M and g E Zp(4,  SJ, g is a 
boundary. 



A.5. THE GROUPS Hp(M, S,) 

Lemma A.5.1. For a dz#erentiable manifold M, 

for all p > 0 and q = 0,1, ... . Moreover, in order that a 0-chain be a 
boundary, it is necessary and suflcient that the sum of its coeflct'ents be zmo. 

Consider all singular q-simplexes. Divide these simplexes into classes 
so that all those simplexes in the jth class are contained in Uj. (This can, 
of course, be done in many ways). For each cycleg construct a singular 
chain g j  by deleting those singular simplexes not in the jth class. That 
gj is a cycle follows from the fact that a(gj) = (ag)j (the cancellations 
occurring in ag(= 0) occur amongst those simplexes in the same class). 
Since g = Zg, it suffices to show that each gj is a boundary. For 
simplicity, we take j = 0. Define a ( p  + 1)-chain h as follows: 

that is, 

Now, since 

and 

where go = go(il, -., i,,,) A(i,, -, i,,,), go = ah, For by comparing 
the expression for ago with the last sum in ah, we see that (except for 
notation) they are identical.-We conclude that each gj is a boundary, 
and so g is a boundary. 

For p = 0, 

h = Ego(i) A(O, i), 
and thus 



The condition ago = 0 gives no information in this case. Hence, in 
order that go be a boundary, it is necessary that Zgoo) vanish. On the 
other hand, if Zg(i) vanishes so does Zg,(z]. Therefore, a 0-chain is a 
boundary, if and only if, the sum of its coefficients is zero. 
The above argument is based on the so-called cone construction. 

A.6. Poincar6's lemma 

It is not true, in general, that a closed form is exact. However, an 
exact form is closed. A partial converse is true. For a p-form, p > 0 
this is the 

Poinear6 lemma On a starshaped region (open ball) A in P every 
closed p-fm ( p  > 0) is exact. 

T o  establish this result we define a homotopy operator 

with the property that 
dZa + Zdu = a 

for any p-form a defined in a neighborhood of A. Hence, if a is closed 
in A, then Ida = 0 and a = d/3, where = la. 

Let ul, ..a, un be a coordinate system at P E A (where P is assumed 
to be at the origin). Denote by tu the vector with components 
(tul, .-, tun), 0 $ t $ 1. Then, for a = a,+. .is, (u)duil A ... A dui9, put 

On the other hand, 

&=$,; t' - %i1 ... i,,) 
a~ j (tu)dt-ujduii A *.* A duds 

j=-1 



provided that p > 0. 

A.7. Singular homology of a starshaped region in Rn 

In  analogy with the previous section it is shown next that the singular 
homology groups H,(A) ,  p > 0 of a starshaped region in Rn are trivial. 

Let us recall that by a singular p-simplex sp = V :  Po, ..., P,] we mean 
an Euclidean simplex (Po, . a * ,  P,) together with a map f of class 1 defined 
on A(Po, ..., PJ-the convex hull of (Po, ..., P,). Now, f can be extended 
to the Euclidean (p + 1)-simplex (0, Po, .-., P,) by setting 

and 
f(0) = 0. 

Analogous to the map I of § A.6 we define the map P by 

PE =$(- lr [ f :O, - ,0 ,  Pi,-, P,,]. 
i-0 

- 
i+l 

Then, 

P 11, + x x (- I)'+'+' [f : 0 ,  - ..., 0 ,  Pi, ..a, Pj-,, Pj+,, ..., Pp]. 
a-0 j-i i+l 
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On the other hand, from 

as. = 2 (- 1)' [ f : Po, ..., P*,, P,,, . .a,  P,] 
j=O 

we obtain 

P P + 2 2 (- l)'+'+' [f: 0, -., 0, Pi, ..., P,]. 
CNC 

j=O i=j+l i 

Hence, 

= [j: Po, -., P,] - [f : 0, ..-, 01 - 
P+l 

= s" - [f: 0, ..., 01. 
YVI 

P+l 

Now, put 

Then, 

and 

Hence, since cp + ~ p , . ~  = 1 

from which 

where we have put P = P + Po. 
That any cycle is a boundary now follows by linearity. 

1 Again, the above argument is based on the cone construction. 



A.8. Inner products 

The results of $5 A.2 and A.3 are now combined by defining an inner 
product of a cochain f E @(N( @),A9 and a chain g E Cp(N( @),S,) 
as the integral of f over g. More precisely, the values f (i,, . . a ,  ip) are 
q-forms over Uo n .-. n Up whereas the values of g are singular q-chains 
in U, n n Up. We define 

and 

where the sum is extended over all p-simplexes on N( 4%). 
The notation J, f is an abbreviation. T o  be more precise the form 

f (i,, .-., ip) and chain g(i,, ..., ip) should be written rather than the 
variables f and g. 

Either f or g is assumed to be finite, In  this case, the sum is finite. 
The elements f E CP(N(@), Aq) and g E Cp(N(@), S,) are said to be 
of type (P, q). 

Lemma A.8.I. For elements f E @(N( a), AQ) and g E Cp+l(N( @), S,) 

To  begin with, since the bracket is linear in each variable we may 
assume that g = g(0, ..., p + 1) A(O, a * . ,  p + 1). Then, 

since (ag)(O, -.-, i - 1, i +  1, ...,p + 1) = (- l)"(O, ...,p + 1). 
We denote once more by d the operator on the cochain groups 

CP(N(%), A,) defined as follows: 

where to an element f E CP(N(@), AQ) we associate the element df 
whose values are obtained by applying the differential operator d to the 
forms f(i,, ..-, i,) E. Aq(Uio n ... n UiJ. Evidently, dd = 0. 

An operator 



is defined in analogy as follows: D is the operator replacing each 
coefficient of an element g E Cp(N( @), Sq) by its boundary. Clearly, 
DD = 0. 

Lemma A.8.2. For elements f E CP(N( @), As) and g E Cp(N( @), S,,,) 

This is essentially another form of Stokes' theorem. 
The following commutativity relations are clear: 

Lemma A.8.3. Sd = d8 and 8D = Da. 
In 9 A.l the problem of computing the period of a closed 1-form 

over a singular 1 -cycle was considered-the resulting computation being 
reduced to the 'trivial' problem of integrating a closed 0-form over a 
0-chain. The problem of computing the period of a closed q-form a 
(with compact carrier) over a singular q-cycle r is now considered. 

In the first place, as in 5 A.l, by passing to a barycentric subdivision 
we may write I' = Z r, with contained in U,. If denotes the 
restriction of ar to U, and fo the 0-cochain whose values are q, that is, 
fo(U,) = a,, then, if we denote by go the chain whose coefficients are r,, 

-the independence of the subdivision being left as an exercise. (Since 
more than one rl may be contained in a single U, choose one U,, to 
contain each r,. Then, go(Uk) = & _ k  r,). 

A.9. De Rham's isomorphism theorem for simple coverings 

Before establishing this result in its most general form we first prove 
it for a rather restricted type of covering. Indeed, a covering @ of M 
is said to be simple if, (a) it is strongly locally finite (cf. 5 A.4) and 
(b) every non-empty intersection Uo n -.- n Up of open sets of the 
covering is homeomorphic with a starshaped region in R". It  can be 
shown that such coverings exist. For, every point of M has a convex 
Riemannian normal coordinate neighborhood U, that is, for every P, 
Q E U there is a unique geodesic segment in U connecting P and 
Q [23]. Clearly, the intersection of such neighborhoods is starlike with 
respect to the Riemannian normal coordinate system at any point 
of the intersection. The neighborhoods U may also be taken with 



compact closure. Now, for every V E 4 we can take a finite covering 
of V by such convex U, say U,,,, . . a ,  U,,,. Then, the collection of all 
(U,, ) V E @, i = 1, py) is a simple covering of M provided 
(a) 4 is a strong refinement of a strong locally finite covering @ such 
that the U V ,  refine & strongly, that is, for v c 9 E 6, the neighbor- 
hoods U,,,, --, UVOpvare all contained in ? and (b) only finitely many 
V E 4 are contained in a given 9 E 4. From the above conditions 
it follows that {UvJ is a iocally finite covering. 

Now, let fo E ZO(N( Q), IZcQ), go E Co(N( 4 ) ,  S,) and consider the 
systems of equations 

Clearly, f,, i = 1,2, is of type (i - 1, q 2) andg, is of type (i, q - 9. 
In the event there exist cochainsf, and chams g, satisfying these relations 
it follows that 

&go) = (dfli,&) = V1,Dgo) = Vl&l) 
= (Sf19g1) = (dfasg1) = Cf,,Dg1) = Vs,aga) 

Whereas fo and go are of type (0, q), Sf, and g, are of type (q, 0). Since 
dsf, = Sdfg = S6fq-, = 0, the coefficients of Sf, are constants. I t  follows 
that Gf, may be identified with a cocycle # with constant coefficients. 

For a chain of type (9, 0) let Do be the operator denoting addition of 
the coefficients in each singular 0-chain. Evidently, aDo = Doa and 
DoD = 0. Thus, since ag, = Dgq-,, aD,,gq vanishes, that is D,,gq is a 
cycle cq. We conclude that 

(%&) = (fl, 5,) 
(cf. formula A.8.2), that is 

1; = (.l. u 
(cf. § A.l). The problem of computing the period of a closed q-form 
over a q-cycle has once again been reduced to that of integrating a 
closed 0-form over a 0-chain. 



That the fi exist follows from PoincarCs lemma and the fact that from 
the equations (A.9.1), dsfS = Sdf, = = 0, i =  1, ...,q. For, since 
fo is closed, there exists a (q - 1)-form fl such that fo = df,; since Sfl 
is closed, there exists a (q - 2)-form f, such that Sf1 = df,, etc. To be 
precise, suppose that fl, ..., fi exist satisfying 8dfk = 0, k = 1, -.., i. 
Then, since d8fk = Sdfk = 0, the equation sf, = dfi+, has a solution 
satisfying Sdfi+, = 0. 

The dual argument shows that chains gi E CAN( 6),Sq+) exist 
satisfying the system (A.9.1). That this argument works follows from 
property (b) of a simple covering and the fact that the homology of a 
ball (starshaped region in Rn) is trivial, as well as the equations aDg* = 0. 

Now, suppose that a cocycle fl (of type (q, 0) with constant coefficients) 
and a cycle 5, (of type (q, 0)) are given. Since 6 is strongly locally 
finite, it is known from tj A.4 that Hq(N(6), AO) vanishes. This being 
the case, there is an fq such that zP = 8fq. Hence, since $ has constant 
coefficients dsf, must vanish. Since the operators d and 6 commute 
(cf. lemma A.8.3) and the cohomology groups are trivial, the existence 
of an fq, with df, = Sf,-, is assured. In this manner, fqr2, .-, fL  

are defined-the condition d8fl = 0 implying that fo = df, IS a co- 
cycle. Hence, fo determines a closed q-form. In a similar manner a 
go E CO(N(6), Sg) can be constructed from 5,. 

We have shown that cochainsf, of type (i - 1, q - 2) exist satisfying 
the system of equations (A.9.1). Now, set 

A* = {fi 1 Idsf, = 01, 

xi = {f* I If# = 01, 
and 

The values offi on the nerve of 6 are (q - 2)-forms. The set Xi consists 
of all such closed (q - 11-forms. 

The operator d maps the spaces A*, Y, and X, homomorphically 
onto %-l(N( %), x-a+l), Ri-l(N( 6 ) ,  and {0), respectively, 
2 5 i 5 q. For A,, this follows from the PoincarC lemma since 
q - i + 1 > 0. Now, for an. element f, E Yi, Sfc = 0. Hence, since the 
cohomology is trivial for i > 1, there exists an f' such that f, = Sf' 
from which dfi = d8ff = 6df ', that is d f , ~  @-l(N( 6 ) ,  x-,+l). To  
show that d is onto, let f' be an element of IF1(N(6),  Then, 
f ' = Sf* for some f, E P 1 ( N (  6 ) ,  /e-,) from which, since q - i + 1 > 0, 
by the PoincarC lemma, fi = df". I t  follows that f ' = Sdf" = dsf", and 
SO since Sf" E Y*, d is onto. 



The following isomorphisms are a consequence of the previous 
paragraph: 

A,/Xi r Zi-l(N(@), A :-i+l), 

(Xi + Yi)/Xi Yi/Xi n Yi , Bi-l(N( Q), /\,9-5+1). 

We therefore conclude that 

A similar discussion shows that the operator 6 maps A,, Xi, and Y, 
onto Zi(N(@), x - 3 ,  Bi(N(@), x - i )  and {0), respectively for 
1 5 i 5 q - 1 from which, as before, we conclude that 

Consider now the following diagram: 

We show that d : A,/X, + Y,  -t D and 6: A,/X, + Y, -+ @(N( @), R) 
are isomorphisms onto. Indeed, d sends fl E A, into df, E ZO(N(%), A:), 
and so may be identified with a closed q-form a. Since the elements 
of Xl are mapped into 0 we need only consider the effect of d on Yl. 
Let y be an element of Y,. Then, since 6y = 0, dy represents an exact 
form. On the other hand, a closed q-form may be represented as df, 
and an exact form as dy with 6y = 0. This establishes the first iso- 
morphism. T o  prove the second isomorphism, let f, be an element of A,. 
Then, since dSf,  = 0, Sf, has constant coefficients and must therefore 
belong to Zg(N(%), R). Since Y, is annihilated by 6 we need only 
consider the effect of 6 on X,. But an element x E Xq has constant 
coefficients, and so 6x E Bq(N( @), R). 

From the complete sequence of isomorphisms, it follows that 



It is now shown by means of the dual argument that the singular 
homology groups are dual to the groups Hq(N(@), R). 

We have shown that chains gi of type (i, q - 2) exist satisfying the 
system of equations (A.9.1). Now, set 

and 

Y; = {g, I agi = 0). 

The values of gi on N( 9) are (q - +singular chains. The set X; consists 
of all such (q - 2)-singular cycles. 

The operator D maps the spaces A;, X; and Y ;  homomorphically 
onto Z,(N(@), S&,), {O] and BAN(@), S&,-,), respectively whereas 
a is a homomorphism onto Z+,(N(Q), S&), Bi-,(N(@), S 3  and 
{O), respectively provided that the indices never vanish. This leads to 
the diagram 

Let a, be the operator denoting addition of the coefficients of each 
chain in Co(N(@), Sq); denote by Z, the space annihilated by a. and 
put H, = ZJB,. Then, the diagram can be completed on the left 
in the following way 

For, a, maps the spaces A;, X; and Y; homomorphically onto S:, 
Si and {O), respectively. 



On the right, we have the diagram 

Recall that Do is the operator denoting addition of the coefficients in 
each singular chain. I t  maps the spaces A;, Y; and X; homomorphically 
onto Zq(N( %), R), Bq(N(@), R) and 0, respectively. 

From the complete sequence of isomorphisms we are therefore able 
to conclude that 

A.lO. De Rham's isomorphism theorem 

The results of the previous section hold for simple coverings. That 
they hold for any covering is a consequence of the following 

Lemma A.10.1. For any covering % = ( U,} of a dzjft'erentiable manifold 
M there exists a covering W = { Wc) by means of coordinate neighborhoods 
with the properties ( a )  W < 42 and (b)  there exists a map 4: Wi -+ Ui 
such that Wi0 n .-. n Wcs # implies Wio u -.- u Wip c tJio ,n n UiD. 

T o  begin with, there exist locally finite coverings 7cr and @' such 
that V < %' < %. Hence, for any point P E M, there is a ball W(P) 
around P such that 

(i) P E: U' implies W(P) C U', 
(ii) P E V implies W(P) C V, 
(iii) P $ v implies W(P) n v = 0. 
For, since P belongs to only a finite number of U' and V, (i) and 

(ii) are satisfied. That (iii) is satisfied is seen as follows: Let P E Vo E V.  
Then, either v n Vo = or V n Vo # 0. In the first case, (iii) is 
obviously fulfilled. As for the latter case, since %'- is locally finite there 
are only a finite number of sets V meeting vo, and so by choosing 
W(P) sufficiently small (iii) may be satisfied. 

Let W, = W(P,) be a covering of M by coordinate neighborhoods. 



Then, there is an open set V,  with P, E V, and, by (ii) W, C V, C Ui 
c U,. Hence, property (a) is satisfied. That property (b) is fulfilled is 
seen as follows: Suppose that W, n Wj # 0; then, W, n vj # 0. 
Hence, by (iii) P, E vj C U;, and so by (i) W, C U; C Uj. By sym- 
metry we conclude that W, u Wj C U, n Uj and (b) follows. 

We are now in a position to complete the proof of de Rham's 
isomorphism theorem. T o  this end, let A, be the direct limit of the 
A, = AX%) and xi, Yd the corresponding direct limits. The proof is 
completed by showing that 

for any open covering @ of M thereby proving that the isomorphisms 
(A.9.2) are independent of the given covering. The above isomorphism 
follows directly from two lemmas which we now establish. 

Lemma A.10.2. The maps d and 6 induce homomorphisms 

Moreover, these maps are epimorphisms (homomorphisms onto). 
Indeed, for any& E AX %), df, and Sf, are defined as the cohomology 

classes of df, and 6f,, respectively. That they are well-defined is clear 
from the notion of direct limit. We must show that both d and 8 are 
onto. For d, let z be an element of ZG1(N(@), A$-,+') and W be a 
refinement of Q as in lemma A. 10.1 : 4: Wj -+ Uj ; then, the values of 
+*z are defined on Wo n n W,-, C Uo and may be extended to Wo. 
By the PoincarC lemma,+*z is exact, that is there is a y E Ci-l(N(W), Aq-,) 
for which +*z = dy on W, and consequently in Wo n n W,-,. 
That 8 is onto is clear. For, since the cohomology is trivial, any 
z E Zf(N(%), At-i) is of the form 6y, y E Ci-l(N(@), Aqei). The 
element y represents an element of A,. 

Lemma A.10.3. 
kerneld = kernel 8 -- xi + Pi. 

The images of x,(U) + y,(U) under d and 6 are the cohomology 
classes of dy,(U) and Sx,(U), respectively (cf. 5 A.9). The lemma is 
therefore trivial for d. Now, as in the proof of the previous lemma, 
there is a refinement W of @ such that &(%) -- dz(W). Hence Sxf(U) 



is equivalent to Sdz(W) = dSz(W), that is to an element which is 
cohomologous to zero. 

We show finally that the kernels are precisely xi + 9,. To this end, 
let dz(@) represent {O}. Then, for a suitable refinement #, $dz = Su where 
du = 0. For a further refinement 4, $u = dv by the PoincarC lemma. 
Hence, d(@z - Sv) = $$dz - dSv = $ 8 ~  - d8v = 8$u - 8dv = 0, 
and so, since #z = (#z - 8v) + So, a is an element of 8, + yi. 

Analogous reasoning applies to the map 8. 
Remarks: 1. De Rham's isomorphism theorem has been established for 

compact spaces. That it holds for paracompact manifolds, that is, a 
manifold for which every open covering has a locally finite open refine- 
ment, is left as an exercise. Indeed, it can be shown that every covering 
of a paracompact space has a locally finite strong refinement. 

2. The isomorphism theorem extends to the cohomology rings 
(cf. Appendix B). 

A.ll. De Rham's existence theorems 

We recall these statements referred to as (R,) and (R,) in 5 2.1 1. 
(R,) Let (ti} (i = 1, .-., b,(M)) be a basis for the singular q-cycles 

of a compact differentiable manifold M and w:(i = 1, - a - ,  b,(M)), b, 
arbitrary real constants. Then there exists a closed q-form a on M 
having the wt as periods. 
(R,) A closed form with zero periods is exact. 
Proof of (R,). Due to the isomorphism theorem, (R,) need only be 

established for the cycles and cocycles (with real coefficients) on the 
nerve of a given covering 9. 

Let L be a linear functional on Z,(N(%), R) (the singular q-cycles) 
which vanishes on B,(N(%), R) (the singular boundaries). L may be 
extended to Cq(N(%), R) in the following way: Let 5, be a basis of the 
vector space C,(N( %), R)/Zq(N(@),R). Then, every 6 E C,(N( 9), R) has 
a unique representation in the form 

We extend L to C,(N(%), R) by putting L(6) = L(5). 
Now, there is a (unique) cochain x E Cq(N(%), R) such that (x, 6) = 

L(5), namely, the cochain whose values are L(A(i,, "., i,)). It  remains 
to be shown that x is a cocycle. Indeed, 



since L vanishes on the boundaries. Thus, since f is an arbitrary chain 
6x vanishes. 

Proof of (R,). Suppose that (x, at) = 0 for all f E C,,,(N(9), R). 
We wish to show that x is a coboundary. To  this end, let L be the linear 
functional on BQ-,(N(@), R) defined by 

Since = implies (x, 7) = (x, q'), L is well defined. Now, extend 
L to CQ-,(N(4), R) and determine y by the condition 

(Y, 5) = L(f ) .  (A. 1 1.2) 
Then, 

(x - 8 ~ '  17) = (XI 17) - ( 6 ~ '  77)  

by (A.ll . l)  and (A.11.2). Since this holds for all 7, x - 6y vanishes 
and x is a coboundary. 

Remarks: 1. The cohomology theory defined in 5A.2 is a straightforward 
generalization of the classical Cech definition of cohomology. The idea 
of cohomology with 'coefficients' in a sheaf r is due to Leray and is a 
generalization of Steenrod's cohomology with 'local coefficients'. 

2. It  can be shown that a topological manifold is paracompact. In fact, 
there exists a locally finite strong refinement of every covering (cf. 
Appendix D). Hence, by the remark at the end of 5 A.lO, de Rham's 
isomorphism theorem is valid for differentiable manifolds. The existence 
theorems, however, require compactness. 

3. There are at least two distinct cohomology theories on a manifold. 
The de Rham cohomology is defined on the graded algebra A[Ml of all 
differential forms of class 1 on M. On the other hand, cohomology 
theories may be defined on A,[W-the graded algebra consisting of 
those forms of class k (> I), and on Ac[q--the graded algebra of 
forms with compact carriers. If M = Rn, Poincart's lemma for forms 
with compact carriers asserts that a closed p-form (with compact carrier) 
is the differential of a (p - 1)-form with compact carrier if p 5 n - 1, 
and an n-form a is the differential of an (n - 1)-form with compact 
carrier if, and only if, (a, 1) = 0. Hence, bp(Ac[Rn]) = 0, p 5 n - 1, 
and b,(A,[Rn]) # 0. But, b,(A[RnJ) = 1 and, from 5A.6, for p > 0, 
b,(A[RnJ) = 0. 

De Rham's theorem states that there are precisely two cohomology 
theories, namely, those on A[MJ and Ac[MJ. Moreover, if M is compact, 
there is only one. 



APPENDIX B 

THE CUP PRODUCT 

For a compact manifold M, we have seen that each element of the 
singular homology group SH, acts as a linear functional on the de 
Rham cohomology group DP(M),  and that each element of D ( M )  
may be considered as a linear functional on SH,. In fact, the cor- 
respondences 

SHv -* ( P ( M ) ) *  
and 

D9(M) -+ (SH,) * = Hp(M) 

(where ( )* denotes the dual space of ( )) are isomorphisms. In this 
appendix we should like to show how the second map may be extended 
to the cohomology ring structures. To  this end, a product is defined 
in (SH,)*. 

B.1. The cup product 

Let ar and @ be closedp- and q-forms, corresponding to the cohomology 
classes za and 3, respectively. Let fa and f p  be representative P- and 
q-cocycles. We shall show that ar A corresponds to the cohomology 
elass zaAR defined by the ( p  + q)-cocycle faAp where 

The product so defined will henceforth be denoted by fa v fp and called 
the cup product of fa and fp. 

Lemma B.l .l. The operator 8 i s  an anti-derivation : 



Corollary. 

cocycle u cocycle = cocycle, 
cocycle u coboundary = coboundary, 
coboundary u cocycle = coboundary. 

The cup product is thus defined for cohomology classes and gives 
a pairing of the cohomology groups HP(N( @), R) and Hq(N( 4 ) ,  R) 
to the cohomology group Hp+q(N(4), R). 

Lemma B.1.2 The cup product has the anti-commutativity property 

This is clear from the formula (B. 1.1). 

8.2. The ring isomorphism 

As in § A.9, let f, E P ( N (  4 ) ,  hp), fi E Z0(N(4), A$) and consider 
the relations 



Assume that f,, fi have the values a and 8, respectively, and put 
fit(UO, a * * ,  Up+*) = a A 8. Moreover, let 

and 

Hence, since 6fp = fa and (dfi)(U') = 8, Sf: = df&. In this way, we 
see that 

since 6fa = 0 and Gfi = fp We conclude that a A 8 determines f , ~  fg. 
Summarizing, we have shown that the direct sum D(M) of the vector 

spaces (cohomolsgy groups) Dp(M) has a ring structure, and that the 
de Rham isomorphism between the cohomology groups extends to a 
ring isomorphism. 

Remark: Many of the methods of sheaf theory have apparently 
resulted from the developments of Appendix A. In fact, perhaps the 
most important applications of the theory are in proving isomorphism 
theorems as, for example, those in 5 6.14. 



APPENDIX C 

THE HODGE EXISTENCE THEOREM 

Let M be a compact and orientable Riemannian manifold with metric 
tensor g of class k 2 5. We have tacitly assumed that M is of class k + 1. 
Denote by Ap the Hilbert space of all measurable p-forms a on M such 
that (a, a) is finite. (The notation follows closely that of Chapter 11). 
The norm in Ap is defined by the global scalar product. We assume 
some familiarity with Hilbert space methods. The properties of the 
Laplace-Beltrami operator A are to be developed from this point of 
view. The idea of the proof of the existence theorem is to show that 
A-l-the inverse of the closure of A is a completely continuous operator 
with domain (A&)I-the orthogonal complement of [31]. The 
Green's operator G (cf. 1I.B) defined by 

is therefore completely continuous. 
Since R(d)-the range of d is all of (%)I, we obtain the 

Decomposition theorem 

A regular form a of degree p(0 < p < dim M) has the unique decomposi- 
tioa 

a = day + 6dy + H[a] 

where y is of class 2 and H[a] is of class k - 4 (cf. 5 2.10). (If k = 5, 
H[otJ is of class 2). 

For, since a - H[a] E (A&)L, it belongs to R(A). Hence, there is a 
p-form y such that dy = a - H[a]. However, a - H[a] is of class 1. 
Consequently, by lemma C. 1 below, y is of class 2 from which we con- 
clude that it- belongs to the domain of A. 
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The complete continuity of the operator (A + I)-' is used, on the 
other hand, for the proof that dim (where is the null space of 6) 
is finite. 

The  following lemma given without proof is of fundamental im- 
portance [46J: 

Lemma C.1. Let a E Ap and /I = y + ra where y is a p-form of cluss 
l(1 1 5 k - 5) andr  E R. (When k = 5, take I = I). If (A8, a) = (8, ,8) 
for every p-form 8 of class k - 2, then a is a form of class 1 + I (almost 
everywhere) and Aa = /I. 

For forms a of class 2, this is clear. In  this case (48, a) = (8, Aa). 
Consequently, (8, Aa - /I) vanishes for all p-forms 8 of class 2. Hence, 
Aa - /I = 0 almost everywhere on M. 

We begin by showing that A is self-adjoint, (or, self-dual) that is, 
A is its maximal adjoint operator. (The closure of an operator on AP 
is the closure -- of its graph in /\p x Ap). Let A, = A + I ( I=  identity). 
Since A + I = A + I ,  A is self-adjoint, if and only if, A, is self-adjoint. 
We show that A, is self-adjoint. In  the first place, A, is (1-1). For, 
since 

(&, a) = ( 4  da) + (&a, &a) + (a, a) 8 (a, 4, 
the condition Ala  = 0 implies a = 0. Again, since 

I1 a l l  I; I1 Ala II 
(cf. 5 7.3 for notation), the inverse mapping (A,)-I is bounded. Thus 
R(d,) is closed in AD. That R(A,) is all of Ap may be seen in the following 
way: Let a # 0 be a p-form with the property (Alp, a) = 0 for all /I. 
Applying lemma C. 1 with r = - 1 this implies that a is of class 2 
and A p  = 0. Hence, since A, is (1-I), a = 0, and so R(A,) = A@. 

We have shown that (Al)-' is a bounded, symmetric operator on AP. 
I t  is therefore self-adjoint, and hence its inverse is self-adjoint. Thus,  

Lemma C.2. The closure of A is a self-adjoint operator on AP. 
We require the following lemma in order to establish the complete 

continuity of the operator (A,)-': 

Lemma C.3. There exists a coordinate neighborhood U of every point 
P E M such that for all fmms a of class 2 vanishing outside U 

D(a) 5 C(&, a) = C[(& a) + (a, a)] 
where C is a constant depending on U and 

is the Dirichlet integral. 
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Remark: If, in En we integrate the right hand side of 

by parts, we obtain by virtue of the computation following (3.2.8) 

(The lemma is therefore clear in En.) 
Let gif denote the components of the metric tensor g relative to a 

geodesic coordinate system at P : gij(P).= Sij. Denote by U' the 
neighborhood of P in which this coordinate system is valid. Define a new 
metric g' in U' by g; = ail. (The existence of such a metric in U' is 
clear). Then, by the above remark 

where the prime indicates that the corresponding quantity has been 
computed with respect to the metric g', and a is a form vanishing outside 
U'. Since 

I I  B 11'" ci I I  B 1 1 2  

for some constant Cl and any form p, 

-the second inequality following from the parallelogram law. The 
following estimate is left as an exercise: 

where r(U) -F 0 as U shrinks to P. The proof is straightforward. We 
conclude that 

q.1) I; 2C,[(Aa,a) + c2 I I a 1 l 2  + +(U)D(a)l 

5 2 C W w )  + I I a I 121 + @(a) 
by taking U small enough so that 2Cle(U) 5 4 and C, 5 1. 
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Lemma C.4. The operator is completely continuous, that is, it 
sends bounded sets into relatively compact sets. 

We employ the following well-known fact regarding operators on a 
Hilbert space. Let {ai) be a sequence of forms and assume that the 
sequence {A, ad} is defined and bounded. If from the former sequence, 
a norm convergent subsequence can be selected, (A,)-l is completely 
continuous. We need only consider those forms in the domain of A,. 
In  the first place, since 

the sequences {%), {da,} and {&,) are also bounded (in norm). If we take 
a partition of unity {gp} (cf. 5 1.6), the corresponding sequences {gp ail, 
{dgp ori) and {6gp ai) are also bounded. Since the terms of the sequence 
{gp ai} are bounded (in norm), the same is true of the first partial 
derivatives of their coefficients by virtue of lemma C.3, provided we 
choose a sufficiently fine partition of unity. Lemma C.4 is now an 
immediate consequence of the Rellich selection theorem, namely, "if a 
sequence of functions together with their first derivatives is bounded in 
norm, then a convergent subsequence can be selected". 

Proposition ( Hodgede R ham). The number of linearly independent 
harmonic forms on a compact and orientable Riemannian manifold is finite. 

Since the operator (A,)-1 is (1 -I), self-adjoint and completely 
continuous, its spectrum has infinitely many eigenvalues (each of finite 
multiplicity) which are bounded and with zero as their only limit. 
However, 0 is not an eigenvalue. The eigenvalues of dl are the reciprocals 
of those of (Al)-1-the multiplicities being preserved; moreover, the 
spectrum of A has no limit points. Since dl = A + I, the spectrum of A is 
obtained from that of A, by means of a translation. Thus, the spectrum 
of A has no (finite) limit points; in addition, the eigenvalues of d have 
finite multiplicities. In  particular, if zero is an eigenvalue, the number of 
linearly independent harmonic forms is finite since each eigenspace has 
finite dimension. (In the original proof due to Hodge, this was a 
consequence of the Fredholm theory of integral equations). 

Finally, we show that A-I is a completely continuous operator on 
(A$!#. I n  the first place, d is (1-1) on (A&)L. Thus, if we restrict 
d to (/If#, it has an inverse. (It is this inverse which we denote by 
d-I). By lemma C.2, A-I is self-adjoint. Consequently, its domain is dense 
in (A&)-'; for, an element orthogonal to the range of a self-adjoint 
operator is in its null space. Moreover, A-I has a bounded spectrum 
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with zero as the only limit point. This follows from the fact that the 
eigenvalues of d on (A&)L have no limit points. 

Summarizing, 6-1 has the properties: 
(a) it is self-adjoint with domain (A&)L, 
(b) its spectrum is bounded with the zero element as its only limit 

point, and 
(c) each of its eigenspaces is finite dimensional. 
This allows us to conclude that 6-I is completely continuous. That 

its domain is (Ag)l follows from the fact that a completely continuous 
operator is bounded. The remaining portions of the proof of the 
existence theorem appear in 5 2.1 1. 

Remark: Lemma C.2 is not essential to the argument. For, the com- 
plete continuity of 6-1 can be shown directly from that of (A,)-', which is 
defined on the whole space Ap, since is an invariant subspace of 
this operator. 



APPENDIX D 

PARTITION OF UNITY 

To show that to a locally finite open covering 4 = {U,) of a 
differentiable manifold M there is associated a partition of unity (cf. 91.6) 
we shall make use of the following facts: (a) M is normal (since a 
topological manifold is regular), that is, to every pair of disjoint 
closed sets, there exist disjoint open sets containing them. (b) Since M 
is normal, there exist locally finite open coverings Y = (V,), WO = { W!}, 
W = { W,} and W1 = { W:} such that 

for each i. 
In the construction given below, it will be assumed (with no loss in 

generality) that each U, is contained in a coordinate neighborhood and 
has compact closure. 

In constructing a partition of unity, it is convenient to employ a 
smoothing function in En, that is a function g, 2 0 of class k cor- 
responding to an arbitrary e > 0 such that 

(i) carr(g,)t C {r 5 e} where r denotes the distance from the origin; 
(ii) g, > 0 for Y c e; 

(iii) $ g, ul, -, un)dul ... dun = 1. F ( 
An example of a smoothing function is given by 

where c is chosen so that 



For each Ui, let f, be the continuous function 

1 P E W ;  
fXp)  = 10; P  E the complement of W,, 

Let (ul, ..., un) be a local coordinate system in Ui and define "distance" 
between points of Ui to be the ordinary Euclidean distance between the 
corresponding points of Bi where B, is the ball in En homeomorphic 
with U*. Let ci be chosen so small that a sphere of radius E, with center P 
is contained in Ui for all P E Vi and does not meet Wi for P E Vi - e. 
Consider the function 

It has the following properties. 
(i) hi is of class k; 

(ii) hi 2 0, hi(P) > 0, P W:; hXP) = 0, P E Vi - e. 
Thus, if we define h, to be 0 in the complement of Vi, it is a function 
of class k on M. 

(iii) W: C carr(hi) C C Ui. 
(iv) h(P) = Xi hi(P) is defined for each P E M (since 4 is a locally 

finite covering); h(P) is of class k and is never 0 since W1 is a covering 
of M. 

We may therefore conclude that the functions 

form a partition of unity subordinated to the covering 4. 

Remarks: 1. The above theorem shows that there are many non-trivial 
differential forms of class k on M. 

2. A topological space is-said to be regular if to each closed set Sand 
point P $ S, there exist disjoint open sets containing S and P. Since M 
is a topological manifold, it is locally homeomorphic with Rn. Hence, 
it is locally compact. That M is regular is a consequence of the fact 
that it is locally compact and Hausdorff. That it is normal follows 
from regularity and the existence of a countable basis. Finally, from 
these properties, it can be shown that M is paracompact. 



APPENDIX E 

HOLOMORPHIC BISECTIONAL CURVATURE 

Let M be a Kaehler manifold of complex dimension n and R its Riemannian curvature 

tensor. At each point z of M, R is a quaddinear mapping T,(M) x T,(M) x T,(M) x 

T,(M) + R with well-known properties. 

Let a be a plane in T,(M), i.e., a real two dimensional subspace of T,(M). Chooeing 

an orthonormal basis X, Y for a ,  we define the sectional curvature K(a) of a by 

(E.O.l) K (a) = R(X, Y, X, Y). 

We shall occasionally write K(X, Y) for K(a). The right hand side depends only on a, 

not on the choice of an orthonormal basis X, Y. The sectional curvature K is a function 

defined on the Grassman bundle of (two-) planes in the tangent spaces of M. A plane a is 

said to be holomorphic if it is invariant by the (almost) complex structure tensor J. The 

set of J-invariant planes a is a holomorphic bundle over M with fibre Pn-1 = Pn-1 (C) 

(complex projective space of dimension n - 1). The restriction of the sectional curvature 

K to this complex projective bundle is called the holomorphic sectional curvature and will 

be denoted by H. In other words, H(a) is defined only when a is invariant by J, and 

H(a) = K(a). If X is a vector in u we shall also write H(X) for H(a). 

Given two J-invariant planes a and a' in T,(M), we define the holomorphic bisectional 

curvature H (a, a' ) by 

(E.0.2) H(a, a') = R(X, JX, Y, JY) , 

where X is a unit vector in a and Y a unit vector in a'. It is a simple matter to verify that 

R(X, JX, Y, JY) depends only on a and a'. Although the definition itself makes sense even 

for hermitian holomorphic vector bundles (cf. N a h o  [c]) as well as hermitian manifolds 

we shall confine our considerations to the Kaehler case. 

303 
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Since 

the holomorphic bisectiorlal curvature carries more information than the holomorphic eec- 

tiond curvature. By Bianchi's identity we have 

(E.0.4) R(X, JX,Y, JY) = R(X, Y,X,Y) + R(X, JY,X, JY). 

The right hand side of (E.0.4) is a sum of two sectional curvatures (up to constant factors). 

Hence the holomorphic bisectional curvature carries less information than the sectional 

ClmAture. 

Although the concept of holomorphic bisectional curvature is new, one finds it implicitly 

in Berger [2] and Bishop-Goldberg [89]. The purpose of this Appendix is to give basic 

properties of the holomorphic bisectional curvature and to generalize geometric results on 

Kaehler manifolds with positive sectional curvature to Kaehler manifolds with positive 

holomorphic bisectional curvature. (See Goldberg-Kobayashi [q). 

E.1. Spaces of constant holomorphic sectional curvature 

Hence, 

It follows that, for a Kaehler manifold of constant holomorphic sectional curvature c, the 

holomorphic bisectional curvatures H(a, a') lie between c/2 and c, 
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where the value c/2 is attained when a is perpendicular to a' whereas the value c is attained 

when a = a'. 

E.2. Ricci tensor 

For a Kaehler manifold M, the Ricci tensor S may be given by 

n 

(E.2.1) S(X, Y) = C R(Xi, JXi,X, JY) ,  
i=l 

where (XI,. . . , X,, , J X I , .  . . , JX,) is an orthonormal basis for Tx(M). It is clear from 

(E.2.1) that if the holomorphic bisectional curvature is positive (negative) so is the Ricci 

tensor. 

E.3. Complex submanifolds 

Let M be a submanifold of a Riemannian manifold N with metric tensor g. Denote 

by RM and RN the Riemannian curvature tensors of M and N and by a the second 

fundamental form of M in N. Then, the Gauss-Codazzi equation says that 

RM(X, Y, 2, W) = g(a(X, a ,  a(Y, W)) 
(E.3.1) 

- g(a(X, W),a(Y, 2 ) )  + RN(X, Y, 2, W). 

(Among several possible definitions of the second fundamental form a ,  we have chosen the 

one which defines a as a symmetric bilinear mapping from Tx(M) x T,(M) into the normal 

space at z.) 

If N is a Kaehler manifold and M a complex submanifold, then 

RM(X, JX, Y, JY) = g(a(X, Y), a (  JX, JY)) 

- g(a(X, JY),a(JX,Y)) + RN(X, JX, Y, JY). 

Hence, 

RM(X, JX, Y, JY) =- )( a(X, Y) I t 2  
(E.3.2) 

- 11 a(X, JY) 112 +RN(X, JX,Y, JY). 

From (E.3.2) we may conclude that the holomorphic bisectional curvature of M does not 

exceed that of N. In particular, if M is a complex submanifold of a complex Euclidean 
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space, then the holomorphic bisectional curvature of M is nonpoeitive and hence the Ricci 

tensor of M is also nonpositive. (See O'Neill [c] for similar results on the holomorphic 

sectional curvature.) 

E.4. Complex submanifolds of a space of positive 

holomorphic biiectional curvature 

We prove 

Theorem E.4.1. Let M be a compact connected Kaehler manifold with positive holo- 

morphic bisectwnal curvature, and let V and W be compact complez submanifolds. If 

dim V + dim W 2 dim M, then V and W have a non-empty intersection. 

Theorem E.4.1 is a slight generalization of Theorem 2 in Rankel's paper [b] in which 

he assumes that M is a compact Kaehler manifold with positive sectional curvature. The 

proof given below is a slight modification of that of F'rankel. 

Pmf. Assume that V n W is empty. Let ~ ( t ) ,  0 5 t 5 1, be a shortest geodesic from V 

to W. Let p = ~ ( 0 )  and q = ~(1) .  Let X be a parallel vector field defined along T which 

is tangent to both V and W at p and q, respectively. The assumption dimV + dim W > 
dim M guarantees the existence of such a vector field X. Then J X  is also such a vector 

field. Denote by T the vector field tangent to T defined along 7 .  We compute the second 

variations of the arc-length with respect to infinitesimal variations X and JX.  Then 

(Frankel [b]), we have 
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[b]), by adding (E.4.1) and (E.4.2) and making use of (E.0.4) we obtain 

L$(O) + L5x(0) = - (R(T,  X ,  T ,  X )  + R(T, J X ,  T ,  JX) )d t  

= - 1 R(T, JT,  X ,  JX)dt  5 0. 

Hence at least one of L$(O) and L'jx(0) is negative. This contradicts the assumption that 

r is a shortest geodesic from V to W. 

Theorem E.4.2. A compact Kaehler surface M2 with positive holomorphic bisectional 

curvature is complez and analytically homwmorphic to P2 ( C ) .  

The result of Andreotti-fiankel (Theorem 3 in [b]) states that a compact Kaehler surface 

M2 with positive sectional curvature is complex analytically homeomorphic with P2(C).  

The proof of Theorem E.4.2 is the same as the proof of Theorem 3 in F'rankel's paper [b]. 

(The only change we have to make is to use Theorem E.4.1 instead of Theorem 2 of [b].) 

The following theorem is also a slight generalization of a result of fiankel [b]. 

Theorem E.4.3. Every holomorphic comspondence of a connected compact Kaehler 

manifold N with positive holomorphic bisectional curvature has a fized point. 

The statement means that every closed complex submanifold V of N x N with dim V = 

dim N meets the diagonal of N x N .  

P m f .  Setting M = N x N and W = diagonal ( N  x N), we apply the proof of Theorem 

E.4.1. Then it suffices to show that R(T, J T , X ,  J X )  is positive at some point of the 

geodesic T .  Since T and X are tangent vector fields of N x N ,  they can be decomposed as 

follows: 

T = T i + T 2 ,  X = X i + X 2 ,  

where Ti and X I  are tangent to the first factor N ,  and T2 and X2 to the second factor N. 

Then, 

R(T, JT,  X ,  J X )  = RN (Ti ,  JTl , X i ,  JXi  ) + RN (T2, JT2, X2, JX2).  
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Since T is perpendicular to the diagonal of N x N at p and q, neither TI nor T2 vanishes at 

p and q. Since XI and X2 cannot both vanish at any point, either RN(TI, JTI , XI, JXl ) 

or RN(T2, JT2,X2, JX2) is strictly positive at p (and q). Hence R(T, JT,X, JX) is strictly 

E.5. The second cohomology group 

A alight generalization of Theorem 1 in BishopGoldberg's paper [go] is given. 

Theorem E.5.1. The second Betti number of a compact connected Kaehler manifold M 

with positive holomorphic bisectioml curvature is one. 

Corollary. If holomorphic curvature is positive, ie. ,  H(X) > 0 for all X and the mazi- 

mum holomorphic curvature is less than twice the minimum holomorphic curvature (i.e., 

A4 is A-holomorphically pinched with X > 112, then the second Betti number is 1. 

This is an immediate consequence of the inequality 

2X- 1 
K(X, Y) + K(X, JY) 2 7 

PI). 

The following lemma is basic. It will be used also for the proof of Theorem E.6.1. 

Lemma E.5.1. Let t be a real form of bidegne (1,l) on a Kaehler manifold M .  Then 

then e&ts a local field of orthonormal fmmes XI,. . . X,, JXl, . . . , JX, such that 

€(Xi, JX,) = 0 for i # j. 

P w J  Let T(X,Y) = ((X, JY): The fact that ( has bidegree (1,l) is equivalent to 

((X,Y) = t(JX, JY) for all X and Y. Thus, T(X,Y) = T(Y,X) and T(JX, JY) = 

T(X, Y), that is, T is a symmetric bilinear form invariant under J. Consequently, if XI 

is a characteristic vector of T, so is JX1. We can therefore choose an orthonormal basis 

XI,. . . , X,, JXl, . . . , JX, inductively so that the only nonzero components of T are given 
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by T(Xi, Xi) = T(JXi, JXi), which translates into the desired statement for (. (If we 

use the complex representation for T, then T is a hermitian form and the process above is 

equivalent to the diagonalization of T.) 

The remainder of the proof of Theorem E.5.1 will be given as in Berger [2], and is a 

standard application of a well known technique due to Bochner and Lichnerowicz. For a 

%form < on a compact Riemannian manifold M, we define F(() by the following tensor 

equation: 

F(e) = ~ R A B < ~ ~ ~ ~  c - R A B C D C ~ ~ ~ ~ ~ .  

It is known (cf. for instance, Bochner 161, Lichnerowicz [58, p. 61 or Yam-Bochner [75, p. 

64) that if e is harmonic and F(6) 2 0, then F(e) = 0 and < is parallel. 

Let e be as in Lemma E.5.1 and set eii+ = c(Xi, JXi). By a simple calculation we 

obtain 

(E.5.1) 

where 

Since &i;jj; > 0 by our assumption, we conclude that F(() 2 0. Assume that 6 is 

harmonic. Then F(e) = 0 and < is parallel. The equality F(() = 0 implies = e,,, 
at each point for i ,  j = 1, . . . , n. Hence 6 = f 0, where f is a function on M and 0 

is the Kaehler form of M. Since is parallel, f must be a constant function. Thus, 

dim H1*'(M; C) = 1. 

Since the Ricci tensor of M is positive definite (cf. §E.2), there are no nonzero holo- 

morphic %forms on M (cf. Bochner [ll], Lichnerowicz 158, p. 91 or Yam-Bochner [75, p. 

1411). Thus H2g0(M; C) = H0*2(M; C) = 0. This completes the proof of Theorem E.5.1. 

E.6. Einstein-Kaehler manifolds with positive holomorphic bisectional curvature 

The following is a slight generalization of a result of Berger [a]. 
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Theorem E.6.1. An n-dimensional compact connected Kaehler manifold with an Einstein 

metric of positive holomorphic bise~tional CUWU~U~X? is globally isometric to Pn(C) with the 

fibini-Study metric. 

Only the essential steps in the proof will be given because of its length, technical com- 

plexity and similarity in approach to the proof of Berger's theorem. Details, however, will 

be provided where necessary. 

Let M be an Einstein-Kaehler manifold of complex dimension n and let XI,. . . , Xn, 

JXl,. . . , JX, be a local field of orthonormal frames. We write also XI*, . . . ,X,* for 

JXi,. . . , JX, and set 

&a+ = R(Xa,xfi,Xy,X~). 

We use the convention that the indices a,& 7 , b  run through 1,. . . , n, 1*, . . . , n* while the 

indices i ,  j, k, 1 run h 1 to n. Being the curvature tensor of a Kaehler manihld, hP+ 

satidea in addition to the usual algebraic relations satisfied by a Riemannian curvature 

tensor the following relations: 

Lemma E.6.1. Let M be an Einstein-Kaehler manifold such that (Ricci tensor) = k. 

(metric tensor). Then 

when D denotes the operotor of covariant diffenntiatwn. 

Lemma E.6.1 is a special case of a formula of Berger in the Riemannian case (d. Lemma 

(6.2) in Berger [a]); the Riemannian curvature tensor in Berger's paper differs from ours 

in sign. 

We denote by HI the maximum value of the holomorphic sectional k t u r e  of M. Since 

M is compact, Hl exists and is attained by a unit vector, say X, at a point x of M. Thus, 
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Hl = H ( X ) .  We choose a local field of orthonormal frames X I , .  . . ,X,, JX l , .  . . , JX, 
with the following properties: 

X l = X  at x,  

Rll.i, = 0 for a # i'. 

To find such a frame we apply Lemma E.5.1 to the 2-form a x  defined by 

ax (Y, 2) = R ( X ,  J X ,  Y, 2). 

We denote by Q the value of C, Da Du R1l*ll* at z. A straightforward calculation 

using Lemma E.6.1, and E.6.1 yields 

TO prove the inequality HI - 2Rll*ii* 2 0, we first establish the following lemma. 

Lemma E.6.2. Let X ,  J X ,  Y ,  JY  be orthonormal vectors at a point of a KaeMer manifold 

M.  Let a, b be teal number8 such that a2 + ba = 1. Then 

H(aX + b y )  + H(aX - b y )  + H(aX + b J Y )  + H(aX - b J Y )  

= 4[a4 H ( X )  + b4 H ( Y )  + 4a2b2 R ( X ,  J X ,  Y, J Y ) ] .  

Proof. By a straightforward calculation we obtain 

H(aX+bY)+H(aX-by) = 2 [ a 4 H ( ~ ) + b 4 ~ ( ~ ) + 6 a 2 b 2 ~ ( ~ ,  J X ,  Y ,  J Y ) - 4 a 2 b 2 ~ ( x ,  Y ) ] .  

Replacing Y by J Y  we obtain 

H(aX+bJY)+H(aX-bJY) = 2[a4 H(x)+b4 H(y)+6a2b2 R(X, J X ,  Y, JY)-4a2 b2 K(X, JY)] .  
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Lemma E.6.2 now follows from these two identities and 

R(X, JX,Y, JY) = K(X,Y) + K(X, JY). 

We apply Lemma E.6.2 to the case X = X1 and Y = Xi, a # 1. Since H1 = H(Xl ) is 

the h u m  holomorphic sectional curvature on M, we obtain 

Hence 

(1 - a2)(1 + a 2 ) ~ 1  1 b4H(xi) + 4a2b2~11.ii. . 

Since 1 - a2 = bZ, dividing the inequality above by b2 we obtain 

Setting a = 1 and b = 0, we obtain 

Since, by our assumption, Rll*ii* > 0, we obtain from E.6.3 

On the other hand, since Rile 11. attains a (local) maximum at x, it follows that 

Hence, 

Hi = 2Rll*ii* for i = 2,. . . , n. 

Since k = xi Rll. ii. , we have 

The following lemma is also due to Berger (6. Lemma (7.4) of (a]). 



E.6. EINSTEIN-KAEHLER MANIFOLDS 313 

Lemma E.6.3. Let M be a Kaehler manifold of wmplez dimension n.  Then at any point 

y of M the scalar curvatuw R(y )  is given by 

when Vol(SZn") is the volume of the unit sphere of dimension 2n - 1 and dX is the 

canonical measure in the unit sphere S, i n  the tangent space T J M ) .  

Using E.6.4 and Lemma E.6.3 we shall show that M is a space of constant holomorphic 

1 sectional curvature. Since M is Einsteinian, we have R(y) = 2nk. By E.6.4 we have 

From Lemma E.6.3 and E.6.5 we obtain ~ 
lu (H' - H(X) )dX  = 0. 

S i  HI 2 H ( X )  for every unit vector X, we must have HI = H ( X ) .  A compact 

I Kaehler manifold of constant positive holomorphic sectional curvature is necessarily simply 

I 

connected and so is holomorphically isometric to Pn(C). 
I 

Ae in Bishop-Goldberg [92], from Theorems E.5.1 and E.6.1 we obtain 

Theorem E.6.2. A wmpact wnnected Kaehler manifold with positive holomorphic bisec- 

tiond curvature and constant scalar curvature is holomorphically isometric to Pn(C). 

In fact, the Ricci 2-form of a Kaehler manifold is harmonic if and only if the scalar 

curvature is constant. By Theorem E.5.1, the Ricci 2-form is proportional to the Kaehler 

2-form. Hence the manifold is Einsteinian, and Theorem E.6.2 follows from Theorem E.6.1. 

Corollary. A compact, wnnected homogeneous Kaehler manifold with positive holomor- 

phic bisectiod curvature is holomorphically isometric to Pn(C). 

[a] M. Berger, Sur lea uaridt!tb d'Binstein wmpactea, C.R. 111' Wunion Math. Expression Istine, Namur 
(1965), 35-55; Main results were announced in C.R. A d .  Sci. Paris 260 (1965), 1554-1557. 

[b] T .  Ranke1, Manifof& 6 t h  poaiiiue curvaiure, Pacific J .  Math. 11 (1961), 165-174. 
[c] S.  N b o ,  On wmplez an&ic vector bundler, J .  Math. Soc. Japan 7 (1955), 1-12. 
[dl B. O'Neill, Iaotnopic and Kaehler immersions, Canadian J .  Math. 17 (1965), 907- 915. 



APPENDIX F 

THE GAUSS-BONNET THEOREM 

The Gauss-Bonnet theorem for a compact orientable 2-dimensional Riemannian mani- 

fold M states that 

where K is the Gaussian curvature of the surface M, dA denotes the area element of M, 

and x(M) is the Euler characteristic of M. This is usually derived from the Gauss-Bonnet 

formula for a piece of a surface. Let D be a simply connected region on M bounded by 

a piecewise differentiable curve C consisting of m differentiable curves. Then the Gauss- 

Bonnet formula for D states 

where kg is the geodesic curvature of C and al , .  . . , a m  denote the inner angles at the 

points where C is not differentiable. Triangulating M and applying the Gauss-Bonnet 

formula to each triangle we obtain the Gauss-Bonnet theorem for M. 

In 1943, Allendoerfer and Weil [a] obtained the Gauss-Bonnet theorem for arbitrary 

Riemannian manifolds by proving a generalized Gauss-Bonnet formula for a piece of a 

Riemannian manifold isometrically imbedded in a Euclidean space. An intrinsic proof was 

obtained by Chern [b] in 1944. The reader is referred to the book of Kobayashi and Nomizu 

[el for details. 

F.1. Weil homomorphism 

Let G be a Lie group with Lie algebra g. Let I ~ ( G )  be the set of symmetric multilinear 

mappings f : g x - - .  xg+Rsuch-that f((ada)tl, ...,( ada)tk)= f(t1, ..., t k )  f o r a € G  

and t l ,  . . . , tk E g. A multilinear mapping f satisfying the condition above is said to be 

invariant (by G). Obviously, Ik(G) is a vector space over R. We set 
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For f E I ~ ( G )  and g E I'(G), we define f g E I ~ + ' ( G )  by 

where the summation is taken over all permutations a of (1,. . . , k + 1).  Extending this 

multiplication to I (G)  in a natural manner, we make I (G)  into a commutative algebra 

over R. 

Let P be a principal fibre bundle over a manifold M with group G and projection p. 

Our immediate objective is to define a certain homomorphism of the algebra I (G)  into the 

cohomology algebra H*(M, R) .  We choose a connection in the bundle P. Let w be its 

connection form and Q its curvature form. For each f E Ik(G) ,  let f (42) be the 2k-form 

on P defined by 

XI , .  . . , XZk E T,(P), where the summation is taken over all permutations a of (1,2,. . . ,2k) 

and c, denotes the sign of the permutation o. 

Theorem F.1.1. Let P be a principal fibre bundle over M with group G and projection 

n. Choosing a connection in P, let Q be its curvature form on P. Then, 

(I) For each f E I ~ ( G ) ,  the 2k-form f (Q) on P projects to a (unique) closed 2k-form, 

say T(Q), on M ,  i. e., f (a)  = ~'(f (0)); 

(2) If we denote by w ( f )  the element of the de Rham cohomology group H ~ ~ ( M ,  R )  

defined by the closed 2k-fonn f(Q),  then w ( f )  is independent of the choice of a connection 

and w : I (G)  + H * ( M ,  R )  is  an algebm homomorphism. 

Theorem F.l.l is due to A. Wei1,-and w : I (G)  + H*(M, R) is called the Weil homo- 

morphism. 

F .2. Invariant polynomials 

Let V be a vector space over R and Sk(V) the space of symmetric multilinear mappings 

f of V x . x V(k times) into R. In the same way as we made I(G) into a commutative 
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algebra in $ F.l, we define a multiplication in S ( V )  = C&, S k ( V )  to make it into a 

commutative algebra over R. 

Let (I,. . . , (' be a basis for the dual space of V .  A mapping p : V -+ R is called a 

polynomial finction if it can be expressed as a polynomial of t l , .  . . , tr. The concept is 

evidently independent of the choice of ( I , .  . . , t r .  Let P k ( v )  denote the space of homoge- 

neous polynomial functions of degree k on V .  Then P ( V )  = CEO P'(v) is the algebra 

of polynomial functions on V .  

Proposition F.2.1. The mapping cp : S ( V )  4 P(V) defined by (cp f ) ( t )  = f ( t ,  . . . , t )  for 

f E S k ( v )  and t E V is an isomorphism of S ( V )  onto P(V).  

Proposition F.2.2. Given a group G of linear transformations of V ,  let SG(V) and 

Pa(V) be the subalgebms of S ( V )  and P(V),  respectively, consisting of G-invariant ele- 

ments. Then, the isomorphism cp : S ( V )  -+ P ( V )  defined in Proposition F.2.1 induces an 

isomorphism of SG(V) onto PG(V). 

Applying Proposition F.2.2 to the algebra I(G) defined in 5 F.l, we obtain 

Corollary. Let G be a Lie group. Then the algebm I(G) of (ad G)-invariant symmetric 

multilinear mappings of its Lie algebm g into R may be identified with the algebm of 

(ad G)-invariant polynomial functions on g. 

The following theorem is useful in the actual determination of the algebra I(G) defined 

in $ F.1. 

Theorem F.2.1. Let G be a Lie gmup and g its Lie algebm. Let G' be a Lie subgroup 

of G and g' its Lie algebm. Let I(G)(resp. I(G1)) be the algebm of invariant symmetric 

multilinear mappings of g(resp. g') into R. Set 

N = {a E G; (ad a)g' C g'). 

Considering N as a group of linear tmnsfonnations acting on g', let IN(G1) be the subal- 
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gebm of I(G') consisting of elements invariant by N. If 

g = ((ad a)t'Ja E G and t' E g'), 

then the nstrictwn map I (G)  -+ I(G') maps I (G)  isomorphically into IN(G'). 

As an application of Theorem F.2.1 we obtain I(U(n)), I(O(n))' and I(S(O(n)). 

Theorem F.2.2. Define polynomial functions f l  , . . . , fn  on the Lie algebm u(n) of U(n) 

by 

Then f l ,  . . . , fn  are algebmidly independent and genemte the algebm of polynomial func- 

tions on u(n) invariant by ad(U(n)). 

Theorem F.2.3. Define polynomiul functions f l ,  . . . , fm  on the Lie algebm o(n) of O(n) 

(when n = 2m or n = 2m + 1) by 

Then f l , . . . fm  an  algebmically independent and genemte the algebm of polynomiul func- 

tions on o(n) invariant by ad(O(n)). 

Theorem F.2.4. Define polynomial functiow fl , . . . , f, on the Lie algebm o(n) of SO(n) 

as in Thwnm F.2.3. 

(I) If n = 2m + 1, then f l ,  . . . , fm are algebmically independent and genemte the 

algebm of polynomial functiow on o(n) invariant by ad(SO(n)); 

I 

($1 If n = 2m, then there ezise a polynomial function h (unique up to sign) such that 

1 fm  = h2 mul the functions f l ,  . . . , fm-1, h are algebmically independent and genemte the 

algebm of polynomial functions on o(n) invariant by ad(SO(n)). 

Let 

X = (x i j )  E o(2m) with xi, = -xi,. 
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where the summation is taken over all permutations of (1,. . . ,2m) and cil...i2, is 1 or 

-1 according as (il,. . . ,izm) is a .  even or odd permutation of (1,. . . ,2m). Ft.om the 

usual definition of the determinant it follows that h is invariant by ad(SO(n)). Moreover, 

fm = h1 on o(n). 

F.3. Chern classes 

We recall the axiomatic definition of Chern classes (Hirzebruch [c] and Husemoller 

[dl). We consider the category of differentiable complex vector bundles over differentiable 

manifolds. 

Aziom 1. For each complex vector bundle E over M and for each integer i 2 0, the ith 

C h m  class ci(E) E H"(M, R) is given, and m(E) = 1. 

We set c(E) = Czo ci(E) and call c(E) the total Chem class of E. 

Axiom 2 (Naturality), Let E be a complex vector bundle over M and f : M' + M a 

differentiable map. Then 

where f -'E denotes the complex vector bundle over M' induced by f from E. 

Axiom 3 (Whitney sum formula). Let El,. . . , Eq be complex line bundles over M, 

i.e., complex vector bundles with fibre C. Let El @ . - . E, be their Whitney sum, i.e., 

El$-.-$Eq=d"(E1 x . . -  x Eq), whered: M -+ M x - . . x  M mapseachpoint x E M 

into the diagonal element ( x ,  . . . , x)- E M x . . . x M. Then 

To state Axiom 4, we need to define a certain natural complex line bundle over the 

n-dimeneional complex projective space Pn. A point x of Pn is a 1-dimensional complex 
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aukace, denoted by F,, of Cn+'. To each x E Pn we assign the corresponding F, as 

the fibre over x ,  thua obtaining a complex line bundle over Pn which will be denoted by 

En. Instead of describing the complex structure of En in detail, we exhibit its a d a t e d  

principal bundle. Let C* be the multiplicative p u p  of non-zero complex numbers. Then 

C* acts on the space Cn+' - (0)  of non-zero vectom in Cn+' by 

((zO, z l , .  . . , z"), W )  E (C"+' - (0))  x C* 

+ (zOw, z lw , .  . . , znw) E cn+I - (0).  

Under this action of C*,  the space Cn+' - (0) is the principal fibre bundle over Pn with 

group C* aesociated with the natural line bundle En. If we denote by p the projection of 

this principal bundle, and by Ui the open.subset of Pn defined by ti # 0, then 

If we denote by vi the mapping p-'(Ui) + C* defined by v i ( zO, .  . . , zn)  = z i ,  then the 

transition function q5,i is given by 

For the normalization axiom we need to consider only El.  

Aziom 4 (Normalization). -cI (El ) is the generator of HZ ( P I ,  2); in other words, cl (El ) 

evaluated (or integrated) on the fundamental 2-cycle Pl is equal to -1. 

Let E be a complex vector bundle over M with fibre Cr and group GL(r; C). Let P 

be its associated principal fibre bundle. We shall now give a formula which expresses the 

kt" Chern class ck(E) by a closed differential form r k  of degree 2k on M. We define first 

polynomial functions fo, f i  , . . . , f ,  on the Lie algebra gl(r; C )  by 

Then they are invariant by ad(GL(r; C ) ) .  Let w be a connection form on P and 52 its 

curvature fonn. by Theorem F.l . l  there exists a unique closed 2k-form r k  on M such that 
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where p : P -+ M is the projection. The cohomology class determined by 7k is independent 

.of the choice of connection. From the definition of the rk's we may write 

=p*( l+yl  +---+?,) .  

Theorem F.3.1. The kth Chern c1a.w ck(E) of a complez vector bundle E over M is 

represented by the closed 2k-form 7k defined above. 

We shall show that the real cohomology classes represented by the rk's satisfy the four 

axioms. 

(1) Evidently yo represents 1 E HO(M; R). 

(2) Let P be the principal bundle associated with a complex vector bundle E over M. 

Given a map f : M' -+ M, it is clear that the induced bundle f -'P is the principal bundle 

associated with the induced vector bundle f-I E. Denoting also by f the natural bundle 

map f -'P -+ P and by w a connection form on P ,  we set 

Then w' is a connection form on f -'P and its curvature form R' is related to the curvature 

form Q of w by R' = f'(R). If we define a closed 2k-form 7; on M using R' in the same 

way as we define 7r. using R, then it is clear that f * (-yk) = 7;. 

(3) Let El, .  . . , Eq be complex line bundles over M and PI,. . . , Pq their associated 

principal bundles. For each i ,  let wi be a connection form on Pi and Ri its curvature form. 

Since PI x . . x Pq is a principal fibre bundle over M x . x M with group C* x . . . x C*, 

where C* = GL(1; C), the diagonal map d : M -+ M x . . x M induces a principal fibre 

bundleP=d-'(P1~~~~~P,)onMwithgroupC*~~~~~C+. ThegroupC*x...xC*may 

be considered as the subgroup of GL(q, C) consisting of diagonal matrices. The Whitney 

sum E = El $- - .$ E, is a vector bundle with fibre CQ. Its associated principal fibre bundle 

Q with group GL(q,C) contains P as a subbundle. Let pi : P + Pi be the restriction of 

the projection PI x x Pq -+ Pi to P and set 
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Then w is a connection form on P and its curvature form R is given by 

R = 0; + . . - + $2; where Ry = py(ni). 

N 

Let be the connection form on Q which extends to w. Let R be its curvature form on 

Q. Then the restriction of 

to P is equal to 

This establishes the Whitney sum formula. 

(4) Let P = C 2  - (0). P is the principal bundle over Pl(C)  with group C* associated 

with the natural line bundle E l .  We define a 1-form w on P by 

o = (F, dz ) / (Z ,  z) ,  

where (Z, dz)  = PdzO + Z1dzl and (F, z )  = $'zO + Z1 z l .  Then w is connection form and its 

curvature form R is given by 

52 = dw = ( ( f ,  z)(&, dz)  - ( z ,  dZ) A (Z, dz))/( l i ,  z ) ~ ,  

where 

(&,dz) = dtO A dzO + dZ1 A d t l .  

Let U be the open subset of Pl(C)  defined by zO # 0. If we set w = z l / z O ,  then w may be 

used as a local coordinate system in U. Substituting z1 = zOw in the formula above for R, 

we obtairi 

$2 = (& A dw) / ( l  + W G ) ~ .  

Then 71 = 71(El) can be written as follows: 
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,,) = r e 2 d = i i  

then 

Since Pl(C) - U is just a point, the integral - J4(c) 71 is equal to the integral - J'71. 
We wish to show that the latter is equal to 1. Fkom the formula above for 71 in terms of 

r and t, we obtain 

If we express the curvature form 52 by a matrix-valued 2-form (Ri), then the 2k-form 

7k representing the kt* Chern class ck(E) can be written as follows: 

where the summation is taken over all ordered subsets (il,. . . ik) of k elements from 

. . 
(1, . . . , r) and all permutations (jl, . . . , jk) of (il, . . . , i a )  and the symbol 6:::;: denotes 

the sign of the permutation (il,. . . ,ik) + (jl,. . . , jk). 

Let P be the principal bundle with group GL(r, C) associated with a complex vector 

bundle E over M. We shall show that the algebra of characteristic classes of P defined in § 

F.l is generated by the Chern classes of E. Reducing the structure group GL(r, C) to U(r) 

we consider a subbundle P' of P and choose a connection form w' on P' with curvature 

form Q'. Let w be the connection form on P which extends wl',and R its curvature form. 

Let f be an ad(GL(r, C))-invariant polynomial function on gl(r, C) and f' its restriction 

to u(r). Then f' is invariant by U-(r). Since the restriction of f(R) to P' is equal to 

f'(Q1), the characteristic class of P defined by f coincides with the characteristic class of 

P' defined by f'. In $ F.2 we determined all ad(U(r))-invariant polynomial functions on 

u(r) and our assertion now follows from the definition of the 7k's. 
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F.4. Euler classes 

We define the Euler classes axiomatically. But first, let E be a real vector bundle over 

a manifold M with fibre Rq. Let P be its associated principal fibre bundle with group 

GL(q, R). Let GL+(q, R) be the subgroup of GL(q, R) consisting of matrices with positive 

determinants; it is a subgroup of index 2. A vector bundle E is said to be orientable if 

the structure group of P can be reduced to GL+(q; R). If E is orientable and if such a 

reduction is chosen, E is said to be oriented. 

Let f be a mapping of another manifold M' into M and f -' E the induced vector bundle 

over M'. If E is orientable, so is f-' E. If E is oriented, so is f -'E in a natural manner. 

Let E and E' be two real vector bundles over M with fibres Rq and RQ', respectively. 

Since 

and 

GL+(q, R) x GL+(ql, r )  c G L + ( ~  + q', R) 

in a natural manner, it follows that if E and E' are orientable so is their Whitney sum 

E $ E' and that if E and E' are oriented so is E $ E' in a natural manner. 

Let E be a complex vector bundle over M with fibre C'. It may be considered as a 

real vector bundle with fibre R2'. Since the associated principal fibre bundle of E as a 

complex vector bundle has as structure group GL(r, C) C GL+(2r, R), E is oriented in a 

natural manner as a real vector bundle. 

We shall now give an axiomatic definition of the Euler classes. We consider the category 

of differentiable oriented real vector bundles over differentiable manifolds. 

Aziom 1.  For each oriented real vector bundle E over M with fibre Rq, the Euler class 

x (E)  E Hq(M, R) is given and x(E) = 0 for q odd. 

Aziom 2   natural it^). If E is an oriented real vector bundle over M and if f is a 
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mapping of another manifold M' into M ,  then 

where f " E  is the vector bundle over M' induced by f from E. 

Aziom 3  (Whitney sum formula). let E l , .  . . , Er be oriented real vector bundles over 

M  with fibre R2. Then 

Aziom 4 (Normalization). Let El be the natural wmplex line bundle over the 

1-dimensional complex projective space PI ( C )  (cf. 5 F.3). Then its Euler class x(E1)  

coincides with the first Chern class cl (El) .  

By a Riemannian vector bundle we shall mean a pair ( E , g )  of a real vector bundle E  

and a fibre metric g  in E. By definition, g  defines an inner product g, in the fibre at 

z E M  and the family of inner products g, depends differentiably on x. 

Given a Riemannian vector bundle (E ,g )  over M  and a mapping f : M' + M, we 

denote by f - l (E ,g )  the Riemannian vector bundle over M' consisting of the induced 

vector bundle f-' E  over M' and the fibre metric naturally induced by f  from g. Given 

two Riemannian vector bundles (E ,g )  and (E1,g') on M, we denote by (E ,g )  $ (E',gl) 

the Riemannian vector bundle over M  consisting of E  @ E' and the naturally defined fibre 

metric g  + 9'. We call it the Whitney sum of ( E , g )  and (E1,g'). 

Let En be the natural complex line bundle over Pn(C) defined in 5 F.3. A point of 

Pn(C) is a 1-dimensional wmplex subspace of Cn+' and the fibre of En at that point is 

precisely the corresponding subspace of Cn+'. Hence the natural inner product in Cn+' 

induces an imer product in each fibre of En and defines what we call the natural fibre 

metric in En. 

We now consider the whomology class x(E ,g )  defined axiomatically: 

Axiom 1'. For each oriented Riemannian vector bundle ( E , g )  over M with fibre RY, 

the class x(E,g)  E Hg(M,R) is given and x(E,g)  = 0 for q odd. 
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Aziom 2' (Naturality). If (E,g) is an oriented Riemannian vector bundle over M and 

i f f  is a mapping of M' into M, then 

Aziom 3' (Whitney sum formula). Let (El, gl ), . . . , (E, , g,) be oriented Riemannian 

vector bundles over M with fibre R2. Then 

Aziom 4' (Normalization). Let El be the natural complex line bundle over Pl (C) and gl 

the natural fibre metric in El. Then x(E1, gl ) coincides with the first Chern class cl (El ). 

In contrast to the Chern class, the Euler class is usually defined in a constructive 

manner and not axiomatically (see, for example, Husemoller [dl). This is due to the fact 

that in algebraic topology the Euler class is defined to be an element of H*(M, Z), not 

of H* (M, R). But we are interested in the Euler class as an element of H* (M, R). Since 

the Euler class defined in the usual manner in algebraic topology satisfies Axioms 1, 2, 3, 

and 4, the existence of x(E) satisfying Axioms 1, 2, 3, and 4 is assured. It is clear that 

x(E) satisfying Axioms 1, 2, 3, and 4 satisfies Axioms l', 2', 3', and 4'. The uniqueness 

of x(E, g) satisfying Axioms l', 2', 3', and 4', then gives rise to the uniqueness of x(E) 

satisfying Axioms 1, 2, 3, and 4. Assuming certain facts from algebraic topology x(E, g) 

can be shown to be unique. 

We shall now express the Euler class x(E) of an oriented real vector bundle E over M 

with fibre R2P by a closed 2pform on M. We choose a fibre metric g in E and let Q be the 

principal fibre bundle with group SO(2p) associated with the Riemannian vector bundle 

(E, g). Let w = (wj) be a conneeti& form on Q and R = (R;) its curvature form. F'rom 

Theorems F.l.l and F.2.4 (6. the expression of the polynomial function h in the proof of 

Theorem F.2.4) it follows that there exists a unique closed 2pform 7 on M such that 

(-l)P n*(7) = - 22pnpp! C ~j,...i~~Rj: A 
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Theorem F.4.1. The Euler c h s  of an oriented real vector bundle E over M with fibn 

R2P is nptwented by the closed 2p-form 7 on M defined above. 

If M ie an oriented compact Riemannian manifold of dimension 2p and if E is the 

tsngent bundle of M, then the closed 2pform 7 integrated over M gives the Euler number 

or Euler characteristic of M. This is the so-called generalized Gauss-Bonnet theorem. 

[a] C. B. AUtmdoeder and A. Weil, The Ga-Bonnet theorem for Riemannian polyhedra, 'hum. Amer. 
Math. SOC. 53 (1943), 101-129. 

[b] S.-S. Chern, A eimple intrinric ptroof of the G a w r - B o n d  formula for clored Riemannian manifoblr, 
Ann. of Math. 45 (l944), 747-752. 

[c] F. Himebruch, Topological Methods in Algebraic Gwmetry, third enlarged edition. Grundlducn der 
Math. W i d a f t e n  131, Springer-Verlag, New York (1966). 

[dl D. Husemoller, Pibre Bandlea, McGmw-Hill, New York (1966). 
[el S. Kobayashi snd K. Nornizu, Foundations of Difianntial Geomeiry, uol. 11. 



APPENDIX G 

SOME APPLICATIONS OF THE GENERALIZED 

GAUSS-BONNET THEOREM 

Perhaps the most significant aspect of differeatid geometry is that which deals with the 

relationship between the curvature properties of a Riemannian manifold M and its topolog- 

ical structure. One of the beautiful results in this connection is the (generalized) Gauss- 

Bonnet theorem which relatea the curvature of compact and oriented even-dimensional 

manifolds with an important topological invariant, namely, the Euler-Poind character- 

istic x ( M )  of M. In the 2-dimensional case, the sign of the Gaussian curvature determines 

the sign of x(M). Moreover, if the Gaussian curvature vanishes identically, so does x(M). 

In higher dimensions, the Gauss-Bonnet formula (cf. 3 G.2) is not so simple, and one is 

led to the following important 

Question. Does a compact and oriented Riemannian manifold of even dimension 

n = 2m whose sectional curvatuns a n  all non-negative have non-negative Euler-Poinoor4 

chamcteristic, and if the sectional curvatuns a n  nonpositive is (-l)"x(M) 2 O? 

H. Samelson [dl has verified this for homogeneous spaces of compact Lie groups with the 

bi-invariant metric. Unfortunately, however, a proof employing the Gauss-Bonnet formula 

is lacking. An examination of the Gauss-Bonnet integrand at one point of M leads one to 

an algebraic problem which has been resolved in dimension 4 by J. Milnor: 

1 Theorem 0.1.  A compact and oriented Riemannian manifold of dimension 4 whose sec- 

tional curvatures a n  non-negative or nonpositive has non-negative Euler-Poinard char- 

acteristic. If the sectional curvatuns a n  always positive or always negative, the Euler- 

PoincarC chamcteristic is positive. 

A subsequent proof was provided by Chern [b]. A new and pexhaps clearer version 

indicating some promise for the higher dimensional cases is given in !j G3. An application 

of our method yields 

327 
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Theorem 6.2. In oder  that a 4-dimensional compact and orientable manifold M cany 

an Einstein metric, it is necessary that its Euler-Poinoart chamcteristic be non-negative. 

Corollary. If V is the volume of M and R is f of the Ricci scalar curvature, 

equality holding if and only if M has constant curvature. 

Theorem G.2 may be improved by relaxing the restriction on the Ricci curvature (cf. $ 

G4)- 

As a finst step to the general case, it is natural to consider manifolds with specific 

curvature properties. A large class of such spaces is afforded by those complex manifolds 

having the Kaehler property. For this reason, the curvature properties of Kaehler manifolds 

are examined. We are especially interested in the relationship between the holomorphic 

and non holomorphic sectional curvatures. Mior 's  result is also improved by restricting 

the hypothesis to the holomorphic sectional curvatures. Indeed, the following theorem is 

proved: 

Theorem G.3. A compact Kaehler manifold of dimension 4 whose holomorphic sectional 

curvatures are non-negative or nonpositive has nonnegative Euler-Poincart! chamcteristic. 

If the holomorphic sectional curvatures are always positive or always negative, the Euler- 

Poinwrt chamcteristic is positive. 

An upper bound for x(M) is obtained in terms of the volume and the maximum absolute 

value of holomorphic curvature of M. More important, an upper bound may be obtained 

in terms of curvature alone when holomorphic curvature is strictly positive (see Theorem 

G.9.2). The technique employed to yield this bound also gives a known bound for the 

diameter of M [2]. 

Let M be a Kaehler manifold with almost complex structure tensor J. Let QnVP denote 

the Grasaman manifold of 2-dimensional subspaces of Tp (the tangent space at P E M) 



G. 1. PRELIMINARY NOTIONS 

and consider the subset 

H : , ~  = {a  E Gt ,p lJa=a or Ja a}. 

The plane section a  is called holomorphic if Ja = a, and anti-holomorphic if Ja I a ,  i.e., 

if it has a basis X ,  Y where X is perpendicular to both Y and JY .  Let R(o) denote the 

curvature transformation (6. 3 G1) associated with an orthonormal basis of a ,  and K(a)  

the sectional curvature at a  E Gtvp .  

A Kaehler manifold is said to have the property (P) if at each point of M there ezists 

an orthonormal holomorphic basis { X u }  of the tangent space with respect to which 

for all sections o  = a(X,, XB)  where RU(o) denotes the restriction of R(a)  to the section a, 

and I w the identity transformation. (In other words, in the case where K(a)  # 0, R,(a) 

defines a complex structure on a.) 

We shall prove 

Theorem 6.4. Let M be a 6-dimensional compact Kaehler manifold having the property 

(P). If for all a  = u(Xu,  XB) ,  K ( a )  2 0, then x ( M )  2 0, and if K ( a )  5 0, x ( M )  < 
0. If the sectional curvatures are always positive (resp., negative), the Euler-PoinmrC 

chamcteristic is positive (resp., negative). 

A similar statement is valid for manifolds of dimension 4k (see Theorem G.9.1). A 

Kaehler manifold possessing the property (P) for all a  E H : , ~  has constant holomorphic 

curvature. 

The above results appear in [89]. 

G.1. Preliminary notions 

Let M be an n = 2m dimensional Riemannian manifold with metric (,) and norm 

( 1  ((= (,) ' I2. Let a  E @,,p be a plane section at P E M, and X ,  Y  E Tp two vectors 
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spanning u. The Riemannian or sectional curvature K ( o )  at a  is defined by 

where R ( X ,  Y )  is the tensor of type ( 1 , l )  (associated with X and Y ) ,  called the curvature 

t m w f o m a t w n  (cf. 5 G.4; R ( X ,  Y )  is the negative of the classical curvature transfor- 

mation), and 11 X A Y l l z= l l  X 11211 Y 11' - (XI  Y ) z .  The curvature transformation is a 

skew-symmetric linear endomorphism of Tp. Note that K is not a function on M but 

rather on UPEM q , P .  It is continuous, and so if M is compact, it is bounded. 

Lemma G.l.1. For any X ,  Y ,  Z ,  W E Tp, the curvature tmnsfomation has the proper- 

ties: 

(i) R ( X ,  Y )  = - R(Y, X ) ,  

(ii) ( R ( X , Y ) Z , W )  = - (R(X ,Y)W,Z) ,  

(iii) R ( X ,  Y ) Z  + R(Y, Z ) X  + R(Z,  X ) Y  = 0, 

(iv) ( R ( X ,  Y ) Z ,  W )  = (R(Z ,  W ) X ,  Y ) .  

6.2. Normaliiation of curvature 

One of the major obstacles in the way of resolving the Question is the presence of terms 

in G.2.1 below involving curvature components of the type ( R ( X ,  Y ) X ,  Z ) ,  Z  # Y .  By 

choosing a basis of the tangent space T p  which bears a special relation to the curvatures 

of sections in T p  one is able to simplify the components of the curvature tensor. These 

simplifications are based on the following lemma. 

Lemma G.2.1. Let Xi ,  Xi, Xk  be part of an orthonomal basis of Tp.  If the section 

( X i ,  Xi )  is a critical point of the sectional curvature function K restricted to the subman- 

ifold of sections ( ( X i ,  Xi cos 8  + X i  sin 8)),  then the curvature component Rijik vanishes. 

= cosZ B K ~ ,  + sinz 8Kik + sin 28Rijik 

where Kij = K ( X i , X j ) .  Since the derivative at 8  = 0 of f(8) is 2Rijik, the result follows. 
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Corollary. If M is a 4-dimensional Riemannian manifold, there ezists an orthonormal 

basis {Xl,X2,X3,X4) of T p  such that the curvature wmponents R1213,R1214, R1223,R1224,R1311 

and R1323 a11 vanish. 

Proof. Choose the plane a(X1, X2) so that K(Xl , X2) is the maximum curvature at P. 

Then choose X1 E u(Xl , X2) and Xs in the orthogonal complement of u(X1, X2) so that 

K (XI, X3) is a maximum of K restricted to {(XI cos 0 + X2 sin 0, X3 cos 4 + X4 sin 4)). 

Applications of Lemma G.2.1 with various choices for i, j and Ic yield the result. 

Proof of Theorem G. 1. The idea of the proof is to show that the integrand in the Gauss- 

Bonnet formula is a non-negative multiple of the volume element. For any basis, the 

integrand is a positive multiple of the volume element and the sum 

(G.2.1) & . . . . &  81 *ara:r i~ inisir Ril ;ail i a  Risiriair 

(6. 5 F.4). The terms for which (il , i2) = (jl  , j2) are products of two curvatures. These 

terms are therefore non-negative. The terms for which (il,i2, jl, j2) is a permutation of 

(1,2,3,4) are squares, hence non-negative. If we choose the basis to satisfy the condi- 

tions of the Corollary, to Lemma G.2.1, then all other terms vanish. Indeed, they are 

of the form f &jikRlklj. If one of i or 1 is 1 or 2 and the other is not, then one of 

R1213,R1214,R2123,R2124 must occur. If i and 1 are 1 and 2 in some order, then R1314 

occurs. If neither i nor 1 are 1 or 2, then R3132 occurs. 

For later referen- it is important to know explicitly what the integrand reduces to 

after this choice of basis. A counting procedure yields 

1 
(0-2-2) s[K12K34 + K13K24 + K14K23 + ( R 1 - z ~ ) ~  + (R132.i)~ + ( R ~ ~ u ) ~ ] u ,  

where w is the Riemannian volume element. 

6.3. Mean curvature and Euler-PoincarB characteristic 

The same conclusion is also valid for 4-dimensional Einstein spaces. An independent 

proof is given below. 
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Proof of Theonm G.& Since the Ricci tensor R,j is a multiple of the identity transforma- 

tion 6jj, i.e., Rij = mi,, 

K12 + K13 + Kir = K21 + Km + K24 

= K31 + K32 + K34 = K41 + K42 + K43. 

(The symbol R employed here is of the Ricci scalar curvature.) It follows that 

Thus the terms in (G.2.1) which are products of two curvatures are squares. As before, so 

are the terms having four distinct indices in each factor. The remaining terms are all of 

the form 

but since Rjk = Rijik + RlkG = 0, j # k, these terms are also squares. 

Proof of Corollary to Thwrem G.B. If we set z = K12 = K34, y = K13 = K24, and 

z = Klr = K23, the minimum of z2 + y2 + z2 subject to the restriction z + y + z = R is 

found to be R2/3. We note that z2 + y2 + t2 = R2/3 only if x = y = z. The integral can 

attain the lower bound of VR2/12n2 only if the other terms all vanish, which implies that 

the sectional curvature is constant. 

Theorem G.2 generalizes a result due to H. Guggenheimer [c]. 

Since an irreducible symmetric space is an Einstein space, its Euler-Poind character- 

istic, in the compact case, is non-negative in dimension 4. This is, of course, true for all 

even dimensions [el. 

The cases where curvature or mean curvature is strictly positive in Theorems G.l and 

G.2, respectively, are consequenaxf of Myers' theorem which says that the fundamental 

group is finite. Indeed, the hypothesis of compactness may be weakened to completeness 

in these cases, since compactness is what is first established. 

In both Theorems G.l and G.2, it is clear from the proof that x ( M )  # 0 unless M is 

locally flat. 
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Example. Let M = S2 x S2 be the product of two 2-dimensional unit spheres with 

metric tensor the sum of those for the 2-spheres: ds2 = ds: + ds$. The Riemannian 

manifold M is then an Einstein space with (constant) Ricci curvature 1. The sectional 

curvatures vary from 0 to 1 inclusive, and hence they are not bounded away from 0. 

However, both Theorems G.l and G.2 imply that x(M) > 0. This follows from Theorem 

G.l since M is not locally flat, and from Theorem G.2 since R # 0. Since M does not 

have constant curvature, x(M) > V/12?r2 > 1. The corollary to Theorem G.2 therefore 

yields information beyond Theorem G. 1 if the manifold carries an Einstein metric. 

Theorem G.2 may be improved by relaxing the restriction on mean curvature. Let M 

be any Cdimensional compact or orientable Riemannian manifold, & the maximum mean 

curvature, that is, the maximum of R11 = K12 + K13 + K14 as a function of a point of 

M and an orthonormal basis at that point, and r the minimum mean curvature. The 

generalization of Theorem G.2 will then take the form of finding a lower bound for x(M) 

which is given in terms of &, r and V. In particular, we shall give conditions on I& and 

r in order that x(M) be non-negative. 

The problem reduces to that of minimizing the expression 

subject to the restrictions 

r I K 1 2 + K l 3 + K l 4  5 & ,  r S K z l + K 2 3 + K 2 4 5 & ,  

rSK31+K32+K34<&, r 5 K 4 i + K 4 2 + K 4 3 5 & .  

As an outline of the technique used, a substitution K12 = x - u, K13 = y - v, K14 = 

z - w, K34 = 2 + u, K24 = y + ~,*K23 = z + w will reduce K12K34 + K13KZ4 + K14K23 

to normal form x2 + y2 + z2 - u2 - v2 - w2. The inequalities all involve 3: + y + z ,  so we 

m y  replace 2, y and z by their mean s = (2 + y + z)/3 without altering the validity of 

the inequalities but decreasing the quadratic expression. This reduces the quadratic form 

to four variables s, u, u, w and the inequalities describe a cube in this Cspace. The form is 
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indefinite or negative definite on this cube and all its faces, so the minimum p must occur 

on a corner. We summarize the results: 

1. I f  & < 2r, p = r2/3. 

2. I f  0 < 2r < &, p = &(3r - &)/6. 

3. I f r l O S & ,  p=-(e -4 .&+9) /6 .  

4. I f  r < 2% 5 0, p = r(3& - r)/& 

5. I f  2& < r, p = %/3. 

The conclusions derived are 

Theorem G.3.1. If M is a 4-dimetwwnal compact and orientable Riemannian manifold, 

the &mum mean curvature, r the minimum mean curvature, V the volume of M ,  

and p = p(&, r )  aa specified above, then pV/4n2 is a lower bound for the Euler-Poinaard 

chamcteristic of M.  

Corollary. If I& < 3r or 3& 5 r,  the Euler-Poincard chamcteristic is non-negative. 

The case 0 < & < 3r follows from Myers' theorem. 

Corollary. If k is an absolute bound for m a n  curvature (-k 5 r,  & 5 A), then 

-k2V/4n2 is a lower bound for the Euler-Poinaard chamcteristic. 

We note that this method fails to yield an upper'bound for x ( M )  in terms of mean 

curvature. Moreover, it is not a simple matter to extend these results to higher dimensions. 

6.4. Curvature and holomorphic curvature 

It is well-known that results on Riemannian curvature are sometimes valid for Kaehler 

manifolds when the hypothesis is ktricted to holomorphic curvature alone. For example, 

J. L. Synge's theorem that a complete orientable even-dimensional Riemannian manifold 

of strictly positive curvature is simply connected [el corresponds to Y. Tsukamoto's result 

that a complete Kllehler manifold of strictly positive holomorphic curvature is simply 

connected (cf. 3 G8). 
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It suits our purposes well here to avoid complex vector spaces. Indeed, a Kaehler 

manifold is considered as a Riemannian manifold admitting a self-parallel skew-symmetric 

linear transformation field J such that J2 = -I. The field J is usually called the almost 

complex struct ure tensor. 

We shall require the following 

Lemma 6.4.1. The relationship between the curvature tmnsfonnation R(X,Y) and the 

metric (, ) is given by 

R(X, Y) = q x , q  - [Dx, DYI 

where Dx denotes the opemtion of covariant diffenntiation in the direction of X, and 

2(X, DzY) = Z(X, Y) - X(Y, 2 )  + Y(Z, X) 

+ (Y, [X, 21) - (X, [Y, 21) - (2, [Y, XI). 

Lemma 6.4.2. Let M be a Kaehler manifold with almost complez structun tensor J. 

Then, for any X, Y E Tp 

(i) R( JX, JY) = R(X, Y), 

(ii) K(JX,JY)= K(X,Y), 

and when X, Y, JX, JY are orthonormal, 

(iii) (R(X, JX)Y, JY) = K(X, Y) + K(JX, Y). 

Formula (i) is a consequence of the fact that J is parallel. Indeed, J being parallel is 

equivalent to Dx(JY) = JDxY for all X, Y. Applying Lemma G.4.1, R(X, Y)(JZ) = 

J(R(X, Y)Z). Since J is an isometry, (R(X, Y) JZ, JW) = (JR(X, Y)Z, JW) = (R(X, Y)Z, W), 

so that R( JZ, JW) = R(Z, W) now follows from (iv) of Lemma G. 1.1. 

Replacing Y by JY and using 'the skew-symmetry of R(X, Y) we get R(X, JY) = 

R(Y, J X ) .  For sectional curvature we have the corresponding relation K(X, JY) = K(Y, JX). 

A plane section is holomorphic if it has a basis {X, JX) for some X. A plane section 

is anti-holomorphic if it has a basis {X, Y) where X is perpendicular to both Y and JY. 

More generally, with each section we associate an acute angle 0 which measures by how 
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much the section fails to be holomorphic. If (X, Y) is an orthonormal basis of the section 

then ~ 0 8 9  = I(X, JY)I. It is readily verified that this is independent of the choice of X 

and Y. The following lemma is trivial. 

Lemma 6.4.3. If X and Y are orthonormal vectors which do not apcm a holomorphic 

section, then X and JY span an anti-holomorphic section. 

The holomorphic curvature H(X) of a nonzero vector X is the curvature of the holo- 

morphic section a(X, JX), i.e., H(X) = K(X, JX). 

In a Riemannian manifold it is well-known that the curvature tensor is determined 

algebraically by the biquadmtic curvature form B: 

B(X, Y) = (R(X, Y)X, Y). 

In fact, 

Since sectional curvature K(X,Y) is the quotient of B(X, Y) and 1) X A Y 112, it follows 

that the curvature tensor is determined algebraically by the functions K and (, ). 

If the manifold is Kaehlerian, we define the quartic holomorphic curvature form Q: 

Q(X) = (R(X, JX)X, JX). 

That the holomorphic sectiond curvatures are of fundamental importance for Kaehler 

manifolds is given by 

Theorem 6.4.1. B is determined algebraically by Q. 

Perhaps more interesting is the formula which reduces the proof to a verification: 

1 
B(X, Y) = -[3Q(X + JY) + 3Q(X - JY) - Q(X + Y) 

(G.4.1) 32 

- Q(X - Y) - 4 Q W  - 4Q(Y)1- 

As an immediate consequence of this formula we derive 
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Corollary. Let X and Y be orthonormal vectors, and (X, JY)  = cos9 > 0. Then, 

1 
K(X, Y) = z[3(1 + cos 9 ) 2 ~ ( ~  + JY) + 3(1 - C O S ~ ) ~ H ( X  - JY) 

(G.4.2) 

- H(X + Y) - H(X - Y) - H(X) - H(Y)]. 

Moreover, if (X, JY)  = 0, then 

1 
K(X, Y) + K(X, JY)  = ,[H(X + JY)  + H(X - JY)  + H(X + Y) 

(G.4.3) 

and, more genemlly, 

1 
K(X, Y) + K(X, JY)  sin2 9 = ;[(l+ ~ S ~ ) ~ H ( X  + JY) 

(G.4.4) + (1 - ~ 0 s ~ ) ~  H(X - JY)  + H(X + Y) 

As a consequence, we obtain a well-known result. 

Corollary. If holomorphic curvature is a constant H, then curvature is given by 

In particular, if curvature is constant, the manifold is locally flat for m 2 2. 

Formulas (G.4.2)-(G.4.4) will be used in $ G.6 to derive inequalities between curvature 

and holomorphic curvature. 

G.5. Curvature as an average 

When holomorphic curvature is constant, the anti-holomorphic curvature is also a con- 

stant A = H/4, and we may rewrite (G.4.5) as 

For any two orthonormal vectors X and Y such that (X, JY)  > 0, we say that the 

holomorphic sections generated by X cos a + Y sin a are the holomorphic sections asso- 

ciated with the section spanned by the pair (X, Y), and the sections spanned by the 
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vectors X cos a + Y sin a ,  - J X  sin a + J Y  cos a the anti-holomorphic sections associated 

with (X, Y). These 'circles' of sections depend only on the plane of X and Y, and not 

on the choice of the vectors X, Y. If the manifold has constant holomorphic curvature, 

then H may clearly be interpreted as the average associated holomorphic curvature, and 

A as the average associated anti-holomorphic curvature. Thus, the following result may 

be viewed as a generalization of formula (G.4.5). 

Theorem G.5.1. Let H(X, Y) be the avemge associated holomorphic curvature and A(X, Y) 

the avemge associated anti-holomorphic curvature to the plane of the vectors X and Y, 

i e . ,  when X and Y are orthonormal, 

H(X, Y) = 1. H(X cosa + Y sina)da, 

A(X, Y = 1. K(X cos a + Y sin a, - J X  sin a + J Y  cos a)da. 

Then, 

Since H(X cos a + Y sin a )  and K(X cos a + Y sin a, - J X  sin a + J Y  cos a )  are quartic 

polynomials in cosa, sina, indeed, quadratic polynomials in cos 2a, sin 2a, their average 

may be obtained by averaging any four equally spaced values: 
1 

H ( x , y )  = ,[H(X) + H(X + Y) + H(Y) + H(X - Y)], 

1 
A(X,Y) = ,[K(X, JY)  + K(X +Y, - JX+ JY)  + K(Y, J X )  + K(X -Y, J X  + JY)] 

1 
= -[K(X, J Y )  + K(X + Y, - JX + JY)]. 

2 

6.6. Inequalities between holomorphic curvature and curvature 

Throughout this section assume that the metric has been normalized so that every cur- 

vature H(X) satisfies X < H(X) < l. The Kaehler manifold is then said to be 

A-holomorphically pinched [2]. We shall derive inequalities between the curvatures of hob- 

morphic and nonholomorphic sections. 

To begin with, we consider anti-holomorphic curvature. By formula (G.4.2) with cos 0 = 

0, we obtain 
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Lemma 6.6.1. If X, Y span an anti-holomorphic section, then 

Similarly, by (G.4.3), we derive 

Lemma G.6.2. If X, Y and X, J Y  span anti-holomorphic sections, then 

Using these bounds one can obtain bounds on mean curvature. Let X1 be any unit 

vector. Choose an orthonormal basis {Xi, JXi),  i = 1, . . . , m. Then, the mean curvature 

in the 'direction' of XI is 

The first term is holomorphic and the remaining ones are anti-holomorphic in pairs. Thus, 

we obtain 

Theorem G.6.1. Let M be a X-holomorphically pinched Kaehler manifold of complez 

dimension m. Then, 

(i) i f m s 5 ,  

and 

(;a) i f m > 5 ,  

where r,  & are lower and upper bounds, respectively, for mean curvature. In particular, 

for m = 2, mean curvature is non-negative if X > 117. In every dimension mean curvature 

is positive if X 2 112. Finally, for m = 2 and X > 0 (resp., X < O), the Ricci scalar 

c ~ ~ a t ~ r e  w non-negative (resp., nonpositive). 
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To get an upper bound for an arbitrary sectional curvature, we eliminate the function 

H(X, Y) which occurs in both formulas (G.4.2) and (G.5.1), thereby obtaining 

K(X,Y) = $1 + C O S ~ ) ~ H ( X  + JY) + (1 - W S ~ ) ~ H ( X  - JY)] 
(G.6.1) 

- sin2 8A(X, Y). 

Using the lower bound for A(X, Y obtained from Lemma G.6.1 results in the inequality 

3X sin2 8 
(G.6.2) K(X,Y) 5 1 -- 

4 

This proves 

Theorem 6.6.2. If the holomorphic sectional curvatures a n  non-negative, then a mazi- 

mum curvature is holomorphic. 

To obtain a lower bound we apply formula (G.4.2) directly. Thus, 

Hence, 

K X Y )  2 , X 2 0. 

To obtain a better upper bound than (G.6.2) when X < 0, we assume that K(X, Y) is 

a maximum for all curvatures. Then, since (X, JY)  = cose, the derivative at a = 0 of 

K(X CQS a + J Y  sin a, Y) is -2((R(X, Y)Y, JY) + ws 8K(X, Y)) = 0, and similarly with 

X and Y interchanged. Thus, 

(R(X, Y)Y, JY)  = (R(X, Y)X, J X )  = - K(X, Y) cos 8. 

We use this to expand H(X + JY)( l  + c o ~ t 9 ) ~  and H(X - JY)(l  - c o ~ 0 ) ~ .  The result is 

K(X,Y) = 
(1 + mse)2H(x + JY) - (1 - C O S ~ ) ~ H ( X  - JY)) 

4cose 

Eliminating H(X - JY) between this and (G.6.1) yields 

1 
K(X,Y) = $1 + msO)H(X + JY) - (1 - cosB)A(X,Y) 

(G.6.3) 
1 3X-2 

s 5 ( l + ~ B ) - ( 1 - ~ ~ 8 ) -  4 

3 
= 1 - z ( l  - m ~ e p .  
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Ram (G.4.1) by inserting X, J Y  in place of X, Y we get 

K(X, JY)  sin2 8 = :[SH(X - Y) + 3H(X + Y) - (1 + ~ S B ) ' H ( X  + JY)  
8 

(G.6.4) - (1 - a 8 ) 2 ~ ( ~  - JY)  - H(X) - H(Y)] 

1 i+cos2e > ,pH(X - Y) + 3H(X + Y) - H(X) - H(Y)] - - 
4 -  

Averaging this as we did to get (G.5.1) we find 

1 1 X 1 
(G.6.5) A(X, Y) sin2 8 2 5H(X, Y) - q( l  + me2 8) 2 ;i - q(l + me2 8). 

Combining this with (G.6.3) gives 

- 2 '  ' sin' 8 \Z 

As a function of cos8 this bound is either increasing as a 8  increases from 0 to 1, 

or it has a minimum with larger values on the ends of the interval. The other bound, 

1 - 3(1- cos 8)X/4, is a decreasing function of cos 8. It follows that K(X, Y) is bounded by 

either the common value when the two bounds coincide, which occurs for cos 8 = 1 4 ,  or 

the bound from (G.6.6) with cos 8 = 0. The two numbers in question are 1 - (3 - &)X/4 

and (3 - 2X)/4, respectively. They coincide for X = -(1 + &)/2. Hence, 

It is not necessary to duplicate the above analysis to obtain lower bounds. Indeed, we 

can change all s i p  and directions of inequalities (making the minimum H = -I), then 

rescale the result so that the minimum H is again X when X < 0. We summarize the results 

I 
as follows: 

I 
Theorem G.6.3. Let M be a A-holomorphically pinched Kaehler manifold. Then, 

( 3 - 4 ) X  l + d < X s o ,  K X Y )  < 1 - -- 
4 ' 2 
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3 - 2A 
(iii) 

I + &  
K ( X , Y ) < 7 ,  As-- 

2 ' 

( 4  K(X,Y) > A -  - 

Finally, if -1 < H(X) < -A  for all X, then 

3X - 2 
(4 -1 < K(X,Y)< -- 4 .  

It is suspected that the bounds in cases (ii) and (v) can be improved, with corresponding 

alterations on the bounds on A in (iii) and (iv): 

Conjecture. 

FLrther improvement by the methods employed here (consideration of the curvature at 

one point) is precluded by the examples A and B below where the curvature components 

&jk l  are taken with respect to an orthonormal holomorphic basis XI, Xz, X3 = JXl , X4 = 



JX2. In each of t h e  examples X 5 H(X) 5 1. 

I A 

The other curvature components are determined by Lemmas G.l.l and G.4.2. 

For example A we have (3X - 2)/4 < K(X,Y) < 1 if -2 5 X < 1; if X < -2, then 

X 5 K(X, Y) < (2 - X)/4. Fbr example B, (2X - 1)/4 < K(X, Y) < 1 if -112 < X < 1; if 

X < -112, then X 5: K(X,Y) < (3 - 2X)/4. 

It is noteworthy that in each of these examples the mean curvature is constant, namely, 

1 + X/2 for A and X + 112 for B. 

G.7. Holomorphic curvature and Euler-Poimar6 characteristic 

The Gauss-Bonnet integral can also be simplified by a normalization of the basis de- 

pending on holomorphic curvature (cf. $ G.4). Our considerations, as before, are restricted 

to the Cdimensional case. Since only orthonormal holomorphic bases are considered we 

should expect fewer terms of the form a j i k ,  k # j ,  to vanish. Fortunately, however, this 

is compensated for by virtue of the additional relations provided by Lemma G.4.2. It is 

for this reaeon that the proof of Theorem G.3 presents no essential difficulties. In fact, if 
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H(Xl) is taken to be the maximal holomorphic curvature, then, by evaluating the deriva- 

tive of H(X1 cosa + X2 sina) at a = 0, it follows that Rls14 = O(X3 = JX1,X4 = JX2). 

By taking the second derivative, the inequality 

is obtained. By using X4 in place of X2, we get R1213 = 0 and 

(If K13 = H(Xl ) is a minimum rather than a maximum, the inequalities are reversed.) 

There is still some choice possible after making H(X1) critical, since this only determines 

the plane of X1 and X3. For, X1 and X2 can be chosen in such a way that K12 will 

be a maximum (or minimum) among sections having a basis of the form {Xl cosa + 
X3 sin a, X2 cos + X4 sin p). Then, by differentiating K(Xl cos a + X3 sin a, Xz) we find 

Rl214 = 0- 

The above technique clearly extends to higher dimensions. However, the Gauss-Bonnet 

integrand (cf. $ F.4) has so many terms, that this normalization does not clarify the relation 

between curvature and the Euler-Poincd characteristic. This is not so for dimension 4, 

because the integrand with respect to this normalized basis is simply 

where w is the volume element. This proves Theorem G.3. 

Example. Let M be a Cdimensional compact complex manifold on which there exist 

at least two closed (globally defined) holomorphic differentials ar = a!')dzi, r = 1, . . . , N, 

such that rank (a!')) = 2. We do not assume that M is parallelisable. Indeed, some or all 

of the a' may have zeros on M. Topologically, M may be the Cartesian product of the 

Riemann sphere with a 2-sphere having N handles. The fundamental form -&ar A Z 

of M is c l d  and of maximal rank. Hence, we have a globally defined Kaehler metric 
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g = 2Crar €3 @. That this metric has nonpositive holomorphic curvature may be seen as 

follows. At the pole of a system of geodesic complex coordinates (zl, z2), the components 

of the curvature tensor are 

where 

Thus, 

and so by Theorem G.3, x(M) is non-negative. 

Note that since the first betti number bl 2 4, the second bz > 6. 

As a matter of fact, S. Bochner [8] has shown that the Euler-Poind characteristic of 

a compact wxnplex manifold M of wmplex dimension m, on which there exists at least 

rn dosed holomorphic differentials ar = a!r)dzi such that rank (a!") is maximal at each 

point of M, is non-negative for m even and nonpositive for m odd. Since the holomorphic 

sectional curvatures are nonpositive we ask the following question: 

Is the sign of the Euler-Poincark chamcteristic of a compact Kaehler manifold of nega- 

tive holomorphic sectional curvature given b y  (-l)m ? 

The expression (G.7.3) is now used to obtain an upper bound for x(M) in terms of 

volume and the bounds'on holomorphic curvature. Suppose that M is A-holomorphicaUy 

pinched. Choose H(X1) to be minimum, so we may assume it is A. Let x = H(Xl + X4) + 
H(X1 - X4), Y = H(X1 + X2) + H(X1- X2), z = H(X2) = Kz4. Then, by (G.4.2). 

1 1 
K12 = ~ ( 3 s  - y - z - A), KI4 = E(3y - x - z - A), 

and so by the inequalities (G.7.1) and (G.7.2), since Klz 2 K14, 
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The integrand, except for the factor w/47r2, is 

The maximum value of f on the region determined by the inequalities (G.7.4) is 

(G.7.5) 
1 
-(3X2.-4X+4), X2-1, 
2 

That there are no inequalities superior to (G.7.4), in terms of which better bounds for f 

can be obtained, is a consequence of examples A and B, 5 G.6. For, example A yields 

(G.7.5) and B yields (G.7.6) as respective integrand factors. 

Making use of the symmetry of (G.7.5) and (G.7.6), they may be combined to give 

Theorem G.7.1. Let M be a compact 4-dimensional Kaehler manifold, L the mazimum 

absolute value of holomorphic curvature, (1 - X)L the variation (maximum minus mini- 

mum) of holomorphic curvature, and V the volume of M. Then, 

Since X 2 -1, we always have 

Note that the bound (G.7.7) is achieved for the complex projective space P2 but for 

M = S2 x S2 the bound is llx(M)/8. (For P2 : L = 1, X = 1, V = 87r2, whereas 

for S2 x S2 : L = 1, X = 112, V =.167r2.) 

G.8. Curvature and volume 

In this section, we shall assume that M is a complete X-holomorphically pinched Kaehler 

manifold with X > 0. Our goal is to obtain an upper bound for the volume of M in terms 

of X and the dimension of M. The ensuing technique also yields a well-known bound for 
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the diameter, namely, x / a .  The approach will be to obtain a bound B on the Jacobian 

of the exponential map. The bound on volume is then obtained by integrating B on the 

interior of a sphere of radius in the tangent space. 

The following facts about the exponential map, Jacobi fields, and second variation of arc 

length are required. Let y be a geodesic starting at P E M, 7 parametrized with respect 

to arc length, t a distance along y such that there are no conjugate points of P between 

P and y(t). Let X1 be the tangent field to y and Xz = JXl,X3,X4 = JX3,. . . , XZm = 

JXzm-l parallel fields along y which together with X1 form an orthonormal basis at every 

point of y. Covariant differentiation with respect to X1 will be denoted by a prime, so if 

V = CgiXi, then Dx, V = V' = Cg:Xi. A vector field V along y is called a Jacobi field if 

V" + R(X1, V)XI = 0. The second variation of arc length along 7 of a vector field X is 

the second derivative of the arc lengths of a one-parameter family of curves having X as 

the ar80ciated tmtuver8e vector field. (For example, 7Ja) = exp,(,) sX(a), 0 5 a 5 t . )  

(a) If X is perpendicular to XI, then the first variation (defined similarly) is zero, so 

the second variation determines whether the neighboring curves are longer or shorter than 

7. 

(b) If V is a Jacobi field such that V(0) = 0, then V(a) = dexpp aT,  where T is a 

constant vector in the tangent space Tp. If Tp is identified with its tangent spaces, then 

T = V'(0). 

(c) The second variation of a Jacobi field V (as in (b)) is (V, V)'(t)/2. 

(d) If W is a vector field along y such that W(0) = 0, and W is perpendicular to XI, 

then the second variation of W is 

(e) If V and W are as in (b) and (d), then the second variation of W is an upper 

bound for that of V, equality occurring if and only if V = W. In other words, s t ~ ~ n d  

variation is minimized by Jawbi fields up to the first conjugate point. 
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(f) The conjugate points of P are the points at which expp is singular. 

(g) Gaws' Lemma. If T is perpendicular to X1(0) in Tp, then dexpp T is perpendic- 

ular to XI in M. 

Let Wl,. . . , Wk be vectors at a point of M .  We denote by W = (Wl,. . . , Wk) the 

column of these vectors and by det W the volume of the parallelepiped they span, so 

(det W)2 = det((Wi, W,)). Denote the Jacobian of expp at exp;' ~ ( t )  by J(t). Choose 

a basis Tl = XI (O), T2,. . . , Tn of Tp with Ti perpendicular to TI, i > 1, and let V ,  be 

the Jacobi field with K(O) = 0, Kt(0) = Ti, i > 1, so that &(a) = d expp aT,. Put 

T = (T2,. . . , Tn) and V = {V2,. . . , V,). Then, by (g) and because expp preserves radial 

lengths 

(G.8.1) det V(a) = an-' ~ ( a )  det T. 

Letting X = {X2,. . . , Xn), we may write V = F X  where F is a nonsingular matrix 

function of cr of order n - 1. Hence det V = det F since det X = 1. 

Let g and h be real-valuedfunctions of cr such that g(0) = h(0) = 0, g(t) = h(t) = 1, but 

otherwise unspecified as yet. They determine a column W = (9x2, hX3, hX4,. . . , hXn) 

which coincides at t with the column of Jacobi fields U = (F(t))-' V = (U2, . . . , Un). 

Thus, we have 

an-' J ( a )  
det U(a) = det ( ~ ( t ) ) - '  det V(a) = -------- 

tn-1 J(t) ' 

By the rule for the derivative of a determinant and the fact that U(t) = X(t) is an 

orthonormal column, we have 

((det U)2)t(t) = (U2, U2)l(t) + * ' ' + (Un, Un)'(t) 

But by (c) and (e), this is majorized by twice the sum of second variations of the Wi, that 
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However, by Lemma G.6.2, we have for i odd, 

Letting f = H ( X l ) ,  the problem of obtaining an upper bound for Jt ( t ) /  J ( t )  has been 

reduced to the variational problem of minimizing 

where f is an arbitrary function subject to the restrictions X 5 f  < 1, and g, h are functions 

subject to the restrictions g(0) = h(0) = 0, g(t)  = h( t )  = 1. 

The Euler equations for this problem are 

(G.8.5) 8h" + (4A - 1 - f )h  = 0. 

Let G and H be the solutions of G.8.4 and G.8.5, respectively, such that G(0) = H(0) = 

0, Gt(0) = Ht(0) = 1. Then, since f is an analytic function, so are G and H. Their power 

series therefore have the form G ( a )  = a + - - , H ( a )  = a + . . . . Setting g = G/G(t) ,  h = 

I H/H( t )  and integrating (g'(a))2da, (ht(a))2da by parts, the integral (G.8.3) reduces to 

plus an integral which is zero due to the fact that g and h satisfy (G.8.4) and (G.8.5). 

Since g(t)  = h( t )  = 1, g(0) = h(0) = 0 and gt(t) = Gt( t ) /G(t ) ,  ht(t)  = Ht( t ) /H(t ) ,  we 

finally have 

Integrating both sides of this inequality from a to t, then taking the limit as a + 0 by 

using the facts that G(a)(H(a))n-2/an-1 = 1 + . . . and J(0)  = 1, we derive 



350 APPENDIX G. GENERALIZED GAUSS-BONNET THEOREM 

that is, 

Since it follows from the Sturm comparison theorem that the solution G of (G.8.4) must 

have another zero in the interval [0, lr/JT;), the inequality (G.8.7) shows that J ( t )  must 

also have a zero in (0, n/fi]. Hence, thee is a conjugate point to P along 7 s t  a distance 

not greater than n / d .  

Theorem G.8.1. If M is a Kaehler manifold which is complete and A-holomorphically 

pinched, X > 0, then the diameter of M does not exceed n/f i .  

Corollary. A complete Kaehler manifold of strictly positive holomorphic curuatun is 

compact. 

The integral of the bound on J(t), given by (G.8.7), over the interior of the sphere of 

radius a/fi about 0 in Tp is thus a bound on the volume v(M) of M. This integration 

is accomplished by multiplying by the volume of an (n - 1)-sphere of radius t ,  namely, 

2tn-'lrm/(m - I)!, where m = n/2, and integrating from 0 to r .  Thus 

Theorem G.8.2. Let M be a complete A-holomorphically pinched Kaehler manifold with 

X > 0. Then 

when r is the f i t  zem of G beyond 0. 

To realize an upper bound, consider the integral (G.8.3), where we note that f = X 

may be substituted for the coefficient of g2 and f = 1 for the coefficient of h2. The 

corresponding solutions of the Euler equations of G and H are 

1 
G(t) = - sin at, a = Jj;, 



G.8. CURVATURE AND VOLUME 

When X = 1, formula (G.8.8) reduces to an equation for the volume of complex projec- 

tive space Pm. 

Even better bounds can be obtained from (G.8.3) by a judicious choice of g and h, 

and by replacing f by A or 1 depending on whether its codcient is negative or positive, 

respectively. For example, if we take g(a) = sinatal sin a, a = f i  and h(a) = a/t ,  we 

find that for n 5 10 the coefficient of f (a )  is always nonpositive. The result is 

(" - 2)(3X - ')x2 dx, 5 10. 2rm Jr xn-2 sin x exp [ - 48X ] 5 (m - l)!~m 

Applying Theorem G.7.1 , we find an upper bound for the Euler-Poind characteristic 

of a complete Pdimensional Xholomorphically pinched Kaehler manifold with X > 0, 

x(M) 5 3p + l" x2 sinx exp ( - g x 2 )  dx. 

For M = S2 x 9, this bound is approximately 3.4x(M). Good bounds are obtained 

when X > 0.6. 

Remarks. (a) A complete Kaehler manifold M of strictly positive holomorphic curvature 

M simply connected M. For, if M is not simply connected, then in every nontrivial free 

homotopy class of closed curves of M there would be a closed geodesic which is the shortest 

closed curve in the class. That this is impossible is seen by applying (a) and (d) above to 

the vector W = J X I  along the geodesic 7. Indeed, its first variation is zero, and its second 

variation is negative. 

(b) A 4dimensional complete Kaehler manifold of strictly positive holomorphic curva- 

ture is compact, simply connected and has positive Euler-Poincad characteristic bounded 

above by (G.8.9). 
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G.9. The curvature transformation 

We have seen that one of the difficulties which arises when attempting to resolve the 

Qaestwn preceding Theorem G.l by considerations of the Gauss-Bonnet integrand at one 

point is the presence of terms involving factors of the type (R(X, Y)X, Z), Z # Y. How- 

ever, this is only part of the problem; for, one must still account for terms which are 

products of those of the form (R(X, Y)Z, W). Even in dimension 6 where there are 105 

independent components of the curvature tensor, and indeed (6!)2 terms to be summed 

(see 3 F.4) the problem is formidable! For these reasons one is led to consider Kaehler man- 

ifolds where one may make essential use of the additional curvature properties provided 

by Lemma G.4.2. The following lemma leads to the property (P) of Theorem G.4. 

Lemma G.9.1. Let (XI,. . . , Xn) be a basis  of Tp. Then, a necessary and suficient 

condition that (R(Xi,X,)Xi,Xk) = 0, k # j, is that the curvature tmnsfomation satisfy 

the relation 

P w f .  Set Kij = K(Xi,Xj) and let a, b be any real numbers. Then, for any Z = ax i  + 
bXj E n(Xi,Xj), 

n n 

and 
(R(x~, XJ))*Z = - K?JZ - aKij (ij RijkjXk - bKjj C RGirXk 

k#i k#J 

Applying the condition (G.9.1), it follows that 
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Taking the inner product of (G.9.2) with Xi and of (G.9.2') with Xi, we obtain 

Hence, Rijik = 0, k # j. 

Conversely, if Rijik = 0, k # j, R(Xi,Xj)Xi = KijXj. Thus, (R(X;,Xj))2Xi = 

KijR(Xi,Xj)Xj = -K$X;, and so by linear extension (R(Xi,Xj))2Z = -K$Z for any 

Corollary. Let {XI,. . . , X,) be an orthonormal basis of Tp. Then if K(X;, Xi) # 0 

is a minimum or maximum among all sectional curvatures on planes spanned b y  Xi and 

Xi c0s8 + Xksine, k # i ,  j, the curvature tmnsformation R(X;,X,) defines a complex 

structure on a(X;, Xj). 

Corollary. The curvature tmnsformation R(a) of a manifold of constant nonzero curva- 

ture defines a complex structure on a .  

Remarks. (a) A proof of the following relevant result may be found on p. 267. Let 

A be a nonsingular linear transformation of the 2n-dimensional vector space Ran with a 

positive definite inner product. By means of the inner product, A may be identified with 

a bilinear form on R2". If this form is skew-symmetric, there is a unique decomposition of 

R2" into subspaces Sl,. . . , S, such that: 

(i) each Si is invariant by the transformation A, and for i # j, S; I S,; 

(ii) restricted to S;, A2 = -a: 1, a; > 0, and for i # j, a; # a,. 

(b) A Kaehler manifold of constant mean curvature and of dimension > 4 does not 

in general have the property (P) although it does satisfy CkZiRijik = 0 relative to an 

orthonormal basis. 

Proof of Theorem G.4. Let {XI,. . . ,Xs), X3+, = JX;, i = 1,2,3, be an orthonormal 

holomorphic basis of Tp with respect to which the curvature transformation satisfies the 

property (P). By Lemma G.9.1, we need only consider those summands in the Gauss- 

Bonnet integrand whose factors are of the form (R(X, Y)Z, W) where X, Y, Z, W are a 



354 APPENDIX G. GENERALIZED GAUSS-BONNET THEOREM 

part of the basis. Put Xi, = JXi, i = 1,2,3, i** = a. By applying the identities (iii) of 

Lemma G.l.l and (i) of Lemma G.4.2, Rapr6 = 0, a ,  P,?, 6 = 1, . . . ,6, if either 7 = a* 

and 6 # p* or P = a* and 6 # 7'. Hence the only nonvanishing terms are of the following 

where Ir,Iz,13 are index pairs: I = ij, i * j  or i j*, and I* = i8j*, i j* or i'j, resp. By 

Lemma G.4.2 (i), we see that R I , ~  RI,I; RIaI; = KIl KI, KI,. On the other hand, by 

Lemma G.4.2 (iii), 

1 1  k l l l i a j a k l l i l  j i j  = 4-17 

the various terms in the Gauss-Bonnet integrand are either all non-negative or all non- 

positive depending on whether the sectional curvatures have the same property. Thus, if 

the holomorphic and anti-holomorphic sectional curvatures K ( o )  are non-negative (resp., 

nonpositive), x(M) > 0 (resp., x(M) 5 0). 

We now obtain a result valid for. the dimensions 4k, k 2 1. We shall first require the 

following lemma. 

Lemma 6.9.2. Let {Xi,Xi.), i = 1,. . . ,m, be an orthonormal holomorphic basis of Tp. 

Then, a necessary and suficient condition that &jkl* = 0, (a, j )  # (k, l ) ,  i < j, k < 1, is 

that the curvature transformation has the property 



This is an immediate consequence of the fact that 

For, 

Remark. Property (Q) is implied by 

For, since the curvature transformation is a skew-symmetric transformation 

Theorem G.9.1. Let M4k, k > 1, be a compact Kaehler manifold whose curvature t m -  

formation has the properties (P) and (Q), with respect to the orthonormal holomorphic 

basis {X,). If for all a = a(X,,XB), K(a) 2 0, then X(M4k) 2 0, and if K(a) 5 

0, X(M4k) 2 0. If the sectional curvatures are always positive or always negative, the 

Euler-Poincare' chamcteristic is positive. 

P w f .  As before, let {Xi, Xi* ), i = 1,. . . ,2k, be an orthonormal holomorphic basis of Tp. 

Again, one need only consider those summands 

(cf. 5 F.4) whose factors are of the form (R(X, Y)Z ,  W), where the vectors X, Y, Z and W 

are independent. Moreover, = 0, a,@, 7,6 = 1,. . . ,4k, if either y = a* and 6 # P* 

or P = a* and 6 # 7'. Furthermore, by Lemma G.9.2, Rijkl. vanishes for all a, j, k, I .  The 

nonvanishing terms may then be classified as before, namely, 



356 APPENDIX G. GENERALIZED GAUSS-BONNET THEOREM 

Rilii jl ji . Riahiih jaj, j& 9 

and so, since 

&il jl ... iah jah&il jl ... ia& = 

The above proof breaks down in dimensions 4k + 2. For example, if k = 2, the term 

R1*2.34R3*4.2sR123*5.R352.4*R5*411* need not vanish on account of properties (P) and 

(Q). 

Remarks. (a) The curvature tensor of a manifold M of constant holomorphic curvature 

1 has the components 

1 
(R(Xi, Xj)Xk, Xl) = -[(Jj16ik - JjkJil) + (Xj, JXl)(Xi, JXk) 4 

- (Xj JXk)(Xi , JXl) + 2(Xi, JXj)(Xk, JXI)] 

relative to an orthonormal holomorphic basis. Hence, M has the properties (P) and (Q). 

Conversely, if a Kaehler manifold possesses the properties (P) (and (Q)) for all a E Hitp, 

the space is of constant holomorphic curvature. For, let X, Y, JX,  JY be part of an or- 

thonormal basis of Tp. Then, H(X) - H(Y) = (R(X+ Y, J X +  JY)(X+Y), J X  - JY) = 0. 

That a manifold with the properties (P) and (Q) (at one point) need not have constant 

holomorphic curvature is a consequence of either example A or B. (That such Kaehlerian 

manifolds actually exist is another matter.) It is not difficult to construct such examples 

in higher dimensions. 

(b) The Kaehlerian product of m copies of S2, with the canonical metric, satisfies the 

property (P) relative to the natural holomorphic basis. 
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G.lO. Holomorphic pinching and Euler-Poincard characteristic 

A procedure is now outlined by which a meaningful formula for the Gauss-Bonnet 

integrand G can be found when M is a 6-dimensional compact Kaehler manifold possessing 

the property (P). The formula obtained will then be used in two ways: 

(1) To show that if M is A-holomorphically pinched, X 2 2 - 22/3 - 0.42, then 

x(M) > 0. 

(2) To show that non-negative holomorphic curvature is not sufficient to make G non- 

negative. This will be accomplished by means of an example satisfying the condition (P). 

In the following, a pair of indices (a, a*) will be denoted by H or H', and a pair (a, P) 

where p # a* by A. Then, condition (P) is equivalent to: The only nonzero curvature 

components are of the form R H ~ ' ,  RAA, RAA*. 

The nonzero terms of the integrand are now classified into three groups depending on 

the number of pairs of type H occurring in Il ,I2,13. 

(a) All I, are of the type A. Then, if we require a < P in every pair (a, P), there are 

12 possibilities for 11, and once Il is chosen, 4 possibilities for 12. This gives 48 possible 

choices for I1 I 2  Is. For each choice of Il I2 I3 we may choose J1 J2 J3  in only 2 ways, equal 

to I1 I 2  I3 of IT 1; I:. The resulting product of curvature components is the same in either 

case, namely, KI, KI, KI, . Due to Lemma G.4.2, there are only 4 essentially different 

terms, K12 K113K23, K12K13 K26, K13 K15 K23 and Kls K16 Kz6. Thus each will occur in the 

integrand with the factor 24. 26. (The 26 accounts for the transpositions of each of the 6 

pairs.) 

(b) One Ij is of type H, two of type A. Hence, if I, = H, J,  = H also, so for each choice 

of I1 1213 there are again only two choices for J1 J2J3, each leading to a term KHKAKA. 

The I, which is of the type H may be chosen in any of the 3 positions and there are 3 type H 

pairs. Once it is chosen there are 4 possibilities for the other I's. This gives 72 terms divided 

among the 6 distinct possibilities KlIK$3, KlrKL, K2&3, K25K!6, K36K:2, K36K:5, SO 
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the sum of these is multiplied by 12 . 26. 

(c) All I, are of type H. Then, the J's may be any permutation of the I's, and the 3 

distinct H's may be distributed among the I's arbitrarily, giving 6 terms for each permu- 

tation of the J'a. The identity permutation gives the term K14Kz5 K36. The other even 

permutations give the term (K12 + K ~ ~ ) ( K ~ ~  + Kie)(K23 + Kze). The 3 odd permutations 

give the 3 distinct terms Kir(K23 + K213)~, K25(Kl3 + Kie)" K36(KI2 + K ~ s ) ~ .  

Finally, from the above classification, we see that G may be expressed in the form 

1 
G = s[4(Ki2Kl~K2~ + Ki2KisKm + KIsK~IK~s  + KisKi6K26) 

+ ~ i r  ( 3 ~ &  + 2K23Kze + 3 ~ & )  + K ~ s ( ~ K : ~  + 2K13Kia + 3 ~ : ~ )  

+ ~36(3~:2 + 2Ki2Kis + 3~:s) + Ki4K2sK36 

+ 2(K12 + K15)(K13 + Ki6)(K23 + Km)]. 

The first and last terms in this expression do not involve holomorphic curvatures, only 

anti-holomorphic ones, and these may be rewritten as 

(sKi2 + ~Kis)(sKi3 + yKi~)(sK26 + yK23) 

Expanding, one finds that equality requires (x + y)3 = 8 and (x - y)3 = 4, so that 

x = 1 + y = 1 - 2-lI3. The terms in question are products of the type s K(X, Y) + 
yK(X, JY). Expressing the latter in terms of holomorphic curvatures, we obtain, by virtue 

of (G.4.2), 

1 
zK(X,Y) + yK(X, JY) = 8[(3x - y)(H(X + JY) + H(X - JY)) 

- (X - 3y)(H(X + Y) + H(X - Y)) - 2H(X) - 2H(Y)]. 

Thus, if X 2 2- 22/3 = 2y, 

XK(X, Y) + VK(X, JY) 2 -2i13~, 



and so 
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8n3G > 4(-21/3y)3 + KI4KZSK36 2 0. 

This proves 

Theorem 6.10.1. A A-holomorphically pinched 6-dimensional complete Kaehler mani- 

fold, A 2 2 - 22/3(- 0.42), having the property (P), has positive Euler-Poincart chamcter- 

istic. 

Note that the Ricci curvature is positive definite for this value of A (cf. Theorem G.6.1). 

An obvious modification gives negative characteristic when holomorphic curvatures lie 

between -1 and -2 + 22/3. 

If besides property (P), K14 = K25 = K36 = 0, K12 = K26 = K13 = -1, Kll = 

Kz3 = K16 = 3, then a computation shows that holomorphic curvature is non-negative 

and G = -121~3. T ~ U S :  

I f  M is a compact Kaehler manifold of dimension 2 6, it is not possible to prove by 

wing only the algebm of the curvature tensor at a point that non-negative holomorphic 

curvature yields a non-negative Gaws-Bonnet integmnd. 

In fact, we are of the opinion that the Question cannot be resolved in this manner. 

Remarks. (a) Conditions (P) and (Q) are preserved under Kaehleriw products. In 

particular, products of complex projective spaces satisfy these conditions. 

(b) The technique employed in 5 G.8 for estimating volume may be applied to the 

Riemannian case thereby generalizing a result of Berger [a]. The improvement comes from 

generalizing Rauch's theorem so as to estimate directly lengths of Grassman ( n  - 1)-vectors 

mapped by ezp rather than from using Rauch's estimate of lengths of vectors to estimate 

lengths of ( n  - 1)-vectors as Berger does. 
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APPENDIX H 

AN APPLICATION OF BOCHNER'S LEMMA 

The notion of a pure F-structure generalizes that of torus action. The main result 

asserts that a compact manifold of negative Ricci curvature does not admit any nontrivial 

invariant pure F-structure. This can be viewed as an extension of a theorem of Bochner. 

Among other applications, if a compact n-manifold of sectional curvature IK) I 1 has 

Ricci curvature Ric 5 - A  < 0, then the injectivity radius has a lower bound depending on 

n, A and the diameter. The main result of this Appendix is due to X. Fbng [z]: 

H.1. A pure F-structure 

A pure F-structure 3 is a flat torus bundle over a manifold M with holonomy in SL(s, 2) 

and its local action on M. The action is a homomorphism from the associated bundle of Lie 

algebras to the sheaf of local smooth vector fields over M. A subset of M is called invariant 

if it is preserved by the infinitesimals of the local fields which are the homomorphic images 

of the associated bundle of Lie algebras. An orbit is a smallest invariant subset. The rank 

d T is the dimension of an orbit of smallest dimension. A metric is called invariant if the 

homomorphic images are local Killing fields. A pure F-structure always has an invariant 

metric. 

A global torus action defines a pure F-structure. However, a pure F-structure with a 

nontrivial holonomy group is not defined by a global torus action. Moreover, manifolds 

which admit only the trivial torus action may admit nontrivial pure F-structures (e.g. 

Sdimensional solvable manifolds which do not admit a circle action). 

Theorem H.1.1. A compact manifold of negative Ricci curvature does not admit a non- 

trivial invariant pure F-structure. 

Since a nontrivial Killing field (on a compact manifold) implies a nontrivial invariant 

torus action (i.e. the closure of the one-parameter subgroup of the Killing field), Theorem 

H.l.l implies the following classical Bochner theorem (see 5 3.8). 

361 



362 APPENDIX H. AN APPLICATION OF BOCHNER'S LEMMA 

Corollary. A compact manifold of negative Ricci curvature does not admit a nontfi.iviol 

Killing field. 

It turns out that Theorem H.l.l provides local geometric information of negative Ricci 

curvature since a nontrivial invariant pure F-structure is a, kind of local symmetric struc- 

ture of the metric. The 1oca.l information will be made precise through its interesting 

applications. 

The parameterized and equivalent fibration theorem in [c] asserts that a sufficiently 

collapsed manifold with bounded curvature and diameter admits a positive rank pure F- 

structure which is compatible with some nearby metric. Using the technique of smoothing 

metrics by the Ricci flow (see [a], [b], [i], [r]), the invariant metric in the fibration theorem 

can be chosen so that max Rtc and min Ric are close to that of the original metric (see 

[YD. 
In view of the above, Theorem H.l.l has the following consequence. 

Theorem H.1.2. There eziskr a constunt, i(n,d,X) > 0 depending on n, d and X such 

that a closed n-manifold M satisfying 

IKJ S 1, Ric 5 - A  < 0, diarn < d, 

hczs injectivity radius 2 i(n, d, A). 

Note that using a result in [i] (also [w]), Theorem H.1.2 (also Theorems H.1.3-H.1.6 

below) holds with a weaker condition; see Remark 4. 

Theorem H. 1.2 has a few interesting consequences. 

Gromov's diameter-volume isopeiimetric inequality asserts that a compact n-manifold 

with -1 5 K < 0 and n 2 4 satisfies uol(M) 2 a,(l + diarn(M))'"), where a, and b, are 

constants depending on n [p]. This implies that for all v > 0, there are only finitely many 

diffeomorphism types for n-manifolds with -1 5 K < 0 and uol 5 u. 

Theorem H.1.2 is equivalent to the following theorem. 
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Theorem H.1.3. Let M be a compact n-manifold with 1K1 5 1 and Ric < -A < 0. Then, 

v d ( M )  2 c(n,diam(M), A), where c w a constant depending on n, diam(M) and A. 

This result can be treated as an analogue of Gromov's diameter-volume isoperimetric 

inequality for manifolds of negative Ricci curvature. 

By Cheeger's finiteness theorem, Theorem H. 1.2 implies 

Theorem H.1.4. There are only finitely many diflwmorphism types depending on n, X 

and d for the class of compact n-manifolds satisfying 

IKI S 1, Ric 5 -A < 0, diam 5 d. 

The classical Bochner theorem implies that a compact manifold of negative Ricci cur- 

vature has a finite isometry group. By a quantitative version of Bochner's theorem in [h], 

Theorem H. 1.2 implies 

Theorem H.1.5. There ezwts a constant, N(n, X, d), depending on n, X and d such that 

the order of the isometry group of an n-manifold satisfying 

IKI < 1, Ric -A < 0, diam < d, 

is less than N(n, A, d). 

Remark 1. Note that Gromov's diameter-volume isoperimetric inequality also implies 

that a compact n-manifold with -1 5 K < 0 has volume greater than a constant depending 

only on n. Thus, it seems natural to ask if the same is true under a weaker condition, 

-1 5 Ric < 0 (6. Remark 4). This problem is of special interest for the class of Einstein 

manifolds of negative Ricci curvature [it], [v]. 

Remark 2. Theorem H. 1.2 is f& if one removes either of the bounds on the diameter 

and on the sectional curvature without adding other restrictions (counterexamples can be 

easily constructed). However, it seems possible that Theorem H.1.2 could be valid if the 

condition Ric 5 -A < 0 is replaced by Ric < 0. 
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Remark 3. According to [t], any compact manifold carries a metric of negative Ricci 

curvature (the case n = 3 is due to [n]). Thus, negative Ricci curvature puts no constraint 

on the topology of a manifold. On the other hand, for all n 2 3 and d > 0, there are 

infinitely many topologically distinct n-manifolds with 1 K1 5 1 and diam 5 d (e.g. the 

infra-nilmanifolds, see [o]). In view of this, Theorem H.1.4 reveals, by means of controlled 

topology by geometry (cf. [d), a topological constraint of the negative Ricci curvature. 

Remark 4. According to [i], [w] a metric satisfying IRicl 5 1, diam 5 d, and a lower 

bound on the conjugate radius can be approximated by a metric with bounded sectional 

curvature and max Ric, min Ric close to that of the original metric. The bounds on 

sectional curvature depend on the previous bounds. This result implies that Theorem 

H.1.2 (also Theorems H.1.3-H.1.4) is valid under weaker conditions, - 1 5 Ric 5 -A < 

0, conj 2 c and diam 5 d. (Of course, the lower bound on the injectivity radius will 

depend on n, A, c and d.) 

Remark 5. The sufficiently collapsed manifolds with bounded curvature and diameter 

have been intensively studied during the past decade (see [c], [dl, [el, [fl , [g] , Ij], [k] , PI, [m] , 

[o], [x]). A fundamental problem in this study is to find obstructions for such a collapsed 

metric. So far, the only general topological obstruction known has been the vanishing 

of the minimal volume [g]. Theorem H.1.3 provides a general geometric obstruction for a 

manifold to collapse, namely., negative Ricci curvature for a metric with bounded sectional 

curvature and diameter. 

H.2. Proof of the main result 

We argue by contradiction. In -spirit, the proof is closely related to the proof of the 

classical Bochner theorem (see [s]). Recall that in the classical case the main fact is that if 

X is a Killing field, then the norm function, f = 1/2g(X, X), has nonnegative Laplacian 

Af 2 0, provided the Ricci curvature is negative. Thus, one gets a contradiction at a 

point where f reachea its maximum. 
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The idea of the proof is to seek a function on M which will play a similar role as the 

norm function of the Killing field in the classical case. Instead of a global Killing field, the 

construction of the function will make use of the existence of an invariant pure F-structure 

7. 

Fix s o  E M and any s-tuple, (X:, . . . , X:), where each Xip is an invariant vector in 

the fiber over xo of the associated bundle of Lie algebras E7. For any x E M and any 

path 7 in M from xo to x, the parallel transport of (X:, . . . , X:) along 7 gives rise to an 

s-tuple, (XI,. . . , X,), over x. Let [X:, . . . , X:], denote the collection of (XI,. . . , X,), for 

all possible 7. Let p : EF -+ E denote the homomorphism which defines a local action of 

the pure F-structure on M, where & is the sheaf of local vector fields on M. 

We now define a function, f : M + R+, as follows. For x E M, take any (XI,. . . , X,), E 

[Xf , . . . , X:], and define 

911 912 

(H.2.1) f (x) = -det 2 1 ( 2 Z) gij = g(~(Xi),p(Xj))=- 

9.1 9.2 - - go, 

Note that f(x) is well-defined (i.e., independent of 7) since the holonomy group is in 

SL(s, 2). Moreover, since each point x has a neighborhood U on which the flat torus 

bundle has no holonomy we can think of (H.2.1) as a local expression for f (i.e., parallel 

extend Xi to a (unique) section over U). In particular, f is a smooth function. Note that 

in the case when an invariant pure F-structure is defined by a global Killing field X, our 

function coincides with the normal function. Moreover, if X:, . . . , X: is a basis for the 

torus fiber over xo, then f (x) can be viewed as the volume density function of orbits (with 

an orbit of dimension < s having zero volume density). 

It turns out that f has the desired property namely, A f > 0 on M, provided the Ricci 

curvature is negative. Moreover, A f (x) > 0 if s is not a common zero of (XI,. . . , X,), E 

[Xf, . . . , X:],. Since A f (y) 5 0 at a maximal point y at which necessarily f (y) > 0 we 
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then get a contradiction. The proof that A f 1 0 is by computation. Unlike the classical 

case, a formula for A f with an arbitrary local expression could be so messy that one is 

not able to see the desired property. 

Roughly, we overcome the above difficulty by finding a good local expression for f 

and by choosing a suitable system of coordinates. We first observe that f(x) is a zero 

function if and only if Xf , . . . , X: are linearly dependent. Thus, we can assume that 

Xf, . . . , X: are linearly independent. Then, by definition f (x) > 0 if and only if the orbit 

at x has dimension s. Observe that if h(x) is the function associated to another (linearly 

independent) s-tuple, ( q ,  . . . , YP), then 

f (x) = (de t~)~h(x) ,  x E M, 

where A is the transition coefficient matrix ftom (Xf, . . . , X:) to (q,. . . , Y:). Thus, 

Af 2 0 if and only if Ah 2 0. A good local expression for f at x is one for which h 

s a t i k  gii(x) = g(p(q), p(q))+ = Jij for some (x, . . . , Y,) E [ q ,  . . . ,Y;P],. This need 

not hold at other points. It turns out that if f(x) > 0, then f will have a good local 

expression at x. Using a good local expression and a local coordinate system, we are able 

to show that Ah(x) > 0. Since points at which f (x) > 0 are dense in M we conclude that 

Af 2 O o n M .  

We now prove Theorem H. 1.1 modulo a technical result namely, Proposition H.2.1. 

Let M be a compact Riemannian manifold. Assume that M admits an invariant pure 

F-structure, 3, defined by a flat Ta-bundle over M with holonomy in SL(s, 2) and its 

local action on M. Let EF denote the associated bundle of Lie algebras, let p : EF + E 

denote the hom&norphism, where Z is the sheaf of local smooth fields on M. 

Recall that a fixed point xo E M and an s-tuple (X!, . . . , X,O) determine a smooth 

function on M with a local expression as in (H.2.1). We shall call f a function associated 

to (Xf, . . . , X:). Since holonomy transport preserves h e a r  relations, f is identically zero 

if and only if Xf , . . . , X: are linearly dependent. 
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Rom now on we only consider a function associated to a linearly independent s-tuple, 

(X:, . . . ,X:). For any x E M, since p(Xi), . . . ,p(X,) forms a set of generators for the 

subspace tangent to the orbit at x, (XI, . . . , X8)-y E [X:, . . . , X:], , we see that f (x) > 0 

if and only if the orbit at x has dimension s. Recall that points at which the orbits have 

dimension s are dense in M. 

For convenience, we shall henceforth identify Xi with p(Xi). 

Proposition H.2.1. Let f be the function associated to an s-tuple (X:, . . . , X:). Suppose 

(XI,. . . , X8), E [Xf,. . . , X:], such that g(Xi,Xj), = Jij. Let Xi,. . . , X,, Vl,. . . , Vn-, be 

an orthonormal basis for T,M. Then, 

It is easy to check that Proposition H.2.1 coincides with the classical formula when f is 

the normal function of a global Killing field: 

Proposition H.2.2. Let X be a Killing field on M, let f (x) = $g(X, X). Let h, . . . , Vn 

denote an orthonormal basis in T,M. Then, 

The following lemma implies that at any point where f (x) > 0, one can assume that f 

satisfies the assumptions of Proposition H.2.1. 

Lemma H.2.1. Let f be the function associated to a linearly independent s-tuple, (X:, . . . , X:). 

Let x E M such that f(x) > 0. Then, there is a function h associated to some S-tuple such 

that f = const h on M and h satisfies the assumptions of Proposition H.2.1 at x. 

P m f .  Note that the orbit at x has dimensiofi s since f (x) > 0. Thus, we can choose an 

s-tuple, (Yl,. . . , Y,), such that g(Y,, Y,), = Jij, where Y,  is an invariant vector field in 



the fiber over x of the d a t e d  bundle of the Lie algebra. Take any (XI,. . . , X,)? E 

[x, . . . , X,O]= and put (XI,. . . , X.), = (K, . . . , %)A, where A is the coefficient msr 

trix. Let q,. . . , YP denote the parallel transports of Yl,. . . , Y, along the inverse of 7. 

Clearly, (X:, . . . ,X:) = (v,. . . , e ) A .  Let h denote the function associated to the s- 

tuple (q, . . . , c). b m  the construction for h we see that f = (detA)lh and h has the 

desired property. 

Proof of Theorem H.1.1. We argue by contradiction. Assume that M admits a nontrivial 

invariant pure F-structure 3. Choose a function f associated to an s-tuple (X!, . . . , X:), 

where Xf, . . . , X: are linearly independent. Let y E M be a maximal point for f. Then, 

A f (9) 5 0. On the other hand, since f (y) > 0 by Lemma H.2.1, Proposition H.2.1 and 

the assumption that Ric < 0 we conclude that A f (y) > 0-a contradiction. 
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APPENDIX I 

THE KODAIRA VANISHING THEOREMS 

A complez line bundle B over a Kaehler manifold M is an analytic fibre bundle over 

M with fibre C and structural group the multiplicative group C* of C. Denote by 

HP(M, Aq(B)) the pth cohomology group of M with coefficients in AQ(B)-the sheaf over M 

of germs of holomorphic q-forma with coefficients in B. These groups are finite dimemianal 

when M is compact. It is important in the applications of sheaf theory to complex mani- 

folds to determine when the cohomology groups vanish. By employing the methods of $3.2, 

Kodaira 147) obtained sufficient conditions for the vanishing of the groups HP(M, hQ(B)). 

In this Appendix the details omitted in $6.14 are provided. The reader is referred to the 

book of Morrow and Kodaira (971 for additional information. 

1.1. Complex line bundles 

Let B be a complex line bundle over a Kaehler manifold M of complex dimension n. 

In terms of a sufficiently fine locally finite covering U = {U,) of M ,  the bundle B is 

determined by a system { f a @ )  of holomorphic functions (the transition functions) defined 

in UanUp for each a,p.  In UanUpnUy, they satisfy fap fp7 fya = 1. Setting amp = 1 faPl2, 

it is seen that the functions { a a p )  define a principal fibre bundle over M with structural 

group the multiplicative group of positive real numbers (cf. Chapter I, 5 J). 

Let Ap*q(B) be the sheaf over M of germs of differential forms of bidegree (p, q) with 

coeflicients in B. A form q5 E AP**(B) is given locally by a family of forms ( 4 , )  of bidegree 

@, 9) on {Ua),  where {Ua) is a covering of M with coordinate neighborhoods over which 

B is trivial and' 

Let $2 = ~ g g i i m d z i  A d d  be the fundamental form of M and let a be an hermitian 
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form on the fibres defined by 

where is a fibre coordinate of C and aa(z) is a real positive function of class oo on Ua. 

Then, aal(,12 = aalC8I2 implies 

If M is compact, the global scalar product (4, $) of the forms +,$ E APtQ(B) is defined by 

(I. 1.3) (4,9) = / aa4a A *?a- 
M 

For, by (1.1.1) and (1.1.2) 

In the sequel, we assume that M is a compact Kaehler manifold unless stated otherwise. 

We define the adjoint 62 of d" with respect to the metric a by 

Let 4 E WQ(B), 9 f AP*Q+l (B). Then, 

is a differential form of bidegree (n, n - I), so dr is a 2n-form. It follows that 

But, 

Therefore, 
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Proposition 1.1.1. 

(I. 1.5) 

Set 

and 

0, = 0 + terms of order 5 1. 

Theorem 1.1.1. 0, is a strongly elliptic second order opemtor. 

Proposition 1.1.2. 0, is 8clf-dua1, thot is, 

For, by (1.1.4) 
(004, (I) = ((m' + c'd")4, (I) 

= (4% oa(I1. 
Proposition 1.1.3. 0a4 = 0, if and only ah d"4 = 0 and 6t4 = 0. 

Let 

hgq(B) = (4 E Ap*q(B)10aq4 = 0). 



1.2. THE SPACES A ?(B) 

whem @ denotes the orthogonal direct sum. 

( 8 4 ,  a,"$) = (d"d"4, $) = 0. 

Therefore, Ag9, dl'/\p*Q-' and J:AP~*+' are mutually orthogonal and 

(see § 2.10). 

Theorem 1.1.2. dim A ~ ~ ( B )  < oo. (cf. Appendiz C). 

1.2. The spaces AG9(B) 

Theorem 1.2.1. Let B be a complez line bundle on a compact Kaehler manifold M and 

M(B) the sheaf of g e m  of holomorphic p - f o m  with tweficients in B. Then 

We show 
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Let 4 E Z,p(tQ). Then, d"4 = 0, so since 4 = q + dl'rC, + 6ia, where q E ~g~(B),d"rC, E 

dl'tQ-' and &'a E 4 ' t q + '  by Hodge decomposition, d1'4'u = 0. Thus, (6'6ft7,a) = 0 

from which (b:a, 6fa) = 0, that is 4'0 = 0 and 4 E hgq(B) @ dl'tq-l. 

Corollary. dim HQ(M, M(B)) < 00. 

This is an immediate consequence of Theorem 1.1.2. 

Theorem 1.2.2. On a compact Kaehler manifold M 

Proof. If 4 is harmonic, so is 3 since Ba = 0,. Therefore, A ~ ( B )  = AgP(B), so by 

Theorem 1.2.1, we obtain (1.2.2). 

(1.2.3) is a consequence of Proposition 1.1.4. For, by de Rham's theorem, 

(see p. 15). But 

Hr(M, C) 2 AL(B) = (4 E ~ ' (B) lo ,4  = 0). 

This is Hodge's theorem. Its proof is similar to that of Theorem 1.2.1 using de Rham's 

theorem and the decomposition theorem, viz., Proposition 1.1.4. As in Lemma 5.6.6 we 

have the following decomposition 

1.3. Explicit expression for 0, 
1 

We derive a formula for 0, acting on Wq(B) where B is a complex line bundle over 

a Kaehler manifold similar to the expression for A acting on M(M) in $2.12. A form 
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4 E AP"(B) is given locally by a family of forms {+,)  of bidegree (p, q) on {Ua},  where 

{Ua) is a covering of M with coordinate neighborhoods over which B is trivial. 

Expanding formula (I. 1.5), we obtain 

(6:4)@ = - *(ai1dtag A *4,) 

Since 

and 

we have 

Proposition 1.3.1. 

Proof. We need only show that 

The details are left to the reader (see also [97]). 

We define the covariant derivative Di+ of a form 4 = (4 , )  E AP"J(B) by Di+ = {Di+,}. 

For a function f of class oo 

Di( f4 )  = (a i f )4  + fDi4.  

Let A, = il . . . i ,  and Bf = j; . . . j,'. Then, since 

- 
D ~ + ~ A , B ;  = fa@DidaA,,~; 

for, dlt fa@ = 0. We define the covariant derivative Di4  by 

- 
Did = {Dida).  
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Since 
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Therefore, 

+ k ( x $  + ~;;)4,A,j :...ji-lk*ji+l...j; 
p=l 

- C C dt*gm*' &,r m j: 4ail ... iPP ... ip j: ... j:- r* j;+, ... j; , 
P 0 

when x;,' = -Djtk* and tk' = gik'&log a,. 

Pnwf. By Proposition 1.3.1 

Set 

Since 



and 

Observing that 

then by (1.3.1) and (2.12.4) this completes the proof. 

curvature of the metric a. 

1.4. The vanishing theorems 

We employ the differential-geometric method due to Bochner to obtain the sa-called 

vanishing theorems of Kodaira [47]. We ask under suitable conditions on the curvature of 

a compact Kaehler manifold M when the cohomology groups Hq(M, M ( B )  vanish, where 

A*(B) is the sheaf over M of germs of holomorphic pforms with coefficients in the complex 

line bundle 3. 

Themrem 1.4.1. If the hemitian matriz Xij* + Rlj- is positive definite everywhere on 

the compact Kaehler manifold M ,  then 

where AO(B) = 0 i s  the sheaf over M-of holomorphic firnctwns. 

P-f. FkomTheorem 1.2.1 and the fact that A ~ ~ ( B )  = l \gP(B),  H9(M, hO(B) )  Y hgq(B)  = 

( 4  E A019(B)1Ua4 = 0). We show that any 4 E AO*Q(B) satisfying 0 a 4  = 0 vanishes. To 

this end, let 

B' . 
@ = aaDj4aB;4a9dr .  
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@ is a form of bidegree (0, I), so by Stokes' theorem 

since 6' is of type (-1,O). Therefore, 

O = JM gi'* ~ i ( a ~ D j + ~ B ;  9,"') * 1 

The last term is nonnegative, so the second integral is nonpositive. Applying Theorem 

1.3.1 to a form of bidegree (0, q), we get 

Therefore, since Ela+, = 0 

By hypothesis, Xt,. + Rt.- is positive definite. Hence, +t'l-.iq-l = 0. This completes the 

proof. 

The theorem is vacuous for q = 0. 

We study the curvature Xi,* of the metric a. For any germ of a holomorphic function 

f,  exp 2~-f € E*, where E*  is the sheaf over M of nonvanishing holomorphic functions. 

We have the exact sequence 

0 - + Z + 0 + 0 * + 0  

where Z is the sheaf of germs of locally constant integer-valued functions on M. This 

sequence induces the following sequence of cohomology groups 

Definition. c(B) = d*(B) is the let &ern class of B. (Note that an equivalence class 

of bundles defines an element of H1 (M, 0;)). 

Since Z c C we map H2(M, Z) -+ H2(M, C) and send c(B) -+ c(B)c. The first half 

of Lemma 6.14.1 is given by 
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Theorem 1.4.2. The de Rham cohomology cl-8 of C ( B ) ~  is represented by 

P m f .  In terms of a sdliciently fme locally finite covering U = {U,) of M the bundle B is 

determined by a system { f a g )  of holomorphic functions defined in Ua n Ug for each a, /3 

(see 5 1.1). In Ua n Ug n U,, they satisfy fag far fia = 1. Therefore, c ( B )  = ((cap,)), 

where 

log fag + log fgr +log f,a = 2xJ---rcag7 

is a constant in Ua f l  Ug f l  U,, and the system {cap,) defines a 2-cocycle on the nerve N ( U )  

of the covering U (cf. Appendix A). The {caal) c Z ,  therefore, determine a cohomology 

class c~ E H2 ( N ( U ) ,  2). By taking the direct limit 

we obtain the chamcteristic class c = c ( B )  E H 2 ( ~ ,  Z )  of the principal bundle (defined 

by the functions {I fag12)) associated with B .  

We seek a closed Zform 7 representing c ( B ) c .  To this end, we show that there are 

1-forms a ,  of class oo on Ua such that 

1 
2nGd 1% fag = "b - g o  

Then, 7 = do, = dug. 

Fkom 5 1.1, (fag l 2  = ag/aa. Therefore, 

Let 
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Then, 

= -- I &aj log agdri A d i j  
2n,/=l 

(see f 1.3). 

The converse of Lemma 6.14.1 is given by 

Theorem 1.4.3. If 7 is a real closed form of bidegree (1,l) on M belonging to the char- 

acteristic class c(B), there ezists a system of positive functions a ,  of class oo such that 

for each pair a,  p 

as = 1 fas12aa in Ua n Us 

and 

(cf. VI. H2). 

Pwwf. Choose any metric d = (d,)  on B, that is d ,  is of class w on U, and d,l faBI2 = ds.  

Let 

where 

that is 

Then, as in Theorem 1.4.2, the cohomology class determined by X is given by C ( B ) ~ .  

Thus, X = 7 + d$ for some 1-fom t$ such that dt$ is of bidegree (1,l). By the Hodge 

decomposition theorem, 
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where q and + are forms of bidegree (1,l) and Aq = 0, the latter implying dr) = 0 and 

69 = 0. It follows that a d +  = 0 from which 

and this implies that ad$ = 0. Hence, 

from which 

= (v,9), 
so 9 = 0. Moreover, d+ = 0 since 

Consequently, df+ = 0 and dff+ = 0, so 

X - r = d #  

1 
= 5A+ 

where the function f = 2nA+ is positive. For, A is a real operator and + is a real form. 
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X - y is a real form. Finally, 

= "d'dylog a, - f ) .  
2n 

Set a, = 6, exp(- f ). Then, 

and 

This completes the proof. 

A complex line bundle B over a complex manifold M is said to be positive if there is a 

real closed 2-form y = ( 1 / 2 n ~ ) X i j * d z i  A d i j  of bidegree (1,l)  such that {y} = C ( B ) ~  

and Xi ,= is positive dehi te  everywhere on M. 

Note that if B is positive, then w = mi,. dzi A d d  is a Kaehler form, that is, M is 

a Kaehler manifold with fundamental form w. 

We restate Theorem 6.14.1 as follows: 

Theorem 1.4.4. If the complez line bundle B is 'suficiently' positive, then 

Hq(M, AP(B)) = {0), q = 1,. . . , n. 

Proof, This is a consequence of Theorem 1.2.1, namely, Hq(M,AP(B)) 2 A;~(B) and the 

i expression for FP*q(r, v) on p. 234 (see also $3.2 and Theorem 1.3.1). 

Let - B denote the complex line bundle defined by the system { f&! }. Then, the map 

4 + 4' defined by 4: = (l/a,) * maps hgq(B) isomorphically onto A~-""-~(-B). 

Hence, by Theorem 1.2.1 

This gives rise to Corollaries 6.14.1 and 6.14.2. 
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p-form, 14 

adjoint of, 70 
closed, 15 
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PoincarC lemma, 280 
PoincarC.polynomials, 144 
Pole of a geodesic coordinate system, 40 
Polyhedron, 60 
Potential function, 68 
Principal fibre bundle, 53-55 

base space of, 53-55 
fibre of, 54 
structural group of, 53-55 

Projective transformation (of a Riemannian 
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Tensorial p-form (at a point) of type (r, s), 

42 
Tensor product 

of modules (over non-commutative ring 
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