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Resumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

16 Deterministic diffusion 329
16.1 Diffusion in periodic arrays . . . . . . . . . . . . . . . . . . . . . . 330
16.2 Diffusion induced by chains of 1-d maps . . . . . . . . . . . . . . . 334
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Chapter 1

Overture

If I have seen less far than other men it is because I have
stood behind giants.

Edoardo Specchio

Rereading classic theoretical physics textbooks leaves a sense that there are holes
large enough to steam a Eurostar train through them. Here we learn about
harmonic oscillators and Keplerian ellipses - but where is the chapter on chaotic
oscillators, the tumbling Hyperion? We have just quantized hydrogen, where is
the chapter on helium? We have learned that an instanton is a solution of field-
theoretic equations of motion, but shouldn’t a strongly nonlinear field theory
have turbulent solutions? How are we to think about systems where the middle
does not hold, everything continuously falls apart, every trajectory is unstable?

We start out by making promises - we will right wrongs, no longer shall you
suffer the slings and arrows of outrageous Science of Perplexity. We relegate a
historical overview of the development of chaotic dynamics to appendix I, and
head straight to the starting line: A pinball game is used to motivate and il-
lustrate most of the concepts to be developed in this book: unstable dynamical
flows, Poincaré sections, Smale horseshoes, symbolic dynamics, pruning, discrete
symmetries, periodic orbits, averaging over chaotic sets, evolution operators, dyn-
amical zeta functions, spectral determinants, cycle expansions, quantum trace
formulas and zeta functions, and so on to the semiclassical quantization of he-
lium. This chapter is a quick par-course of the main topics covered in the book.

Throughout the book

indicates that the section is probably best skipped on first reading

fast track points you where to skip to

1



2 CHAPTER 1. OVERTURE

tells you where to go for more depth on a particular topic

indicates an exercise that might clarify a point in the text

1.1 Why this book?

It seems sometimes that through a preoccupation with
science, we acquire a firmer hold over the vicissitudes of
life and meet them with greater calm, but in reality we
have done no more than to find a way to escape from our
sorrows.

Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrating (and unsuccessful)
crack at the 3-body problem, lunar dynamics. Nature is rich in systems governed
by simple deterministic laws whose asymptotic dynamics are complex beyond
belief, systems which are locally unstable (almost) everywhere but globally re-
current. How do we describe their long term dynamics?

The answer turns out to be that we have to evaluate a determinant, take a
logarithm. It would hardly merit a learned treatise, were it not for the fact that
this determinant that we are to compute is fashioned of infinitely many infinitely
small pieces. The feel is of statistical mechanics, and that is how the problem
was solved; in 1960’s the pieces were counted, and in 1970’s they were weighted
and assembled together in a fashion that in beauty and in depth ranks along
with thermodynamics, partition functions and path integrals amongst the crown
jewels of theoretical physics.

Then something happened that might be without parallel; this is an area of
science where the advent of cheap computation had actually subtracted from our
collective understanding. The computer pictures and numerical plots of fractal
science of 1980’s have overshadowed the deep insights of the 1970’s, and these
pictures have now migrated into textbooks. Fractal science posits that certain
quantities (Lyapunov exponents, generalized dimensions, . . . ) can be estimated
on a computer. While some of the numbers so obtained are indeed mathemat-
ically sensible characterizations of fractals, they are in no sense observable and
measurable on the length and time scales dominated by chaotic dynamics.

Even though the experimental evidence for the fractal geometry of nature
is circumstantial, in studies of probabilistically assembled fractal aggregates we
know of nothing better than contemplating such numbers. In deterministic
systems we can do much better. Chaotic dynamics is generated by interplay
of locally unstable motions, and interweaving of their global stable and unstable
manifolds. These features are robust and accessible in systems as noisy as slices of
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1.2. CHAOS AHEAD 3

rat brains. Poincaré, the first to understand deterministic chaos, already said as
much (modulo rat brains). Once the topology of chaotic dynamics is understood,
a powerful theory yields the macroscopically measurable consequences of chaotic
dynamics, such as atomic spectra, transport coefficients, gas pressures.

That is what we will focus on in this book. We teach you how to evaluate a
determinant, take a logarithm, stuff like that. Should take 20 pages or so. Well,
we fail - so far we have not found a way to traverse this material in less than a
semester, or 200-300 pages of text. Sorry about that.

1.2 Chaos ahead

Study of chaotic dynamical systems is no recent fashion. It did not start with the
widespread use of the personal computer. Chaotic systems have been studied for
over 200 years. During this time many have contributed, and the field followed no
single line of development; rather one sees many interwoven strands of progress.

In retrospect many triumphs of both classical and quantum physics seem a
stroke of luck: a few integrable problems, such as the harmonic oscillator and
the Kepler problem, though “non-generic”, have gotten us very far. The success
has lulled us into a habit of expecting simple solutions to simple equations - an
expectation tempered for many by the recently acquired ability to numerically
scan the phase space of non-integrable dynamical systems. The initial impression
might be that all our analytic tools have failed us, and that the chaotic systems
are amenable only to numerical and statistical investigations. However, as we
show here, we already possess a theory of the deterministic chaos of predictive
quality comparable to that of the traditional perturbation expansions for nearly
integrable systems.

In the traditional approach the integrable motions are used as zeroth-order
approximations to physical systems, and weak nonlinearities are then accounted
for perturbatively. For strongly nonlinear, non-integrable systems such expan-
sions fail completely; the asymptotic time phase space exhibits amazingly rich
structure which is not at all apparent in the integrable approximations. How-
ever, hidden in this apparent chaos is a rigid skeleton, a tree of cycles (periodic
orbits) of increasing lengths and self-similar structure. The insight of the modern
dynamical systems theory is that the zeroth-order approximations to the harshly
chaotic dynamics should be very different from those for the nearly integrable
systems: a good starting approximation here is the linear stretching and folding
of a baker’s map, rather than the winding of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get some feeling for
how and why unstable cycles come about, we start by playing a game of pinball.
The reminder of the chapter is a quick tour through the material covered in this

printed August 24, 2000 ∼DasBuch/book/chapter/intro.tex 4aug2000



4 CHAPTER 1. OVERTURE

Figure 1.1: Physicists’ bare bones game of pin-
ball.

book. Do not worry if you do not understand every detail at the first reading –
the intention is to give you a feeling for the main themes of the book, details will
be filled out later. If you want to get a particular point clarified right now,
on the margin points at the appropriate section.

1.3 A game of pinball

Man m̊a begrænse sig, det er en Hovedbetingelse for al
Nydelse.

Søren Kierkegaard, Forførerens Dagbog

That deterministic dynamics leads to chaos is no surprise to anyone who has
tried pool, billiards or snooker – that is what the game is about – so we start
our story about what chaos is, and what to do about it, with a game of pinball.
This might seem a trifle, but the game of pinball is to chaotic dynamics what
a pendulum is to integrable systems: thinking clearly about what “chaos” in a
game of pinball is will help us tackle more difficult problems, such as computing
diffusion constants in deterministic gases, or computing the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces among the
pinball machine’s disks, and only high-school level Euclidean geometry is needed
to describe its trajectory. A physicist’s pinball game is the game of pinball strip-
ped to its bare essentials: three equidistantly placed reflecting disks in a plane,
fig. 1.1. Physicists’ pinball is free, frictionless, point-like, spin-less, perfectly
elastic, and noiseless. Point-like pinballs are shot at the disks from random
starting positions and angles; they spend some time bouncing between the disks
and then escape.

At the beginning of 18th century Baron Gottfried Wilhelm Leibniz was con-
fident that given the initial conditions one knew what a deterministic system
would do far into the future. He wrote [1]:

That everything is brought forth through an established destiny is just
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1.3. A GAME OF PINBALL 5

as certain as that three times three is nine. [. . . ] If, for example, one sphere
meets another sphere in free space and if their sizes and their paths and
directions before collision are known, we can then foretell and calculate how
they will rebound and what course they will take after the impact. Very
simple laws are followed which also apply, no matter how many spheres are
taken or whether objects are taken other than spheres. From this one sees
then that everything proceeds mathematically – that is, infallibly – in the
whole wide world, so that if someone could have a sufficient insight into
the inner parts of things, and in addition had remembrance and intelligence
enough to consider all the circumstances and to take them into account, he
would be a prophet and would see the future in the present as in a mirror.

Leibniz chose to illustrate his faith in determinism precisely with the type of
physical system that we shall use here as a paradigm of “chaos”. His claim is
wrong in a deep and subtle way: a state of a physical system can never be specified
to infinite precision, so a single trajectory has no meaning, only a distribution of
nearby trajectories makes physical sense.

1.3.1 What is “chaos”?

I accept chaos. I am not sure that it accepts me.
Bob Dylan, Bringing It All Back Home

A deterministic system is a system whose present state is fully determined by
its initial conditions, in contra-distinction to a stochastic system, for which the
initial conditions determine the present state only partially, due to noise, or other
external circumstances beyond our control. For a stochastic system, the present
state reflects the past initial conditions plus the particular realization of the noise
generated.

A deterministic system with sufficiently complicated dynamics can fool us
into regarding it as a stochastic one; disentangling the deterministic from the
stochastic is the main challenge in many experimental situations, from stock
market to palpitations of chicken hearts. So, what is “chaos”?

Two pinball trajectories that start out very close to each other separate ex-
ponentially with time, and in a finite (and in practice, a very small) number
of bounces their separation δx(t) attains the magnitude of L, the characteristic
linear extent of the whole system, fig. 1.2. This property of sensitivity to initial
conditions can be quantified as

|δx(t)| ≈ eλt|δx(0)|

where λ, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent. For any finite accuracy δx of the initial data, the dynamics sect. 13.3
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6 CHAPTER 1. OVERTURE

Figure 1.2: Sensitivity to initial conditions: two
pinballs that start out very close to each other sep-
arate exponentially with time.

1

2

3

23132321

2313

is predictable only up to a finite Lyapunov time T ≈ − 1
λ ln |δx|/L, despite the

deterministic and, for baron Leibniz, infallible simple laws that rule the pinball
motion.

A positive Lyapunov exponent does not in itself lead to chaos. One could try
to play 1- or 2-disk pinball game, but it would not be much of a game; trajec-
tories would only separate, never to meet again. What is also needed is mixing,
the coming together again and again of trajectories. While locally the nearby
trajectories separate, the interesting dynamics is confined to a globally finite re-
gion of the phase space and thus of necessity the separated trajectories are folded
back and can re-approach each other arbitrarily closely, infinitely many times.
In the case at hand there are 2n topologically distinct n bounce trajectories that
originate from a given disk. More generally, the number of distinct trajectories
with n bounces can be quantified as

N(n) ≈ ehn

sect. 9.1

where the topological entropy h (h = ln 2 in the case at hand) is the growth rate
of the number of topologically distinct trajectories.sect. 14.1

The appellation “chaos” is a confusing misnomer, as in deterministic dynam-
ics there is no chaos in the everyday sense of the word; everything proceeds
mathematically – that is, as baron Leibniz would have it, infallibly. When a
physicist says that a certain system exhibits “chaos”, he means that the system
obeys deterministic laws of evolution, but that the outcome is highly sensitive to
small uncertainties in the specification of the initial state. The word “chaos” has
in this context taken on a narrow technical meaning. If a deterministic system
is locally unstable (positive Lyapunov exponent) and globally mixing (positive
entropy), it is said to be chaotic.

While mathematically correct, the definition of chaos as “positive Lyapunov
+ positive entropy” is useless in practice, as a measurement of these quantities is
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1.3. A GAME OF PINBALL 7

intrinsically asymptotic and beyond reach for systems observed in nature. More
powerful is the Poincaré’s vision of chaos as interplay of local instability (unsta-
ble periodic orbits) and global mixing (intertwining of their stable and unstable
manifolds). In a chaotic system any open ball of initial conditions, no matter how
small, will in finite time overlap with any other finite region and in this sense
spread over the extent of the entire asymptotically accessible phase space. Once
this is grasped, the focus of theory shifts from attempting precise prediction of
individual trajectories (which is impossible) to description of the geometry of the
space of possible outcomes, and evaluation of averages over this space. How this
is accomplished is what this book is about.

Confronted with a potentially chaotic dynamical system, we analyze it through
a sequence of three distinct stages; diagnose, count, measure. I. First we deter-
mine the intrinsic dimension of the system – the minimum number of degrees
of freedom necessary to capture its essential dynamics. If the system is very
turbulent (description of its long time dynamics requires a space of high intrin-
sic dimension) we are, at present, out of luck. We know only how to deal with
the transitional regime between regular motions and a few chaotic degrees of
freedom. That is still something; even an infinite-dimensional system such as a
burning flame front can turn out to have a very few chaotic degrees of freedom.
In this regime the chaotic dynamics is restricted to a space of low dimension, the sect. 2.3

number of relevant parameters is small, and we can proceed to step II; we count
and classify all possible topologically distinct trajectories of the system into a
hierarchy whose successive layers require increased precision and patience on the
part of the observer. This we shall do in sects. 1.3.2 and 1.3.3. If successful, chapter 7

chapter 9we can proceed with step III: investigate the weights of the different pieces of the
system.

1.3.2 Symbolic dynamics

Formulas hamper the understanding.
S. Smale

We commence our analysis of the pinball game with the steps I, II: diagnose,
count. We shall return to the step III – measure – in sect. 1.4.1. chapter 11

With the game of pinball we are in luck – it is a low dimensional system, free
motion in a plane. The motion of a point particle is such that after a collision
with one disk it either continues to another disk or it escapes. If we label the three
disks by 1, 2 and 3, we can associate every trajectory with an itinerary, a sequence
of labels which indicates the order in which the disks are visited; for example,
the two trajectories in fig. 1.2 have itineraries 2313 , 23132321 respectively.
The itinerary will be finite for a scattering trajectory, coming in from infinity
and escaping after a finite number of collisions, infinite for a trapped trajectory,
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8 CHAPTER 1. OVERTURE

Figure 1.3: Binary labeling of the 3-disk pin-
ball trajectories; a bounce in which the trajectory
returns to the preceding disk is labeled 0, and a
bounce which results in continuation to the third
disk is labeled 1.

and infinitely repeating for a periodic orbit. Parenthetically, in this subject the 1.1
on p. 30words “orbit” and “trajectory” refer to one and the same thing.

Such labeling is the simplest example of symbolic dynamics. As the particlechapter 7

cannot collide two times in succession with the same disk, any two consecutive
symbols must differ. This is an example of pruning, a rule that forbids certain
subsequences of symbols. Deriving pruning rules is in general a difficult problem,
but with the game of pinball we are lucky - there are no further pruning rules.

The choice of symbols is in no sense unique. For example, as at each bounce
we can either proceed to the next disk or return to the previous disk, the above
3-letter alphabet can be replaced by a binary {0, 1} alphabet, fig. 1.3. A clever
choice of an alphabet will incorporate important features of the dynamics, such
as its symmetries.

Suppose you wanted to play a good game of pinball, that is, get the pinball to
bounce as many times as you possibly can – what would be a winning strategy?
The simplest thing would be to try to aim the pinball so it bounces many times
between a pair of disks – if you managed to shoot it so it starts out in the
periodic orbit bouncing along the line connecting two disk centers, it would stay
there forever. Your game would be just as good if you managed to get it to keep
bouncing between the three disks forever, or place it on any periodic orbit. The
only rub is that any such orbit is unstable, so you have to aim very accurately in
order to stay close to it for a while. So it is pretty clear that if one is interested
in playing well, unstable periodic orbits are important – they form the skeleton
onto which all trajectories trapped for long times cling.sect. 13.9

1.3.3 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momentum. We
shall refer to the set of periodic points that belong to a given periodic orbit as
a cycle.

Short periodic orbits are easily drawn and enumerated - some examples are
drawn in fig. 1.4 - but it is rather hard to perceive the systematics of orbits
from their shapes. In the pinball example the problem is that we are looking at
the projections of a 4-dimensional phase space trajectories onto a 2-dimensional
subspace, the space coordinates. While the trajectories cannot intersect (that
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1.3. A GAME OF PINBALL 9

Figure 1.4: Some examples of 3-disk cycles: (a)
12123 and 13132 are mapped into each other by
σ23, the flip across 1 axis; this cycle has degener-
acy 6 under C3v symmetries. (C3v is the symmetry
group of the equilateral triangle.) Similarly (b) 123
and 132 and (c) 1213, 1232 and 1323 are degen-
erate under C3v. (d) The cycles 121212313 and
121212323 are related by time reversal but not by
any C3v symmetry. These symmetries are discussed
in more detail in chapter 15. (from ref. [2])

would violate their deterministic uniqueness), their projections on arbitrary sub-
spaces intersect in a rather arbitrary fashion. A clearer picture of the dynamics
is obtained by constructing a phase space Poincaré section.

The position of the ball is described by a pair of numbers (the spatial coordi-
nates on the plane) and its velocity by another pair of numbers (the components
of the velocity vector). As far as baron Leibniz is concerned, this is a complete
description.

Suppose that the pinball has just bounced off disk 1. Depending on its position
and outgoing angle, it could proceed to either disk 2 or 3. Not much happens in
between the bounces – the ball just travels at constant velocity along a straight
line – so we can reduce the four-dimensional flow to a two-dimensional map f
that takes the coordinates of the pinball from one disk edge to another disk edge.
Let us state this more precisely: the trajectory just after the moment of impact is
defined by marking qi, the arc-length position of the ith bounce along the billiard
wall, and pi = sin θi, the momentum component parallel to the wall, fig. 1.5.
Such section of a flow is called a Poincaré section. In terms of the Poincaré
section, the dynamics is reduced to the return map f : (pi, qi) �→ (pi+1, qi+1) from
the boundary of a disk to the boundary of the next disk. The explicit form of
this map is easily written down, but it is of no importance right now.

Next, we mark in the Poincaré section those initial conditions which do not
escape in one bounce. There are two strips of survivors, as the trajectories
originating from one disk can hit either of the other two disks, or escape without
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10 CHAPTER 1. OVERTURE

q1

θ1

q2

θ2

a

sin θ1

q1

sin θ2

q2

sin θ3

q3

Figure 1.5: The 3-disk game of pinball coordinates and Poincaré sections.

Figure 1.6: (a) A trajectory starting out from
disk 1 can either hit another disk or escape. (b) Hit-
ting two disks in a sequence requires a much sharper
aim. The pencils of initial conditions that hit more
and more consecutive disks are nested within each
other as in fig. 1.7.

further ado. We label the two strips M0, M1. Embedded within them there
are four strips M00, M10, M01, M11 of initial conditions that survive for two
bounces, and so forth, see figs. 1.6 and 1.7. Provided that the disks are sufficiently
separated, after n bounces the survivors are divided into 2n distinct strips: the
ith strip consists of all points with itinerary i = s1s2s3 . . . sn, s = {0, 1}. The
unstable cycles as a skeleton of chaos are almost visible here: each such patch
contains a periodic point s1s2s3 . . . sn with the basic block infinitely repeated.
Periodic points are skeletal in the sense that as we look further and further, the
strips shrink but the periodic points stay put forever.

We see now why it pays to have a symbolic dynamics; it provides a navigation
chart through chaotic phase space. There exists a unique trajectory for every
admissible infinite length itinerary, and a unique itinerary labels every trapped
trajectory. For example, the only trajectory labeled by 12 is the 2-cycle bouncing
along the line connecting the centers of disks 1 and 2; any other trajectory starting
out as 12 . . . either eventually escapes or hits the 3rd disk.

1.3.4 Escape rate
1.2
on p. 30

What is a good physical quantity to compute for the game of pinball? A repeller
escape rate is an eminently measurable quantity. An example of such measure-
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1.3. A GAME OF PINBALL 11

Figure 1.7: Ternary labelled regions of the 3-disk game of pinball phase space Poincaré
section which correspond to trajectories that originate on disk 1 and remain confined for
(a) one bounce, (b) two bounces, (c) three bounces. The Poincaré sections for trajectories
originating on the other two disks are obtained by the appropriate relabelling of the strips
(K.T. Hansen [3]).

ment would be an unstable molecular or nuclear state which can be well approx-
imated by a classical potential with possibility of escape in certain directions. In
an experiment many projectiles are injected into such a non-confining potential
and their mean escape rate is measured, as in fig. 1.1. The numerical experiment
might consist of injecting the pinball between the disks in some random direction
and asking how many times the pinball bounces on the average before it escapes
the region between the disks.

For a theorist a good game of pinball consists in predicting accurately the
asymptotic lifetime (or the escape rate) of the pinball. We now show how the
periodic orbit theory accomplishes this for us. Each step will be so simple that
you can follow even at the cursory pace of this overview, and still the result is
surprisingly elegant.

Consider fig. 1.7 again. In each bounce the initial conditions get thinned out,
yielding twice as many thin strips as at the previous bounce. The total area that
remains at a given time is the sum of the areas of the strips, so that the fraction
of survivors after n bounces is proportional to

Γ̂1 = |M0| + |M1| , Γ̂2 = |M00| + |M10| + |M01| + |M11| ,

Γ̂n =
(n)∑
i

|Mi| , (1.1)

where i is a label of the ith strip, and |Mi| is the area of the ith strip. Since
at each bounce one routinely loses about the same fraction of trajectories, one
expects the sum (1.1) to fall off exponentially with n and tend to the limit

Γ̂n+1/Γ̂n = e−γn → e−γ . (1.2)

The quantity γ is called the escape rate from the repeller.
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12 CHAPTER 1. OVERTURE

1.4 Periodic orbit theory

We shall now show that the escape rate γ can be extracted from a highly conver-
gent exact expansion by reformulating the sum (1.1) in terms of unstable periodic
orbits.

If, when asked what the 3-disk escape rate is for disk radius 1, center-center
separation 6, velocity 1, you answer that the continuous time escape rate is
roughly γ = 0.4103384077693464893384613078192 . . ., you do not need this book.
If you have no clue, hang on.

1.4.1 Size of a partition

Not only do the periodic points keep track of locations and the ordering of the
strips, but, as we shall now show, they also determine their size.

As a trajectory evolves, it carries along and distorts its infinitesimal neigh-
borhood. Let

x(t) = f t(ξ)

denote the trajectory of an initial point ξ = x(0). To linear order, the evolution
of the distance to a neighboring trajectory xi(t) + δxi(t) is given by the Jacobian
matrix

δxi(t) = Jt(ξ)ijδξj , Jt(ξ)ij =
∂xi(t)
∂ξj

.

The Jacobian matrix describes the deformation of an infinitesimal neighborhood
of x(t) along the flow; its the eigenvectors and eigenvalues give the directions and
the corresponding rates of its expansion or contraction. For an unstable system
such as the game of pinball, the trajectories that start out in an infinitesimal
neighborhood are separated along the unstable directions (those whose eigen-
values are less than unity in magnitude), approach each other along the stable
directions (those whose eigenvalues exceed unity in magnitude), and maintain
their distance along the marginal directions (those whose eigenvalues equal unity
in magnitude).

As the heights of the strips in fig. 1.7 are effectively constant, we can concen-
trate on their thickness. If the height is ≈ L, then the area of the ith strip is
Mi ≈ Lli for a strip of width li.
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1.4. PERIODIC ORBIT THEORY 13

Each strip i in fig. 1.7 contains a periodic point xi. The finer the intervals, the
smaller is the variation in flow across them, and the contribution from the strip
of width li is well approximated by the contraction around the periodic point xi

within the interval,

li = ai/|Λi| , (1.3)

where Λi is the unstable eigenvalue of the i’th periodic point (due to the low
dimensionality, the Jacobian has only one unstable eigenvalue.) Note that it is
the magnitude of this eigenvalue which is important and we can disregard its
sign. The prefactors ai reflect the overall size of the system and possibly also a
particular distribution of starting values of x. As the asymptotic trajectories are
strongly mixed by bouncing chaotically around the repeller, we expect them to
be insensitive to smooth variations in the initial distribution.

Evaluation of a cycle Jacobian matrix is a longish exercise - here we just state sect. 3.3

the result: in our game of pinball after one traversal of the cycle p the beam of
neighboring trajectories is defocused in the unstable eigendirection by the factor
Λp, the expanding eigenvalue of the 2-dimensional surface of section return map
Jacobian matrix Jp.

To proceed with the derivation we need the hyperbolicity assumption: for
large n the prefactors ai ≈ O(1) are overwhelmed by the exponential growth
of Λi, so we neglect them. If the hyperbolicity assumption is justified, we can sect. 6.1.1

replace |Mi| ≈ Lli in (1.1) by 1/|Λi| and consider the sum

Γn =
(n)∑
i

1/|Λi| ,

where the sum goes over all periodic points of period n. We now define a gener-
ating function for sums over all periodic orbits of all lengths:

Γ(z) =
∞∑
n=1

Γnz
n . (1.4)

Recall that for large n the nth level sum (1.1) tends to the limit Γn → e−nγ , so
the escape rate γ is determined by the smallest z = eγ for which (1.4) diverges:

Γ(z) ≈
∞∑
n=1

(ze−γ)n =
ze−γ

1 − ze−γ
. (1.5)
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14 CHAPTER 1. OVERTURE

This is the property of Γ(z) which motivated its definition. We shall now devise
an alternate expression for (1.4) in terms of periodic orbits to make explicit the
connection between the escape rate and the periodic orbits.

Γ(z) =
∞∑
n=1

zn
(n)∑
i

|Λi|−1

=
z

|Λ0|
+

z

|Λ1|
+

z2

|Λ00|
+

z2

|Λ01|
+

z2

|Λ10|
+

z2

|Λ11|

+
z3

|Λ000|
+

z3

|Λ001|
+

z3

|Λ010|
+

z3

|Λ100|
+ . . . (1.6)

Here we have omitted the overall prefactor L as it does not affect the exponent
in (1.2) in the n → ∞ limit. For sufficiently small z this sum is convergent. Thesect. 6.2

escape rate γ is now given by the leading pole of (1.6), rather than a numerical
extrapolation of a sequence of γn extracted from (1.2).

We could now proceed to estimate the location of the leading singularity of
Γ(z) from finite truncations of (1.6) by methods such as Padé approximants.
However, as we shall now show, it pays to first perform a simple resummation
that converts this divergence into a zero of a related function.

1.4.2 Dynamical zeta function

If a trajectory retraces a prime cycle r times, its expanding eigenvalue is Λr
p. A

prime cycle p is a single traversal of the orbit; its label is a non-repeating symbol
string of np symbols. There is only one prime cycle for each cyclic permutation
class. For example, p = 0011 = 1001 = 1100 = 0110 is prime, but 0101 = 01
is not. By the chain rule for derivatives the stability of a cycle is the same7.5

on p. 135

sect. 3.2

everywhere along the orbit, so each prime cycle of length np contributes np terms
to the sum (1.6). Hence (1.6) can be rewritten as

Γ(z) =
∑
p

np

∞∑
r=1

(
znp

|Λp|

)r

=
∑
p

nptp
1 − tp

, tp =
znp

|Λp|
(1.7)

where the index p runs through all distinct prime cycles. Note that we have
resumed the contribution of the cycle p to all times, so truncating the summation
up to given p is not a finite time n ≤ np approximation, but an asymptotic, infinite
time estimate based by approximating stabilities of all cycles by a finite number
of the shortest cycles and their repeats. The npz

np factors suggest rewriting the
sum as a derivative

Γ(z) = −z
d

dz

∑
p

ln(1 − tp) .
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1.4. PERIODIC ORBIT THEORY 15

Hence Γ(z) is a logarithmic derivative of the infinite product

1/ζ(z) =
∏
p

(1 − tp) , tp =
znp

|Λp|
. (1.8)

This function is called the dynamical zeta function, in analogy to the Riemann
zeta function, which motivates its definition as 1/ζ(z). The formula is the pro-
totype periodic orbit theory formula. The zero of 1/ζ(z) is a pole of Γ(z), and
the problem of estimating the asymptotic escape rates from finite n sums such as
(1.1) is now reduced to a study of the zeros of the dynamical zeta function (1.8).
The escape rate is related by (1.5) to a divergence of Γ(z), and Γ(z) diverges
whenever 1/ζ(z) has a zero.

1.4.3 Cycle expansions

How are formulas such as (1.8) used? We start by computing the lengths and
eigenvalues of the shortest cycles. This usually requires some numerical work,
such as the Newton’s method searches for periodic solutions; we shall assume that
the numerics is under control, and that all short cycles up to given length have
been found. In our pinball example this can be done by elementary geometrical chapter 8

optics. It is very important not to miss any short cycles, as the calculation is as
accurate as the shortest cycle dropped – including cycles longer than the shortest
omitted does not improve the accuracy (unless exponentially many more cycles
are included). The result is a table of cycles, their periods and their stabilities. sect. 8.4.2

Now expand the infinite product (1.8), grouping together the terms of the
same total symbol string length

1/ζ = (1 − t0)(1 − t1)(1 − t10)(1 − t100) · · ·
= 1 − t0 − t1 − [t10 − t1t0] − [(t100 − t10t0) + (t101 − t10t1)]

−[(t1000 − t0t100) + (t1110 − t1t110)
+(t1001 − t1t001 − t101t0 + t10t0t1)] − . . . (1.9)

The virtue of the expansion is that the sum of all terms of the same total length chapter 11

n (grouped in brackets above) is a number that is exponentially smaller than a
typical term in the sum, for geometrical reasons we explain in the next section. sect. 11.1.1

sect. 12.1.2

The calculation is now straightforward. We substitute a finite set of the
eigenvalues and lengths of the shortest prime cycles into the cycle expansion
(1.9), and obtain a polynomial approximation to 1/ζ. We then vary z in (1.8)
and determine the escape rate γ by finding the smallest z = eγ for which (1.9)
vanishes.

printed August 24, 2000 ∼DasBuch/book/chapter/intro.tex 4aug2000



16 CHAPTER 1. OVERTURE

1.4.4 Shadowing

When you actually start computing this escape rate, you will find out that the
convergence is very impressive: only three input numbers (the two fixed points
0, 1 and the 2-cycle 10) already yield the escape rate to 3-4 significant digits!
We have omitted an infinity of unstable cycles; so why does approximating the
dynamics by a finite number of the shortest cycle eigenvalues work so well?

The convergence of cycle expansions of dynamical zeta functions is a conse-
quence of the smoothness and analyticity of the underlying flow. Intuitively, one
can understand the convergence in terms of the geometrical picture sketched in
fig. 1.8; the key observation is that the long orbits are shadowed by sequences of
shorter orbits.

A typical term in (1.9) is a difference of a long cycle {ab} minus its shadowing
approximation by shorter cycles {a} and {b}

tab − tatb = tab(1 − tatb/tab) = tab

(
1 −
∣∣∣∣ Λab

ΛaΛb

∣∣∣∣) , (1.10)

where a and b are symbol sequences of the two shorter cycles. If all orbits are
weighted equally (tp = znp), such combinations cancel exactly; if orbits of similar
symbolic dynamics have similar weights, the weights in such combinations almost
cancel.

This can be understood in the context of the pinball game as follows. Consider
orbits 0, 1 and 01. The first corresponds to bouncing between any two disks while
the second corresponds to bouncing successively around all three, tracing out an
equilateral triangle. The cycle 01 starts at one disk, say disk 2. It then bounces
from disk 3 back to disk 2 then bounces from disk 1 back to disk 2 and so on,
so its itinerary is 2321. In terms of the bounce types shown in fig. 1.3, the
trajectory is alternating between 0 and 1. The incoming and outgoing angles
when it executes these bounces are very close to the corresponding angles for 0
and 1 cycles. Also the distances traversed between bounces are similar so that
the 2-cycle expanding eigenvalue Λ01 is close in magnitude to the product of the
1-cycle eigenvalues Λ0Λ1.

To understand this on a more general level, try to visualize the partition of
a chaotic dynamical system’s phase space in terms of cycle neighborhoods as
a tessellation of the dynamical system, with smooth flow approximated by its
periodic orbit skeleton, each “face” centered on a periodic point, and the scale of
the “face” determined by the linearization of the flow around the periodic point,
fig. 1.8.

The orbits that follow the same symbolic dynamics, such as {ab} and a
“pseudo orbit” {a}{b}, lie close to each other in the phase space; long shad-
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1.5. EVOLUTION OPERATORS 17

Figure 1.8: Approximation to (a) a smooth dynamics by (b) the skeleton of periodic points,
together with their linearized neighborhoods. Indicated are segments of two 1-cycles and a
2-cycle that alternates between the neighborhoods of the two 1-cycles, shadowing first one
of the two 1-cycles, and then the other.

owing pairs have to start out exponentially close to beat the exponential growth
in separation with time. If the weights associated with the orbits are multiplica-
tive along the flow (for example, by the chain rule for products of derivatives)
and the flow is smooth, the term in parenthesis in (1.10) falls off exponentially
with the cycle length, and therefore the curvature expansions are expected to be
highly convergent. chapter 12

1.5 Evolution operators

The above derivation of the dynamical zeta function formula for the escape rate
has one shortcoming; it estimates the fraction of survivors as a function of the
number of pinball bounces, but the physically interesting quantity is the escape
rate measured in units of continuous time. For continuous time flows, the escape
rate (1.1) is generalized as follows. Define a finite phase space region M such
that a trajectory that exits M never reenters. For example, any pinball that falls
of the edge of a pinball table in fig. 1.1 is gone forever. Start with a uniform
distribution of initial points. The fraction of initial x whose trajectories remain
within M at time t is expected to decay exponentially

Γ(t) =

∫
M dxdy δ(y − f t(x))∫

M dx
→ e−γt .
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18 CHAPTER 1. OVERTURE

The integral over x starts a trajectory at every x ∈ M. The integral over y tests
whether this trajectory is still in M at time t. The kernel of this integral

Lt(x, y) = δ
(
x − f t(y)

)
(1.11)

is the Dirac delta function, as for a deterministic flow the initial point y maps
into a unique point x at time t. For discrete time, fn(x) is the nth iterate of the
map f . For continuous flows, f t(x) is the trajectory of the initial point x, and
it is appropriate to express the finite time kernel Lt in terms of a generator of
infinitesimal time translations

Lt = etA ,

very much in the way the quantum evolution is generated by the Hamiltonian H,
the generator of infinitesimal time quantum transformations.

As the kernel L is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as the evolution operator for a d-dimensional
map or a d-dimensional flow.

The number of periodic points increases exponentially with the cycle length
(in case at hand, as 2n). As we have already seen, this exponential proliferation
of cycles is not as dangerous as it might seem; as a matter of fact, all our compu-
tations will be carried out in the n → ∞ limit. Though a quick look at chaotic
dynamics might reveal it to be complex beyond belief, it is still generated by a
simple deterministic law, and with some luck and insight, our labeling of possible
motions will reflect this simplicity. If the rule that gets us from one level of the
classification hierarchy to the next does not depend strongly on the level, the
resulting hierarchy is approximately self-similar. We now turn such approximate
self-similarity to our advantage, by turning it into an operation, the action of the
evolution operator, whose iteration encodes the self-similarity.

1.5.1 Trace formula

Recasting dynamics in terms of evolution operators changes everything. So far our
formulation has been heuristic, but in the evolution operator formalism the escape
rate and any other dynamical average are given by exact formulas, extracted from
the spectra of evolution operators. The key tools are the trace formulas and the
spectral determinants.

The trace of an operator is given by the sum of its eigenvalues. The explicit
expression (1.11) for Lt(x, y) enables us to evaluate the trace. Identify y with x
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1.5. EVOLUTION OPERATORS 19

Figure 1.9: The trace of an evolution operator is concentrated in tubes around prime
cycles, of length Tp and thickness 1/|Λp|r for rth repeat of the prime cycle p.

and integrate x over the whole phase space. The result is an expression for trLt

as a sum over neighborhoods of prime cycles p and their repetitionssect. 6.1.4

trLt =
∑
p

Tp

∞∑
r=1

δ(t − rTp)∣∣det
(
1− Jrp

)∣∣ . (1.12)

This formula has a simple geometrical interpretation sketched in fig. 1.9. After
the rth return to a Poincaré section, the initial tube Mp has been stretched out
along the expanding eigendirections, with the overlap with the initial volume
given by 1/

∣∣det
(
1− Jrp

)∣∣→ 1/|Λp|.

The “spiky” sum (1.12) is disquieting in the way reminiscent of the Pois-
son resummation formulas of Fourier analysis; the left-hand side is the smooth
eigenvalue sum tr eA =

∑
esαt, while the right-hand side equals zero everywhere

except for the set t = rTp. A Laplace transform smoothes the sum over Dirac
delta functions in cycle periods and yields the trace formula for the eigenspectrum
s0, s1, · · · of the classical evolution operator:

∫ ∞

0+

dt e−st trLt = tr
1

s − A =
∞∑

α=0

1
s − sα

=
∑
p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣det
(
1− Jrp

)∣∣ . (1.13)

The beauty of the trace formulas lies in the fact that everything on the right- sect. 6.1

hand-side – prime cycles p, their periods Tp and the stability eigenvalues of Jp –
is an invariant property of the flow, independent of any coordinate choice.
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20 CHAPTER 1. OVERTURE

1.5.2 Spectral determinant

The eigenvalues of a linear operator are given by the zeros of the appropriate
determinant. One way to evaluate determinants is to expand them in terms of
traces, using the identities1.3

on p. 30

ln det (s − A) = tr ln(s − A)
d

ds
ln det (s − A) = tr

1
s − A ,

and integrating over s. In this way the spectral determinant of an evolution
operator becomes related to the traces that we have just computed:chapter 10

det (s − A) = exp

(
−
∑
p

∞∑
r=1

1
r

e−sTpr∣∣det
(
1− Jrp

)∣∣
)

. (1.14)

The s integration leads here to replacement Tp → Tp/rTp in the periodic orbit
expansion (1.13).

The motivation for recasting the eigenvalue problem in this form is sketched
in fig. 1.10; exponentiation improves analyticity and trades in a divergence of the
trace sum for a zero of the spectral determinant. The computation of the zerossect. 10.7.1

of det (s − A) proceeds very much like the computations of sect. 1.4.3.

1.6 From chaos to statistical mechanics

While the above replacement of dynamics of individual trajectories by evolution
operators which propagate densities might feel like just another bit of mathemat-
ical voodoo, actually something very radical has taken place. Consider a chaotic
flow, such as stirring of red and white paint by some deterministic machine. If
we were able to track individual trajectories, the fluid would forever remain a
striated combination of pure white and pure red; there would be no pink. What
is more, if we reversed stirring, we would return back to the perfect white/red
separation. However, we know that this cannot be true – in a very few turns of
the stirring stick the thickness of the layers goes from centimeters to Ångströms,
and the result is irreversibly pink.

Understanding the distinction between evolution of individual trajectories and
the evolution of the densities of trajectories is key to understanding statistical
mechanics – this is the conceptual basis of the second law of thermodynamics,
and the origin of irreversibility of the arrow of time for deterministic systems with
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1.7. SEMICLASSICAL QUANTIZATION 21

Figure 1.10: Spectral determinant is preferable
to the trace as it vanishes smoothly at the leading
eigenvalue, while the trace formula diverges.

time-reversible equations of motion: reversibility is attainable for distributions
whose measure in the space of density functions goes exponentially to zero with
time.

By going to a description in terms of the asymptotic time evolution operators
we give up tracking individual trajectories for long times, but instead gain a very
effective description of the asymptotic trajectory densities. This will enable us,
for example, to give exact formulas for transport coefficients such as the diffusion
constants without any probabilistic assumptions (such as the stosszahlansatz of chapter 16

Boltzmann).

A century ago it seemed reasonable to assume that statistical mechanics ap-
plies only to systems with very many degrees of freedom. More recent is the
realization that much of statistical mechanics follows from chaotic dynamics, and
already at the level of a few degrees of freedom the evolution of densities is irre-
versible. Furthermore, the theory that we shall develop here generalizes notions
of “measure” and “averaging” to systems far from equilibrium, and transports
us into regions hitherto inaccessible with the tools of the equilibrium statistical
mechanics.

The results of the equilibrium statistical mechanics do help us, however, to
understand the ways in which the simple-minded periodic orbit theory falters. A
non-hyperbolicity of the dynamics manifests itself in power-law correlations and chapter 17

even “phase transitions”. sect. ??

1.7 Semiclassical quantization

So far, so good – anyone can play a game of classical pinball, and a skilled neu-
roscientist can poke rat brains. But what happens quantum mechanically, that
is, if we scatter waves rather than point-like pinballs? Were the game of pin-
ball a closed system, quantum mechanically one would determine its stationary
eigenfunctions and eigenenergies. For open systems one seeks instead for com-
plex resonances, where the imaginary part of the eigenenergy describes the rate
at which the quantum wave function leaks out of the central multiple scattering
region. One of the pleasant surprises in the development of the theory of chaotic
dynamical systems was the discovery that the zeros of dynamical zeta function
(1.8) also yield excellent estimates of quantum resonances, with the quantum am-
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plitude associated with a given cycle approximated semiclassically by the “square
root” of the classical weight (1.14)

tp =
1√
|Λp|

e
i
�
Sp−iπmp/2 . (1.15)

Here the phase is given by the Bohr-Sommerfeld action integral Sp, together
with an additional topological phase mp, the number of points on the periodic
trajectory where the naive semiclassical approximation fails us.chapter 18

1.7.1 Quantization of helium

Now we are finally in position to accomplish something altogether remarkable;
we put together all ingredients that made the pinball unpredictable, and com-
pute a “chaotic” part of the helium spectrum to shocking accuracy. Poincaré
taught us that from the classical dynamics point of view, helium is an example
of the dreaded and intractable 3-body problem. Undaunted, we forge ahead and
consider the collinear helium, with zero total angular momentum, and the two
electrons on the opposite sides of the nucleus.

++- -

We set the electron mass to 1, and the nucleus mass to ∞. In these units the
helium nucleus has charge 2, the electrons have charge -1, and the Hamiltonian
is

H =
1
2
p21 +

1
2
p22 − 2

r1
− 2

r2
+

1
r1 + r2

. (1.16)

Due to the energy conservation, only three of the phase space coordinates (r1, r2, p1, p2)
are independent. The dynamics can be visualized as a motion in the (r1, r2),
ri ≥ 0 quadrant, or, better still, by an appropriately chosen 2-d Poincaré section.

The motion in the (r1, r2) plane is topologically similar to the pinball motion
in a 3-disk system, except that the motion is not free, but in the Coulomb po-
tential. The classical collinear helium is also a repeller; almost all of the classical
trajectories escape. Miraculously, the symbolic dynamics for the survivors again
turns out to be binary, just as in the 3-disk game of pinball, so we know what cy-
cles need to be computed for the cycle expansion (1.9). A set of shortest cycles up
to a given symbol string length then yields an estimate of the helium spectrum.
This simple calculation yields surprisingly accurate eigenvalues; even though thechapter 21
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Figure 1.11: A typical collinear helium trajectory
in the r1 – r2 plane; the trajectory enters along the
r1 axis and escapes to infinity along the r2 axis.
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cycle expansion was based on the semiclassical approximation (1.15) which is ex-
pected to be good only in the classical large energy limit, the eigenenergies are
good to 1% all the way down to the ground state.

If you were wandering, while reading this introduction “what’s up with rat
brains?”, the answer is yes indeed, there is a line of research in study on neuronal
dynamics that focuses on possible unstable periodic states, described in ref. [4]
and many other articles.

1.8 Guide to literature

This text aims to bridge the gap between the physics and mathematics dynamical
systems literature. The intended audience is the dream graduate student, with
a theoretical bent. As a complementary presentation we recommend Gaspard’s
monograph [5] which covers much of the same ground in a highly readable and
scholarly manner.

As far as the prerequisites are concerned - this book is not an introduction
to nonlinear dynamics. Nonlinear science requires a one semester basic course
(advanced undergraduate or first year graduate). A good start is the textbook
by Strogatz [6], an introduction to flows, fixed points, manifolds, bifurcations. It
is probably the most accessible introduction to nonlinear dynamics - it starts out
with differential equations, and its broadly chosen examples and many exercises
make it favorite with students. It is not strong on chaos. There the textbook
of Alligood, Sauer and Yorke [7] is preferable: an elegant introduction to maps,
chaos, period doubling, symbolic dynamics, fractals, dimensions - a good compan-
ion to this book. An introduction more comfortable to physicists is the textbook
by Ott [8], with baker’s map used to illustrate many key techniques in analysis
of chaotic systems. It is perhaps harder than the above two as the first book on
nonlinear dynamics.
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The introductory course should give students skills in qualitative and numer-
ical analysis of dynamical systems for short times (fixed points, bifurcations) and
familiarize them with Cantor sets and symbolic dynamics for chaotic dynamics.
With this, and graduate level exposure to statistical mechanics, partial differen-
tial equations and quantum mechanics, the stage is set for any of the one-semester
advanced courses based on this book. The courses we have taught start out with
the introductory chapters on qualitative dynamics, symbolic dynamics and flows,
and than continue in different directions:

Deterministic chaos. Chaotic averaging, evolution operators, trace formu-
las, zeta functions, cycle expansions, Lyapunov exponents, billiards, transport
coefficients, thermodynamic formalism, period doubling, renormalization opera-
tors.

Spatiotemporal dynamical systems. Partial differential equations for
dissipative systems, weak amplitude expansions, normal forms, symmetries and
bifurcations, pseudospectral methods, spatiotemporal chaos.

Quantum Chaology. Semiclassical propagators, density of states, trace for-
mulas, semiclassical spectral determinants, billiards, semiclassical helium, diffrac-
tion, creeping, tunneling, higher � corrections.

This book does not discuss the random matrix theory approach to chaos in
quantal spectra; no randomness assumptions are made here, rather the goal is to
milk the deterministic chaotic dynamics for its full worth. The book concentrates
on the periodic orbit theory. The role of unstable periodic orbits was already fully
appreciated by Poincaré [9, 10], who noted that hidden in the apparent chaos is
a rigid skeleton, a tree of cycles (periodic orbits) of increasing lengths and self-
similar structure, and suggested that the cycles should be the key to chaotic
dynamics. Periodic orbits have been at core of much of the mathematical work
on the theory of the classical and quantum dynamical systems ever since. We refer
the reader to the reprint selection [11] for an overview of some of that literature.

If you find this book not rigorous enough, you should turn to the mathe-
matics literature. The most extensive reference is the treatise by Katok and
Hasselblatt [12], an impressive compendium of modern dynamical systems the-
ory. The fundamental papers in this field, all still valuable reading, are Smale [13],
Bowen [14] and Sinai [15]. Sinai’s paper is prescient and offers a vision and a
program that ties together dynamical systems and statistical mechanics. It is
written for readers versed in statistical mechanics. For a dynamical systems ex-
position, consult Anosov and Sinai[?]. Markov partitions were introduced by
Sinai in ref. [16]. The classical text (though certainly not an easy read) on the
subject of dynamical zeta functions is Ruelle’s 1978 Statistical Mechanics, Ther-
modynamic Formalism [17]. In Ruelle’s monograph transfer operator technique
(or the “Perron-Frobenius theory”) and Smale’s theory of hyperbolic flows are
applied to zeta functions and correlation functions. The status of the theory from
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Ruelle’s point of view is compactly summarized in his 1995 Pisa lectures [19]. Fur-
ther excellent mathematical references on thermodynamic formalism are Parry
and Pollicott’s monograph [20] with emphasis on the symbolic dynamics aspects
of the formalism, and Baladi’s clear and compact review of dynamical zeta func-
tions [21].

A graduate level introduction to statistical mechanics from the dynamical
point view is given by Dorfman [22]; the Gaspard monograph [5] covers the same
ground in more depth. The role of “chaos” in statistical mechanics is critically
dissected by Bricmont in his highly readable essay “Science of Chaos or Chaos
in Science?” [23].

A key prerequisite to developing any theory of “quantum chaos” is solid un-
derstanding of the Hamiltonian mechanics. For that, Arnold’s text [24] is the
essential reference. Ozorio de Almeida [25] is a nice introduction of the aspects
of Hamiltonian dynamics prerequisite to quantization of integrable and nearly
integrable systems, with emphasis on periodic orbits, normal forms, catastrophy
theory and torus quantization. The book by Brack and Bhaduri [26] is an excel-
lent introduction to the semiclassical methods. Gutzwiller’s monograph [27] is an
advanced introduction focusing on chaotic dynamics both in classical Hamilto-
nian settings and in the semiclassical quantization. This book is worth browsing
through for its many insights and erudite comments on quantum and celestial
mechanics even if one is not working on problems of quantum chaology. Perhaps
more suitable as a graduate course text is Reichl’s presentation [28]. For an in-
troduction to “quantum chaos” that focuses on the random matrix theory the
reader can consult the monograph by Haake [29], among others.

Guide to exercises

God can afford to make mistakes. So can Dada!
Dadaist Manifesto

The essence of this subject is incommunicable in print; the only way to develop
intuition about chaotic dynamics is by computing, and the reader is urged to try
to work through the essential exercises. Some of the solutions provided might
be more illuminating than the main text. So as not to fragment the text too
much, the exercises are indicated by text margin boxes such as the one on this
margin, and collected at the end of each chapter. The problems that you should 11.2

on p. 239do have underlined titles. The rest (smaller type) are optional. Difficult optional
problems are marked by any number of *** stars. By the end of the course you
should have completed at least three projects: (a) compute everything for a 1-
dimensional repeller, (b) compute escape rate for a 3-disk game of pinball, (c)
compute a part of the quantum 3-disk game of pinball, or the helium spectrum, or
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if you are interested in statistical rather than the quantum mechanics, compute
a transport coefficient. The essential steps are:

• Dynamics

1. count prime cycles, exercise 1.1, exercise 7.1, exercise 7.4

2. pinball simulator, exercise 2.7, exercise 8.11

3. pinball stability, exercise 8.8, exercise 8.11

4. pinball periodic orbits, exercise 8.12, exercise 8.13

5. helium integrator, exercise 2.9, exercise 8.14

6. helium periodic orbits, exercise 21.3, exercise 8.16

• Averaging, numerical

1. pinball escape rate, exercise 10.14

2. Lyapunov exponent, exercise 14.2

• Averaging, periodic orbits

1. cycle expansions, exercise 11.1, exercise 11.2

2. pinball escape rate, exercise 11.4, exercise 11.5

3. cycle expansions for averages, exercise 11.1, exercise 13.4

4. cycle expansions for diffusion, exercise 16.1

5. pruning, Markov graphs, exercise ??

6. desymmetrization exercise 15.1

7. intermittency, phase transitions

8. semiclassical quantization exercise 19.4

9. ortho-, para-helium, lowest eigenenergies exercise 21.6

Solutions for some of the problems are included chapter J. Often going
through a solution is more instructive than reading the corresponding chapter.

Résumé

The goal of this text is an exposition of the best of all possible theories of deter-
ministic chaos, and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, no matter how small,
will spread over the entire accessible phase space. Hence the theory focuses on
description of the geometry of the space of possible outcomes, and evaluation of
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1.8. GUIDE TO LITERATURE 27

averages over this space, rather than attempting the impossible, precise predic-
tion of individual trajectories. The dynamics of distributions of trajectories is
described in terms of evolution operators. In the evolution operator formalism
the dynamical averages are given by exact formulas, extracted from the spectra
of evolution operators. The key tools are the trace formulas and the spectral
determinants.

The theory of evaluation of spectra of evolution operators presented here is
based on the observation that the motion in dynamical systems of few degrees of
freedom is often organized around a few fundamental cycles. These short cycles
capture the skeletal topology of the motion on a strange attractor in the sense
that any long orbit can approximately be pieced together from the nearby peri-
odic orbits of finite length. This notion is made precise by approximating orbits
by prime cycles, and evaluating associated curvatures. A curvature measures the
deviation of a longer cycle from its approximation by shorter cycles; smooth-
ness and the local instability of the flow implies exponential (or faster) fall-off
for (almost) all curvatures. Cycle expansions offer then an efficient method for
evaluating classical and quantum observables.

The critical step in the derivation of the dynamical zeta function was the
hyperbolicity assumption, that is the assumption of exponential shrinkage of all
strips of the pinball repeller. By dropping the ai prefactors in (1.3), we have
given up on any possibility of recovering the precise distribution of starting x
(which should anyhow be impossible due to the exponential growth of errors),
but in exchange we gain an effective description of the asymptotic behavior of
the system. The pleasant surprise of cycle expansions (1.8) is that the infinite
time behavior of an unstable system is as easy to determine as the short time
behavior.

To keep exposition simple we have here illustrated the utility of cycles and
their curvatures by a pinball game, but the remainder of this book should give the
reader some confidence in a general applicability of the theory. The formalism
should work for any average over any chaotic set which satisfies two conditions:

1. the weight associated with the observable under consideration is multi-
plicative along the trajectory,

2. the set is organized in such a way that the nearby points in the symbolic
dynamics have nearby weights.

The theory is applicable to evaluation of a broad class of quantities character-
izing chaotic systems, such as the escape rates, Lyapunov exponents, transport
coefficients and quantum eigenvalues. One of the surprises is that the quantum
mechanics of classically chaotic systems is very much like the classical mechanics
of chaotic systems; both are described by nearly the same zeta functions and
cycle expansions, with the same dependence on the topology of the classical flow.
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Exercises

1.1 3-disk symbolic dynamics. As the periodic trajectories will turn out
to be the our main tool to breach deep into the realm of chaos, it pays to start
familiarizing oneself with them already now, by sketching and counting the few
shortest prime cycles (we return to this in sect. 9.4). Show that the 3-disk pinball
has 3 · 2n distinct itineraries of length n. List distinct periodic orbits of lengths
2, 3, 4, 5, · · ·. Verify that the shortest 3-disk prime cycles are 12, 13, 23, 123,
132, 1213, 1232, 1323, 12123, · · ·. Try to sketch them.

1.2 Sensitivity to initial conditions. Assume that two pinball trajectories
start out parallel, but separated by 1 Ångström, and the disks are of radius
a = 1 cm and center-to-center separation R = 6 cm. Try to estimate in how
many bounces the separation will grow to the size of system (assuming that the
trajectories have been picked so they remain trapped for at least that long).
Estimate the Who’s Pinball Wizard’s typical score (number of bounces) in game
without cheating, by hook or crook (by the end of chapter 11 you should be in
position to make very accurate estimates).

1.3 Trace-log of a matrix. Prove that

det M = etr lnM .

for arbitrary finite dimensional matrix M .
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Chapter 2

Trajectories

Poetry is what is lost in translation
Robert Frost

(R. Mainieri, P. Cvitanović and E.A. Spiegel)

We start out by a recapitulation of the basic notions of dynamics. Our aim is
narrow; keep the exposition focused on prerequsites to the applications to be
developed in this text. We assume that the reader is familiar with the dynamics
on the level of introductory texts mentioned in sect. 1.8.

fast track:

chapter 4, p. 63

2.1 Flows

The notion of a dynamical system evolved from the observation of the motion of
the planets against the backdrop of stars. Against the daily motion of the stars
from east to west, the planets distinguish themselves by moving through the
celestial firmament. Different constellations can be used to specify the position
of the planets; latitude and longitude from a fixed star provide a more accurate
position. In a dynamical system the firmament becomes the phase space M, a
set where any point can be characterized by its coordinates; the planet becomes
a point in this phase space; and the motion of the planet is replaced by an
evolution rule f t that tells us where the points move to after a time t. The time
t parameterizes planet’s trajectory. If we take t to be a real number t ∈ R, as
if we were observing the planet at every instant, time is continuous and we have
a flow. If we take t to be an integer t ∈ Z, as if we were observing the planet

31
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Figure 2.1: (a) A trajectory. (b) A flow mapping region Mi of the state space into region
f t(Mi).

every midnight or at every pass directly above our heads, time is discrete and we
have an iterated map.

The dynamical systems we will be studying are smooth. This is expressed
mathematically by saying that the evolution rule f t can be differentiated as many
times as needed. A flow is usualy specified by a set of ordinary differential
equations, or by a map, a function that takes us from time t to time t + 1. We
will not discuss very much how these maps and differential equations come about.
We will assume them given, briefly explain them, and point you to the literature.

A state of a physical system can be represented by a point in an abstract space
called state space or phase space M. The phase space is locally R

d, meaning that
d numbers are sufficient to determine what will happen next. If we only kept track
of a subset of numbers, for example the outside temperature, that would not be
enough information to predict the future values of the temperature. Outside
temperature, in this case, does not form a phase space. If there is a definite rule
that tells us how this representative point moves in M, the system is said to be
deterministic. A pair (M, f), where M is a space and f : M → M is a map is
called a dynamical system.

When we need to stress that the dimension d of M is greater than one, we
may refer to the point x ∈ M as xi where i = 1, 2, 3, . . . , d. Next we label
distinct trajectories. As the dynamics is deterministic, it suffices to mark the
initial point ξ, and represent the motion of the representative point along the
phase space trajectory by x(t) = f t(ξ), where ξ = x(0). For systems that evolve
continuously in time, the trajectory of a representative point is a continuous
curve.

A trajectory can be

stationary: f t(x) = x for all t
periodic: f t(x) = f t+Tp(x) for a given minimum period Tp

aperiodic: f t(x) �= f t′(x) for all t �= t′ .
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2.1. FLOWS 33

In the literature a stationary point is often referred to as an equilibrium or a
stagnation point.

For a deterministic system every representative point has a unique future, so
trajectories cannot intersect. There might exist a set of measure zero (tips of
wedges, cusps, etc.) for which the trajectory is not defined. As we shall see in
chapter 7, such sets play a key role in topological partitioning of the phase space.

Aperiodic motions are a large class of motions. For times much longer than
a typical “turnover” time it makes sense to relax the notion of exact periodicity,
and replace it by the notion of recurrence. A point x ∈ M is called a wandering
point if there exists an open neighborhood M0 of x to which the trajectory never
returns

f t(x) ∩ M0 = ∅ for all t > tmin . (2.1)

Conversely, a point is recurrent or non-wandering if for any open neighborhood
M0 of x and any time tmin there exists a later time t such that

f t(x) ∩ M0 �= ∅ . (2.2)

In other words, the trajectory of a non-wandering point reenters the neighborhood
M0 infinitely often. We shall denote by Ω the non–wandering set of f , that is
the union of all the non-wandering points of M.

The set Ω, the non–wandering set of f , is the key to understanding the long-
time behavior of a dynamical system; all calculations undertaken here will be
carried out on non–wandering sets.

Periodic points are the simplest examples of non-wandering points (though
almost all non-wandering points are aperiodic). As longer and longer cycles
approximate better and better finite segment of arbitrary admissible trajectories,
the non–wandering set can be defined as the closure of the union of all periodic
points.

In order to describe the evolution of the system for many initial points at once,
we need the notion of a flow. A flow is a continuous-time dynamical system given
by a family of mappings f t : M → M parameterized by t ∈ R and satisfying 2.2

on p. 47

(a) f0(x) = x, x ∈ M

(b) f t(f t′(x)) = f t+t′(x) (the evolution law is the same at all times)

(c) the mapping (x, t) �→ f t(x) from M × R into M is continuous.

The family of mappings f t(x) is a continuous (forward semi-) group.
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34 CHAPTER 2. TRAJECTORIES

2.1.1 A flow with a strange attractor

The above definition of flows is rather abstract - how does one actually describe
a particular flow? In physical application a flow is typically defined by a set of d
first order ordinary differential equations

dxi

dt
= vi(x) , i = 1, 2, . . . , d . (2.3)

If

vi(xq) = 0 , (2.4)

xq is an equilibrium point. Otherwise the trajectory is obtained by integrating
the equations (2.3):2.1

on p. 47

xi(t) := f t
i (ξ) = ξi +

∫ t

0
dτ vi(x(τ)) , xi(0) = ξi . (2.5)

2.3
on p. 47

We shall consider here only the autonomous or stationary flows, that is flows for
which the velocity field vi is not explicitely dependent on time.

A concrete example of an autonomous flow is the Rössler system2.5
on p. 48

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c) , a = b = 1/5 , c = 5.7 (2.6)

whose typical long-time trajectory is sketched in fig. 2.2(a). As we shall show in
sect. 3.1, for this flow any finite volume of initial conditions shrinks with time, so
this flow is contracting. The next example is a flow that preserves phase space
volumes.

2.1.2 A Hamiltonian flow
appendix ??

An important class of dynamical systems are the Hamiltonian flows, given by a
time-independent Hamiltonian H(q, p) together with the Hamilton’s equations of
motion

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (2.7)
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Figure 2.2: (a) The Rössler flow (b) Several Poincaré sections of the Rössler flow. (c) A
return map constructed from a Poincaré sections of the Rössler flow. (G. Simon)

where the 2D phase space coordinates x are split into x = (p,q), where q =
(q1, q2, . . . , qD) and p = (p1, p2, . . . , pD) denote respectively the configuration
space coordinates and the conjugate momenta of a Hamiltonian system with D
degrees of freedom. sect. 18.2.1

In chapter 21 we shall apply the periodic orbit theory to the quantization of
helium. In particular, we will study collinear helium, a doubly charged nucleus
with two electrons arranged on a line, an electron on each side of the nucleus.
The Hamiltonian for this system is

H =
1
2
p21 +

1
2
p22 − 2

r1
− 2

r2
+

1
r1 + r2

(2.8)

The collinear helium has 2 degrees of freedom, thus a 4-dimensional phase space
M, which the energy conservation reduces to 3 dimensions. The dynamics can
be visualized as a motion in the (r1, r2), ri ≥ 0 quadrant, fig. 21.5.

Though very simple, the above Hamiltonian is not the most convenient for
numerical investigations of the system. In the (r1, r2) coordinates the potential
is singular for ri → 0 nucleus-electron collisions. These 2-body collisions can
be regularized by a rescaling of the time and the coordinates (r1, r2, p1, p2) →
(Q1, Q2, P1, P2), in a manner to be described in chapter 21. For the purpose at
hand it is sufficient to state the result: In the rescaled coordinates the equations
of motion are 2.9

on p. 50

Ṗ1 = 2Q1

[
2 − P 22

8
− Q22

(
1 +

Q22
R4

)]
; Q̇1 =

1
4
P1Q

2
2

Ṗ2 = 2Q2

[
2 − P 21

8
− Q21

(
1 +

Q21
R4

)]
; Q̇2 =

1
4
P2Q

2
1 . (2.9)
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36 CHAPTER 2. TRAJECTORIES

where R = (Q21+Q22)
1/2. These equations look harder to tackle than the harmonic

oscillators that you are familiar with from other learned treatises, and indeed they
are. But they are also a typical example of kinds of flows that one works with in
practice.

in depth:

sect. 21, p. 435

2.2 Maps

Discrete time dynamical systems arise naturally from flows. In general there are
two strategies for associating iterated mapping to a flow. One can observe the
flow at fixed time intervals (the strobe method), or one can observe the flow when
a special event happens (the Poincaré section method). This special event can
be as simple as having one of the coordinates become zero, or as complicated as
having the flow cut through a curved hypersurface.

Successive intersections of a (d+1)-dimensional hypersurface by the trajectory
define the Poincaré return map f (x), a d-dimensional map of form

xn+1 = f (xn) , xm ∈ P . (2.10)

Depending on the application, one might need to suplement the return map with
the ceiling function, or the time of first return function T (xn) which gives the time
of flight to the next section for a trajectory starting at xn, with the accumulated
flight time given by

tn+1 = tn + T (xn) , xm ∈ P , (2.11)

or some other observable integrated along the trajectory. With a clever choice ofchapter 5

a Poincaré section all orbits of the dynamical system intersect the section, giving
us a good idea of what the flow does.

An example may help visualize this. Consider the simple pendulum. Its
phase space is two-dimensional: momentum on the vertical axis and position on
the horizontal axis. We can then choose the Poincaré section to be the positive
horizontal axis. Now imagine what happens as a point traces a trajectory through
this phase space. In the pendulum all orbits are loops, so any trajectory will
intersect periodically the line, that is the Poincaré section, at one point. Consider
now a pendulum with dissipation. Now every trajectory is an inwards spiral, and
the trajectory will intersect the Poincaré section at a series of points that get
closer and closer to the origin.
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2.2. MAPS 37

The value of the Poincaré section comes through when we consider more com-
plicated examples. Suppose we wanted to visualize the Rössler flow (2.6). From
the three-dimensional plots such as fig. 2.2(a) we have seen that the trajectories
seem to wrap around the origin. In this case a good choice for the Poincaré sec-
tion may be a plane containing the z axis and oriented at different angles with
respect to the x axis, fig. 2.2(b). Once the section is fixed, we construct a return
map (2.10), as in fig. 2.2(c). Even though the return map is 2-d → 2-d, in the
Rössler example the strong dissipation renders the return map 1-dimensional for
all practical purposes.

Polynomial approximations to such Poincaré return maps

x1,n+1 = f1(xn)
x2,n+1 = f2(xn)

. . . (2.12)

xk,n+1 = fk(xn) , fk(x) = ak +
d∑

j=1

bkjxj +
d∑

i,j=1

ckijxixj + . . .

xd,n+1 = fd(xn)

motivate the study of model mappings of the plane, such as the Hénon map to
which we turn next.

2.2.1 Hénon map

The most frequently employed example of a nonlinear 2-dimensional map is the
Hénon map

xn+1 = 1 − ax2n + byn

yn+1 = xn , (2.13)

or equivalently, the 2-step recurrence relation

xn+1 = 1 − ax2n + bxn−1 . (2.14)

A “tent map” version of the Hénon map is given by the Lozi map:

xn+1 = 1 − a|xn| + byn

yn+1 = xn (2.15)
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38 CHAPTER 2. TRAJECTORIES

Though not realistic as an approximation to a smooth flow, the Lozi map is a
very helpful tool for developing intuition about topology of a whole class of maps
of the Hénon type, so called once-folding maps.

The Hénon map is the simplest map that captures the “stretch & fold” dy-
namics of return maps such as the Rössler’s, fig. 2.2(c). The Hénon map dynamics
is conveniently plotted in the (xn, xn+1) plane; an example is given in Fig. ? The
quickest sketch of asymptotics of a once-folding map is obtained by picking an
arbitrary starting point and iterating (2.13) on a computer. For an arbitrary
initial point this might converge to a stable limit cycle, to a strange attractor, to
a false attractor (due to the roundoff errors), or diverge. In other words, straight3.1

on p. 60 iteration is essentially uncontrollable, and we need to resort to more systematic
exploration. Typical strategies for a systematic investigation are exploration of
stable/unstable manifolds, periodic points, saddle-stradle methods that we shall
discuss in chapters 7 and 8.

For b �= 0 the Hénon map is reversible: the backward iteration of (2.14) is
given by

xn−1 = −1
b
(1 − ax2n − xn+1) . (2.16)

Hence the time reversal amounts to b → 1/b, a → a/b2 symmetry in the parameter
plane, together with x → −x/b in the coordinate plane, and there is no need
to explore the (a, b) parameter plane outside the strip b = ±1. If the map is
orientation and area preserving, b = −1,

xn−1 = 1 − ax2n − xn+1 , (2.17)

the backward and the forward iteration are the same, and the non–wandering set
is symmetric across the diagonal xn+1 = xn. This is one of the simplest models
for a Poincaré return map for a Hamiltonian flow. For the orientation reversing
case, b = 1, we have

xn−1 = 1 − ax2n + xn+1 , (2.18)

and the non–wandering set is symmetric across the xn+1 = −xn diagonal.

The Hénon map stretches out and folds once a region of the (x, y) plane
centered around the origin. The “one-step memory” term bxn−1 in (2.14) smears
the parabola over characteristic thickness b, see Fig.? . Parameter a controls
the amount of stretching, while parameter b controls the thickness of the folded
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2.2. MAPS 39

Figure 2.3: The Hénon strange attractor for (a, b) = (1.4, 0.3). KTH: to be drawn

image. For small b the Hénon map is essentially the one-dimensional quadratic
map

xn+1 = 1 − ax2n . (2.19)

By setting b = 0 we lose determinism - (2.19) is not invertible mapping. Still,
the approximation is very instructive. For this reason many expositions of the
theory of dynamical systems commence with the study of 1-dimensional maps.
As we shall see in sect. 7.4, understanding of 1-dimensional dynamics is indeed
the essential prerequisite to unravelling the qualitative dynamics of many higher-
dimensional dynamical systems.

fast track:

chapter 3, p. 51

2.2.2 Constructing a Poincaré section

(R. Mainieri)

For almost any flow of physical interest the Poincaré section is not avail-
able in analytic form. We describe now an effective numerical method for finding
the Poincaré section.

Consider the system (2.3) of ordinary differential equations in the vector vari-
able x = (x1, x2, . . . , xd)

dxi

dt
= vi(x, t) , (2.20)

where the flow velocity v is a vector function that may depend on the position
in phase space x and on the time t. In general v will be something that cannot
be integrated analytically and we will have to resort to numerical integration to
determine the trajectories of the system. Our task is to determine the points
at which the numerically integrated trajectory traverses a given surface. The
surface will be specified implicitly through a function g(x) that is zero whenever
a point x is on the Poincaré section. The simplest choice of such section is a
plane specified by a point (located at the tip of the vector r0) and a direction
vector a perpendicular to the plane. A point x is on this plane if it satisfies the
equation 2.6

on p. 48
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g(x) = (x − r0) · a = 0 . (2.21)

If we use a tiny step size in our numerical integrator, then a possible solution
is to observe the value of g as we integrate; its sign will change as the trajectory
crosses the surface. The problem with this method is that we have to use a very
small integration time step and even then it is unlikely that the integrator will
land on the Poincaré section. One could try to interpolate the intersection point
from the two trajectory points on either side of the surface. However, there is a
better way.

Let ta be the time just before g changes sign, and tb the time just after it
changes sign. The method for landing exactly on the Poincaré section will be to
convert one of the space coordinates into an integration variable for the part of
the trajectory between ta and tb. Suppose that x1 is almost perpendicular to the
Poincaré section, then we can use that

dxk

dx1

dx1
dt

=
dxk

dx1
v1(x, t) = vk(x, t) (2.22)

and rewrite the equations of motion (2.20) as

dt

dx1
=

1
v1

...
dxk

dx1
=

vk
v1

(2.23)

Now we use x1 as the “time” in the integration routine and integrate it from
x1(ta) to the value of x1 on the surface, which can be found from the surface
equation (2.21). x1 need not be perpendicular to the Poincaré section; indeed,
for some phase spaces, such as those for a Hamiltonian system, the notion of being
perpendicular may not even be defined. Any x1 can be picked as the integration
variable, as long as it is not parallel to the Poincaré section.

2.3 Infinite-dimensional flows

Flows described by partial differential equations are considered infinite
dimensional because if we write them as a set of ordinary differential equations
then one needs an infinity of the ordinary kind to represent the dynamics of
one equation of the partial kind. We will illustrate this with the Kuramoto-
Sivashinsky system.
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2.3.1 Fluttering flame front

The Kuramoto-Sivashinsky equation, claimed to describe the flutter of the flame
front of gas burning in a cylindrically symmetric burner on your kitchen stove,
is one of the simplest partial differential equations that exhibit chaos. It is a
dynamical system extended in one spatial dimension, defined by

ut = (u2)x − uxx − νuxxxx . (2.24)

In this equation t ≥ 0 is the time and x ∈ [0, 2π] is the space coordinate. The
subscripts x and t denote the partial derivatives with respect to x and t; ut =
du/dt, uxxxx stands for 4th spatial derivative of the “height of the flame front”
u = u(x, t) at position x and time t. ν is a “viscosity” damping parameter;
its role is to suppress solutions with fast spatial variations. The term (u2)x
makes this a nonlinear system. Time evolution of a solution of the Kuramoto-
Sivashinsky system is illustrated by fig. 2.4. How are such solutions computed?
The salient feature of such partial differential equations is that for any finite value
of the phase-space contraction parameter ν a theorem says that the asymptotic
dynamics is describable by a finite set of “inertial manifold” ordinary differential
equations.

The “flame front” u(x, t) = u(x+ 2π, t) is periodic on the x ∈ [0, 2π] interval,
so a reasonable strategy (but by no menas the only one) is to expand it in a
discrete spatial Fourier series:

u(x, t) =
+∞∑

k=−∞
bk(t)eikx . (2.25)

Since u(x, t) is real,

bk = b∗−k . (2.26)

Substituting (2.25) into (2.24) yields the infinite ladder of evolution equations
for the Fourier coefficients bk:

ḃk = (k2 − νk4)bk + ik
∞∑

m=−∞
bmbk−m . (2.27)

As ḃ0 = 0, the solution integrated over space is constant in time. In what follows
we shall assume that this average is zero, b0 =

∫
dxu(x, t) = 0.
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Figure 2.4: Spatiotemporally periodic solution
u0(x, t). We have divided x by π and plotted only
the x > 0 part, since we work in the subspace
of the odd solutions, u(x, t) = −u(−x, t). N =
16 Fourier modes truncation with ν = 0.029910.
(From ref. [17].)

The coefficients bk are in general complex functions of time. t. We can simplify
the system (2.27) further by considering the case of bk pure imaginary, bk = iak,
where ak are real, with the evolution equations

ȧk = (k2 − νk4)ak − k

∞∑
m=−∞

amak−m . (2.28)

14.1
on p. 294

This picks out the subspace of odd solutions u(x, t) = −u(−x, t).

That is our infinite set of ordinary differential equations promised at the
beginning of the section.

The trivial solution u(x, t) = 0 is a fixed point of (2.24), but that is basically
as far as analytical solutions are concerned. You can integrate numerically the
Fourier modes (2.28), truncating the ladder of equations to a finite number of
modes N , that is, set ak = 0 for k > N . For parameter values explored below,
N ≤ 16 truncations were sufficiently accurate. If your integration routine takes2.4

on p. 48 days and lots of memory, you should probably start from scratch and write a few
lines of your own Runge-Kuta code.

We can now go back to the configuration space using (2.25) and plot the
corresponding spatiotemporal solution u(x, t), as in fig. 2.4.

2.3.2 Fourier modes truncations

The growth of the unstable long wavelengths (low |k|) excites the short wave-
lengths through the nonlinear term in (2.28). The excitations thus transferred
are dissipated by the strongly damped short wavelengths, and a sort of “chaotic
equilibrium” can emerge. The very short wavelengths |k| � 1/

√
ν will remain

small for all times, but the intermediate wavelengths of order |k| ∼ 1/
√
ν will play

an important role in maintaining the dynamical equilibrium. Hence, while one
may truncate the high modes in the expansion (2.28), care has to be exercised to
ensure that no modes essential to the dynamics are chopped away. In practice one
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Figure 2.5: Projections of a typical 16-dimensional trajectory onto different 3-dimensional
subspaces, coordinates (a) {a1, a2, a3}, (b) {a1, a2, a4}. N = 16 Fourier modes truncation
with ν = 0.029910. (From ref. [17].)

Figure 2.6: The attractor of the system (2.28),
plotted as the a6 component of the a1 = 0 Poincaré
section return map, 10,000 Poincaré section returns
of a typical trajectory. Indicated are the periodic
points 0, 1 and 01. N = 16 Fourier modes trunca-
tion with ν = 0.029910. (From ref. [17].)

does this by repeating the same calculation at different truncation cutoffs N , and
making sure that inclusion of additional modes has no effect within the accuracy
desired. For figures given here, the numerical calculations were performed taking
N = 16, for the damping parameter value ν = 0.029910, for which the system is
chaotic (as far as we can determine that numerically).

The problem with such high dimensional truncations of (2.28) is that the
dynamics is difficult to visualize. The best we can do without much programming
is to examine trajectory’s projections onto any three axes ai, aj , ak, as in fig. 2.5.

The question is how to look at such flow? Usually one of the first steps in
analysis of such flows is to restrict the dynamics to a Poincaré section. We fix
(arbitrarily) the Poincaré section to be the hyperplane a1 = 0, and integrate
(2.28) with the initial conditions a1 = 0, and arbitrary values of the coordinates
a2, . . . , aN , where N is the truncation order. When a1 becomes 0 the next time,
the coordinates a2, . . . , aN are mapped into (a′2, . . . a′N ) = P (a2, . . . , aN ), where
P is the Poincaré mapping of a N −1 dimensional hyperplane into itself. Fig. 2.6
is an example of a results that one gets. While the topology of the attractor is
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still obscure, one thing is clear - the attractor is finite and thin, barely thicker
than a line.

Commentary

Remark 2.1 Hénon, Lozi maps. The Hénon map per se is of no special
significance - its importance lies in the fact that it is a minimal normal form
for modeling flows near a saddle-node bifurcation, and that it is a prototype
of the stretching and folding dynamics that leads to deterministic chaos. It
is generic in the sense that it can exhibit arbitrarily complicated symbolic
dynamics and mixtures of hyperbolic and non–hyperbolic behaviors. Its con-
struction was motivated by the best known early example of “deterministic
chaos”, the Lorenz equation [1]. Y. Pomeau studies of the Lorenz attractor
on an analog computer, and his insights into its stretching and folding dy-
namics led Hénon [2] to the Hénon mapping in 1976. Both the Hénon and
the Lorenz original papers can be found in reprint collections ref. [3] and
ref. [4]. They are a pleasure to read, and are still the best introduction to
the physics background motivating such models. Detailed description of the
Hénon map dynamics was given by Mira and coworkers [5], as well as very
many other authors.

The Lozi map [6] is particularly convenient in investigating the symbolic
dynamics of 2-d mappings. Both the Lorenz and the Lozi systems are uni-
formly smooth maps with singularities. For the Lozi maps the continuity
of measure was proven by M. Misiurewicz [7], and the existence of the SRB
measure was established by L.-S. Young. That the 3-disk game of pinball
is a quintessential example of deterministic chaos appears to have been first
noted by B. Eckhardt [8]. The model was studied in depth classically, semi-
classically and quantum mechanically by P. Gaspard and S.A. Rice [9], and
used by P. Cvitanović and B. Eckhardt [10] to demonstrate applicability of
cycle expansions to quantum mechanical problems. It has been used to study
the higher order � corrections to the Gutzwiller quantization by P. Gaspard
and D. Alonso Ramirez [11], construct semiclassical evolution operators and
entire spectral determinants by P. Cvitanović and G. Vattay [12], and in-
corporate the diffraction effects into the periodic orbit theory by G. Vat-
tay, A. Wirzba and P.E. Rosenqvist [13]. The full quantum mechanics and
semiclassics of scattering systems is developed here in the 3-disk scattering
context in chapter 20. Further links are listed in www.nbi.dk/ChaosBook/.

The 3-disk game of pinball is to chaotic dynamics what the pendulum
is to integrable systems; the simplest physical example that captures the
essence of “hard” chaos. Another contender for the title of the “harmonic
oscillator of chaos” is the baker’s map which is used as the red thread through
Ott’s introduction to chaotic dynamics [8]. The baker’s map is the simplest
Hamiltonian dynamical system which is hyperbolic and has positive entropy.
However, due to its piecewise linearity the baker’s map is so nongeneric that
it misses all of the curvature corrections structure of cycle expansions of
dynamical zeta functions that are central to this treatise.chapter 11

A pinball game does miss a number of important aspects of chaotic dy-
namics: generic bifurcations in smooth flows, the interplay between regions
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of stability and regions of chaos, intermittency phenomena, and the renor-
malization theory of the “border of order” between these regions. For this we
shall have to turn to dynamics in smooth potentials and smooth dissipative
flows.

Remark 2.2 Rössler, Kuramoto-Shivashinsky systems. Rössler system
was introduced in ref. [14], as a simplified set of equations describing time
evolution of concentrations of chemical reagents. The Kuramoto-Sivashinsky
equation was introduced in ref. [15, 16]; sect. 2.3 is based on Christiansen
et al. [17]. How good description of a flame front this equation is need not
concern us here; suffice it to say that such model amplitude equations for
interfacial instabilities arise in a variety of contexts - see e.g. ref. [18] - and
this one is perhaps the simplest physically interesting spatially extended
nonlinear system.
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Exercises

2.1 Trajectories do not intersect. A trajectory in the phase space M is the set
of points one gets by iterating x ∈ M forwards and backwards in time:

Cx = {y ∈ M : f t(x) = y for t ∈ R} .

Show that if two trajectories intersect, then they are the same curve.

(Ronnie Mainieri)

2.2 Evolution as a group. The trajectory evolution f t is a one-parameter group
where

f t+s = f t ◦ fs .

Show that it is a commutative group.

In this case, the commutative character of the group of evolution functions comes
from the commutative character of the time parameter under addition. Can you see any
other group replacing time?

(Ronnie Mainieri)

2.3 Almost ode’s.

(a) Consider the point x on R evolving according ẋ = x(x(t)) . Is this an ordinary
differential equation?

(b) Is ẋ = x(t + 1) a differential equation?

(Ronnie Mainieri)
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2.4 Runge-Kutta integration. Implement fourth-order Runge-Kutta in-
tegration formula (see, for example, ref. [19])

xn+1 = xn +
k1
6

+
k2
3

+
k3
3

+
k4
6

+ O(δτ5)

k1 = δτF (xn) , k2 = δτF (xn + k1/2)
k3 = δτF (xn + k2/2) , k4 = δτF (xn + k3) (2.29)

or some other numerical integration routine.

2.5 Rössler system. Integrate numerically Rössler system (2.6). Does it
look like a “strange attractor”? Construct a Poincaré section for this flow. How
good approximation would a replacement of the return map for this section by a
1-dimensional map be?

2.6 Arbitrary Poincaré section. We will generalize the construction of Poincaré
section so that it can have any shape, as specified by the equation g(x) = 0.

(a) Start out by modifying your integrator so that you can change the coordinates once
you get near the Poincaré section. You can do this easily by writing the equations
as

dxk
ds

= κfk , (2.30)

with dt/ds = κ, and choosing κ to be 1 or 1/f1. This allows one to switch between
t and x1 as the integration “time.”

(b) Introduce an extra dimension xn+1 into your system and set

xn+1 = g(x) . (2.31)

How can this be used to find the Poincaré section?

(R. Mainieri)

2.7 A pinball simulator. Implement the disk → disk maps to compute
a trajectory of a pinball for a given starting point, and given R:a = (center-
to-center distance):(disk radius) ratio for a 3-disk system. As this requires only
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computation of intersections of lines and circles together with specular reflections,
implementing this should be within reach of a good high-school student. Please
start working on this program now; it will be continually expanded in chapters to
come, incorporating the Jacobian calculations, Newton root–finding, and so on.

Fast code will use elementary geometry (only one
√· · · per iteration, rest are

multiplications) and eschew trigonometric functions. Provide a graphic display
of the trajectories and of the Poincaré section iterates. To be able to compare
with the numerical results of coming chapters, work with R:a = 6 and/or 2.5
values. Draw the correct versions of fig. 7.2 for R:a = 2.5 and/or 6.

2.8 Trapped orbits. Shoot 100,000 trajectories from one of the disks, and
trace out the strips of fig. 1.7 for various R : a by color coding the initial points
in the Poincaré section by the number of bounces preceeding their escape. Try
also R : a = 6 : 1, though that might be too thin and require some magnification.
The initial conditions can be randomly chosen, but need not - actually a clearer
picture is obtained by systematic scan through regions of interest. The reason is
that a systematic scan is more efficient in mapping out the phase space than a
random splatter of intial points.

2.9 Classical collinear helium dynamics. In order to apply the periodic
orbit theory to the quantization of helium we shall need classical periodic orbits.
In this exercise we commence their evaluation for the collinear helium atom (1.16)

H =
1
2
p21 +

1
2
p22 − Z

r1
− Z

r2
+

1
r1 + r2

.

The nuclear charge for helium is Z = 2. The colinear helium has only 3 degrees
of freedom and the dynamics can be visualized as a motion in the (r1, r2), ri ≥ 0
quadrant. In the (r1, r2) coordinates the potential is singular for ri → 0 nucleus-
electron collisions. These 2-body collisions can be regularized by rescaling the
coordinates. In rescaled coordinates x1, x2, p1, p2 the Hamiltonian takes the form
(2.9).

(a) Derive the equations of motion in the rescaled coordinates from the Hamil-
tonian (2.9).

(b) Integrate the equations of motion by a fourth order Runge-Kutta computer
routine, (2.29) (or whatever integration routine you like). A convenient
way to visualize the 3-d phase space orbit is by projecting it onto the 2-d
(r1(t), r2(t)) plane.
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(c) Make a Poincaré surface of section by plotting (r1, p1) whenever r2 = 0.
(Note that for r2 = 0, p2 is already determined by (1.16)).

(Gregor Tanner, Per Rosenqvist)

2.10 Infinite dimensional dynamical systems are not smooth. When
considering infinite dimensional dynamical systems one has to give up smoothness. Many
of the natural operations are not smooth in infinite dimensional vector spaces. As an
example, we will look at the diffusion equation in R (as one will see, the semi-flow nature
of the problem is not the cause of the difficulties). If a concentration φ is diffusing
according to

∂tφ =
1
2
∇2φ ,

one can think of the equation as a dynamical system.

(a) Interpret the partial differential equation as an infinite dimensional dynamical
system. That is, write it as ẋ = F (x) and find the velocity field.

(b) Show that by choosing the norm

‖φ‖2 =
∫

R

dxφ2(x)

that the vector field F is not continuous.

(c) Try the norm

‖φ‖ = sup
x∈R

|φ(x)| .

Is F continuous?

(d) Do you see a way of generalizing these results?

(Ronnie Mainieri)
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Chapter 3

Local stability

(R. Mainieri, P. Cvitanović and E.A. Spiegel)

The basic tool for description of local dynamics is the linear stability of flows
and maps. Extending the local stability eigendirections into stable and unstable
manifolds yields a global foliation of the phase space as well.

3.1 Flows transport neighborhoods

As a swarm of representative points moves along, it carries along and distorts
neighborhoods, fig. 2.1(b). Deformation of an infinitesimal neighborhood is best
understood by considering a trajectory originating near ξ = x(0) with an initial
infinitesimal displacement η(0), and letting the flow transport the displacement
η(t) along the trajectory x(t) = f t(ξ). The system of equations of variations
for the displacement of the infinitesimally close neighbor xi(ξ, t) + ηi(ξ, t) follows
from the flow equations (2.3) by Taylor expanding to linear order

d

dt
ηi(ξ, t) =

∑
j

∂vi(x)
∂xj

∣∣∣∣
x=x(ξ,t)

ηj(ξ, t) . (3.1)

Taken together, the set of equations

ẋi = vi(x) , η̇i = Aij(x)ηj (3.2)

governs the dynamics in the extended (x, η) ∈ M × TM space obtained by
adjoining a d-dimensional tangent space η ∈ TM to the d-dimensional phase
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space x ∈ M ⊂ R
d. The derivative matrix

Aij(x) =
∂vi(x)
∂xj

(3.3)

describes the shearing of an infinitesimal neighborhood by the flow. Its eigenval-
ues and eigendirections determine the local behavior of neighboring trajectories;
nearby trajectories separate along the unstable directions, approach each other
along the stable directions, and maintain their distance along the marginal direc-
tions. (In the mathematical literature neutral is often used instead of “marginal”.)

Taylor expanding the finite time flow to linear order

f t
i (ξ + η) = f t

i (ξ) +
∂f t

i (ξ)
∂ξj

ηj + · · ·

one finds that the linearized neighborhood is transported by the Jacobian matrix

Jtij(ξ) :=
∂f t

i (x)
∂xj

∣∣∣∣
x=ξ

. (3.4)

The deformation of a neighborhood for finite time t is described by the eigenvec-
tors and eigenvalues of the Jacobian matrix of the linearized flow. We sort the
eigenvalues Λp,1, Λp,2, . . ., Λp,d of the [d×d] Jacobian matrix Jp evaluate along
the p trajectory into sets {e,m, c}

expanding: e = {Λp,i : |Λp,i| > 1}
marginal: m = {Λp,i : |Λp,i| = 1} (3.5)

contracting: c = {Λp,i : |Λp,i| < 1} .

and denote by Λp (no spatial index) the product of expanding eigenvalues Λp =∏
e Λp,e .

Our task now is to determine the size of a cycle neighborhood, and that is why
we care about the stability eigenvalues, in particular the unstable (expanding)
ones. The neighboring points aligned along the stable (contracting) directions
remain in the neighborhood of the trajectory x(t) = f t(ξ); the ones to keep an
eye on are the points which leave the neighborhood along the unstable directions.
The volume

∏e
i ∆xi of the set of points which get no further away from f t(ξ)

than the typical size of the system is fixed by the condition that ∆xiΛi = O(1)
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in each expanding direction i. Hence the neighborhood size scales as ≈ 1/|Λp|
where Λp is the product of expanding eigenvalues.

So our task is to extract the eigenvalues of Jt. The Jacobian matrix is com-
puted by integrating the equations of variations (3.2)

x(t) = f t(ξ) , η(ξ, t) = Jt(ξ)η(ξ, 0) . (3.6)

The equations of variations are linear, so formally the Jacobian matrix is given
by the integral

Jtij(ξ) =
[
Te
∫ t
0 dτA(x(τ))

]
ij

. (3.7)

where T stands for the time-ordered integration. How does one make sense of sect. C.1

the exponential in (3.7)?

For start, consider the case where x = xq is an equilibrium point (2.4).
Expanding around the equilibrium point xq, using the fact that the matrix
A = A(xq) in (3.2) is constant, and integrating,

f t(x) = xq + eAt(x − xq) + · · · , (3.8)

we obtain a simple formula for the Jacobian matrix of an equilibrium point,
Jt(xq) = eAt.

Exponential of a constant matrix can be defined either by its series expansion,
or as a limit of an infinite product:

etA =
∞∑
k=0

tk

k!
Ak (3.9)

= lim
N→∞

(
1 +

t

N
A
)N

(3.10)

Taylor expansion is fine if A is a constant matrix. However, only the second, tax-
accountant’s discrete step definition of exponential is appropriate for the task
at hand, as for a dynamical system the local rate of neighborhood distortion
A(x) depends on where we are along the trajectory. The N discrete time steps
approximation to Jt is therefore given by

Jt =
N∏

n=1

(1 + ∆tA(xn)) , ∆t =
t − t0
N

, xn = x(t0 + n∆t) , (3.11)
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54 CHAPTER 3. LOCAL STABILITY

the linearized neighborhood multiplicatively deformed along the flow. To the
leading order in ∆t this is the same as multiplying exponentials e∆tA(xn), with
the time ordered integral (3.7) defined as the N → ∞ limit of this procedure.

Jt+∆t − Jt equals ∆tA(x(t))Jt, so the Jacobian matrix also satisfies the lin-
earized equation (3.1)

d

dt
Jt(x) = A(x)Jt(x) , with initial condition J0(x) = 1 . (3.12)

Given a numerical routine for integrating the equations of motion, evalua-
tion of the Jacobian matrix requires minimal additional programming effort; one
simply extends the d-dimensional integration rutine and integrates concurrently
with f t(x) the d2 elements of Jt(x).

We shall refer to the determinant det Jt(ξ) as the Jacobian of the flow. The
Jacobian is given by integral

det Jt(ξ) = e
∫ t
0 dτ∂ivi(x(τ)) . (3.13)

As the divergence ∂ivi is a scalar quantity, this integral needs no time ordering.
If ∂ivi < 0, the flow is contracting. If ∂ivi = 0, the flow preserves phase space
volume and det Jt = 1. A flow with this property is called incompressible. An
important class of such flows are Hamiltonian flows to which we turn next.

in depth:

sect. C.1, p. 563

3.1.1 Linear stability of Hamiltonian flows

The equations of motion for a time independent Hamiltonian (2.7) can be written
as

ẋm = ωmn
∂H

∂xn
, ω =

(
0 −I
I 0

)
, m, n = 1, 2, . . . , 2D , (3.14)

where x = [p, q] is a phase space point, I = [D×D] unit matrix, and ω the
[2D×2D] symplectic form

ωmn = −ωnm , ω2 = −1 . (3.15)
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3.1. FLOWS TRANSPORT NEIGHBORHOODS 55

The linearized motion in the vicinity x+ η of a phase space trajectory x(t) =
(p(t), q(t)) is described by the Jacobian matrix (3.6)

η(ξ, t) = Jt(ξ) η(ξ, 0) .

The matrix of derivaties in (3.12) takes form

d

dt
Jt(x) = A(x)Jt(x) with A(x)mn = ωmkHkn(x) , (3.16)

where Hkn = ∂k∂nH is the Hessian matrix of second derivatives. From (3.16)
and the symmetry of Hkn it follows that

ATω + ωA = 0 . (3.17)

This is the defining property for infinitesimal generators of symplectic (or canoni-
cal) transformations. From this it follows that for Hamiltonian flows d

dt

(
JTωJ

)
=

0, and the J is a symplectic matrix that preserves the symplectic bilinear invariant
ω:

JTωJ = ω . (3.18)

The transpose JT and the inverse J−1 are related by

J−1 = −ωJTω , (3.19)

hence if Λ is an eigenvalue of J, so are 1/Λ, Λ∗ and 1/Λ∗, and the Hamiltonian
phase space volume is preserved, det J = 1.

Real (non-marginal) eigenvalues always come paired as Λ, 1/Λ. The complex
eigenvalues come in pairs |Λ| = 1, or in loxodromic quartets Λ, 1/Λ, Λ∗ and 1/Λ∗.
In particular, symplectic flows preserve the Liouville phase space volume,

det Jt(ξ) = 1 for all t . (3.20)

in depth:

sect. A.1, p. 537
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56 CHAPTER 3. LOCAL STABILITY

3.2 Linear stability of maps

The stability of the nth iterate of a d-dimensional map

Jn(ξ) =
n−1∏
m=0

J(x(m)) , Jkl(x) =
∂

∂xl
fk(x) , x(m) = fm(ξ) (3.21)

follows from the recursion rule

∂

∂xi
fj(f(x)) =

d∑
k=1

∂

∂yk
fj(y)

∣∣∣∣
y=f(x)

∂

∂xi
fk(x) .

This is the discrete time version of the time-ordered product (3.7). The [d×d]
Jacobian matrix Jn for a map is evaluated along the n steps of the trajectory
of ξ, with J(x) the single time step Jacobian matrix, and the product goes over
the trajectory points x(m). For example, for the Hénon map (2.13) the Jacobian
matrix for nth iterate of the map is

Jn =
n∏

m=1

(
−2axm b

1 0

)
, xm = fm(x0, y0) . (3.22)

3.3 Billiards

On the face of it, a plane billiard phase space is 4-dimensional. However, one
dimension can be eliminated by energy conservation, and the other by the fact
that the magnitude of the velocity is constant. We shall now show how going to
the local frame of motion leads to a [2×2] Jacobian matrix. In sect. ?? we show
that due to the symplectic invariance the situation is even simpler; the stability
of a 2-dimensional billiard flow is given by a single number, the Sinai-Bunimovich
curvature.

Consider a 2-dimensional billiard with phase space coordinates (q1, q2, p1, p2).
Let tk be the instant of the kth collision of the billiard with the billiard boundary,
and t±k = tk ± ε, ε positive and infinitesimal. Setting the mass and the velocity
equal to 1, we impose the energy conservation by parametrizing the momentum
direction by angle θ, (q1, q2, sin θ, cos θ). Now parametrize the 2-d neighborhood
of a trajectory segment between (k-1)–th and kth collisions by δx = (δz, δθ),
where

δzk = δq1 cos θk − δq2 sin θk , (3.23)
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is the coordinate variation transverse to the kth segment of the flow. Using
dqi/dt = pi, dpi/dt = 0, we obtain the equations of motion (3.1) for the linearized
neighborhood

d

dt
δθ = 0,

d

dt
δz = δθ . (3.24)

Let δθk = δθ(t+k ) and δzk = δz(t+k ) be the local coordinates immediately after the
kth collision, and δθ−k = δθ(t−k ), δz−k = δz(t−k ) immediately before. Integrating
the free flight from t+k−1 to t−k we obtain

δz−k = δzk−1 + τkδθk−1 , τk = tk − tk−1
δθ−k = δθk−1 , (3.25)

and the stability matrix (3.7) is given by

JT (xk) =
(

1 τk
0 1

)
. (3.26)

At incidence angle φk (the angle between the outgoing particle and the outgo-
ing normal to the billiard edge), the incoming transverse variation δz−k projects
onto an arc on the billiard boundary of length δz−k / cosφk. The corresponding
incidence angle variation δφk = δz−k /ρk cosφk, ρk = local radius of curvature,
increases the angular spread to

δzk = −δz−k

δθk = − δθ−k − 2
ρk cosφk

δz−k , (3.27)

so the Jacobian matrix associated with the reflection is

JR(xk) = −
(

1 0
rk 1

)
, rk =

2
ρk cosφk

. (3.28)

The Jacobian matrix for np consecutive bounces describes a beam of trajectories
defocused along the free flight (the τk terms below) and defocused/refocused at
reflections (the rk terms below)

Jp = (−1)np
np∏
k=1

(
1 τk
0 1

)(
1 0
rk 1

)
, (3.29)
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58 CHAPTER 3. LOCAL STABILITY

Figure 3.1: Defocusing of a beam of nearby tra-
jectories at a billiard collision. (A. Wirzba)

ϕθ

where τk is the flight time of the kth free-flight segment of the cycle, rk =
2/ρk cosφk is the defocusing due to the kth reflection, and ρk is the radius of
curvature of the billiard boundary at the kth scattering point (for our 3-disk
game of pinball, ρ = 1). As the dynamics is phase-space volume preserving,
det J = 1 and the eigenvalues depend only on trJ.

This is en example of the Jacobian matrix chain rule for maps. Stability of
every flight segment or reflection taken alone is a shear with two unit eigenvalues,
but in a consecutive sequence they can lead to hyperbolic deformation of the
infinitesimal neighborhood of a billiard trajectory.

Analytic expressions for the lengths and eigenvalues of 0, 1 and 10 cycles
follow from elementary geometrical considerations, see exercise 8.8. Longer cycles
require numerical evaluation by methods such as those described in sect. 8. A
typical set of periodic orbit data, for a : R = 6 and lengths ≤ 6, is listed in
table 8.3.

fast track:

chapter 5, p. 77

Commentary

Remark 3.1 Smooth potentials vs. billiards. A. Wirzba has generalized
the above stability analysis to scattering off 3-dimensional spheres (link listed
in www.nbi.dk/ChaosBook/). A lucid discussion of linear stability for the
general d-dimensional case is given in Gaspard [5], sect. 1.4.

Besides its intrinsic interest as an example of classical and quantal chaotic
dynamics, the pinball scattering is also relevant to smooth potentials. The
game of pinball may be thought of as the infinite potential wall limit of a
smooth potential, and the pinball symbolic dynamics can serve as a covering
symbolic dynamics in smooth potentials. One may start with the infinite
wall limit and adiabatically relax an unstable cycle onto the corresponding
one for the potential under investigation. If things go well, the cycle will
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remain unstable and isolated, no new orbits (unaccounted for by the pinball
symbolic dynamics) will be born, and the lost orbits will be accounted for
by a set of pruning rules. The validity of this adiabatic approach has to
be checked carefully in each application, as things can easily go wrong; for
example, near a bifurcation the same naive symbol string assignments can
refer to a whole island of distinct periodic orbits.

Knauff’s scattering problem is surprising in this context, as it is Anosov
flow that resembles a billiard.

:
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Exercises

3.1 How unstable is the Hénon attractor?

(a) Evaluate numerically the Lyapunov exponent by iterating the Hénon map[
x′
y′
]

=
[

1 − ax2 + y
bx

]
for a = 1.4, b = 0.3 (the answer should be close to λ = 0.41)

(b) Now check how robust is the Lyapunov exponent for the Hénon attractor?
Evaluate numerically the Lyapunov exponent by iterating the Hénon map
for a = 1.39945219, b = 0.3. How much do you trust now your result for
the part (a) of this exercise?

3.2 Linearization for maps. (medium) Let f : C → C be a map from the
complex numbers into themselves, with a fixed point at the origin and analytic there.
By manipulating power series, find the first few terms of the map h that conjugates f to
αz, that is,

f(z) = h−1(αh(z)) .

There are conditions on the derivative of f at the origin to assure that the conjugation
is always possible. Can you guess them from the series?

(R. Mainieri)

3.3 Stadium billiard. The Bunimovich stadium is a billiard with a point particle
moving freely within a two dimensional domain, reflected elastically at the border which
consists of two semi-circles of radius 1 connected by two straight walls of length 2a.

2a

d
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At the points where the straight walls meet the semi-circles, the curvature of the border
changes discontinuously; these are the only singular points on the border. The length a
is the only parameter.

The Jacobian matrix associated with the reflection is given by (3.28). Here we take
ρk = −1 for the semicircle sections of the boundary, and cosφk remains constant for all
bounces in a rotation sequence. The time of flight between two semicircle bounces is
τk = 2 cosφk. The Jacobian matrix of one semicircle reflection folowed by the flight to
the next bounce is

J = (−1)
(

1 2 cosφk
0 1

)(
1 0

−2/ cosφk 1

)
= (−1)

(
−3 2 cosφk

2/ cosφk 1

)
.

A shift must always be followed by k = 1, 2, 3, · · · bounces along a semicircle, hence the
natural symbolic dynamics for this problem is n-ary, with the corresponding Jacobian
matrix given by shear (ie. the eigenvalues remain equal to 1 throughout the whole
rotation), and k bounces inside a circle lead to

Jk = (−1)k
(

−2k − 1 2k cosφ
2k/ cosφ 2k − 1

)
. (3.30)

The Jacobian matrix of a cycle p of length np is given by

Jp = (−1)
∑
nk

np∏
k=1

(
1 τk
0 1

)(
1 0

nkrk 1

)
. (3.31)

Adopt your pinball simulator to the Bunimovich stadium.

3.4 Power law fall-off of stability eigenvalues in the stadium billiard∗∗.
From the cycle expansions point of view, the most important consequence of the shear
in Jn for long sequences of rotation bounces nk in (3.30) is that the Λn grows only as a
power law in number of bounces:

Λn ∝ n2
k . (3.32)

Check.
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Chapter 4

Transporting densities

O what is my destination? (I fear it is henceforth chaos;)
Walt Whitman, Leaves of Grass: Out of the Cradle

Endlessly Rocking

(P. Cvitanović, R. Artuso, L. Rondoni, and E.A. Spiegel)

In chapter 2 we learned how to track an individual trajectory, and saw that such
a trajectory can be very complicated. In chapter 3 we studied a small neighbor-
hood of a trajectory and learned that such neighborhood can grow exponentially
with time, making the concept of an individual trajectory a purely mathematical
idealization.

While the trajectory of an individual representative point may be highly con-
voluted, the density of these points might evolve in a manner that is relatively
smooth. The evolution of the density of representative points is for this reason
(and other that will emerge in due course) of great interest. So in fact are the
behaviors of other properties carried by the swarm of representative points as the
system evolves.

We shall see that the global evolution of the density of representative points is
conveniently formulated in terms of evolution operators. Essentially this means
trading in nonlinear dynamical equations on finite low-dimensional spaces for lin-
ear equations on infinite dimensional vector spaces. Both in classical and quan-
tum mechanics one has a choice of implementing dynamical evolution on densi-
ties (“Schrödinger picture”, sect. 4.4) or on observables (“Heisenberg picture”,
sect. 5.2 and chapter 6): in what follows we shall find the second formulation
more convenient, but the alternative is worth keeping in mind when posing and
solving the eigenvalue problems.
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4.1 Measures

Do I then measure, O my God, and know not what I
measure?

St. Augustine, The confessions of Saint Augustine

A fundamental concept in the description of dynamics of a chaotic system is
that of measure, which we denote by dµ(x) = ρ(x)dx, and whose “mass” over a
subset Mi ⊂ M is defined by

∆µi =
∫
Mi

dµ(x) =
∫
Mi

dx ρ(x) . (4.1)

ρ(x) = ρ(x, t) is the density of representative points in the phase space at time
t. This density can be (and in chaotic dynamics often is) an arbitrarily ugly
function, and it may display remarkable singularities (for instance there may
exist directions along which the measure is singular with respect to the Lebesgue
measure): we just suppose that it can be normalized

∫
M

dx ρ(x) = 1 . (4.2)

One is free to think of a measure as a probability density, as long as one keeps in
mind the distinction between deterministic and stochastic flows. In deterministic
evolution there are no probabilistic evolution kernels, the densities of trajectories
is transported deterministically.

An intuitive way to construct a physically meaningful measure is by a process
of coarse graining. Consider a sequence 1, 2, ..., n, ... of more and more refined
partitions of the phase space in regions Mi defined by the characteristic function

χi(x) =
{

1 if x ∈ region Mi

0 otherwise . (4.3)

A coarse grained measure is obtained by assigning the mass

∆µi =
∫
M

dx ρ(x)χi(x) =
∫
Mi

dx ρ(x) (4.4)
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to the ith region at the nth level of partitioning of the phase space, normalized
so that

(n)∑
i

∆µi = 1 . (4.5)

The density ρ(x) can be thought of as a continuum limit of this procedure, with
normalization (4.2).

4.2 Density evolution

Given an initial density, the question arises as to what it might evolve into as
time goes. Consider a swarm of representative points making up the measure
contained in a state space region Mi at t = 0. As the flow evolves, this region
is carried into f t(Mi), as in fig. 2.1(b). Conservation of representative points
requires that

∫
f t(Mi)

dx ρ(x, t) =
∫
Mi

dξ ρ(ξ, 0) .

If we transform the integration variable in the expression on the left from x to
ξ = f−t(x), we get (if the flow is invertible, so that the transformation ξ = f−t(x)
is single-valued)

∫
Mi

dξ ρ(f t(ξ), t)
∣∣detJt(ξ)

∣∣ .
We conclude that an arbitrary density changes with time as the inverse of the
Jacobian

ρ(x, t) =
ρ(ξ, 0)

|detJt(ξ)| , Jt(ξ) =
∂x

∂ξ
, x = f t(ξ) . (4.6)

The manner in which a flow transports densities may be recast into language of
operators, by writing

ρ(x, t) =
(
Ltρ
)

(x) =
∫
M

dξ δ
(
x − f t(ξ)

)
ρ(ξ, 0) (4.7)
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66 CHAPTER 4. TRANSPORTING DENSITIES

where the Perron-Frobenius operator

Lt(x, y) = δ
(
x − f t(y)

)
(4.8)

assembles the density at time t by going back in time to the density at time
t = 0. (for nomenclature, see remark 10.4). By taking into account elementary
properties of Dirac delta function we have4.5

on p. 74

Ltρ(x) =
∑

ξ=f−t(x)

ρ(ξ)
|f t(ξ)′|

(1-dimensional)

=
∑

ξ=f−t(x)

ρ(ξ)
|detJt(ξ)| (d-dimensional) . (4.9)

For a deterministic flow there is only one ξ preimage of x; allowing for multiple
preimages also takes account of noninvertible mappings such as the “stretch&fold”
maps of the interval, to be discussed in sect. 7.4.

4.2.1 A piecewise-linear example

Consider an expanding 1-d map f(x), monotone on two non-overlapping intervals,
a piecewise-linear 2–branch repeller with slopes Λ0 > 1 and Λ1 < −1 (see fig. 4.1):

f(x) =
{

Λ0x if x ∈ M0 = [0, 1/Λ0]
Λ1(x − 1) if x ∈ M1 = [1 + 1/Λ1, 1] . (4.10)

Both f(M0) and f(M1) map onto the entire unit interval M. Due to the piece-
wise linearity, the Perron-Frobenius operator (4.9) acts on a piecewise constant
function ρ(x) = (ρ0, ρ1) as a [2×2] transfer matrix with matrix elements

(
ρ0
ρ1

)
→ Lρ =

( 1
|Λ0|

1
|Λ1|

1
|Λ0|

1
|Λ1|

)(
ρ0
ρ1

)
. (4.11)

4.3 Invariant measures

The stationary or invariant measures satisfy

ρ(f t(x)) = ρ(x) . (4.12)
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0 0.5 1

x
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f(x)

Figure 4.1: A piecewise-linear repeller

If such measures exist, the transformation f t(x) is said to be measure preserving.
Conversely, as we are given deterministic dynamics and our goal is computation
of asymptotic averages of observables, our task is to identify interesting invariant
measures given f t(x). Invariant measures remain unaffected by the dynamics, so
they are the fixed points of the Perron-Frobenius operator (4.8)

Ltρ(x) =
∫
M

dy δ(x − f t(y))ρ(y) = ρ(x). (4.13)

Depending on the form of f t, there may be no, one, or many solutions of the eigen-
function condition (4.13). For instance, a singular measure dµ(x) = δ(x − x∗)dx
concentrated on an equilibrium point x∗ = f t(x∗), or any linear combination of
such measures, each concentrated on a different equilibrium point, is stationary.

The natural measure is defined as the limit

ρξ(y) = lim
t→∞

1
t

∫ t

0
dτ δ(y − f τ (ξ)) , (4.14)

where ξ is an arbitrary inital point. The analysis of this limit (4.14) is the central
problem of ergodic theory. More precisely once the limit is considered in a weak
sense the right hand side of (4.14) corresponds to the time average for observables
(belonging to some function space, for instance L1) lim t−1

∫ t
0 dτ ϕ

(
f τ)(ξ)

)
. If an

invariant measure ρ exists, the limit is ρ-almost anywhere well defined (this is the
content of the well celebrated Birkhoff theorem): if moreover the sistem is ergodic
then such time averages coincide with the phase average

∫
dx ρ(x)ϕ(x) for almost

all ξ (this means the time average is independent of the initial point apart from
a set of ρ-measure zero). Notice that if the invariant measure is quite singular
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Figure 4.2: Natural measure (4.15) for the Hénon
map (2.13) strange attractor at parameter values
(a, b) = (1.4, 0.3). See fig. 2.3 for a sketch of
the attractor without the natural measure binning.
(Courtesy of J.-P. Eckmann) -0.4
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(for instance a Dirac δ concentrated on a fixed point), such results have a very
limited physical import. No smooth inital density will converge to this measure
if the cycle is unstable. In practice the average (4.14) is problematic and often
hard to control, as generic dynamical systems are neither uniformly hyperbolic
nor structurally stable: it is not known whether even the simplest model of a
strange attractor, the Hénon attractor, is a strange attractor or merely a long
stable cycle.3.1

on p. 60

From physical point of view the most natural of measures is defined by the
coarse-grained visitation frequency, (4.14) integrated over the Mi region

∆µi = lim
t→∞

ti
t
, (4.15)

where ti is the time that a trajectory spends in the Mi region of the non–
wandering set at time t. The natural measure is the limit of the transformations
which an initial smooth distribution experiences under the action of f , hence it
is f -invariant and it satisfies the stationarity condition (4.13).

An example of a numerical calculation of the natural measure (4.15) for the
Hénon attractor (2.13) is given in fig. 4.2. As we see, the natural measure can be
a complicated, singular function of x ∈ M.

4.4 Evolution operators

Paulina: I’ll draw the curtain:
My lord’s almost so far transported that
He’ll think anon it lives.

William Shakespeare: The Winter’s Tale

The way in which time evolution acts may be translated in the language of
functional analysis, by introducing the Koopman operator, whose action on phase
space functions is defined as

(
U tψ
)

(x) = ψ(f t(x)) , (4.16)
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Suppose we are starting with an initial density of representative points ρ(x): then
the average value of ψ evolves as

〈ψ〉t =
∫
M

dx ρ(x)ψ(f t(x)) =
∫
M

dx ρ(x)
(
U tψ
)

(x)

An alternative point of view (analogous to the shift from the Heisenberg to the
Schrödinger picture in quantum mechanics) is to push dynamical effects into the
density: as a matter of fact the Perron-Frobenius operator is the adjoint of the
Koopman operator 4.3

on p. 73∫
M

dx
[
U tA(x)

]
B(x) =

∫
M

dx A(x)
[
LtB(x)

]
. (4.17)

For finite dimensional deterministic invertible flows the Koopman operator (4.16)
is simply the inverse of the Perron-Frobenius operator (4.7), so in what follows
we shall not distinguish the two. However, for infinite dimensional contracting
(forward in time) flows and for stochastic flows such inverses do not exist.

The family of Koopman’s operators
{
U t
}
t∈R+

enjoys remarkable mathemati-
cal properties, making it a semigroup parametrized by time: as a matter of fact

(a) U0 = I

(b) U tU t′ = U t+t′ t, t′ ≥ 0 (semigroup property)

(technically one should also be concerned with pointwise convergence as t →
0+). Under such circumstances it makes sense to introduce the generator of the
semigroup

A = lim
ε→0+

1
ε

(U ε − 1)

Its explicit action may be easily written by expanding dynamical evolution up to
first order

(Aψ) (x) = lim
ε→0+

1
ε

(ψ(f ε(x)) − ψ(x)) = vi(x)∂iψ(x) , (4.18)

which looks very much like the generator of translations (and as a matter of
fact for a constant velocity field dynamical evolution is nothing by a translation
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70 CHAPTER 4. TRANSPORTING DENSITIES

of time× velocity. The (finite time) Koopman operator (4.16) can be formally
expressed by exponentiating the time evolution generator A as

U t = etA . (4.19)

We shall make sense of this operator in sect. 4.4.1.

The Koopman operator U acts multiplicatively in time, so it is reasonable to
suppose that there exist constants M > 0, β ≥ 0 such that ||U t|| ≤ Metβ for all
t ≥ 0. In that case e−tβU t is an element of a bounded semigroup with generator
A − βI. Given this bound, it follows by the Laplace transform

∫ ∞

0
dt e−stU t =

1
s − A , Re s > β , (4.20)

that the resolvent operator (s − A)−1 is bounded

∣∣∣∣∣∣∣∣ 1
s − A

∣∣∣∣∣∣∣∣ ≤ ∫ ∞

0
dt e−stMetβ =

M

s − β
.

If one is interested in the spectrum of U - and we will be - the resolvent operator
is a natural object to study. While we shall not use the operator form (4.19) in
computations, the above exercise teaches us that for the continuous time flows
the Laplace transform is the tool that brings down the generator in (4.19) into
the resolvent form (4.20) and enables us to study its spectrum.

4.4.1 Liouville operator

A case of special interest is the Hamiltonian or symplectic flow defined
by a time-independent Hamiltonian H(q, p) and the equations of motion (2.7).
For separable Hamiltonians of form H = p2/2m + V (q), the equations of motion
are

q̇i =
pi
m

, ṗi = −∂V (q)
∂qi

. (4.21)

The phase space flow velocity is v = (q̇, ṗ), where the dot signifies time derivative
for fixed initial point. Hamilton’s equations (2.7) imply that the flow is incom-
pressible, ∂ivi = 0, so the equation for ρ reduces to the continuity equation (??),
dρ/dt = 0.
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4.4. EVOLUTION OPERATORS 71

Consider evolution of the phase space density ρ of an ensemble of noninter-
acting particles subject to the potential V (q); the particles are conserved, so

d

dt
ρ(q, p, t) =

(
∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi

)
ρ(q, p, t) = 0 .

Inserting Hamilton’s equations (2.7) we obtain the symplectic version of (??), in
this case called the Liouville equation:

∂

∂t
ρ(q, p, t) = −Aρ(q, p, t) = [H, ρ(q, p, t)] , (4.22)

where [ , ] is the Poisson bracket (A.2). The generator of the flow (4.18) is now
the generator of infinitesimal symplectic transformation,

A = q̇i
∂

∂qi
+ ṗi

∂

∂pi
, (4.23)

or, by using Hamilton equations,

A = −pi
m

∂

∂qi
+ ∂iV (q)

∂

∂pi
. (4.24)

If the flow is symplectic, the operator (4.19) is called the Liouville operator. 2.9
on p. 50

Commentary

Remark 4.1 Ergodic theory. An overview of ergodic view is outside
the scope of this book: the interested reader may find it useful to consult
[1]. The Heisenberg picture in dynamical system theory has been introduced
in refs. [2, 3], see also ref. [4].

Remark 4.2 Lie groups. If you were mystified by Smale’s article ab-
stract about “the action (differentiable) of a Lie group G on a manifold M”,
at the beginning of sect. 7.5.1, this should be cleared up by now; for exam-
ple, the Liouville operators form a Lie group (of symplectic, or canonical
transformations) acting on the manifold (p, q).

Remark 4.3 Symplectic structure. For hyperbolic flows the symplectic
structure plays no dramatic role - the topology and periodic orbits techniques
are the same as for volume changing flows. Symplectic structure leads to
the pairing off of the stability eigenvalues, so one needs to describe only the
expanding directions, the contracting ones are automatic.
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Résumé

We cannot accurately calculate a single long time trajectory. We calculate instead
the evolution of the density of representative points in phase space. For long times
the dynamics is described in terms of stationary measures, that is, fixed points of
certain evolution operators. The most interesting measure is the natural measure
that is robust under weak perturbations.
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Exercises

4.1 “Kissing disks”∗. Close off the escape by setting R = 2, and look in
the real time at the density of the Poincaré section iterates for a trajectory with
a randomly chosen initial condition. Does it look uniform? Should it be uniform?
(hint - phase space volumes are preserved for Hamiltonian flows by the Liouville
theorem). Are there trajectories that hung around special regions of phase space
for long time? They exemplify “intermittency”, a bit of unpleasantness that we
shall return to in chapter 17.

4.2 Invariant measure for the Gauss map. Consider the Gauss map (see
chapter 23):

FG(x) =
{

1
x −

[
1
x

]
x �= 0

0 x = 0

where [ ] denotes the integer part. Verify that the density

ρ(x) =
1

log 2
1

1 + x

defines an invariant measure for the map.

4.3 Perron-Frobenius operator is the adjoint of the Koopman operator.
Check (4.17).

4.4 Lt generates a semigroup. Check that the evolution operator has the
semigroup property,

∫
M

dzLt2(y, z)Lt1(z, x) = Lt2+t1(y, x) . (4.25)

As the flows that we tend to be interested in are invertible, the L’s that we will
use actually form a group.
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4.5 Integrating over Dirac delta functions. Let us verify a few of the
properties of the delta function and check formulas (6.3) and (6.4).

(a) If h : R
d → R

d, then show that∫
Rd

dx δ (h(x)) =
∑

x∈h−1(0)

1
|det ∂xh|

.

(b) The delta function can be approximated by delta sequences, for example

∫
dx δ(x)f(x) = lim

σ→0

∫
dx

e−
x2

2σ

√
2πσ

f(x) .

Use this approximation to see if the formal expression∫
R

dx δ(x2)

makes sense.

(c) Using integration by parts, determine the value of∫
R

dx δ′(f(x)) .

4.6 Derivatives of Dirac delta functions. Consider

δ(k)(x) =
∂k

∂xk
δ(x) .

Show that

(a)
∫

dx δ(2) (y) =
∑

x:y(x)=0

1
|y′|

{
3

(y′′)2

(y′)4
− y′′′

(y′)3

}
. (4.26)

where y = f(x) − x.

(b)
∫

dx b(x)δ(2)(y) =
∑

x:y(x)=0

1
|y′|

{
b′′

(y′)2
− b′y′′

(y′)3
+ b

(
3

(y′′)2

(y′)4
− y′′′

(y′)3

)}
.(4.27)
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4.7 Invariant measure. (medium) We will compute the invariant measure for two
different piecewise linear maps.

α0 1 0 1

(a) The first map the maximum of the map is at one. Compute an invariant measure
fo r this map.

(b) For the previous map there are an infinite number of invariant measures, but onl
y one of them is will be found when one carries out a numerical simulation. Det
ermine that measure. This is the srb measure for this map.

(c) In the second map the maximum is at α = (3−
√

5)/2 and the slopes a re ±(
√

5 +
1)/2. Find the srb measure for this map. Show that it is piecewise linear and that
the ratio of its two sections is (

√
5 + 1)/2.

4.8 Incompressible flows. Show that (6.5) implies that ρ0(x) = 1 is an eigenfunc-
tion of a volume preserving flow with eigenvalue s0 = 0. In particular, this implies that
the natural measure of hyperbolic and mixing Hamiltonian flows is uniform. Compare
with the numerical experiment of exercise 4.1.

4.9 Exponential form of the semigroup. Check that indeed U tA = AU t by
considering the action of both operators on a phase space function ϕ(x).

4.10 Birkhoff coordinates. Prove that the Birkhoff coordinates are phase-space
volume preserving. Hint: compute the determinant of (3.29).
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Chapter 5

Averaging

For it, the mystic evolution;
Not the right only justified
– what we call evil also justified.

Walt Whitman, Leaves of Grass: Song of the Universal

We start by discussing the necessity of studying the averages of observables in
chaotic dynamics, and then cast the formulas for averages in a multiplicative
form that motivates the introduction of evolution operators and the further formal
developments to come. The main result is that any dynamical average measurable
in a chaotic system can be extracted from the spectrum of an appropriately
constructed evolution operator.

5.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, as any finitely specified
initial condition, no matter how precise, will fill out the entire accessible phase
space. Hence for chaotic dynamics one cannot follow individual trajectories for a
long time; what is attainable is a description of the geometry of the set of possible
outcomes, and evaluation of the long time averages. Examples of such averages
are transport coefficients for chaotic dynamical flows, such as escape rate, mean
drift and diffusion rate; power spectra; and a host of mathematical constructs
such as generalized dimensions, entropies and Lyapunov exponents. Here we
outline how such averages are evaluated within the framework of the periodic orbit
theory. The key idea is to replace the expectation values of observables by the
expectation values of generating functionals. This associates an evolution oper-
ator with a given observable, and relates the expectation value of the observable
to the leading eigenvalue of the evolution operator.

77



78 CHAPTER 5. AVERAGING

5.1.1 Time averages

Let a = a(x) be any “observable”, a function that associates to each point in phase
space a number, a vector, or a tensor. The observable reports on a property
of the dynamical system. The velocity field ai(x) = vi(x) is an example of a
vector observable; the length of this vector, or perhaps a temperature measured
in an experiment at instant τ are examples of scalar observables. We define the
integrated observable At as the time integral of the observable a evaluated along
the trajectory of the initial point ξ,

At(ξ) =
∫ t

0
dτ a(f τ (ξ)) . (5.1)

If the dynamics is given by an iterated mapping and the time is discrete, t → n,
the integrated observable is given by

An(ξ) =
n−1∑
k=0

a(fk(ξ)) (5.2)

(we suppress possible vectorial indices for the time being). For example, if the
observable is the velocity, ai(x) = vi(x), its time integral At

i(ξ) is the trajectory
At

i(ξ) = xi(t). Another familiar example, for Hamiltonian flows, is the action
associated with a trajectory passing through a phase space point ξ (this function
will be the key to the semiclassical quantization of chapter 19):

At(ξ) =
∫ t

0
dτ q̇(τ) · p(τ) , x = [p, q] , ξ = [p(0), q(0)] . (5.3)

The time average of the observable along a trajectory is defined by

a(ξ) = lim
t→∞

1
t
At(ξ) . (5.4)

If a does not behave too wildly as a function of time — for example, ai(x) = xi is
bounded for bounded dynamical systems — At(ξ) is expected to grow not faster
than t, and the limit (5.4) might exist.

The time average depends on the trajectory, but not on the initial point on
that trajectory: as a matter of fact is we start at a later phase space point fT (ξ)
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5.1. DYNAMICAL AVERAGING 79

we get

a(fT (ξ)) = lim
t→∞

1
t

∫ t+T

T
dτ a(f τ (ξ))

= lim
t→∞

(
1

t + T
− T

t + T

)(
−
∫ T

0
dτ a(f τ (ξ)) +

∫ t+T

0
dτ a(f τ (ξ))

)
= a(ξ)

as some of the contributions to At(ξ) vanish in the limit t → ∞.

The integrated observable At(ξ) and the time average a(ξ) take a particularly
simple form when evaluated on a periodic orbit. Define

flows: Ap = apTp =
∫ Tp

0
a (f τ (ξ)) dτ , ξ ∈ p

maps: = apnp =
np−1∑
i=0

a
(
f i(ξ)

)
, (5.5)

where p is a prime cycle, Tp is its period, and np is its discrete time period in 5.1
on p. 89the case of iterated map dynamics. Ap is a loop integral of the observable along

a single percourse of a prime cycle p, so it is an intrinsic property of the cycle,
independent of the starting point ξ ∈ p. (If the observable a is not a scalar but a
vector or matrix we might have to be more careful in defining an average which
is independent of the starting point on the cycle). If the trajectory retraces itself
r times, we just obtain Ap repeated r times. Evaluation of the asymptotic time
average (5.4) requires therefore only a single traversal of the cycle:

ap =
1
Tp

Ap . (5.6)

However, a(ξ) is in general certainly a very wild function of ξ; for a hyperbolic
system ergodic with respect to a smooth measure, it takes the same value 〈a〉 for
almost all initial ξ, but a different value (5.6) on any periodic orbit, that is, on
a dense set of points (fig. 5.1(b)). For example, for an open system such as the
Sinai gas of sect. 16.1 (an infinite two-dimensional periodic array of scattering
disks) the phase space is dense with initial points that correspond to periodic
runaway trajectories. The mean distance squared traversed by any such trajec-
tory grows as x(t)2 ∼ t2, and its contribution to the diffusion rate D ≈ x(t)2/t,
(5.4) evaluated with a(x) = x(t)2, diverges. Seemingly there is a paradox; even
though intuition says the typical motion should be diffusive, we have an infinity
of ballistic trajectories.
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80 CHAPTER 5. AVERAGING

Figure 5.1: (a) A typical chaotic trajectory explores the phase space with the long time
visitation frequency corresponding to the natural measure. (b) time average evaluated along
an atypical trajectory such as a periodic orbit fails to explore the entire accessible phase space.
(PC: clip out “Ergodic”; need to draw (b) here!)

For chaotic dynamical systems, this paradox is resolved by robust averaging,
that is, averaging also over the initial x, and worrying about the measure of the
“pathological” trajectories.

5.1.2 Space averages

The space average of a quantity a that may depend on the point x of phase space
M and on the time t is given by the d-dimensional integral over the d coordinates
of the dynamical system:

〈a(t)〉 =
1

|M|

∫
M

dx a(x(t))

|M| =
∫
M

dx = volume of M . (5.7)

The space M is assumed to have finite dimension and volume (open systems like
the 3-disk game of pinball are discussed in sect. 5.1.3). We define the expectation
value 〈a〉 of an observable a to be the asymptotic time and space average over
the “phase space” M

〈a〉 = lim
t→∞

1
|M|

∫
M

dx
1
t

∫ t

0
dτ a(f τ (x)) . (5.8)

We use the same 〈· · ·〉 notation as for the space average (5.7), and distinguish the
two by the presence of the time variable in the argument: if the quantity 〈a(t)〉
being averaged depends on time, then it is a space average, if it does not, it is
the expectation value 〈a〉.
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5.1. DYNAMICAL AVERAGING 81

The expectation value is a space average of time averages. Each x ∈ M is
used as a starting point of a time average. The advantage of averaging over space
is that it smears over the starting points which were problematic for the time
average (like the periodic points). While easy to define, the expectation value
〈a〉 turns out not to be particularly tractable in practice. Such averages are more
conveniently studied by introducing an auxiliary variable β, and investigating
instead of 〈a〉 the space averages of form

〈
eβ·A

t
〉

=
1

|M|

∫
M

dx eβ·A
t(x). (5.9)

In the present context β is an auxiliary variable of no particular physical meaning.
In most applications β is a scalar, but if the observable is a d-dimensional vector
ai(x) ∈ R

d, then β is a conjugate vector β ∈ R
d; if the observable is a d × d

tensor, β is also a rank-2 tensor, and so on. We will here mostly limit ourselves
to scalar values of β.

If the limit a(ξ) for the time average (5.4) exists for “almost all” initial ξ
and the system is ergodic and mixing (in the sense of sect. 1.3.1), we expect the
time average along almost all trajectories to tend to the same value a, and the
integrated observable At to tend to ta. The space average (5.9) is an integral over
exponentials, which therefore also grows exponentially with time. So as t → ∞
we would expect the space average of

〈
exp(β · At)

〉
itself to grow exponentially

with time

〈
eβ·A

t
〉

∝ ets(β) ,

and its rate of growth to go to a limit

s(β) = lim
t→∞

1
t

ln
〈
eβ·A

t
〉

. (5.10)

Now we see one reason for why it is smarter to compute
〈
exp(β · At)

〉
rather

than 〈a〉: the expectation value of the observable (5.8) and the moments of the
integrated observable (5.1) can be computed by evaluating the derivatives of s(β)

5.2
on p. 89

∂s

∂β

∣∣∣∣
β=0

= lim
t→∞

1
t

〈
At
〉

= 〈a〉 ,

∂2s

∂β2

∣∣∣∣
β=0

= lim
t→∞

1
t

(〈
AtAt

〉
−
〈
At
〉 〈

At
〉)

= lim
t→∞

1
t

〈
(At − t 〈a〉)2

〉
,

(5.11)
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and so forth. We have written out the formulas for the a scalar observable; the
vector case is worked out in the exercise 5.2. If we can compute the function s(β),
we have the desired expectation value without having to estimate any infinite time
limits from finite time data.

Suppose we could evaluate s(β) and its derivatives. What are such formulas
good for? A typical application is to the problem of describing a particle scatter-
ing elastically off a two-dimensional triangular array of disks (see sect. 16.1). If
the disks are sufficiently large to block any infinite length free flights, the particle
will diffuse chaotically, and the transport coefficient of interest is the diffusion
constant given by

〈
x(t)2

〉
≈ 4Dt. In contrast to D estimated numerically from

trajectories x(t) for finite but large t, the above formulas yield the asymptotic
D without any extrapolations to the t → ∞ limit. For example, for ai = vi and
zero mean drift 〈vi〉 = 0, the diffusion constant is given by the curvature of s(β)
at β = 0,

D = lim
t→∞

1
2dt
〈
x(t)2

〉
=

1
2d

d∑
i=1

∂2s

∂β2i

∣∣∣∣
β=0

, (5.12)

so if we can evaluate derivatives of s(β), we can compute transport coefficients
that characterize deterministic diffusion. As we shall see in chapter 16, periodic
orbit theory yields an explicit closed form expression for D.

fast track:

sect. 5.2, p. 83

5.1.3 Averaging in open systems

If the M is a compact region or set of regions to which the dynamics
is confined for all times, (5.8) is a sensible definition of the expectation value.
However, if the trajectories can exit M without ever returning,

∫
M

dy δ(y − f t(ξ)) = 0 for t > texit , ξ ∈ M ,

we might be in trouble. In particular, for a repeller the trajectory f t(ξ) will
eventually leave the region M, unless the initial point ξ is on the repeller, so the
identity

∫
M

dy δ(y − f t(ξ)) = 1 , t > 0 , iff ξ ∈ non–wandering set (5.13)
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5.2. EVOLUTION OPERATORS 83

might apply only to a fractal subset of initial points of zero Lebesgue measure.
Clearly, for open systems we need to modify the definition of the expectation
value so it refers only to the dynamics on the non–wandering set, the set of
trajectories which are confined for all times,

Designate by M a phase space region that encloses all interesting initial
points, say the 3-disk Poincaré section constructed from the disk boundaries
and all possible incidence angles. The volume of the phase space containing all
trajectories which start out within the phase space region M and recur within
that region at the time t

|M(t)| =
∫
M

dxdy δ
(
y − f t(x)

)
∼ |M|e−γt (5.14)

is expected to decrease exponentially, with the escape rate γ (see sect. 1.3.4 and
sect. 13.1). The integral over x takes care of all possible initial points; the integral
over y checks whether their trajectories are still within M by the time t. For
example, any trajectory that falls off the pinball table in fig. 1.1 is gone for good.

The non–wandering set can be very difficult object to describe; but for any
finite time we can construct a normalized measure from the finite-time covering
volume (5.14), by redefining the space average (5.9) as

〈
eβ·A

t
〉

=
∫
M

dx
1

|M(t)|e
β·At(x) =

1
|M|

∫
M

dx eβ·A
t(x)+γt . (5.15)

in order to compensate for the exponential decrease of the number of surviving
trajectories in an open system with the exponentially growing factor eγt. This
normalizes correctly the β = 0 average; 〈1〉 = 1.

We now turn to the problem of evaluating
〈
eβ·At

〉
.

5.2 Evolution operators

The above simple shift of focus, from studying 〈a〉 to studying
〈
exp
(
β · At

)〉
is

the key to all that follows. Make the dependence on the flow explicit by rewriting
this quantity as

〈
eβ·A

t
〉

=
1

|M|

∫
M

dx

∫
M

dy δ
(
y − f t(x)

)
eβ·A

t(x) . (5.16)
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Here δ
(
y − f t(x)

)
is the Dirac delta function: for a deterministic flow an initial

point x maps into a unique point y at time t. Formally, all we have done above
is to insert the identity

1 =
∫
M

dy δ
(
y − f t(x)

)
, (5.17)

into (5.9) to make explicit the fact that we are averaging only over the trajectories
that remain in M for all times. However, having made this substitution we have
replaced the study of individual trajectories f t(x) by the study of the evolution of
the totality of initial conditions. Instead of trying to extract a temporal average
from an arbitrarily long trajectory which explores the phase space ergodically,
we shall always work with finite time, topologically partitioned space averages.

We shall refer to the kernel Lt = etA in (5.16) as the evolution operator

Lt(y, x) = δ
(
y − f t(x)

)
eβ·A

t(x) . (5.18)

The evolution operator acts on bounded scalar functions h(x) of the phase space
as

Lth(y) =
∫
M

dx δ
(
y − f t(x)

)
eβ·A

t(x)h(x) . (5.19)

In terms of the evolution operator, the expectation value of the generating func-
tion (5.16) is given by

〈
eβ·A

t
〉

=
〈
Ltι
〉
,

where ι(x) is the constant function that always returns 1. For chaotic dynamics
any smooth initial distribution ρ(x) would be just as good, see remark 5.3. This
is the continuum dynamics version of the sum over all orbits as we have in (9.2),
and we expect it to be dominated by the leading eigenvalue of Lt as well.

The evolution operator is different for different observables, as its definition
depends on the choice of the integrated observable At in the exponential. Its job
is deliver to us the expectation value of a, but before showing that it accomplishes
that, we need to verify some of the basic properties of evolution operators.
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Figure 5.2: Space averaging pieces together the time average computed along the t → ∞
trajectory of fig. 5.1 by a simultaneous space average over finite t trajectory segments starting
at infinitely many starting points.

By its definition, the integral over the observable a is additive along the
trajectory

x(t1+t2)

x(0) = x(0)
x(t1)

+

x(t1+t2)

x(t1)

At1+t2(ξ) =
∫ t1

0
dτ a(x(τ)) +

∫ t1+t2

t1

dτ a(x(τ))

= At1(ξ) + At2(f t1(ξ)) .
4.4

on p. 73
If At(x) is additive along the trajectory, the evolution operator generates a semi-
group (see also sect. 4.4 for a discussion of the semigroup property):

Lt1+t2(y, x) =
∫
M

dz Lt2(y, z)Lt1(z, x) , (5.20)

as is easily checked by substitution

Lt2Lt1h(x) =
∫
M

dy δ(x − f t2(y))eβ·A
t2 (y)(Lt1h)(y) = Lt1+t2h(x) .

This semigroup property is the main reason why (5.16) is preferable to (5.8) as a
starting point for evaluation of dynamical averages; their value in the asymptotic
t → ∞ limit can be recovered by means of evolution operators.
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Our goal now is to relate general asymptotic averages over chaotic dynam-
ics to eigenvalues of evolution operators. As we shall now show, in the case of
piecewise-linear approximations to dynamics these operators reduce to finite ma-
trices, but for generic smooth flows, they are infinite-dimensional linear operators,
and finding smart ways of computing their eigenvalues requires some thought.

Commentary

Remark 5.1 “Pressure”. The quantity 〈exp(β · At)〉 is called a “parti-
tion function” by Ruelle [1] who decorates it with considerably more Greek
and Gothic letters than is the case in this treatise. Either Ruelle [2] or
Bowen [3] had given name “pressure” P (a) (where a is the observable in-
troduced here in sect. 5.1.1) to s(β), defined by the “large system” limit
(5.10). For us, s(β) will be the leading eigenvalue of the evolution operator
introduced in sect. 4.4, and the “convexity” properties such as P (a) ≤ P (|a|)
will be pretty obvious consequence of the definition (5.10). In order to aid
the reader in digesting the mathematics literature, we shall try to point out
the notational correspondences to the rigorous theory whenever appropriate.
The rigorous formalism is replete with lims, sups, infs, Ω-sets which are not
really essential to understanding the physical applications of the theory, and
are avoided in this presentation.

Remark 5.2 Time averages. The existence of time average is a basic
result of ergodic theory, known as Birkhoff theorem see refs. [4, 5]

Remark 5.3 Distribution of the initial points. In general one should
also specify ρ(x, t = 0), the density of initial points in the definition of the
space average (5.7). For ergodic and mixing systems that we shall consider
here (see also sect. 4.1) any smooth initial density will tend to the asymp-
totic natural measure limt→∞ ρ(x, t) → ρ0(x), so we can just as well take
ρ(x, 0) = const. .

Remark 5.4 Microcanonical ensemble. For Hamiltonian systems (5.3)
the space average (5.7) performed over the constant energy surface invariant
measure ρ(x)dx = dqdp δ(H(q, p)−E) of volume |M| =

∫
Mdqdp δ(H(q, p)−

E)

〈a(t)〉 =
1

|M|

∫
M

dqdp δ(H(q, p) − E)a(q, p, t) (5.21)

is in statistical mechanics called the microcanonical ensemble average.
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Résumé

The expectation value 〈a〉 of an observable a measured and averaged over the
flow x → f t(x) is given by the derivative (5.11) of the leading eigenvalue of the
evolution operator (5.18).

Next question is: how do we evalute the eigenvalues of L? As we shall show
in chapter 6, a systematic way to accomplish this task is by means of periodic
orbits.
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Exercises

5.1 Dissipative baker’s map. Consider the dissipative baker’s map, on
[0, 1]2, defined as

(
xn+1

yn+1

)
=
(

xn/3
2yn

)
yn ≤ 1/2

(
xn+1

yn+1

)
=
(

xn/3 + 1/2
2yn − 1

)
yn > 1/2

and the observable a(x, y) = x. The symbolic encoding of trajectories is realized
via symbols 0 (y ≤ 1/2) and 1 (y > 1/2). Verify that for any periodic orbit p
(ε1 . . . εnp) εi = 0, 1

Ap =
3
4

np∑
j=1

δj,1

.

5.2 Expectation value of a vector observable and its moments. Check
and extend the expectation value formulas (5.11) by evaluating the derivatives of
s(β) up to 4-th order for the space average

〈
exp(β · At)

〉
with ai a vector quantity.

∂s

∂βi

∣∣∣∣
β=0

= lim
t→∞

1
t

〈
At

i

〉
= 〈ai〉 , (5.22)

∂2s

∂βi∂βj

∣∣∣∣
β=0

= lim
t→∞

1
t

(〈
At

iA
t
j

〉
−
〈
At

i

〉 〈
At

j

〉)
= lim

t→∞
1
t

〈
(At

i − t 〈ai〉)(At
j − t 〈aj〉)

〉
. (5.23)
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Chapter 6

Trace formulas

The trace formula is not a formula, it is an idea.
Martin Gutzwiller

Dynamics is posed in terms of local equations, but the ergodic averages require
global information. How can we use a local description of a flow to learn some-
thing about the global behavior? We shall now relate global averages to the
eigenvalues of appropriate evolution operators. Traces of evolution operators can
be evaluated as integrals over Dirac delta functions, and in this way the spectra
of evolution operators become related to periodic orbits. If there is one idea that
one should learn about chaotic dynamics, it happens in this chapter, and it is
this: there is a fundamental local ↔ global duality which says that

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analysis; for dynamics on well-
tiled manifolds, Selberg traces and zetas; and for generic nonlinear dynamical
systems the duality is embodied in the trace formulas that we will now intro-
duce. These objects are to dynamics what partition functions are to statistical
mechanics.

We have given a quick sketch of this program in sect. 1.3.4 through 1.4.3; now
we redo the same material in greater detail.

6.1 Trace of an evolution operator

Our extraction of the spectrum of L commences with the evaluation of the trace.
To compute an expectation value we have to integrate over all the values of the
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92 CHAPTER 6. TRACE FORMULAS

kernel Lt(x, y). If Lt were a matrix we would be computing a weighted sum of
its eigenvalues which is dominated by the leading eigenvalue as t → ∞. As the
trace of Lt is also dominated by the leading eigenvalue as t → ∞, we might just
as well look at the trace9.2

on p. 187

trLt =
∫

dxLt(x, x) =
∫

dx δ
(
x − f t(x)

)
eβ·A

t(x) . (6.1)

Assume that L has a spectrum of discrete eigenvalues s0, s1, s2, · · · ordered so that
Re sα ≤ Re sα+1. We ignore for the time being the question of what function
space the eigenfunctions belong to, as we shall compute the eigenvalue spectrum
without constructing any explicit eigenfunctions.

By definition, the trace is the sum over eigenvalues

trLt =
∞∑

α=0

esαt , (6.2)

so if we can evaluate the above delta-function integral, we have a formula for
eigenvalue sums (for the time being we choose not to worry about convergence of
such sums). Integrating Dirac delta functions is easy:

∫
M dx δ(x) = 1 if 0 ∈ M,

zero otherwise. Integral over a one-dimensional Dirac delta function picks up the
Jacobian of its argument evaluated at all of its zeros:

∫
dx δ(h(x)) =

∑
x∈Zero [h]

1
|h(x)′| , (6.3)

and in d dimensions the denominator is replaced by4.5
on p. 74 ∫

dx δ(h(x)) =
∑

x∈Zero [h]

1∣∣∣det ∂h(x)
∂x

∣∣∣ . (6.4)

An evolution operator propagates a density of initial conditions h(x) to time t:

Lth(x) =
∫

dy δ(x − f t(y))h(y) =
∑

y=f−t(x)

h(y)
|f t(y)′| . (6.5)

As the case of discrete time mappings is somewhat simpler, we first derive
the trace formula for maps, and then for flows. The final formula (6.20) covers
both cases.

∼DasBuch/book/chapter/trace.tex 4aug2000 printed August 24, 2000



6.1. TRACE OF AN EVOLUTION OPERATOR 93

6.1.1 Hyperbolicity assumption

According to (6.4) the trace (6.1) picks up a contribution whenever x−fT(x) = 0,
that is whenever x belongs to a periodic orbit. The contribution of a prime cycle
p of period Tp for a map f can be evaluated by restricting the integration to an
infinitesimal neighborhood Mp around the cycle, with xp ∈ p a cycle point

tr pLTp =
∫
Mp

dx δ
(
x − fTp(x)

)
=

1∣∣det
(
1− Jp

)∣∣ =
d∏

i=1

1
|1 − Λp,i|

(6.6)

(here we set the observable eAp = 1 for the time being). Periodic orbit Jacobian
matrix Jp is also known as the monodromy matrix, and its eigenvalues Λp,1, Λp,2,
. . ., Λp,d as the Floquet multipliers. The integral can be carried out only if Jp
has no eigenvalue of unit magnitude. Sort the eigenvalues Λp,1, Λp,2, . . ., Λp,d of
the p-cycle [d×d] transverse Jacobian matrix Jp into sets {e,m, c}:

expanding eigenvalues: e = {Λp,i : |Λp,i| > 1}
marginal eigenvalues: m = {Λp,i : |Λp,i| = 1}

contracting eigenvalues: c = {Λp,i : |Λp,i| < 1} .

We assume that no eigenvalue is marginal (as we shall show in sect. 6.1.4, the
longitudinal Λp,d+1 = 1 eigenvalue for flows can be eliminated by restricting the
consideration to the transverse Jacobian matrix Jp), and factorize the trace (6.6)
into a product over the expanding and the contracting eigenvalues

∣∣det
(
1− Jp

)∣∣−1 =
1

|Λp|
∏
e

1
1 − 1/Λp,e

∏
c

1
1 − Λp,c

, (6.7)

where Λp =
∏

e Λp,e is the product of expanding eigenvalues. In the above both
Λp,c and 1/Λp,e are smaller than 1 in absolute value, and as long as they are real
we are allowed to drop the absolute value brackets | · · · |.

The hyperbolicity assumption requires that the stabilities of all cycles included
in the trace sums be exponentially bounded away from unity:

|Λp,i| > eλeTp for any p, any expanding eigenvalue Λp,i ∈ e

|Λp,i| < e−λcTp for any p, any contracting eigenvalue Λp,i ∈ c , (6.8)

where λe, λc > 0 are strictly positive bounds on the expanding, contracting cycle
Lyapunov exponents. If a dynamical system satisfies the hyperbolicity assump-
tion (for example, the well separated 3-disk system clearly does), the Lt spectrum
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94 CHAPTER 6. TRACE FORMULAS

will be relatively easy to control. If the expansion/contraction is slower than ex-
ponential, let us say |Λp,i| ∼ Tp

2, the system may exhibit “phase transitions”,
and the analysis is much harder - we shall discuss this in chapter 1.

It follows from (6.7) that for long times, t = rTp → ∞, only the product of
expanding eigenvalues matters,

∣∣det
(
1− Jrp

)∣∣→ |Λp|r. We shall use this fact to
motivate the construction of dynamical zeta functions in sect. 10.3. However, for
evaluation of the full spectrum the exact cycle weight (6.6) has to be kept.

6.1.2 A trace formula for maps

If the evolution is given by a discrete time mapping, and all periodic points have
stability eigenvalues |Λp,i| �= 1 strictly bounded away from unity, the trace Ln is
given by the sum over all periodic points i of period n:

trLn =
∫

dxLn(x, x) =
∑

xi∈Fixfn

eβ·An(xi)

|det (1− Jn(xi))|
. (6.9)

Here Fix fn = {x : fn(x) = x} is the set of all periodic points of period n. The
weight follows from the properties of the Dirac delta function (6.4) by taking the
determinant of ∂i(xj −fn(x)j). If a trajectory retraces itself r times, its Jacobian
matrix is Jrp, where Jp is the [d×d] Jacobian matrix (??) evaluated along a single
traversal of the prime cycle p. As we saw in (5.5), the integrated observable An

also has a similar property: If a prime cycle p trajectory retraces itself r times,
n = rnp, we obtain Ap repeated r times, An(xi) = rAp, xi ∈ p.

A prime cycle is a single traversal of the orbit, and its label is a non-repeating
symbol string. There is only one prime cycle for each cyclic permutation class.
For example, the four cycle points 0011 = 1001 = 1100 = 0110 belong to the
same prime cycle p = 0011 of length 4. As both the stability of a cycle and the
weight Ap are the same everywhere along the orbit, each prime cycle of length
np contributes np terms to the sum, one for each cycle point. Hence (6.9) can be
rewritten as a sum over all prime cycles and their repeats

trLn =
∑
p

np

∞∑
r=1

erβ·Ap∣∣det
(
1− Jrp

)∣∣δn,npr , (6.10)

with the Kronecker delta δn,npr projecting out the periodic contributions of total
period n. This constraint is awkward, and will be more awkward still for the
continuous time flows, where it will yield a series of Dirac delta spikes (6.18).
Such sums are familiar from the density-of-states sums of statistical mechanics,
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6.1. TRACE OF AN EVOLUTION OPERATOR 95

where they are dealt with in the same way as we shall do here: we smooth this
distribution by taking a Laplace transform which rids us of the δn,npr constraint.

We define the trace formula for maps to be the Laplace transform of trLn

which, for discrete time mappings, is simply the generating function for the trace
sums

∞∑
n=1

zntrLn = tr
zL

1 − zL =
∑
p

np

∞∑
r=1

znprerβ·Ap∣∣det
(
1− Jrp

)∣∣ . (6.11)

Expressing the trace as (6.2), the sum of the eigenvalues of L, we obtain the trace
formula for maps:

∞∑
α=0

zesα

1 − zesα
=
∑
p

np

∞∑
r=1

znpr erβ·Ap∣∣det
(
1− Jrp

)∣∣ . (6.12)

This is our second example of the duality between the spectrum of eigenvalues and
the spectrum of periodic orbits, announced in the introduction to this chapter.
(The first example was the topological trace formula (9.7).)

fast track:

sect. 6.1.4, p. 96

6.1.3 A trace formula for transfer operators

For a piecewise-linear map with a finite Markov partition, we can ex-
plicitely evaluate the trace formula. We illustrate this by the piecewise linear
repeller (4.10). By the piecewise linearity and the chain rule Λp = Λn0

0 Λn1
1 , where

the cycle p contains n0 symbols 0 and n1 symbols 1, the trace (6.9) reduces to

trLn =
n∑

m=0

(
n

m

)
1

|1 − Λm
0 Λn−m

1 |
=

∞∑
k=0

(
1

|Λ0|Λk
0

+
1

|Λ1|Λk
1

)n

, (6.13)

as is also clear form the explicit form of the transfer matrix (4.11).

The Perron-Frobenius operator trace formula for the piecewise-linear map
(4.10) follows from (6.11):

tr
zL

1 − zL =
z
(

1
|Λ0−1| + 1

|Λ1−1|
)

1 − z
(

1
|Λ0−1| + 1

|Λ1−1|
) . (6.14)
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6.1.4 A trace formula for flows

(R. Artuso and P. Cvitanović)

As any point along a cycle returns to itself exactly at each cycle period, the
eigenvalue corresponding to the eigenvector along the flow necessarily equals unity
for all periodic orbits. Hence for flows the trace integral trLt requires a separate
treatment for the longitudinal direction. To evaluate the contribution of a prime
cycle p of period Tp, restrict the integration to an infinitesimally thin tube Mp

enveloping the cycle (see fig. 1.9), and choose a local coordinate system with
a longitudinal coordinate dx‖ along the direction of the flow, and d transverse
coordinates x⊥

tr pLt =
∫
Mp

dx⊥dx‖ δ
(
x⊥ − f t

⊥(x)
)
δ
(
x‖ − f t

‖(x)
)

. (6.15)

(here we again set the observable exp(β · At) = 1 for the time being). Let v(x)
be the magnitude of the velocity at the point x along the flow. v(x) is strictly
positive, as otherwise the orbit would stagnate for infinite time at v(x) = 0 points,
and get nowhere. Therefore we can trade in the longitudinal coordinate variable
x‖ for the flight time τ , with jacobian dx‖ = v dτ . In that event

(
x‖ − f t

‖(x)
)

equals (locally) (τv − t|v(x(τ)|). When we take the v out of the delta function,
it cancels with the factor coming from the change of variables so that

∮
dx‖δ(x‖ − f t(x)) =

∮
dτδ(Tp − τ) .

In terms of the time variable f t
‖(x) contributes for every Tp return to the same

point along the trajectory, and the delta function along the flow becomes δ(τ −
(t+τ) mod Tp), independent of τ . Since the integrand is independent of τ , we can
take it outside and the integral is simply Tp. So the integral along the trajectory
yields a contribution whenever the time t is a multiple of the cycle period Tp

∮
p
dx‖ δ

(
x‖ − f t

‖(x)
)

=
∞∑
r=1

δ(t − rTp)
∮ Tp

0
dτ

= Tp

∞∑
r=1

δ(t − rTp) . (6.16)

The fact that it is the prime period which arises also for repeated orbits both
requires and merits some reflection. For the remaining transverse integration
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variables the Jacobian is defined in a reduced surface of section of constant x‖.
Linearization of the periodic flow in a plane perpendicular to the orbit yields∫

Mp

dx⊥δ
(
x⊥ − f

rTp
⊥ (x)

)
=

1∣∣det
(
1− Jrp

)∣∣ , (6.17)

where Jp is the p-cycle [d×d] transverse Jacobian matrix, and as in (6.8) we have
to assume hyperbolicity, that is that the magnitudes of all transverse eigenvalues
are bounded away from unity.

Substituting (6.16), (6.17) into (6.15), we obtain an expression for trLt as a
sum over all prime cycles p and their repetitions

trLt =
∑
p

Tp

∞∑
r=1

erβ·Ap∣∣det
(
1− Jrp

)∣∣δ(t − rTp) . (6.18)

A trace formula follows by taking a Laplace transform. This is a delicate step,
since the transfer operator becomes the identity in the t → 0+ limit. In order to
make sense of the trace we regularize the Laplace transform by a lower cutoff ε
smaller than the period of any periodic orbit, and write

∫ ∞

ε
dt e−st trLt = tr

e−(s−A)ε

s − A =
∞∑

α=0

e−(s−sα)ε

s − sα

=
∑
p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣det
(
1− Jrp

)∣∣ , (6.19)

where A is the generator of the semigroup of dynamical evolution, sect. 4.4. The
classical trace formula for flows is the ε → ∞ limit of the above expression:

∞∑
α=0

1
s − sα

=
∑
p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣det
(
1− Jrp

)∣∣ . (6.20)

6.1
on p. 101

This is our third example of the duality between the (local) cycles and (global)
eigenvalues. If Tp takes only integer values, we can replace e−s → z throughout.
We see that the trace formula for maps (6.12) is a special case of the trace formula
for flows. The relation between the continuous and discrete time cases can be
summarized as follows:

Tp ↔ np

e−s ↔ z

etA ↔ Ln . (6.21)
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98 CHAPTER 6. TRACE FORMULAS

We could now proceed to estimate the location of the leading singularity of
tr (s−A)−1 by extrapolating finite cycle length truncations of (6.20) by methods
such as Padé approximants. However, it pays to first perform a simple resumma-
tion which converts this divergence into a zero of a related function. We shall do
this in sect. 10.2, after we complete our offering of trace formulas.

6.2 An asymptotic trace formula

In order to illuminate the manipulations of sect. 6.1.2 and relate them to
something we already possess intuition about, we now rederive the heuristic sum
of sect. 1.4.1 from the exact trace formula (6.12). The Laplace transforms (6.12)
or (6.20) are designed to capture the time → ∞ asymptotic behavior of the trace
sums. By the hyperbolicity assumption (6.8) for t = Tpr large the cycle weight
approaches

∣∣det
(
1− Jrp

)∣∣→ |Λp|r , (6.22)

where Λp is the product of the expanding eigenvalues of Jp. Define Γ(z) as the
approximate trace formula obtained by replacing the cycle weights

∣∣det
(
1− Jrp

)∣∣
by |Λp|r in (6.12). Equivalently, think of this as a replacement of the evolution
operator (5.18) by a transfer operator (as in sect. 6.1.3). For concreteness consider
a dynamical system whose symbolic dynamics is complete binary, for example the
3-disk system of sect. 7.2.1. In this case distinct periodic points that contribute
to the nth periodic points sum (6.10) are labelled by all admissible itineraries
composed of sequences of letters si ∈ {0, 1}:

Γ(z) =
∞∑
n=1

znΓn =
∞∑
n=1

zn
∑

xi∈Fixfn

eβ·An(xi)

|Λi|

= z

{
eβ·A0

|Λ0|
+

eβ·A1

|Λ1|

}
+ z2

{
e2β·A0

|Λ0|2
+

eβ·A01

|Λ01|
+

eβ·A10

|Λ10|
+

e2β·A1

|Λ1|2
}

+z3
{

e3β·A0

|Λ0|3
+

eβ·A001

|Λ001|
+

eβ·A010

|Λ010|
+

eβ·A100

|Λ100|
+ . . .

}
(6.23)

Both the cycle averages Ai and the stabilities Λi are the same for all points xi ∈ p
in a cycle p. Summing over repeats of all prime cycles we obtain

Γ(z) =
∑
p

nptp
1 − tp

, tp = znpeβ·Ap/|Λp| . (6.24)
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This is precisely our initial heuristic estimate (1.7). Note that we could not
perform such sum over r in the exact trace formula (6.12) as

∣∣det
(
1− Jrp

)∣∣ �=∣∣det
(
1− Jp

)∣∣r; the correct way to resum the exact trace formulas is to first
expand the factors 1/|1 − Λp,i|, as in (10.10).

If the weights eβA
n(x) are multiplicative along the flow, and the flow is hyper-

bolic, for given β the magnitude of each |eβAn(xi)/Λi| term is bounded by some
constant Mn. The total number of cycles grows as 2n (or as ehn, h = topological
entropy, in general), and the sum is convergent for sufficiently small |z| < 1/2M .
For large n the nth level sum (6.9) tends to the leading Ln eigenvalue ens0 .
Summing this asymptotic estimate level by level

Γ(z) ≈
∞∑
n=1

(zes0)n =
zes0

1 − zes0
(6.25)

we see that we should be able to determine s0 by determining the smallest value
of z = e−s0 for which the cycle expansion (6.24) diverges.

If one is interested only in the leading eigenvalue of L, it suffices to consider the
approximate trace Γ(z). We will use this fact below to motivate the introduction
of dynamical zeta functions (10.12), and in sect. 10.7.1 we shall give the exact
relation between the exact and the approximate trace formulas.

Commentary

Remark 6.1 Resonance condition. In the hyperbolic case there is a
resonance condition that must be satisfied: none of the stability exponents
may be related by integers. That is, if Λp,1,Λp,2, . . . ,Λp,d are the eigenvalues
of the stability matrix, then they are in resonance if there exist integers
n1, . . . , nd such that

(Λp,1)n1(Λp,2)n2 · · · (Λp,d)nd = 1

If there is resonance, then one gets corrections to the basic formula in the
form of monomials in the variables of the map.

(R. Mainieri)

Remark 6.2 Who’s dunne it? Continuous time flow traces weighted
by the cycle periods were introduced by Bowen [14] who treated them as
Poincaré section suspensions weighted by the “time ceiling” function (2.11).
They were used by Parry and Pollicott [20]. The derivation presented
here was designed [5] to parallel as closely as possible the derivation of the
Gutzwiller semiclassical trace formula, chapter 18.
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100 CHAPTER 6.

Remark 6.3 t → 0+ regularization. We remark again that in taking
the Laplace transform that led to (6.20), we have ignored a possible t → 0+

diverging term, as we do not know how to profitably regularize the delta
function kernel in this limit. In the quantum (or heat kernel) case such
volume term gives rise to the Weyl mean density of states (see sect. 19.1.1).

Remark 6.4 Sharp determinants, flat traces. Explain that these were
introduced in refs. [1, 12], then refer to refs. [14, 15].

Résumé

The description of a chaotic dynamical system in terms of cycles can be visu-
alized as a tessellation of the dynamical system, fig. 1.8, with a smooth flow
approximated by its periodic orbit skeleton, each region Mi centered on a peri-
odic point xi of the topological length n, and the size of the region determined
by the linearization of the flow around the periodic point. The integral over such
topologically partitioned phase space yields the classical trace formula

∞∑
α=0

1
s − sα

=
∑
p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣det
(
1− Jrp

)∣∣ .
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EXERCISES 101

Exercises

6.1 t → 0+ regularization of eigenvalue sums∗∗. In taking the Laplace trans-
form (6.20) we have ignored the t → 0+ divergence, as we do not know how to regularize
the delta function kernel in this limit. In the quantum (or heat kernel) case this limit
gives rise to the Weyl or Thomas-Fermi mean eigenvalue spacing (see sect. 19.1.1). Regu-
larize the divergent sum in (6.20) following (for example) the prescription of appendix F.5
and assign to such volume term some interesting role in the theory of classical resonance
spectra. E-mail the solution to the authors.

6.2 General weights. (easy) Let f t be a flow and Lt the operator

Ltg(x) =
∫

dy δ(x − f t(y))w(t, y)g(y)

where w is a weight function. In this problem we will try and determine some of
the properties w must satisfy.

(a) Compute LsLtg(x) to show that

w(s, f t(x))w(t, x) = w(t + s, x) .

(b) Restrict t and s to be integers and show that the most general form of w is

w(n, x) = g(x)g(f(x))g(f2(x)) · · · g(fn−1(x)) ,

for some g that can be multiplied. Could g be a function from R
n1 �→ R

n2?
(ni ∈ N.)

(c) (not yet tried out) Generalize the expression for w for continuous time. Use
g = ep and convert the infinite product into an exponential of an integral.
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Chapter 7

Qualitative dynamics

The classification of the constituents of a chaos, nothing
less is here essayed.

Herman Melville, Moby Dick, chapter 32

In this chapter and the next we learn how to count, and in the process touch
upon all the main themes of this book, going the whole distance from diagnosing
chaotic dynamics to computing zeta functions. We start by showing that the
qualitative dynamics of stretching and mixing flows enables us to partition the
phase space and assign symbolic dynamics itineraries to trajectories. Given an
itinerary, the topology of stretching and folding fixes the relative spatial ordering
of trajectories, and separates the admissible and inadmissible itineraries. We turn
this topological dynamics into a multiplicative operation by means of transition
matrices/Markov graphs.

To keep the exposition brief, we relegate a formal summary of symbolic dy-
namics to appendix B.1. Even though by inclination you might only care about
the serious stuff, like Rydberg atoms or mesoscopic devices, and resent wasting
time on things formal, this chapter and the next are good for you. Read them.

7.1 Temporal ordering: Itineraries

(R. Mainieri and P. Cvitanović)

What can a flow do to the phase points? This is a very difficult question to answer
because we have assumed very little about the evolution function f t. For now
continuity, and more often differentiability a sufficient number of times. Trying to
make sense of this question is one of the basic concerns in the study of dynamical
systems. One of the first answers was inspired by the motion of the planets:
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104 CHAPTER 7. QUALITATIVE DYNAMICS

they appear to repeat their motion through the firmament. Motivated by this
observation, the first attempts to describe dynamical systems were to think of
them as periodic.

However, periodicity is almost never quite exact. What one tends to observe
is recurrence. A recurrence of a point ξ of a dynamical system is a return of that
point to a neighborhood of where it started. How close the point ξ must return
is up to us: we can choose a volume of any size and shape as long as it encloses ξ,
and call it the neighborhood M0. For chaotic dynamical systems, the evolution
might bring the point back to the starting neighborhood infinitely often. That
is, the set

{
y ∈ M0 : y = f t(ξ), t > t0

}
(7.1)

will in general have an infinity of recurrent episodes.

To observe a recurrence we must look at neighborhoods of points. This sug-
gests another way of describing how points move in phase space, which turns out
to be the powerful first step in developing a theory of dynamical systems: qual-
itative, topological dynamics, or, as it is usually called, the symbolic dynamics.
Understanding of symbolic dynamics is a prerequisite to developing a theory of
chaotic dynamic systems, but as subject can get quite technical, we defer a more
formal summary of the basic notions and definitions of symbolic dynamics to
appendix B.1. You might want to skip this appendix on first reading, but check
there whenever you run into obscure symbolic dynamics jargon.

We start by cutting up the phase space up into regions MA,MB, . . . ,MZ .
This can be done in many ways, not all equally clever. Any such division of the
phase space into topologically distinct regions is a partition, and we associate to
each region a symbol s from an N -letter alphabet A = {A,B,C, · · · , Z}. As the
dynamics moves the point in phase space, different regions will be visited. The
visitation sequence - forthwith referred to as the itinerary - can be represented
by the letters of the alphabet A. If, as in the example sketched in fig. 7.1, the
phase space is divided into three regions M0, M1, and M2, the “letters” are the
integers {0, 1, 2}, and a possible itinerary for the trajectory of a point x would
be 0 �→ 2 �→ 1 �→ 0 �→ 1 �→ 2 �→ · · ·.

A particularly nice example of a partition is afforded by an expanding d-
dimensional iterated mapping f : M → M. A partition of the phase space is
called a finite Markov partition if M can be divided into N regions {M0,M1, . . . ,MN−1}
such that image of the initial region Mi either fully covers a region Mj in one
iteration, or misses it altogether,

either f(Mi) ∩ Mj = ∅ or Mj ⊂ f(Mi) . (7.2)
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7.1. TEMPORAL ORDERING: ITINERARIES 105

Figure 7.1: A trajectory with itinerary 021012.

0

1

2

x

A simple example of an 1-dimensional expanding mapping is given in fig. 7.5, and
more examples are worked out in sect. 16.2.

The allowed transitions between the regions of a partition are encoded in the
[N×N ]-dimensional transition matrix whose elements take value

Tij =
{

1 if a transition region Mj → region Mi is possible
0 otherwise . (7.3)

An example is the complete N -ary dynamics for which all transition matrix entries
equal unity (one can reach any region to any other region in one step)

T =


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 . (7.4)

Further examples of transition matrices, such as the 3-disk transition matrix (7.5)
and the 1-step memory sparse matrix (7.18), are peppered throughout the text.
The transition matrix encodes the topological dynamics as an invariant law of
motion, with the allowed transitions at any instant independent of the trajectory
history, requiring no memory.

An interesting partition should be dynamically connected, that is one should
be able to go from any region Mi to any other region Mj in a finite number
of steps. A dynamical system with such partition is metrically indecomposable.
What is connected to what is conveniently coded either by transition matrices, or
by Markov graphs (see sect. 7.7.1 below). In general one also encounters transient
regions, that is regions to which the dynamics does not return to once they are
exited. Hence we have to distinguish between (for us uninteresting) wandering
trajectories that never return to the initial neighborhood, and the non–wandering
set (2.2) of the recurrent trajectories.
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106 CHAPTER 7. QUALITATIVE DYNAMICS

in depth:

sect. B.1, p. 543

7.2 3-disk symbolic dynamics

The key symbolic dynamics concepts are easily illustrated by a game of pinball.
Consider the motion of a free point particle in a plane with N elastically reflecting
convex disks. After a collision with a disk a particle either continues to another
disk or escapes, and any trajectory can be labelled by the disk visitation sequence.
For example, if we label the three disks by 1, 2 and 3, the two trajectories in fig. 1.2
have itineraries 3123 , 312132 respectively. The 3-disk prime cycles given in1.1

on p. 30 figs. 7.3 and 1.4 are further examples of such itineraries.

At each bounce a pencil of initially nearby trajectories defocuses, and in
order to aim at a desired longer and longer itinerary of bounces the initial point
ξ = (p0, q0) has to be specified with a larger and larger precision. Similarly, it
is intuitively clear that as we go backward in time (in this case, simply reverse
the velocity vector), we also need increasingly precise specification of ξ = (p0, q0)
in order to follow a given past itinerary. Another way to look at the survivors
after two bounces is to plot Ms1.s2 , the intersection of M.s2 with the strips Ms1.

obtained by time reversal (the velocity changes sign sin θ → − sin θ). Ms1.s2 is
a “rectangle” of nearby trajectories which have arrived from the disk s1 and are
heading for the disk s2.

We see that a finite length trajectory is not uniquely specified by its finite
itinerary, but an isolated unstable cycle (consisting of infinitely many repetitions
of a prime building block) is, and so is a trajectory with a bi-infinite itinerary
S-.S+ = · · · s−2s−1s0.s1s2s3 · · · . For hyperbolic flows the intersection of the
future and past itineraries uniquely specifies a trajectory. This is intuitively clear
for our 3-disk game of pinball, and is stated more formally in the definition (7.2)
of a Markov partition. The definition requires that the dynamics be expanding
forward in time in order to ensure that the pencil of trajectories with a given
itinerary becomes sharper and sharper as the number of specified symbols is
increased.

As the disks are convex, there can be no two consecutive reflections off the
same disk, hence the covering symbolic dynamics consists of all sequences which
include no symbol repetitions 11 , 22 , 33 . This is a finite set of finite length
pruning rules, hence the dynamics is a subshift of finite type (for the definition,
see (B.8)), with the transition matrix (7.3) given by

T =

 0 1 1
1 0 1
1 1 0

 (7.5)
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7.2. 3-DISK SYMBOLIC DYNAMICS 107

Figure 7.2: The Poincaré section of the phase space for the binary labelled pinball, see
also fig. 7.3(b). Indicated are the fixed points 0, 1 and the 2-cycle periodic points 01, 10,
together with strips which survive 1, 2, . . . bounces. Iteration corresponds to the decimal
point shift; for example, all points in the rectangle [01.01] map into the rectangle [010.1] in
one iteration.
PC: do this figure right, in terms of strips!

For convex disks the separation between nearby trajectories increases at every
reflection, implying that the stability matrix has an expanding eigenvalue. By
the Liouville phase-space volume conservation the other transverse eigenvalue is
contracting (we shall show this in sect. 3.1.1). This example shows that finite
Markov partitions can be constructed for hyperbolic dynamical systems which are
expanding in some directions, contracting in others.

Determining whether the symbolic dynamics is complete (as is the case for
sufficiently separated disks), pruned (for example, for touching or overlapping
disks), or only a first coarse graining of the topology (as, for example, for smooth
potentials with islands of stability) requires case-by-case investigation, a discus-
sion we postpone to chapter ??. For the time being we assume that the disks are
sufficiently separated so that there is no additional pruning beyond the prohibi-
tion of self-bounces.

fast track:

sect. 7.4, p. 111

7.2.1 A brief detour; nonuniqueness, symmetries, tilings

Though a useful tool, Markov partitioning is not without drawbacks.
One glaring drawback is that Markov partitions are not unique; many different
partitions might all do the job. The 3-disk system offers a simple illustration of
different Markov partitioning strategies for the same dynamical system.

The A = {1, 2, 3} symbolic dynamics for 3-disk system is neither unique, nor
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108 CHAPTER 7. QUALITATIVE DYNAMICS

Figure 7.3: The 3-disk game of pinball with the disk radius : center separation ratio
a:R = 1:2.5. (a) The three disks, with 12, 123 and 121232313 cycles indicated. (b) The
fundamental domain, that is the small 1/6th wedge indicated in (a), consisting of a section
of a disk, two segments of symmetry axes acting as straight mirror walls, and an escape gap.
The above cycles restricted to the fundamental domain are now the two fixed points 0, 1,
and the 100 cycle.

necessarily the smartest one - before proceeding it pays to exploit the symmetries
of the pinball in order to obtain a more efficient description. As we shall see in
chapter 15, rewards of this desymmetrization will be handsome.

As the three disks are equidistantly spaced, our game of pinball has a sixfold
symmetry. For instance, the cycles 12, 23, and 13 are related to each other
by rotation by ±2π/3 or, equivalently, by a relabelling of the disks. Further
examples of such symmetries are shown in fig. 1.4. We note that the disk labels
are arbitrary; what is important is how a trajectory evolves as it hits subsequent
disks, not what label the starting disk had. We exploit this symmetry by recoding,
in this case replacing the absolute disk labels by relative symbols, indicating the
type of the collision. For the 3-disk game of pinball there are two topologically7.1

on p. 134 distinct kinds of collisions, fig. 1.3:

0: the pinball returns to the disk it came from
1: the pinball continues to the third disk.7.2

on p. 134

This binary symbolic dynamics has one immediate advantage over the ternary
one; the prohibition of self-bounces is automatic. If the disks are sufficiently far
apart there are no further restrictions on symbols, the symbolic dynamics is
complete, and all binary sequences are admissible itineraries; the shortest prime
cycles are listed in table 7.1.7.3

on p. 134

The 3-disk game of pinball is tiled by six copies of the fundamental domain, a
one-sixth slice of the full 3-disk system, with the symmetry axes acting as reflect-
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np p
1 0

1
2 01
3 001

011
4 0001

0011
0111

5 00001
00011
00101
00111
01011
01111

6 000001
000011
000101
000111
001011
001101
001111
010111
011111

7 0000001
0000011
0000101

np p
7 0001001

0000111
0001011
0001101
0010011
0010101
0001111
0010111
0011011
0011101
0101011
0011111
0101111
0110111
0111111

8 00000001
00000011
00000101
00001001
00000111
00001011
00001101
00010011
00010101
00011001
00100101

np p
8 00001111

00010111
00011011
00011101
00100111
00101011
00101101
00110101
00011111
00101111
00110111
00111011
00111101
01010111
01011011
00111111
01011111
01101111
01111111

9 000000001
000000011
000000101
000001001
000010001
000000111
000001011

np p
9 000001101

000010011
000010101
000011001
000100011
000100101
000101001
000001111
000010111
000011011
000011101
000100111
000101011
000101101
000110011
000110101
000111001
001001011
001001101
001010011
001010101
000011111
000101111
000110111
000111011
000111101

np p
9 001001111

001010111
001011011
001011101
001100111
001101011
001101101
001110101
010101011
000111111
001011111
001101111
001110111
001111011
001111101
010101111
010110111
010111011
001111111
010111111
011011111
011101111
011111111

Table 7.1: Prime cycles for the binary symbolic dynamics up to length 9.

ing mirrors, see fig. 7.3b. A global 3-disk trajectory maps into its fundamental
domain mirror trajectory by replacing every crossing of a symmetry axis by a re-
flection. Depending on the symmetry of the global trajectory, a repeating binary
symbols block corresponds either to the full periodic orbit or to an irreducible
segment (examples are shown in fig. 7.3 and table 7.2). An irreducible segment
corresponds to a periodic orbit in the fundamental domain. Table 7.2 lists some
of the shortest binary periodic orbits, together with the corresponding full 3-disk
symbol sequences and orbit symmetries. For a number of reasons that will be 7.4

on p. 134elucidated in chapter 15, life is much simpler in the fundamental domain than in
the full system, so all our computations will be carried out in the fundamental
domain.

Symbolic dynamics for N -disk game of pinball is so straightforward that one
may altogether fail to see the connection between the topology of hyperbolic
flows and the symbolic dynamics. This is brought out more clearly by the Smale
horseshoe visualization of “stretch & fold” flows to which we turn now.
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p̃ p gp̃
0 1 2 σ12

1 1 2 3 C3

01 12 13 σ23

001 121 232 313 C3

011 121 323 σ13

0001 1212 1313 σ23

0011 1212 3131 2323 C2
3

0111 1213 2123 σ12

00001 12121 23232 31313 C3

00011 12121 32323 σ13

00101 12123 21213 σ12

00111 12123 e
01011 12131 23212 31323 C3

01111 12132 13123 σ23

p̃ p gp̃
000001 121212 131313 σ23

000011 121212 313131 232323 C2
3

000101 121213 e
000111 121213 212123 σ12

001011 121232 131323 σ23

001101 121231 323213 σ13

001111 121231 232312 313123 C3

010111 121312 313231 232123 C2
3

011111 121321 323123 σ13

0000001 1212121 2323232 3131313 C3

0000011 1212121 3232323 σ13

0000101 1212123 2121213 σ12

0000111 1212123 e
· · · · · · · · ·

Table 7.2: C3v correspondence between the binary labelled fundamental domain prime
cycles p̃ and the full 3-disk ternary labelled cycles p, together with the C3v transformation
that maps the end point of the p̃ cycle into the irreducible segment of the p cycle, see
sect. 15.2.2. Breaks in the ternary sequences mark repeats of the irreducible segment. The
degeneracy of p cycle is mp = 6np̃/np. The shortest pair of the fundamental domain cycles
related by time symmetry are the 6-cycles 001011 and 001101.

7.3 Spatial ordering of “stretch & fold” flows

Suppose concentrations of certain chemical reactants worry you, or the variations
in the Chicago temperature, humidity, pressure and winds affect your mood. All
such properties vary within some fixed range, and so do their rates of change. So
a typical dynamical system that we care about is bounded. If the price for change
is high - for example, we try to stir up some tar, and observe it come to dead
stop the moment we cease our labors - the dynamics tends to settle into a simple
limiting state. However, as the resistence to change decreases - the tar is heated
up and we are more vigorous in our stirring - the dynamics becomes unstable.
We shall quantify this in sect. 3.1 - for now suffice it to say that a flow is locally
unstable if nearby trajectories separate exponentially with time.

If a flow is locally unstable but globally bounded, any open ball of initial
points will be stretched out and then folded back. An example is a 3-dimensional
invertible flow sketched in fig. 7.4 which returns an area of a Poincaré section
of the flow stretched and folded into a “horseshoe”, such that the initial area is
intersected at most twice (see fig. 7.15). Run backwards, the flow generates the
backward horseshoe which intersects the forward horseshoe at most 4 times, and
so forth. Such flows exist, and are easily constructed - an example is the Rösler7.8

on p. 136 system given below in (2.6).

At this juncture the reader can chose either of the paths illustrating the
concepts introduced above, or follow both: a shortcut via unimodal mappings
of the interval, sect. 7.4, or more demanding path, via the Smale horseshoes
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Figure 7.4: (a) A recurrent flow that stretches and folds. (b) The “stretch & fold” return
map on the Poincaré section.

of sects. 7.5 and 7.6. Unimodal maps are easier, but physically less motivated.
The Smale horseshoes are the high road, more complicated, but the right tool to
describe the 3-disk dynamics, and begin analysis of general dynamical systems.
It is up to you - to get quickly to the next chapter, unimodal maps will suffice.

in depth:

sect. 7.5, p. 116

7.4 Unimodal map symbolic dynamics

Our next task is to relate the spatial ordering of phase-space points to their
temporal itineraries. The easiest point of departure is to start out by working
out this relation for the symbolic dynamics of 1-dimensional mappings. As it
appears impossible to present this material without getting bogged down in a sea
of 0’s, 1’s and subscripted symbols, let us state the main result at the outset: the
admissibility criterion stated on 115 eliminates all itineraries that cannot occur
in a given dynamical system.

Suppose that the compression of the folded interval in fig. 7.4 is so fierce
that we can neglect the thickness of the attractor. For example, the Rössler

printed August 24, 2000 ∼DasBuch/book/chapter/symbolic.tex 4aug2000



112 CHAPTER 7. QUALITATIVE DYNAMICS

flow (2.6) is volume contracting, and an interval transverse to the attractor is
stretched, folded and pressed back into a nearly 1-dimensional interval, typically
compressed transversally by a factor of ≈ 10?? in one Poincaré section return.
In such cases it makes sense to approximate the return map of a “stretch & fold”
flow by a 1-dimensional map. Simplest mapping of this type is unimodal; interval
is stretched and folded only once, with at most two points mapping into a point
in the new refolded interval. A unimodal map f (x) is a 1-d function R → R

defined on interval M with a monotonically increasing (or decreasing) branch,
a critical point or interval xc for which f(xc) attains the maximum (minimum)
value, followed by a monotonically decreasing (increasing) branch. The name is
uninspiring - it refers to a one humped map of interval into itself.

The simplest examples of unimodal maps are the complete tent map fig. 7.5a

f (γ) = 1 − 2|γ − 1/2| , (7.6)

and the quadratic map (sometimes also called the logistic map)

xt+1 = 1 − ax2t , (7.7)

with one critical point xc = 0. A more typical example is the unimodal map of
fig. 7.5b.

Such dynamical systems are irreversible (the inverse of f is double-valued),
but, as we shall argue in sect. 7.5.1, they may nevertheless serve as effective
descriptions of hyperbolic flows. For the unimodal maps of fig. 7.5 a Markov
partition of the unit interval M is given by the two intervals {M0,M1}. The
symbolic dynamics is complete binary: as both f (M0) and f (M1) fully cover
M0 and M1, the corresponding transition matrix is a [2×2] matrix with all
entries equal to 1 (see (7.4)). The critical value denotes either the maximum or
the minimum value of f (x) on the defining interval; we assume here that it is a
maximum, f(xc) ≥ f (x) for all x ∈ M. The critical value f(xc) belongs neither
to the left nor to the right partition Mi, and is denoted by its own symbol s = C.

The trajectory x1, x2, x3, . . . of the initial point ξ is given by the iteration
xn+1 = f (xn) . Iterating f and checking whether the point lands to the left or
to the right of xc generates a temporally ordered topological itinerary (B.2) for a
given trajectory,

sn =
{

1 if xn > xc

0 if xn < xc
. (7.8)

We shall refer to S+(ξ) = .s1s2s3 · · · as the future itinerary. Our next task is the
reverse: given an itinerary, what is the corresponding spatial ordering of points
that belong to a given trajectory?
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Figure 7.5: (a) The complete tent map together with intervals that follow the indicated
itinerary for n steps. (b) A unimodal repeller with the remaining intervals after 1, 2 and
3 iterations. Intervals marked s1s2 · · · sn are unions of all points that do not escape in n
iterations, and follow the itinerary S+ = s1s2 · · · sn. Note that the spatial ordering does not
respect the binary ordering; for example x00 < x01 < x11 < x10. Also indicated: the fixed
points x0, x1, the 2-cycle 01, and the 3-cycle 011. (need correct eq. ref.)

7.4.1 Spatial ordering for unimodal mappings

The tent map (7.6) consists of two straight segments joined at x = 1/2. The
symbol sn defined in (7.8) equals 0 if the function increases, and 1 if the function
decreases. The piecewise linearity of the map makes it possible to analytically
determine a point given its itinerary, a property that we now use to define a
topological coordinatization common to all unimodal maps.

The tent map point γ(S+) with future itinerary S+ is given by converting the
sequence of sn’s into a binary number by the following algorithm:

wn+1 =
{

wn if sn = 0
1 − wn if sn = 1 , w1 = s1

γ(S+) = 0.w1w2w3 . . . =
∞∑
n=1

wn/2n. (7.9)

This follows by inspection from the binary tree of fig. 7.6. For example, γ whose 7.6
on p. 135itinerary is S+ = 0110000 · · · is given by the binary number γ = .010000 · · ·.

Conversely, the itinerary of γ = .01 is s1 = 0, f (γ) = .1 → s2 = 1, f2(γ) =
f (.1) = 1 → s3 = 1, etc..
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Figure 7.6: Alternating binary tree relates the
itinerary labelling of the unimodal map fig. 7.5 in-
tervals to their spatial ordering. Dotted line stands
for 0, full line for 1; the binary subtree whose root is
a full line (symbol 1) reverses the orientation, due
to the orientation reversing fold in figs. 7.5 and 7.4.

000

0 1

00 01 11 10

001 011 010 110 111 101 100

We shall refer to γ(S+) as the (future) topological coordinate. wt’s are nothing
more than digits in the binary expansion of the starting point γ for the complete
tent map (7.6). In the left half-interval the map f (x) acts by multiplication by
2, while in the right half-interval the map acts as a flip as well as multiplication
by 2, reversing the ordering, and generating in the process the sequence of sn’s
from the binary digits wn.

The mapping ξ → S+(ξ) → γ0 = γ(S+) is a topological conjugacy
which maps the trajectory of an initial point ξ under iteration of a given unimodal
map to that initial point γ for which the trajectory of the “canonical” unimodal
map (7.6) has the same itinerary. The virtue of this conjugacy is that it preserves
the ordering for any unimodal map in the sense that if x > x, then γ > γ.

7.4.2 Kneading theory

(K.T. Hansen and P. Cvitanović)

The main motivation for being mindful of spatial ordering of temporal itineraries
is that this spatial ordering provides us with the criterion that separates inadmis-
sible orbits from those realizable by the dynamics. For one-dimensional mappings
the kneading theory provides a precise criterion of admissibility.

If the parameter in the quadratic map (7.7) is a > 2, then the iterates of the
critical point xc diverge for n → ∞. As long as a ≥ 2, any sequence S+ composed
of letters si = {0, 1} is admissible, and any value of 0 ≤ γ < 1 corresponds to
an admissible orbit in the non–wandering set of the map. The corresponding
repeller is a complete binary labelled Cantor set, the n → ∞ limit of the nth
level covering intervals sketched in fig. 7.5.

For a < 2 only a subset of the points in the interval γ ∈ [0, 1] corresponds
to admissible orbits. The forbidden symbolic values are determined by observing
that the largest xn value in an orbit x1 → x2 → x3 → . . . has to be smaller or
equal to the image of the critical point, the critical value f (xc). Let K = S+(xc)
be the itinerary of the critical point xc, denoted the kneading sequence of the
map. The corresponding topological coordinate is called the kneading value

κ = γ(K) = γ(S+(xc)). (7.10)
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Figure 7.7: The “dike” map obtained by slicing
of a top portion of the tent map fig. 7.5a. Any orbit
that visits the primary pruning interval (κ, 1] is in-
admissible. The admissible orbits form the Cantor
set obtained by removing from the unit interval the
primary pruning interval and all its iterates. Any
admissible orbit has the same topological coordi-
nate and itinerary as the corresponding tent map
fig. 7.5a orbit.

A map with the same kneading sequence K as f (x), such as the dike map fig. 7.7,
is obtained by slicing off all γ (S+(ξ)) > κ,

f (γ) =

 f0(γ) = 2γ γ ∈ I0 = [0, κ/2)
fc(γ) = κ γ ∈ Ic = [κ/2, 1 − κ/2]
f1(γ) = 2(1 − γ) γ ∈ I1 = [1 − κ/2, 1]

. (7.11)

The dike map is the tent map (7.5)a with the top sliced off. It is convenient for
coding the symbolic dynamics, as those γ values that survive the pruning are the
same as for the full tent map fig. 7.5a, and are easily converted into admissible
itineraries by (7.9).

If γ(S+) > γ(K), the point x whose itinerary is S+ would have x > f (xc)
and cannot be an admissible orbit. Let

γ̂(S+) = sup
m

γ(σm(S+)) (7.12)

be the maximal value, the highest topological coordinate reached by the orbit
x1 → x2 → x3 → . . .. We shall call the interval (κ, 1] the primary pruned
interval. The orbit S+ is inadmissible if γ of any shifted sequence of S+ falls into
this interval.

Criterion of admissibility: Let κ be the kneading value of the critical point,
and γ̂(S+) be the maximal value of the orbit S+. Then the orbit S+ is admissible
if and only if γ̂(S+) ≤ κ.

While a unimodal map may depend on many arbitrarily chosen parameters,
its dynamics determines a unique kneading value κ. We shall call κ the topological
parameter of the map. Unlike the parameters of the original dynamical system,
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the topological parameter has no reason to be either smooth or continuous. The
jumps in κ as a function of the map parameter such as a in (7.7) correspond to
inadmissible values of the topological parameter. Each jump in κ corresponds to
a stability window associated with a stable cycle of a smooth unimodal map. For
the quadratic map (7.7) κ increases monotonically with the parameter a, but for
a general unimodal map such monotonicity need not be the case.

For further details of unimodal dynamics, reader is refered to appendix B.2.
As we shall see in sect. 7.6, for higher dimensional maps and flows there is no
single parameter that orders dynamics monotonically; as a matter of fact, there
is an infinity of parameters that need adjustment for a given symbolic dynamics.
This difficult subject is beyond our current ambition horizon.

Armed with one example of pruning, the impatient reader might prefer to
skip the 2-dimensional examples and jump from here directly to the topological
dynamics sect. 7.7.

fast track:

sect. 7.7, p. 123

7.5 Spatial ordering: Symbol plane

I.1. Introduction to conjugacy problems for diffeomorphisms. This
is a survey article on the area of global analysis defined by differentiable
dynamical systems or equivalently the action (differentiable) of a Lie group
G on a manifold M . Here Diff(M) is the group of all diffeomorphisms of M
and a diffeomorphism is a differentiable map with a differentiable inverse.
(. . .) Our problem is to study the global structure, that is, all of the orbits of
M .

Stephen Smale, Differentiable Dynamical Systems

Consider a system for which you have succeeded in constructing a covering sym-
bolic dynamics, such as a well-separated 3-disk system. Now start moving the
disks toward each other; at some critical separation a disk will start blocking
families of trajectories traversing the other two disks. Order in which trajectories
disappear is determined by their relative ordering in space; the ones closest to
the intervening disk will be pruned first. Determining inadmissible itineraries
requires that we relate the spatial ordering of trajectories to their time ordered
itineraries.

So far we have rules that, given a phase space partition, generate a temporally
ordered itinerary for a given trajectory. Our next task is the reverse: given a
set of itineraries, what is the spatial ordering of corresponding points along the
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trajectories? In answering this question we will be aided by Smale’s visualization
of the relation between the topology of a flow and its symbolic dynamics by means
of “horseshoes”.

7.5.1 Horseshoes

In fig. 7.4 we gave an example of a locally unstable but globally bounded flow
which returns an area of a Poincaré section of the flow stretched and folded into a
“horseshoe”, such that the initial area is intersected at most twice. We shall refer
to such flow-induced mappings from a Poincaré section to itself with at most 2n

transverse intersections at the nth iteration as the once-folding maps.

As it is perhaps not obvious that there exists any flow for which the iterates
of an initial region intersect as claimed above, we work out a concrete example:
model the Poincaré section return map fig. 7.4 by the 2-dimensional Hénon map

8.7
on p. 160

xn+1 = 1 − ax2n + byn

yn+1 = xn . (7.13)

The Hénon map is a glorified parabola; for b = 0 it reduces to (7.7), and, as
we shall see here and in sects. 2.2.1 and 8.4.1, for b �= 0 it is kind of a fattened
parabola; it takes a rectangular initial area and returns it bent as a horseshoe.

For definitiveness, fix the parameter values to a = 6, b = .9. The map is
quadratic, so it has 2 fixed points x0 = f (x0), x1 = f (x1) indicated in fig. 7.8a.
For the parameter values at hand, they are both unstable. If you start with a
small ball of initial points centered around x1, and iterate the map, the ball will
be stretched and squashed along the line W u

1 . Similarly, a small ball of initial
points centered around the other fixed point x0 iterated backward in time,

xn−1 = xn

yn−1 = −1
b
(1 − ay2n − xn) , (7.14)

traces out the line W s
0 . W s

0 is the stable manifold of x0, and W u
1 is the unstable

manifold of x1 fixed point (we shall explain what that means in sect. ?? - for now
just think of them as curves going through the fixed points). Their intersection
delineates the crosshatched region M. . It is easily checked that any point outside
W u
1 segments of the M. border escapes to infinity forward in time, while any point

outside W s
0 border segments escapes to infinity backwards in time. That makes

M. a good choice of the initial region; all orbits that stay confined for all times
must be within M. .
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s

0

u

1W

W

1

0

Figure 7.8: (a) The Hénon map for a = 6, b = .9. Indicated are the fixed points 0, 1,
and the segments of the W s

0 stable manifold, Wu
1 unstable manifold that enclose the initial

(crosshatched) region M.. (b) The forward horseshoe f (M.). (c) The backward horseshoe
f−1(M.). Iteration yields a complete Smale horseshoe, with every forward fold intersecting
every backward fold.

Iterated one step forward, the region M. is stretched and folded into a horse-
shoe as in fig. 7.8b. Parameter a controls the amount of stretching, while the
parameter b controls the amount of compression of the folded horseshoe. The
case a = 6, b = .9 considered here corresponds to weak compression and strong
stretching. Denote the forward intersections f (M.)∩M. by Ms., with s ∈ {0, 1},
fig. 7.8b. The horseshoe consists of the two strips M0.,M1. , and the bent seg-
ment that lies entirely outside the W u

1 line. As all points in this segment escape
to infinity under forward iteration, this region can safely be cut out and thrown
away.

Iterated one step backwards, the region M. is again stretched and folded
into a horseshoe, fig. 7.8c. As stability and instability are interchanged under
time reversal, this horseshoe is transverse to the forward one. Again the points
in the horseshoe bend wonder off to infinity as n → −∞, and we are left with
the two (backward) strips M.0,M.1 . Iterating two steps forward we obtain the
four strips M11.,M01.,M00.,M10., and iterating backwards we obtain the four
strips M.00,M.01,M.11,M.10 transverse to the forward ones. Iterating three
steps forward we get an 8 strips, and so on ad infinitum.

What is the significance of the subscript .011 which labels the M.011 backward
strip? The two strips M.0,M.1 partition the phase space into two regions labelled
by the two-letter alphabet A = {0, 1}. S+ = .011 is the future itinerary for all
x ∈ M.011. Likewise, for the forward strips all x ∈ Ms−m···s−1s0. have the past
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itinerary S- = s−m · · · s−1s0. .

The backward strips are the preimages of the forward ones

M0. = f (M.0) , M1. = f (M.1) .

Ω, the non–wandering set of M., is the union of all the non-wandering points
given by the intersections

Ω =
{
x : x ∈ lim

m,n→∞ fm(M.)
⋂

f−n(M.)
}

, (7.15)

of all images and preimages of M. For example, the 3-disk game of pinball non–
wandering set Ω is the union of all initial points whose forward and backward
trajectories remain trapped for all time.

The two important properties of the Smale horseshoe are that it has a complete
binary symbolic dynamics and that it is structurally stable.

For a complete Smale horseshoe every forward fold fn(M) intersects transver-
sally every backward fold f−m(M), so a unique bi-infinite binary sequence can be
associated to every element of the non–wandering set. A point x ∈ Ω is labelled
by the intersection of its past and future itineraries S(x) = · · · s−2s−1s0.s1s2 · · ·,
where sn = s if fn(x) ∈ M.s , s ∈ {0, 1} and n ∈ Z. For sufficiently sepa-
rated disks, the 3-disk game of pinball is another example of a complete Smale
horseshoe; in this case the “folding” region of the horseshoe is cut out of the
picture by allowing the pinballs that fly between the disks to fall off the table
and escape.

The system is structurally stable if all intersections of forward and backward
iterates of M remain transverse for sufficiently small perturbations f → f + δ of
the flow, for example, for slight displacements of the disks.

Inspecting the fig. 7.8d we see that the relative ordering of regions with differ-
ing finite itineraries is a qualitative, topological property of the flow, so it makes
sense to define a simple “canonical” representative partition for the entire class
of topologically similar flows.

7.5.2 Symbol plane

For a better visualization of 2-dimensional non–wandering sets, fatten the inter-
section regions until they completely cover a unit square, as in fig. 7.9. We
shall refer to such a “map” of the topology of a given “stretch & fold” dynamical
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Figure 7.9: Kneading Danish pastry: symbol plane representation of an orientation re-
versing once-folding map obtained by fattening the Smale horseshoe intersections of fig. 7.8
into a unit square. In the symbol plane the dynamics maps rectangles into rectangles by a
decimal point shift.
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system as the symbol plane. The symbol plane is a topologically accurate repre-
sentation of the non–wandering set and serves as a street map for labelling its
pieces. Finite memory of m steps and finite foresight of n steps partitions the
symbol plane into rectangles [s−m+1 · · · s0.s1s2 · · · sn]. In the binary dynamics
symbol plane the size of such rectangle is 2−m×2−n; it corresponds to a region of
the dynamical phase space which contains all points that share common n future
and m past symbols. This region maps in a nontrivial way in the phase space, 7.9

on p. 136but in the symbol plane its dynamics is exceedingly simple; it is mapped by the
decimal point shift

σ(· · · s−2s−1s0.s1s2s3 · · ·) = · · · s−2s−1s0s1.s2s3 · · · , (7.16)

(see also (B.5)). For example, the square [01.01] gets mapped into the σ[01.01] =
[010.1] rectangle, see fig. 7.15b. 7.10

on p. 136

As the horseshoe mapping is a simple repetitive operation, we expect a simple
relation between the symbolic dynamics labelling of the horseshoe strips, and their
relative placement. The symbol plane points γ(S+) with future itinerary S+ 7.11

on p. 137are constructed by converting the sequence of sn’s into a binary number by the
algorithm (7.9). This follows by inspection from fig. 7.9. In order to understand
this relation between the topology of horseshoes and their symbolic dynamics, it
might be helpful to backtrace to sect. 7.4.1 and work through and understand
first the symbolic dynamics of 1-dimensional unimodal mappings.

Under backward iteration the roles of 0 and 1 symbols are interchanged; M−1
0

has the same orientation as M, while M−1
1 has opposite orientation. We assign 7.12

on p. 138to an orientation preserving once-folding map the past topological coordinate δ =
δ(S-) by the algorithm:

wn−1 =
{

wn if sn = 0
1 − wn if sn = 1 , w0 = s0

δ(S-) = 0.w0w−1w−2 . . . =
∞∑
n=1

w1−n/2n . (7.17)

Such formulas are best derived by quiet contemplation of the action of a folding
map, in the same way we derived the future topological coordinate (7.9).

The coordinate pair (δ, γ) maps a point (x, y) in the phase space Cantor set of
fig. 7.8 into a point in the symbol plane of fig. 7.9, preserving the topological order-
ing; (δ, γ) serves as a topologically faithful representation of the non–wandering
set of any once-folding map, and aids us in partitioning the set and ordering the
partitions for any flow of this type.
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Figure 7.10: (a) An incomplete Smale horseshoe: the inner forward fold does not intersect
the two rightmost backward folds. (b) The primary pruned region in the symbol plane and the
corresponding forbidden binary blocks. (c) An incomplete Smale horseshoe which illustrates
(d) the monotonicity of the pruning front: the thick line which delineates the left border
of the primary pruned region is monotone on each half of the symbol plane. The backward
folding in figures (a) and (c) is only schematic - in invertible mappings there are further
missing intersections, all obtained by the forward and backward iterations of the primary
pruned region.

7.6 Pruning

The complexity of this figure will be striking, and I shall
not even try to draw it.
H. Poincaré, describing in “Les méthodes nouvelles de la

méchanique cleste” his discovery of homoclinic tangles.

In general, not all possible itineraries are realized as physical trajectories.
Trying to get from “here” to “there” we might find that a short path is excluded
by some obstacle, such as a disk that blocks the path, or a potential ridge. To
count correctly, we need to prune the inadmissible trajectories, that is, specify
the grammar of the admissible itineraries.

While the complete Smale horseshoe dynamics discussed so far is rather
straightforward, we had to get through it in order to be able to approach a situ-
ation that resembles more the real life: adjust the parameters of a once-folding
map so that the intersection of the backward and forward folds is still transverse,
but no longer complete, as in fig. 7.10a. The utility of the symbol plane lies in
the fact that the surviving, admissible itineraries still maintain the same relative
spatial ordering as for the complete case.

In the example of fig. 7.10a the rectangles [10.1], [11.1] have been pruned, and
consequently any trajectory containing blocks f1 = 101, f2 = 111 is pruned. We
refer to the border of this primary pruned region as the pruning front; another
example of a pruning front is drawn in fig. 7.10d. We call it a “front” as it can be
visualized as a border between admissible and inadmissible; any trajectory whose
periodic point would fall to the right of the front in fig. 7.10 is inadmissible, that
is, pruned. The pruning front is a complete description of the symbolic dynamics
of once-folding maps; we shall discuss this in more depth in chapter ??. For now
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we need this only as a concrete illustration of how pruning rules arise.

In the example at hand there are total of two forbidden blocks 101, 111, so
the symbol dynamics is a subshift of finite type (B.8). For now we concentrate
on this kind of pruning because it is particularly clean and simple. Unfortu-
nately, for a generic dynamical system subshift of finite type is exception rather
than the rule. Only some repelling sets (like our game of pinball) and a few
purely mathematical constructs (called Anosov flows) are structurally stable - for
most systems of interest an infinitesimal perturbation of the flow destroys and/or
creates infinity of trajectories, and arbitrarily long grammar rules. The repercus-
sions are dramatic and conterintuitive; for example, transport coefficients such
as the deterministic diffusion constant of sect. 16.2 are emphatically not smooth
functions of the system parameters. The generic lack of structural stability is one
of the problems that makes nonlinear dynamics so hard; we shall return to the
problem of approximating generic infinite Markov partitions in chapter ??.

The conceptually simpler finite subshift Smale horseshoes suffice to motivate
most of the key concepts that we shall need for time being.

7.7 Topological dynamics

So far we have established and related the temporally and spatially ordered topo-
logical dynamics for a class of “stretch & fold”dynamical systems, and given
several examples of pruning of inadmissible trajectories. Now we use these re-
sults to generate the totality of admissible itineraries. This task will be relatively
easy for repeller with complete Smale horseshoes and for subshifts of finite type.

7.7.1 Markov graphs

In the complete N -ary symbolic dynamics case (see example (7.4)) the choice
of the next symbol requires no memory of the previous ones. However, further
refinements of the partition require finite memory. For example, for the binary
labelled repeller with complete binary symbolic dynamics, we are free to partition
the phase space in four regions {M00,M01,M10,M11}. Such partitions are
drawn in figs. 7.2 and 7.16, as well as fig. 1.7 In this case the 1-step memory
transition matrix T is given by 7.14

on p. 139

φ′ = Tφ =


T00,00 0 T00,10 0
T01,00 0 T01,10 0

0 T10,01 0 T10,11
0 T11,01 0 T11,11




φ00
φ01
φ10
φ11

 (7.18)
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Figure 7.11: (a) The self-similarity of the complete binary symbolic dynamics represented
by a binary tree (b) identification of nodes B = A, C = A leads to the finite 1-node, 2-links
Markov graph. All admissible itineraries are generated as walks on this finite Markov graph.

This says that as topologically f acts as a left shift (7.16), the rectangle [0.1] can
map only into the two rectangles [1.s2] ∈ {[1.0], [1.1]}, and for M -step memory
the only nonvanishing matrix elements are of the form Ts1s2...sM+1,s0s1...sM , s ∈
{0, 1}. Thus the M -step memory transition matrix is a very sparse matrix, as
the only non vanishing entries in the m = s0s1 . . . sM column of Tdm are in the
rows d = s1 . . . sM0 and d = s1 . . . sM1. If we increase the number of steps9.1

on p. 187 remembered, the transition matrix grows big quickly, as the N -ary dynamics
with M -step memory requires an [NM+1×NM+1] matrix. As the matrix is very
sparse, our next task is to find a compact representation for T that will also give
us a better picture of the topological dynamics.

If the pruning is a subshift of finite type (B.8), the topology can be converted
into symbolic dynamics by means of a finite Markov graph. A Markov graph
describes compactly the ways in which the phase-space regions map into each
other, accounts for finite memory effects in dynamics, and generates the totality
of admissible trajectories as the set of all possible walks along its links. A Markov
graph is also the precise statement of what is meant topologically by a “self-
similar” fractal; supplemented by scaling information, it is the definition of a
self-similar fractal, see chapter 14 .

A graph consists of a set of nodes (or states) together with a set of directed
links. There might be a set of links connecting two nodes, or links that originate
and terminate on the same node. Two graphs are isomorphic if one can be
obtained from the other by relabelling links and nodes; for us they are one and
the same graph. As we are interested in recurrent dynamics we restrict our
attention to irreducible graphs, that is graphs for which there is a path from any
node to any other node.

Construction of a good Markov graph is, like combinatorics, unexplainable.
The only way to learn is by some diagrammatic gymnastics, so we now exemplify
it by a sequence of exercises in lieu of plethora of baffling definitions.9.4

on p. 188

9.1
on p. 187
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Figure 7.12: (a) The 2-step memory Markov
graph, links version obtained by identifying nodes
A = D = E = F = G in fig. 7.11(a). Links of
this graph correspond to the matrix entries in the
transition matrix (7.18). (b) the 2-step memory
Markov graph, node version.
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B C

(b)

BA=C=E

Figure 7.13: (a) The self-similarity of the 00 pruned binary tree: trees originating from
nodes C and E are the same as the entire tree. (b) Identification of nodes A = C = E leads
to the finite 2-node, 3-links Markov graph; as 0 is always followed by 1, the walks on this
graph generate only the admissible itineraries.

We commence by exploiting the self-similarity of the complete unrestricted
binary symbolic dynamics. Consider the binary tree of fig. 7.11a. Starting at
the top node, the tree enumerates exhaustively all topologically distinct finite
itineraries
{0, 1}, {00, 01, 10, 11}, {000, 001, 010, · · ·}, · · · .
The choice of the next step requires no memory; one can always go either to the
right or to the left. Hence all nodes are equivalent, and they can be identified;
in particular, the trees originating in nodes B and C are themselves copies of
the entire tree. The result is a single node, 2-link Markov graph of fig. 7.11b:
all itineraries enumerated by the binary tree fig. 7.11a correspond to all possible
walks on this graph. This is the most compact encoding of the complete binary
symbolic dynamics. Any number of more complicated Markov graphs can do
the job as well, and might be sometimes preferable. For example, identifying
the trees originating in D, E, F and G with the entire tree leads to the 2-step
memory Markov graph of fig. 7.12a. The corresponding transition matrix is given
by (7.18).

Again, the complete binary symbolic dynamics is too simple to be illuminat-
ing, so we now turn to the simplest example of pruned symbolic dynamics, the
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finite subshift obtained by prohibition of repeats of one of the symbols, let us say
00 . This situation arises, for example, in studies of the circle maps, where this??

on p. ?? kind of symbolic dynamics describes “golden mean” rotations (we shall return to
this example in chapter 23). Now the admissible itineraries are enumerated by9.6

on p. 189 the pruned binary tree of fig. 7.13a, or the corresponding Markov graph fig. 7.13b.

We complete this training by examples by implementing the pruning of fig. 7.10d.
The pruned rectangles are

[100.10], [10.1], [010.01], [011.01], [11.1], [101.10]. (7.19)

Blocks 01101, 10110 contain the forbidden block 101, so they are redundant as
pruning rules. Draw the pruning tree as a section of a binary tree with 0 and 1
branches and label each internal node by the sequence of 0’s and 1’s connecting
it to the root of the tree (fig. 7.14a). These nodes are the potentially dangerous
nodes - beginnings of blocks that might end up pruned. Add the side branches
to those nodes (fig. 7.14b). As we continue down such branches we have to check
whether the pruning imposes constraints on the sequences so generated: we do
this by knocking off the leading bits and checking whether the shortened strings
coincide with any of the internal pruning tree nodes: 00 → 0; 110 → 10; 011 → 11;
0101 → 101 (pruned); 1000 → 00 → 00 → 0; 10011 → 0011 → 011 → 11;
01000 → 0.

As in the previous two examples, the trees originating in identified nodes
are identical, so the tree is “self-similar”. Now connect the side branches into
the corresponding nodes (fig. 7.14d). Nodes “.” and 1 are transient nodes; no
sequence returns to them, and as we are interested here only in infinitely recurrent
sequences, we delete them. The result is the finite Markov graph of fig. 7.14d;9.7

on p. 189 the admissible bi-infinite symbol sequences are generated as all possible walks
along this graph.

Commentary

Remark 7.1 Alphabets. Using letters rather than numerals in symbol
dynamics alphabets probably reflects good taste. For example, for unimodal
maps it is a common practice [61] to use letters L and R instead of 0 and 1,
indicating that the point xn lies either to the left or to the right of the critical
point in fig. 7.5. We prefer numerals for their computational convenience,
as they speed up the implementation of conversions into the topological
coordinates (δ, γ) that we shall introduce in sect. 7.5.2.
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Figure 7.14: Conversion of the pruning front of fig. 7.10d into a finite Markov graph.
(a) Starting with the start node “.”, delineate all pruned blocks on the binary tree. Full
line stands for “1” and the dashed line for “0”. Ends of forbidden strings are marked with
×. Label all internal nodes by reading the bits connecting “.”, the base of the tree, to the
node. (b) Indicate all admissible starting blocks by arrows. (c) Drop recursively the leading
bits in the admissible blocks; if the truncated string corresponds to an internal node in (a),
connect them. (d) Delete the transient, non-circulating nodes; all admissible sequences are
generated as walks on this finite Markov graph. (e) Identify all distinct loops and construct
the determinant (9.16).

printed August 24, 2000 ∼DasBuch/book/chapter/symbolic.tex 4aug2000



128 CHAPTER 7. QUALITATIVE DYNAMICS

Remark 7.2 Kneading theory. The admissible itineraries are studied
in refs. [33, 61, 34, 6], as well as many others. We follow here the Milnor-
Thurston exposition [62]. They study the topological zeta function for piece-
wise monotone maps of the interval, and show that for the finite subshift case
it can be expressed in terms of a finite dimensional kneading determinant.
As the kneading determinant is essentially the topological zeta function that
we shall introduce in (9.4), we shall not discuss it here. Baladi and Ruelle
have reworked this theory in a series of papers [5, 6, 10] and in ref. [14]
replaced it by a power series manipulation. The kneading theory is covered
here in P. Dahlqvist’s appendix B.2.

Remark 7.3 Smale horseshoe. S. Smale understand clearly that the
crucial ingredient in description of a chaotic flow is the topology of its non–
wandering set, and he provided us with the simplest visualization of such
sets as intersections of Smale horseshoes. In retrospect, much of the material
covered here can already be found in Smale’s fundamental paper [13]; but
a physicist who has run into a chaotic time series in his laboratory has no
clue that he is investigating the action (differentiable) of a Lie group G on
a manifold M , and that the Lefschetz trace formula is the way to go.

Remark 7.4 Pruning fronts. The notion of pruning front was intro-
duced in ref. [?], and developed by K.T. Hansen for a number of dynamical
systems in his Ph.D. thesis [3] and a series of papers [?]-[?]. Detailed studies
of pruning fronts are carried out in refs. [?, 35, 48]; ref. [22] is the most
detailed study carried out so far. The rigorous theory of pruning fronts has
been developed by Y. Ishii [36, 37] for the Lozi map, and A. de Carvalho [38]
in a very general setting.

Remark 7.5 The unbearable growth of Markov graphs. The finite Markov
graph construction sketched above is not necessarily the minimal one; for
example, the Markov graph of fig. 7.14 does not generate only the “fun-
damental” cycles (see chapter 11), but shadowed cycles as well, such as
t00011 in (9.16). For methods of reduction to a minimal graph, consult
refs. [41, 47, 49]. Furthermore, when one implements the time reversed dy-
namics by the same algorithm, one usually gets a graph of very different
topology even though both graphs generate the same admissible sequences,
and have the same determinant. The algorithm described here makes some
sense for 1-d dynamics, but is unnatural for 2-d maps whose dynamics it
blindly treats as 1-dimensional. In practice, generic pruning grows longer
and longer and more plentiful pruning rules. Not only that the Markov
graphs get more and more unwieldy, they have the unpleasant property that
every time we add a new rule, the graph has to be constructed from the
scratch, and it might look very different form the previous one, even though
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it leads to a minute modification of the topological entropy. The most de-
termined effort to construct such graphs may be the one of ref. [?]. Still,
this seems to be the best technology available, unless the reader alerts us to
something superior.

Résumé

Given a partition A of the phase space M, a dynamical system (M, f) induces a
topological dynamics (Σ, σ) on the space Σ of all admissible bi–infinite itineraries.
The itinerary describes the time evolution of an orbit, while the symbol plane
describes the spatial ordering of points along the orbit. Symbol plane is essential
in transforming topological pruning into pruning rules for inadmissible sequences;
those are implemented by constructing transition matrices and/or Markov graphs.
As we shall see in the next chapter, these matrices are the simplest examples of
“operators” prerequisite to developing a theory of averaging over chaotic flows.

Symbolic dynamics is the coarsest example of coarse graining, the way irre-
versibility enters chaotic dynamics. The exact trajectory is deterministic, and
given an initial point we know (in principle) both its past and its future - its
memory is infinite. In contrast, the partitioned phase space is described by the
quientessentially probabilistic tools, such as the finite memory Markov graphs.
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[7.15] P. Cvitanović, in Nonlinear Physical Phenomena, Brasilia 1989 Winter School, À.
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Exercises

7.1 Binary symbolic dynamics. Verify that the shortest prime binary
cycles of the unimodal repeller of fig. 7.5 are 0, 1, 01, 001, 011, · · ·. Compare
with table 7.1. Try to sketch them in the graph of the unimodal function f(x);
compare ordering of the periodic points with fig. 7.6. The point is that while
overlayed on each other the longer cycles look like a hopeless jumble, they are
clearly and logically ordered by the alternating binary tree.

7.2 3-disk fundamental domain symbolic dynamics. Try to sketch 0,
1, 01, 001, 011, · · ·. in the fundamental domain, fig. 7.3, and interpret the symbols
{0, 1} by relating them to topologically distinct types of collisions. Compare with
table 7.2. Then try to sketch the location of periodic points in the Poincaré section
of the billiard flow. The point of this exercise is that while in the configuration
space longer cycles look like a hopeless jumble, in the Poincaré section they are
clearly and logically ordered. The Poincaré section is always to be preferred to
projections of a flow onto the configuration space coordinates, or any other subset
of phase space coordinates which does not respect the topological organization of
the flow.

7.3 Generating prime cycles. Write a program that generates all binary prime
cycles up to given finite length.

7.4 Reduction of 3-disk symbolic dynamics to binary. Verify that the
3-disk cycles
{1 2, 1 3, 2 3}, {1 2 3, 1 3 2}, {12 13 + 2 perms.},
{121 232 313 + 5 perms.}, {121 323+ 2 perms.}, · · ·, correspond to the funda-
mental domain cycles 0, 1, 01, 001, 011, · · · respectively, Check the reduction for
short cycles in table 7.2 by drawing them both in the full 3-disk system and in
the fundamental domain, as in fig. 7.3. (Optional:) Can you see how the group
elements listed in table 7.2 relate irreducible segments to the fundamental domain
periodic orbits?
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7.5 3-disk prime cycle counting. A prime cycle p of length np is a single
traversal of the orbit; its label is a non-repeating symbol string of np symbols. For
example, 12 is prime, but 2121 is not, since it is 21 = 12 repeated.

Verify that a 3-disk pinball has 3, 2, 3, 6, 9, · · · prime cycles of length 2, 3, 4, 5, 6,
· · ·.

7.6 Unimodal map symbolic dynamics. Show that the tent map point γ(S+)
with future itinerary S+ is given by converting the sequence of sn’s into a binary number
by the algorithm (7.9). This follows by inspection from the binary tree of fig. 7.6.

7.7 One-dimensional repellers. The simplest example of symbolic dynamics is
afforded by 1-d unimodal maps, ie. maps with one raising and one decreasing branch. The
alphabet consists of two letters, describing the branch on which the iterate is located.

the quadratic polynomial

f(x) = x2 + c , (7.20)

the cubic polynomial

f(x) = (1 + ε)µcx(1 − x2) , (7.21)

For ε > 0 the map repels, meaning that almost any initial x will iterate out of the unit
interval and escape, see fig. 7.5.

7.8 A Smale horseshoe. The Hénon map

[
x′
y′

]
=
[

1 − ax2 + y
bx

]
(7.22)

maps the (x, y) plane into itself - it was constructed by Hénon [2] in order to mimic the
Poincaré section of once-folding map induced by a flow like the one sketched in fig. 7.4.
For definitivness fix the parameters to a = 6, b = −1.

a) Draw a rectangle in the (x, y) plane such that its nth iterate by the Hénon map
intersects the rectangle 2n times.
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b) Construct the inverse of the (7.22).

c) Iterate the rectangle back in the time; how many intersections are there between
the n forward and m backward iterates of the rectangle?

d) Use the above information about the intersections to guess the (x, y) coordinates
for the two fixed points, a 2-cycle point, and points on the two distinct 3-cycles
from table 7.1. We shall compute the the exact cycle points in exercise 8.22.

7.9 Kneading Danish pastry. Write down the (x, y) → (x, y) mapping
that implements the baker’s map of fig. 7.9, together with the inverse mapping.
Sketch a few rectangles in symbol plane and their forward and backward images.
(Hint: the mapping is very much like the tent map (7.6)).

7.10 Kneading Danish without flipping. The baker’s map of fig. 7.9 includes a
flip - a map of this type is called an orientation reversing once-folding map. Write down
the (x, y) → (x, y) mapping that implements an orientation preserving baker’s map (no
flip; Jacobian determinant = 1). Sketch and label the first few foldings of the symbol
plane.

7.11 Fix this manuscript. Check whether the layers of the baker’s map
of fig. 7.9 are indeed ordered as the branches of the alternating binary tree of
fig. 7.6. (They might not be - we have not rechecked them). Draw the correct
binary trees that order both the future and past itineraries.

For once-folding maps there are four topologically distinct ways of laying out
the stretched and folded image of the starting region,

(a) orientation preserving: stretch, fold upward, as in fig. 7.15

(b) orientation preserving: stretch, fold downward, as in fig. 7.10

(c) orientation reversing: stretch, fold upward, flip, as in fig. 7.16

(d) orientation reversing: stretch, fold downward, flip, as in fig. 7.9,

with the corresponding four distinct binary-labelled symbol planes. For n-fold
“stretch & fold” flows the labelling would be nary. The intersection M0 for the
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Figure 7.15: A complete Smale horseshoe iterated forwards and backwards, orientation
preserving case: function f maps the dashed border square M into the vertical horseshoe,
while the inverse map f−1 maps it into the horizontal horseshoe. a) One iteration, b) two
iterations, c) three iterations. The non–wandering set is contained within the intersection
of the forward and backward iterates (crosshatched). (from K.T. Hansen [3])

.0 .1
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.0

.0
1

.0
0

.1
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1

.10

.11

.01

.00

Figure 7.16: An orientation reversing Smale horseshoe map. Function
f = {stretch,fold,flip} maps the dashed border square M into the vertical horseshoe, while
the inverse map f−1 maps it into the horizontal horseshoe. a) one iteration, b) two iterations,
c) the non–wandering set cover by 16 rectangles, each labelled by the 2 past and the 2 future
steps. (from K.T. Hansen [3])

orientation preserving Smale horseshoe, fig. 7.15a, is oriented the same way as
M, while M1 is oriented opposite to M. Brief contemplation of fig. 7.9 indicates
that the forward iteration strips are ordered relative to each other as the branches
of the alternating binary tree in fig. 7.6.

Check the labelling for all four cases.

7.12 Orientation reversing once-folding map. By adding a reflection around
the vertical axis to the horseshoe map g we get the orientation reversing map g̃ shown in
fig. 7.16. Q̃0 and Q̃1 are oriented as Q0 and Q1, so the definition of the future topological
coordinate γ is identical to the γ for the orientation preserving horseshoe. The inverse
intersections Q̃−1

0 and Q̃−1
1 are oriented so that Q̃−1

0 is opposite to Q, while Q̃−1
1 has the
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same orientation as Q. Check that the past topological coordinate δ is given by

wn−1 =
{

1 − wn if sn = 0
wn if sn = 1 , w0 = s0

δ(x) = 0.w0w−1w−2 . . . =
∞∑
n=1

w1−n/2n . (7.23)

7.13 “Golden mean” pruned map. Consider a symmetrical tent map on
the unit interval such that its highest point belongs to a 3-cycle:

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a) Find the absolute value Λ for the slope (the two different slopes ±Λ just
differ by a sign) where the maximum at 1/2 is part of a period three orbit,
as in the figure.

(b) Show that no orbit of this map can visit the region x > (1 +
√

5)/4 more
than once. Verify that once an orbit exceeds x > (

√
5 − 1)/4, it does not

reenter the region x < (
√

5 − 1)/4.

(c) If an orbit is in the interval (
√

5 − 1)/4 < x < 1/2, where will it be on the
next iteration?

(d) If the symbolic dynamics is such that for x < 1/2 we use the symbol 0 and
for x > 1/2 we use the symbol 1, show that no periodic orbit will have the
substring 00 in it.

(e) On the second thought, is there a periodic orbit that violates the above 00
pruning rule?

For continuation, see exercise 9.5 and exercise 10.2. See also exercise ?? and
exercise 9.6.
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7.14 Binary 3-step transition matrix. Construct [8×8] binary 3-step transition
matrix analogous to the 2-step transition matrix (7.18). Convince yourself that the
number of terms of contributing to trTn is independent of the memory length, and that
this [2m×2m] trace is well defined in the infinite memory limit m → ∞.

7.15 Infinite symbolic dynamics Let σ be a function that returns zero or one for
every infinite binary string: σ : {0, 1}N → {0, 1}. Its value is represented by σ(ε1, ε2, . . .)
where the εi are either 0 or 1. We will now define an operator T that acts on observables
on the space of binary strings. A function a is an observable if it has bounded variation,
that is, if

‖a‖ = sup
{εi}

|a(ε1, ε2, . . .)| < ∞ .

For these functions

T a(ε1, ε2, . . .) = a(0, ε1, ε2, . . .)σ(0, ε1, ε2, . . .) + a(1, ε1, ε2, . . .)σ(1, ε1, ε2, . . .) .

(a) (easy) Consider a finite version Tn of the operator T :

Tna(ε1, ε2, . . . , ε1,n) =
a(0, ε1, ε2, . . . , εn−1)σ(0, ε1, ε2, . . . , εn−1) +
a(1, ε1, ε2, . . . , εn−1)σ(1, ε1, ε2, . . . , εn−1) .

Show that Tn is a 2n × 2n matrix. Show that its trace is bounded by a number
independent of n.

(b) (medium) With the operator norm induced by the function norm, show that T is
a bounded operator.

(c) (hard) Show that T is not trace class. (Hint: check if T is compact).

7.16 Time reversability.∗∗ Hamiltonian flows are time reversible. Does that
mean that their Markov graphs are symmetric in all node → node links, their transition
matrices are adjacency matrices, symmetric and diagonalizable, and that they have only
real eigenvalues?
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Chapter 8

Fixed points, and how to get
them

(F. Christiansen)

Having set up the dynamical context, now we turn to the key and unavoidable
piece of numerics in this subject; search for the solutions (x, T), x ∈ R

d, T ∈ R

of the periodic orbit condition

f t+T(x) = f t(x) , T > 0 (8.1)

for a given flow or mapping.

We know from chapter 6 that cycles are the necessary ingredient for eigenvalue
evaluation. In chapter 7 we have developed a qualitative theory of how these
cycles are laid out topologically. This chapter is intended as a hands-on guide
to extraction of periodic orbits, and should be skipped on first reading - you can
return to it whenever the need for finding actual cycles arises.

fast track:

chapter 4, p. 63

A prime cycle p of period Tp is a single traversal of the orbit, so our task will
be to find a cycle point x ∈ p and the shortest time T = Tp for which (8.1) has a
solution. A periodic orbit of a flow which crosses a Poincaré section np times is a
fixed point of the fnp iterate of the Poincaré section return map, hence we shall
refer to all periodic orbits as “fixed points” in this chapter. By cyclic invariance,
stability eigenvalues and the period of the cycle are independent of the cycle

point, so it will suffice to solve (8.1) at a single cycle point.

141
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Figure 8.1: The inverse time path to the 01-
cycle of the logistic map f(x)=4x(1-x) from an ini-
tial guess of x=0.2. At each inverse iteration we
chose the 0, respectively 1 branch.
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Due to the exponential divergence of nearby trajectories in chaotic dynamical
systems, fixed point searches based on direct solution of the fixed-point condition
(8.1) as an initial value problem cab be numerically very unstable. Methods that
start with initial guesses for a number of points along the cycle are considerably
more robust and safer.

What is required in practice is a good understanding of the topology of the
flow: a preliminary step to any serious periodic orbit calculation is preparation of
a list of all distinct admissible prime periodic symbol sequences, such as the list
given in table 7.1. The relations between the temporal symbol sequences and the
spatial layout of the topologically distinct regions of the phase space discussed in
chapter 7 should enable us to guess location of a series of periodic points along a
cycle. Armed with such informed guess we proceed to improve it by methods such
as Newton-Raphson iteration; we illustrate this by first considering 1-dimensional
and d-dimensional maps.

8.1 One-dimensional mappings

8.1.1 Inverse iteration

Let us first consider a very simple method to find unstable cycles of a 1-dimensional
map such as the logistic map. Unstable cycles of 1-d maps are attracting cycles
of the inverse map. The inverse map is not single valued, so at each backward
iteration we have a choice of branch to make. By choosing branch according to
the symbolic dynamics of the cycle we are trying to find, we will automatically
converge to the desired cycle. The rate of convergence is given by the stability of
the cycle, i.e. the convergence is exponentially fast. Fig. 8.1 shows such path to
the 01-cycle of the logistic map.8.22

on p. 165

The method of inverse iteration is fine for finding cycles for 1-d maps and
some 2-d systems such as the repeller of exercise 8.22. It is not particularly fast,
especially if the inverse map is not known analytically. However, it completely
fails for higher dimensional systems where we have both stable and unstable
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directions. Inverse iteration will exchange these, but we will still be ledt with
both stable and unstable directions. The best strategy is to directly attack the
problem of finding solutions of fT (x) = x.

8.1.2 Newton’s method for one-dimensional mappings

Newton’s method for finding solutions of F (x) = 0 works as a simple linearization
around a starting guess x0:

F (x) ≈ F (x0) + F ′(x0)(x − x0). (8.2)

An approximate solution x1 of F (x) = 0 is

x1 = x0 − F (x0)/F ′(x0). (8.3)

The approximate solution can then be used as a new starting guess in an it-
erative process. If F ′(x) is not zero at F (x) = 0, this iteration will converge
super-exponentially fast for starting guesses close to the solution. In fact, as is
illustrated by fig. 8.2, in the typical case the number of significant digits of the
solution x doubles in each iteration.

A fixed point of a function f is a solution to F (x) = x − f(x) = 0. We
determine x by setting up the following iteration:

xm = xm−1 − F (xm−1)/F ′(xm−1)
= xm−1 − (xm−1 − f(xm−1))/(1 − f ′(xm−1)), (8.4)

which is expected to converge super-exponentially fast if f ′(x) �= 1 at the fixed
point x, that is if the fixed point is not marginally stable.

Periodic orbits of length n are fixed points of fn so in principle we could use
the simple Newton’s method described above to find them. However, this is not
an optimal strategy. fn will be a highly oscillating function with perhaps as many
as 2n or more closely spaced fixed points, and finding a specific periodic point,
for example one with a given symbolic sequence, requires a very good starting
guess. For binary symbolic dynamics we must expect to improve the accuracy of
our initial guesses by at least a factor of 2n to find orbits of length n. A better
alternative is the multipoint shooting method.

A cycle of length n is a zero of the n-dimensional vector function F :

F (x) = F

 x1
x2
·
xn

 =

 x1 − f(xn)
x2 − f(x1)

· · ·
xn − f(xn−1)

 .
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The iteration in Newton’s method now takes the form of

d

dx
F (x)(x′ − x) = −F (x), (8.5)

where d
dxF (x) is an [n × n] matrix:

d
dxF (x) =


1 −f ′(xn)

−f ′(x1) 1
· · · 1

· · · 1
−f ′(xn−1) 1

 . (8.6)

This matrix can easily be inverted numerically by first eliminating the elements
below the diagonal. This creates non-zero elements in the n’th column. We
eliminate these and are done. Let us take it step by step for a period 3 cycle.
Initially the setup for the Newton step looks like this:

 1 0 −f ′(x3)
−f ′(x1) 1 0

0 −f ′(x2) 1

 δ1
δ2
δ3

 =

 −F1
−F2
−F3

 , (8.7)

where δi = x′
i − xi is the correction of our guess for a solution and where Fi =

xi − f(xi−1). First we eliminate the below diagonal elements by adding f ′(x1)
times the first row to the second row, then adding f ′(x2) times the second row
to the third row. We then have

 1 0 −f ′(x3)
0 1 −f ′(x1)f ′(x3)
0 0 1 − f ′(x2)f ′(x1)f ′(x3)

 δ1
δ2
δ3

 = −F1
−F2 − f ′(x1)F1

−F3 − f ′(x2)F2 − f ′(x2)f ′(x1)F1

 . (8.8)

The next step is to invert the last element in the diagonal, i.e. divide the third
row by 1−f ′(x2)f ′(x1)f ′(x3). It is clear that if this element is zero at the periodic
orbit this step might lead to problems. In many cases this will just mean a slower
convergence, but it might throw the Newton iteration completely off. We note
that f ′(x2)f ′(x1)f ′(x3) is the stability of the cycle (when the Newton iteration
has converged) and that this therefore is not a good method to find marginally
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stable cycles. We now have

 1 0 −f ′(x3)
0 1 −f ′(x1)f ′(x3)
0 0 1

 δ1
δ2
δ3

 = −F1
−F2 − f ′(x1)F1

−F3−f ′(x2)F2−f ′(x2)f ′(x1)F1

1−f ′(x2)f ′(x1)f ′(x3)

 . (8.9)

Finally we add f ′(x3) times the third row to the first row and f ′(x1)f ′(x3) times
the third row to the second row. On the left hand side the matrix is now the unit
matrix, on the right hand side we have the corrections to our initial guess for the
cycle, i.e. we have gone through one step of the Newton iteration scheme.

When one sets up the Newton iteration on the computer it is not necessary
to write the left hand side as a matrix. All one needs is a vector containing the
f ′(xi)’s, a vector containing the n’th column, that is the cumulative product of
the f ′(xi)’s and a vector containing the right hand side. After the iteration the
vector containing the right hand side should be the correction to the initial guess.

8.1
on p. 159

To illustrate the efficiency of the Newton method we compare it to the inverse
iteration method in fig. 8.2. The advantage with respect to speed of Newton’s
method is obvious.

8.2 d-dimensional mappings

(F. Christiansen)

The relations between the temporal symbol sequences and the spa-
tial layout of the topologically distinct regions of the phase space discussed in
chapter 7 enable us to guess location of a series of periodic points along a cycle.
Armed with such informed initial guesses we can proceed to methods such as
Newton-Raphson iteration, also in dimensions higher than 1.

8.2.1 Newton’s method for d-dimensional mappings

Newton’s method for 1-dimensional mappings is easily extended to higher dimen-
sions. In this case f ′(xi) is a [d× d] matrix. d

dxF (x) is then an [nd× nd] matrix.
In each of the steps that we went through above we are then manipulating d rows
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Figure 8.2: Convergence of Newton’s method (♦) vs. inverse iteration (+). The error
after n iterations searching for the 01-cycle of the logistic map f(x) = 4x(1 − x) with an
initial starting guess of x1 = 0.2, x2 = 0.8. y-axis is log10 of the error. The difference be-
tween the exponential convergence of the inverse iteration method and the super-exponential
convergence of Newton’s method is obvious.

of the left hand side matrix. (Remember that matrices do not commute - always
multiply from the left.) In the inversion of the n’th element of the diagonal we
are inverting a [d × d] matrix (1 −

∏
f ′(xi)) which can be done if none of the

eigenvalues of
∏

f ′(xi) equals 1, i.e. the cycle must not have any marginally
stable directions.

Some d-dimensional mappings (such as the Hénon map (2.13)) can be written
as 1-dimensional time delay mappings of the form

f(xi) = f(xi−1, xi−2, . . . , xi−d). (8.10)

In this case d
dxF (x) is an [n×n] matrix as in the case of usual 1-dimensional maps

but with non-zero matrix elements on d off-diagonals. In the elimination of these
off-diagonal elements the last d columns of the matrix will become non-zero and
in the final cleaning of the diagonal we will need to invert a [d×d] matrix. In this
respect, nothing is gained numerically by looking at such maps as 1-dimensional
time delay maps.

8.3 Flows

(F. Christiansen)
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Further complications arise for flows due to the fact that for a periodic orbit
the stability eigenvalue corresponding to the flow direction of necessity equals
unity; the separation of any two points along a cycle remains unchanged after
a completion of the cycle. More unit eigenvalues can arise if the flow satisfies
conservation laws, such as the energy invariance for Hamiltonian systems. We
now show how such problems are solved by increasing the number of fixed point
conditions.

8.3.1 Newton’s method for flows

A flow is equivalent to a mapping in the sense that one can reduce the flow to a
mapping on the Poincaré surface of section. An autonomous flow (2.3) is given
as

ẋ = v(x), (8.11)

The corresponding Jacobian matrix J (3.7) is obtained by integrating the lin-
earized equation

J̇ =
d

dx
v(x)J. (8.12)

along the trajectory. The flow and the corresponding Jacobian are integrated
simultaneously, by the same numerical routine. Integrating an initial condition
on the Poincaré surface until a later crossing of the same and linearizing around
the flow we can write

f(x′) ≈ f(x) + J(x′ − x). (8.13)

Notice here, that, even though all of x′, x and f(x) are on the Poincaré surface,
f(x′) is usually not. The reason for this is that J corresponds to a specific
integration time and has no explicit relation to the arbitrary choice of Poincaré
section. This will become important in the extended Newton method described
below.

To find a fixed point of the flow near a starting guess x we must solve the
linearized equation

(1 − J)(x′ − x) = −(x − f(x)) = −F (x) (8.14)

where f(x) corresponds to integrating from one intersection of the Poincaré sur-
face to another and J is integrated accordingly. Here we run into problems with
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the direction along the flow, since this corresponds to a unit eigenvector of J.
The matrix (1 − J) does therefore not have full rank. A related problem is that
the solution x′ of (8.14) is not guaranteed to be in the Poincaré surface of section.
The two problems are solved simultaneously by adding a small vector along the
flow plus an extra equation demanding that x be in the Poincaré surface. Let us
for the sake of simplicity assume that the Poincaré surface is a (hyper)-plane, i.e.
it is given by the linear equation

(x − x0) · a = 0, (8.15)

where a is a vector normal to the Poincaré section and x0 is any point in the
Poincaré section. (8.14) then becomes

(
1 − J v(x)

a 0

)(
x′ − x
δT

)
=
(

−F (x)
0

)
. (8.16)

The last row in this equation ensures that x will be in the surface of section, and
the addition of v(x)δT, a small vector along the direction of the flow, ensures
that such an x can be found at least if x is sufficiently close to a solution, i.e. to
a fixed point of f .

To illustrate this little trick let us take a particularly simple example; consider
a 3-d flow with the (x, y, 0)-plane as Poincaré section. Let all trajectories cross
the Poincaré section perpendicularly, i.e. with v = (0, 0, vz), which means that
the marginally stable direction is also perpendicular to the Poincaré section.
Furthermore, let the unstable direction be parallel to the x-axis and the stable
direction be parallel to the y-axis. In this case the Newton setup looks as follows

 1 − Λu 0 0 0
0 1 − Λs 0 0
0 0 0 vz
0 0 1 0


 δx

δy
δz
δt

 =

 −Fx

−Fy

−Fz

0

 . (8.17)

If you consider only the upper-left [3 × 3] matrix (which is what we would have
without the extra constraints that we have introduced) then this matrix is clearly
not invertible and the equation does not have a unique solution. However, the
full [4 × 4] matrix is invertible, as det (·) =

∣∣det
(
1− Jp

)∣∣ vz.
For periodic orbits (8.16) generalizes in the same way as (8.6), but with n

additional equations – one for each point on the Poincaré surface. The Newton
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setup looks like this



1 −Jn v1 0
−J1 1

· · · 1
· · · 1

−Jn−1 1 0 vn
a

· · ·
a





δ1
δ2
·
·
δn
δt1
·

δtn


=



−F1
−F2

·
·

−Fn

0
0
0


.(8.18)

Solving this equation resembles the corresponding task for maps. However, in
the process we will need to invert an [(n + d) × (n + d)] matrix rather than a
[d × d] matrix. The task changes with the length of the cycle.

This method can be extended to take care of the same kind of problems if
other eigenvalues of the Jacobian matrix equal 1. This happens if the flow has
an invariant of motion, the most obvious example being energy conservation in
Hamiltonian systems. In this case we add an extra equation for x to be on the
energy shell plus and extra variable corresponding to adding a small vector along
the gradient of the Hamiltonian. We then have to solve

(
1 − J v(x) ∇H(x)

a 0 0

) x′ − x
δt
δE

 =
(

−(x − f(x))
0

)
(8.19)

simultaneously with

H(x′) − H(x) = 0. (8.20)

This last equation is nonlinear. It is often best to treat this separately in the sense
that we really solve this equation in each Newton step. This might mean putting
in an additional Newton routine to solve the single step of (8.19) and (8.20)
together. One might be tempted to linearize (8.20) and put it into (8.19) to
do the two different Newton routines simultaneously, but this will not guarantee
a solution on the energy shell. In fact, it may not even be possible to find any
solution of the combined linearized equations, if the initial guess is not very good.

8.3.2 Newton’s method with optimal surface of section

(F. Christiansen)
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Figure 8.3: Illustration of the optimal Poincaré surface. The original surface y = 0 yields
a large distance x − f(x) for the Newton iteration. A much better choice is y = 0.7.

In some systems it might be hard to find a good starting guess for
a fixed point, something that could happen if the topology and/or the symbolic
dynamics of the flow is not well understood. By changing the Poincaré section one
might get a better initial guess in the sense that x and f(x) are closer together.
In fig. 8.3 there is an illustration of this. The figure shows a Poincaré section,
y = 0, an initial guess x, the corresponding f(x) and pieces of the trajectory near
these two points.

If the Newton iteration does not converge for the initial guess x we might
have to work very hard to find a better guess, particularly if this is in a high-
dimensional system (high-dimensional might in this context mean a Hamiltonian
system with 3 degrees of freedom.) But clearly we could easily have a much better
guess by simply shifting the Poincaré section to y = 0.7 where the distance
x − f(x) would be much smaller. Naturally, one cannot see by eye the best
surface in higher dimensional systems. The way to proceed is as follows: We
want to have a minimal distance between our initial guess x and the image of
this f(x). We therefore integrate the flow looking for a minimum in the distance
d(t) = |f t(x) − x|. d(t) is now a minimum with respect to variations in f t(x),
but not necessarily with respect to x. We therefore integrate x either forward or
backward in time. Doing this we minimize d with respect to x, but now it is no
longer minimal with respect to f t(x). We therefore repeat the steps, alternating
between correcting x and f t(x). In most cases this process converges quite rapidly.
The result is a trajectory for which the vector (f(x) − x) connecting the two end
points is perpendicular to the flow at both points. We can now choose to define a
Poincaré surface of section as the hyper-plane that goes through x and is normal
to the flow at x. In other words the surface of section is determined by

(x′ − x) · v(x) = 0. (8.21)

Note that f(x) lies on this surface. This surface of section is optimal in the
sense that a close return on the surface is really a local minimum of the distance
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between x and f t(x). But more importantly, the part of the stability matrix
that describes linearization perpendicular to the flow is exactly the stability of
the flow in the surface of section when f(x) is close to x. In this method, the
Poincaré surface changes with each iteration of the Newton scheme. Should we
later want to put the fixed point on a specific Poincaré surface it will only be a
matter of moving along the trajectory.

8.4 Periodic orbits as extremal orbits

If you have some insight into the topology of the flow, its symbolic dynamics, or
have already found a set of short cycles, you might be able to construct a rough
approximation to a longer cycle p of cycle length np as a sequence of points
(x(0)1 , x

(0)
2 , · · · , x(0)np ) with the periodic boundary condition xnp+1 = x1. Suppose

you have an iterative method for improving your guess; after k iterations the

E(x(k)) =
np∑
i

(
x
(k)
i+1 − f(x(k)i )

)2
(8.22)

or some other more cleverly constructed function is a measure of the deviation
of the kth approximate cycle from the true cycle. This observation motivates
variational approaches to determining cycles. We give her two examples of such
methods, one for maps and one for billiards. Unlike the Newton-Raphson method,
variational methods are very robust. As each step around the cycle is short, they
do not suffer from exponential instabilities, and with rather coarse initial guesses
one can determine cycles of arbitrary length.

8.4.1 Cyclists relaxation method

(Ofer Biham and Predrag Cvitanović)

The relaxation (or gradient) algorithm for finding cycles is based on the ob-
servation that a trajectory of a map such as the Hénon map (2.13),

xi+1 = 1 − ax2i + byi

yi+1 = xi , (8.23)

is a stationary solution of the relaxation dynamics defined by the flow

dxi

dt
= vi, i = 1, . . . , n (8.24)
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Figure 8.4: “Potential” Vi(x) (8.26) for a typical
point along an inital guess trajectory. For σi =
+1 the flow is toward the local maximum of Vi(x),
and for σi = −1 toward the local minimum. A
large deviation of xi’s is needed to destabilize a
trajectory passing through such local extremum of
Vi(x), hence the basin of attraction is expected to
be large. −1 0 1 xi

−1

0

1

Vi(x)

for any vector field vi = vi(x) which vanishes on the trajectory. As the simplest
example, take vi to be the deviation of an approximate trajectory from the exact
2-step recurrence form of the Hénon map (2.14)

vi = xi+1 − 1 + ax2i − bxi−1. (8.25)

For fixed xi−1, xi+1 there are two values of xi satisfying vi = 0. These solutions
are the two extremal points of a local “potential” function (no sum on i)

vi =
d

dxi
Vi(x) , Vi(x) = xi(xi+1 − bxi−1 − 1) +

a

3
x3i . (8.26)

Assuming that the two extremal points are real, one is a local minimum of Vi(x)
and the other is a local maximum. Now here is the idea; replace (8.24) by

dxi

dt
= σivi, i = 1, . . . , n, (8.27)

where σi = ±1.

The modified flow will be in the direction of the extremal point given by
the local maximum of Vi(x) if σi = +1 is chosen, or in the direction of the one
corresponding to the local minimum if we take σi = −1. This is not quite what
happens in solving (8.27) - all xi and Vi(x) change at each integration step -
but this is the observation that motivates the method. The differential equations
(8.27) then drive an approximate initial guess toward the exact trajectory. A
sketch of the landscape in which xi converges towards the proper fixed point is
given in fig. 8.4. As the “potential” function (8.26) is not bounded for a large |xi|,
the flow diverges for initial guesses which are too distant from the true trajectory.

Our aim in this calculation is to find all periodic orbits of period n, in principle
at most 2n orbits. We start by choosing an initial guess trajectory (x1, x2, · · · , xn)
and impose the periodic boundary condition xn+1 = x1. A convenient choice of
the initial condition in the Hénon map example is xi = 0 for all i. In order to find
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Figure 8.5: (a) The strange attractor (unstable manifold) and a period 7 orbit of the
Hénon map a = 1.4, b = 0.3 (K.T. Hansen). (b) The repeller for the Hénon map at a = 1.8,
b = 0.3 (O. Biham).

a given orbit one sets σi = −1 for all iterates i which are local minima of Vi(x),
and σi = 1 for iterates which are local maxima. In practice one runs through a
complete list of prime cycles, such as the table 7.1. The real issue for all searches
for periodic orbits, this one included, is how large is the basin of attraction of the
desired periodic orbit? There is no easy answer to this question, but empirically
it turns out that for the Hénon map such initial guess almost always converges to
the desired trajectory as long as the initial |x| is not too large compared to 1/

√
a.

Fig. 8.4 gives some indication of a typical basin of attraction of the method.

The calculation is carried out by solving the set of n ordinary differential equa-
tions (8.27) using a simple Runge-Kutta method with a relatively large step size
(h = 0.1) until |v| becomes smaller than a given value ε (in a typical calculation
ε ∼ 10−7). Empirically, in the case that an orbit corresponding to the desired
itinerary does not exist, the initial guess escapes to infinity since the “potential”
Vi(x) grows without bound. 8.21

on p. 165

Applied to the Hénon map at the Hénon’s parameters choice a = 1.4, b = 0.3,
the method has yielded all periodic orbits to periods as long as n = 28, as well
as selected orbits up to period n = 1000. We list all prime cycles up to period
10 for the Hénon map, a = 1.4 and b = 0.3 are listed in table 8.1. The number of
unstable periodic orbits for periods n ≤ 28 is given in table 8.2. Comparing
this with the list of all possible 2-symbol alphabet prime cycles, table 7.1, we see
that the pruning is quite extensive, with the number of cycle points of period n
growing as e0.4645·n = (1.592)n rather than as 2n .

As another example we plot all unstable periodic points up to period n = 14
for a = 1.8, b = 0.3 in fig. 8.5b. Comparing this set with the strange attractor
for the Hénon’s parameters fig. 8.5a, we note the existence of gaps in the set, cut
out by the preimages of the escaping regions.
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In practice, this method finds (almost) all periodic orbits which exist and
indicates which ones do not. For the Hénon map the method enables us to
calculate almost all unstable cycles of essentially any desired length and accuracy.

8.4.2 Orbit length extremization method for billiards

(Per Dahlquist)

The simplest method for determining billiard cycles is given by the principle
of least action, or equivalently, by extremizing the length of an approximate or-
bit that visits a given sequence of disks. In contrast to the multipoint shooting
method of sect. 8.2.1 which requires variation of 2N phase-space points, extrem-
ization of a cycle length requires variation of only N bounce positions si.

The problem is to find the extremum values of cycle length L(s) where s =
(s1, . . . , sN ), that is find the roots of ∂iL(s) = 0. Expand to first order

∂iL(s0 + δs) = ∂iL(s0) +
∑
j

∂i∂jL(s0)δsj + . . .

8.18
on p. 164

and use Jij(s0) = ∂i∂jL(s0) in the N -dimensional Newton-Raphson iteration
scheme of sect. 8.1.2

si �→ si −
∑
j

(
1
J(s)

)
ij

∂jL(s) (8.28)

The extremization is achieved by recursive implementation of the above algo-
rithm, with proviso that if the dynamics is pruned, one also has to check that
the final extremal length orbit does not penetrate any of the disks.8.19

on p. 164

8.20
on p. 165

As an example, the short periods and stabilities of 3-disk cycles computed
this way are listed table 8.3.

Commentary

Remark 8.1 Intermittency. Intermittency could reduce the efficiency
of this method. If only a “small” part of phase space is intermittent then
this might work since one needs many of the intermittent cycles in a stability
ordered cycle expansion (at least classically). However, if the system is as
unbounded as the (xy)2 potential ... forget it ! Sune F. Nielsen
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Remark 8.2 Periodic orbits of the Lozi map The Lozi map (2.15) is lin-
ear, and 100,000’s of cycles can be be easily computed by [2x2] matrix mul-
tiplication and inversion. For maps of the Hénon type this is more difficult,
but when needed, comparable numbers of cycles have been extracted [11].

Remark 8.3 Relaxation method. The relaxation (or gradient) algo-
rithm is one of the methods for solving extremal problems [12]. The method
described above was introduced by Biham and Wenzel [20], who have also
generalized it (in the case of the Hénon map) to determination of all 2n peri-
odic points of period n, real or complex [21]. The applicability and reliability
of the method is discussed in detail by Grassberger, Kantz and Moening [22],
who give examples of the ways in which the method fails: (a) it might reach
a limit cycle rather than a stationary saddlepoint (that can be remedied by
the complex Biham-Wenzel algorithm [21]) (b) different symbol sequences
can converge to the same cycle (that is, more refined initial conditions might
be needed). Furthermore, Hansen (ref. [23] and chapter 4. of ref. [3]) has
pointed out that the method cannot find certain cycles for specific values of
the Hénon map parameters.

In practice, the relaxation method for determining periodic orbits of
maps appears to be effective almost always, but not always. It is much
slower than the multipoint shooting method of sect. 8.2.1, but also much
quicker to program, as it does not require evaluation of stability matrices
and their inversion. If the complete set of cycles is required, the method has
to be supplemented by other methods.

Another method, which is also based on the construction of an artifi-
cial dynamics, but of different type, has been introduced by Diakonos and
Schmelcher [13]. This method determines cycles ordered by stability, the
least unstable cycles being obtained first [14], and is useful in conjunction
with the stability ordered cycle expansions that we shall discuss in sect. 11.4.

Remark 8.4 Relation to the Smale horseshoe symbolic dynamics. For
a complete horseshoe Hénon repeller (a sufficiently large), such as the one
given in fig. 7.16, the signs σi ∈ {1,−1} are in a 1-to-1 correspondence with
the Smale horsheshoe symbolic dynamics si ∈ {0, 1}:

si =
{

0 if σi = −1 , xi < 0
1 if σi = +1 , xi > 0 . (8.29)

For arbitrary parameter values with a finite subshift symbolic dynamics or
with arbitrarily complicated pruning, the relation of sign sequences {σ1, σ2, · · · , σn}
to the intineraries {s1, s2, · · · , sn} can be much subtler; this is discussed in
ref. [22].

Remark 8.5 A compilation of the Hénon map numerical results. For the
record - the most accurate estimates of various averages for the Hénon map,
Hénon’s parameters choice a = 1.4, b = 0.3, known to the authors, are: the
topological entropy (9.1) is h = 0.4645??, the Lyapunov exponent = 0.463,
the Hausdorff dimension DH = 1.274(2).
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n p ( yp , xp ) λp
1 0 (-1.13135447 , -1.13135447) 1.18167262

1 (0.63135447 , 0.63135447) 0.65427061
2 01 (0.97580005 , -0.47580005) 0.55098676
4 0111 (-0.70676677 , 0.63819399) 0.53908457
6 010111 (-0.41515894 , 1.07011813) 0.55610982

011111 (-0.80421990 , 0.44190995) 0.55245341
7 0011101 (-1.04667757 , -0.17877958) 0.40998559

0011111 (-1.08728604 , -0.28539206) 0.46539757
0101111 (-0.34267842 , 1.14123046) 0.41283650
0111111 (-0.88050537 , 0.26827759) 0.51090634

8 00011101 (-1.25487963 , -0.82745422) 0.43876727
00011111 (-1.25872451 , -0.83714168) 0.43942101
00111101 (-1.14931330 , -0.48368863) 0.47834615
00111111 (-1.14078564 , -0.44837319) 0.49353764
01010111 (-0.52309999 , 0.93830866) 0.54805453
01011111 (-0.38817041 , 1.09945313) 0.55972495
01111111 (-0.83680827 , 0.36978609) 0.56236493

9 000111101 (-1.27793296 , -0.90626780) 0.38732115
000111111 (-1.27771933 , -0.90378859) 0.39621864
001111101 (-1.10392601 , -0.34524675) 0.51112950
001111111 (-1.11352304 , -0.36427104) 0.51757012
010111111 (-0.36894919 , 1.11803210) 0.54264571
011111111 (-0.85789748 , 0.32147653) 0.56016658

10 0001111101 (-1.26640530 , -0.86684837) 0.47738235
0001111111 (-1.26782752 , -0.86878943) 0.47745508
0011111101 (-1.12796804 , -0.41787432) 0.52544529
0011111111 (-1.12760083 , -0.40742737) 0.53063973
0101010111 (-0.48815908 , 0.98458725) 0.54989554
0101011111 (-0.53496022 , 0.92336925) 0.54960607
0101110111 (-0.42726915 , 1.05695851) 0.54836764
0101111111 (-0.37947780 , 1.10801373) 0.56915950
0111011111 (-0.69555680 , 0.66088560) 0.54443884
0111111111 (-0.84660200 , 0.34750875) 0.57591048

13 1110011101000 (-1.2085766485 , -0.6729999948) 0.19882434
1110011101001 (-1.0598110494 , -0.2056310390) 0.21072511

Table 8.1: All prime cycles up to period 10 for the Hénon map, a = 1.4 and b = 0.3. The
columns list the period np, the itinerary (defined in remark 8.4), a cycle point (yp, xp), and
the cycle Lyapunov exponent λp = ln |Λp|/np. While most of the cycles have λp ≈ 0.5,
several significantly do not. The 0 cycle point is very unstable, isolated and transient fixed
point, with no other cycles returning close to it. At period 13 one finds a pair of cycles
with exceptionally low Lyapunov exponents. The cycles are close for most of the trajectory,
differing only in the one symbol corresponding to two cycle points straddle the (partition)
fold of the attractor. As the system is not hyperbolic, there is no known lower bound on
cycle Lyapunov exponents, and the Hénon’s strange “attractor” might some day turn out to
be nothing but a transient on the way to a periodic attractor of some long period (Work
through exercise 11.11). The odds, however, are that it indeed is strange.
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n Mn Nn

11 14 156
12 19 248
13 32 418
14 44 648
15 72 1082
16 102 1696

n Mn Nn

17 166 2824
18 233 4264
19 364 6918
20 535 10808
21 834 17544
22 1225 27108

n Mn Nn

23 1930 44392
24 2902 69952
25 4498 112452
26 6806 177376
27 10518 284042
28 16031 449520

Table 8.2: The number of unstable periodic orbits of the Hénon map for a = 1.4, b = 0.3,
of all periods n ≤ 28. Mn is the number of prime cycles of length n, and Nn is the total
number of periodic points of period n (including repeats of shorter prime cycles).

p Λp Tp
0 9.898979485566 4.000000000000
1 -1.177145519638×101 4.267949192431
01 -1.240948019921×102 8.316529485168
001 -1.240542557041×103 12.321746616182
011 1.449545074956×103 12.580807741032
0001 -1.229570686196×104 16.322276474382
0011 1.445997591902×104 16.585242906081
0111 -1.707901900894×104 16.849071859224
00001 -1.217338387051×105 20.322330025739
00011 1.432820951544×105 20.585689671758
00101 1.539257907420×105 20.638238386018
00111 -1.704107155425×105 20.853571517227
01011 -1.799019479426×105 20.897369388186
01111 2.010247347433×105 21.116994322373
000001 -1.205062923819×106 24.322335435738
000011 1.418521622814×106 24.585734788507
000101 1.525597448217×106 24.638760250323
000111 -1.688624934257×106 24.854025100071
001011 -1.796354939785×106 24.902167001066
001101 -1.796354939785×106 24.902167001066
001111 2.005733106218×106 25.121488488111
010111 2.119615015369×106 25.165628236279
011111 -2.366378254801×106 25.384945785676

Table 8.3: All prime cycles up to 6 bounces for the three-disk fundamental domain, center-
to-center separation R = 6, disk radius a = 1. The columns list the cycle itinerary, its
expanding eigenvalue Λp, and the length of the orbit (if the velocity=1 this is the same as
its period or the action). Note that the two 6 cycles 001011 and 001101 are degenerate
due to the time reversal symmetry, but are not related by any discrete spatial symmetry.
(P.E. Rosenqvist)

∼DasBuch/book/refsCycles.tex 18jun2000 printed August 24, 2000



EXERCISES 159

Exercises

8.1 Cycles of the Ulam map. Test your cycle-searching routines by computing
a bunch of short cycles and their stabilities for the Ulam map

f(x) = 4x(1 − x) . (8.30)

8.2 Cycles stabilities for the Ulam map, exact. In exercise 8.1 you should
have observed that the cycle structure is exceptionally simple: the eigenvalue of the
x0 = 0 fixed point is 4, while the eigenvalue of any other n-cycle is ±2n. Prove this.
(Hint: the Ulam map can be conjugated to the tent map (7.6)).

8.3 Fixed-point results. A continuous function F is a contraction of the
unit interval if it maps the interval inside itself.

(a) Use the continuity of F to show that a one-dimensional contraction F of
the interval [0, 1] has at least one fixed point.

(b) In a uniform (hyperbolic) contraction the slope of F is always smaller than
one, |F ′| < 1. Is the composition of uniform contractions a contraction? Is
it uniform?

(Ronnie Mainieri)

8.4 All equilibrium points are fixed points. Show that a point of a vector
field v where the velocity is zero is a fixed point of the dynamics f t.

(Ronnie Mainieri)

printed August 24, 2000 ∼DasBuch/book/Problems/exerCycles.tex 4aug2000



160 CHAPTER 8.

8.5 Gradient systems. Gradient systems are a simple type of dynamical system
where the velocity field is given by the gradient of an auxiliary function φ, so that the
differential equation is

ẋ = −∇φ(x) .

In this case x is a vector in R
d, and φ a function from that space to the reals R.

(a) Show that the velocity of the particle is in the direction of most rapid decrease of
the function φ.

(b) Show that all extrema of φ are fixed points of the velocity field.

(c) Show that it takes an infinite amount of time for the system to reach an equilibrium
point.

(d) Show that there are no periodic orbits in gradient systems.

(Ronnie Mainieri)

8.6 Unimodal map cycles. Knowledge of the topological coordinate (7.9) is very
useful when searching for periodic orbits. Assume that we have already determined all
periodic points xa, xb, · · · of period n, and would like to have a good initial guess for the
period (n + 1) periodic point xd with prescribed itinerary S+d := S+(xd). It is easy to
determine the two closest γ(S+a ), γ(S+b ) that bracket γ(S+d ). If γ(S+a ) < γ(S+d ) < γ(S+b ),
then we know that we can restrict the search for xc into the xc ∈ [xa, xb] interval. For
example, relative ordering of all unimodal map periodic points up to n = 5 is given in
fig. 8.6. Appendix B.2.1 contains further details of the symbolics dynamics for periodic
point of unimodal maps.

8.7 Hénon map fixed points. Show that the two fixed points (x0, x0), (x1, x1)
of the Hénon map (2.13) are given by

x0 =
−(1 − b) −

√
(1 − b)2 + 4a

2a
,

x1 =
−(1 − b) +

√
(1 − b)2 + 4a

2a
. (8.31)
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Figure 8.6: The alternating binary tree organization of the periodic points of a unimodal
map (in this example, the Ulam map (8.30)). The itinerary of a point is read off the tree by
starting at the root and following the branches down to x; relative ordering of points along
the x axis is given by the relative ordering of the corresponding nodes. (specify the MAP)
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8.8 Fundamental domain fixed points. Use the formula (3.29) for billiard
Jacobian matrix to compute the periods Tp and the expanding eigenvalues Λp of
the fundamental domain 0 (the 2-cycle of the complete 3-disk space) and 1 (the
3-cycle of the complete 3-disk space) fixed points:

Tp Λp

0: R − 2 R − 1 + R
√

1 − 2/R

1: R −
√

3 − 2R√
3

+ 1 − 2R√
3

√
1 −

√
3/R

(8.32)

We have set the disk radius to a = 1. The cycles are drawn in fig. 7.3.

8.9 Fundamental domain 2-cycle. Verify that for the 10-cycle the cycle length
and the trace of the Jacobian matrix are given by

L10 = 2
√

R2 −
√

3R + 1 − 2,

trJ10 = 2L10 + 2 +
1
2

L10(L10 + 2)2√
3R/2 − 1

. (8.33)

The unstable eigenvalue Λ10 follows from (??).

8.10 Stability of billiard cycles. Compute stabilities of few simple cycles.

(a) A simple scattering billiard is the two-disk billiard. It consists of a disk of radius
one centered at the origin and another disk of unit radius located at L + 2. Find
all periodic orbits for this system and compute their stabilities. (You might have
done this already in exercise 1.2; at least now you will be able to see where you
went wrong when you knew nothing about cycles and their extraction.)

(b) Find all periodic orbits and stabilities for a billiard ball bouncing between the
diagonal y = x and one of the hyperbola branches y = 1/x.
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8.11 Cycle stability. Add to the pinball simulator of exercise 2.7 a routine
that evaluates the expanding eigenvalue for a given cycle.

8.12 Newton-Raphson method. Implement the Newton-Raphson method
in 2-d and apply it to determination of pinball cycles.

8.13 Pinball cycles. Determine the stability and length of all fundamental
domain prime cycles of the binary symbol string lengths up to 5 (or longer) for
R : a = 6 3-disk pinball.

8.14 Cycle stability, helium. Add to the helium integrator of exercise 2.9
a routine that evaluates the expanding eigenvalue for a given cycle.

8.15 Helium Poincaré section. Construct a Poincaré section that reduces
the helium flow of exercise 2.9 to a map on which 2-d Newton-Raphson method
can be applied to determination of pinball cycles.

8.16 Colinear helium cycles. Determine the stability and length of all
fundamental domain prime cycles up to symbol sequence length 5 or longer for
collinear helium of fig. 21.5.

8.17 Power-law fall off. In cycle expansions the stabilities of orbits do not always
behave in a geometric fashion. Consider the map f
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0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

This map behaves as f → x as x → 0. Define a symbolic dynamics for this map by
assigning 0 to the points that land on the interval [0, 1/2) and 1 to the points that land
on (1/2, 1]. Show that the stability of orbits that spend a long time on the 0 side goes
as n2. In particular, show that

Λ00···0︸︷︷︸
n

1 ∼ n2

8.18 Evaluation of cycles by minimization∗. Given a symbol sequence, you
can construct a guess trajectory by taking a point on the boundary of each disk in the
sequence, and connecting them by straight lines. If this were a rubber band wrapped
through 3 rings, it would shrink into the physical trajectory, which minimizes the action
(in this case, the length) of the trajectory.

Write a program to find the periodic orbits for your billiard simulator. Use the least
action principle to extremize the length of the periodic orbit, and reproduce the periods
and stabilities of 3-disk cycles, table 8.3. After that check the accuracy of the computed
orbits by iterating them forward with your simulator. What is |fTp(x) − x|?

8.19 Tracking cycles adiabatically∗. Once a cycle has been found, orbits for
different system parameters values may be obtained by varying slowly (adiabatically) the
parameters, and using the old orbit points as starting guesses in the Newton method.
Try this method out on the 3-disk system. It works well for R : a sufficiently large. For
smaller values, some orbits change rather quickly and require very small step sizes. In
addition, for ratios below R : a = 2.04821419 . . . families of cycles are pruned, that is
some of the minimal length trajectories are blocked by intervening disks.

8.20 Uniqueness of unstable cycles∗∗∗. Prove that there exists only one 3-
disk prime cycle for a given finite admissible prime cycle symbol string. Hints: look at
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the Poincaré section mappings; can you show that there is exponential contraction to
a unique periodic point with a given itinerary? Exercise 8.18 might be helpful in this
effort.

8.21 Find cycles of the Hénon map. Apply the method of sect. 8.4.1 to the
Hénon map at the Hénon’s parameters choice a = 1.4, b = 0.3, and compute all prime
cycles for at least n ≤ 6. Estimate the topological entropy, either from the definition
(9.1), or as the zero of a truncated topological zeta function (9.20). Do your cycles agree
with the cycles listed in table 8.1?

8.22 Inverse iteration method for a Hamiltonian repeller. For the
complete repeller case (all binary sequences are realized), the cycles are evaluated as
follows. According to sect. 2.2.1, the coordinates of a periodic orbit of length np satisfy
the equation

xp,i+1 + xp,i−1 = 1 − ax2
p,i , i = 1, ..., np , (8.34)

with the periodic boundary condition xp,0 = xp,np
. In the complete repeller case, the

Hénon map is a realization of the Smale horseshoe, and the symbolic dynamics has a
very simple description in terms of the binary alphabet ε ∈ {0, 1}, εp,i = (1 + Sp,i)/2,
where Sp,i are the signs of the corresponding cycle point coordinates, Sp,i = σxp,i

. We
start with a preassigned sign sequence Sp,1, Sp,2, . . . , Sp,np

, and a good initial guess for
the coordinates x′

p,i. Using the inverse of the equation (8.34)

x′′
p,i = Sp,i

√
1 − x′

p,i+1 − x′
p,i−1

a
, i = 1, ..., np (8.35)

we converge iteratively, at exponential rate, to the desired cycle points xp,i. Given the
cycle points, the cycle stabilities and periods are easily computed using (3.22). Verify
that the times and the stabilities of the short periodic orbits for the Hénon repeller (2.13)
at a = 6 are listed in table 8.4; in actual calculations all prime cycles up to topological
length n = 20 have been computed.

(G. Vattay)
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p Λp
∑

xp,i
0 0.71516752438×101 -0.6076252185107
1 -0.29528463259×101 0.2742918851774
10 -0.98989794855×101 0.3333333333333
100 -0.13190727397×103 -0.2060113295833
110 0.55896964996×102 0.5393446629166
1000 -0.10443010730×104 -0.8164965809277
1100 0.57799826989×104 0.0000000000000
1110 -0.10368832509×103 0.8164965809277
10000 -0.76065343718×104 -1.4260322065792
11000 0.44455240007×104 -0.6066540777738
10100 0.77020248597×103 0.1513755016405
11100 -0.71068835616×103 0.2484632276044
11010 -0.58949885284×103 0.8706954728949
11110 0.39099424812×103 1.0954854155465
100000 -0.54574527060×105 -2.0341342556665
110000 0.32222060985×105 -1.2152504370215
101000 0.51376165109×104 -0.4506624359329
111000 -0.47846146631×104 -0.3660254037844
110100 -0.63939998436×104 0.3333333333333
101100 -0.63939998436×104 0.3333333333333
111100 0.39019387269×104 0.5485837703548
111010 0.10949094597×104 1.1514633582661
111110 -0.10433841694×104 1.3660254037844

Table 8.4: All periodic orbits up to 6 bounces for the Hamiltonian Hénon mapping (8.34)
with a = 6. Listed are the cycle itinerary, its expanding eigenvalue Λp, and its “center of
mass”. (The last one because we do not understand why the “center of mass” tends to be
a simple rational every so often.)
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Chapter 9

Counting

That which is crooked cannot be made straight: and that
which is wanting cannot be numbered.

Ecclestiastes 1.15

We are now in position to develop our first prototype application of the periodic
orbit theory: cycle counting. This is the simplest illustration of raison d’etre of
the periodic orbit theory; we shall develop a duality transformation that relates
local information - in this case the next admissible symbol in a symbol sequence
- to global averages, in this case the mean rate of growth of the number of admis-
sible itineraries with increasing itinerary length. We shall turn the topological
dynamics of the preceding chapter into a multiplicative operation by means of
transition matrices/Markov graphs, and show that the powers of a transition ma-
trix count the distinct itineraries. The asymptotic growth rate of the number of
admissible itineraries is therefore given by the leading eigenvalue of the transition
matrix; the leading eigenvalue is given by the leading zero of the characteristic
determinant of the transition matrix, which is in this context called the topologi-
cal zeta function. For a class of flows with finite Markov graphs this determinant
is a finite polynomial which can be read off the Markov graph. The method goes
well beyond the problem at hand, and forms the core of the entire treatise, to be
taken up again in chapter 10.

9.1 Counting itineraries

In the 3-disk system the number of admissible trajectories doubles with every
iterate: there are Kn = 3 · 2n distinct itineraries of length n. If there is pruning,
this is only an upper bound and explicit formulas might be hard to come by, but
we still might be able to establish a lower exponential bound of form Kn ≥ Cenĥ.
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168 CHAPTER 9. COUNTING

Hence it is natural to characterize the growth of the number of trajectories as a
function of the itinerary length by the topological entropy:

h = lim
n→∞

1
n

lnKn . (9.1)

We shall now relate this quantity to the eigenspectrum of the transition matrix.

The transition matrix element Tij ∈ {0, 1} in (7.3) indicates whether the
transition from the starting partition j into partition i in one step is allowed or
not, and the (i, j) element of the transition matrix iterated n times9.1

on p. 187

(Tn)ij =
∑

k1,k2,...,kn−1

Tik1Tk1k2 . . . Tkn−1j

receives a contribution 1 from every admissible sequence of transitions, so (Tn)ij
is the number of admissible n symbol itineraries starting with j and ending with
i. The total number of admissible itineraries of n symbols is

Kn =
∑
ij

(Tn)ij = ( 1, 1, . . . , 1 ) Tn


1
1
...
1

 . (9.2)

We can also count the number of prime cycles and pruned periodic points, but
in order not to break up the flow of the main argument, we relegate these pretty
but at the moment tangential results to sects. 9.5.2 and 9.5.3. Recommended
reading if you ever have to compute lots of cycles.

T is a matrix with non-negative integer entries. A matrix M is said to be
Perron-Frobenius if some power k of M has strictly positive entries, (Mk)rs > 0.
In the case of the transition matrix T this means that every partition eventually
reaches all of the partitions, that is, the partition is dynamically transitive or
indecomposable, as assumed in (2.2). The notion of transitivity is crucial in
ergodic theory: a mapping is transitive if it has a dense orbit, and the notion
is obviously inherited by the shift once we introduce a symbolic dynamics. If
that is not the case, phase space decomposes into disconnected pieces, each of
which can be analyzed separately by a separate indecomposable Markov graph.
Hence it suffices to restrict our considerations to the transition matrices of the
Perron-Frobenius type.
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9.2. TOPOLOGICAL TRACE FORMULA 169

A finite matrix T has eigenvalues Tϕα = λαϕα and (right) eigenvectors
{ϕ0, ϕ1, · · · , ϕN−1}. Expressing the initial vector in (9.2) in this basis

Tn


1
1
...
1

 = Tn
N−1∑
α=0

bαϕα =
N−1∑
α=0

bαλ
n
αϕα ,

and contracting with ( 1, 1, . . . , 1 ) we obtain

Kn =
N−1∑
α=0

cαλ
n
α .

9.2
on p. 187

The constants cα depend on the choice of initial and final states: In this example
we are sandwiching Tn between the vector ( 1, 1, . . . , 1 ) and its transpose, but
any other pair of vectors would do, as long as they are not orthogonal to the
leading eigenvector ϕ0. Perron theorem states that a Perron-Frobenius matrix
has a nondegenerate positive real eigenvalue λ0 > 1 (with a positive eigenvector)
which exceeds the moduli of all other eigenvalues. Therefore as n increases, the
sum is dominated by the leading eigenvalue of the transition matrix, λ0 > |Reλα|,
α = 1, 2, · · · , N − 1, and the topological entropy (9.1) is given by

h = lim
n→∞

1
n

ln c0λ
n
0

[
1 +

c1
c0

(
λ1
λ0

)n

+ · · ·
]

= lnλ0 + lim
n→∞

[
ln c0
n

+
1
n

c1
c0

(
λ1
λ0

)n

+ · · ·
]

= lnλ0 . (9.3)

What have we learned? The transition matrix T is a one-step local operator,
advancing the trajectory from a partition to the next admissible partition. Its
eigenvalues describe the rate of growth of the total number of trajectories at the
asymptotic times. Instead of painstakingly counting K1,K2,K3, . . . and estimat-
ing (9.1) from a slope of a log-linear plot, we have the exact topological entropy if
we can compute the leading eigenvalue of the transition matrix T . This is clearly
reminiscent of the way the free energy is computed for one dimensional lattice
models with finite range interaction: the analogies with statistical mechanics will
be further commented upon in chapter 14.

9.2 Topological trace formula

There are two standard ways of getting at a spectrum - by evaluating the trace
trTn =

∑
λn
α, or by evaluating the determinant det (1 − zT ). We start by
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n Nn # of prime cycles of length np
1 2 3 4 5 6 7 8 9 10

1 2 2
2 4 2 1
3 8 2 2
4 16 2 1 3
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 256 2 1 3 30
9 512 2 2 56

10 1024 2 1 6 99

Table 9.1: The total numbers of periodic points Nn of period n for binary symbolic dynam-
ics. The numbers of prime cycles contributing illustrates the preponderance of long prime
cycles of length n over the repeats of shorter cycles of lengths np, n = rnp. Further listings
of binary prime cycles are given in tables 7.1 and 9.2. (L. Rondoni)

evaluating the trace of transition matrices.

Consider an M -step memory transition matrix, like the 1-step memory ex-
ample (7.18). The trace of the transition matrix counts the number of partitions
that map into themselves. In the binary case the trace picks up only two contri-
butions on the diagonal, T0···0,0···0 + T1···1,1···1, no matter how much memory we
assume (check (7.18) and exercise 7.14). We can even take M → ∞, in which7.14

on p. 139 case the contributing partitions are shrunk to the fixed points, trT = T0,0+T1,1.

More generally, each closed walk through n concatenating entries of T con-
tributes a product of the matrix entries along the walk to trTn. Each step in
such walk shifts the symbolic label by one bin; the trace ensures that the walk
closes into a periodic string c. Define tc to be the local trace, the product of
matrix elements along a cycle c, each term being multiplied by a book keeping
variable z. zntrTn is then the sum of tc for all cycles of length n. For example,
for [8×8] transition matrix Ts1s2s3,s0s1s2 version of (7.18), or any refined partition
[2n×2n] transition matrix, n arbitrarily large, the periodic point 100 contributes
t100 = z3T100,010T010,001T001,100 to z3trT 3. This product is manifestly cyclically
symmetric, t100 = t010 = t001, and so a prime cycle p of length np contributes np

times, once for each periodic point along its orbit. For the binary labelled non–
wandering set the first few traces are given by (consult also tables 7.1 and 9.1)

z trT = t0 + t1,

z2trT 2 = t20 + t21 + 2t10,
z3trT 3 = t30 + t31 + 3t100 + 3t101,
z4trT 4 = t40 + t41 + 2t210 + 4t1000 + 4t1001 + 4t1011. (9.4)

For complete binary symbolic dynamics tp = znp for every binary prime cycle p;
if there is pruning tp = znp if p is admissible cycle and tp = 0 otherwise. Hence
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9.3. DETERMINANT OF A GRAPH 171

trTn counts the number of admissible periodic points of period n. In general,
the nth order trace (9.4) picks up contributions from all repeats of prime cycles,
with each cycle contributing np periodic points, so the total number of periodic
points of period n is given by

Nn = trTn =
∑
np|n

npt
n/np
p =

∑
p

np

∞∑
r=1

δn,nprt
r
p . (9.5)

Here m|n means that m is a divisor of n, and we have taken z = 1 so tp = 1 if
the cycle is admissible, and tp = 0 otherwise. In order to get rid of the awkward
divisibility constraint n = npr in the above sum, we introduce the generating
function for numbers of periodic points

∞∑
n=1

znNn = tr
zT

1 − zT
. (9.6)

Substituting (9.5) into the left hand side, and replacing the right hand side by
the eigenvalue sum trTn =

∑
λn
α, we obtain our first example of a trace formula,

the topological trace formula

∑
α=0

zλα

1 − zλα
=
∑
p

nptp
1 − tp

. (9.7)

A trace formula relates the spectrum of eigenvalues of an operator - in this case
the transition matrix - to the spectrum of periodic orbits of the dynamical system.
The zn sum in (9.6) is a discrete version of the Laplace transform, see chapter 6,
the resolvent on the left hand side is the antecedent of the more sophisticated
trace formulas (6.12), (6.20) and (19.3). We shall now use this result to compute
the spectral determinant of the transition matrix.

9.3 Determinant of a graph

Our next task is to determine the zeros of the spectral determinant of the transi-
tion matrix 7.16

on p. 139

det (1 − zT ) =
N−1∏
α=0

(1 − zλα) . (9.8)

We could now proceed to diagonalize T on a computer, and get this over with.
Nevertheless, it pays to dissect det (1 − zT ) with some care; understanding this
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computation in detail will be the key to understanding the cycle expansion com-
putations of chapter 11 for arbitrary dynamical averages. For T a finite matrix
(9.8) is just the characteristic equation for T . However, we shall be able to com-
pute this object even when the dimension of T and other such operators goes to
∞, and for that reason we prefer to refer to (9.8) as the “spectral determinant”.

There are various definitions of the determinant of a matrix; they mostly
reduce to the statement that the determinant is a certain sum over all possible
permutation cycles composed of the traces trT k, in the spirit of the determinant–
trace relation of chapter 1:1.3

on p. 30

det (1 − zT ) = exp (tr ln(1 − zT )) = exp

(
−
∑
n=1

zn

n
trTn

)

= 1 − z trT − z2

2
(
(tr T )2 − tr (T 2)

)
− . . . (9.9)

This is sometimes called a cumulant expansion. Formally, the right hand is
an infinite sum over powers of zn. If T is an [M×M ] finite matrix, then the
characteristic polynomial is at most of order M . Coefficients of zn, n > M
vanish exactly.

We now proceed to relate the determinant in (9.9) to the corresponding
Markov graph of chapter 7: to this end we start by the usual algebra textbook
expression

det (1 − zT ) =
∑
{π}

(−1)Pπ (1 − zT )1,π1 · (1 − zT )2,π2 · · · (1 − zT )M,πM (9.10)

where once again we suppose T is an [M×M ] finite matrix, {π} denotes the set of
permutations of M symbols, and Pπ is the parity of the considered permutation.
The right hand side of (9.10) yields a polynomial of order M in z: a contribution
of order n in z picks up M − n unit factors along the diagonal, the remaining
matrix elements yielding

(−)nzn(−1)Pπ̃Tη1,π̃η1
· · ·Tηn,π̃ηn (9.11)

where π̃ is the permutation of the subset of n symbols η1 . . . ηn indexing T matrix
elements. The znT.,. · · ·T.,. term may be factored in terms of local traces tc1 ·
tc2 · · · tck , that is loops on the Markov graph: they are non intersecting, as each
node may only be reached by one link (and they are indeed loops, as if a node
is reached by a link, it has to be the starting point of another single link, as
each ηj must appear exactly once as a row and column index). So the general
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structure is clear, a little more thinking is only required to get the sign of a
generic contribution. We consider only the case of loops of length 1 and 2, and
leave to the reader the task of generalizing the result by induction. Suppose only
loops of unit length appear on (9.11) (that is only diagonal elements of T are
picked up). We have k = n loops and an even permutation π̃ so the sign is given
by (−1)k, k being the number of loops. Now take the case in which we have i
single loops and j loops of lenght 2 (we must thus have n = 2j + i). The parity of
the permutation gives (−1)j and the first factor in (9.11) gives (−1)n = (−1)2j+i.
So once again these terms combine into (−1)k, where k = i + j is the number of
loops. We may summarize our findings as follows: 9.3

on p. 187

The characteristic polynomial of a transition matrix/Markov graph is
given by the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop trace tp carrying a minus sign:

det (1 − zT ) =
f∑

k=0

∑′

π

(−1)ktp1 · · · tpk (9.12)

Any self-intersecting loop is shadowed by a product of two loops that share the
intersection point. As both the long loop tab and its shadow tatb in the case
at hand carry the same weight zna+nb , the cancellation is exact, and the loop
expansion (9.12) is finite.

We refer to the set of all non-self-intersecting loops {tp1 , tp2 , · · · tpf } as the the
fundamental cycles. This is not a very good definition, as the Markov graphs
are not unique – the most we know is that for a given finite-grammar language,
there exist Markov graph(s) with the minimal number of loops. Regardless of
how cleverly a Markov graph is constructed, it is always true that for any finite
Markov graph the number of fundamental cycles f is finite. If you know a better
way to define the “fundamental cycles”, let us know.

fast track:

sect. 9.4, p. 175

9.3.1 Topological polynomials: learning by examples

The above definition of the determinant in terms of traces is most easily grasped
by a working through a few examples. The complete binary dynamics Markov
graph of fig. 7.11(b) is a little bit too simple, but anyway, let us start humbly;
there are only two non-intersecting loops, yielding

det (1 − zT ) = 1 − t0 − t1 = 1 − 2z . (9.13)
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1 0

Figure 9.1: The golden mean pruning rule Markov graph, see also fig. 7.13 (b).

The leading (and only) zero of this characteristic polynomial yields the topological
entropy eh = 2. As we know that there are Kn = 2n binary strings of length N ,
we are not surprised. Similarly, for complete symbolic dynamics of N symbols
the Markov graph has one node and N links, yielding

det (1 − zT ) = 1 − Nz , (9.14)

whence the topological entropy h = lnN .

A more interesting example is the “golden mean” pruning of fig. 9.1.9.4
on p. 188

The non-intersecting loops are of length 1 and 2, so the topological polynomial
is given by

det (1 − zT ) = 1 − t1 − t01 = 1 − z − z2 (9.15)

and the entropy (9.3) is the logarithm of the golden mean, h = ln 1+
√
5

2 .

Finally, the non-self-intersecting loops of the Markov graph of fig. 7.14(d) are
indicated in fig. 7.14(e). The determinant can be written down by inspection, as
the sum of all possible partitions of the graph into products of non-intersecting
loops, with each loop carrying a minus sign:9.7

on p. 189

det (1 − T ) = 1 − t0 − t0011 − t0001 − t00011 + t0t0011 + t0011t0001 (9.16)

With tp = znp , where np is the length of the p-cycle, the smallest root of9.8
on p. 189

0 = 1 − z − 2z4 + z8 (9.17)

yields the topological entropy h = − ln z, z = 0.658779 . . ., h = 0.417367 . . ..

in depth:

sect. K.1, p. 647
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9.4 Topological zeta function

What happens if there is no finite-memory transition matrix, if the Markov graph
is infinite? If we are never sure that looking further into future will reveal no
further forbidden blocks? There is still a way to define the determinant, and
the idea is central to the whole treatise: the determinant is then defined by its
cumulant expansion (9.9) 1.3

on p. 30

det (1 − zT ) = 1 −
∞∑
n=1

ĉnz
n . (9.18)

For finite dimensional matrices the expansion is a finite polynomial, and (9.18) is
an identity; however, for infinite dimensional operators the cumulant expansion
coefficients ĉn define the determinant.

Let us now evaluate the determinant in terms of traces for an arbitrary tran-
sition matrix. In order to obtain an expression for the spectral determinant (9.8)
in terms of cycles, substitute (9.5) into (9.18) and sum over the repeats of prime
cycles

det (1 − zT ) = exp

(
−
∑
p

∞∑
r=1

trp
r

)
=
∏
p

(1 − tp) . (9.19)

where for the topological entropy the weight assigned to a prime cycle p of length
np is tp = znp if the cycle is admissible, or tp = 0 if it is pruned. This determinant
is called the topological or the Artin-Mazur zeta function, conventionally denoted
by

1/ζtop =
∏
p

(1 − znp) = 1 −
∑
n=1

ĉnz
n . (9.20)

Counting cycles amounts to giving each admissible prime cycle p weight tp =
znp and expanding the Euler product (9.20) as a power series in z. As the
precise expression for coefficients ĉn in terms of local traces tp is more general
than the current application to counting, we shall postpone deriving it until
chapter 11. The topological zeta function for the continuous time flows will be
given in (10.18).

The topological entropy h can now be determined from the leading zero z =
e−h of the topological zeta function. For a finite [N×N ] transition matrix, the
number of terms in the characteristic equation is finite, and we refer to this
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expansion as the topological polynomial of order ≤ N . The power of defining a
determinant by the cumulant expansion is that it works even when the partition
is infinite, N → ∞; an example is given in sect. 9.6, and many more later on.

fast track:

sect. 9.6, p. 180

9.5 Counting cycles

In what follows we shall occasionally need to compute all cycles up to topological
length n, so it is handy to know their exact number.

9.5.1 Counting periodic points

Nn, the number of periodic points of period n can be computed from (9.18) and
(9.6) as a logarithmic derivative of the topological zeta function

∑
n=1

Nnz
n = tr

(
−z

d

dz
ln(1 − zT )

)
= −z

d

dz
ln det (1 − zT )

=
−z d

dz1/ζtop
1/ζtop

. (9.21)

We see that the trace formula (9.7) diverges at z → e−h, as the denominator has
a simple zero there.

As a check of formula (9.18) in the finite grammar context, consider the
complete N -ary dynamics (7.4) for which the number of periodic points of period
n is simply trTn = Nn. Substituting

∞∑
n=1

zn

n
trTn =

∞∑
n=1

(zN)n

n
= ln(1 − zN) ,

into (9.18) we verify (9.14). The logarithmic derivative formula (9.21) in this case
does not buy us much either, we recover

∑
n=1

Nnz
n =

Nz

1 − Nz
.
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However, consider instead the nontrivial pruning of fig. 7.14(e). Substituting
(9.17) we obtain

∑
n=1

Nnz
n =

z + 8z4 − 8z8

1 − z − 2z4 + z8
. (9.22)

Now the topological zeta function is not merely a tool for extracting the asymp-
totic growth of Nn; it actually yields the exact and not entirely trivial recursion
relation for the numbers of periodic points: N1 = N2 = N3 = 1, Nn = 2n + 1 for
n = 4, 5, 6, 7, 8, and Nn = Nn−1 + 2Nn−4 − Nn−8 for n > 8.

9.5.2 Counting prime cycles

Having calculated the number of periodic points, our next objective is to evaluate
the number of prime cycles Mn for a dynamical system whose symbolic dynamics
is built from N symbols. The problem of finding Mn is classical in combinatorics
(counting necklaces made out of n beads out of N different kinds) and is easily
solved. There are Nn possible distinct strings of length n composed of N letters.
These Nn strings include all Md prime d-cycles whose period d equals or divides
n. A prime cycle is a non-repeating symbol string: for example, p = 011 =
101 = 110 = . . . 011011 . . . is prime, but 0101 = 010101 . . . = 01 is not. A prime
d-cycle contributes d strings to the sum of all possible strings, one for each cyclic
permutation. The total number of possible periodic symbol sequences of length
n is therefore related to the number of prime cycles by

Nn =
∑
d|n

dMd , (9.23)

where Nn equals trTn. The number of prime cycles can be computed recursively

Mn =
1
n

Nn −
d<n∑
d|n

dMd

 ,

or by the Möbius inversion formula 9.9
on p. 190

Mn = n−1∑
d|n

µ
(n
d

)
Nd . (9.24)

where the Möbius function µ(1) = 1, µ(n) = 0 if n has a squared factor, and
µ(p1p2 . . . pk) = (−1)k if all prime factors are different. 9.10

on p. 190
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n Mn(N) Mn(2) Mn(3) Mn(4)
1 N 2 3 4
2 N(N − 1)/2 1 3 6
3 N(N2 − 1)/3 2 8 20
4 N2(N2 − 1)/4 3 18 60
5 (N5 − N)/5 6 48 204
6 (N6 − N3 − N2 + N)/6 9 116 670
7 (N7 − N)/7 18 312 2340
8 N4(N4 − 1)/8 30 810 8160
9 N3(N6 − 1)/9 56 2184 29120

10 (N10 − N5 − N2 + N)/10 99 5880 104754

Table 9.2: Number of prime cycles for various alphabets and grammars up to length 10.
The first column gives the cycle length, the second the formula (9.24) for the number of
prime cycles for complete N -symbol dynamics, columns three through five give the numbers
for N = 2, 3 and 4.

We list the number of prime orbits up to length 10 for 2-, 3- and 4-letter
complete symbolic dynamics in table 9.2. The number of prime cycles follows by
Möbius inversion (9.24).

9.5.3 Counting N-disk periodic points

A simple example of pruning is the exclusion of “self-bounces” in the N -
disk game of pinball. The number of points that are mapped back onto themselves
after n iterations is given by Nn = trTn. The pruning of self-bounces eliminates
the diagonal entries, TN−disk = Tc − 1, so the number of the N -disk periodic
points is

Nn = trTn
N−disk = (N − 1)n + (−1)n(N − 1) . (9.25)

For the N -disk pruned case (9.25) Möbius inversion (9.24) yields

MN−disk
n =

1
n

∑
d|n

µ
(n
d

)
(N − 1)d +

N − 1
n

∑
d|n

µ
(n
d

)
(−1)d

= M (N−1)
n for n > 2 . (9.26)

There are no fixed points, MN−disk
1 = 0. The number of periodic points of period

2 is N2 − N , hence there are MN−disk
2 = N(N − 1)/2 prime cycles of length 2;

for lengths n > 2, the number of prime cycles is the same as for the complete
(N − 1)-ary dynamics.
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n Mn Nn Sn mp · p̂
1 0 0 0
2 3 6=3·2 1 3·12
3 2 6=2·3 1 2·123
4 3 18=3·2+3·4 1 3·1213
5 6 30=6·5 1 6·12123
6 9 66=3·2+2·3+9·6 2 6·121213 + 3·121323
7 18 126=18·7 3 6·1212123 + 6·1212313 + 6·1213123
8 30 258=3·2+3·4+30·8 6 6·12121213 + 3·12121313 + 6·12121323

+ 6·12123123 + 6·12123213 + 3·12132123
9 56 510=2·3+56·9 10 6·121212123 + 6·(121212313 + 121212323)

+ 6·(121213123 + 121213213) + 6·121231323
+ 6·(121231213 + 121232123) + 2·121232313
+ 6·121321323

10 99 1022 18

Table 9.3: List of the 3-disk prime cycles up to length 10. Here n is the cycle length,
Mn the number of prime cycles, Nn the number of periodic points and Sn the number of
distinct prime cycles under the C3v symmetry (see chapter 15 for further details). Column 3
also indicates the splitting of Nn into contributions from orbits of lengths that divide n. The
prefactors in the fifth column indicate the degeneracy mp of the cycle; for example, 3·12
stands for the three prime cycles 12, 13 and 23 related by 2π/3 rotations. Among symmetry
related cycles, a representative p̂ which is lexically lowest was chosen. The cycles of length
9 grouped by parenthesis are related by time reversal symmetry, but not by any other C3v

transformation.

9.5.4 Pruning individual cycles

Consider the 3-disk game of pinball. The prohibition of repeating a
symbol affects counting only for the fixed points and the 2-cycles. Everything
else is the same as counting for a complete binary dynamics (eq (9.26)). To
obtain the topological zeta function, just divide out the binary 1- and 2-cycles
(1 − zt0)(1 − zt1)(1 − z2t01) and multiply with the correct 3-disk 2-cycles (1 −
z2t12)(1 − z2t13)(1 − z2t23): 9.13

on p. 191

9.14
on p. 1911/ζ3−disk = (1 − 2z)

(1 − z2)3

(1 − z)2(1 − z2)
= (1 − 2z)(1 + z)2 = 1 − 3z2 − 2z3 . (9.27)

The factorization reflects the underlying 3-disk symmetry; we shall rederive it
in (15.25). As we shall see in chapter 15, symmetries lead to factorizations of
topological polynomials and the topological zeta functions.

The example of exercise 9.15 with the alphabet {a, cbk; b} is more interesting.
In the cycle counting case, the dynamics in terms of a → z, cbk → z

1−z is a 9.15
on p. 192
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n Mn Nn Sn mp · p̂
1 0 0 0
2 6 12=6·2 2 4·12 + 2·13
3 8 24=8·3 1 8·123
4 18 84=6·2+18·4 4 8·1213 + 4·1214 + 2·1234 + 4·1243
5 48 240=48·5 6 8·(12123 + 12124) + 8·12313

+ 8·(12134 + 12143) + 8·12413
6 116 732=6·2+8·3+116·6 17 8·121213 + 8·121214 + 8·121234

+ 8·121243 + 8·121313 + 8·121314
+ 4·121323 + 8·(121324 + 121423)
+ 4·121343 + 8·121424 + 4·121434
+ 8·123124 + 8·123134 + 4·123143
+ 4·124213 + 8·124243

7 312 2184 39
8 810 6564 108

Table 9.4: List of the 4-disk prime cycles up to length 8. The meaning of the symbols is
the same as in table 9.3. Orbits related by time reversal symmetry (but no other symmetry)
already appear at cycle length 5. List of the cycles of length 7 and 8 has been omitted.

complete binary dynamics (with the explicit fixed point factor (1 − tb) = (1 − z):

1/ζtop = (1 − z)
(

1 − z − z

1 − z

)
= 1 − 3z + z2

9.18
on p. 193

9.6 Topological zeta function for an infinite partition

(K.T. Hansen and P. Cvitanović)

Now consider an example of a dynamical system which (as far as we know
- there is no proof) has an infinite partition, or an infinity of longer and longer
pruning rules. Take the 1-d quadratic map

f(x) = Ax(1 − x)

with A = 3.8. It is easy to check numerically that the itinerary or the “kneading
sequence” (see sect. 7.4.2) of the critical point x = 1/2 is

K = 1011011110110111101011110111110 . . .

where the symbolic dynamics is defined by the partition of fig. 7.5. How this
kneading sequence is converted into a series of pruning rules might get explained
in chapter ??. For the moment it suffices to state the result, to give you a
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Figure 9.2: (a) The logarithm of the difference between the leading zero of the finite
polynomial approximations to topological zeta function and and our best estimate, as a
function of the length for the quadratic map A = 3.8. (b) The 90 zeroes of the characteristic
polynomial for the quadratic map A = 3.8 approximated by symbolic strings up to length 90.
(from ref. [3])

feeling for what a “typical” infinite partition topological zeta function looks like.
Approximating the dynamics by a Markov graph corresponding to a repeller of
the period 29 attractive cycle close to the A = 3.8 strange attractor (or, much
easier, following the algorithm of appendix B.2) yields a Markov graph with 29
nodes and the characteristic polynomial

1/ζ(29)top = 1 − z1 − z2 + z3 − z4 − z5 + z6 − z7 + z8 − z9 − z10

+z11 − z12 − z13 + z14 − z15 + z16 − z17 − z18 + z19 + z20

−z21 + z22 − z23 + z24 + z25 − z26 + z27 − z28 . (9.28)

The smallest real root of this approximate topological zeta function is

z = 0.62616120 . . . (9.29)

Constructing finite Markov graphs of increasing length corresponding to A → 3.8
we find polynomials with better and better estimates for the topological entropy.
For the closest stable period 90 orbit we obtain our best estimate of the topological
entropy of the repeller:

h = − ln 0.62616130424685 . . . = 0.46814726655867 . . . . (9.30)

Fig. 9.2 illustrates the convergence of the truncation approximations to the topo-
logical zeta function as a plot of the logarithm of the difference between the zero
of a polynomial and our best estimate (9.30), plotted as a function of the length
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of the stable periodic orbit. The error of the estimate (9.29) is expected to be
of order z29 ≈ e−14 because going from length 28 to a longer truncation yields
typically combinations of loops with 29 and more nodes giving terms ±z29 and
of higher order in the polynomial. Hence the convergence is exponential, with
exponent of −0.47 = −h, the topological entropy itself.

In fig. 9.2(b) we plot the zeroes of the polynomial approximation to the topo-
logical zeta function obtained by accounting for all forbidden strings of length 90
or less. The leading zero giving the topological entropy is the point closest to the
origin. Most of the other zeroes are close to the unit circle; we conclude that for
infinite Markov partitions the topological zeta function has a unit circle as the
radius of convergence. The convergence is controlled by the ratio of the leading to
the next-to-leading eigenvalues, which is in this case indeed λ1/λ0 = 1/eh = e−h.

9.6.1 Shadowing

The topological zeta function is a pretty function, but the infinite product (9.19)
should make you pause. For finite transfer matrices the left hand side is a deter-
minant of a finite matrix, therefore a finite polynomial; but the right hand side is
an infinite product over the infinitely many prime periodic orbits of all periods?

The way in which this infinite product rearranges itself into a finite polynomial
is instructive, and crucial for all that follows. You can already take a peek at
the full cycle expansion (11.5) of chapter 11; all cycles beyond the fundamental
t0 and t1 appear in the shadowing combinations such as

ts1s2···sn − ts1s2···smtsm+1···sn .

For subshifts of finite type such shadowing combinations cancel exactly, if we are
counting cycles as we do here, or if the dynamics is piecewise linear, as in sect. ??
or exercise 10.3. As we have already argued in sect. 1.4.4 and will continue
arguing in sect. 12.1.2, for nice hyperbolic flows whose symbolic dynamics is a
subshift of finite type, the shadowing combinations almost cancel, and the spec-
tral determinant is dominated by the fundamental cycles from (9.12), with longer
cycles contributing only small “curvature” corrections.

These exact or nearly exact cancellations depend on the flow being smooth and
the symbolic dynamics being a subshift of finite type. If the dynamics requires
infinite Markov partition with pruning rules for longer and longer blocks, most
of the shadowing combinations still cancel, but the few corresponding to the
forbidden blocks do not, leading to a finite radius of convergence for the spectral
determinant as in fig. 9.2(b).

One striking aspect of the pruned cycle expansion (9.28) compared to the
trace formulas such as (9.6) is that coefficients are not growing exponentially -
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indeed they all remain of order 1, so instead having a radius of convergence e−h,
in the example at hand the topological zeta function has the unit circle as the
radius of convergence. In other words, exponentiating the spectral problem from
a trace formula to a spectral determinant as in (9.18) is analyticity improving:
the pole in the trace (9.7) at z = e−h is promoted to a smooth zero of the spectral
determinant with a larger radius of convergence.

A detailed discussion of the radius of convergence is given in appendix B.2.

The very sensitive dependence of spectral determinants on whether the sym-
bolic dynamics is or is not a subshift of finite type is the bad news that we should
announce already now. If the system is generic and not structurally stable
(see sect. 7.5.1), a smooth parameter variation is in no sense a smooth variation
of topological dynamics - infinities of periodic orbits are created or destroyed,
Markov graphs go from being finite to infinite and back. That will imply that the
global averages that we intend to compute are generically nowhere differentiable
functions of the system parameters, and averaging over families of dynamical sys-
tems can be a highly nontrivial enterprise; a simple illustration is the parameter
dependence of the diffusion constant computed in a remark in chapter 16.

You might well ask: What is wrong with computing entropy from (9.1)? Does
all this theory buy us anything? If we count Kn level by level, we ignore the self-
similarity of the pruned tree - examine for example fig. 7.13, or the cycle expansion
of (9.22) - and the finite estimates of hn = lnKn/n converge nonuniformly to h,
and on top of that with a slow rate of convergence, |h − hn| ≈ O(1/n) as in
(9.3). The determinant (9.8) is much smarter, as by construction it encodes the
self-similarity of the dynamics, and yields the asymptotic value of h with no need
for any finite n extrapolations.

So, the main lesson of learning how to count well, a lesson that will be af-
firmed over and over, is that while the trace formulas are conceptually essential
step in deriving and understanding periodic orbit theory, spectral determinant is
the right object to use if one is to compute anything. Instead of resumming all of
the exponentially many periodic points required by trace formulas at each level
of truncation, spectral determinants incorporate only the small incremental cor-
rections to what is already known - and that makes them always more convergent
and economical to use.

Commentary

Remark 9.1 “Entropy”. The ease with which the topological entropy
can be motivated obscures the fact that our definition does not lead to
an invariant of the dynamics, as the choice of symbolic dynamics is largely
arbitrary: the same caveat applies to other entropies discussed in chapter 14,
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and to get proper invariants one is forced to evaluating a supremum over all
possible partitions. The key mathematical point that eliminates the need of
such a variational search is the existence of generators, i.e. partitions that
under dynamics are able to probe the whole phase space on arbitrarily small
scales: more precisely a generator is a finite partition Ω,= ω1 . . . ωN , with
the following property: take M the subalgebra of the phase space generated
by Ω, and consider the partition built upon all possible intersectiond of sets
φk(βi), where φ is dynamical evolution, βi is an element of M and k takes all
possible integer values (positive as well as negative), then the closure of such
a partition coincides with the algebra of all measurable sets. For a thorough
(and readable) discussion of generators and how they allow a computation
of Kolmogorov entropy (see chapter 14), see ref. [1].

Remark 9.2 Perron-Frobenius matrices. For a proof of Perron theorem
on the leading eigenvalue see ref. [2]. Ref. [3], sect. A4.1 contains a clear
discussion of the spectrum of the transition matrix.

Remark 9.3 Determinant of a graph. Many textbooks offer derivations
of the loop expansions of characteristic polynomials for transition matrices
and their Markov graphs, cf. for example refs. [4, 5, 6].

Remark 9.4 T is not trace class. Note to the erudite reader: the tran-
sition matrix T (in the infinite partition limit) is not trace class in the sense
of appendix F. Still the trace is well defined in the n → ∞ limit.

Remark 9.5 Artin-Mazur zeta functions. Motivated by A. Weil’s zeta
function for the Frobenius map [7], Artin and Mazur [8] introduced the zeta
function (9.20) that counts periodic points for diffeomorphisms (see also
ref. [9] for their evaluation for maps of the interval). Smale [10] conjectured
rationality of the zeta functions for Axiom A diffeomorphisms, later proved
by Guckenheimer [11] and Manning [12]. See remark 10.4 on page 210 for
more zeta function history.

Remark 9.6 Ordering expansions. In sect. 11.4 we will introduce an
alternative way of hierarchically organising cumulant expansions, in which
the order is dictated by stability rather than cycle length: such a procedure
may be better suited to perform computations when the symbolic dynamics
is loosely understood.

Résumé

What have we accomplished? We have related the number of topologically dis-
tinct paths from “this region” to “that region” in a chaotic system to the leading

∼DasBuch/book/chapter/count.tex 8aug99 printed August 24, 2000



REFERENCES 185

eigenvalue of the transition matrix T . The eigenspectrum of T is given by a cer-
tain sum over traces trTn, and in this way the periodic orbit theory has entered
the arena, already at the level of the topological dynamics, the crudest description
of dynamics.

The main result of this chapter is the cycle expansion (9.20) of the topological
zeta function (that is, the spectral determinant of the transition matrix):

1/ζtop(z) = 1 −
∑
k=1

ĉkz
k .

For subshifts of finite type, the transition matrix is finite, and the topological
zeta function is a finite polynomial evaluated by the loop expansion (9.12) of
det (1− zT ). For infinite grammars the topological zeta function is defined by its
cycle expansion. The topological entropy h is given by the smallest zero z = e−h.
This expression for the entropy is exact; in contrast to the definition (9.1), no
n → ∞ extrapolations of lnKn/n are required.

Historically, these topological zeta functions were the inspiration for applying
the transfer matrix methods of statistical mechanics to the problem of computa-
tion of dynamical averages for chaotic flows. The key result were the dynamical
zeta functions that we shall derive in chapter 6, the weighted generalizations of
the topological zeta function.

Contrary to claims one sometimes encounters in the literature, “exponential
proliferation of trajectories” is not the problem; what limits the convergence of
cycle expansions is the proliferation of the grammar rules, or the “algorithmic
complexity”, as illustrated by sect. 9.6, and fig. 9.2 in particular.
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Exercises

9.1 A transition matrix for 3-disk pinball.

a) Draw the Markov graph corresponding to the 3-disk ternary symbolic dy-
namics, and write down the corresponding transition matrix corresponding
to the graph. Show that iteration of the transition matrix results in two
coupled linear difference equations, - one for the diagonal and one for the
off diagonal elements. (Hint: relate trTn to trTn−1 + . . ..)

b) Solve the above difference equation and obtain the number of periodic orbits
of length n. Compare with table 9.3.

c) Find the eigenvalues of the transition matrix T for the 3-disk system with
ternary symbolic dynamics and calculate the topological entropy. Compare
this to the topological entropy obtained from the binary symbolic dynamics
{0, 1}.

9.2 Sum of Aij is like a trace. Let A be a matrix with eigenvalues λk.
Show that

Γn =
∑
i,j

[An]ij =
∑
k

ckλ
n
k .

Use this to show that ln |trAn| and ln |Γn| have the same asymptotic behavior
as n → ∞, that is, their ratio converges to one. Do eigenvalues λk need to be
distinct, λk �= λl for k �= l?

9.3 Loop expansions. Prove by induction the sign rule in the determinant
expansion (9.12):

det (1 − zT) =
∑
k≥0

∑
p1+···+pk

(−1)ktp1tp2 · · · tpk .
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9.4 Transition matrix and cycle counting.

Suppose you are given the Markov graph

0 1a

b

c

This diagram can be encoded by a matrix T , where the entry Tij means that
there is a link connecting node i to node j. The value of the entry is the weight
of the link.

a) Walks on the graph are given the weight that is the product of the weights
of all links crossed by the walk. Convince yourself that the transition matrix
for this graph is:

T =
[

a b
c 0

]
.

b) Enumerate all the walks of length three on the Markov graph. Now compute
T 3 and look at the entries. Is there any relation between the terms in T 3

and all the walks?

c) Show that Tn
ij is the number of walks from point i to point j in n steps.

(Hint: one might use the method of induction.)

d) Try to estimate the number N(n) of walks of length n for this simple Markov
graph.

e) The topological entropy h measures the rate of exponential growth of the
total number of walks N(n) as a function of n. What is the topological
entropy for this Markov graph?

9.5 “Golden mean” pruned map. Continuation of exercise 7.13: Show
that the total number of periodic orbits of length n for the “Golden mean” tent
map is

(1 +
√

5)n + (1 −
√

5)n

2n
.

For continuation, see exercise 10.2. See also exercise 9.6.
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Figure 9.3: (a) A unimodal map for which the critical point maps into the right hand fixed
point in three iterations, and (b) the corresponding Markov graph (Kai T. Hansen).

9.6 A unimodal map example . Consider a unimodal map of fig. 9.3(a) for which
the critical point maps into the right hand fixed point in three iterations, S+ = 1001.
Show that the admissible itineraries are generated by the Markov graph fig. 9.3(b).

(Kai T. Hansen)

9.7 Heavy pruning. Implement the grammar (7.19) by verifying all steps
in the construction outlined in fig. 7.14. Verify the entropy estimate (9.17).
Perhaps count admissible trajectories up to some length of 5-10 symbols by your
own method (generate all binary sequences, throw away the bad ones?), check
whether this converges to the h value claimed in the text.

9.8 Glitches in shadowing.∗∗ Note that the combination t00011 minus the
“shadow” t0t0011 in (9.16) cancels exactly, and does not contribute to the topological
polynomial (9.17). Are you able to construct a smaller Markov graph than fig. 7.14(e)?

9.9 Whence Möbius function? To understand where the Möbius function comes
from consider the function

f(n) =
∑
d|n

g(d) (9.31)
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where d|n stands for sum over all divisors d of n. Invert recursively this infinite tower of
equations and derive the Möbius inversion formula

g(n) =
∑
d|n

µ(n/d)f(d) (9.32)

9.10 Counting prime binary cycles. In order to get comfortable with
Möbius inversion reproduce the results of the second column of table 9.2.

Write a program that determines the number of prime cycles of length n. You
might want to have this program later on to be sure that you have missed no
3-pinball prime cycles.

9.11 Counting subsets of cycles. The techniques developed above can be
generalized to counting subsets of cycles. Consider the simplest example of a dynamical
system with a complete binary tree, a repeller map (7.6) with two straight branches,
which we label 0 and 1. Every cycle weight for such map factorizes, with a factor t0 for
each 0, and factor t1 for each 1 in its symbol string. Prove that the transition matrix
traces (9.4) collapse to tr(T k) = (t0 + t1)k, and 1/ζ is simply

∏
p

(1 − tp) = 1 − t0 − t1 (9.33)

Substituting (9.33) into the identity

∏
p

(1 + tp) =
∏
p

1 − tp
2

1 − tp

we obtain

∏
p

(1 + tp) =
1 − t20 − t21
1 − t0 − t1

= 1 + t0 + t1 +
2t0t1

1 − t0 − t1

= 1 + t0 + t1 +
∞∑
n=2

n−1∑
k=1

2
(
n − 2
k − 1

)
tk0t

n−k
1 . (9.34)

Hence for n ≥ 2 the number of terms in the cumulant expansion with k 0’s and n− k 1’s
in their symbol sequences is 2

(
n−2
k−1

)
.
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In order to count the number of prime cycles in each such subset we denote with
Mn,k (n = 1, 2, . . . ; k = {0, 1} for n = 1; k = 1, . . . , n − 1 for n ≥ 2) the number of
prime n-cycles whose labels contain k zeros. Show that

M1,0 = M1,1 = 1

nMn,k =
∑
m
∣∣n

k

µ(m)
(
n/m

k/m

)
, n ≥ 2 , k = 1, . . . , n − 1

where the sum is over all m which divide both n and k.

9.12 Logarithmic periodicity of lnNn
∗. Plot lnNn − nh for a system with a

nontrivial finite Markov graph. Do you see any periodicity? If yes, why?

9.13 4-disk pinball topological polynomial. Show that the 4-disk pinball
topological polynomial (the pruning affects only the fixed points and the 2-cycles) is
given by

1/ζ4−disk = (1 − 3z)
(1 − z2)6

(1 − z)3(1 − z2)3

= (1 − 3z)(1 + z)3 = 1 − 6z2 − 8z3 − 3z4 . (9.35)

9.14 N-disk pinball topological polynominal. Show that for an N -disk pinball,
the topological polynominal is given by

1/ζN−disk = (1 − (N − 1)z)
(1 − z2)N(N−1)/2

(1 − z)N−1(1 − z2)(N−1)(N−2)/2

= (1 − (N − 1)z) (1 + z)N−1 . (9.36)

The topological polynomial has a root z−1 = N − 1, as we already know it should from
(9.25) or (9.14). We shall see in sect. 15.4 that the other roots reflect the symmetry
factorizations of zeta functions.
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9.15 Alphabet {a, b, c}, prune ab . The pruning rule implies that any string of
“b”s must be preceeded by a “c”; so one possible alphabet is {a, cbk; b}, k=0,1,2. . .. As
the rule does not prune the fixed point b, it is explicitly included in the list. The cycle
expansion (9.12) becomes

1/ζ = (1 − ta)(1 − tb)(1 − tc)(1 − tcb)(1 − tac)(1 − tcbb) . . .
= 1 − ta − tb − tc + tatb − (tcb − tctb) − (tac − tatc) − (tcbb − tcbtb) . . .

The effect of the ab pruning is essentially to unbalance the 2 cycle curvature tab − tatb;
the remainder of the cycle expansion retains the curvature form.

9.16 Alphabet {0,1}, prune n repeats. of “0” 000 . . . 00 .

This is equivalent to the n symbol alphabet {1, 2, . . ., n} unrestricted symbolic dy-
namics, with symbols corresponding to the possible 10. . .00 block lengths: 2=10, 3=100,
. . ., n=100. . .00. The cycle expansion (9.12) becomes

1/ζ = 1 − t1 − t2 . . . − tn − (t12 − t1t2) . . . − (t1n − t1tn) . . . (9.37)

.

9.17 Alphabet {0,1}, prune 1000 , 00100 , 01100 . This example is mo-
tivated by the pruning front description of the symbolic dynamics for the Hénon-type
maps, sect. 7.6.

Show that the topological zeta function is given by

1/ζ = (1 − t0)(1 − t1 − t2 − t23 − t113) (9.38)

with the unrestricted 4-letter alphabet {1, 2, 23, 113}. Here 2, 3, refer to 10, 100
respectively, as in exercise 9.16.

9.18 Alphabet {0,1}, prune 1000 , 00100 , 01100 , 10011 . This example
of pruning we shall use in sect. ??. The first three pruning rules were incorporated in
the preceeding exercise.
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(a) Show that the last pruning rule 10011 leads (in a way similar to exercise 9.17)
to the alphabet {21k, 23, 21k113; 1, 0}, and the cycle expansion

1/ζ = (1 − t0)(1 − t1 − t2 − t23 + t1t23 − t2113) (9.39)

Note that this says that 1, 23, 2, 2113 are the fundamental cycles; not all cycles up to
length 7 are needed, only 2113.

(b) Show that the topological polynomial is

1/ζtop = (1 − z)(1 − z − z2 − z5 + z6 − z7) (9.40)

and check that it yields the exact value of the entropy h = 0.522737642 . . ..
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Chapter 10

Spectral determinants

“It seems very pretty,” she said when she had finished it,
“but it’s rather hard to understand!” (You see she didn’t
like to confess, even to herself, that she couldn’t make it
out at all.) “Somehow it seems to fill my head with ideas
— only I don’t exactly know what they are!”

Lewis Carroll, Through the Looking Glass

The eigenvalues of evolution operators are given by the zeros of corresponding
determinants, and one way to evaluate determinants is to expand them in terms
of traces, using the matrix identity log det = tr log. Traces of evolution oper-
ators can be evaluated as integrals over Dirac delta functions, and in this way
the spectra of evolution operators become related to periodic orbits.

We have given a quick sketch of this program in sect. 1.3.4 through 1.4.3; now
we redo the same material in greater detail.

The problem with trace formulas (6.12), (6.20) and (6.24) is that they diverge at
z = e−s0 , respectively s = s0, that is, precisely where one would like to use them.
While this does not prevent numerical estimation of some “thermodynamic” av-
erages for iterated mappings, in the case of the Gutzwiller trace formula of chap-
ter 19 this leads to a perplexing observation that crude estimates of the radius
of convergence seem to put the entire physical spectrum out of reach (see chap-
ter 12). We shall now partially cure this problem by going from trace formulas
to determinants. The idea is illustrated by fig. 1.10: Determinants tend to have
larger analyticity domains because if trL/(1 − zL) = d

dz ln det (1 − zL) diverges
at a particular value of z, then det (1 − zL) might have an isolated zero there,
and a zero of a function is easier to determine than its radius of convergence.

195



196 CHAPTER 10. SPECTRAL DETERMINANTS

10.1 Spectral determinants for maps

The inverses of eigenvalues of a linear operator are given by the zeros of the
determinant

det (1 − zL) =
∏
α

(1 − zλα) . (10.1)

For finite matrices this is the characteristic determinant; for operators this is the
Hadamard representation of the spectral determinant (here we have again spared
the reader from pondering possible regularization factors). Consider first the case
of maps, for which the evolution operator advances the densities by integer steps
in time. In this case we can use the formal matrix identity1.3

on p. 30

ln det (1 − M) = tr ln(1 − M) = −
∞∑
n=1

1
n

trMn , (10.2)

to relate the spectral determinant of an evolution operator for a map to its traces
(6.10), that is, periodic orbits:

det (1 − zL) = exp

(
−

∞∑
n

zn

n
trLn

)

= exp

(
−
∑
p

∞∑
r=1

1
r

znprerβ·Ap∣∣det
(
1− Jrp

)∣∣
)

. (10.3)

The trace formula (6.12) can be recovered from the spectral determinant by taking
a derivative

tr
zL

1 − zL = −z
d

dz
ln det (1 − zL) . (10.4)

fast track:

sect. 10.2, p. 198

10.1.1 Spectral determinants of transfer operators

For a piecewise-linear map (4.10) with a finite Markov partition, an
explicit formula for the spectral determinant follows by substituting the trace
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10.1. SPECTRAL DETERMINANTS FOR MAPS 197

formula (6.14) into (10.3):

det (1 − zL) =
∞∏
k=0

(
1 − t0

Λk
0

− t1

Λk
1

)
, (10.5)

where ts = z/|Λs|. The eigenvalues (compare with (10.19)) are simply

esk =
1

|Λ0|Λk
0

+
1

|Λ1|Λk
1

. (10.6)

The simplest example of spectrum for such dynamical system is the spectrum for
the symmetric piecewise-linear 2-branch repeller (7.6) for which Λ = Λ1 = −Λ0.
In this case all odd eigenvalues vanish, and the even eigenvalues are given by
esk = 2/Λk+1, k even. 10.7

on p. 215

Asymptotically the spectrum (10.6) is dominated by the lesser of the two
fixed point slopes Λ = Λ0 (if |Λ0| < |Λ1|, otherwise Λ = Λ1), and the eigenvalues
esk fall off exponentially as 1/Λk, just as in the single fixed-point examples.
The exponential spacing of eigenvalues guarantees that the spectral determinant
(10.5) is an entire function. It is this property that will generalize to piecewise
smooth flows with finite Markov parititions and single out spectral determinants
rather than the trace formulas or dynamical zeta functions as the tool of choice
for evaluation of spectra.

Alert reader should experience anxiety at this point. Is it not true that we
have already written down explicitely the transfer operator in (4.11), and that it
is clear by inspection that it has only one eigenvalue es0 = 1/|Λ0| + 1/|Λ1|? The
example at hand is one of the simplest illustrations of necessity of defining the
space operator acts on in order to define the spectrum. The transfer operator
(4.11) is the correct operator on the space of functions piecewise constant on the
two defining intervals {M0,M1}; on this space the operator indeed has only the
eigenvalue es0 . As we shall see in sect. 10.4, the full spectrum (10.6) corresponds
to the action of the transfer operator on the space of real analytic functions.
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198 CHAPTER 10. SPECTRAL DETERMINANTS

10.2 Spectral determinant for flows

. . . an analogue of the [Artin-Mazur] zeta function for dif-
feomorphisms seems quite remote for flows. However we
will mention a wild idea in this direction. [· · ·] define l(γ)
to be the minimal period of γ [· · ·] then define formally
(another zeta function!) Z(s) to be the infinite product

Z(s) =
∏
γ∈Γ

∞∏
k=0

(
1 − [exp l(γ)]−s−k

)
.

Stephen Smale, Differentiable Dynamical Systems

We write the formula for the spectral determinant for flows by analogy to
(10.3)

det (s − A) = exp

(
−
∑
p

∞∑
r=1

1
r

er(β·Ap−sTp)∣∣det
(
1− Jrp

)∣∣
)

, (10.7)

and then check that the trace formula (6.20) is the logarithmic derivative of the
spectral determinant so defined

tr
1

s − A =
d

ds
ln det (s − A) . (10.8)

To recover det (s − A) integrate both sides
∫ s
s0

ds. With z set to z = e−s as
in (6.21), the spectral determinant (10.7) has the same form for both maps and
flows. We shall refer to (10.7) as spectral determinant, as the spectrum of the
operator A is given by the zeros of

det (s − A) = 0 . (10.9)

We now note that the r sum in (10.7) is close in form to the expansion of a
logarithm. This observation enables us to recast the spectral determinant into
an infinite product over periodic orbits as follows:

Let Jp be the p-cycle [d×d] transverse Jacobian matrix, with eigenvalues Λp,1,
Λp,2, . . ., Λp,d. Expanding 1/(1 − 1/Λp,e), 1/(1 − Λp,c) in (6.7) as geometric series,
substituting back into (10.7), and resumming the logarithms, we find that the
spectral determinant is formally given by the infinite product

det (s − A) =
∞∏

k1=0

· · ·
∞∏

lc=0

1
ζk1···lc
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1/ζk1···lc =
∏
p

(
1 − tp

Λl1
p,e+1Λ

l2
p,e+2 · · ·Λlc

p,d

Λk1
p,1Λ

k2
p,2 · · ·Λke

p,e

)
(10.10)

tp =
1

|Λp|
eβ·Ap−sTpznp . (10.11)

Here we have inserted a topological cycle length weigth znp for reasons which will
become apparent in chapter 11; eventually we shall set z = 1. The observable
whose average we wissh to compute contributes through the Ap term, which is
the p cycle average of the multiplicative weight eA

t(x). By its definition (5.1), for
maps the weight is a product along the cycle points

eAp =
np−1∏
j=0

ea(f
j(xp)) ,

and for the flows the weight is an exponential of the integral (5.5) along the cycle

eAp = exp
(∫ Tp

0
a(x(τ))dτ

)
.

This formula is correct for scalar weighting functions; more general matrix val-
ued weights would require a time-ordering prescription (we will discuss this in
sect. ??).

Now we are finally poised to deal with the problem posed at the beginning
of this chapter; how do we evaluate the averages of sect. 5.1? The eigenvalues
of the dynamical averaging evolution operator are given by the values of s for
which the spectral determinant (10.7) of the evolution operator (5.18) vanishes.
If we can compute the leading eigenvalue s0(β) and its derivatives, we are done.
Unfortunately, the infinite product formula (10.10) is no more than a shorthand
notation for the periodic orbit weights contributing to the spectral determinant;
more work will be needed to bring such cycle formulas into a tractable form. This
we shall accomplish in chapter 11, but this point in the narrative is a natural point
to introduce a still another variant of a determinant, the dynamical zeta function.

10.3 Dynamical zeta functions

It follows from sect. 6.1.1 that if one is interested only in the leading eigenvalue
of Lt, the size of the p cycle neighborhood can be approximated by 1/|Λp|r, the
dominant term in the rTp = t → ∞ limit, where Λp =

∏
e Λp,e is the product of
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200 CHAPTER 10. SPECTRAL DETERMINANTS

the expanding eigenvalues of the Jacobian matrix Jp. With this replacement the
spectral determinant (10.7) is replaced by the dynamical zeta function

1/ζ = exp

(
−
∑
p

∞∑
r=1

1
r
trp

)
(10.12)

that we have already derived heuristically in sect. 1.4.2. Resumming the loga-
rithms using

∑
r t

r
p/r = − ln(1 − tp) we obtain the Euler product representation

of the dynamical zeta function:

1/ζ =
∏
p

(1 − tp) , tp = tp(z, s, β) =
1

|Λp|
eβ·Ap−sTpznp . (10.13)

For reasons of economy of the notation, we shall usually omit the explicit depen-
dence of 1/ζ, tp on z, s, β whenever the dependence is clear from the context.

The approximate trace formula (6.24) plays the same role vis-a-vis the dyn-
amical zeta function

Γ(s) =
d

ds
ln ζ−1 =

∑
p

Tptp
1 − tp

, (10.14)

as the exact trace formula (6.20) plays vis-a-vis the spectral determinant (10.7),
see (10.8). The heuristically derived dynamical zeta function of sect. 1.4.2 now
reemerges as the 1/ζ0···0(z) part of the exact spectral determinant; other factors
in the infinite product (10.10) affect the non-leading eigenvalues of L.

To summarize: dynamical zeta function (10.13) associated with the flow f t(x)
is defined as the product over all prime cycles p. Tp, np and Λp are the period,
topological length and stability of prime cycle p, Ap is the integrated observable
a(x) evaluated on a single traversal of cycle p (see (5.5)), s is a variable dual to
the time t, z is dual to the discrete “topological” time n, and tp(z, s, β) is the
local trace over the cycle p. We have included the factor znp in the definition of
the cycle weight in order to keep track of the number of times a cycle traverses
the surface of section. The dynamical zeta function is useful because

1/ζ(s) = 0 (10.15)

vanishes at s equal to s0, the leading eigenvalue of Lt = etA, and often the leading
eigenvalue is all that is needed in physics applications. The above completes our
derivation of the trace and determinant formulas for classical chaotic flows. In
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chapters that follow we shall make these formulas tangible by working out a series
of simple examples.

The next two sections offer examples of zeta functions.

fast track:

chapter 11, p. 219

10.3.1 Dynamical zeta functions for transfer operators

Ruelle’s original dynamical zeta function was a generalization of the top-
ological zeta function (9.20)

ζ(z) = exp
∞∑
n=1

zn

n

 ∑
xi∈Fixfn

tr
n−1∏
j=0

g(f j(xi))

 .

6.2
on p. 101

Here the sum goes over all periodic points xi of period n, and g(x) is any (ma-
trix valued) weighting function, with weight evaluated multiplicatively along the
trajectory of xi.

By the chain rule the stability of any n-cycle of a 1-d map factorizes as
Λp =

∏n
j=1 f ′(xi), so the 1-d map cycle stability is the simplest example of a

multiplicative cycle weight g(xi) = f ′(xi), and indeed - via the Perron-Frobenius
evolution operator (4.9) - the historical motivation for Ruelle’s more abstract
construction.

In particular, for a piecewise-linear map with a finite Markov partition, the
dynamical zeta function is given by a finite polynomials, a straightforward gener-
alization of determinant of the topological transition matrix (7.3). As explained
in sect. 9.3, for a finite [N×N ] dimensional matrix the determinant is given by

∏
p

(1 − tp) =
N∑

n=1

zncn ,

where cn is given by the sum over all non-self-intersecting closed paths of length
n together with products of all non-intersecting closed paths of total length n.
We illustrate this by the piecewise linear repeller (4.10). Due to the piecewise
linearity, the stability of any n-cycle factorizes as Λs1s2...sn = Λm

0 Λn−m
1 , so the

traces in the sum (6.24) are of a particularly simple form

trTn = Γn =
(

1
|Λ0|

+
1

|Λ1|

)n

.
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202 CHAPTER 10. SPECTRAL DETERMINANTS

The dynamical zeta function (10.12) evaluated by resumming the traces

1/ζ(z) = 1 − z/|Λ0| − z/|Λ1| . (10.16)

is indeed the determinant det (1 − zT ) of the transfer operator (4.11), almost as
simple as the topological zeta function (9.21). More generally, piecewise-linear
approximations to dynamical systems yield polynomial or rational polynomial
cycle expansions, provided that the symbolic dynamics is a subshift of finite type
(see sect. 9.4).

We see that the dreaded exponential proliferation of cycles is a bogus anx-
iety; we are dealing with exponentially many cycles of increasing length and
instability, but all that really matters in this example are the stabilities of the
two fixed points. Clearly the information carried by the infinity of longer cycles
is highly redundant; we shall learn in chapter 11 how to exploit systematically
this redundancy.

10.3.2 Topological zeta function for flows

In sect. 9.4 we encountered our first zeta function, the topological zeta
function whose leading zero describes the growth rate of the number of topo-
logically distinct trajectories with the nth iterate of a map. We now apply the
method we used in deriving (6.20) to the problem of deriving the topological zeta
functions for flows. By analogy to (6.18), the time-weighted density of prime
cycles of period t is

Γ(t) =
∑
p

∑
r=1

Tpδ(t − rTp) (10.17)

A Laplace transform smoothes the sum over Dirac delta spikes and yields the
topological trace formula and topological zeta function for flows:

∑
p

∑
r=1

Tp

∫ ∞

0+

dt e−st δ(t − rTp) =
∑
p

Tp

∞∑
r=1

e−sTpr

= − ∂

∂s
ln 1/ζtop(s)

1/ζtop(s) =
∏
p

(
1 − e−sTp

)
. (10.18)

This is the continuous time version of the discrete time topological zeta function
(9.20) for maps; its leading zero s = −h yields the topological entropy.
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10.4 The simplest of spectral determinants: A single
fixed point

In order to get some feeling for the determinants defined so formally in sect. 10.2,
let us work out a few examples. We start with a trivial example of a repeller with
only one expanding linear branch

f(x) = Λx , |Λ| > 1 ,

and only one fixed point x = 0. The action of the Perron-Frobenius operator
(4.8) is

Lφ(y) =
∫

dx δ(y − Λx)φ(x) =
1
|Λ|φ(y/Λ) .

From this one immediately identifies the eigenfunctions and the eigenvalues:

Lyn =
1

|Λ|Λn
yn , n = 0, 1, 2, . . . (10.19)

We note that the eigenvalues Λ−n−1 fall off exponentially with n, and that the
trace of L is

trL =
1
|Λ|

∞∑
n=0

Λ−n =
1

|Λ|(1 − Λ−1)
=

1
|f(0)′ − 1| ,

in agreement with (6.9). A similar result is easily obtained for powers of L, and
for the spectral determinant (10.3) one obtains:

det (1 − zL) =
∞∏
k=0

(
1 − z

|Λ|Λk

)
=

∞∑
k=0

Qkt
k , t = −z/|Λ| , (10.20)

where the coefficients Qk are given explicitly by the Euler formula 10.16
on p. 217

Qk =
1

1 − Λ−1
Λ−1

1 − Λ−2 · · · Λ−k+1

1 − Λ−k
. (10.21)

Note that the coefficients decay asymptotically faster than exponentially, as
Λ−k(k−1)/2. This property ensures that for a repeller consisting of a single re-
pelling point the spectral determinant (10.20) is entire in the complex z plane.
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204 CHAPTER 10. SPECTRAL DETERMINANTS

What is the meaning of (10.20)? It gives us an interpretation of the index
k in the Selberg product representation of the spectral determinant (10.10): k
labels the kth local fixed-point eigenvalue 1/|Λ|Λk.

Well, this was easy, so why do so many scholars worry whether the spectrum
of the classical evolution operator is discrete or continuous? We have quietly
assumed something that is physically entirely reasonable; our evolution operator
is acting on the space of analytic functions, that is, we are allowed to represent
the initial density ρ(x) by its Taylor expansions in the neighborhoods of periodic
points. Were we to work with more disquieting function spaces, for example the
spaces of L1 or L2 integrable functions, the spectrum would be continuous - we
shall return to these problems in chapter 12.

While it is not at all obvious that what is true for a single fixed point should
also apply to a Cantor set of periodic points, the same asymptotic decay of
expansion coefficients is obtained when several expanding branches are involved.
Consider now an expanding 1-d map f(x), with |f ′

s(x)| > 1 and monotone on two
non-overlapping intervals

f(x) =
{

f0(x), x ∈ I0
f1(x), x ∈ I1

. (10.22)

We have already worked out the simplest non–trivial example of such map, a
piecewise-linear complete 2–branch repeller (4.10). Its trace is given by (6.13)
and the spectral determinant (10.3) is given by (10.5).

10.5 False zeros

Compare (10.16) with the Euler product (10.13). For simplicity take the two
scales equal, |Λ0| = |Λ1| = eλ. Our task is to determine the leading zero z = eγ

of the Euler product. It is a novice error to assume that the infinite Euler product
(10.13) vanishes whenever one of its factors vanishes. If that were true, each factor
(1 − znp/|Λp|) would yield

0 = 1 − enp(γ−λp), (10.23)

that is the escape rate γ would equal the stability exponent of a repulsive fixed
point. False! The exponentially growing number of cycles with growing period
conspires to shift the zeros of the infinite product. The correct formula follows
from (10.16)

0 = 1 − eγ−λ+h , h = ln 2. (10.24)
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Figure 10.1: The classical resonances α =
{k, n} for a 2-disk game of pinball, equation
(10.25).
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−λ/Τ−2λ/Τ−3λ/Τ−4λ/Τ

−4π/Τ
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{3,2}

{0,−3}

Im

This particular formula for the escape rate is a special case of a general relation
between escape rates, Lyapunov exponents and entropies that is not yet included
into this book. The physical interpretation is that the escape induced by repulsion
by each unstable fixed point is diminished by the rate of backscatter from other
repelling segments, i.e. the entropy h; the positive entropy of orbits of the same
stability shifts the “false zeros” z = eλp of the Euler product (10.13) to the true
zero z = eλ−h. ??

on p. ??

10.6 All too many eigenvalues?

What does the 2-dimensional hyperbolic Hamiltonian flow spectral det-
erminant (10.30) tell us? Consider the simplest conceivable hyperbolic flow:
the game of pinball of fig. 10.2 consisting of two disks of equal size in a plane.
There is only one periodic orbit, with the period T and the expanding eigenvalue
Λ is given by elementary considerations (see exercise 8.8), and the resonances
det (sα − A) = 0, α = {k, n} plotted in fig. 10.1

sα = −(k + 1)λ + n
2πi
T

, n ∈ Z , k ∈ Z+ , multiplicity k + 1 , (10.25)

can be read off the spectral determinant (10.30) for a single unstable cycle:

det (s − A) =
∞∏
k=0

(
1 − e−sT/|Λ|Λk

)k+1
. (10.26)

In the above λ = ln |Λ|/T is the cycle Lyapunov exponent. For an open system,
the real part of the eigenvalue sα gives the decay rate of αth eigenstate, and the
imaginary part gives the “node number” of the eigenstate. The negative real part
of sα indicates that the resonance is unstable, and the decay rate in this simple
case (zero entropy) equals to the cycle Lyapunov exponent.
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Figure 10.2: A game of pinball consisting of two
disks of equal size in a plane, with its only periodic
orbit. (A. Wirzba) R

a L a

1 2

Fast decaying eigenstates with large negative Re sα are not a problem, but as
there are eigenvalues arbitrarily far in the imaginary direction, this might seem
like all too many eigenvalues. However, they are necessary - we can check this by
explicit computation of the right hand side of (6.20), the trace formula for flows:

∞∑
α=0

esαt =
∞∑
k=0

∞∑
n=−∞

(k + 1)e(k+1)λt+i2πnt/T

=
∞∑
k=0

(k + 1)
(

1
|Λ|Λk

)t/T ∞∑
n=−∞

ei2πn/T

=
∞∑
k=0

k + 1
|Λ|rΛkr

∞∑
r=−∞

δ(r − t/T)

= T
∞∑

r=−∞

δ(t − rT)
|Λ|(1 − 1/Λr)2

(10.27)

So the two sides of the trace formula (6.20) check. The formula is fine for t > 0;
for t → 0+ both sides are divergent and need regularization.

The reason why such sums do not occur for maps is that for discrete time we
work in the variable z = es, an infinite strip along Im s maps into an anulus in
the complex z plane, and the Dirac delta sum in the above is replaced by the
Kronecker delta sum in (6.10). In case at hand there is only one time scale T,
and we could as well replace s by variable z = e−s/T . In general the flow has
a continuum of cycle periods, and the resonance arrays are more irregular, cf.
fig. 11.1.

10.7 More examples of spectral determinants

For expanding 1-d mappings the spectral determinant (10.10) takes form

det (s − A) =
∏
p

∞∏
k=0

(
1 − tp/Λk

p

)
, tp =

eβAp−sTp

|Λp|
znp . (10.28)
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For a periodic orbit of a 2-dimensional hyperbolic Hamiltonian flow with
one expanding transverse eigenvalue Λ, |Λ| > 1, and one contracting transverse
eigenvalue 1/Λ, the weight in (6.7) is expanded as follows:

1∣∣det
(
1− Jrp

)∣∣ =
1

|Λ|r(1 − 1/Λr
p)2

=
1

|Λ|r
∞∑
k=0

k + 1
Λkr

p

. (10.29)

The spectral determinant exponent can be resummed,

−
∞∑
r=1

1
r

e(βAp−sTp)r∣∣det
(
1− Jrp

)∣∣ =
∞∑
k=0

(k + 1) log
(

1 − eβAp−sTp

|Λp|Λk
p

)
,

and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian flow
rewritten as an infinite product over prime cycles

det (s − A) =
∏
p

∞∏
k=0

(
1 − tp/Λk

p

)k+1
. (10.30)

10.17
on p. 218

In such formulas, tp is a weight associated with the p cycle (letter t refers to
the “local trace” evaluated along the p cycle trajectory), and the index p runs
through all distinct prime cycles. We use z as a formal parameter which keeps
track of the topological cycle lengths, to assist us in expanding zeta functions
and determinants, then set it to z = 1 in calculations.

10.7.1 Spectral determinants vs. dynamical zeta functions

In sect. 6.2 we derived the dynamical zeta function as an approximation to the
spectral determinant. Here we relate dynamical zeta functions to the spectral det-
erminants exactly, by showing that a dynamical zeta function can be expressed
as a ratio of products of spectral determinants.

The elementary identity for d-dimensional matrices

1 =
1

det (1 − J)

d∑
k=0

(−1)ktr
(
∧kJ
)

, (10.31)

inserted into the exponential representation (10.12) of the dynamical zeta func-
tion, relates the dynamical zeta function to weighted spectral determinants. For
1-d maps the identity

1 =
1

(1 − 1/Λ)
− 1

Λ
1

(1 − 1/Λ)
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substituted into (10.12) yields an expression for the dynamical zeta function for
1-d maps as a ratio of two spectral determinants

1/ζ =
det (1 − L)

det (1 − L(1))
(10.32)

where the cycle weight in L(1) is given by replacement tp → tp/Λp. As we shall see
in chapter 12, this establishes that for nice hyperbolic flows 1/ζ is meromorphic,
with poles given by the zeros of det (1 − L(1)). The dynamical zeta function and
the spectral determinant have the same zeros - only in exceptional circumstances
some zeros of det (1−L(1)) might be cancelled by coincident zeros of det (1−L(1)).
Hence even though we have derived the dynamical zeta function in sect. 10.3 as an
“approximation” to the spectral determinant, the two contain the same spectral
information.

For 2-dimensional Hamiltonian flows the above identity yields

1
|Λ| =

1
|Λ|(1 − 1/Λ)2

(1 − 2/Λ + 1/Λ2) ,

so

1/ζ =
det (1 − L) det (1 − L(2))

det (1 − L(1))
. (10.33)

This establishes that for nice hyperbolic flows dynamical zeta function is mero-
morphic in 2-d.

10.7.2 Dynamical zeta functions for 2-d Hamiltonian flows

The relation (10.33) is not particularly useful for our purposes. Instead we insert
the identity

1 =
1

(1 − 1/Λ)2
− 2

Λ
1

(1 − 1/Λ)2
+

1
Λ2

1
(1 − 1/Λ)2

into the exponential representation (10.12) of 1/ζk, and obtain

1/ζk =
FkFk+2

F 2k+1
. (10.34)
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Even though we have no guarantee that Fk are entire, we do know (by arguments
explained in sect. ?!) that the upper bound on the leading zeros of Fk+1

lies strictly below the leading zeros of Fk, and therefore we expect that for 2-
dimensional Hamiltonian flows the dynamical zeta function 1/ζk has generically
a double leading pole coinciding with the leading zero of the Fk+1 spectral deter-
minant. This might fail if the poles and leading eigenvalues come in wrong order,
but we have not encountered such situation in our numerical investigations. This
result can also be stated as follows: the theorem that establishes that the spec-
tral determinant (10.30) is entire, implies that the poles in 1/ζk must have right
multiplicities in order that they be cancelled in the F =

∏
1/ζk+1k product.

Commentary

Remark 10.1 Piecewise monotone maps. A partial list of cases for
which the transfer operator is well defined: expanding Hölder case, weighted
subshifts of finite type, expanding differentiable case, see Bowen [14]: ex-
panding holomorphic case, see Ruelle [7]; piecewise monotone maps of the
interval, see Hofbauer and Keller [1] and Baladi and Keller [4].

Remark 10.2 Smale’s wild idea. Smale’s wild idea quoted on page 198
was technically wrong because 1) the Selberg zeta yields the spectrum of a
quantum mechanical Laplacian rather than the classical resonances, 2) the
spectral determinant weights are different from what Smale conjectured, as
the individual cycle weights also depend on the stability of the cycle, 3) not
dimensionally correct, as k is an integer and s is dimensionally inverse time.
Only for spaces of constant negative curvature do all cycles have the same
Lyapunov exponent λ = ln |Λp|/Tp. Normalizing the time so that λ = 1
the factors e−sTp/Λkp in (10.10) simplify to s−(s+k)Tp , as intuited in Smale’s
wild idea on page 198 (where l(γ) is the cycle period denoted here by Tp).
Nevertheless, Smale’s intuition was remarkably on the target.

Remark 10.3 Is this a generalization of the Fourier analysis? The Fourier
analysis is a theory of the space ↔ eignfunctions duality for dynamics on a
circle. The sense in which the periodic orbit theory is the right generaliza-
tion of the Fourier analysis to nonlinear flows is explained in ref. [8], a very
readable introduction to the Selberg Zeta function.

Remark 10.4 Zeta functions, antecedents. For a function to be deserv-
ing of the appellation “zeta function”, one expects it to have an Euler prod-
uct (10.13) type representation, and perhaps also satisfy a functional equa-
tion. Various kinds of zeta functions are reviewed in refs. [12, 13, 57]. Histor-
ical antecedents of the dynamical zeta function are the fixed-point counting
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210 CHAPTER 10. SPECTRAL DETERMINANTS

functions introduced by Weil [13], Lefschetz [14], Artin and Mazur [?], and
the determinants of transfer operators of statistical mechanics [15].

In his review article Smale [13] already intuited, by analogy to the Sel-
berg Zeta function, that the spectral determinant is the right generalization
for continuous time flows. In dynamical systems theory dynamical zeta func-
tions arise naturally only for piecewise linear mappings; for smooth flows
the natural object for study of classical and quantal spectra are the spec-
tral determinants. Ruelle had derived the relation (10.3) between spectral
determinants and dynamical zeta functions, but as he was motivated by
the Artin-Mazur zeta function (9.20) and the statistical mechanics analogy,
he did not consider the spectral determinant a more natural object than
the dynamical zeta function. This has been put right in a papers on “flat
traces” [14, 15].

The nomenclature has not settled down yet; what we call evolution oper-
ators here is called transfer operators [17], Perron-Frobenius operators [10]
and/or Ruelle-Araki operators elsewhere. Here we refer to kernels such as
(5.18) as evolution operators. We follow Ruelle in usage of the term “dynam-
ical zeta function”, but elsewhere in the literature function (10.13) is often
called the Ruelle zeta function. Ruelle [19] points out the corresponding
transfer operator T was never considered by either Perron or Frobenius; a
more appropriate designation would be the Ruelle-Araki operator. Deter-
minants similar to or identical with our spectral determinants are sometimes
called Selberg Zetas, Selberg-Smale zetas [5], functional determinants, Fred-
holm determinants, or even - to maximize confusion - dynamical zeta func-
tions [15]. A Fredholm determinant is a notion that applies only to the trace
class operators - as we consider here a somewhat wider class of operators,
we prefer to refer to their determinants losely as “spectral determinants”.

Résumé

The spectral problem is now recast into a problem of determining zeros of either
the spectral determinant

det (s − A) = exp

(
−
∑
p

∞∑
r=1

1
r

e(β·Ap−sTp)r∣∣det
(
1− Jrp

)∣∣
)

,

or the leading zero of the dynamical zeta function

1/ζ =
∏
p

(1 − tp) , tp =
1

|Λp|
eβ·Ap−sTp .

The classical spectral determinant is the tool of choice in actual calculations,
as it has superior convergence properties (this will be discussed in chapter 12 and
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10.7. MORE EXAMPLES OF SPECTRAL DETERMINANTS 211

is illustrated, for example, by table 11.2). In practice both spectral determinants
and dynamical zeta functions are preferable to trace formulas because they yield
the eigenvalues more readily; the main difference is that while a trace diverges
at an eigenvalue and requires extrapolation methods, determinants vanish at s
corresponding to an eigenvalue, and are analytic in s in its neighborhood.

Spectral determinants and dynamical zeta functions arise in classical and
quantum mechanics because in both the dynamical evolution can be described
by the action of linear evolution operators on infinite-dimensional vector spaces.
The critical step in the derivation of spectral determinants and dynamical zeta
functions is the hyperbolicity assumption, that is the assumption that all cycle
stability eigenvalues are bounded away from unity, |Λp,i| �= 1. By dropping the
prefactors in (1.3), we have given up on any possibility of recovering the precise
distribution of starting x (that is impossible due to the chaotic mixing and the
exponential growth of errors), but in exchange we gain an effective description
of the asymptotic behavior of the system. The pleasant surprise (coming up in
chapter 11) is that the infinite time behavior of an unstable system turns out to
be as easy to determine as its short time behavior.
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Exercises

10.1 Escape rate for a 1-d repeller, numerically. Consider the quadratic
map

f(x) = Ax(1 − x) (10.35)

on the unit interval. The trajectory of a point starting in the unit interval either
stays in the interval forever or after some iterate leaves the interval and diverges
to minus infinity. Estimate numerically the escape rate (13.5), the rate of expo-
nential decay of the measure of points remaining in the unit interval, for either
A = 9/2 or A = 6. Remember to compare your numerical estimate with the
solution of the continuation of this exercise, exercise 11.2.

10.2 Spectrum of the “golden mean” pruned map. (medium - Exer-
cise 9.5 continued)

(a) Determine an expression for trLn, the trace of powers of the Perron-Frobenius
operator (4.8) for the tent map of exercise 9.5.

(b) Show that the spectral determinant for the Perron-Frobenius operator is

det (1−zL) =
∏

k even

(
1 +

z

Λk+1
− z2

Λ2k+2

) ∏
k odd

(
1 +

z

Λk+1
+

z2

Λ2k+2

)
.(10.36)

10.3 Dynamical zeta functions (easy)

(a) Evaluate in closed form the dynamical zeta function

ζ−1(z) =
∏
p∈P

(
1 − znp

|Λp|

)
,

of a the piecewise-linear map where the slopes are: the left branch Λ0, the
right branch Λ1.
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x

f(x)

Λ0 Λ1

x

f(x)

s10s00

s01 s11

(b) What if there are four different slopes s00, s01, s10, and s11 instead of just
two, with the preimages of the gap adjusted so that junctions of branches
s00, s01 and s11, s10 map in the gap in one iteration? What would the
dynamical zeta function be?

10.4 Zeros of infinite products. Determination of the quantities of interest by
periodic orbits involves working with infinite product formulas.

(a) Consider the infinite product

F (z) =
∞∏
k=0

(1 + fk(z))

where the functions fk are “sufficiently nice.” This infinite product can be con-
verted into an infinite sum by the use of a logarithm. Use the properties of infinite
sums to develop a sensible definition of infinite products.

(b) If zroot is a root of the function F , show that the infinite product diverges when
evaluated at zroot.

(c) How does one compute a root of a function represented as an infinite product?

(d) Let p be all prime cycles of the binary alphabet {0, 1}. Apply your definition of
F (z) to the infinite product

F (z) =
∏
p

(1 − znp

Λnp
)

(e) Are the roots of the factors in the above product the zeros of F (z)?

(Per Rosenqvist)
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10.5 Dynamical zeta functions as ratios of spectral determinants. (medium)
Show that the zeta function

1/ζ(z) = exp

(
−
∑
p

∑
r>0

1
r

znp

|Λp|r

)

can be written as the ratio 1/ζ(z) = det (1−zL(0))

det (1−zL(1))
,

where det (1 − zL(s)) =
∏

p,k(1 − znp/|Λp|Λk+s
p ).

10.6 Escape rate for the Ulam map. (medium) We will try and compute the
escape rate for the Ulam map (8.30)

f(x) = 4x(1 − x),

using cycle expansions. The answer should be zero, as nothing escapes.

(a) Compute a few of the stabilities for this map. Show that Λ0 = 4, Λ1 = −2,
Λ01 = −4, Λ001 = −8 and Λ011 = 8.

(b) Show that

Λε1...εn = ±2n

and determine a rule for the sign.

(c) (hard) Compute the dynamical zeta function for this system

ζ−1 = 1 − t0 − t1 − (t01 − t0t1) − · · ·

You might note that the convergence as function of the truncation cycle length is
slow. Try to fix that by treating the Λ0 = 4 cycle separately.

10.7 Eigenvalues of the skew Ulam tent map Perron-Frobenius operator.
Show that for the skew Ulam tent map
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0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Λ0

Λ1

f(x) =
{

f0(x) = Λ0x , x ∈ I0 = [0, 1/Λ0)
f1(x) = Λ0

Λ0−1 (1 − x) , x ∈ I1 = (1/Λ0, 1] . (10.37)

the eigenvalues are available analytically, compute the first few.

10.8 What space does L act on? Show that (10.19) is a complete basis. Hint:
think of Taylor expansions of real analytic densities ρ(x).

10.9 Dynamical zeta function for maps. In this problem we will compare the
dynamical zeta function and the spectral determinant. Compute the exact dynamical
zeta function for the skew Ulam tent map (10.37)

1/ζ(z) =
∏
p∈P

(
1 − znp

|Λp|

)
.

What are its roots? Do they agree with those computed in exercise 10.7?

10.10 Dynamical zeta functions for Hamiltonian maps. Starting from

1/ζ(s) = exp

(
−
∑
p

∞∑
r=1

1
r
trp

)
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216 CHAPTER 10. SPECTRAL DETERMINANTS

for a two-dimensional Hamiltonian map and using the equality

1 =
1

(1 − 1/Λ)2
(1 − 2/Λ + 1/Λ2) ,

show that 1/ζ = det (1−L)det (1−L(2))

det (1−L(1))2
. In this expression det (1− zL(k)) is the expansion

one gets by replacing tp → tp/Λkp in the spectral determinant.

10.11 Riemann ζ function. The Riemann ζ function (called so because it was
introduced by Gauss) is defined as

ζ(s) =
∞∑
n=1

1
ns

.

Use factorization into primes to derive the Euler product representation

ζ(s) =
∏
p

1
1 − p−s

.

The dynamical zeta function is called a zeta function because it shares the form of the
Euler product representation with the Riemann zeta function. (Not trivial:) For which
complex values of s is the Riemann zeta sum convergent? Are the zeros of the terms in
the product, s = − ln p, also the zeros of the Riemann ζ function? If not, why not?

10.12 Finite truncations. (easy) Suppose we have a one-dimensional system
with complete binary dynamics, where the stability of each orbit is given by a
simple multiplicative rule:

Λp = Λnp,0
0 Λnp,1

1 , np,0 = #0 in p , np,1 = #1 in p ,

so that, for example, Λ00101 = Λ30Λ
2
1.

(a) Compute the dynamical zeta function for this system; perhaps by creating
a matrix that has the right weights.
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(b) Compute the finite p truncations of the cycle expansion, that is take the
product only over the p up to given length with np ≤ N , and expand as a
series in z∏

p

(
1 − znp

|Λp|

)
.

Do they agree? If not, how does the disagreement depend on the truncation
length N?

10.13 Dynamical zeta functions from Markov graphs. Extend sect. 9.3
to evaluation of dynamical zeta functions for piecewise linear maps with finite Markov
graphs. This generalizes the results of exercise exercise 10.3.

10.14 Pinball escape rate from numerical simulation∗ Estimate the
escape rate for R : a = 6 3-disk pinball by shooting 100,000 randomly initi-
ated pinballs into the 3-disk system and plotting the logarithm of the number of
trapped orbits as function of time. For comparison, a numerical simulation of
ref. [9] yields γ = .410 . . ..

10.15 Escape rate for a flow conserving map. Adjust Λ0, Λ1 in (7.6) so that
the gap between the intervals I0, I1 vanishes. Check that in that case the escape rate
equals zero.

10.16 Euler formula. Derive the Euler formula (10.21)

∞∏
k=0

(1 + tuk) = 1 +
t

1 − u
+

t2u

(1 − u)(1 − u2)
+

t3u3

(1 − u)(1 − u2)(1 − u3)
· · ·

=
∞∑
k=0

tk
u

k(k−1)
2

(1 − u) · · · (1 − uk)
, |u| < 1. (10.38)
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10.17 2-d product expansion∗∗. We conjecture that the expansion corresponding
to (10.38) is in this case

∞∏
k=0

(1 + tuk)k+1 =
∞∑
k=0

Fk(u)
(1 − u)2(1 − u2)2 · · · (1 − uk)2

tk

= 1 +
1

(1 − u)2
t +

2u
(1 − u)2(1 − u2)2

t2

+
u2(1 + 4u + u2)

(1 − u)2(1 − u2)2(1 − u3)2
t3 + · · · (10.39)

Fk(u) is a polynomial in u, and the coefficients fall off asymptotically as Cn ≈ un
3/2

.
Verify; if you have a proof to all orders, e-mail it to the authors. (See also solution 10.16).
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Chapter 11

Cycle expansions

Recycle... It’s the Law!
Poster, New York City Department of Sanitation

The Euler product representations of spectral determinants (10.10) and dynam-
ical zeta functions (10.13) are really only a shorthand notation - the zeros of the
individual factors are not the zeros of the zeta function, and convergence of such
objects is far from obvious. Now we shall give meaning to the dynamical zeta
functions and spectral determinants by expanding them as cycle expansions, se-
ries representations ordered by increasing topological cycle length, with products
in (10.10), (10.13) expanded as sums over pseudocycles, products of tp’s. The
zeros of correctly truncated cycle expansions yield the desired eigenvalues, and
the expectation values of observables are given by the cycle averaging formulas
obtained from the partial derivatives of dynamical zeta functions (or spectral
determinants).

11.1 Pseudocycles and shadowing

How are periodic orbit formulas such as (10.13) evaluated? We start by com-
puting the lengths and stability eigenvalues of the shortest cycles. This always
requires numerical work, such as the Newton’s method searches for periodic so-
lutions; we shall assume that the numerics is under control, and that all short
cycles up to a given (topological) length have been found. Examples of the data
required for application of periodic orbit formulas are the lists of cycles given in
tables 8.3 and 8.4. It is important not to miss any short cycles, as the calcula-
tion is as accurate as the shortest cycle dropped - including cycles longer than
the shortest omitted does not improve the accuracy. (More precisely, improves it
rather slowly).

219



220 CHAPTER 11. CYCLE EXPANSIONS

Expand the dynamical zeta function (10.13) as a formal power series,

1/ζ =
∏
p

(1 − tp) = 1 −
∑′

{p1p2...pk}
(−1)k+1tp1tp2 . . . tpk (11.1)

where the prime on the sum indicates that the sum is over all distinct non-
repeating combinations of prime cycles. As we shall frequently use such sums,
let us denote by tπ = (−1)k+1tp1tp2 . . . tpk an element of the set of all distinct
products of the prime cycle weights tp. The formal power series (11.1) is now
compactly written as

1/ζ = 1 −
∑′

π

tπ . (11.2)

For k > 1, tπ are weights of pseudocycles; they are sequences of shorter cycles
that shadow a cycle with the symbol sequence p1p2 . . . pk along segments p1,
p2, . . ., pk.

∑′ denotes the restricted sum, for which any given prime cycle p
contributes at most once to a given pseudocycle weight tπ.

The pseudocycle weight

tπ = (−1)k+1
1

|Λπ|
eβAπ−sTπznπ . (11.3)

depends on the pseudocycle topological length, integrated observable, period, and
stability

nπ = np1 + . . . + npk , Tπ = Tp1 + . . . + Tpk

Aπ = Ap1 + . . . + Apk , Λπ = Λp1Λp2 · · ·Λpk . (11.4)

11.1.1 Curvature expansions

The simplest example is the pseudocycle sum for a system described by a complete
binary symbolic dynamics. In this case the Euler product (10.13) is given by

1/ζ = (1 − t0)(1 − t1)(1 − t01)(1 − t001)(1 − t011)
(1 − t0001)(1 − t0011)(1 − t0111)(1 − t00001)(1 − t00011)
(1 − t00101)(1 − t00111)(1 − t01011)(1 − t01111) . . .
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11.1. PSEUDOCYCLES AND SHADOWING 221

(see table 7.1), and the first few terms of the expansion (11.2) ordered by increas-
ing total pseudocycle length are:

1/ζ = 1 − t0 − t1 − t01 − t001 − t011 − t0001 − t0011 − t0111 − . . .

+t0t1 + t0t01 + t01t1 + t0t001 + t0t011 + t001t1 + t011t1

−t0t01t1 − . . .

We refer to such series representation of a dynamical zeta function or a spectral
determinant, expanded as a sum over pseudocycles, and ordered by increasing
cycle length and instability, as a cycle expansion.

The next step is the key step: regroup the terms into the dominant funda-
mental contributions tf and the decreasing curvature corrections ĉn. For the
binary case this regrouping is given by

1/ζ = 1 − t0 − t1 − [(t01 − t1t0)] − [(t001 − t01t0) + (t011 − t01t1)]
−[(t0001 − t0t001) + (t0111 − t011t1)

+(t0011 − t001t1 − t0t011 + t0t01t1)] − . . .

= 1 −
∑
f

tf −
∑
n

ĉn . (11.5)

All terms in this expansion up to length np = 6 are given in table 11.1. We refer
to such regrouped series as curvature expansions.

Such separation into “fundamental” and “curvature” parts of cycle expan-
sions is possible only for dynamical systems whose symbolic dynamics has finite
grammar. The fundamental cycles t0, t1 have no shorter approximants; they
are the “building blocks” of the dynamics in the sense that all longer orbits can
be approximately pieced together from them. The fundamental part of a cycle
expansion is given by the sum of the products of all non-intersecting loops of
the associated Markov graph (see sect. 9.3 and sect. 11.3). The terms grouped
in brackets are the curvature corrections; the terms grouped in parenthesis are
combinations of longer cycles and corresponding sequences of “shadowing” pseu-
docycles. If all orbits are weighted equally (tp = znp), such combinations cancel
exactly, and the dynamical zeta function reduces to the topological polynomial
(9.20). If the flow is continuous and smooth, orbits of similar symbolic dynam-
ics will traverse the same neighborhoods and will have similar weights, and the
weights in such combinations will almost cancel. The utility of cycle expansions
of dynamical zeta functions and spectral determinants, lies precisely in this or-
ganization into nearly cancelling combinations: cycle expansions are dominated
by short cycles, with long cycles giving exponentially decaying corrections.

In the case that there is no finite grammar symbolic dynamics to help organize
the cycles, the best thing to use is a stability cutoff which we shall discuss in
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–t0
–t1
–t10 + t1t0
–t100 + t10t0
–t101 + t10t1
–t1000 + t100t0
–t1001 + t100t1 + t101t0 – t1t10t0
–t1011 + t101t1
–t10000 + t1000t0
–t10001 + t1001t0 + t1000t1 – t0t100t1
–t10010 + t100t10
–t10101 + t101t10
–t10011 + t1011t0 + t1001t1 – t0t101t1
–t10111 + t1011t1
–t100000 + t10000t0
–t100001 + t10001t0 + t10000t1 – t0t1000t1
–t100010 + t10010t0 + t1000t10 – t0t100t10
–t100011 + t10011t0 + t10001t1 – t0t1001t1
–t100101 –t100110 + t10010t1 + t10110t0

+ t10t1001 + t100t101 – t0t10t101 – t1t10t100
–t101110 + t10110t1 + t1011t10 – t1t101t10
–t100111 + t10011t1 + t10111t0 – t0t1011t1
–t101111 + t10111t1

Table 11.1: The binary curvature expansion (11.5) up to length 6, listed in such way that
the sum of terms along the pth horizontal line is the curvature ĉp associated with a prime
cycle p, or a combination of prime cycles such as the t100101 + t100110 pair.

sect. 11.4. The idea is to truncate the cycle expansion by including only the
pseudocycles such that |Λp1 · · ·Λpk | ≤ Λmax, with the cutoff Λmax larger than
the most unstable Λp in the data set.

11.1.2 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluated numerically by first
computing the weights tp = tp(β, s) of all prime cycles p of topological length np ≤
N for given fixed β and s. Denote by subscript (i) the ith prime cycle computed,
ordered by the topological length n(i) ≤ n(i+1). The dynamical zeta function
1/ζN truncated to the np ≤ N cycles is computed recursively, by multiplying

1/ζ(i) = 1/ζ(i−1)(1 − t(i)z
n(i)) ,
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and truncating the expansion at each step to a finite polynomial in zn, n ≤ N .
The result is the Nth order polynomial approximation

1/ζN = 1 −
N∑

n=1

ĉnz
n . (11.6)

In other words, a cycle expansion is a Taylor expansion in the dummy variable z
raised to the topological cycle length. If both the number of cycles and their in-
dividual weights grow not faster than exponentially with the cycle length, and we
multiply the weight of each cycle p by a factor znp , the cycle expansion converges
for sufficiently small |z|.

If the dynamics is given by iterated mapping, the leading zero of (11.6) as
function of z yields the leading eigenvalue. For continuous time flows, z is a
dummy variable that we set to z = 1, and the leading eigenvalue of the evolution
operator is given by the leading zero of (11.6) as function of s.

11.1.3 Evaluation of traces, spectral determinants

Due to the lack of factorization of the full pseudocycle weight, det (1− Jp1p2) �=
det (1− Jp1) det (1− Jp2) , the cycle expansions for the spectral determinant
(10.10) are somewhat less transparent than is the case for the dynamical zeta
functions.

We commence the cycle expansion evaluation of a spectral determinant by
computing recursively the trace formula (6.12) truncated to all prime cycles p
and their repeats such that npr ≤ N :

tr
zL

1 − zL

∣∣∣∣
(i)

= tr
zL

1 − zL

∣∣∣∣
(i−1)

+ n(i)

n(i)r≤N∑
r=1

e(β·A(i)−sT(i))r∣∣∣∏(1 − Λr
(i),j

)∣∣∣zn(i)r

tr
zL

1 − zL

∣∣∣∣
N

=
N∑

n=1

Cnz
n , Cn = trLn . (11.7)

This is done numerically: the periodic orbit data set consists of the list of the
cycle periods Tp, the cycle stability eigenvalues Λp,1,Λp,2, . . . ,Λp,d, and the cycle
averages of the observable Ap for all prime cycles p such that np ≤ N . The
coefficient of znpr is then evaluated numerically for the given (β, s) parameter
values. Now that we have an expansion for the trace formula (6.11) as a power
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series, we compute the Nth order approximation to the spectral determinant
(10.3)

det (1 − zL)|N = 1 −
N∑

n=1

Qnz
n , Qn = Qn(L) = nth cumulant (11.8)

as follows. The logarithmic derivative relation (10.4) yields

(
tr

zL
1 − zL

)
det (1 − zL) = −z

d

dz
det (1 − zL)

(C1z + C2z
2 + · · ·)(1 − Q1z − Q2z

2 − · · ·) = Q1z + 2Q2z2 + 3Q3z3 · · ·

so the nth order term of the spectral determinant cycle (or in this case, the cu-
mulant) expansion is given recursively by the trace formula expansion coefficients

Qn =
1
n

(Cn − Cn−1Q1 − · · ·C1Qn−1) . (11.9)

Given the trace formula (11.7) truncated to zN we now also have the spectral
determinant truncated to zN .

The same method can also be used to compute the dynamical zeta function
cycle expansion (11.6), by replacing

∏(
1 − Λr

(i),j

)
in (11.7) by the product of

expanding eigenvalues Λ(i) =
∏

e Λ(i),e, as in sect. 10.3.

The calculation of the leading eigenvalue of a given evolution operator is now
straightforward. After the prime cycles and the pseudocycles have been grouped
into subsets of equal topological length, the dummy variable can be set equal
to z = 1. With z = 1, expansion (11.8) is the cycle expansion for (10.7), the
spectral determinant det (s−A) . We vary s in cycle weights, and determine the
eigenvalue sα by finding s = sα for which (11.8) vanishes. The convergence of
a leading eigenvalue for a nice hyperbolic system is illustrated by the listing of
pinball escape rate γ estimates computed from truncations of (11.5) and (11.8)
to different maximal cycle lengths, table 11.2.

The pleasant surprise is that the coefficients in these expansions can be proven
to fall off exponentially or even faster (see chapter 12), due to analyticity of
det (s − A) or 1/ζ(s) for s values well beyond those for which the corresponding
trace formula diverges.
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11.1. PSEUDOCYCLES AND SHADOWING 225

R:a N . det (s − A) 1/ζ(s) 1/ζ(s)3-disk
1 0.39 0.407
2 0.4105 0.41028 0.435
3 0.410338 0.410336 0.4049

6 4 0.4103384074 0.4103383 0.40945
5 0.4103384077696 0.4103384 0.410367
6 0.410338407769346482 0.4103383 0.410338
7 0.4103384077693464892 0.4103396
8 0.410338407769346489338468
9 0.4103384077693464893384613074

10 0.4103384077693464893384613078192
1 0.41
2 0.72
3 0.675
4 0.67797

3 5 0.677921
6 0.6779227
7 0.6779226894
8 0.6779226896002
9 0.677922689599532

10 0.67792268959953606

Table 11.2: 3-disk repeller escape rates computed from the cycle expansions of the spectral
determinant (10.7) and the dynamical zeta function (10.13), as function of the maximal cycle
length N . The first column indicates the disk-disk center separation to disk radius ratio R:a,
the second column gives the maximal cycle length used, and the third the estimate of the
classical escape rate from the fundamental domain spectral determinant cycle expansion. As
for larger disk-disk separations the dynamics is more uniform, the convergence is better for
R:a = 6 than for R:a = 3. For comparison, the fourth column lists a few estimates from
from the fundamental domain dynamical zeta function cycle expansion (11.5), and the fifth
from the full 3-disk cycle expansion (11.31). The convergence of the fundamental domain
dynamical zeta function is significantly slower than the convergence of the corresponding
spectral determinant, and the full (unfactorized) 3-disk dynamical zeta function has still
poorer convergence. (Computed by P.E. Rosenqvist.)

printed August 24, 2000 ∼DasBuch/book/chapter/recycle.tex 4aug2000



226 CHAPTER 11. CYCLE EXPANSIONS

Figure 11.1: Examples of the complex s plane scans: contour plots of the logarithm
of the absolute values of (a) 1/ζ(s), (b) spectral determinant det (s − A) for the 3-disk
system, separation a : R = 6, A1 subspace are evaluated numerically. The eigenvalues of
the evolution operator L are given by the centers of elliptic neighborhoods of the rapidly
narrowing rings. While the dynamical zeta function is analytic on a strip Im s ≥ −1, the
spectral determinant is entire and reveals further families of zeros. (P.E. Rosenqvist)

11.1.4 Newton algorithm for determination of the evolution oper-
ator eigenvalues

The cycle expansions of spectral determinants yield the eigenvalues of
the evolution operator beyond the leading one. A convenient way to search for
these is by plotting either the absolute magnitude ln |det (1 − L)| or the phase
of spectral determinants and dynamical zeta functions as functions of complex s.
The eye is guided to the zeros of spectral determinants and dynamical zeta func-
tions by means of complex s plane contour plots, with different intervals of the
absolute value of the function under investigation assigned different colors; zeros
emerge as centers of elliptic neighborhoods of rapidly changing colors. Detailed
scans of the whole area of the complex s plane under investigation and searches
for the zeros of spectral determinants, fig. 11.1, reveal complicated patterns of
resonances even for something so simple as the 3-disk game of pinball. As we
shall see in sect. ??, this classical spectrum is closely related to the quantum
resonances for the corresponding quantum system.11.6

on p. 240

With a good starting guess (such as a location of a zero suggested by the
complex s scan of fig. 11.1), a zero 1/ζ(s) = 0 can now be easily determined by
standard numerical methods, such as the iterative Newton algorithm (8.3)

sn+1 = sn −
(
ζ(sn)

∂

∂s
ζ−1(sn)

)−1
= sn − 1/ζ(sn)

〈T〉ζ
. (11.10)
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Figure 11.2: The eigenvalue condition is satisfied
on the curve F = 0 the (β, s) plane. The expecta-
tion value of the observable (5.11) is given by the
slope of the curve.

s

β F(  ,s(  ))=0 lineβ β

__ds
dβ

The derivative of 1/ζ(s) required for the Newton iteration is given by the cycle
expansion (11.18) that we need to evaluate anyhow, as 〈T〉ζ enters our cycle
averaging formulas.

11.2 Cycle formulas for dynamical averages

The eigenvalue condition in any of the three forms that we have given so far - the
level sum (13.18), the dynamical zeta function (11.2), the spectral determinant
(11.8):

1 =
(n)∑
i

ti , ti = ti(β, s(β)) =
1

|Λi|
eβ·Ai−s(β)Ti (11.11)

0 = 1 −
∑′

π

tπ , tπ = tπ(z, β, s(β)) (11.12)

0 = 1 −
∞∑
n=1

Qn , Qn = Qn(β, s(β)) , (11.13)

is an implicit equation for the eigenvalue s = s(β) of form F (β, s(β)) = 0. The
eigenvalue s = s(β) as a function of β is sketched in fig. 11.2; the eigenvalue
condition is satisfied on the curve F = 0. The cycle averaging formulas for
the slope and the curvature of s(β) are obtained by taking derivatives of the
eigenvalue condition. Evaluated along F = 0, the first derivative leads to

0 =
d

dβ
F (β, s(β))

=
∂F

∂β
+

ds

dβ

∂F

∂s

∣∣∣∣
s=s(β)

=⇒ ds

dβ
= −∂F

∂β
/
∂F

∂s
, (11.14)
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and the second derivative of F (β, s(β)) = 0 yields

d2s

dβ2
= −

[
∂2F

∂β2
+ 2

ds

dβ

∂2F

∂β∂s
+
(

ds

dβ

)2 ∂2F

∂s2

]
/
∂F

∂s
. (11.15)

Denoting by

〈A〉F = − ∂F

∂β

∣∣∣∣
β,s=s(β)

, 〈T〉F =
∂F

∂s

∣∣∣∣
β,s=s(β)〈

(A − 〈A〉)2
〉
F

=
∂2F

∂β2

∣∣∣∣
β,s=s(β)

(11.16)

respectively the mean cycle expectation value of A and the mean cycle period
computed from the F (β, s(β)) = 0 condition, we obtain the cycle averaging for-
mulas for the expectation value of the observable (5.11) and its variance

〈a〉 =
〈A〉F
〈T〉F〈

(a − 〈a〉)2
〉

=
1

〈T〉F
〈
(A − 〈A〉)2

〉
F

(11.17)

These formulas are the central result of the periodic orbit theory. As we shall
see below, for each choice of the eigenvalue condition function F (β, s) in (13.18),
(11.2) and (11.8), the above quantities have explicit cycle expansions.

11.2.1 Dynamical zeta function cycle expansions

For the dynamical zeta function condition (11.12), the cycle averaging formulas
(11.14), (11.17) require evaluation of the derivatives of dynamical zeta function
at a given eigenvalue. Substituting the cycle expansion (11.2) for dynamical zeta
function we obtain

〈A〉ζ := − ∂

∂β

1
ζ

=
∑′

Aπtπ (11.18)

〈T〉ζ :=
∂

∂s

1
ζ

=
∑′

Tπtπ , 〈n〉ζ := −z
∂

∂z

1
ζ

=
∑′

nπtπ ,

where the subscript in 〈· · ·〉ζ stands for the dynamical zeta function average
over prime cycles, Aπ, Tπ, and nπ are evaluated on pseudocycles (11.4), and
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11.2. CYCLE FORMULAS FOR DYNAMICAL AVERAGES 229

pseudocycle weights tπ = tπ(z, β, s(β)) are evaluated at the eigenvalue s(β). In
most applications, s(β) is typically the leading eigenvalue.

For bounded flows the leading eigenvalue (the escape rate) vanishes, s(0) = 0,
so

〈A〉ζ =
∑′

π

(−1)k+1
Ap1 + Ap2 · · · + Apk

|Λp1 · · ·Λpk |
, (11.19)

and similarly for 〈T〉ζ , 〈n〉ζ . For example, for the complete binary symbolic
dynamics the mean cycle period 〈T〉ζ is given by

〈T〉ζ =
T0
|Λ0|

+
T1
|Λ1|

+
(

T01
|Λ01|

− T0 + T1
|Λ0Λ1|

)
+
(

T001
|Λ001|

− T01 + T0
|Λ01Λ0|

)
+
(

T011
|Λ011|

− T01 + T1
|Λ01Λ1|

)
+ . . . . (11.20)

Note that the cycle expansions for averages are grouped into the same shadowing
combinations as the dynamical zeta function cycle expansion (11.5), with nearby
pseudocycles nearly cancelling each other.

The cycle averaging formulas for the expectation value of the observable 〈a〉
follow by substitution into (11.17). Assuming zero mean drift 〈a〉 = 0, the cycle
expansion for the variance

〈
(A − 〈A〉)2

〉
ζ

is given by

〈
A2
〉
ζ

=
∑′

(−1)k+1
(Ap1 + Ap2 · · · + Apk)

2

|Λp1 · · ·Λpk |
. (11.21)

11.2.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a particularly simple struc-
ture, with the shadowing apparent already by a term-by-term inspection of ta-
ble 11.2. For “nice” hyperbolic systems the shadowing ensures exponential con-
vergence of the dynamical zeta function cycle expansions. This, however, is not
the best achievable convergence. As will be explained in chapter 12, for such
systems the spectral determinant constructed from the same cycle data base is
entire, and its cycle expansion converges faster than exponentially. Hence in prac-
tice, the best convergence is attained by the spectral determinant cycle expansion
(11.13) and its derivatives.

The ∂/∂s, ∂/∂β derivatives are in this case computed recursively, by taking
derivatives of the spectral determinant cycle expansion contributions (11.9) and
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(11.7). The cycle averaging formulas formulas are exact, and highly convergent
for nice hyperbolic dynamical systems. We shall illustrate the utility of such cycle
expansions in chapter ??.

11.2.3 Continuous vs. discrete mean return time

The mean cycle period 〈T〉ζ fixes the normalization of the unit of time; it can
be interpreted as the average near recurrence or the average first return time.
For example, if we have evaluated a billiard expectation value 〈a〉 in terms of
continuous time, and would like to also have the corresponding average 〈a〉dscr
measured in discrete time given by the number of reflections off billiard walls,
the two averages are related by

〈a〉dscr = 〈a〉 〈T〉ζ / 〈n〉ζ , (11.22)

where 〈n〉ζ is the average of the number of bounces np along the cycle p.

11.3 Cycle expansions for finite alphabets

A finite Markov graph like the one given in fig. 7.14(d) is a compact
encoding of the transition or the Markov matrix for a given subshift. It is a
sparse matrix, and the associated determinant (9.16) can be written down by
inspection: it is the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop carrying a minus sign:

det (1 − T ) = 1 − t0 − t0011 − t0001 − t00011 + t0t0011 + t0011t0001 (11.23)

The simplest application of this determinant is to the evaluation of the topological
entropy; if we set tp = znp , where np is the length of the p-cycle, the determinant
reduces to the topological polynomial (9.17).

The determinant (11.23) is exact for the finite graph fig. 7.14(e), as well as
for the associate transfer operator of sect. 4.2.1. For the associated (infinite
dimensional) evolution operator, it is the beginning of the cycle expansion of the
corresponding dynamical zeta function:

1/ζ = 1 − t0 − t0011 − t0001 + t0001t0011

−(t00011 − t0t0011 + . . . curvatures) . . . (11.24)
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The cycles 0, 0001 and 0011 are the fundamental cycles introduced in (11.5); they
are not shadowed by any combinations of shorter cycles, and are the basic build-
ing blocks of the dynamics generated by iterating the pruning rules (7.19). All
other cycles appear together with their shadows (for example, t00011−t0t0011 com-
bination is of that type) and yield exponentially small corrections for hyperbolic
systems.

For the cycle counting purposes both tab and the pseudocycle combination
ta+b = tatb in (11.2) have the same weight zna+nb , so all curvature combinations
tab − tatb vanish exactly, and the topological polynomial (9.20) offers a quick way
of checking the fundamental part of a cycle expansion.

Since for finite grammars the topological zeta functions reduce to polynomials,
we are assured that there are just a few fundamental cycles and that all long
cycles can be grouped into curvature combinations. For example, the fundamental
cycles in exercise 7.4 are the three 2-cycles which bounce back and forth between
two disks and the two 3-cycles which visit every disk. It is only after these
fundamental cycles have been included that a cycle expansion is expected to start
converging smoothly, that is, only for n larger than the lengths of the fundamental
cycles are the curvatures ĉn, a measure of the deviations between long orbits and
their short cycle approximants, expected to fall off rapidly with n.

11.4 Stability ordering of cycle expansions

There is never a second chance. Most often there is not
even the first chance.

John Wilkins

(C.P. Dettmann and P. Cvitanović)

Most dynamical systems of interest have no finite grammar, so at any order in z
a cycle expansion may contain unmatched terms which do not fit neatly into the
almost cancelling curvature corrections. Similarly, for intermittent systems that
we shall discuss in chapter 17, curvature corrections are in general not small, so
again the cycle expansions may converge slowly. For such systems schemes which
collect the pseudocycle terms according to some criterion other than the topology
of the flow may converge more quickly than expansions based on the topological
length.

All chaotic systems exhibit some degree of shadowing, and a good truncation
criterion should do its best to respect the shadowing at least approximately. If
a long cycle is shadowed by two or more shorter cycles and the flow is smooth,
the period and the action will be additive in sense that the period of the longer
cycle is approximately the sum of the shorter cycle periods. Similarly, stability
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is multiplicative, so shadowing is approximately preserved by including all terms
with pseudocycle stability

|Λp1 · · ·Λpk | ≤ Λmax (11.25)

and ignoring all more unstable pseudocycles.

Two such schemes for ordering cycle expansions which approximately respect
shadowing are truncations by the pseudocycle period (or action) and the stability
ordering that we shall discuss here. In these schemes a dynamical zeta function
or a spectral determinant is expanded keeping all terms for which the period,
action or stability for a combination of cycles (pseudocycle) is less than a given
cutoff.

The two settings in which the stability ordering may be preferable to the
ordering by topological cycle length are the cases of bad grammar and of inter-
mittency.

11.4.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of the phase space generates
the “optimal” symbolic dynamics. Stability ordering does not require under-
standing dynamics in such detail: if you can find the cycles, you can use stability
ordered cycle expansions. Stability truncation is thus much easier to implement
for a generic dynamical system than the curvature expansions (11.5) which rely
on finite subshift approximations to a given flow.

Cycles can be detected numerically by searching a long trajectory for near
recurrences. The long trajectory method for finding cycles preferentially finds
the least unstable cycles, regardless of their topological length. Another practical
advantage of the method (in contrast to the Newton method searches) is that it
only finds cycles in a given connected ergodic component of phase space, even if
isolated cycles or other ergodic regions exist elsewhere in the phase space.

Why should stability ordered cycle expansion of a dynamical zeta function
converge better than the rude trace formula (13.6)? The argument has essen-
tially already been laid out in sect. 9.6.1: in truncations that respect shadowing
most of the pseudocycles appear in shadowning combinations and nearly cancel,
and only the relatively small subset affected by the longer and longer pruning
rules appears not shadowed. So the error is typically of the order of 1/Λ, smaller
by factor ehT than the trace formula (13.6) error, where h is the entropy and T
typical cycle length for cycles of stability Λ.
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11.4.2 Smoothing

The breaking of exact shadowing cancellations deserves further comment.
Partial shadowing which may be present can be (partially) restored by smooth-
ing the stability ordered cycle expansions by replacing the 1/Λ weigth for each
term with pseudocycle stability Λ = Λp1 · · ·Λpk by f(Λ)/Λ. Here, f(Λ) is a
monotonically decreasing function from f(0) = 1 to f(Λmax) = 0. No smoothing
corresponds to a step function.

A typical “shadowing error” induced by the cutoff is due to two pseudocycles
of stability Λ separated by ∆Λ, and whose contribution is of opposite signs.
Ignoring possible weighting factors the magnitude of the resulting term is of
order 1/Λ − 1/(Λ + ∆Λ) ≈ ∆Λ/Λ2. With smoothing there is an extra term of
the form f ′(Λ)∆Λ/Λ, which we want to minimise. A reasonable guess might be
to keep f ′(Λ)/Λ constant and as small as possible, that is

f(Λ) = 1 −
(

Λ
Λmax

)2

The results of a stability ordered expansion should always be tested for ro-
bustness by varying the cutoff. If this introduces significant variations, smoothing
is probably necessary.

11.4.3 Stability ordering for intermittent flows

Longer but less unstable cycles can give larger contributions to a cycle
expansion than short but highly unstable cycles. In such situation truncation by
length may require an exponentially large number of very unstable cycles before
a significant longer cycle is first included in the expansion. This situation is best
illustrated by intermittent maps that we shall study in detail in chapter 1, the
simplest of which is the Farey map

f(x) =
{

x/(1 − x) 0 ≤ x ≤ 1/2 L
(1 − x)/x 1/2 ≤ x ≤ 1 R

(11.26)

which will reappear in chapter 23 in the the study of circle maps.

For this map the symbolic dynamics is of complete binary type, so lack of
shadowing is not due to lack of a finite grammar, but rather to the intermittency
caused by the existence of the marginal fixed point xL = 0, for which the stability
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equals ΛL = 1. This cycle does not participate directly in the dynamics and is
omitted from cycle expansions. Its presence is felt in the stabilities of neighboring
cycles with n consecutive repeats of the symbol L’s whose stability falls of only
as Λ ∼ n2, in contrast to the most unstable cycles with n consecutive R’s which
are exponentially unstable, |ΛLRn | ∼ [(

√
5 + 1)/2]2n.

The symbolic dynamics is of complete binary type, so a quick count in the
style of sect. 9.5.2 leads to a total of 74,248,450 prime cycles of length 30 or
less, not including the marginal point xL = 0. Evaluating a cycle expansion to
this order would be no mean computational feat. However, the least unstable
cycle omitted has stability of roughly ΛRL30 ∼ 302 = 900, and so amounts to a
0.1% correction. The situation may be much worse than this estimate suggests,
because the next, RL31 cycle contributes a similar amount, and could easily
reinforce the error. Adding up all such omitted terms, we arrive at an estimated
error of about 3%, for a cycle-length truncated cycle expansion based on more
than 109 pseudocycle terms! On the other hand, truncating by stability at say
Λmax = 3000, only 409 prime cycles suffice to attain the same accuracy of about
3% error (see fig. 11.3).

As the Farey map maps the unit interval onto itself, the leading eigenvalue
of the Perron-Frobenius operator should equal s0 = 0, so 1/ζ(0) = 0. Deviation
from this exact result serves as an indication of the convergence of a given cycle
expansion. The errors of different truncation schemes are indicated in fig. 11.3.
We see that topological length truncation schemes are hopelessly bad in this case;
stability length truncations are somewhat better, but still rather bad. As we shall
show in sect. ??, in simple cases like this one, where intermittency is caused by a
single marginal fixed point, the convergence can be improved by going to infinite
alphabets. A deeper understanding of why this seemingly trivial example should
be so difficult to control requires introduction of thermodynamic formalism and
an investigation of its phase transitions, topic that we postpone to sect. ??.

11.5 Dirichlet series

A Dirichlet series is defined as

f(s) =
∞∑
j=1

aje
−λjs (11.27)

where s, aj are complex numbers, and {λj} is a monotonically increasing series
of real numbers λ1 < λ2 < · · · < λj < · · ·. A classical example of a Dirichlet
series is the Riemann zeta function for which aj = 1, λj = ln j. In the present
context, formal series over individual pseudocycles such as (11.2) ordered by the
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Figure 11.3: Comparison of cycle expansion truncation schemes for the Farey map (11.26);
the deviation of the truncated cycles expansion for |1/ζN (0)| from the exact flow conserva-
tion value 1/ζ(0) = 0 is a measure of the accuracy of the truncation. The jagged line is
logarithm of the stability ordering truncation error; the smooth line is smoothed according
to sect. 11.4.2; the diamonds indicate the error due the topological length truncation, with
the maximal cycle length N shown. They are placed along the stability cutoff axis at points
determined by the condition that the total number of cycles is the same for both truncation
schemes.

increasing pseudocycle periods are often Dirichlet series. For example, for the
pseudocycle weight (11.3), the Dirichlet series is obtained by ordering pseudocy-
cles by increasing periods λπ = Tp1 + Tp2 + . . . + Tpk , with the coefficients

aπ =
eβ·(Ap1+Ap2+...+Apk )

|Λp1Λp2 . . .Λpk |
dπ ,

where dπ is a degeneracy factor, in the case that dπ pseudocycles have the same
weight.

If the series
∑

|aj | diverges, the Dirichlet series is absolutely convergent for
Re s > σa and conditionally convergent for Re s > σc, where σa is the abscissa of
absolute convergence

σa = lim
N→∞

sup
1
λN

ln
N∑
j=1

|aj | , (11.28)

and σc is the abscissa of conditional convergence

σc = lim
N→∞

sup
1
λN

ln

∣∣∣∣∣∣
N∑
j=1

aj

∣∣∣∣∣∣ . (11.29)
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We shall encounter another example of a Dirichlet series in the semiclassical
quantization chapter 18, where, following Balian-Bloch and taking the inverse
Planck constant as a complex variable s = i/�, λπ = Sp1 + Sp2 + . . . + Spk is
the pseudocycle action, and aπ = 1/

√
|Λp1Λp2 . . .Λpk | (times possible degeneracy

and topological phase factors). As the action is in general not a linear function
of energy (except for billiards and for scaling potentials, where a variable s can
be extracted from Sp), semiclassical cycle expansions are not Dirichlet series in
the complex energy variable.

Commentary

Remark 11.1 Pseudocycle expansions. Bowen’s introduction of shad-
owing ε-pseudoorbits [14] was a significant contribution to Smale’s theory.
Expression “pseudoorbits” seems to have been introduced in the Parry and
Pollicott’s 1983 paper [9]. Following them M. Berry [8] had used the ex-
pression “pseudoorbits” in his 1986 paper on Riemann zeta and quantum
chaology. Cycle and curvature expansions of dynamical zeta functions and
spectral determinants were introduced in refs. [9, 1]. Some literature [15]
refers to the pseudoorbits as “composite orbits”, and to the cycle expan-
sions as “Dirichlet series” (see also remark 11.6 and sect. 11.5).

Remark 11.2 Shadowing cycle-by-cycle. A glance at the low order
curvatures in the table 11.1 leads to a temptation of associating curvatures
to individual cycles, such as ĉ0001 = t0001 − t0t001. Such combinations tend
to be numerically small (see for example ref. [2], table 1). However, splitting
ĉn into individual cycle curvatures is not possible in general [44]; the first
example of such ambiguity in the binary cycle expansion is given by the
t001011, t010011 0 ↔ 1 symmetric pair of 6-cycles; the counterterm t001t011 in
table 11.1 is shared by the two cycles.

Remark 11.3 Exponential growth of the number of cycles. Going from
Nn periodic points of length n to Mn prime cycles reduces the number of
computations from Nn to Mn ≈ Nn−1/n. Use of discrete symmetries (chap-
ter 15) reduces the number of nth level terms by another factor. While the
resummation of the theory from the trace (6.24) to the cycle expansion (11.5)
thus does not eliminate the exponential growth in the number of cycles, in
practice only the shortest cycles are used, and for them the computational
labor saving can be significant.

Remark 11.4 Cumulant expansion. To statistical mechanician the cur-
vature expansions are very reminiscent of cumulant expansions. Indeed,
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(11.9) is the standard Plemelj-Smithies cumulant formula (F.25) for the
Fredholm determinant, discussed in more detail in appendix F.

Remark 11.5 Stability ordering. The stability ordering was introduced
by Dahlqvist and Russberg [11] for the (x2y2)1/a potential. The presentation
here runs along the lines of Dettmann and Morriss [12] for the Lorentz
gas which is hyperbolic but the symbolic dynamics is highly pruned, and
Dettmann and Cvitanović [13] for a family of intermittent maps. In all of the
above applications the stability ordering yields a considerable improvement
over the topological length ordering.

Remark 11.6 Are cycle expansions Dirichlet series? Even though some
literature [15] refers to cycle expansions as “Dirichlet series”, they are not
Dirichlet series. Cycle expansions collect contributions of individual cycles
into groups that correspond to the coefficients in cumulant expansions of
spectral determinants, and the convergence of cycle expansions is controlled
by general properties of spectral determinants. Dirichlet series order cycles
by their periods or actions, and are only conditionally convergent in regions
of interest. The abscissa of absolute convergence is in this context called the
“entropy barrier”; contrary to the frequently voiced anxieties, this number
does not necessarily have much to do with the actual convergence of the
theory.

A cycle expansion is a series representation of a dynamical zeta function, trace
formula or a spectral determinant, with products in (10.13), (19.13) expanded
as sums over pseudocycles, products of the prime cycle weigths tp.

The main conceptual insight of Smale is that if a flow is hyperbolic and
has a topology of a Smale horseshoe, the associated zeta functions have nice
analytic structure: the dynamical zeta functions are holomorphic, the spectral
determinants are entire, and the spectrum of the evolution operator is discrete.
The situation is considerably more reassuring than what practitioners of quantum
chaos fear; there is no “abscissa of absolute convergence” and no “entropy barier”,
the exponential proliferation of cycles is no problem, the Selberg-type spectral
determinants are entire and converge everywhere, and the topology dictates the
choice of cycles to be used in cycle expansion truncations.

The basic observation is that the motion in dynamical systems of few degrees
of freedom is in this case organized around a few fundamental cycles, with the
cycle expansion of the Euler product

1/ζ = 1 −
∑
f

tf −
∑
n

ĉn,
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regrouped into dominant fundamental contributions tf and decreasing curvature
corrections ĉn. The fundamental cycles tf have no shorter approximants; they
are the “building blocks” of the dynamics in the sense that all longer orbits can
be approximately pieced together from them. A typical curvature contribution
to ĉn is a difference of a long cycle {ab} minus its shadowing approximation by
shorter cycles {a} and {b}:

tab − tatb = tab(1 − tatb/tab)

The orbits that follow the same symbolic dynamics, such as {ab} and a “pseu-
docycle” {a}{b}, lie close to each other, have similar weights, and for longer and
longer orbits the curvature corrections fall off rapidly. Indeed, for systems that
satisfy the “axiom A” requirements, such as the open disks billiards, curvature
expansions converge very well.

Once a set of the shortest cycles has been found, and the cycle periods, sta-
bilities and integrated observable computed, the cycle averaging formulas

〈a〉 = 〈A〉ζ / 〈T〉ζ

〈A〉ζ = − ∂

∂β

1
ζ

=
∑′

Aπtπ , 〈T〉ζ =
∂

∂s

1
ζ

=
∑′

Tπtπ

yield the expectation value (the chaotic, ergodic average over the non–wandering
set) of the observable a(x).
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Exercises

11.1 Cycle expansions. Write programs that implement binary symbolic
dynamics cycle expansions for (a) dynamical zeta functions, (b) spectral deter-
minants. Combined with the cycles computed for a 2-branch repeller or a 3-disk
system they will be useful in problem that follow.

11.2 Escape rate for a 1-d repeller. (Continuation of exercise 10.1 - easy,
but long)
Consider again the quadratic map (10.35)

f(x) = Ax(1 − x)

on the unit interval, for definitivness take either A = 9/2 or A = 6. Describing
the itinerary of any trajectory by the binary alphabet {0, 1} (’0’ if the iterate is
in the first half of the interval and ’1’ if is in the second half), we have a repeller
with a complete binary symbolic dynamics.

(a) Sketch the graph of f and determine its two fixed points 0 and 1, together
with their stabilities.

(b) Sketch the two branches of f−1. Determine all the prime cycles up to
topological length 4 using your pocket calculator and backwards iteration
of f (see sect. 8.1.1).

(c) Determine the leading zero of the zeta function (10.13) using the weigths
tp = znp/|Λp| where Λp is the stability of the p cycle.

(d) Show that for A = 9/2 the escape rate of the repeller is 0.361509 . . . using
the spectral determinant, with the same cycle weight. If you have taken
A = 6, the escape rate is in 0.83149298 . . ., as shown in solution 11.2 Com-
pare the coefficients of the spectral determinant and the zeta function cycle
expansions. Which expansion converges faster?

(Per Rosenqvist)
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11.3 Escape rate for the Ulam map. Check that the escape rate for the Ulam
map, A = 4 in (10.35)

f(x) = 4x(1 − x),

equals zero. You might note that the convergence as function of the truncation cycle
length is slow. Try to fix that by treating the Λ0 = 4 cycle separately.

11.4 Pinball escape rate, semi-analytical. Estimate the 3-disk pinball
escape rate for R : a = 6 by substituting analytical cycle stabilities and peri-
ods (exercise 8.8 and exercise 8.9) into the appropriate binary cycle expansion.
Compare with the numerical estimate exercise 10.14

11.5 Pinball escape rate, from numerical cycles. Compute the escape
rate for R : a = 6 3-disk pinball by substituting list of numerically computed
cycle stabilities of exercise 8.13 into the binary cycle expansion.

11.6 Pinball resonances, in the complex plane. Plot the logarithm of the
absolute value of the dynamical zeta function and/or the spectral determinant cycle
expansion (11.5) as contour plots in the complex s plane. Do you find zeros other than
the one corresponding to the complex one? Do you see evidence for a finite radius of
convergence for either cycle expansion?

11.7 Counting the 3-disk pinball counterterms. Verify that the number of
terms in the 3-disk pinball curvature expansion (11.30) is given by

∏
p

(1 + tp) =
1 − 3z4 − 2z6

1 − 3z2 − 2z3
= 1 + 3z2 + 2z3 +

z4(6 + 12z + 2z2)
1 − 3z2 − 2z3

= 1 + 3z2 + 2z3 + 6z4 + 12z5 + 20z6 + 48z7 + 84z8 + 184z9 + . . .

This means that, for example, c6 has a total of 20 terms, in agreement with the explicit
3-disk cycle expansion (11.31).
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11.8 3–disk unfactorized zeta cycle expansions. Check that the curvature
expansion (11.2) for the 3-disk pinball, assuming no symmetries between disks, is given
by

1/ζ = (1 − z2t12)(1 − z2t13)(1 − z2t23)(1 − z3t123)(1 − z3t132)
(1 − z4t1213)(1 − z4t1232)(1 − z4t1323)(1 − z5t12123) · · ·

= 1 − z2t12 − z2t23 − z2t31 − z3t123 − z3t132

−z4[(t1213 − t12t13) + (t1232 − t12t23) + (t1323 − t13t23)]
−z5[(t12123 − t12t123) + · · ·] − · · · (11.30)

The symmetrically arranged 3-disk pinball cycle expansion of the Euler product (11.2)
(see table 9.4 and fig. 15.2) is given by:

1/ζ = (1 − z2t12)3(1 − z3t123)2(1 − z4t1213)3

(1 − z5t12123)6(1 − z6t121213)6(1 − z6t121323)3 . . .

= 1 − 3z2 t12 − 2z3 t123 − 3z4 (t1213 − t212) − 6z5 (t12123 − t12t123)
−z6 (6 t121213 + 3 t121323 + t312 − 9 t12t1213 − t2123)
−6z7 (t1212123 + t1212313 + t1213123 + t212t123 − 3 t12t12123 − t123t1213)
−3z8 (2 t12121213 + t12121313 + 2 t12121323 + 2 t12123123

+ 2 t12123213 + t12132123 + 3 t212t1213 + t12t
2
123

− 6 t12t121213 − 3 t12t121323 − 4 t123t12123 − t21213) − · · · (11.31)

Remark 11.7 Unsymmetrized cycle expansions. The above 3-disk cycle
expansions might be useful for cross-checking purposes, but, as we shall see
in chapter 15, they are not recommended for actual computations, as the
factorized zeta functions yield much better convergence.

11.9 4–disk unfactorized dynamical zeta function cycle expansions For
the symmetriclly arranged 4-disk pinball the symmetry group is C4v, of order 8. The
degenerate cycles can have multiplicities 2, 4 or 8 (see table 9.2):

1/ζ = (1 − z2t12)4(1 − z2t13)2(1 − z3t123)8(1 − z4t1213)8(1 − z4t1214)4

(1 − z4t1234)2(1 − z4t1243)4(1 − z5t12123)8(1 − z5t12124)8(1 − z5t12134)8

(1 − z5t12143)8(1 − z5t12313)8(1 − z5t12413)8 · · · (11.32)
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and the cycle expansion is given by

1/ζ = 1 − z2(4 t12 + 2 t13) − 8z3 t123

−z4(8 t1213 + 4 t1214 + 2 t1234 + 4 t1243 − 6 t212 − t213 − 8 t12t13)
−8z5(t12123 + t12124 + t12134 + t12143 + t12313 + t12413 − 4 t12t123 − 2 t13t123)
−4z6(2S8 + S4 + t312 + 3 t212 t13 + t12t

2
13 − 8 t12t1213 − 4 t12t1214

−2 t12t1234 − 4 t12t1243 − 4 t13t1213 − 2 t13t1214 − t13t1234

−2 t13t1243 − 7 t2123) − · · · (11.33)

where in the coefficient to z6 the abbreviations S8 and S4 stand for the sums over the
weights of the 12 orbits with multiplicity 8 and the 5 orbits of multiplicity 4, respectively;
the orbits are listed in table 9.4.

11.10 Tail resummations. A simple illustration of such tail resummation is the
ζ function for the Ulam map (8.30) for which the cycle structure is exceptionally simple:
the eigenvalue of the x0 = 0 fixed point is 4, while the eigenvalue of any other n-cycle is
±2n. Typical cycle weights used in thermodynamic averaging are t0 = 4τz, t1 = t = 2τz,
tp = tnp for p �= 0. The simplicity of the cycle eigenvalues enables us to evaluate the ζ
function by a simple trick: we note that if the value of any n-cycle eigenvalue were tn,
(10.16) would yield 1/ζ = 1 − 2t. There is only one cycle, the x0 fixed point, that has
a different weight (1 − t0), so we factor it out, multiply the rest by (1 − t)/(1 − t), and
obtain a rational ζ function

1/ζ(z) =
(1 − 2t)(1 − t0)

(1 − t)
(11.34)

Consider how we would have detected the pole at z = 1/t without the above trick.
As the 0 fixed point is isolated in its stability, we would have kept the factor (1 − t0) in
(11.5) unexpanded, and noted that all curvature combinations in (11.5) which include
the t0 factor are unbalanced, so that the cycle expansion is an infinite series:

∏
p

(1 − tp) = (1 − t0)(1 − t − t2 − t3 − t4 − . . .) (11.35)

(we shall return to such infinite series in chapter 17). The geometric series in the brackets
sums up to (11.34). Had we expanded the (1 − t0) factor, we would have noted that the
ratio of the successive curvatures is exactly cn+1/cn = t; summing we would recover the
rational ζ function (11.34).
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11.11 How strange is the Hénon attractor? Numerical studies indicate
that for a = 1.4, b = 0.3 the attractor of the Hńon map

xn+1 = 1 − ax2n + byn

yn+1 = xn .

is “strange”. Show either by numerical iteration of the map (easy) or by system-
atic investigation of periodic orbits (hard) that parameter variation as minute
as changing a to a = 1.39945219 destroys this attractor and replaces it with a
stable cycle of length 13. Try to find this cycle.
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Chapter 12

Why does it work?

Bloch: “Space is the field of linear operators.” Heisenberg:
“Nonsense, space is blue and birds fly through it.”

Felix Bloch, Heisenberg and the early days of quantum
mechanics

The trace formulas and spectral determinants work well, sometimes very
well indeed. The question is: why? The heuristic manipulations of chapter 6
were naive and reckless, as we are facing infinite-dimensional vector spaces and
singular integral kernels.

In this chapter we outline some of the ingredients in the proofs that put
the above trace and determinant formulas on solid mathematical footing. We
start by assuming that the flow is smooth, hyperbolic, and has a finite Markov
partition. Geometrical intuition about shadowing of long orbits by pseudo-orbits
suffices to show in sect. 12.1 that dynamical zeta functions converge exponentially
faster than the trace formulas. But in order to go beyond this ‘exponential
improvement’ we need to work harder. In sect. 12.2 we concentrate on flows, or
rather maps, which are piecewise real-analytic, acting on analytic ‘densities’. For
expanding and hyperbolic flows analyticity leads to a very strong result; not only
do the determinants have better analyticity properties than the trace formulas,
but the spectral determinants are singled out as being entire functions in the
complex s plane.

If you are primarily interested in physical applications of periodic orbit theory,
you should probably skip this chapter on the first reading. For a deeper immersion
into mathematics, the reader should turn to literature discussed in sect. 1.8.

fast track:

sect. 13, p. 267
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246 CHAPTER 12. WHY DOES IT WORK?

12.1 Curvature expansions: geometric picture

If you has some experience with numerical estimates of fractal dimensions, you
will note that the numerical convergence of cycle expansions for systems such
as the 3-disk game of pinball, table 11.2, is very impressive; only three input
numbers (the two fixed points 0, 1 and the 2-cycle 10) already yield the escape
rate to 4 significant digits! We have omitted an infinity of unstable cycles; so
why does approximating the dynamics by a finite number of cycles work so well?

Looking at the cycle expansions simply as sums of unrelated contributions is
not specially encouraging: the cycle expansion (11.2) is not absolutely convergent
in the sense of Dirichlet series of sect. 11.5, so what one makes of it depends on
the way the terms are arranged.

The simplest estimate of the error introduced by approximating smooth flow
by periodic orbits is to think of the approximation as a tessalation of a smooth
curve by piecewise linear tiles, fig. 1.8.

12.1.1 Tessalation of a smooth flow by cycles

One of the early high accuracy computations of π was due to Euler. Euler
computed the circumference of the circee of unit radius by inscribing into it
a regular polygon with N sides; the error of such computation is proportional
to 1 − cos(2π/N) ∝ N−2. In a periodic orbit tessalation of a smooth flow, we
cover the phase space by ehn tiles at the nth level of resolution, where h is the
topological entropy, the growth rate of the number of tiles. Hence we expect the
error in approximating a smooth flow by ehn linear segments to be exponentially
small, of order N−2 ∝ e−2hn.

12.1.2 Shadowing and convergence of curvature expansions

We have shown in chapter 9 that if the symbolic dynamics is defined by a finite
grammar, a finite number of cycles, let us say the first k terms in the cycle
expansion are necessary to correctly count the pieces of the Cantor set generated
by the dynamical system.

They are composed of products of non–intersecting loops on the Markov
graph, see (9.12). We refer to this set of non–intersecting loops as the funda-
mental cycles of the strange set. It is only after these terms have been included
that the cycle expansion is expected to converge smoothly, that is only for n > k
are the curvatures cn in (9.2??) a measure of the variation of the quality of a lin-
earized covering of the dynamical Cantor set by the length n cycles, and expected
to fall off rapidly with n.
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The rate of fall-off of the cycle expansion coefficients can be estimated by
observing that for subshifts of finite type the contributions from longer orbits
in curvature expansions such as (11.5) can always be grouped into shadowing
combinations of pseudo-cycles. For example, a cycle with itinerary ab= s1s2 · · · sn
will appear in combination of form

1/ζ = 1 − · · · − (tab − tatb) − · · · ,

with ab shadowed by cycle a followed by cycle b, where a = s1s2 · · · sm, b =
sm+1 · · · sn−1sn, and sk labels the Markov partition Msk (7.2) that the trajectory
traverses at the kth return. If the two trajectories coincide in the first m symbols,
at the mth return to a Poincaré section they can land anywhere in the phase space
M

∣∣fTa(xa) − fTa...(xa...)
∣∣ ≈ 1 ,

where we have assumed that the M is compact, and that the maximal possible
separation across M is O(1). Here xa is a point on the a cycle of period Ta,
and xa... is a nearby point whose trajectory tracks the cycle a for the first m
Poincaré section returns completed at the time Ta.... An estimate of the maximal
separation of the initial points of the two neighboring trajectories is achieved by
Taylor expanding around xa... = xa + δxa...

fTa(xa) − fTa...(xa...) ≈ ∂fTa(xa)
∂x

· δxa... = Ja · δxa... ,

hence the hyperbolicity of the flow forces the initial points of neighboring trajec-
tories that track each other for at least m consecutive symbols to lie exponentially
close

|δxa...| ∝
1

|Λa|
.

Similarly, for any observable (5.1) integrated along the two nearby trajectories

ATa...(xa...) ≈ ATa(xa) +
∂ATa

∂x

∣∣∣∣
x=xa

· δxa... ,

so

∣∣ATa...(xa...) − ATa(xa)
∣∣ ∝ TaConst

|Λa|
,
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As the time of return is itself an integral along the trajectory, return times of
nearby trajectories are exponentially close

|Ta... − Ta| ∝
TaConst

|Λa|
,

and so are the trajectory stabilities

∣∣ATa...(xa...) − ATa(xa)
∣∣ ∝ TaConst

|Λa|
,

Substituting tab one finds

tab − tatb
tab

= 1 − e−s(Ta+Tb−Tab)

∣∣∣∣ΛaΛb

Λab

∣∣∣∣ .
Since with increasing m segments of ab come closer to a, the differences in action
and the ratio of the eigenvalues converge exponentially with the eigenvalue of the
orbit a,

Ta + Tb − Tab ≈ Const × Λ−j
a , |ΛaΛb/Λab| ≈ exp(−Const/Λab)

Expanding the exponentials one thus finds that this term in the cycle expansion
is of the order of

tajb − tataj−1b ≈ Const × tajbΛ
−j
a . (12.1)

Even though the number of terms in a cycle expansion grows exponentially, the
shadowing cancellations improve the convergence by an exponential factor com-
pared to trace formulas, and extend the radius of convergence of the periodic
orbit sums. Table 12.1 shows some examples of such compensations between
long cycles and their pseudo-cycle shadows.

It is crucial that the curvature expansion is grouped (and truncated) by topo-
logically related cycles and pseudo-cycles; truncations that ignore topology, such
as inclusion of all cycles with Tp < Tmax, will contain orbits unmatched by shad-
owed orbits, and exhibit a mediocre convergence compared with the curvature
expansions.

Note that the existence of a pole at z = 1/c implies that the cycle expansions
have a finite radius of convergence, and that analytic continuations will be re-
quired for extraction of the non-leading zeros of 1/ζ. Preferably, one should work
with cycle expansions of Selberg products, as discussed in sect. 11.1.3.
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n tab − tatb Tab − (Ta + Tb) log
[

ΛaΛb

Λab

]
ab − a · b

2 -5.23465150784×104 4.85802927371×102 -6.3×102 01-0·1
3 -7.96028600139×106 5.21713101432×103 -9.8×103 001-0·01
4 -1.03326529874×107 5.29858199419×104 -1.3×103 0001-0·001
5 -1.27481522016×109 5.35513574697×105 -1.6×104 00001-0·0001
6 -1.52544704823×1011 5.40999882625×106 -1.8×105 000001-0·00001
2 -5.23465150784×104 4.85802927371×102 -6.3×102 01-0·1
3 5.30414752996×106 -3.67093656690×103 7.7×103 011-01·1
4 -5.40934261680×108 3.14925761316×104 -9.2×104 0111-011·1
5 4.99129508833×1010 -2.67292822795×105 1.0×104 01111-0111·1
6 -4.39246000586×1012 2.27087116266×106 -1.0×105 011111-01111·1

Table 12.1: Demonstration of shadowing in curvature combinations of cycle weights of
form tab − tatb, the 3-disk fundamental domain cycles at R : d = 6, table 8.3. The ratio
ΛaΛb/Λab is approaching unity exponentially fast.

12.1.3 No shadowing, poorer convergence

Conversely, if the dynamics is not of a finite subshift type, there is no finite
topological polynomial, there are no “curvature” corrections, and the convergence
of the cycle expansions will be poor.

12.2 Analyticity of spectral determinants

They savored the strange warm glow of being much more
ignorant than ordinary people, who were only ignorant of
ordinary things.

Terry Pratchett

(H.H. Rugh and P. Cvitanović)

We shall now sketch the basic ideas behind the proofs that for sufficiently well
behaved flows the semiclassical spectral determinants are entire. If a spectral
determinant is entire one can often extract more eigenvalues with less effort and
to a higher accuracy, than from a spectral function which is not entire, such as
dynamical zeta function. The theorems that we shall outline now state that the
spectral determinants are entire functions in any dimension, provided that

1) the evolution operator is multiplicative along the flow,
2) the symbolic dynamics is a finite subshift,
3) all cycle eigenvalues are hyperbolic (exponentially bounded away
from 1),
4) the map (or the flow) is real analytic, that is it has a piecewise
analytic continuation to a complex extension of the phase space.
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These assumptions are romantic projections not lived up to by generic dy-
namical systems. Still, they are not devoid of physical interest; for example, nice
repellers like our 3-disk game of pinball satisfy the above requirements.

Properties 1 and 2 enable us to represent the evolution operator as a matrix
in an appropriate basis space; properties 3 and 4 enable us to bound the size
of the matrix elements and control the eigenvalues. To see what can go wrong
consider the following examples:

Property 1 is violated for flows in 3 or more dimensions by the following
weighted evolution operator

Lt(y, x) = |Λt(x)|βδ
(
y − f t(x)

)
,

where Λt(x) is an eigenvalue of the Jacobian matrix transverse to the flow. Semi-
classical quantum mechanics suggest operators of this form with β = 1/2, see
chapter ??. While for the Jacobian matrices Jab = JaJb for two successive
trajectory segments a and b, the corresponding eigenvalues are in general not
multiplicative, Λab �= ΛaΛb (unless a, b are repeats of the same prime cycle p,
so JaJb = Jra+rb

p ). Consequently, this evolution operator is not multiplicative
along the trajectory. The theorems require that the evolution be represented as
a matrix in an appropriate polynomial basis, and thus cannot be applied to non-
multiplicative kernels, ie. kernels that do not satisfy the semi-group property
Lt′ ◦ Lt = Lt′+t. Cure for this problem was given in sect. C.1.

Property 2 is violated by the 1-d tent map

f(x) = α(1 − |1 − 2x|) , 1/2 < α < 1 .

All cycle eigenvalues are hyperbolic, but in general the critical point xc = 1/2
is not a pre-periodic point, there is no finite Markov partition, the symbolic
dynamics does not have a finite grammar (see sect. 7.6 for definitions), and the
theorems discussed below do not apply. In practice this means that while the
leading eigenvalue of L might be computable, the rest of the spectrum is very
hard to control; as the parameter α is varied, nonleading zeros of the spectral
determinant move wildly about.12.2

on p. 265

Property 3 is violated by the map

f(x) =
{

x + 2x2 , x ∈ I0 = [0, 12 ]
2 − 2x , x ∈ I1 = [12 , 1]

.

Here the interval [0, 1] has a Markov partition into the two subintervals I0 and I1;
f is monotone on each. However, the fixed point at x = 0 has marginal stability
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Λ0 = 1, and violates the condition 3. This type of map is called intermittent
and necessitates much extra work. The problem is that the dynamics in the
neighborhood of a marginal fixed point is very slow, with correlations decaying as
power laws rather than exponentially. We have discussed such flows in chapter 17.

The property 4 is required as the heuristic approach of chapter 6 faces two
major hurdles:

1. The trace (6.10) is not well defined since the integral kernel is singular.

2. The existence and properties of eigenvalues are by no means clear.

Both problems are related to the definition of the function space on which
the evolution operator acts. As an illustration let us consider the simplest non-
trivial example, the Bernoulli shift, for which everything can be done ‘by hand’.
First, a preliminary discussion of spectral properties should clarify why we restrict
attention to the rather small space of analytic functions. Second, in this restricted
space our Perron-Frobenius operator acts as an integral operator with a smooth
kernel and therefore has an entire determinant.

12.2.1 Bernoulli shift

For the Bernoulli shift, x �→ 2x mod 1, x ∈ [0, 1] let us see what happens with
spectral properties as we change function spaces. The Perron-Frobenius operator
associated with this map is given by

Lh(y) =
1
2
h
(y

2

)
+

1
2
h

(
y + 1

2

)
.

On the space of square integrable functions, i.e. h ∈ L2([0, 1]), the constant
function h ≡ 1 is an eigenfunction with eigenvalue 1. But we also have a whole
family of eigenfunctions, parametrized by complex θ with Re θ > 0. One verifies
that

hθ(y) =
∑
k �=0

exp(2πiky)
1

|k|θ (12.2)

is indeed an L2-eigenfunction with (complex) eigenvalue 2−θ. By varying θ one
realizes that such eigenvalues fill out the entire unit disk. This casts out a ‘spectral
rug’, also known as an essential spectrum, which hides all the finer details of the
spectrum.
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Following Ruelle let us restrict the operator to act on a smaller space, Ck+α,
the space of k times differentiable functions whose k’th derivatives are Hölder
continuous with an exponent 0 < α ≤ 1. In the strip 0 < Re θ < k + α most
hθ will cease to be eigenfunctions in the space Ck+α. Only for integer valued
θ = n the function hn survives. It turns out to be (a constant times) the n’th
Bernoulli polynomial which is, of course, as smooth as one may demand. One
verifies that Bn(x) (B0(x) = 1, B1(x) = x − 1/2, etc.) is an eigenfunction of L
with eigenvalue 1/2n. There is still a spectral rug which comes from values of θ
for which Re θ > k + α. This suggests that traces and determinants do not exist
in this case either. The pleasant surprise is that they do.

Let us instead proceed along our chosen path and restrict the function space
even further, namely to a space af analytic functions, i.e. for which there is a
convergent power series at each point of the interval [0, 1]. With this choice
things turn out easy and elegant. To be more specific let h be a holomorphic
and bounded function on the disk D = B(0, R) of radius R > 0 centered at
the origin. Our Perron-Frobenius operator preserves the space of such functions
provided (1 +R)/2 < R so all we need is to choose R > 1 (this is precisely where
the expansion property of the Bernoulli shift entered). If F denotes one of the
inverse branches of our Bernoulli shift we rewrite the corresponding part of the
operator, LFh(y) = s F ′(y) h ◦ F (y), using the Cauchy integral formula:

LFh(y) = s

∮
∂D

h(w)F ′(y)
w − F (y)

dw. (12.3)

For the sake of generality we have introduced a sign s = ±1 of the given real
branch (which is, of course, +1 for both branches of the Bernoulli shift). In gen-
eral, one is not allowed to take absolute values as this could destroy analyticity.
In the above formula one may also replace the domain D by any domain contain-
ing [0, 1] such that the inverse branches maps the closure of D into the interior
of D. Why? simply because the kernel stays non-singular under this condition,
i.e. w − F (y) �= 0 whenever w ∈ ∂D and y ∈ Cl D.

The problem is by now reduced to the standard theory for Fredholm deter-
minants. The integral kernel is no longer singular, traces and determinants are
well-defined and we may even calculate the trace of LF as a contour integral:

tr LF =
∮

sF ′(w)
w − F (w)

dw. (12.4)

Elementary complex analysis shows that since F maps the closure of D into its
own interior, F has a unique (real-valued) fixed point x∗ with a multiplier strictly
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smaller than one in absolute value. Residue calculus therefore yields

tr LF =
sF ′(x∗)

1 − F ′(x∗)
=

1
|f ′(x∗) − 1| (12.5)

which justifies our previous ad hoc calculation of traces using delta functions.
The full operator has two components corresponding to the two branches. For
the n times iterated operator we have a full binary shift and for each of the 2n

branches the above calculations carry over, yielding the trace (2n−1)−1. Without
further ado we substitute everything back and obtain the determinant,

det(1 − zL) = exp

(
−
∑
n=1

zn

n

2n

2n − 1

)
=
∏
k=0

(
1 − z

2k
)
, (12.6)

which agrees with the fact that the Bernoulli polynomials are eigenfunctions with
eigenvalues 1/2n, n = 0, 1, 2, . . ..

When generalizing the above we encounter several problems:

First, in higher dimensions life is not as simple. Multi-dimensional residue
calculus is at our disposal but in general requires that we may find poly-domains
(direct product of domains in each coordinate) and this need not be the case.

Second, and perhaps somewhat surprisingly, the ‘counting of periodic orbits’
presents a difficult problem. For example, instead of the Bernoulli shift consider
the doubling map of the circle, x �→ 2x mod 1, x ∈ R/Z. Compared to the shift
on the interval [0, 1] the only difference is that the endpoints 0 and 1 are now
glued together. But since these endpoints are fixed points of the map the number
of cycles of length n decreases by 1. The determinant becomes:

det(1 − zL) = exp(−
∑
n=1

zn

n

2n − 1
2n − 1

) = 1 − z. (12.7)

The value z = 1 still comes from the constant eigenfunction but the Bernoulli
polynomials no longer contribute to the spectrum (they are not periodic). Proofs
of these facts, however, are difficult if one sticks to the space of analytic functions.

Third, our Cauchy formulas a priori works only when considering purely
expanding maps. When stable and unstable directions co-exist we have to resort
to stranger function spaces.

If we neglect the possible pitfalls of ‘counting periodic orbits’ and higher
dimensions it is fairly straight-forward to generalize the above example to an

printed August 24, 2000 ∼DasBuch/book/chapter/converg.tex 6aug2000



254 CHAPTER 12. WHY DOES IT WORK?

expanding d-dimensional dynamical system f : M → M with a finite Markov
partition (7.2) and the expansion property:

• M can be divided into N regions {M1,M2, . . . ,MN} such that either
fMi ∩ Mj = ∅ or Mj ⊂ fMi. The transition matrix takes values tij = 0
or 1, accordingly.

• Each inverse Fij : Mj → Mi (defined when tij = 1) is unique and a
contraction.

Again we restrict the maps under consideration to be real-analytic functions
and assume that there exists a set of complex neighborhoods Di ⊃ Mi such
that Fij : Cl(Dj) → Int(Di). As in the Bernoulli shift case, mapping closures of
domains into interiors is a useful way of stating the contraction property. Under
this assumption the diameter of an iterate like Fs1s2 ◦ Fs2s3 · · · ◦ Fsk−1sk(Dsk)
shrinks exponentially fast to zero as k tends to infinity. In particular, to each
symbolic cycle ts1s2ts2s3 · · · tsks1 = 1 corresponds a unique fixed point for which
multipliers are all of absolute value strictly smaller than one. The corresponding
traces and determinants are then calculated in the usual way (but proofs are
getting harder).

12.3 Hyperbolic maps

(H.H. Rugh)

Moving on to hyperbolic systems, one faces the folowing paradox: If f is an area-
preserving hyperbolic and real-analytic map of e.g a two dimensional torus then
the Perron-Frobenius operator is clearly unitary on the space of L2 functions.
The spectrum is then confined to the unit-circle. On the other hand when we
compute determinants we find eigenvalues scattered around inside the unit disk?
Thinking back on our Bernoulli shift example one would like to imagine these
eigenvalues as popping up from the L2 spectrum by shrinking the function space.
Shrinking the space, however, can only make the spectrum smaller so this is
obviously not what happens. Instead one needs to introduce a ‘mixed’ function
space where in the unstable direction one resort to analytic functions as before
but in the stable direction one considers a ‘dual space’ of distributions on analytic
functions. Such a space is neither included in nor does it include the L2-space
and we have thus resolved the paradox. But it still remains to be seen how traces
and determinants are calculated.

First, let us consider the apparent trivial linear example (0 < λs < 1, Λu > 1):

f(z) = (f1(z1, z2), f2(z1, z2)) = (λsz1,Λuz2) (12.8)
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The function space, alluded to above, is then a mixture of Laurent series in
the z1 variable and analytic functions in the z2 variable. Thus, one considers
expansions of the form z−n1−1

1 zn2
2 with n1, n2 = 0, 1, 2, . . . If one were to look at

the corresponding Perron-Frobenius operator one could write it as follows:

Lh(z1, z2) =
λs

Λu
.h(z1/λs, z2/Λu) (12.9)

The above basis elements are thus precisely eigenvectors with eigenvalues λn1
s Λ−n2−1

u

and one verifies by an explicit calculation that the trace indeed equals det(f ′ −
1)−1 = (Λu − 1)−1(1 − λs)−1.

This example is somewhat misleading, however, as we have made explicit
use of an analytic ‘splitting’ into stable/unstable directions. For a more general
hyperbolic map, if one attempts to make such a splitting it will not be analytic and
the whole argument falls apart. Nevertheless, one may introduce ‘almost’ analytic
splittings and write down a generalization of the above operator as follows (s is
the signature of the derivative in the unstable direction):

Lh(z1, z2) =
∮ ∮

s h(w1, w2)
(z1 − f1(w1, w2)(f2(w1, w2) − z2)

dw1
2πi

dw2
2πi

. (12.10)

Here the ‘function’ h should belong to a space of functions analytic respectively
outside a disk and inside a disk in the first and the second coordinate and with
the additional property that the function decays to zero as the first coordinate
tends to infinity. The contour integrals are along the boundaries of these disks.
It is but an exercise in multi-dimensional residue calculus to verify that for the
above linear example this expression reduces to (12.9). Such operators form the
building bricks in the calculation of traces and determinants and one is able to
prove the following:

Theorem: The spectral determinant for hyperbolic analytic maps is entire.

The proof, apart from the Markov property which is the same as for the purely
expanding case, relies heavily on analyticity of the map in the explicit construc-
tion of the function space. As we have also seen in the previous example the basic
idea is to view the hyperbolicity as a cross product of a contracting map in the
forward time and another contracting map in the backward time. In this case the
Markov property introduced above has to be elaborated a bit. Instead of divid-
ing the phase space into intervals, one divides it into rectangles. The rectangles
should be viewed as a direct product of intervals (say horizontal and vertical),
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Figure 12.1: For an analytic hyperbolic map, specifying the contracting coordinate wh at
the initial rectangle and the expanding coordinate zv at the image rectangle defines a unique
trajectory between the two rectangles. In particular, wv and zh (not shown) are uniquely
specified.

such that the forward map is contracting in, for example, the horizontal direc-
tion, while the inverse map is contracting in the vertical direction. For Axiom A
systems one may choose coordinate axes close to the stable/unstable manifolds of
the map. With the phase space divided into N rectangles {M1,M2, . . . ,MN},
Mi = Ihi × Ivi one needs complex extension Dh

i × Dv
i , with which the hyperbol-

icity condition (which at the same time guarantees the Markov property) can be
formulated as follows:

Analytic hyperbolic property: Either fMi ∩ Int(Mj) = ∅, or for each pair
wh ∈ Cl(Dh

i ), zv ∈ Cl(Dv
j ) there exist unique analytic functions of wh, zv: wv =

wv(wh, zv) ∈ Int(Dv
i ), zh = zh(wh, zv) ∈ Int(Dh

j ), such that f(wh, wv) = (zh, zv).
Furthermore, if wh ∈ Ihi and zv ∈ Ivj , then wv ∈ Ivi and zh ∈ Ihj (see fig. 12.1).

What this means for the iterated map is that one replaces coordinates zh, zv
at time n by the contracting pair zh, wv, where wv is the contracting coordinate
at time n + 1 for the ‘partial’ inverse map.

In two dimensions the operator in (12.10) is acting on functions analytic out-
side Dh

i in the horizontal direction (and tending to zero at infinity) and inside Dv
i

in the vertical direction. The contour integrals are precisely along the boundaries
of these domains.

A map f satisfying the above condition is called analytic hyperbolic and the
theorem states that the associated spectral determinant is entire, and that the
trace formula (6.10) is correct.
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12.3.1 Matrix representations

When considering analytic maps there is another, and for numerical purposes,
sometimes convenient way to look at the operators, namely through matrix rep-
resentations. The size of these matrices is infinite but entries in the matrix decay
exponentially fast with the indices. Hence, within an exponentially ‘small’ error
one may safely do calculations using finite matrix truncations.

Furthermore, from bounds on the elements Lmn one calculates bounds on
tr
(
∧kL
)

and verifies that they fall off as Λ−k2/2, concluding that the L eigenvalues
fall off exponentially for a general Axiom A 1-d map. In order to illustrate how
this works, we first work out a few simple examples.

As in sect. 10.4 we start with a map with a single fixed point, but this time
with a nonlinear map f with a nonlinear inverse F = f−1, s = sgn(F ′)

L ◦ φ(z) =
∫

dx δ(z − f(x))φ(x) = s F ′(z) φ(F (z)) .

Assume that F is a contraction of the unit disk, that is

|F (z)| < θ < 1 and |F ′(z)| < C < ∞ for |z| < 1 , (12.11)

and expand φ in a polynomial basis by means of the Cauchy formula

φ(z) =
∑
n≥0

znφn =
∮

dw

2πi
φ(w)
w − z

, φn =
∮

dw

2πi
φ(w)
wn+1

.

In this basis, L is a represented by the matrix

L ◦ φ(w) =
∑
m,n

wmLmnφn , Lmn =
∮

dw

2πi
s F ′(w)(F (w))n

wm+1
(12.12)

Taking the trace and summing we get:

tr L =
∑
n≥0

Lnn =
∮

dw

2πi
s F ′(w)

w − F (w)

This integral has but one simple pole at the unique fix point w∗ = F (w∗) = f(w∗).
Hence

tr L =
s F ′(w∗)

1 − F ′(w∗)
=

1
|f ′(w∗) − 1|
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12.1
on p. 265

We recognize this result as a generalization of the single piecewise-linear fixed-
point example (10.19), φn = yn, and L is diagonal (no sum on repeated n here),
Lnn = 1/|Λ|Λ−n, so we have verified the heuristic trace formula for an expand-
ing map with a single fixed point. The requirement that map be analytic is
needed to substitute bound (12.11) into the contour integral (12.12) and obtain
the inequality

|Lmn| ≤ sup
|w|≤1

|F ′(w)| |F (w)|n ≤ Cθn

which shows that finite [N × N ] matrix truncations approximate the operator
within an error exponentially small in N . It also follows that eigenvalues fall off
as θn. In higher dimension similar considerations show that the entries in the
matrix fall off as 1/Λk1+1/d

, and eigenvalues as 1/Λk1/d
.

The proof that the spectral determinant for a general nonlinear 1-d map
(10.22) is entire uses the expansion

det (1 − zL) =
∑
k≥0

(−z)ktr
(
∧kL
)

where ∧kL is the kth exterior power of the operator L. For example, ∧2L is given
by the determinant

(
∧2L

)
(x1x2, y1y2) =

1
2!

∣∣∣∣ L(x1, y1) L(x2, y1)
L(x1, y2) L(x2, y2)

∣∣∣∣
so tr (∧2L) = 1

2!

(
(tr L)2 − tr (L2)

)
. We refer to appendix F.1 for more details.

12.4 On importance of pruning

If the grammar is not finite and there is no finite topological polynomial, there
will be no “curvature” expansions, and the convergence will be poor. That is the
generic case, and one strategy for dealing with it is to find a good sequence of ap-
proximate but finite grammars; for each approximate grammar cycle expansions
yield exponentially accurate eigenvalues, with successive approximate grammars
converging toward the desired infinite grammar system.
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When the dynamical system’s symbolic dynamics does not have a finite gram-
mar, and we are not able to arrange its cycle expansion into curvature combina-
tions (11.5), the series is truncated as in sect. 11.4, by including all pseudo-cycles
such that |Λp1 · · ·Λpk | ≤ |ΛP |, where P is the most unstable prime cycle included
into truncation. The truncation error should then be of order O(ehTP TP /|ΛP |),
with h the topological entropy, and ehTP roughly the number of pseudo-cycles
of stability ≈ |ΛP |. In this case the cycle averaging formulas do not converge
significantly better than the approximations such as the trace formula (13.18).

Numerical results (see for example the plots of the accuracy of the cycle
expansion truncations for the Hénon map in ref. [2]) indicate that the truncation
error of most averages tracks closely the fluctuations due to the irregular growth
in the number of cycles. It is not known whether one can exploit the sum rules
such as the mass flow conservation (13.8) to improve the accuracy of dynamical
averaging.

Résumé

A serious theory of cycle expansions requires a deeper understanding of their
analyticity and convergence. While the classical, the quantum, and the number-
theoretical zeta functions are formally very similar, their convergence properties
are very different. At this time the two inspiring idealizations and main sources of
intuition are the Riemann zeta function, and the classical “axiom A” hyperbolic
systems.

Convergence of cycle expansions: “axiom A” hyperbolic flows

Most systems of interest are not of the “axiom A” category; they are nei-
ther purely hyperbolic nor do they have a simple symbolic dynamics grammar.
Importance of symbolic dynamics is sometime grossly unappreciated the crucial
ingredient for nice analyticity properties of zeta functions is existence of finite
grammar (coupled with uniform hyperbolicity). From hyperbolic dynamics point
of view, the Riemann zeta is perhaps the worst possible example; understand-
ing the symbolic dynamics would amount to being able to give a finite grammar
definition of all primes. Hyperbolic dynamics suggests that a generic “chaotic”
dynamical system should be approached by a sequence of finite grammar ap-
proximations, pretty much as a “generic” number is approached by a sequence
of continued fractions. This systematic pruning of forbidden orbits requires care;
the unhealthy effects of uncontrolled grammar are illustrated by the results of
sect. 12.4 in the context of classical deterministic diffusion.

Convergence of cycle expansions: functional equations

While the Riemann and the Selberg zetas might seem remote from physics
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problems, there is one fact that cannot be ignored; mathematicians have devel-
oped methods for evaluating spectra in these problems that are tens of orders of
magnitude more effective than what physicists use in calculating quantum spec-
tra, and there is a great temptation to extend that mathematics to dynamics that
we study. Generally the problem with such Riemann-zeta inspired approaches is
that almost any magic property that underlies this mathematics fails for realis-
tic dynamical zeta functions; all derivations seem to depend very explicitly on
underlying integer lattices, their self-duality under Fourier transforms, etc.

A very appealing proposal along these lines is due to M. Berry and J. Keating.
The idea is to improve the periodic orbit expansions by imposing unitarity as
a functional equation ansatz. The cycle expansions used are the same as the
original ones, but the philosophy is quite different; the claim is that the optimal
estimate for low eigenvalues of classically chaotic quantum systems is obtained by
taking the real part of the cycle expansion of the semiclassical zeta function, cut
at the appropriate cycle length. The usual Riemann-Siegel formulas exploit the
self-duality of the Riemann and other zeta functions, but there is no evidence of
such symmetry for generic Hamiltonian flows. Also from the point of hyperbolic
dynamics discussed above, proposal in its current form belongs to the category of
crude cycle expansions; the cycles are cut off by a single external criterion, such
as the maximal cycle time, with no regard for the topology and the curvature
corrections. While the functional equation conjecture is maybe not in its final
form yet, it is very intriguing and worth pursuing.

The real life challenge are generic dynamical flows, which fit neither of the
above two idealized settings. The dynamical systems that we are really interested
in - for example, smooth bound Hamiltonian potentials - are presumably never
really chaotic and it is still unclear what intuition is more rewarding: are quantum
spectra of chaotic dynamics in smooth bound Hamiltonian potentials more like
zeros of Riemann zetas or zeros of dynamical zetas? We do not know at present,
and the central question remains: how to attack the problem in systematic and
controllable fashion?

Commentary

Remark 12.1 Pseudo-orbits. The idea of shadowing an orbit by ε

pseudo-orbit is due to Bowen.

Remark 12.2 Price of piecewise linear approximations. The transfer
operator formalism uses no more information than the first derivative of
the flow. Dynamical zeta functions can be constructed with fewer assump-
tions; spectral determinants require existence of a trace, derivatives. For us
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the dynamical zeta functions are very useful pedagogically for relating var-
ious determinants and developing intuition about the geometrical meaning
of curvature expansions. By contrast, evolution operators and the associ-
ated spectral determinants use full analytic information about the flow, and
tend to have much better convergence properties than the dynamical zeta
functions. Even if a spectral determinant is entire, cycle expansion of the
corresponding dynamical zeta function has a finite radius of convergence.

Remark 12.3 Nonlinearity. A more refined and basically correct esti-
mate requires taking the Taylor expansion around the flow to the next order
and estimating the “nonlinearity” of the flow.

Remark 12.4 Padé approximants. Tail resummations often signif-
icantly improve the accuracy of the leading root in the cycle expansion;
convergence can be further accelerated by Padé approximants [44] or other
acceleration techniques [11].

Remark 12.5 Riemann zeta function. Curvature expansions are of no
use for determining Riemann zeros. For the Riemann zeta function the
fundamental cycles correspond to prime numbers, so there is no shadowing
and no curvature expansion.

Remark 12.6 Spectral determinants for smooth flows. The theorem
applies also to hyperbolic analytic maps in d dimensions and smooth hy-
perbolic analytic flows in (d + 1) dimensions, provided that the flow can be
reduced to a piecewise analytic map by suspension on a Poincaré section
complemented by an analytic “ceiling” function (2.11) which accounts for a
variation in the section return times. For example, if we take as the ceiling
function g(x) = esT (x), where T (x) is the time of the next Poincaré section
for a trajectory staring at x, we reproduce the flow spectral determinant
(10.30). Proofs are getting harder and we omit the details.

Remark 12.7 Examples. Examples of analytic hyperbolic maps are
provided by small analytic perturbations of the cat map (where the Markov
partitioning is non-trivial [6]), the 3-disk repeller, and the 2-d baker’s map.

Remark 12.8 Spectral gap. Ruelle [6] proved a Perron-Frobenius type
theorem for (positive) transfer operators. A formula (not shown here) for the
essential spectral radius was introduced by Keller [2] for piecewise monotone
maps and by Pollicott [7] for weighted subsfhifts of finite type. The existence
of the spectral gap was proved first by Hofbauer and Keller [1, 2] for the

printed August 24, 2000 ∼DasBuch/book/chapter/converg.tex 6aug2000



262 CHAPTER 12. WHY DOES IT WORK?

weight 1/|f ′| (see also [3] for the correspondence with zeta functions, but for
piecewise linear maps only), then by Baladi and Keller [4] for general weights.
The results by Ruelle and Baladi [5, 6, 9, 14, 10, 15] generalize this to the
case where one considers compositions of 1-d monotone maps which are not
necessarily inverse branches of a single interval map, and one allows infinity
or even uncountable infinities of periodic points the domain of definition
of a composition (see also [15] for a similar extension to compositions of
holomorphic maps).

Remark 12.9 Explicit diagonalization. We note in passing that for 1-d
repellers a diagonalization of an explicit truncated Lmn matrix evaluated
in a judiciously chosen basis may yield many more eigenvalues than a cycle
expansion. The reasons why one persists anyway in using the periodic
orbit theory are partially aestethic, and partially pragmatic. Explicit Lmn
demands explicit choice of a basis and is thus non-invariant, in contrast to
cycle expansions which utilize only the invariant information about the flow.
In addition, we usually do not know how to construct Lmn for a realistic
flow, such as the hyperbolic 3-disk game of pinball flow of sect. 1.3, while
the periodic orbit formulas are general and straightforward to apply.

Remark 12.10 Ergodic theory. The ergodic theory, as presented by
Sinai [15] and others, tempts one to describe the densities that the evolution
operator acts on in terms of either integrable or square integrable func-
tions. As we have already seen, for our purposes, this space is not suitable.
An informal introduction to ergodic theory is given by Sinai, Kornfeld and
Fomin [16]; more advanced and more old fashioned presentations are Wal-
ters [17] and Denker, Grillenberger and Sigmund [18]; and a more formal
Peterson [19].

Remark 12.11 Axiom A systems. Proofs outlined in sect. 12.3 follow
the thesis work of H.H. Rugh [7, 21, 12]. For mathematical introduction to
the subject, consult the excellent review by V. Baladi[?!]. Rigorous treat-
ment is given in refs. [7, 21, 12]. It would take us too far to give and explain
the definition of the Axiom A systems (see refs. [13, 14]). Axiom A implies,
however, the existence of a Markov partition of the phase space from which
the properties 2 and 3 assumed in the above follow.

Remark 12.12 Fried estimates The form of the fall-off of the coeffi-
cients in the F (z) expansion, as un

1+1/d

, is in agreement with the estimates
of Fried [21] for the spectral determinants of d-dimensional expanding flows.
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Remark 12.13 Convergence of cycle averaging formulas. It is demon-
strated in refs. [14, 17] that for generic pruned grammars the cycle averaging
formulas do not converge significantly better than the approximations such
as the trace formula (13.18). Even that is not the worst case scenario;
generic dynamical systems are plagued by intermittency and other nonhy-
perbolic effects, and methods that go beyond cycle expansions need to be
developed [22].

References

[12.1] F. Hofbauer and G. Keller, “Ergodic properties of invariant measures for piecewise
monotonic transformations”, Math. Z. 180, 119 (1982).

[12.2] G. Keller, “On the rate of convergence to equilibrium in one-dimensional systems”,
Comm. Math. Phys. 96, 181 (1984).

[12.3] F. Hofbauer and G. Keller, “Zeta-functions and transfer-operators for piecewise
linear transformations”, J. reine angew. Math. 352, 100 (1984).

[12.4] V. Baladi and G. Keller, “Zeta functions and transfer operators for piecewise
monotone transformations”, Comm. Math. Phys. 127, 459 (1990).

[12.5] V. Baladi and D. Ruelle, “An extension of the theorem of Milnor and Thurston on
the zeta functions of interval maps”, Ergodic Theory Dynamical Systems 14, 621
(1994).

[12.6] V. Baladi, “Infinite kneading matrices and weighted zeta functions of interval
maps”, J. Functional Analysis 128, 226 (1995).

[12.7] D. Ruelle, “Zeta-Functions for Expanding Maps and Anosov Flows”, Inv. Math.
34, 231-242 (1976).

[12.8] D. Ruelle, “An extension of the theory of Fredholm determinants”, Inst. Hautes
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Exercises

12.1 Cauchy integrals. Go through the essential Cauchy contour integral steps.

12.2 β map Use single slope map to show how hard life is.
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Chapter 13

Getting used to cycles

“Progress was a labyrinth ... people plunging blindly in
and then rushing wildly back, shouting that they had
found it ... the invisible king the lan vital the principle
of evolution ... writing a book, starting a war, founding a
school....”

F. Scott Fitzgerald, This Side of Paradise

In the preceding chapters we have moved rather briskly through the evolution
operator formalism. Here we slow down in order to develop some fingertip feeling
for the traces of evolution operators. We start out by explaining how qualitatively
how local exponential instability and exponential growth in topologically distinct
trajectories lead to a global exponential instability.

13.1 Escape rates

We start by verifying the claim (5.10) that for a nice hyperbolic flow the trace of
the evolution operator grows exponentially with time. Consider again the game
of pinball of fig. 1.1. Designate by M a phase space region that encloses the three
disks, say the surface of the table × all pinball directions. The fraction of initial
points whose trajectories start out within the phase space region M and recur
within that region at the time t is given by

ΓM(t) =
1

|M|

∫
M

dxdy δ
(
y − f t(x)

)
. (13.1)

This quantity is eminently measurable and physically interesting in a variety of
problems spanning from nuclear physics to celestial mechanics. The integral over
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268 CHAPTER 13. GETTING USED TO CYCLES

x takes care of all possible initial pinballs; the integral over y checks whether they
are still within M by the time t. If the dynamics is bounded, and M envelops
the entire accessible phase space, ΓM(t) = 1 for all t. However, if trajectories
exit M the recurrence fraction decreases with time. For example, any trajectory
that falls off the pinball table in fig. 1.1 is gone for good.

These observations can be made more concrete by examining the pinball phase
space of fig. 1.7. With each pinball bounce the initial conditions that survive get
thinned out, each strip yielding two thiner strips within it. The total fraction of
survivors after n bounces is given by

Γn =
1

|M|

(n)∑
i

Mi, (13.2)

where i is a binary label of the ith strip, and Mi is the area of the ith strip. The
phase space volume is preserved by the flow, so the strips of survivors are con-
tracted along the stable eigendirections, and ejected along the unstable eigendi-
rections. As a crude estimate of the number of survivors in the ith strip, assume
that the spreading of a ray of trajectories per bounce is given by a factor Λ, the
mean value of the expanding eigenvalue of the corresponding Jacobian matrix of
the flow, and replace Mi by the phase space strip width estimate Mi ∼ 1/Λ.
This estimate of a size of a neighborhood (given already on p. 52) is right in spirit,
but not without drawbacks. One problem is that eigenvalues of a Jacobian matrix
have no invariant meaning; they depend on the choice of coordinates. However,
we saw in chapter 6 that the sizes of neighborhoods are determined by stability
eigenvalues of periodic points, and those are invariant under smooth coordinate
transformations.

In this approximation Γn receives 2n contributions of equal size

Γ1 ∼ 1
Λ

+
1
Λ

, · · · , Γn ∼ 2n

Λn
= e−n(λ−h) := e−nγ , (13.3)

up to preexponential factors. We see here the interplay of the two key ingredients
of chaos first alluded to in sect. 1.3.1: the escape rate γ equals local expansion
rate (the Lyapunov exponent λ = ln Λ), minus the rate of global reinjection back
into the system (the topological entropy h = ln 2). As we shall see in (14.16),
with correctly defined “entropy” this result is exact.

As at each bounce one loses routinely the same fraction of trajectories, one
expects the sum (13.2) to fall off exponentially with n. More precisely, by the
hyperbolicity assumption of sect. 6.1.1 the expanding eigenvalue of the Jacobian
matrix of the flow is exponentially bounded from both above and below, 1 <
|Λmin| ≤ |Λ(x)| ≤ |Λmax|, and the area of each strip in (13.2) is bounded by
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13.1. ESCAPE RATES 269

Figure 13.1: Johannes Kepler contemplating the
bust of Mandelbrot, after Rembrandt’s “Aristotle
contemplating the bust of Homer” (Metropolitan
Museum, New York).
(in order to illustrate the famed New York Times
Science section quote! )

|Λ−n
max| ≤ Mi ≤ |Λ−n

min|. Replacing Mi in (13.2) by its over (under) estimates in
terms of |Λmax|, |Λmin| immediately leads to exponential bounds (2/|Λmax|)n ≤
Γn ≤ (2/|Λmin|)n, that is

ln |Λmax| ≥ Γn + ln 2 ≥ ln |Λmin| . (13.4)

We conclude that for hyperbolic, locally unstable flows the fraction (13.1) of
initial x whose trajectories remain trapped within M up to time t is expected to
decay exponentially,

ΓM(t) ∝ e−γt ,

where γ is the asymptotic escape rate defined by

γ = − lim
t→∞

1
t

ln ΓM(t) . (13.5)

13.2
on p. 286

13.1
on p. 286

We now refine the reasoning of sect. 13.1. Consider the trace (6.9) in the
asymptotic limit (6.22):

trLn =
∫

dx δ(x − fn(x)) eβA
n(x) ≈

(n)∑
i

eβA
n(xi)

|Λi|
.

The factor 1/|Λi| was interpreted in (13.2) as the area of the ith phase space
strip. Hence trLn is a discretization of the integral

∫
dxeβA

n(x) approximated by
a tessellation into strips centered on periodic points xi, fig. 1.8, with the volume
of the ith neighborhood given by estimate Mi ∼ 1/|Λi|, and eβA

n(x) estimated by
eβA

n(xi), its value at the ith periodic point. If the symbolic dynamics is a com-
plete, any rectangle [s−m · · · s0.s1s2 · · · sn] of sect. 7.5.2 always contains the cycle
point s−m · · · s0s1s2 · · · sn; hence even though the periodic points are of measure
zero (just like rationals in the unit interval), they are dense on the non–wandering
set. Equiped with a measure for the associated rectangle, periodic orbits suffice

printed August 24, 2000 ∼DasBuch/book/chapter/getused.tex 4aug2000



270 CHAPTER 13. GETTING USED TO CYCLES

to cover the entire non–wandering set. The average of eβA
n

evaluated on the non–
wandering set is therefore given by the trace, properly normalized so 〈1〉 = 1:

〈
eβA

n
〉
n

≈
∑(n)

i eβA
n(xi)/|Λi|∑(n)

i 1/|Λi|
=
(n)∑
i

µi e
βAn(xi) . (13.6)

Here µi is the normalized natural measure

(n)∑
i

µi = 1 , µi = enγ/|Λi| , (13.7)

correct both for the closed systems as well as the open systems of sect. 5.1.3.

Unlike brute numerical slicing of the integration space into an arbitrary lattice
(for a critique, see sect. 13.7), the periodic orbit theory is smart, as it automati-
cally partitions integrals by the intrinsic topology of the flow, and assigns to each
tile the invariant natural measure µi.

13.1.1 Unstable periodic orbits are dense

(L. Rondoni and P. Cvitanović)

Our goal in sect. 5.1 was to evaluate the space and time averaged expectation
value (5.8). An average over all periodic orbits can accomplish the job only if the
periodic orbits fully explore the asymptotically accessible phase space.

Why should the unstable periodic points end up being dense? The cycles
are intuitively expected to be dense because on a connected chaotic set a typical
trajectory is expected to behave ergodically, and pass infinitely many times arbi-
trarily close to any point on the set, including the initial point of the trajectory
itself. The argument is more or less the following. Take a partition of M in
arbitrarily small regions, and consider particles that start out in region Mi, and
return to it in n steps after some peregrination in phase space. In particular,
a particle might return a little to the left of its original position, while a close
neighbor might return a little to the right of its original position. By assump-
tion, the flow is continuous, so generically one expects to be able to gently move
the initial point in such a way that the trajectory returns precisely to the initial
point, that is one expects a periodic point of period n in cell i. (This is by no
means guaranteed to always work, and it must be checked for the particular sys-
tem at hand. A variety of ergodic but insufficiently mixing counter-examples can
be constructed - the most familiar being a quasiperiodic motion on a torus.) As
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13.2. FLOW CONSERVATION SUM RULES 271

we diminish the size of regions Mi, aiming a trajectory that returns to Mi be-
comes increasingly difficult. Therefore, we are guaranteed that unstable (because
of the expansiveness of the map) orbits of larger and larger period are densely
interspersed in the asymptotic non–wandering set.

13.2 Flow conservation sum rules

If the dynamical system is bounded, all trajectories remain confined for all times,
escape rate (13.5) equals γ = −s0 = 0, and the leading eigenvalue (13.20) of
the Perron-Frobenius operator (4.8) is simply exp(−tγ) = 1. Conservation of
material flow thus implies that for bound flows cycle expansions of dynamic-
al zeta functions and spectral determinants satisfy exact flow conservation sum
rules:

1/ζ(0, 0) = 1 +
∑′

π

(−1)k

|Λp1 · · ·Λpk |
= 0

F (0, 0) = 1 −
∞∑
n=1

cn(0, 0) = 0 (13.8)

obtained by setting s = 0 in (11.12), (11.13) cycle weights tp = e−sTp/|Λp| →
1/|Λp| . These sum rules depend neither on the cycle periods Tp nor on the
observable a(x) under investigation, but only on the cycle stabilities Λp,1, Λp,2,
· · ·, Λp,d, and their significance is purely geometric: they are a measure of how well
periodic orbits tesselate the phase space. Conservation of material flow provides
the first and very useful test of the quality of finite cycle length truncations,
and is something that you should always check first when constructing a cycle
expansion for a bounded flow.

The trace formula version of the flow conservation flow sum rule comes in two
varieties, one for the maps, and another for the flows. By flow conservation the
leading eigenvalue is s0 = 0, and for maps (11.11) yields

trLn =
∑

i∈Fixfn

1
|det (1− Jn(xi)) |

= 1 + es1n + . . . . (13.9)

For flows one can apply this rule by grouping together cycles from t = T to
t = T + ∆T

1
∆T

T≤rTp≤T+∆T∑
p,r

Tp∣∣det
(
1− Jrp

)∣∣ =
1

∆T

∫ T+∆T

T
dt
(
1 + es1t + . . .

)
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272 CHAPTER 13. GETTING USED TO CYCLES

= 1 +
1

∆T

∞∑
α=1

esαT

sα

(
esα∆T − 1

)
≈ 1 + es1T + · · · .(13.10)

As is usual for the the fixed level trace sums, the convergence of (13.9) is con-
troled by the gap between the leading and the next-to-leading eigenvalues of the
evolution operator.

13.3 Lyapunov exponents

For a chaotic system a pair of trajectories

x(t) = f t(ξ) and x(t) + δx(t) := f t(ξ + δx)

that start out very close to each other separate exponentially with time, and in
a finite time their separation attains the size of the accessible phase space. This
sensitivity to initial conditions can be quantified as

|δx(t)| ≈ eλt|δx| (13.11)

where λ, the mean rate of separation of trajectories of the system, is called
the Lyapunov exponent. The Lyapunov exponent is an important quantitative
characterization of the degree of chaoticity of the dynamical system: it tells us
that for a given finite accuracy of the initial data δx , the dynamics is predictable
only up to a finite time T ≈ − ln(δx)/λ.

For infinitesimal δx we know the δxi(t)/δxj ratio exactly, as this is by defini-
tion the Jacobian matrix (3.7)

lim
δx→0

δxi(t)
δxj

:=
∂xi(t)
∂xj(0)

= Jtij(ξ) .

The Jacobian matrix has d+1 eigenvalues Λt
1(ξ), · · ·, Λt

d+1(ξ) and eigenvectors
êt1(ξ), · · ·, êtd+1(ξ). For large t the most unstable direction dominates, and the
(initial point ξ dependent) Lyapunov exponent is the time average

λ(ξ) = lim
t→∞

1
t

log |Λt(ξ)| , (13.12)

where Λt(ξ) is the leading eigenvalue of Jt(ξ).
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13.3. LYAPUNOV EXPONENTS 273

We may run into various problems in practice if we try to calculate the Lya-
punov exponent by using the definition (13.12) directly. First of all, the phase
space is dense with atypical trajectories; for example, if ξ happened to lie on a
periodic orbit p, λ would be be simply log |Λp|/Tp, a local property of cycle p,
not a global property of the dynamical system. Furthermore, even if ξ happens
to be a “generic” phase point, it is still not obvious that log |Λt(ξ)|/t should be
converging to anything in particular. In a Hamiltonian system with coexisting
elliptic islands and chaotic regions, a chaotic trajectory gets every so often cap-
tured in the neighborhood of an elliptic island and can stay there for arbitrarily
long time; as the orbit is nearly stable, during such episode log |Λt(ξ)|/t can dip
arbitrarily close to 0+. For phase space volume non-preserving flows the trajec-
tory can traverse locally contracting regions, and log |Λt(ξ)|/t can occasionally
even go negative; even worse, one never knows whether the asymptotic attractor
is periodic or “strange” (sect. 13.9), so any finite estimate of λ might be dead
wrong. 3.1

on p. 60

To avoid these problems we turn the time-averaging into a multiplicative
evolution operator, and extract the phase space average of the Lyapunov exponent
from its leading eigenvalue computed from finite length cycles. If the chaotic
motion fills the whole phase space, we are indeed computing the asymptotic
Lyapunov exponent. If the chaotic motion is transient, leading eventually to some
long attractive cycle, our Lyapunov exponent characterizes the chaotic transient;
this is actually what any experiment would measure, as even very small amount
of external noise will suffice to destabilize a long stable cycle with a minute
immediate basin of attraction.

For higher-dimensional flows only the Jacobian matrices are multiplicative,
not individual eigenvalues, and the construction of the evolution operator for
evaluation of the Lyapunov spectra requires the extension of evolution equations
to the flow in the tangent space, given in appendix C.1. However, for 1-d maps
this is not necessary, so we consider this case first.

13.3.1 Lyapunov exponent, 1-d mappings

The chain rule (3.21) for the derivative of an iterated map implies that the sta-
bility of a 1-d mapping is multiplicative along the flow, so the integral (5.1) of
the observable λ(x) = log |f ′(x)| evaluated along the trajectory of ξ is additive

An(ξ) := log
∣∣fn′(ξ)

∣∣ =
n−1∑
k=0

log
∣∣f ′(xk)

∣∣ .
In other words, Lyapunov exponent is the expectation value (5.8) of local trajec-
tory divergence rate λ(x) = log |f ′(x)|. As in sect. 5.1, we construct the associated
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274 CHAPTER 13. GETTING USED TO CYCLES

evolution operator

L(y, x) = δ(y − f (x)) eβ log |f
′(x)| = δ(y − f (x)) |f ′(x)|β ,

and evaluate the expectation value of log |f ′(x)| from the ∂s(β)/∂β|β=0 derivative
of the leading eigenvalue s(β) of the evolution operator. The cycle averaging
formula (11.19) yields a closed expression for the Lyapunov exponent in terms of
prime cycles:

λ =
1

〈n〉ζ

∑′
(−1)k+1

log |Λp1 | + · · · + log |Λpk |
|Λp1 · · ·Λpk |

. (13.13)

For a repeller, the 1/|Λp| weights are replaced by normalized measure (13.7)
exp(γnp)/|Λp|, where γ is the escape rate.

We mention here without proof that for 2-d Hamiltonian flows such as our
pinball there is only one expanding eigenvalue and (13.13) applies as it stands.

in depth:

sect. C.1, p. 563

13.4 Correlation functions

The time correlation function CAB(t) of two observables A and B along the
trajectory x(t) = f t(ξ) is defined as

CAB(t; ξ) = lim
T→∞

1
T

∫ T

0
dτA(x(τ + t))B(x(τ)) , ξ = x(0) . (13.14)

If the system is ergodic, with invariant continuous measure P(x)dx, then correla-
tion functions do not depend on ξ (apart from a set of zero measure), and may
be computed by a phase average as well

CAB(t) =
∫
M

dξ P(ξ)A(f t(ξ))B(ξ) . (13.15)

For a chaotic system we expect that time evolution will loose the information
contained in the initial conditions, so that CAB(t) will approach the uncorrelated
limit 〈A〉 · 〈B〉. As a matter of fact the asymptotic decay of correlation functions

ĈAB := CAB − 〈A〉 〈B〉 (13.16)
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for any pair of observables coincides with the definition of mixing, a fundamental
property in ergodic theory. We now assume 〈B〉 = 0 (otherwise we may define a
new observable by B(x) − 〈B〉). Our purpose is now to connect the asymptotic
behavior of correlation functions with the spectrum of L. We can write (13.15)
as

C̃AB(t) =
∫
M

dx

∫
M

dy A(y)B(x)P(x)δ(y − f t(x)),

and recover the evolution operator

C̃AB(t) =
∫
M

dx

∫
M

dy A(y)Lt(y, x)B(x)P(x)

We also recall that in sect. 4.1 we showed that ρ(x) is the eigenvector of L
corresponding to probability conservation

∫
M

dy Lt(x, y)ρ(y) = ρ(x) .

Now, we can expand the x dependent part in terms of the eigenbasis of L:

B(x)P(x) =
∞∑

α=0

cαϕα(x),

where ϕ0 = P(x). Since the average of the left hand side is zero the coefficient c0
must vanish. The action of L then can be written as

C̃AB(t) =
∑
α �=0

e−sαtcα

∫
M

dy A(y)ϕα(y). (13.17)

13.3
on p. 286

We see immediately that if the spectrum has a gap, that is the second largest
leading eigenvalue is isolated from the largest eigenvalue (s0 = 0) then (13.17)
implies an exponential decay of correlations

C̃AB(t) ∼ e−νt.

The correlation decay rate ν = s1 then depends only on intrinsic properties of the
dynamical system (the position of the next-to-leading eigenvalue of the Perron-
Frobenius operator), while the choice of particular observables influences just the
prefactor.

The importance of correlation functions, beyond the mentioned theoretical
features, is that they are often accessible from time series measurable in labora-
tory experiments and numerical simulations: moreover they are linked to trans-
port exponents.
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13.5 Trace formulas vs. level sums

Trace formulas (6.12) and (6.20) diverge precisely where one would like to use
them, at s equal to eigenvalues sα. Instead, one can proceed as follows; according
to (6.23) the “level” sums (all symbol strings of length n) are asymptotically going
like es0n

∑
i∈Fixfn

eβA
n(xi)

|Λi|
= es0n ,

so an nth order estimate s(n) is given by

1 =
∑

i∈Fixfn

eβA
n(xi)e−s(n)n

|Λi|
(13.18)

which generates a “normalized measure”. The difficulty with estimating this
n → ∞ limit is at least twofold:

1. due to the exponential growth in number of intervals, and the exponen-
tial decrease in attainable accuracy, the maximal n attainable experimentally or
numerically is in practice of order of something between 5 to 20.

2. the preasymptotic sequence of finite estimates s(n) is not unique, because
the sums Γn depend on how we define the escape region, and because in general
the areas Mi in the sum (13.2) should be weighted by the density of initial
conditions ξ. For example, an overall measuring unit rescaling Mi → αMi

introduces 1/n corrections in s(n) defined by the log of the sum (13.5): s(n) →
s(n) − lnα/n. This can be partially fixed by defining a level average

〈
eβA(s)

〉
(n)

:=
∑

i∈Fixfn

eβA
n(xi)esn

|Λi|
(13.19)

and requiring that the ratios of successive levels satisfy

1 =

〈
eβA(s(n))

〉
(n+1)〈

eβA(s(n))
〉
(n)

.

This avoids the worst problem with the formula (13.18), the inevitable 1/n cor-
rections due to its lack of rescaling invariance. However, even though much
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published pondering of “chaos” relies on it, there is no need for such gymnastics:
the dynamical zeta functions and spectral determinants are already invariant un-
der all smooth nonlinear conjugacies x → h(x), not only linear rescalings, and
require no n → ∞ extrapolations. Comparing with the cycle expansions (11.5)
we see what the difference is; while in the level sum approach we keep increas-
ing exponentially the number of terms with no reference to the fact that most
are already known from shorter estimates, in the cycle expansions short terms
dominate, longer ones enter only as exponentially small corrections.

The beauty of the trace formulas is that they are coordinatization indepen-
dent: both

∣∣det
(
1− Jp

)∣∣ = |det (1 − JTp(x))| and eβAp = eβA
Tp(x) contribution

to the cycle weight tp are independent of the starting periodic point point x. For
the Jacobian matrix Jp this follows from the chain rule for derivatives, and for
eβAp from the fact that the integral over eβA

t(x) is evaluated along a closed loop.
In addition,

∣∣det
(
1− Jp

)∣∣ is invariant under smooth coordinate transformations.

13.6 Eigenstates

An exposition of a subject is of necessity sequential and one cannot
explain everything at once. As we shall actually never use eigenfunctions of
evolution operators, we postpone their discussion to chapter 12. For the time
being we ask the reader to accept uncritically the following sketch:

Schematically, a linear operator has a spectrum of eigenvalues sα and eigen-
functions ϕα(x)

(
Ltϕα

)
(x) = e−sαtϕα(x) , α = 0, 1, 2, . . .

ordered so that Re sα ≤ Re sα+1.

Lt is a linear operator acting on a density of initial conditions ρ(x), x ∈ M,
so the t → ∞ limit will be dominated by ets(β), the leading eigenvalue of Lt,

(
Ltρβ

)
(y) :=

∫
M

dx δ
(
y − f t(x)

)
eβ·A

t(x)ρβ(x) = ets(β)ρβ(y) , (13.20)

where ρβ(x) is the corresponding eigenfunction. For β = 0 the evolution operator
(5.18) is the Perron-Frobenius operator (4.8), with ρ0(x) the natural measure.

If we expand an initial distribution ρ(x) in the eigenvalue basis

ρ(x) =
∑
α

aαϕα(x)
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Figure 13.2: Phase space discretization ap-
proach to computing averages.

then the fraction of trapped trajectories (13.1) decays as

ΓM(t) =

∫
M dx

(
Ltρ
)

(x)∫
M dx ρ(x)

=
∑
α

e−sαtaα

∫
M dxϕα(x)∫
M dx ρ(x)

= e−s0t
(
(const.) + O(e−(s1−s0)t)

)
. (13.21)

The constant depens on the initial density ρ(x) and the geometry of phase space
cutoff region M, but the escape rate γ = s0 is an intrinsic property of the repelling
set. We see, at least heuristically, that the leading eigenvalue of Lt dominates
ΓM(t) and yields the escape rate (13.5).

13.7 Why not just run it on a computer?

The above interpretations of L and its spectrum, as well as the topological
entropy discussion of sect. 9.4 had a hidden agenda: we wish to acclimatize you
to thinking of the evolution operator L as a matrix. There are many textbook
methods of approximating L by sequences of finite matrix approximations L, so
why a new one?

In the phase space discretization approach, fig. 13.2, one subdivides the d-
dimensional phase space into hypercubes M1,M2, · · · , MNd of equal volume
ε = M/Nd and approximates L by the overlap integral

Lt → Lt
ij =

∫
Mj

dy

∫
Mi

dx δ
(
y − f t(x)

)
eβA

t(x) ≈
(
Mi ∩ f t(Mj)

)
eβA

t
j , (13.22)
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where Mi ∩ f t(Mj) is the fraction of initial volume Mj that lands in the cell i

at time t, and eβA
t
j is an estimate of the weight eβA

t(x) averaged over the initial
cell x ∈ Mj . One then crosses one’s fingers and hopes that as N → ∞, the
interesting part of the spectrum of L converges to the eigenvalues of L.

More refined spectral approaches expand the initial and final distributions ρ,
ρt in some basis ϕ0, ϕ1, ϕ2, · · · (orthogonal polynomials, let us say) and replace
Lt(y, x) by its ϕα basis representation Lt

αβ =< ϕα|Lt|ϕβ >. The subtle art then
consists in finding a “good” basis for which finite truncations of Lt

αβ give accurate
estimates of the eigenvalues of Lt.

The problem with such general phase space discretization approaches is that
they are blind; the grid knows not what parts of the phase space are more or less
important, and with such methods one is often plagued by numerical artifacts
such as spurious eigenvalues. In contrast, in this treatise we exploit the intrinsic
topology of the flow to give us both an invariant partition of the phase space and
invariant measure of the partition volumes, see fig. 1.8. We shall lean on the ϕα

basis approach only insofar it helps us prove that the spectrum that we compute
is indeed the correct one, and that finite periodic orbit truncations do converge
(see chapter 12).

13.8 Ma-the-matical caveats

“Lo duca e io per quel cammino ascoso intrammo a ri-
tornar nel chiaro monde; e sanza cura aver d’alcun riposa
salimmo sù, el primo e io secondo, tanto ch’i’ vidi de le
cose belle che porta ‘l ciel, per un perutgio tondo.”

Dante

The periodic orbit theory is learned in stages. At first glance, it seems
totally impenetrable. After basic exercises are gone through, it seems totally
trivial; all that seems to be at stake are elementary manipulations with traces,
determinants, derivatives. But if start thinking about you will get a more and
more uncomfortable feeling that from the mathematical point of view, this is a
perilous enterprise indeed. In chapter 12 we shall explain which parts of this
enterprise are really solid; here you give a fortaste of what objections a mathe-
matician might rise.

Birkhoff’s 1931 ergodic theorem states that the time average (5.4) exists al-
most everywhere, and, if the flow is ergodic, it implies that 〈a(x)〉 = 〈a〉 is a
constant for almost all x. The problem is that the above cycle averaging for-
mulas implicitly rely on ergodic hypothesis: they are strictly correct only if the
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dynamical system is locally hyperbolic and globally mixing. If one takes a β
derivative of both sides of (13.20)

ρβ(y)ets(β) =
∫
M

dx δ(y − f t(x))eβ·A
t(x)ρβ(x) ,

and integrates over y

∫
M

dy
∂

∂β
ρβ(y)

∣∣∣∣
β=0

+ t
∂s

∂β

∣∣∣∣
β=0

∫
M

dy ρ0(y) =∫
M

dx At(x)ρ0(x) +
∫
M

dx
∂

∂β
ρβ(x)

∣∣∣∣
β=0

,

one obtains in the long time limit

∂s

∂β

∣∣∣∣
β=0

=
∫
M

dy ρ0(x) 〈a(x)〉 . (13.23)

This is the expectation value (5.11) only if the time average (5.4) equals the space
average (5.8), 〈a(x)〉 = 〈a〉, for all x except a subset x ∈ M of zero measure; if
the phase space is foliated into non-communicating subspaces M = M1+M2 of
finite measure such that f t(M1) ∩ M2 = ∅ for all t, this fails. In other words,
we have tacitly assumed metric indecomposability or transitivity. We have also
glossed over the nature of the “phase space” M. For example, if the dynamical
system is open, such as the 3-disk game of pinball, M in the expectation value
integral (5.17) is a Cantor set, the closure of the union of all periodic orbits.

Alternatively, M can be considered continuous, but then the measure ρ0 in
(13.23) is highly singular. The beauty of the periodic orbit theory is that instead
of using an arbitrary coordinatization of M it partitions the phase space by the
intrinsic topology of the dynamical flow and builds the correct measure from cycle
invariants, the stability eigenvalues of periodic orbits.

Were we to restrict the applications of the formalism only to systems which
have been rigorously proven to be ergodic, we might as well fold up the shop right
now. For example, even for something as simple as the Hénon mapping we do
not know whether the asymptotic time attractor is strange or periodic. Physics3.1

on p. 60 applications require a more pragmatic attitude. In the cycle expansions approach
we construct the invariant set of the given dynamical system as a closure of the
union of periodic orbits, and investigate how robust are the averages computed
on this set. This turns out to depend very much on the observable being averaged
over; dynamical averages exhibit “phase transitions”(to be discussed in sect. ??),
and the above cycle averaging formulas apply in the “hyperbolic phase” where the
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13.9. CYCLES AS THE SKELETON OF CHAOS 281

average is dominated by exponentially many exponentially small contributions,
but fail in a phase dominated by few marginally stable orbits. Here the noise
- always present, no matter how weak - helps us by erasing an infinity of small
traps that the deterministic dynamics might fall into.

Still, in spite of all the caveats, periodic orbit theory is a beautiful theory,
and the cycle averaging formulas are the most elegant and powerful tool available
today for evaluation of dynamical averages for low dimensional chaotic determin-
istic systems.

13.9 Cycles as the skeleton of chaos

Étant données des équations ... et une solution partic-
uliére quelconque de ces équations, on peut toujours trou-
ver une solution périodique (dont la période peut, il est
vrai, étre trés longue), telle que la différence entre les deux
solutions soit aussi petite qu’on le veut, pendant un temps
aussi long qu’on le veut. D’ailleurs, ce qui nous rend ces
solutions périodiques si précieuses, c’est qu’elles sont, pour
ansi dire, la seule bréche par où nous puissions esseyer de
pénétrer dans une place jusqu’ici réputée inabordable.

H. Poincaré, Les méthodes nouvelles de la méchanique
céleste

We wind down this chatty chapter by asking: why cycle?

We tend to think of a dynamical system as a smooth system whose evolu-
tion can be followed by integrating a set of differential equations. Traditionally
one used integrable motions as zeroth-order approximations to physical systems,
and accounted for weak nonlinearities perturbatively. However, when the evo-
lution is actually followed through to asymptotic times, one discovers that the
strongly nonlinear systems show an amazingly rich structure which is not at all
apparent in their formulation in terms of differential equations. In particular,
the periodic orbits are important because they form the skeleton onto which all
trajectories trapped for long times cling. This was already appreciated century
ago by H. Poincaré, who, describing in Les méthodes nouvelles de la méchanique
céleste his discovery of homoclinic tangles, mused that “the complexity of this
figure will be striking, and I shall not even try to draw it”. Today such drawings
are cheap and plentiful; but Poincaré went a step further and, noting that hidden
in this apparent chaos is a rigid skeleton, a tree of cycles (periodic orbits) of
increasing lengths and self-similar structure, suggested that the cycles should be
the key to chaotic dynamics.

The zeroth-order approximations to harshly chaotic dynamics are very differ-
ent from those for the nearly integrable systems: a good starting approximation
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here is the stretching and kneading of a baker’s map, rather than the winding of
a harmonic oscillator.

For low dimensional deterministic dynamical systems description in terms of
cycles has many virtues:

1. cycle symbol sequences are topological invariants: they give the spatial lay-
out of a non–wandering set

2. cycle eigenvalues are metric invariants: they give the scale of each piece of
a non–wandering set

3. cycles are dense on the asymptotic non–wandering set

4. cycles are ordered hierarchically: short cycles give good approximations to a
non–wandering set, longer cycles only refinements. Errors due to neglecting
long cycles can be bounded, and typically fall off exponentially or super-
exponentially with the cutoff cycle length

5. cycles are structurally robust: for smooth flows eigenvalues of short cycles
vary slowly with smooth parameter changes

6. asymptotic averages (such as correlations, escape rates, quantum mechan-
ical eigenstates and other “thermodynamic” averages) can be efficiently
computed from short cycles by means of cycle expansions

Points 1, 2: That the cycle topology and eigenvalues are invariant properties
of dynamical systems follows from elementary considerations. If the same dynam-
ics is given by a map f in one set of coordinates, and a map g in the next, then
f and g (or any other good representation) are related by a reparametrization
and a coordinate transformation f = h−1 ◦ g ◦ h. As both f and g are arbitrary
representations of the dynamical system, the explicit form of the conjugacy h is of
no interest, only the properties invariant under any transformation h are of gen-
eral import. The most obvious invariant properties are topological; a fixed point
must be a fixed point in any representation, a trajectory which exactly returns
to the initial point (a cycle) must do so in any representation. Furthermore, a
good representation should not mutilate the data; h must be a smooth transfor-
mation which maps nearby cycle points of f into nearby cycle points of g. This
smoothness guarantees that the cycles are not only topological invariants, but
that their linearized neighborhoods are also metrically invariant. In particular,
the cycle eigenvalues (eigenvalues of the Jacobian matrixs dfn(x)/dx of periodic
orbits fn(x) = x) are invariant.

Point 5: An important virtue of cycles is their structural robustness. Many
quantities customarily associated with dynamical systems depend on the notion of
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“structural stability”, that is robustness of non–wandering set to small parameter
variations.

Still, the sufficiently short unstable cycles are structurally robust in the sense 11.11
on p. 243that they are only slightly distorted by such parameter changes, and averages

computed using them as a skeleton are insensitive to small deformations of the
non–wandering set. In contrast, lack of structural stability wreaks havoc with
long time averages such as Lyapunov exponents (see sect. 13.3), for which there
is no guarantee that they converge to the correct asymptotic value in any finite
time numerical computation.

The main recent theoretical advance is point 4: we now know how to con-
trol the errors due to neglecting longer cycles. As we seen above, even though
the number of invariants is infinite (unlike, for example, the number of Casimir
invariants for a compact Lie group) the dynamics can be well approximated to
any finite accuracy by a small finite set of invariants. The origin of this conver-
gence is geometrical, as we shall see in chapter 12.1.2, and for smooth flows the
convergence of cycle expansions can even be super-exponential.

Commentary

Remark 13.1 Nonhyperbolic measures. µi = 1/|Λi| is the natural mea-
sure only for the strictly hyperbolic systems. For non-hyperbolic systems,
the measure develops folding cusps. For example, for Ulam type maps (uni-
modal maps with quadratic critical point mapped onto the “left” unstable
fixed point x0, discussed in more detail in chapter 17), the measure develops
a square-root singularity on the 0 cycle:

µ0 =
1

|Λ0|1/2
. (13.24)

The thermodynamics averages are still expected to converge in the “hyper-
bolic” phase where the positive entropy of unstable orbits dominates over
the marginal orbits, but they fail in the “non-hyperbolic” phase. The general
case remains unclear, and we refer the reader to the literature [20, 16, 13, ?].

Remark 13.2 Trace formula periodic orbit averaging. The cycle aver-
aging formulas are not the first thing that one would intuitively write down;
the approximate trace formulas are more accessibly heuristically. The trace
formula averaging (13.10) seems to have be discussed for the first time by
Hannay and Ozorio de Almeida [1, 25]. Another novelty of the cycle av-
eraging formulas and one of their main virtues, in contrast to the explicit
analytic results such as those of ref. [3], is that their evaluation does not re-
quire any explicit construction of the (coordinate dependent) eigenfunctions
of the Perron-Frobenius operator (that is, the natural measure ρ0).
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Remark 13.3 The choice of observables We have been quite sloppy on
the mathematical side, as in discussing the spectral features of L the choice
of the function space is crucial (especially when one is looking beyond the
dominant eigenvalue). As a matter of fact in the function space where usu-
ally ergodic properties are defined, L2(dµ) there is no gap, due to unitarity
property of the Koopman operator: this means that there exist (ugly yet
summable) functions for which no exponential decay is present even if the
Fredholm determinant has isolated zeroes. A particularly nice example is
worked out in [23], and a more mathematical argument is presented in [24].

Remark 13.4 Lattice models The relationship between the spectral
gap and exponential decay properties is very well known in the statistical
mechanical framework, where one deals with spatial correlations in lattice
systems and links them to the gap of the transfer matrix.

Remark 13.5 Role of noise in dynamical systems. In most practical
applications in addition to the chaotic deterministic dynamics there is always
an additional external noise. The noise can be characterized by its strength
σ and distribution. Lyapunov exponents, correlation decay and dynamo rate
can be defined in this case the same way as in the deterministic case. We can
think that noise completely destroys the results derived here. However, one
can show that the deterministic formulas remain valid until the noise level
is small. A small level of noise even helps as it makes the dynamics ergodic.
Non-communicating parts of the phase space become weakly connected due
to the noise. This is a good argument to explain why periodic orbit theory
works in non-ergodic systems. For small amplitude noise one can make a
noise expansion

λ = λ0 + λ1σ
2 + λ2σ

4 + ...,

around the deterministic averages λ0. The expansion coefficients λ1, λ2, ...

can also be expressed via periodic orbit formulas. The calculation of these
coefficients is one of the challenges facing periodic orbit theory today.

Résumé

We conclude this chapter by a general comment on the relation of the finite trace
sums such as (13.2) to the spectral determinants and dynamical zeta functions.
One might be tempted to believe that given a deterministic rule, a sum like
(13.2) could be evaluated to any desired precision. For short finite times this is
indeed true: every region Mi in (13.2) can be accurately delineated, and there is
no need for fancy theory. However, if the dynamics is unstable, local variations
in initial conditions grow exponentially and in finite time attain the size of the
system. The difficulty with estimating the n → ∞ limit from (13.2) is then at
least twofold:
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1. due to the exponential growth in number of intervals, and the exponen-
tial decrease in attainable accuracy, the maximal n attainable experimentally or
numerically is in practice of order of something between 5 to 20;

2. the preasymptotic sequence of finite estimates γn is not unique, because
the sums Γn depend on how we define the escape region, and because in general
the areas Mi in the sum (13.2) should be weighted by the density of initial ξ.

In contrast, the dynamical zeta functions and spectral determinants are al-
ready invariant under all smooth nonlinear conjugacies x → h(x), not only linear
rescalings, and require no n → ∞ extrapolations.
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Exercises

13.1 Escape rate of the tent map. Calculate the fraction of trajectories
remaining trapped in the interval [0, 1] for the tent map

f(x) = a(1 − 2|x − 0.5|). (13.25)

Determine the a dependence of the escape rate γ(a).

13.2 Escape rate of the Ulam map. Calculate the fraction of trajectories
remaining trapped in the interval [0, 1] for the Ulam map

f(x) = a(1 − 4|x − 0.5|2), (13.26)

and determine the a dependence of the escape rate γ(a) numerically. Work out a
numerical method for calculating the lengths of intervals of trajectories remain-
ing stacked for n iterations of the map. What is your expectation about the a
dependence near the critical value ac = 1?

13.3 Four scale map decay. Compute the second largest eigenvalue of the
Perron-Frobenius operator for the four scale map

f(x) =


a1x if 0 < x < b/a1,
(1 − b)((x − b/a1)/(b − b/a1)) + b if b/a1 < x < b,
a2(x − b) if b < x < b + b/a2,
(1 − b)((x − b − b/a2)/(1 − b − b/a2)) + b if b + b/a2 < x < 1.

(13.27)

13.4 Lyapunov exponents for 1-dimensional maps. Extend your cycle
expansion programs so that the first and the second moments of observables can
be computed. Use it to compute the Lyapunov exponent for some or all of the
following maps:
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(a) the piecewise-linear flow conserving map, the skew tent map

f(x) =
{

ax if 0 ≤ x ≤ a−1,
a

a−1(1 − x) if a−1 ≤ x ≤ 1.

(b) the Ulam map f(x) = 4x(1 − x)

(c) the skew Ulam map [?]

f(x) = 0.1218x(1 − x)(1 − 0.6x)

with a peak at 0.7.

(d) the repeller of f(x) = Ax(1 − x), for either A = 9/2 or A = 6 (this is a
continuation of exercise 11.2).

(e) for the 2-branch flow conserving map

f0(x) =
h − p +

√
(h − p)2 + 4hx
2h

, x ∈ [0, p] (13.28)

f1(x) =
h + p − 1 +

√
(h + p − 1)2 + 4h(x − p)

2h
, x ∈ [p, 1]

This is a nonlinear perturbation of (h = 0) Bernoulli type map; the first
15 eigenvalues of the Perron-Frobenius operator are listed in ref. [?] for
p = 0.8, h = 0.1. Use these parameter values when computing the Lyapunov
exponent.

Cases (a) and (b) can be computed analytically; cases (c), (d) and (e) require
numerical computation of cycle stabilities. Just to see whether the theory is
worth the trouble, also cross check your cycle expansions results for cases (c)
and (d) with Lyapunov exponent computed by direct numerical averaging along
trajectories of randomly chosen initial points:

(f) trajectory-trajectory separation (13.11) (hint: rescale δx every so often, to
avoid numerical overflows),

(g) iterated stability (13.12).

How good is the numerical accuracy compared with the periodic orbit theory
predictions?
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Chapter 14

Thermodynamic formalism

So, naturalists observe, a flea hath smaller fleas that on
him prey; and those have smaller still to bite ’em; and so
proceed ad infinitum.

Jonathan Swift

In the preceding chapters we characterized chaotic systems via global quan-
tities such as averages. It turned out that these are closely related to very fine
details of the dynamics like stabilities and time periods of individual periodic
orbits. In statistical mechanics a similar duality exists. Macroscopic systems are
characterized with thermodynamic quantities (pressure, temperature and chemi-
cal potential) which are averages over fine details of the system called microstates.
One of the greatest achievements of the theory of dynamical systems was when
in the sixties and seventies Bowen, Ruelle and Sinai made the analogy between
these two subjects explicit. Later this “Thermodynamic Formalism” of dynam-
ical systems became widely used when the concept of fractals and multifractals
has been introduced. The formalism made it possible to calculate various fractal
dimensions in an elegant way and become a standard instrument in a wide range
of scientific fields. Next we sketch the main ideas of this theory and show how
periodic orbit theory helps to carry out calculations.

14.1 Rényi entropies

As we have already seen trajectories in a dynamical system can be characterized
by their symbolic sequences from a generating Markov partition. We can locate
the set of starting points Ms1s2...sn of trajectories whose symbol sequence starts
with a given set of n symbols s1s2...sn. We can associate many different quantities
to these sets. There are geometric measures such as the volume V (s1s2...sn), the
area A(s1s2...sn) or the length l(s1s2...sn) of this set. Or in general we can have
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290 CHAPTER 14. THERMODYNAMIC FORMALISM

some measure µ(Ms1s2...sn) = µ(s1s2...sn) of this set. As we have seen in (13.7)
the most important is the natural measure, which is the probability that a non-
periodic trajectory visits the set µ(s1s2...sn) = P (s1s2...sn). The natural measure
is additive. Summed up for all possible symbol sequences of length n it gives the
measure of the whole phase space:

∑
s1s2...sn

µ(s1s2...sn) = 1 (14.1)

expresses probability conservation. Also, summing up for the last symbol we get
the measure of a one step shorter sequence∑

sn

µ(s1s2...sn) = µ(s1s2...sn−1).

As we increase the length (n) of the sequence the measure associated with it
decreases typically with an exponential rate. It is then useful to introduce the
exponents

λ(s1s2...sn) = − 1
n

logµ(s1s2...sn). (14.2)

To get full information on the distribution of the natural measure in the symbolic
space we can study the distribution of exponents. Let the number of symbol
sequences of length n with exponents between λ and λ+dλ be given by Nn(λ)dλ.
For large n the number of such sequences increases exponentially. The rate of
this exponential growth can be characterized by g(λ) such that

Nn(λ) ∼ exp(ng(λ)).

The knowledge of the distribution Nn(λ) or its essential part g(λ) fully charac-
terizes the microscopic structure of our dynamical system.

As a natural next step we would like to calculate this distribution. However it
is very time consuming to calculate the distribution directly by making statistics
for millions of symbolic sequences. Instead, we introduce auxiliary quantities
which are easier to calculate and to handle. These are called partition sums

Zn(β) =
∑

s1s2...sn

µβ(s1s2...sn), (14.3)

as they are obviously motivated by Gibbs type partition sums of statistical me-
chanics. The parameter β plays the role of inverse temperature 1/kBT and
E(s1s2...sn) = − logµ(s1s2...sn) is the energy associated with the microstate
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labelled by s1s2...sn We are tempted also to introduce something analogous with
the Free energy. In dynamical systems this is called the Rényi entropy [22] defined
by the growth rate of the partition sum

Kβ = lim
n→∞

1
n

1
1 − β

log

( ∑
s1s2...sn

µβ(s1s2...sn)

)
. (14.4)

In the special case β → 1 we get Kolmogorov’s entropy

K1 = lim
n→∞

1
n

∑
s1s2...sn

−µ(s1s2...sn) logµ(s1s2...sn),

while for β = 0 we recover the topological entropy

htop = K0 = lim
n→∞

1
n

logN(n),

where N(n) is the number of existing length n sequences. To connect the partition
sums with the distribution of the exponents, we can write them as averages over
the exponents

Zn(β) =
∫

dλNn(λ) exp(−nλβ),

where we used the definition (14.2). For large n we can replace Nn(λ) with its
asymptotic form

Zn(β) ∼
∫

dλ exp(ng(λ)) exp(−nλβ).

For large n this integral is dominated by contributions from those λ∗ which max-
imize the exponent

g(λ) − λβ.

The exponent is maximal when the derivative of the exponent vanishes

g′(λ∗) = β. (14.5)

From this equation we can determine λ∗(β). Finally the partition sum is

Zn(β) ∼ exp(n[g(λ∗(β)) − λ∗(β)β]).

Using the definition (14.4) we can now connect the Rényi entropies and g(λ)

(β − 1)Kβ = λ∗(β)β − g(λ∗(β)). (14.6)

Equations (14.5) and (14.6) define the Legendre transform of g(λ). This equation
is analogous with the thermodynamic equation connecting the entropy and the
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free energy. As we know from thermodynamics we can invert the Legendre trans-
form. In our case we can express g(λ) from the Rényi entropies via the Legendre
transformation

g(λ) = λβ∗(λ) − (β∗(λ) − 1)Kβ∗(λ), (14.7)

where now β∗(λ) can be determined from

d

dβ∗ [(β∗ − 1)Kβ∗ ] = λ. (14.8)

Obviously, if we can determine the Rényi entropies we can recover the distribution
of probabilities from (14.7) and (14.8).

The periodic orbit calculation of the Rényi entropies can be carried out by
approximating the natural measure corresponding to a symbol sequence by the
expression (13.7)

µ(s1, ..., sn) ≈ enγ

|Λs1s2...sn |
. (14.9)

The partition sum (14.3) now reads

Zn(β) ≈
∑
i

enβγ

|Λi|β
, (14.10)

where the summation goes for periodic orbits of length n. We can define the
characteristic function

Ω(z, β) = exp

(
−
∑
n

zn

n
Zn(β)

)
. (14.11)

According to (14.4) for large n the partition sum behaves as

Zn(β) ∼ e−n(β−1)Kβ . (14.12)

Substituting this into (14.11) we can see that the leading zero of the characteristic
function is

z0(β) = e(β−1)Kβ .
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On the other hand substituting the periodic orbit approximation (14.10) into
(14.11) and introducing primitive and repeated periodic orbits as usual we get

Ω(z, β) = exp

(
−
∑
p,r

znpreβγnpr

r|Λr
p|β

)
.

We can see that the characteristic function is the same as the zeta function
we introduced for Lyapunov exponents (C.14) except we have zeβγ instead of
z. Then we can conclude that the Rényi entropies can be expressed with the
pressure function directly as

P (β) = (β − 1)Kβ + βγ, (14.13)

since the leading zero of the zeta function is the pressure. The Rényi entropies
Kβ , hence the distribution of the exponents g(λ) as well, can be calculated via
finding the leading eigenvalue of the operator (C.4).

From (14.13) we can get all the important quantities of the thermodynamic
formalism. For β = 0 we get the topological entropy

P (0) = −K0 = −htop. (14.14)

For β = 1 we get the escape rate

P (1) = γ. (14.15)

Taking the derivative of (14.13) in β = 1 we get Pesin’s formula [3] connecting
Kolmogorov’s entropy and the Lyapunov exponent

P ′(1) = λ = K1 + γ. (14.16)
14.1

on p. 299
It is important to note that, as always, these formulas are strictly valid for nice
hyperbolic systems only. At the end of this Chapter we discuss the important
problems we are facing in non-hyperbolic cases.

On fig. 14.2 we show a typical pressure and g(λ) curve computed for the two
scale tent map of Exercise 14.4. We have to mention, that all typical hyper-
bolic dynamical system produces a similar parabola like curve. Although this is
somewhat boring we can interpret it like a sign of a high level of universality:
The exponents λ have a sharp distribution around the most probable value. The
most probable value is λ = P ′(0) and g(λ) = htop is the topological entropy. The
average value in closed systems is where g(λ) touches the diagonal: λ = g(λ) and
1 = g′(λ).

Next, we are looking at the distribution of trajectories in real space.
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Figure 14.1:
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Figure 14.2: g(λ) and P (β) for the map of Ex-
ercise 14.4 at a = 3 and b = 3/2. See Solutions J
for calculation details.

-6

-5

-4

-3

-2

-1

0

1

2

-4 -2 0 2 4

P
re

ss
ur

e

beta

14.2 Fractal dimensions

By looking at the repeller we can recognize an interesting spatial structure. In
the 3-disk case the starting points of trajectories not leaving the system after the
first bounce form two strips. Then these strips are subdivided into an infinite
hierarchy of substrips as we follow trajectories which do not leave the system
after more and more bounces. The finer strips are similar to strips on a larger
scale. Objects with such self similar properties are called fractals.

We can characterize fractals via their local scaling properties. The first step is
to draw a uniform grid on the surface of section. We can look at various measures
in the square boxes of the grid. The most interesting measure is again the natural
measure located in the box. By decreasing the size of the grid ε the measure in
a given box will decrease. If the distribution of the measure is smooth then we
expect that the measure of the i-th box is proportional with the dimension of the
section

µi ∼ εd.

If the measure is distributed on a hairy object like the repeller we can observe
unusual scaling behavior of type

µi ∼ εαi ,

where αi is the local “dimension” or Hölder exponent of the the object. As α is not
necessarily an integer here we are dealing with objects with fractional dimensions.
We can study the distribution of the measure on the surface of section by looking
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at the distribution of these local exponents. We can define

αi =
logµi

log ε
,

the local Hölder exponent and then we can count how many of them are between
α and α + dα. This is Nε(α)dα. Again, in smooth objects this function scales
simply with the dimension of the system

Nε(α) ∼ ε−d,

while for hairy objects we expect an α dependent scaling exponent

Nε(α) ∼ ε−f(α).

f(α) can be interpreted [9] as the dimension of the points on the surface of section
with scaling exponent α. We can calculate f(α) with the help of partition sums
as we did for g(λ) in the previous section. First we define

Zε(q) =
∑
i

µq
i . (14.17)

Then we would like to determine the asymptotic behavior of the partition sum
characterized by the τ(q) exponent

Zε(q) ∼ ε−τ(q).

The partition sum can be written in terms of the distribution function of α-s

Zε(q) =
∫

dαNε(α)εqα.

Using the asymptotic form of the distribution we get

Zε(q) ∼
∫

dαεqα−f(α).

As ε goes to zero the integral is dominated by the term maximizing the exponent.
This α∗ can be determined from the equation

d

dα∗ (qα∗ − f(α∗)) = 0,

leading to
q = f ′(α∗).

Finally we can read off the scaling exponent of the partition sum

τ(q) = α∗q − f(α∗).
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In a uniform fractal characterized by a single dimension both α and f(α)
collapse to α = f(α) = D. The scaling exponent then has the form τ(q) = (q −
1)D. In case of non uniform fractals we can introduce generalized dimensions [11]
Dq via the definition

Dq = τ(q)/(q − 1).

Some of these dimensions have special names. For q = 0 the partition sum (14.17)
counts the number of non empty boxes N̄ε. Consequently

D0 = − lim
ε→0

log N̄ε

log ε
,

is called the box counting dimension. For q = 1 the dimension can be determined
as the limit of the formulas for q → 1 leading to

D1 = lim
ε→0

∑
i

µi logµi/ log ε.

This is the scaling exponent of the Shannon information entropy [18] of the dis-
tribution, hence its name is information dimension.

Using equisize grids is impractical in most of the applications. Instead, we
can rewrite (14.17) into the more convenient form

∑
i

µq
i

ετ (q)
∼ 1. (14.18)

If we cover the ith branch of the fractal with a grid of size li instead of ε we can
use the relation [10]

∑
i

µq
i

li
τ (q)

∼ 1, (14.19)

the non-uniform grid generalization of 14.18. Next we show how can we use
the periodic orbit formalism to calculate fractal dimensions. We have already
seen that the width of the strips of the repeller can be approximated with the
stabilities of the periodic orbits situating in them

li ∼ 1
|Λi|

.

Then using this relation and the periodic orbit expression of the natural measure
we can write (14.19) into the form

∑
i

eqγn

|Λi|q−τ(q)
∼ 1, (14.20)

∼DasBuch/book/chapter/thermodyn.tex 4aug2000 printed August 24, 2000



14.2. FRACTAL DIMENSIONS 297

where the summation goes for periodic orbits of length n. The sum for stabilities
can be expressed with the pressure function again∑

i

1
|Λi|q−τ(q)

∼ e−nP (q−τ(q)),

and (14.20) can be written as

eqγne−nP (q−τ(q)) ∼ 1,

for large n. Finally we get an implicit formula for the dimensions

P (q − (q − 1)Dq) = qγ. (14.21)

Solving this equation directly gives us the partial dimensions of the multifractal
repeller along the stable direction. We can see again that the pressure function
alone contains all the relevant information. Setting q = 0 in (14.21) we can
prove that the zero of the pressure function is the box-counting dimension of the
repeller

P (D0) = 0.

Taking the derivative of (14.21) in q = 1 we get

P ′(1)(1 − D1) = γ.

This way we can express the information dimension with the escape rate and the
Lyapunov exponent

D1 = 1 − γ/λ. (14.22)

If the system is bound (γ = 0) the information dimension and all other dimensions
are Dq = 1. Also since D10 is positive (14.22) proves that the Lyapunov exponent
must be larger than the escape rate λ > γ in general. 14.4

on p. 300

14.5
on p. 300

14.6
on p. 301

Commentary

Remark 14.1 Mild phase transition In non-hyperbolic systems the for-
mulas derived in this chapter should be modified. As we mentioned in 13.1
in non-hyperbolic systems the periodic orbit expression of the measure can
be

µ0 = eγn/|Λ0|δ,
where δ can differ from 1. Usually it is 1/2. For sufficiently negative β the
corresponding term 1/|Λ0|β can dominate (14.10) while in (14.3) eγn/|Λ0|δβ
plays no dominant role. In this case the pressure as a function of β can have
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a kink at the critical point β = βc where βc log |Λ0| = (βc − 1)Kβc
+ βcγ.

For β < βc the pressure and the Rényi entropies differ

P (β) �= (β − 1)Kβ + βγ.

This phenomena is called phase transition. This is however not a very deep
problem. We can fix the relation between pressure and the entropies by
replacing 1/|Λ0| with 1/|Λ0|δ in (14.10).

Remark 14.2 Hard phase transition The really deep trouble of ther-
modynamics is caused by intermittency. In that case we have periodic orbits
with |Λ0| → 1 as n → ∞. Then for β > 1 the contribution of these orbits
dominate both (14.10) and (14.3). Consequently the partition sum scales as
Zn(β) → 1 and both the pressure and the entropies are zero. In this case
quantities connected with β ≤ 1 make sense only. These are for example the
topological entropy, Kolmogorov entropy, Lyapunov exponent, escape rate,
D0 and D1. This phase transition cannot be fixed. It is probably fair to say
that quantities which depend on this phase transition are only of mathemat-
ical interest and not very useful for characterization of realistic dynamical
systems.

Remark 14.3 Multifractals. For reasons that remain mysterious to the
authors - perhaps so that Mandelbrot can refer to himself both as the mother
of fractals and the grandmother of multifractals - some physics literature
referes to any fractal generated by more than one scale as a “multi”-fractal.
This usage seems to divide fractals into 2 classes; one consisting essentially

of the above Cantor set and the Serapinski gasket, and the second consisting
of anything else, including all cases of physical interest.

Résumé

In this chapter we have shown that thermodynamic quantities and various frac-
tal dimensions can be expressed in terms of the pressure function. The pressure
function is the leading eigenvalue of the operator which generates the Lyapunov
exponent. In the Lyapunov case β is just an auxiliary variable. In thermodynam-
ics it plays an essential role. The good news of the chapter is that the distribution
of locally fluctuating exponents should not be computed via making statistics.
We can use cyclist formulas for determining the pressure. Then the pressure can
be found using short cycles + curvatures. Here the head reach the tail of the
snake. We just argued that the statistics of long trajectories coded in g(λ) and
P (β) can be calculated from short cycles. To use this intimate relation between
long and short trajectories effectively is still a research level problem.
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Exercises

14.1 Thermodynamics in higher dimensions Introduce the time averages of
the eigenvalues of the Jacobian

λi = lim
t→∞

1
t

log |Λti(ξ)|, (14.23)

as a generalization of (13.12).

Show that in higher dimensions Pesin’s formula is

K1 =
∑
i

λi − γ, (14.24)

where the summation goes for the positive λi-s only. (Hint: Use the higher dimensional
generalization of (13.7)

µi = enγ/|
∏
j

Λi,j |,

where the product goes for the expanding eigenvalues of the Jacobian of the periodic
orbit.

14.2 Bunimovich stadium Kolmogorov entropy. Take for definitiveness
a = 1.6 and d = 1 in the Bunimovich stadium of exercise 3.3,

2a

d

estimate the Lyapunov exponent by averaging over a very long trajectory. Biham and
Kvale [?] estimate the discrete time Lyapunov to λ ≈ 1.0 ± .1, the continuous time
Lyapunov to λ ≈ 0.43 ± .02, the topological entropy (for their symbolic dynamics) h ≈
1.15 ± .03.
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14.3 Entropy of rugged-edge billiards. Take a semi-circle of diameter ε and
replace the sides of a unit square by )1/ε* catenated copies of the semi-circle.

(a) Is the billiard ergodic as ε → 0?

(b) (hard) Show that the entropy of the billiard map is

K1 → − 2
π

ln ε + const ,

as ε → 0. (Hint: do not write return maps.)

(c) (harder) Show that when the semi-circles of the Bunimovich stadium are far apart,
say L, the entropy for the flow decays as

K1 → 2 lnL

πL
.

14.4 Two scale map Compute all those quantities - dimensions, escape rate,
entropies, etc. - for the repeller of the one dimensional map

f(x) =
{

1 + ax if x < 0,
1 − bx if x > 0. (14.25)

where a and b are larger than 2. Compute the fractal dimension, plot the pressure and
compute the f(α) spectrum of singularities.

14.5 Four scale map Compute the Rényi entropies and g(λ) for the four scale
map

f(x) =


a1x if 0 < x < b/a1,
(1 − b)((x − b/a1)/(b − b/a1)) + b if b/a1 < x < b,
a2(x − b) if b < x < b + b/a2,
(1 − b)((x − b − b/a2)/(1 − b − b/a2)) + b if b + b/a2 < x < 1.

(14.26)

Hint: Calculate the pressure function and use (14.13).
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14.6 Transfer matrix Take the unimodal map f(x) = sin(πx) of the interval
I = [0, 1]. Calculate the four preimages of the intervals I0 = [0, 1/2] and I1 = [1/2, 1].
Extrapolate f(x) with piecewise linear functions on these intervals. Find a1, a2 and b of
the previous exercise. Calculate the pressure function of this linear extrapolation. Work
out higher level approximations by linearly extrapolating the map on the 2n-th preimages
of I.
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Chapter 15

Discrete symmetries

Utility of discrete symmetries in reducing spectrum calculations is familiar from
quantum mechanics. Here we show that the classical spectral determinants factor
in essentially the same way as in quantum mechanics. In the process we also learn
how to simplify classical dynamics. The main result of this chapter can be stated
as follows:

If the dynamics possesses a discrete symmetry, the contribution of a cycle p
of multiplicity mp to a dynamical zeta function factorizes into a product over the
dα-dimensional irreducible representations Dα of the symmetry group,

(1 − tp)mp =
∏
α

det (1 − Dα(hp̃)tp̃)
dα , tp = t

g/mp

p̃ ,

where tp̃ is the cycle weight evaluated on the fundamental domain, g is the di-
mension of the group, hp̃ is the group element relating the fundamental domain
cycle p̃ to a segment of the full space cycle p, and mp is the multiplicity of the p
cycle.

This chapter is meant to serve as a detailed guide to computation of dynamic-
al zeta functions and spectral determinants for systems with discrete symmetries.
We develop here the cycle expansions for factorized determinants, and exemplify
them by working out a series of cases of physical interest: C2, C3v symmetries in
this chapter, and C2v, C4v symmetries in appendix D below.

15.1 Preview

Dynamical systems often come equipped with discrete symmetries, such as the
reflection and the rotation symmetries of various potentials. Such symmetries
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304 CHAPTER 15. DISCRETE SYMMETRIES

simplify and improve the cycle expansions in a rather beautiful way; they can be
exploited to relate classes of periodic orbits and reduce dynamics to a fundamental
domain. Furthermore, in classical dynamics, just as in quantum mechanics, the
symmetrized subspaces can be probed by linear operators of different symmetries.
If a linear operator commutes with the symmetry, it can be block-diagonalized,
and, as we shall now show, the associated spectral determinants and dynamical
zeta functions factorize.

Invariance of a system under symmetries means that the symmetry image of a
cycle is again a cycle, with the same weight. The new orbit may be topologically
distinct (in which case it contributes to the multiplicity of the cycle) or it may be
the same cycle, shifted in time. A cycle is symmetric if some symmetry operations
act on it like a shift in time, advancing the starting point to the starting point of
a symmetry related segment. A symmetric cycle can thus be subdivided into a
sequence of repeats of an irreducible segment. The period or any average evaluated
along the full orbit is given by the sum over the segments, whereas the stability
is given by the product of the stability matrices of the individual segments.

Cycle degeneracies induced by the symmetry are removed by desymmetriza-
tion, reduction of the full dynamics to the dynamics on a fundamental domain.
The phase space can be completely tiled by a fundamental domain and its sym-
metry images. The irreducible segments of cycles in the full space, folded back
into the fundamental domain, are closed orbits in the reduced space.

As the dynamical zeta functions have particularly simple cycle expansions,
a simple geometrical shadowing interpretation of their convergence, and as they
suffice for determination of leading eigenvalues, we shall concentrate in this chap-
ter on their factorizations; the full spectral determinants can be factorized by the
same techniques. To emphasize the group theoretic structure of zeta functions,
we shall combine all the non-group-theory dependence of a p-cycle into a cycle
weight tp.

15.1.1 3-disk game of pinball

We have already exploited a discrete symmetry in our introduction to the 3-
disk game of pinball, sect. 1.3. As the three disks are equidistantly spaced, our
game of pinball has a sixfold symmetry. The symmetry group of relabelling the
3 disks is the permutation group S3; however, it is better to think of this group
geometrically, as C3v, the group of rotations by ±2π/3 and reflections across the
three symmetry axes. Applying an element (identity, rotation by ±2π/3, or one
of the three possible reflections) of this symmetry group to any trajectory yields
another trajectory. For instance, the cycles 12, 23, and 13, are related to each
other by rotation by ±2π/3, or, equivalently, by a relabelling of the disks.

An irreducible segment corresponds to a periodic orbit in the fundamental
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domain, a one-sixth slice of the full 3-disk system, with the symmetry axes acting
as reflecting mirrors, see fig. 7.3. A set of orbits related in the full space by
discrete symmetries maps onto a single fundamental domain orbit. The reduction
to the fundamental domain desymmetrizes the dynamics and removes all global
discrete symmetry induced degeneracies: rotationally symmetric global orbits
(such as the 3-cycles 123 and 132) have degeneracy 2, reflectionally symmetric
ones (such as the 2-cycles 12, 13 and 23) have degeneracy 3, and global orbits with
no symmetry are 6-fold degenerate. Table 7.2 lists some of the shortest binary
symbols strings, together with the corresponding full 3-disk symbol sequences
and orbit symmetries. Some examples of such orbits are shown in fig. 1.4.

We shall return to the 3-disk game of pinball desymmetrization in sects. 15.2.2
and 15.6, but first we develop a feeling for discrete symmetries by working out a
simple 1-d example.

15.1.2 Reflection symmetric 1-d maps

Consider f , a map on the interval with reflection symmetry f(−x) = −f(x). An
example is the sawtooth map of fig. 15.1, where we for simplicity take a = 0 (no
diffusion, flow conserving on the unit interval). Denote the reflection operation
by Cx = −x. The symmetry of the map implies that if {xn} is a trajectory, than
also {Cxn} is a trajectory because Cxn+1 = Cf(xn) = f(Cxn) . The dynamics
can be restricted to a fundamental domain, in this case to one half of the original
interval; every time a trajectory leaves this interval, it can be mapped back using
C. Furthermore, the evolution operator commutes with C, L(y, x) = L(gy,gx).
C satisfies C2 = e and can be used to decompose the phase space into mutu-
ally orthogonal symmetric and antisymmetric subspaces by means of projection
operators

PA1 =
1
2
(e+C) , PA2 =

1
2
(e−C) ,

LA1(y, x) = PA1L(y, x) =
1
2

(L(y, x) + L(−y, x)) ,

LA2(y, x) = PA2L(y, x) =
1
2

(L(y, x) − L(−y, x)) . (15.1)

To compute the traces of the symmetrization and antisymmetrization projec-
tion operators (15.1), we have to distinguish three kinds of cycles: asymmetric
cycles a, symmetric cycles s built by repeats of irreducible segments s̃, and bound-
ary cycles b. The spectral determinant can be formally written as the product
over the three kinds of cycles: det (1 − L) = det (1 − L)adet (1 − L)s̃det (1 − L)b.

printed August 24, 2000 ∼DasBuch/book/chapter/symm.tex 8aug2000



306 CHAPTER 15. DISCRETE SYMMETRIES

Figure 15.1: The Ulam sawtooth map with the C2 symmetry f(−x) = −f(x). (a)
boundary fixed point C, (b) symmetric 2-cycle LR, (c) asymmetric 2-cycles pair {LC,CR}.
The Ulam sawtooth map restricted to the fundamental domain; pieces of the global map (a)
are reflected into the upper right quadrant. (d) Boundary fixed point C maps into the fixed
point c, symmetric 2-cycle LR maps into fixed point s, and the asymmetric fixed point pair
{L,R} maps into a single fixed point r, (e) the asymmetric 2-cycles pair {LC,CR} maps
into a single 2-cycle cr.
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Asymmetric cycles: A periodic orbits is not symmetric if {xa} ∩ {Cxa} = ∅,
where {xa} is the set of periodic points belonging to the cycle a. ThusC generates
a second orbit with the same number of points and the same stability properties.
Both orbits give the same contribution to the first term and no contribution
to the second term in (15.1); as they are degenerate, the prefactor 1/2 cancels.
Resumming as in the derivation of (10.13) we find that asymmetric orbits yield
the same contribution to the symmetric and the antisymmetric subspaces:

det (1 − L±)a =
∏
a

∞∏
k=0

(
1 − ta

Λk
a

)
, ta =

zna

|Λa|
.

Symmetric cycles: A cycle s is reflection symmetric if operating with C on the
set of cycle points reproduces the set. The period of a symmetric cycle is always
even (ns = 2ns̃) and the mirror image of the xs cycle point is reached by traversing
the irreducible segment s̃ of length ns̃, fns̃(xs) = Cxs. δ(x − fn(x)) picks up 2ns̃

contributions for every even traversal, n = rns̃, r even, and δ(x + fn(x)) for
every odd traversal, n = rns̃, r odd. Absorb the group-theoretic prefactor in
the stability eigenvalue by defining Λs̃ = −Dfns̃(xs), where Dfns̃(xs) is the
stability computed for a segment of length ns̃. Restricting the integration to the
infinitesimal neighborhood of the s cycle, we obtain the contribution to trLn±:

zntrLn
± →

∫
Vs

dx zn
1
2

(δ(x − fn(x)) ± δ(x + fn(x)))

= ns̃

(
even∑
r=2

δn,rns̃
trs̃

1 − 1/Λr
s̃

±
odd∑
r=1

δn,rns̃
trs̃

1 − 1/Λr
s̃

)

= ns̃

∞∑
r=1

δn,rns̃
(±ts̃)r

1 − 1/Λr
s̃

.

Substituting all symmetric cycles s into det (1 − L±) and resumming we obtain:

det (1 − L±)s̃ =
∏
s̃

∞∏
k=0

(
1 ∓ ts̃

Λk
s̃

)

Boundary cycles: In the example at hand there is only one cycle which is nei-
ther symmetric nor antisymmetric, but lies on the boundary of the fundamental
domain, the fixed point at the origin. Such cycle contributes simultaneously to
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both δ(x − fn(x)) and δ(x + fn(x)):

zntrLn
± →

∫
Vb

dx zn
1
2

(δ(x − fn(x)) ± δ(x + fn(x)))

=
∞∑
r=1

δn,r t
r
b

1
2

(
1

1 − 1/Λr
b

± 1
1 + 1/Λr

b

)

zn trLn
+ →

∞∑
r=1

δn,r
trb

1 − 1/Λ2rb
; zn trLn

− →
∞∑
r=1

δn,r
1

Λr
b

trb
1 − 1/Λ2rb

.

Boundary orbit contributions to the factorized spectral determinants follow by
resummation:

det (1 − L+)b =
∞∏
k=0

(
1 − tb

Λ2kb

)
, det (1 − L−)b =

∞∏
k=0

(
1 − tb

Λ2k+1b

)

Only even derivatives contribute to the symmetric subspace (and odd to the
antisymmetric subspace) because the orbit lies on the boundary.

Finally, the symmetry reduced spectral determinants follow by collecting the
above results:

F+(z) =
∏
a

∞∏
k=0

(
1 − ta

Λk
a

)∏
s̃

∞∏
k=0

(
1 − ts̃

Λk
s̃

) ∞∏
k=0

(
1 − tb

Λ2kb

)

F−(z) =
∏
a

∞∏
k=0

(
1 − ta

Λk
a

)∏
s̃

∞∏
k=0

(
1 +

ts̃

Λk
s̃

) ∞∏
k=0

(
1 − tb

Λ2k+1b

)
(15.2)

We shall work out the symbolic dynamics of such reflection symmetric systems in
some detail in sect. 15.5. As reflection symmetry is essentially the only discrete
symmetry that a map of the interval can have, this example completes the group-
theoretic factorization of determinants and zeta functions for 1-d maps. We now
turn to discussion of the general case.15.1

on p. 325

15.2 Discrete symmetries

A dynamical system is invariant under a symmetry group G = {e, g2, . . . , g|G|}
if the equations of motion are invariant under all symmetries g ∈ G. For a map
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xn+1 = f(xn) and the evolution operator L(y, x) defined by (??) this means

f(x) = g−1f(gx)
L(y, x) = L(gy,gx) . (15.3)

Bold face letters for group elements indicate a suitable representation on phase
space. For example, if a 2-dimensional map has the symmetry x1 → −x1, x2 →
−x2, the symmetry group G consists of the identity and C, a rotation by π around
the origin. The map f must then commute with rotations by π, f(Cx) = Cf(x),
with C given by the [2 × 2] matrix

C =
(

−1 0
0 −1

)
. (15.4)

C satisfies C2 = e and can be used to decompose the phase space into mu-
tually orthogonal symmetric and antisymmetric subspaces by means of projec-
tion operators (15.1). More generally the projection operator onto the α irre-
ducible subspace of dimension dα is given by Pα = (dα/|G|)

∑
χα(h)h−1, where

χα(h) = trDα(h) are the group characters, and the transfer operator L splits
into a sum of inequivalent irreducible subspace contributions

∑
α trLα,

Lα(y, x) =
dα
|G|
∑
h∈G

χα(h)L(h−1y, x) . (15.5)

The prefactor dα in the above reflects the fact that a dα-dimensional representa-
tion occurs dα times.

15.2.1 Cycle degeneracies

If g ∈ G is a symmetry of the dynamical problem, the weight of a cycle p and the
weight of its image under a symmetry transformation g are equal, tgp = tp. The
number of degenerate cycles (topologically distinct, but mapped into each other
by symmetry transformations) depends on the cycle symmetries. Associated with
a given cycle p is a maximal subgroup Hp ⊆ G, Hp = {e, b2, b3, . . . , bh} of order hp,
whose elements leave p invariant. The elements of the quotient space b ∈ G/Hp

generate the degenerate cycles bp, so the multiplicity of a degenerate cycle is
mp = g/hp.

Taking into account these degeneracies, the Euler product (10.13) takes the
form ∏

p

(1 − tp) =
∏
p̂

(1 − tp̂)mp̂ . (15.6)
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Figure 15.2: The symmetries of three disks on
an equilateral triangle. The fundamental domain is
indicated by the shaded wedge.

Here p̂ is one of the mp degenerate cycles, picked to serve as the label for the
entire class. Our labelling convention is usually lexical, i.e., we label a cycle p by
the cycle point whose label has the lowest value, and we label a class of degenerate
cycles by the one with the lowest label p̂. In what follows we shall drop the hat
in p̂ when it is clear from the context that we are dealing with symmetry distinct
classes of cycles.

15.2.2 Example: C3v invariance

An illustration of the above is afforded by C3v, the group of symmetries of a
game of pinball with three equal size, equally spaced disks, fig. 15.2. The group
consists of the identity element e, three reflections across axes {σ12, σ23, σ13}, and
two rotations by 2π/3 and 4π/3 denoted {C3, C23}, so its dimension is g = 6. On
the disk labels {1, 2, 3} these symmetries act as permutations which map cycles
into cycles. For example, the flip across the symmetry axis going through disk 1
interchanges the symbols 2 and 3; it maps the cycle 12123 into 13132, fig. 1.4a.

The subgroups of C3v are Cv, consisting of the identity and any one of the
reflections, of dimension h = 2, and C3 = {e, C3, C23}, of dimension h = 3, so
possible cycle multiplicities are g/h = 2, 3 or 6.

The C3 subgroup invariance is exemplified by the cycles 123 and 132 which
are invariant under rotations by 2π/3 and 4π/3, but are mapped into each other
by any reflection, fig. 1.4b; Hp = {e, C3, C23}, and the degeneracy is g/hc3 = 2.

The Cv type of a subgroup is exemplified by the invariances of p̂ = 1213. This
cycle is invariant under reflection σ23{1213} = 1312 = 1213, so the invariant
subgroup is Hp̂ = {e, σ23}. Its order is hCv = 2, so the degeneracy is mp̂ =
g/hCv = 3; the cycles in this class, 1213, 1232 and 1323, are related by 2π/3
rotations, fig. 1.4(c).

A cycle of no symmetry, such as 12123, has Hp = {e} and contributes in all
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six terms (the remaining cycles in the class are 12132, 12313, 12323, 13132 and
13232), fig. 1.4a.

Besides the above discrete symmetries, for Hamiltonian systems cycles may
be related by time reversal symmetry. An example are the cycles 121212313 and
121212323 = 313212121 which are related by no space symmetry (fig. 1.4(d)).

The Euler product (10.13) for the C3v symmetric 3-disk problem is given in
(11.31).

15.3 Dynamics in the fundamental domain

So far we have used the discrete symmetry to effect a reduction in the number of
independent cycles in cycle expansions. The next step achieves much more: the
symmetries can be used to restrict all computations to a fundamental domain.
We show here that to each global cycle p corresponds a fundamental domain
cycle p̃. Conversely, each fundamental domain cycle p̃ traces out a segment of
the global cycle p, with the end point of the cycle p̃ mapped into the irreducible
segment of p with the group element hp̃.

An important effect of a discrete symmetry is that it tesselates the phase space
into copies of a fundamental domain, and thus induces a natural partition of phase
space. The group elements g = {a, b, · · · , d} which map the fundamental domain
M̃ into its copies gM̃ , can double in function as letters of a symbolic dynamics
alphabet. If the dynamics is symmetric under interchanges of disks, the absolute
disk labels εi = 1, 2, · · · , N can be replaced by the symmetry-invariant relative
disk→disk increments gi, where gi is the discrete group element that maps disk
i − 1 into disk i. We demonstrate the reduction for a series of specific examples
in sect. 15.4. An immediate gain arising from symmetry invariant relabelling is
that N -disk symbolic dynamics becomes (N −1)-nary, with no restrictions on the
admissible sequences. However, the main gain is in the close connection between
the symbol string symmetries and the phase space symmetries which will aid
us in the dynamical zeta function factorizations. Once the connection between
the full space and the reduced space is established, working in the fundamental
domain (ie., with irreducible segments) is so much simpler that we never use the
full space orbits in actual computations.

If the dynamics is invariant under a discrete symmetry, the phase space M
can be completely tiled by the fundamental domain M̃ and its images aM̃ , bM̃ ,
. . . under the action of the symmetry group G = {e, a, b, . . .},

M =
∑
a∈G

Ma =
∑
a∈G

aM̃ .
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In the above example (15.4) with symmetry group G = {e, C}, the phase space
M = {x1-x2 plane} can be tiled by a fundamental domain M̃ = {half-plane x1 ≥
0}, and CM̃ = {half-plane x1 ≤ 0}, its image under rotation by π.

If the space M is decomposed into g tiles, a function φ(x) over M splits into
a g-dimensional vector φa(x) defined by φa(x) = φ(x) if x ∈ Ma, φa(x) = 0
otherwise. Let h = ab−1 conflicts with be the symmetry operation that maps the
endpoint domain Mb into the starting point domain Ma, and let D(h)ba, the left
regular representation, be the [g × g] matrix whose b, a-th entry equals unity if
a = hb and zero otherwise; D(h)ba = δbh,a. Since the symmetries act on phase
space as well, the operation h enters in two guises: as a [g×g] matrix D(h) which
simply permutes the domain labels, and as a [d × d] matrix representation h of
a discrete symmetry operation on the d phase-space coordinates. For instance,
in the above example (15.4) h ∈ C2 and D(h) can be either the identity or the
interchange of the two domain labels,

D(e) =
(

1 0
0 1

)
, D(C) =

(
0 1
1 0

)
. (15.7)

Note that D(h) is a permutation matrix, mapping a tile Ma into a different
tile Mha �= Ma if h �= e. Consequently only D(e) has diagonal elements, and
trD(h) = gδh,e. However, the phase-space transformation h �= e leaves invariant
sets of boundary points; for example, under reflection σ across a symmetry axis,
the axis itself remains invariant. The boundary periodic orbits that belong to
such point-wise invariant sets will require special care in trL evaluations.

One can associate to the evolution operator (??) a [g × g] matrix evolution
operator defined by

Lba(y, x) = D(h)baL(y, x) ,

if x ∈ Ma and y ∈ Mb, and zero otherwise. Now we can use the invariance
condition (15.3) to move the starting point x into the fundamental domain x =
ax̃, L(y, x) = L(a−1y, x̃), and then use the relation a−1b = h−1 to also relate the
endpoint y to its image in the fundamental domain, L̃(ỹ, x̃) := L(h−1ỹ, x̃). With
this operator which is restricted to the fundamental domain, the global dynamics
reduces to

Lba(y, x) = D(h)baL̃(ỹ, x̃) .

While the global trajectory runs over the full space M , the restricted trajectory is
brought back into the fundamental domain M̃ any time it crosses into adjoining
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tiles; the two trajectories are related by the symmetry operation h which maps
the global endpoint into its fundamental domain image.

Now the traces (10.3) required for the evaluation of the eigenvalues of the
transfer operator can be evaluated on the fundamental domain alone

trL =
∫
M

dxL(x, x) =
∫
M̃

dx̃
∑
h

trD(h) L(h−1x̃, x̃) (15.8)

The fundamental domain integral
∫
dx̃ L(h−1x̃, x̃) picks up a contribution from

every global cycle (for which h = e), but it also picks up contributions from
shorter segments of global cycles. The permutation matrix D(h) guarantees by
the identity trD(h) = 0, h �= e, that only those repeats of the fundamental
domain cycles p̃ that correspond to complete global cycles p contribute. Compare,
for example, the contributions of the 12 and 0 cycles of fig. 7.3. trD(h)L̃ does not
get a contribution from the 0 cycle, as the symmetry operation that maps the first
half of the 12 into the fundamental domain is a reflection, and trD(σ) = 0. In
contrast, σ2 = e, trD(σ2) = 6 insures that the repeat of the fundamental domain
fixed point tr (D(h)L̃)2 = 6t20, gives the correct contribution to the global trace
trL2 = 3 · 2t12.

Let p be the full orbit, p̃ the orbit in the fundamental domain and hp̃ an
element of Hp, the symmetry group of p. Restricting the volume integrations to
the infinitesimal neighborhoods of the cycles p and p̃, respectively, and performing
the standard resummations, we obtain the identity

(1 − tp)mp = det (1 − D(hp̃)tp̃) , (15.9)

valid cycle by cycle in the Euler products (10.13) for det (1−L). Here “det” refers
to the [g × g] matrix representation D(hp̃); as we shall see, this determinant can
be evaluated in terms of standard characters, and no explicit representation of
D(hp̃) is needed. Finally, if a cycle p is invariant under the symmetry subgroup
Hp ⊆ G of order hp, its weight can be written as a repetition of a fundamental
domain cycle

tp = t
hp
p̃ (15.10)

computed on the irreducible segment that coresponds to a fundamental domain
cycle. For example, in fig. 7.3 we see by inspection that t12 = t20 and t123 = t31.
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15.3.1 Boundary orbits

Before we can turn to a presentation of the factorizations of dynamical zeta func-
tions for the different symmetries we have to discuss an effect that arises for
orbits that run on a symmetry line that borders a fundamental domain. In our
3-disk example, no such orbits are possible, but they exist in other systems, such
as in the bounded region of the Hénon-Heiles potential and in 1-d maps. For
the symmetrical 4-disk billiard, there are in principle two kinds of such orbits,
one kind bouncing back and forth between two diagonally opposed disks and the
other kind moving along the other axis of reflection symmetry; the latter exists for
bounded systems only. While there are typically very few boundary orbits, they
tend to be among the shortest orbits, and their neglect can seriously degrade the
convergence of cycle expansions, as those are dominated by the shortest cycles.

While such orbits are invariant under some symmetry operations, their neigh-
borhoods are not. This affects the stability matrix Jp of the linearization per-
pendicular to the orbit and thus the eigenvalues. Typically, e.g. if the symmetry
is a reflection, some eigenvalues of Jp change sign. This means that instead of
a weight 1/det (1− Jp) as for a regular orbit, boundary cycles also pick up con-
tributions of form 1/det (1− hJp), where h is a symmetry operation that leaves
the orbit pointwise invariant; see for example sect. 15.1.2.

Consequences for the dynamical zeta function factorizations are that some-
times a boundary orbit does not contribute. A derivation of a dynamical zeta
function (10.13) from a determinant like (10.10) usually starts with an expansion
of the determinants of the Jacobian. The leading order terms just contain the
product of the expanding eigenvalues and lead to the dynamical zeta function
(10.13). Next to leading order terms contain products of expanding and con-
tracting eigenvalues and are sensitive to their signs. Clearly, the weights tp in the
dynamical zeta function will then be affected by reflections in the Poincaré sur-
face of section perpendicular to the orbit. In all our applications it was possible
to implement these effects by the following simple prescription.

If an orbit is invariant under a little group Hp = {e, b2, . . . , bh}, then the
corresponding group element in (15.9) will be replaced by a projector. If the
weights are insensitive to the signs of the eigenvalues, then this projector is

gp =
1
h

h∑
i=1

bi . (15.11)

In the cases that we have considered, the change of sign may be taken into account
by defining a sign function εp(g) = ±1, with the “-” sign if the symmetry element
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g flips the neigborhood. Then (15.11) is replaced by

gp =
1
h

h∑
i=1

ε(bi) bi . (15.12)

We illustrate the above in sect. 15.1.2 by working out the full factorization for
the 1-dimensional reflection symmetric maps.

15.4 Factorizations of dynamical zeta functions

In the above we have shown that a discrete symmetry induces degeneracies among
periodic orbits and decomposes periodic orbits into repetitions of irreducible seg-
ments; this reduction to a fundamental domain furthermore leads to a convenient
symbolic dynamics compatible with the symmetry, and, most importantly, to a
factorization of dynamical zeta functions. This we now develop, first in a general
setting and then for specific examples.

15.4.1 Factorizations of dynamical dynamical zeta functions

According to (15.9) and (15.10), the contribution of a degenerate class of global
cycles (cycle p with multiplicity mp = g/hp) to a dynamical zeta function is given
by the corresponding fundamental domain cycle p̃:

(1 − t
hp
p̃ )g/hp = det (1 − D(hp̃)tp̃) (15.13)

Let D(h) =
⊕

α dαDα(h) be the decomposition of the matrix representation D(h)
into the dα dimensional irreducible representations α of a finite group G. Such
decompositions are block-diagonal, so the corresponding contribution to the Euler
product (10.10) factorizes as

det (1 − D(h)t) =
∏
α

det (1 − Dα(h)t)dα , (15.14)

where now the product extends over all distinct dα-dimensional irreducible rep-
resentations, each contributing dα times. For the cycle expansion purposes, it
has been convenient to emphasize that the group-theoretic factorization can be
effected cycle by cycle, as in (15.13); but from the transfer operator point of
view, the key observation is that the symmetry reduces the transfer operator to
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a block diagonal form; this block diagonalization implies that the dynamical zeta
functions (10.13) factorize as

1
ζ

=
∏
α

1
ζdαα

,
1
ζα

=
∏
p̃

det (1 − Dα(hp̃)tp̃) . (15.15)

Determinants of d-dimensional irreducible representations can be evaluated
using the expansion of determinants in terms of traces,

det (1 + M) = 1 + trM +
1
2
(
(trM)2 − trM2

)
+

1
6
(
(trM)3 − 3 (trM)(trM2) + 2 trM3

)
+ · · · +

1
d!

(
(trM)d − · · ·

)
, (15.16)

(see (F.23), for example) and each factor in (15.14) can be evaluated by looking up
the characters χα(h) = trDα(h) in standard tables [14]. In terms of characters,
we have for the 1-dimensional representations

det (1 − Dα(h)t) = 1 − χα(h)t ,

for the 2-dimensional representations

det (1 − Dα(h)t) = 1 − χα(h)t +
1
2
(
χα(h)2 − χα(h2)

)
t2,

and so forth.

In the fully symmetric subspace trDA1(h) = 1 for all orbits; hence a straight-
forward fundamental domain computation (with no group theory weights) always
yields a part of the full spectrum. In practice this is the most interesting sub-
spectrum, as it contains the leading eigenvalue of the transfer operator.15.2

on p. 325

15.4.2 Factorizations of spectral determinants

Factorization of the full spectral determinant (10.3) proceeds in essentially the
same manner as the factorization of dynamical zeta functions outlined above.
By (15.5) and (15.8) the trace of the transfer operator L splits into the sum of
inequivalent irreducible subspace contributions

∑
α trLα, with

trLα = dα
∑
h∈G

χα(h)
∫
M̃

dx̃L(h−1x̃, x̃) .

∼DasBuch/book/chapter/symm.tex 8aug2000 printed August 24, 2000



15.5. C2 FACTORIZATIONS 317

This leads by standard manipulations to the factorization of (10.10) into

F (z) =
∏
α

Fα(z)dα

Fα(z) = exp

−
∑
p̃

∞∑
r=1

1
r

χα(hr
p̃)z

np̃r

|det
(
1− J̃rp̃

)
|

 , (15.17)

where J̃p̃ = hp̃Jp̃ is the fundamental domain Jacobian. Boundary orbits require
special treatment, discussed in sect. 15.3.1, with examples given in the next sec-
tion as well as in the specific factorizations discussed below.

The factorizations (15.15), (15.17) are the central formulas of this chapter.
We now work out the group theory factorizations of cycle expansions of dynam-
ical zeta functions for the cases of C2 and C3v symmetries. The cases of the C2v,
C4v symmetries are worked out in appendix D below.

15.5 C2 factorizations

As the simplest example of implementing the above scheme consider the C2 sym-
metry. For our purposes, all that we need to know here is that each orbit or
configuration is uniquely labelled by an infinite string {si}, si = +,− and that
the dynamics is invariant under the + ↔ − interchange, i.e., it is C2 symmetric.
The C2 symmetry cycles separate into two classes, the self-dual configurations
+−, + + −−, + + + − −−, + − − + − + +−, · · ·, with multiplicity mp = 1,
and the asymmetric configurations +, −, + + −, − − +, · · ·, with multiplicity
mp = 2. For example, as there is no absolute distinction between the “up” and
the “down” spins, or the “left” or the “right” lobe, t+ = t−, t++− = t+−−, and
so on. 15.5

on p. 326

The symmetry reduced labelling ρi ∈ {0, 1} is related to the standard si ∈
{+,−} Ising spin labelling by

If si = si−1 then ρi = 1
If si �= si−1 then ρi = 0 (15.18)

For example, + = · · · + + + + · · · maps into · · · 111 · · · = 1 (and so does −),
−+ = · · ·−+−+ · · · maps into · · · 000 · · · = 0, − + +− = · · ·−−++−−++ · · ·
maps into · · · 0101 · · · = 01, and so forth. A list of such reductions is given in
table 15.1.
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p̃ p mp

1 + 2
0 −+ 1
01 − − ++ 1
001 − + + 2
011 − − − + ++ 1
0001 − + − − + − ++ 1
0011 − + ++ 2
0111 − − − − + + ++ 1
00001 − + − + − 2
00011 − + − − − + − + ++ 1
00101 − + + − − + − − ++ 1
00111 − + − − − + − + ++ 1
01011 − − + + + 2
01111 − − − − − + + + ++ 1
001011 − + + − − − + − − + ++ 1
001101 − + + + − − + − − − ++ 1

Table 15.1: Correspondence between the C2 symmetry reduced cycles p̃ and the standard
Ising model periodic configurations p, together with their multiplicities mp. Also listed are
the two shortest cycles (length 6) related by time reversal, but distinct under C2.

Depending on the maximal symmetry group Hp that leaves an orbit p invari-
ant (cf. sects. 15.2 and 15.3), the contributions to the dynamical zeta function
factor as

A1 A2

Hp = {e} : (1 − tp̃)2 = (1 − tp̃)(1 − tp̃)
Hp = {e, σ} : (1 − t2p̃) = (1 − tp̃)(1 + tp̃) , (15.19)

For example:

H++− = {e} : (1 − t++−)2 = (1 − t001)(1 − t001)
H+− = {e, σ} : (1 − t+−) = (1 − t0) (1 + t0), t+− = t20

This yields two binary expansions. The A1 subspace dynamical zeta function is
given by the standard binary expansion (11.5). The antisymmetric A2 subspace
dynamical zeta function ζA2 differs from ζA1 only by a minus sign for cycles with
an odd number of 0’s:

1/ζA2 = (1 + t0)(1 − t1)(1 + t10)(1 − t100)(1 + t101)(1 + t1000)
(1 − t1001)(1 + t1011)(1 − t10000)(1 + t10001)
(1 + t10010)(1 − t10011)(1 − t10101)(1 + t10111) . . .

= 1 + t0 − t1 + (t10 − t1t0) − (t100 − t10t0) + (t101 − t10t1)
−(t1001 − t1t001 − t101t0 + t10t0t1) − . . . . . . (15.20)
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Note that the group theory factors do not destroy the curvature corrections (the
cycles and pseudo cycles are still arranged into shadowing combinations).

If the system under consideration has a boundary orbit (cf. sect. 15.3.1) with
group-theoretic factor hp = (e+ σ)/2, the boundary orbit does not contribute to
the antisymmetric subspace

A1 A2

boundary: (1 − tp) = (1 − tp̃)(1 − 0tp̃) (15.21)

This is the 1/ζ part of the boundary orbit factorization of sect. 15.1.2.

15.6 C3v factorization: 3-disk game of pinball

The next example, the C3v symmetry, can be worked out by a glance at fig. 7.3a.
For the symmetric 3-disk game of pinball the fundamental domain is bounded by
a disk segment and the two adjacent sections of the symmetry axes that act as
mirrors (see fig. 7.3b). The three symmetry axes divide the space into six copies of
the fundamental domain. Any trajectory on the full space can be pieced together
from bounces in the fundamental domain, with symmetry axes replaced by flat
mirror reflections. The binary {0, 1} reduction of the ternary three disk {1, 2, 3}
labels has a simple geometric interpretation: a collision of type 0 reflects the
projectile to the disk it comes from (back–scatter), whereas after a collision of
type 1 projectile continues to the third disk. For example, 23 = · · · 232323 · · ·
maps into · · · 000 · · · = 0 (and so do 12 and 13), 123 = · · · 12312 · · · maps into
· · · 111 · · · = 1 (and so does 132), and so forth. A list of such reductions for short
cycles is given in table 7.2.

C3v has two one-dimensional irreducible representations, symmetric and an-
tisymmetric under reflections, denoted A1 and A2, and a pair of degenerate two-
dimensional representations of mixed symmetry, denoted E. The contribution of
an orbit with symmetry g to the 1/ζ Euler product (15.14) factorizes according
to

det (1−D(h)t) = (1 − χA1(h)t) (1 − χA2(h)t)
(
1 − χE(h)t + χA2(h)t2

)2 (15.22)

with the three factors contributing to the C3v irreducible representations A1,
A2 and E, respectively, and the 3-disk dynamical zeta function factorizes into
ζ = ζA1ζA2ζ

2
E . Substituting the C3v characters [14]
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C3v A1 A2 E
e 1 1 2

C3, C
2
3 1 1 −1

σv 1 −1 0

into (15.22), we obtain for the three classes of possible orbit symmetries (indicated
in the first column)

hp̃ A1 A2 E

e : (1 − tp̃)6 = (1 − tp̃)(1 − tp̃)(1 − 2tp̃ + t2p̃)
2

C3, C
2
3 : (1 − t3p̃)

2 = (1 − tp̃)(1 − tp̃)(1 + tp̃ + t2p̃)
2

σv : (1 − t2p̃)
3 = (1 − tp̃)(1 + tp̃)(1 + 0tp̃ − t2p̃)

2. (15.23)

where σv stands for any one of the three reflections.

The Euler product (10.13) on each irreducible subspace follows from the fac-
torization (15.23). On the symmetric A1 subspace the ζA1 is given by the standard
binary curvature expansion (11.5). The antisymmetric A2 subspace ζA2 differs
from ζA1 only by a minus sign for cycles with an odd number of 0’s, and is given
in (15.20). For the mixed-symmetry subspace E the curvature expansion is given
by

1/ζE = (1 + zt1 + z2t21)(1 − z2t20)(1 + z3t100 + z6t2100)(1 − z4t210)
(1 + z4t1001 + z8t21001)(1 + z5t10000 + z10t210000)
(1 + z5t10101 + z10t210101)(1 − z5t10011)2 . . .

= 1 + zt1 + z2(t21 − t20) + z3(t001 − t1t
2
0)

+z4
[
t0011 + (t001 − t1t

2
0)t1 − t201

]
+z5

[
t00001 + t01011 − 2t00111 + (t0011 − t201)t1 + (t21 − t20)t100

]
+ · · ·(15.24)

We have reinserted the powers of z in order to group together cycles and pseu-
docycles of the same length. Note that the factorized cycle expansions retain
the curvature form; long cycles are still shadowed by (somewhat less obvious)
combinations of pseudocycles.

Refering back to the topological polynomial (9.27) obtained by setting tp = 1,
we see that its factorization is a consequence of the C3v factorization of the ζ
function:

1/ζA1 = 1 − 2z , 1/ζA2 = 1 , 1/ζE = 1 + z , (15.25)

as obtained from (11.5), (15.20) and (15.24) for tp = 1.
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Their symmetry is K = {e, σ}, so according to (15.11), they pick up the
group-theoretic factor hp = (e+ σ)/2. If there is no sign change in tp, then
evaluation of det (1 − e+σ

2 tp̃) yields

A1 A2 E

boundary: (1 − tp)3 = (1 − tp̃)(1 − 0tp̃)(1 − tp̃)2 , tp = tp̃ . (15.26)

However, if the cycle weight changes sign under reflection, tσp̃ = −tp̃, the bound-
ary orbit does not contribute to the subspace symmetric under reflection across
the orbit;

A1 A2 E

boundary: (1 − tp)3 = (1 − 0tp̃)(1 − tp̃)(1 − tp̃)2 , tp = tp̃ . (15.27)

Commentary

Remark 15.1 Some examples of systems with discrete symmetries. This
chapter is based on ref. [1]. One has a C2 symmetry in the Lorenz sys-
tem [1, 15], the Ising model, and in the 3-dimensional anisotropic Ke-
pler potential [25, 42, 43], a C3v symmetry in Hénon-Heiles type poten-
tials [2, 6, 7, 5], a C4v symmetry in quartic oscillators [9, 10], in the pure
x2y2 potential [11, 12] and in hydrogen in a magnetic field [13], and a
C2v = C2 × C2 symmetry in the stadium billiard [4]. A very nice appli-
cation of the symmetry factorization is carried out in ref. [8].

Remark 15.2 Who did it? This chapter is based on long collabora-
tive effort with B. Eckhardt, ref. [1]. The group-theoretic factorizations of
dynamical zeta functions that we develop here were first introduced and
applied in ref. [10]. They are closely related to the symmetrizations intro-
duced by Gutzwiller [25] in the context of the semiclassical periodic orbit
trace formulas, put into more general group-theoretic context by Robbins [4],
whose exposition, together with Lauritzen’s [5] treatment of the boundary
orbits, has influenced the presentation given here. A related group-theoretic
decomposition in context of hyperbolic billiards was utilized in ref. [8].

Remark 15.3 Computations The techniques of this chapter have been
applied to computations of the 3-disk classical and quantum spectra in
refs. [2, 7], and to a “Zeeman effect” pinball and the x2y2 potentials in
refs. [3, 11]. In a larger perspective, the factorizations developed above
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are special cases of a general approach to exploiting the group-theoretic in-
variances in spectra computations, such as those used in enumeration of
periodic geodesics [8, 8, 15] for hyperbolic billiards [23] and Selberg zeta
functions [27].

Remark 15.4 Other symmetries. In addition to the symmetries ex-
ploited here, time reversal symmetry and a variety of other non-trivial dis-
crete symmetries can induce further relations among orbits; we shall point
out several of examples of cycle degeneracies under time reversal. We do not
know whether such symmetries can be exploited for further improvements
of cycle expansions.

Remark 15.5 Cycles and symmetries. We conclude this section with
a few comments about the role of symmetries in actual extraction of cycles.
In the example at hand, the N -disk billiard systems, a fundamental domain
is a sliver of the N -disk configuration space delineated by a pair of adjoining
symmetry axes, with the directions of the momenta indicated by arrows.
The flow may further be reduced to a return map on a Poincaré surface
of section, on which an appropriate transfer operator may be constructed.
While in principle any Poincaré surface of section will do, a natural choice
in the present context are crossings of symmetry axes.

In actual numerical integrations only the last crossing of a symmetry
line needs to be determined. The cycle is run in global coordinates and the
group elements associated with the crossings of symmetry lines are recorded;
integration is terminated when the orbit closes in the fundamental domain.
Periodic orbits with non-trivial symmetry subgroups are particularly easy
to find since their points lie on crossings of symmetry lines.

Remark 15.6 C2 symmetry The C2 symmetry arises, for example, in
the Lorenz system [15], in the 3-dimensional anisotropic Kepler problem [25,
42, 43] or in the cycle expansions treatments of the Ising model [68].

Remark 15.7 Hénon-Heiles potential An example of a system with
C3v symmetry is provided by the motion of a particle in the Hénon-Heiles
potential [2]

V (r, θ) =
1
2
r2 +

1
3
r3 sin(3θ) .

Our coding is not directly applicable to this system because of the existence
of elliptic islands and because the three orbits that run along the symmetry
axis cannot be labelled in our code. However, since these orbits run along
the boundary of the fundamental domain, they require the special treatment
discussed in sect. 15.3.1.
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Résumé

If a dynamical system has a discrete symmetry, the symmetry should be exploited;
much is gained, both in understanding of the spectra and ease of their evalua-
tion. Once this is appreciated, it is hard to conceive of a calculation without
factorization; it would correspond to quantum mechanical calculations without
wave–function symmetrizations.

Reduction to the fundamental domain simplifies symbolic dynamics and elimi-
nates symmetry induced degeneracies. While the resummation of the theory from
the trace sums to the cycle expansions does not reduce the exponential growth in
number of cycles with the cycle length, in practice only the short orbits are used,
and for them the labor saving is dramatic. For example, for the 3-disk game of
pinball there are 256 periodic points of length 8, but reduction to the fundamen-
tal domain non-degenerate prime cycles reduces the number of the distinct cycles
of length 8 to 30.

In addition, cycle expansions of the symmetry reduced dynamical zeta func-
tions converge dramatically faster than the unfactorized dynamical zeta func-
tions. One reason is that the unfactorized dynamical zeta function has many
closely spaced zeros and zeros of multiplicity higher than one; since the cycle
expansion is a polynomial expansion in topological cycle length, accomodating
such behavior requires many terms. The dynamical zeta functions on separate
subspaces have more evenly and widely spaced zeros, are smoother, do not have
symmetry-induced multiple zeros, and fewer cycle expansion terms (short cycle
truncations) suffice to determine them. Furthermore, the cycles in the fundamen-
tal domain sample phase space more densely than in the full space. For example,
for the 3-disk problem, there are 9 distinct (symmetry unrelated) cycles of length
7 or less in full space, corresponding to 47 distinct periodic points. In the funda-
mental domain, we have 8 (distinct) periodic orbits up to length 4 and thus 22
different periodic points in 1/6-th the phase space, i.e., an increase in density by
a factor 3 with the same numerical effort.

We emphasize that the symmetry factorization (15.23) of the dynamical zeta
functionis intrinsic to the classical dynamics, and not a special property of quan-
tal spectra. The factorization is not restricted to the Hamiltonian systems, or
only to the configuration space symmetries; for example, the discrete symmetry
can be a symmetry of the Hamiltonian phase space [4]. In conclusion, the mani-
fold advantages of the symmetry reduced dynamics should thus be obvious; full
space cycle expansions, such as those of exercise 11.8, are useful only for cross
checking purposes.

References
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[15.1] P. Cvitanović and B. Eckhardt, “Symmetry decomposition of chaotic dynamics”,
Nonlinearity 6, 277 (1993).

[15.2] M. Henón and C. Heiles, J. Astron. 69, 73 (1964).

[15.3] G. Russberg, (in preparation)

[15.4] J.M. Robbins, Phys. Rev. A 40, 2128 (1989).

[15.5] B. Lauritzen, Discrete symmetries and the periodic-orbit expansions, Phys. Rev.
A 43 603, (1991).

[15.6] C. Jung and H.J. Scholz, J. Phys. A 20, 3607 (1987).

[15.7] C. Jung and P. Richter, J. Phys. A 23, 2847 (1990).

[15.8] N. Balasz and A. Voros, Phys. Rep. 143, 109 (1986).

[15.9] B. Eckhardt, G. Hose and E. Pollak, Phys. Rev. A 39, 3776 (1989).

[15.10] C. C. Martens, R. L. Waterland, and W. P. Reinhardt, J. Chem. Phys. 90, 2328
(1989).

[15.11] S.G. Matanyan, G.K. Savvidy, and N.G. Ter-Arutyunyan-Savvidy, Sov. Phys.
JETP 53, 421 (1981).

[15.12] A. Carnegie and I. C. Percival, J. Phys. A 17, 801 (1984).

[15.13] B. Eckhardt and D. Wintgen, J. Phys. B 23, 355 (1990).

[15.14] M. Hamermesh, Group Theory and its Application to Physical Problems
(Addison-Wesley, Reading, 1962).

[15.15] G. Ott and G. Eilenberger, private communication.

∼DasBuch/book/chapter/refsSymm.tex 15jan99 printed August 24, 2000



EXERCISES 325

Exercises

15.1 Sawtooth map desymmetrization. Work out the some of the short-
est global cycles of different symmetries and fundamental domain cycles for the
sawtooth map of fig. 15.1. Compute the dynamical zeta function and the spectral
determinant of the Perron-Frobenius operator for this map; check explicitely the
factorization (15.2).

15.2 2-d asymmetric representation. The above expressions can some-
times be simplified further using standard group-theoretical methods. For example, the
1
2

(
(trM)2 − trM2

)
term in (15.16) is the trace of the antisymmetric part of the M ×M

Kronecker product; if α is a 2-dimensional representation, this is the A2 antisymmetric
representation, so

2-dim: det (1 − Dα(h)t) = 1 − χα(h)t + χA2(h)t2. (15.28)

15.3 3-disk desymmetrization.

a) Work out the 3-disk symmetry factorization for the 0 and 1 cycles, i.e. which
symmetry do they have, what is the degeneracy in full space and how do
they factorize (how do they look in the A1, A2 and the E representations).

b) Find the shortest cycle with no symmetries and factorize it like in a)

c) Find the shortest cycle that has the property that its time reversal is not
described by the same symbolic dynamics.

d) Compute the dynamical zeta functions and the spectral determinants (sym-
bolically) in the three representations; check the factorizations (15.15) and
(15.17).

(Per Rosenqvist)
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15.4 The group C3v. We will compute a few of the properties of the group
C3v, the group of symmetries of an equilateral triangle

1

2  3

(a) All discrete groups are isomorphic to a permutation group or one of its
subgroups, and elements of the permutation group can be expressed as
cycles. Express the elements of the group C3v as cycles. For example, one
of the rotations is (123), meaning that vertex 1 maps to 2 and 2 to 3 and
3 to 1.

(b) Find the subgroups of the group C3v.

(c) Find the classes of C3v and the number of elements in them.

(d) Their are three irreducible representations for the group. Two are one
dimensional and the other one is formed by 2 × 2 matrices of the form[

cos θ sin θ
− sin θ cos θ

]
.

Find the matrices for all six group elements.

(e) Use your representation to find the character table for the group.

15.5 C2 factorizations: the Lorenz and Ising systems. In the Lorenz
system [1, ?, 15] the labels + and − stand for the left or the right lobe of the attractor
and the symmetry is a rotation by π around the z-axis. Similarly, the Ising Hamiltonian
(in the absence of an external magnetic field) is invariant under spin flip. Work out the
factorizations for some of the short cycles in either system.

15.6 Ising model. The Ising model with two states εi = {+,−} per site, periodic
boundary condition, and Hamiltonian

H(ε) = −J
∑
i

δεi,εi+1 ,
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is invariant under spin-flip: + ↔ −. Take advantage of that symmetry and factorize the
dynamical zeta function for the model, that is, find all the periodic orbits that contribute
to each factor and their weights.

15.7 One orbit contribution. If p is an orbit in the fundamental domain with
symmetry h, show that it contributes to the spectral determinant with a factor

det
(

1 − D(h)
tp
λkp

)
,

where D(h) is the representation of h in the regular representation of the group.
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Chapter 16

Deterministic diffusion

(R. Artuso and P. Cvitanović)

The advances in the theory of dynamical systems have brought a new life to
Boltzmann’s mechanical formulation of statistical mechanics, especially for sys-
tems near or far from equilibrium.

Sinai, Ruelle and Bowen (SRB) have generalized Boltzmann’s notion of er-
godicity for a constant energy surface for a Hamiltonian system in equilibrium to
a dissipative system in a nonequilibrium stationary state. In this more general
setting the attractor plays the role of a constant energy surface, and the SRB
measure of sect. 4.1 is a generalization of the Liouville measure. Such measures
are purely microscopic and indifferent to whether the system is at equilibrium,
close to equilibrium or far from it. “Far for equilibrium” in this context refers to
systems with large deviations from Maxwell’s equilibrium velocity distribution.

Furthermore, the theory of dynamical systems has yielded new sets of mi-
croscopic dynamics formulas for macroscopic observables such as the diffusion
constant and the pressure, to which we turn now. We shall apply cycle ex-
pansions to the analysis of transport properties of chaotic systems. The infinite
extent systems for which the periodic orbit theory yields formulas for diffusion
and other transport coefficients are spatially periodic, the global phase space be-
ing tiled with copies of a elementary cell. The motivation are physical problems
such as beam defocusing in particle accelerators or chaotic behavior of passive
tracers in two dimensional rotating flows, problems which can be described as
deterministic diffusion in periodic arrays.

329
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Figure 16.1: Deterministic diffusion in a fi-
nite horizon periodic Lorentz gas. (Courtesy of T.
Schreiber)

16.1 Diffusion in periodic arrays

The 2-dimensional Lorentz gas is an infinite scatterer array in which diffusion
of a light molecule in a gas of heavy scatterers is modelled by the motion of a
point particle in a plane bouncing off an array of reflecting disks. The Lorentz
gas is called “gas” as one can equivalently think of it as consisting of any number
of pointlike fast “light molecules” interacting only with the stationary “heavy
molecules” and not among themselves. As the scatterer array built up from only
defocusing concave surfaces, it is a pure hyperbolic system, and one of the simplest
nontrivial dynamical systems that exhibits deterministic diffusion, fig. 16.1. The
periodic Lorentz gas is amenable to a purely deterministic treatment. In this class
of open dynamical systems quantities characterizing global dynamics, such as the
Lyapunov exponent, pressure and diffusion constant, can be computed from the
dynamics restricted to the elementary cell. The method applies to any hyperbolic
dynamical system that is a periodic tiling M̂ =

⋃
n̂∈T Mn̂ of the dynamical phase

space M̂ by translates Mn̂ of an elementary cell M, with T the Abelian group of
lattice translations. If the scattering array has further discrete symmetries, such
as reflection symmetry, each elementary cell may be built from a fundamental
domain M̃ by the action of a discrete (not necessarily Abelian) group G. The
symbol M̂ refers here to the full phase space, i.e., both the spatial coordinates
and the momenta. The spatial component of M̂ is the complement of the disks
in the whole space. We shall relate the dynamics in M to diffusive properties of
the Lorentz gas in M̂.

These concepts are best illustrated by a specific example, a Lorentz gas based
on the hexagonal lattice Sinai billiard of fig. 16.2. We distinguish two types
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Figure 16.2: Tiling of M̂, a periodic lattice of
reflecting disks, by the fundamental domain M̃.
Indicated is an example of a global trajectory x̂(t)
together with the corresponding elementary cell tra-
jectory x(t) and the fundamental domain trajectory
x̃(t). (Courtesy of J.-P. Eckmann)

of diffusive behavior; the infinite horizon case, which allows for infinite length
flights, and the finite horizon case, where any free particle trajectory must hit a
disk in finite time. In this chapter we shall restrict our consideration to the finite
horizon case, with disks sufficiently large so that no infinite length free flight is
possible. In this case the diffusion is normal, with x̂(t)2 growing like t. We shall
return to the anomalous diffusion case in sect. 17.4.

As we will work with three kinds of phase spaces, good manners require that
we repeat what hats, tildas and nothings atop symbols signify:

˜ fundamental domain, triangle in fig. 16.2
elementary cell, hexagon in fig. 16.2

ˆ full phase space, lattice in fig. 16.2 (16.1)

It is convenient to define an evolution operator for each of the 3 cases of fig. 16.2.
x̂(t) = f̂ t(x̂) denotes the point in the global space M̂ reached by the flow in
time t. x(t) = f t(ξ) denotes the corresponding flow in the elementary cell; the
two are related by

n̂t(ξ) = f̂ t(ξ) − f t(ξ) ∈ T , (16.2)

the translation of the endpoint of the global path into the elementary cell M. The
quantity x̃(t) = f̃ t(x̃) denotes the flow in the fundamental domain M̃; f̃ t(x̃) is
related to f t(x̃) by a discrete symmetry g ∈ G which maps x̃(t) ∈ M̃ to x(t) ∈ M
(see chapter 15).

Fix a vector β ∈ R
d, where d is the dimension of the phase space. We will

compute the diffusive properties of the Lorentz gas from the expectation value
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(5.10)

s(β) = lim
t→∞

1
t

log〈eβ·(x̂(t)−x)〉M , (16.3)

where the average is over all initial points in the elementary cell, x ∈ M.

If all odd derivatives vanish by symmetry, there is no drift and the second
derivatives

∂

∂βi

∂

∂βj
s(β)

∣∣∣∣
β=0

= lim
t→∞

1
t
〈(x̂(t) − x)i(x̂(t) − x)j〉M ,

yield a (generally anisotropic) diffusion matrix. The spatial diffusion constant is
then given by the Einstein relation

D =
1
2d

∑
i

∂2

∂β2i
s(β)

∣∣∣∣
β=0

= lim
t→∞

1
2dt

〈(q̂(t) − q)2〉M ,

where the i sum is restricted to the spatial components qi of the phase space
vectors x = (q, p).

We now turn to the connection between (16.3) and periodic orbits in the
elementary cell. As the full M̂ → M̃ reduction is complicated by the nonabelian
nature of G, we shall introduce the main ideas in the abelian M̂ → M context
(see one of the final remarks).

16.1.1 Reduction from M̂ to M

The key idea follows from inspection of the relation

〈
eβ·(x̂(t)−x)

〉
M

=
1

|M|

∫
x∈M
ŷ∈M̂

dxdŷ eβ·(ŷ−x)δ(ŷ − f̂ t(x)) .

|M| =
∫
M dx is the volume of the elementary cell M. As in sect. 5.2, we have used

the identity 1 =
∫
Mdy δ(y − x̂(t)) to motivate the introduction of the evolution

operatorLt(ŷ, x). There is a unique lattice translation n̂ such that ŷ = y − n̂,
with y ∈ M. Therefore, and this is the main point, translation invariance can be
used to reduce this average to the elementary cell:

〈eβ·(x̂(t)−x)〉M =
1

|M|

∫
x,y∈M

dxdy eβ·(f̂
t(x)−x)δ(y − f t(x)) . (16.4)
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In this way the global f̂ t(x) flow averages can be computed by following the flow
f t(ξ) restricted to the elementary cell M. The equation (16.4) suggests that we
study the evolution operator

Lt(y, x) = eβ·(x̂(t)−x)δ(y − f t(x)) , (16.5)

where x̂(t) = f̂ t(x) ∈ M̂, but x, x(t), y ∈ M. It is straightforward to check
that this operator has the semigroup property (5.20),

∫
M dz Lt2(y, z)Lt1(z, x) =

Lt2+t1(y, x) . For β = 0, the operator (16.5) is the Perron-Frobenius operator
(4.8), with the leading eigenvalue es0 = 1 by the flow conservation sum rule
(13.8).

The rest is old hat. As in sect. 6.1.4, the spectrum of L is evaluated by taking
the trace

trLt =
∫
M

dx eβ·n̂t(x)δ(x − x(t)) .

Here n̂t(x) is the discrete lattice translation defined in (16.2). Two kinds of orbits
periodic in the elementary cell contribute. A periodic orbit is called standing
if it is also periodic orbit of the infinite phase space dynamics, f̂Tp(x) = x, and
it is called running if it corresponds to a lattice translation in the dynamics on
the infinite phase space, f̂Tp(x) = x + n̂p. In the theory of area–preserving maps
such orbits are called accelerator modes, as the diffusion takes place along the
momentum rather than the position coordinate. The traveled distance n̂p =
n̂Tp(ξ) is independent of the starting point ξ, as can be easily seen by continuing
the path periodically in M̂.

The final result is the spectral determinant (10.7)

F (β, s) =
∏
p

exp

(
−

∞∑
r=1

1
r

e(β·n̂p−sTp)r∣∣det
(
1− Jrp

)∣∣
)

, (16.6)

or the corresponding dynamical zeta function (10.13)

1/ζ(β, s) =
∏
p

(
1 − e(β·n̂p−sTp)

|Λp|

)
. (16.7)

The associated dynamical zeta function cycle averaging formula (11.17) for the
diffusion constant (5.12), zero mean drift 〈x̂i〉 = 0 , is given by

D =
1
2d

〈
x̂2
〉
ζ

〈T〉ζ
=

1
2d

1
〈T〉ζ

∑′(−1)k+1(n̂p1 + · · · + n̂pk)
2

|Λp1 · · ·Λpk |
. (16.8)
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where the sum is over all distinct non-repeating combination of prime cycles.
The derivation is standard, still the formula is strange. Diffusion is unbounded
motion accross an infinite lattice; nevertheless, the reduction to the elementary
cell enables us to compute relevant quantities in the usual way, in terms of periodic
orbits. A sleepy reader might protest that xp = x(Tp) − x(0) is manifestly equal
to zero for a periodic orbit. That is correct; n̂p in the above formula refers to
a displacement on the infinite periodic lattice, while p refers to closed orbit of
the dynamics reduced to the elementary cell, with xp belonging to the closed
prime cycle p. Even so, this is not an obvious formula. Globally periodic orbits
have x̂2p = 0, and contribute only to the time normalization 〈T〉ζ . The mean
square displacement

〈
x̂2
〉
ζ

gets contributions only from the periodic runaway
trajectories; they are closed in the elementary cell, but on the periodic lattice
each one grows like x̂(t)2 = (t/Tp)2n̂2p ∼ t2. So the orbits that contribute to the
trace formulas and spectral determinants exhibit either ballistic transport or no
transport at all: diffusion arises as a balance between the two kinds of motion,
weighted by the 1/|Λp| measure: if the system is not hyperbolic such weights may
be abnormally large (with 1/|Λp| ≈ 1/Tp

α rather than 1/|Λp| ≈ e−Tpλ - here λ is
the Lyapunov exponent-), and they may lead to anomalous diffusion (accelerated
or slowed down depending whether running or standing orbits are characterized
by enhanced probabilities), see sect. 17.4.

To illustrate the main idea, tracking of a globally diffusing orbit by the as-
sociated confined orbit restricted to the elementary cell, we start with a class of
simple 1-d dynamical systems where all transport coefficients can be evaluated
analytically. If you would like to master the material, working through the project
K.1 and or project K.2 is strongly recommended. We return to the Lorentz gas
in sect. ??.

16.2 Diffusion induced by chains of 1-d maps

In a typical deterministic diffusive process, trajectories originating from a given
scatterer reach some number of neighboring scatterers in one bounce, and then
the process is repeated. As was shown in chapter 7, the essential part of this
process is the stretching along the unstable directions of the flow, and in the
crudest approximation the dynamics can be modelled by 1-dimensional expanding
maps. This observation motivates introduction of a class of particularly simple
one-dimensional systems, chains of piecewise linear maps.

We start by defining the map f̂ on the unit interval as

f̂(x̂) =
{

Λx̂ x̂ ∈ [0, 1/2)
Λx̂ + 1 − Λ x̂ ∈ (1/2, 1] , Λ > 2 , (16.9)
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and then extending the dynamics to the entire real line, by imposing the trans-
lation property

f̂ (x̂ + n̂) = f̂ (x̂) + n̂ n̂ ∈ Z . (16.10)

As the map is dicontinuous at x̂ = 1/2, f̂(1/2) is undefined, and the x = 1/2 point
has to be excluded from the Markov partition. Even though this means omitting
a single point, the consequences for the symbolic dynamics can be significant, as
will be evident in the derivation of the diffusion constant formula (16.20).

The map is symmetric under the x̂-coordinate flip

f̂ (x̂) = −f̂ (−x̂) , (16.11)

so the dynamics will exhibit no mean drift; all odd derivatives (with respect to
β) of the generating function (5.10) evaluated at β = 0 will vanish.

The map (16.9) is sketched in fig. 16.3(a). Initial points sufficiently close to
either of the fixed points in the initial unit interval remain in the elementary cell
for one iteration; depending on the slope Λ, other points jump n̂ cells, either to
the right or to the left. Repetition of this process generates a trajectory that for
long times is essentially a random walk for almost every initial condition.

The translational symmetry (16.10) relates the unbounded dynamics on the
real line to dynamics restricted to the elementary cell - in the example at hand,
the unit interval curled up into a circle. Associated to f̂ (x̂) we thus also consider
the circle map

f (x) = f̂ (x̂) −
[
f̂ (x̂)

]
, x = x̂ − [x̂] ∈ [0, 1] (16.12)

fig. 16.3(b), where [· · ·] stands for the integer part. We showed in the former
section that elementary cell cycles either correspond to standing or running orbits
for the map on the full line: we shall refer to n̂p ∈ Z as the jumping number of
the p cycle, and take as the cycle weight tp = znpeβn̂p/|Λp| .

For the piecewise linear map of fig. 16.3 we can evaluate the dynamical zeta
function in closed form. Each branch has the same value of the slope, and the
map can be parametrized either by its critical value a = f̂ (1/2), the absolute
maximum on the interval [0, 1] related to the slope of the map by a = Λ/2, or by
the slope Λ, the stretching of the map.

The diffusion constant formula (16.8) for 1-d maps is

D =
1
2

〈
n̂2
〉
ζ

〈n〉ζ
(16.13)
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(a) (b)

Figure 16.3: (a) f̂ (x̂), the full sawtooth map (16.9). (b) f (x), the sawtooth map restricted
to the unit circle (16.12), Λ = 6.

where the “mean cycle time” is given by

〈n〉ζ = z
∂

∂z

1
ζ(0, z)

∣∣∣∣
z=1

= −
∑′

(−1)k
np1 + · · · + npk

|Λp1 · · ·Λpk |
, (16.14)

the mean cycle displacement squared by

〈
n̂2
〉
ζ

=
∂2

∂β2
1

ζ(β, 1)

∣∣∣∣
β=0

= −
∑′

(−1)k
(n̂p1 + · · · + n̂pk)

2

|Λp1 · · ·Λpk |
, (16.15)

the sum being again over all distinct non-repeating combinations of prime cycles.
The evaluation of these formulas in what follows in this section will require no
more than pencil and paper computations.

16.2.1 Case of unrestricted symbolic dynamics

Whenever Λ is an integer number, the symbolic dynamics can be easily charac-
terized. For example, for the case Λ = 6 illustrated in fig. 16.3(b), the circle map
consists of 6 full branches, with uniform stretching factor Λ = 6. The branches
have different jumping numbers: for branches 1 and 2 we have n̂ = 0, for branch
3 we have n̂ = +1, for branch 4 n̂ = −1, and finally for branches 5 and 6 we have
respectively n̂ = +2 and n̂ = −2. The same structure reappears whenever Λ is an
even integer Λ = 2a: all branches are mapped onto the whole unit interval and we
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have two n̂ = 0 branches, one branch for which n̂ = +1 and one for which n̂ = −1,
and so on, up to the maximal jump |n̂| = a − 1. The symbolic dynamics is thus
full, unrestricted shift in 2a letters {0+, 1+, . . . , (a − 1)+, (a − 1)−, . . . , 1−, 0−},
where the letter indicates both the length and the direction of the corresponding
jump.

For the piecewise linear maps with uniform stretching the weight of a symbol
sequence is a product of weights for individual steps, tsq = tstq. For the map of
fig. 16.3 there are 6 distinct weigths:

t1 = t2 = z/Λ
t3 = eβz/Λ , t4 = e−βz/Λ , t5 = e2βz/Λ , t6 = e−2βz/Λ .

We now take full advantage of the piecewise linearity and of the simple structure
of the symbolic dynamics, that lead to full cancellation of all curvature corrections
in (11.5), and write down the exact dynamical zeta function (9.12) just in terms
of the fixed point contributions:

1/ζ(β, z) = 1 − t0+ − t0− − · · · − t(a−1)+ − t(a−1)−

= 1 − z

a

1 +
a−1∑
j=1

cosh(βj)

 . (16.16)

The leading (and only) eigenvalue of the evolution operator (16.5) is

s(β) = log

1
a

1 +
a−1∑
j=1

cosh(βj)

 , Λ = 2a even integer . (16.17)

Evidently, as required by the flow conservation (13.8), s(0) = 0. The first deriva-
tive s(0)′ vanishes as well by the left/right symmetry of the dynamics, implying
vanishing mean drift 〈x̂〉 = 0. The second derivative s(β)′′ yields the diffusion
constant (16.13):

〈T〉ζ = 2a
1
Λ

= 1 ,
〈
x̂2
〉
ζ

= 2
02

Λ
+ 2

12

Λ
+ 2

22

Λ
+ · · · + 2

(a − 1)2

Λ
(16.18)

Using the identity
∑n

k=1 k2 = n(n + 1)(2n + 1)/6 we obtain

D =
1
24

(Λ − 1)(Λ − 2) , Λ even integer . (16.19)
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Similar calculation for odd integer Λ = 2k − 1 yields 16.1
on p. 345

D =
1
24

(Λ2 − 1) , Λ odd integer . (16.20)

16.2.2 Higher order transport coefficients

The same approach yields higher order transport coefficients

Bk =
1
k!

dk

dβk
s(β)

∣∣∣∣
β=0

, B2 = D . (16.21)

The behavior of the higher order coefficients yields information on the form of the
asymptotic distribution function generated by the diffusive process. We remark
that here x̂t is the relevant dynamical variable (and not the time integral of the
observable we are interested in like in (5.1)), so the generating function actu-
ally provides information about moments of arbitrary orders. Were the diffusive
process purely gaussian

ets(β) =
1√

4πDt

∫ +∞
−∞

dσeβσe−σ2/(4Dt) = eβ
2Dt (16.22)

the only coefficient different from zero would be B2 = D. Hence nonvanishing
higher order coefficients signal deviations of deterministic diffusion from a gaus-
sian stochastic process.

For the map under consideration the first Burnett coefficient coefficient B4, a
measure of deviation from gaussian behavior, is easily evaluated. Using (16.17)
in the case of even integer slope Λ = 2a we obtain16.2

on p. 345

B4 = − 1
4! · 60

(a − 1)(2a − 1)(4a2 − 9a + 7) . (16.23)

Higher order even coefficients may be calculated along the same lines.

16.2.3 Case of finite Markov partitions

For piecewise-linear maps exact results may be obtained whenever the critical
points are mapped in finite numbers of iterations onto partition boundary points,
or onto unstable periodic orbits. We will work out here an example for which
this occurs in two iterations, leaving other cases as exercises.
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(a)

0+ 0 -

0+

0 -

1+ 1 -

1+

1 -

2+ 2 -

2+

2 -

(b)

0+
1+

0--1

22+ -

0+ 0-

-11+

(c)

6
7

4
5

2 31

1 3

Figure 16.4: (a) A partition of the unit interval into six intervals, labeled by the jumping
number n̂(x) I = {0+, 1+, 2+, 2−, 1−, 0−}. The partition is Markov, as the critical point is
mapped onto the right border of M1+ . (b) The Markov graph for this partition. (c) The
Markov graph in the compact notation of (16.25) (introduced by Vadim Moroz).

The key idea is to construct a Markov partition (7.2) where intervals are
mapped onto unions of intervals. As an example we determine a value of the
parameter 4 ≤ Λ ≤ 6 for which f (f (1/2)) = 0. As in the integer Λ case,
we partition the unit interval into six intervals, labeled by the jumping number
n̂(x) ∈ {M0+ ,M1+ ,M2+ ,M2− ,M1− ,M0−}, ordered by their placement along
the unit interval, fig. 16.4(a).

In general the critical value a = f̂ (1/2) will not correspond to an interval
border, but now we choose a such that the critical point is mapped onto the
right border of M2+ . Equating f (1/2) with the right border of M2+ , x = 1/Λ,
we obtain a quadratic equation with the expanding solution Λ = 2(

√
2 + 1). For

this parameter value f(M2+) = M0+

⋃
M1+ , f(M2−) = M0−

⋃
M1− , while the

remaining intervals map onto the whole unit interval M. The transition matrix
(7.3) is given by

φ′ = Tφ =



1 1 1 0 1 1
1 1 1 0 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 0 1 1 1





φ0+
φ1+
φ2+
φ2−
φ1−
φ0−

 (16.24)

One could diagonalize (16.24) on a computer, but, as we saw in sect. 7.7, the
Markov graph fig. 16.4(b) corresponding to fig. 16.4(a) offers more insight into
the dynamics. The graph fig. 16.4(b) can be redrawn more compactly as Markov
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graph fig. 16.4(c) by replacing parallel lines in a graph by their sum

2

3

2 311

= t1 + t2 + t3 . (16.25)

The dynamics is unrestricted in the alphabet

A = {0+, 1+, 2+0+, 2+1+, 2−1−, 2−0−, 1−, 0−} ,

and we are led to the dynamical zeta function

1/ζ(β, z) = 1 − t0+ − t1+ − t2+0+ − t2+1+ − t2−1− − t2−0− − t1− − t0−

= 1 − 2z
Λ

(1 + cosh(β)) − 2z2

Λ2
(cosh(2β) + cosh(3β)) . (16.26)

(see the follows loop expansion (9.12) of sect. 9.3). For grammar as simple as this
one, the dynamical zeta function is the sum over fixed points of the unrestricted
alphabet. As the first check of this expression for the dynamical zeta function we
verify that

1/ζ(0, 1) = 1 − 4
Λ

− 4
Λ2

= 0 ,

as required by the flow conservation (13.8). Conversely, we could have started
by picking the desired Markov partition, writing down the corresponding dyn-
amical zeta function, and then fixing Λ by the 1/ζ(0, 1) = 0 condition. For more
complicated Markov graphs this approach, together with the factorization (16.28)
is very helpful in reducing the order of the polynomial condition that fixes Λ.

The diffusion constant follows from (16.13)16.3
on p. 345

〈n〉ζ = 4
1
Λ

+ 4
2

Λ2
,
〈
n̂2
〉
ζ

= 2
12

Λ
+ 2

22

Λ2
+ 2

32

Λ2

D =
15 + 2

√
2

16 + 8
√

2
. (16.27)

It is by now clear how to build an infinite hierarchy of Markov cases, by tuning
the slope in such a way that the discontinuity point in the centre is mapped into
the fixed point at the origin in a finite number p of steps. By taking higher
and higher values for the number p of iterates it is possible to see that Markov
parameters are dense, organized in a hierarchy that resembles the way in which
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rationals are embedded in the unit interval. For example each of the 6 primary
intervals can be subdivided into 6 intervals obtained by the 2-nd iterate of the
map, and for the critical point mapping into any of those in 2 steps the grammar
(and the corresponding cycle expansion) is finite. So, if we can prove continuity
of D = D(Λ), we can apply the periodic orbit theory to the sawtooth map (16.9)
for a random “generic” value of the parameter Λ, for example Λ = 4.5. The idea
is to bracket this value of Λ by the nearby ones, for which higher and higher
iterates of the critical value a = Λ/2 fall onto the partition boundaries, compute
the exact diffusion constant for each such approximate Markov partition, and
study their convergence toward the value of D for Λ = 4.5. Some details of how
this is accomplished are given in appendix ?? for a related problem, the pruned
Bernulli shift. Judging how difficult such problem is already for a tent map (see
sect. 9.6 and appendix B.2), this is not likely to take only a week of work.

Commentary

Remark 16.1 Lorentz gas. The original pinball model proposed by
Lorentz [3] consisted of randomly, rather than regularly placed scatterers.

Remark 16.2 Who’s dun it? Cycle expansions for the diffusion con-
stant of a particle moving in a periodic array seem to have been introduced
independently by R. Artuso [4] (exact dynamical zeta function for 1-d chains
of maps (16.8)), by W.N. Vance [5] (the trace formula (??) for the Lorentz
gas), and by P. Cvitanović, J.-P. Eckmann, and P. Gaspard [6] (the dynam-
ical zeta function cycle expansion (16.8) applied to the Lorentz gas).

Remark 16.3 Structural stability for D Expressions like (16.19) may
lead to an expectation that the diffusion coefficient (and thus transport prop-
erties) are smooth functions of the chaoticity of the system (parametrized,
for example, by the Lyapunov exponent λ = ln Λ). This turns out not to be
true: D as a function of Λ is a fractal, nowhere differentiable curve. The de-
pendence of D on the map parameter Λ is rather unexpected - even though
for larger Λ more points are mapped outside the unit cell in one iteration,
the diffusion constant does not necessarily grow. The fractal dependence of
diffusion constant on the map parameter is discussed in ref. [7]. Statistical
mechanicians tend to believe that such complicated behavior is not to be
expected in systems with very many degrees of freedom, as the addition to
a large integer dimension of a number smaller than 1 should be as unnotice-
able as a microscopic perturbation of a macroscopic quantity. No fractal-like
behavior of the conductivity for the Lorentz gas has been detected so far [8].
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length # cycles ζ(0,0) λ

1 5 -1.216975 -
2 10 -0.024823 1.745407
3 32 -0.021694 1.719617
4 104 0.000329 1.743494
5 351 0.002527 1.760581
6 1243 0.000034 1.756546

Table 16.1: Fundamental domain, w=0.3 .

Remark 16.4 Diffusion induced by one–dimensional maps. We refer the
reader to refs. [9, 10] for early work on the deterministic diffusion induced by
one–dimenional maps. The sawtooth map (16.9) was introduced by Gross-
mann and Fujisaka [11] who derived the integer slope formulas (16.19) for
the diffusion constant. The sawtooth map is also discussed in refs. [12].

Remark 16.5 Symmetry factorization in one dimension. In the β =
0 limit the dynamics (16.11) is symmetric under x → −x, and the zeta
functions factorize into products of zeta functions for the symmetric and
antisymmetric subspaces, as described in sect. 15.1.2:

1
ζ(0, z)

=
1

ζs(0, z)
1

ζa(0, z)
,

∂

∂z

1
ζ

=
1
ζs

∂

∂z

1
ζa

+
1
ζa

∂

∂z

1
ζs

. (16.28)

The leading (material flow conserving) eigenvalue z = 1 belongs to the
symmetric subspace 1/ζs(0, 1) = 0, so the derivatives (16.14) also depend
only on the symmetric subspace:

〈n〉ζ = z
∂

∂z

1
ζ(0, z)

∣∣∣∣
z=1

=
1

ζa(0, z)
z

∂

∂z

1
ζs(0, z)

∣∣∣∣
z=1

(16.29)

. Implementing the symmetry factorization is convenient, but not essential,
at this computational level.

Remark 16.6 Lorentz gas in the fundamental domain. The vector val-
ued nature of the generating function (16.3) in the case under consideration
makes it difficult to perform a calculation of the diffusion constant within
the fundamental domain. Yet we point out that, at least as regards scalar
quantities, the full reduction to M̃ leads to better estimates. A proper sym-
bolic dynamics in the fundamental domain has been introduced in ref. [13],
numerical estimates for scalar quantities are reported in table 16.1, taken
from ref. [14].

In order to perform the full reduction for diffusion one should express the
dynamical zeta function (16.7) in terms of the prime cycles of the fundamen-
tal domain M̃ of the lattice (see fig. 16.2) rather than those of the elementary
(Wigner-Seitz) cell M. This problem is complicated by the breaking of the
rotational symmetry by the auxilliary vector β, or, in other words, the non-
commutativity of translations and rotations: see ref. [6] for a discussion of
the problem.
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Résumé

The classical Boltzmann equation for evolution of 1-particle density is based
on stosszahlansatz, neglect of particle correlations prior to, or after a 2-particle
collision. It is a very good approximate description of dilute gas dynamics, but
a difficult starting point for inclusion of systematic corrections. In the theory
developed here, no correlations are neglected - they are all included in the cycle
averaging formula such as the cycle expansion for the diffusion constant

D =
1
2d

1
〈T〉ζ

∑′(−1)k+1(n̂p1 + · · · + n̂pk)
2

|Λp1 · · ·Λpk |
.

Such formulas are exact; the issue in their applications is what are the most effec-
tive schemes of estimating the infinite cycle sums required for their evaluation.

For systems of a few degrees of freedom these results are on rigorous footing,
but there are indications that they capture the essential dynamics of systems of
many degrees of freedom as well.

Actual evaluation of transport coefficients is a test of the techniques devel-
opped above in physical settings. In cases of severe pruning the trace formulas
and ergodic sampling of dominant cycles might be preferable to the cycle expan-
sions of dynamical zeta functions and systematic enumeration of all cycles.
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Exercises

16.1 Diffusion for odd integer Λ. Show that when the slope Λ = 2k − 1
in (16.9) is an odd integer, the diffusion constant is given by D = (Λ2 − 1)/24,
as stated in (16.20).

16.2 Fourth-order transport coefficient. Verify (16.23). You will need
the identity

n∑
k=1

k4 =
1
30

n(n + 1)(2n + 1)(3n2 + 3n − 1) .

16.3 Finite Markov partitions. Verify (16.27).

16.4 Maps with variable peak shape:
Consider the following piecewise linear map

fδ(x) =


3x

1−δ for x ∈
[
0, 1

3 (1 − δ)
]

3
2 −
(

2
δ

∣∣ 4−δ
12 − x

∣∣) for x ∈
[
1
3 (1 − δ), 1

6 (2 + δ)
]

1 − 3
1−δ
(
x − 1

6 (2 + δ)
)

for x ∈
[
1
6 (2 + δ), 1

2

] (16.30)

and the map in [1/2, 1] is obtained by antisymmetry with respect to x = 1/2, y = 1/2.
Write the corresponding dynamical zeta function relevant to diffusion and then show
that

D =
δ(2 + δ)
4(1 − δ)

See refs. [15, 16] for further details.

16.5 Two symbol cycles for the Lorentz gas. Write down the full groups of
cycles labelled by two symbols, whose representative elements are (0 6), (1 7), (1 5) and
(0 5) respectively.

Appendix K contains several project-length deterministic diffusion exercises.
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Chapter 17

Why doesn’t it work?

Sometimes they come back
Stephen King

(R. Artuso and P. Dahlqvist)

So far we have provided theoretical arguments and worked out a number of illus-
trative examples in order to convince the reader that cycle expansions are a useful
tool in the study of dynamical systems. Throughout our presentation hyperbolic-
ity was the key assumption: all periodic orbits have been assumed exponentially
unstable. Sadly, this assumption fails for almost any dynamical system that you
might really care about: “generic” Hamiltonian systems, Lorentz gas with infinite
horizon, or whatever. Phase space of almost any physically interesting dynamical
system exhibits a mixture of hyperbolic and marginal stabilities, with orbits that
stay ‘glued’ arbitrarily close to stable regions for arbitrarily long times. This is a
generic phenomenon for Hamiltonian systems, where elliptic islands of stability
coexist with hyperbolic homoclinic webs. The presence of orbits with arbitrarily
small Lyapunov exponents has striking dynamical consequences: correlation de-
cays may exhibit long range power law asymptotic behaviors , , diffusion processes
can assume anomalous character, etc. Uniform hyperbolicity fails as sticking of
trajectories to stable islands influences the global properties of the dynamics. We
will now account for the effects of marginal stability by studying the families of
longer and longer unstable orbits which accumulate to marginally stable cycles.

Even if our main inspiration is Hamiltonian dynamics, we start our consider-
ations by a study of simple one-dimensional maps, almost everywhere hyperbolic.
Non-hyperbolicity will appear only in a single marginally stable fixed point lo-
cated at x=0. In a neigborhood of a marginally stable fixed point, the mapping
function is given by

x �→ f(x) = x + O(x1+s) . (17.1)
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Figure 17.1: A complete binary repeller with a
marginal fixed point. In this case s ∈ {0, 1}.
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Intermittency confronts us with several problems, some conceptual and some
more practical. A conceptual problem is to establish that the desired quanti-
ties can actually be linked to the set of periodic orbits. Such fundamentals are
discussed in sect. 17.1

The practical problem is how to extract these quantities from the cycles as
efficiently way as possible. To approach this problem we construct in sect. 17.2
a piecewise linear model behaving like (17.1). The dynamical zeta function for
this model has a simple power series representation, with algebraically decaying
coefficients, and a branch point singularity. Knowing what kind of singularity
one is up against, one can tailor an efficient resummation method, discussed in
in sect. 17.3.

In sect. 17.4 we discuss how diffusion is profoundly modified by the presence
of marginally stable regions, leading to the generic appearance of anomalous
transport. Finally, in sect. 17.5, we discuss the probabilistic methods that yield
approximate dynamical zeta functions and provide valuable information about
more complicated systems, such as billiards.

17.1 Escape, averages and periodic orbits

We begin with rephrasing the general theory in a form suited to the intermittent
case. We begin by studying interval maps. The maps will have a finite number
of branches defined on intervals Ms where s is drawn from an alphabet A. The
branch of mapping function fs maps the domain Ms on some covering interval
M: fs(Ms) = M. This ensures the existence of a complete symbolic dynamics
- just to make things easy (see fig. 17.1).

The generating partition is composed of the domains Ms . The nth level
partition C(n) = {MQ; |Q| = n} can be constructed iteratively. Here Q are words
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of length |Q| = n. An interval is thus defined recursively according to

MsR = f−1
s (MR) , (17.2)

where sR is the concatenation of letter s with word R.

17.1.1 Escape

An initial point surviving n iterations must be contained in C(n). Starting from
an initially uniform distribution (over I) we can express the fraction that survives
n iterations as (cfr. sect. 13.1)

∑
|Q|=n

|MQ|
|I| ,

a quantity we will refer to as the survival probability.

First we assume that all branches are expanding, which means that there is a
minimal expansion rate |f ′(x)| ≥ Λmin > 1. Then one can bound the size of Ms

close to the stability ΛQ of periodic orbit Q

C1
1

|ΛQ| <
|MQ|
|I| < C2

1
|ΛQ| . (17.3)

(Constants denoted by a calligraphic C are arbitrary, in the sense that they may
vary from one place to another.) This implies that the survival fraction can be
bounded by a sum over cycle points according to

C1 Γn <
∑
|Q|=n

|MQ|
|I| < C2 Γn , (17.4)

where

Γn =
∑
|Q|=n

1
|ΛQ| .

The partition sum Γn is nothing but the approximate trace discussed in sect. 6.2

Γn ≈ trLn =
∑
|Q|=n

1
|ΛQ − 1| .
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The bound (17.3) relies on hyperbolicity, and is indeed violated by intermit-
tent systems. Fortunately, bound (17.3) is far from necessary for establishing
bound (17.4). For intermittent systems a somewhat weaker bound can be es-
tablished, saying that the average size of intervals along a periodic orbit can be
bounded close to the stability of the periodic orbit. To formulate such a state-
ment, let S denote the cyclic shift operator: S(Q = s1s2 . . . sn) = s2 . . . sns1.
The weaker bound can be written

C1
|I|

|ΛQ| <
1

|Q|

|Q|∑
k=1

|MSkQ| < C2
|I|

|ΛQ| , (17.5)

which directly implies (17.4).

Γn can be expressed as a contour integral

Γn =
1

2πi

∮
γ−
r

z−n

(
d

dz
log ζ−1(z)

)
dz , (17.6)

(where the small contour γ−
r encircles the origin in negative (clockwise) direction)

in terms of the dynamical zeta function

1/ζ(z) =
∏
p

(
1 − znp

|Λp|

)
. (17.7)

This is just another facet of trace formulas of chapter 6.17.1
on p. 374

17.1.2 Chaotic averages

To study averages of multiplicative weights we follow sect. 5.1 and introduce a
phase space observable a(x) and the integrated quantity

A(x, n) =
n−1∑
j=0

a(f j(x)).

This leads us to introduce the generating function (5.9)

〈eβ A(x,n)〉,
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where 〈.〉 denote some averaging over the distribution of initial points, which we
again choose to be uniform (rather than the a priori unknown invariant density).

For hyperbolic systems on can start from the bound

C1
eβAQ

|ΛQ| <
1
|I|

∫
MQ

eβA(x,n)dx < C2
eβAQ

|ΛQ| , (17.8)

and, after performing the above average one gets

C1Γn(β) <
1
|I|

∫
eβA(x,n)dx < C2Γn(β), (17.9)

with

Γn(β) =
∑
|Q|=n

eβAQ

|ΛQ| . (17.10)

By introducing the dynamical zeta function

1/ζ(z, β) =
∏
p

(
1 − znpeβAp

|Λp|

)
, (17.11)

the partition sum Γn(β) can again be expressed as a contour integral

Γn(β) =
1

2πi

∮
γ
z−n

(
d

dz
log ζ−1(z, β)

)
dz . (17.12)

The expectation value (5.8) of the observable a, is then is available via differ-
entiation (see (5.11))

〈a〉 = lim
n→∞

1
n

Γ′
n

∣∣∣∣
β=0

(17.13)

= lim
n→∞

1
n

1
2πi

∮
γ−
r

z−n

(
d

dβ

d

dz
log ζ−1(z, β)

)∣∣∣∣
β=0

dz.

For the thermodynamic weight (??) a(x) = ln |f ′(x)|, this is the Lyapunov ex-
ponent. The corresponding dynamical zeta function will be referred to as the
thermodynamical zeta function below.

In the intermittent case one can expect that bound (17.9) holds because of
some averaging principle like the one discussed above, and the use of dynamical
zeta functions can be justified for intermittent systems.
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Figure 17.2: A piecewise linear intermittent
map, see (17.14).
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17.2 Know thy enemy

Intermittency does not only present us with a large repertoire of interesting dy-
namics, it is also the root of problems, such as slow convergence of cycle expan-
sion. These features are the two sides of the same coin. In order to defeat our
enemy we will first do our best to get to know her.

17.2.1 A toy map

The binary shift map is very much an archetype for hyperbolic maps. To study
intermittency we will now construct a different toy model, which can be thought
of as the archetype intermittent map.

Consider a map x �→ f(x) on the unit interval : f : M �→ M, with two
monotone branches

f(x) =
{

f0(x) x ∈ M0 = [0, a]
f1(x) x ∈ M1 =]b, 1] . (17.14)

The two branches are assumed complete, that is f0(M0) = f1(M1) = M. The
map allows escape if a < b and is bounded if a = b (see fig. 17.2).

We will choose the right branch to be expanding and linear

f1(x) =
x − b

1 − b
.

We want the map to be intermittent and isomorphic with a simple Markov
chain so we will construct the left branch in a very special way. We split up the
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left interval M0 into a infinite number of connected intervals in

M0 =
∞⋃
n=1

in, (17.15)

where

in = {x; qn+1 < x ≤ qn}, (17.16)

with q1 = a, and {qn} a decreasing sequence, qn → 0 as n → ∞.

The map f0(x) is now specified by the following requirements

• f0(x) is continuous.

• f0(x) is linear on the intervals in

• f0(qn+1) = qn, that is in = (f−1
0 )n([a, 1]) .

This fixes the map for any given sequence {qi}. Note that do not require as yet
that the map exhibit intermittent behavior.

The family of periodic orbits 1 · 0n plays a key role in this map, the code 10n

corresponds to the periodic itinerary M1 in in−1 . . . i1. The slopes of the various
linear segments are

f ′
0(in) =

|f(in)|
|in|

=
|in−1|
|in|

, n ≥ 2

f ′
0(i1) =

|f(i1)|
|i1|

=
1 − a

|i1|
(17.17)

f ′
0(M1) =

1
1 − b

.

The stability of the cycle 1 · 0n is

Λ10n = f ′
0(in)f ′

0(in−1) . . . f
′
0(i1)f

′
1(M1) =

1
|in|

1 − a

1 − b
.
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The desired intermittent map is now fixed by the requirement

|in| = N 1
n1+1/s

, (17.18)

where s is the intermittency exponent in (17.1). The normalization factor N is
determined by the location of right edge a of the left interval M0.

a =
∞∑
n=1

|in| = N ζR(1 + 1/s),

where ζR(s) =
∑

n−s is the Riemann zeta function.

It follows from (17.18) and (17.16) that the sequence qn has the asymptotic
behavior

qn ∼ 1
n1/s

, (17.19)

and that the asymptotic behavior of the map, for small x, conforms with (17.1).
So, the map is intermittent and the parameter s can indeed be identified with
the intermittency exponent in (17.1).

Because of its piecewise-linear form, the map has a very simple cycle expan-
sion

1/ζ(z) =
∏
p �=0

(
1 − znp

|Λp|

)
= 1 −

∞∑
n=0

zn+1

|Λ1·0n |

= 1 − (1 − b)z − a

ζR(1 + 1/s)
1 − b

1 − a

∞∑
n=1

zn+1

n1+1/s
.

The omission of the fixed point 0 in the above Euler product will be discussed in
sect. 17.2.3.

We see that for this toy model the dynamical zeta function can be expressed
in terms of the Jonquière function

J(z, α) =
∞∑
n=1

zn

nα
,
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in terms of which the dynamical zeta function reads

1/ζ(z) = 1 − (1 − b) z

(
1 +

a

1 − a

J(z, 1 + 1/s)
J(1, 1 + 1/s)

)
.

We will on occasion also discuss the thermodynamic zeta function

1/ζ(z, β) =
∏
p �=0

(
1 − znp

|Λp|1−β

)
, (17.20)

whose cycle expansion is

1/ζ(z, β) = 1 − (1 − b)1−β z

(
1 +
(

a

(1 − a)J(1, 1 + 1/s)

)1−β

J(z, [1 + 1/s][1 − β])

)

Next we are going to investigate the analytic properties of J(z, α).

17.2.2 Analytic structure of the Jonquière function

The Jonquière function has a useful integral representation

J(z, α) =
z

Γ(α)

∫ ∞

0
dξ

ξα−1

eξ − z
. (17.21)

17.2
on p. 374

We can learn a lot from this representation. First observe that the the result of the
integral is finite except on the line z = x+i0, x > 1. As J(x+iε, α) �= J(x−iε, α),
this line is a branch cut.

The leading singularity at z = 1 can be obtained in a number of ways. One
of the quickest procedures is to employ a Tauberian theorem for power series.
Consider a function given by a power series

Q(z) =
∞∑
n=0

qnz
n.

If

• qn ≥ 0
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• coefficients {qn} decrease monotonically with n

• qn ∼ C 1
nα as n → ∞ ,

then

Q(z) ∼ C Γ(α − 1)(1 − z)α−1 α ∈]0, 1[ , α ∈ R

and

Q(z) ∼ C ln(1 − z) forα = 1asz → 1− .

For the Jonquière function we have not only qn ∼ C/nα asymptotically in n,
but the exact relation qn = n−α for all n way, which makes things simpler. We
restrict ourselves to this case from now on. If α > 1, we can develop a few terms
of a “Taylor series” around z = 1 before we are confronted with the singularity

J(z, α) =
[α−1]∑
n=0

an(1 − z)n + O
(
(1 − z)α−1

)
a /∈ N,

if α is not an integer ([.] denotes integer part), and

J(z, α) =
α−2∑
n=0

an(1 − z)n + O
(
ln(1 − z)(1 − z)α−1

)
, a ∈ N

if α is an integer.

The coefficients an are available via differentiation of of the series representa-
tion of J(z, α)

an =
1
n!

∞∑
m=0

m(m − 1) . . . (m − n + 1)qm. (17.22)

Next we are going to work out this idea further and expand the Jonquière
function around the branch point z = 1.

J(z, α) =
∞∑
n=0

an(1 − z)n + (1 − z)α−1
∞∑
n=0

bn(1 − z)n α /∈ N, (17.23)
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and

J(z, α) =
∞∑
n=0

an(1−z)n+ln(1−z)(1−z)α−1
∞∑
n=0

bn(1−z)n α ∈ N, (17.24)

respectively. We will reach our goal by recursively subtracting the singularities.

First we consider the case α = 2 and extract the a0 term:

J(z, 2) = J(1, 2) +

( ∞∑
n=1

zn

n2
− J(1, 2)

)
. (17.25)

The coefficients of the series

∞∑
n=2

zn

n(n − 1)
= (1 − z) log(1 − z) − (1 − z) + 1 (17.26)

have the same asymptotic behavior so we subtract (17.26) from (17.25)

J(z, 2) = J(1, 2) +

[ ∞∑
n=2

zn
(

1
n2

− 1
n(n − 1)

)
− J(1, 2) + 1

]
+(1 − z) log(1 − z) − (1 − z).

The function inside the square bracket can now be expanded to the first two
terms by direct summation as in (17.22)

∞∑
n=2

zn
(

1
n2

− 1
n(n − 1)

)
=

∞∑
n=2

zn

n2(n − 1)

=
∞∑
n=2

1
n2(n − 1)

+

( ∞∑
n=2

1
n(n − 1)

)
(z − 1) + O(ln(1 − z)(1 − z)2)

= J(1, 2) − 1 + (z − 1) + O(ln(1 − z)(1 − z)2).

We now have

J(z, 2) = J(1, 2) − (1 − z) log(1 − z) + O(ln(1 − z)(1 − z)2). (17.27)
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This procedure can be continued to any order.

The same procedure may be used for arbitrary values of α, but it will be
slightly more complicated. Suppose now that 1 < α < 2. We need a function
whose power series coefficients an have the asymptotic behavior an ∼ 1/nα. This
is exhibited by the function

(1 − z)α−1 =
∞∑
n=0

anz
n

an =
Γ(1 − α + n)

Γ(1 − α)Γ(n + 1)

=
1

Γ(1 − α)
1
nα

(
1 +

α(α − 1)
2

1
n

+ O(1/n2)
)

where we have used Stirling’s formula for the Gamma function. Again we subtract
the singularity

J(z, α) = Γ(1 − α)((1 − z)α−1 − 1) +
∞∑
n=1

(
1
nα

− Γ(1 − α) an

)
zn

= ζR(α) + Γ(1 − α)(1 − z)α−1

−(1 − z)

( ∞∑
n=1

n(
1
nα

− Γ(1 − α) an)

)
+ O((1 − z)α) .

17.2.3 Why prune the marginal fixed point?

One lesson we should have learned from sect. 17.2.1 is that the natural alphabet
to use is not {0, 1} but rather the infinite alphabet A = {0k1; 0 , k ≥ 0}. The
symbol 0 occurs unaccompanied by any 1’s only in the 0 marginal fixed point
which is disconnected from the rest of the Markov diagram.

What happens if we remove a single prime cycle from a dynamical zeta func-
tion? In the hyperbolic case such a removal introduces a pole in the 1/ζ and slows
down the convergence of cycle expansions. The heuristic interpretation of such a
pole is that for a subshift of finite type removal of a single prime cycle leads to
unbalancing of cancellations within infinity of of shadowing pairs. Nevertheless,
removal of a single prime cycle is an exponentially small perturbation of the trace
sums, and the asymptotics of the associated trace formulas is unaffected.chapter 12

In the intermittent case, the fixed point 0 does not provide any shadowing,
and a statement such as

Λ1·0k+1 ≈ Λ1·0kΛ0,
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is meaningless, so dropping down an immaterial factor (1 − z) from the dynam-
ical zeta function is justified. If one would, for some reason, insist on using the
spectral determinant

det (1 − zL) =
∏
p

∞∏
m=0

(
1 − znp

|Λp|Λm
p

)
.

for an intermittent map, the presence of a factor (1−z)∞ (stemming from p = 0)
would be devastating. In other words, the pruning of marginal cycles such as 0
fixed point is not a matter of convenience, but a dire necessity.

17.2.4 More general maps

Admittedly, the toy map was a bit special, cooked up so that the coefficients of
the cycle expansion were exactly given by cn = C/n1/s+1. For a general smooth
map with the behavior (17.1) close to the fixed point we expect the coefficients
of the cycle expansion to obey the power law cn ∼ C/n1/s+1 only asymptotically.
It is natural to assume (though in no way obvious) that the asymptotics of the
coefficients should conform with some asymptotic series like

cn ∼ 1
n1/s+1

∞∑
m=0

Cnm
1
nm

. (17.28)

The generalized series expansion of the corresponding dynamical zeta function
would then have the same structure as (17.23) and (17.24).

17.3 Defeating your enemy: Intermittency resummed

Our main goal in this section is to show how various asymptotic properties of
the dynamics can be related to certain coefficients in a resummed power series
representation of dynamical zeta functions. At the end of the section we will
show how such a resummation can be carried out in practice.

17.3.1 Extracting the asymptotics

Let us for the time being retreat back to the problem of escape for hyperbolic
maps that w started out with in sect. 17.1. The basic periodic orbit formula
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(17.12) for the survival probability is

Γn =
1

2πi

∮
γ−
r

z−n

(
d

dz
log ζ−1(z)

)
dz . (17.29)

Residue calculus turns this into a sum over zeros and poles of dynamical zeta
function:

Γn =
zeros∑
|zα|<R

1
znα

−
∑
poles

|zα| < R

(zα)−n +
1

2πi

∮
γ−
R

dz z−n d

dz
log ζ−1, (17.30)

where the last term gives a contribution from a large circle γ−
R (also running in a

clockwise direction).

The two equivalent ways of expressing the partition sum represent the local-
global duality which is one of the main theme of this book. In the first case
(17.29), the contour is small enough that the sum over logarithms converges, in-
tegrals and sums can be interchanged, the partition sum can be computed term by
term, and a trace formula is recovered. In the second case the contribution comes
from zeros and poles and other singularities outside the domain of convergence,
where periodic orbits act collectively rather than individually.

In the hyperbolic case with a finite Markov partition, the dynamical zeta func-
tion is meromorphic and one may let R → ∞ with vanishing contribution from
γ−
R , and Γn will be a sum of exponentials. Without a finite Markov partition,

there might an upper limit for R, but there is still an exponential bound for the
contribution from γ−

R . In any case, for hyperbolic systems, the dynamical zeta
function is analytic in a disk extending beyond the leading zero z0, which governs
the leading asymptotics for the trace formulas

Γn ∼ z−n
0 .

Averages in bounded systems (with no escape) are given by (17.13)

〈a〉 = lim
n→∞

1
n

Γ′
n(β)

∣∣∣∣
beta=0

.

Since Γn ∼ [z0(β)]−n, one way of expressing the average is in terms of the deriva-
tive of the leading zero z0(β) of the weighted zeta function (17.11)

〈a〉 = −z′0(0),

where we have used the flow conservation condition ?? for bound systems, z0(0) =
1.
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Example 1.

To prepare ourselves for the intermittent it is a useful exercise to obtain the
average via contour integral representation.

〈a〉 = lim
n→∞

1
n

1
2πi

∮
γ−
r

z−n

(
d

dβ

d

dz
log ζ−1(z, β)

)
β=0

dz. (17.31)

and study its behavior as n → ∞. The asymptotics is picked out by a small
contour around z0(0) = 1. To express that we consider a resummation of the
cycle expansion around z = 1.

1/ζ(z, β) =
∑

ci(β)zi

=
∞∑
i=1

ai(0)(1 − z)i + β
∞∑
i=0

a′i(0)(1 − z)i + O(β2)F (1 − z)

for some function F . Change variable to u = 1 − z and(
d

dβ

d

du
log ζ−1

)
β=0

= −a′0(0)
a1(0)

1
u2

+ O(1).

The relevant integral is

1
2πi

∮
γ+
r

(1 − u)−n

(
d

dβ

d

du
log ζ−1

)
β=0

dk ∼ n
a′0(0)
a1(0)

.

We recognize a′0(0)
a1(0)

as −z′0(0), recovering the previous result.

Two important modifications have to be made for the intermittent case. The
point z = 1 is a branch point singularity, so there is no Taylor series expansion
around the z = 1. Secondly, the path deformation that lead us to (17.30) in
this case requires more care, as it has to go around the branch cut Re (z) ≥ 1,
Im (z) = 0. The detour around the cut is called γcut, it sneaks around z = 1 in
positive direction. We write symbolically∮

γr

=
∑

zeros
−
∑

poles
+
∮
γR

+
∮
γcut

,

where the sums include only the zeros and the poles in the area enclosed by the
contours. The asymptotics is controled either by the leading zero or or by the
cut. As we will see, which one varies from case to case.
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Example 2.

The asymptotics of the survival probability for the open intermittent map is
governed by the branchpoint

Γn ∼ 1
2πi

∮
γcut

z−n

(
d

dz
log ζ−1(z)

)
dz . (17.32)

To evaluate this we consider the resummation (assuming 1/s is not an integer)

1/ζ(z) =
∞∑
i=0

ciz
i =

∞∑
i=0

ai(1 − z)i + (1 − z)1/s
∞∑
i=0

bi(1 − z)i,

≡ A(u) + u1/s B(u) ≡ G(u) (17.33)

where we assume that A(u) and B(u) are analytic in a disk around u = 0. We
need to evaluate

1
2πi

∮
γcut

(1 − u)−n d

du
logG(u)du . (17.34)

where γcut goes around the cut (that is, the negative u axis). Next, we expand
the integrand d

du logG(u) in yet another series

d

du
logG(s) =

{
a1
a0

+ 1
s
b0
a0

u1/s−1 + O(u) s < 1
1
s
b0
a0

u1/s−1 + O(1) s > 1
. (17.35)

Formula

1
2πi

∮
γcut

ξα(1 − ξ)−ndξ =
Γ(n − α − 1)
Γ(n)Γ(−α)

∼ 1
nα+1

(1 + O(1/n)) (17.36)

is useful for evaluation of integrals like (17.34) For the continuous time case the
corresponding formula is

1
2πi

∮
γcut

ξαeξtdξ =
1

Γ(−α)
1

tα+1
. (17.37)
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These formulas can be understood by analytic continuation arguments. These
results assume a more familiar form if α = m, an integer. Recall that the Gamma
function Γ(z) has poles for nonpositive integer values z = m ≤ 0, so the value of
the integral vanishes for α = m ≥ 0, as it should.

Plugging (17.35) into (17.34) and using (17.36) we get the asymptotic result

Γn ∼ b0
a0

1
s

1
Γ(1 − 1/s)

1
n1/s

. (17.38)

We see that asymptoticlly the escape from an intermittent repeller is described
by a power law rather than an exponential. 17.3

on p. 374

Example 3.

In the previous example we have considered the survival probability for a repeller.
For a bounded system there is one important distinction. The coefficients a0 in
the series representation of G(u) in (17.35) is zero, a0 = 0. We now get instead

d

du
logG(s) =

{
1
u

(
1 + O(u1/s−1)

)
s < 1

1
u

(
1
s + O(u1−1/s)

)
s > 1

.

The resulting partition sum is

Γn ∼
{

1 + O(n1−1/s) s < 1
1/s + O(n1/s−1) s > 1

.

The result for s > 1 is somewhat worrying. It says that the trace does not tend
to unity. However, the case s > 1 is in many senses anomalous. For instance, the
invariant density cannot be normalized. So it is not reasonable to expect that
periodic orbit theories will work without complications. In this chapter we will
not be concerned with such anomalies.

17.3.2 Resummation

Previously we have studied (zeta) functions represented by power series

f(z) =
∞∑
n=0

cnz
n,
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with coefficients asymtpotically following a power law

cn ∼ 1
nα

,

and then considered a resummation around z = 1.

∞∑
j=0

cjz
j =

∞∑
j=0

aj(1 − z)j + (1 − z)α−1
∞∑
j=0

bj(1 − z)j . (17.39)

In practical calculations one has only a finite number of coefficients cj , 0 ≤
j ≤ nN of the cycle expansion at disposal. Here nN is the cutoff in (topological)
length. One can design a simple resummation scheme for the computation of the
coefficients aj and bj in (17.39). We replace the infinite sums in (17.39) by finite
sums of increasing degrees na and nb, and require that

na∑
i=0

ai(1 − z)i + (1 − z)α−1
nb∑
i=0

bi(1 − z)i =
nN∑
i=0

ciz
i + O(znN+1) . (17.40)

One proceeds by expanding (1 − z)j and (1 − z)j+α−1 around z = 0, skipping
all powers znN+1 and higher, and then equating coefficients. It is natural to
require that |nb + α − 1 − na| < 1, so that the maximal powers of the two sums
in (17.40) are adjacent. If one chooses na + nb + 2 = nN + 1, then, for each
cutoff length nN , the integers na and nb are uniquely determined from a linear
system of equations. One can now study convergence of the coefficients aj , and
bj , with respect to increasing values of nN , or various quantities derived from aj ,
and bj , like the ones in the previous sections. The resummed expression can also
be used to compute zeros, inside or outside the radius of convergence of the cycle
expansion

∑
cjz

j .

The scheme outlined in this section tacitly assumes that a representation of
form (17.28) holds. Any additional knowledge of the asymptotics of the cycle
expansion should be built into the ansatz, improving the convergence.

17.4 Marginal stability and anomalous diffusion

We consider now the effect of intermittency on transport properties of one-
dimensional maps. We consider maps on the real line characterized by the same
properties of sect. 16.2, where marginal fixed points unbalance the role of running
and standing orbits, thus generating a mechanism that may result in anomalous
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(a) (b)

Figure 17.3: (a) A map with marginal fixed point. (b) The map with marginal fixed point
fig. 17.3a reduced to the torus.
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diffusion. Our model example is the map shown in fig. 17.3a, whose correspond-
ing map on the torus is shown in fig. 17.3b. Branches whose support lies in Mi,
i = 1, 2, 3, 4 have uniform slope (absolute value Λ), while f |M0 is of intermittent
form (and we will consider as a model form the piecewise linear approximation
formerly dealt with). Once the 0 fixed point is pruned away the symbolic dynam-
ics is determined by the countable alphabet {1, 2, 3, 4, 0i1, 0j2, 0k3, 0l4} i, j, k, l =
1, 2, . . .. The partitioning of the subinterval M0 is induced by M0k(right) =
φk
(right)(M3

⋃
M4) (where φ(right) denotes the inverse of the right branch of f̂ |M0)

and the same reasoning applies to the leftmost branch. These are regions over
which the slope of f̂ |M0 is constant. Thus we have the following stabilities and
weights associated to letters:

0k3, 0k4 Λp = k1+α

q/2 σp = 1

0l1, 0l2 Λp = l1+α

q/2 σp = −1
3, 4 Λp = ±Λ σp = 1
2, 1 Λp = ±Λ σp = −1 (17.41)

where α = 1/s is determined by the intermittency exponent, while q is to be
determined by the flow conservation for f̂ :

4
Λ

+ 2qζR(α + 1) = 1

so that q = (Λ−4)/2ΛζR(α+1). The dynamical zeta function picks up contribu-
tions just by the alphabet’s letters, as we have imposed piecewise linearity, and
is written as

1/ζ0(z, β) = 1 − 4
Λ
z coshβ − Λ − 4

ΛζR(1 + α)
z coshβ · J(z, α + 1) (17.42)

and its first zero z(β) is determined by

4
Λ
z +

Λ − 4
ΛζR(1 + α)

z · J(z, α + 1) =
1

coshβ

By using implicit function derivation we see that D vanishes (i.e. z′′(β)|β=1 = 0)
when α ≤ 1. This is easily interpreted from a physical point of view, as marginal
stability implies that a typical orbit will be sticked up for long times near the 0
indifferent fixed point, and the ‘trapping time’ will be larger for higher values of
the intermittency parameter s (recall α = s−1). This requires looking in more
detail at the behavior of traces of high powers of the transfer operator.
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The evaluation of transport coefficient requires one mode derivative with re-
spect to expectation values of phase functions (see sect. 16.1): if we use the
diffusion dynamical zeta function(see (16.7)), we may write the diffusion coeffi-
cient as an inverse Laplace transform,in such a way that any distinction between
maps and flows has vanished. In the case of one–dimensional diffusion we thus 17.4

on p. 374have

D = lim
t→∞

d2

dβ2
1

2πi

∫ a+i∞

a−i∞
ds est

ζ ′(β, s)
ζ(β, s)

∣∣∣∣
β=0

(17.43)

where the prime means derivative with respect to s.

The evaluation of inverse Laplace transforms for high values of the argument
is most conveniently performed by using Tauberian theorems: in particular we
will employ the following version: take

ω(λ) =
∫ ∞

0
dx e−λxu(x)

(with u(x) monotone in some neighborhood of infinity): then, as λ �→ 0 and
x �→ ∞ respectively (and ρ ∈ (0,∞),

ω(λ) ∼ 1
λρ

L

(
1
λ

)

if and only if

u(x) ∼ 1
Γ(ρ)

xρ−1L(x)

where L denotes any showly varying function (i.e. such that limt→∞ L(ty)/L(t) =
1). Now

1/ζ0
′(e−s, β)

1/ζ0(e−s, β)
=

coshβ
(
4
Λ + Λ−4

ΛζR(1+α) (J(e−s, α + 1) + J(e−s, α))
)

1 − 4
Λe

−s coshβ − Λ−4
ΛζR(1+α)e

−s coshβJ(e−s, α + 1)

We then perform the double derivative with respect to β and obtain

d2

dβ2
(
1/ζ0

′(e−s, β)/ζ−10 (e−s, β)
)
β=0
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368 CHAPTER 17. WHY DOESN’T IT WORK?

=
4
Λ + Λ−4

ΛζR(1+α) (J(e−s, α + 1) + J(e−s, α))(
1 − 4

Λe
−s − Λ−4

ΛζR(1+α)e
−sJ(e−s, α + 1)

)2 = gα(s) (17.44)

The asymptotic behavior of the inverse Laplace transform (17.43) may then
be evaluated via Tauberian theorems, once we use our estimate for the behavior
of Jonquière functions near z = 1. The deviations from normal behaviour corre-
spond to an explicit dependence of D on time. Omitting prefactors (which can
however be calculated by the same procedure) we have

gα(s) ∼


s−2 for α > 1
s−(α+1) for α ∈ (0, 1)
1/(s2 ln s) for α = 1

from which we get the estimates

〈(x − x0)2〉t = 2D(t) · t ∼

 t for α > 1
tα for α ∈ (0, 1)
t/ ln t for α = 1

(17.45)

17.5
on p. 374

17.5 Probabilistic or BER zeta functions

So far we used a piecewise linear model in order to investigate dynamical
implications of marginal fixed points. We now describe how probabilistic methods
may be employed in order to write down approximate dynamical zeta functions
for intermittent systems.

Imagine now that we are dealing with a flow. (Minor modifications are re-
quired if the system is discrete time mapping, see below.) The key idea is to
introduce a surface of section P such that all trajectories from this section and
back have spent at least some time in the chaotic phase. A cycle p makes np

intersections with the surface of section P. T (x), or the time of first return func-
tion which gives the time of flight to the next section for a trajectory starting at
xn, that is the time of flight from the surface of section P back to itself, depends
only on the phase space coordinate x on the surface of section. The period (2.11)
of p can be written

Tp =
mp−1∑
m=0

T (fm(xp)),
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where f(x) is the Poincaré map, and xp is a cycle point, a point where p intersects
the section. The dynamical zeta function associated with cycle weights

Ap =
mp−1∑
m=0

a(fm(xp)).

is

1/ζ(s, β, z) =
∏
p

(
1 − zmpeβAp−sTp

|Λp|

)
, (17.46)

This objects captures the dynamics of both the flow and the Poincaré map. The
dynamical zeta function for the flow is obtained as 1/ζ(s, β) = 1/ζ(s, β, z = 1).
and the dynamical zeta function of the Poincaré map is 1/ζ(s, β) = 1/ζ(s =
0, β, z). The concept of a Poincaré mapping works equally well for maps. In that
case we simply set Tp = np and z = e−s.

The approximation is based on the stochasticity assumption, assumption that
the chaotic interludes render the consecutive return (or recurrence) times T (xi),
T (xi+1) and observables a(xi), a(xi+1) effectively uncorrelated. Consider the
quantity eβA(x0,n)−sT (x0,n) averaged over the surface of section P. Under the
above stochasticity assumption the large n behavior is

〈eβA(x0,n)−sT (x0,n)〉P ∼
(∫

P
eβa(x)−sT (x)ρ(x)dx

)m

, (17.47)

where ρ(x) is the invariant density of the Poincaré map. This type of behav-
ior is equivalent to there being only one zero z0(s, β) =

∫
eβa(x)−st(xt)ρ(x)dx of

1/ζ(s, β, z) in the z − β plane. In the language of Ruelle resonances this means
that there is an infinite gap to the first resonance. This in turn implies that
1/ζ(s, β, z) may be written as

1/ζBER(s, β, z) = z −
∫
P
eβa(x)−sT (x)ρ(x)dx , (17.48)

where we have neglected a possible analytic and zerofree prefactor. The dynam-
ical zeta function of the flow is now

1/ζBER(s, β) = 1/ζBER(s, β, 1) = 1 −
∫

e−st(xt)eβa(x)ρ(x)dx . (17.49)
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Normally, the best one can hope for is an finite gap to the leading resonance of
the Poincaré map. The above dynamical zeta function is then only approximate.
As it was introduced by Baladi-Ruelle-Eckmann, we shall refer to it as the BER
zeta function ζBERs, β) in what follows.

A central role is played by the probability distribution of return times

ψ(T ) =
∫

δ(T − T (x))ρ(x)dx (17.50)

17.6
on p. 375

The BER zeta function at β = 0 is then given in terms of the Laplace transform
of this distribution

1/ζBER(s) = 1 −
∫ ∞

0
ψ(T )e−sTdT.

17.7
on p. 375

Example 4.

For the binary shift map

x �→ f(x) = 2x mod 1, (17.51)

one easily derives the distribution of return times

ψn =
1
2n

n ≥ 1. (17.52)

The BER zeta function becomes

1/ζBER(z) = 1 −
∞∑
n=1

ψnz
n = 1 −

∞∑
n=1

zn

2n
=

1 − z

1 − z/2
≡ ζ−1(z)/(1 − z/Λ0).

That is, the “approximate” zeta function is in this case the exact dynamical zeta
function, with the cycle point 0 pruned.

Example 5.

For the toy model presented in sect. 17.2.1 one gets

ψ1 = |M1|, (17.53)
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17.5. PROBABILISTIC OR BER ZETA FUNCTIONS 371

and

ψn = |in−1|
1 − a

1 − b
,

leading to a BER zeta function

1/ζBER(z) = 1 − z|M1| −
∞∑
n=1

|in|zn+1,

which is again yields the exact result.

It may seem surprising that an approximation produced exact result in the
two examples above. The reason is that both these systems have complete Markov
partitions, with the stochasticity assumption on which the probabilistic approx-
imation is based exactly fulfilled. In these case the curvature terms of a cycle
expansion are identically zero. A small nonlinearity will change matters. There is
an intricate similarity between the BER zeta function and the fundamental part
of a cycle expansion. But they are not identical, the BER zeta function obeys
the flow conservation sum rule by construction, whereas the fundamental part of
a cycle expansion does not.

Commentary

Remark 17.1 Where is Ivar? The approach taken here leads us to a
formulation in terms of dynamical zeta functions rather than spectral det-
erminants. We have thus circumvented evolution operators and developed
a somewhat less fancy theory. It is not known if the spectral determinants
formulation would yield any benefits when applied to intermittent chaos.
Some results on spectral determinants and intermittency can be found in
[1]. A useful mathematical technique to deal with isolated marginally stable
fixed point is that of inducing, which amounts to introduce a completely
hyperbolic map whose properties may be somehow linked to the original
intermittent one: we refer to refs. [2, 3] for a detailed description (and ap-
plications to one-dimensional maps) of this technique.

Remark 17.2 Intermittency. Intermittent maps such as (17.1) have
been introduced as models for intermittent behavior by Pomeau and Man-
neville [4]. Piecewise linear models like the one considered here have been
studied by Gaspard and Wang [5]. The escape problem has been treated
along the way employed here in ref. [6], resummations have been considered
in ref. [7].
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372 CHAPTER 17.

Remark 17.3 Jonquière functions. In statistical mechanics Jonquière
functions appear in the theory of free Bose-Einstein gas, see refs.??

Remark 17.4 Tauberian theorems. In this chapter we used Tauberian
theorems for power series and Laplace transforms: a highly recommended
reading on this issue is ref. [8].

Remark 17.5 Anomalous diffusion. Anomalous diffusion for one di-
mensional intermittent maps was studied in the continuous time random
walk approach in refs. [9, 10]. The first approach within the framework of
cycle expansions (based on truncated dynamical zeta functions) was pro-
posed in ref. [11]. Our treatment follows methods introduced in ref. [12],
applied there to investigate the behavior of the Lorentz gas with unbounded
horizon.

Commentary

Remark 17.6 Probabilistic methods, BER zeta functions. The use of
probabilistic methods in intermittent chaos is widespread [9]. The particu-
lar , BER approximation studied here is inspired by Baladi, Eckmann and
Ruelle [13] and has been developped in refs. [14, 12].

Résumé

The appearance of marginal stability changes the rule of cycle expansions: math-
ematically this forces us to consider a far more complicated analytic structure
than simple zeroes and poles that characterize dynamical zeta functionfor fully
hyperbolic systems. The reflections on physical issues are dramatic: exponential
decays are turned into power laws, and diffusion becomes anomalous.
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Exercises

17.1 Contour integral for survival probability. Perform explicitly the contour
integral appearing in (17.6).

17.2 Integral representation of Jonquière functions. Check the integral
representation (17.21). Notice how the denominator is connected to Bose-Einstein dis-
tribution. Compute J(x + iε) − J(x − iε) for a real x > 1.

17.3 Power law correction to a power law. Expand (17.35) further and derive
the leading power law correction to (17.38).

17.4 Inverse Laplace. Consider (17.43) in the case of discrete time mappings:
show that it can be rewritten in a form analogous to (17.31).

17.5 Accelerated diffusion. Consider a map h, such that ĥ = f̂ of fig. ??, but
now running branches are turner into standing branches and vice versa, so that 1, 2, 3, 4
are standing while 0 leads to both positive and negative jumps. Build the corresponding
dynamical zeta function and show that

σ2(t) ∼


t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)

17.6 Recurrence times for Lorentz gas with infinite horizon. Consider the
Lorentz gas with unbounded horizon with a square lattice geometry, with disk radius R
and unit lattice spacing. Label disks according to the (integer) coordinates of their center:
the sequence of recurrence times {tj} is given by the set of collision times. Consider
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orbits that leave the disk sitting at the origin and hit a disk far away after a free flight
(along the horizontal corridor). Initial conditions are characterized by coordinates (φ, α)
(φ determines the initial position along the disk, while α gives the angle of the initial
velocity with respect to the outward normal: the appropriate measure is then dφ cosαdα
(φ ∈ [0, 2π), α ∈ [−π/2, π/2]. Find how ψ(T ) scales for large values of T : this is
equivalent to investigating the scaling of portions of the phase space that lead to a first
collision with disk (n, 1), for large values of n (as n �→ ∞ n 2 T ).

Suggested steps

(a) Show that the condition assuring that a trajectory indexed by (φ, α) hits the (m,n)
disk (all other disks being transparent) is written as∣∣∣∣dm,nR

sin (φ − α − θm,n) + sinα

∣∣∣∣ ≤ 1 (17.54)

where dm,n =
√
m2 + n2 and θm,n = arctan(n/m). You can then use a small R

expansion of (17.54).

(b) Now call jn the portion of the phase space leading to a first collision with disk (n, 1)
(take into account screening by disks (1, 0) or (n−1, 1)). Denote by Jn =

⋃∞
k=n+1 jk

and show that Jn ∼ 1/n2, from which the result for the distribution function
follows.

17.7 Probabilistic zeta function for maps. Derive the probabilistic zeta
function for a map with recurrence distribution ψn.
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Chapter 18

Semiclassical evolution

(G. Vattay, P. Cvitanović and G. Tanner)
Something amazing has happened so far. We obtained information about the de-
terministic dynamics generated by nonlinear maps or ordinary differential equa-
tions by calculating spectra of linear operators such as the Perron-Frobenius
operator in sect. 18.2.2 or associated linear first order partial differential equa-
tions such as the Liouville equation (4.22) in sect. 4.4.1. The spectra of these
operators could then again be described in terms of the period orbits of the deter-
ministic dynamics by using trace formulas and cycle expansions. We also noted
that the structure of the dynamics has a strong influence on a cycle expansion
and thus also on the spectrum; this made it necessary to choose very different
approaches for different types of dynamical behavior such as strongly hyperbolic
or intermittent dynamics in chapters 11 and 17.

An obvious question arises: can we turn the problem round and study lin-
ear PDE’s in terms of an underlying deterministic dynamics? And, maybe more
interesting, is there a direct link between structures in the spectrum or the eigen-
functions of a PDE the dynamical properties of an underlying classical flow? The
answer is yes, but . . . things are becoming somewhat more complicated when
studying 2nd or higher order linear PDE’s. We can in general find a classical
dynamics associated with a linear PDE, just take optics as an obvious example.
Propagation of light follows a second order wave equation but may in certain
limits be well described in terms of a simple ray picture. Waves do, however,
show phenomena not encountered in this book so far such as interference and
diffraction which need to be incorporated in a periodic orbit theory. A theory in
terms of properties of the classical dynamics alone, often refered to as a semiclas-
sical theory, will in addition not be exact in general which is in contrast to the
periodic orbit formulas obtained for Perron-Frobenius operators discussed so far.

We will restrict ourselves in the following chapters to a special wave equation
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378 CHAPTER 18. SEMICLASSICAL EVOLUTION

of great importance in physics, namely the Schrödinger equation describing non-
relativistic quantum mechanics. Our approach will be very much in the spirit
of the early days of quantum mechanics, before its wave character has been
fully uncovered by Heisenberg and Schrödinger in the mid 1920’s. Indeed, were
physicists of the period as familiar with classical chaos as we are today, this
physics could have been developed 80 years ago. It was the discrete nature of
the hydrogen spectrum which triggered the Bohr-de Broglie picture of the old
quantum theory: one places a wave instead of a particle on a Keplerian orbit
around the hydrogen nucleus. The quantization condition is that only those
orbits will contribute for which this wave is stationary; from this follows the
Balmer spectrum and the Bohr-Sommerfeld quantization which led finally to the
more sophisticated theory of Schrödinger and others. Today we are very aware
of the fact that elliptic orbits are a peculiarity of the Kepler problem, and that
chaos is the rule; so can the Bohr quantization be generalized to chaotic systems?
The answer was provided by Gutzwiller in 1971: a chaotic system can indeed be
quantized by placing a wave on each of the infinity of unstable periodic orbits.
Due to the instability of the orbits, waves will, however, not stay localized but
leak into the neighborhood of the periodic trajectories. Contributions of different
periodic orbits interfere and quantization conditions can no longer be attributed
to single periodic orbits. We will instead find that a coherent summation over all
periodic orbit contributions will give the desired spectrum.

Before we get to this point we have to recapitulate some basics of the theory
of quantum mechanics; after having defined the main quantum objects of inter-
est, namely the quantum propagator and the Green’s function, we will relate
quantum propagation of wave functions to the classical flow of the underlying
dynamical system. We will then proceed in constructing semiclassical approxi-
mations to the quantum propagator and the Green’s function. A short revision of
classical Hamiltonian dynamics starting from the Hamilton-Jacobi equation will
be provided on our way. The derivation of the Gutzwiller trace formula and the
semiclassical zeta function as sum and product over classical periodic orbits is
relegated to chapter 19. In subsequent chapters we then treat specific examples
including a cycle expansion calculation of scattering resonances in a 3-disk bil-
liard in chapter 20 and the spectrum of helium in chapter 21. The incorporation
of diffraction effects will be discussed in chapter 22.

18.1 Quantum mechanics: A brief review

We start with a review of standard quantum mechanical concepts prerequisite to
the derivation of the semiclassical trace formula. Starting from the Schrödinger
equation we introduce the time-propagator and the associate energy dependent
Green’s function, as well as the density of states.

In coordinate representation the time evolution of a quantum mechanical wave

∼DasBuch/book/chapter/semiclassic.tex 4aug2000 printed August 24, 2000



18.1. QUANTUM MECHANICS: A BRIEF REVIEW 379

function is governed by the Schrödinger equation

i�
∂

∂t
ψ(q, t) = Ĥ(q,

�

i

∂

∂q
)ψ(q, t), (18.1)

where the Hamilton operator Ĥ(q,−i�∂q) is obtained from the classical Hamil-
tonian by substitution p → −i�∂q. Most of the Hamiltonians we shall consider
here are of form

H(q, p) = T (p) + V (q) , T (p) =
p2

2m
, (18.2)

appropriate to a particle in a d-dimensional potential V (q). For time indepen-
dent Hamiltonians Ĥ, we are interested in finding stationary solutions of the
Schrödinger equation of the form

ψn(q, t) = e−iEnt/�φn(q), (18.3)

where En are the eigenenergies of the system solving the reduced equation Ĥφn(q) =
Enφn(q). For bound systems the spectrum is discrete and the eigenfunctions form
an orthonormal and complete set of functions of a Hilbert space, that is

∫
ddq φn(q)φ∗

m(q) = δnm (18.4)

and

∑
n

φn(q)φ∗
n(q′) = δ(q − q′) . (18.5)

For simplicity we will assume that the system is bound, although most of the
results will be applicable to open systems, where one has complex resonances chapter 20

instead of real energies, and the spectrum has continuous components, see also
chapter 20.

A given wave function can be expanded in the energy eigenbasis

ψ(q, t) =
∑
n

cne
−iEnt/�φn(q) , (18.6)
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where the expansion coefficient cn is given by the projection of the initial wave
function ψ(q, 0) onto the nth eigenstate

cn =
∫

ddq φ∗
n(q)ψ(q, 0). (18.7)

By substituting (18.7) into (18.6), we can write the evolution of a wave function
as

ψ(q, t) =
∫

ddq′K(q, q′, t)ψ(q′, 0)

with

K(q, q′, t) =
∑
n

φn(q) e−iEnt/�φ∗
n(q′) . (18.8)

The kernel K(q,q’,t) is called the quantum evolution operator, or the propagator.
Applied twice, first for time t1 and then for time t2, it propagates the initial wave
function from q′ to q′′, and then from q′′ to q

K(q, q′, t1 + t2) =
∫

dq′′ K(q, q′′, t2)K(q′′, q′, t1) (18.9)

forward in time, hence the name “propagator”. In non-relativistic quantum me-
chanics the range of q′′ is infinite, meaning that the wave can propagate at any
speed; in relativistic quantum mechanics this is rectified by restricting the forward
propagation to the forward light cone.

Since the propagator is a linear combination of the eigenfunctions of the
Schrödinger equation, it also satisfies the Schrödinger equation

i�
∂

∂t
K(q, q′, t) = Ĥ(q,

i

�

∂

∂q
)K(q, q′, t) , (18.10)

and is thus a wave function defined for t ≥ 0; from the completeness relation
(18.5) we obtain the boundary condition at t = 0, that is

lim
t→0+

K(q, q′, t) = δ(q − q′) ; . (18.11)

the propagator thus represents the time evolution of a wave packet which is delta-
function localized in the point q′ at the initial time t = 0.
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For time independent Hamiltonians the time dependence of the wave functions
is known as soon as soon as the eigenenergies En and eigenfunctions φn have been
determined. The trivial part of the information can be discarded if one considers
the energy dependent Green’s function which is obtained from the propagator via
Laplace transformation,

G(q, q′, E + iε) =
1
i�

∫ ∞

0
dt e

i
�
Et− ε

�
tK(q, q′, t) =

∑
n

φn(q)φ∗
n(q′)

E − En + iε
. (18.12)

Here ε is a small positive number, ensuring the existence of the integral. The
eigenenergies show up as poles in the Green’s function with residues corresponding
to the wave function amplitudes. If one is only interested in the spectrum one
may consider the formal trace of the Green’s function which equals

trG(q, q′, E) =
∫

ddq G(q, q, E) =
∑
n

1
E − En

, (18.13)

where E is complex, with positive imaginary part, and we have used the eigen-
function orthonormality (18.4). This trace is formal, since in general the sum in
(18.13) is divergent. We shall return to this point in sects. 19.1.1 and 19.1.2.

A a useful characterization of the set of eigenvalues is given in terms of the
density of states, with a delta function peak at each eigenenergy, fig. 18.1(a),

d(E) =
∑
n

δ(E − En). (18.14)

Using the identity 18.1
on p. 404

δ(E − En) = − lim
ε→+0

1
π

Im
1

E − En + iε
(18.15)

we can express the density of states in terms of the trace of the Green’s function,
that is

d(E) =
∑
n

δ(E − En) = − lim
ε→0

1
π

Im trG(q, q′, E + iε). (18.16)

We shall give a semiclassical formula for this quantity in sect. 19.1.1.
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382 CHAPTER 18. SEMICLASSICAL EVOLUTION

Figure 18.1: Schematic picture of a) the density of states d(E), and b) the spectral
staircase function N(E). The dashed lines denote the mean density of states d̄(E) and the
average number of states N̄(E) discussed in more detail in sect. 14.1.

The density of states can be written as the derivative d(E) = dN(E)/dE of
another useful quantity, the spectral staircase function

N(E) =
∑
n

Θ(E − En) (18.17)

which counts the number of eigenenergies below E, fig. 18.1(b), Here Θ is the
Heaviside function

Θ(x) = 1 if x > 0; Θ(x) = 0 if x < 0 . (18.18)

This completes our lightning review of quantum mechanics.

18.2 Semiclassical evolution

Semiclassical approximations to quantum mechanics are valid in the regime where
the de Broglie wavelength λ ∼ �/p of a particle with momentum p is much
shorter than the length scales across which the potential of the system changes
significantly. In the short wavelength approximation the particle is a point-like
object bouncing off potential walls the same way it does in the classical mechanics.
The real novelty of quantum mechanics is the interference of the point-like particle
with its own other versions traveling along different classical trajectories, a feat
impossible in classical mechanics. The short wavelength – or semiclassical –
formalism is developed by formally taking the limit � → 0 in quantum mechanics
in such a way that quantum quantities go to their classical counterparts, (see also
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remark 18.1). The mathematical formulation of the semiclassical approximation
relies on the Wentzel-Kramers-Brillouin (WKB) ansatz for the wave function

ψ(q, t) = A(q, t)eiR(q,t)/� , (18.19)

where R(q, t) and A(q, t) are assumed to be slowly varying real functions of the
coordinates. 18.2

on p. 404

The time evolution of a WKB ansatz wave function (18.19) follows from the
Schrödinger equation (18.1)(

i�
∂

∂t
+

�
2

2m
∂2

∂q2
− V (q)

)
ψ(q, t) = 0, (18.20)

taking for concreteness a Hamiltonian Ĥ of form (18.2). Assuming A �= 0 and
separating out the real and the imaginary parts we get two equations; the real
part governs the time evolution of the phase

∂R

∂t
+

1
2m

(
∂R

∂q

)2
+ V (q) − �

2

2m
1
A

∂2

∂q2
A = 0 , (18.21)

and the imaginary part giving the time evolution of the amplitude 18.3
on p. 404

18.4
on p. 404

∂A

∂t
+

1
m

d∑
i=1

∂A

∂qi

∂R

∂qi
+

1
2m

A
∂2R

∂q2
= 0 . (18.22)

18.5
on p. 404

By making the WKB-ansatz, we converted a linear PDE for complex wave
functions into a set of coupled non-linear PDE’s of real-valued functions R and
A. The coupling term in (18.21) is, however, of order �

2 and thus small in the
semiclassical limit � → 0. (This means that we are working in a regime where the
magnitude of the wave A(q, t) varies slowly compared to R(q, t)/�). Neglecting
the �-dependent term, the phase R(q, t) and the corresponding ‘velocity field’
∂R
∂q (q, t) can be determined from the amplitude independent equation

∂R

∂t
+ H(q,

∂R

∂q
) = 0 , (18.23)

which is the classical Hamilton-Jacobi equation. This is our first semiclassical
approximation to wave mechanics and we will work within this approximation
from now on. A very different interpretation of (18.21–18.22) has been given by
Madelung, Bohm and others; keeping the �-depend term, eqs. (18.21–18.22) can
be written in a form which resembles the Euler equations in fluid mechanics with
an �-dependent stress tensor, see remark 18.2. This line of thought did, however,
not prove very useful so far and we continue with the approximation (18.23).
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Figure 18.2: (a) A phase R(q, t) plotted as a function of the position q for two in-
finitesimally close times. (b) The phase R(q, t) transported by a swarm of “particles”; The
Hamilton’s equations (18.28) construct R(q, t) by transporting q0 → q(t) and the slope of
R(q0, t0) that is p0 → p(t).

18.2.1 Hamilton’s equations

William Rowan Hamilton was born in 1805. At three he
could read English; by four he began to read Latin, Greek
and Hebrew, by ten he read Sanskrit, Persian, Arabic,
Chaldee, Syrian and sundry Indian dialects. At age sev-
enteen he began to think about optics, and worked out
his great principle of “Characteristic Function”.

Turnbull, Lives of Mathematicians

The wave equation (18.1) describes how the wave function ψ evolves with
time, and if you think of ψ as an (infinite dimensional) vector, position q plays a
role of an index. In one spatial dimension the phase R(q, t) plotted as a function of
the position q for two different times looks something like fig. 18.2(a). The phase
R(q, t0) deforms smoothly with time into the phase R(q, t) at time t. Hamilton’s
idea was to let a swarm of particles transport R(q, t) and its slope ∂R/∂q at q at
initial time t = t0 to a corresponding R(q, t) and its slope at time t, fig. 18.2(b).
For notational convenience, define

pi = pi(q, t) :=
∂R

∂qi
, i = 1, 2, . . . , d . (18.24)

We saw earlier that (18.21) reduces in the semiclassical approximation to the
Hamilton-Jacobi equation (18.23). We shall assume as usual in this chapter that
the Hamilton’s function H(q, p) can be written as a sum of kinetic and potential
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parts as in (18.2), and that it does not depend explicitly on the time t that is the
energy is conserved.

To start with we will for simplicity also assume that the function R(q, t) is
smooth and well defined for every q at a specific time t; (we will see later that R
in general develops folds as t progresses and will become multi-valued). Consider
now the variation of the function R(q, t) with respect to independent infinitesimal
variations of the time and space coordinates dt and dq, fig. 18.2(a)

dR =
∂R

∂t
dt +

∂R

∂q
dq . (18.25)

Dividing through by dt and substituting (18.23) we obtain the total derivative of
R(q, t) with respect to time along a yet arbitrary direction q̇, that is,

dR

dt
(q, q̇, t) = −H(q, p) + q̇ · p . (18.26)

Note that the ‘momentum’ p = ∂R/∂q is a well defined function of q and t. In
order to integrate R(q, t) along q̇ with the help of (18.26) we also need to know
how p = ∂R/∂q changes along q̇. One obtains

d
∂R

∂q
=

∂2R

∂q∂t
dt +

∂2R

∂q2
dq = −

(
∂H

∂q
dt +

∂H

∂p

∂p

∂q

)
+

∂p

∂q
dq .

Note that H(q, p) depends on q also through p(q, t) = ∂R/∂q, hence the ∂H
∂p term

in the equation above. Dividing again through by dt we get the time derivative
of ∂R/∂q along q̇, that is,

ṗ(q, q̇, t) +
∂H

∂q
=
(
q̇ − ∂H

∂p

)
∂p

∂q
. (18.27)

This equation depends now on second derivatives of R with respect to q with yet
unknown time dependence. The differential equation (18.27) becomes, however,
particularly simple if we choose q̇ (which is arbitrary so far) such that the right
hand side of the above equation vanishes, that is, we look at changes along
q̇ = ∂H

∂p (q, t). As a consequence, we can calculate the function R(q, t) along a
specific path q(t) in q space given by integrating the ordinary differential equations

q̇ =
∂H(q, p)

∂p
, ṗ = −∂H(q, p)

∂q
(18.28)
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with initial conditions

q(t0) = q′, p(t0) =
∂R

∂q
(q′, t0). (18.29)

The equations (18.28) are Hamilton’s equation of motion of classical mechanics
and the path q(t) is the line along which the phase function R is minimal.

The function R(q, t) can thus be calculated integrating equation (18.26) along
the path (q(t), p(t))

R(q, t) = R(q′, t0) + R(q, t; q′, t0)

= R(q′, t0) +
∫ t

t0

dτ {q̇(τ) · p(τ) − H(q(τ), p(τ))} , (18.30)

again with boundary conditions (18.29). In this way the Hamilton-Jacobi partial
differential equation is solved by integrating a set of ordinary differential equa-
tions, the Hamilton’s equations. In order to determine R(q, t) for arbitrary q and
t we have to find a q′ such that the trajectory starting in (q′, p′ = ∂qR(q′, t0))
reaches q in time t and then compute R along this trajectory, see fig. 18.2(b).

Throughout this chapter we assume that the energy is conserved, and that
the only time dependence of H(q, p) is through (q(τ), p(τ)), so the value of
R(q, t; q′, t0) does not depend on t0, but only on the elapsed time t − t0. Set-
ting t0 = 0 we will write

R(q, q′, t) = R(q, t; q′, 0) .

The initial momentum of the particle must coincide with the initial momentum
of the trajectory connecting q′ and q:

p′ =
∂

∂q′
R(q′, 0) = − ∂

∂q′
R(q, q′, t). (18.31)

18.6
on p. 405

The function R(q, q′, t) is known as Hamilton’s principal function.
18.7
on p. 405 To summarize: Hamilton’s achievement was to trade in the Hamilton-Jacobi

partial differential equation (18.23) for the evolution of a wave front for a finite
number of ordinary differential equations of motion which increment the initial
phase R(q, 0) by the integral (18.30) along the phase space trajectory (q(τ), p(τ)).

Before proceeding, we note in passing a few facts about Hamiltonian dynamics
that will be needed for the construction of semiclassical Green’s functions. If the
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energy is conserved, the
∫
H(q, p)dτ integral in (18.30) is simply Et. The first

term, or the action

S(q, q′, E) =
∫ t

0
dτ q̇(τ) · p(τ) =

∫ q

q′
dq · p (18.32)

is integrated along a trajectory from q′ to q with a given energy E. By (18.30)
the action is the Legendre transform of Hamilton’s principal function

S(q, q′, E) = R(q, q′, t) + Et . (18.33)

Now the trajectory connecting q′ → q is fixed by the energy E, and the time of
flight t for this fixed energy is given by

∂

∂E
S(q, q′, E) = t . (18.34)

The way you think about relation (18.33) is that the time of flight is a function
of the energy, t = t(q, q′, E). The left hand side is explicitly a function of E; the
right hand side is an implicit function of E through energy dependence of the
flight time t.

Going in the opposite direction, the energy of a trajectory E = E(q, q′, t)
connecting q′ → q with a given time of flight t is given by the derivative of
Hamilton’s principal function

∂

∂t
R(q, q′, t) = −E , (18.35)

and the second variations of R and S are related in the standard way of Legendre
transforms:

∂2

∂t2
R(q, q′, t)

∂2

∂E2
S(q, q′, E) = −1 . (18.36)

A geometric visualization of what the phase evolution looks like will be essential
in understanding the origin of topological indices introduced in one of the next
sections. Given an initial phase R(q, t0), the gradient ∂qR defines a d-dimensional
Lagrangian manifold (q, p = ∂qR(q)) in the full 2d dimensional phase space (q, p).
The defining property of this manifold is that any contractable loop γ in it has
zero action,

0 =
∮
γ
dq · p,
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a fact that follows from the definition of p as a gradient, and the Stokes theorem.
Hamilton’s equations of motion preserve this property and map a Lagrangian
manifold into a Lagrangian manifold time t later. This fact is called the Poincaré-
Cartan theorem.

Returning back to the main line of our argument: we show next that the
velocity field given by the Hamilton’s equations together with the continuity
equation determines the amplitude of the wave function.

18.2.2 Density evolution

To obtain the full solution of the Schrödinger equation (18.1), we also have to
integrate (18.22). Already Schrödinger noted that if one defines

ρ = ρ(q, t) := A2 = ψ∗ψ

evaluated along the trajectory (q(t), p(t)) , the amplitude equation (18.22) is
equivalent to the continuity equation (??) after multiplying (18.22) by 2A, that
is

∂ρ

∂t
+

∂

∂qi
(ρvi) = 0 . (18.37)

Here, vi = q̇i = pi/m denotes a velocity field, which is in turn determined by the
phase R(q, t) or equivalently by the Lagrangian manifold (q(t), p = ∂qR(q, t)),

v =
1
m

∂

∂q
R(q, t).

Knowing the solutions for the phase equation (18.21), we can immediately obtain
the density evolution.

The density ρ(q) can be interpreted as a propability density or may likewise
be visualized as the density of a flow q(t) of a swarm of hypothetical particles
in configuration space; the trajectories q(t) are solutions of Hamilton’s equations
with initial conditions given by (q(0) = q′, p(0) = p′ = ∂qR(q′, 0)).

If we take a small configuration space volume ddq around some point q at
time t, then the number of particles in it is P(q, t)ddq. They started initially
in a small volume ddq′ around the point q′ of the configuration space. For the
moment, we assume that there is only one solution, the case of several paths will
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Figure 18.3: Density evolution of an initial sur-
face (q′, p′ = ∂qR(q′, 0) into (q(t), p(t)) surface
time t later, sketched in 1 dimension. While the
number of trajectories is conserved, their density
projected on the q coordinate varies; trajectories
which started in dq′ at time zero end up in the
interval dq.

be considered below. The number of particles at time t in the volume is the same
as the number of particles in the initial volume at t = 0,

P(q(t), t)ddq = P(q′, 0)ddq′ ,

see fig. 18.3. The ratio of the initial and the final volumes can be expressed as

P(q(t), t) =
∣∣det j(q, q′, t)

∣∣ P(q′, 0),

where j stands for the configuration space Jacobian

j(q, q′, t) =
∂q′l
∂qk

. (18.38)

See also remark 18.2 for a ‘hydrodynamical’ interpretation of the density equation
including the � - dependent coupling term.

18.2.3 Semiclassical wave function

Now we have all ingredients to write down the semiclassical wave function at time
t. First we investigate the case when our initial wave function can be written
in terms of single valued functions A(q′, 0) and R(q′, 0). For sufficiently short
times, R(q, t) will remain a single-valued function of q, and the ddq configuration
space volume element keeps its orientation. The evolved wave function is in the
semiclassical approximation then given by

ψsc(q, t) = A(q, t)eiR(q,t)/� =
√

det j(q, q′, t))A(q′, 0)ei(R(q
′,0)+R(q,q′,t))/�

=
√

det j(q, q′, t) eiR(q,q
′,t)/� ψ(q′, 0) .
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However, for longer times the value of the phase R(q, t) is usually not unique;
instead one will in general find more than one trajectory connecting points q and
q′ with different phases R(q, t) accumulated along these paths, see fig. 18.4. This
is a consequence of the folding of the Lagrangian manifold ∂qR(q, t) as the time
progresses.

Whenever the Lagrangian manifold develops a fold, the density of the phase
space trajectories in the fold projected on the configuration coordinates diverges.
Presence of a fold is signaled by the divergence of an eigenvalue of the Jacobian j
from (18.38). The projection of a simple fold, or an envelope of a family of phase
space trajectories, is called a caustic; this expression comes from the Greek word
for “capable of burning”, evoking the luminous patterns that one observes on the
bottom of a swimming pool. In more exceptional cases when several eigenvalues
diverge simultaneously one encounters higher order caustics, whose classification
is the subject of catastrophe theory, see for example ref. [] for details.

We thus expect in general a collection of different trajectories from q′ to q
which we will index by j, with different phase increments Rj(q, q′, t). Particles of
the probability flow at a given configuration space point can move with different
momenta p = ∂qRj(q, t). This is not an ambiguity, since in the full (q, p) phase
space each particle follows its own trajectory with a unique momentum.

The folding also changes the orientation of the pieces of the Lagrangian man-
ifold (q, ∂qR(q, t)) with respect to the initial manifold, so the eigenvalues of the
Jacobian determinant change sign at each fold crossing. We can keep track of
the signs by writing the Jacobian determinant as

det jj(q, q′, t) = e−iπmj(q,q
′,t)|det jj(q, q′, t)|,

where mj(q, q′, t) counts the number of sign changes of the Jacobian determinant
on the way from q′ to q along the trajectory indexed with j, see fig. 18.4. The
integer mj(q, q′, t) is called the topological or Morse index of the trajectory. For
longer times the semiclassical approximation to the wave function is thus a sum
over possible trajectories that start in q′ and end in q in time t

ψsc(q, t) =
∑
j

|det jj(q, q′, t)|1/2eiRj(q,q′,t)/�−iπmj(q,q
′,t)/2ψ(q′j , 0) . (18.39)

That the correct topological index is obtained by simply counting the number
of eigenvalue sign changes and taking the square root is not obvious - the careful
argument requires that quantum wave functions evaluated across the folds remain
single valued, for details see ref. [?].
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Figure 18.4: Folding of the Lagrangian sur-
face (q, ∂qR(q, t)). The inital surface (q′, p′ =
∂qR(q′, 0)) is mapped into the surface (q(t), p(t))
some time t later; this surface may develop a fold
at q = q1; the volume element dq1 in the neighbor-
hood of the folding point which steams from some
inital volume element dq′ is proportional to

√
dq′

instead of dq′ at the fold. The Jacobian (18.38),
∂q′/∂q, diverges like 1/

√
q1 − q(t) when computed

along the trajectory going trough the folding point
at q1. After the folding the orientation of the inter-
val dq′ has changed when being mapped into dq2;
in addition the function R, as well as its derivative
which defines the Lagrangian manifold, becomes
multi-valued. Distinct trajectories starting from dif-
ferent initial points q′ can now reach the same final
point q2.

18.3 Semiclassical propagator

We saw in sect. 18.1 that the time dependence of an initial wave function ψ(q, 0) is
completely determined by the propagator (18.8). As K(q, q′, t) itself satisfies the
Schrödinger equation (18.10), we can treat it as a wave function parameterized
by the configuration point q′. In order to obtain a semiclassical approximation of
the propagator we follow now essentially the ideas developed in the last section;
there is, however, one small complication: the initial conditions (18.11) demands
that the propagator at t = 0 is a δ-function at q = q′, that is, the amplitude is
infinite at q′ and the phase is not well defined. Our hypothetical cloud of particles
is thus initially localized at q = q′ but the particles have different velocities at
that point. This is in contrast to the situation in the previous section where we
assumed that the particles at a given point q have well defined velocity (or a
discrete set of velocities) given by q̇ = ∂pH(q, ∂qR). We will in the following give
a semiclassical expression for K(q, q′, t) by considering the propagator for short
times first and extrapolate from there to arbitrary times t.

For infinitesimal small times dt away from the singular point t = 0 we assume
that it is again possible to write the propagator in terms of a well defined phase
and amplitude, that is

K(q, q′, dt) = A(q, q′, dt)e
i
�
R(q,q′,dt) .

As all particles start at q = q′, R(q, q′, dt) will be of the form (18.30), that is

R(q, q′, dt) = pq̇dt − H(q, p)dt , (18.40)
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with q̇ ≈ (q − q′)/dt. For Hamiltonians of the form (18.2) we obtain q̇ = p/m,
which leads to

R(q, q′, dt) =
m(q − q′)2

2dt
− V (q)dt .

Inserting this into our ansatz for the propagator we obtain

Ksc(q, q′, dt) ≈ A(q, q′, dt)
(m
dt

)d/2
e
i
�

m
2dt
(q−q′)2−V (q)dt, (18.41)

which is a d-dimensional Gaussian with width σ2 = i�dt/m (when neglecting the
term −V (q)dt which is small for small times). This Gaussian is a finite width
approximation to the Dirac delta function if A = (m/2πi�dt)d/2. The correctly18.8

on p. 405 normalized propagator for short times t is therefore

Ksc(q, q′, t) ≈
( m

2πi�t

)d/2
e
i
�
(
m(q−q′)2

2t
−V (q)t) . (18.42)

The short time dynamics of the Lagrangian manifold (q, ∂qR) which corresponds
to the quantum propagator can now be deduced from (18.40); one obtains

∂R

∂q
= p ≈ m

t
(q − q′) ,

that is the particles start for short times on a Lagrangian manifold which is a
plane in phase space, see fig. 18.5. Note, that for t → 0, this plane is given by
the condition q = q′, that is, particles start on a plane parallel to the momentum
axis’. This is in accordance with our previous observation that all particles start
at q = q′ but with different velocities for t = 0. The slope of the Lagrangian
plane for finite time is given as

∂pi
∂qj

= − ∂2R

∂qj∂q′i
= −∂p′i

∂qj
=

m

t
δij .

The prefactor (m/t)d/2 in (18.42) can therefore be interpreted as the determinant
of the Jacobian of the transformation from final position coordinates q to initial
momentum coordinates p′ that is

Ksc(q, q′, t) = |detC|1/2eiR(q,q′,t)/�, (18.43)
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Figure 18.5: Evolution of the semiclassical prop-
agator. The configuration which corresponds to the
initial conditions of the propagator is a Lagrangian
manifold q = q′, that is, a plane parallel to the p
axis. The hypothetical particles are thus initially
all placed at q′ but take on all possible momenta
p′. The Jacobian matrix C (18.45) relates an initial
volume element in momnetum space dp′ to a final
configuration space volume dq.

where

C(q, q′, t)ij =
∂p′j
∂qi

∣∣∣∣
t,q′

= −∂2R(q, q′, t)
∂qi∂q′j

(18.44)

The subscript · · ·|t,q′ indicates that the partial derivatives are to be evaluated
with t, q′ fixed.

The propagator in (18.43) has been obtained for short times so far, it is,
however, already more or less in its final form. We only have to evolve our short
time approximation of the propagator according to (18.39)

Ksc(q′′, q′, t + t0) =
∑
j

|det jj(q′′, q, t)|1/2eiRj(q
′′,q,t)/�−iπmj(q

′′,q,t)/2K(qj , q′j , t0) ,

and we included here already the possibility that the phase becomes multi-valued,
that is, that there is more than one path from q′ to q′′. The Morse index mj =
mj(q, q′, t) equals again the number of singularities in the Jacobian along the
trajectory from q′ to q′′. We can write Ksc(q′′, q′, t + t0) in closed form using
the fact that R(q′′, q, t) +R(q, q′, t0) = R(q′′, q′, t+ t0) and the multiplicativity of
Jacobian determinants that is

det j(q′′, q, t) detC(q, q′, t) = det
∂q

∂q′′

∣∣∣∣
t

det
∂p′

∂q

∣∣∣∣
q′,t0

= det
∂p′

∂q′′

∣∣∣∣
q′,t+t0

= detC(q′′, q′, t + t0) .(18.45)

The final form of the semiclassical propagator, also called the Van Vleck
propagator, can thus be written as

Ksc(q, q′, t) =
∑
j

1
(2πi�)d/2

|detCj(q, q; , t)|1/2eiRj(q,q
′,t)/�−imjπ/2 , (18.46)
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which is the key to the semiclassical quantization to follow.

The apparent simplicity of the semiclassical propagator is deceptive. The wave
function is not evolved simply by multiplying by a complex number of magnitude√

det ∂q′/∂q and phase R(q, q′, t); the more difficult task in general is to find the
trajectories connecting q′ and q in a given time t.

In addition, we have to treat the approximate propagator (18.46) with some
care. Unless the full quantum propagator which fulfills the property (18.9) exactly
the semiclassical propagator performs this only approximately that is

Ksc(q, q′, t1 + t2) ≈
∫

dq′′ Ksc(q, q′′, t2)Ksc(q′′, q′, t1) . (18.47)

The connection can be made explicit when employing the stationary phase ap-
proximation, that is, approximating the integral in (18.47) by integrating only
over regions near points q′′ at which the phase is stationary. The stationary phase
condition for (18.47) yields

∂R(q, q′′, t2)
∂q′′i

+
∂R(q′′, q, t1)

∂q′′i
= 0. (18.48)

that is, classical trajectories contribute prominently whenever the final momen-
tum for a path from q′ to q′′ and the initial momentum for a path from q′′ to q
coincide. We will meat the method of stationary phase in more detail in the next
section. Note, however, that the semiclassical evolution is not an evolution by
linear operator multiplication, but evolution supplemented by a stationary phase
condition pout = pin that matches up the classical momenta at each evolution
step.18.9

on p. 405

18.3.1 Free particle propagator

As a concrete example consider the case of a free particle. For a free particle the
potential energy vanishes, the kinetic energy is m

2 q̇
2, and the Hamilton’s principal

function (18.30) is

R(q, q′, t) =
m(q − q′)2

2t
. (18.49)

The matrix C(q, q′, t) from (18.44) can be evaluated explicitly, and the Van Vleck
propagator is

Ksc(q, q′, t) =
( m

2πi�t

)d/2
eim(q−q′)2/2�t (18.50)
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which is identical to the propagator for short times (18.42) (with V (q) ≡ 0).
This case is rather exceptional: the semiclassical propagator turns out to be the
exact quantum propagator K(q, q′, t), as can be checked by substitution in the
Schrödinger equation (18.20). The Feynman path integral formalism uses this
fact to construct an exact quantum propagator by integrating the free particle
propagator (with V (q) treated as constant for short times) along all possible (not
necessary classical) paths from q′ to q, see also remark 18.3. 18.10

on p. 405

18.11
on p. 405

18.12
on p. 405

18.4 Semiclassical Green’s function

In the previous section, we derived semiclassical formulas for the time evolution of
wave functions, that is, we obtained approximate solutions to the time dependent
Schrödinger equation (18.1). Even though we assumed in the calculation a time
independent Hamiltonian of the special form (18.2), the derivation leads to the
same final result (18.46) when considering more complicate or explicitly time
dependent Hamiltonians. The propagator is thus most important when we are
interested in quantum mechanical effects where time plays a crucial role. For
time independent Hamiltonians, the time dependence of the propagator as well
as of wave functions is, however, essentially given in terms of the energy eigen-
spectrum of the system, see (18.6). It is therefore often convenient in this case
to switch from a time representation to an energy representation that is from the
propagator to the energy dependent Green’s function (18.12). A semiclassical
approximation of the Green’s function Gsc(q, q′, E), which will lead us finally to
a semiclassical estimate of the density of states (18.16), is given by the Laplace
transform (18.12) of the Van Vleck propagator Ksc(q, q′, t) that is

Gsc(q, q′, E) =
1
i�

∫ ∞

0
dt eiEt/�Ksc(q, q′, t) . (18.51)

The expression as it stands is not very useful; in order to evaluate the integral at
least approximately we will introduce the method of stationary phase next. This
will enable us to compute the essential contributions to the integral (18.51) for
finite times. The contributions for infinitesimal small times will be postponed to
sect. 18.4.3.

18.4.1 Method of stationary phase

Semiclassical approximations are often based on saddlepoint evaluations of inte-
grals of the type

I =
∫

ddxA(x) eisΦ(x) (18.52)

printed August 24, 2000 ∼DasBuch/book/chapter/semiclassic.tex 4aug2000



396 CHAPTER 18. SEMICLASSICAL EVOLUTION

where s is assumed to be a large, real parameter and Φ(x) is a real-valued func-
tion.. Restricting ourselves to one-dimensional integrals first, it is intuitively clear
that for large s the phase oscillates rapidly and “averages to zero” everywhere
except at the extremal points Φ′(x0) = 0, where Φ′′(x0) �= 0. The method is
therefore also called method of stationary phase. We now expand Φ(x0 + δx)
around x0 to second order in δx, and write

I =
∫

dxA(x) eis(Φ(x0)+
1
2
Φ′′(x0)δx2+...) .

If A(x) varies slowly around x0 compared to the exponential function we may
retain the leading term in an expansion of the amplitude and up to quadratic
terms in the phase approximating the integral I by

I ≈ A(x0)eisΦ(x0)

∫ ∞

−∞
dx eisΦ

′′(x0)
x2

2 =
(

2π
s|Φ′′(x0)|

)1/2
e

±iπ
4 , (18.53)

where ± corresponds to positive/negative sign of Φ′′(x0). The integral (18.53) is
a Fresnel integral, which can be evaluated explicitly. Generalizing this method18.13

on p. 406 to d dimensions, we consider stationary phase points fulfilling

d

dxi
Φ(x)

∣∣∣∣
x=x0

= 0 ∀i = 1, . . . d .

An expansion of the phase up to second order involves now the symmetric matrix
of second derivatives of Φ(x), that is

Dij(x0) =
∂2

∂xi∂xj
Φ(x)

∣∣∣∣
x=x0

.

After choosing a suitable coordinate system which diagonalises D, we can ap-
proximate the d-dimensional integral by d one-dimensional Fresnel integrals; the
stationary phase estimate of (18.52) is then

I ≈
∑
x0

(2πi/s)d/2 |detD(x0)|−1/2A(x0) eisΦ(x0)− iπ
2
m(x0) , (18.54)

where the sum runs over all stationary phase points x0 of Φ(x) and m(x0) counts
the number of negative eigenvalues of D(x0).18.14

on p. 406

18.15
on p. 406

18.16
on p. 406

The stationary phase approximation is all that is needed for the semiclassical
approximation, with the proviso that D in (18.54) has no zero eigenvalues.
The zero eigenvalue case would require going beyond the Gaussian saddlepoint
approximation, which typically leads to approximations of the integrals in terms
of Airy functions [18].
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18.4.2 Long trajectories

When evaluating the integral (18.51) approximately we have to distinguish be-
tween two types of contributions: those coming from stationary points of the
phase and those coming from infinitesimal short times. The first type of contri-
butions can be obtained by stationary phase approximation and will be treated
in this section. The latter originate from the singular behavior of the propagator
for t → 0 where the assumption that the amplitude changes slowly compared to
the phase is no longer valid. The short time contributions therefore have to be
treated separately, which we will do in sect. 18.4.3.

The stationary phase points t∗ of the integrand in (18.51) are given by the
condition

∂

∂t
R(q, q′, t∗) + E = 0 . (18.55)

The solution of this equation is the time t∗ = t∗(q, q′, E) in which a particle of
energy E starting out in q′ reaches q. Taking into account the second derivative
of the phase evaluated at the stationary phase point,

R(q, q′, t) + Et = R(q, q′, t∗) +
1
2
t2

∂2

∂t2
R(q, q′, t∗) + · · ·

the stationary phase approximation of the integral corresponding to a specific
branch j of the Van Vleck propagator (18.46) yields

Gj(q, q′, E) =
1

i�(2iπ�)(d−1)/2

∣∣∣∣∣detCj

(
∂2Rj

∂t2

)−1∣∣∣∣∣
1/2

e
i
�
Sj− iπ

2
mj , (18.56)

where mj = mj(q, q′, E) now includes a possible additional phase arising from
the time stationary phase integration, and Cj = Cj(q, q′, t∗), Rj = Rj(q, q′, t∗)
are evaluated at the transit time t∗. We also write the phase here in terms of the
energy dependent action (18.33)

S(q, q′, E) = R(q, q′, t∗) + Et∗ , with t∗ = t∗(q, q′, E) , (18.57)

which is the Legendre transformation of Hamilton’s principal function. Note that
the partial derivative of the action (18.57) with respect to qi

∂S(q, q′, E)
∂qi

=
∂R(q, q′, t∗)

∂qi
+
(
∂R(q, q′, t)

∂t∗
+ E

)
∂t

∂qi
.
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is equal to

∂S(q, q′, E)
∂qi

=
∂R(q, q′, t∗)

∂qi
, (18.58)

due to the stationary phase condition (18.55). The definition of momentum as a
partial derivative with respect to q remains unaltered by the Legendre transform
from time to energy.18.18

on p. 407

Next we will simplify the amplitude term in (18.56) and write it as an explicit
function of the energy. Let us therefore consider the [(d + 1)×(d + 1)] matrix

D(q, q′, E) =

(
∂2S
∂q′∂q

∂2S
∂q′∂E

∂2S
∂q∂E

∂2S
∂E2

)
=

(
−∂p′

∂q
∂p′
∂E

∂t
∂q

∂t
∂E

)
, (18.59)

where S = S(q, q′, E) and we used (18.31–18.34) here to obtain the left hand
side of (18.59). Note that D is nothing else but the Jacobian matrix of the
coordinate transformation (q, E) → (p′, t) for fixed q′. We can therefore use the
multiplication rules of determinants of Jacobians, which are just ratios of volume
elements, to obtain

detD = (−1)d
∥∥∥∥ ∂(p′, t)
∂(q, E)

∥∥∥∥
q′

= (−1)d
∥∥∥∥∂(p′, t)
∂(q, t)

∂(q, t)
∂(q, E)

∥∥∥∥
q′

= (−1)d+1
∥∥∥∥∂p′∂q

∥∥∥∥
t,q′

∥∥∥∥ ∂t

∂E

∥∥∥∥
q′,q

= −detC
(
∂2R

∂t2

)−1
.

We use here the notation ‖.‖q′,t for a Jacobian determinant with partial deriva-18.19
on p. 407 tives evaluated at t, q′ fixed, and likewise for other subscripts. Using the relation

(18.36) which relates the term ∂t
∂E to ∂2t R we can write the determinant of D as

a product of the Van Vleck determinant (18.44) and the amplitude factor arising
from the stationary phase approximation. The amplitude in (18.56) can thus
be interpreted as the determinant of a Jacobian of a coordinate transformation
which includes time and energy as independent coordinates. This causes the in-
crease in the dimensionality of the matrix D in contrast to the Jacobian matrix
C (18.44); we recall that C is the Jacobian of a pure phase space transformation
for fixed time t.

We can now write down the semiclassical approximation of the contribution of
the jth trajectory to the Green’s function (18.56) in explicitly energy dependent
form:

Gj(q, q′, E) =
1

i�(2iπ�)(d−1)/2
∣∣detDj

∣∣1/2 e i
�
Sj− iπ

2
mj . (18.60)
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The trajectory contributing to Gj(q, q′, E) is constrained to a given energy
E, and will therefore be on a phase space manifold of constant energy, that is
H(q, p) = E. Writing this condition as partial differential equation for S(q, q′, E),
that is

H(q,
∂S

∂q
) = E ,

one obtains

∂

∂q′i
H(q, p) = 0 =

∂H

∂pj

∂pj
∂q′i

= q̇j
∂2S

∂qj∂q′i
∂

∂qi
H(q′, p′) = 0 =

∂2S

∂qi∂q′j
q̇′j , (18.61)

that is the sub-matrix ∂2S/∂qi∂q
′
j has (left- and right-) eigenvectors correspond-

ing to an eigenvalue 0. In the local coordinate system

q = (q‖, q⊥1, q⊥2, · · · , q⊥(d−1)) , with q̇ = (q̇, 0, 0, · · · , 0)

in which the longitudinal coordinate axis q‖ points along the velocity vector q̇,
the matrix of variations of S(q, q′, E) has a column and a row of zeros as (18.61)
takes form

q̇
∂2S

∂q‖∂q′i
=

∂2S

∂qi∂q′‖
q̇′ = 0 .

The initial and final velocities are non-vanishing except for points |q̇| = 0; in
the local coordinate system with one axis along the trajectory and all other
perpendicular to it the determinant of (18.59) is of the form

detD(q, q′, E) = (−1)d+1

∥∥∥∥∥∥∥∥
0 0 ∂2S

∂E∂q′‖
0 ∂2 S

∂q⊥∂q′⊥
∗

∂2S
∂q‖∂E

∗ ∗

∥∥∥∥∥∥∥∥ . (18.62)

The corner entries can be evaluated using (18.34)

∂2S

∂q‖∂E
=

∂

∂q‖
t =

1
q̇
,

∂2S

∂E∂q′‖
=

1
q̇′

.
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As the q‖ axis points along the velocity direction, velocities q̇, q̇′ are by construc-
tion always positive numbers. In this way the determinant of the [(d+1)×(d+1)]
dimensional matrix D(q, q′, E) can essentially be reduced to the determinant of
a [(d − 1)×(d − 1)] dimensional transverse matrix D⊥(q, q′, E)

detD(q, q′, E) =
1
q̇q̇′

detD⊥(q, q′, E)

D⊥(q, q′, E)ik = −∂2S(q, q′, E)
∂q⊥i∂q

′
⊥k

. (18.63)

Putting everything together we obtain the jth trajectory contribution to the
semiclassical Green’s function18.20

on p. 407

Gj(q, q′, E) =
1

i�(2π�)(d−1)/2
1

|q̇q̇′|1/2
∣∣∣detDj

⊥
∣∣∣1/2 e i

�
Sj− iπ

2
mj , (18.64)

where the topological index mj = mj(q, q′, E) now counts the number of changes
of sign of detDj

⊥ along the trajectory j which connects q′ to q at energy E. The
velocities q̇, q̇′ also depend on (q, q′, E) and the trajectory j. While in the case
of the propagator the initial momentum variations δp′ are unrestricted, for the
Green’s function the (δq′, δp′) variations are restricted to the constant energy
shell; the appearance of the 1/q̇q̇′ weights in the Green’s function can be traced
to this constraint.

18.4.3 Short trajectories

The stationary phase method cannot be used when t∗ is small, both because we
cannot extend the integration in (18.53) to −∞, and because the amplitude of
K(q, q′, t) is divergent. In this case we have to evaluate the integral involving the
short time form of the propagator (18.42)

G0(q, q′, E) =
1
i�

∫ ∞

0
dt
( m

2πi�t

)d/2
e
i
�
(
m(q−q′)2

2t
−V (q)t+Et).

By introducing a dimensionless variable τ = t
√

2m(E − V (q))/m|q − q′|, the
integral can be rewritten as

G0(q, q′, E) =
m

i�2(2πi)d/2

(√
2m(E − V )
�|q − q′|

) d
2
−1 ∫ ∞

0

dτ

τd/2
e

i
2�

S0(q,q′,E)(τ+1/τ),
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where S0(q, q′, E) =
√

2m(E − V )|q− q′| is the short distance form of the action.
Using the integral representation of the Hankel function of first kind

H+ν (z) = − i

π
e−iνπ/2

∫ ∞

0
e

1
2
iz(τ+1/τ)τ−ν−1dτ

we can write the short distance form of the Green’s function as

G0(q, q′, E) ≈ − im

2�2

(√
2m(E − V )

2π�|q − q′|

) d−2
2

H+d−2
2

(S0(q, q′, E)/�). (18.65)

There is nothing sacred about the Hankel function - it is merely a useful observa-
tion, as for special functions the short wavelength asymptotics comes for free and
can be found in standard reference books (see for example ref. [?]). The short
distance Green’s function approximation is valid when S0(q, q′, E) ≤ �.

Résumé

The aim of the semiclassical or short-wavelength methods is to approximate so-
lutions of the Schrödinger equation to leading order in � with a WBK wave
function

ψ(q, t) =
∑
j

Aj(q, t)eiRj(q,t)/� .

“Semi–” refers to �, the quantum unit of phase in the exponent. The quantum
mechanics enters only through this atomic scale, in units of which the variation
of the phase across the classical potential is assumed to be large. “–classical”
refers to the rest - both the amplitudes Aj(q, t) and the phases Rj(q, t) - which
are determined by the classical Hamilton-Jacobi equations. In the semiclassical
approximation the time evolution of a wave function is given by the semiclassical
propagator

Ksc(q, q′, t) =
∑
j

1
(2πi�)d/2

∥∥∂p′/∂q∥∥1/2
j

e
i
�
Rj− iπ

2
mj ,

where the topological index mj(q, q′, t) counts the number of sign changes of the
Jacobian determinant along the jth classical trajectory that connects q′ → q in

printed August 24, 2000 ∼DasBuch/book/chapter/semiclassic.tex 4aug2000



402 CHAPTER 18. SEMICLASSICAL EVOLUTION

time t. The Laplace transform of the propagator yields the energy dependent
semiclassical Green’s function

Gsc(q, q′, E) = G0(q, q′, E)+
∑
j

1

i�(2πi�)
(d−1)

2

‖∂p′⊥/∂q⊥‖1/2j

|q̇q̇′|1/2j

eiRj/�−imjπ/2(18.66)

where G0(q, q′, E) is the contribution of short trajectories with S0(q, q′, E) ≤ �,
while the sum is over the contributions of long trajectories (18.64) going from q′

to q with fixed energy E, with Sj(q, q′, E) >> �.

Remark 18.1 Limit � → 0 The semiclassical limit � → 0 discussed in
sect. 18.2 is a short hand notation for the limit in which typical quantities
like the actions R or S in semiclassical expressions for the propagator or the
Green’s function become large compared to �. The quantity � is of course a
fixed physical constant given by the value 1.054571596(82) 10−34 Js.

Remark 18.2 Madelung’s fluid dynamics The differential equations (18.21–
18.22) for the phases R and amplitudes A have an interesting interpretation
first given by Madelung. Keeping the � dependent term in (18.21), the ordi-
nary differential equations driving the flow (18.28) have to be altered; if the
Hamiltonian can be written as kinetic plus potential term V (q) as in (18.2),
the �

2 term modifies the p equation of motion as

ṗi = − ∂

∂qi
(V (q) + Q(q, t)) , (18.67)

where, for the example at hand

Q(q, t) = − �
2

2m
1

√
ρ

∂2

∂q2

√
ρ (18.68)

is the “quantum potential”. Madelung observed that Hamilton’s equation
for the momentum (18.67) can be rewritten as

∂vi
∂t

+ (v · ∂

∂q
)vi = − 1

m

∂V

∂qi
− 1

mρ

∂

∂qj
σij , (18.69)

where σij = �
2ρ

4m
∂2 ln ρ
∂qi∂qj

is the stress tensor, and vi = pi/m and ρ = A2 as

defined in sect. 18.2.2. We recall that the Eulerian ∂
∂t+

∂qi

∂t
∂
∂qi

is the ordinary
derivative of Lagrangian mechanics, that is d

dt . For comparison, the Euler
equation for classical hydrodynamics is

∂vi
∂t

+ (v · ∂

∂q
)vi = − 1

m

∂V

∂qi
− 1

mρ

∂

∂qj
(pδij) ,

where pδij is the pressure tensor.
The ’classical dynamics’ corresponding to quantum evolution is thus that

of an ’hypothetical’ fluid experiencing � and ρ dependent stresses. The “hy-
drodynamic” interpretation of quantum mechanics has, however, not been
very fruitful in practice.
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Remark 18.3 Feynman’s path integral The semiclassical propagator
(18.46) can also be derived from Feynman’s path integral formalism. Feyn-
man noted in 19.., that one can construct the exact propagator of the quan-
tum Schrödinger equation by formally summing over all possible (not nec-
essarily classical) paths from q′ to q .

Gutzwiller started from the path integral to rederive Van Vleck’s semi-
classical expression for the propagator; Van Vleck’s original derivation is very
much in the spirit of what has presented in this chapter. He did, however, not
consider the possibility of the formation of caustics or folds of Lagrangian
manifolds and did thus not include the Morse phases in his semiclassical
expression for the propagator. It was Gutzwiller some 40 years later, who
added the topolagical indices when deriving the semiclassical propagator
from Feynman’s path integral by stationary phase conditions, refs. [23, ?].
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Exercises

18.1 Dirac delta function, Lorentzian representation. Derive Eq. (18.15).

18.2 WKB ansatz. Try to show that no other ansatz gives a meaningful
definition of the momentum in the � → 0 limit.

18.3 1-dimensional harmonic oscillator. Take a 1-dimensional harmonic
oscillator U(q) = 1

2kq
2. Take a WKB wave function of form A(q, t) = a(t) and

R(q, t) = r(t) + b(t)q + c(t)q2, where r(t), a(t), b(t) and c(t) are time dependent
coefficients. Derive ordinary differential equations by using (18.21) and (18.22)
and solve them.

18.4 1-dimensional linear potential. Take a 1-dimensional linear potential
U(q) = −Fq. Take a WKB wave function of form A(q, t) = a(t) and R(q, t) = r(t) +
b(t)q + c(t)q2, where r(t), a(t), b(t) and c(t) are time dependent coefficients. Derive and
solve the ordinary differential equations from (18.21) and (18.22).

18.5 d-dimensional quadratic potentials. Generalize the above method to
general d-dimensional quadratic potentials.

18.6 Free particle action. Calculate R(q, q′, t) for

a) a d-dimensional free particle

b) a 3-dimensional particle in constant magnetic field
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c) a 1-dimensional harmonic oscillator.

18.7 Time evolution of R. Calculate the time evolution of R(q, 0) = a+ bq+ cq2

for a 1-dimensional harmonic oscillator using (18.30) and (18.31).

18.8 Dirac delta function, Gaussian representation. Consider the Gaus-
sian distribution function

δσ(z) =
1√

2πσ2
e−z2/2σ2

. (18.70)

Show that in σ → 0 limit this is the Dirac delta function.

18.9 Exact vs. semiclassical propagator. What is the difference between the
exact and the semiclassical propagator?

18.10 d-dimensional free particle propagator. Verify the results in sect. 18.3.1;
show explicitely that the semiclassically Van Vleck propagator in d dimensions,
Eq. (18.50) solves Schrödinger’s equation.

18.11 Charged particle in constant magnetic field. Calculate the semiclassical
propagator for a charged particle in constant magnetic field in 3 dimensions. Verify that
the semiclassical expression coincides with the exact solution.

18.12 1-dimensional harmonic oscillator propagator. Calculate the semi-
classical propagator for a 1-dimensional harmonic oscillator and verify that it is identical
with the exact quantum propagator.

printed August 24, 2000 ∼DasBuch/book/Problems/exerSemicl.tex 4aug2000



406 CHAPTER 18. SEMICLASSICAL EVOLUTION

18.13 Fresnel integral. Show that

∫ ∞

−∞
dx eiax

2/2 =
(

2π
|a|

)1/2
e
iπm

4 (18.71)

where m = a/|a| is the sign of a.

18.14 d-dimensional Gaussian integrals. Show that the Gaussian inte-
gral in d-dimensions is given by

1
(2π)d/2

∫
ddxe−

1
2
xT ·M−1·x+x·J = |detM | 1

2 e
1
2
JT ·M ·J , (18.72)

where M is a real positive definite [d × d] matrix, that is a matrix with strictly
positive eigenvalues. x, J are d-dimensional vectors with xT being the transpose
of x.

18.15 Stationary phase approximation. All semiclassical approxima-
tions are based on saddlepoint evaluations of integrals of type

I =
∫

ddxA(x)eiΦ(x)/� (18.73)

for small values of �. Obtain the stationary phase estimate

I ≈
∑
n

A(xn)eiΦ(xn)/�
(2πi�)d/2√
detD2Φ(xn)

,

where D2Φ(xn) denotes the second derivative matrix.

18.16 Sterling formula for n!. Compute n! for large n with the help of
stationary phase approximation. Hint: n! =

∫∞
0

dt tn−1e−t.
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EXERCISES 407

18.17 Airy function for large arguments. Stationary phase points do
not necessarily dominate - important contributions may arise from extremal points where
the first non-zero term in a Taylor expansion of the phase is of third or higher order.
Such a situations occurs for example at bifurcation points or when including diffraction
contributions (such as waves near sharp corners, waves creeping around obstacles). In
such calculations one meets integrals of the form

Ai(x) =
1
2π

∫ +∞

−∞
dy ei(xy−

y3

3 ) . (18.74)

which is a representation of the Airy function Ai(x). Calculate the Airy function Ai(x)
by stationary phase approximation. What happens when considering the limit x → 0.
Estimate for which value of x the stationary phase approximation breaks down. Give it
a go.

18.18 Free particle action. Calculate the energy dependent action for a
free particle, a charged particle in a constant magnetic field and for the harmonic
oscillator.

18.19 A usefull determinant identity. Show that the following two de-
terminants equal each other:

n + 1

det(M ′
n) =


x1,1 . . . x1,n y1

...
. . .

...
...

xn,1 . . . xn,n yn
z1 . . . zn E

 n + 1 (18.75)

and

n

E det(Mn) = E

 x1,1 − y1z1E
−1 . . . x1,n − y1znE

−1
...

. . .
...

xn,1 − ynz1E
−1 . . . xn,n − ynznE

−1

 n
(18.76)

18.20 Examples of semiclassical Green’s functions. Calculate the semiclassical
Green’s functions for the systems of exercise 18.18.
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Chapter 19

Semiclassical quantization

If there exist fewer than R integrals of type (14), as is
the case, for example, according to POINCARÉ in the
three-body problem, then the pi are not expressible by
the qi and the quantum condition of SOMMERFELD-
EPSTEIN fails also in the slightly generalized form that
has been given here.

A. Einstein

We derive here the Gutzwiller trace formula and the semiclassical zeta func-
tion, the central results of the semiclassical quantization of classically chaotic
systems. In chapter 20 we will rederive these formulas for the case of scattering in
open systems. Quintessential wave mechanics effects such as creeping, diffraction
and tunneling will be taken up in chapter 22.

19.1 Trace formula

(G. Vattay and P. Cvitanović)

Our next task is to evaluate the trace (18.13) of the semiclassical Green’s function.
The trace

trGsc(E) =
∫

ddq Gsc(q, q, E) = trG0(E) +
∑
j

∫
ddq Gj(q, q, E)

receives contributions from “long” classical trajectories which start and end in q
after finite time, and the “zero length” trajectories whose lengths approach zero
as q′ → q.

409



410 CHAPTER 19. SEMICLASSICAL QUANTIZATION

Figure 19.1: A returning trajectory in configu-
ration space. The orbit is periodic only if the initial
and the final momenta of a returning trajectory co-
incide as well.

Figure 19.2: Typical behavior of Sp(E) =
S(q, q, E) =

∮
p(q, E)dq around a periodic orbit; to

be able to draw the Sp(E) landscape we have taken
as example an extremal orbit. Unstable periodic
orbits traverse isolated ridges and saddles of the
mountainous landscape of the action S(q‖, q⊥, E).
Along the periodic orbit Sp(E) is constant; in the
transverse directions it generically changes quadrat-
ically.

First we work out the contributions coming from the finite time returning
classical orbits, that is trajectories that originate and end at a given configuration
point q. As we are identifying q with q′, taking of a trace involves still another
stationary phase condition in the q′ → q limit,

∂Sj(q, q′, E)
∂qi

∣∣∣∣
q′=q

+
∂Sj(q, q′, E)

∂q′i

∣∣∣∣
q′=q

= 0 ,

meaning that the initial and final momenta (18.58) of contributing trajectories
should coincide

pj(q, q, E) − p′j(q, q, E) = 0 , q ∈ jth periodic orbit , (19.1)

so the trace receives contributions only from those long classical trajectories which
are periodic in the full phase space.

For a returning orbit the natural coordinate system is the intrinsic one, with
q‖ axis pointing in the q̇ direction along the orbit, and q⊥, the rest of the coor-
dinates transverse to q̇. The jth periodic orbit contribution to the trace of the
semiclassical Green’s function in the intrinsic coordinates is

trGj(E) =
1

i�(2π�)(d−1)/2

∮
j

dq‖
q̇

∫
j
dd−1q⊥|detDj

⊥|1/2e i
�
Sj− iπ

2
mj ,

where the integration in q‖ goes from 0 to Lj , the geometric length of small tube
around the orbit in the configuration space. As always, in the stationary phase
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19.1. TRACE FORMULA 411

approximation we worry only about the fast variations in the phase Sj(q‖, q⊥, E),
and assume that the density varies smoothly and is well approximated by its
value Dj

⊥(q‖, 0, E) on the classical trajectory, q⊥ = 0 . The topological index
m(q‖, q⊥, E) is an integer which generically does not change in the infinitesimal
neighborhood of an isolated periodic orbit.

The transverse integration is again carried out by the stationary phase method,
with the phase stationary on the periodic orbit, q⊥ = 0. The result of the trans-
verse integration can depend only on the parallel coordinate

trGj(E) =
1
i�

∮
dq‖
q̇

∣∣∣∣∣detD⊥j(q‖, 0, E)
detD′

⊥j(q‖, 0, E)

∣∣∣∣∣
1/2

e
i
�
Sj− iπ

2
mj ,

where the new determinant in the denominator, detD′
⊥j =

det

(
∂2S(q, q′, E)
∂q⊥i∂q⊥j

+
∂2S(q, q′, E)
∂q′⊥i∂q⊥j

+
∂2S(q, q′, E)
∂q⊥i∂q

′
⊥j

+
∂2S(q, q′, E)
∂q′⊥i∂q

′
⊥j

)
,

is the determinant of the second derivative matrix coming from the stationary
phase integral in transverse directions.

The ratio D⊥j/D
′
⊥j is here to enforce the periodic boundary condition for

the semiclassical Green’s function evaluated on a periodic orbit. It can be given
a meaning in terms of the monodromy matrix of the periodic orbit by following
observations

detD⊥ =
∥∥∥∥∂p′⊥∂q⊥

∥∥∥∥ =
∥∥∥∥∂(q′⊥, p′⊥)
∂(q⊥, q′⊥)

∥∥∥∥
detD′

⊥ =
∥∥∥∥∂p⊥∂q⊥

− ∂p′⊥
∂q⊥

+
∂p⊥
∂q′⊥

− ∂p′⊥
∂q′⊥

∥∥∥∥ =
∥∥∥∥∂(p⊥ − p′⊥, q⊥ − q′⊥),

∂(q⊥, q′⊥)

∥∥∥∥ .

Defining the 2(d − 1)-dimensional transverse vector x⊥ = (q⊥, p⊥) in the full
phase space we can express the ratio

detD′
⊥

detD⊥
=
∥∥∥∥∂(p⊥ − p′⊥, q⊥ − q′⊥)

∂(q′⊥, p′⊥)

∥∥∥∥ =
∥∥∥∥∂(x⊥ − x′

⊥)
∂x′

⊥

∥∥∥∥
= det (J− 1) , (19.2)

in terms of the monodromy matrix J for a surface of section transverse to the
orbit within the constant energy E = H(q, p) shell.
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412 CHAPTER 19. SEMICLASSICAL QUANTIZATION

The classical periodic orbit action Sj(E) =
∮
p(q‖, E)dq‖ does not depend

on the starting point q‖ along the orbit, see fig. 19.2. The eigenvalues of the
monodromy matrix are independent of where Jj is evaluated along the orbit, so
det (1 − Jj) can also be taken out of the the q‖ integral

trGj(E) =
1
i�

∑
j

1
|det (1 − Jj)|1/2

er(
i
�
Sj− iπ

2
mj)

∮
dq‖
q̇‖

.

Here we have assumed that Jj has no marginal eigenvalues. The determinant
of the monodromy matrix, the action Sp(E) =

∮
p(q‖, E)dq‖ and the topological

index are all classical invariants of the periodic orbit, independent of q‖. The
integral in the parallel direction we now do exactly.

First we take into account the fact that any repeat of a periodic orbit is also
a periodic orbit. The action and the topological index are additive along the
trajectory, so for rth repeat they simply get multiplied by r. The monodromy
matrix of the rth repeat of a prime cycle p is (by the chain rule for derivatives) Jrp,
where Jp is the prime cycle monodromy matrix. Let us denote the time period
of the prime cycle p, the single, shortest traversal of a periodic orbit by Tp. The
remaining integral can be carried out by change of variables dt = dq‖/q̇(t)

∫ Lj

0

dq‖
q̇(t)

=
∫ Tp

0
dt = Tp,

as the spatial integral corresponds to a single traversal. If you do not see this,
rethink the derivation of the classical trace formula (6.20) - that derivation takes
only one page of text. We have finally derived the Gutzwiller trace formula

trGsc(E) = trG0(E) +
1
i�

∑
p

Tp

∞∑
r=1

1
|det (1 − Jrp)|1/2

er(
i
�
Sp− iπ

2
mp) , (19.3)

out final expression for the trace of the semiclassical Green’s function in terms of
periodic orbits.

The topological index mp(E) counts the number of changes of sign of the
matrix of second derivatives evaluated along the prime periodic orbit p. By now
we have gone through so many stationary phase approximations that you have
surely lost track of what the total mp(E) actually is. The rule is this: The
topological index of a closed curve in a 2-d phase space is the sum of the number
of times the partial derivatives ∂pi

∂qi
for each dual pair (qi, pi), i = 1, 2, . . . , d (no

sum on i) change their signs as one goes once around the curve.
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19.1. TRACE FORMULA 413

We still have to evaluate trG0(E), the contribution coming from the infinites-
imal trajectories. The real part of trG0(E) is infinite in the q′ → q, so it makes
no sense to write it down explicitly here. However, its imaginary part is finite,
and plays an important role in the density of states formula, which we derive
next.

19.1.1 Semiclassical density of states

The semiclassical contribution to the density of states (18.13) is given by the
imaginary part of the Gutzwiller trace formula (19.3) multiplied with −1/π. The
contribution coming from the zero length trajectories is the imaginary part of
(18.65) for q′ → q integrated over the configuration space

d0(E) = − 1
π

∫
ddq ImG0(q, q, E),

ImG0(q, q, E) = − lim
q′→q

m

2�2

(√
2m(E − V )

2π�|q − q′|

) d−2
2

J+d−2
2

(S0(q, q′, E)/�).

where G0(q, q′, E) is the short time Green’s function (18.65). Using the Bessel
function J+ν = ImH+ν asymptotic estimate

Jν(z) ≈ 1
Γ(ν + 1)

(z
2

)ν
for |z| << 1.

we obtain the zero length trajectories contribution to the density of states

d0(E) =
m

�d2d−1πd/2Γ(d/2)

∫
V (q)<E

ddq [2m(E − V (q))](d−2)/2 . (19.4)

The result is the same as (??), the average density estimate d̄(E). The initial
wild guess is indeed correct, and the semiclassical density of states is a sum of
the average density of states and the oscillation of the density of states around
the average, dsc(E) = d̄(E) + dosc(E), where

dosc(E) =
1
π�

∑
p

Tp

∞∑
r=1

cos(rSp(E)/� − rmpπ/2)
|det (1 − Jrp)|1/2

(19.5)

follows from the trace formula (19.3).
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414 CHAPTER 19. SEMICLASSICAL QUANTIZATION

19.1.2 Regularization of the trace

The real part of the q′ → q zero length Green’s function (18.65) is ultraviolet
divergent in dimensions d > 1, and so is its formal trace (18.13). The short
distance behavior of the real part of the Green’s function can be extracted from
the real part of (18.65) by using the Bessel function expansion for small z

Yν(z) ≈
{

− 1
πΓ(ν)

(
z
2

)−ν for ν �= 0
2
π (ln(z/2) + γ) for ν = 0

,

where γ = 0.577... is the Euler constant. The real part of the Green’s function
for short distance is dominated by the singular part

Gsing(|q − q′|, E) =


− m

2�2π
d
2
Γ((d − 2)/2) 1

|q−q′|d−2 for d �= 2

m
2π�2 (ln(2m(E − V )|q − q′|/2�) + γ) for d = 2

.

The regularized Green’s function

Greg(q, q′, E) = G(q, q′, E) − Gsing(|q − q′|, E)

is obtained by subtracting the q′ → q ultraviolet divergence. For the regularized
Green’s function the Gutzwiller trace formula is

trGreg(E) = −iπd̄(E) +
1
i�

∑
p

Tp

∞∑
r=1

er(
i
�
Sp(E)− iπ

2
mp(E))

|det (1 − Jrp)|1/2
. (19.6)

Now you stand where Gutzwiller stood in 1990. You hold the trace formula in
your hands. You have no clue how good is the � → 0 approximation, how to
take care of the sum over an infinity of periodic orbits, and whether the formula
converges at all.

19.2 Semiclassical spectral determinant

The theoreticians now work with an audacity unheard of
in earlier times, at present no physical law is considered
assured beyond doubt, each and every physical truth is
open to dispute. It often looks as if the time of chaos
again is drawing near in theoretical physics.

M. Planck, Phys. Zeitschr. 11, 922 (1910)
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19.2. SEMICLASSICAL SPECTRAL DETERMINANT 415

Figure 19.3: Typical behavior of the regular-
ized trace and the spectral determinant. The trace
shows 1/(E−En) type singularities at the eigenen-
ergies while the spectral determinant goes smoothly
through zeroes.

What to do? Much of the quantum chaology literature responds to the chal-
lenge of wrestling the trace formulas by replacing the delta functions in the density
of states (18.14) by Gaussians. But there is no need to do this - we can compute
the eigenenergies without any further ado by remembering that eigenvalues of
linear operators are to be computed from their characteristic determinants.

The problem with trace formulas is that they diverge at individual energy
eigenvalues. A better way to compute energy levels is to construct the spectral
determinant whose zeroes yield the eigenenergies, det sc(H − En) = 0. A first
guess might be that the spectral determinant is the Hadamard product of form

f(E) =
∏
n

(E − En),

but this product is not well defined, since for fixed E we multiply larger and larger
numbers (E −En). This problem is dealt with by regularization, discussed below
in appendix 19.1.2. Here we offer an impressionistic sketch of regularization.

The formal logarithmic derivative of f(E) is the formal trace of the Green’s
function

− d

dE
ln f(E) =

∑
n

1
E − En

= trG(E).

This quantity, not surprisingly, is divergent again. This relation however opens
a way to derive a convergent version of f(E), by replacing the trace with the
regularized trace

− d

dE
ln ∆(E) = trGreg(E).

The regularized trace still has 1/(E − En) poles close to the eigenenergies, poles
which can be generated only if ∆(E) has a zero at E = En, see fig. 19.3. By
integrating and exponentiating we obtain

∆(E) = exp
(
−
∫ E

dE′ trGreg(E′)
)
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416 CHAPTER 19. SEMICLASSICAL QUANTIZATION

Now we can use (19.6) and integrate the terms coming from periodic orbits,
using the relation (18.34) between the action and the period of a periodic orbit,
dSp(E) = Tp(E)dE, and the relation (??) between the density of states and the
spectral staircase, dN̄(E) = d̄(E)dE. We obtain the semiclassical zeta function

∆(E) = eiπN̄(E) exp

(
−
∑
p

∞∑
r=1

1
r

eir(Sp/�−mpπ/2)

|det (1 − Jrp)|1/2

)
. (19.7)

As always, the cycle action Sp, the topological index mp and the monodromy
matrix Jp eigenvalues are cycle invariants that depend only on the energy E.

19.3 One-dimensional systems

It’s been a long trek, a stationary phase upon stationary phase. Let’s check
whether the result makes sense even in the very simplest case, for quantum me-
chanics in one configuration dimension.

In one dimension the semiclassical density of states follows from the one-
dimensional form of the oscillating density (19.5) and of the average density (??)

d(E) =
Tp(E)
2π�

+
∑
r

Tp(E)
π�

cos(rSp(E)/� − rmp(E)π/2). (19.8)

The classical particle oscillates in a single potential well with period Tp(E). There
is no monodromy matrix to evaluate, as in one dimension there is only the parallel
coordinate, and no transverse directions. The r repetition sum in (19.8) can be
rewritten by using the Fourier series expansion of a delta spike train

∞∑
n=−∞

δ(x − n) =
∞∑

k=−∞
ei2πkx = 1 +

∞∑
k=1

2 cos(2πkx).

We obtain

d(E) =
Tp(E)
2π�

∑
n

δ(Sp(E)/2π� − mp(E)/4 − n). (19.9)

This expression can be simplified by using the relation (18.34) between Tp and
Sp, and the identity (6.3) δ(x− x∗) = |f ′(x)|δ(f(x)), where x∗ is the only zero of
the function f(x∗) = 0 in the interval under consideration. We obtain

d(E) =
∑
n

δ(E − En),
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19.4. TWO-DIMENSIONAL SYSTEMS 417

where the energies En are the zeroes of the arguments of delta functions in (19.9)

Sp(En)/2π� = n + mp(E)/4.

These are precisely the Bohr-Sommerfeld quantized energies En satisfying the
condition

Sp(En)/2π =
1
2π

∮
p(q, En)dq = �

(
n +

mp(E)
4

)
. (19.10)

In this way the trace formula recovers the well known 1-dimensional quantization
rule. In one dimension, the average of states can be expressed from the quanti-
zation condition. At E = En the exact number of states is n, while the average
number of states is n− 1/2 since the staircase function N(E) has a unit jump in
this point

N̄(E) = n − 1
2

= Sp(E)/2π� − mp(E)/4 − 1
2
. (19.11)

The 1-dimensional spectral determinant follows from (19.7) by dropping the
monodromy matrix part and using (19.11)

∆(E) = e−
i

2�
Sp+

iπ
2
mpe−

∑
r

1
r
e
i
�
rSp− iπ

2 rmp
. (19.12)

Summation yields a logarithm by
∑

r t
r/r = − ln(1 − t) and we get

∆(E) = e−
i

2�
Sp+

imp
4
+ iπ

2 (1 − e
i
�
Sp−i

mp
2 )

= 2 sin (Sp(E)/� − mp(E)/4) .

So in one dimension, where there is only one periodic orbit, nothing is gained by
going from the trace formula to the spectral determinant. The spectral determin-
ant is a real function for real energies, and its zeros are again the Bohr-Sommerfeld
quantized eigenenergies (19.10).

19.4 Two-dimensional systems

For flows in two configuration dimensions the monodromy matrix Jp has two
eigenvalues Λp and 1/Λp, as explained in sect. 3.1.1. Isolated periodic orbits can
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418 CHAPTER 19. SEMICLASSICAL QUANTIZATION

be elliptic or hyperbolic. Here we discuss only the hyperbolic case, when the
eigenvalues are real and their absolute value is not equal to one. The determi-
nant appearing in the trace formulas can be written in terms of the expanding
eigenvalue as

|det (1 − Jrp)|1/2 = |Λr
p|1/2

(
1 − 1/Λr

p

)
,

and its inverse can be expanded as a geometric series

1
|det (1 − Jrp)|1/2

=
∑
m

1
|Λr

p|1/2Λmr
p

.

With the 2-dimensional expression for the average density of states (??) the spec-
tral determinant becomes

∆(E) = ei
mAE
2�2 exp

(
−
∑
p

∞∑
r=1

∞∑
k=0

eirSp/�−irmpπ/2

r|Λr
p|1/2Λkr

p

)

= ei
mAE
2�2
∏
p

∞∏
k=0

(
1 − 1

|Λp|1/2Λk
p

e
i
�
Sp− iπ

2
mp

)
. (19.13)

Résumé

In practice, all quantum chaos calculations take the stationary phase approxi-
mation to quantum mechanics (the Gutzwiller trace formula, possibly improved
by including tunneling periodic trajectories, diffraction corrections, etc.) as the
point of departure. Once the stationary phase approximation is made, what
follows is classical in the sense that all quantities used in periodic orbit calcu-
lations - actions, stabilities, geometrical phases - are classical quantities. The
problem is then to understand and control the convergence of classical periodic
orbit formulas.

While various periodic orbit formulas are formally equivalent, practice shows
that some are preferable to others. Three classes of periodic orbit formulas are
frequently used:

1. Trace formulas. In classical dynamics trace formulas hide under a variety of
ungracious appelations such as the f -alpha or multifractal formalism; in quantum
mechanics they are known as the Gutzwiller trace formulas. The trace of the
semiclassical Green’s function

trGsc(E) =
∫

ddq Gsc(q, q, E).
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is given by a sum over the periodic orbits of the system. As we have assumed
that the periodic orbits are isolated, and do not form families, unlike in integrable
systems or in KAM tori of systems with mixed phase space, the result is valid
only for the hyperbolic and elliptic periodic orbits.

Easy to derive, in calculations the trace formulas are hard to use for anything
other than the leading eigenvalue estimates, as they tend to be divergent in the
region of physical interest.

2. Zeros of Ruelle or dynamical zeta functions

1/ζ(s) =
∏
p

(1 − tp), tp =
1√
Λp

e
i
�
Sp−iπmp/2

yield, in combination with cycle expansions, the semiclassical estimates of quan-
tum resonances. For hyperbolic systems the dynamical zeta functions have good
convergence and are a powerful tool for determination of classical and quantum
mechanical averages.

3. Selberg-type zeta functions, Fredholm determinants, spectral determinants,
functional determinants are the natural objects for spectral calculations, with
convergence better than for dynamical zeta functions, but with less transparent
cycle expansions. The 2-dimensional Selberg-type zeta function

∆(E) =
∏
p

∞∏
k=0

(
1 − eiSp/�−iπmp/2

|Λp|1/2Λk
p

)
.

is a typical example. Most periodic orbit calculations are based on cycle expan-
sions of such determinants.

For the deterministic dynamical flows and number theory, zeta functions are
exact. The quantum-mechanical ones, derived by the Gutzwiller approach, are
at best only the stationary phase approximations to the exact quantum spec-
tral determinants, and for quantum mechanics an important conceptual problem
arises already at the level of derivation of zeta functions; how accurate are they,
and can the periodic orbit theory be systematically improved?

In quantum mechanics the periodic orbit theory arose from studies of (em-
inently applicable) semi-conductors, and the unstable periodic orbits have been
measured in experiments on the very paradigm of Bohr’s atom, the hydrogen
atom, this time in external field.
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[19.43] P. Cvitanović and F. Christiansen, CHAOS 2, 61 (1992).

[19.44] M.V. Berry and J.P. Keating, J. Phys. A 23, 4839 (1990).

[19.45] H.H. Rugh, “Generalized Fredholm determinants and Selberg zeta functions for
Axiom A dynamical systems”, Ergodic Theory Dynamical Systems 16, 805 (1996).

[19.46] B. Eckhard and G. Russberg, Phys. Rev. E 47, 1578 (1993)

printed August 24, 2000 ∼DasBuch/book/refsQm.tex 4aug2000



422 CHAPTER 19.

[19.47] D. Ruelle, Statistical Mechanics, Thermodynamical Formalism (Addison-Wesley,
Reading MA, 1987)
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Exercises

19.1 Volume of d-dimensional sphere. Show that the volume of a d-dimensional
sphere of radius r equals πd/2rd/Γ(1 + d/2). Show that Γ(1 + d/2) = Γ(d/2)d/2.

19.2 Monodromy matrix from second variations of the action. Show that

D⊥j/D′
⊥j = (1− J) (19.14)

19.3 Jacobi gymnastics. Prove that the ratio of determinants in (J.14)
can be expressed as

detD′
⊥j(q‖, 0, E)

detD⊥j(q‖, 0, E)
= det

(
I − Jqq −Jqp
−Jpq I − Jpp

)
= det (1 − Jj) , (19.15)

where Jj is the monodromy matrix of the periodic orbit.

19.4 Quantum two-disk scattering. Compute the quasiclassical spectral
determinant

Z(ε) =
∏
p,j,l

(
1 − tp

Λj+2l
p

)j+1

for the two disk problem. Use the geometry

a
a

R
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The full quantum mechanical version of this problem can be solved by finding
the zeros in k for the determinant of the matrix

Mm,n = δm,n +
(−1)n

2
Jm(ka)

H
(1)
n (ka)

(
H
(1)
m−n(kR) + (−1)nH(1)m+n(kR)

)
,

where Jn is the nth Bessel function and H
(1)
n is the Hankel function of the

first kind. Find the zeros of the determinant closest to the origin by solving
detM(k) = 0. (Hints: notice the structure M = I + A to approximate the
determinant; read chapter 20; or read Chaos 2, 79 (1992))

19.5 Pinball topological index. Upgrade your pinball simulator so that
it compute the topological index for each orbit it finds.

19.6 Transport equations. Write the wave-function in the asymptotic form

ψ(q, t) = e
i
�
R(x,t)+ i

�
εt
∑
n≥0

(i�)nAn(x, t) .

Derive the transport equations for the An by substituting this into the Schrödinger
equation and then collecting terms by orders of �. Notice that equation for Ȧn only
requires knowledge of An−1 and R.

19.7 Zero length orbits∗∗∗. Derive the classical trace (6.1) rigorously and either
add the t → 0+ zero length contribution to the trace formula, or show that it vanishes.
Send us the your Phys. Rev. Lett. describing the correct derivation.
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Chapter 20

Semiclassical chaotic scattering

Scat–tering quote here
Louis Armstrong

(A. Wirzba)

For completeness purposes, we will show here that the semiclassics for scattering
systems can be traced back to the semiclassics of bounded systems.

We start by a brief review of the elastic scattering of a point particle from
a (repulsive) potential in terms of the standard textbook scattering theory, and
then develop the connection to the standard Gutzwiller theory for bound systems.

20.1 Quantum mechanical scattering matrix

Suppose particles interact via forces of sufficiently short range, so that in the
remote past they were in a free particle state labelled β, and in the distant
future they will likewise be free, in a state labelled γ. The quantum mechanical
scattering matrix is the collection Sβγ of transition amplitudes β → γ normalized
such that |Sβγ |2 is the probability of this transition. The total probability that
the ingoing configuration β ends up in whatever outgoing state must add up to
unity

∑
γ

|Sβγ |2 = 1 , (20.1)

425
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so the S-matrix is unitary: S†S = SS† = 1. All scattering effects are incorporated
in the deviation of S from the unit matrix, the transition matrix T

S = 1− iT . (20.2)

In the Heisenberg picture the S-matrix is defined as

S = Ω−Ω†
+ (20.3)

in terms of the Møller operators

Ω± = lim
t→±∞ eiHt/�e−iH0t/� , (20.4)

where H is the full Hamiltonian including interactions, wheras H0 is the free
Hamiltonian. However, here and in the rest of the chapter we will use the S
matrix as defined in the interaction picture

S = Ω†
+Ω−

= lim
t→∞ eiH0t/�e−2iHt/�eiH0t/�

= T exp
(
−i

∫ +∞
−∞

dtH ′(t)
)

, (20.5)

where H ′ = V is the interaction Hamiltonian in the interaction picture and T
refers to the time-ordering operator. In stationary scattering theory, the S matrix
has the following spectral representation

S =
∫ ∞

0
dES(E)δ(H0 − E) (20.6)

with

S(E) = Q+(E)Q−1
− (E) (20.7)

and

Q±(E) = 1+ (H0 − E ± iε)−1V , (20.8)
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such that

Tr
[
S†(E)

d

dE
S(E)

]
= Tr

[
1

H0 − E − iε
− 1

H − E − iε
− (ε ↔ −ε)

]
.(20.9)

Derivations and further details can be found in e.g. [1]. Especially, the manipu-
lations leading to eq. (20.9) are justified if the operators Q±(E) can be linked to
trace-class operators (see appendix F).

In non-relativistic kinematics, the relative motion can be separated from the
center-of-mass motion. Therefore the elastic scattering of two particles can gener-
ically be treated as the scattering of one particle from a static potential V (Tr).
As described in standard textbooks of quantum mechanics (see e.g. the book of
Messiah [2]) we will specialize to the scattering of a point-particle of (reduced)
mass µ by a short-range potential potential V (Tr), excluding e.g. Coulomb- or
gravitational problems. Although we can choose the coordinate system of the
position vector Tr freely, it is advisable to place its origin somewhere near the
geometrical center of the potential. The scattering problem is solved, if a scat-
tering (i.e. non-normalizable and non-trivial) solution to the time-independent
Schrödinger equation

(
−h2

2µ
∂2

∂Tr2
+ V (Tr)

)
ψDk

(Tr) = EψDk
(Tr) (20.10)

can be constructed. Here E is the energy and Tp = �Tk the initial momentum of the
particle, where Tk is the corresponding wave vector. When the argument r of the
wave function is large against the typical size a of the scattering region, eq. (20.10)
effectively becomes a free Schrödinger equation because of the short-range nature
of the potential. In the asymptotic domain r � a, the solution ψDk

(Tr) of (20.10)
can therefore be written as superposition of ingoing and outgoing spherical wave
functions which are the two independent solutions of the free Schrödinger equa-
tion for fixed angular momentum. For instance, for two-dimensional scattering
problems, the stationary scattering solution reads asymptotically (modulo an
overall normalization)

ψDk
(Tr) ∼ 1

2πkr

∞∑
m=−∞

∞∑
m′=−∞

[
δmm′e−i(kr−π

2
m′−π

4
)

+ Smm′ei(kr−
π
2
m′− pi

4
)
]
eim

′Φ&r−imΦ&k , (20.11)

where ΦDk
and ΦDr are the angles and k =

√
2µE and r the moduli of the wave

and position vectors Tk and Tr, respectively. The indices m and m′ are the angular
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Figure 20.1: Incoming spherical waves running
into an obstacle.

Figure 20.2: Superposition of outgoing spherical
waves scattered from an obstacle.

momenta quantum numbers in two-dimensions for the incoming and outgoing
state of the scattering wave function and label here the S-matrix elements Sm,m′ ,
i.e., are special cases of the indices β and γ in (20.1). Note that the S-matrix
elements can only multiply the outgoing waves, since the incoming ones, by def-
inition, still have to encounter the scattering region and should not be modified
in comparison to the free case, i.e., the case without any scattering center at all.

In general, the potential V (Tr) is non-spherical and (20.10) has to be solved
numerically (by e.g. explicit integration or by diagonalizing a large matrix in a
specific basis) under the constraint that asymptotically ψDk

(Tr) is proportional to
(20.11).

20.2 Krein-Friedel-Lloyd formula

The link between quantum mechanics and semiclassics for scattering problems is
provided by the semiclassical limit of the Krein-Friedel-Lloyd sum for the spectral
density.
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20.2. KREIN-FRIEDEL-LLOYD FORMULA 429

Remember we linked in chapter 18 the spectral density of a bounded (Hamil-
tonian) system

d(E) ≡
∑
n

δ(En − E) (20.12)

(see (18.14)) via the identity

δ(En − E) = − lim
ε→0

1
π

Im
1

E − En + iε

= − lim
ε→0

1
π

Im〈En|
1

E − H + iε
|En〉

=
1

i 2π
lim
ε→0

〈
En

∣∣∣∣ 1
E − H − iε

− 1
E − H + iε

∣∣∣∣En

〉
(20.13)

to the trace of the Green’s function (19.1.1). Furthermore, in chapter 19 it
was shown that, semiclassically, the trace of the Green’s function is given by the
Gutzwiller trace formula (19.6) in terms of a smooth Weyl term and an oscillating
contribution of periodic orbits.

Therefore, the task of constructing the semiclassics of a scattering system is
completed, if we can find a connection between the spectral density d(E) and the
scattering matrix S. We will see that (20.9) will provide the clue. Note that the
right hand side of (20.9) has nearly the structure of (20.13) when the latter is
inserted into (20.12). However, in addition to trivial factors and operations, the
principal difference between these two types of equations is that the S matrix
refers to outgoing scattering wave functions which are not L2 normalizable, but
only as a delta-distribution and which have a continuous spectrum, whereas the
spectral density d(E) refers to a bound system with L2 normalizable stationary
wave functions with a discrete spectrum which, in fact, are superpositions of
incoming and outgoing wave functions. Furthermore, the bound system is char-
acterized by a hermitian operator, the Hamiltonian H, whereas the scattering
system is characterized by a unitary operator, the S-matrix. How can we recon-
cile these completely different classes of wave functions, operators and spectra?
The trick is to put our scattering system into a finite box which we will choose
to be spherical with radius b and with its center at the center of a our finite
scattering system. In the inside of the box our scattering potential V (Tr) will be
unaltered, whereas at the box walls we will choose an infinitely high potential,
such that we have Dirichlet boundary conditions at the outside of the box:

ψ(Tr)|r=b = 0 . (20.14)

In this way, for any finite value of the radius b of the box, we have mapped our
scattering system into a bound system with a spectral density d(E; b) over discrete
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Figure 20.3: The “difference” of two bounded
reference systems, one with and one without the
scattering system.

b b

-

eigenenergies En(b). It is therefore important that our scattering potential was
chosen to be short-ranged to start with. The hope is that in the limit b →
∞ we will recover the scattering system. But this operation is done too fast.
The smooth Weyl-term d̄(E; b) belonging to our box with the enclosed potential
V diverges for a spherical two-dimensional box of radius b quadratically, e.g.
as πb2/(4π) or even cubicly and also linearly in three dimensional case. This
problem can easily be cured if the spectral density of an empty reference box of
the same size (radius b) is subtracted (see fig. 20.3). Then all the divergences
linked to the increasing radius b in the limit b → ∞ drop out of the difference.
Furthermore, in the limit b → ∞ the energy-eigenfunctions of the box with and
without the potential are not L2 integrable any longer, but only normalizable
as a delta distribution, similarly to a plane wave. So we seem to recover a
continous spectrum. But still the problem remains that the wave functions do
not discriminate between incoming and outgoing waves, whereas this symmetry,
namely the hermiticity, is broken in the scattering problem. The last problem
can be tackled if we replace the spectral density over discrete delta distributions
by a smoothed spectral density with a finite imaginary part η in the energy E:

d(E + iη; b) ≡ 1
i 2π

∑
n

{
1

E − En(b) − iη
− 1

E − En(b) + iη

}
. (20.15)

Note that d(E + iη; b) �= d(E − iη; b) = −d(E + iη; b). By the introduction of
the positive finite imaginary part η the time-dependent behavior of the wave
function has effectively been altered from an oscillating one to a decaying one
and the hermiticity of the Hamiltonian is removed. Finally the limit η → 0 can
be done. However, it is important that the order of the limiting procedures is
respected. First the limit b → ∞ has to be performed for a finite value of η, only
then the limit η → 0 is allowed. In practice, one can try to work with a finite
value of b, but then it will turn out (see below) that the scattering system is only
recovered if the bound b

√
η � 1 is respected.

So let us summarize the relation between the smoothed spectral densities
d(E + iη; b) of the boxed potential and d(0)(E + iη; b) of the empty reference
system and the S matrix of the corresponding scattering system:

lim
η→+0

lim
b→∞

(
d(E+iη; b) − d(0)(E+iη; b)

)
=

1
2πi

Tr
[
S†(E)

d

dE
S(E)

]
=

1
2πi

Tr
d

dE
lnS(E) =

1
2πi

d

dE
ln detS(E) . (20.16)
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This is the Krein-Friedel-Lloyd formula [?, ?, 3, 4], see also [5, 6, 7, 8]. It replaces
the scattering problem by the difference of two bounded reference billiards (e.g.
large circular domains) of the same radius b which finally will be taken to infinity,
where the first contains the scattering region or potentials, whereas the other does
not (see fig. 20.3). Here d(E + iη; b) and d(0)(E + iη; b) are the smoothed spectral
densities in the presence or in the absence of the scatterers, respectively. In
the semiclassical approximation, they will be replaced by a Weyl term and an
oscillating sum over periodic orbits [27]. Eq.(20.16) can be integrated up to give
a relation between the smoothed staircase functions and the determinant of the
S-matrix:

lim
η→+0

lim
b→∞

(
N(E+iη; b) − N (0)(E+iη; b)

)
=

1
2πi

ln detS(E) . (20.17)

Furthermore, in both types of Krein-Friedel-Lloyd formulas the energy-arguments
E and +iη can be replaced by the wave-number argument k and iη′. Note that
these expression make only sense for wave numbers on or above the real k-axis.
Especially, if k is chosen to be real, η′ must be greater than zero. Otherwise, the
exact left hand sides (20.17) and (20.16) would give discontinuous staircase or
even delta function sums, respectively, whereas the right hand sides are continu-
ous to start with, since they can be expressed by continuous phase shifts. Thus
the order of the two limits in (20.17) and (20.16) is essential.

The necessity of the +iη prescription can also be understood by purely phe-
nomenological considerations in the semiclassical approximation: Without the iη
term there is no reason why one should be able to neglect spurious periodic orbits
which solely are there because of the introduction of the confining boundary. The
subtraction of the second (empty) reference system helps just in the removal of
those spurious periodic orbits which never encounter the scattering region – in
addition to the removal of the divergent Weyl term contributions in the limit
b → ∞. The period orbits that do encounter the scattering region would still
survive the first limit b → ∞, if they were not exponentially suppressed by the
+iη term because of their

eiL(b)
√
2µ(E+iη) = eiL(b)k e−L(b)η′ (20.18)

behavior. Remember that the length L(b) of a spurious periodic orbit grows at
least linearly with the radius b. Therefore, if the Krein-Friedel-Lloyd formulas
(20.16) and (20.17) are evaluated at a finite value of b, the bound bη′ � 1 is an
essential precondition on the suppression of unwanted spurious contributions of
the container. 20.1

on p. 433

Finally, the semiclassical approximation can also help us in the interpretation
of the Weyl term contributions for scattering problems. In fact, the Weyl terms
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appear with a negative sign in scattering problems. The reason is the subtraction
of the empty container from the container with the potential. If the potential
is a dispersing billiard system (or a finite collection of dispersing billiards), we
expect an exclude volume (or the sum of excluded volumes) relative to the empty
container. In other words, the Weyl term contribution of the empty container
is larger than of the filled one and therefore a negative net contribution is left
over [7]. Secondly, if the scattering potential is the collection of a finite number
of non-overlapping scattering regions, the Krein-Friedel-Lloyd formulas show that
the corresponding Weyl contributions are completely independent of the position
of the single scatterers, as long as these do not overlap.
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Exercises

20.1 Spurious orbits under the Krein-Friedel-Lloyd contruction. Draw
examples for the three types of period orbits under the Krein-Friedel-Lloyd con-
struction: (a) the genuine periodic orbits of the scattering region, (b) spurious
periodic orbits which can be removed by the subtraction of the reference system,
(c) spurious periodic orbits which cannot be removed by this subtraction. What
is the role of the double limit ε → 0, container size b → ∞?

(Andreas Wirzba)
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Chapter 21

Helium atom

“But,” Bohr protested, “nobody will believe me unless I
can explain every atom and every molecule.” Rutherford
was quick to reply, “Bohr, you explain hydrogen and you
explain helium and everybody will believe the rest.”

John Archibald Wheeler (1986)

(G. Tanner)

So far much has been said about one dimensional maps, hard disc repellers and
other interesting but rather idealized dynamical systems. If you have became
impatient and started wondering about the usefulness of all the methods learned
so far in solving real physical problems, we have good news for you. We will show
in this chapter that the concepts of symbolic dynamics, unstable periodic orbits,
and cycle expansions are essential tools to understand and calculate classical and
quantum mechanical properties of nothing less than helium, a dreaded three-body
Coulomb problem.

This sounds almost like one step too much at a time; we all know how rich and
complicated the dynamics of the three-body problem is – can we really jump from
three static discs directly to three charged particles moving under the influence
of their mutually attracting or repelling forces? It turns out, we can, but we have
to do it with care. The full problem is indeed not accessible in all its detail, but
we are able to analyze a somewhat simpler subsystem – collinear helium! This
system plays an important role in the classical dynamics of the full three-body
problem and its quantum spectrum.

The main work in reducing the quantum mechanics of helium to a semiclassi-
cal treatment of collinear helium lies in understanding why we are allowed to do
so. We will not worry about this too much in the beginning; after all, 80 years and
many failed attempts separate Heisenberg, Bohr and others in the 1920ties from
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436 CHAPTER 21. HELIUM ATOM

Figure 21.1: Coordinates for the three body
problem helium in the plane.
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the insights we have today on the role chaos plays for helium and its quantum
spectrum. We will introduce collinear helium in sect. 21.1 and discuss its dynam-
ics in some detail. We will learn how to integrate and find periodic orbits and how
to determine the relevant eigenvalues of the Jacobian matrix. We will explain in
sect. 21.2 why a quantisation of the collinear dynamics in helium will enable us
to find parts of the full helium spectrum; we then set up the semiclassical zeta
function and evaluate its cycle expansion. A discussion of the full quantum justi-
fication of this treatment of helium is briefly discussed in the comments, further
details can be found in the review ref. [1].

21.1 Classical dynamics of collinear helium

The full classical helium system consists of two electrons of mass me and charge
−e moving about a positively charged nucleus of mass mhe and charge +2e.

First we note that for helium the electron-nucleus mass ratio mhe/me = 1836
is so large that we may work in the infinite nucleus mass approximation mhe =
∞, fixing the nucleus at the origin. Finite nucleus mass effects can be taken
into account without any substantial difficulty [2]. We are now left with two
electrons moving in three spatial dimensions around the origin. The total angular
momentum of the combined electron system is still conserved. In the special case
of angular momentum L = 0, the electrons move in a fixed plane containing
the nucleus. The three body problem can then be written in terms of three
independent coordinates only, the electron-nucleus distances r1 and r2 and the
inter-electron angle Θ, see fig. 21.1.

Now, this looks more like something we can lay our hands on; the problem
has been reduced to three degrees of freedom, six phase space coordinates in all,
and the total energy is conserved. But let us go one step further; the electrons are
attracted by the nucleus but repelled by each other. They will thus tend to stay as
far away from each other as possible, preferably on opposite sides of the nucleus.
It is thus worth having a closer look at the situation where the three particles
are all on a line with the nucleus being somewhere between the two electrons.
If we, in addition, let the electrons have momenta pointing towards the nucleus
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21.1. CLASSICAL DYNAMICS OF COLLINEAR HELIUM 437

Figure 21.2: Collinear helium, with the two elec-
trons on opposite sides of the nucleus.
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as in fig. 21.2, then there is no force acting on the electrons perpendicular to
the common interparticle axis. That is, if we start the classical system on the
dynamical subspace Θ = π, d

dtΘ = 0, the three particles will remain in this
collinear configuration for all times.

21.1.1 Hamiltonian and energy scaling

In what follows we will restrict the dynamics to this collinear subspace. It is a
system of two degrees of freedom with the Hamiltonian

H =
1

2me

(
p21 + p22

)
− 2e

r1
− 2e

r2
+

e

r1 + r2
= E , (21.1)

where E is the total energy. We will first consider the dependence of the dynamics
on the energy E. A simple analysis of potential versus kinetic energy tells us
that if the energy is positive both electrons can escape to ri → ∞, i = 1, 2. More
interestingly, a single electron can still escape even if E is negative, carrying
away an in principle unlimited amount of kinetic energy as the total energy of
the remaining inner electron has no lower bound. Not only that, but one electron
will escape eventually for almost all starting condition. The overall dynamics
thus depends critically on whether E > 0 or E < 0. But how does the dynamics
change otherwise with varying energy? Fortunately, not at all. Helium is again
nice to us and the dynamics remains invariant under a change of energy up to
a simple scaling transformation; a solution of the equations of motion at a fixed
energy E0 = −1 can be transformed into a solution at an arbitrary energy E < 0
by scaling the coordinates as

ri(E) =
e2

(−E)
ri, pi(E) =

√
−meE pi, i = 1, 2 ,

together with a time transformation t(E) = e2m
1/2
e (−E)−3/2 t. We include the

electron mass and charge in the scaling transformation in order to obtain a non–
dimensionalized Hamiltonian of the form

H =
1
2
(
p21 + p22

)
− 2

r1
− 2

r2
+

1
r1 + r2

= −1 . (21.2)
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438 CHAPTER 21. HELIUM ATOM

The case of negative energies chosen here is the most interesting one in our
context. It contains periodic orbits and chaos and is responsible for bound and
resonance spectrum of the quantum problem treated in sect. 21.2.

There is another classical quantity which is always important in a semiclassical
treatment of quantum mechanics, and which will also feature prominently in the
discussion in the next section; this is the classical action S (18.32) which scales
with energy as

S(E) =
∮

dq(E) · p(E) =
e2m

1/2
e

(−E)1/2
S, (21.3)

with S being the action obtained from (21.2) for E = −1, and the coordinates
are q = (r1, r2), p = (p1, p2), respectively. Note, that for the Hamiltonian (21.2),
the period Tp of a periodic orbits is related to its action Sp by the simple relation
Tp = 1

2Sp.

21.1.2 Regularization of the two–body collisions

Next, we have a closer look at the Coulomb singularities in the Hamiltonian
(21.2). There is a fundamental difference between two–body collisions r1 = 0
or r2 = 0, and the triple collision r1 = r2 = 0. Two–body collisions can be
regularized, that is, the singularities in the equations of motion can be removed by
making a suitable coordinate transformation together with a time transformation
preserving the Hamiltonian structure of the equations. The same treatment is
not possible for the triple collision, and solutions of the differential equations can
not be continued through the singularity at the origin. As we shall see, the chaos
in collinear helium originates from this singularity of triple collisions.

A regularization of the two–body collisions is obtained by means of the Kust-
aanheimo–Stiefel (KS) transformation, which consists of a coordinate dependent
time transformation which stretches the time scale near the origin, and a canon-
ical transformation of the phase space coordinates. In order to motivate the
method, we apply it first to the one–dimensional Kepler problem.

A time transformation dt = f(q, p)dτ for a system described by a Hamiltonian
H(q, p) = E leaves the Hamiltonian structure of the equations of motion unal-
tered, if the Hamiltonian itself is transformed into H(q, p) = f(q, p)(H(q, p)−E).
For the 1– dimensional Coulomb problem with

H =
1
2
p2 − 2

x
= E (21.4)

∼DasBuch/book/chapter/helium.tex 4aug2000 printed August 24, 2000



21.1. CLASSICAL DYNAMICS OF COLLINEAR HELIUM 439

we might choose the time transformation dt = xdτ which lifts the |x| → 0 singu-
larity in (21.4) and leads to a new Hamiltonian

H =
1
2
xp2 − 2 − Ex = 0. (21.5)

The equation of motion are, however, still singular. By introducing the canonical
transformation

x = Q2; p =
P

2Q
(21.6)

we can map the whole problem into that of a harmonic oscillator with Hamiltonian

H(Q,P ) =
1
8
P 2 − EQ2 = 2, (21.7)

with all singularities completely removed.

We will now apply this method to collinear helium. The KS transformation
is implemented by

r1 = Q21; r2 = Q22 (21.8)

p1 =
P1

2Q1
; p2 =

P2
2Q2

;

and reparametrization time by

dτ =
dt

r1r2
.

The singular behavior in the original momenta at r1 or r2 = 0 is again compen-
sated by stretching the time scale at these points. The Hamiltonian structure
of the equations of motions with respect to the new time τ is conserved, if we
consider the Hamiltonian

Hko =
1
8
(Q22P

2
1 + Q21P

2
2 ) − 2R212 + Q21Q

2
2

(
1 +

1
R212

)
= 0 (21.9)

with R12 = (Q21 + Q22)
1/2. The equations of motion now have the form

Ṗ1 = 2Q1

[
2 − P 22

8
− Q22

(
1 +

Q22
R412

)]
; Q̇1 =

1
4
P1Q

2
2 (21.10)

Ṗ2 = 2Q2

[
2 − P 21

8
− Q21

(
1 +

Q21
R412

)]
; Q̇2 =

1
4
P2Q

2
1.
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Figure 21.3: a) A typical trajectory in the r1 – r2 plane; the trajectory enters here along
the r1 axis and escapes to infinity along the r2 axis; b) Poincaré map (r2=0) for collinear
helium: strong chaos prevails near the nucleus, that is, for small r1.

Individual electron–nucleus collisions at r1 = Q21 = 0 or r2 = Q22 = 0 no longer
pose a problem to a numerical integration routine. The equations (21.10) are
singular only at the triple collision R12 = 0, that is, when both electrons hit the
nucleus at the same time.

The new coordinates and the Hamiltonian (21.9) are very useful when cal-
culating trajectories for collinear helium; they are, however, less intuitive as a
visualization of the three-body dynamics. We will therefore refer to the old co-
ordinates r1, r2 when discussing the dynamics and periodic orbits.

21.1.3 Chaos, symbolic dynamics and periodic orbits

Let us have a closer look at the dynamics in collinear helium. The electrons
are attracted by the nucleus. During an electron–nucleus collision momentum
is transferred between the inner and outer electron as the inner electron has
a maximal screening effect on the charge of the nucleus thus diminishing the
attractive force on the outer electron. This electron – electron interaction is
negligible if the outer electron is far from the nucleus at a collision and the
overall dynamics is regular like in the one–dimensional Kepler problem. Things
change drastically if both electrons approach the nucleus nearly simultaneously.
The momentum transfer between the electrons depends now sensitively on how
the particles approach the origin. Intuitively, these nearly missed triple collisions
render the dynamics chaotic. A typical trajectory is plotted in fig. 21.3(a) where
we used r1 and r2 as the relevant axis. The dynamics can also be visualized in
a Poincaré surface of section, see fig. 21.3(b). We plot here the coordinate and
momentum of the outer electron whenever the inner particle hits the nucleus,
that is, r1 or r2 = 0. As the unstructured gray region of the Poincaré section for
small r1 illustrates, the dynamics is chaotic whenever the outer electron is close to
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21.1. CLASSICAL DYNAMICS OF COLLINEAR HELIUM 441

Figure 21.4: The periodic orbit 011 in the fun-
damental domain r1 ≥ r2 (full line) and in the full
domain (dashed line).
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the origin during a collision. Conversely, regular motions dominate whenever the
outer electron is far from the nucleus. As one of the electrons escapes for almost
any starting condition, the system is unbounded: one electron (say electron 1)
escapes with an arbitrary amount of kinetic energy taken by the fugative electron.
The remaining electron is trapped in a Kepler ellipse with total energy in the
range [−1,−∞]. There is no energy barrier which would separate the bound
from the unbound regions of the phase space. From general kinematic arguments
one deduces that the outer electron will not return when p1 > 0, r2 ≤ 2 at the
turning point of the inner electron p2 = 0. Only if the two electrons approach
the nucleus almost symmetrically along the line r1 = r2, and pass close to the
triple collision can the momentum transfer between the electrons be large enough
to kick one of the particles out completely. In other words, the electron escape
originates from the near triple collisions.

The collinear helium dynamics has some important properties which we now
list.

Reflection symmetry

The Hamiltonian (21.1) is invariant with respect to electron–electron exchange;
this symmetry corresponds to the mirror symmetry of the potential along the line
r1 = r2, fig. 21.4. As a consequence, we can restrict ourselves to the dynamics
in the fundamental domain r1 ≥ r2 and treat a crossing of the diagonal r1 = r2
as a hard wall reflection, see fig. 21.4. The dynamics in the full domain can
then be reconstructed by unfolding the trajectory through back-reflections. As
explained in chapter 15 the dynamics in the fundamental domain is the key to
the factorization of zeta functions (21.21). Note also the similarity between the
fundamental domain of the collinear potential fig. 21.4, and the fundamental
domain fig. 15.2 in the 3–disc system, a simpler problem with the same binary
symbolic dynamics.
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in depth:

sect. 15, p. 303

Symbolic dynamics

We have already made the claim that the triple collisions render the collinear
helium fully chaotic. We have no proof of the assertion, but the analysis of the
symbolic dynamics lends further credence to the claim.

The potential in (21.2) forms a ridge along the line r1 = r2. One can show that
a trajectory passing the ridge must go through at least one two-body collision
r1 = 0 or r2 = 0 before coming back to the diagonal r1 = r2. This enables
one to define a binary symbolic coding corresponding to the dynamics in the
fundamental domain r1 ≥ r2; the symbol code is linked to the Poincaré map
r2 = 0 and the symbols 0 and 1 are defined as

0: if the trajectory is not reflected from the line r1 = r2 between two collisions
with the nucleus r2 = 0;

1: if a trajectory is reflected from the line r1 = r2 between two collisions with
the nucleus r2 = 0.

Empirically, the symbolic dynamics is complete for the Poincaré map r2 = 0
in the fundamental domain, that is, there exists a one-to-one correspondence be-
tween binary symbol strings and collinear trajectories in the fundamental domain,
with exception of the 0 cycle. (See remark 21.2.)

Periodic orbits

The existence of a binary symbolic dynamics makes it easy to count the number
of periodic orbits in the fundamental domain, as in sect. 9.5.2. However, in order
to calculate semiclassical zeta functions in the next section, the existence of these
cycles is not enough. We need to find their trajectories in the phase space in
order to calculate their periods, topological indices and stabilities. A restriction
of the periodic orbit search to a suitable Poincaré surface of section, e.g. r2 = 0
or r1 = r2, leaves us in general with a two–dimensional search. Methods to find
periodic orbits in multi–dimensional spaces have been described in chapter 8.
They depend sensitively on good starting guesses. A systematic search for all
orbit can be achieved only after combining multi–dimensional Newton methods
with interpolation algorithms based on the binary symbolic dynamics phase space
partitioning. All periodic orbits up to symbol length 16 (some 8000 primitive
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21.1. CLASSICAL DYNAMICS OF COLLINEAR HELIUM 443

periodic orbits) have been computed by such methods, with some examples
shown in fig. 21.5.

Note that the fixed point 0 cycle is not in this list. The 0 cycle would cor-
respond to the situation where the outer electron sits at rest infinitely far from
the nucleus while the inner electron bounces back and forth into the nucleus.
The orbit is the limiting case of an electron escaping to infinity with zero kinetic
energy. The orbit is in the regular (that is separable) limit of the dynamics and is
thus marginally stable. The existence of this orbit is also related to intermittent
behavior generating the quasi–regular dynamics for large r1 that we have already
noted in fig. 21.3(b).

Search algorithm for an arbitrary periodic orbit is quite cumbersome to pro-
gram. There is, however, a class of periodic orbits, orbits with symmetries, which
can be easily found by a one-parameter search. The only symmetry left for the
dynamics in the fundamental domain is time reversal symmetry; a time reversal
symmetric periodic orbit is an orbit whose trajectory in phase space is mapped
onto itself when changing (p1, p2) → (−p1,−p2), by reversing the direction of the
momentum of the orbit. Such an orbit must be a “libration” or self–retracing
orbit, an orbit that runs back and forth along the same path in the (r1, r2) plane.
The cycles 1, 01 and 001 in fig. 21.5 are examples of self–retracing orbits. Luckily,
most of the short cycles that we desire most ardently have this symmetry.

Why is that helpful? A self retracing orbit must start perpendicular to the
boundary of the fundamental domain, that is either of the axis r2 = 0 or r1 = r2
or the potential boundary − 2

r1
− 2

r2
+ 1

r1+r2
= −1. By shooting off trajecto-

ries perpendicular to the boundaries and monitoring the orbits returning to the
boundary with the right symbol length we will find time reversal symmetric peri-
odic orbits by varying the starting point on the boundary as the only parameter.
But how can we tell whether a given orbit is self retracing or not? All the relevant
information is contained in the symbol code; an orbit is self retracing if its symbol
code is invariant under time reversal symmetry (that is read backwards) and a
suitable number of cyclic permutations. All binary strings up to length 5 fulfill
this condition. The code contains even more information; we can tell at which
boundary the total reflection occurs. One finds that an orbit starts perpendicular

• to the diagonal r1 = r2 if the code is time reversal invariant and has an odd
number of 1’s; an example is the orbit (001) in fig. 21.5;

• to the axis r2 = 0 if the code is time reversal invariant and has an even
number of symbols; an example is the orbit (0011) in fig. 21.5;

• to the potential boundary if the code is time reversal invariant and has an
odd number of symbols; an example is the orbit (011) in fig. 21.5.

All orbits up to symbol length 5 are thus time reversal invariant, the first two
non-time reversal symmetric orbits have the symbol code (001011) and (001101),
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Figure 21.5: Some of the shortest cycles in collinear helium. The classical collinear
electron motion is bounded by the potential barrier −1 = −2/r1 − 2/r2 + 1/(r1 + r2) and
the condition ri ≥ 0. The orbits are shown in the full r1–r2 domain, the symbol code refers
to the dynamics in the r1 ≥ r2 fundamental domain.
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21.1. CLASSICAL DYNAMICS OF COLLINEAR HELIUM 445

see fig. 21.5; they can only be found by a two parameter search. The two orbits
are mapped onto each other by time reversal symmetry, that is, they have the
same trace in the r1–r2 plane; note, however, that they are different orbits in the
full phase space.x)

We are thus ready to integrate trajectories for classical collinear helium with
the help of the equations of motions (21.10) and to find all periodic orbits up
to length 5. There is only one thing not yet in place; we need the governing 21.4

on p. 461equations for the matrix elements of the Jacobian matrix along a trajectory in
order to calculate stability indices. We will provide the main equations in the
next section, details of the derivation are relegated to the appendix ??.

21.1.4 Local coordinates, Jacobian matrix

In this section, we will derive the equations of motion for the Jacobian matrix
along a collinear helium trajectory. The Jacobian matrix is 4 dimensional; the
two trivial eigenvectors corresponding to the conservation of energy and displace-
ments along a trajectory can, however, be projected out by suitable orthogonal
coordinates transformations, see appendix ??. We will give the transformation to
local coordinates explicitly, here for the regularized coordinates (21.8), and state
the resulting equations of motion for the reduced [2 × 2] Jacobian matrix.

The vector perpendicular to a trajectory γ(t) = (Q1(t), Q2(t), P1(t), P2(t))
and to the energy manifold is given by the gradient of the Hamiltonian (21.9)

γE = ∇H = (HQ1 , HQ2 , HP1 , HP2)
T ,

with HQi = ∂H
∂Qi

, and HPi = ∂H
∂Pi

, i = 1,2. The vector parallel to the trajectory
is pointing in the direction of the phase space velocity

γt = γ̇(t) = (HP1 , HP2 ,−HQ1 , HQ2)
T .

Next, we consider the orthogonal matrix

Oγ(t) = (γ1, γ2, γE , γt) (21.11)

=

 −HP2/RH HQ2 HQ1/RH HP1

HP1/RH −HQ1 HQ2/RH HP2

−HQ2/RH −HP2 HP1/RH −HQ1

HQ1/RH HP1 HP2/RH −HQ2


with RH = |∇H|2 = (H2Q1

+H2Q2
+H2P1

+H2P2
), which provides a transformation

to local phase space coordinates centered on the trajectory γ(t) along the two
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vectors (γE , γt). The vectors γ1,2 are phase space vectors perpendicular to the 21.5
on p. 461trajectory and to the energy manifold in the 4 – dimensional phase space of

collinear helium. The Jacobian matrix in the local coordinate system O then has
the form

m =

 m11 m12 ∗ 0
m21 m22 ∗ 0
0 0 1 0
∗ ∗ ∗ 1

 .

The linearized motion perpendicular to the trajectory on the energy manifold is
thus described by the [2× 2] matrix m; the ‘trivial’ directions correspond to unit
eigenvalues on the diagonal in the 3rd and 4th column and row.

All numerical evidence indicates, that the dynamics in collinear helium is
indeed hyperbolic, that is , all periodic orbits are unstable. The equations of
motion for the reduced Jacobian matrix m are given by

ṁ = l(t)m(t), (21.12)

with m(0) = 1. The matrix l depends on the trajectory in phase space and has
the form

l =

 l11 l12 ∗ 0
l21 l22 ∗ 0
0 0 0 0
∗ ∗ ∗ 0

 ,

where the relevant matrix elements lij are given by

l11 =
1

RH
(2HQ1Q2(HQ2HP1 + HQ1HP2) (21.13)

+(HQ1HP1 − HQ2HP2)(HQ1Q1 − HQ2Q2 − HP1P1 + HP2P2))
l12 = −2HQ1Q2(HQ1HQ2 − HP1HP2)

+(H2Q1
+ H2P2

)(HQ2Q2 + HP1P1) + (H2Q2
+ H2P1

)(HQ1Q1 + HP2P2)

l21 =
1

R2H
(2(HQ1P2 + HQ2P1)(HQ2HP1 + HQ1HP8)

−(H2P1
+ H2P2

)(HQ1Q1 + HQ2Q2) − (H2Q1
+ H2Q2

)(HP1P1 + HP2P2))
l22 = −l11

Here HQiQj , HPiPj , i, j = 1, 2 are the second partial derivatives of H with
respect to the coordinates Qi, Pi at the phase space coordinate of the underlying
trajectory.
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p Sp/2π log Λp σp mp

1 1.82900 0.6012 0.5393 2
01 3.61825 1.8622 1.0918 4

001 5.32615 3.4287 1.6402 6
011 5.39451 1.8603 1.6117 6

0001 6.96677 4.4378 2.1710 8
0011 7.04134 2.3417 2.1327 8
0111 7.25849 3.1124 2.1705 8

00001 8.56618 5.1100 2.6919 10
00011 8.64306 2.7207 2.6478 10
00101 8.93700 5.1562 2.7291 10
00111 8.94619 4.5932 2.7173 10
01011 9.02689 4.1765 2.7140 10
01111 9.07179 3.3424 2.6989 10

000001 10.13872 5.6047 3.2073 12
000011 10.21673 3.0323 3.1594 12
000101 10.57067 6.1393 3.2591 12
000111 10.57628 5.6766 3.2495 12
001011 10.70698 5.3251 3.2519 12
001101 10.70698 5.3251 3.2519 12
001111 10.74303 4.3317 3.2332 12
010111 10.87855 5.0002 3.2626 12
011111 10.91015 4.2408 3.2467 12

Table 21.1: Action S (in units of 2π), stability exponent λ for the motion in the collinear
plane, winding number σ for the motion perpendicular to the collinear plane, and the Maslov
index for all cycles up to code length 6. All values are given for orbits in the fundamental
domain.
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21.1.5 Getting ready

Now everything is in place: the regularized equations of motion can be imple-
mented in a Runge–Kutta scheme to calculate trajectories. We have a symbolic
dynamics and know how many periodic orbits there are and how to find them
(at least up to symbol length 5). We know how to compute the Jacobian matrix
whose eigenvalues enter the semiclassical zeta function (19.7). The action Sp is
proportional to the period of the orbit, Sp = 2Tp.

There is, however, still a slight complication. Collinear helium is an invariant
4-dimensional subspace of the full helium phase space. If we restrict the dynam-
ics to angular momentum equal zero, we are left with 6 phase space coordinates.
That is not a problem when computing periodic orbits, they are oblivious to the
other dimensions. However, the Jacobian matrix does pick up extra contribu-
tions. When we calculate the Jacobian matrix for the full problem, we must also
allow for displacements out of the collinear plane. The full Jacobian matrix for
dynamics for fixed angular momentum L = 0 is thus 6 dimensional. Fortunately,
the linearized dynamics in and off the collinear helium subspace decouple and
the Jacobian matrix can be written in terms of two distinct [2 × 2] matrices, the
trivial eigendirections provide the other two dimensions. The submatrix related
to displacements off the linear configuration characterises the linearized dynam-
ics in the additional degree of freedom, which is essentially the Θ-coordinate, see
fig. 21.1. It turns out that the linearized dynamics in the Θ – coordinate is stable,
corresponding to a bending type motion of the two electrons. We will need the
stability exponents for all degrees of freedom in evaluating the semiclassical zeta
function in sect. 21.2.

The numerical values of the actions and stability exponents of the shortest
periodic orbit (including the stability of the stable degree of freedom and the
Maslov index) can be found in table 21.1.4. These values will be needed for a
semiclassical quantization implemented in the next section and are also helpful
to check your own results.

21.2 Semiclassical quantization of collinear helium

Before we get down to serious calculation of energy levels in the helium atom let
us have a brief look at the overall structure of the spectrum. This will give us a
first idea which parts of the spectrum of helium are accessible with the help of
our collinear model – and which are not. In order to keep the discussion as simple
as possible and to concentrate on the semiclassical aspects of our calculations we
offer here only a rough overview. A more detailed account of the connection to
the full quantum problem is found in the review ref. [1].
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21.2.1 The structure of the helium spectrum

We start by recalling Bohr’s formula for the spectrum of hydrogen like one-
electron atoms. The eigen energies are organised in Rydberg-series

EN = −e4me

�2

Z2

2N2
. (21.14)

where Ze is the charge of the nucleus and me is the mass of the electron. In the
following we adopt units such that e = me = � = 1.

The simplest model for the helium spectrum is obtained by treating the two
electrons as independent particles moving in the potential of the nucleus neglect-
ing the electron–electron interaction. Both electrons are then bound in hydrogen
like states; the inner electron will experience a charge Z = 2, screening at the
same time the nucleus, the outer electron will move in a Coulomb potential with
effective charge Z − 1 = 1. We thus obtain a first estimate for the total energy

EN,n = − 2
N2

− 1
2n2

with n > N. (21.15)

This double Rydberg formula contains already most of the information we need
to understand the basic structure of the spectrum. The (correct) ionizations
thresholds EN = − 2

N2 are obtained in the limit n → ∞, yielding the ground
and excited states of the helium ion He+. We will therefore refer to N as the
principal quantum number. We also see that all states EN,n with N ≥ 2 lie
above the first ionization threshold for N = 1. As soon as we switch on electron-
electron interaction these states are no longer bound states; they instead will
become resonance-states which decay into a bound state of the helium ion and a
free outer electron. This might not come as a big surprise if we have the classical
analysis of the previous section in mind: we already found that one of the classical
electrons will almost always escape after some finite time. More remarkable is
the fact that the first series N = 1 consists of true bound states for all n, an
effect which can only be understood by quantum arguments.

The hydrogen-like quantum energies (21.14) are highly degenerate, i.e. elec-
tronic states with different angular momentum but the same principal quantum
number N share the same energy. We recall from basic quantum mechanics that
the possible angular momenta for a given N reach from l = 0, 1 . . . N − 1. How
does that transfer to our helium model? Total angular momentum L for the he-
lium three-body problem is conserved. The collinear helium is a subspace of the
classical phase space for L = 0; we may thus expect that we can only quantise
helium states corresponding to total angular momentum zero, a subspectrum of
the full helium spectrum. Going back to our crude model (21.15) we may now at-
tribute angular momenta to the two independent electrons, l1 and l2 say. In order

printed August 24, 2000 ∼DasBuch/book/chapter/helium.tex 4aug2000



450 CHAPTER 21. HELIUM ATOM

to obtain total angular momentum L = 0 we need l1 = l2 = l and lz1 = −lz2, that
is, there are N different states corresponding to L = 0 for fixed quantum num-
bers N,n. That means we expect N different Rydberg-series converging to each
ionization threshold EN = −2/N2. This is indeed the case and the N different
series can be identified also in the exact helium quantum spectrum, see fig. 21.6.
We have thus already a good idea of the main structure of the helium spectrum.
Note, however, that the degeneracies between the N - different Rydberg-series
corresponding to the same principal quantum number N , are removed by the
electron-electron interaction, cf. the spectrum in fig. 21.6.

In a next step, we may even speculate which parts of the L = 0 spectrum
can be reproduced by the semiclassical quantisation of collinear helium. In the
collinear helium, both classical electrons move back and forth along a common
axis through the nucleus and thus have both angular momentum equal to zero
individually. We therefore expect that collinear helium describes the Rydberg-
series with l = l1 = l2 = 0. These series are the energetically lowest states for
fixed (N,n) and thus correspond to the Rydberg series on the outermost left side
of the spectrum in fig. 21.6. We will see in the next section that this is indeed the
case and that the collinear model holds down to the N = 1 bound state series,
including even the ground state of helium! We will also find a semiclassical
quantum number corresponding to the angular momentum l and show that the
collinear model describes states even for moderate angular momentum l as long
as l 5 N . (See also remark 21.3.)

21.2.2 The semiclassical zeta function for collinear helium

Nothing can stop us now from calculating our first semiclassical eigenvalues. The
only thing left to do is to set up the zeta function in terms of the periodic orbits
of collinear helium and to write out the first few terms of its cycle expansion
with the help of the binary symbolic dynamics. The semiclassical zeta function
(19.7) written as product over all periodic orbits of the classical systems has been
derived in sect. ??, The energy dependence in collinear helium enters the classical
dynamics only through simple scaling transformations described in sect. 21.1.1
which make it possible to write the semiclassical zeta function in the form

∆(z) = exp

(
−
∑
p

∞∑
r=1

1
r

eir(zSp−mp
π
2
)

(−det (1 − Jr⊥,p))
1/2|det (1 − Jr‖,p)|1/2

)
, (21.16)

with the energy dependence transferred to the new variable

z =
e2

�

√
me

−E
,
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Figure 21.6: The exact quantum helium spectrum for L = 0. The energy levels are denoted
by vertical bars and have been obtained from full three-dimensional quantum calculations [3].
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obtained by using the scaling relation for the action, (21.3). The fact that the 4
dimensional Jacobian matrix decouples into two [2×2] submatrices corresponding
to the dynamics in the collinear space and perpendicular to it makes it possible
to write the denominator in terms of a product of two determinants. Stable
and unstable degrees of freedom enter the trace formula in a slightly different
way, (see the discussion in sect. 14.1) reflected in the absence of the modulus
sign and the minus sign in front of det (1 − J⊥). The topological index mp

corresponds to the unstable dynamics in the collinear plane Note that the factor
eiπN̄(E) present in (19.7) is absent in (21.16); collinear helium is an open system,
i.e. the eigenenergies are resonances and the zeros of the semiclassical zeta func-
tion do thus not lie on the real axis but will be found in the complex plane; the
mean counting function N̄(E) is therefore not defined. In order to obtain a
zeta function as an infinite product of the form (19.13) we may proceed as in
sect. ?? by expanding the determinants in (21.16) in terms of the eigenvalues
of the corresponding Jacobian matrices. The matrix representing displacements
perpendicular to the collinear space has eigenvalues of the form Λ⊥ = exp(±2πiσ),
reflecting stable linearized dynamics. Note that σ is here the full winding number
along the orbit in the stable degree of freedom, and is thus multiplicative when
considering multiple repetitions of this orbit, (see sect. 14.1). The eigenvalues
corresponding to the unstable dynamics along the collinear axis are of the form
|Λ‖| = exp(±λ) with λ > 0 and real. We may thus write

(
−det (1 − Jr⊥)|det (1 − Jr‖)|

)−1/2
(21.17)

=
[
(±1)r(1 − Λr

‖)(1 − Λ−r
‖ )(1 − e2πirσ)(1 − e−2πirσ)

]−1/2
=

∞∑
k,m=0

(±1)rke−r[(k+1/2)λ+i(m+1/2)σ] .

The ± sign corresponds to the hyperbolic/inverse hyperbolic periodic orbits with
positive/negative eigenvalues Λ‖. Using the relation (21.17) we see that the
sum over r in (21.16) is the expansion of the logarithm; we may thus write the
semiclassical zeta function as product over dynamical zeta functions in the form

Zqm(E) =
∞∏
k=0

∞∏
m=0

ζ−1k,m =
∞∏
k=0

∞∏
m=0

∏
p

(1 − t(k,m)p ) , (21.18)

where the periodic orbit weights t
(k,m)
p are given as

t(k,m)p = (±1)k exp
[
i
(
zSp − mp

π

2
− 4π(m +

1
2
)σp

)
− (k +

1
2
)λp

]
. (21.19)
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Here, mp is the topological index for the motion in the collinear plane which equals
twice the code length of the periodic orbit. The two independent directions
perpendicular to the collinear axis lead to a twofold degeneracy in this degree
of freedom which accounts for an additional factor 2 in front of the winding
number σ. The values for the actions, winding numbers and stability indices of
the shortest periodic orbits in collinear helium are listed in table 21.1.4.

The integer indices k and m play very different roles in the semiclassical spec-
tral determinant (21.18). A linearized approximation of the flow along a periodic
orbit corresponds to a harmonic approximation of the potential in the vicinity
of the trajectory. Stable motion corresponds to a harmonic oscillator potential,
unstable motion to an inverted harmonic oscillator. The index m which con-
tributes as a phase to the periodic orbit weights in the dynamical zeta functions
can therefore be interpreted as a harmonic oscillator quantum number; it corre-
sponds to vibrational modes in the Θ coordinate and can in our simplified picture
developed in sect. 21.2.1 be related to the quantum number l = l1 = l2 repre-
senting the single particle angular momenta. Every distinct m value corresponds
thus to a full spectrum which we obtain from the zeros of the zeta function ζ−1m

keeping m fixed. The harmonic oscillator approximation will eventually break
down with increasing off-line excitations and thus increasing m. The index k cor-
responds to ‘excitations’ along the unstable direction and can be identified with
local resonances of the inverted harmonic oscillator centered on the given orbit.
The periodic orbit contributions t

(k,m)
p decrease exponentially with increasing k.

Higher k terms in an expansion of the determinant give corrections which become
important only for large negative imaginary z values. As we are interested only
in the leading zeros of (21.18), that is the zeros closest to the real energy axis, it
is sufficient to only take the k = 0 terms into account.

Next, let us have a look at the discrete symmetries of the collinear problem
discussed in sect. 21.1.3. Collinear helium has a C2 symmetrya as it is invariant
under reflection across the r1 = r2 line corresponding to the electron-electron
exchange symmetry. As explained in sect. 14.1 we may use this symmetry to
factorize the semiclassical zeta functionṪhe spectrum corresponding to the states
symmetric or antisymmetric with respect to reflection can be obtained by writing
the dynamical zeta functions in the symmetry factorized form, i.e.

ζ−1m =
∞∏

p,noS

(1 − tp)2
∞∏
p,S

(1 − t2p) . (21.20)

Here, the first product is taken over all distinct periodic orbits which are not
self-dual under the C2 symmetry. These orbits always come as two equivalent
orbits mapped into each other under the symmetry transformation. The second
product runs over all self-dual periodic orbits; these orbits cross the axis r1 = r2
twice at a right angle. The self-dual orbits close in the fundamental domain
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r1 ≤ r2 already at half the period compared to the orbit in the full domain, (see
sects. 21.1.3 and ??or detail); the cycle weights tp in (21.20) are thus already
those of orbits in the fundamental domain.

We may now factorize (21.20) in the following way

ζ−1m = ζ−1(m,+)ζ
−1
(m,−) with

ζ−1(m,+) =
∞∏

p,noS

(1 − t(m)p )
∞∏
p,S

(1 − t(m)p ) ,

ζ−1(m,−) =
∞∏

p,noS

(1 − t(m)p )
∞∏
p,S

(1 + t(m)p ) , (21.21)

setting k = 0 in what follows. Symmetric quantum resonances are given by
the zeros of ζ−1(m,+), antisymmetric resonances by the zeros of ζ−1(m,−)r, with the
dynamical zeta functions defined as products over orbits in the fundamental do-
main. The symmetry properties of an orbit can directly be read off from its
symbol string after one period in the fundamental domain, see the discussion on
symmetric periodic orbits in sect. 21.1.3. The orbits with an odd number of 1’s
in the code are self-dual under the C2 symmetry and enter the zeta functions
in (21.21) with negative or positive sign, depending on the symmetry subspace
under consideration.

21.2.3 Cycle expansion results

We have so far established a factorized form of the semiclassical zeta function
and have thereby picked up two good quantum numbers; the quantum number
m has been identified with an excitation of the bending vibrations, the exchange
symmetry quantum number ±1 corresponds to states being symmetric or anti-
symmetric with respect to electron-electron exchange. We may now start writing
down the binary cycle expansion (11.5) and determine the zeros of the zeta func-
tions. There is, however, still another problem: there is no periodic orbit 0 in the
collinear helium. The code 0 corresponds to the limit of an outer electron fixed
with zero kinetic energy at r1 = ∞, the inner electron bouncing back and forth
into the singularity at the origin. This introduces intermittency in our system,
a problem discussed in chapter 14.1 . We note, that the behavior of periodic
orbits going far out in the channel r1, r2 → ∞ is very different from those stay-
ing in the near core region. A cycle expansion using the binary alphabet above
thus reproduces states where both electrons are localized in the near core regions.
(These are the lowest states in each Rydberg series.) The states converging to the
various ionization thresholds EN = −2/N2 correspond to eigenfunctions, where
the wave function of the outer electron is stretched far out into the ionization
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channel r1, r2 → ∞. To include those states, we have to deal with the dynamics
in the limit of large r1, r2. This turns out to be equivalent to switching to a sym-
bolic dynamics with an infinite alphabet discussed in sect. 14.1. This treatment
is beyond the scope of this book, the interested reader is referred to refs. [4, 1],
see also remark 21.5.

Keeping this in mind, we may write the cycle expansion for a binary alphabet
without a cycle ’0’ as

ζ−1m (z) =
∞∑
j=0

cj = 1 −t
(m)
1 − t

(m)
01 − [t(m)001 + t

(m)
011 − t

(m)
01 t

(m)
1 ] (21.22)

−[t(m)0001 + t
(m)
0011 − t

(m)
001 t

(m)
1 + t

(m)
0111 − t

(m)
011 t

(m)
1 ] − . . . .

The weights t
(m)
p are given in (21.19), with contributions of orbits and composite

orbits of the same total symbol length collected within square brackets. The
cycle expansion depends only on the classical actions, stability indices and wind-
ing numbers, which for orbits up to length 6 are given in table 21.1.4. To get
acquainted with the cycle expansion formula (21.22) consider a truncation of the
series after the first term

ζ−1m (z) ≈ 1 − t
(m)
1

!= 0 .

This leads to the quantisation condition

Em,N = − (S1/2π)2

[m + 1
2 + 2(N + 1

2)σ1]
2
, m,N = 0, 1, 2, . . . , (21.23)

with S1/2π = 1.8290 for the action and σ1 = 0.5393 for the winding number,
cf. table 21.1.4, of the periodic orbit ’1’ in the fundamental domain, (sometimes
referred to as the asymmetric stretch orbit, see fig. 21.5). The additional quantum
number N in (21.23) corresponds to the principal quantum number defined in
sect. 21.2.1.The states described by the quantisation condition (21.23) are those
centered closest to the nucleus and correspond therefore to the lowest states in
each Rydberg series (for a fixed m and N values), cf. fig. 21.6. The simple
formula (21.23) gives already a rather good estimate for the ground state of
helium! Results obtained form (21.23) are tabulated in table 21.2, see the 3rd
column under j = 1 and are compared with full quantum calculations.

In order to obtain higher excited quantum states, we need to include more
orbits in the cycle expansion (21.22), thus covering more of the phase space
dynamics further away from the center. Taking higher and higher cumulants cj
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N n j = 1 j = 4 j = 8 j = 12 j = 16 −Eqm
1 1 3.0970 2.9692 2.9001 2.9390 2.9248 2.9037
2 2 0.8044 0.7714 0.7744 0.7730 0.7727 0.7779
2 3 — 0.5698 0.5906 0.5916 0.5902 0.5899
2 4 — — — 0.5383 0.5429 0.5449
3 3 0.3622 0.3472 0.3543 0.3535 0.3503 0.3535
3 4 — — 0.2812 0.2808 0.2808 0.2811
3 5 — — 0.2550 0.2561 0.2559 0.2560
3 6 — — — 0.2416 0.2433 0.2438
4 4 0.2050 0.1962 0.1980 0.2004 0.2012 0.2010
4 5 — 0.1655 0.1650 0.1654 0.1657 0.1657
4 6 — — 0.1508 0.1505 0.1507 0.1508
4 7 — — 0.1413 0.1426 0.1426 0.1426

Table 21.2: Real part of the zeros of ζ−1
(m=0,+) obtained by a cycle expansion up to length j.

The exact quantum energies are in the last column. The states are labeled by their principal
quantum numbers. A line as entry indicates a missing zero at that level of approximation.
The quantum results are taken from ref. [3].

into account, we indeed reveal more and more states in each N - series for fixed m.
This is illustrated by the data listed in table 21.2 for symmetric states obtained
from truncations of the cycle expansion of ζ−1(0,+).

Results of the same quality are obtained for antisymmetric states by calcu-
lating the zeros of ζ−1m=0,−. Repeating the calculation with m = 1 or even higher
m excitations reveals states in Rydberg series which are to the right of the ener-
getically lowest series in fig. 21.6.

21.6
on p. 461

Commentary

Remark 21.1 Sources. The full Hamiltonian after elimination of the
center of mass coordinates can be found in ref. [2]. The two–body collision
regularizing Kustaanheimo–Stiefel transformation was introduced in ref. [5].
The technique was originally developed in celestial mechanics to obtain nu-
merically stable solutions for planetary motions. The KS transformation for
the collinear helium was introduced in ref. [2].

Remark 21.2 Complete binary coding. No exception to the binary
coding of the collinear helium periodic orbits has been found. A rigorous
proof for this statement is, however, still missing. The Markov partition of
the phase space (if it exists) is given by the triple collision manifold, that is
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those trajectories which start in or end at the singular point r1 = r2 = 0 see
also [2].

Remark 21.3 Helium quantum numbers The picture sketched in sect. 21.2.1
classifying the helium states in terms of single electron quantum numbers
did prevail until around 1960; a growing discrepancy between experimental
results and theoretical predictions made it necessary to refine this picture
subsequently. In particular, the different Rydberg-series sharing a given N -
quantum number correspond, roughly speaking, to a quantisation of the inter
electronic angle Θ, see fig. 21.1, and can not be described in terms of single
electron quantum numbers l1, l2. The fact that something is slightly wrong
with the single electron picture laid out in sect. 21.2.1 is highlighted when
considering the collinear configuration where both electrons are on the same
side of the nucleus. Both electrons have again angular momentum equal
to zero, the corresponding quantum states should thus also belong to sin-
gle electron quantum numbers (l1, l2) = (0, 0). However, the single electron
picture breaks down completely in the limit Θ = 0 where electron-electron
interaction becomes the dominant effect. The quantum states corresponding
to this classical configuration are distinctively different from those obtained
from the collinear dynamics with electrons on different sides of the nucleus.
The Rydberg series related to the classical Θ = 0 dynamics are on the out-
ermost rigth side in each N subspectrum in fig. 21.6, containing in fact the
energetically highest states for given N,n quantum numbers, see also re-
mark 21.5. A detailed account of the historical development as well as a
modern interpretation of the spectrum can be found in ref. [1].

Remark 21.4 Spin and particle exchange symmetry So far we have
completely ignored the electron spin. Our calculation indeed neglects all dy-
namical effects due to the spin of the particles involved, such as the electronic
spin-orbit coupling. Electrons are fermions and that determines the symme-
try properties of the quantum states. The total wave function, including the
spin degrees of freedom, must be antisymmetric under the electron-electron
exchange transformation. That means that a quantum state symmetric in
the position variables must have an antisymmetric spin wave function, i.e.
the spins are antiparallel and the total spin is zero (singlet-state). Anti-
symmetric states have symmetric spin wave function and thus total spin
1 (triplet-states). The threefold degeneracy of spin 1 states is lifted when
including spin-orbit coupling.

Remark 21.5 Beyond a quantisation of the unstable collinear helium subspace
The semiclassical quantisation of the chaotic collinear helium subspace has
first been discussed in refs. [6, 7] and ref. [8] Classical and semiclassical con-
siderations beyond what has been discussed in sect. 21.2 went along several
directions which are, however, all somewhat outside the main interest of
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this book. We will therefore restrict ourselves here to point out the main
developments and give the relevant references.

A classical study of the dynamics of collinear helium where both electrons
are on the same side of the nucleus reveals that this configuration is fully
stable both in the collinear plane and perpendicular to it. The corresponding
quantum states can be obtained with the help of an approximate EBK- or
torus-quantisation which reveals helium resonances with extremely long
lifetimes (quasi - bound states in the continuum). These states form the
energetically highest Rydberg series for a given principal quantum number
N , see fig. 21.6. Details of the quantisation scheme can be found in refs. [9,
10].

In order to obtain the Rydberg series structure of the spectrum, that is
the succession of states converging to the various ionization thresholds, we
need to take into account the dynamics of orbits which make large excursions
along the r1 or r2 axis. In the chaotic collinear subspace these orbits are
characterized by having a symbol code of the form (a0n) where a stands for
an arbitrary binary code and 0n is a succession of n 0’s in a row. It turns out
that a coherent summation of the form

∑∞
n=0 ta0n where tp are the periodic

orbits weights in (21.19) and a subsequent cycle expansion indeed yields
all the Rydberg-states up the various ionization thresholds, see ref. [4]. A
comprehensive overview on spectra of two-electron atoms and semiclassical
treatments can be found in ref. [1].

Résumé

We have covered a lot of ground between our initial considerations about the
classical properties of a three body Coulomb problem and the semiclassical cal-
culation of the helium spectrum. We saw that the three body problem restricted
to the dynamics on a collinear axis is fully chaotic; this implies that traditional
semiclassical methods such as WKB - quantisation discussed in sect. 14.1 will
not work and we need the Gutzwiller periodic orbit trace formula to obtain the
spectrum of helium. We are lucky that the symbolic dynamics is unexpectedly
simple, and that a semiclassical quantisation of the collinear dynamics indeed
yields an important part of the helium spectrum including the ground state with
reasonable accuracy. A sceptics might say “Why bother with all the semiclassi-
cal considerations, a straightforward quantum calculation solving Schrödinger’s
equation numerically would achieve the same goal with better precision”. While
this is true the semiclassical analysis offers new insight in understanding the
structure of the spectrum. We discover that the dynamics perpendicular to the
collinear plane is stable giving rise to an additional (approximate) quantum num-
ber m. We thus understand the origin of the existence of the different Rydberg
series depicted in fig. 21.6, a fact which is not at all obvious from a numerical
solution of the quantum problem.
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Exercises

21.1 Kustaanheimo–Stiefel transformation for helium. Check the Kustaanheimo–
Stiefel regularization for collinear helium; derive the Hamiltonian (21.9) and the
collinear helium equations of motion (21.10).

21.2 Helium trajectories. Do some trial integrations of the collinear helium
equations of motion (21.10). Due to the energy conservation, only three of the
phase space coordinates (Q1, Q2, P1, P2) are independent. Alternatively, you can
integrate in 4 dimensions and use the energy conservation as a check on the
quality of your integrator.

The dynamics can be visualized as a motion in the original configuration space
(r1, r2), ri ≥ 0 quadrant, or, better still, by an appropriately chosen 2-d Poincaré
section, exercise 21.3. Most trajectories will run away, do not be surprised - the
classical collinear helium is unbound. Try to guess approximately the shortest
cycle of fig. 21.4.

21.3 Helium Poincaré section. Construct a Poincaré section fig. 21.3b
that reduces the helium flow to a map. Try to delineate regions which corre-
spond to finite symbol sequences, that is initial conditions that follow the same
topological itinerary in the fig. 21.3a space for a finite number of bounces. Such
rough partition can be used to initiate 2–dimensional Newton-Raphson method
searches for helium cycles, exercise 21.4.

21.4 Collinear helium cycles. The motion in the (r1, r2) plane is topolog-
ically similar to the pinball motion in a 3-disk system, except that the motion is
in the Coulomb potential.

Just as in the 3-disk system the dynamics is simplified if viewed in the funda-
mental domain, in this case the region between r1 axis and the r1 = r2 diagonal.
Modify your integration routine so the trajectory bounces off the diagonal as off
a mirror. Miraculously, the symbolic dynamics for the survivors again turns out
to be binary, with 0 symbol signifying a bounce off the r1 axis, and 1 symbol for
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a bounce off the diagonal. Just as in the 3-disk game of pinball, we thus know
what cycles need to be computed for the cycle expansion (21.22).

Guess some short cycles by requiring that topologically they correspond to
sequences of bounces either returning to the same ri axis or reflecting off the
diagonal. Now either Use special symmetries of orbits such as self-retracing to
find all orbits up to length 5 by a 1-dimensional Newton search.

21.5 Collinear helium cycle stabilities. Compute the collinear helium
cycles’ stability eigenvalues for the collinear problem as described in sect. 21.1.4.
You may either integrate the reduced 2×2 matrix using equations (21.12) together
with the generating function l given in local coordinates by (21.13) or integrate
the full 4 × 4 Jacobian matrix, see sect. 14.1. Integration in 4 dimensions
should give eigenvalues of the form (1, 1,Λp, 1/Λp); The unit eigenvalues are due
to the usual periodic orbit invariances; displacements along the orbit as well
as perpendicular to the energy manifold are conserved; the latter one provides
a check of the accuracy of your computation. Compare with table 21.1.4; you
should get the actions and Lyapunov exponents right, but topological indices and
stability angles we take on faith.

21.6 Helium eigenenergies. Compute the lowest eigenenergies of singulet
and triplet states of helium by substituting cycle data into the cycle expansion
(21.22) for the symmetric and antisymmetric zeta functions (21.21). Probably
the quickest way is to plot the magnitude of the zeta function as function of
real energy and look for the minima. As the eigenenergies in general have a
small imaginary part, a contour plot such as fig. 11.1, can yield informed guesses.
Better way would be to find the zeros by Newton method. How close are you
to the cycle expansion and quantum results listed in table 21.2? You find more
quantum data in ref. [3].
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Chapter 22

Diffraction distraction

(N. Whelan)

Diffraction effects characteristic to scattering off wedges are incorporated into the
periodic orbit theory.

22.1 Quantum eavesdropping

As noted in chapter 21, the classical mechanics of the helium atom is undefined
at the instant of a triple collision. This is a common phenomenon - there is often
some singularity or discontinuity in the classical mechanics of physical systems.
This discontinuity can even be helpful in classifying the dynamics. The points
in phase space which have a past or future at the discontinuity form manifolds
which divide the phase space and provide the symbolic dynamics. The general
rule is that quantum mechanics smoothes over these discontinuities in a process
we interpret as diffraction. We solve the local diffraction problem quantum me-
chanically and then incorporate this into our global solution. By doing so, we
reconfirm the central leitmotif of this treatise: think locally - act globally.

While being a well-motivated physical example, the helium atom is somewhat
involved. In fact, so involved that we do not have a clue how to do it. In its
place we illustrate the concept of diffractive effects with a pinball game. There
are various classes of discontinuities which a billiard can have. There may be a
grazing condition such that some trajectories hit a smooth surface while others
are unaffected - this leads to the creeping described in chapter 20. There may be
a vertex such that trajectories to one side bounce differently from those to the
other side. There may be a point scatterer or a magnetic flux line such that we
do not know how to continue classical mechanics through the discontinuities. In
what follows, we specialize the discussion to the second example - that of vertices
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464 CHAPTER 22. DIFFRACTION DISTRACTION

Figure 22.1: Scattering of a plane wave off a
half line.

III

α

I

II

or wedges. To further simplify the discussion, we consider the special case of a
half line which can be thought of as a wedge of angle zero.

We start by solving the problem of the scattering of a plane wave off a half line
(see fig. 22.1). This is the local problem whose solution we will use to construct
a global solution of more complicated geometries. We define the vertex to be the
origin and launch a plane wave at it from an angle α. What is the total field?
This is a problem solved by Sommerfeld in 1896 and our discussion closely follows
his.

The total field consists of three parts - the incident field, the reflected field
and the diffractive field. Ignoring the third of these for the moment, we see that
the space is divided into three regions. In region I there is both an incident and
a reflected wave. In region II there is only an incident field. In region III there is
nothing so we call this the shadowed region. However, because of diffraction the
field does enter this region. This accounts for why you can overhear a conversation
if you are on the opposite side of a thick wall but with a door a few meters away.
Traditionally such effects have been ignored in semi-classical calculations because
they are relatively weak. However, they can be significant.

To solve this problem Sommerfeld worked by analogy with the full line case,
so let us briefly consider that much simpler problem. There we know that the
problem can be solved by images. An incident wave of amplitude A is of the form

v(r, ψ) = Ae−ikr cosψ (22.1)

where ψ = φ − α and φ is the angular coordinate. The total field is then given
by the method of images as

vtot = v(r, φ − α) − v(r, φ + α), (22.2)

where the negative sign ensures that the boundary condition of zero field on the
line is satisfied.
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Figure 22.2: The contour in the complex β plane. The pole is at β = −ψ (marked by ×
in the figure) and the integrand approaches zero in the shaded regions as the magnitude of
the imaginary part of β approaches infinity.

Sommerfeld then argued that v(r, ψ) can also be given a complex integral
representation

v(r, ψ) = A

∫
C
dβf(β, ψ)e−ikr cosβ . (22.3)

This is certainly correct if the function f(β, ψ) has a pole of residue 1/2πi at
β = −ψ and if the contour C encloses that pole. One choice is

f(β, ψ) =
1
2π

eiβ

eiβ − e−iψ
. (22.4)

(We choose the pole to be at β = −ψ rather than β = ψ for reasons discussed
later.) One valid choice for the contour is shown in fig. 22.2. This encloses the pole
and vanishes as |Imβ| → ∞ (as denoted by the shading). The sections D1 and
D2 are congruent because they are displaced by 2π. However, they are traversed
in an opposite sense and cancel, so our contour consists of just the sections C1
and C2. The motivation for expressing the solution in this complicated manner
should become clear soon.

What have we done? We extended the space under consideration by a factor
of two and then constructed a solution by assuming that there is also a source
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466 CHAPTER 22. DIFFRACTION DISTRACTION

in the unphysical space. We superimpose the solutions from the two sources
and at the end only consider the solution in the physical space to be meaningful.
Furthermore, we expressed the solution as a contour integral which reflects the 2π
periodicity of the problem. The half line scattering problem follows by analogy.

Whereas for the full line the field is periodic in 2π, for the half line it is
periodic in 4π. This can be seen by the fact that the field can be expanded in
a series of the form {sin(φ/2), sin(φ), sin(3φ/2), · · ·}. As above, we extend the
space by thinking of it as two sheeted. The physical sheet is as shown in fig. 22.1
and the unphysical sheet is congruent to it. The sheets are glued together along
the half line so that a curve in the physical space which intersects the half line
is continued in the unphysical space and vice-versa. The boundary conditions
are that the total field is zero on both faces of the half line (which are physically
distinct boundary conditions) and that as r → ∞ the field is composed solely
of plane waves and outgoing circular waves of the form g(φ) exp(ikr)/

√
kr. This

last condition is a result of Huygens’ principle.

We assume that the complete solution is also given by the method of images
as

vtot = u(r, φ − α) − u(r, φ + α). (22.5)

where u(r, ψ) is a 4π-periodic function to be determined. The second term is
interpreted as an incident field from the unphysical space and the negative sign
guarantees that the solution vanishes on both faces of the half line. Sommerfeld
then made the ansatz that u is as given in equation (22.3) with the same contour
C1 + C2 but with the 4π periodicity accounted for by replacing equation (22.4)
with

f(β, ψ) =
1
4π

eiβ/2

eiβ/2 − e−iψ/2
. (22.6)

(We divide by 4π rather than 2π so that the residue is properly normalized.)
The integral (22.3) can be thought of as a linear superposition of an infinity of
plane waves each of which satisfies the Helmholtz equation (∇2 + k2)v = 0, and
so their combination also satisfies the Helmholtz equation. We will see that the
diffracted field is an outgoing circular wave; this being a result of choosing the
pole at β = −ψ rather than β = ψ in equation (22.4). Therefore, this ansatz
is a solution of the equation and satisfies all boundary conditions and therefore
constitutes a valid solution. By uniqueness this is the only solution.

In order to further understand this solution, it is useful to massage the con-
tour. Depending on φ there may or may not be a pole between β = −π and
β = π. In region I, both functions u(r, φ±α) have poles which correspond to the
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Figure 22.3: The contour used to evaluate the diffractive field after the contribution
of possible poles has been explicitly evaluated. The curve F is traversed twice in opposite
directions and has no net contribution.

incident and reflected waves. In region II, only u(r, φ−α) has a pole correspond-
ing to the incident wave. In region III there are no poles because of the shadow.
Once we have accounted for the geometrical waves (i.e. the poles), we extract the
diffracted waves by saddle point analyses at β = ±π. We do this by deforming
the contours C so that they go through the saddles as shown in fig. 22.2.

Contour C1 becomes E2 + F while contour C2 becomes E1 − F where the
minus sign indicates that it is traversed in a negative sense. As a result, F has
no net contribution and the contour consists of just E1 and E2.

As a result of these machinations, the curves E are simply the curves D of
fig. 22.2 but with a reversed sense. Since the integrand is no longer 2π periodic,
the contributions from these curves no longer cancel. We evaluate both stationary
phase integrals to obtain

u(r, ψ) ≈ −A
eiπ/4√

8π
sec(ψ/2)

eikr√
kr

(22.7)

so that the total diffracted field is

vdiff = −A
eiπ/4√

8π

(
sec
(
φ − α

2

)
− sec

(
φ + α

2

))
eikr√
kr

. (22.8)
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468 CHAPTER 22. DIFFRACTION DISTRACTION

Note that this expression breaks down when φ±α = π. These angles correspond
to the borders among the three regions of fig. 22.1 and must be handled more
carefully - we can not do a stationary phase integral in the vicinity of a pole.
However, the integral representation (22.3) and (22.6) is uniformly valid.22.1

on p. 479

We now turn to the simple task of translating this result into the language of
semiclassical Green’s functions. Instead of an incident plane wave, we assume
a source at point x′ and then compute the resulting field at the receiver position
x. If x is in region I, there is both a direct term, and a reflected term, if x is
in region II there is only a direct term and if x is in region III there is neither.
In any event these contributions to the semiclassical Green’s function are known
since the free space Green’s function between two points x2 and x1 is

Gf(x2, x1, k) = − i

4
H
(+)
0 (kd) ≈ − 1√

8πkd
exp{i(kd + π/4)}, (22.9)

where d is the distance between the points. For a reflection, we need to multiply
by −1 and the distance is the length of the path via the reflection point. Most
interesting for us, there is also a diffractive contribution to the Green’s function.
In equation (22.8), we recognize that the coefficient A is simply the intensity at the
origin if there were no scatterer. This is therefore replaced by the Green’s function
to go from the source to the vertex which we label xV . Furthermore, we recognize
that exp(ikr)/

√
kr is, within a proportionality constant, the semiclassical Green’s

function to go from the vertex to the receiver.

Collecting these facts, we say

Gdiff(x, x′, k) = Gf(x, xV , k)d(θ, θ′)Gf(xV , x′, k), (22.10)

where, by comparison with equations (22.8) and (22.9), we have

d(θ, θ′) = sec
(
θ − θ′

2

)
− sec

(
θ + θ′

2

)
. (22.11)

Here θ′ is the angle to the source as measured from the vertex and θ is the
angle to the receiver. They were denoted as α and φ previously. Note that
there is a symmetry between the source and receiver as we expect for a time-
reversal invariant process. Also the diffraction coefficient d does not depend on
which face of the half line we use to measure the angles. As we will see, a very
important property of Gdiff is that it is a simple multiplicative combination of
other semiclassical Green’s functions.22.2

on p. 479

We now recover our classical perspective by realizing that we can still think of
classical trajectories. In calculating the quantum Green’s function, we sum over

∼DasBuch/book/chapter/whelan.tex 10jul2000 printed August 24, 2000



22.1. QUANTUM EAVESDROPPING 469

the contributions of various paths. These include the classical trajectories which
connect the points and also paths which connect the points via the vertex. These
have different weights as given by equations (22.9) and (22.10) but the concept
of summing over classical paths is preserved.

For completeness, we remark that there is an exact integral representation for
the Green’s function in the presence of a wedge of arbitrary opening angle [15].
It can be written as

G(x, x′, k) = g(r, r′, k, θ′ − θ) − g(r, r′, k, θ′ + θ) (22.12)

where (r, θ) and (r′, θ′) are the polar coordinates of the points x and x′ as mea-
sured from the vertex and the angles are measured from either face of the wedge.
The function g is given by

g(r, r′, k, ψ) =
i

8πν

∫
C1+C2

dβ
H+0 (k

√
r2 + r′2 − 2rr′ cosβ)

1 − exp
(
iβ+ψ

ν

) (22.13)

where ν = γ/π and γ is the opening angle of the wedge. (ie γ = 2π in the case
of the half plane). The contour C1 + C2 is the same as shown in fig. 22.2.

The poles of this integral give contributions which can be identified with
the geometric paths connecting x and x′. The saddle points at β = ±π give
contributions which can be identified with the diffractive path connecting x and
x′. The saddle point analysis allows us to identify the diffraction constant as

d(θ, θ′) = −
4 sin π

ν

ν

sin θ
ν sin θ′

ν(
cos π

ν − cos θ+θ′
ν

) (
cos π

ν − cos θ−θ′
ν

) , (22.14)

which reduces to (22.11) when ν = 2. Note that the diffraction coefficient van-
ishes identically if ν = 1/n where n is any integer. This corresponds to wedge
angles of γ = π/n (eg. n=1 corresponds to a full line and n=2 corresponds
to a right angle). This demonstration is limited by the fact that it came from
a leading order asymptotic expansion but the result is quite general. For such
wedge angles, we can use the method of images (we will require 2n − 1 images
in addition to the actual source point) to obtain the Green’s function and there
is no diffractive contribution to any order. Classically this corresponds to the
fact that for such angles, there is no discontinuity in the dynamics. Trajectories
going into the vertex can be continued out of them unambiguously. This meshes
with the discussion in the introduction where we argued that diffractive effects
are intimately linked with classical discontinuities.
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470 CHAPTER 22. DIFFRACTION DISTRACTION

Figure 22.4: The billiard considered here. The
dynamics consists of free motion followed by specu-
lar reflections off the faces. The top vertex induces
diffraction while the bottom one is a right angle
and induces two specular geometric reflections.
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The integral representation is also useful because it allows us to consider
geometries such that the angles are near the optical boundaries or the wedge
angle is close to π/n. For these geometries the saddle point analysis leading to
(22.14) is invalid due to the existence of a nearby pole. In that event, we require
a more sophisticated asymptotic analysis of the full integral representation.

22.2 An application

Although we introduced diffraction as a correction to the purely classical effects;
it is instructive to consider a system which can be quantized solely in terms of
periodic diffractive orbits. Consider the geometry shown in fig. 22.4 The classical
mechanics consists of free motion followed by specular reflections off faces. The
upper vertex is a source of diffraction while the lower one is a right angle and
induces no diffraction. This is an open system, there are no bound states - only
scattering resonances. However, we can still test the effectiveness of the theory in
predicting them. Formally, scattering resonances are the poles of the scattering
S matrix and by an identity of Balian and Bloch are also poles of the quantum
Green’s function. We demonstrate this fact in appendix ?? for the special case of
circularly symmetric two dimensional scatterers. The poles have complex wave
number k, as for the 3-disk problem.

Let us first consider how diffractive orbits arise in evaluating the trace of
G which we call g(k). Specifying the trace means that we must consider all
paths which close on themselves in the configuration space while stationary phase
arguments for large wavenumber k extract those which are periodic - just as for
classical trajectories. In general, g(k) is given by the sum over all diffractive
and geometric orbits. The contribution of the simple diffractive orbit labelled γ
shown in fig. 22.5 to g(k) is determined as follows.

We consider a point P just a little off the path and determine the semiclassical
Green’s function to return to P via the vertex using (22.9) and (22.10). To
leading order in y the lengths of the two geometric paths connecting P and V
are d± = (L ± x) + y2/(L ± x)2/2 so that the phase factor ik(d+ + d−) equals
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Figure 22.5: The dashed line shows a simple
periodic diffractive orbit γ. Between the vertex V
and a point P close to the orbit there are two geo-
metric legs labelled ±. The origin of the coordinate
system is chosen to be at R. �
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2ikL + iky2/(L2 − x2). The trace integral involves integrating over all points P
and is

gγ(k) ≈ −2dγ
ei(2kL+π/2)

8πk

∫ L

0

dx√
L2 − x2

∫ ∞

−∞
dye

(
iky2 L

L2−x2

)
. (22.15)

We introduced an overall negative sign to account for the reflection at the hard
wall and multiplied by 2 to account for the two traversal senses, V RPV and
V PRV . In the spirit of stationary phase integrals, we have neglected the y
dependence everywhere except in the exponential. The diffraction constant dγ is
the one corresponding to the diffractive periodic orbit. To evaluate the y integral,
we use the identity

∫ ∞

−∞
dξeiaξ

2
= eiπ/4

√
π

a
, (22.16)

and thus obtain a factor which precisely cancels the x dependence in the x inte-
gral. This leads to the rather simple result

gγ ≈ − ilγ
2k

{
dγ√
8πklγ

}
ei(klγ+π/4) (22.17)

where lγ = 2L is the length of the periodic diffractive orbit. A more sophisticated
analysis of the trace integral has been done [6] using the integral representation
(22.13). It is valid in the vicinity of an optical boundary and also for wedges with
opening angles close to π/n.

Consider a periodic diffractive orbit with nγ reflections off straight hard walls
and µγ diffractions each with a diffraction constant dγ,j . The total length of the
orbit Lγ =

∑
lγ,j is the sum of the various diffractive legs and lγ is the length of

the corresponding primitive orbit. For such an orbit, (22.17) generalizes to

gγ(k) = − ilγ
2k


µγ∏
j=1

dγ,j√
8πklγ,j

 exp {i(kLγ + nγπ − 3µγπ/4)}. (22.18)
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22.3
on p. 479

Each diffraction introduces a factor of 1/
√
k and multi-diffractive orbits are

thereby suppressed.

If the orbit γ is primitive then Lγ = lγ . If γ is the r’th repeat of a primitive
orbit β we have Lγ = rlβ, nγ = rpβ and µγ = rσβ, where lβ, pβ and σβ all refer
to the primitive orbit. We can then write

gγ = gβ,r = − ilβ
2k

trβ (22.19)

where

tβ =


σβ∏
j=1

dβ,j√
8πklβ,j

 exp {i(klβ + pβπ − 3σβπ/4)}. (22.20)

It then makes sense to organize the sum over diffractive orbits as a sum over the
primitive diffractive orbits and a sum over the repetitions

gdiff(k) =
∑
β

∞∑
r=1

gβ,r = − i

2k

∑
β

lβ
tβ

1 − tβ
. (22.21)

We cast this as a logarithmic derivative (10.8) by noting that dtβ
dk = ilβtβ −

σβtβ/2k and recognizing that the first term dominates in the semiclassical limit.
It follows that

gdiff(k) ≈ 1
2k

d

dk

ln
∏
β

(1 − tβ)

 . (22.22)

In the case that there are only diffractive periodic orbits - as in the geometry of
fig. 22.4 - the poles of g(k) are the zeros of a dynamical zeta function

1/ζ(k) =
∏
β

(1 − tβ). (22.23)

For geometric orbits, this function would be evaluated with a cycle expansion as
discussed in chapter 11. However, here we can use the multiplicative nature of
the weights tβ to find a closed form representation of the function using a Markov
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Figure 22.6: The two-node Markov graph with
all the diffractive processes connecting the nodes.
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graph, as in sect. 7.7.1. This multiplicative property of the weights follows from
the fact that the diffractive Green’s function (22.10) is multiplicative in segment
semiclassical Green’s functions, unlike the geometric case.

There is a reflection symmetry in the problem which means that all resonances
can be classified as even or odd. Because of this, the dynamical zeta function
factorizes as 1/ζ = 1/ζ+ζ− (as explained in sects. 15.5 and 15.1.2) and we de-
termine 1/ζ+ and 1/ζ− separately using the ideas of symmetry decomposition of
chapter 15.

In the Markov graph shown in fig. 22.6, we enumerate all processes. We start
by identifying the fundamental domain as just the right half of fig. 22.4. There
are two nodes which we call A and B. To get to another node from B, we can
diffract (always via the vertex) in one of three directions. We can diffract back to
B which we denote as process 1. We can diffract to B’s image point B′ and then
follow this by a reflection. This process we denote as 2̄ where the bar indicates
that it involves a reflection. Thirdly, we can diffract to node A. Starting at A
we can also diffract to a node in three ways. We can diffract to B which we
denote as 4. We can diffract to B′ followed by a reflection which we denote as 4̄.
Finally, we can diffract back to A which we denote as process 5. Each of these
processes has its own weight which we can determine from the earlier discussion.
First though, we construct the dynamical zeta functions.

The dynamical zeta functions are determined by enumerating all closed loops
which do not intersect themselves in fig. 22.6. We do it first for 1/ζ+ because
that is simpler. In that case, the processes with bars are treated on an equal
footing as the others. Appealing back to sect. 15.5 we find

1/ζ+ = 1 − t1 − t2̄ − t5 − t3t4 − t3t4̄ + t5t1 + t5t2̄ ,

= 1 − (t1 + t2̄ + t5) − 2t3t4 + t5(t1 + t2̄) (22.24)

where we have used the fact that t4 = t4̄ by symmetry. The last term has a
positive sign because it involves the product of shorter closed loops. To calculate
1/ζ−, we note that the processes with bars have a relative negative sign due
to the group theoretic weight. Furthermore, process 5 is a boundary orbit (see
sect. 15.3.1) and only affects the even resonances - the terms involving t5 are
absent from 1/ζ−. The result is

1/ζ− = 1 − t1 + t2̄ − t3t4 + t3t4̄ ,
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474 CHAPTER 22. DIFFRACTION DISTRACTION

= 1 − (t1 − t2̄). (22.25)

Note that these expressions have a finite number of terms and are not in the22.4
on p. 479 form of a curvature expansion, as for the 3-disk problem.

It now just remains to fix the weights. We use equation (22.20) but note that
each weight involves just one diffraction constant. It is then convenient to define
the quantities

u2A =
exp{i(2kL + 2π)}√

16πkL
u2B =

exp{i(2kH + π)}√
16πkH

. (22.26)

The lengths L and H = L/
√

2 are defined in fig. 22.4; we set L = 1 throughout.
Bouncing inside the right angle at A corresponds to two specular reflections so
that p = 2. We therefore explicitly include the factor exp (i2π) in (22.26) although
it is trivially equal to one. Similarly, there is one specular reflection at point B
giving p = 1 and therefore a factor of exp (iπ). We have defined uA and uB

because, together with some diffraction constants, they can be used to construct
all of the weights. Altogether we define four diffraction coefficients: dAB is the
constant corresponding to diffracting from B to A and is found from (22.11) with
θ′ = 3π/4 and θ = π and equals 2 sec (π/8) ≈ 2.165. With analogous notation,
we have dAA and dBB = dB′B which equal 2 and 1 +

√
2 respectively. dij = dji

due to the Green’s function symmetry between source and receiver referred to
earlier. Finally, there is the diffractive phase factor s = exp (−i3π/4) each time
there is a diffraction. The weights are then as follows:

t1 = sdBBu2B t2̄ = sdB′Bu2B t3 = t4 = t4̄ = sdABuAuB

t5 = sdAAu2A. (22.27)

Each weight involves two u’s and one d. The u’s represent the contribution to
the weight from the paths connecting the nodes to the vertex and the d gives the
diffraction constant connecting the two paths.

The equality of dBB and dB′B implies that t1 = t2̄. From (22.25) this means
that there are no odd resonances because 1 can never equal 0. For the even
resonances equation (22.24) is an implicit equation for k which has zeros shown
in fig. 22.7.

For comparison we also show the result from an exact quantum calculation.
The agreement is very good right down to the ground state - as is so often the
case with semiclassical calculations. In addition we can use our dynamical zeta
function to find arbitrarily high resonances and the results actually improve in
that limit. In the same limit, the exact numerical solution becomes more difficult
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Figure 22.7: The even resonances of the
wedge scatterer of fig. 22.4 plotted in the com-
plex k−plane, with L = 1. The exact resonances
are represented as circles and their semiclassical ap-
proximations as crosses.
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to find so the dynamical zeta function approximation is particularly useful in that
case.22.5

on p. 480

In general a system will consist of both geometric and diffractive orbits. In
that case, the full dynamical zeta function is the product of the geometric zeta
function and the diffractive one. The diffractive weights are typically smaller
by order O(1/

√
k) but for small k they can be numerically competitive so that

there is a significant diffractive effect on the low-lying spectrum. It might be
expected that higher in the spectrum, the effect of diffraction is weaker due to
the decreasing weights. However, it should be pointed out that an analysis of the
situation for creeping diffraction [7] concluded that the diffraction is actuallymore
important higher in the spectrum due to the fact that an ever greater fraction
of the orbits need to be corrected for diffractive effects. The equivalent analysis
has not been done for edge diffraction but a similar conclusion can probably be
expected.

To conclude this chapter, we return to the opening paragraph and discuss the
possibility of doing such an analysis for helium. The important point which al-
lowed us to successfully analyze the geometry of fig. 22.4 is that when a trajectory
is near the vertex, we can extract its diffraction constant without reference to the
other facets of the problem. We say, therefore, that this is a “local” analysis for
the purposes of which we have “turned off” the other aspects of the problem,
namely sides AB and AB′. By analogy, for helium, we would look for some
simpler description of the problem which applies near the three body collision.
However, there is nothing to “turn off”. The local problem is just as difficult as
the global one since they are precisely the same problem, just related by scaling.
Therefore, it is not at all clear that such an analysis is possible for helium.

Commentary

Remark 22.1 Classical discontinuities. Various classes of discontinu-
ities for billiard and potential problems discussed in the literature:

• a grazing condition such that some trajectories hit a smooth surface
while others are unaffected, refs. [1, 2, 3, 7]

• a vertex such that trajectories to one side bounce differently from those
to the other side, refs. [2, 4, 5, 8, 9].
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• a point scatterer [10, 11] or a magnetic flux line [12, 13] such that we
do not know how to continue classical mechanics through the discon-
tinuities.

Remark 22.2 Geometrical theory of diffraction. In the above discussion
we borrowed heavily from the ideas of Keller who was interested in extending
the geometrical ray picture of optics to cases where there is a discontinuity.
He maintained that we could hang onto that ray-tracing picture by allowing
rays to strike the vertex and then leave at any angle with amplitude (22.8).
Both he and Sommerfeld were thinking of optics and not quantum mechanics
and they did not phrase the results in terms of semiclassical Green’s functions
but the essential idea is the same.

Remark 22.3 Generalizations Consider the effect of replacing our half
line by a wedge of angle γ1 and the right angle by an arbitrary angle γ2.
If γ2 > γ1 and γ2 ≥ π/2 this is an open problem whose solution is given
by equations (22.24) and (22.25) (there will then be odd resonances) but
with modified weights reflecting the changed geometry [8]. (For γ2 < π/2,
more diffractive periodic orbits appear and the dynamical zeta functions are
more complicated but can be calculated with the same machinery.) When
γ2 = γ1, the problem in fact has bound states [21, 22]. This last case has
been of interest in studying electron transport in mesoscopic devices and in
microwave waveguides. However we can not use our formalism as it stands
because the diffractive periodic orbits for this geometry lie right on the
border between illuminated and shadowed regions so that equation (22.7)
is invalid. Even the more uniform derivation of [6] fails for that particular
geometry, the problem being that the diffractive orbit actually lives on the
edge of a family of geometric orbits and this makes the analysis still more
difficult.

Remark 22.4 Diffractive Green’s functions. The result (22.17) is pro-
portional to the length of the orbit times the semiclassical Green’s function
(22.9) to go from the vertex back to itself along the classical path. The
multi-diffractive formula (22.18) is proportional to the total length of the
orbit times the product of the semiclassical Green’s functions to go from
one vertex to the next along classical paths. This result generalizes to any
system — either a pinball or a potential — which contains point singularities
such that we can define a diffraction constant as above. The contribution to
the trace of the semiclassical Green’s function coming from a diffractive orbit
which hits the singularities is proportional to the total length (or period) of
the orbit times the product of semiclassical Green’s functions in going from
one singularity to the next. This result first appeared in reference [2] and a
derivation can be found in reference [9]. A similar structure also exists for
creeping [2].
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Remark 22.5 Diffractive orbits for hydrogenic atoms. An analysis in
terms of diffractive orbits has been made in a different atomic physics system,
the response of hydrogenic atoms to strong magnetic fields [23]. In these
systems, a single electron is highly excited and takes long traversals far from
the nucleus. Upon returning to a hydrogen nucleus, it is re-ejected with
the reversed momentum as discussed in chapter 21. However, if the atom
is not hydrogen but sodium or some other atom with one valence electron,
the returning electron feels the charge distribution of the core electrons and
not just the charge of the nucleus. This so-called quantum defect induces
scattering in addition to the classical re-ejection present in the hydrogen
atom. (In this case the local analysis consists of neglecting the magnetic
field when the trajectory is near the nucleus.) This is formally similar to
the vertex which causes both specular reflection and diffraction. There is
then additional structure in the Fourier transform of the quantum spectrum
corresponding to the induced diffractive orbits, and this has been observed
experimentally [24].
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Exercises

(N. Whelan)

22.1 Stationary phase integral. Evaluate the two stationary phase integrals
corresponding to contours E1 and E2 of fig. 22.3 and thereby verify (22.7).

22.2 Scattering from a small disk Imagine that instead of a wedge, we have a disk
whose radius a is much smaller than the typical wavelengths we are considering. In that
limit, solve the quantum scattering problem - find the scattered wave which result from
an incident plane wave. You can do this by the method of partial waves - the analogous
three dimensional problem is discussed in most quantum textbooks. You should find
that only the m = 0 partial wave contributes for small a. Following the discussion above,
show that the diffraction constant is

d =
2π

log
(

2
ka

)
− γe + iπ2

(22.28)

where γe = 0.577 · · · is Euler’s constant. Note that in this limit d depends weakly on k
but not on the scattering angle.

22.3 Several diffractive legs. Derive equation (22.18). The calculation involves
considering slight variations of the diffractive orbit as in the simple case discussed above.
Here it is more complicated because there are more diffractive arcs - however you should
convince yourself that a slight variation of the diffractive orbit only affects one leg at a
time.

22.4 Unsymmetrized dynamical zeta function. Assume you know nothing
about symmetry decomposition. Construct the three node Markov diagram for fig. 22.1
by considering A, B and B′ to be physically distinct. Write down the corresponding dyn-
amical zeta function and check explicitly that for B = B′ it factorizes into the product
of the the even and odd dynamical zeta functions. Why is there no term t2̄ in the full
dynamical zeta function?
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22.5 Three point scatterers. Consider the limiting case of the three disk game
of pinball of fig. 1.1 where the disks are very much smaller than their spacing R. Use the
results of exercise 22.2 to construct the desymmetrized dynamical zeta functions, as in
sect. 15.6. You should find 1/ζA1 = 1−2t where t = dei(kR−3π/4)/

√
8πkR. Compare this

formula with that from chapter 7. By assuming that the real part of k is much greater
than the imaginary part show that the positions of the resonances are knR = αn − iβn
where αn = 2πn + 3π/4, βn = log

(√
2παn/d

)
and n is a non-negative integer. (See also

reference [11].)
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Chapter 23

Irrationally winding

I don’t care for islands, especially very small ones.
D.H. Lawrence

(R. Artuso and P. Cvitanović)

This chapter is concerned with the mode locking problems for circle maps: besides
its physical relevance it nicely illustrates the use of cycle expansions away from
the dynamical setting, in the realm of renormalization theory at the transition
to chaos.

The physical significance of circle maps is connected with their ability to
model the two–frequencies mode–locking route to chaos for dissipative systems.
In the context of dissipative dynamical systems one of the most common and
experimentally well explored routes to chaos is the two-frequency mode-locking
route. Interaction of pairs of frequencies is of deep theoretical interest due to the
generality of this phenomenon; as the energy input into a dissipative dynamical
system (for example, a Couette flow) is increased, typically first one and then
two of intrinsic modes of the system are excited. After two Hopf bifurcations
(a fixed point with inward spiralling stability has become unstable and outward
spirals to a limit cycle) a system lives on a two-torus. Such systems tend to
mode-lock: the system adjusts its internal frequencies slightly so that they fall
in step and minimize the internal dissipation. In such case the ratio of the two
frequencies is a rational number. An irrational frequency ratio corresponds to a
quasiperiodic motion - a curve that never quite repeats itself. If the mode-locked
states overlap, chaos sets in. The likelyhood that a mode-locking occurs depends
on the strength of the coupling of the two frequencies.

Our main concern in this chapter is to illustrate the “global” theory of circle
maps, connected with universality properties of the whole irrational winding set.
We shall see that critical global properties may be expressed via cycle expansions
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482 CHAPTER 23. IRRATIONALLY WINDING

involving “local” renormalization critical exponents. The renormalization theory
of critical circle maps demands rather tedious numerical computations, and our
intuition is much facilitated by approximating circle maps by number-theoretic
models. The models that arise in this way are by no means mathematically trivial,
they turn out to be related to number-theoretic abysses such as the Riemann
conjecture, already in the context of the “trivial” models.

23.1 Mode locking

The simplest way of modeling a nonlinearly perturbed rotation on a circle is by
1-dimensional circle maps x → x′ = f(x), restricted to the one dimensional torus,
such as the sine map

xn+1 = xn + Ω − k

2π
sin(2πxn) mod 1 . (23.1)

f(x) is assumed to be continuous, have a continuous first derivative, and a con-
tinuous second derivative at the inflection point (where the second derivative
vanishes). For the generic, physically relevant case (the only one considered
here) the inflection is cubic. Here k parametrizes the strength of the nonlinear
interaction, and Ω is the bare frequency. For k = 0, the map is a simple rotation
(the shift map) see fig. 23.1

xn+1 = xn + Ω mod 1 , (23.2)

and Ω is the winding number

W (k,Ω) = lim
n→∞ x̂n/n. (23.3)

(here ˆ is used in the same sense as in chapter 16, once we lift circle maps over
the real line.

For invertible maps and rational winding numbers W = P/Q the asymptotic
iterates of the map converge to a unique Q-cycle attractor

fQ(xi) = xi + P, i = 0, 1, 2, · · · , Q − 1 .

For any rational winding number, there is a finite interval of parameter values for
which the iterates of the circle map are attracted to the P/Q cycle. This interval23.1

on p. 502
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Figure 23.1: Unperturbed circle map (k = 0 in (23.1)) with golden mean rotation number.

is called the P/Q mode-locked (or stability) interval, and its width is given by

∆P/Q = Q−2µP/Q = Ωright
P/Q − Ωleft

P/Q . (23.4)

where Ωright
P/Q (Ωleft

P/Q) denote the biggest (smallest) value of Ω for which W (k,Ω) =
P/Q. Parametrizing mode lockings by the exponent µ rather than the width ∆
will be convenient for description of the distribution of the mode-locking widths,
as the exponents µ turn out to be of bounded variation. The stability of the P/Q
cycle is

ΛP/Q =
∂xQ

∂x0
= f ′(x0)f ′(x1) · · · f ′(xQ−1)

For a stable cycle |ΛP/Q| lies between 0 (the superstable value, the “center” of the
stability interval) and 1 (the Ωright

P/Q , Ωleft
P/Q endpoints of (23.4)). For the shift map

(23.2), the stability intervals are shrunk to points. As Ω is varied from 0 to 1,
the iterates of a circle map either mode-lock, with the winding number given by
a rational number P/Q ∈ (0, 1), or do not mode-lock, in which case the winding
number is irrational. A plot of the winding number W as a function of the shift
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Figure 23.2: The critical circle map (k = 1 in (23.1)) devil’s staircase [3]; the winding
number W as function of the parameter Ω.

parameter Ω is a convenient visualization of the mode-locking structure of circle
maps. It yields a monotonic “devil’s staircase” of fig. 23.2 whose self-similar
structure we are to unravel. Circle maps with zero slope at the inflection point
xc (see fig. 23.3)

f ′(xc) = 0 , f ′′(xc) = 0

(k = 1, xc = 0 in (23.1)) are called critical: they delineate the borderline of chaos
in this scenario.

As the nonlinearity parameter k increases, the mode-locked intervals become
wider, and for the critical circle maps (k = 1) they fill out the whole interval. A
critical map has a superstable P/Q cycle for any rational P/Q, as the stability
of any cycle that includes the inflection point equals zero. If the map is non-
invertible (k > 1), it is called supercritical; the bifurcation structure of this
regime is extremely rich and beyond the scope of this exposition.

The physically relevant transition to chaos is connected with the critical case,
however the apparently simple “free” shift map limit is quite instructive: in
essence it involves the problem of ordering rationals embedded in the unit interval
on a hierarchical structure. From a physical point of view, the main problem is to
identify a (number-theoretically) consistent hierarchy susceptible of experimental
verification. We will now describe a few ways of organizing rationals along the
unit interval: each has its own advantages as well as its drawbacks, when analyzed
from both mathematical and physical perspective.
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Figure 23.3: Critical circle map (k = 1 in (23.1)) with golden mean bare rotation number.

23.1.1 Hierarchical partitions of the rationals

Intuitively, the longer the cycle, the finer the tuning of the parameter Ω required
to attain it; given finite time and resolution, we expect to be able to resolve cycles
up to some maximal length Q. This is the physical motivation for partitioning
mode lockings into sets of cycle length up to Q. In number theory such sets
of rationals are called Farey series. They are denoted by FQ and defined as
follows. The Farey series of order Q is the monotonically increasing sequence of
all irreducible rationals between 0 and 1 whose denominators do not exceed Q.
Thus Pi/Qi belongs to FQ if 0 < Pi ≤ Qi ≤ Q and (Pi|Qi) = 1. For example

F5 =
{

1
5
,

1
4
,

1
3
,

2
5
,

1
2
,

3
5
,

2
3
,

3
4
,

4
5
,

1
1

}

A Farey series is characterized by the property that if Pi−1/Qi−1 and Pi/Qi are
consecutive terms of FQ, then

PiQi−1 − Pi−1Qi = 1.

printed August 24, 2000 ∼DasBuch/book/chapter/irrational.tex 4aug2000



486 CHAPTER 23. IRRATIONALLY WINDING

The number of terms in the Farey series FQ is given by

Φ(Q) =
Q∑

n=1

φ(Q) =
3Q2

π2
+ O(Q lnQ). (23.5)

Here the Euler function φ(Q) is the number of integers not exceeding and rel-
atively prime to Q. For example, φ(1) = 1, φ(2) = 1, φ(3) = 2, . . . , φ(12) =
4, φ(13) = 12, . . .

From a number-theorist’s point of view, the continued fraction partitioning of
the unit interval is the most venerable organization of rationals, preferred already
by Gauss. The continued fraction partitioning is obtained by ordering rationals
corresponding to continued fractions of increasing length. If we turn this ordering
into a way of covering the complementary set to mode-lockings in a circle map,
then the first level is obtained by deleting ∆[1], ∆[2], · · · ,∆[a1], · · · mode-lockings;
their complement are the covering intervals R1, R2, . . . , Ra1 , . . . which contain all
windings, rational and irrational, whose continued fraction expansion starts with
[a1, . . .] and is of length at least 2. The second level is obtained by deleting
∆[1,2], ∆[1,3], · · · ,∆[2,2], ∆[2,3], · · · ,∆[n,m], · · · and so on.

The nth level continued fraction partition Sn = {a1a2 · · · an} is defined as the
monotonically increasing sequence of all rationals Pi/Qi between 0 and 1 whose
continued fraction expansion is of length n:

Pi

Qi
= [a1, a2, · · · , an] =

1

a1 +
1

a2 + . . .
1
an

The object of interest, the set of the irrational winding numbers, is in this parti-
tioning labeled by S∞ = {a1a2a3 · · ·}, ak ∈ Z+, that is, the set of winding num-
bers with infinite continued fraction expansions. The continued fraction labeling
is particularly appealing in the present context because of the close connection of
the Gauss shift to the renormalization transformation R, discussed below. The
Gauss map

T (x) =
1
x

−
[

1
x

]
x �= 0

0 , x = 0 (23.6)

([· · ·] denotes the integer part) acts as a shift on the continued fraction represen-
tation of numbers on the unit interval

x = [a1, a2, a3, . . .] → T (x) = [a2, a3, . . .] . (23.7)
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into the “mother” interval Ra2a3....

However natural the continued fractions partitioning might seem to a num-
ber theorist, it is problematic in practice, as it requires measuring infinity of
mode-lockings even at the first step of the partitioning. Thus numerical and
experimental use of continued fraction partitioning requires at least some un-
derstanding of the asymptotics of mode–lockings with large continued fraction
entries.

The Farey tree partitioning is a systematic bisection of rationals: it is based
on the observation that roughly halfways between any two large stability intervals
(such as 1/2 and 1/3) in the devil’s staircase of fig. 23.2 there is the next largest
stability interval (such as 2/5). The winding number of this interval is given by
the Farey mediant (P +P ′)/(Q+Q′) of the parent mode-lockings P/Q and P ′/Q′.
This kind of cycle “gluing” is rather general and by no means restricted to circle
maps; it can be attained whenever it is possible to arrange that the Qth iterate
deviation caused by shifting a parameter from the correct value for the Q-cycle is
exactly compensated by the Q′th iterate deviation from closing the Q′-cycle; in
this way the two near cycles can be glued together into an exact cycle of length
Q+Q′. The Farey tree is obtained by starting with the ends of the unit interval
written as 0/1 and 1/1, and then recursively bisecting intervals by means of Farey
mediants.

We define the nth Farey tree level Tn as the monotonically increasing sequence
of those continued fractions [a1, a2, . . . , ak] whose entries ai ≥ 1, i = 1, 2, . . . , k−
1, ak ≥ 2, add up to

∑k
i=1 ai = n + 2. For example

T2 = {[4], [2, 2], [1, 1, 2], [1, 3]} =
(

1
4
,
1
5
,
3
5
,
3
4

)
. (23.8)

The number of terms in Tn is 2n. Each rational in Tn−1 has two “daughters” in
Tn, given by

[· · · , a]
[· · · , a − 1, 2] [· · · , a + 1]

Iteration of this rule places all rationals on a binary tree, labelling each by a
unique binary label, fig. 23.4.

The smallest and the largest denominator in Tn are respectively given by

[n − 2] =
1

n − 2
, [1, 1, . . . , 1, 2] =

Fn+1

Fn+2
∝ ρn , (23.9)
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Figure 23.4: Farey tree: alternating binary ordered labelling of all Farey denominators on
the nth Farey tree level.

where the Fibonacci numbers Fn are defined by Fn+1 = Fn+Fn−1; F0 = 0, F1 =
1, and ρ is the golden mean ratio

ρ =
1 +

√
5

2
= 1.61803 . . . (23.10)

Note the enormous spread in the cycle lengths on the same level of the Farey tree:
n ≤ Q ≤ ρn. The cycles whose length grows only as a power of the Farey tree
level will cause strong non-hyperbolic effects in the evaluation of various averages.

Having defined the partitioning schemes of interest here, we now briefly sum-
marize the results of the circle-map renormalization theory.

23.2 Local theory: “Golden mean” renormalization

The way to pinpoint a point on the border of order is to recursively adjust
the parameters so that at the recurrence times t = n1, n2, n3, · · · the trajectory
passes through a region of contraction sufficiently strong to compensate for the
accumulated expansion of the preceding ni steps, but not so strong as to force
the trajectory into a stable attracting orbit. The renormalization operation R
implements this procedure by recursively magnifying the neighborhood of a point
on the border in the dynamical space (by rescaling by a factor α), in the parameter
space (by shifting the parameter origin onto the border and rescaling by a factor
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23.2. LOCAL THEORY: “GOLDEN MEAN” RENORMALIZATION 489

δ), and by replacing the initial map f by the nth iterate fn restricted to the
magnified neighborhood

fp(x) → Rfp(x) = αfn
p/δ(x/α)

There are by now many examples of such renormalizations in which the new
function, framed in a smaller box, is a rescaling of the original function, that
is the fix-point function of the renormalization operator R. The best known is
the period doubling renormalization, with the recurrence times ni = 2i. The
simplest circle map example is the golden mean renormalization, with recurrence
times ni = Fi given by the Fibonacci numbers (23.9). Intuitively, in this context
a metric self-similarity arises because iterates of critical maps are themselves
critical, that is they also have cubic inflection points with vanishing derivatives.

The renormalization operator appropriate to circle maps acts as a general-
ization of the Gauss shift (23.37); it maps a circle map (represented as a pair
of functions (g, f), of winding number [a, b, c, . . .] into a rescaled map of winding
number [b, c, . . .]:

Ra

(
g

f

)
=
(

αga−1 ◦ f ◦ α−1

αga−1 ◦ f ◦ g ◦ α−1

)
, (23.11)

Acting on a map with winding number [a, a, a, . . .], Ra returns a map with the
same winding number [a, a, . . .], so the fixed point of Ra has a quadratic irra-
tional winding number W = [a, a, a, . . .]. This fixed point has a single expanding
eigenvalue δa. Similarly, the renormalization transformation Rap . . . Ra2Ra1 ≡
Ra1a2...ap has a fixed point of winding number Wp = [a1, a2, . . . , anp , a1, a2, . . .],
with a single expanding eigenvalue δp.

For short repeating blocks, δ can be estimated numerically by comparing
successive continued fraction approximants to W . Consider the Pr/Qr rational
approximation to a quadratic irrational winding number Wp whose continued
fraction expansion consists of r repeats of a block p. Let Ωr be the parameter
for which the map (23.1) has a superstable cycle of rotation number Pr/Qr =
[p, p, . . . , p]. The δp can then be estimated by extrapolating from

Ωr − Ωr+1 ∝ δ−r
p . (23.12)

What this means is that the “devil’s staircase” of fig. 23.2 is self-similar under
magnification by factor δp around any quadratic irrational Wp.

The fundamental result of the renormalization theory (and the reason why all
this is so interesting) is that the ratios of successive Pr/Qr mode-locked intervals
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converge to universal limits. The simplest example of (23.12) is the sequence of
Fibonacci number continued fraction approximants to the golden mean winding
number W = [1, 1, 1, ...] = (

√
5 − 1)/2.

When global problems are considered, it is useful to have at least and idea on
extemal scaling laws for mode–lockings. This is achieved, in a first analysis, by
fixing the cycle length Q and describing the range of possible asymptotics.

For a given cycle length Q, it is found that the narrowest interval shrinks with
a power law

∆1/Q ∝ Q−3 (23.13)

For fixed Q the widest interval is bounded by P/Q = Fn−1/Fn, the nth
continued fraction approximant to the golden mean. The intuitive reason is that
the golden mean winding sits as far as possible from any short cycle mode-locking.

The golden mean interval shrinks with a universal exponent

∆P/Q ∝ Q−2µ1 (23.14)

where P = Fn−1, Q = Fn and µ1 is related to the universal Shenker number δ1
(23.12) and the golden mean (23.10) by

µ1 =
ln |δ1|
2 ln ρ

= 1.08218 . . . (23.15)

The closeness of µ1 to 1 indicates that the golden mean approximant mode-
lockings barely feel the fact that the map is critical (in the k=0 limit this exponent
is µ = 1).

To summarize: for critical maps the spectrum of exponents arising from the
circle maps renormalization theory is bounded from above by the harmonic scal-
ing, and from below by the geometric golden-mean scaling:

3/2 > µm/n ≥ 1.08218 · · · . (23.16)

23.3 Global theory: Thermodynamic averaging

Consider the following average over mode-locking intervals (23.4):

Ω(τ) =
∞∑

Q=1

∑
(P |Q)=1

∆−τ
P/Q. (23.17)
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The sum is over all irreducible rationals P/Q, P < Q, and ∆P/Q is the width of
the parameter interval for which the iterates of a critical circle map lock onto a
cycle of length Q, with winding number P/Q.

The qualitative behavior of (23.17) is easy to pin down. For sufficiently neg-
ative τ , the sum is convergent; in particular, for τ = −1, Ω(−1) = 1, as for
the critical circle maps the mode-lockings fill the entire Ω range [10]. However,
as τ increases, the contributions of the narrow (large Q) mode-locked intervals
∆P/Q get blown up to 1/∆τ

P/Q, and at some critical value of τ the sum diverges.
This occurs for τ < 0, as Ω(0) equals the number of all rationals and is clearly
divergent.

The sum (23.17) is infinite, but in practice the experimental or numerical
mode-locked intervals are available only for small finite Q. Hence it is necessary
to split up the sum into subsets Sn = {i} of rational winding numbers Pi/Qi on
the “level” n, and present the set of mode-lockings hierarchically, with resolution
increasing with the level:

Z̄n(τ) =
∑
i∈Sn

∆−τ
i . (23.18)

The original sum (23.17) can now be recovered as the z = 1 value of a “generating”
function Ω(z, τ) =

∑
n znZ̄n(τ). As z is anyway a formal parameter, and n is

a rather arbitrary “level” in some ad hoc partitioning of rational numbers, we
bravely introduce a still more general, P/Q weighted generating function for
(23.17):

Ω(q, τ) =
∞∑

Q=1

∑
(P |Q)=1

e−qνP/QQ2τµP/Q . (23.19)

The sum (23.17) corresponds to q = 0. Exponents νP/Q will reflect the importance
we assign to the P/Q mode-locking, that is the measure used in the averaging
over all mode-lockings. Three choices of of the νP/Q hierarchy that we consider
here correspond respectively to the Farey series partitioning

Ω(q, τ) =
∞∑

Q=1

Φ(Q)−q
∑

(P |Q)=1
Q2τµP/Q , (23.20)

the continued fraction partitioning

Ω(q, τ) =
∞∑
n=1

e−qn
∑

[a1,...,an]

Q2τµ[a1,...,an] , (23.21)
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and the Farey tree partitioning

Ω(q, τ) =
∞∑

k=n

2−qn
2n∑
i=1

Q2τµii , Qi/Pi ∈ Tn . (23.22)

We remark that we are investigating a set arising in the analysis of the parameter
space of a dynamical system: there is no “natural measure” dictated by dynamics,
and the choice of weights reflects only the choice of hierarchical presentation.

23.4 Hausdorff dimension of irrational windings

A finite cover of the set irrational windings at the “nth level of resolution” is
obtained by deleting the parameter values corresponding to the mode-lockings in
the subset Sn; left behind is the set of complement covering intervals of widths

Ri = Ωmin
Pr/Qr

− Ωmax
Pl/Ql

. (23.23)

Here Ωmin
Pr/Qr

(Ωmax
Pl/Ql

) are respectively the lower (upper) edges of the mode-locking
intervals ∆Pr/Qr

(∆Pl/Ql
) bounding Ri and i is a symbolic dynamics label, for

example the entries of the continued fraction representation P/Q = [a1, a2, ..., an]
of one of the boundary mode-lockings, i = a1a2 · · · an. Ri provide a finite cover
for the irrational winding set, so one may consider the sum

Zn(τ) =
∑
i∈Sn

R−τ
i (23.24)

The value of −τ for which the n → ∞ limit of the sum (23.24) is finite is the
Hausdorff dimension DH of the irrational winding set. Strictly speaking, this
is the Hausdorff dimension only if the choice of covering intervals Ri is optimal;
otherwise it provides an upper bound to DH . As by construction the Ri intervals
cover the set of irrational winding with no slack, we expect that this limit yields
the Hausdorff dimension. This is supported by all numerical evidence, but a proof
that would satisfy mathematicians is lacking.

The physically relevant statement is that for critical circle maps DH = 0.870 . . .
is a (global) universal number.23.2

on p. 502
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23.4.1 The Hausdorff dimension in terms of cycles

Estimating the n → ∞ limit of (23.24) from finite numbers of covering intervals
Ri is a rather unilluminating chore. Fortunately, there exist considerably more
elegant ways of extracting DH . We have noted that in the case of the “trivial”
mode-locking problem (23.2), the covering intervals are generated by iterations
of the Farey map (23.36) or the Gauss shift (23.37). The nth level sum (23.24)
can be approximated by Ln

τ , where

Lτ (y, x) = δ(x − f−1(y))|f ′(y)|τ

This amounts to approximating each cover width Ri by |dfn/dx| evaluated on the
ith interval. We are thus led to the following determinant

det (1 − zLτ ) = exp

(
−
∑
p

∞∑
r=1

zrnp

r

|Λr
p|τ

1 − 1/Λr
p

)

=
∏
p

∞∏
k=0

(
1 − znp |Λp|τ/Λk

p

)
. (23.25)

The sum (23.24) is dominated by the leading eigenvalue of Lτ ; the Hausdorff
dimension condition Zn(−DH) = O(1) means that τ = −DH should be such
that the leading eigenvalue is z = 1. The leading eigenvalue is determined by
the k = 0 part of (23.25); putting all these pieces together, we obtain a pretty
formula relating the Hausdorff dimension to the prime cycles of the map f(x):

0 =
∏
p

(
1 − 1/|Λp|DH

)
. (23.26)

For the Gauss shift (23.37) the stabilities of periodic cycles are available analytical-
ly, as roots of quadratic equations: For example, the xa fixed points (quadratic
irrationals with xa = [a, a, a . . .] infinitely repeating continued fraction expansion)
are given by

xa =
−a +

√
a2 + 4

2
, Λa = −

(
a +

√
a2 + 4
2

)2
(23.27)

and the xab = [a, b, a, b, a, b, . . .] 2–cycles are given by

xab =
−ab +

√
(ab)2 + 4ab
2b

(23.28)

Λab = (xabxba)−2 =

(
ab + 2 +

√
ab(ab + 4)

2

)2
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p δp
[1 1 1 1 ...] -2.833612
[2 2 2 2 ...] -6.7992410
[3 3 3 3 ...] -13.760499
[4 4 4 4 ...] -24.62160
[5 5 5 5 ...] -40.38625
[6 6 6 6 ...] -62.140
[1 2 1 2 ...] 17.66549
[1 3 1 3 ...] 31.62973
[1 4 1 4 ...] 50.80988
[1 5 1 5 ...] 76.01299
[2 3 2 3 ...] 91.29055

Table 23.1: Shenker’s δp for a few periodic continued fractions, from ref. [1].

We happen to know beforehand that DH = 1 (the irrationals take the full
measure on the unit interval, or, from another point of view the Gauss map
is not a repeller), so is the infinite product (23.26) merely a very convoluted
way to compute the number 1? Possibly so, but once the meaning of (23.26)
has been grasped, the corresponding formula for the critical circle maps follows
immediately:

0 =
∏
p

(
1 − 1/|δp|DH

)
. (23.29)

The importance of this formula relies on the fact that it expresses DH in terms
of universal quantities, thus providing a nice connection from local universal
exponents to global scaling quantities: actual computations using (23.29) are
rather involved, as they require a heavy computational effort to extract Shenker’s
scaling δp for periodic continued fractions, and moreover dealing with an infinite
alphabet requires control over tail summation if an accurate estimate is to be
sought. In table 23.1 we give a small selection of computed Shenker’s scalings.

23.5 Thermodynamics of Farey tree: Farey model

We end this chapter by giving an example of a number theoretical model
motivated by the mode-locking phenomenology. We will consider it by means of
the thermodynamic formalism of chapter 14, by looking at the free energy.

Consider the Farey tree partition sum (23.22): the narrowest mode-locked
interval (23.14) at the nth level of the Farey tree partition sum (23.22) is the
golden mean interval

∆Fn−1/Fn ∝ |δ1|−n. (23.30)
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It shrinks exponentially, and for τ positive and large it dominates q(τ) and bounds
dq(τ)/dτ :

q′max =
ln |δ1|
ln 2

= 1.502642 . . . (23.31)

However, for τ large and negative, q(τ) is dominated by the interval (23.13) which
shrinks only harmonically, and q(τ) approaches 0 as

q(τ)
τ

=
3 lnn

n ln 2
→ 0. (23.32)

So for finite n, qn(τ) crosses the τ axis at −τ = Dn, but in the n → ∞ limit,
the q(τ) function exhibits a phase transition; q(τ) = 0 for τ < −DH , but is a
non-trivial function of τ for −DH ≤ τ . This non-analyticity is rather severe -
to get a clearer picture, we illustrate it by a few number-theoretic models (the
critical circle maps case is qualitatively the same).

An approximation to the “trivial” Farey level thermodynamics is given by the
“Farey model”, in which the intervals RP/Q are replaced by Q−2:

Zn(τ) =
2n∑
i=1

Q2τi . (23.33)

Here Qi is the denominator of the ith Farey rational Pi/Qi. For example (see
fig. 23.4),

Z2(1/2) = 4 + 5 + 5 + 4.

By the annihilation property (23.37) of the Gauss shift on rationals, the nth
Farey level sum Zn(−1) can be written as the integral

Zn(−1) =
∫

dxδ(fn(x)) =
∑

1/|f ′
a1...ak

(0)| ,

and in general

Zn(τ) =
∫

dxLn
τ (0, x) ,

with the sum restricted to the Farey level a1 + . . . + ak = n + 2. It is easily
checked that f ′

a1...ak
(0) = (−1)kQ2[a1,...,ak]

, so the Farey model sum is a partition
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τ/2 Zn(τ/2)/Zn−1(τ/2)
0 2
1 3
2 (5 +

√
17)/2

3 7
4 (5 +

√
17)/2

5 7 + 4
√

6
6 26.20249 . . .

Table 23.2: Partition function sum rules for the Farey model.

generated by the Gauss map preimages of x = 0, that is by rationals, rather
than by the quadratic irrationals as in (23.25). The sums are generated by the
same transfer operator, so the eigenvalue spectrum should be the same as for the
periodic orbit expansion, but in this variant of the finite level sums we can can
evaluate q(τ) exactly for τ = k/2, k a nonnegative integer. First one observes
that Zn(0) = 2n. It is also easy to check that Zn(1/2) =

∑
i Qi = 2 · 3n. More

surprisingly, Zn(3/2) =
∑

i Q
3 = 54 · 7n−1. A few of these “sum rules” are listed

in the table 23.2, they are consequence of the fact that the denominators on a
given level are Farey sums of denominators on preceding levels.23.3

on p. 502

A bound on DH can be obtained by approximating (23.33) by

Zn(τ) = n2τ + 2nρ2nτ . (23.34)

In this approximation we have replaced all RP/Q, except the widest interval R1/n,
by the narrowest interval RFn−1/Fn (see (23.14)). The crossover from the harmonic
dominated to the golden mean dominated behavior occurs at the τ value for which
the two terms in (23.34) contribute equally:

Dn = D̂ + O

(
lnn

n

)
, D̂ =

ln 2
2 ln ρ

= .72 . . . (23.35)

For negative τ the sum (23.34) is the lower bound on the sum (23.24) , so D̂
is a lower bound on DH .

From a general perspective the analysis of circle maps thermodynamics has
revealed the fact that physically interesting dynamical systems often exhibit mix-
tures of hyperbolic and marginal stabilities. In such systems there are orbits that
stay ‘glued’ arbitrarily close to stable regions for arbitrarily long times. This is a
generic phenomenon for Hamiltonian systems, where elliptic islands of stability
coexist with hyperbolic homoclinic webs. Thus the considerations of chapter 17
are important also in the analysis of renomarmalization at the onset of chaos.
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Commentary

Remark 23.1 The physics of circle maps. Mode–locking phenomenol-
ogy is reviewed in ref. [5], a more theoretically oriented discussion is con-
tained in ref. [3]. While representative of dissipative systems we may also
consider circle mapsas a crude approximation to Hamiltonian local dynam-
ics: a typical island of stability in a Hamiltonian 2-d map is an infinite
sequence of concentric KAM tori and chaotic regions. In the crudest ap-
proximation, the radius can here be treated as an external parameter Ω,
and the angular motion can be modelled by a map periodic in the angular
variable [6, 7]. By losing all of the “island-within-island” structure of real
systems, circle map models skirt the problems of determining the symbolic
dynamics for a realistic Hamiltonian system, but they do retain some of
the essential features of such systems, such as the golden mean renormaliza-
tion [8, 6] and non-hyperbolicity in form of sequences of cycles accumulating
toward the borders of stability. In particular, in such systems there are or-
bits that stay “glued” arbitrarily close to stable regions for arbitrarily long
times. As this is a generic phenomenon in physically interesting dynamical
systems, such as the Hamiltonian systems with coexisting elliptic islands
of stability and hyperbolic homoclinic webs, development of good computa-
tional techniques is here of utmost practical importance.

Remark 23.2 Critical mode–locking set The fact that mode-lockings
completely fill the unit interval at the critical point has been proposed in
refs. [3, 9]. The proof that the set of irrational windings is of zero Lebesgue
measure in given in ref. [10].

Remark 23.3 Counting noise for Farey series. The number of rationals
in the Farey series of order Q is φ(Q), which is a highly irregular function
of Q: incrementing Q by 1 increases Φ(Q) by anything from 2 to Q terms.
We refer to this fact as the “Euler noise”.

The Euler noise poses a serious obstacle for numerical calculations with
the Farey series partitionings; it blocks smooth extrapolations to Q → ∞
limits from finite Q data. While this in practice renders inaccurate most
Farey-sequence partitioned averages, the finite Q Hausdorff dimension esti-
mates exhibit (for reasons that we do not understand) surprising numerical
stability, and the Farey series partitioning actually yields the best numerical
value of the Hausdorff dimension (23.24) of any methods used so far; for
example the computation in ref. [11] for critical sine map (23.1), based on
240 ≤ Q ≤ 250 Farey series partitions, yields DH = .87012 ± .00001. The
quoted error refers to the variation of DH over this range of Q; as the com-
putation is not asymptotic, such numerical stability can underestimate the
actual error by a large factor.
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498 CHAPTER 23. IRRATIONALLY WINDING

Remark 23.4 Farey tree presentation function. The Farey tree ratio-
nals can be generated by backward iterates of 1/2 by the Farey presentation
function [12]:

f0(x) = x/(1 − x) 0 ≤ x < 1/2
f1(x) = (1 − x)/x 1/2 < x ≤ 1 .

(23.36)

The Gauss shift (23.6) corresponds to replacing the binary Farey presenta-
tion function branch f0 in (23.36) by an infinity of branches

fa(x) = f1 ◦ f
(a−1)
0 (x) =

1
x

− a,
1

a − 1
< x ≤ 1

a
,

fab···c(x) = fc ◦ · ◦ fb ◦ fa(x) . (23.37)

A rational x = [a1, a2, . . . , ak] is annihilated by the kth iterate of the Gauss
shift, fa1a2···ak

(x) = 0. The above maps look innocent enough, but note
that what is being partitioned is not the dynamical space, but the param-
eter space. The flow described by (23.36) and by its non-trivial circle-map
generalizations will turn out to be a renormalization group flow in the func-
tion space of dynamical systems, not an ordinary flow in the phase space of
a particular dynamical system.

The Farey tree has a variety of interesting symmetries (such as “flipping
heads and tails” relations obtained by reversing the order of the continued-
fraction entries) with as yet unexploited implications for the renormalization
theory: some of these are discussed in ref. [13].

An alternative labelling of Farey denominators has been introduced by
Knauf [14] in context of number-theoretical modeling of ferromagnetic spin
chains: it allows for a number of elegant manipulations in thermodynamic
averages connected to the Farey tree hierarchy.

Remark 23.5 Circle map renormalization The idea underlying golden
mean renormalization goes back to Shenker [7]. A renormalization group
procedure was formulated in refs. [15, 16], where moreover the uniqueness
of the relevant eigenvalue is claimed. This statement has been confirmed by
a computer–assisted proof [17], and in the following we will always assume
it. There are a number of experimental evidences for local universality, see
refs. [18, 19].

On the other side of the scaling tale, the power law scaling for harmonic
fractions (discussed in refs. [2, 3, 13]) is derived by methods akin to those
used in describing intermittency [23]: 1/Q cycles accumulate toward the
edge of 0/1 mode-locked interval, and as the successive mode-locked intervals
1/Q, 1/(Q − 1) lie on a parabola, their differences are of order Q−3.

Remark 23.6 Farey series and the Riemann hypothesis The Farey se-
ries thermodynamics is of a number theoretical interest, because the Farey
series provide uniform coverings of the unit interval with rationals, and be-
cause they are closely related to the deepest problems in number theory,
such as the Riemann hypothesis [24, 25] . The distribution of the Farey
series rationals across the unit interval is surprisingly uniform - indeed, so
uniform that in the pre-computer days it has motivated a compilation of
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an entire handbook of Farey series [26]. A quantitive measure of the non-
uniformity of the distribution of Farey rationals is given by displacements
of Farey rationals for Pi/Qi ∈ FQ from uniform spacing:

δi =
i

Φ(Q)
− Pi

Qi
, i = 1, 2, · · · ,Φ(Q)

The Riemann hypothesis states that the zeros of the Riemann zeta function
lie on the s = 1/2 + iτ line in the complex s plane, and would seem to
have nothing to do with physicists’ real mode-locking widths that we are
interested in here. However, there is a real-line version of the Riemann
hypothesis that lies very close to the mode-locking problem. According to
the theorem of Franel and Landau [27, 24, 25], the Riemann hypothesis is
equivalent to the statement that∑

Qi≤Q
|δi| = o(Q

1
2+ε)

for all ε as Q → ∞. The mode-lockings ∆P/Q contain the necessary informa-
tion for constructing the partition of the unit interval into the Ri covers, and
therefore implicitly contain the δi information. The implications of this for
the circle-map scaling theory have not been worked out, and is not known
whether some conjecture about the thermodynamics of irrational windings
is equivalent to (or harder than) the Riemann hypothesis, but the danger
lurks.

Remark 23.7 Farey tree partitioning. The Farey tree partitioning was
introduced in refs. [28, 29, 13] and its thermodynamics is discussed in detail
in refs. [11, 12]. The Farey tree hierarchy of rationals is rather new, and,
as far as we are aware, not previously studied by number theorists. It is
appealing both from the experimental and from the the golden-mean renor-
malization point of view, but it has a serious drawback of lumping together
mode-locking intervals of wildly different sizes on the same level of the Farey
tree.

Remark 23.8 Local and global universality. Numerical evidences for
global universal behavior have been presented in ref. [3]. The question was
reexamined in ref. [11], where it was pointed out how a high-precision numer-
ical estimate is in practice very hard to obtain. It is not at all clear whether
this is the optimal global quantity to test but at least the Hausdorff dimen-
sion has the virtue of being independent of how one partitions mode-lockings
and should thus be the same for the variety of thermodynamic averages in
the literature.

The formula (23.29), linking local to global behavior, was proposed in
ref. [1].

The derivation of (23.29) relies only on the following aspects of the “hy-
perbolicity conjecture” of refs. [13, 20, 21, 22]:
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1. limits for Shenker δ’s exist and are universal. This should follow from
the renormalization theory developed in refs. [15, 16, 17], though a
general proof is still lacking.

2. δp grow exponentially with np, the length of the continued fraction
block p.

3. δp for p = a1a2 . . . n with a large continued fraction entry n grows as a
power of n. According to (23.13), limn→∞ δp ∝ n3. In the calculation
of ref. [1] the explicit values of the asymptotic exponents and prefactors
were not used, only the assumption that the growth of δp with n is not
slower than a power of n.

Remark 23.9 Farey model. The Farey model (23.32) has been pro-
posed in ref. [11]; though it might seem to have been pulled out of a hat,
the Farey model is as sensible description of the distribution of rationals as
the periodic orbit expansion (23.25).

Résumé

The mode locking problem, and the quasiperiodic transition to chaos offer an
opportunity to use cycle expansions on hierarchical structures in parameter space:
this is not just an application of the conventional thermodynamic formalism, but
offers a clue on how to extend universality theory from local scalings to global
quantities.
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[23.1] P. Cvitanović, G.H. Gunaratne and M. Vinson, Nonlinearity 3 (1990)

[23.2] K. Kaneko, Prog. Theor. Phys. 68, 669 (1982); 69, 403 (1983); 69, 1427 (1983)

[23.3] M.H. Jensen, P. Bak, T. Bohr, Phys. Rev. Lett. 50, 1637 (1983); Phys. Rev. A
30, 1960 (1984); P. Bak, T. Bohr and M.H. Jensen, Physica Scripta T9, 50 (1985)

[23.4] P. Cvitanović, B. Shraiman and B. Söderberg, Physica Scripta 32, 263 (1985)

[23.5] J.A. Glazier and A. Libchaber, IEEE Trans. Circ. Syst., 35, 790 (1988)

[23.6] S.J. Shenker and L.P. Kadanoff, J. Stat. Phys. 27, 631 (1982)

[23.7] S.J. Shenker, Physica 5D, 405 (1982)

[23.8] J.M. Greene, J. Math. Phys. 20, 1183 (1979)

[23.9] O.E. Lanford, Physica 14D, 403 (1985)

[23.10] G. Swiatek, Commun. Math. Phys. 119, 109 (1988)

∼DasBuch/book/refsIrrat.tex 25jun2000 printed August 24, 2000



REFERENCES 501
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502 CHAPTER 23.

Exercises

23.1 Mode-locked intervals. Check that when k �= 0 the interval ∆P/Q have a
non-zero width (look for instance at simple fractions, and consider k small). Show that
for small k the width of ∆0/1 is an increasing function of k.

23.2 Bounds on Hausdorff dimension. By making use of the bounds (23.16)
show that the Hausdorff dimension for critical mode lockings may be bounded by

2/3 ≤ DH ≤ .9240 . . .

23.3 Farey model sum rules. Verify the sum rules reported in table 23.2. An
elegant way to get a number of sum rules for the Farey model is by taking into account
an lexical ordering introduced by Contucci and Knauf, see ref. [30].
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Chapter 24

Statistical mechanics

RM 8sep98

(R. Mainieri)

A spin system with long-range interactions can be converted into a chaotic dy-
namical system that is differentiable and low-dimensional. The thermodynamic
limit quantities of the spin system are then equivalent to long time averages of the
dynamical system. In this way the spin system averages can be recast as the cycle
expansions. If the resulting dynamical system is analytic, the convergence to the
thermodynamic limit is faster than with the standard transfer matrix techniques.

24.1 The thermodynamic limit

There are two motivations to recycle statistical mechanics: one gets better control
over the thermodynamic limit and one gets detailed information on how one is
converging to it. From this information, most other quantities of physical interst
can be computed.

In statistical mechanics one computes the averages of observables. These
are functions that return a number for every state of the system; they are an
abstraction of the process of measuring the pressure or temperature of a gas. The
average of an observable is computed in the thermodynamic limit — the limit of
system with an arbitrarily large number of particles. The thermodynamic limit
is an essential step in the computation of averages, as it is only then that one
observes the bulk properties of matter.

Without the thermodynamic limit many of the thermodynamic properties of
matter could not be derived within the framework of statistical mechanics. There
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504 CHAPTER 24. STATISTICAL MECHANICS

would be no extensive quantities, no equivalence of ensembles, and no phase
transitions. From experiments it is known that certain quantities are extensive,
that is, they are proportional to the size of the system. This is not true for an
interacting set of particles. If two systems interacting via pairwise potentials are
brought close together, work will be required to join them, and the final total
energy will not be the sum of the energies of each of the parts. To avoid the
conflict between the experiments and the theory of Hamiltonian systems, one
needs systems with an infinite number of particles. In the canonical ensemble
the probability of a state is given by the Boltzman factor which does not impose
the conservation of energy; in the microcanonical ensemble energy is conserved
but the Boltzmann factor is no longer exact. The equality between the ensembles
only appears in the limit of the number of particles going to infinity at constant
density. The phase transitions are interpreted as points of non-analyticity of the
free energy in the thermodynamic limit. For a finite system the partition function
cannot have a zero as a function of the inverse temperature β, as it is a finite
sum of positive terms.

The thermodynamic limit is also of central importance in the study of field
theories. A field theory can be first defined on a lattice and then the lattice spac-
ing is taken to zero as the correlation length is kept fixed. This continuum limit
corresponds to the thermodynamic limit. In lattice spacing units the correlation
length is going to infinity, and the interacting field theory can be thought of as a
statistical mechanics model at a phase transition.

For general systems the convergence towards the thermodynamic limit is slow.
If the thermodynamic limit exists for an interaction, the convergence of the free
energy per unit volume f is as an inverse power in the linear dimension of the
system.

f(β) → 1
n

(24.1)

where n is proportional to V 1/d, with V the volume of the d-dimensional system.
Much better results can be obtained if the system can be described by a transfer
matrix. A transfer matrix is concocted so that the trace of its nth power is exactly
the partition function of the system with one of the dimensions proportional to
n. When the system is described by a transfer matrix then the convergence is
exponential,

f(β) → e−αn (24.2)

and may only be faster than that if all long-range correlations of the system are
zero — that is, when there are no interactions. The coefficient α depends only
on the inverse correlation length of the system.
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One of the difficulties in using the transfer matrix techniques is that they seem
at first limited to systems with finite range interactions. Phase transitions can
happen only when the interaction is long range. One can try to approximate the
long range interaction with a series of finite range interactions that have an ever
increasing range. The problem with this approach is that in a formally defined
transfer matrix, not all the eigenvalues of the matrix correspond to eigenvalues
of the system (in the sense that the rate of decay of correlations is not the ratio
of eigenvalues).

Knowledge of the correlations used in conjunction with finite size scaling to
obtain accurate estimates of the parameters of systems with phase transitions.
(Accurate critical exponents are obtained by series expansions or transfer ma-
trices, and seldomly by renormalization group arguments or Monte Carlo.) In a
phase transition the coefficient α of the exponential convergence goes to zero and
the convergence to the thermodynamic limit is power-law.

The computation of the partition function is an example of a functional in-
tegral. For most interactions these integrals are ill-defined and require some
form of normalization. In the spin models case the functional integral is very
simple, as “space” has only two points and only “time” being infinite has to be
dealt with. The same problem occurs in the computation of the trace of transfer
matrices of systems with infinite range interactions. If one tries to compute the
partition function Zn

Zn = trTn

when T is an infinite matrix, the result may be infinite for any n. This is not to
say that Zn is infinite, but that the relation between the trace of an operator and
the partition function breaks down. We could try regularizing the expression, but
as we shall see below, that is not necessary, as there is a better physical solution
to this problem.

What will described here solves both of these problems in a limited context:
it regularizes the transfer operator in a physically meaningful way, and as a a
consequence, it allows for the faster than exponential convergence to the thermo-
dynamic limit and complete determination of the spectrum. The steps to achieve
this are:

• Redefine the transfer operator so that there are no limits involved except
for the thermodynamic limit.

• Note that the divergences of this operator come from the fact that it acts
on a very large space. All that is needed is the smallest subspace containing
the eigenvector corresponding to the largest eigenvalue (the Gibbs state).

• Rewrite all observables as depending on a local effective field. The eigen-
vector is like that, and the operator restricted to this space is trace-class.

• Compute the spectrum of the transfer operator and observe the magic.
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24.2 Ising models

The Ising model is a simple model to study the cooperative effects of many small
interacting magnetic dipoles. The dipoles are placed on a lattice and their inter-
action is greatly simplified. There can also be a field that includes the effects of
an external magnetic field and the average effect of the dipoles among themselves.
We will define a general class of Ising models (also called spin systems) where the
dipoles can be in one of many possible states and the interactions extend beyond
the nearest neighboring sites of the lattice. But before we extend the Ising model,
we will examine the simplest model in that class.

24.2.1 Ising model

One of the simplest models in statistical mechanics is the Ising model. One
imagines that one has a one-dimensional lattice with small magnets at each site
that can point either up or down.

.

Each little magnet interacts only with its neighbors. If they both point in the
same direction, then they contribute an energy −J to the total energy of the
system; and if they point in opposite directions, then they contribute +J . The
signs are chsen so that they prefer to be aligned. Let us suppose that we have n
small magnets arranged in a line: A line is drawn between two sites to indicate
that there is an interaction between the small magnets that are located on that
site

. (24.3)

(This figure can be thought of as a graph, with sites being vertices and interacting
magnets indicated by edges.) To each of the sites we associate a variable, that
we call a spin, that can be in either of two states: up (↑) or down (↓). This
represents the two states of the small magnet on that site, and in general we will
use the notation Σ0 to represent the set of possible values of a spin at any site;
all sites assume the same set of values. A configuration consists of assigning a
value to the spin at each site; a typical configuration is

↓ ↑↑ ↑ ↓ ↑ ↑ ↓↓

. (24.4)
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The set of all configurations for a lattice with n sites is called Ωn
0 and is formed

by the Cartesian product Ω0 × Ω0 · · · × Ω0, the product repeated n times. Each
configuration σ ∈ Ωn is a string of n spins

σ = {σ0, σ1, . . . σn} , (24.5)

In the example configuration (24.4) there are two pairs of spins that have the
same orientation and six that have the opposite orientation. Therefore the total
energy H of the configuration is J × 6 − J × 2 = 4J . In general we can associate
an energy H to every configuration

H(σ) =
∑
i

Jδ(σi, σi+1) , (24.6)

where

δ(σ1, σ2) =
{

+1 if σ1 = σ2
−1 if σ1 �= σ2

. (24.7)

One of the problems that was avoided when computing the energy was what
to do at the boundaries of the one-dimensional chain. Notice that as written,
(24.6) requires the interaction of spin n with spin n + 1. In the absence of
phase transitions the boundaries do not matter much to the thermodynamic limit
and we will connect the first site to the last, implementing periodic boundary
conditions.

Thermodynamic quantities are computed from the partition function Z(n) as
the size n of the system becomes very large. For example, the free energy per
site f at inverse temperature β is given by

− βf(β) = lim
n→∞

1
n

lnZ(n) . (24.8)

The partition function Z(n) is computed by a sum that runs over all the possible
configurations on the one-dimensional chain. Each configuration contributes with
its Gibbs factor exp(−βH(σ)) and the partition function Z(n) is

Z(n)(β) =
∑
σ∈Ωn0

e−βH(σ) . (24.9)

The partition function can be computed using transfer matrices. This is a
method that generalizes to other models. At first, it is a little mysterious that
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matrices show up in the study of a sum. To see where they come from, we can
try and build a configuration on the lattice site by site. The frst thing to do is
to expand out the sum for the energy of the configuration

Z(n)(β) =
∑
σ∈Ωn

eβJδ(σ1,σ2)eβJδ(σ2,σ3) · · · eβJδ(σn,σ1) . (24.10)

Let us use the configuration in (24.4). The first site is σ1 =↑. As the second site
is ↑, we know that the first term in (24.10) is a term eβJ . The third spin is ↓, so
the second term in (24.10) is e−βJ . If the third spin had been ↑, then the term
would have been eβJ but it would not depend on the value of the first spin σ1.
This means that the configuration can be built site by site and that to compute
the Gibbs factor for the configuration just requires knowing the last spin added.
We can then think of the configuration as being a weighted random walk where
each step of the walk contributes according to the last spin added. The random
walk take place on the Markov diagram

↓ ↑eβJ

e−βJ

e−βJ

eβJ

.

Choose one of the two sites as a starting point. Walk along any allowed edge
making your choices randomly and keep track of the accumulated weight as you
perform the n steps. To implement the periodic boundary conditions make sure
that you return to the starting node of the Markov graph. If the walk is carried
out in all possible 2n ways then the sum of all the weights is the partition function.
To perform the sum we consider the matrix

T (β) =
[

eβJ e−βJ

e−βJ eβJ

]
. (24.11)

As in chapter 7 the sum of all closed walks is given by the trace of powers of the
matrix. These powers can easily be re-expressed in terms of the two eigenvalues
λ1 and λ2 of the transfer matrix:

Z(n)(β) = trTn(β) = λ1(β)n + λ2(β)n . (24.12)
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24.2.2 Averages of observables

Averages of observables can be re-expressed in terms of the eigenvectors of the
transfer matrix. Alternatively, one can introduce a modified transfer matrix and
compute the averages through derivatives. Sounds familiar?

24.2.3 General spin models

The more general version of the Ising model — the spin models — will be defined
on a regular lattice, Z

D. At each lattice site there will be a spin variable that
can assumes a finite number of states identified by the set Ω0.

The transfer operator T was introduced by Kramers and Wannier [12] to
study the Ising model on a strip and concocted so that the trace of its nth power
is the partition function Zn of system when one of its dimensions is n. The
method can be generalized to deal with any finite-range interaction. If the range
of the interaction is L, then T is a matrix of size 2L × 2L. The longer the range,
the larger the matrix.

24.3 Fisher droplet model

In a series of articles [20], Fisher introduced the droplet model. It is a model for a
system containing two phases: gas and liquid. At high temperatures, the typical
state of the system consists of droplets of all sizes floating in the gas phase. As
the temperature is lowered, the droplets coalesce, forming larger droplets, until
at the transition temperature, all droplets form one large one. This is a first
order phase transition.

Although Fisher formulated the model in three-dimensions, the analytic so-
lution of the model shows that it is equivalent to a one-dimensional lattice gas
model with long range interactions. Here we will show how the model can be
solved for an arbitrary interaction, as the solution only depends on the asymp-
totic behavior of the interaction.

The interest of the model for the study of cycle expansions is its relation
to intermittency. By having an interaction that behaves asymptotically as the
scaling function for intermittency, one expects that the analytic structure (poles
and cuts) will be same.

Fisher used the droplet model to study a first order phase transition [20].
Gallavotti [21] used it to show that the zeta functions cannot in general be ex-
tended to a meromorphic functions of the entire complex plane. The droplet
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model has also been used in dynamical systems to explain features of mode lock-
ing, see Artuso [22]. In computing the zeta function for the droplet model we
will discover that at low temperatures the cycle expansion has a limited radius
of convergence, but it is possible to factorize the expansion into the product of
two functions, each of them with a better understood radius of convergence.

24.3.1 Solution

The droplet model is a one-dimensional lattice gas where each site can have
two states: empty or occupied. We will represent the empty state by 0 and
the occupied state by 1. The configurations of the model in this notation are
then strings of zeros and ones. Each configuration can be viewed as groups of
contiguous ones separated by one or more zeros. The contiguous ones represent
the droplets in the model. The droplets do not interact with each other, but the
individual particles within each droplet do.

To determine the thermodynamics of the system we must assign an energy
to every configuration. At very high temperatures we would expect a gaseous
phase where there are many small droplets, and as we decrease the temperature
the droplets would be expected to coalesce into larger ones until at some point
there is a phase transition and the configuration is dominated by one large drop.
To construct a solvable model and yet one with a phase transition we need long
range interaction among all the particles of a droplet. One choice is to assign a
fixed energy θn for the interactions of the particles of a cluster of size n. In a
given droplet one has to consider all the possible clusters formed by contiguous
particles. Consider for example the configuration 0111010. It has two droplets,
one of size three and another of size one. The droplet of size one has only one
cluster of size one and therefore contributes to the energy of the configuration
with θ1. The cluster of size three has one cluster of size three, two clusters of
size two, and three clusters of size one; each cluster contributing a θn term to the
energy. The total energy of the configuration is then

H(0111010) = 4θ1 + 2θ2 + 1θ3 . (24.13)

If there where more zeros around the droplets in the above configuration the
energy would still be the same. The interaction of one site with the others is
assumed to be finite, even in the ground state consisting of a single droplet, so
there is a restriction on the sum of the cluster energies given by

a =
∑
n>0

θn < ∞ . (24.14)

The configuration with all zeros does not contribute to the energy.
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Once we specify the function θn we can computed the energy of any configu-
ration, and from that determine the thermodynamics. Here we will evaluate the
cycle expansion for the model by first computing the generating function

G(z, β) =
∑
n>0

zn
Zn(β)

n
(24.15)

and then considering its exponential, the cycle expansion. Each partition function
Zn must be evaluated with periodic boundary conditions. So if we were computing
Z3 we must consider all eight binary sequences of three bits, and when computing
the energy of a configuration, say 011, we should determine the energy per three
sites of the long chain

. . . 011011011011 . . .

In this case the energy would be θ2+2θ1. If instead of 011 we had considered one
of its rotated shifts, 110 or 101, the energy of the configuration would have been
the same. To compute the partition function we only need to consider one of
the configurations and multiply by the length of the configuration to obtain the
contribution of all its rotated shifts. The factor 1/n in the generating function
cancels this multiplicative factor. This reduction will not hold if the configuration
has a symmetry, as for example 0101 which has only two rotated shift configura-
tions. To compensate this we replace the 1/n factor by a symmetry factor 1/s(b)
for each configuration b. The evaluation of G is now reduced to summing over all
configurations that are not rotated shift equivalent, and we call these the basic
configurations and the set of all of them B. We now need to evaluate

G(z, β) =
∑
b∈B

z|b|

s(b)
e−βH(b) . (24.16)

The notation | · | represents the cardinality of the set.

Any basic configuration can be built by considering the set of droplets that
form it. The smallest building block has size two, as we must also put a zero next
to the one so that when two different blocks get put next to each other they do
not coalesce. The first few building blocks are

size droplets

2 01
3 001 011
4 0001 0011 0111

(24.17)
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Each droplet of size n contributes with energy

Wn =
∑
1≤k≤n

(n − k + 1)θk . (24.18)

So if we consider the sum

∑
n≥1

1
n

(
z2e−βH(01) + z3(e−βH(001) + e−βH(011)) +

+ z4(e−βH(0001) + e−βH(0011) + e−βH(0111)) + · · ·
)n

(24.19)

then the power in n will generate all the configurations that are made from many
droplets, while the z will keep track of the size of the configuration. The factor
1/n is there to avoid the over-counting, as we only want the basic configurations
and not its rotated shifts. The 1/n factor also gives the correct symmetry factor
in the case the configuration has a symmetry. The sum can be simplified by
noticing that it is a logarithmic series

− ln
(
1 − (z2e−βW1 + z3(e−βW1 + e−βW2) + · · ·

)
, (24.20)

where the H(b) factors have been evaluated in terms of the droplet energies Wn.
A proof of the equality of (24.19) and (24.20) can be given , but we there was
not enough space on the margin to write it down. The series that is subtracted
from one can be written as a product of two series and the logarithm written as

− ln
(
1 − (z1 + z2 + z3 + · · ·)(ze−βW1 + z2e−βW2 + · · ·)

)
(24.21)

The product of the two series can be directly interpreted as the generating func-
tion for sequences of droplets. The first series adds one or more zeros to a
configuration and the second series add a droplet.

There is a whole class of configurations that is not included in the above sum:
the configurations formed from a single droplet and the vacuum configuration.
The vacuum is the easiest, as it has zero energy it only contributes a z. The sum
of all the null configurations of all sizes is

∑
n>0

zn

n
. (24.22)
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The factor 1/n is here because the original G had them and the null configurations
have no rotated shifts. The single droplet configurations also do not have rotated
shifts so their sum is

∑
n>0

zne−βH(

n︷ ︸︸ ︷
11 . . . 11)

n
. (24.23)

Because there are no zeros in the above configuration clusters of all size exist and
the energy of the configuration is n

∑
θk which we denote by na.

From the three sums (24.21), (24.22), and (24.23) we can evaluate the gener-
ating function G to be

G(z, β) = − ln(1 − z) − ln(1 − ze−βa) − ln(1 − z

1 − z

∑
n≥1

zne−βWn) . (24.24)

The cycle expansion ζ−1(z, β) is given by the exponential of the generating
function e−G and we obtain

ζ−1(z, β) = (1 − ze−βa)(1 − z(1 +
∑
n≥1

zne−βWn)) (24.25)

To pursue this model further we need to have some assumptions about the
interaction strengths θn. We will assume that the interaction strength decreases
with the inverse square of the size of the cluster, that is, θn = −1/n2. With this
we can estimate that the energy of a droplet of size n is asymptotically

Wn ∼ −n + lnn + O(
1
n

) . (24.26)

If the power chosen for the polynomially decaying interaction had been other than
inverse square we would still have the droplet term proportional to n, but there
would be no logarithmic term, and the O term would be of a different power.
The term proportional to n survives even if the interactions falls off exponentially,
and in this case the correction is exponentially small in the asymptotic formula.
To simplify the calculations we are going to assume that the droplet energies are
exactly

Wn = −n + lnn (24.27)
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in a system of units where the dimensional constants are one. To evaluate the
cycle expansion (24.25) we need to evaluate the constant a, the sum of all the θn.
One can write a recursion for the θn

θn = Wn −
∑
1≤k<n

(n − k + 1)θk (24.28)

and with an initial choice for θ1 evaluate all the others. It can be verified that in-
dependent of the choice of θ1 the constant a is equal to the number that multiplies
the n term in (24.27). In the units used

a = −1 . (24.29)

For the choice of droplet energy (24.27) the sum in the cycle expansion can
be expressed in terms of a special function: the Lerch transcendental φL. It is
defined by

φL(z, s, c) =
∑
n≥0

zn

(n + c)s
, (24.30)

excluding from the sum any term that has a zero denominator. The Lerch func-
tion converges for |z| < 1. The series can be analytically continued to the complex
plane and it will have a branch point at z = 1 with a cut chosen along the pos-
itive real axis. In terms of Lerch transcendental function we can write the cycle
expansion (24.25) using (24.27) as

ζ−1(z, β) =
(
1 − zeβ

)(
1 − z(1 + φL(zeβ , β, 1))

)
(24.31)

This serves as an example of a zeta function that cannot be extended to a mero-
morphic function of the complex plane as one could conjecture.

The thermodynamics for the droplet model comes from the smallest root of
(24.31). The root can come from any of the two factors. For large value of β (low
temperatures) the smallest root is determined from the (1 − zeβ) factor, which
gave the contribution of a single large drop. For small β (large temperatures)
the root is determined by the zero of the other factor, and it corresponds to
the contribution from the gas phase of the droplet model. The transition occurs
when the smallest root of each of the factors become numerically equal. This
determines the critical temperature βc through the equation

1 − e−βc(1 + ζR(βc)) = 0 (24.32)
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which can be solved numerically. One finds that βc = 1.40495. The phase
transition occurs because the roots from two different factors get swapped in
their roles as the smallest root. This in general leads to a first order phase
transition. For large β the Lerch transcendental is being evaluated at the branch
point, and therefore the cycle expansion cannot be an analytic function at low
temperatures. For large temperatures the smallest root is within the radius of
convergence of the series for the Lerch transcendental, and the cycle expansion
has a domain of analyticity containing the smallest root.

As we approach the phase transition point as a function of β the smallest
root and the branch point get closer together until at exactly the phase transition
they collide. This is a sufficient condition for the existence of a first order phase
transitions. In the literature of zeta functions [23] there have been speculations on
how to characterize a phase transition within the formalism. The solution of the
Fisher droplet model suggests that for first order phase transitions the factorized
cycle expansion will have its smallest root within the radius of convergence of
one of the series except at the phase transition when the root collides with a
singularity. This does not seem to be the case for second order phase transitions.

The analyticity of the cycle expansion can be restored if we consider separate
cycle expansions for each of the phases of the system. If we separate the two
terms of ζ−1 in (24.31), each of them is an analytic function and contains the
smallest root within the radius of convergence of the series for the relevant β
values.

24.4 Scaling functions

“Clouds are not spheres, mountains are not cones, coast-
lines are not circles and bark is not smooth, nor does
lightning travel in straight line.”

B.B. Mandelbrot

There is a relation between general spin models and dynamical system. If one
thinks of the boxes of the Markov partition of a hyperbolic system as the states
of a spin system, then computing averages in the dynamical system is carrying
out a sum over all possible states. One can even construct the natural measure of
the dynamical system from a translational invariant “interaction function” call
the scaling function.

There are many routes that lead to an explanation of what a scaling function
is and how to compute it. The shortest is by breaking away from the historical
development and considering first the presentation function of a fractal. The
presentation function is a simple chaotic dynamical system (hyperbolic, unlike
the circle map) that generates the fractal and is closely related to the definition

printed August 24, 2000 ∼DasBuch/book/chapter/statmech.tex 10aug2000



516 CHAPTER 24. STATISTICAL MECHANICS

Figure 24.1: Construction of the steps of the
scaling function from a Cantor set. From one level
to the next in the construction of the Cantor set
the covers are shrunk, each parent segment into
two children segments. The shrinkage of the last
level of the construction is plotted and by removing
the gaps one has an approximation to the scaling
function of the Cantor set.
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of fractals of Hutchinson [24] and the iterated dynamical systems introduced by
Barnsley and collaborators [21]. From the presentation function one can derive
the scaling function, but we will not do it in the most elegant fashion, rather we
will develop the formalism in a form that is directly applicable to the experimental
data.

In the upper part of fig. 24.1 we have the successive steps of the construction
similar to the middle third Cantor set. The construction is done in levels, each
level being formed by a collection of segments. From one level to the next,
each “parent” segment produces smaller “children” segments by removing the
middle section. As the construction proceeds, the segments better approximate
the Cantor set. In the figure not all the segments are the same size, some are
larger and some are smaller, as is the case with multifractals. In the middle third
Cantor set, the ratio between a segment and the one it was generated from is
exactly 1/3, but in the case shown in the figure the ratios differ from 1/3. If we
went through the last level of the construction and made a plot of the segment
number and its ratio to its parent segment we would have a scaling function,
as indicated in the figure. A function giving the ratios in the construction of a
fractal is the basic idea for a scaling function. Much of the formalism that we will
introduce is to be able to give precise names to every segments and to arrange the
“lineage” of segments so that the children segments have the correct parent. If we
do not take these precautions, the scaling function would be a “wild function”,
varying rapidly and not approximated easily by simple functions.

To describe the formalism we will use a variation on the quadratic map that
appears in the theory of period doubling. This is because the combinatorial
manipulations are much simpler for this map than they are for the circle map.
The scaling function will be described for a one dimensional map F as shown in
fig. 24.2. Drawn is the map

F (x) = 5x(1 − x) (24.33)

restricted to the unit interval. We will see that this map is also a presentation
function.

∼DasBuch/book/chapter/statmech.tex 10aug2000 printed August 24, 2000



24.4. SCALING FUNCTIONS 517

Figure 24.2: A Cantor set presentation function.
The Cantor set is the set of all points that under it-
eration do not leave the interval [0, 1]. This set can
be found by backwards iterating the gap between
the two branches of the map. The dotted lines can
be used to find these backward images. At each
step of the construction one is left with a set of
segments that form a cover of the Cantor set.

0 1
0

1

{∆ }

{∆ }

{∆ }

(1)

(0)

(2)

cover set

It has two branches separated by a gap: one over the left portion of the unit
interval and one over the right. If we choose a point x at random in the unit
interval and iterate it under the action of the map F , (24.33), it will hop between
the branches and eventually get mapped to minus infinity. An orbit point is
guaranteed to go to minus infinity if it lands in the gap. The hopping of the
point defines the orbit of the initial point x: x �→ x1 �→ x2 �→ · · ·. For each orbit
of the map F we can associate a symbolic code. The code for this map is formed
from 0s and 1s and is found from the orbit by associating a 0 if xt < 1/2 and a
1 if xt > 1/2, with t = 0, 1, 2, . . ..

Most initial points will end up in the gap region between the two branches.
We then say that the orbit point has escaped the unit interval. The points that
do not escape form a Cantor set C (or Cantor dust) and remain trapped in the
unit interval for all iterations. In the process of describing all the points that do
not escape, the map F can be used as a presentation of the Cantor set C, and
has been called a presentation function by Feigenbaum [12].

How does the map F “present” the Cantor set? The presentation is done in
steps. First we determine the points that do not escape the unit interval in one
iteration of the map. These are the points that are not part of the gap. These
points determine two segments, which are an approximation to the Cantor set.
In the next step we determine the points that do not escape in two iterations.
These are the points that get mapped into the gap in one iteration, as in the next
iteration they will escape; these points form the two segments ∆(1)0 and ∆(1)1 at
level 1 in fig. 24.2. The processes can be continued for any number of iterations.
If we observe carefully what is being done, we discover that at each step the pre-
images of the gap (backward iterates) are being removed from the unit interval.
As the map has two branches, every point in the gap has two pre-images, and
therefore the whole gap has two pre-images in the form of two smaller gaps. To
generate all the gaps in the Cantor set one just has to iterate the gap backwards.
Each iteration of the gap defines a set of segments, with the nth iterate defining
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the segments ∆(n)k at level n. For this map there will be 2n segments at level n,
with the first few drawn in fig. 24.2. As n → ∞ the segments that remain for at
least n iterates converge to the Cantor set C.

The segments at one level form a cover for the Cantor set and it is from
a cover that all the invariant information about the set is extracted (the cover
generated from the backward iterates of the gap form a Markov partition for the
map as a dynamical system). The segments {∆(n)k } at level n are a refinement
of the cover formed by segments at level n − 1. From successive covers we can
compute the trajectory scaling function, the spectrum of scalings f(α), and the
generalized dimensions.

To define the scaling function we must give labels (names) to the segments.
The labels are chosen so that the definition of the scaling function allows for
simple approximations. As each segment is generated from an inverse image of
the unit interval, we will consider the inverse of the presentation function F .
Because F does not have a unique inverse, we have to consider restrictions of
F . Its restriction to the first half of the segment, from 0 to 1/2, has a unique
inverse, which we will call F−1

0 , and its restriction to the second half, from 1/2
to 1, also has a unique inverse, which we will call F−1

1 . For example, the segment
labeled ∆(2)(0, 1) in fig. 24.2 is formed from the inverse image of the unit interval
by mapping ∆(0), the unit interval, with F−1

1 and then F−1
0 , so that the segment

∆(2)(0, 1) = F−1
0

(
F−1
1

(
∆(0)

))
. (24.34)

The mapping of the unit interval into a smaller interval is what determines its
label. The sequence of the labels of the inverse maps is the label of the segment:

∆(n)(ε1, ε2, . . . , εn) = F−1
ε1 ◦ F−1

ε2 ◦ · · ·F−1
εn

(
∆(0)

)
.

The scaling function is formed from a set of ratios of segments length. We
use | · | around a segment ∆(n)(ε) to denote its size (length), and define

σ(n)(ε1, ε2, . . . , εn) =
|∆(n)(ε1, ε2, . . . , εn)|
|∆(n−1)(ε2, . . . , εn)| .

We can then arrange the ratios σ(n)(ε1, ε2, . . . , εn) next to each other as piecewise
constant segments in increasing order of their binary label ε1, ε2, . . . , εn so that
the collection of steps scan the unit interval. As n → ∞ this collection of steps
will converge to the scaling function. In sect. ?? we will describe the limiting
process in more detail, and give a precise definition on how to arrange the ratios.
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24.5 Geometrization

The L operator is a generalization of the transfer matrix. It gets more by consid-
ering less of the matrix: instead of considering the whole matrix it is possible to
consider just one of the rows of the matrix. The L operator also makes explicit
the vector space in which it acts: that of the observable functions. Observables
are functions that to each configuration of the system associate a number: the
energy, the average magnetization, the correlation between two sites. It is in
the average of observables that one is interested in. Like the transfer matrix,
the L operator considers only semi-infinite systems, that is, only the part of the
interaction between spins to the right is taken into account. This may sound
un-symmetric, but it is a simple way to count each interaction only once, even in
cases where the interaction includes three or more spin couplings. To define the
L operator one needs the interaction energy between one spin and all the rest to
its right, which is given by the function φ. The L operators defined as

Lg(σ) =
∑

σ0∈Ω0

g(σ0σ)e−βφ(σ0σ) .

To each possible value in Ω0 that the spin σ0 can assume, an average of the
observable g is computed weighed by the Boltzmann factor e−βφ. The formal
relations that stem from this definition are its relation to the free energy when
applied to the observable ι that returns one for any configuration:

−βf(β) = lim
n→∞

1
n

ln ‖Lnι‖

and the thermodynamic average of an observable

〈g〉 = lim
n→∞

‖Lng‖
‖Lnι‖ .

Both relations hold for almost all configurations. These relations are part of
theorem of Ruelle that enlarges the domain of the Perron-Frobenius theorem
and sharpens its results. The theorem shows that just as the transfer matrix,
the largest eigenvalue of the L operator is related to the free-energy of the spin
system. It also hows that there is a formula for the eigenvector related to the
largest eigenvalue. This eigenvector |ρ〉 (or the corresponding one for the adjoint
L∗ of L) is the Gibbs state of the system. From it all averages of interest in
statistical mechanics can be computed from the formula

〈g〉 = 〈ρ|g|ρ〉 .
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The Gibbs state can be expressed in an explicit form in terms of the interac-
tions, but it is of little computational value as it involves the Gibbs state for a
related spin system. Even then it does have an enormous theoretical value. Later
we will see how the formula can be used to manipulate the space of observables
into a more convenient space.

The geometrization of a spin system converts the shift dynamics (necessary
to define the Ruelle operator) into a smooth dynamics. This is equivalent to the
mathematical problem in ergodic theory of finding a smooth embedding for a
given Bernoulli map.

The basic idea for the dynamics is to establish the a set of maps Fσk such
that

Fσk(0) = 0

and

Fσ1 ◦ Fσ2 ◦ · · · ◦ Fσn(0) = φ(+, σ1, σ2, . . . , σn,−,−, . . .) .

This is a formal relation that expresses how the interaction is to be converted
into a dynamical systems. In most examples Fσk is a collection of maps from a
subset of RD to itself.

If the interaction is complicated, then the dimension of the set of maps may
be infinite. If the resulting dynamical system is infinite have we gained anything
from the transformation? The gain in this case is not in terms of added speed of
convergence to the thermodynamic limit, but in the fact that the Ruelle operator
is of trace-class and all eigenvalues are related to the spin system and not artifacts
of the computation.

The construction of the higher dimensional system is done by borrowing the
phase space reconstruction technique from dynamical systems. Phase space re-
construction can be done in several ways: by using delay coordinates, by using
derivatives of the position, or by considering the value of several independent ob-
servables of the system. All these may be used in the construction of the equiva-
lent dynamics. Just as in the study of dynamical systems, the exact method does
not matter for the determination of the thermodynamics (f(α) spectra, gener-
alized dimension), also in the construction of the equivalent dynamics the exact
choice of observable does not matter.

We will only consider configurations for the half line. This is bescause for
translational invariant interactions the thermodynamic limit on half line is the
same as in the whole line. One can prove this by considering the difference in a
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thermodynamic average in the line and in the semiline and compare the two as
the size of the system goes to infinity.

When the interactions are long range in principle one has to specify the bound-
ary conditions to be able to compute the interaction energy of a configuration
in a finite box. If there are no phase transitions for the interaction, then which
boundary conditions are chosen is irrelevant in the thermodynamic limit. When
computing quantities with the transfer matrix, the long rrange interaction is trun-
cated at some finite range and the truncated interaction is then use to evaluate
the transfer matrix. With the Ruelle operator the interaction is never truncated,
and the boundary must be specified.

The interaction φ(σ) is any function that returns a number on a configuration.
In general it is formed from pairwise spin interactions

φ(σ) =
∑
n>0

δσ0,σnJ(n)

with different choices of J(n) leading to differnt models. If J(n) = 1 only if n = 1
and ) otherwise, then one has the nearest neighbor Ising model. If J(n) = n−2,
then one has the inverse square model relevant in the study of the Kondo problem.

Let us say that each site of the lattice can assume two values +,− and the
set of all possible configurations of the semiline is the set Ω. Then an observable
g is a function from the set of configurations Ω to the reals. Each configuration
is indexed by the integers from 0 up, and it is useful to think of the configuration
as a string of spins. One can append a spin η0 to its begining, η ∨ σ, in which
case η is at site 0, ω0 at site 1, and so on.

The Ruelle operator L is defined as

Lg(η) =
∑

ω0∈Ω0

g(ω0 ∨ η)e−βφ(ω0∨η) .

This is a positive and bounded operator over the space of bounded observables.
There is a generalization of the Perron-Frobenius theorem by Ruelle that estab-
lishes that the largest eigenvalue of L is isolated from the rest of the spectrum
and gives the thermodynamics of the spin system just as the largest eigenvalue of
the transfer matrix does. Ruelle alos gave a formula for the eigenvector related
to the largest eigenvalue.

The difficulty with it is that the relation between the partition function and
the trace of its nth power, trLn = Zn no longer holds. The reason is that the
trace of the Ruelle operator is ill-defined, it is infinite.
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We now introduce a special set of observables {x1(σ), . . . , x1(σ)}. The idea
is to choose the observables in such a way that from their values on a particular
configuration σ the configuration can be reconstructed. We also introduce the
interaction observables hσ0

To geometrize spin systems, the interactions are assumed to be translationally
invariant. The spins σk will only assume a finite number of values. For simplic-
ity, we will take the interaction φ among the spins to depend only on pairwise
interactions,

φ(σ) = φ(σ0, σ1, σ2, . . .) = J0σ0 +
∑
n>0

δσ0,σnJ1(n) , (24.35)

and limit σk to be in {+,−}. For the one-dimensional Ising model, J0 is the
external magnetic field and J1(n) = 1 if n = 1 and 0 otherwise. For an expo-
nentially decaying interaction J1(n) = e−αn. Two- and three-dimensional models
can be considered in this framework. For example, a strip of spins of L×∞ with
helical boundary conditions is modeled by the potential J1(n) = δn,1 + δn,L.

The transfer operator T was introduced by Kramers and Wannier [12] to
study the Ising model on a strip and concocted so that the trace of its nth power
is the partition function Zn of system when one of its dimensions is n. The
method can be generalized to deal with any finite-range interaction. If the range
of the interaction is L, then T is a matrix of size 2L × 2L. The longer the range,
the larger the matrix. When the range of the interaction is infinite one has to
define the T operator by its action on an observable g. Just as the observables
in quantum mechanics, g is a function that associates a number to every state
(configuration of spins). The energy density and the average magnetization are
examples of observables. From this equivalent definition one can recover the
usual transfer matrix by making all quantities finite range. For a semi-infinite
configuration σ = {σ0, σ1, . . .}:

T g(σ) = g(+ ∨ σ)e−βφ(+∨σ) + g(− ∨ σ)e−βφ(−∨σ) . (24.36)

By + ∨ σ we mean the configuration obtained by prepending + to the beginning
of σ resulting in the configuration {+, σ0, σ1, . . .}. When the range becomes infi-
nite, tr T n is infinite and there is no longer a connection between the trace and
the partition function for a system of size n (this is a case where matrices give
the wrong intuition). Ruelle [13] generalized the Perron-Frobenius theorem and
showed that even in the case of infinite range interactions the largest eigenvalue
of the T operator is related to the free-energy of the spin system and the corre-
sponding eigenvector is related to the Gibbs state. By applying T to the constant
observable u, which returns 1 for any configuration, the free energy per site f is
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computed as

− βf(β) = lim
n→∞

1
n

ln ‖T nu‖ . (24.37)

To construct a smooth dynamical system that reproduces the properties of T ,
one uses the phase space reconstruction technique of Packard et al. [6] and Tak-
ens [7], and introduces a vector of state observables x(σ) = {x1(σ), . . . , xD(σ)}.
To avoid complicated notation we will limit the discussion to the example x(σ) =
{x+(σ), x−(σ)}, with x+(σ) = φ(+ ∨ σ) and x−(σ) = φ(−∨ σ); the more general
case is similar and used in a later example. The observables are restricted to
those g for which, for all configurations σ, there exist an analytic function G
such that G(x1(σ), . . . , xD(σ)) = g(σ). This at first seems a severe restriction
as it may exclude the eigenvector corresponding to the Gibbs state. It can be
checked that this is not the case by using the formula given by Ruelle [14] for
this eigenvector. A simple example where this formalism can be carried out is for
the interaction φ(σ) with pairwise exponentially decaying potential J1(n) = an

(with |a| < 1). In this case φ(σ) =
∑

n>0 δσ0,σna
n and the state observables are

x+(σ) =
∑

n>0 δ+,σna
n and x−(σ) =

∑
n>0 δ−,σna

n. In this case the observable
x+ gives the energy of + spin at the origin, and x− the energy of a − spin.

Using the observables x+ and x−, the transfer operator can be re-expressed
as

T G (x(σ)) =
∑

η∈{+,−}
G (x+ (η ∨ σ) , x− (η ∨ σ)) e−βxη(σ) . (24.38)

In this equation the only reference to the configuration σ is when computing the
new observable values x+(η ∨ σ) and x−(η ∨ σ). The iteration of the function
that gives these values in terms of x+(σ) and x−(σ) is the dynamical system that
will reproduce the properties of the spin system. For the simple exponentially
decaying potential this is given by two maps, F+ and F−. The map F+ takes
{x+(σ), x+(σ)} into {x+(+ ∨ σ), x−(+ ∨ σ)} which is {a(1 + x+), ax−} and the
map F− takes {x+, x−} into {ax+, a(1 + x−)}. In a more general case we have
maps Fη that take x(σ) to x(η ∨ σ).

We can now define a new operator L

LG (x) def= T G(x(σ)) =
∑

η∈{+,−}
G (Fη(x)) e−βxη , (24.39)

where all dependencies on σ have disappeared — if we know the value of the state
observables x, the action of L on G can be computed.
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A dynamical system is formed out of the maps Fη. They are chosen so that one
of the state variables is the interaction energy. One can consider the two maps
F+ and F− as the inverse branches of a hyperbolic map f , that is, f−1(x) =
{F+(x), F−(x)}. Studying the thermodynamics of the interaction φ is equivalent
to studying the long term behavior of the orbits of the map f , achieving the
transformation of the spin system into a dynamical system.

Unlike the original transfer operator, the L operator — acting in the space
of observables that depend only on the state variables — is of trace-class (its
trace is finite). The finite trace gives us a chance to relate the trace of Ln to the
partition function of a system of size n. We can do better. As most properties of
interest (thermodynamics, fall-off of correlations) are determined directly from its
spectrum, we can study instead the zeros of the Fredholm determinant det (1−zL)
by the technique of cycle expansions developed for dynamical systems [1]. A
cycle expansion consists of finding a power series expansion for the determinant
by writing det (1 − zL) = exp(tr ln(1 − zL)). The logarithm is expanded into
a power series and one is left with terms of the form trLn to evaluate. For
evaluating the trace, the L operator is equivalent to

LG(x) =
∫
RD

dy δ(y − f(x))e−βyG(y) (24.40)

from which the trace can be computed:

trLn =
∑

x=f (◦n)(x)

e−βH(x)

|det
(
1 − ∂xf (◦n)(x)

)
|

(24.41)

with the sum running over all the fixed points of f (◦n) (all spin configurations of a
given length). Here f (◦n) is f composed with itself n times, and H(x) is the energy
of the configuration associated with the point x. In practice the map f is never
constructed and the energies are obtained directly from the spin configurations.

To compute the value of trLn we must compute the value of ∂xf
(◦n); this

involves a functional derivative. To any degree of accuracy a number x in the
range of possible interaction energies can be represented by a finite string of spins
ε, such as x = φ(+, ε0, ε1, . . . ,−, −, . . .). By choosing the sequence ε to have a
large sequence of spins −, the number x can be made as small as needed, so in
particular we can represent a small variation by φ(η). As x+(ε) = φ(+∨ ε), from
the definition of a derivative we have:

∂xf(x) = lim
m→∞

φ(ε ∨ η(m)) − φ(ε)
φ(η(m))

, (24.42)

∼DasBuch/book/chapter/statmech.tex 10aug2000 printed August 24, 2000



24.5. GEOMETRIZATION 525

Figure 24.3: The spin adding map F+ for the
potential J(n) =

∑
n2aαn. The action of the map

takes the value of the interaction energy between +
and the semi-infinite configuration {σ1, σ2, σ3, . . .}
and returns the interaction energy between + and
the configuration {+, σ1, σ2, σ3, . . .}.
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where η(m) is a sequence of spin strings that make φ(η(m)) smaller and smaller. By
substituting the definition of φ in terms of its pairwise interaction J(n) = nsan

γ

and taking the limit for the sequences η(m) = {+,−,−, . . . , ηm+1, ηm+2, . . .} one
computes that the limit is a if γ = 1, 1 if γ < 1, and 0 if γ > 1. It does not
depend on the positive value of s. When γ < 1 the resulting dynamical system is
not hyperbolic and the construction for the operator L fails, so one cannot apply
it to potentials such as (1/2)

√
n. One may solve this problem by investigating the

behavior of the formal dynamical system as γ → 0.

The manipulations have up to now assumed that the map f is smooth. If
the dimension D of the embedding space is too small, f may not be smooth.
Determining under which conditions the embedding is smooth is a complicated
question [15]. But in the case of spin systems with pairwise interactions it is
possible to give a simple rule. If the interaction is of the form

φ(σ) =
∑
n≥1

δσ0,σn

∑
k

pk(n)an
γ

k (24.43)

where pk are polynomials and |ak| < 1, then the state observables to use are
xs,k(σ) =

∑
δ+,σnn

sank . For each k one uses x0,k, x1,k, . . . up to the largest power
in the polynomial pk. An example is the interaction with J1(n) = n2(3/10)n. It
leads to a 3-dimensional system with variables x0,0, x1,0, and x2,0. The action
of the map F+ for this interaction is illustrated fig. 24.3. Plotted are the pairs
{φ(+ ∨ σ), φ(+ ∨ + ∨ σ)}. This can be seen as the strange attractor of a chaotic
system for which the variables x0,0, x1,0, and x2,0 provide a good (analytic)
embedding.

The added smoothness and trace-class of the L operator translates into faster
convergence towards the thermodynamic limit. As the reconstructed dynam-
ics is analytic, the convergence towards the thermodynamic limit is faster than
exponential [?, 16]. We will illustrate this with the polynomial-exponential inter-
actions (24.43) with γ = 1, as the convergence is certainly faster than exponential

printed August 24, 2000 ∼DasBuch/book/chapter/statmech.tex 10aug2000



526 CHAPTER 24. STATISTICAL MECHANICS

Figure 24.4: Number of digits for the Fredholm
method (•) and the transfer function method (×).
The size refers to the largest cycle considered in the
Fredholm expansions, and the truncation length in
the case of the transfer matrix.
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if γ > 1, and the case of an has been studied in terms of another Fredholm de-
terminant by Gutzwiller [17]. The convergence is illustrated in fig. 24.4 for the
interaction n2(3/10)n. Plotted in the graph, to illustrate the transfer matrix con-
vergence, are the number of decimal digits that remain unchanged as the range
of the interaction is increased. Also in the graph are the number of decimal dig-
its that remain unchanged as the largest power of trLn considered. The plot is
effectively a logarithmic plot and straight lines indicate exponentially fast conver-
gence. The curvature indicates that the convergence is faster than exponential.
By fitting, one can verify that the free energy is converging to its limiting value
as exp(−n(4/3)). Cvitanović [?] has estimated that the Fredholm determinant of
a map on a D dimensional space should converge as exp(−n(1+1/D)), which is
confirmed by these numerical simulations.

Commentary

Remark 24.1 Presentation functions. The best place to read about
Feigenbaum’s work is in his review article published in Los Alamos Science
(reproduced in various reprint collections and conference proceedings, such
as ref. [4]). Feigenbaum’s Journal of Statistical Physics article [12] is the
easiest place to learn about presentation functions.

Remark 24.2 Interactions are smooth In most computational schemes
for thermodynamic quantities the translation invariance and the smooth-
ness of the basic interaction are never used. In Monte Carlo schemes, aside
from the periodic boundary conditions, the interaction can be arbitrary. In
principle for each configuration it could be possible to have a different en-
ergy. Schemes such as the Sweneson-Wang cluster flipping algorithm use
the fact that interaction is local and are able to obtain dramatic speed-
ups in the equilibration time for the dynamical Monte Carlo simulation. In
the geometrization program for spin systems, the interactions are assumed
translation invariant and smooth. The smoothness means that any interac-
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tion can be decomposed into a series of terms that depend only on the spin
arrangement and the distance between spins:

φ(σ0, σ1, σ2, . . .) = J0σ0 +
∑

δ(σ0, σn)J1(n) +
∑

δ(σ0, σn1 , σn2)J2(n1, n2) + · · ·

where the Jk are symmetric functions of their arguments and the δ are
arbitrary discrete functions. This includes external constant fields (J0), but
it excludes site dependent fields such as a random external magnetic field.

Résumé

The geometrization of spin systems strengthens the connection between statistical
mechanics and dynamical systems. It also further establishes the value of the
Fredholm determinant of the L operator as a practical computational tool with
applications to chaotic dynamics, spin systems, and semiclassical mechanics. The
example above emphasizes the high accuracy that can be obtained: by computing
the shortest 14 periodic orbits of period 5 or less it is possible to obtain three digit
accuracy for the free energy. For the same accuracy with a transfer matrix one
has to consider a 256 × 256 matrix. This make the method of cycle expansions
practical for analytic calculations.
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Exercises

24.1 Not all Banach spaces are also Hilbert If we are given a norm ‖·‖
of a Banach space B, it may be possible to find an inner product 〈· , · 〉 (so that
B is also a Hilbert space H) such that for all vectors f ∈ B, we have

‖f‖ = 〈f, f〉1/2 .

This is the norm induced by the scalar product. If we cannot find the inner
product how do we know that we just are not being clever enough? By checking
the parallelogram law for the norm. A Banach space can be made into a Hilbert
space if and only if the norm satisfies the parallelogram law. The parallelogram
law says that for any two vectors f and g the equality

‖f + g‖2 + ‖f − g‖2 = 2‖f‖2 + 2‖g‖2 ,

must hold.

Consider the space of bounded observables with the norm given by ‖a‖ =
supσ∈ΩN |a(σ)|. Show that ther is no scalar product that will induce this norm.

24.2 Automaton for a droplet Find the Markov graph and the weights on
the edges so that the energies of configurations for the dropolet model are correctly
generated. For any string starting in zero and ending in zero your diagram should yield a
configuration the weight eH(σ), with H computed along the lines of (24.13) and (24.18).

Hint: the Markov graph is infinite.

24.3 Spectral determinant for an interactions Compute the spectral
determinant for one-dimensional Ising model with the interaction

φ(σ) =
∑
k>0

akδ(σ0, σk) .

Take a as a number smaller than 1/2.
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(a) What is the dynamical system this generates? That is, find F+ and F− as
used in (24.39).

(b) Show that

d

dx
F{+ or−} =

[
a 0
0 a

]

24.4 Ising model on a thin strip Compute the transfer matrix for the
Ising model defined on the graph

Assume that whenever there is a bond connecting two sites, there is a contribution
Jδ(σi, σj) to the energy.

24.5 Infinite symbolic dynamics Let σ be a function that returns zeo or one for
every infinite binary string: σ : {0, 1}N → {0, 1}. Its value is represented by σ(ε1, ε2, . . .)
where the εi are either 0 or 1. We will now define an operator T that acts on observables
on the space of binary strings. A function a is an observable if it has bounded variation,
that is, if

‖a‖ = sup
{εi}

|a(ε1, ε2, . . .)| < ∞ .

For these functions

T a(ε1, ε2, . . .) = a(0, ε1, ε2, . . .)σ(0, ε1, ε2, . . .) + a(1, ε1, ε2, . . .)σ(1, ε1, ε2, . . .) .

The function σ is assumed such that any of T ’s “matrix representations” in (a) have
the Markov property (the matrix, if read as an adjacency graph, corresponds to a graph
where one can go from any node to any other node).

(a) (easy) Consider a finite version Tn of the operator T :

Tna(ε1, ε2, . . . , εn) =
a(0, ε1, ε2, . . . , εn−1)σ(0, ε1, ε2, . . . , εn−1) +
a(1, ε1, ε2, . . . , εn−1)σ(1, ε1, ε2, . . . , εn−1) .

Show that Tn is a 2n × 2n matrix. Show that its trace is bounded by a number
independent of n.
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(b) (medium) With the operator norm induced by the function norm, show that T is
a bounded operator.

(c) (hard) Show that T is not trace-class. (Hint: check if T is compact).

Classes of operators are nested; trace-class ≤ compact ≤ bounded.
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Summary and conclusions

Nowdays, whatever the truth of the matter may be (and
we will probably never know), the simplest solution is no
longer emotionally satisfying. Everything we know about
the world militates against it. The concepts of indetermi-
nacy and chaos have filtered down to us from the higher
sciences to confirm our nagging suspicions.

L. Sante, “Review of ‘American Tabloid’ by James
Ellroy”, New York Review of Books (May 11, 1995)

A motion on a strange attractor can be approximated by shadowing long orbits
by sequences of nearby shorter periodic orbits. This notion has here been made
precise by approximating orbits by prime cycles, and evaluating associated curva-
tures. A curvature measures the deviation of a long cycle from its approximation
by shorter cycles; the smoothness of the dynamical system implies exponential
fall-off for (almost) all curvatures. We propose that the theoretical and experi-
mental non–wandering sets be expressed in terms of the symbol sequences of short
cycles (a topological characterization of the spatial layout of the non–wandering
set) and their eigenvalues (metric structure)

The cycle expansions such as (11.5) outperform the pedestrian methods such
as extrapolations from the finite cover sums (13.2) for a number of reasons. The
cycle expansion is a better averaging procedure than the naive box counting
algorithms because the strange attractor is here pieced together in a topologically
invariant way from neighborhoods (“space average”) rather than explored by a
long ergodic trajectory (“time average”). The cycle expansion is co-ordinate and
reparametrization invariant - a finite nth level sum (13.2) is not. Cycles are of
finite period but infinite duration, so the cycle eigenvalues are already evaluated
in the n → ∞ limit, but for the sum (13.2) the limit has to be estimated by
numerical extrapolations. And, crucially, the higher terms in the cycle expansion
(11.5) are deviations of longer prime cycles from their approximations by shorter
cycles. Such combinations vanish exactly in piecewise linear approximations and
fall off exponentially for smooth dynamical flows.

In the above we have reviewed the general properties of the cycle expansions;
those have been applied to a series of examples of low-dimensional chaos: 1-d
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strange attractors, the period-doubling repeller, the Hénon-type maps and the
mode locking intervals for circle maps. The cycle expansions have also been
applied to the irrational windings set of critical circle maps, to the Hamiltonian
period-doubling repeller, to a Hamiltonian three-disk game of pinball, to the
three-disk quantum scattering resonances and to the extraction of correlation
exponents, Feasibility of analysis of experimental non–wandering set in terms of
cycles is discussed in ref. [9].

Homework assignment

“Lo! thy dread empire Chaos is restor’d, Light dies before
thy uncreating word; Thy hand, great Anarch, lets the
curtain fall, And universal darkness buries all.”

Alexander Pope, The Dunciad

We conclude cautiously with a homework assignement posed May 22, 1990
(the original due date was May 22, 2000, but alas...):

1. Topology Develop optimal sequences (“continued fraction approximants”)
of finite subshift approximations to generic dynamical systems. Apply to
(a) the Hénon map, (b) the Lorenz flow and (c) the Hamiltonian standard
map.

2. Non-hyperbolicity Incorporate power–law (marginal stability orbits,“intermittency”)
corrections into cycle expansions. Apply to long-time tails in the Hamilto-
nian diffusion problem.

3. Phenomenology Carry through a convincing analysis of a genuine exper-
imentally extracted data set in terms of periodic orbits.

4. Invariants Prove that the scaling functions, or the cycles, or the spectrum
of a transfer operator are the maximal set of invariants of an (physically
interesting) dynamically generated non–wandering set.

5. Field theory Develop a periodic orbit theory of systems with many unsta-
ble degrees of freedom. Apply to (a) coupled lattices, (b) cellular automata,
(c) neural networks.

6. Tunneling Add complex time orbits to quantum mechanical cycle expan-
sions (WKB theory for chaotic systems).

7. Unitarity Evaluate corrections to the Gutzwiller semiclassical periodic or-
bit sums. (a) Show that the zeros (energy eigenvalues) of the appropriate
Selberg products are real. (b) Find physically realistic systems for which
the “semiclassical” periodic orbit expansions yield the exact quantization.
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8. Atomic spectra Compute the helium spectrum from periodic orbit ex-
pansions (already accomplished by Wintgen and Tanner!).

9. Symmetries Include fermions, gauge fields into the periodic orbit theory.

10. Quantum field theory Develop quantum theory of systems with infinitely
many classically unstable degrees of freedom. Apply to (a) quark confine-
ment (b) early universe (c) the brain.

Conclusion

Good-bye. I am leaving because I am bored.
George Saunders’ dying words

The buttler did it.
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Appendix A

Linear stability of Hamiltonian
flows

A.1 Symplectic invariance

(M.J. Feigenbaum and P. Cvitanović)

The symplectic structure of Hamilton’s equations buys us much more
than the incompressibility, or the phase space volume conservation alluded to
above. We assume you are at home with Hamiltonian formalism. If you would
like to see the Hamilton’s equations derived, Hamilton’s original line of reasoning
is retraced in sect. 18.2.1. toSects-HamEqs The evolution equations for any p, q
dependent quantity Q = Q(p, q) are given by

dQ

dt
=

∂Q

∂qi

dqi
dt

+
∂Q

∂pi

dpi
dt

=
∂H

∂pi

∂Q

∂qi
− ∂Q

∂pi

∂H

∂qi
. (A.1)

As equations with this structure frequently arise for symplectic flows, it is con-
venient to introduce a notation for them, the Poisson bracket

{A,B} =
∂A

∂pi

∂B

∂qi
− ∂A

∂qi

∂B

∂pi
. (A.2)

In terms of the Poisson brackets the time evolution equation (A.1) takes the
compact form

dQ

dt
= {H,Q} . (A.3)

537



538 APPENDIX A. LINEAR STABILITY OF HAMILTONIAN FLOWS

We now recast the symplectic condition (3.18) in a form convenient for using the
symplectic constraints on J. Writing x(t) = x′ = [p′, q′] and the Jacobian matrix
and its inverse

J =

(
∂q′
∂q

∂q′
∂p

∂p′
∂q

∂p′
∂p

)
, J−1 =

( ∂q
∂q′

∂q
∂p′

∂p
∂q′

∂p
∂p′

)
, (A.4)

we can spell out the symplectic invariance condition (3.18):

∂q′k
∂qi

∂p′k
∂qj

− ∂p′k
∂qi

∂q′k
∂qj

= 0

∂q′k
∂pi

∂p′k
∂pj

− ∂p′k
∂pi

∂q′k
∂pj

= 0

∂q′k
∂qi

∂p′k
∂pj

− ∂p′k
∂qi

∂q′k
∂pj

= δij . (A.5)

From (3.19) we obtain

∂qi
∂q′j

=
∂p′j
∂pi

,
∂pi
∂p′j

=
∂q′j
∂qi

,
∂qi
∂p′j

= −
∂q′j
∂pi

,
∂pi
∂q′j

= −
∂p′j
∂qi

. (A.6)

Taken together, (A.6) and (A.5) imply that the flow conserves the {p, q} Poisson
brackets

{qi, qj} =
∂qi
∂p′k

∂qj
∂q′k

− ∂qj
∂p′k

∂qi
∂q′k

= 0

{pi, pj} = 0 , {pi, qj} = δij , (A.7)

that is, the transformations induced by a Hamiltonian flow are canonical, pre-
serving the form of the equations of motion. The first two relations are symmetric
under i, j interchange and yield D(D − 1)/2 constraints each; the last relation
yields D2 constraints. Hence only (2D)2−2D(D−1)/2−D2 = 2D2+D elements
of J are linearly independent, as it behooves group elements of the symplectic
group Sp(2D).

We have now succeeded in making the full set of constraints explicit - as we
shall see in sect. ??, this will enable us to implement dynamics in such a way
that the symplectic invariance will be automatically preserved.

Consider the symplectic product of two infinitesimal vectors

(δx, δx̂) = δxTωδx̂ = δpiδq̂i − δqiδp̂i

=
D∑
i=1

{oriented area in the (pi, qi) plane} . (A.8)
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Time t later we have

(δx′, δx̂′) = δxTJTωJδx̂ = δxTωδx̂ .

This has the following geometrical meaning. We imagine there is a reference
phase space point. We then define two other points infinitesimally close so that
the vectors δx and δx̂ describe their displacements relative to the reference point.
Under the dynamics, the three points are mapped to three new points which are
still infinitesimally close to one another. The meaning of the above expression
is that the symplectic area spanned by the three final points is the same as
that spanned by the inital points The integral (Stokes theorem) version of this
infinitesimal area invariance states that for Hamiltonian flows the D oriented
areas Vi bounded by D loops ΩVi, one per each (pi, qi) plane, are separately
conserved:

∫
V
dp ∧ dq =

∮
ΩV

p · dq = invariant . (A.9)

Remark A.1 The sign convention of the Poisson bracket. The Poisson
bracket is antisymmetric in its arguments and there is a freedom to define
it with the opposite sign convention. When such freedoms exist in physics,
it is certain that both conventions are in use and this is no exception. In
several texts you will see the right hand side of (A.2) defined as {B,A} so
that (A.3) is dQ

dt = {Q,H}. As long as one is consistent, there should be no
problem.

Remark A.2 The sign convention of ω. The overall sign of ω, the
symplectic invariant in (3.14), is set by the convention that the Hamil-
ton’s principal function (for energy conserving flows) is given by R(q, q′, t) =∫ q′
q

pidqi − Et. With this sign convention the action along a classical path
is minimal, and the kinetic energy of a free particle is positive.

A.2 Monodromy matrix for Hamiltonian flows

(G. Tanner)

It is not the Jacobian matrix of the flow, but the monodromy matrix,
which enters the trace formula. This matrix gives the time dependence of a dis-
placement perpendicular to the flow on the energy manifold. Indeed, we discover
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some trivial parts in the Jacobian matrix J. An initial displacement in the direc-
tion of the flow x = ω∇H(x) transfers according to δx(t) = xt(t)δt with δt time
independent. The projection of any displacement on δx on ∇H(x) is constant,
i.e. ∇H(x(t))δx(t) = δE. We get the equations of motion for the monodromy
matrix directly choosing a suitable local coordinate system on the orbit x(t) in
form of the (non singular) transformation U(x(t)):

J̃(x(t)) = U−1(x(t))J(x(t))U(x(0)) (A.10)

These lead to

˙̃J = L̃ J̃

with L̃ = U−1(LU− U̇) (A.11)

Note that the properties a) – c) are only fulfilled for J̃ and L̃, if U itself is
symplectic.
Choosing xE = ∇H(t)/|∇H(t)|2 and xt as local coordinates uncovers the two
trivial eigenvalues 1 of the transformed matrix in (A.10) at any time t. Setting
U = (xT

t , x
T
E , xT

1 , . . . , x
T
2d−2) gives

J̃ =


1 ∗ ∗ . . . ∗
0 1 0 . . . 0
0 ∗
...

... m
0 ∗

 ; L̃ =


0 ∗ ∗ . . . ∗
0 0 0 . . . 0
0 ∗
...

... l
0 ∗

 , (A.12)

The matrix m is now the monodromy matrix and the equation of motion are
given by

ṁ = l m. (A.13)

The vectors x1, . . . , x2d−2 must span the space perpendicular to the flow on the
energy manifold.

For a system with two degrees of freedom, the matrix U(t) can be written
down explicitly, i.e.

U(t) = (xt, x1, xE , x2) =


ẋ −ẏ −u̇/q2 −v̇/q2

ẏ ẋ −v̇/q2 u̇/q2

u̇ v̇ ẋ/q2 −ẏ/q2

v̇ −u̇ ẏ/q2 ẋ/q2

 (A.14)
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with xT = (x, y;u, v) and q = |∇H| = |ẋ|. The matrix U is non singular and
symplectic at every phase space point x (except the stagnation points ẋ = 0). The
matrix elements for l are given (A.16). One distinguishes 4 classes of eigenvalues
of m.

• stable or elliptic, if Λ = e±iπν and ν ∈]0, 1[.

• marginal, if Λ = ±1.

• hyperbolic, inverse hyperbolic, if Λ = e±λ, Λ = −e±λ; λ > 0 is called the
Lyapunov exponent of the periodic orbit.

• loxodromic, if Λ = e±u±iΨ with u and Ψ real. This is the most general case
possible only in systems with 3 or more degree of freedoms.

For 2 degrees of freedom, i.e. m is a (2×2) matrix, the eigenvalues are determined
by

λ =
Tr(m) ±

√
Tr(m)2 − 4
2

, (A.15)

i.e. Tr(m) = 2 separates stable and unstable behavior.

The l matrix elements for the local transformation (A.14) are

l̃11 =
1
q
[(h2x − h2y − h2u + h2v)(hxu − hyv) + 2(hxhy − huhv)(hxv + hyu)

−(hxhu + hyhv)(hxx + hyy − huu − hvv)]

l̃12 =
1
q2

[(h2x + h2v)(hyy + huu) + (h2y + h2u)(hxx + hvv)

−2(hxhu + hyhv)(hxu + hyv) − 2(hxhy − huhv)(hxy − huv)]
l̃21 = −(h2x + h2y)(huu + hvv) − (h2u + h2v)(hxx + hyy)

+2(hxhu − hyhv)(hxu − hyv) + 2(hxhv + hyhu)(hxv + hyu)
l̃22 = −̃l11, (A.16)

with hi, hij is the derivative of the Hamiltonian H with respect to the phase space
coordinates and q = |∇H|2.
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Appendix B

Symbolic dynamics techniques

In sect. B.1 we collect the basic notions and definitions of symbolic dynamics. The
kneading theory for unimodal mappings is developed in sect. B.2. Pruning theory
for Bernoulli shifts (an exercise mostly of formal interest) is discussed in sect. ??.
The prime factorization for dynamical itineraries of sect. B.3 explains the sense
in which prime cycles are “prime” - the product structure of zeta functions is a
consequence of the unique factorization property of symbol sequences.

B.1 Symbolic dynamics, basic notions

We associate to every initial point ξ ∈ M the future itinerary, a sequence of
symbols S+(ξ) = s1s2s3 · · · which indicates the order in which the regions are
visited. If the trajectory x1, x2, x3, . . . of the initial point ξ is generated by

xn+1 = f(xn) , (B.1)

the itinerary is given by the symbol sequence

sn = s if xn ∈ Ms . (B.2)

Similarly, the past itinerary S-(ξ) = · · · s−2s−1s0 describes the history of ξ, the
order in which the regions were visited before arriving to the point ξ. To each
point ξ in the dynamical space we thus associate a bi-infinite itinerary

S(ξ) = (sk)k∈Z = S-.S+ = · · · s−2s−1s0.s1s2s3 · · · . (B.3)
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The itinerary will be finite for a scattering trajectory, entering and then escaping
M after a finite time, infinite for a trapped trajectory, and infinitely repeating
for a periodic trajectory.

The set of all bi-infinite itineraries that can be formed from the letters of the
alphabet A is called the full shift

AZ = {(sk)k∈Z : sk ∈ A for all k ∈ Z} . (B.4)

The jargon is not thrilling, but this is how professional symbolic dynamicists talk
to each other. We will avoid the jargon to the extent we can.

We shall refer to this set of all conceivable itineraries as the covering symbolic
dynamics. The name shift is descriptive of the way the dynamics acts on these
sequences. As is clear from the definition (B.2), a forward iteration x → x′ = f(x)
shifts the entire itinerary to the left through the “decimal point”

σ(· · · s−2s−1s0.s1s2s3 · · ·) = · · · s−2s−1s0s1.s2s3 · · · , (B.5)

demoting the current partition label s1 from the future S+ to the “has been”
itinerary S-. The inverse shift σ−1 shifts the entire itinerary one step to the
right.

A finite sequence b = sksk+1 · · · sk+nb−1 of symbols from A is called a block of
length nb. A phase space trajectory is periodic if it returns to the starting position
and momentum in phase space; in the shift space the trajectory is periodic if its
itinerary is infinitely repeating block p∞. We shall refer to the set of periodic
points that belong to a given periodic orbit as a cycle

p = s1s2 · · · snp = {xs1s2···snp , xs2···snps1 , · · · , xsnps1···snp−1} . (B.6)

A cycle is by definition invariant under cyclic permutations of the symbols in the
repeating block. A bar over a finite block of symbols denotes a periodic itinerary
with infinitely repeating basic block; we shall omit the bar whenever it is clear
from the context that the trajectory is periodic. A prime cycle p of length np is
a single traversal of the orbit; its label is a block of np symbols that cannot be
written as a repeat of a shorter block (sometimes such cycle is in literature called
primitive; we shall refer to it as “prime” throughout this text).

A partition is called generating if every infinite symbol sequence corresponds
to a distinct point in the phase space. A partition too coarse would assign the
same symbol sequence to distinct dynamical trajectories. To avoid that, we
often find it convenient to work with partitions finer than strictly necessary.
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Ideally the dynamics in the refined partition assigns a unique infinite itinerary
· · · s−2s−1s0.s1s2s3 · · · to each distinct trajectory, but there might exist full shift
symbol sequences (B.4) which are not realized as trajectories; such sequences
are called inadmissible, and we say that the symbolic dynamics is pruned. The
word is suggested by “pruning” of branches corresponding to forbidden sequences
for symbolic dynamics organized hierarchically into a tree structure, as will be
explained in sect. 7.7.1.

Mapping f : M → M together with a partition A induces a topological
dynamics (Σ, σ), where the subshift

Σ = {(sk)k∈Z} , (B.7)

is the set of all admissible infinite itineraries, and σ : Σ → Σ is the shift operator
(B.5). The designation “subshift” comes form the fact that Σ ⊂ AZ is the subset
of the full shift (B.4). One of our principal tasks in applying the theory to
dynamical systems that occur in nature will be to determine Σ, the set of all
bi-infinite itineraries S that are actually realized by the given dynamical system.

If the dynamics is pruned, the alphabet must be supplemented by a gram-
mar, a set of pruning rules. When some such sequences are pruned, it is often
convenient to parse the symbolic strings into words of variable length - this is
called coding. If the grammar can be stated as a finite number of pruning rules,
each forbidding a block of finite length, we can always construct a finite Markov
partition (7.2) by replacing finite length words of the original partition by letters
of a new alphabet. In particular, if the longest forbidden block is of length M +1,
we say that the symbolic dynamics is a shift of finite type with M -step memory.
In that case a new alphabet, with each new letter given by an admissible block
of at most length M , suffices to implement the grammar rules by setting Tij = 0
in (??) for forbidden transitions. The topological dynamical system (Σ, σ) for
which all admissible itineraries are generated by a finite transition matrix

Σ =
{
(sk)k∈Z : Tsksk+1

= 1 for all k
}

(B.8)

is called a subshift of finite type. Such systems can be represented by finite
directed Markov graphs and are particularly easy to handle. We shall study
them in more detail in sect. 7.7.1.

Remark B.1 Markov partitions, finite and infinite. A construction of
finite Markov partitions is described in refs. [52]. They are discussed in
refs. [53], as well as in the innumerably many other references.

If two regions in a Markov partition are not disjoint but share a bound-
ary, the boundary trajectories require special treatment in order to avoid
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overcounting, see remark ?? and sect. 15.3.1. If the image of a trial parti-
tion region cuts across only a part of another trial region and thus violates
the Markov partition condition (7.2), a further refinement of the partition
is needed to distinguish distinct trajectories - fig. 7.10 is an example of such
refinements. For generic flows the refinements might never stop, and almost
always we might have to deal with infinite Markov partitions, such as those
that will be discussed in sect. 9.6.

Remark B.2 Inflating Markov graphs. In the above examples the sym-
bolic dynamics has been encoded by labelling links in the Markov graph.
Alternatively one can encode the dynamics by labelling the nodes, as in
fig. 7.12, where the 4 nodes refer to 4 Markov partition regions {M00,M01,M10,M11},
and the 8 links to the 8 non-zero entries in the 2-step memory transition ma-
trix (7.18).

Remark B.3 Formal languages. Finite Markov graphs or finite au-
tomata are discussed in the present context in refs. [8, 9, 10, 41]. They
belong to the category of regular languages. A good hands-on introduction
to symbolic dynamics is given in ref. [2].

Remark B.4 Adjacency matrix. If the graph is not directed, the cor-
responding matrix is called the adjacency matrix. Adjacency matrix is sym-
metric and can be diagonalized. However, all Markov graphs we are familiar
with are directed graphs.

B.2 Topological zeta functions for infinite subshifts

(Per Dahlqvist)

The Markov graph methods outlined in chapter 7 are well suited for
symbolic dynamics of finite subshift type. A sequence of well defined rules leads
to the answer, the topological zeta function, which turns out to be a polynomial.
For infinite subshifts one would have to go through an infinite sequence of graph
constructions and it is of course very difficult to make any asymptotic statements
about the outcome. Luckily, for some simple systems the goal can be reached by
much simpler means. This is the case for unimodal maps.

We will restrict our attention to the topological zeta function for unimodal
maps with one external parameter fλ(x) = λg(x). As usual, symbolic dynamics is
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I(C) ζ−1
top(z)/(1 − z)

1C
101C
1011101C
H∞(1)

∏∞
n=0(1 − z2n

)
10111C
1011111C
101∞ (1 − 2z2)/(1 + z)
10111111C
101111C
1011C
101101C
10C (1 − z − z2)
10010C
100101C

I(C) ζ−1
top(z)/(1 − z)

1001C
100111C
10011C
100110C
100C
100010C
10001C
100011C
1000C
100001C
10000C
100000C
10∞ (1 − 2z)/(1 − z)

Table B.1: All ordered kneading sequences up to length seven, as well as some longer
kneading sequences. Harmonic extension H∞(1) is defined below.

introduced by mapping a time series . . . xi−1xixi+1 . . . onto a sequence of symbols
. . . si−1sisi+1 . . . where

si = 0 xi < xc

si = C xi = xc

si = 1 xi > xc (B.9)

and xc is the critical point of the map (that is maximum of g). In addition to
the usual binary alphabet we have added a symbol C for the critical point. The
kneading sequence Kλ is the itinerary of the critical point. The crucial observa-
tion is that no periodic orbit can have a topological coordinate (see sect. B.2.1)
beyond that of the kneading sequence. The kneading sequence thus inserts a
border in the list of periodic orbits (ordered according to maximal topological
coordinate), cycles up to this limit are allowed, all beyond are pruned. All uni-
modal maps (obeying some further constraints) with the same kneading sequence
thus have the same set of periodic orbitsand the same topological zeta function.
The topological coordinate of the kneading sequence increases with increasing λ.

The kneading sequence can be of one of three types

1. It maps to the critical point again, after n iterations. If so, we adopt the
convention to terminate the kneading sequence with a C, and refer to the
kneading sequence as finite.

2. Preperiodic, that is it is infinite but with a periodic tail.

3. Aperiodic.
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As an archetype unimodal map we will choose the tent map

x �→ f(x) =
{

λx x ∈ [0, 1/2]
λ(1 − x) x ∈ (1/2, 1] , (B.10)

where the parameter λ ∈ (1, 2]. The topological entropy is h = log λ. This can
be realized from the fact that the dynamical zeta function

1/ζ(z) =
∏
p

(
1 − znp

|Λp|

)
=
∏
p

(
1 −
( z
λ

)np)
= 1/ζtop(z/λ)

has its leading zero at z = 1.

The set of periodic points of the tent map is countable. A consequence of
this fact is that the set of parameter values for which the kneading sequence is
periodic or preperiodic are countable and thus of measure zero and consequently
the kneading sequence is aperiodic for almost all λ. For general unimodal maps
the corresponding statement is that the kneading sequence is aperiodic for almost
all topological entropies.

For a given periodic kneading sequence of period n, Kλ = PC =
s1s2 . . . sn−1C there is a simple expansion for the topological zeta function. Then
the expanded zeta function is a polynomial of degree n

1/ζtop(z) =
∏
p

(1 − znp ) = (1 − z) ·
n−1∑
i=0

aiz
i , ai =

i∏
j=1

(−1)sj (B.11)

and a0 = 1.

Aperiodic and preperiodic kneading sequences are accounted for by simply
replacing n by ∞.

Example. Consider as an example the kneading sequence Kλ = 10C. From
(B.11) we get the topological zeta function 1/ζtop(z) = (1 − z) · (1 − z − z2),
see table B.1. This can also be realized by redefining the alphabet. The only
forbidden subsequence is 100. All allowed periodic orbits, except 0, can can be
built from a alphabet with letters 10 and 1. We write this alphabet as {10, 1; 0},
yielding the topological zeta function 1/ζtop(z) = (1− z)(1− z− z2). The leading
zero is the inverse golden mean z0 = (

√
5 − 1)/2.

Example. As another example we consider the preperiodic kneading se-
quence Kλ = 101∞. From (B.11) we get the topological zeta function 1/ζtop(z) =
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(1 − z) · (1 − 2z2)/(1 + z), see table B.1. This can again be realized by redefin-
ing the alphabet. There are now an infinite number of forbidden subsequences,
namely 1012n0 where n ≥ 0. These pruning rules are respected by the alphabet
{012n+1; 1, 0}, yielding the topological zeta function above. The pole in the zeta
function ζ−1top(z) is a consequence of the infinite alphabet.

An important consequence of (B.11) is that the sequence {ai} has a periodic
tail if and only if the kneading sequence has one (however, their period may differ
by a factor of two). We know already that the kneading sequence is aperiodic for
almost all λ.

The analytic structure of the function represented by the infinite series
∑

aizi
with unity as radius of convergence, depends on whether the tail of {ai} is periodic
or not. If the period of the tail is N we can write

1/ζtop(z) = p(z) + q(z)(1 + zN + z2N . . .) = p(z) +
q(z)

1 − zN
,

for some polynomials p(z) and q(z). The result is a set of poles spread out along
the unit circle. This applies to the preperiodic case. An aperiodic sequence of
coefficients would formally correspond to infinite N and it is natural to assume
that the singularities will fill the unit circle. There is indeed a theorem ensuring
that this is the case [75], provided the ai’s can only take on a finite number
of values. The unit circle becomes a natural boundary, already apparent in a
finite polynomial approximations to the topological zeta function, as in fig. 9.2.
A function with a natural boundary lacks an analytic continuation outside it.

To conclude: The topological zeta function 1/ζtop for unimodal maps has the
unit circle as a natural boundary for almost all topological entropies and for the
tent map (B.10), for almost all λ.

Let us now focus on the relation between the analytic structure of the topolo-
gical zeta function and the number of periodic orbits, or rather (9.5), the number
Nn of fixed points of fn(x). The trace formula is (see sect. 9.4)

Nn = trTn =
1

2πi

∮
γr

dz z−n d

dz
log ζ−1top

where γr is a (circular) contour encircling the origin z = 0 in clockwise direction.
Residue calculus turns this into a sum over zeros z0 and poles zp of ζ−1top

Nn =
∑

z0:r<|z0|<R

z−n
0 −

∑
zp:r<|zp|<R

z−n
0 +

1
2πi

∮
γR

dz z−n d

dz
log ζ−1top
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and a contribution from a large circle γR. For meromorphic topological zeta func-
tions one may let R → ∞ with vanishing contribution from γR, and Nn will be a
sum of exponentials.

The leading zero is associated with the topological entropy, as discussed in
chapter 7.

We have also seen that for preperiodic kneading there will be poles on the
unit circle.

To appreciate the role of natural boundaries we will consider a (very) special
example. Cascades of period doublings is a central concept for the description of
unimodal maps. This motivates a close study of the function

Ξ(z) =
∞∏
n=0

(1 − z2
n
) . (B.12)

This function will appear again when we derive (B.11).

The expansion of Ξ(z) begins as Ξ(z) = 1−z−z2+z3−z4+z5 . . .. The radius
of convergence is obviously unity. The simple rule governing the expansion will
effectively prohibit any periodicity among the coefficients making the unit circle
a natural boundary.

It is easy to see that Ξ(z) = 0 if z = exp(2πm/2n) for any integer m and
n. (Strictly speaking we mean that Ξ(z) → 0 when z → exp(2πm/2n) from
inside). Consequently, zeros are dense on the unit circle. One can also show
that singular points are dense on the unit circle, for instance |Ξ(z)| → ∞ when
z → exp(2πm/3n) for any integer m and n.

As an example, the topological zeta function at the accumulation point of the
first Feigenbaum cascade is ζ−1top(z) = (1 − z)Ξ(z). Then Nn = 2l+1 if n = 2l,
otherwise Nn = 0. The growth rate in the number of cycles is anything but
exponential. It is clear that Nn cannot be a sum of exponentials, the contour γR
cannot be pushed away to infinity, R is restricted to R ≤ 1 and Nn is entirely
determined by

∫
γR

which picks up its contribution from the natural boundary.

We have so far studied the analytic structure for some special cases and we
know that the unit circle is a natural boundary for almost all λ. But how does
it look out there in the complex plane for some typical parameter values? To
explore that we will imagine a journey from the origin z = 0 out towards the unit
circle. While traveling we let the parameter λ change slowly. The trip will have
a distinct science fiction flavor. The first zero we encounter is the one connected
to the topological entropy. Obviously it moves smoothly and slowly. When we
move outward to the unit circle we encounter zeros in increasing densities. The
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closer to the unit circle they are, the wilder and stranger they move. They move
from and back to the horizon, where they are created and destroyed through
bizarre bifurcations. For some special values of the parameter the unit circle
suddenly gets transparent and and we get (infinitely) short glimpses of another
world beyond the horizon.

We end this section by deriving eqs (B.13) and (B.14). The impenetrable
prose is hopefully explained by the accompanying tables.

We know one thing from chapter 7, namely for that finite kneading sequence
of length n the topological polynomial is of degree n. The graph contains a node
which is connected to itself only via the symbol 0. This implies that a factor
(1 − z) may be factored out and ζtop(z) = (1 − z)

∑n−1
i=0 aiz

i. The problem is to
find the coefficients ai.

periodic orbits finite kneading sequences
P1 = A∞(P )

PC
P0

P0PC
P0P1

P0P1P0PC
↓ ↓
H∞(P ) H∞(P )

Table B.2: Relation between periodic orbits and finite kneading sequences in a harmonic
cascade. The string P is assumed to contain an odd number of 1’s.

The ordered list of (finite) kneading sequences table B.1 and the ordered list
of periodic orbits (on maximal form) are intimately related. In table B.2 we
indicate how they are nested during a period doubling cascade. Every finite
kneading sequence PC is bracketed by two periodic orbits, P1 and P0. We
have P1 < PC < P0 if P contains an odd number of 1’s, and P0 < PC <
P1 otherwise. From now on we will assume that P contains an odd number
of 1’s. The other case can be worked out in complete analogy. The first and
second harmonic of PC are displayed in table B.2. The periodic orbit P1 (and
the corresponding infinite kneading sequence) is sometimes referred to as the
antiharmonic extension of PC (denoted A∞(P )) and the accumulation point of
the cascade is called the harmonic extension of PC [61] (denoted H∞(P )).

A central result is the fact that a period doubling cascade of PC is not
interfered by any other sequence. Another way to express this is that a kneading
sequence PC and its harmonic are adjacent in the list of kneading sequences to
any order.

Table B.3 illustrates another central result in the combinatorics of kneading
sequences. We suppose that P1C and P2C are neighbors in the list of order 5
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I(C) ζ−1top(z)/(1 − z)
P1 = 100C 1 − z − z2 − z3

H∞(P1) = 10001001100 . . . 1 − z − z2 − z3 − z4 + z5 + z6 + z7 − z8 . . .
P ′ = 10001C 1 − z − z2 − z3 − z4 + z5

A∞(P2) = 1000110001 . . . 1 − z − z2 − z3 − z4 + z5 − z6 − z7 − z8 . . .
P2 = 1000C 1 − z − z2 − z3 − z4

Table B.3: Example of a step in the iterative construction of the list of kneading sequences
PC.

(meaning that the shortest finite kneading sequence P ′C between P1C and P2C is
longer than 5.) The important result is that P ′ (of length n′ = 6) has to coincide
with the first n′ − 1 letters of both H∞(P1) and A∞(P2). This is exemplified in
the left column of table B.3. This fact makes it possible to generate the list of
kneading sequences in an iterative way.

The zeta function at the accumulation point H∞(P1) is

ζ−1P1
(z) · Ξ(zn1) , (B.13)

and just before A∞(P2)

ζ−1P2
(z)/(1 − zn2) . (B.14)

A short calculation shows that this is exactly what one would obtain by applying
(B.11) to the antiharmonic and harmonic extensions directly, provided that it
applies to ζ−1P1

(z) and ζ−1P2
(z). This is the key observation.

Recall now the product representation of the zeta function ζ−1 =
∏

p(1−znp).
We will now make use of the fact that the zeta function associated with P ′C
is a polynomial of order n′. There is no periodic orbit of length shorter than
n′ + 1 between H∞(P1) and A∞(P2). It thus follows that the coefficients of this
polynomial coincides with those of (B.13) and (B.14), see Table B.3. We can thus
conclude that our rule can be applied directly to P ′C.

This can be used as an induction step in proving that the rule can be applied
to every finite and infinite kneading sequences.

Remark B.5 How to prove things. The explicit relation between the
kneading sequence and the coefficients of the topological zeta function is not
commonly seen in the literature. The result can proven by combining some
theorems of Milnor and Thurston [62]. That approach is hardly instructive
in the present context. Our derivation was inspired by Metropolis, Stein and
Stein classical paper [61]. For further detail, consult [74].
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B.2.1 Periodic orbits of unimodal maps

A periodic point (or a cycle point) xi belonging to a cycle of period n is a real
solution of

fn(xi) = f(f(. . . f(xi) . . .)) = xi , i = 0, 1, 2, . . . , n − 1 (B.15)

The nth iterate of a unimodal map crosses the diagonal at most 2n times. Simi-
larly, the backward and the forward Smale horseshoes intersect at most 2n times,
and therefore there will be 2n or fewer periodic points of length n. A cycle of
length n corresponds to an infinite repetition of a length n symbol string, cus-
tomarily indicated by a line over the string:

S = (s1s2s3 . . . sn)∞ = s1s2s3 . . . sn .

If s1s2 . . . sn is the symbol string associated with x0, its cyclic permutation
sksk+1 . . . sns1 . . . sk−1 corresponds to the point xk−1 in the same cycle. A cycle
p is called prime if its itinerary S cannot be written as a repetition of a shorter
block S′.

Each cycle yields n rational values of γ. It follows from (??) that if the
repeating string s1, s2, . . . sn contains an odd number “1”s, the string of well
ordered symbols w1w2 . . . wn has to be of the double length before it repeats
itself. The value γ is a geometrical sum which we can write as the finite sum

γ(s1s2 . . . sn) =
22n

22n − 1

2n∑
t=1

wt/2t

Using this we can calculate the γ̂(S) for all short cycles. For orbits up to length
5 this is done in table ??.

Here we give explicit formulas for the topological coordinate of a periodic
point, given its itinerary. For the purpose of what follows it is convenient to
compactify the itineraries by replacing the binary alphabet si = {0, 1} by the
infinite alphabet

{a1, a2, a3, a4, · · · ; 0} = {1, 10, 100, 1000, . . . ; 0} . (B.16)

In this notation the itinerary S = aiajakal · · · and the corresponding topological
coordinate (7.9) are related by γ(S) = .1i0j1k0l · · ·. For example:

S = 111011101001000 . . . = a1a1a2a1a1a2a3a4 . . .
γ(S) = .101101001110000 . . . = .1101120111021304 . . .
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Cycle points whose itineraries start with w1 = w2 = . . . = wi = 0, wi+1 = 1
remain on the left branch of the tent map for i iterations, and satisfy γ(0 . . . 0S) =
γ(S)/2i.

A periodic point (or a cycle point) xi belonging to a cycle of period n is a real
solution of

fn(xi) = f(f(. . . f(xi) . . .)) = xi , i = 0, 1, 2, . . . , n − 1 . (B.17)

The nth iterate of a unimodal map has at most 2n monotone segments, and
therefore there will be 2n or fewer periodic points of length n. A periodic orbit
of length n corresponds to an infinite repetition of a length n symbol string,
customarily indicated by a line over the string:

S = (s1s2s3 . . . sn)∞ = s1s2s3 . . . sn .

As all itineraries are infinite, we shall adopt convention that a finite string
itinerary S = s1s2s3 . . . sn stands for infinite repetition of a finite block, and
routinely omit the overline. If s1s2 . . . sn is the symbol string associated with
x0, its cyclic permutation sksk+1 . . . sns1 . . . sk−1 corresponds to the point xk−1
in the same cycle. A periodic orbit p is called prime if its itinerary S cannot be
written as a repetition of a shorter block S′.

Periodic points correspond to rational values of γ, but we have to distinguish
even and odd cycles. The even (odd) cycles contain even (odd) number of ai in
the repeating block, with periodic points given by

γ(aiaj · · · akaJ) =

{
2n

2n−1 .1
i0j · · · 1k even

1
2n+1 (1 + 2n × .1i0j · · · 1J) odd

, (B.18)

where n = i + j + · · · + k + R is the cycle period. The maximal value cycle point
is given by the cyclic permutation of S with the largest ai as the first symbol,
followed by the smallest available aj as the next symbol, and so on. For example:

γ̂(1) = γ(a1) = .10101 . . . = .10 = 2/3
γ̂(10) = γ(a2) = .1202 . . . = .1100 = 4/5
γ̂(100) = γ(a3) = .1303 . . . = .111000 = 8/9
γ̂(101) = γ(a2a1) = .1201 . . . = .110 = 6/7

An example of a cycle where only the third symbol determines the maximal value
cycle point is

γ̂(1101110) = γ(a2a1a2a1a1) = .11011010010010 = 100/129 .

Maximal values of all cycles up to length 5 are given in table!?
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B.3 Prime factorization for dynamical itineraries

The Möbius function is not only a number-theoretic function, but can be
used to manipulate ordered sets of noncommuting objects such as symbol strings.
Let P = {p1, p2, p3, · · ·} be an ordered set of prime strings, and

N = {n} =
{
pk1
1 pk2

2 pk3
3 · · · pkjj

}
,

j ∈ N, ki ∈ Z+, be the set of all strings n obtained by the ordered concatenation of
the “primes” pi. By construction, every string n has a unique prime factorization.
We say that a string has a divisor d if it contains d as a substring, and define the
string division n/d as n with the substring d deleted. Now we can do things like
this: defining tn := tk1

p1
tk2
p2

· · · tkjpj we can write the inverse dynamical zeta function
(11.2) as

∏
p

(1 − tp) =
∑
n

µ(n)tn ,

and, if we care (we do in the case of the Riemann zeta function), the dynamical
zeta function as .

∏
p

1
1 − tp

=
∑
n

tn (B.19)

A striking aspect of this formula is its resemblance to the factorization of
natural numbers into primes: the relation of the cycle expansion (B.19) to the
product over prime cycles is analogous to the Riemann zeta (exercise 10.11)
represented as a sum over natural numbers vs. its Euler product representation.

We now implement this factorization explicitly by decomposing recursively
binary strings into ordered concatenations of prime strings. There are 2 strings
of length 1, both prime: p1 = 0, p2 = 1. There are 4 strings of length 2: 00, 01, 11,
10. The first three are ordered concatenations of primes: 00 = p21, 01 = p1p2, 11 =
p22; by ordered concatenations we mean that p1p2 is legal, but p2p1 is not. The
remaining string is the only prime of length 2, p3 = 10. Proceeding by discarding
the strings which are concatenations of shorter primes pk1

1 pk2
2 · · · pkjj , with primes

lexically ordered, we generate the standard list of primes, in agreement with
table 7.1: 0, 1, 10, 101, 100, 1000, 1001, 1011, 10000, 10001, 10010, 10011, 10110,
10111, 100000, 100001, 100010, 100011, 100110, 100111, 101100, 101110, 101111,
. . .. This factorization is illustrated in table B.4.
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factors string
p1 0
p2 1

p21 00
p1p2 01
p22 11
p3 10

p31 000
p21p2 001
p1p

2
2 011

p32 111
p1p3 010
p2p3 110
p4 100
p5 101

factors string
p41 0000
p31p2 0001
p21p

2
2 0011

p1p
3
2 0111

p42 1111
p21p3 0010
p1p2p3 0110
p22p3 1110
p23 1010
p1p4 0100
p2p4 1100
p1p5 0101
p2p5 1101
p6 1000
p7 1001
p8 1011

factors string
p51 00000
p41p2 00001
p31p

2
2 00011

p21p
3
2 00111

p1p
4
2 01111

p52 11111
p31p3 00010
p21p2p3 00110
p1p

2
2p3 01110

p32p3 11110
p1p

2
3 01010

p2p
2
3 11010

p21p4 00100
p1p2p4 01100
p22p4 11100
p3p4 10100

factors string
p21p5 00101
p1p2p5 01101
p22p5 11101
p3p5 10101
p1p6 01000
p2p6 11000
p1p7 01001
p2p7 11001
p1p8 01011
p2p8 11011
p9 10000
p10 10001
p11 10010
p12 10011
p13 10110
p14 10111

Table B.4: Factorization of all periodic points strings up to length 5 into ordered concate-
nations pk1

1 pk2
2 · · · pkn

n of prime strings p1 = 0, p2 = 1, p3 = 10, p4 = 100, . . . , p14 = 10111.

B.3.1 Prime factorization for spectral determinants

Following sect. B.3, the spectral determinant cycle expansions is obtained
by expanding F as a multinomial in prime cycle weights tp

F =
∏
p

∞∑
k=0

Cpkt
k
p =

∞∑
k1k2k3···=0

τ
p
k1
1 p

k2
2 p

k3
3 ··· (B.20)

where the sum goes over all pseudocycles. In the above we have defined

τ
p
k1
1 p

k2
2 p

k3
3 ··· =

∞∏
i=1

Cpiki
tkipi . (B.21)

10.11
on p. 216

A striking aspect of the spectral determinant cycle expansion is its resem-
blance to the factorization of natural numbers into primes: as we already noted
in sect. B.3, the relation of the cycle expansion (B.20) to the product formula
(10.10) is analogous to the Riemann zeta represented as a sum over natural num-
bers vs. its Euler product representation.

This is somewhat unexpected, as the cycle weights (for example, the stability
eigenvalues (??)) factorize exactly with respect to r repetitions of a prime cycle,
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tpp...p = trp, but only approximately (shadowing) with respect to subdividing a
string into prime substrings, tp1p2 ≈ tp1tp2 .

The coefficients Cpk have a simple form only in 1-d, given by the Euler formula
(10.38). In higher dimensions Cpk can be evaluated by expanding (10.10), F (z) =∏

p Fp, where

Fp = 1 −
( ∞∑

r=1

trp
rdp,r

)
+

1
2

( ∞∑
r=1

trp
rdp,r

)2
− . . . .

Expanding and recollecting terms, and suppressing the p cycle label for the mo-
ment, we obtain

Fp =
∞∑
r=1

Ckt
k, Ck = (−)kck/Dk,

Dk =
k∏

r=1

dr =
d∏

a=1

k∏
r=1

(1 − ur
a) (B.22)

where evaluation of ck requires a certain amount of not too luminous algebra:

c0 = 1
c1 = 1

c2 =
1
2

(
d2
d1

− d1

)
=

1
2

(
d∏

a=1

(1 + ua) −
d∏

a=1

(1 − ua)

)

c3 =
1
3!

(
d2d3
d21

+ 2d1d2 − 3d3

)
=

1
6

(
d∏

a=1

(1 + 2ua + 2u2a + u3a)

+2
d∏

a=1

(1 − ua − u2a + u3a) − 3
d∏

a=1

(1 − u3a)

)

etc.. For example, for a general 2-dimensional map we have

Fp = 1 − 1
D1

t +
u1 + u2

D2
t2 − u1u2(1 + u1)(1 + u2) + u31 + u32

D3
t3 + . . . .(B.23)

We discuss the convergence of such cycle expansions in sect. E.1.
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With τ
p
k1
1 p

k2
2 ···pknn defined as above, the prime factorization of symbol strings is

unique in the sense that each symbol string can be written as a unique concatena-
tion of prime strings, up to a convention on ordering of primes. This factorization
is a nontrivial example of the utility of generalized Möbius inversion, sect. B.3.

How is the factorization of sect. B.3 used in practice? Suppose we have com-
puted (or perhaps even measured in an experiment) all prime cycles up to length
n, that is we have a list of tp’s and the corresponding Jacobian matrix eigen-
values Λp,1,Λp,2, . . .Λp,d. A cycle expansion of the Selberg product is obtained
by generating all strings in order of increasing length j allowed by the symbolic
dynamics and constructing the multinomial

F =
∑
n

τn (B.24)

where n = s1s2 · · · sj , si range over the alphabet, in the present case {0, 1}.
Factorizing every string n = s1s2 · · · sj = pk1

1 pk2
2 · · · pkjj as in table B.4, and sub-

stituting τ
p
k1
1 p

k2
2 ··· we obtain a multinomial approximation to F . For example,

τ001001010101 = τ001 001 01 01 01 = τ0012τ013 , and τ013 , τ0012 are known functions of
the corresponding cycle eigenvalues. The zeros of F can now be easily determined
by standard numerical methods. The fact that as far as the symbolic dynamics
is concerned, the cycle expansion of a Selberg product is simply an average over
all symbolic strings makes Selberg products rather pretty.

To be more explicit, we illustrate the above by expressing binary strings as
concatenations of prime factors. We start by computing Nn, the number of terms
in the expansion (B.20) of the total cycle length n. Setting Cpkt

k
p = znpk in (B.20),

we obtain

∞∑
n=0

Nnz
n =

∏
p

∞∑
k=0

znpk =
1∏

p(1 − znp)
.

So the generating function for the number of terms in the Selberg product is the
topological zeta function. For the complete binary dynamics we have Nn = 2n

contributing terms of length n:

ζtop =
1∏

p(1 − znp)
=

1
1 − 2z

=
∞∑
n=0

2nzn

Hence the number of distinct terms in the expansion (B.20) is the same as the
number of binary strings, and conversely, the set of binary strings of length n
suffices to label all terms of the total cycle length n in the expansion (B.20).
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B.4 Counting curvatures

One consequence of the finitness of topological polynomials is that the
contributions to curvatures at every order are even in number, half with positive
and half with negative sign. For instance, for complete binary labelling (11.5),

c4 = −t0001 − t0011 − t0111 − t0t01t1

+ t0t001 + t0t011 + t001t1 + t011t1 . (B.25)

We see that 23 terms contribute to c4, and exactly half of them appear with a
negative sign - hence if all binary strings are admissible, this term vanishes in the
counting expression. B.2

on p. 560

Such counting rules arise from the identity

∏
p

(1 + tp) =
∏
p

1 − tp
2

1 − tp
. (B.26)

Substituting tp = znp and using (9.14) we obtain for unrestricted symbol dynam-
ics with N letters

∞∏
p

(1 + znp) =
1 − Nz2

1 − Nz
= 1 + Nz +

∞∑
k=2

zk
(
Nk − Nk−1

)

The zn coefficient in the above expansion is the number of terms contributing
to cn curvature, so we find that for a complete symbolic dynamics of N symbols
and n > 1, the number of terms contributing to cn is (N − 1)Nk−1 (of which half
carry a minus sign). B.4

on p. 561

We find that for complete symbolic dynamics of N symbols and n > 1, the
number of terms contributing to cn is (N − 1)Nn−1. So, superficially, not much
is gained by going from periodic orbits trace sums which get Nn contributions of
n to the curvature expansions with Nn(1 − 1/N). However, the point is not the
number of the terms, but the cancellations between them.

printed August 24, 2000 ∼DasBuch/book/chapter/appendSymb.tex 23mar98



560 APPENDIX B. SYMBOLIC DYNAMICS TECHNIQUES

Exercises

B.1 Lefschetz zeta function. Elucidate the relation betveen the topological
zeta function and the Lefschetz zeta function. This should help make sense of sect. ??.

B.2 Counting the 3-disk pinball counterterms. Verify that the number of
terms in the 3-disk pinball curvature expansion (11.30) is given by

∏
p

(1 + tp) =
1 − 3z4 − 2z6

1 − 3z2 − 2z3
= 1 + 3z2 + 2z3 +

z4(6 + 12z + 2z2)
1 − 3z2 − 2z3

= 1 + 3z2 + 2z3 + 6z4 + 12z5 + 20z6 + 48z7 + 84z8 + 184z9 + . . . .(B.27)

This means that, for example, c6 has a total of 20 terms, in agreement with the explicit
3-disk cycle expansion (11.31).

B.3 Cycle expansion denominators∗∗. Prove that the denominator of ck is
indeed Dk, as asserted (B.22).

B.4 Counting subsets of cycles. The techniques developed above can be
generalized to counting subsets of cycles. Consider the simplest example of a dynamical
system with a complete binary tree, a repeller map (7.6) with two straight branches,
which we label 0 and 1. Every cycle weight for such map factorizes, with a factor t0 for
each 0, and factor t1 for each 1 in its symbol string. The transition matrix traces (9.4)
collapse to tr(T k) = (t0 + t1)k, and 1/ζ is simply

∏
p

(1 − tp) = 1 − t0 − t1 (B.28)

Substituting into the identity

∏
p

(1 + tp) =
∏
p

1 − tp
2

1 − tp
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we obtain

∏
p

(1 + tp) =
1 − t20 − t21
1 − t0 − t1

= 1 + t0 + t1 +
2t0t1

1 − t0 − t1

= 1 + t0 + t1 +
∞∑
n=2

n−1∑
k=1

2
(
n − 2
k − 1

)
tk0t

n−k
1 . (B.29)

Hence for n ≥ 2 the number of terms in the expansion ?! with k 0’s and n − k 1’s in
their symbol sequences is 2

(
n−2
k−1

)
. This is the degeneracy of distinct cycle eigenvalues in

fig.?!; for systems with non-uniform hyperbolicity this degeneracy is lifted (see fig. ?!).

In order to count the number of prime cycles in each such subset we denote with
Mn,k (n = 1, 2, . . . ; k = {0, 1} for n = 1; k = 1, . . . , n − 1 for n ≥ 2) the number of
prime n-cycles whose labels contain k zeros, use binomial string counting and Möbius
inversion and obtain

M1,0 = M1,1 = 1

nMn,k =
∑
m
∣∣n

k

µ(m)
(
n/m

k/m

)
, n ≥ 2 , k = 1, . . . , n − 1

where the sum is over all m which divide both n and k.

printed August 24, 2000 ∼DasBuch/book/Problems/exerAppeSymb.tex 21oct98





Appendix C

Applications

Man who says it cannot be done should not interrupt man
doing it.

Old Chinese proverb

In this appendix we solve several interesting problems using the evolution
operator methods. In particular, we show that the multidimensional Lyapunov
exponents and relaxation exponents (dynamo rates) of vector fields can be ex-
pressed in terms of leading eigenvalues of appropriate evolution operators.

C.1 Evolution operator for Lyapunov exponents

Lyapunov exponents were introduced and computed for 1-d maps in
sect. 13.3. For higher-dimensional flows only the Jacobian matrices are multi-
plicative, not individual eigenvalues, and the construction of the evolution oper-
ator for evaluation of the Lyapunov spectra requires the extension of evolution
equations to the flow in the tangent space. We now develop the requisite theory.

Here we construct a multiplicative evolution operator (C.4) whose spectral
determinant (C.8) yields the leading Lyapunov exponent of a d-dimensional flow
(and is entire for Axiom A flows).

The key idea is to extending the dynamical system by the tangent space of the
flow, suggested by the standard numerical methods for evaluation of Lyapunov
exponents: start at ξ with an initial infinitesimal tangent space vector η(0) ∈
TUx, and let the flow transport it along the trajectory x(t) = f t(ξ).

The dynamics in the (x, η) ∈ U × TUx space is governed by the system of
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equations of variations [22]:

ẋ = v(x) , η̇ = Dv(x)η .

Here Dv(x) is the derivative matrix of the flow. We write the solution as

x(t) = f t(ξ) , η(t) = Jt(ξ) · η0 , (C.1)

with the tangent space vector η transported by the stability matrix Jt(ξ) =
∂x(t)/∂ξ.

As explained in sect. 3.1, the growth rate of this vector is multiplicative along
the trajectory and can be represented as η(t) = |η(t)|/|η(0)|u(t) where u(t) is
a “unit” vector in some norm ||.||. For asymptotic times and for almost every
initial (x0, η(0)), this factor converges to the leading eigenvalue of the linearized
stability matrix of the flow.

We implement this multiplicative evaluation of stability eigenvalues by ad-
joining the d-dimensional transverse tangent space η ∈ TUx; η(x)v(x) = 0 to
the (d+1)-dimensional dynamical evolution space x ∈ U ⊂ R

d+1. In order to
determine the length of the vector η we introduce a homogeneous differentiable
scalar function g(η) = ||η||. It has the property g(Λη) = |Λ|g(η) for any Λ. An
example is the projection of a vector to its dth component

g

 η1
η2
· · ·
ηd

 = |ηd| .

Any vector η ∈ TUx can now be represented by the product η = Λu, where
u is a “unit” vector in the sense that its norm is ||u|| = 1, and the factor

Λt(x0,u0) = g(η(t)) = g(Jt(x0) · u0) (C.2)

is the multiplicative “stretching” factor.

Unlike the leading eigenvalue of the Jacobian the stretching factor is multi-
plicative along the trajectory:

Λt′+t(x0,u0) = Λt′(x(t),u(t)) Λt(x0,u0).
C.1
on p. 575
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The u evolution constrained to ETg,x, the space of unit transverse tangent vectors,
is given by rescaling of (C.1):

u′ = Rt(x,u) =
1

Λt(x,u)
Jt(x) · u . (C.3)

Eqs. (C.1), (C.2) and (C.3) enable us to define a multiplicative evolution operator
on the extended space U × ETg,x

Lt(x′,u′;x,u) = δ
(
x′ − f t(x)

) δ(u′ − Rt(x,u)
)

|Λt(x,u)|β−1 , (C.4)

where β is a variable.

To evaluate the expectation value of log |Λt(x,u)| which is the Lyapunov
exponent we again have to take the proper derivative of the leading eigenvalue
of (C.4). In order to derive the trace formula for the operator (C.4) we need to
evaluate TrLt =

∫
dxduLt(u, x;u, x). The

∫
dx integral yields a weighted sum

over prime periodic orbits p and their repetitions r:

TrLt =
∑
p

Tp

∞∑
r=1

δ(t − rTp)
| det (1 − Jrp) |∆p,r,

∆p,r =
∫
g
du

δ
(
u− RTpr(xp,u)

)
|ΛTpr(xp,u)|β−1 , (C.5)

where Jp is the prime cycle p transverse stability matrix. As we shall see below,
∆p,r is intrinsic to cycle p, and independent of any particular cycle point xp.

We note next that if the trajectory f t(x) is periodic with period T , the tangent
space contains d periodic solutions

ei(x(T + t)) = ei(x(t)) , i = 1, ..., d,

corresponding to the d unit eigenvectors {e1, e2, · · · , ed} of the transverse stability
matrix, with “stretching” factors (C.2) given by its eigenvalues

Jp(x) · ei(x) = Λp,i ei(x) , i = 1, ..., d. (no summation on i)

The
∫
du integral in (C.5) picks up contributions from these periodic solutions. In

order to compute the stability of the ith eigendirection solution, it is convenient to
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expand the variation around the eigenvector ei in the stability matrix eigenbasis
δu =

∑
δuJ eJ . The variation of the map (C.3) at a complete period t = T is

then given by

δRT (ei) =
J · δu

g(J · ei)
− J · ei

g(J · ei)2
(
∂g(ei)
∂u

· J · δu
)

=
∑
k �=i

Λp,k

Λp,i

(
ek − ei

∂g(ei)
∂uk

)
δuk . (C.6)

The δui component does not contribute to this sum since g(ei + duiei) = 1 + dui

implies ∂g(ei)/∂ui = 1. Indeed, infinitesimal variations δu must satisfy

g(u+ δu) = g(u) = 1 =⇒
d∑

J=1

δuJ
∂g(u)
∂uJ

= 0 ,

so the allowed variations are of form

δu =
∑
k �=i

(
ek − ei

∂g(ei)
∂uk

)
ck , |ck| 5 1 ,

and in the neighborhood of the ei eigenvector the
∫
du integral can be expressed

as ∫
g
du =

∫ ∏
k �=i

dck .

Inserting these variations into the
∫
du integral we obtain

∫
g
du δ

(
ei + δu− RT (ei) − δRT (ei) + . . .

)
=

∫ ∏
k �=i

dck δ((1 − Λk/Λi)ck + . . .)

=
∏
k �=i

1
|1 − Λk/Λi|

,

and the
∫
du trace (C.5) becomes

∆p,r =
d∑

i=1

1
| Λr

p,i |β−1
∏
k �=i

1
| 1 − Λr

p,k/Λr
p,i | . (C.7)
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The corresponding spectral determinant is obtained by observing that the Laplace
transform of the trace (6.20) is a logarithmic derivative TrL(s) = − d

ds logF (s)
of the spectral determinant:

F (β, s) = exp

(
−
∑
p,r

esTpr

r | det (1 − Jrp) |∆p,r(β)

)
. (C.8)

This determinant is the central result of this section. Its zeros correspond to the
eigenvalues of the evolution operator (C.4), and can be evaluated by the cycle
expansion methods.

The leading zero of (C.8) is called “pressure” (or free energy)

P (β) = s0(β). (C.9)

The average Lyapunov exponent is then given by the first derivative of the pres-
sure at β = 1:

λ = P ′(1). (C.10)

The simplest application of (C.8) is to 2-dimensional hyperbolic Hamiltonian
maps. The stability eigenvalues are related by Λ1 = 1/Λ2 = Λ, and the spectral
determinant is given by

F (β, z) = exp

(
−
∑
p,r

zrnp

r | Λr
p |

1
(1 − 1/Λr

p)2
∆p,r(β)

)

∆p,r(β) =
| Λr

p |1−β

1 − 1/Λ2rp
+

| Λr
p |β−3

1 − 1/Λ2rp
. (C.11)

The dynamics (C.3) can be restricted to a u unit eigenvector neighborhood
corresponding to the largest eigenvalue of the Jacobi matrix. On this neighbor-
hood the largest eigenvalue of the Jacobi matrix is the only fixed point, and the
spectral determinant obtained by keeping only the largest term the ∆p,r sum in
(C.7) is also entire.

In case of maps it is practical to introduce the logarithm of the leading zero
and to call it “pressure”

P (β) = log z0(β). (C.12)
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The average of the Lyapunov exponent of the map is then given by the first
derivative of the pressure at β = 1:

λ = P ′(1). (C.13)

By factorizing the determinant (C.11) into products of zeta functions we can
conclude that the leading zero of the (C.4) can also be recovered from the leading
zeta function

1/ζ0(β, z) = exp

(
−
∑
p,r

zrnp

r|Λr
p|β

)
. (C.14)

This zeta function plays a key role in thermodynamic applications as we will will
see in Chapter 14.

C.2 Advection of vector fields by chaotic flows

Fluid motions can move embedded vector fields around. An example is the mag-
netic field of the Sun which is “frozen” in the fluid motion. A passively evolving
vector field V is governed by an equation of the form

∂tV + u · ∇V −V · ∇u = 0, (C.15)

where u(x, t) represents the velocity field of the fluid. The strength of the vector
field can grow or decay during its time evolution. The amplification of the vector
field in such a process is called the ”dynamo effect”. In a strongly chaotic fluid
motion we can characterize the asymptotic behavior of the field with an exponent

V(x, t) ∼ V(x)eνt, (C.16)

where ν is called the fast dynamo rate. The goal of this section is to show that
periodic orbit theory can be developed for such a highly non-trivial system as
well.

We can write the solution of (C.15) formally, as shown by Cauchy. Let x(t,a)
be the position of the fluid particle that was at the point a at t = 0. Then the
field evolves according to

V(x, t) = J(a, t)V(a, 0) , (C.17)
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where J(a, t) = ∂(x)/∂(a) is the Jacobian matrix of the transformation that
moves the fluid into itself x = x(a, t).

We write x = f t(a), where f t is the flow that maps the initial positions of
the fluid particles into their positions at time t. Its inverse, a = f−t(x), maps
particles at time t and position x back to their initial positions. Then we can
write (C.17)

Vi(x, t) =
∑
j

∫
d3a Lt

ij(x,a)Vj(a, 0) , (C.18)

with

Lt
ij(x,a) = δ(a− f−t(x))

∂xi

∂aj
. (C.19)

For large times, the effect of Lt is dominated by its leading eigenvalue, eν0t with
Re(ν0) > Re(νi), i = 1, 2, 3, .... In this way the transfer operator furnishes the
fast dynamo rate, ν := ν0.

The trace of the transfer operator is the sum over all periodic orbit contribu-
tions, with each cycle weighted by its intrinsic stability

TrLt =
∑
p

Tp

∞∑
r=1

trJrp∣∣det
(
1− J−r

p

)∣∣δ(t − rTp). (C.20)

We can construct the corresponding spectral determinant as usual

F (s) = exp

[
−
∑
p

∞∑
r=1

1
r

trJrp∣∣det
(
1− J−r

p

)∣∣esrTp
]

. (C.21)

Note that in this formuli we have omitted a term arising from the Jacobian
transformation along the orbit which would give 1 + tr Jrp in the numerator
rather than just the trace of Jrp. Since the extra term corresponds to advection
along the orbit, and this does not evolve the magnetic field, we have chosen to
ignore it. It is also interesting to note that the negative powers of the Jacobian
occur in the denominator, since we have f−t in (C.19).

In order to simplify F (s), we factor the denominator cycle stability determi-
nants into products of expanding and contracting eigenvalues. For a 3-dimensional
fluid flow with cycles possessing one expanding eigenvalue Λp (with |Λp| > 1), and
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one contracting eigenvalue λp (with |λp| < 1) the determinant may be expanded
as follows:

∣∣det
(
1− J−r

p

)∣∣−1 = |(1−Λ−r
p )(1−λ−r

p )|−1 = |λp|r
∞∑
j=0

∞∑
k=0

Λ−jr
p λkr

p .(C.22)

With this decomposition we can rewrite the exponent in (C.21) as

∑
p

∞∑
r=1

1
r

(λr
p + Λr

p)e
srTp∣∣det

(
1− J−r

p

)∣∣ =
∑
p

∞∑
j,k=0

∞∑
r=1

1
r

(
|λp|Λ−j

p λk
pe

sTp
)r

(λr
p+Λr

p) , (C.23)

which has the form of the expansion of a logarithm:

∑
p

∑
j,k

[
log
(
1 − esTp |λp|Λ1−j

p λk
p

)
+ log

(
1 − esTp |λp|Λ−j

p λ1+k
p

)]
. (C.24)

The spectral determinant is therefore of the form,

F (s) = Fe(s)Fc(s) , (C.25)

where

Fe(s) =
∏
p

∞∏
j,k=0

(
1 − t(jk)p Λp

)
, (C.26)

Fc(s) =
∏
p

∞∏
j,k=0

(
1 − t(jk)p λp

)
, (C.27)

with

t(jk)p = esTp |λp|
λk
p

Λj
p

. (C.28)

The two factors present in F (s) correspond to the expanding and contracting
exponents. (Had we not neglected a term in (C.21), there would be a third factor
corresponding to the translation.)
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For 2-d Hamiltonian volume preserving systems, λ = 1/Λ and (C.26) reduces
to

Fe(s) =
∏
p

∞∏
k=0

(
1 − tp

Λk−1
p

)k+1

, tp =
esTp

| Λp | . (C.29)

With σp = Λp/|Λp|, the Hamiltonian zeta function (the j = k = 0 part of the
product (C.27)) is given by

1/ζdyn(s) =
∏
p

(
1 − σpe

sTp
)
. (C.30)

This is a curious formula — the zeta function depends only on the return times,
not on the eigenvalues of the cycles. Furthermore, the identity,

Λ + 1/Λ
|(1 − Λ)(1 − 1/Λ)| = σ +

2
|(1 − Λ)(1 − 1/Λ)| ,

when substituted into (C.25), leads to a relation between the vector and scalar
advection spectral determinants:

Fdyn(s) = F 20 (s)/ζdyn(s) . (C.31)

The spectral determinants in this equation are entire for hyperbolic (axiom A)
systems, since both of them correspond to multiplicative operators.

In the case of a flow governed by a map, we can adapt the formulas (C.29)
and (C.30) for the dynamo determinants by simply making the substitution

znp = esTp , (C.32)

where np is the integer order of the cycle. Then we find the spectral determinant
Fe(z) given by equation (C.29) but with

tp =
znp

|Λp|
(C.33)

for the weights, and

1/ζdyn(z) = Πp (1 − σpz
np) (C.34)
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for the zeta-function

For maps with finite Markov partition the inverse zeta function (C.34) re-
duces to a polynomial for z since curvature terms in the cycle expansion vanish.
For example, for maps with complete binary partition, and with the fixed point
stabilities of opposite signs, the cycle expansion reduces to

1/ζdyn(s) = 1. (C.35)

For such maps the dynamo spectral determinant is simply the square of the scalar
advection spectral determinant, and therefore all its zeros are double. In other
words, for flows governed by such discrete maps, the fast dynamo rate equals the
scalar advection rate.

In contrast, for three-dimensional flows, the dynamo effect is distinct from the
scalar advection. For example, for flows with finite symbolic dynamical gram-
mars, (C.31) implies that the dynamo zeta function is a ratio of two entire deter-
minants:

1/ζdyn(s) = Fdyn(s)/F 20 (s) . (C.36)

This relation implies that for flows the zeta function has double poles at the zeros
of the scalar advection spectral determinant, with zeros of the dynamo spectral
determinant no longer coinciding with the zeros of the scalar advection spectral
determinant; Usually the leading zero of the dynamo spectral determinant isC.2

on p. 575 larger than the scalar advection rate, and the rate of decay of the magnetic field
is no longer governed by the scalar advection.

Commentary

Remark C.1 Dynamo zeta. The dynamo zeta (C.34) has been intro-
duced by Aurell and Gilbert [4] and reviewed in ref. [6]. Our exposition
follows ref. [5].
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Exercises

C.1 Stretching factor. Prove the multiplicative property of the stretching factor
(C.2). Why should we extend the phase space with the tangent space?

C.2 Dynamo rate. Suppose that the fluid dynamics is highly dissipative and can
be well approximated by the piecewise linear map

f(x) =
{

1 + ax if x < 0,
1 − bx if x > 0, (C.37)

on an appropriate surface of section (a, b > 2). Suppose also that the return time is
constant Ta for x < 0 and Tb for x > 0. Show that the dynamo zeta is

1/ζdyn(s) = 1 − esTa + esTb . (C.38)

Show also that the escape rate is the leading zero of

1/ζ0(s) = 1 − esTa/a − esTb/b. (C.39)

Calculate the dynamo and the escape rates analytically if b = a2 and Tb = 2Ta. Do the
calculation for the case when you reverse the signs of the slopes of the map. What is the
difference?
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Appendix D

Discrete symmetries

D.1 C4v factorization

If an N -disk arrangement has CN symmetry, and the disk visitation sequence is
given by disk labels {ε1ε2ε3 . . .}, only the relative increments ρi = εi+1−εi mod N
matter. Symmetries under reflections across axes increase the group to CNv and
add relations between symbols: {εi} and {N − εi} differ only by a reflection.
As a consequence of this reflection increments become decrements until the next
reflection and vice versa. Consider four equal disks placed on the vertices of a
square (fig. D.1a). The symmetry group consists of the identity e, the two re-
flections σx, σy across x, y axes, the two diagonal reflections σ13, σ24, and the
three rotations C4, C2 and C34 by angles π/2, π and 3π/2. We start by exploiting
the C4 subgroup symmetry in order to replace the absolute labels εi ∈ {1, 2, 3, 4}
by relative increments ρi ∈ {1, 2, 3}. By reflection across diagonals, an incre-
ment by 3 is equivalent to an increment by 1 and a reflection; this new symbol
will be called 1. Our convention will be to first perform the increment and
then to change the orientation due to the reflection. As an example, consider
the fundamental domain cycle 112. Taking the disk 1 → disk 2 segment as the
starting segment, this symbol string is mapped into the disk visitation sequence
1+12+13+21 . . . = 123, where the subscript indicates the increments (or decre-
ments) between neighboring symbols; the period of the cycle 112 is thus 3 in
both the fundamental domain and the full space. Similarly, the cycle 112 will be
mapped into 1+12−11−23−12+13+21 = 121323 (note that the fundamental domain
symbol 1 corresponds to a flip in orientation after the second and fifth symbols);
this time the period in the full space is twice that of the fundamental domain.
In particular, the fundamental domain fixed points correspond to the following
4-disk cycles:
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(a) (b)

Figure D.1: (a) The symmetries of four disks on a square. (b) The symmetries of four
disks on a rectangle. The fundamental domains are indicated by the shaded wedges.

4-disk reduced
12 ↔ 1
1234 ↔ 1
13 ↔ 2

Conversions for all periodic orbits of reduced symbol period less than 5 are listed
in table D.1.

This symbolic dynamics is closely related to the group-theoretic structure of
the dynamics: the global 4-disk trajectory can be generated by mapping the
fundamental domain trajectories onto the full 4-disk space by the accumulated
product of the C4v group elements g1 = C, g2 = C2, g1 = σdiagC = σaxis,
where C is a rotation by π/2. In the 112 example worked out above, this yields
g112 = g2g1g1 = C2Cσaxis = σdiag, listed in the last column of table D.1. Our
convention is to multiply group elements in the reverse order with respect to the
symbol sequence. We need these group elements for our next step, the dynamical
zeta function factorizations.

The C4v group has four one-dimensional representations, either symmetric
(A1) or antisymmetric (A2) under both types of reflections, or symmetric under
one and antisymmetric under the other (B1, B2), and a degenerate pair of two-
dimensional representations E. Substituting the C4v characters

C4v A1 A2 B1 B2 E
e 1 1 1 1 2
C2 1 1 1 1 -2

C4, C
3
4 1 1 -1 -1 0

σaxes 1 -1 1 -1 0
σdiag 1 -1 -1 1 0
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p̃ p hp̃
0 1 2 σx
1 1 2 3 4 C4

2 1 3 C2, σ13

01 12 14 σ24

02 12 43 σy
12 12 41 34 23 C3

4
001 121 232 343 414 C4

002 121 343 C2

011 121 434 σy
012 121 323 σ13

021 124 324 σ13

022 124 213 σx
112 123 e
122 124 231 342 413 C4

p̃ p hp̃
0001 1212 1414 σ24

0002 1212 4343 σy
0011 1212 3434 C2

0012 1212 4141 3434 2323 C3
4

0021 (a) 1213 4142 3431 2324 C3
4

0022 1213 e
0102 (a) 1214 2321 3432 4143 C4

0111 1214 3234 σ13

0112 (b) 1214 2123 σx
0121 (b) 1213 2124 σx
0122 1213 1413 σ24

0211 1243 2134 σx
0212 1243 1423 σ24

0221 1242 1424 σ24

0222 1242 4313 σy
1112 1234 2341 3412 4123 C4

1122 1231 3413 C2

1222 1242 4131 3424 2313 C3
4

Table D.1: C4v correspondence between the ternary fundamental domain prime cycles
p̃ and the full 4-disk {1,2,3,4} labelled cycles p, together with the C4v transformation
that maps the end point of the p̃ cycle into an irreducible segment of the p cycle. For
typographical convenience, the symbol 1 of sect. D.1 has been replaced by 0, so that the
ternary alphabet is {0, 1, 2}. The degeneracy of the p cycle is mp = 8np̃/np. Orbit 2 is the
sole boundary orbit, invariant both under a rotation by π and a reflection across a diagonal.
The two pairs of cycles marked by (a) and (b) are related by time reversal, but cannot be
mapped into each other by C4v transformations.
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into (15.15) we obtain:

hp̃ A1 A2 B1 B2 E
e: (1 − tp̃)8 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃)4

C2: (1 − t2p̃)
4 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 + tp̃)4

C4, C
3
4 : (1 − t4p̃)

2 = (1 − tp̃) (1 − tp̃) (1 + tp̃) (1 + tp̃) (1 + t2p̃)
2

σaxes: (1 − t2p̃)
4 = (1 − tp̃) (1 + tp̃) (1 − tp̃) (1 + tp̃) (1 − t2p̃)

2

σdiag: (1 − t2p̃)
4 = (1 − tp̃) (1 + tp̃) (1 + tp̃) (1 − tp̃) (1 − t2p̃)

2

The possible irreducible segment group elements hp̃ are listed in the first column;
σaxes denotes a reflection across either the x-axis or the y-axis, and σdiag denotes
a reflection across a diagonal (see fig. D.1a). In addition, degenerate pairs of
boundary orbits can run along the symmetry lines in the full space, with the
fundamental domain group theory weights hp = (C2 + σx)/2 (axes) and hp =
(C2 + σ13)/2 (diagonals) respectively:

A1 A2 B1 B2 E

axes: (1 − t2p̃)
2 = (1 − tp̃)(1 − 0tp̃)(1 − tp̃)(1 − 0tp̃)(1 + tp̃)2

diagonals: (1 − t2p̃)
2 = (1 − tp̃)(1 − 0tp̃)(1 − 0tp̃)(1 − tp̃)(1 + tp̃)2 (D.1)

(we have assumed that tp̃ does not change sign under reflections across symmetry
axes). For the 4-disk arrangement considered here only the diagonal orbits 13,
24 occur; they correspond to the 2 fixed point in the fundamental domain.

The A1 subspace in C4v cycle expansion is given by

1/ζA1 = (1 − t0)(1 − t1)(1 − t2)(1 − t01)(1 − t02)(1 − t12)
(1 − t001)(1 − t002)(1 − t011)(1 − t012)(1 − t021)(1 − t022)(1 − t112)
(1 − t122)(1 − t0001)(1 − t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 − t0 − t1 − t2 − (t01 − t0t1) − (t02 − t0t2) − (t12 − t1t2)
−(t001 − t0t01) − (t002 − t0t02) − (t011 − t1t01)
−(t022 − t2t02) − (t112 − t1t12) − (t122 − t2t12)
−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (D.2)

(for typographical convenience, 1 is replaced by 0 in the remainder of this section).
For one-dimensional representations, the characters can be read off the symbol
strings: χA2(hp̃) = (−1)n0 , χB1(hp̃) = (−1)n1 , χB2(hp̃) = (−1)n0+n1 , where n0
and n1 are the number of times symbols 0, 1 appear in the p̃ symbol string. For
B2 all tp with an odd total number of 0’s and 1’s change sign:

1/ζB2 = (1 + t0)(1 + t1)(1 − t2)(1 − t01)(1 + t02)(1 + t12)
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(1 + t001)(1 − t002)(1 + t011)(1 − t012)(1 − t021)(1 + t022)(1 − t112)
(1 + t122)(1 − t0001)(1 + t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 + t1 − t2 − (t01 − t0t1) + (t02 − t0t2) + (t12 − t1t2)
+(t001 − t0t01) − (t002 − t0t02) + (t011 − t1t01)
+(t022 − t2t02) − (t112 − t1t12) + (t122 − t2t12)
−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (D.3)

The form of the remaining cycle expansions depends crucially on the special role
played by the boundary orbits: by (D.1) the orbit t2 does not contribute to A2
and B1,

1/ζA2 = (1 + t0)(1 − t1)(1 + t01)(1 + t02)(1 − t12)
(1 − t001)(1 − t002)(1 + t011)(1 + t012)(1 + t021)(1 + t022)(1 − t112)
(1 − t122)(1 + t0001)(1 + t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 + t0 − t1 + (t01 − t0t1) + t02 − t12

−(t001 − t0t01) − (t002 − t0t02) + (t011 − t1t01)
+t022 − t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . . (D.4)

and

1/ζB1 = (1 − t0)(1 + t1)(1 + t01)(1 − t02)(1 + t12)
(1 + t001)(1 − t002)(1 − t011)(1 + t012)(1 + t021)(1 − t022)(1 − t112)
(1 + t122)(1 + t0001)(1 − t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 − t0 + t1 + (t01 − t0t1) − t02 + t12

+(t001 − t0t01) − (t002 − t0t02) − (t011 − t1t01)
−t022 + t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . . (D.5)

In the above we have assumed that t2 does not change sign under C4v reflections.
For the mixed-symmetry subspace E the curvature expansion is given by

1/ζE = 1 + t2 + (−t0
2 + t1

2) + (2t002 − t2t0
2 − 2t112 + t2t1

2)
+(2t0011 − 2t0022 + 2t2t002 − t01

2 − t02
2 + 2t1122 − 2t2t112

+t12
2 − t0

2t1
2) + (2t00002 − 2t00112 + 2t2t0011 − 2t00121 − 2t00211

+2t00222 − 2t2t0022 + 2t01012 + 2t01021 − 2t01102 − t2t01
2 + 2t02022

−t2t02
2 + 2t11112 − 2t11222 + 2t2t1122 − 2t12122 + t2t12

2 − t2t0
2t1
2

+2t002(−t0
2 + t1

2) − 2t112(−t0
2 + t1

2)) (D.6)
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A quick test of the ζ = ζA1ζA2ζB1ζB2ζ
2
E factorization is afforded by the topo-

logical polynomial; substituting tp = znp into the expansion yields

1/ζA1 = 1 − 3z , 1/ζA2 = 1/ζB1 = 1 , 1/ζB2 = 1/ζE = 1 + z ,

in agreement with (9.35).11.9
on p. 242

Remark D.1 Labelling conventions While there is a variety of labelling
conventions [13, 13] for the reduced C4v dynamics, we prefer the one intro-
duced here because of its close relation to the group-theoretic structure of
the dynamics: the global 4-disk trajectory can be generated by mapping the
fundamental domain trajectories onto the full 4-disk space by the accumu-
lated product of the C4v group elements.

D.2 C2v factorization

An arrangement of four identical disks on the vertices of a rectangle has C2v
symmetry (fig. D.1b). C2v consists of {e, σx, σy, C2}, i.e., the reflections across
the symmetry axes and a rotation by π.

This system affords a rather easy visualization of the conversion of a 4-disk
dynamics into a fundamental domain symbolic dynamics. An orbit leaving the
fundamental domain through one of the axis may be folded back by a reflection
on that axis; with these symmetry operations g0 = σx and g1 = σy we associate
labels 1 and 0, respectively. Orbits going to the diagonally opposed disk cross the
boundaries of the fundamental domain twice; the product of these two reflections
is just C2 = σxσy, to which we assign the label 2. For example, a ternary
string 0 0 1 0 2 0 1 . . . is converted into 12143123. . ., and the associated group-
theory weight is given by . . . g1g0g2g0g1g0g0.

Short ternary cycles and the corresponding 4-disk cycles are listed in ta-
ble D.2. Note that already at length three there is a pair of cycles (012 = 143
and 021 = 142) related by time reversal, but not by any C2v symmetries.

The above is the complete description of the symbolic dynamics for 4 suffi-
ciently separated equal disks placed at corners of a rectangle. However, if the
fundamental domain requires further partitioning, the ternary description is in-
sufficient. For example, in the stadium billiard fundamental domain one has to
distinguish between bounces off the straight and the curved sections of the bil-
liard wall; in that case five symbols suffice for constructing the covering symbolic
dynamics.
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p̃ p g
0 1 4 σy
1 1 2 σx
2 1 3 C2

01 14 32 C2

02 14 23 σx
12 12 43 σy
001 141 232 σx
002 141 323 C2

011 143 412 σy
012 143 e
021 142 e
022 142 413 σy
112 121 343 C2

122 124 213 σx

p̃ p g
0001 1414 3232 C2

0002 1414 2323 σx
0011 1412 e
0012 1412 4143 σy
0021 1413 4142 σy
0022 1413 e
0102 1432 4123 σy
0111 1434 3212 C2

0112 1434 2343 σx
0121 1431 2342 σx
0122 1431 3213 C2

0211 1421 2312 σx
0212 1421 3243 C2

0221 1424 3242 C2

0222 1424 2313 σx
1112 1212 4343 σy
1122 1213 e
1222 1242 4313 σy

Table D.2: C2v correspondence between the ternary {0, 1, 2} fundamental domain prime
cycles p̃ and the full 4-disk {1,2,3,4} cycles p, together with the C2v transformation that
maps the end point of the p̃ cycle into an irreducible segment of the p cycle. The degeneracy
of the p cycle is mp = 4np̃/np. Note that the 012 and 021 cycles are related by time reversal,
but cannot be mapped into each other by C2v transformations. The full space orbit listed
here is generated from the symmetry reduced code by the rules given in sect. D.2, starting
from disk 1.

The group C2v has four one-dimensional representations, distinguished by
their behavior under axis reflections. The A1 representation is symmetric with
respect to both reflections; the A2 representation is antisymmetric with respect to
both. The B1 and B2 representations are symmetric under one and antisymmetric
under the other reflection. The character table is

C2v A1 A2 B1 B2
e 1 1 1 1
C2 1 1 −1 −1
σx 1 −1 1 −1
σy 1 −1 −1 1

Substituted into the factorized determinant (15.14), the contributions of pe-
riodic orbits split as follows

gp̃ A1 A2 B1 B2
e: (1 − tp̃)4 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃)

C2: (1 − t2p̃)
2 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃)

σx: (1 − t2p̃)
2 = (1 − tp̃) (1 + tp̃) (1 − tp̃) (1 + tp̃)

σy: (1 − t2p̃)
2 = (1 − tp̃) (1 + tp̃) (1 + tp̃) (1 − tp̃)
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Cycle expansions follow by substituting cycles and their group theory factors from
table D.2. For A1 all characters are +1, and the corresponding cycle expansion
is given in (D.2). Similarly, the totally antisymmetric subspace factorization A2
is given by (D.3), the B2 factorization of C4v. For B1 all tp with an odd total
number of 0’s and 2’s change sign:

1/ζB1 = (1 + t0)(1 − t1)(1 + t2)(1 + t01)(1 − t02)(1 + t12)
(1 − t001)(1 + t002)(1 + t011)(1 − t012)(1 − t021)(1 + t022)(1 + t112)
(1 − t122)(1 + t0001)(1 − t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 − t1 + t2 + (t01 − t0t1) − (t02 − t0t2) + (t12 − t1t2)
−(t001 − t0t01) + (t002 − t0t02) + (t011 − t1t01)
+(t022 − t2t02) + (t112 − t1t12) − (t122 − t2t12)
−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (D.7)

For B2 all tp with an odd total number of 1’s and 2’s change sign:

1/ζB2 = (1 − t0)(1 + t1)(1 + t2)(1 + t01)(1 + t02)(1 − t12)
(1 + t001)(1 + t002)(1 − t011)(1 − t012)(1 − t021)(1 − t022)(1 + t112)
(1 + t122)(1 + t0001)(1 + t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 − t0 + t1 + t2 + (t01 − t0t1) + (t02 − t0t2) − (t12 − t1t2)
+(t001 − t0t01) + (t002 − t0t02) − (t011 − t1t01)
−(t022 − t2t02) + (t112 − t1t12) + (t122 − t2t12)
−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (D.8)

Note that all of the above cycle expansions group long orbits together with their
pseudoorbit shadows, so that the shadowing arguments for convergence still apply.

The topological polynomial factorizes as

1
ζA1

= 1 − 3z ,
1

ζA2

=
1

ζB1

=
1

ζB2

= 1 + z,

consistent with the 4-disk factorization (9.35).

Remark D.2 C2v symmetry C2v is the symmetry of several systems
studied in the literature, such as the stadium billiard [?], and the 2-dimensional
anisotropic Kepler potential [25].
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D.3 Symmetries of the symbol plane
nced section •

Depending on the type of dynamical system, the symbol plane might have a
variety of symmetries. Under the time reversal

· · · s−2s−1s0.s1s2s3 · · · → · · · s3s2s1.s0s−1s−2 · · ·

the points in the symbol plane for an orientation preserving map are symmet-
ric across the diagonal γ = δ, and for the orientation reversing case they are
symmetric with respect to the γ = 1 − δ diagonal. Consequently the periodic
orbits appear either in dual pairs p = s1s2s3 . . . sn, p = snsn−1sn−2 . . . s1, or are
self-dual under time reversal, Sp = Sp. For the orientation preserving case a
self-dual cycle of odd period has at least one point on the symmetry diagonal. In
particular, all fixed points lie on the symmetry diagonal. Determination of such
symmetry lines can be of considerable practical utility, as it reduces some of the
periodic orbit searches to 1-dimensional searches.

Remark D.3 Symmetries of the symbol plane. For a more detailed dis-
cussion of the symbolic dynamics symmetries, see refs. [5, 31].
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Appendix E

Convergence of spectral
determinants

E.1 Estimate of the nth cumulant

An immediate consequence of the exponential spacing of the eigenvalues is that
the convergence of the Selberg product expansion (B.20) as function of the topo-
logical cycle length, F (z) =

∑
n Cnz

n, is faster than exponential. Consider a
d–dimensional map for which all Jacobian matrix eigenvalues in (??) are equal:
up = Λp,1 = Λp,2 = · · · = Λp,d. The stability eigenvalues are generally not
isotropic; however, to obtain qualitative bounds on the spectrum, we replace
all stability eigenvalues with the least expanding one. In this case the p cycle
contribution to the product (10.10) reduces to

Fp(z) =
∞∏

k1···kd=0

(
1 − tpu

k1+k2+···+kd
p

)
=

∞∏
k=0

(
1 − tpu

k
p

)mk

; mk =
(
d − 1 + k

d − 1

)
=

(k + d − 1)!
k!(d − 1)!

=
∞∏
k=0

mk∑
J=0

(
mk

R

)(
−uk

ptp

)J
(E.1)

In one dimension the expansion can be given in closed form (10.38), and the
coefficients Ck in (B.20) are given by

τpk = (−1)k
u
k(k−1)

2
p∏k

j=1(1 − uj
p)

tkp . (E.2)
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Hence the coefficients in the F (z) =
∑

n Cnz
n expansion of the spectral deter-

minant (11.8) fall off faster than exponentially, as |Cn| ≈ un(n−1)/2. In contrast,
the cycle expansions of dynamical zeta functions fall of “only” exponentially; in
numerical applications, the difference is dramatic.

In higher dimensions the expansions are not quite as compact. The leading
power of u and its coefficient are easily evaluated by use of binomial expansions
(E.1) of the (1 + tuk)mk factors. More precisely, the leading un terms in tk

coefficients are of form

∞∏
k=0

(1 + tuk)mk = . . . + um1+2m2+...+jmj t1+m1+m2+...+mj + . . .

= . . . +
(
u
md
d+1 t
)(d+mm )

+ . . . ≈ . . . + u
d√
d!

(d−1)!
n
d+1
d

tn + . . .

Hence the coefficients in the F (z) expansion fall off faster than exponentially, as
un1+1/d

. The Selberg products are entire functions in any dimension, provided
that the symbolic dynamics is a finite subshift, and all cycle eigenvalues are
sufficiently bounded away from 1.

The case of particular interest in many applications are the 2-d Hamiltonian
mappings; their symplectic structure implies that up = Λp,1 = 1/Λp,2, and the
Selberg product (10.30) In this case the expansion corresponding to (10.38) is
given by (10.39) and the coefficients fall off asymptotically as Cn ≈ un3/2

.
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Appendix F

Infinite dimensional operators

(A. Wirzba)

This appendix taken from ref. [1] summarizes the definitions and properties for
trace-class and Hilbert-Schmidt matrices, the determinants over infinite dimen-
sional matrices and possible regularization schemes for matrices or operators
which are not of trace-class.

F.1 Matrix-valued functions

(P. Cvitanović)

As a preliminary we summarize some of the properties of functions of finite-
dimensional matrices.

The derivative of a matrix is a matrix with elements

A′(x) =
dA(x)
dx

, A′
ij(x) =

d

dx
Aij(x) . (F.1)

Derivatives of products of matrices are evaluated by the chain rule

d

dx
(AB) =

dA
dx
B+A

dB
dx

. (F.2)

A matrix and its derivative matrix in general do not commute

d

dx
A2 =

dA
dx
A+A

dA
dx

. (F.3)
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The derivative of the inverse of a matrix, follows from d
dx(AA−1) = 0:

d

dx
A−1 =

1
A

dA
dx

1
A

. (F.4)

A function of a single variable that can be expressed in terms of additions and
multiplications generalizes to a matrix-valued function by replacing the variable
by the matrix.

In particular, the exponential of a constant matrix can be defined either by
its series expansion, or as a limit of an infinite product:

eA =
∞∑
k=0

1
k!
Ak , A0 = 1 (F.5)

= lim
N→∞

(
1+

1
N
A
)N

(F.6)

The first equation follows from the second one by the binomial theorem, so these
indeed are equivalent definitions. That the terms of order O(N−2) or smaller do
not matter follows from the bound

(
1 +

x − ε

N

)N

<

(
1 +

x + δxN

N

)N

<

(
1 +

x + ε

N

)N

,

where |δxN | < ε. If lim δxN → 0 as N → ∞, the extra terms do not contribute.

Consider now the determinant

det (eA) = lim
N→∞

(det (1+A/N))N .

To the leading order in 1/N

det (1+A/N) = 1 +
1
N

trA+ O(N−2) .

hence

det eA = lim
N→∞

(
1 +

1
N

trA+ O(N−2)
)N

= etrA (F.7)

∼DasBuch/book/chapter/appendWirzba.tex 14jan2000 printed August 24, 2000



F.2. TRACE CLASS AND HILBERT-SCHMIDT CLASS 591

Due to non-commutativity of matrices, generalization of a function of several
variables to a function is not as straightforward. Expression involving several
matrices depend on their commutation relations. For example, the commutator
expansion

etABe−tA = B+ t[A,B] +
t2

2
[A, [A,B]] +

t3

3!
[A, [A, [A,B]]] + · · · (F.8)

sometimes used to establish the equivalence of the Heisenberg and Schrödinger
pictures of quantum mechanics follows by recursive evaluation of t derivaties

d

dt

(
etABe−tA

)
= etA[A,B]e−tA .

Manipulations of such ilk yield

e(A+B)/N = eA/NeB/N − 1
2N2

[A,B] + O(N−3) ,

and the Trotter product formula: if B, C and A = B+C are matrices, then

eA = lim
N→∞

(
eB/NeC/N

)N
(F.9)

F.2 Trace class and Hilbert-Schmidt class

This section is mainly an extract from ref. [9]. Refs. [7, 10, 11, 14] should be con-
sulted for more details and proofs. The trace class and Hilbert-Schmidt property
will be defined here for linear, in general non-hermitian operators A ∈ L(H):
H → H (where H is a separable Hilbert space). The transcription to matrix
elements (used in the prior chapters) is simply aij = 〈φi,Aφj〉 where {φn} is an
orthonormal basis of H and 〈 , 〉 is the inner product in H (see sect. F.4 where
the theory of von Koch matrices of ref. [12] is discussed). So, the trace is the
generalization of the usual notion of the sum of the diagonal elements of a matrix;
but because infinite sums are involved, not all operators will have a trace:

Definition:

(a) An operator A is called trace class, A ∈ J1, if and only if, for every
orthonormal basis, {φn}:∑

n

|〈φn,Aφn〉| < ∞. (F.10)

The family of all trace class operators is denoted by J1.
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(b) An operator A is called Hilbert-Schmidt, A ∈ J2, if and only if, for
every orthonormal basis, {φn}:∑

n

‖Aφn‖2 < ∞. (F.11)

The family of all Hilbert-Schmidt operators is denoted by J2.

Bounded operators are dual to trace class operators. They satisfy the the
following condition: |〈ψ,Bφ〉| ≤ C‖ψ‖‖φ‖ with C < ∞ and ψ, φ ∈ H. If they
have eigenvalues, these are bounded too. The family of bounded operators is
denoted by B(H) with the norm ‖B‖ = supφ�=0

‖Bφ‖
‖φ‖ for φ ∈ H. Examples for

bounded operators are unitary operators and especially the unit matrix. In fact,
every bounded operator can be written as linear combination of four unitary
operators.

A bounded operator C is compact, if it is the norm limit of finite rank oper-
ators.

An operator A is called positive, A ≥ 0, if 〈Aφ, φ〉 ≥ 0 ∀φ ∈ H. Notice that
A†A ≥ 0. We define |A| =

√
A†A.

The most important properties of the trace and Hilbert-Schmidt classes are
summarized in (see refs. [7, 9]):

(a) J1 and J2 are ∗ideals., i.e., they are vector spaces closed under scalar
multiplication, sums, adjoints, and multiplication with bounded operators.

(b) A ∈ J1 if and only if A = BC with B,C ∈ J2.

(c) J1 ⊂ J2 ⊂ Compact operators.

(d) For any operator A, we have A ∈ J2 if
∑

n ‖Aφn‖2 < ∞ for a single basis.
For any operator A ≥ 0 we have A ∈ J1 if

∑
n |〈φn,Aφn〉| < ∞ for a single

basis.

(e) If A ∈ J1, Tr(A) =
∑

〈φn,Aφn〉 is independent of the basis used.

(f) Tr is linear and obeys Tr(A†) = Tr(A); Tr(AB) = Tr(BA) if eitherA ∈ J1
and B bounded, A bounded and B ∈ J1 or both A,B ∈ J2.

(g) J2 endowed with the inner product 〈A,B〉2 = Tr(A†B) is a Hilbert space.
If ‖A‖2 = [ Tr(A†A) ]

1
2 , then ‖A‖2 ≥ ‖A‖ and J2 is the ‖ ‖2-closure of the

finite rank operators.

(h) J1 endowed with the norm ‖A‖1 = Tr(
√
A†A) is a Banach space. ‖A‖1 ≥

‖A‖2 ≥ ‖A‖ and J1 is the ‖ ‖1-norm closure of the finite rank operators.
The dual space of J1 is B(H), the family of bounded operators with the
duality 〈B,A〉 = Tr(BA).
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(i) If A,B ∈ J2, then ‖AB‖1 ≤ ‖A‖2‖B‖2. If A ∈ J2 and B ∈ B(H), then
‖AB‖2 ≤ ‖A‖2‖B‖. If A ∈ J1 and B ∈ B(H), then ‖AB‖1 ≤ ‖A‖1‖B‖.

Note the most important property for proving that an operator is trace class
is the decomposition (b) into two Hilbert-Schmidt ones, as the Hilbert-Schmidt
property can easily be verified in one single orthonormal basis (see (d)). Property
(e) ensures then that the trace is the same in any basis. Properties (a) and
(f) show that trace class operators behave in complete analogy to finite rank
operators. The proof whether a matrix is trace-class (or Hilbert-Schmidt) or not
simplifies enormously for diagonal matrices, as then the second part of property
(d) is directly applicable: just the moduli of the eigenvalues (or – in case of
Hilbert-Schmidt – the squares of the eigenvalues) have to be summed up in order
to answer that question. A good strategy in checking the trace-class character
of a general matrix A is therefore the decomposition of that matrix into two
matrices B and C where one, say C, should be chosen to be diagonal and either
just barely of Hilbert-Schmidt character leaving enough freedom for its partner
B or of trace-class character such that one only has to show the boundedness for
B.

F.3 Determinants of trace class operators

This section is mainly based on refs. [8, 10] which should be consulted for more
details and proofs. See also refs. [11, 14].

Pre-definitions (Alternating algebra and Fock spaces):
Given a Hilbert space H, ⊗nH is defined as the vector space of multi-linear
functionals on H with φ1 ⊗ · · · ⊗ φn ∈ ⊗nH in case φ1, . . . , φn ∈ H.

∧n(H) is
defined as the subspace of ⊗nH spanned by the wedge-product

φ1 ∧ · · · ∧ φn =
1√
n!

∑
π∈Pn

ε(π)[φπ(1) ⊗ · · · ⊗ φπ(n)] (F.12)

where Pn is the group of all permutations of n letters and ε(π) = ±1 depending
on whether π is an even or odd permutation, respectively. The inner product in∧n(H) is given by

(φ1 ∧ · · · ∧ φn, η1 ∧ · · · ∧ ηn) = det {(φi, ηj)} (F.13)

where det{aij} =
∑

π∈Pn ε(π)a1π(1) · · · anπ(n).
∧n(A) is defined as functor (a

functor satisfies
∧n(AB) =

∧n(A)
∧n(B)) on

∧n(H) with

∧n
(A) (φ1 ∧ · · · ∧ φn) = Aφ1 ∧ · · · ∧Aφn . (F.14)
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When n = 0,
∧n(H) is defined to be C and

∧n(A) as 1: C → C.

Properties: If A trace class, i.e., A ∈ J1, then for any k,
∧k(A) is trace class,

and for any orthonormal basis {φn} the cumulant

Tr
(∧k

(A)
)

=
∑

i1<···<ik

((φi1 ∧ · · · ∧ φik), (Aφi1 ∧ · · · ∧Aφik)) < ∞ (F.15)

is independent of the basis (with the understanding that Tr
∧0(A) ≡ 1).

Definition: Let A ∈ J1, then det(1+A) is defined as

det(1+A) =
∞∑
k=0

Tr
(∧k

(A)
)

(F.16)

Properties:

Let A be a linear operator on a separable Hilbert space H and {φj}∞1 an
orthonormal basis.

(a)
∑∞

k=0Tr
(∧k(A)

)
converges for each A ∈ J1.

(b) |det(1 + A)| ≤
∏∞

j=1 (1 + µj(A)) where µj(A) are the singular values of
A, i.e., the eigenvalues of |A| =

√
A†A.

(c) |det(1+A)| ≤ exp(‖A‖1).

(d) For any A1, . . . ,An ∈ J1, 〈z1, . . . , zn〉 �→ det (1+
∑n

i=1 ziAi) is an entire
analytic function.

(e) If A,B ∈ J1, then

det(1+A)det(1+B) = det (1+A+B+AB)
= det ((1+A)(1+B))
= det ((1+B)(1+A)) . (F.17)

If A ∈ J1 and U unitary, then

det
(
U−1(1+A)U

)
= det

(
1+U−1AU

)
= det(1+A) . (F.18)

(f) If A ∈ J1, then (1+A) is invertible if and only if det(1+A) �= 0.
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(g) If λ �= 0 is an n-times degenerate eigenvalue of A ∈ J1, then det(1+ zA)
has a zero of order n at z = −1/λ.

(h) For any ε, there is a Cε(A), depending on A ∈ J1, so that |det(1+ zA)| ≤
Cε(A) exp(ε|z|).

(i) For any A ∈ J1,

det(1+A) =
N(A)∏
j=1

(1 + λj(A)) (F.19)

where here and in the following {λj(A)}N(A)j=1 are the eigenvalues of A
counted with algebraic multiplicity .

(j) Lidskii’s theorem: For any A ∈ J1,

Tr(A) =
N(A)∑
j=1

λj(A) < ∞ . (F.20)

(k) If A ∈ J1, then

Tr
(∧k

(A)
)

=
N(
∧k(A))∑
j=1

λj

(∧k
(A)
)

=
∑

1≤j1<···<jk≤N(A)

λj1(A) · · ·λjk(A) < ∞.

(l) If A ∈ J1, then

det(1 + zA) =
∞∑
k=0

zk
∑

1≤j1<···<jk≤N(A)

λj1(A) · · ·λjk(A) < ∞. (F.21)

(m) If A ∈ J1, then for |z| small (that is |z|max|λj(A)| < 1) the series∑∞
k=1 z

kTr
(
(−A)k

)
/k converges and

det(1 + zA) = exp

(
−

∞∑
k=1

zk

k
Tr
(
(−A)k

))
= exp (Tr ln(1+ zA)) . (F.22)

(n) The Plemelj-Smithies formula: Define αm(A) for A ∈ J1 by

det(1+ zA) =
∞∑

m=0

zm
αm(A)

m!
. (F.23)
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Then αm(A) is given by the m × m determinant:

αm(A) =

∣∣∣∣∣∣∣∣∣∣∣∣

Tr(A) m − 1 0 · · · 0
Tr(A2) Tr(A) m − 2 · · · 0
Tr(A3) Tr(A2) Tr(A) · · · 0

...
...

...
...

...
1

Tr(Am) Tr(A(m−1)) Tr(A(m−2)) · · · Tr(A)

∣∣∣∣∣∣∣∣∣∣∣∣
(F.24)

with the understanding that α0(A) ≡ 1 and α1(A) ≡ Tr(A). Thus the
cumulants cm(A) ≡ αm(A)/m! satisfy the following recursion relation

cm(A) =
1
m

m∑
k=1

(−1)k+1cm−k(A) Tr(Ak) for m ≥ 1

c0(A) ≡ 1 . (F.25)

Note that formula (F.23) is the quantum analog to the curvature expansion of the
semiclassical zeta function with Tr(Am) corresponding to the sum of all periodic
orbits (prime and also repeated ones) of total topological length m, that is let
cm(s.c.) denote the m th curvature term, then the curvature expansion of the
semiclassical zeta function is given by the recursion relation

cm(s.c.) =
1
m

m∑
k=1

(−1)k+m+1cm−k(s.c.)
∑
p;r>0

with [p]r=k

[p]
tp(k)r

1 −
(
1
Λp

)r for m ≥ 1

c0(s.c.) ≡ 1 . (F.26)

In fact, in the cumulant expansion (F.23) as well as in the curvature expansion
there are large cancellations involved. Let us order – without lost of generality –
the eigenvalues of the operator A ∈ J1 as follows:

|λ1| ≥ |λ2| ≥ · · · ≥ |λi−1| ≥ |λi| ≥ |λi+1| ≥ · · ·

(This is always possible because of
∑N(A)

i=1 |λi| < ∞.) Then, in the standard
(Plemelj-Smithies) cumulant evaluation of the determinant, eq. (F.23), we have
enormous cancellations of big numbers, e.g. at the k th cumulant order (k > 3),
all the intrinsically large ‘numbers’ λk

1, λk−1
1 λ2, . . ., λk−2

1 λ2λ3, . . . and many
more have to cancel out exactly until only

∑
1≤j1<···<jk≤N(A) λj1 · · ·λjk is finally

left over. Algebraically, the fact that there are these large cancellations is of
course of no importance. However, if the determinant is calculated numerically,
the big cancellations might spoil the result or even the convergence. Now, the
curvature expansion of the semiclassical zeta function, as it is known today, is the
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semi-classical approximation to the curvature expansion (unfortunately) in the
Plemelj-Smithies form. As the exact quantum mechanical result is approximated
semi-classically, the errors introduced in the approximation might lead to big
effects as they are done with respect to large quantities which eventually cancel
out and not – as it would be of course better – with respect to the small surviving
cumulants. Thus it would be very desirable to have a semi-classical analog to
the reduced cumulant expansion (F.21) or even to (F.19) directly. It might not
be possible to find a direct semi-classical analog for the individual eigenvalues
λj . Thus the direct construction of the semi-classical equivalent to (F.19) is
rather unlikely. However, in order to have a semi-classical “cumulant” summation
without large cancellations – see (F.21) – it would be just sufficient to find the
semi-classical analog of each complete cumulant (F.21) and not of the single
eigenvalues. Whether this will eventually be possible is still an open question.

F.4 Von Koch matrices

Implicitly, many of the above properties are based on the theory of von Koch
matrices [11, 12, 13]: An infinite matrix 1 − A = ‖δjk − ajk‖∞1 , consisting of
complex numbers, is called a matrix with an absolutely convergent determinant,
if the series

∑
|aj1k1aj2k2 · · · ajn,kn | converges, where the sum extends over all

pairs of systems of indices (j1, j2, · · · , jn) and (k1, k2, · · · , kn) which differ from
each other only by a permutation, and j1 < j2 < · · · jn (n = 1, 2, · · ·). Then the
limit

lim
n→∞det‖δjk − ajk‖n1 = det(1−A)

exists and is called the determinant of the matrix 1 −A. It can be represented
in the form

det(1−A) = 1 −
∞∑
j=1

ajj +
1
2!

∞∑
j,k=1

∣∣∣∣ ajj ajk
akj akk

∣∣∣∣− 1
3!

∞∑
j,k,m=1

∣∣∣∣∣∣
ajj ajk ajm
akj akk akm
amj amk amm

∣∣∣∣∣∣+ · · · ,

where the series on the r.h.s. will remain convergent even if the numbers ajk
(j, k = 1, 2, · · ·) are replaced by their moduli and if all the terms obtained by
expanding the determinants are taken with the plus sign. The matrix 1 −A is
called von Koch matrix, if both conditions

∞∑
j=1

|ajj | < ∞ , (F.27)

∞∑
j,k=1

|ajk|2 < ∞ (F.28)
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are fulfilled. Then the following holds (see ref. [11, 13]): (1) Every von Koch
matrix has an absolutely convergent determinant. If the elements of a von Koch
matrix are functions of some parameter µ (ajk = ajk(µ), j, k = 1, 2, · · ·) and
both series in the defining condition converge uniformly in the domain of the
parameter µ, then as n → ∞ the determinant det‖δjk − ajk(µ)‖n1 tends to the
determinant det(1 + A(µ)) uniformly with respect to µ, over the domain of µ.
(2) If the matrices 1 −A and 1 −B are von Koch matrices, then their product
1−C = (1−A)(1−B) is a von Koch matrix, and

det(1−C) = det(1−A) det(1−B) . (F.29)

Note that every trace-class matrixA ∈ J1 is also a von Koch matrix (and that
any matrix satisfying condition (F.28) is Hilbert-Schmidt and vice versa). The
inverse implication, however, is not true: von Koch matrices are not automatically
trace-class. The caveat is that the definition of von Koch matrices is basis-
dependent, whereas the trace-class property is basis-independent. As the traces
involve infinite sums, the basis-independence is not at all trivial. An example for
an infinite matrix which is von Koch, but not trace-class is the following:

Aij =

 2/j for i − j = −1 and j even ,
2/i for i − j = +1 and i even ,
0 else ,

i.e.,

A =



0 1 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·
0 0 0 1/2 0 0 · · ·
0 0 1/2 0 0 0 · · ·
0 0 0 0 0 1/3

. . .

0 0 0 0 1/3 0
. . .

...
...

...
...

. . . . . . . . .


. (F.30)

Obviously, condition (F.27) is fulfilled by definition. Secondly, condition (F.28) is
satisfied as

∑∞
n=1 2/n2 < ∞. However, the sum over the moduli of the eigenvalues

is just twice the harmonic series
∑∞

n=1 1/n which does not converge. The matrix
(F.30) violates the trace-class definition (F.10), as in its eigenbasis the sum over
the moduli of its diagonal elements is infinite. Thus the absolute convergence is
traded for a conditional convergence, since the sum over the eigenvalues them-
selves can be arranged to still be zero, if the eigenvalues with the same modulus
are summed first. Absolute convergence is of course essential, if sums have to be
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rearranged or exchanged. Thus, the trace-class property is indispensable for any
controlled unitary transformation of an infinite determinant, as then there will be
necessarily a change of basis and in general also a re-ordering of the correspond-
ing traces. Therefore the claim that a Hilbert-Schmidt operator with a vanishing
trace is automatically trace-class is false. In general, such an operator has to be
regularized in addition (see next chapter).

F.5 Regularization

Many interesting operators are not of trace class (although they might be in
some Jp with p > 1 - an operator A is in Jp iff Tr|A|p < ∞ in any orthonormal
basis). In order to compute determinants of such operators, an extension of
the cumulant expansion is needed which in fact corresponds to a regularization
procedure [8, 10]:
E.g. let A ∈ Jp with p ≤ n. Define

Rn(zA) = (1+ zA) exp

(
n−1∑
k=1

(−z)k

k
Ak

)
− 1 (F.31)

as the regulated version of the operator zA. Then the regulated operator Rn(zA)
is trace class, i.e., Rn(zA) ∈ J1. Define now detn(1 + zA) = det(1 + Rn(zA)).
Then the regulated determinant

detn(1+ zA) =
N(zA)∏
j=1

[
(1 + zλj(A)) exp

(
n−1∑
k=1

(−zλj(A))k

k

)]
< ∞. (F.32)

exists and is finite. The corresponding Plemelj-Smithies formula now reads [10]:

detn(1+ zA) =
∞∑

m=0

zm
α
(n)
m (A)
m!

. (F.33)

with α
(n)
m (A) given by the m × m determinant:

α(n)m (A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ
(n)
1 m − 1 0 · · · 0

σ
(n)
2 σ

(n)
1 m − 2 · · · 0

σ
(n)
3 σ

(n)
2 σ

(n)
1 · · · 0

...
...

...
...

...
1

σ
(n)
m σ

(n)
m−1 σ

(n)
m−2 · · · σ

(n)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(F.34)
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where

σ
(n)
k =

{
Tr(Ak) k ≥ n
0 k ≤ n − 1

As Simon [10] says simply, the beauty of (F.34) is that we get detn(1+A) from
the standard Plemelj-Smithies formula (F.23) by simply setting Tr(A), Tr(A2),
. . ., Tr(An−1) to zero.

See also ref. [15] where {λj} are the eigenvalues of an elliptic (pseudo)-
differential operator H of order m on a compact or bounded manifold of di-
mension d, 0 < λ0 ≤ λ1 ≤ · · · and λk ↑ +∞. and the Fredholm determinant

∆(λ) =
∞∏
k=0

(
1 − λ

λk

)
(F.35)

is regulated in the case µ ≡ d/m > 1 as Weierstrass product

∆(λ) =
∞∏
k=0

[(
1 − λ

λk

)
exp

(
λ

λk
+

λ2

2λ2k
+ · · · +

λ[µ]

[µ]λ[µ]k

)]
(F.36)

where [µ] denotes the integer part of µ. This is, see ref. [15], the unique en-
tire function of order µ having zeros at {λk} and subject to the normalization
conditions

ln ∆(0) =
d

dλ
ln ∆(0) = · · · =

d[µ]

dλ[µ]
ln ∆(0) = 0 . (F.37)

Clearly eq. (F.36) is the same as (F.32); one just has to identify z = −λ, A = 1/H
and n − 1 = [µ]. An example is the regularization of the spectral determinant

∆(E) = det [(E −H)] (F.38)

which – as it stands – would only make sense for a finite dimensional basis (or
finite dimensional matrices). In ref. [17] the regulated spectral determinant for
the example of the hyperbola billiard in two dimensions (thus d = 2, m = 2 and
hence µ = 1) is given as

∆(E) = det [(E −H)Ω(E,H)] (F.39)
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where

Ω(E,H) = −H−1eEH−1
(F.40)

such that the spectral determinant in the eigenbasis of H (with eigenvalues En �=
0) reads

∆(E) =
∏
n

(
1 − E

En

)
eE/En < ∞ . (F.41)

Note that H−1 is for this example of Hilbert-Schmidt character.
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Appendix G

Trace of the scattering matrix

(N. Whelan)

In this appendix we present a very quick and dirty way of showing the rela-
tionship between the trace of the Green’s function and the trace of the scattering
matrix alluded to in chapter 22. To prove this correctly is a rather involved
exercise in mathematical physics since it involves unbounded operators whose
properties must be well understood. Here we do it very roughly just do indi-
cate how it goes. For concreteness, we will work in two dimensions although the
results extend to higher dimension. We will also assume circular symmetry for
ease of derivation although the results are more general. Finally, we note that
the trace of the Green’s function of a scattering problem is formally undefined
since it involves integrating over the infinite spatial extent available. Instead one
calculates the trace of the difference of two Green’s functions - the first with the
scatterer present and the second with the scatterer absent.

We assume that there is some localized scatterer centered at the origin which
has circular symmetry. Then the scattering S-matrix is diagonal in a circular
basis with matrix elements given by

Sm(k) = e2iδm(k). (G.1)

The matrix is unitary so in a diagonal basis all entries are pure phases. This means
that an incoming state of the form H

(−)
m (kr)eimθ gets scattered into an outgoing

state of the form Sm(k)H(+)m (kr)eimθ, where H
(∓)
m (z) are incoming and outgoing

Hankel functions respectively. Angular momentum is conserved in the process.
We proceed by embedding the scatterer in a circular enclosure of radius R and
will later take R → ∞. Angular momentum is conserved so that each eigenstate
of this (now bound) problem corresponds to some value of m. Furthermore each
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eigenstate must satisfy the scattering condition at the centre which implies that
for large r it is of the form

ψ(r) ≈ eimθ
(
Sm(k)H(+)m (kr) + H(−)m (kr)

)
≈ 4ei(mθ+δm(k)) cos(kr + δm(k) − χm)√

2πkr
, (G.2)

where χm = mπ/2+π/4 is an annoying phase factor from the asymptotic expan-
sion of the Hankel functions and will play no role in what follows.

We will interest ourselves in the density of states of this (admittedly artificial)
problem. The state (G.2) has been constructed so as to satisfy the internal
scattering problem, however it must also satisfy the external boundary condition
that it vanish at r = R. This implies the quantisation condition

knR + δm(kn) − χm =
(2n + 1)π

2
. (G.3)

We now ask for the difference in the eigenvalues of two consecutive states of fixed
m. Since R is large, the density of states is high and the phase δm(k) does not
change much over such a small interval. Therefore, to leading order we can ignore
this factor altogether and say that consecutive eigenvalues are separated by π/R.
To next order we also include the effect of the change of the phase by Taylor
expanding it so that the eigencondition on state n + 1 is

kn+1R + δm(kn) + (kn+1 − kn)δ′m(kn) − χm ≈ (2n + 3)π
2

. (G.4)

Taking the difference of the last two equations we conclude that the difference is
∆k ≈ π(R + δ′m(k))−1. This is the eigenvalue spacing which we now interpret as
the inverse of the density of states so that

ρm(k) ≈ 1
π

(
R + δ′m(k)

)
. (G.5)

For large R, the bulk behavior is just given by the size of the circular enclosure.
However, there is a correction in terms of the derivative of the scattering phase
shift - this contains all the dynamical information. The corrections to this ap-
proximation are of order 1/R. As we argued in the opening paragraph, there is a
problem since the area under consideration is infinite. We regularize this by sub-
tracting the result from the free particle problem in which there is no scattering.
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We call its density of states ρ0(k). We also sum over all m values so that

ρ(k) − ρ0(k) =
1
π

∑
m

δ′m(k) =
1

2πi

∑
m

d

dk
logSm

=
1

2πi
Tr
(
S†dS

dk

)
. (G.6)

The first line follows from the definition of the phase shifts (G.1) while the second
line follows from the unitarity of S so that S−1 = S†. We can now implicitly take
the limit R → ∞ since the R dependence has been cancelled away.

This is essentially what we want to prove since the left hand side can also be
given an interpretation in terms of the trace of the difference of Green’s functions
which we will denote as g − g0,

ρ(k) − ρ0(k) = − 1
2πk

Im (g(k) − g0(k)) . (G.7)

One can verify this relation for a bound problem by recalling that g(k) =
∑

n(k2−
k2n)−1. One then gives k a small positive imaginary part and observes that the
imaginary part of g(k) is a sum of delta functions at the values kn. There is an
additional factor of 1/2k because the Green’s functions are defined in terms of
the Helmholtz equation and are properly thought of as functions of k2 while the
densities of states are in terms of k. To conclude the argument, we note that that
the right hand side of (G.6) has a simple pole whenever Sm itself has a pole. To
see this, note that near a pole at k = k∗, Sm will behave as 1/(k − k∗), and its
derivative will behave as 1/(k− k∗)2. Due to unitarity, S† behaves as the inverse
of S and will have a zero of order (k − k∗). The combination of factors implies
that S† dS

dk (and hence ρ(k) − ρ0(k)) has a simple pole at k = k∗. By (G.7) this
will occur at the same place as a pole of g − g0. Therefore g(k) − g0 has a pole
whereever S has a pole which is what we wanted to demonstrate and is the result
used in the text.

There are a number of generalizations. This can be done in any number of
dimensions and, for obvious reasons, the normal exposition is in three dimensions
[25]. It is also more common to do this as a function of energy and not wave
number k. However, the discussion in this chapter involves k and so we adapted
the discussion. Finally, we state without proof that the relation (G.6) applies
even when there is no circular symmetry. The proof is more difficult since one
cannot appeal to the phase shifts δm but must work directly with the operators
S.
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abscissa
absolute conv., 235
conditional conv., 235

accelerator mode, 333
action, 387, 397
adjacency matrix, 546
admissible

periodic points, 171
trajectories, number of, 167

Airy function, 396, 407
at a bifurcation, 407

alphabet, 104
alternating binary tree, 137, 160
anomalous diffusion, 364
Anosov flows, 123
antiharmonic extension, 551
Artin-Mazur zeta function, 175
autonomous flow, 34
averages

chaotic, 350
averaging, 27

space, 80
time, 78

baker’s map, 44
bifurcation

Airy function approximation, 407
bizarre, 551
generic, 45
Hopf, 481
saddle-node, 44

billiards
stability, 56

binary
symbolic dynamics

collinear helium, 442
tree, alternating, 137, 160

block
finite sequence, 544

Bohr, 609
-Sommerfeld quantization, 417,

621
helium, 435, 449
Uetli Schwur, 620

Boltzmann, 21
equation, 343

boredom, 293, 535
boundary orbits, 314
bounded operators, 592
Bowen, 24
brain, rat, 3
branch point singularity, 361
Burnett coefficient, 338

C3v symmetry, 319
canonical

transformations, 55
catastrophe theory, 390
caustic, 390
ceiling function, 36, 99, 261
chain rule

matrix, 589
chaos, 5, 6

skeleton of, 8, 10
characteristic

function, 64
polynomial, 173

chicken
heart palpitations, 5

circle map
critical, 484

coarse graining, 64, 129
coding, see symbolic dynamics
collinear helium, 22
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symbolic dynamics, 442
complexity

algorithmic, 185
confession

Kepler, 612
St. Augustine, 64

conjugacy
topological, 114

conservation
phase-space volume, 55

continuity equation, 388
contour integral

representation of trace formula,
351

contracting
flow, 34, 54
stability eigenvalues, 52, 93

convergence
abscissa of, 235
mediocre, 248

coordinate
longitudinal, 399

Copenhagen School, ii, 621
correlation

decay
power law, 347

time, 274
cost function, 151
critical

point, 112
value, 112, 335

cumulant
expansion, 172, 175, 224

Plemelj-Smithies, 596
curvature

correction, 221
expansion, 27, 221
Sinai-Bunimovich, 56

cycle, 8
expansion, 15, 221

3-disk, 239
finite subshift, 230
stability ordered, 231

fundamental, 173, 221
prime, 135, 141, 544

3-disk, 154
Hénon map, 153

pruning, 179
unstable, 10

cycles
fundamental, 246

cyclic
invariance, 141
symmetry, 170

de Broglie wavelength, 382
delta function

Dirac, 66, 92, 380
density, 64

evolution, 20
density of states

Green’s function, 381
quantum, 381
semiclassical, 413

desymmetrization
3-disk, 325

determinant
Fredholm, 600
graph, 184
spectral, 20, 171, 196

for flows, 198
trace relation, 172
trace-class operator, 593

deterministic dynamics, 5
diffraction

Green’s function, 468
Keller, 476
Sommerfeld, 476

diffusion
anomalous, 364

dike map, 115
dimension

box counting, 296
fractal, 295
generalized, 2
Hénon attractor, 155
information, 296

Dirac delta function, 66, 92
Dirichlet series, 235
dynamical
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system, 31, 32
transitivity, 168
zeta function, 15, 200

Euler product rep., 200
dynamics

deterministic, 5
hyperbolic, 107
stochastic, 5
symbolic, 7, 104, 543
topological, 104, 543, 545

eigendirections
marginal, 52
stable, 52
unstable, 52

eigenfunction
energy, 379

eigenvalue
zero, 396

enemy
thy, 352, 359

ensemble
microcanonical, 86

entropy
barrier, 237
topological, 6, 168, 180, 184

equations of variations, 51
equilibrium

point, 32, 34, 53, 67
ergodicity, 67
escape

intermittency, 348
rate, 10, 269

3-disk, 229, 240
escape rate

3-disk, 267
Euler

formula, 203
product rep.

dynamical zeta function, 200
totient function, 486

evolution
operator, 84

quantum, 380
semigroup, 85

expanding
stability eigenvalues, 52, 93

expectation value, 80
exponential proliferation, 18, 185
extremal point, 396

Farey
mediant, 487
series, 485
tree, 487

Feynman, 609
Feynman path integral, 395
finite subshift

cycle expansion, 230
first return function, 36, 368
fixed point, 141

marginally stable, 347
Floquet multipliers, 93
flow, 31, 33

autonomous, 34
contracting, 34, 54
Hamiltonian, 34
incompressible, 54
infinite-dimensional, 40
linearized, 52
spectral determinant, 198
stationary, 34
stretch&fold, 112

fractal, 294
aggregates, 2
dimension, 295
geometry of nature, 2
probabilistic, 2
science, 2

Fredholm
determinant, 600

Fresnel integral, 396, 406
fundamental

cycle, 173
cycles, 246
domain, 109

collinear helium, 441

Gatto Nero
professor, 609

Gauss shift, 486
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golden mean
pruning, 174

gradient algorithm, 151
grammar

symbolic dynamics, 545
grandmother

of fractals, 298
graph, 124
Green’s function

density of states, 381
diffraction, 468
energy dependent, 381
regularized, 414
scattering, 429
semiclassical, 402, 407
short distance, 401
trace, 381

long orbits, 400
short distance, 400

group
semi-, 69

Gutzwiller
trace formula, 412

Hadamard product, 415
Hamilton

-Jacobi equation, 383
equations, 384
principal function, 386

Hamiltonian, 379, 385
flows, stability, 54, 537
repeller, periodic orbits, 165

Hankel function, 401
Hausdorff dimension

Hénon attractor, 155
Heaviside function, 382
Heisenberg, 621

picture, 591
helium, 621

collinear, 22, 35, 49, 460
cycles, 163, 460
eigenenergies, 461
fundamental domain, 441
Poincar/’e section, 460
Poincaré section, 163

stabilities, 461
stability, 163

Hénon
-Heiles

symbolic dynamics, 322
attractor, 68

Hausdorff dimension, 155
Lyapunov exponent, 155
topological entropy, 155

map, 37, 44, 117, 151, 165
fixed points, 117
inverse, 117
prime cycles, 153, 165
stability, 56

heroes
unsung, iv

Hessian matrix, 55
Hilbert

-Schmidt operators, 592
space, 379

Hopf bifurcation, 481
horseshoe, 110, 117

complete, 119
hydrodynamical

interpretation of QM, 402
hyperbolic

non-, 21
hyperbolicity assumption, 13, 93

inadmissible symbol sequence, 545
incompressible flow, 54
indecomposability, 168

metric, 105
index

Maslov, see topological index
inertial manifold, 41
infinite-dimensional flows, 40
inflection point, 482
information

dimension, 296
initial

conditions
sensitivity to, 5

point ξ, 12, 32, 52
state ξ, 12, 32
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integrated observable, 78
intermittency, 45, 155

escape rate, 348
piecewise linear model, 352
resummation, 359, 363
stability ordering, 233

invariance
cyclic, 141
symplectic, 537

invariant
measure, 66

inverse iteration, 142
Hamiltonian repeller, 165

irreversibility, 21, 129
iterated map, 32
iteration

inverse, 142
Hamiltonian repeller, 165

itinerary, 7, 10, 104
future, 112, 543
past, 543

Jacobian, 54, 65
matrix, 12, 52

Jonquière function, 354, 372

Keller
diffraction, 476

kneading
determinant, 128
sequence, 114
theory, 114
value, 114

Koopman operator, 68
Kramers, 621
Kuramoto-Sivashinsky system, 40

Lagrangian
manifold, 387

Laplace
transform, 19, 70, 97, 101, 202,

381, 402
transform, discrete, 95, 171

Legendre transform, 387
Leibniz, 4
libration orbit, see self–retracing

lifetime, 11
linear stability, 51
linearized flow, 52
Liouville

equation, 71
operator, 71
theorem, 55

logistic map, see unimodal
longitudinal

coordinate, 399
loop

intersecting, 173
loxodromic, 55
Lozi map, 37
Lyapunov exponent, 5, 272

Hénon attractor, 155

Madelung, 402
map

dike, 115
expanding, 104
Hénon, 37, 151

prime cycles, 153
iterated, 32
logistic, see unimodal
Lozi, 37
once-folding, 38, 117
order preserving, 114
quadratic, 38, 112
return, 9, 13, 36, 117
stability, 56
tent, 112
Ulam, 240
unimodal, 112

marginal
stability, 12

fixed point, 347
stability eigenvalues, 52, 93

Markov
graph

infinite, 175
partition, 339

finite, 104, 107
infinite, 546
not unique, 107

∼DasBuch/book/chapter/appendWhelan.tex 4aug2000 printed August 24, 2000



INDEX 611

Maslov index, see topological index
measure, 64

invariant, 66
natural, 67

mechanics
quantum, 378
statistical, 20

mediocre
convergence, 248

metric
indecomposability, 105, 280
transitivity, 280

microcanonical ensemble, 86
mixing, 6, 13
Moebius inversion, 177
monodromy matrix, 93
mother

of fractals, 298
multifractals, 298, 516
multipoint shooting method, 143

natural measure, 67
nature

geometry of, 2
Nero

Gatto, professor, 609
neutral, see marginal
Newton’s method, 143

convergence, 145
flows, 147
optimal surface of section, 149

non-wandering set, 33, 119
nonequilibrium, 329

obscure
foundations, 621
jargon, 104
topology, 44

observable, 78
once-folding map, 38
open systems, 82
operator

evolution, 84
Hilbert-Schmidt, 592
Koopman, 68
Liouville, 71

Perron-Frobenius, 66
positive, 592
regularization, 599
resolvent, 70
trace-class, 591

orbit, 32
inadmissible, 114
periodic, 410, 412, 544
returning, 410

order preserving map, 114
ordering

spatial, 116

palpitations
chicken hearts, 5

paradise
this side of, 267

partial differential equations, 40
partition, 104, 545

generating, 544
infinite, 180, 184
Markov, 104

past topological coordinate, 121
periodic

orbit, 410, 412, 544
orbit condition, 141
orbit extraction, 141–154

Hamiltonian repeller, 165
inverse iteration, 142
multipoint shooting, 143
Newton’s method, 143–145
relaxation algorithm, 151

point, 8, 18, 544
admissible, 171
count, 176
unstable, 10

Perron-Frobenius
matrix, 168
operator, 66
theorem, 519

phase space, 32
3-disk, 280

piecewise linear model
intermittency, 352

pinball, 4, see 3-disk
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Plemelj-Smithies cumulants, 596
Poincaré

-Cartan theorem, 388
section, 9, 117

point
non-wandering, 33
periodic, 8, 544
wandering, 33

point scatterers, 480
Poisson

bracket, 71, 537
resummation, 19

polynomial
characteristic, 173
topological, 175

positive operators, 592
power law

correlation decay, 347
pressure, 86

thermodynamic, 86
prime cycle, 135, 141, 544

3-disk, 106, 135, 154
count, 177
Hénon map, 153

primitive cycle, see prime cycle
propagator, 380

semiclassical, 391
short time, 392, 400
Van Vleck, 393

pruning, 8
front, 122
golden mean, 174
individual cycles, 179
primary interval, 115
symbolic dynamics, 545

pseudocycles, 220

quadratic map, 38
quantization

semiclassical, 409
quantum

chaology, 24
chaos, 25
evolution, 380
interference, 382

mechanics, 378
potential, 402
propagator, 380
resonances, 21
theory, old, 621

random matrix theory, 24
rectangle, 121
recurrence, 33, 104

time, see return time
regularization, 415

Green’s function, 414
operator, 599

relaxation algorithm, 151
renormalization, 45
repeller, 22
representative point, 32
resolvent operator, 70
resonances

complex, 21
quantum, 21

resummation
intermittency, 359, 363

return map, 9, 13, 117
return time, 369

distribution, 370
returning orbit, 410
Riemann zeta function, 235, 354
Rössler system, 34, 110, 112
Ruelle, 24

zeta function, see dynamical zeta
function

running orbits
Lorentz gas, 333

Rutherford, 435

saddle point, see stationary phase
saddle-node

bifurcation, 44
scatterer

point, 480
scattering

3-dimensional spheres, 58
Green’s function, 429
matrix, 425

Schrödinger
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equation, 378
picture, 591

section
method, 36
Poincaré, 9

self–retracing orbit, 443
self-similar, 18

fractal, 124
semiclassical

approximation, 383
density of states, 413
Green’s function, 402, 407
propagator, 391
quantization, 409
wave function, 389
zeta function

collinear helium, 450
semiclassical zeta function, 416

semigroup, 69
evolution, 85

sensitivity to initial conditions, 5, 272
set

non-wandering, 119
shadowing, 16, 182

3-disk, 229
shift, 544

finite type, 545
full, 544
map, 482
sub-, 545

Sinai, 24
Sinai-Bunimovich curvature, 56
singularity

branch point, 361
skeleton of chaos, 8, 10
Smale, 7, 24, 116, 128, 210

wild idea, 198, 209
Smale S., 184, 616
Sommerfeld

diffraction, 476
space

averaging, 80
spectral

determinant, 20, 171, 196
for flows, 198

spectral determinant
1-dimensional, 417
2-dimensional, 418

staircase, 382
stability

billiards, 56
eigenvalues, 93

contracting, 52
expanding, 52
marginal, 52

Hamiltonian flows, 54, 537
linear, 51
maps, 56
neutral, see marginal
ordering

cycle expansions, 231
intermittent flows, 233

structural, 119, 123, 183
stable

manifold, 12, 117
stagnation point, see equilibrium point
staircase

spectral, 382
standing orbit

Lorentz gas, 333
state space, 32
stationary

flow, 34
phase approximation, 394, 395,

406, 411, 467, 479, 639
point, see equilibrium point
state, 66

statistical mechanics, 20
Sterling formula, 406
stochastic dynamics, 5
stochasticity assumption, 369
Stokes theorem, 388
stosszahlansatz, 21, 343
stretch&fold flow, 112
strobe method, 36
structural stability, 119, 123, 183
subshift, 545

finite type, 106, 123, 126, 545
surface of section

optimal, 149

printed August 24, 2000 ∼DasBuch/book/chapter/appendWhelan.tex 4aug2000



614 INDEX

survival probability, see escape rate
symbol

plane, 121
sequence

inadmissible, 545
symbolic dynamics, 7, 104, 543

3-disk, 30, 106, 134
at a bifurcation, 59
binary

collinear helium, 442
coding, 545

Markov graph, 230
complete, 112, 119
covering, 544
grammar, 545
Hénon-Heiles, 322
pruned, 545
recoding, 108
unimodal, 112

symmetry
C3v, 319
3-disk, 109, 304, 319, 325
cyclic, 170
discrete, 107

symplectic
form, 54
group Sp(2D), 538
invariance, 537
transformation, 55, 71

systems
open, 82

tangent space, 52
Tauberian theorem, 355, 372
thermodynamical

pressure, 86
weight, 351
zeta function, 351

3-body problem, 22, 409, 435, 611,
622

3-dimensional sphere
scattering, 58

3-disk
boundary orbits, 314
convergence, 246, 250

cycle
analytically, 162
count, 323, 560
expansion, 239

escape rate, 217, 229, 240, 267
fractal dimension, 294
hyperbolicity, 93
phase space, 10, 280, 294
pinball, 4, 44, 58
point scatterer, 480
prime cycles, 8, 106, 135, 154
shadowing, 229
simulator, 48
symbolic dynamics, 8, 30, 106,

134
symmetry, 109, 304, 319, 325
transition matrix, 105

time
arrow of, 21
averaging, 78
ceiling function, see ceiling func-

tion
continuous, 31
discrete, 32
ordered integration, 53

topological
conjugacy, 114
dynamics, 104, 543, 545
entropy, 6, 168, 180

Hénon attractor, 155
future coordinate, 114
parameter, 115
polynomial, 175
trace formula, 171
transitivity, 168
zeta function, 175, 202

topological index, 390
topological index, 412, 622
totient function, 486
trace

formula
classical, 19
contour integral rep., 351
flows, 97
Gutzwiller, 412
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maps, 95
topological, 171, 202

local, 170
trace-class operator, 591

determinant, 593
trajectory, see orbit
transfer

matrix, 66
transformation

canonical, 71
symplectic, 71

transition matrix, 105, 168, 170
3-disk, 105

transverse
stability, 400

Trotter product formula, 591

Ulam map, 159, 240
unimodal map, 112

symbolic dynamics, 112
unstable

cycle, 10
manifold, 12, 117
periodic point, 10

unsung
heroes, iv

Van Vleck
propagator, 393

visitation sequence, see itinerary
volume preservation, 58

wandering point, 33
wave function

semiclassical, 389
WKB, 390

weight
multiplicative, 27

Wentzel-Kramers-Brillouin, see WKB
winding number, 482, 484
WKB, 383

wave function, 390

zero eigenvalue, 396
zeta function

Artin-Mazur, 175

dynamical, 15, 200
Riemann, 354
Ruelle, see dynamical
thermodynamical, 351, 355
topological, 175, 202

printed August 24, 2000 ∼DasBuch/book/chapter/appendWhelan.tex 4aug2000





Part II

Classical and Quantum Chaos:
Material available on
www.nbi.dk/ChaosBook

—————————————————————-
version 7.0.1 Aug 6, 2000 printed August 24, 2000

www.nbi.dk/ChaosBook/ comments to: predrag@nbi.dk

617





Appendix H

What reviewers say

H.1 N. Bohr

“The most important work since that Schrödinger killed the cat.”

H.2 R.P. Feynman

“Great doorstop!”

H.3 Professor Gatto Nero

This book, which I have received unsolicited from the Szczsyrk Oblast Agricul-
tural and Mazuth Office Press appears to be a collage of LaTeX clips from random
papers authored by the motley collection of co-authors whose number one usually
associates with an experimental high energy Phys. Rev. Letter, rather than a
book that aspires to be the Landau-Lifshitz of chaos.

Entire rain forests went down so this not inconsiderable tome can be printed
and bound. Why these ravings were not left on the Web where they more properly
belong is not explained anywhere in the text. If it is an antiBourbaki, as one has
in the antimatter world, then why not do the real thing? A Landau-Lifshitz for
nonlinear Science, written as it should be done. The nonScience book to end all
nonScience books.
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Appendix I

A brief history of chaos

Laws of attribution

1. Arnold’s Law: everything that is discovered is
named after someone else (including Arnold’s law)

2. Berry’s Law: sometimes, the sequence of an-
tecedents seems endless. So, nothing is discovered
for the first time.

3. Whiteheads’s Law: Everything of importance
has been said before by someone who did not dis-
cover it.

M.V. Berry

I.1 Chaos is born

(R. Mainieri)

Classical mechanics has not stood still since Newton. The formalism that we
use today was developed by Euler and Lagrange. By the end of the 1800’s the
three problems that would lead to the notion of chaotic dynamics were already
known: the three-body problem, the ergodic hypothesis, and nonlinear oscillators.

I.1.1 Three-body problem

Trying to predict the motion of the Moon has preoccupied astronomers since
antiquity. Accurate understanding of its motion was important for determining
the longitude of ships while traversing open seas. Kepler’s Rudolphine tables had
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622 APPENDIX I. A BRIEF HISTORY OF CHAOS

been a great improvement over previous tables, and Kepler was justly proud of
his achievements. He wrote in the introduction to the announcement of Kepler’s
third law, Harmonice Mundi (Linz, 1619) in a style that would not fly with the
contemporary Physical Review Letters editors:

What I prophesied two-and-twenty years ago, as soon as I discovered the
five solids among the heavenly orbits – what I firmly believed long before
I had seen Ptolemy’s Harmonics – what I had promised my friends in the
title of this book, which I named before I was sure of my discovery – what
sixteen years ago, I urged as the thing to be sought – that for which I joined
Tycho Brahé, for which I settled in Prague, for which I have devoted the
best part of my life to astronomical contemplations, at length I have brought
to light, and recognized its truth beyond my most sanguine expectations. It
is not eighteen months since I got the first glimpse of light, three months
since the dawn, very few days since the unveiled sun, most admirable to gaze
upon, burst upon me. Nothing holds me; I will indulge my sacred fury; I
will triumph over mankind by the honest confession that I have stolen the
golden vases of the Egyptians to build up a tabernacle for my God far away
from the confines of Egypt. If you forgive me, I rejoice; if you are angry, I
can bear it; the die is cast, the book is written, to be read either now or in
posterity, I care not which; it may well wait a century for a reader, as God
has waited six thousand years for an observer.

Bernoulli used Newton’s work on mechanics to derive the elliptic orbits of Kepler
and set an example of how equations of motion could be solved by integrating.
But the motion of the Moon is not well approximated by an ellipse with the
Earth at a focus; at least the effects of the Sun have to be taken into account if
one wants to reproduce the data the classical Greeks already possessed. To do
that one has to consider the motion of three bodies: the Moon, the Earth, and
the Sun. When the planets are replaced by point particles of arbitrary masses,
the problem to be solved is known as the three-body problem. The three-body
problem was also a model to another concern in astronomy. In the Newtonian
model of the solar system it is possible for one of the planets to go from an elliptic
orbit around the Sun to an orbit that escaped its domain or that plunged right
into it. Knowing if any of the planets would do so became the problem of the
stability of the solar system. A planet would not meet this terrible end if solar
system consisted of two celestial bodies, but whether such fate could befall in the
three-body case remained unclear.

After many failed attempts to solve the three-body problem, natural philoso-
phers started to suspect that it was impossible to integrate. The usual technique
for integrating problems was to find the conserved quantities, quantities that do
not change with time and allow one to relate the momenta and positions different
times. The first sign on the impossibility of integrating the three-body problem
came from a result of Burns that showed that there were no conserved quanti-
ties that were polynomial in the momenta and positions. Burns’ result did not
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I.1. CHAOS IS BORN 623

preclude the possibility of more complicated conserved quantities. This problem
was settled by Poincaré and Sundman in two very different ways.

In an attempt to promote the journal Acta Mathematica, Mittag-Leffler got
the permission of the King Oscar II of Sweden and Norway to establish a mathe-
matical competition. Several questions were posed (although the king would have
preferred only one), and the prize of 2500 kroner would go to the best submission.
One of the questions was formulated by Weierstrass:

Given a system of arbitrary mass points that attract each other according
to Newton’s laws, under the assumption that no two points ever collide, try
to find a representation of the coordinates of each point as a series in a
variable that is some known function of time and for all of whose values the
series converges uniformly.

This problem, whose solution would considerably extend our understand-
ing of the solar system, . . .

Poincaré’s submission won the prize. He showed that conserved quantities that
were analytic in the momenta and positions could not exist. To show that he
introduced methods that were very geometrical in spirit: the importance of phase
flow, the role of periodic orbits and their cross sections, the homoclinic points.

The interesting thing about Poincaré’s work was that it did not solve the
problem posed. He did not find a function that would give the coordinates as
a function of time for all times. He did not show that it was impossible either,
but rather that it could not be done with the Bernoulli technique of finding a
conserved quantity and trying to integrate. Integration would seem unlikely from
Poincaré’s prize-winning memoir, but it was accomplished by the Finnish-born
Swedish mathematician Sundman. Sundman showed that to integrate the three-
body problem one had to confront the two-body collisions. He did that by making
them go away through a trick known as regularization of the collision manifold.
The trick is not to expand the coordinates as a function of time t, but rather as a
function of 3

√
t. To solve the problem for all times he used a conformal map into

a strip. This allowed Sundman to obtain a series expansion for the coordinates
valid for all times, solving the problem that was proposed by Weirstrass in the
King Oscar II’s competition.

The Sundman’s series are not used today to compute the trajectories of any
three-body system. That is more simply accomplished by numerical methods or
through series that, although divergent, produce better numerical results. The
conformal map and the collision regularization mean that the series are effec-
tively in the variable 1 − e−

3√t. Quite rapidly this gets exponentially close to
one, the radius of convergence of the series. Many terms, more terms than any
one has ever wanted to compute, are needed to achieve numerical convergence.
Though Sundman’s work deserves better credit than it gets, it did not live up to
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624 APPENDIX I. A BRIEF HISTORY OF CHAOS

Weirstrass’s expectations, and the series solution did not “considerably extend
our understanding of the solar system.” The work that followed from Poincaré
did.

I.1.2 Ergodic hypothesis

The second problem that played a key role in development of chaotic dynamics
was the ergodic hypothesis of Boltzmann. Maxwell and Boltzmann had com-
bined the mechanics of Newton with notions of probability in order to create
statistical mechanics, deriving thermodynamics from the equations of mechanics.
To evaluate the heat capacity of even a simple system, Boltzmann had to make
a great simplifying assumption of ergodicity: that the dynamical system would
visit every part of the phase space allowed by conservations law equally often.
This hypothesis was extended to other averages used in statistical mechanics and
was called the ergodic hypothesis. It was reformulated by Poincaré to say that a
trajectory comes as close as desired to any phase space point.

Proving the ergodic hypothesis turned out to be very difficult. By the end of
our own century it has only been shown true for a few systems and wrong for quite
a few others. Early on, as a mathematical necessity, the proof of the hypothesis
was broken down into two parts. First one would show that the mechanical
system was ergodic (it would go near any point) and then one would show that
it would go near each point equally often and regularly so that the computed
averages made mathematical sense. Koopman took the first step in proving the
ergodic hypothesis when he noticed that it was possible to reformulate it using
the recently developed methods of Hilbert spaces. This was an important step
that showed that it was possible to take a finite-dimensional nonlinear problem
and reformulate it as a infinite-dimensional linear problem. This does not make
the problem easier, but it does allow one to use a different set of mathematical
tools on the problem. Shortly after Koopman started lecturing on his method,
von Neumann proved a version of the ergodic hypothesis, giving it the status of a
theorem. He proved that if the mechanical system was ergodic, then the computed
averages would make sense. Soon afterwards Birkhoff published a much stronger
version of the theorem.

I.1.3 Nonlinear oscillators

The third problem that was very influential in the development of the theory
of chaotic dynamical systems was the work on the nonlinear oscillators. The
problem is to construct mechanical models that would aid our understanding of
physical systems. Lord Rayleigh came to the problem through his interest in un-
derstanding how musical instruments generate sound. In the first approximation
one can construct a model of a musical instrument as a linear oscillator. But real
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instruments do not produce a simple tone forever as the linear oscillator does, so
Lord Rayleigh modified this simple model by adding friction and more realistic
models for the spring. By a clever use of negative friction he created two basic
models for the musical instruments. These models have more than a pure tone
and decay with time when not stroked. In his book The Theory of Sound Lord
Rayleigh introduced a series of methods that would prove quite general, such as
the notion of a limit cycle, a periodic motion a system goes to regardless of the
initial conditions.

I.2 Chaos grows up

(R. Mainieri)

The theorems of von Neumann and Birkhoff on the ergodic hypothesis were
published in 1912 and 1913. This line of enquiry developed in two directions.
One direction took an abstract approach and considered dynamical systems as
transformations of measurable spaces into themselves. Could we classify these
transformations in a meaningful way? This lead Kolmogorov to the introduction
of the concept of entropy for dynamical systems. With entropy as a dynamical
invariant it became possible to classify a set of abstract dynamical systems known
as the Bernoulli systems. The other line that developed from the ergodic
hypothesis was in trying to find mechanical systems that are ergodic. An ergodic
system could not have stable orbits, as these would break ergodicity. So in 1898
Hadamard published a paper with a playful title of “... billiards ...,” where he
showed that the motion of balls on surfaces of constant negative curvature is
everywhere unstable. This dynamical system was to prove very useful and it was
taken up by Birkhoff. Morse in 1923 showed that it was possible to enumerate
the orbits of a ball on a surface of constant negative curvature. He did this by
introducing a symbolic code to each orbit and showed that the number of possible
codes grew exponentially with the length of the code. With contributions by
Artin, Hedlund, and Hopf it was eventually proven that the motion of a ball on
a surface of constant negative curvature was ergodic. The importance of this
result escaped most physicists, one exception being Krylov, who understood that
a physical billiard was a dynamical system on a surface of negative curvature,
but with the curvature concentrated along the lines of collision. Sinai, who was
the first to show that a physical billiard can be ergodic, knew Krylov’s work well.

The work of Lord Rayleigh also received vigorous development. It prompted
many experiments and some theoretical development by van der Pol, Duffing,
and Hayashi. They found other systems in which the nonlinear oscillator played
a role and classified the possible motions of these systems. This concreteness
of experiments, and the possibility of analysis was too much of temptation for
Mary Lucy Cartwright and J.E. Littlewood, who set out to prove that many of
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the structures conjectured by the experimentalists and theoretical physicists did
indeed follow from the equations of motion. Birkhoff had found a “remarkable
curve” in a two dimensional map; it appeared to be non-differentiable and it
would be nice to see if a smooth flow could generate such a curve. The work of
Cartwright and Littlewood lead to the work of Levinson, which in turn provided
the basis for the horseshoe construction of Smale.

In Russia, Lyapunov paralleled the methods of Poincaré and initiated the
strong Russian dynamical systems school. Andronov carried on with the study of
nonlinear oscillators and in 1937 introduced together with Pontryagin the notion
of coarse systems. They were formalizing the understanding garnered from the
study of nonlinear oscillators, the understanding that many of the details on how
these oscillators work do not affect the overall picture of the phase space: there
will still be limit cycles if one changes the dissipation or spring force function
by a little bit. And changing the system a little bit has the great advantage of
eliminating exceptional cases in the mathematical analysis. Coarse systems were
the concept that caught Smale’s attention and enticed him to study dynamical
systems.

I.3 Chaos with us

(R. Mainieri)

In the fall of 1961 Steven Smale was invited to Kiev where he met Arnold,
Anosov, Sinai, and Novikov. He lectured there, and spent a lot of time with
Anosov. He suggested a series of conjectures, most of which Anosov proved within
a year. It was Anosov who showed that there are dynamical systems for which all
points (as opposed to a non–wandering set) admit the hyperbolic structure, and
it was in honor of this result that Smale named these systems Axiom-A. In Kiev
Smale found a receptive audience that had been thinking about these problems.
Smale’s result catalyzed their thoughts and initiated a chain of developments that
persisted into the 1970’s.

Smale collected his results and their development in the 1967 review article on
dynamical systems, entitled “Differentiable dynamical systems”. There are many
great ideas in this paper: the global foliation of invariant sets of the map into
disjoint stable and unstable parts; the existence of a horseshoe and enumeration
and ordering of all its orbits; the use of zeta functions to study dynamical systems.
The emphasis of the paper is on the global properties of the dynamical system,
on how to understand the topology of the orbits. Smale’s account takes you from
a local differential equation (in the form of vector fields) to the global topological
description in terms of horseshoes.

The path traversed from ergodicity to entropy is a little more confusing. The
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general character of entropy was understood by Weiner, who seemed to have spo-
ken to Shannon. In 1948 Shannon published his results on information theory,
where he discusses the entropy of the shift transformation. Kolmogorov went far
beyond and suggested a definition of the metric entropy of an area preserving
transformation in order to classify Bernoulli shifts. The suggestion was taken by
his student Sinai and the results published in 1959. In 1960 Rohlin connected
these results to measure-theoretical notions of entropy. The next step was pub-
lished in 1965 by Adler and Palis, and also Adler, Konheim, McAndrew; these
papers showed that one could define the notion of topological entropy and use it
as an invariant to classify continuous maps. In 1967 Anosov and Sinai applied
the notion of entropy to the study of dynamical systems. It was in the context
of studying the entropy associated to a dynamical system that Sinai introduced
Markov partitions in 1968.

Markov partitions allow one to relate dynamical systems and statistical me-
chanics; this has been a very fruitful relationship. It adds measure notions to the
topological framework laid down in Smale’s paper. Markov partitions divide the
phase space of the dynamical system into nice little boxes that map into each
other. Each box is labeled by a code and the dynamics on the phase space maps
the codes around, inducing a symbolic dynamics. From the number of boxes
needed to cover all the space, Sinai was able to define the notion of entropy of a
dynamical system. In 1970 Bowen came up independently with the same ideas,
although there was presumably some flow of information back and forth before
these papers got published. Bowen also introduced the important concept of
shadowing of chaotic orbits. We do not know whether at this point the relations
with statistical mechanics were clear to every one. They became explicit in the
work of Ruelle. Ruelle understood that the topology of the orbits could be spec-
ified by a symbolic code, and that one could associate an “energy” to each orbit.
The energies could be formally combined in a “partition function” to generate
the invariant measure of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundations of the statisti-
cal mechanics approach to chaotic systems, research turned to studying particular
cases. The simplest case to consider is one-dimensional maps. The topology of
the orbits for parabola-like maps was worked out in 1973 by Metropolis, Stein,
and Stein. The more general one-dimensional case was worked out in 1976 by
Milnor and Thurston in a widely circulated preprint, whose extended version
eventually got published in 1988.

A lecture of Smale and the results of Metropolis, Stein, and Stein inspired
Feigenbaum to study simple maps. This lead him to the discovery of the universal-
ity in quadratic maps and the application of ideas from field-theory to dynamical
systems. Feigenbaum’s work was the culmination in the study of one-dimensional
systems; a complete analysis of a nontrivial transition to chaos. Feigenbaum in-
troduced many new ideas into the field: the use of the renormalization group
which lead him to introduce functional equations in the study of dynamical sys-
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tems, the scaling function which completed the link between dynamical systems
and statistical mechanics, and the use of presentation functions as the dynamics
of scaling functions.

The work in more than one dimension progressed very slowly and is still
far from completed. The first result in trying to understand the topology of the
orbits in two dimensions (the equivalent of Metropolis, Stein, and Stein, or Milnor
and Thurston’s work) was obtained by Thurston. Around 1975 Thurston was
giving lectures “On the geometry and dynamics of diffeomorphisms of surfaces”.
Thurston’s techniques exposed in that lecture have not been applied in physics,
but much of the classification that Thurston developed can be obtained from the
notion of a “pruning front” developed independently by Cvitanović.

Once one develops an understanding for the topology of the orbits of a dynam-
ical system, one needs to be able to compute its properties. Ruelle had already
generalized the zeta function introduced by Artin and Mazur so that it could be
used to compute the average value of observables. The difficulty with Ruelle’s
zeta function is that it does not converge very well. Starting out from Smale’s
observation that a chaotic dynamical system is dense with a set of periodic orbits,
Cvitanović used these orbits as a skeleton on which to evaluate the averages of
observables, and organized such calculations in terms of rapidly converging cycle
expansions. This convergence is attained by using the shorter orbits used as a
basis for shadowing the longer orbits.

This account is far from complete, but we hope that it will help get a sense
of perspective on the field. It is not a fad and it will not die anytime soon.

Remark I.1 Notion of global foliations. For each paper cited in dy-
namical systems literature, there are many results that went into its de-
velopment. As an example, take the notion of global foliations that we
attribute to Smale. As far as we can trace the idea, it goes back to René
Thom; local foliations were already used by Hadamard. Smale attended
a seminar of Thom in 1958 or 1959. In that seminar Thom was explain-
ing his notion of transversality. One of Thom’s disciples introduced Smale
to Brazilian mathematician Peixoto. Peixoto (who had learned the results
of the Andronov-Pontryagin school from Lefschetz) was the closest Smale
had ever come until then to the Andronov-Pontryagin school. It was from
Peixoto that Smale learned about structural stability, a notion that got him
enthusiastic about dynamical systems, as it blended well with his topolog-
ical background. It was from discussions with Peixoto that Smale got the
problems in dynamical systems that lead him to his 1960 paper on Morse
inequalities. The next year Smale published his result on the hyperbolic
structure of the nonwandering set. Smale was not the first to consider a
hyperbolic point, Poincaré had already done that; but Smale was the first
to introduce a global hyperbolic structure. By 1960 Smale was already lec-
turing on the horseshoe as a structurally stable dynamical system with an
infinity of periodic points and promoting his global viewpoint.

(R. Mainieri)
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Remark I.2 Levels of ergodicity. In the mid 1970’s A. Katok and
Ya.B. Pesin tried to use geometry to establish positive Lyapunov exponents.
A. Katok and J.-M. Strelcyn carried out the program and developed a the-
ory of general dynamical systems with singularities. They studied uniformly
hyperbolic systems (as strong as Anosov’s), but with sets of singularities.
Under iterations a dense set of points hits the singularities. Even more im-
portant are the points that never hit the singularity set. In order to establish
some control over how they approach the set, one looks at trajectories that
apporach the set by some given εn, or faster.

Ya.G. Sinai, L. Bunimovich and Chernov studied the geometry of bil-
liards in a very detailed way. A. Katok and Ya.B. Pesin’s idea was much
more robust. Look at the discontinuity set (geometry of it matters not at
all), take an ε neighborhood around it. Given that the Lebesgue measure
is εα and the stability grows not faster than (distance)n, A. Katok and J.-
M. Strelcyn prove that the Lyapunov exponent is non-zero.

In mid 1980’s Ya.B. Pesin studied the dissipative case. Now the prob-
lem has no invariant Lebesgue measure. Assuming uniform hyperbolicity,
with singularities, and tying together Lebesgue measure and discontinutities,
and given that the stability grows not faster than (distance)n, Ya.B. Pesin
proved that the Lyapunov exponent is non-zero, and that SBR measure ex-
ists. He also proved that the Lorenz, Lozi and Byelikh attractors satisfy
these conditions.

In the the systems were uniformly hyperbolic, all trouble was in differen-
tials. For the Hénon attractor, already the differentials are nonhyperbolic.
The points do not separate uniformly, but the analogue of the singularity set
can be obtained by excizing the regions that do not separate. Hence there
are 3 levels of ergodic systems:

1. Anosov flow

2. Anosov flow + singularity set

• the Hamiltonian systems: general case A. Katok and J.-M. Strel-
cyn, billiards Ya.G. Sinai and L. Bunimovich.

• the dissipative case: Ya.B. Pesin

3. Hénon

• The first proof was given by M. Benedicks and L. Carleson [?].
• A more readable proof is given in M. Benedicks and L.-S. Young [?]

(based on Ya.B. Pesin’s comments)

I.3.1 Periodic orbit theory

The history of the periodic orbit theory is rich and curious, and the recent ad-
vances are to equal degree inspired by a century of separate development of three
disparate subjects; 1. classical chaotic dynamics, initiated by Poincaré and put
on its modern footing by Smale, Ruelle, and many others; 2. quantum theory
initiated by Bohr, with the modern “chaotic” formulation by Gutzwiller; and
3. analytic number theory initiated by Riemann and formulated as a spectral
problem by Selberg. Following totally different lines of reasoning and driven by
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very different motivations, the three separate roads all arrive at formally nearly
identical trace formulas, zeta functions and spectral determinants.

That these topics should be related is far from obvious. Connection between
dynamics and number theory arises from Selberg’s observation that description
of geodesic motion and wave mechanics on spaces of constant negative curvature
is essentially a number-theoretic problem. A posteriori, one can say that zeta
functions arise in both classical and quantum mechanics because in both the dy-
namical evolution can be described by the action of linear evolution (or transfer)
operators on infinite-dimensional vector spaces. The spectra of these operators
are given by the zeros of appropriate determinants. One way to evaluate de-
terminants is to expand them in terms of traces, log det = tr log, and in this
way the spectrum of an evolution operator becames related to its traces, that is,
periodic orbits. A perhaps deeper way of restating this is to observe that the
trace formulas perform the same service in all of the above problems; they relate
the spectrum of lengths (local dynamics) to the spectrum of eigenvalues (global
averages), and for nonlinear geometries they play a role analogous to that the
Fourier transform plays for the circle.

I.4 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue went
up for a walk up the Uetliberg. On the top they sat down
and talked about physics. In particular they talked about
the new atom model of Bohr. There and then they made
the “Uetli Schwur”: If that crazy model of Bohr turned
out to be right, then they would leave physics. It did and
they didn’t.

A. Pais, Inward Bound: of Matter and Forces in the
Physical World

In an afternoon of May 1991 Dieter Wintgen is sitting in his office at the Niels
Bohr Institute beaming with the unparalleled glee of a boy who has just commit-
ted a major mischief. The starting words of the manuscript he has just penned
are

The failure of the Copenhagen School to obtain a reasonable . . .

34 years old at the time, Dieter was a scruffy kind of guy, always in sandals
and holed out jeans, a left winger and a mountain climber, working around
the clock with his students Gregor and Klaus to complete the work that Bohr
himself would have loved to see done back in 1916: a “planetary” calculation of
the helium spectrum.
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Never mind that the “Copenhagen School” refers not to the old quantum
theory, but to something else. The old quantum theory was no theory at
all; it was a set of rules bringing some order to a set of phenomena which defied
logic of classical theory. The electrons were supposed to describe planetary orbits
around the nucleus; their wave aspects were yet to be discovered. The foundations
seemed obscure, but Bohr’s answer for the once-ionized helium to hydrogen ratio
was correct to five significant figures and hard to ignore. The old quantum theory
marched on, until by 1924 it reached an impasse: the helium spectrum and the
Zeeman effect were its death knell.

Since the late 1890’s it had been known that the helium spectrum consists
of the orthohelium and parahelium lines. In 1915 Bohr suggested that the two
kinds of helium lines might be associated with two distinct shapes of orbits (a
suggestion that turned out to be wrong). In 1916 he got Kramers to work on
the problem, and wrote to Rutherford: “I have used all my spare time in the
last months to make a serious attempt to solve the problem of ordinary helium
spectrum . . . I think really that at last I have a clue to the problem.” To other
colleagues he wrote that “the theory was worked out in the fall of 1916” and
of having obtained a “partial agreement with the measurements.” Nevertheless,
the Bohr-Sommerfeld theory, while by and large successful for hydrogen, was a
disaster for neutral helium. Heroic efforts of the young generation, including
Kramers and Heisenberg, were of no avail.

For a while Heisenberg thought that he had the ionization potential for helium,
which he had obtained by a simple perturbative scheme. He wrote enthusiastic
letters to Sommerfeld and was drawn into a collaboration with Max Born to
compute the spectrum of helium using Born’s systematic perturbative scheme.
In first approximation, they reproduced the earlier calculations. The next level
of corrections turned out to be larger than the computed effect. The concluding
paragraph of Max Born’s classic “Vorlesungen über Atommechanik” from 1925
sums it up in a somber tone:

(. . . ) the systematic application of the principles of the quantum theory
(. . . ) gives results in agreement with experiment only in those cases where
the motion of a single electron is considered; it fails even in the treatment
of the motion of the two electrons in the helium atom.

This is not surprising, for the principles used are not really consistent.
(. . . ) A complete systematic transformation of the classical mechanics into
a discontinuous mechanics is the goal towards which the quantum theory
strives.

That year Heisenberg suffered a bout of hay fever, and the old quantum the-
ory was dead. In 1926 he gave the first quantitative explanation of the helium
spectrum. He used wave mechanics, electron spin and the Pauli exclusion princi-
ple, none of which belonged to the old quantum theory, and planetary orbits of
electrons were cast away for nearly half a century.
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Why did Pauli and Heisenberg fail with the helium atom? It was not the fault
of the old quantum mechanics, but rather it reflected their lack of understanding
of the subtleties of classical mechanics. Today we know what they missed in 1913-
24: the role of conjugate points (topological indices) along classical trajectories
was not accounted for, and they had no idea of the importance of periodic orbits
in nonintegrable systems.

Since then the calculation for helium using the methods of the old quantum
mechanics has been fixed. Leopold and Percival added the topological indices in
1980, and in 1991 Wintgen and collaborators orbits. Dieter had good reasons to
gloat; while the rest of us were preparing to sharpen our pencils and supercom-
puters in order to approach the dreaded 3-body problem, they just went ahead
and did it. What it took - and much else - is described in this book. One is also
free to ponder what quantum theory would look like today if all this was worked
out in 1917.

Remark I.3 Sources. This tale, aside from a few personal recollections,
is in large part lifted from Abraham Pais’ accounts of the demise of the old
quantum theory [?, ?], as well as Jammer’s account [2]. The helium spectrum
is taken up in chapter 21. In August 1994 Dieter Wintgen died in a climbing
accident in the Swiss Alps.
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Appendix J

Solutions

Chapter 1

Solution 1.1: 3-disk symbolic dynamics. Some of the cycles are listed in
table 7.2 and drawn in fig. 1.4.

Solution 7.5: 3-disk prime cycle counting. The formula for arbitrary
length cycles is derived in sect. 9.4.

Solution 1.2: Sensitivity to initial conditions. To estimate the pinball
sensitivity we consider a narrow beam of point particles bouncing between two
disks, fig. J.1(a). Or if you find this easier to visualize, think of a narrow ray of
light. We assume that the ray of light is focused along the axis between the two
points. This is where the least unstable periodic orbit lies, so its stability should
give us an upper bound on the number of bounces we can expect to achieve. To
estimate the stability we assume that the ray of light has a width w(t) and a
“dispersion angle” θ(t) (we assume both are small), fig. J.1(b). Between bounces

(a)

R-2a aa

R (b)

ϕθ

Figure J.1: The 2-disk pinball (a) geometry, (b) defocusing of scattered rays.
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634 APPENDIX J. SOLUTIONS

the dispersion angle stays constant while the width increases as

w(t) ≈ w(t′) + (t − t′)θ

At each bounce the width stays constant while the angle increases by

θn+1 = θn + 2φ ≈ θn + w(t)/a.

where θn denotes the angle after bounce n. Denoting the width of the ray at the
nth bounce by wn then we obtain the pair of coupled equations

wn+1 = wn +
(
R − 2a

)
θn

(J.1)

θn = θn−1 +
wn

a
(J.2)

where we ignore corrections of order w2n and θ2n. Solving for θn we find

θn = θ0 +
1
a

n∑
j=1

wn.

Assuming θ0 = 0 then

wn+1 = wn +
R − 2a

a

n∑
j=1

wn

Plugging in the values in the question we find the width at each bounce in Ångstrøms
grows as 1, 5, 29, 169, 985, etc. To find the asymptotic behavior for a large num-
ber of bounces we try an solution of the form wn = axn. Substituting this into
the equation above and ignoring terms that do not grow exponentially we find
solutions

wn ≈ awasym
n = a(3 ± 2

√
2)n

The solution with the positive sign will clearly dominate. The constant a we
cannot determine by this local analysis although it is clearly proportional to w0.
However, the asymptotic solution is a good approximation even for quite a small
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number of bounces. To find an estimate of a we see that wn/w
asym
n very rapidly

converges to 0.146447, thus

wn ≈ 0.146447w0(3 + 2
√

2)n ≈ 0.1 × w0 × 5.83n

The outside edges of the ray of light will miss the disk when the width of the ray
exceeds 2 cm; this occurs after 11 bounces.

(Adam Prügel-Bennett)

Solution 1.2: Sensitivity to initial conditions, another try. Adam’s
estimate is not very good - do you have a better one? The first problem with it is
that the instability is very underestimated. As we shall check in exercise 8.8, the
exact formula for the 2-cycle stability is Λ = R − 1 + R

√
1 − 2/R. For R = 6,

a = 1 this yields wn/w0 ≈ (5 + 2
√

6)n = 9.898979n, so if that were the whole
story, the pinball would be not likely to make it much beyond 8 bounces.

The second problem is that local instability overestimates the escape rate from
an enclosure; trajectories are reinjected by scatterers. In the 3-disk pinball the
particle leaving a disk can be reinjected by hitting either of other 2 disks, hence
wn/w0 ≈ (9.9/2)n. This interplay between local instability and global reinjec-
tion will be cast into the exact formula (??) involving “Lyapunov exponent” and
“Kolmogorov entropy”. In order to relate this estimate to our best continuous
time escape rate estimate γ = 0.4103 . . . (see table 11.2), we will have to also
compute the mean free flight time (11.20). As a crude estimate, we take the
shortest disk-to-disk distance, 〈T〉 = R − 2 = 4. The continuous time escape rate
result implies that wn/w0 ≈ e(R−2)γn = (5.16)n, in the same ballpark as the above
expansion-reinjection estimate.

(Predrag Cvitanović)

Solution 1.3: Trace-log of a matrix. 1) one method is to first check
that this is true for any Hermitian matrix M . Then write an arbitrary complex
matrix as sum M = A + zB, A, B Hermitian, Taylor expand in z and prove by
analytic continuation that the identity applies to arbitrary M .

(David Mermin)

2) another method: evaluate d
dtdet

(
et lnM

)
by definition of derivative in terms

of infinitesimals.

(Kasper Juel Eriksen)

3) check appendix F.1
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636 APPENDIX J. SOLUTIONS

Chapter 2

Solution 2.7: A pinball simulator. An example of a pretty Xwindows
pinball is A. Prügel-Bennett’s xpinball.c program, available at
www.nbi.dk/ChaosBook/extras/xpinball.tar.gz.

Solution 2.9: Classical collinear helium dynamics. An example of a
solution are A. Prügel-Bennett’s programs, available at
www.nbi.dk/ChaosBook/extras/.

Chapter 3

Solution 3.3: Billiard exercises. Korsch and Jodl [?] have a whole book
of numerical exercises with billiards, including 3-disks.

Chapter 4

Solution 4.5: Integrating over Dirac delta functions.

(b) It does not.

(c) Integrate by parts

0 =
∫

dx
∂

∂x
(g(x)δ(f(x)))

=
∫

dx
(
g′(x)δ(f(x)) + g(x)f ′(x)δ′(f(x))

)
Taking g(x) = 1/f ′(x) we obtain∫

dx δ′(f(x)) =
∑

x∗∈Zero f

f ′′(x∗)
|f ′(x∗)|3

Chapter 7

Solution 7.4: Reduction of 3-disk symbolic dynamics. The answer is
given in sect. 15.6.

Solution 7.6: Unimodal map symbolic dynamics. Hint: write down an
arbitrary binary number such as γ = .1101001101000 . . . and generate the future
itinerary S+ by checking whether fn(γ) is greater or less than 1/2. Then verify
that (7.9) recovers γ.
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Figure J.2: Minimizing the path from the previous bounce to the next bounce.

Chapter 8

Solution 8.10: Stability of billiard cycles. The 2-cycle 0 stability (8.8)
is the solution to both problems (provided you evaluate correctly the hyperbola
curvature on the diagonal).

Solution 8.11: Numerical cycle routines. A number of sample For-
tran programs for finding periodic orbits is available on the homepage for this
manuscript, www.nbi.dk/ChaosBook/.

Solution 8.18: Billiard cycles by path length minimization in a given
order is to start with a guess path where each bounce is given some arbitrary posi-
tion on the correct disk and then iteratively improve on the guess. To accomplish
this an improvement cycle is constructed whereby each bouncing point in the orbit
is taken in turn and placed in a new position so that it minimizes the path. Since
the positions of all the other bounces are kept constant this involves choosing the
new bounce position which minimizes the path from the previous bounce to the
next bounce. This problem is schematically represented in fig. J.2

Finding the point B involves a one dimensional minimization. We define the
vectors TA = TOA, TB = TOB and TC = TOC. We wish to minimize the length LABC

by varying TB subject to the constraint that | TB| = a. Clearly

LABC =
∣∣∣ TA − TB

∣∣∣+ ∣∣∣TC − TB
∣∣∣

=
√

TA2 + TB2 − 2 TA · TB +
√

TC2 + TB2 − 2TC · TB

writing

TB(θ) = a(cos θ, sin θ)
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638 APPENDIX J. SOLUTIONS

then the minima is given by

dLABC

dθ
= −

(
TA√

TA2 + TB2 − 2 TA · TB
+

TC√
TC2 + TB2 − 2TC · TB

)
· TB′(θ) = 0.

The minima can then be found using a bisection algorithm or using Newton-
Raphson. A simpler way is to observe that TB′(θ) is orthogonal to TB(θ) so that
the vector

TD =
TA√

TA2 + TB2 − 2 TA · TB
+

TC√
TC2 + TB2 − 2TC · TB

will be proportional to TB. This then provides an iterative sequence for finding TB

• Starting from your current guess for TB calculate TD

• Put TB = a TD/| TD|

• Repeat the first step until you converge.

At each iteration of the improvement cycle the total length of the orbit is measured.
The minimization is complete when the path length stops improving. Although this
algorithm is not as fast as the Newton-Raphson method, it nevertheless converges
very rapidly.

(Adam Prügel-Bennet)

Chapter 9

Solution 9.4: Transition matrix and cycle counting.

e) The topological entropy is

h = ln

(
1 +

√
5

2

)
.

Solution 9.38: Alphabet {0,1}, prune 1000 , 00100 , 01100 .

step 1. 1000 prunes all cycles with a 000 subsequence with the exception
of the fixed point 0; hence we factor out (1 − t0) explicitly, and prune 000 from
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the rest. Physically this means that x0 is an isolated fixed point - no cycle stays
in its vicinity for more than 2 iterations. In the notation of exercise 9.16, the
alphabet is {1, 2, 3; 0}, and the remaining pruning rules have to be rewritten in
terms of symbols 2=10, 3=100:

step 2. alphabet {1, 2, 3; 0}, prune 33 , 213 , 313 . Physically, the 3-cycle
3 = 100 is pruned and no long cycles stay close enough to it for a single 100
repeat. As in exercise ??, prohibition of 33 is implemented by dropping the
symbol “3” and extending the alphabet by the allowed blocks 13, 23:

step 3. alphabet {1, 2, 13, 23; 0}, prune 213 , 23 13 , 13 13 , where 13 =
13, 23 = 23 are now used as single letters. Pruning of the repetitions 13 13 (the
4-cycle 13 = 1100 is pruned) yields the

Result: alphabet {1, 2, 23, 113; 0}, unrestricted 4-ary dynamics. The other
remaining possible blocks 213 , 2313 are forbidden by the rules of step 3. The
topological zeta function is given by

1/ζ = (1 − t0)(1 − t1 − t2 − t23 − t113) (J.3)

for unrestricted 4-letter alphabet {1, 2, 23, 113}.

Solution 9.9: Whence Möbius function? Written out f(n) line-by-line
for a few values of n, (9.31) yields

f(1) = g(1)
f(2) = g(2) + g(1)
f(3) = g(3) + g(1)
f(4) = g(4) + g(2) + g(1)

· · ·
f(6) = g(6) + g(3) + g(2) + g(1)

· · · (J.4)

Now invert recursively this infinite tower of equations to obtain

g(1) = f(1)
g(2) = f(2) − f(1)
g(3) = f(3) − f(1)
g(4) = f(4) − [f(2) − f(1)] − f(1) = f(4) − f(2)

· · ·
g(6) = f(6) − [f(3) − f(1)] − [f(2) − f(1)] − f(1)

· · ·
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We see that f(n) contributes with factor −1 if n prime, and not at all if n
contains a prime factor to a higher power. This is precisely the raison d’etre for
the Möbius function, with whose help the inverse of (9.31) can be written as the
Möbius inversion formula [?] (9.32).

Chapter 11

Solution 11.2: Prime cycles for a 1-d repeller, analytic fromulas. For
the logistic map the prime cycles, ordered in terms of their symbolic dynamics,
are listed in table 7.1

P = {0, 1, 01, 001, 011, 0001, 0011, 0111, . . .}

The position of the prime cycles can be found by iterating the inverse mapping.
If we wish to find the position of a prime orbit p = b1b2 · · · bnp, where bi ∈ {0, 1},
then starting from some initial point, x = 1/2 say, we apply one of the inverse
mappings

f−1
± (x) =

1
2

± 1
2

√
1 − x/4A

where we choose f−1
− if b1 = 0 or f−1

+ if b1 = 1. We then apply the inverse
mapping again depending on the next element in the prime orbit. Repeating this
procedure many times we converge onto the prime cycle. The stability Λp of a
prime cycle p is given by the product of slopes of f around the cycle. The first
eight prime cycles are shown in fig. J.3.

The stabilities of the first five prime orbits can be calculated for arbitrary A.
We find that Λ0 = A, Λ1 = 2 − A, Λ01 = 4 + 2A − A2, and

Λ 001
011

= 8 + 2A − A2 ± A(2 − A)
√

A2 − 2A − 7. (J.5)

There is probably a closed form expression for the 4-cycles as well.

For crosschecking purposes: if A = 9/2, Λ0 = 9/2 Λ1 = −5/2 Λ01 = −7.25
Λ011 = 19.942461 . . ..

(Adam Prügel-Bennet)

Solution 11.2: Dynamical zeta function for a 1-d repeller The escape
rate can be estimated from the leading zero in the dynamical zeta function 1/ζ(z),
defined by

1/ζ(z) =
∏
p

(1 − znp/|Λp|) .
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Figure J.3: Periodic orbits and stabilities for the logistics equation xn+1 = 6xn(1 − xn).

To compute the position of this pole we expand 1/ζ(z) as a power series (11.5)
in z

1/ζ(z) = 1 −
∑
i=1

ĉiz
i

where

ĉ1 = |Λ0|−1 + |Λ1|−1 , ĉ2 = |Λ01|−1 − |Λ1Λ0|−1

ĉ3 = |Λ001|−1 − |Λ0Λ01|−1 + |Λ011|−1 − |Λ01Λ1|−1

etc.. Using the cycles up to length 6 we get

1/ζ(z) = 1 − 0.416667z − 0.00833333z2

+0.000079446z3 − 9.89291 × 10−7z4 + . . .

The leading zero of this Taylor series is an estimate of exp(γ). Using n = 1, 2,
3 and 4 we obtain the increasingly accurate estimates for γ: 0.875469, 0.830597,
0.831519 and 0.831492 In a hope to improve the convergence we can use the Padé
approximates PN

M (z) =
∑N

i=1 piz
i/(1 +

∑M
j=1 qjz

j). Using the Padé approximates
Pn−1
1 (z) for n = 2, 3 and 4 we obtain the estimates 0.828585, 0.831499 and
0.831493.
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The above results correspond to A = 6; in the A = 9/2 case the leading zero
is 1/z = 1.43549 . . . and γ = 0.36150 . . .. (Adam Prügel-Bennet)

Solution 11.2: Spectral determinant for a 1-d repeller We are told
the correct expression for the escape rate is also given by the logarithm of the
leading zero of the spectral determinant (10.28), expanded as the Taylor series
(11.8). The coefficients ci should fall off super-exponentially so that truncating
the Taylor series is expected to give a far more accurate estimate of the escape rate
than using the dynamical zeta function. How do we compute the ci coefficients
in (11.8)? One straightforward method is to first compute the Taylor expansion
of log(F (z))

log(F (z)) =
∑
p

∑
k=0

log
(

1 − tp
Λk

p

)
= −

∑
p

∑
k=0

∑
r=1

trp
Λkr

p

= −
∑
p

∑
r=1

trp

1 − Λ−r
p

= −
∑
p

∑
r=1

Bp(r)znpr

where Bp(r) = − 1/r|Λr
p|(1 + Λ−r

p ) . Writing log(F (z)) as a power series

log(F (z)) = −
∑
i=1

biz
i

we obtain

b1 = B0(1) + B1(1)
b2 = B01(1) + B0(2) + B1(2)
b3 = B001(1) + B011(1) + B0(3) + B1(3)
b3 = B0001(1) + B0011(1) + B0111(1) + B01(2) + B0(4) + B1(4) (J.6)

etc.. To obtain the coefficients for the spectral determinant we solve

F (z) = 1 −
∑
i=1

Qiz
i = exp

(∑
i=1

biz
i

)

for the Qi’s. This gives

Q1 = b1 , Q2 = b2 + b21/2 , Q3 = b3 + b1b2 + b31/6
Q4 = b4 + b1b3 + b22/2 + b2b

2
1/2 + b41/24
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log|ci|
log|bi|

Figure J.4: Plot of the Taylor coefficients for the spectral determinant, ci, and for the
dynamical zeta function, bi.

Using these formulas we find

F (z) = 1 − 0.4z − 0.0152381z2 − 0.0000759784z3 + 4.5311 × 10−9z4 + · · ·

The logarithm of the leading zero of F (z) again gives the escape rate. Using
the n = 1, 2, 3, and 4 truncations we find the approximation to γ of 0.916291,
0.832345, 0.83149289 and 0.8314929875. As predicted, the convergence is much
faster for the spectral determinant than for the dynamical zeta function.

In fig. J.4 we show a plot of the logarithm of the coefficients for the spectral
determinant and for the dynamical zeta function.

(Adam Prügel-Bennet)

The above results correspond to A = 6; in the A = 9/2 case all cycles up to
length 10 yield γ = 0.36150966984250926 . . .. (Vadim Moroz)

Solution 11.2: Functional dependence of escape rate for a 1-d repeller
We can compute an approximate functional dependence of the escape rate on the
parameter a using the stabilities of the first five prime orbits computed above, see
(J.5). The spectral determinant (for a > 4) is

F = 1 − 2z
a − 1

− 8z2

(a − 3)(a − 1)2(a + 1)

+
(

2(32 − 18a + 17a2 − 16a3 + 14a4 − 6a5 + a6)
(a − 3)(a − 1)3(1 + a)(a2 − 5a + 7)(a2 + a + 1)

(J.7)
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4 5 6 7 8 9 10

a

0
0.2
0.4
0.6
0.8

1
1.2
1.4

γ

Figure J.5: Plot of the escape rate versus a for the logistic map xn+1 = axn(1 − xn)
calculated from the first five periodic orbits.

− 2a(a − 2)
√

(a2 − 2a − 7)
(a2 − 5a + 7)(a2 − 2a − 7)(a2 + a + 1)

)
z3

The leading zero is plotted in fig. J.5; it always remains real while the other two
roots which are large and negative for a > 5.13 . . . become imaginary below this
critical value. The accuracy of this truncation is clearly worst for a → 4, the
value at which the hyperbolicity is lost and the escape rate goes to zero.

(Adam Prügel-Bennet)

Solution 11.3: Escape rate for the Ulam map. The answer is given in
ref. [2].

Chapter 13

Solution 13.1: The escape rate is the leading zero of the zeta function

0 = 1/ζ(γ) = 1 − eγ/2a − eγ/2a = 1 − eγ/a.

So, γ = log(a) if a > ac = 1 and γ = 0 otherwise. For a ≈ ac the escape rate
behaves like

γ(a) ≈ (a − ac).
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Solution 13.2: The escape is controlled by the size of the primary hole of
the repeller. All subholes in the repeller will be proportional with the main hole.
The size of the main hole is l =

√
1 − 1/a. Near ac = 1 the escape rate is

γ(a) ∼ (a − ac)1/2.

We can generalize this and the previous result and conclude that

γ(a) ∼ (a − ac)1/z,

where z is the order of the maximum of the single humped map.

Solution 13.3: By direct evaluation we can calculate the zeta functions and
the Fredholm determinant of this map. The zeta functions are

1/ζk(z) = det (1 − zTk),

where

Tk =
(

T k+1
00 T k+1

01

T k+1
10 T k+1

11

)
,

and T00 = 1/a1, T01 = (b− b/a1)/(1− b), T11 = (1− b− b/a2)/(1− b), T10 = 1/a2
are inverses of the slopes of the map. The Fredholm determinant is the product
of zeta functions

F (z) =
∞∏
k=0

1/ζk(z).

The leading zeroes of the Fredholm determinant can come from the zeroes of the
leading zeta functions.

The zeroes of 1/ζ0(z) are

1/z1 = T00+T11+
√
(T00−T11)2+4T01T10

2 ,

1/z2 = T00+T11−
√
(T00−T11)2+4T01T10

2 .

The zeroes of 1/ζ1(z) are

1/z3 = T 2
00+T 2

11+
√
(T 2

00−T 2
11)

2+4T 2
01T

2
10

2 ,

1/z4 = T 2
00+T 2

11−
√
(T 2

00−T 2
11)

2+4T 2
01T

2
10

2 .

By substituting the slopes we can show that z1 = 1 is the leading eigenvalue. The
next to leading eigenvalue, which is the correlation decay in discrete time, can be
1/z3 or 1/z2.
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Chapter 14

Solution 14.1: In the higher dimensional case there is no change in the
derivation except Λp should be replaced with the product of expanding eigenvalues∏

j |Λp,j |. The logarithm of this product is
∑

j log |Λp,j |. The average of log |Λ,j |
is the j-th Lyapunov exponent.

Solution 14.4: The zeta function for the two scale map is

1/ζ(z, β) = 1 − z

(
1
aβ

+
1
bβ

)
.

The pressure function is

P (β) = log z0(β) = − log
(

1
aβ

+
1
bβ

)
.

The escape rate is

γ = P (1) = − log
(

1
a

+
1
b

)
,

The topological entropy is

K0 = htop = −P (0) = log 2.

The Lyapunov exponent is

λ = P ′(1) =
log a/a + log b/b

1/a + 1/b
.

The Kolmogorov entropy is

K1 = λ − γ = P ′(1) − P (1) =
log a/a + log b/b

1/a + 1/b
+ log

(
1
a

+
1
b

)
.

The Rényi entropies are

Kβ = (P (β) − βγ)/(β − 1) = (log
(

1
aβ

+
1
bβ

)
+ β log

(
1
a

+
1
b

)
)/(1 − β).

The box counting dimension is the solution of the implicit equation P (D0) = 0,
which is

1 =
1
aD0

+
1
bD0

.

The information dimension is

D1 = 1 − γ/λ.

The rest of the dimensions can be determined from equation P (q−(q−1)Dq) = γq.
Taking exp of both sides we get

1
aq−(q−1)Dq

+
1

bq−(q−1)Dq
=
(

1
a

+
1
b

)q

.
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For a given q we can find Dq from this implicit equation.

Solution 14.5: The zeta function is

1/ζ(z, β) = det (1 −Tβ−1),

where we replaced k with β−1 in Solution J. The pressure can be calculated from
the leading zero which is (see Solution J)

P (β) = log z0(β) = − log

T β
00 + T β

11 +
√

(T β
00 − T β

11)2 + 4T β
01T

β
10

2

 .

Solution 14.6: We can easily read off that b = 1/2, a1 = arcsin(1/2)/2π
and a2 = a1 and do the steps as before.

Chapter 16

Solution 16.1: Diffusion for odd integer Λ. Consider first the case
Λ = 3, illustrated in fig. J.6. If β = 0, the dynamics in the elementary cell is
simple enough; a partition can be constructed from three intervals, which we label
{M1,M2,M3}, with the alphabet ordered as the intervals are laid out along the
unit interval. The Markov graph is fig. J.6(c), and the dynamical zeta function
is

1/ζ|β=0 = 1 − (t1 + t2 + t3) = 1 − 3z/Λ ,

with eigenvalue z = 1 as required by the flow conservation.

However, description of global diffusion requires more care. As explained in
the definition of the map (16.9), we have to split the partition M2 = M4 ∪ (12) ∪
M5, and exclude the fixed point f (12) = 1

2 , as the map f̂ (x̂) is not defined at
f̂ (12). (Are we to jump to the right or to the left at that point?) As we have
f (M4) = M1 ∪ M4, and similarly for f (M5), the Markov graph fig. J.6(d) is
infinite, and so is the dynamical zeta function:

1/ζ = 1 − t1 − t14 − t144 − t1444 · · · − t3 − t35 − t355 − t3555 · · · .

The infinite alphabet A = {1, 14, 144, 1444 · · · 3, 35, 355, 3555 · · ·} is a consequence
of the exclusion of the fixed point(s) x4, x5. As is customary in such situations
(see sect. ?? exercise 11.10, and chapter 17, inter alia), we deal with this by
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(a) (b) 1 2 3

4 5
1

2

3

4

5

(c) (d)

Figure J.6: (a) (b) A partition of the unit interval into three or five intervals, labeled by
the order along the unit interval A = {M1, M2 = M4 ∪ ( 1

2 ) ∪ M5, M3}. The partition
is Markov, as the critical point is also a fixed point. (c) the Markov graph for this Markov
partition.

dividing out the undesired fixed point from the dynamical zeta function. We can
factorize and resum the weights using the piecewise linearity of (16.9)

1/ζ = 1 − t1
1 − t4

− t3
1 − t5

.

The diffusion constant is now most conveniently evaluated by evaluating the par-
tial derivatives of 1/ζ as in (11.16)

〈T〉ζ = −z
∂

∂z

1
ζ

= 2
(

t1
1 − t4

+
t1t4

(1 − t4)2

)∣∣∣∣
z=1,β=0

=
3
4〈

x̂2
〉
ζ

∣∣∣
z=1,β=0

= 2
(
n̂1(n̂1 + n̂4)Λ2

(1 − 1/Λ)2
+ 2

n̂24/Λ3

(1 − 1/Λ)3

)
=

1
2

(J.8)

yielding D = 1/3, in agreement with in (16.20) for Λ = 3.

Chapter 18

Solution 18.1: Lorentzian representation of the Dirac delta function.
To see that (18.15) is a delta function, express explicitely the imaginary part:

− lim
ε→+0

1
π

Im
E − En − iε

(E − En)2 + ε2
= lim

ε→+0
1
π

ε

(E − En)2 + ε2
. (J.9)
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This is a Lorenzian of width ε with a peak at E = En. It has a correct normal-
ization for the delta function as

1
π

∫ ∞

−∞
dE

ε

(E − En)2 + ε2
= 1, (J.10)

independently of the value of ε. Argue that in the ε → ∞ limit the support of the
Lorentzian is concentrated at E = En, and providing that the function integrated
over has a finite first derivative at E = En and falls of sufficiently rapidly as
E → ±∞, this is a representation of the delta function.

Solution 18.6: Free particle action.

a) a d-dimensional free particle:
Lagrangian is the difference of kinetic and potential energy. For free motion
the potential energy is U(q) = 0 and the velocity and the kinetic energy
mq̇2/2 are constant. Integrating

∫ t
t0

dτL(q(τ), q̇(τ), τ) we obtain

R(q, q′, t) = m(q − q′)2/2t

Solution 18.15: Stationary phase approximation. The main contri-
bution to such integrals comes from neighborhoods of values of x of stationary
phase, the points for which the gradient of the phase vanishes

∂

∂x
Φ(x) = 0.

Intuitively, these are the important contributions as for � → 0 the phase Φ(x)/�

grows large and the function eiΦ(x)/� oscillates rapidly as a function of x, with the
negative and positive parts cancelling each other. More precisely, if the stationary
points are well separated local extrema of Φ(x), we can deform the integration
contour and approximate Φ(x)/� up to the second order in x by

I ≈
∑
n

A(xn)eiΦ(xn)/�

∫
ddxe

i
2�
(x−xn)TD2Φ(xn)(x−xn).

The second derivative matrix is a real symmetric matrix, so we can transform it
to a diagonal matrix by a similarity transformation

Diag(λ1, ..., λd) = OD2ΦO+ ,
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where O is a matrix of an orthogonal transfomation. In the rotated coordinate
system u = O(x − xn) and the integral takes form

I ≈
∑
n

A(xn)eiΦ(xn)/�

∫
ddue

∑d
k=1 iλku

2
k/2� ,

where we used the fact that the Jacobi determinant of an orthogonal transforma-
tion is detO = 1. Carrying out the Gauss integrals

∫
dueiλu

2/2� =
(2πi�)1/2√

λ
(J.11)

and using detD2Φ(xn) =
∏d

k=1 λk we obtain the stationary phase estimate of
(18.73).

A nice exposition of the subject is given in ref. [18].

Solution 18.19: A usefull determinant identity. Divide out E in the
last column of 18.75 and get the following matrix

E


x1,1 . . . x1,n y1E

−1
...

. . .
...

...
xn,1 . . . xn,n ynE

−1
z1 . . . zn 1


Now we subtract the last column multiplied with zn from the second last column
(these matrix operations does not change the determinant) to get

E


x1,1 . . . x1,n−1 x1,n − zny1E

−1 y1E
−1

...
. . .

...
...

...
xn,1 . . . xn,n−1 xn,n − znynE

−1 ynE
−1

z1 . . . zn−1 0 1


This continues eliminating all the zi‘s in the bottom row getting the following
matrix

E


x1,1 − z1y1E

−1 . . . x1,n − zny1E
−1 y1E

−1
...

. . .
...

...
xn,1 − z1ynE

−1 . . . xn,n − znynE
−1 ynE

−1
0 . . . 0 1


and we get (18.76) by expansion from the bottom row.
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Chapter 19

Solution 19.2: Monodromy matrix from second variations of the
action. If we take two points in the configuration space q and q′ connected with
a trajectory with energy E and vary them in such a way that the variation of their
initial and final points are transverse to the velocity of the orbit in that point, we
can write the variations of the initial and final momenta as

δp⊥i =
∂2S(q, q′, E)
∂q⊥i∂q⊥k

δq⊥k +
∂2S(q, q′, E)
∂q⊥i∂q

′
⊥k

δq′⊥k (J.12)

and

δp′⊥i = −∂2S(q, q′, E)
∂q′⊥i∂q⊥k

δq⊥k − ∂2S(q, q′, E)
∂q′⊥i∂q

′
⊥k

δq′⊥k . (J.13)

Next we express the variations of the final momenta and coordinates in terms of
the initial ones. In the obvious shorthand we can write (J.13) as

δq⊥ = −S−1
q′qSq′q′δq

′
⊥ − S−1

q′qδp
′
⊥,

From (J.12) it then follows that

δp⊥ = (Sqq′ − SqqS
−1
q′qSq′q′)δq′⊥ − SqqS

−1
q′qδp

′
⊥. (J.14)

These relations remain valid in the q′ → q limit, with q on the periodic orbit, and
can also be expressed in terms of the monodromy matrix of the periodic orbit.
The monodromy matrix for a surface of section transverse to the orbit within the
constant energy E = H(q, p) shell is

δq⊥ = Jqqδq′⊥ + Jqpδp′⊥,

δp⊥ = Jpqδq′⊥ + Jppδp′⊥. (J.15)

In terms of the second derivatives of the action the monodromy matrix is

Jqq = −S−1
q′qSq′q′ , Jqp = −S−1

q′q ,

Jpq = (Sqq′ − SqqS
−1
q′qSq′q′) , Jpp = −SqqS

−1
q′q ,

and vice versa

Sqq = JppJ−1qp , Sqq′ = Jpq − JppJ−1qp Jqq,

Sq′q = −J−1qp , Sq′q′ = −J−1qp Jqq.
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Now do exercise 19.3.

Solution 19.3: Jacobi gymnastics. We express the Jacobi matrix elements
in det (1− J) with the derivative matrices of S

det (1 − J) = det

(
I + S−1

q′qSq′q′ S−1
q′q

−Sqq′ + SqqS
−1
q′qSq′q′ I + SqqS

−1
q′q

)
.

We can multiply the second column with Sq′q′ from the and substract from the
first column, leaving the determinant unchanged

det (1 − J) = det

(
I S−1

q′q
−Sqq′ − Sq′q′ I + SqqS

−1
q′q

)
.

Then, we multiply the second column with Sq′q from the right and compensate
this by dividing the determinant with detSq′q

det (1 − J) = det
(

I I
−Sqq′ − Sq′q′ Sq′q + Sqq

)
/detSq′q.

Finally we subtract the first column from the second one

det (1 − Jj)) = det
(

I 0
Sqq′ + Sq′q′ Sqq′ + Sq′q′ + Sq′q + Sqq

)
/detSq′q.

The last determinant can now be evaluated and yields the desired result (19.15)

det (1 − Jj) = det (Sqq′ + Sq′q′ + Sq′q + Sqq)/detSq′q.

Chapter 20

Solution ??: The one-disk scattering wave function.

ψ(Tr ) =
1
2

∞∑
m=−∞

(
H(2)m (kr) − H

(2)
m (ka)

H
(1)
m (ka)

H(1)m (kr)

)
eim(Φr−Φk) . (J.16)

(For r < a, ψ(Tr) = 0 of course.)

∼DasBuch/book/Problems/soluScatter.tex 4sep98 printed August 24, 2000



653

(Andreas Wirzba)

Solution ??: Ghosts do not exist. In ref. [1] the ghost cancellation rule
(??) is proved for the convolution of two A-matrices and generalized to hold also
inside an arbitrary (periodic) itinerary (with and without creeping sections).

Consider the itinerary (1, 2, 3, 4, 5, 6) with ghost sections at disk 2 and 5 result-
ing from the sixth order trace. Its geometrical contribution cancels in the trace-
log expansion against the geometrical reduction of the itineraries (1, 2, 3, 4, 6),
(1, 3, 4, 5, 6) from the 5th-order trace with ghost sections at disk 2 or 5, respec-
tively, and against the geometrical reduction of the itinerary (1, 3, 4, 6) of the
4th-order trace with no ghost contribution:

−1
6
(
6A1,2A2,3A3,4A4,5A5,6A6,1

)
− 1

5
(
5A1,2A2,3A3,4A4,6A6,1 + 5A1,3A3,4A4,5A5,6A6,1

)
− 1

4
(
4A1,3A3,4A4,6A6,1

)
= (−1 + 2 − 1)A1,3A3,4A4,6A6,1 = 0 .

The prefactors −1/4, −1/5, −1/6 result from the trace-log expansion, the factors
4, 5, 6 inside the brackets are due to the cyclic permutations, and the rule (??)
was used. If there are two or more ghost segments adjacent to each other, the
ghost rule (??) has to be generalized to

· · ·Ai,i+1Ai+1,i+2 · · ·Ai+k,i+k+1 · · ·Ai+n−1,i+n · · ·
= · · ·

(
−Ai,i+2

)
· · ·Ai+k,i+k+1 · · ·Ai+n−1,i+n · · ·

= · · ·Ai,i+3 · · ·Ai+k,i+k+1 · · ·Ai+n−1,i+n · · ·
= · · · (−1)n−1Ai,i+n · · · . (J.17)

Finally, let us discuss one case with a repeat, e.g. the itinerary (1, 2, 3, 4, 1, 2, 3, 4)
with repeated ghost sections at disk 2 in the semiclassical limit. The cancellations
proceed in the trace-log expansion as follows:

−1
8
(
4A1,2A2,3A3,4A4,1A1,2A2,3A3,4A4,1

)
− 1

7
(
7A1,2A2,3A3,4A4,1A1,3A3,4A4,1

)
− 1

6
(
3A1,3A3,4A4,1A1,3A3,4A4,1

)
=
(
−1

2
+ 1 − 1

2

) [
A1,3A3,4A4,1

]2 = 0
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Note that the cyclic permutation factors of the 8th and 6th order trace are halved
because of the repeat. The occurrence of the ghost segment in the second part of
the 7th order itinerary is taken care of by the weight factor 7.

(Andreas Wirzba)

Chapter C

Solution 13.4:

(d) In the A = 9/2 case all cycles up to length 9 yield λ = 1.08569 . . .. (Vadim
Moroz)

Solution C.1: Using the multiplicative property of the Jacobi matrix we can
write

Λt′+t(x0,u0) = ||Jt′+t(x0)u0|| = ||Jt′(x(t))Jt(x0)u0||.
We can introduce the time evolved unit vector

u(t) = Jt(x0)u0/||Jt(x0)u0||.
Then

||Jt′(x(t))Jt(x0)u0|| = ||Jt′(x(t))u(t)||||Jt(x0)u0||,
which is the desired result.

We have to adjoin the tangent space, since the stretching factor depends on
u and not just on x. The stretching factor is multiplicative along the entire
trajectory (x(t),u(t)). However, it is not multiplicative along the phase space
trajectory x(t) with a fixed u.

Solution C.2: If b = a2 and Tb = 2Ta we can introduce the variable
y = esTa. The dynamo rate equation then reads

0 = 1 − x + x2.

The solutions of this are x± = (1 ± i
√

3)/2. The dynamo rate is then a complex
cojugate pair ν = log x±/Ta.

The escape rate equation is

0 = 1 − x/a − x2/a2.

The solutions are x± = a(−1 ±
√

5)/2. The escape rate is γ = log(x+)/Ta.

In the reverse case the escape rate remains unchanged, while the dynamo rate
becomes ν = log((

√
5 + 1)/2)/Ta. In this case the advected field grows with an

exponential rate. In the previous case it shows oscillations in addition to the
exponential growth due to the imaginary part of the rate.
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Appendix K

Projects

You are urged to try to work through the essential steps in a project that combines
the techniques learned in the course with some application of interest to you for
other reasons. It is OK to share computer programs and such, but otherwise each
project should be distinct, not a group project. The essential steps are:

• Dynamics

1. construct a symbolic dynamics

2. count prime cycles

3. prune inadmissible itineraries, construct Markov graphs if appropriate

4. implement a numerical simulator for your problem

5. compute a set of the shortest periodic orbits

6. compute cycle stabilities

• Averaging, numerical

1. estimate by numerical simulation some observable quantity, like the
escape rate,

2. or check the flow conservation, compute something like the Lyapunov
exponent

• Averaging, periodic orbits

1. implement the appropriate cycle expansions

2. check flow conservation as function of cycle length truncation, if the
system is closed

3. implement desymmetrization, factorization of zeta functions, if dy-
namics possesses a discrete symmetry

655
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4. compute a quantity like the escape rate as a leading zero of a spectral
determinant or a dynamical zeta function.

5. or evaluate a sequence of truncated cycle expansions for averages, such
as the Lyapunov exponent or/and diffusion coefficients

6. compute a physically intersting quantity, such as the conductance

7. compute some number of the classical and/or quantum eigenvalues, if
appropriate
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K.1 Deterministic diffusion, zig-zag map

To illustrate the main idea of chapter 16, tracking of a globally diffusing orbit
by the associated confined orbit restricted to the fundamental cell, we consider a
class of simple 1-d dynamical systems, chains of piecewise linear maps, where all
transport coefficients can be evaluated analytically. The translational symmetry
(16.10) relates the unbounded dynamics on the real line to the dynamics restricted
to a “fundamental cell” - in the present example the unit interval curled up into
a circle. An example of such map is the sawtooth map

f̂ (x) =

 Λx x ∈ [0, 1/4 + 1/4Λ]
−Λx + (Λ + 1)/2 x ∈ [1/4 + 1/4Λ, 3/4 − 1/4Λ]
Λx + (1 − Λ) x ∈ [3/4 − 1/4Λ, 1]

. (K.1)

The corresponding circle map f (x) is obtained by modulo the integer part. The
elementary cell map f (x) is sketched in fig. K.1. The map has the symmetry
property

f̂ (x̂) = −f̂ (−x̂) , (K.2)

so that the dynamics has no drift, and all odd derivatives of the generating
function (16.3) with respect to β evaluated at β = 0 vanish.

The cycle weights are given by

tp = znp
eβn̂p

|Λp|
. (K.3)

The diffusion constant formula for 1-d maps is

D =
1
2

〈
n̂2
〉
ζ

〈n〉ζ
(K.4)

where the “mean cycle time” is given by

〈n〉ζ = z
∂

∂z

1
ζ(0, z)

∣∣∣∣
z=1

= −
∑′

(−1)k
np1 + · · · + npk

|Λp1 · · ·Λpk |
, (K.5)

the mean cycle displacement squared by

〈
n̂2
〉
ζ

=
∂2

∂β2
1

ζ(β, 1)

∣∣∣∣
β=0

= −
∑′

(−1)k
(n̂p1 + · · · + n̂pk)

2

|Λp1 · · ·Λpk |
, (K.6)
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Figure K.1: (a)-(f) The sawtooth map (K.1) for the 6 values of parameter a for which the
folding point of the map aligns with the endpoint of one of the 7 intervals and yields a finite
Markov partition (from ref. [1]). The corresponding Markov graphs are given in fig. K.2.
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and the sum is over all distinct non-repeating combinations of prime cycles. Most
of results expected in this projects require no more than pencil and paper com-
putations.

Implementing the symmetry factorization (16.28) is convenient, but not es-
sential for this project, so if you find sect. 15.1.2 too long a read, skip the sym-
metrization.

K.1.1 The full shift

Take the map (K.1) and extend it to the real line. As in example of fig. 16.3,
denote by a the critical value of the map (the maximum height in the unit cell)

a = f̂ (
1
4

+
1

4Λ
) =

Λ + 1
4

. (K.7)

Describe the symbolic dynamics that you obtain when a is an integer, and derive
the formula for the diffusion constant:

D =
(Λ2 − 1)(Λ − 3)

96Λ
for Λ = 4a − 1, a ∈ Z . (K.8)

If you are going strong, derive also the fromula for the half-integer a = (2k+1)/2,
Λ = 4a+ 1 case and email it to DasBuch@nbi.dk. You will need to partition M2

into the left and right half, M2 = M8 ∪ M9, as in the derivation of (16.20). 16.1
on p. 345

K.1.2 Subshifts of finite type

We now work out an example when the partition is Markov, although the slope
is not an integer number. The key step is that of having a partition where
intervals are mapped onto unions of intervals. Consider for example the case in
which Λ = 4a − 1, where 1 ≤ a ≤ 2. A first partition is constructed from seven
intervals, which we label {M1,M4,M5,M2,M6,M7,M3}, with the alphabet
ordered as the intervals are laid out along the unit interval. In general the critical
value a will not correspond to an interval border, but now we choose a such that
the critical point is mapped onto the right border of M1, as in fig. K.1(a). The
critical value of f () is f (Λ+14Λ ) = a − 1 = (Λ − 3)/4. Equating this with the right
border of M1, x = 1/Λ, we obtain a quadratic equation with the expanding
solution Λ = 4. We have that f (M4) = f (M5) = M1, so the transition matrix
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(a)

1
2 6

31

54 7
3

1 3

(b) 1

4
5 6

3

7

1

2

3

(c)

6
7

4
5

2 31

1 3

Figure K.2: (a) The sawtooth map (K.1) partition tree for fig. K.1(a); while intervals
M1,M2,M3 map onto the whole unit interval, f (M1) = f (M2) = f (M3) = M, intervals
M4,M5 map onto M1 only, f (M4) = f (M5) = M1, and similarly for intervals M6,M7.
An initial point starting out in the interval M1, M2 or M3 can land anywhere on the unit
interval, so the subtrees originating from the corresponding nodes on the partition three are
similar to the whole tree and can be identified (as, for example, in fig. 7.13), yielding (b) the
Markov graph for the Markov partition of fig. K.1(a). (c) the Markov graph in the compact
notation of (16.25).

(7.3) is given by

φ′ = Tφ =



1 1 1 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 1 1 1





φ1
φ4
φ5
φ2
φ6
φ7
φ3


(K.9)

and the dynamics is unrestricted in the alphabet

{1, 41, 51, 2, 63, 73, 3, } .

One could diagonalize (K.9) on the computer, but, as we saw in sect. 7.7, the
Markov graph fig. K.2(b) corresponding to fig. K.1(a) offers more insight into the
dynamics. The dynamical zeta function

1/ζ = 1 − (t1 + t2 + t3) − 2(t14 + t37)

1/ζ = 1 − 3
z

Λ
− 4 coshβ

z2

Λ2
. (K.10)

follows from the loop expansion (9.12) of sect. 9.3.
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The material flow conservation sect. 13.2 and the symmetry factorization
(16.28) yield

0 =
1

ζ(0, 1)
=
(

1 +
1
Λ

)(
1 − 4

Λ

)
which indeed is satisfied by the given value of Λ. Conversely, we can use the
desired Markov partition topology to write down the corresponding dynamical
zeta function, and use the 1/ζ(0, 1) = 0 condition to fix Λ. For more complicated
transition matrices the factorization (16.28) is very helpful in reducing the order
of the polynomial condition that fixes Λ.

The diffusion constant follows from (16.29) and (K.4)

〈n〉ζ = −
(

1 +
1
Λ

)(
− 4

Λ

)
,
〈
n̂2
〉
ζ

=
4

Λ2

D =
1
2

1
Λ + 1

=
1
10

Think up other non-integer values of the parameter for which the symbolic dy-
namics is given in terms of Markov partitions: in particular consider the cases
illustrated in fig. K.1 and determine for what value of the parameter a each of
them is realized. Work out the Markov graph, symmetrization factorization and
the diffusion constant, and check the material flow conservation for each case.
Derive the diffusion constants listed in table K.1. It is not clear why the final
answers tend to be so simple. Numerically, the case of fig. K.1(c) appears to yield
the maximal diffusion constant. Does it? Is there an argument that it should be
so?

The seven cases considered here (see table K.1, fig. K.1 and (K.8)) are the 7
simplest complete Markov partitions, the criterion being that the critical points
map onto partition boundary points. This is, for example, what happens for
unimodal tent map; if the critical point is preperiodic to an unstable cycle, the
grammar is complete. The simplest example is the case in which the tent map
critical point is preperiodic to a unimodal map 3-cycle, in which case the grammar
is of golden mean type, with 00 substring prohibited (see fig. 7.13). In case
at hand, the “critical” point is the junction of branches 4 and 5 (symmetry
automatically takes care of the other critical point, at the junction of branches 6
and 7), and for the cases considered the critical point maps into the endpoint of
each of the seven branches.

One can fill out parameter a axis arbitrarily densely with such points - each
of the 7 primary intervals can be subdivided into 7 intervals obtained by 2-nd
iterate of the map, and for the critical point mapping into any of those in 2 steps
the grammar (and the corresponding cycle expansion) is finite, and so on.
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fig. K.1 Λ D

3 0
(a) 4 1

10
(b)

√
5 + 2 1

2
√
5

(c) 1
2(

√
17 + 5) 2√

17

(c’) 5 2
5

(d) 1
2(

√
33 + 5) 1

8 + 5
88

√
33

(e) 2
√

2 + 3 1
2
√
2

(f) 1
2(

√
33 + 7) 1

4 + 1
4
√
33

7 2
7

Table K.1: The diffusion constant as function of the slope Λ for the a = 1, 2 values of
(K.8) and the 6 Markov partitions of fig. K.1

K.1.3 Diffusion coefficient, numerically

(optional:)
Attempt a numerical evaluation of

D =
1
2

lim
n→∞

1
n

〈
x̂2n
〉
. (K.11)

Study the convergence by comparing your numerical results to the exact answers
derived above. Is it better to use few initial x̂ and average for long times, or to
use many initial x̂ for shorter times? Or should one fit the distribution of x̂2 with
a gaussian and get the D this way? Try to plot dependence of D on Λ; perhaps
blow up a small region to show that the dependance of D on the parameter Λ is
fractal. Compare with figures in refs. [1, 2, 4, 5].

K.1.4 D is a nonuniform function of the parameters

(optional:)
The dependence of D on the map parameter Λ is rather unexpected - even though
for larger Λ more points are mapped outside the unit cell in one iteration, the
diffusion constant does not necessarily grow. An interpretation of this lack of
monotonicity would be interesting.

You can also try applying periodic orbit theory to the sawtooth map (K.1) for
a random “generic” value of the parameter Λ, for example Λ = 6. The idea is to
bracket this value of Λ by the nearby ones, for which higher and higher iterates
of the critical value a = (Λ+1)/4 fall onto the partition boundaries, compute the
exact diffusion constant for each such approximate Markov partition, and study
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their convergence toward the value of D for Λ = 6. Judging how difficult such
problem is already for a tent map (see sect. 9.6 and appendix B.2), this is too
ambitious for a week-long exam.
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K.2 Deterministic diffusion, sawtooth map

To illustrate the main idea of chapter 16, tracking of a globally diffusing orbit
by the associated confined orbit restricted to the fundamental cell, we consider
in more detail the class of simple 1-d dynamical systems, chains of piecewise
linear maps (16.9). The translational symmetry (16.10) relates the unbounded
dynamics on the real line to the dynamics restricted to a “fundamental cell” - in
the present example the unit interval curled up into a circle. The corresponding
circle map f (x) is obtained by modulo the integer part. The elementary cell map
f (x) is sketched in fig. 16.3. The map has the symmetry property

f̂ (x̂) = −f̂ (−x̂) , (K.12)

so that the dynamics has no drift, and all odd derivatives of the generating
function (16.3) with respect to β evaluated at β = 0 vanish.

The cycle weights are given by

tp = znp
eβn̂p

|Λp|
. (K.13)

The diffusion constant formula for 1-d maps is

D =
1
2

〈
n̂2
〉
ζ

〈n〉ζ
(K.14)

where the “mean cycle time” is given by

〈n〉ζ = z
∂

∂z

1
ζ(0, z)

∣∣∣∣
z=1

= −
∑′

(−1)k
np1 + · · · + npk

|Λp1 · · ·Λpk |
, (K.15)

the mean cycle displacement squared by

〈
n̂2
〉
ζ

=
∂2

∂β2
1

ζ(β, 1)

∣∣∣∣
β=0

= −
∑′

(−1)k
(n̂p1 + · · · + n̂pk)

2

|Λp1 · · ·Λpk |
, (K.16)

and the sum is over all distinct non-repeating combinations of prime cycles. Most
of results expected in this projects require no more than pencil and paper com-
putations.
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fig. 16.4 Λ D

4 1
4
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√

6 1 − 3
4

√
6

(b) 2
√

2 + 2 15+2
√
2

16+4
√
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(c) 5 1
(d) 3 +

√
5 5

2
Λ−1
3Λ−4

(e) 3 +
√

7 5Λ−4
3Λ−2

6 5
6

Table K.2: The diffusion constant as function of the slope Λ for the Λ = 4, 6 values of
(16.19) and the 5 Markov partitions like the one indicated in fig. 16.4.

K.2.1 The full shift

Reproduce the formulas of sect. 16.2.1 for the diffusion constant D for Λ both
even and odd integer.

K.2.2 Subshifts of finite type

We now work out examples when the partition is Markov, although the slope is
not an integer number. The key step is that of having a partition where intervals
are mapped onto unions of intervals.

Start by reproducing the formula (16.27) of sect. 16.2.3 for the diffusion con-
stant D for the Markov partition, the case where the critical point is mapped
onto the right border of I1+ .

Think up other non-integer values of the parameter Λ for which the symbolic
dynamics is given in terms of Markov partitions: in particular consider the re-
maing four cases for which the critical point is mapped onto a border of a partion
in one iteration. Work out the Markov graph symmetrization factorization and
the diffusion constant, and check the material flow conservation for each case.
Fill in the diffusion constants missing in table K.2. It is not clear why the final
answers tend to be so simple. What value of Λ appears to yield the maximal
diffusion constant?

The 7 cases considered here (see table K.2 and fig. 16.4) are the 7 simplest
complete Markov partitions in the 4 ≤ Λ ≤ 6 interval, the criterion being that the
critical points map onto partition boundary points. In case at hand, the “critical”
point is the highest point of the left branch of the map (symmetry automatically
takes care of the other critical point, the lowest point of the left branch), and
for the cases considered the critical point maps into the endpoint of each of the
seven branches.
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One can fill out parameter a axis arbitrarily densely with such points - each
of the 6 primary intervals can be subdivided into 6 intervals obtained by 2-nd
iterate of the map, and for the critical point mapping into any of those in 2 steps
the grammar (and the corresponding cycle expansion) is finite, and so on. Some
details of how this is accomplished are given in appendix ?? for a related problem,
the pruned Bernulli shift.

K.2.3 Diffusion coefficient, numerically

(optional:)
Attempt a numerical evaluation of

D =
1
2

lim
n→∞

1
n

〈
x̂2n
〉
. (K.17)

Study the convergence by comparing your numerical results to the exact answers
derived above. Is it better to use few initial x̂ and average for long times, or to
use many initial x̂ for shorter times? Or should one fit the distribution of x̂2 with
a gaussian and get the D this way? Try to plot dependence of D on Λ; perhaps
blow up a small region to show that the dependance of D on the parameter Λ is
fractal. Compare with figures in refs. [1, 2].

K.2.4 D is a nonuniform function of the parameters

(optional:)
The dependence of D on the map parameter Λ is rather unexpected - even though
for larger Λ more points are mapped outside the unit cell in one iteration, the
diffusion constant does not necessarily grow. Fig. ?? taken from ref. [1] illus-
trates the fractal dependence of diffusion constant on the map parameter. An
interpretation of this lack of monotonicity would be interesting.

You can also try applying periodic orbit theory to the sawtooth map (16.9)
for a random “generic” value of the parameter Λ, for example Λ = 4.5. The idea
is to bracket this value of Λ by the nearby ones, for which higher and higher
iterates of the critical value a = Λ/2 fall onto the partition boundaries, compute
the exact diffusion constant for each such approximate Markov partition, and
study their convergence toward the value of D for Λ = 4.5. Judging how difficult
such problem is already for a tent map (see sect. 9.6 and appendix B.2), this is
too ambitious for a week-long exam.
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Figure K.3: (a)-(g) Markov graphs corresponding to the cases of fig. K.1 for which the
sawtooth map (K.1) folding point aligns with an endpoint of one of the 7 intervals and yields
a finite Markov partition. In the case (g) the large Markov graph is equivalent to the simple
unrestricted shift in 7 symbols. Graphs (f), (e), . . . , are obtained by pruning links from the
unrestricted expanded graph (g).

Chapter K

Solution, project sect. K.1: Markov partitions for the zig-zag map

Fig. K.1(b) Λ =
√

5+2 with the corresponding Markov graph given in fig. K.3(b).
As the 4 and 5 links (and other sets of links) are parallel, we have simplified the
graph using the compact notation of (16.25). The loop expansion (9.12) yields

1/ζ = 1 − (t1 + t2 + t3) − (t4 + t7)
−2(t14 + t37) + (t1 + t2 + t3)(t4 + t7) + t4t7
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+2(t14t7 + t4t37) − (t1 + t2 + t3)t4t7

= 1 − 3
z

Λ
− 2 coshβ

z

Λ
+

z2

Λ2
+ 2 coshβ

z2

Λ2
+

z3

Λ3
. (K.18)

The Markov graphs are not unique, and extra terms cancel in the evaluation.
Flow conservation (13.8) and symmetry factorization (??) yield

0 = 1/ζ(0, 1) =
(

1 − 1
Λ

)(
1 − 4

Λ
− 1

Λ2

)

The second factor indeed vanishes for the given value of Λ. The diffusion constant
follows from

〈n〉ζ = −
(

1 − 1
Λ

)(
− 4

Λ
− 2

Λ2

)
,
〈
n̂2
〉
ζ

=
2
Λ

− 4
Λ2

=
2
Λ

(
1 − 2

Λ

)

D =
1

2
√

5

Fig. K.1(c) Λ = (
√

17 + 5)/2 with the corresponding Markov graph given in
fig. K.3(c).

1/ζ = 1 − (t1 + t2 + t3) − 2(t4 + t7)
−2(t14 + t37) + 2(t1 + t2 + t3)(t4 + t7) + 4t4t7
+4(t14t7 + t4t37) − 4(t1 + t2 + t3)t4t7

= 1 − 3
z

Λ
− 4 coshβ

z

Λ
+ 4

z2

Λ2
+ 8 coshβ

z2

Λ2
− 4

z3

Λ3
, (K.19)

Flow conservation (13.8) and symmetry factorization (??) yield

0 = 1/ζ(0, 1) =
(

1 − 2
Λ

)(
1 − 5

Λ
+

2
Λ2

)

The second factor indeed vanishes for the given value of Λ. The diffusion constant
follows from

〈n〉ζ = −
(

1 − 2
Λ

)(
− 5

Λ
− 4

Λ2

)
,
〈
n̂2
〉
ζ

=
4
Λ

− 8
Λ2

=
2
Λ

(
1 − 2

Λ

)

D =
2√
17
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It is not clear why the final answers tend to be so simple. Numerically this is the
maximal diffusion constant. Is it? Why?

Fig. K.1(d) Λ = (
√

33 + 5)/2 with the corresponding Markov graph given in
fig. K.3(d).

1/ζ = 1 − (t1 + t2 + t3) − 2(t4 + t7)
−4(t14 + t37) + 2(t1 + t2 + t3)(t4 + t7) + 4t4t7
+8(t14t7 + t4t37) − 4(t1 + t2 + t3)t4t7

= 1 − 3
z

Λ
− 4 coshβ

z

Λ
+ 4

z2

Λ2
+ 4 coshβ

z2

Λ2
+ 4

z3

Λ3
. (K.20)

Flow conservation (13.8) and symmetry factorization (??) yield

0 = 1/ζ(0, 1) =
(

1 − 2
Λ

)(
1 − 5

Λ
− 2

Λ2

)

The second factor indeed vanishes for the given value of Λ. The diffusion constant
follows from

〈n〉ζ = −
(

1 − 2
Λ

)(
− 5

Λ
− 4

Λ2

)
,
〈
n̂2
〉
ζ

=
4
Λ

− 4
Λ2

=
4
Λ

(
1 − 1

Λ

)

D =
1
8

+
5
88

√
33

Fig. K.1(e) Λ = 2
√

2+3 with the corresponding Markov graph given in fig. K.3(e).

1/ζ = 1 − 3t1 − 2(t4 + t7)
−4(t14 + t37) − t47 + 6t1(t4 + t7) + 4t4t7
−4(t147 + t347) + 8(t14t7 + t4t37) + 3t1t47 − 12t1t4t7

= 1 − 3
z

Λ
− 4 coshβ

z

Λ
+ 3

z2

Λ2
+ 4 coshβ

z2

Λ2
− z3

Λ3
. (K.21)

Markov graphs are not unique, and the extra terms cancel in the evaluation. Flow
conservation (13.8) and symmetry factorization (??) yield

0 = 1/ζ(0, 1) =
(

1 − 1
Λ

)(
1 − 6

Λ
+

1
Λ2

)
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The second factor indeed vanishes for the given value of Λ. The diffusion constant
follows from

〈n〉ζ = −
(

1 − 1
Λ

)(
− 6

Λ
+

2
Λ2

)
,
〈
n̂2
〉
ζ

=
4
Λ

− 4
Λ2

=
4
Λ

(
1 − 1

Λ

)

D =
1

2
√

2

Fig. K.1(f) Λ = (
√

33 + 7)/2 with the corresponding Markov graph given in
fig. K.3(f). Go through the whole construction, check that:

1/ζ = 1 − 3t1 − 2(t4 + t7)
−4(t14 + t37 + t47) + 6t1(t4 + t7) + 4t4t7
−8(t417 + t437) + 8(t14t7 + t4t37) + 12t1t47 − 12t1t4t7

= 1 − 3
z

Λ
− 4 coshβ

z

Λ
+ 4 coshβ

z2

Λ2
. (K.22)

Flow conservation (13.8) and symmetry factorization (??) yield

0 = 1/ζ(0, 1) =
(

1 − 7
Λ

+
4

Λ2

)
The diffusion constant follows from

〈n〉ζ =
(
− 7

Λ
+

8
Λ2

)
=
(

7
Λ

− 2
)

,
〈
n̂2
〉
ζ

=
4
Λ

− 4
Λ2

= − 3
Λ

+ 1

D =
1
4

+
1

4
√

33

Fig. K.1(g) Λ = 7. The Markov graph corresponding to fig. K.1(g) is fig. K.3(g).

1/ζ = 1 − 3t1 − 2(t4 + t7)

= 1 − 3
z

Λ
− 4 coshβ

z

Λ
(K.23)

The diffusion constant follows from (K.8)

〈n〉ζ =
7
Λ

,
〈
n̂2
〉
ζ

=
4
Λ

D =
2
7
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