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Chapter 1.
Complex Differential Calculus and
Pseudoconvexity

This introductive chapter is mainly a review of the basic tools and concepts which
will be employed in the rest of the book: differential forms, currents, holomor-
phic and plurisubharmonic functions, holomorphic convexity and pseudoconvexity.
Our study of holomorphic convexity is principally concentrated here on the case
of domains in C®. The more powerful machinery needed for the study of general
complex varieties (sheaves, positive currents, hermitian differential geometry) will
be introduced in Chapters II to V. Although our exposition pretends to be almost
self-contained, the reader is assumed to have at least a vague familiarity with a few
basic topics, such as differential calculus, measure theory and distributions, holo-
morphic functions of one complex variable, . ... Most of the necessary background
can be found in the books of (Rudin, 1966) and (Warner, 1971); the basics of distri-
bution theory can be found in Chapter I of (Hérmander 1963). On the other hand,
the reader who has already some knowledge of complex analysis in several variables
should probably bypass this chapter.

§1. Differential Calculus on Manifolds

§1.A. Differentiable Manifolds

The notion of manifold is a natural extension of the notion of submanifold
defined by a set of equations in R"™. However, as already observed by Riemann
during the 19th century, it is important to define the notion of a manifold in
a flexible way, without necessarily requiring that the underlying topological
space is embedded in an affine space. The precise formal definition was first
introduced by H. Weyl in (Weyl, 1913).

Let m € N and k € NU {oco,w}. We denote by C* the class of functions
which are k-times differentiable with continuous derivatives if k£ # w, and
by C“ the class of real analytic functions. A differentiable manifold M of
real dimension m and of class C* is a topological space (which we shall
always assume Hausdorff and separable, i.e. possessing a countable basis of
the topology), equipped with an atlas of class C* with values in R™. An atlas
of class C* is a collection of homeomorphisms 7, : Uy, — Vg, a € I, called
differentiable charts, such that (Uy)qer is an open covering of M and V,, an
open subset of R™, and such that for all «, 3 € I the transition map

(1.1) 7o =Tao0 7'5_1 :178(Ua NUB) — 74 (Uy NUp)
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Fig.I-1 Charts and transition maps

is a CF diffeomorphism from an open subset of Vs onto an open subset of V,,
(see Fig. 1). Then the components 7(z) = (z,...,z%,) are called the local
coordinates on U, defined by the chart 7, ; they are related by the transition
relation 2% = 7,5(z”).

If 2 C M is open and s € NU{oco,w}, 0 < s < k, we denote by C*({2,R)
the set of functions f of class C® on (2, i.e. such that f o7, ! is of class C*
on 74 (U N £2) for each « ; if 2 is not open, C*(§2,R) is the set of functions
which have a C'* extension to some neighborhood of (2.

A tangent vector £ at a point a € M is by definition a differential operator

acting on functions, of the type

of

CH2AR) S fr—éf= ) &5-(a)
1<j<m /
in any local coordinate system (z1,...,Z,,) on an open set {2 5 a. We then

simply write £ = ) &; 0/0x;. For every a € (2, the n-tuple (0/0%;)1<j<m is
therefore a basis of the tangent space to M at a, which we denote by T ,.
The differential of a function f at a is the linear form on T3, defined by

dfa€) =&-f = &0f/0xi(a),  VEE Tapa

In particular dz;(§) = & and we may write df = > (0f/0x;)dz;. Therefore
(dzq,...,dzy,) is the dual basis of (0/0x1,...,0/0z,,) in the cotangent space
Ty - The disjoint unions Tnr = U,epy Tmz and Ty = U, e p Thy . are called
the tangent and cotangent bundles of M.

If € is a vector field of class C* over (2, that is, a map x — &(x) € T »
such that {(z) = ) &;(x) 0/0x; has C* coefficients, and if 7 is another vector
field of class C*® with s > 1, the Lie bracket [€,n] is the vector field such that
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(12) [Enl-f=&-Mm-f)—n-(& )
In coordinates, it is easy to check that

) 0¢\ 0
(13) = ). (53'32]; — 83;) Oz’

1<j,k<m

61.B. Differential Forms

A differential form u of degree p, or briefly a p-form over M, is a map u on M
with values u(z) € APTy; .. In a coordinate open set 2 C M, a differential
p-form can be written

u(z) = Z ur(z) dzy,

|I|=p
where I = (i1,...,14p) is a multi-index with integer components, i1 < ... <1,
and dry := dx;; A ... A dz;,. The notation [I| stands for the number of
components of I, and is read length of I. For all integers p =0,1,...,m and

s € NU{oo}, s < k, we denote by C*(M, APT},) the space of differential
p-forms of class C?, i.e. with C? coefficients uy. Several natural operations
on differential forms can be defined.

§1.B.1. Wedge Product. If v(z) = Y vs(z)dz; is a ¢-form, the wedge
product of u and v is the form of degree (p + ¢) defined by

(1.4) uAv(z)= Z ur(z)vy(x)dey Adzy.
[I|=p,|J|=q

§1.B.2. Contraction by a tangent vector. A p-form u can be viewed as
an antisymmetric p-linear form on Thy. If £ = > &; 0/0x; is a tangent vector,
we define the contraction £ 1 u to be the differential form of degree p — 1
such that

(15) (fJ u)(nla'-'vnp—l) :,u’(f?nlv--'anp—l)
for all tangent vectors n;. Then (£, u) — & J w is bilinear and we find easily
0 if j¢1,
— ldxy = _ e T
oy ~ {(—1)’ ey i j=iel.

A simple computation based on the above formula shows that contraction by
a tangent vector is a derivation, i.e.

(1.6) €J (uAv)= (&1 u)Av+ (=1)%B8U A (€ 1 v).
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§1.B.3. Exterior derivative. This is the differential operator
d: O (M, APTy;) — CS—H(M, APTITS))

defined in local coordinates by the formula

(1.7) du= Z Our dry N dxy.
T|=p, 1<k<m O F

Alternatively, one can define du by its action on arbitrary vector fields

£0,...,&p on M. The formula is as follows
du(&Oa . '7§p) = Z (_I)Jéj : u(é()v cee 7gja . '7§p)
0<j<p
(17/) + Z ]+k g]agk] 507"'767"'7567"'7£p)'
0<j<k<p

The reader will easily check that (1.7) actually implies (1.7’). The advantage
of (1.7) is that it does not depend on the choice of coordinates, thus du
is intrinsically defined. The two basic properties of the exterior derivative
(again left to the reader) are:

(1.8)  d(uAv)=duAv+ (—1)98% A do, ( Leibnitz’ rule)
(1.9) d*=0.

A form wu is said to be closed if du = 0 and exact if © can be written u = dv
for some form v.

§1.B.4. De Rham Cohomology Groups. Recall that a cohomological
complex K*® = ®pEZ is a collection of modules KP over some ring, equipped
with differentials, i.e., linear maps d? : K? — KP*! such that dPt! o dP =
0. The cocycle, coboundary and cohomology modules ZP(K*®), BP(K*®) and
HP(K?*®) are defined respectively by

ZP(K*) = KerdP : KP — KP+1, Z7(K*) C K?,
(1.10) { BP(K®)=Imdr~':KP~! 5 KP,  BP(K®)C ZP(K®) C K?,
HP(K*®) = ZP(K*®)/BP(K*).

Now, let M be a differentiable manifold, say of class C°° for simplicity. The
De Rham complex of M is defined to be the complex K? = C*> (M, APT},)
of smooth differential forms, together with the exterior derivative d? = d as
differential, and K? = {0}, d? = 0 for p < 0. We denote by Z?(M,R) the
cocycles (closed p-forms) and by BP (M, R) the coboundaries (exact p-forms).
By convention B®(M,R) = {0}. The De Rham cohomology group of M in
degree p is

(1.11) H%,(M,R) = ZP(M,R)/B" (M, R).
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When no confusion with other types of cohomology groups may occur, we
sometimes denote these groups simply by H?(M,R). The symbol R is used
here to stress that we are considering real valued p-forms; of course one can in-
troduce a similar group HY i (M, C) for complex valued forms, i.e. forms with
values in C ® APT},. Then HYx(M,C) = C® HJr(M,R) is the complexi-
fication of the real De Rham cohomology group. It is clear that HJ, (M, R)
can be identified with the space of locally constant functions on M, thus

Hpp (M, R) = R™),

where (X)) denotes the set of connected components of M.
Similarly, we introduce the De Rham cohomology groups with compact
support

(1.12)  Hpg (M, R) = 2¢(M,R)/BZ (M, R),

associated with the De Rham complex K? = C°(M, APT},) of smooth dif-
ferential forms with compact support.

§1.B.5. Pull-Back. If F' : M — M’ is a differentiable map to another
manifold M’, dimg M' = m/, and if v(y) = > vs(y)dys is a differential p-
form on M’, the pull-back F*v is the differential p-form on M obtained after
making the substitution y = F(z) in v, i.e.

(1.13) F*o(x) = v(F(z))dF;, A... NdF;,.

If we have a second map G : M’ — M" and if w is a differential form
on M" then F*(G*w) is obtained by means of the substitutions z = G(y),
y = F(x), thus

(1.14) F*(G*w) = (G o F)*w.

Moreover, we always have d(F*v) = F*(dv). It follows that the pull-back
F* is closed if v is closed and exact if v is exact. Therefore F™* induces a
morphism on the quotient spaces

(1.15) F*: HE (M',R) — HE (M, R).

§1.C. Integration of Differential Forms

A manifold M is orientable if and only if there exists an atlas (7,) such that
all transition maps 7,3 preserve the orientation, i.e. have positive jacobian
determinants. Suppose that M is oriented, that is, equipped with such an
atlas. If u(x) = f(x1,...,2m)dxy A ... Adxy, is a continuous form of ma-
ximum degree m = dimrp M, with compact support in a coordinate open
set {2, we set
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(1.16) / u= flxy,...;xm)dey .. dey,.
M R

By the change of variable formula, the result is independent of the choice
of coordinates, provided we consider only coordinates corresponding to the
given orientation. When w is an arbitrary form with compact support, the
definition of [ 1 U is easily extended by means of a partition of unity with
respect to coordinate open sets covering Suppu. Let F' : M — M’ be a
diffeomorphism between oriented manifolds and v a volume form on M’. The
change of variable formula yields

(1.17) /MF*v:i/ K

according whether F' preserves orientation or not.

We now state Stokes’ formula, which is basic in many contexts. Let K be
a compact subset of M with piecewise C'' boundary. By this, we mean that
for each point a € 0K there are coordinates (z1,...,Z,) on a neighborhood
V of a, centered at a, such that

KﬂV:{xEV;mgO,...,JE,gO}

for some index [ > 1. Then 0K NV is a union of smooth hypersurfaces with
piecewise C'! boundaries:

OKNV = U {:EEV; r1<0,...,2;,=0,...,7 SO}.
1<5<1
At points of 0K where z; = 0, then (z1,...,Zj,,...,Tn) define coordinates
on OK. We take the orientation of 0K given by these coordinates or the
opposite one, according to the sign (—1)7~!, For any differential form u of
class C! and degree m — 1 on M, we then have

(1.18) Stokes’ formula. / u:/ du.
oK K

The formula is easily checked by an explicit computation when u has
compact support in V': indeed if u = Zl<j<n uj dry A ga; ..dx,, and
0;K NV is the part of 0K NV where z; = 0, a partial integration with
respect to x; yields

— s
/ ujdxl/\...da:j...da:m:/ﬂdxl/\...da:m,
8; KNV v 015

/ U= Z (_l)j_l/ Ujdafl/\d/l‘\J/\dl‘m:/du
OKNV 1<j<m 8, KNV v

The general case follows by a partition of unity. In particular, if « has compact
support in M, we find fM du = 0 by choosing K D Supp u.
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§1.D. Homotopy Formula and Poincaré Lemma
Let u be a differential form on [0, 1] x M. For (¢,z) € [0,1] x M, we write
u(t,x) = Z ur(t,z)drr + Z ug(t,z)dt Ndxy.
|I|=p |J|=p—1
We define an operator

K : C*([0,1] x M, APT( 1y, 0r) — C° (M, AP~1T)

(119) Ku(m)= 3 (/1ﬁj(t,a:)dt>dxj
[Jj=p—1 "0

and say that Ku is the form obtained by integrating u along [0,1]. A com-
putation of the operator dK + Kd shows that all terms involving partial
derivatives duy/0xy, cancel, hence

Kdu+ dKu = Z ( 1%(@@ dt)da:I: Z (ur(1,2) — ur(0,2))dur,

I=p 70 ot |I|=p
1.20 Kdu + dKu = iju — iju,
1 0

where it : M — [0,1] x M is the injection = — (¢, x).
(1.20) Corollary. Let F,G : M — M’ be C'*° maps. Suppose that F,G are

smoothly homotopic, i.e. that there exists a C*° map H : [0,1] x M — M’
such that H(0,xz) = F(x) and H(1,z) = G(x). Then

F*=G*: HL, (M',R) — HE, (M, R).

Proof. If v is a p-form on M’, then

G*v — F*v = (Hoiy)*v— (Hoig)*v =141 (H"v) —iyg(H*v)
= d(KH*v) + KH*(dv)

by (1.20) applied to u = H*v. If v is closed, then F*v and G*v differ by an
exact form, so they define the same class in HE, (M, R). O

(1.21) Corollary. If the manifold M is contractible, i.e. if there is a smooth
homotopy H : [0,1] x M — M from a constant map F : M — {xo} to
G =1dx, then HYz(M,R) = R and HE (M,R) =0 for p > 1.

Proof. F* is clearly zero in degree p > 1, while F* : H3 (M,R) — R is
induced by the evaluation map u +— wu(z). The conclusion then follows from
the equality F'* = G* = Id on cohomology groups. O
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(1.22) Poincaré lemma. Let 2 C R™ be a starshaped open set. If a form
v =Y vrdry € C*(2,APTY), p > 1, satisfies dv = 0, there exists a form
u € C*(2, AP7ITE) such that du = v.

Proof. Let H(t,z) = tz be the homotopy between the identity map {2 — 2
and the constant map 2 — {0}. By the above formula

v—uv(0) if p=0,

*o\ (ko TR,
d(KH*v) = G*v — F*v {v it p> 1

Hence u = K H*v is the (p — 1)-form we are looking for. An explicit compu-
tation based on (1.19) easily gives

1
(1.23) wu(z)= Z (/0 P~ (tx) dt) (—1)* tay dog, A .. dwyy .. A dy

|I|=p
1<k<p

§2. Currents on Differentiable Manifolds

62.A. Definition and Examples

Let M be a C°° differentiable manifold, m = dimg M. All the manifolds
considered in Sect. 2 will be assumed to be oriented. We first introduce a
topology on the space of differential forms C*®(M, APT},). Let 2 C M be
a coordinate open set and u a p-form on M, written u(z) = > us(x)dzs
on {2. To every compact subset L C {2 and every integer s € N, we associate
a seminorm

(2.1) pj(u)=sup max |D%y(z)l,
zeL |I|=p;|a|<s

where o = (ay,...,ay) runs over N™ and D® = 9l*l/9z$* ... 022 is a
derivation of order || = ay + - - - + ayy,. This type of multi-index, which will

always be denoted by Greek letters, should not be confused with multi-indices
of the type I = (i1,...,1p) introduced in Sect. 1.

(2.2) Definition.

a) We denote by EP(M) (resp. *€P(M)) the space C™°(M, APTy;) (resp. the
space C*(M, APT]’\})), equipped with the topology defined by all seminorms
p5 when s, L, 2 vary (resp. when L, 2 vary).

b) If K C M is a compact subset, DP(K) will denote the subspace of elements
u € EP(M) with support contained in K, together with the induced topo-

logy; DP(M) will stand for the set of all elements with compact support,
i.e. DP(M) :=Jx DP(K).
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c) The spaces of C*-forms *DP(K) and *DP(M) are defined similarly.

Since our manifolds are assumed to be separable, the topology of EP (M)
can be defined by means of a countable set of seminorms p%, hence EP(M)
(and likewise *EP(M)) is a Fréchet space. The topology of *DP(K) is induced
by any finite set of seminorms pﬁ{j such that the compact sets K; cover K ;
hence *DP(K) is a Banach space. It should be observed however that D? (M)
is not a Fréchet space; in fact DP (M) is dense in EP(M) and thus non complete
for the induced topology. According to (De Rham 1955) spaces of currents
are defined as the topological duals of the above spaces, in analogy with the
usual definition of distributions.

(2.3) Definition. The space of currents of dimension p (or degree m —p) on
M is the space Dy, (M) of linear forms T on DP(M) such that the restriction
of T to all subspaces DP(K), K CC M, is continuous. The degree is indicated
by raising the index, hence we set

D'MTP(M) = D;(M) := topological dual (DP(M))/.

The space *D (M) = *D'™7P(M) := (sl)p(M))/ is defined similarly and is

called the space of currents of order s on M.

In the sequel, we let (T, u) be the pairing between a current 7" and a test
formu € DP(M). It is clear that *D; (M) can be identified with the subspace
of currents T' € D7 (M) which are continuous for the seminorm p3 on DP(K)
for every compact set K contained in a coordinate patch (2. The support
of T, denoted Supp T, is the smallest closed subset A C M such that the
restriction of 7' to DP(M ~ A) is zero. The topological dual &,(M) can be
identified with the set of currents of D; (M) with compact support: indeed,
let T be a linear form on EP(M) such that

(T, )] < C max{p, (u)}

for some s € N, C' > 0 and a finite number of compact sets Kj; ; it follows
that Supp T C |J K. Conversely let T' € D}, (M) with support in a compact
set K. Let K; be compact patches such that K is contained in the interior of
UK, and ¢ € D(M) equal to 1 on K with Suppvy C |JK;. For u € EP(M),
we define (T, u) = (T,1u) ; this is independent of ¢ and the resulting T is
clearly continuous on EP(M). The terminology used for the dimension and
degree of a current is justified by the following two examples.

(2.4) Example. Let Z C M be a closed oriented submanifold of M of
dimension p and class C' ; Z may have a boundary 0Z. The current of
integration over Z, denoted [Z], is defined by

([Z],u}z/zu, w € “DP (M),
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It is clear that [Z] is a current of order 0 on M and that Supp[Z] = Z. Its
dimension is p = dim Z.

(2.5) Example. If f is a differential form of degree ¢ on M with L] . coef-
ficients, we can associate to f the current of dimension m — ¢ :

(Tf,u>:/Mf/\u, u € "D™UM).

T} is of degree g and of order 0. The correspondence f —— T is injective.

In the same way L{. . functions on R™ are identified to distributions, we will

identify f with its image Ty € *D"4(M) = °D;, _ (M).
62.B. Exterior Derivative and Wedge Product

62.B.1. Exterior Derivative. Many of the operations available for differ-
ential forms can be extended to currents by simple duality arguments. Let
T €*D'YM) = °*D;,_,(M). The exterior derivative

dT € " D' (M) =D,
is defined by
(2.6) (dT,u) = (=) T, du), uec*T*D™I71(M).

The continuity of the linear form d7T on *T1Dm=4=1(M) follows from the
continuity of the map d : st1Dm=4=1(K) — $D™~9(K). For all forms f €
Leq(M) and u € D971 (M), Stokes’ formula implies

0:/Md(f/\u):/Mdf/\u+(—1)qf/\du,

thus in example (2.5) one actually has dTy = Ty as it should be. In example
(2.4), another application of Stokes’ formula yields || PRUTES f 5z U, therefore
([2], du) = ([0Z], u) and

2.7) d[Z] = (~1)™P+[9Z)].

§2.B.2. Wedge Product. For T € *D’'9(M) and g € *E"(M), the wedge
product T' A g € *D'9t" (M) is defined by

(2.8) (T Ag,u)=(T,gAu), ue D™ 1" (M).

This definition is licit because u — g A w is continuous in the C*-topology.
The relation

d(T Ag)=dT Ag+ (—1)*8TT A dg

is easily verified from the definitions.
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(2.9) Proposition. Let (z1,...,z,) be a coordinate system on an open sub-
set 2 C M. Every current T € *D'9(M) of degree q can be written in a
unique way

T = Z Trdx; on {2,
[I1=q

where TT are distributions of order s on {2, considered as currents of degree 0.

Proof. If the result is true, for all f € *D%(£2) we must have
(T, f dxg;) = (Tr,dzy A f dagp) = e(I,CI) (Tr, fdxi A ... Adxy,),

where e(I,CI) is the signature of the permutation (1,...,m) s (I,CI).
Conversely, this can be taken as a definition of the coefficient 77 :

(2.10) Tr(f) = (Tr, fdxi A... Ndxy,) :=e(I,CI) (T, fdrg;), f € *D°(£2).
Then 77 is a distribution of order s and it is easy to check that T'= > Ty dx;.
O

In particular, currents of order 0 on M can be considered as differential
forms with measure coefficients. In order to unify the notations concerning
forms and currents, we set

(T,u>:/MT/\u

whenever T € *D,(M) = *D'™"P(M) and u € °EP(M) are such that
Supp T' N Supp u is compact. This convention is made so that the notation
becomes compatible with the identification of a form f to the current T'.

62.C. Direct and Inverse Images

§2.C.1. Direct Images. Assume now that M;, M, are oriented differen-
tiable manifolds of respective dimensions mi, ms, and that

(2.11) F:M; — M,

is a C°° map. The pull-back morphism

(2.12) *DP(Mz) — *EP(M,y), ur— F*u

is continuous in the C*® topology and we have Supp F*u C F~!(Suppu),
but in general Supp F*u is not compact. If T' € *Dj, (M) is such that the
restriction of F' to Supp T is proper, i.e. if Supp T N F~1(K) is compact for
every compact subset K C Ma, then the linear form u —— (T, F*u) is well
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defined and continuous on *DP(Ms). There exists therefore a unique current
denoted F\T' € *D;,(Mz), called the direct image of T by F', such that

(2.13) (F.T,u) =(T,F*u), Yu € *DP(My).

We leave the straightforward proof of the following properties to the reader.
(2.14) Theorem. For every T € SD;(Ml) such that Fisupp T 15 proper, the
direct image F, T € *D},(M>) is such that

a) Supp F,T C F(SuppT) ;

b) d(F.T) = F,(dT) ;

c) Fi(TAF*g)=(FT)Ng, Vge*EI(MaR);

d) If G : My — M3 is a C™ map such that (G o F)supp T 15 proper, then

G.(F,T) = (GoF),T.

Fig. I-2 Local description of a submersion as a projection.

(2.15) Special case. Assume that F' is a submersion, i.e. that F' is surjective
and that for every x € M; the differential map d, F' : Tary o — T, pa) 18
surjective. Let g be a differential form of degree g on M, with L;. . coefficients,
such that Fisupp 4 is proper. We claim that Fig € °D; (M) is the form
of degree ¢ — (m1 — ms2) obtained from g by integration along the fibers of

F', also denoted

Row = [ o)

In fact, this assertion is equivalent to the following generalized form of Fu-
bini’s theorem:
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/ g F*u= / (/ g(z)) Au(y), Yu € "D™I(My).
M, yEM> 2€F~1(y)

By using a partition of unity on M; and the constant rank theorem, the
verification of this formula is easily reduced to the case where M; = A x M>
and F' = pry, cf. Fig. 2. The fibers F~!(y) ~ A have to be oriented in such
a way that the orientation of M is the product of the orientation of A and
M. Let us write r = dim A = m; — mg and let z = (z,y) € A x M> be any
point of M;. The above formula becomes

/AxMzg(a:,y)/\u(y) = /yEMz </meAg($’y)) A uly),

where the direct image of g is computed from g = > g7 s(z,y) dzr A dyy,
|I| + |.J| = ¢, by the formula

(2.16) F, (y)zfeAg(w,y)

- > (/

g(l,...,r),J(‘rv y) dxl ARERYAN da;v’)dy]-
| Jj=g—r €A

coefficients on My if g is L  on

In this situation, we see that F,g has L ioc

loc

My, and that the map g — Flg is continuous in the C'* topology.

(2.17) Remark. If FF : M; — M, is a diffeomorphism, then we have
F.g = £(F~1)*g according whether F' preserves the orientation or not. In
fact formula (1.17) gives

(Frg,u) = /M1 g\ F*u = j:/M2 (F~H)*(g A F*u) = j:/M2 (F~H*g A .

§2.C.2. Inverse Images. Assume that F': M; — M5 is a submersion. As
a consequence of the continuity statement after (2.16), one can always define
the inverse image F*T € *D'%(My) of a current T' € *D’9(Mz) by

(F*T,u) = (T, Fyu), u € *DIt™=m2(pL),
Then dim F*T = dimT + my — mg and Th. 2.14 yields the formulas:
(2.18) d(F*T)=F*(dT), F*(T'ANg)=FTNF*g, Vgec?®D*(M,).

Take in particular T' = [Z], where Z is an oriented C'-submanifold of My.
Then F~1(Z) is a submanifold of M; and has a natural orientation given by
the isomorphism

Ts, o/ Tr-1(z),0 — Trty, F(2)/ T2, F(2)>

induced by d,F' at every point x € Z. We claim that
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(2.19) F*[Z] = [F~Y(2)].

Indeed, we have to check that [, Fiu = [, u for every u € *D*(My). By
using a partition of unity on M7, we may again assume M; = A x M, and
F' = pry. The above equality can be written

| raw= [ u(a,y).
yeZ (z,y)EAXZ

This follows precisely from (2.16) and Fubini’s theorem.

§2.C.3. Weak Topology. The weak topology on D; (M) is the topology
defined by the collection of seminorms T +—— |(T, f)| for all f € DP(M).
With respect to the weak topology, all the operations

(220) T+—dl, T+—TAg, T+—FT, T+— FT

defined above are continuous. A set B C D}, (M) is bounded for the weak
topology (weakly bounded for short) if and only if (T, f) is bounded when
T runs over B, for every fixed f € DP(M). The standard Banach-Alaoglu
theorem implies that every weakly bounded closed subset B C D (M) is
weakly compact.

62.D. Tensor Products, Homotopies and Poincaré Lemma

§2.D.1. Tensor Products. If S, T" are currents on manifolds M, M’ there
exists a unique current on M x M’', denoted S ® T and defined in a way
analogous to the tensor product of distributions, such that for all u € D*(M)
and v € D*(M')

(2.21) (S ® T, priuAprzv) = (=1)9T4EU(S ) (T, v).

One verifies easily that d(S®T)=dS®T + (-1)%€5S ®dT.

§2.D.2. Homotopy Formula. Assume that H : [0, 1] x M; — M3 is a C*°
homotopy from F(z) = H(0,z) to G(z) = H(1,z) and that T € D, (M)
is a current such that Hjp 1)xsuppr is proper. If [0,1] is considered as the
current of degree 0 on R associated to its characteristic function, we find
d[O, 1] = (50 — 51, thus
d(H.([0,1]®T)) =H, (6o ®T — 01 @ T + [0,1] ® dT')
=FT-G,T+ H,(]0,1] ®dT).
Therefore we obtain the homotopy formula

(2.22) F.T -G, T =d(H.([0,1]®T)) — H,([0,1] ® dT).

When T is closed, i.e. dT" = 0, we see that F,T and G, T are cohomologous
on My, i.e. they differ by an exact current dS.
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§2.D.3. Regularization of Currents. Let p € C°°(R™) be a function with
support in B(0, 1), such that p(z) depends only on |z| = (3 |=;|?)Y2, p > 0
and [;,, p(x) dz = 1. We associate to p the family of functions (p.) such that

1
(2.23) pe(z) = o p(%), Supp pe C B(0,¢), / pe(x) de = 1.
We shall refer to this construction by saying that (p.) is a family of smoothing
kernels. For every current T' = Y Trdzy on an open subset 2 C R™, the
family of smooth forms

T x pe = Z (T1 * pe) dzy,
T

defined on 2. = {x € R™ ; d(x,0) > ¢}, converges weakly to T as ¢ tends
to 0. Indeed, (T * pe, f) = (T, pe x f) and pe % f converges to f in DP(L2) with
respect to all seminorms pj .

§2.D.4. Poincaré Lemma for Currents. Let T € *D’9(2) be a closed
current on an open set {2 C R™. We first show that 7" is cohomologous to
a smooth form. In fact, let p € C°(R™) be a cut-off function such that
Suppt) C 2,0 < ¢ < 1 and |dy| < 1 on £2. For any vector v € B(0,1) we set

F,(z) =z + ¢(x)v.

Since z — 9 (x)v is a contraction, F, is a diffeomorphism of R™ which leaves
C£2 invariant pointwise, so F,(£2) = 2. This diffeomorphism is homotopic to
the identity through the homotopy H,(t,z) = Fy,(z) : [0, 1] X 2 — (2 which
is proper for every v. Formula (2.22) implies

(F).T T = d((H,).(10,1]  T)).

After averaging with a smoothing kernel p.(v) we get © — T = dS where

e = (Fy)«T pe(v)dv, S = (Hy)«([0,1] @ T) pe(v) dv.
B(0,¢) B(0,¢)

Then S is a current of the same order s as T and @ is smooth. Indeed, for
u € DP(£2) we have

(O,u)y = (T,u;) where uc(z)= /B(O )Fv*u(m) pe(v) dv ;

we can make a change of variable z = F,(z) < v = ¢(z) (2 — z) in the last
integral and perform derivatives on p. to see that each seminorm p4-(u.) is
controlled by the sup norm of u. Thus © and all its derivatives are currents
of order 0, so © is smooth. Now we have d® = 0 and by the usual Poincaré
lemma (1.22) applied to © we obtain
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(2.24) Theorem. Let 2 C R™ be a starshaped open subset and T € D' 1(12)
a current of degree ¢ > 1 and order s such that dT' = 0. There exists a current
S € $D'171(02) of degree ¢ — 1 and order < s such that dS =T on (2. O

§3. Holomorphic Functions and Complex Manifolds

§3.A. Cauchy Formula in One Variable

We start by recalling a few elementary facts in one complex variable theory.
Let 2 C C be an open set and let z = = 4 iy be the complex variable, where
z,y € R If f is a function of class C' on {2, we have

of of of of .
df = gy 9L gy = 9 g, L 91
f= st g, W= 5, Bt 57 47

with the usual notations
0 1,0 0 0 1,0 0
1) —=-(——i— — == +i).
B35 2<3x lay)’ 0z 2(3x+13y)
The function f is holomorphic on (2 if df is C-linear, that is, f/9z = 0.

(3.2) Cauchy formula. Let K C C be a compact set with piecewise C*
boundary OK . Then for every f € C1(K,C)

Flw) = - Mdz—/}(%gd)\(z), we K°

T2 Jox 2 —w z—w) 0z
where d\(z) = 1dz A dz = dz A dy is the Lebesgue measure on C.

Proof. Assume for simplicity w = 0. As the function z — 1/z is locally
integrable at z = 0, we get

1 1 i
/ L 9T ) = lim LSl Nz
K Tz 0% e=0 [ D(0,c) T% 0Z 2
1 dz
— I — ad
1 dz . 1 dz
=Y CEE o Ok
Tl Jox z  e=027 Jop(o,e) z

by Stokes’ formula. The last integral is equal to 5- fozﬂ f(e€l?) df and con-
verges to f(0) as e tends to 0. O

When f is holomorphic on (2, we get the usual Cauchy formula
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1
(33) Jw) =55 - Ezzv dz, weK°,

from which many basic properties of holomorphic functions can be derived:
power and Laurent series expansions, Cauchy residue formula, ... Another
interesting consequence is:

(3.4) Corollary. The L] . function E(z) = 1/7z is a fundamental solution
of the operator 0/0z on C, i.e. 0E/0Z = 0y (Dirac measure at0). As a conse-
quence, if v is a distribution with compact support in C, then the convolution

u= (1/mz) v is a solution of the equation Ou/0Z = v.

Proof. Apply (3.2) with w =0, f € D(C) and K D Supp f, so that f =0 on
the boundary 0K and f(0) = (1/7z, —0f/0%). O

(3.5) Remark. It should be observed that this formula cannot be used to
solve the equation du/0zZ = v when Suppwv is not compact; moreover, if
Supp v is compact, a solution u with compact support need not always exist.
Indeed, we have a necessary condition

(v,2"y = —(u, 02" /0Z) =0

for all integers n > 0. Conversely, when the necessary condition (v, z") = 0 is
satisfied, the canonical solution v = (1/7z) x v has compact support: this is
easily seen by means of the power series expansion (w —z)~! =Y 2w
if we suppose that Supp v is contained in the disk |z| < R and that |w| > R.

§3.B. Holomorphic Functions of Several Variables

Let £2 C C" be an open set. A function f : 2 — C is said to be holomorphic if
f is continuous and separately holomorphic with respect to each variable, i.e.
zj — f(...,%,...) is holomorphic when z1,...,2;_1, Zj41,-.., 2, are fixed.
The set of holomorphic functions on {2 is a ring and will be denoted O({2). We
first extend the Cauchy formula to the case of polydisks. The open polydisk
D(zy, R) of center (291,...,%0,) and (multi)radius R = (Ry,,...,R,) is
defined as the product of the disks of center zp ; and radius ; > 0 in each
factor C :

(36) D(Zo,R) = D(Zo,l,Rl) X ... X D(Zo’n,Rn) c C".

The distinguished boundary of D(zp, R) is by definition the product of the
boundary circles

(37) F(Zo,R) = F(ZO,laRl) X ... X F(Zo’n,Rn).

It is important to observe that the distinguished boundary is smaller than
the topological boundary 0D(z20, R) = U;{# € D(z0, R); |2j — 20,5| = R;}
when n > 2. By induction on n, we easily get the
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(3.8) Cauchy formula on polydisks. If D(zy, R) is a closed polydisk con-
tained in 2 and f € O(£2), then for all w € D(zp, R) we have

_ 1 f(z1,..0,2n) J p 0
f(w) . /1:'(Z0,R)( Z1...QZp.

(27i)m 21— wy) ... (2n — wy)

The expansion (z; — w;)™t = > (w; — 20,;)% (2 — 20;) "%}, a; € N,
1 < j < n, shows that f can be expanded as a convergent power series
fw) = > cnn aa(w — 20)* over the polydisk D(zo, R), with the standard

notations 2% = 21" ...z5", al = aq!. .. ay! and with
(3.9) aq = 1 / f(z1,.-,2n)dzy . dzy _ £ (z0)
. « (271'1)" I'(20,R) (Zl — 20,1)a1+1 . (Zn _ ZO,n)a"+1 ol .

As a consequence, f is holomorphic over (2 if and only if f is C-analytic.
Arguments similar to the one variable case easily yield the

(3.10) Analytic continuation theorem. If (2 is connected and if there
exists a point zy € 2 such that f(®)(z5) = 0 for all o € N*, then f = 0
on §2. O

Another consequence of (3.9) is the Cauchy inequality

al
(311) |f ()| < 7o sup [fl,  D(z0,R) C £2,
F(Zo,R)

From this, it follows that every bounded holomorphic function on C" is con-
stant (Liouville’s theorem), and more generally, every holomorphic function
F on C" such that |F(2)] < A(1+ |z|)? with suitable constants A, B > 0 is
in fact a polynomial of total degree < B.

We endow O(2) with the topology of uniform convergence on compact
sets K CC (2, that is, the topology induced by C°(£2,C). Then O(£2) is
closed in CY(£2,C). The Cauchy inequalities (3.11) show that all derivations
D% are continuous operators on O(f2) and that any sequence f; € O(f2) that
is uniformly bounded on all compact sets K CC {2 is locally equicontinuous.
By Ascoli’s theorem, we obtain

(3.12) Montel’s theorem. Every locally uniformly bounded sequence (f;)
in O(§2) has a convergent subsequence (fj(,))-

In other words, bounded subsets of the Fréchet space O({2) are relatively
compact (a Fréchet space possessing this property is called a Montel space).
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63.C. Differential Calculus on Complex Analytic Manifolds

A complex analytic manifold X of dimension dim¢ X = n is a differentiable
manifold equipped with a holomorphic atlas (74) with values in C™ ; this
means by definition that the transition maps 7,4 are holomorphic. The tan-
gent spaces T'x , then have a natural complex vector space structure, given
by the coordinate isomorphisms

dro(z) : T'x » — C", Uy dx;

the induced complex structure on T'x ,, is indeed independent of « since the
differentials d7,3 are C-linear isomorphisms. We denote by T% the underly-
ing real tangent space and by J € End(T%) the almost complex structure,
i.e. the operator of multiplication by i = /—1. If (z1,...,2,) are complex
analytic coordinates on an open subset 2 C X and 2z = xp + iyg, then
(1,91, -, %n,Yn) define real coordinates on 2, and T;R}m admits (0/0x1,
d/0y1, .., 3/0xy,, @/0y,) as a basis; the almost complex structure is given

J(0/0xy) = 0/0yg, J(0/0yr) = —0/0xy. The complexified tangent space
CeTx = Cxr T§§ =T § @iﬂ% splits into conjugate complex subspaces which
are the eigenspaces of the complexified endomorphism Id ® J associated to
the eigenvalues i and —i. These subspaces have respective bases

9, 1,0 0 0 1/ 0 0
. _ i S (R <k<
(3.13) 9o <3:L‘k 13yk), A <35Ek + 1ayk), 1<k<n

and are denoted T1°X (holomorphic vectors or vectors of type (1,0)) and
TY1X (antiholomorphic vectors or wvectors of type (0,1)). The subspaces
THOX and TY!'X are canonically isomorphic to the complex tangent space
Tx (with complex structure J) and its conjugate Tx (with conjugate complex
structure —J), via the C-linear embeddings

TX—>T}5°c<C®TX,ﬁ—>T§1c<C®TX
E—r 3(E—1JE), & > 3(E+1JE).

We thus have a canonical decomposition C® T'x = T)l(’0 ® T?(’l ~Tx ®Tx,
and by duality a decomposition

Homg (T%; C) ~ Homc(C® Tx;C) ~Tx & Tk

where T% is the space of C-linear forms and T% the space of conjugate C-
linear forms. With these notations, (dxg, dyx) is a basis of Homg (T X, C),
(dzj) a basis of T%, (dz;) a basis of T, and the differential of a function
f € CY£2,C) can be written

of B)
(3.14) df = Zﬁajkd,ﬁ— Zﬁkdﬁa—idzk
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The function f is holomorphic on 2 if and only if df is C-linear, i.e. if and only
if f satisfies the Cauchy-Riemann equations 0f/0zZx = 0 on 2,1 < k < n.
We still denote here by O(X) the algebra of holomorphic functions on X.
Now, we study the basic rules of complex differential calculus. The com-
plexified exterior algebra C ®g A% (Tx%)* = A%(C @ Tx)* is given by

AFCoTx) =A"TxoTx) = @ ATy, 0<k<2n
p+q=k

where the exterior products are taken over C, and where the components
APAT% are defined by

(3.15) APITE = APTx @ A9T%.

A complex differential form u on X is said to be of bidegree or type (p,q) if
its value at every point lies in the component AP9T% ; we shall denote by
C*(£2, AP9T% ) the space of differential forms of bidegree (p, ¢) and class C*
on any open subset 2 of X. If {2 is a coordinate open set, such a form can
be written

u(z)= Y. urs(2)der AdZs,  upg € C(02,0).
111=p.171=g

This writing is usually much more convenient than the expression in terms of
the real basis (dz1 A dys)|1)4)7)= Which is not compatible with the splitting
of A*FT%X in its (p,q) components. Formula (3.14) shows that the exterior
derivative d splits into d = d’ + d”, where

d : C®(X, APITY) — C°(X, APTHITY),
d’: C™(X, APITY) — C®(X, APIHTY),
L.J dzi Ndzy Ndz g,

(316) du=Y > 3;;

1,7 1<k<n = °F
0
(3.16") d'u=>_ Y g_f"’ dzp Adzr A dzg.
1,7 1<k<n. 7%k

The identity d? = (d' + d")? = 0 is equivalent to
(3.17) d/2 — 0, d/d// + d//d/ — 0, d//Z — 07

since these three operators send (p,q)-forms in (p + 2,q), (p+ 1,¢+ 1) and
(p, q + 2)-forms, respectively. In particular, the operator d” defines for each
p=20,1,...,n a complex, called the Dolbeault complex

O (X, APOT%) 5 oo 5 0% (X, APITS) 25 0% (X, AP9TITY)

and corresponding Dolbeault cohomology groups
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Ker d'" P-4
Im d"p-a—1’

(3.18) HP(X,C) =

with the convention that the image of d’ is zero for ¢ = 0. The cohomo-
logy group HP9(X, C) consists of (p,0)-forms u = >_i1)=p w1 (2) dzr such that
Ouy/0Z, = 0 for all Ik, i.e. such that all coefficients u; are holomorphic.
Such a form is called a holomorphic p-form on X.

Let F : X1 — X5 be a holomorphic map between complex manifolds.
The pull-back F*u of a (p, q)-form u of bidegree (p,q) on X5 is again homo-
geneous of bidegree (p, q), because the components Fj, of F' in any coordinate
chart are holomorphic, hence F*dz; = dFj is C-linear. In particular, the
equality dF*u = F*du implies

(3.19) d'F*u=F*d'u, d"F‘u=F*d"u.

Note that these commutation relations are no longer true for a non holomor-
phic change of variable. As in the case of the De Rham cohomology groups,
we get a pull-back morphism

F* HP,Q(XZ,(C) — Hp’q(Xl,(C).

The rules of complex differential calculus can be easily extended to currents.
We use the following notation.

(3.20) Definition. There are decompositions

D*(X,C)= @ DPUX,0), DX,C)= P D,
p+a=k p+q=k

The space D;, ,(X,C) is called the space of currents of bidimension (p,q) and
bidegree (n — p,n —q) on X, and is also denoted D'"~P"~1(X,C).

§3.D. Newton and Bochner-Martinelli Kernels

The Newton kernel is the elementary solution of the usual Laplace operator
A=50?/ Eh? in R™. We first recall a construction of the Newton kernel.

Let d\ = dzy...dx,, be the Lebesgue measure on R™. We denote by
B(a,r) the euclidean open ball of center a and radius r in R™ and by S(a,r) =
0B(a,r) the corresponding sphere. Finally, we set a,,, = Vol (B(O, 1)) and
Om—1 = May,, so that

(3.21) Vol (B(a,r)) = amr™, Area(S(a,r)) = opm_1r™ "

The second equality follows from the first by derivation. An explicit com-
putation of the integral [, e~1#*dX\(z) in polar coordinates shows that
m = T/2/(m/2)! where x! = I'(x + 1) is the Euler Gamma function.
The Newton kernel is then given by:
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1
N(a:):%logm it m =2,

1
NEz)=————|z*™ if 2.
() m = 2oms ] if m #
The function N (z) is locally integrable on R™ and satisfies AN = §;. When
m = 2, this follows from Cor. 3.4 and the fact that A = 40?/020z. When
m # 2, this can be checked by computing the weak limit

lim A(z]? +e2)™/2 = lim m(2 — m)e2(|z|? + £2)~1=m/2
e—0 e—0

=m(2 —m) I, dg

with I, = [i..(Jz]? +1)71=™/2dA(z). The last equality is easily seen by
performing the change of variable y = ez in the integral

/ ¥ (|z? +&%) 712 f(z) dA(z) = / (ly1> + 1) 71772 f(ey) dA(y),
where f is an arbitrary test function. Using polar coordinates, we find that
I, = 04—1/m and our formula follows.

The Bochner-Martinelli kernel is the (n,n — 1)-differential form on C”
with Ll = coefficients defined by

loc

B Zidz A odz, AdZL ALz, .. A dZy
(3.23) kpm(z) =cn Y (—1) P :

1<j<n

_ n(n—1 2(n_1)'
o = S0

(3.24) Lemma. d"kpy = 69 on C™.

Proof. Since the Lebesgue measure on C" is

i i\n n(n—1)
Az = N %dzj AdZ; = (%) (—1)" 2 dz A...dzy NdZL A ... dZn,
1<j<n
we find
1) 5.
Py — — D! g( 5)dAG)
" —  0Z; \|z|?n
1<5<n
1 0? 1
S S dX
n(n — 1)z, 19271 02;0%; <|z|2"—2) (2)
= AN (z)d\(z) = dp. O

We let Ky (z, () be the pull-back of kgy by the map 7 : C* x C* — C”,
(2,¢) /> z — (. Then Formula (2.19) implies
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(3.25) d”KBM = 71'*(50 = [A],
where [A] denotes the current of integration on the diagonal A C C* x C".
(3.26) Koppelman formula. Let 2 C C* be a bounded open set with

piecewise C1 boundary. Then for every (p,q)-form v of class C' on Q we
have

o) = [ K0 nu(o)
a9
+d’z’/ KB (2, C)/\v(()+/ K% (2,¢) Ad"v(C)
2 2
on 2, where KBy (z,() denotes the component of Kgm(z,(¢) of type (p,q)
inz and (n—p,n—q—1) in (.

Proof. Given w € D*~P"~4((2), we consider the integral

/BM K2, ) Av(C) Aw(z).

It is well defined since Kgy; has no singularities on 02 x Supp v CC 942 x (2.
Since w(z) vanishes on 02 the integral can be extended as well to ({2 x £2).
As Kpm(z,() Av(¢) Aw(z) is of total bidegree (2n,2n — 1), its differential d’
vanishes. Hence Stokes’ formula yields

/ Kpm(z,¢) Av(C) Aw(z) :/ d" (Kgm(z,¢) Av(C) Aw(z))
0802x 82

= /QXQdNKBM(Z,C) Av(¢) Aw(z) — KBL(2,¢) Ad"v(¢) Aw(z)
_ (_1)p+q ; QK%I\Q/I_l(Z,C) /\U(C) /\d//w(z)
By (3.25) we have
/QXQd//Kgm(z,C)/\v(C)/\w(z)Z/QXQ[A]/\U(()/\w(z):/Qv(z)/\w(z)

Denoting ( , ) the pairing between currents and test forms on (2, the above
equality is thus equivalent to

( KBM(z,C)/\U(C),w(Z»:(v(Z)—/(ZKﬁﬁ(va)/\d"v(O,w(Z»

o082

(1 /Q K231 (2,0) Av(0), d"w(z)),

which is itself equivalent to the Koppelman formula by integrating d”v by
parts. [
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(3.27) Corollary. Let v € *DP4(C") be a form of class C* with compact
support such that d"v =0, ¢ > 1. Then the (p,q — 1)-form

u() = [ KB 20 A0

is a C® solution of the equation d"u = v. Moreover, if (p,q) = (0,1) and
n > 2 then u has compact support, thus the Dolbeault cohomology group with
compact support H>1(C*, C) vanishes for n > 2.

Proof. Apply the Koppelman formula on a sufficiently large ball 2 = B(0, R)
containing Suppv. Then the formula immediately gives d”’u = v. Observe
that the coefficients of Kpn(z,¢) are O(|z — ¢|~®*~1), hence |u(z)| =
O(|z|=37=1) at infinity. If ¢ = 1, then u is holomorphic on C" \. B(0, R).
Now, this complement is a union of complex lines when n > 2, hence u = 0
on C" \. B(0, R) by Liouville’s theorem. O

(3.28) Hartogs extension theorem. Let {2 be an open set in C*, n > 2,
and let K C {2 be a compact subset such that 2 K is connected. Then every
holomorphic function f € O(£2\ K) extends into a function f € O(£2).

Proof. Let 1) € D(£2) be a cut-off function equal to 1 on a neighborhood of K.
Set fo = (1—4)f € C(£2), defined as 0 on K. Then v = d" fy = —fd") can
be extended by 0 outside (2, and can thus be seen as a smooth (0, 1)-form
with compact support in C", such that d”v = 0. By Cor. 3.27, there is a
smooth function u with compact support in C* such that d’u = v. Then
f = fo—ue€ 0(2). Now u is holomorphic outside Supp 9, so u vanishes on
the unbounded component G of C* \ Supp 4. The boundary 0G is contained
in 0Suppy C 2~ K, so f = (1 —1)f —u coincides with f on the non
empty open set 2 NG C 2~ K. Therefore f: f on the connected open set
2 \K. O

A refined version of the Hartogs extension theorem due to Bochner will
be given in Exercise 8.13. It shows that f need only be given as a C'! function
on 02, satisfying the tangential Cauchy-Riemann equations (a so-called CR-
function). Then f extends as a holomorphic function f € O(£2) N C°(12),
provided that 02 is connected.

§3.E. The Dolbeault-Grothendieck Lemma

We are now in a position to prove the Dolbeault-Grothendieck lemma (Dol-
beault 1953), which is the analogue for d” of the Poincaré lemma. The proof
given below makes use of the Bochner-Martinelli kernel. Many other proofs
can be given, e.g. by using a reduction to the one dimensional case in combi-
nation with the Cauchy formula (3.2), see Exercise 8.5 or (Hormander 1966).
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(3.29) Dolbeault-Grothendieck lemma. Let 2 be a neighborhood of 0 in
C* and v € *EP1((2,C), [resp. v € *D'P9((2,C)|, such that d"v = 0, where
1 <s<oo.

a) If ¢ = 0, then v(z) = Z|I|=p vr(z)dzy is a holomorphic p-form, i.e. a
form whose coefficients are holomorphic functions.

b) If ¢ > 1, there exists a neighborhood w C 2 of 0 and a form wu in
s&P4=1(w, C) [resp. a current u € $D'P9=Yw, C)] such that d'u = v
on w.

Proof. We assume that (2 is a ball B(0,r) C C™ and take for simplicity
r > 1 (possibly after a dilation of coordinates). We then set w = B(0,1). Let
Y € D(£2) be a cut-off function equal to 1 on w. The Koppelman formula
(3.26) applied to the form v on 2 gives

D) = [ KB 0 AR + [ KBGO AdD(0) A0,
This formula is valid even when v is a current, because we may regularize v

as v x pe and take the limit. We introduce on C* x C" x C" the kernel

o (W =G a o

By construction, Kpwm(z,() is the result of the substitution w = Z in
K(z,w,(), i.e. Kpm = h*K where h(z,{) = (z,%,(). We denote by KP1
the component of K of bidegree (p,0) in z, (¢,0) in w and (n —p,n —q¢—1)
in ¢. Then K5y = h*KP7 and we find

v=d"ug+g*vi onw,

where g(z) = (z,%z) and

Ul(zaw) = QKp’q(z,w, ) A d"ﬂ)(o A U(C)

By definition of KP(z,w, (), vy is holomorphic on the open set
U={(zw) €wxw;¥(¢w, Re(z — () - (w—) >0},

which contains the “conjugate-diagonal” points (z,z) as well as the points
(2,0) and (0, w) in w x w. Moreover U clearly has convex slices ({z} x C*)NU
and (C" x {w})NU. In particular U is starshaped with respect to w, i.e.

(z,w) e U= (2,tw) € U, Vte]|0,1].
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As uy is of type (p,0) in z and (g,0) in w, we get d7(g*vy) = g*dyv1 = 0,
hence d,v; = 0. For ¢ = 0 we have KB ' = 0, thus up = 0, and v; does
not depend on w, thus v is holomorphic on w. For ¢ > 1, we can use the
homotopy formula (1.23) with respect to w (considering z as a parameter) to
get a holomorphic form u;(z,w) of type (p,0) in z and (¢ — 1,0) in w, such
that dyuq(z,w) = v1(z,w). Then we get d”g*uy = g*d,u; = g*vy, hence

v=d"(up +g*u1) onw.

Finally, the coeflicients of ug are obtained as linear combinations of convolu-
tions of the coefficients of ¢v with Lj . functions of the form (;|¢|~>". Hence

ug is of class C*® (resp. is a current of order s), if v is. O

(3.30) Corollary. The operator d" is hypoelliptic in bidegree (p,0), i.e. if a
current f € D'PO(X,C) satisfies d" f € EPY(X,C), then f € EPO(X,C).

Proof. The result is local, so we may assume that X = {2 is a neighborhood
of 0 in C". The (p,1)-form v = d"f € €P}(X,C) satisfies d”v = 0, hence
there exists u € EP0(§2,C) such that d”u = d”f. Then f — u is holomorphic
and f = (f —u) +u e P2, C). O

4. Subharmonic Functions

A harmonic (resp. subharmonic) function on an open subset of R™ is essen-
tially a function (or distribution) w such that Au = 0 (resp. Au > 0). A
fundamental example of subharmonic function is given by the Newton ker-
nel NV, which is actually harmonic on R” ~ {0}. Subharmonic functions are an
essential tool of harmonic analysis and potential theory. Before giving their
precise definition and properties, we derive a basic integral formula involving
the Green kernel of the Laplace operator on the ball.

§4.A. Construction of the Green Kernel

The Green kernel Gg(z,y) of a smoothly bounded domain 2 CC R™ is the
solution of the following Dirichlet boundary problem for the Laplace operator

Aon 2:

(4.1) Definition. The Green kernel of a smoothly bounded domain 2 CC R™
is a function Go(z,y) : 2 x 2 — [—00,0] with the following properties:

a) Go(z,y) is C™ on 2 x 2\ Diag,, (Diag, = diagonal) ;

b) G.Q(xvy) = G.Q(yva:) )

c) Go(x,y) <0 on 2 x 2 and Go(z,y) =0 on 002 x 2;
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d) A;Go(z,y) =0, on 2 for every fizred y € §2.

It can be shown that G, always exists and is unique. The uniqueness is
an easy consequence of the maximum principle (see Th. 4.14 below). In the
case where 2 = B(0,r) is a ball (the only case we are going to deal with),
the existence can be shown through explicit calculations. In fact the Green
kernel G, (x,y) of B(0,r) is

(4.2) GT(x,y):N(a:—y)—N(@<x—%y)), z,y € B(0,r).

A substitution of the explicit value of N(x) yields:

if m =2, otherwise

1 lz — y|?
G, (x,y) = —1o
) = 8 e e+ TP P

—1 _ 1 1—m/2
(12 = w2 = (% = 20w, 1) + 5 o ) ™).

B e

(4.3) Theorem. The above defined function G, satisfies all four properties
(4.1a-d) on 2 = B(0,r), thus G, is the Green kernel of B(0,r).

Proof. The first three properties are immediately verified on the formulas,
because

1 1
P2 = 2e,) + el [ = o — o + = (7 = o) (2 = lyP).

For property d), observe that r2y/|y|?> ¢ B(0,r) whenever y € B(0,7) ~ {0}.
The second Newton kernel in the right hand side of (4.1) is thus harmonic in
xz on B(0,r), and

AyGr(z,y) = AgN(x —y) =0, on B(0,r). O

§4.B. Green-Riesz Representation Formula and Dirichlet Problem

§4.B.1. Green-Riesz Formula. For all smooth functions u, v on a smoothly
bounded domain {2 CC R™, we have

dv ou
(4.4) /Q(uAv—vAu)d)\—/(rm(u%—v$>da

where 0/0v is the derivative along the outward normal unit vector v of 0£2
and do the euclidean area measure. Indeed

(—l)j_ldJSl/\.../\d/l‘\j/\.../\dl‘m[ag:deO',

for the wedge product of (v, dz) with the left hand side is v; dA. Therefore



o% Lnapter 1. Lomplex Vlllerentlial LalCulus and rrseudoconvexivy

ov O = 1 Ov —
—da:Z fyjda:jz::l (—1)7 la—xjdasl/\...Adasj/\...Ada;m.
Formula (4.4) is then an easy consequence of Stokes’ theorem. Observe that
(4.4) is still valid if v is a distribution with singular support relatively compact
in 2. For 2 = B(0,7), u € C*(B(0,7),R) and v(y) = Gy(z,y), we get the
Green-Riesz representation formula:

(45) u(z) = /B o BU) o) )+ /S o D P o)

where P.(z,y) = 0G,(z,y)/0v(y), (z,y) € B(0,r) x S(0,7). The function
P,.(z,y) is called the Poisson kernel. It is smooth and satisfies A, P,.(z,y) =0
on B(0,7) by (4.1 d). A simple computation left to the reader yields:

1 r2— |z

Om—_1T |T—y|™

(4.6) Pr(z,y) =

Formula (4.5) for u = 1 shows that fS(O,T)P,«(m,y) do(y) = 1. When z in
B(0,7) tends to o € S(0,r), we see that P.(x,y) converges uniformly to
0 on every compact subset of S(0,7) \ {zo} ; it follows that the measure
P.(z,y)do(y) converges weakly to d,, on S(0,r).

§4.B.2. Solution of the Dirichlet Problem. For any bounded measurable
function v on S(a,r) we define

(A7) Punlo)(z) = /S MR ay e i), e B

If w € C°(B(a,r),R) N C?(B(a,r),R) is harmonic, i.e. Au =0 on B(a,r),
then (4.5) gives u = P, .[u] on B(a,r), i.e. the Poisson kernel reproduces
harmonic functions. Suppose now that v € C° (S (a,r),R) is given. Then
P.(x —a,y — a)do(y) converges weakly to d,, when z tends to xg € S(a,r),
so P, ,[v](x) converges to v(zg). It follows that the function u defined by

uw=P,,[v] on B(a,r),
u="v on S(a,r)

is continuous on B(a,r) and harmonic on B(a,r) ; thus u is the solution of
the Dirichlet problem with boundary values v.

64.C. Definition and Basic Properties of Subharmonic Functions

§4.C.1. Definition. Mean Value Inequalities. If u is a Borel function on
B(a,r) which is bounded above or below, we consider the mean values of u
over the ball or sphere:
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1
4.8 slusa,r) = u(z) dA(z),
48 wsien = mn [ i)

1
- u(x) do(x).
— /g @) dot

As d)\ = dr do these mean values are related by

(4.8")  ps(usa,r) =

1

Ay, ™

1
:m/ t"™ ! us(usa,rt) dt.
0

(4.9) pp(usa,r) = / Om_1t™ " ps(u;a,t)dt
0

Now, apply formula (4.5) with z = 0. We get P.(0,y) = 1/0pm_17™ ! and

Gr(0,y) = (Jy>=™ —r2=™) /(2= m)om_1 = —(1/om_1) f|;| ti=mdt, thus

1

Om—1

/ Auly) Gy (0,y) dA(y) = — / ' t,fffl Au(y) dA(y)
B(0,r) 0 ly|<t

1 r
:——/ pp(Au;0,t)tdt
m Jo

thanks to the Fubini formula. By translating S(0,7) to S(a,r), (4.5) implies
the Gauss formula

(4.10) ;Lg(u;a,r):u(a)qLi/ pp(Au;a,t)tdt.
m Jo

Let {2 be an open subset of R™ and v € C?(2,R). If a € 2 and Au(a) > 0
(resp. Au(a) < 0), Formula (4.10) shows that pg(u;a,r) > u(a) (resp.
ps(usa,r) < wu(a)) for r small enough. In particular, w is harmonic (i.e.
Au = 0) if and only if u satisfies the mean value equality

ps(usa,r)=u(a), VB(a,r)C £2.

Now, observe that if (p.) is a family of radially symmetric smoothing kernels
associated with p(x) = p(|z|) and if u is a Borel locally bounded function, an
easy computation yields

uxpe(a) = /B(o ) u(a + ex) p(z) dA

1
(4.11) — / s (us a, et) B(t) £7 d.
0

Thus, if v is a Borel locally bounded function satisfying the mean value
equality on 2, (4.11) shows that u * p. = uw on (2, in particular v must be
smooth. Similarly, if we replace the mean value equality by an inequality, the
relevant regularity property to be required for w is just semicontinuity.
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(4.12) Theorem and definition. Let u : 2 — [—o00, +00[ be an upper
semicontinuous function. The following various forms of mean value inequal-
ities are equivalent:

a) u(z) < P,,ul(z), VB(a,r)C 2, VxeB(a,r);

b) u(a) < ps (u;a,r), VB(a,r)C 2;

¢) u(a) < pp(usa,r), VB(a,r)C 2 ;

d) for every a € §2, there exists a sequence (r,) decreasing to 0 such that

u(a) < pp(usa,ry) Vv

e) for every a € §2, there exists a sequence (r,) decreasing to 0 such that
u(a) < ps(usa,r,) V.

A function u satisfying one of the above properties is said to be subharmonic
on 2. The set of subharmonic functions will be denoted by Sh((2).

By (4.10) we see that a function v € C?(£2,R) is subharmonic if and only
if Au>0:1in fact ps(u; a,r) < u(a) for r small if Au(a) < 0. It is also clear
on the definitions that every (locally) convex function on {2 is subharmonic.

Proof. We have obvious implications
a) = b) = ¢) =d) = e),

the second and last ones by (4.10) and the fact that pp(u;a,r,) < ps(u;a,t)
for at least one ¢ € ]0,7,[. In order to prove e) = a), we first need a suitable
version of the maximum principle.

(4.13) Lemma. Let u : 2 — [—00, +0o0[ be an upper semicontinuous func-
tion satisfying property 4.12 e). If u attains its supremum at a point xg € (2,
then u is constant on the connected component of o in (2.

Proof. We may assume that (2 is connected. Let
W={xe€2; ulx) <u(xy)}.

W is open by the upper semicontinuity, and distinct from (2 since zo ¢ W.
We want to show that W = (). Otherwise W has a non empty connected
component Wy, and Wy has a boundary point a € 2. We have a € 2~ W,
thus u(a) = wu(zg). By assumption 4.12e), we get u(a) < ps(u;a,r,) for
some sequence 7, — 0. For r, small enough, Wy intersects 2 \ B(a,r,) and
B(a,r,) ; as Wy is connected, we also have S(a,r,)NWy # 0. Since u < u(z)
on the sphere S(a,r,) and u < u(xp) on its open subset S(a,r,) N Wy, we
get u(a) < ps(u;a,r) < u(xp), a contradiction. O
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(4.14) Maximum principle. If u is subharmonic in 2 (in the sense that
u satisfies the weakest property 4.12¢)), then

supu = limsup  wu(z2),
£ 252z—002U{oco}

and sup g u = supgg u(z) for every compact subset K C 2.

Proof. We have of course limsup,_, 5oy (00} #(2) < supg u. If the inequality
is strict, this means that the supremum is achieved on some compact subset
L C £2. Thus, by the upper semicontinuity, there is zo € L such that sup, u =
supy, u = u(xp). Lemma 4.13 shows that w is constant on the connected
component {2y of x( in {2, hence

supu = u(zy) = limsup  wu(z) < limsup  u(z),
0 2052z—0820U{oco0} 252z—002U{oco}

contradiction. The statement involving a compact subset K is obtained by
applying the first statement to 2’ = K°. 0

Proof of (4.12) ¢) = a) Let u be an upper semicontinuous function sat-
isfying 4.12 e) and B(a,r) C 2 an arbitrary closed ball. One can find
a decreasing sequence of continuous functions v, € C° (S (a,r),R) such
that limvy, = u. Set hy = P, [vi] € CO(F(a,r),]R). As hy 1s harmonic
on B(a,r), the function u — hy satisfies 4.12 e) on B(a,r). Furthermore
Hmsup,_,ees(a,r w() — hi(r) < u(€) —vg(§) < 0,80 u—hy, <0 on B(a,r)
by Th. 4.14. By monotone convergence, we find u < P, »[u] on B(a,r) when
k tends to +oo. O

64.C.2. Basic Properties. Here is a short list of the most basic properties.

(4.15) Theorem. For any decreasing sequence (uy) of subharmonic func-
tions, the limit uw = limug is subharmonic.

Proof. A decreasing limit of upper semicontinuous functions is again upper
semicontinuous, and the mean value inequalities 4.12 remain valid for u by
Lebesgue’s monotone convergence theorem. 0

(4.16) Theorem. Let uy,...,u, € Sh(§2) and x : RF — R be a convex
function such that x(t1,...,tp) is non decreasing in each t;. If x is extended
by continuity into a function [—oo, +oo[P— [—oo, +o0[, then

x(u1,...,up) € Sh(£2).

In particular uy + - - + up, max{uy,...,up}, log(e** +--- +e*r) € Sh(£2).

Proof. Every convex function is continuous, hence x(uq,...,up) is upper
semicontinuous. One can write
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X (t) = sup A;(t)
icl
where A;(t) = a1ty +---+apty +b is the family of affine functions that define
supporting hyperplanes of the graph of x. As x(t1,...,tp) is non-decreasing
in each ¢;, we have a; > 0, thus

> ajui(a) +b < pp( D ajuj+bix,r) < pp(x(u,... ) i2,r)
1<j<p

for every ball B(x,r) C (2. If one takes the supremum of this inequality over
all the A;’s, it follows that x(u1,...,u,) satisfies the mean value inequality
4.12 ¢). In the last example, the function x(t1,...,t,) = log(ef* + --- + e'»)
is convex because

82
> et = e g - (L eh)’

1<jk<p 7
and ()¢ etj)z < (X £7 e ) eX by the Cauchy-Schwarz inequality. O

(4.17) Theorem. If 2 is connected and u € Sh({2), then either u = —oo or
ue Li ().

Proof. Note that a subharmonic function is always locally bounded above.
Let W be the set of points « € (2 such that u is integrable in a neighborhood
of x. Then W is open by definition and v > —oo almost everywhere on
W.If z € W, one can choose a € W such that |a — 2| < r = 1d(z,[)
and u(a) > —oo. Then B(a,r) is a neighborhood of z, B(a,r) C 2 and
pa(usa,r) > u(a) > —oco. Therefore x € W, W is also closed. We must have
W = or W = () ; in the last case © = —oo by the mean value inequality. [

(4.18) Theorem. Let u € Sh(£2) be such that u Z —oo on each connected
component of (2. Then

a) r — ps(usa,r), r — pp(u;a,r) are non decreasing functions in the
interval )0, d(a,CQ)[, and pp(u;a,r) < ps(u;a,r).

b) For any family (pe) of smoothing kernels, u* p. € Sh(£2¢) N C*(£2¢,R),
the family (ux pe) is non decreasing in € and limq_,o u * pc = u.

Proof. We first verify statements a) and b) when u € C?(£2,R). Then Au >
0 and ps(u;a,r) is non decreasing in virtue of (4.10). By (4.9), we find
that pp(u;a,r) is also non decreasing and that pp(u;a,r) < ps(u;a,r).
Furthermore, Formula (4.11) shows that ¢ — wu * p:(a) is non decreasing
(provided that p. is radially symmetric).

In the general case, we first observe that property 4.12 c¢) is equivalent to
the inequality
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u<uxp, on 2. Vr>0,

where p,. is the probability measure of uniform density on B(0, ). This in-
equality implies uxpe < uxpe* i on (£2.)e = 2,4 ¢, thus uxp. € C*°(£2,R)
is subharmonic on (2. It follows that u x p. x p, is non decreasing in 7 ; by
symmetry, it is also non decreasing in €, and so0 is U * p. = limy,_,o U * pe * ).
We have u * p. > u by (4.19) and limsup,_,,u * p. < u by the upper semi-
continuity. Hence lim¢_,o u x pc = u. Property a) for u follows now from its
validity for u x p. and from the monotone convergence theorem. U

(4.19) Corollary. If u € Sh(£2) is such that uw Z —oo on each connected
component of §2, then Au computed in the sense of distribution theory is a
positive measure.

Indeed A(uxp:) > 0 as a function, and A(uxp.) converges weakly to Au
in D’(£2). Corollary 4.19 has a converse, but the correct statement is slightly
more involved than for the direct property:

(4.20) Theorem. If v € D'(12) is such that Av is a positive measure, there
exists a unique function u € Sh(£2) locally integrable such that v is the dis-
tribution associated to u.

We must point out that u need not coincide everywhere with v, even when
v is a locally integrable upper semicontinuous function: for example, if v is
the characteristic function of a compact subset K C 2 of measure 0, the
subharmonic representant of v is u = 0.

Proof. Set ve = v x p. € C®°(§2,R). Then Ave = (Av) x p. > 0, thus
ve € Sh(f2.). Arguments similar to those in the proof of Th. 4.18 show that
(ve) is non decreasing in . Then u := lim._,¢ v. € Sh({2) by Th. 4.15. Since
ve converges weakly to v, the monotone convergence theorem shows that

(v, fy = lim Uefd)\:/u,fd)\, VfeD2), f>0,
2 2

e—0

which concludes the existence part. The uniqueness of « is clear from the fact
that w must satisfy u = limu % p. = limv x pe. ([l

The most natural topology on the space Sh({2) of subharmonic functions
is the topology induced by the vector space topology of Li (£2) (Fréchet

loc
topology of convergence in L' norm on every compact subset of £2).

(4.21) Proposition. The convexr cone Sh(£2) N LL (£2) is closed in LL (£2),

loc loc
and it has the property that every bounded subset is relatively compact.

Proof. Let (uj) be a sequence in Sh(£2) N L (£2). If u; — w in L] (£2) then

loc loc
Auj; — Au in the weak topology of distributions, hence Au > 0 and u can
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be represented by a subharmonic function thanks to Th. 4.20. Now, suppose
that ||u;||z1(x) is uniformly bounded for every compact subset K of (2. Let
pj = Au; > 0. If op € D(§2) is a test function equal to 1 on a neighborhood
w of K and such that 0 < <1 on {2, we find

,LLJ(K)S/Q’Qbﬂ’u,]d/\:/QA’QDUJd)\SCHUJHLl(K/),

where K’ = Suppt, hence the sequence of measures (p;) is uniformly
bounded in mass on every compact subset of £2. By weak compactness, there
is a subsequence (y;,) which converges weakly to a positive measure p on 2.
We claim that f*(t¢pu;,) converges to fx(¢u) in LL (R™) for every function

loc

f € LL (R™). In fact, this is clear if f € C°°(R™), and in general we use an

loc
approximation of f by a smooth function g together with the estimate

1(f = g) * (WDu ) lray < = 9)llerasrrrym, (K, VA CCR™

to get the conclusion. We apply this when f = N is the Newton kernel. Then
hj = uj — N * (1p;) is harmonic on w and bounded in L(w). As hj = h; * pe
for any smoothing kernel p., we see that all derivatives D*h; = hj x (D%py)
are in fact uniformly locally bounded in w. Hence, after extracting a new
subsequence, we may suppose that h;, converges uniformly to a limit A on w.
Then uj, = hj, + N x (¢u;,) converges to u = h + N % () in Li . (w), as

loc

desired. O

We conclude this subsection by stating a generalized version of the Green-
Riesz formula.

(4.22) Proposition. Let v € Sh(2) N L{

loc

(£2) and B(0,7) C £2.

a) The Green-Riesz formula still holds true for such an u, namely, for every
xz € B(0,r)

u(z) = /B o AU Gele ) NG + / u(y) Py () do(y).

S(0,r)

b) (Harnack inequality)
If u>0 on B(0,7), then for all x € B(0,r)

rm=2(r + |z|)

s A0

0<u@) < [ o) Py doly) <

If u <0 on B(0,7), then for all x € B(0,r)

o < [ o DR dety) < e nstuso.n) <o.
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Proof. We know that a) holds true if u is of class C?. In general, we replace
u by u* p. and take the limit. We only have to check that

/ 1% pely) G () dA(y) = lim w(y) Gy (z, y) dA(y)
B(0,r) =0/ B(o,r)

for the positive measure p = Au. Let us denote by G, (y) the function such
that

~ G, (z, ifx € B(O,r
Gw(y):{o( g ifx;BEO,r;.

Then

/B o o) G ) DNG) = / i) Galy) dA(9)
= /m 1(y) G % pe(y) dA(y).

However G, is continuous on R™ . {z} and subharmonic in a neighborhood
of z, hence ém * pe converges uniformly to ém on every compact subset of
R™ ~\ {x}, and converges pointwise monotonically in a neighborhood of z.
The desired equality follows by the monotone convergence theorem. Finally,
b) is a consequence of a), for the integral involving Awu is nonpositive and

1 rm=2(r — |z|) 1 rm=2(r + |z|)

<P <
N R e N |

by (4.6) combined with the obvious inequality (r — |z|)™ < |z — y|™ <
(r =+ |z|)™. O

64.C.3. Upper Envelopes and Choquet’s Lemma. Let {2 C R” and let
(ta)aer be a family of upper semicontinuous functions 2 — [—o0, +00].
We assume that (uy) is locally uniformly bounded above. Then the upper
envelope

U = SUP Ug

need not be upper semicontinuous, so we consider its upper semicontinuous
reqularization.:

u*(z) = i‘ﬂ% Bs(up)u, > u(z).

It is easy to check that u* is the smallest upper semicontinuous function
which is > w. Our goal is to show that u* can be computed with a countable
subfamily of (u). Let B(z;j,¢;) be a countable basis of the topology of (2.
For each j, let (zj;) be a sequence of points in B(z;, ;) such that
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sup u(zjx) = sup u,
k B(zj,¢5)

and for each pair (j, k), let a(j, k,1) be a sequence of indices o € I such that
u(2jk) = SUpP; Ua (k1) (2jk)- Set

vV = Sup U’a(j,k,l) .
Ikl

Then v < u and v* < u*. On the other hand

sup v > supv(zjx) > SUp Ua(j k1) (2jk) = supu(zjx) = sup u.
B(zj,e5) k k,l k B(zj,e5)

As every ball B(z,¢) is a union of balls B(zj,¢;), we easily conclude that
v* > u*, hence v* = u*. Therefore:

(4.23) Choquet’s lemma. Every family (uy) has a countable subfamily
(vj) = (uq(y)) such that its upper envelope v satisfies v <u <w* =v*. 0O

(4.24) Proposition. If all u, are subharmonic, the upper regularization u*
15 subharmonic and equal almost everywhere to wu.

Proof. By Choquet’s lemma we may assume that (u,) is countable. Then
U = sup U, is a Borel function. As each u, satisfies the mean value inequality
on every ball B(z,r) C £2, we get

u(z) = sup ua(2) < sup pp(ua; 2,7) < pp(us 2,7).
The right-hand side is a continuous function of z, so we infer
’U,*(Z) < IU/B(U” Z,’f‘) < ,U/B(U’*; Z,'f')

and u* is subharmonic. By the upper semicontinuity of u* and the above
inequality we find u*(z) = lim,_,o pp(u; z,7), thus u* = u almost everywhere
by Lebesgue’s lemma. ([l

§5. Plurisubharmonic Functions

§5.A. Definition and Basic Properties

Plurisubharmonic functions have been introduced independently by (Lelong
1942) and (Oka 1942) for the study of holomorphic convexity. They are the
complex counterparts of subharmonic functions.

(5.1) Definition. A function u : 2 — [—00, +00[ defined on an open subset
2 C C" s said to be plurisubharmonic if



go. Ilurisupiiarmonic runctlons ad

a) w is upper semicontinuous ;
b) for every complex line L C C*, uyonr s subharmonic on 2N L.

The set of plurisubharmonic functions on 2 is denoted by Psh({2).

An equivalent way of stating property b) is: for all a € 2, £ € C”,
€] < d(a,Cs2), then

(5.2) u(a) < i/o " ula+ ¢ ) db.

27
An integration of (5.2) over £ € S(0,r) yields u(a) < ps(u;a,r), therefore
(5.3) Psh(£2) C Sh(£2).

The following results have already been proved for subharmonic functions
and are easy to extend to the case of plurisubharmonic functions:

(5.4) Theorem. For any decreasing sequence of plurisubharmonic functions
u € Psh(£2), the limit u = limuy, is plurisubharmonic on 2.

(5.5) Theorem. Let u € Psh(£2) be such that u Z —oc0 on every connected
component of 2. If (pe) is a family of smoothing kernels, then u x p. is C*
and plurisubharmonic on (2., the family (ux pe) is non decreasing in € and
lime o u*x pe = u.

(5.6) Theorem. Let uy,...,u, € Psh(£2) and x : R® — R be a convex func-
tion such that x(t1,...,tp) is non decreasing in each t;. Then x(u1,...,up)
is plurisubharmonic on 2. In particular wy + -+ + up, max{uy, ..., up},
log(et + - -- 4 e%r) are plurisubharmonic on {2.

(5.7) Theorem. Let {uy} C Psh(£2) be locally uniformly bounded from above
and u = sup u,. Then the reqularized upper envelope u* is plurisubharmonic
and is equal to u almost everywhere.

Proof. By Choquet’s lemma, we may assume that (u,) is countable. Then u
is a Borel function which clearly satisfies (5.2), and thus u x p. also satisfies
(5.2). Hence u  pe is plurisubharmonic. By Proposition 4.24, u* = u almost
everywhere and u* is subharmonic, so

u* = limu* % p, = limu % p,
is plurisubharmonic. O

If u € C?(§2,R), the subharmonicity of restrictions of u to complex lines,
Co>w+— ula+wf), ac 2, e C, is equivalent to
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2 2

u(a + wé) = ¢
Jwow N 1 <h<n 32]'32]6

(a +wé) &€y, > 0.

Therefore, u is plurisubharmonic on (2 if and only if the hermitian form
> 0%u /0207 (a) €€, is semipositive at every point a € (2. This equivalence
is still true for arbitrary plurisubharmonic functions, under the following
form:

(5.8) Theorem. If u € Psh({2), u Z —oo on every connected component of
2, then for all £ € C"

Pu |~ ,
Hu@)= 3, gz &€ D'(Q)

is a positive measure. Conversely, if v € D'(£2) is such that Hv(&) is a positive
measure for every & € C", there exists a unique function u € Psh(£2) locally
integrable on §2 such that v is the distribution associated to u.

Proof. If u € Psh({2), then Hu(¢) = weak lim H(u % p.)(§) > 0. Conversely,
Hv > 0 implies H (v x p:) = (Hv) x pe > 0, thus v x p. € Psh({2), and also
Av > 0, hence (v pe) is non decreasing in € and u = lime_,g v * p. € Psh({2)
by Th. 5.4. 0

(5.9) Proposition. The conver cone Psh(£2) NLL _(£2) is closed in L}

loc
and it has the property that every bounded subset is relatively compact.

(£2),

65.B. Relations with Holomorphic Functions

In order to get a better geometric insight, we assume more generally that « is
a C? function on a complex n-dimensional manifold X. The complex Hessian
of u at a point a € X is the hermitian form on T'x defined by

0%u
8zj82k

(5.10) Hug =
1<), k<n

(a) dz; ® dZy.

If F: X — Y is a holomorphic mapping and if v € C?(Y,R), we have
d'd"(vo F) = F*d'd"v. In equivalent notations, a direct calculation gives for
all £ € TX,a

poro- % S O T, i

J:k,lm

In particular Hu, does not depend on the choice of coordinates (z1,...,2y)
on X, and Hv, > 0 on Y implies H(vo F), > 0 on X. Therefore, the notion
of plurisubharmonic function makes sense on any complex manifold.
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(5.11) Theorem. If F': X — Y is a holomorphic map and v € Psh(Y),
then vo F' € Psh(X).

Proof. 1t is enough to prove the result when X = 2; C C" and X = 2, C C?
are open subsets . The conclusion is already known when v is of class C?,
and it can be extended to an arbitrary upper semicontinuous function v by
using Th. 5.4 and the fact that v = limwv % p.. ([l

(5.12) Example. By (3.22) we see that log |z| is subharmonic on C, thus
log | f| € Psh(X) for every holomorphic function f € O(X). More generally

log (| f1]|®* 4+ - + | fg|**) € Psh(X)

for every f; € O(X) and «; > 0 (apply Th. 5.6 with u; = «; log |f;] ).

65.C. Convexity Properties

The close analogy of plurisubharmonicity with the concept of convexity
strongly suggests that there are deeper connections between these notions.
We describe here a few elementary facts illustrating this philosophy. Another
interesting connection between plurisubharmonicity and convexity will be
seen in § 7.B (Kiselman’s minimum principle).

(5.13) Theorem. If 2 = w + iw’ where w, W' are open subsets of R™, and
if u(z) is a plurisubharmonic function on (2 that depends only on © = Re z,
then w >  — u(x) is convexr.

Proof. This is clear when u € C?($2,R), for 0*u/02;0z =  0*u/0z;0z). In
the general case, write u = limu % p. and observe that u* p.(z) depends only
on . U

(5.14) Corollary. If u is a plurisubharmonic function in the open polydisk
D(a,R) =[] D(aj,R;) C C", then

1 27 ) )
plu; ri,. .. ry) = 5 / u(ay + 1%, .. an +rpe?)doy ... db,,
(2m)™ Jo
m(u; ri,...,rp) = sup  w(zi,...,2,), 715 <R,
ze€D(a,r)
are convez functions of (logry,...,logr,) that are non decreasing in each
variable.

Proof. That p is non decreasing follows from the subharmonicity of u along
every coordinate axis. Now, it is easy to verify that the functions
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~ 1 2m . ,

(21, ey 2n) = W/ u(a1+ezle‘91,...,an+ez"e‘9")d01...d0n,
0

m(z1,...,2n) = |Su|;<>1u(a1+ezlw1,...,an+eznwn)

are upper semicontinuous, satisfy the mean value inequality, and depend only
on Re z; € ]0,log R;[. Therefore ;i and M are convex. Cor. 5.14 follows from
the equalities

plu; re, ... ry) = p(logry, ..., logry,),
m(uw; ri,...,rn) =m(logry,...,logr,). d

65.D. Pluriharmonic Functions

Pluriharmonic functions are the counterpart of harmonic functions in the
case of functions of complex variables:

(5.15) Definition. A function u is said to be pluriharmonic if u and —u are
plurisubharmonic.

A pluriharmonic function is harmonic (in particular smooth) in any C-
analytic coordinate system, and is characterized by the condition Hu = 0,
ie. d'd"u=0 or

0%u/0z;07z, =0 for all j,k.

If f € O(X), it follows that the functions Re f, Im f are pluriharmonic.
Conversely:

(5.16) Theorem. If the De Rham cohomology group Higr(X,R) is zero,
every pluriharmonic function u on X can be written uw = Re f where f is a
holomorphic function on X.

Proof. By hypothesis HAR (X,R) =0, u € C°(X) and d(d'v) = d"d'u = 0,
hence there exists g € C°°(X) such that dg = d'u. Then dg is of type (1,0),
ie. g € O(X) and

d(u—2Reg) =d(u—g—9) = (d'u—dg)+ (d"u—dg) =0.

Therefore u = Re(2g + C'), where C' is a locally constant function. O
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§5.E. Global Regularization of Plurisubharmonic Functions

We now study a very efficient regularization and patching procedure for con-
tinuous plurisubharmonic functions, essentially due to (Richberg 1968). The
main idea is contained in the following lemma:

(5.17) Lemma. Let u, € Psh(£2,) where £2, CC X is a locally finite open
covering of X. Assume that for every index 3

limsupug(¢) < Inax {uq(2)}

C—z
at all points z € 0523. Then the function

u(z) = max Ue (2)

(oY

15 plurisubharmonic on X.

Proof. Fix zy € X. Then the indices 3 such that zyp € 023 or 2y ¢ ﬁg do not
contribute to the maximum in a neighborhood of zy. Hence there is a a finite
set I of indices « such that {2, 5 zp and a neighborhood V C ﬂae 7§24 on
which u(z) = maxyes uq(2z). Therefore u is plurisubharmonic on V. O

The above patching procedure produces functions which are in general
only continuous. When smooth functions are needed, one has to use a reg-
ularized max function. Let # € C*°(R,R) be a nonnegative function with
support in [—1,1] such that [, 6(h) dh =1 and [; h#(h) dh = 0.

(5.18) Lemma. For arbitrary n = (n1,...,n,) € |0,4+00[?, the function

My(ty, ... tp) = | max{ty +ha,....ty+hp} [[ 0(h;/n;)dhy...dh,
e 1<j<n

possesses the following properties:

a) My(ti,...,ty) is non decreasing in all variables, smooth and convex on
R™ ;

b) max{ti,...,tp} < M, (t1,...,tp) <max{ts +n1,...,tp +10p};

C) M’r](tly ey tp) = M(nl,---,;?;,---,”lp)(tb ceey tj, 5o .,tp)

if ty +m; < maxgzi{ty — M} ;

d) My(ti+a,...,tp+a) =My(ty,...,t,) +a, VaeR;

e) if ui,...,up are plurisubharmonic and satisfy H(u;),(§) > v.(&) where
z 7y, is a continuous hermitian form on Tx, then u = M, (u1,...,up)
is plurisubharmonic and satisfies Hu, (&) > v,(£).

Proof. The change of variables h; — h; —t; shows that M, is smooth. All
properties are immediate consequences of the definition, except perhaps e).
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That My(u1,...,up) is plurisubharmonic follows from a) and Th. 5.6. Fix a
point zp and € > 0. All functions u;(z) = u;(2) — 7z, (2 — 20) + €[z — 2|* are
plurisubharmonic near zy. It follows that

My (Ul .o yuy) = — Y20 (2 — 20) + €|z — 20|?

is also plurisubharmonic near zy. Since € > 0 was arbitrary, e) follows. 0

(5.19) Corollary. Let u, € C(£2,) NPsh(£2,) where 2, CC X is a locally
finite open covering of X. Assume that ug(z) < max{uq(z)} at every point
z € 0f2g, when o runs over the indices such that 2, > z. Choose a family

(Na) of positive numbers so small that ug(z) + ng < maxg, 5.{ua(2) — Na}
for all B and z € 023. Then the function defined by

u(z) = M,y (ua(z))  for o such that 2, > z

15 smooth and plurisubharmonic on X. 0

(5.20) Definition. A function u € Psh(X) is said to be strictly plurisubhar-
monic if u € LL (X) and if for every point xq € X there exists a neighbor-

loc
hood 2 of xo and ¢ > 0 such that u(z) — c|z|? is plurisubharmonic on £2, i.e.

3 (0%u)02;07k)€E), > cl€? (as distributions on 2) for all € € C™.

(5.21) Theorem (Richberg 1968). Let u € Psh(X) be a continuous function
which 1s strictly plurisubharmonic on an open subset 2 C X, with Hu > vy
for some continuous positive hermitian form v on (2. For any continuous
function X € C°(£2), A > 0, there erists a plurisubharmonic function U in
COX)NC>(N2) such that u < u < u+ X on 2 and u=u on X \ 2, which
is strictly plurisubharmonic on 2 and satisfies Hu > (1 — X)vy. In particular,
u can be chosen strictly plurisubharmonic on X if u has the same property.

Proof. Let (£24) be a locally finite open covering of 2 by relatively compact
open balls contained in coordinate patches of X. Choose concentric balls
QF C 2, C 24 of respective radii rl, < rl, < ro and center z = 0 in the
given coordinates z = (z1,...,2,) near £2,, such that £2” still cover 2. We
set

U (2) = Uk pe (2) + 6a(r? —|2]?)  on £2,.

For e, < €40 and 6o < 0o, small enough, we have uy, < u + A/2 and
Huy > (1= X)y on £2,. Set

No = (Sa min{rf - Tg27 (T?x - Tg)/Z}

Choose first d, < 04,0 such that n, < minﬁa A/2, and then e, < €4,0 50
small that u < ux pe, < U+ 1y on 24. As 64 (r'% — |2|?) is < =21, on 942,
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and > 7, on ﬁg, we have u, < u — 17, on 02, and uy, > u + 1, ON ﬁg, SO
that the condition required in Corollary 5.19 is satisfied. We define

~ Ju on X \ (2,
v= M) (ug) on £2.

By construction, u is smooth on {2 and satisfies u < u < u+ A, Hu > (1—A)y
thanks to 5.18 (b,e). In order to see that w is plurisubharmonic on X, observe
that @ is the uniform limit of u, with

Uy = max{u, My, . oy (. u,a)} on U 2
1<h<a

and u, = u on the complement. O

65.F. Polar and Pluripolar Sets.

Polar and pluripolar sets are sets of —oo poles of subharmonic and plurisub-
harmonic functions. Although these functions possess a large amount of flexi-
bility, pluripolar sets have some properties which remind their loose relation-
ship with holomorphic functions.

(5.22) Definition. 4 set A C 2 C R™ (resp. A C X, dimcX = n) is said
to be polar (resp. pluripolar) if for every point x € (2 there exist a connected
neighborhood W of © and u € Sh(W) (resp. uw € Psh(W)), u # —oo, such
that ANW C{z € W ; u(r) = —oo}.

Theorem 4.17 implies that a polar or pluripolar set is of zero Lebesgue
measure. Now, we prove a simple extension theorem.

(5.23) Theorem. Let A C {2 be a closed polar set and v € Sh(£2 \ A) such
that v is bounded above in a neighborhood of every point of A. Then v has a
unique extension v € Sh((2).

Proof. The uniqueness is clear because A has zero Lebesgue measure. On the
other hand, every point of A has a neighborhood W such that

ANW Cc{zeW ; u(x) = -0}, wueSh(W), u#—oc.

After shrinking W and subtracting a constant to u, we may assume u < 0.
Then for every € > 0 the function v. = v +eu € Sh(W \ A) can be extended
as an upper semicontinuous on W by setting v. = —oo on AN W. Moreover,
v satisfies the mean value inequality ve(a) < ps(ve;a,r)ifae W A, r <
d(a, AUCW), and also clearly if a € A, r < d(a,CW). Therefore v, € Sh(W)
and v = (supv.)* € Sh(W). Clearly v coincides with v on W ~ A. A similar
proof gives:
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(5.24) Theorem. Let A be a closed pluripolar set in a complex analytic
manifold X. Then every function v € Psh(X ~ A) that is locally bounded
above near A extends uniquely into a function v € Psh(X). O

(5.25) Corollary. Let A C X be a closed pluripolar set. Every holomorphic
function f € O(X\A) that is locally bounded near A extends to a holomorphic

function f € O(X).

Proof. Apply Th. 5.24 to £Re f and &Im f. It follows that Re f and Im f
have pluriharmonic extensions to X, in particular f extends to f € C'*°(X).

By density of X \ A, d"f =0o0n X. O

(5.26) Corollary. Let A C 2 (resp. A C X) be a closed (pluri)polar set. If
2 (resp. X) is connected, then 2~ A (resp. X \ A) is connected.

Proof. If 2~ A (resp. X \ A) is a disjoint union £2; U 25 of non empty open
subsets, the function defined by f = 0 on 21, f = 1 on {25 would have a
harmonic (resp. holomorphic) extension through A, a contradiction. d

§6. Domains of Holomorphy and Stein Manifolds

§6.A. Domains of Holomorphy in C". Examples

Loosely speaking, a domain of holomorphy is an open subset {2 in C" such
that there is no part of 02 across which all functions f € O(£2) can be
extended. More precisely:

(6.1) Definition. Let 2 C C* be an open subset. {2 is said to be a domain
of holomorphy if for every connected open set U C C* which meets 02 and
every connected component V' of U N {2 there exists f € O(§2) such that fiv
has no holomorphic extension to U.

Under the hypotheses made on U, we have ) £ 0V NU C 9£2. In order to
show that {2 is a domain of holomorphy, it is thus sufficient to find for every
2o € 082 a function f € O(£2) which is unbounded near zy.

(6.2) Examples. Every open subset {2 C C is a domain of holomorphy (for
any zop € 002, f(2) = (2 — 20)~! cannot be extended at z9). In C*, every
convex open subset is a domain of holomorphy: if Re(z — 29,&p) = 0 is a
supporting hyperplane of 9f2 at zq, the function f(z) = ((z — 20,&p)) ! is
holomorphic on {2 but cannot be extended at z.

(6.3) Hartogs figure. Assume that n > 2. Let w C C*~! be a connected
open set and w’ C w an open subset. Consider the open sets in C" :
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2= ((D(R)~D(r)) xw) U (D(R) xw') (Hartogs figure),

2=D(R)xw (filled Hartogs figure).

where 0 <7 < R and D(r) C C denotes the open disk of center 0 and radius
r in C. _

Then every function f € O(£2) can be extended to 2 = w x D(R) by
means of the Cauchy formula:

flz, ) = 1/ MdCh z€ 2, max{|z|,r}<p<R
I

211 Ji¢,1=p G1— 21

In fact f € O(D(R) x w) and f = f on D(R) x w’, so we must have f = f
on {2 since {2 is connected. It follows that {2 is not a domain of holomorphy.
Let us quote two interesting consequences of this example.

(6.4) Corollary (Riemann’s extension theorem). Let X be a complex ana-
lytic manifold, and S a closed submanifold of codimension > 2. Then every
[ € 0(X \S) extends holomorphically to X .

Proof. This is a local result. We may choose coordinates (z1,...,2,) and a
polydisk D(R)™ in the corresponding chart such that SN D(R)™ is given by
equations z; = ... =z, = 0, p = codim S > 2. Then, denoting w = D(R)"~!
and w' =w~ {22 = ... =2, = 0}, the complement D(R)" \. S can be written
as the Hartogs figure

D(R)"\ S = ((D(R) ~ {0}) x w) U (D(R) x ).

It follows that f can be extended to 2 = D(R)™. O

66.B. Holomorphic Convexity and Pseudoconvexity

Let X be a complex manifold. We first introduce the notion of holomorphic
hull of a compact set K C X. This can be seen somehow as the complex
analogue of the notion of (affine) convex hull for a compact set in a real vec-
tor space. It is shown that domains of holomorphy in C" are characterized a
property of holomorphic convexity. Finally, we prove that holomorphic con-
vexity implies pseudoconvexity — a complex analogue of the geometric notion
of convexity.

(6.5) Definition. Let X be a complex manifold and let K be a compact
subset of X. Then the holomorphic hull of K in X 1is defined to be

K=Kox)={z€X;|f()| < s111(p|f|, VfeOX)}.

(6.6) Elementary properties.
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Fig. I-3 Hartogs figure

a)

K is a closed subset of X containing K. Moreover we have

sup [f| =sup|f|, V[ e O(X),
7 K

hence K = K.

If h: X — Y is a holomorphic map and K C X is a compact set, then
h(I?o(X)) C h(K)O(Y). In particular, if X C Y, then I?O(X) C I/(\'o(y)ﬂX.
This is immediate from the definition.

K contains the union of K with all relatively compact connected compo-

nents of X \ K (thus K “fills the holes” of K). In fact, for every connected
component U of X ~ K we have U C 0K, hence if U is compact the
maximum principle yields

sup |f| =sup |f| <sup|f|, forall fe O(X).
T oU K

More generally, suppose that there is a holomorphic map A : U — X
defined on a relatively compact open set U in a complex manifold .S, such
that h extends as a continuous map h : U — X and h(OU) C K. Then

h(U) C K. Indeed, for f € O(X), the maximum principle again yields
sup |f o h| = sup |f o h| < sup |f].
T oU K

This is especially useful when U is the unit disk in C.

Suppose that X = 2 C C" is an open set. By taking f(z) = exp(A(2))
where A is an arbitrary affine function, we see that Kg(p) is contained
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in the intersection of all affine half—spaces containing K. Hence K o) 18
contained in the affine convex hull K aff- As a consequence K 0(02) 1s always
bounded and K o(cr) 1s a compact set. However, when (2 is arbitrary,
Ko(0) is not always compact; for example, in case {2 = C" \ {0}, n > 2,
then O(£2) = O(C™) and the holomorphic hull of K = 5(0,1) is the non
compact set K = B(0,1) ~ {0}.

(6.7) Definition. A complex manifold X is said to be holomorphically convex
if the holomorphic hull Ko x) of every compact set K C X is compact.

(6.8) Remark. A complex manifold X is holomorphically convex if and
only if there is an exhausting sequence of holomorphically compact subsets
K, C X, i.e. compact sets such that

X=|JK,, K,=K, K}DK, .

Indeed, if X is holomorphically convex, we may define K, inductively by

=0and K,41 = (K, U L,,)g(X)7 where K], is a neighborhood of K, and
L, a sequence of compact sets of X such that X = |JL,. The converse is
obvious: if such a sequence (K, ) exists, then every compact subset K C X
is contained in some K, hence KcC I?,, = K, is compact. O

We now concentrate on domains of holomorphy in C*. We denote by d
and B(z,r) the distance and the open balls associated to an arbitrary norm
on C*, and we set for simplicity B = B(0, 1).

(6.9) Proposition. If 2 is a domain of holomorphy and K C {2 is a compact
subset, then d(K,C02) = d(K,CQ2) and K is compact.

Proof. Let f € O(£2). Given r < d(K,(f2), we denote by M the supremum
of |f| on the compact subset K + rB C (2. Then for every z € K and ¢ € B,
the function

(6.10) C>3t— f(z+1) = Zk'Dk

is analytic in the disk |[¢| < r and bounded by M. The Cauchy inequalities
imply

D f(2)(&)F] < ME!r~*  Vze K, V¢Ec€B.

As the left hand side is an analytic fuction of z in {2, the inequality must
also hold for 2z € K, § € B. Every f € O(£2) can thus be extended to any
ball B(z,r), z € K, by means of the power series (6.10). Hence B(z,r) must
be contained in {2, and this shows that d(K,C$2) > r. As r < d(K,[£2) was
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arbitrary, we get d(I? ,0£2) > d(K,[2) and the converse inequality is clear,
so d(K,082) = d(K,($2). As K is bounded and closed in 2, this shows that
K is compact. [

(6.11) Theorem. Let {2 be an open subset of C*. The following properties
are equivalent:

a) 2 is a domain of holomorphy;
b) (2 is holomorphically conver;

c) For every countable subset {z;}jen C £2 without accumulation points in £2

and every sequence of complex numbers (a;), there exists an interpolation
function F' € O(§2) such that F(z;) = a;.

d) There exists a function F' € O(£2) which is unbounded on any neighborhood
of any point of 012.

Proof. d) = a) is obvious and a) == b) is a consequence of Prop. 6.9.

c) = d). If 2 = C™ there is nothing to prove. Otherwise, select a dense
sequence (¢;) in 042 and take z; € 2 such that d(z;,(;) < 277. Then the
interpolation function F € O(£2) such that F(z;) = j satisfies d).

b) = ¢). Let K, C {2 be an exhausting sequence of holomorphically convex
compact sets as in Remark 6.8. Let v(j) be the unique index v such that
zj € Ky(j)+1 ~ Ky(j)- By the definition of a holomorphic hull, we can find a
function g; € O(§2) such that

sup |g;| < |g;(2)|-
Ky, ;)

After multiplying g; by a constant, we may assume that g;(z;) = 1. Let
Pj € C[z1,...,2,] be a polynomial equal to 1 at z; and to 0 at 29, z1,...,2j—1.
We set

400
F=2 AiPig;"”,
7=0

where \; € C and m; € N are chosen inductively such that

Aj=a; — Z AePr(25) 9k (25)™",
0<k<j

A Pigi?1 <277 on Kyq) ;
once A; has been chosen, the second condition holds as soon as m; is large

enough. Since {z;} has no accumulation point in 2, the sequence v(j) tends
to 400, hence the series converges uniformly on compact sets. ([l
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We now show that a holomorphically convex manifold must satisfy some
more geometric convexity condition, known as pseudoconvexity, which is most
easily described in terms of the existence of plurisubharmonic exhaustion
functions.

(6.12) Definition. A function 1) : X — [—00,+00[ on a topological space
X is said to be an exhaustion if all sublevel sets X. := {z € X ; ¢(z) < c},
¢ € R, are relatively compact. Equivalently, v is an erhaustion if and only
if Y tends to +oo relatively to the filter of complements X ~ K of compact
subsets of X.

A function 9 on an open set 2 C R” is thus an exhaustion if and only
if () — 400 as x — 92 or x — oo. It is easy to check, cf. Exercise 8.8,
that a connected open set 2 C R” is convex if and only if {2 has a locally
convex exhaustion function. Since plurisubharmonic functions appear as the
natural generalization of convex functions in complex analysis, we are led to
the following definition.

(6.13) Definition. Let X be a complex n-dimensional manifold. Then X is
said to be

a) weakly pseudoconver if there exists a smooth plurisubharmonic exhaustion
function ¢ € Psh(X)NC*®(X);

b) strongly pseudoconvez if there exists a smooth strictly plurisubharmonic
exhaustion function 1 € Psh(X)NC>(X), i.e. HY is positive definite at
every point.

(6.14) Theorem. Every holomorphically convex manifold X is weakly pseu-
doconvez.

Proof. Let (K,) be an exhausting sequence of holomorphically convex com-
pact sets as in Remark 6.8. For every point a € L, := K,42 \ K7, one
can select g, , € O(£2) such that supg |gv.| < 1 and |gyq(a)| > 1. Then
|9v,a(2)| > 1 in a neighborhood of a ; by the Borel-Lebesgue lemma, one can
find finitely many functions (g,,4)eer, such that

1 fi L 1 fi K,.
gg})u({|g,,,a(z)|} >1 for z € L,, Eréz}f{|g,,,a(z)|} <1 for z€ K,

For a sufficiently large exponent p(v) we get

Y 9wal® > v on L, Y gl <277 on K,
acl, acl,

It follows that the series

P(2) =D > lgval2)P®)

veNa€el,
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converges uniformly to a real analytic function ¢ € Psh(X) (see Exer-
cise 8.11). By construction ¢(z) > v for z € L, hence 1 is an exhaustion. O

(6.15) Example. The converse to Theorem 6.14 does not hold. In fact let
X = C?/TI" be the quotient of C? by the free abelian group of rank 2 generated
by the affine automorphisms

gz, w) = (2 +1,e%w),  go(z,w) = (z+1,€%w), 6y, 6, €R.

Since I" acts properly discontinuously on C?, the quotient has a structure of
a complex (non compact) 2-dimensional manifold. The function w — |w|? is
I-invariant, hence it induces a function ¢ ((z,w)~) = |w|?> on X which is in
fact a plurisubharmonic exhaustion function. Therefore X is weakly pseudo-
convex. On the other hand, any holomorphic function f € O(X) corresponds
to a I'-invariant holomorphic function f(z,w) on C2. Then z — f(z,w) is
bounded for w fixed, because f(z,w) lies in the image of the compact set
K x D(0, |w|), K = unit square in C. By Liouville’s theorem, f(z,w) does
not depend on z. Hence functions f € O(X) are in one-to-one correspondence
with holomorphic functions f(w) on C such that f(e% w) = f(w). By looking
at the Taylor expansion at the origin, we conclude that f must be a constant
if 01 ¢ Qor 01 ¢ Q (if 01,02 € Q and m is the least common denominator of
01,05, then fis a power series of the form Y apw™*). From this, it follows
easily that X is holomorphically convex if and only if 81,0, € Q.

66.C. Stein Manifolds

The class of holomorphically convex manifolds contains two types of mani-
folds of a rather different nature:

e domains of holomorphy X = 2 Cc C"*;
e compact complex manifolds.

In the first case we have a lot of holomorphic functions, in fact the functions
in O(£2) separate any pair of points of 2. On the other hand, if X is com-
pact and connected, the sets Psh(X) and O(X) consist of constant functions
merely (by the maximum principle). It is therefore desirable to introduce a
clear distinction between these two subclasses. For this purpose, (Stein 1951)
introduced the class of manifolds which are now called Stein manifolds.

(6.16) Definition. A complex manifold X is said to be a Stein manifold if

a) X is holomorphically convex;

b) O(X) locally separates points in X, i.e. every point x € X has a neigh-
borhood V' such that for any y € V ~ {z} there exists f € O(X) with

fly) # f(x).
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The second condition is automatic if X = (2 is an open subset of C".
Hence an open set {2 C C” is Stein if and only if {2 is a domain of holomorphy.

(6.17) Lemma. If a complex manifold X satisfies the axiom (6.16 b) of
local separation, there exists a smooth nonnegative strictly plurisubharmonic
function u € Psh(X).

Proof. Fix o € X. We first show that there exists a smooth nonnegative
function ug € Psh(X) which is strictly plurisubharmonic on a neighborhood
of xg. Let (z1,...,2,) be local analytic coordinates centered at xg, and if
necessary, replace z; by Az; so that the closed unit ball B = {3 |z;]? < 1}
is contained in the neighborhood V' > z¢ on which (6.16 b) holds. Then,
for every point y € 0B, there exists a holomorphic function f € O(X)
such that f(y) # f(zo). Replacing f with A(f — f(zo)), we can achieve
f(zo) =0 and |f(y)| > 1. By compactness of B, we find finitely many func-
tions fi,..., fnv € O(X) such that vo = > |f;|? satisfies vo(zp) = 0, while
vo > 1 on 0B. Now, we set

~ Jwo(z) on X \ B,
uo(2) = {Me{vo(z), (212 +1)/3} on B.

where M. are the regularized max functions defined in 5.18. Then wug is
smooth and plurisubharmonic, coincides with vy near B and with (|z|2+1)/3
on a neighborhood of xy. We can cover X by countably many neighbor-
hoods (Vj);>1, for which we have a smooth plurisubharmonic functions
u; € Psh(X) such that u; is strictly plurisubharmonic on Vj. Then select
a sequence €; > 0 converging to 0 so fast that u = ) e;u; € C°(X). The
function v is nonnegative and strictly plurisubharmonic everywhere on X.
0

(6.18) Theorem. Every Stein manifold is strongly pseudoconver.

Proof. By Th. 6.14, there is a smooth exhaustion function ¢ € Psh(X). If
u > 0 is strictly plurisubharmonic, then ¢’ = ¢ 4+ u is a strictly plurisubhar-
monic exhaustion. O

The converse problem to know whether every strongly pseudoconvex man-
ifold is actually a Stein manifold is known as the Levi problem, and was raised
by (Levi 1910) in the case of domains {2 C C". In that case, the problem has
been solved in the affirmative independently by (Oka 1953), (Norguet 1954)
and (Bremermann 1954). The general solution of the Levi problem has been
obtained by (Grauert 1958). Our proof will rely on the theory of L? estimates
for d”, which will be available only in Chapter VIII.

(6.19) Remark. It will be shown later that Stein manifolds always have
enough holomorphic functions to separate finitely many points, and one can
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Fig. I-4 Hartogs figure with excrescence

even interpolate given values of a function and its derivatives of some fixed
order at any discrete set of points. In particular, we might have replaced
condition (6.16 b) by the stronger requirement that O(X) separates any pair
of points. On the other hand, there are examples of manifolds satisfying
the local separation condition (6.16 b), but not global separation. A simple
example is obtained by attaching an excrescence inside a Hartogs figure, in
such a way that the resulting map 7= : X — D = D(0,1)? is not one-to-one
(see Figure I-4 above); then O(X) coincides with 7*O(D).

66.D. Heredity Properties

Holomorphic convexity and pseudoconvexity are preserved under quite a
number of natural constructions. The main heredity properties can be sum-
marized in the following Proposition.

(6.20) Proposition. Let C denote the class of holomorphically convex (resp.
of Stein, or weakly pseudoconvez, strongly pseudoconvex manifolds).

a) If X,Y € C, then X xY € C.
b) If X € C and S is a closed complex submanifold of X, then S € C.

c) If (Sj)i<j<n is a collection of (not necessarily closed) submanifolds of a
complex manifold X such that S = (S} is a submanifold of X, and if
S; € € for all j, then S € C.

d) If F : X — Y is a holomorphic map and S C X, S" C Y are (not
necessarily closed) submanifolds in the class €, then SN F~Y(S") is in C,
as long as it 1s a submanifold of X .

e) If X is a weakly (resp. strongly) pseudoconvex manifold and u is a smooth
plurisubharmonic function on X, then the open set 2 = u='(] — oo, | is
weakly (resp. strongly) pseudoconvex. In particular the sublevel sets
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Xe= '@b_l(] — 00, CD

of a (strictly) plurisubharmonic erhaustion function are weakly (resp.
strongly) pseudoconver.

Proof. All properties are more or less immediate to check, so we only give
the main facts.

a) For K C X, L CY compact, we have (K x L)g(XXy) = I?O(X) X I?o(y),
and if ¢, 9 are plurisubharmonic exhaustions of X, Y, then ¢(z) + ¢ (y) is a
plurisubharmonic exhaustion of X x Y.

b) For a compact set K C S, we have I?o(s) C I?O(X) NS, and if ¢ € Psh(X)
is an exhaustion, then ¢ [ S € Psh(S) is an exhaustion (since S is closed).

c) ()S; is a closed submanifold in []S; (equal to its intersection with the
diagonal of X%).

d) For a compact set K C SN F~1(S"), we have

—

Kosnr-1(s1y) € Kogs) N FHE(K)g(sn),

and if ¢, 9 are plurisubharmonic exhaustions of S, S’, then ¢ + ¢ o F' is a
plurisubharmonic exhaustion of SN F~1(S").

e) o(z) == ¥(2) + 1/(c — u(2)) is a (strictly) plurisubharmonic exhaustion
function on 2. O

§7. Pseudoconvex Open Sets in C"

§7.A. Geometric Characterizations of Pseudoconvex Open Sets

We first discuss some characterizations of pseudoconvex open sets in C". We
will need the following elementary criterion for plurisubharmonicity.

(7.1) Criterion. Let v : {2 — [—00,+00[ be an upper semicontinuous
function. Then v is plurisubharmonic if and only if for every closed disk A =
zo+D(1)n C 2 and every polynomial P € C[t] such that v(zo+tn) < Re P(t)
for |t| =1, then v(zp) < Re P(0).

Proof. The condition is necessary because t — v(zy + tn) — Re P(t) is sub-
harmonic in a neighborhood of D(1), so it satisfies the maximum principle
on D(1) by Th. 4.14. Let us prove now the sufficiency. The upper semiconti-
nuity of v implies v = lim, _, 4 o, v, on 0A where (v,) is a strictly decreasing
sequence of continuous functions on QA. As trigonometric polynomials are
dense in C(S1,R), we may assume v,(z + €'%n) = Re P,(e?), P, € C[t].
Then v(zp + tn) < Re P,(t) for |[t| = 1, and the hypothesis implies
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1 27 . 1 2 .
< PI/ = — PI/ i0 —_ v i6 .
v(z0) < Re P,(0) 27r/0 Re P, (') df o7 /. vy (20 + €Yn) d

Taking the limit when v tends to 400 shows that v satisfies the mean value
inequality (5.2). O

For any z € 2 and £ € C", we denote by
0o(z,&) =sup{r>0; z+D(r)¢ C 2}
the distance from z to d{2 in the complex direction &.
(7.2) Theorem. Let 2 C C* be an open subset. The following properties

are equivalent:

a) 2 is strongly pseudoconvex (according to Def. 6.13 b);
b) 2 is weakly pseudoconver;

c) 2 has a plurisubharmonic exhaustion function .

d) —logogn(z,§) is plurisubharmonic on 2 x C" ;

e) —logd(z,C82) is plurisubharmonic on (2.

If one of these properties hold, {2 is said to be a pseudoconver open set.
Proof. The implications a) = b) == ¢) are obvious. For the implication c)

= d), we use Criterion 7.1. Consider a disk A = (z0,&) + D(1) (, ) in
2 x C" and a polynomial P € C[t] such that

—logdo(z0 +tn, &0 + ta) < Re P(t) for |t| =1.

We have to verify that the inequality also holds when [¢| < 1. Consider the
holomorphic mapping h : C2 — C* defined by

h(t,w) = zo + tn + we PO (& + ta).
By hypothesis

W(D(1) x {0}) = pr, (@) © 2,

h(0D(1) x D(1)) C £2 (since [e™7| < dg on 9A),
and the desired conclusion is that h(D(1) x D(1)) C §2. Let J be the set of
radii 7 > 0 such that A(D(1) x D(r)) C £2. Then J is an open interval [0, R],

R > 0.If R < 1, we get a contradiction as follows. Let ¢ € Psh({2) be an
exhaustion function and

K =h(0D(1) x D(R)) CC £2, ¢ =sup1).
K

As 9oh is plurisubharmonic on a neighborhood of D(1) x D(R), the maximum
principle applied with respect to ¢ implies
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Yoh(t,w) <c on D(1)x D(R),

hence h(D(1) x D(R)) C 2, CC 2 and h(D(1) x D(R +¢€)) C {2 for some
¢ > 0, a contradiction.

d) = e). The function —logd(z,(f2) is continuous on {2 and satisfies the
mean value inequality because

—log d(z,002) = sup ( —logdp(z,¢)).
¢eB

e) = a). It is clear that
u(z) = |z|* + max{log d(z,0£2)7*, 0}

is a continuous strictly plurisubharmonic exhaustion function. Richberg’s the-
orem 5.21 implies that there exists ¢ € C°°({2) strictly plurisubharmonic such
that u <1 < w4+ 1. Then 1 is the required exhaustion function. 0

(7.3) Proposition.

a) Let 2 C C" and 2" C CP be pseudoconvex. Then (2 x 2" is pseudoconvex.
For every holomorphic map F : 2 — CP the inverse image F~1(£2') is
pseudoconver.

b) If (2a)acr is a family of pseudoconvex open subsets of C*, the interior

of the intersection 2 = (ﬂaeI Qa)o s pseudoconver.

c) If (£2)jen is a non decreasing sequence of pseudoconvex open subsets of
C", then §2 = UjeN (25 is pseudoconver.

Proof. a) Let ¢, be smooth plurisubharmonic exhaustions of 2, ’. Then
(z,w) — p(2) + ¥ (w) is an exhaustion of 2 x 2" and z — p(z) + Y (F(z))
is an exhaustion of F~1(£2).

b) We have —logd(z,0£2) = sup,¢; — log d(z,0£2,), so this function is pluri-
subharmonic.

¢) The limit —logd(z,062) = lim| ; ,,, —logd(z,(§2;) is plurisubharmonic,
hence (2 is pseudoconvex. This result cannot be generalized to strongly pseu-
doconvex manifolds: J.E. Fornaess in (Fornaess 1977) has constructed an
increasing sequence of 2-dimensional Stein (even affine algebraic) manifolds
X, whose union is not Stein; see Exercise 8.16. U

(7.4) Examples.
a) An analytic polyhedron in C* is an open subset of the form
P={zeC";|fi(»)| <1, 1<j <N}

where (fj)i<j<n is a family of analytic functions on C"*. By 7.3 a), every
analytic polyhedron is pseudoconvex.



02 Lnapter 1. Lomplex Vlllerentlial LalCulus and rrseudoconvexivy

b) Let w C C"~! be pseudoconvex and let u : w — [—o0, +00[ be an upper
semicontinuous function. Then the Hartogs domain

2 ={(z,7) € Cxw;loglz|+u(z) <0}

is pseudoconvex if and and only if u is plurisubharmonic. To see that the
plurisubharmonicity of w is necessary, observe that

u(z'") = —log 60 ((0,2),(1,0)).

Conversely, assume that u is plurisubharmonic and continuous. If ¢ is a
plurisubharmonic exhaustion of w, then

—1
P(2') + |log |21] + u(2)]

is an exhaustion of (2. This is no longer true if u is not continuous, but in
this case we may apply Property 7.3 ¢) to conclude that

2. = {(z1,7'); d(',Cw) > ¢, log |z1] + uxp.(2') <0}, 2= UQE

are pseudoconvex.

c¢) An open set 2 C C" is called a tube of base w if £2 = w+iR™ for some open
subset w C R™. Then of course —logd(z,02) = —log(z,Cw) depends only
on the real part x = Re z. By Th. 5.13, this function is plurisubharmonic if
and only if it is locally convex in . Therefore (2 if pseudoconvex if and only
if every connected component of w is convex.

d) An open set 2 C C" is called a Reinhardt domain if (e 21,..., €% 2,) is
in 2 for every z = (21,...,2,) € 2 and 601, ...,0, € R*. For such a domain,
we consider the logarithmic indicatriz

w*=2*NR" with 2 ={CeC"; (%,...,e) € N}.

It is clear that (2* is a tube of base w*. Therefore every connected component
of w* must be convex if {2 is pseudoconvex. The converse is not true: {2 =
C™ {0} is not pseudoconvex for n > 2 although w* = R" is convex. However,
the Reinhardt open set

0 = {(zl,...,zn) e (C~{0P"; (log|z1|,---,log|zn|) € w*} c

is easily seen to be pseudoconvex if w* is convex: if y is a convex exhaustion
of w*, then ¥(z) = x(log|z1],...,log|z,]) is a plurisubharmonic exhaustion
of £2°. Similarly, if w* is convex and such that r € w* = y € w* for y; < x;,
we can take x increasing in all variables and tending to +00 on dw*, hence
the set

Q= {(z1,...,20) € C"; |2j] < €% for some z € w*}

is a pseudoconvex Reinhardt open set containing 0. U
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§7.B. Kiselman’s Minimum Principle

We already know that a maximum of plurisubharmonic functions is plurisub-
harmonic. However, if v is a plurisubharmonic function on X x C", the par-
tial minimum function on X defined by u(¢) = inf,co v((, 2) need not be
plurisubharmonic. A simple counterexample in C x C is given by

v(¢,2) = |27 + 2Re(2C) = [+ ¢]* = ¢, u(¢) = —I¢I%

It follows that the image F'(£2) of a pseudoconvex open set {2 by a holomor-
phic map F' need not be pseudoconvex. In fact, if

2={(t,¢,z) € C; log|t| + v(¢, z) < 0}

and if 2 C C? is the image of 2 by the projection map (t,¢, z) — (¢,¢),
then 2" = {(t,¢) € C%; log|t| +u(¢) < 0} is not pseudoconvex. However, the
minimum property holds true when v((, z) depends only on Re z :

(7.5) Theorem (Kiselman 1978). Let 2 C C” x C" be a pseudoconvex open
set such that each slice

2 ={zeC; ()R}, (e,

is a conver tube we + iR", we C R™. For every plurisubharmonic function
v((, 2) on 2 that does not depend on Im z, the function

u(C) = inf v((,2)

ZE.Qg

is plurisubharmonic or locally = —oo on 2" = pre. (£2).

Proof. The hypothesis implies that v((, z) is convex in z = Re z. In addition,
we first assume that v is smooth, plurisubharmonic in (¢, z), strictly convex in
x and lim,_, {ooyuow, V(C, ) = +oc for every ¢ € 2'. Then z — v((, 7) has a
unique minimum point « = ¢((), solution of the equations dv/0z;(z,{) =0
As the matrix (0%v/dz;0xy,) is positive definite, the implicit function theorem
shows that ¢ is smooth. Now, if C 5 w +— (y + wa, a € C*, |lw| < 1is a
complex disk A contained in {2, there exists a holomorphic function f on the
unit disk, smooth up to the boundary, whose real part solves the Dirichlet
problem

Re f(e”) = g(¢o + ¢”a).
Since v({p +wa, f(w)) is subharmonic in w, we get the mean value inequality

1 27

v(Co, f( @+Jaﬂﬁ»9_3— v(¢,g(¢))do.

=2 Jy
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The last equality holds because Re f = g on 0A and v((,2) = v((,Rez)
by hypothesis. As u(p) < v(Co, f(0)) and u(¢) = v(¢,g()), we see that u
satisfies the mean value inequality, thus u is plurisubharmonic.

Now, this result can be extended to arbitrary functions v as follows: let
(¢, z) > 0 be a continuous plurisubharmonic function on (2 which is inde-
pendent of Im z and is an exhaustion of 2N (C? x R"), e.g.

(¢, ) = max{[¢|* + | Rez|*, —logdo(¢, 2)}-

There is slowly increasing sequence C; — +o0o such that each function
Y = (Cj—tb*pl/j)_l is an “exhaustion” of a pseudoconvex open set 2; CC {2
whose slices are convex tubes and such that d(£2;,062) > 2/j. Then

03(C,2) = v p1s3(C,2) + §| Re|? +1;(C, 2)

is a decreasing sequence of plurisubharmonic functions on {2; satisfying our
previous conditions. As v = limv;, we see that u = limw; is plurisubhar-
monic. 0

(7.6) Corollary. Let 2 C CP x C" be a pseudoconver open set such that all
slices £2¢, ¢ € CP, are convex tubes in C*. Then the projection £2' of £2 on
CP s pseudoconver.

Proof. Take v € Psh({2) equal to the function ¢ defined in the proof of
Th. 7.5. Then w is a plurisubharmonic exhaustion of (2. d

§7.C. Levi Form of the Boundary

For an arbitrary domain in C"*, we first show that pseudoconvexity is a local
property of the boundary.

(7.7) Theorem. Let 2 C C* be an open subset such that every point zo € 012
has a neighborhood V' such that 2NV 1is pseudoconvex. Then (2 is pseudo-
convex.

Proof. As d(z,0£2) coincides with d(z,0(£2 N V)) in a neighborhood of zo,
we see that there exists a neighborhood U of 942 such that —logd(z,[£2) is
plurisubharmonic on 2NU. Choose a convex increasing function x such that

x(r) > sup —logd(z,082), Vr>0.
(2~U)NB(0,r)

Then the function

(z) = max {X(|z|), —log d(z, EQ)}
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coincides with x(|z|) in a neighborhood of £2\. U. Therefore 1) € Psh({2), and
1 is clearly an exhaustion. ([l

Now, we give a geometric characterization of the pseudoconvexity prop-
erty when 92 is of class C2. Let p € C%(02) be a defining function of (2, i.e.
a function such that

(79) p<0 on 2, p=0 and dp#0 on 012

The holomorphic tangent space to 0f2 is by definition the largest complex
subspace which is contained in the tangent space Ty to the boundary:

(79) hTag =Ton NJTs0.

It is easy to see that "Tpy, , is the complex hyperplane of vectors ¢ € C* such
that

0
dp(z) €= > 3—[)_53':0-

A
1<j<n Y

The Levi form on "Tyg, is defined at every point z € 92 by

10) Lao., o6 .
(7 0) 012, (5 |V)0 |Z 8218_ £]£k7 56 082,

The Levi form does not depend on the particular choice of p, as can be seen
from the following intrinsic computation of Ly, (we still denote by Lag the
associated sesquilinear form).

(7.11) Lemma. Let &, be C* vector fields on 082 with values in "Tpg. Then

<[577I]7 JV> = 4ImL89(€777)

where v is the outward normal unit vector to 02, [ , | the Lie bracket of
vector fields and ( , ) the hermitian inner product.

Proof. Extend first £, n as vector fields in a neighborhood of 02 and set

1
5—2% 5 (6 =176, ana_ = 5(n+1Jn).

As &, J&,n, Jn are tangent to 0f2, we get on 0f2 :
2

3 o°p . _ 3nk 30 _ 0 0p
_ /. //. //. /. _ 2 . J .
1<jk<n J

Since [£, 7] is also tangent to 0f2, we have Re([¢,n],v) = 0, hence (J[&,n],v)
is real and
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(€01, 79) = ~(Tien.0) = g (T1Eoh) = = R (TIE L)

because J[¢',n'] = i[¢',n'] and its conjugate J[£", 0] are tangent to 0£2. We
find now

Sy 2 0 0
102 0z, 8zk 0z;’

Z 377k dp _ 0§ Op _
o _ ) 9 _ 2 : )

(1€, ], Jv) Imzaz 57 £, = 4Tm Lag (€, 7). O

(7.12) Theorem. An open subset 2 C C* with C? boundary is pseudoconvex
if and only if the Levi form Lyg is semipositive at every point of 052.

Proof. Set §(z) = d(z,002), 2 € 2. Then p = —§ is C? near 942 and satisfies
(7.9). If £2 is pseudoconvex, the plurisubharmonicity of — log(—p) means that
for all z € {2 near 02 and all £ € C" one has

3 (L Pp. +iﬁap)gjgk>0

W en |p| 02;0Zy, 2 0z,

Hence Y (0%p/02;0%1)&;&, > 0 if Y (0p/027)€; = 0, and an easy argument
shows that this is also true at the limit on 0f2.

Conversely, if {2 is not pseudoconvex, Th. 7.2 and 7.7 show that —logd is
not plurisubharmonic in any neighborhood of 0f2. Hence there exists £ € C™*
such that

2

9,
c= (% 10g5(z+tf)) 0 0

for some z in the neighborhood of 92 where § € C2. By Taylor’s formula,
we have

log 6(z + t€) = log 6(2) + Re(at + bt?) + c|t|* + o(|t]?)
with a,b € C. Now, choose zy € 0f2 such that 0(z) = |z — z¢| and set
h(t) = z 4+ t€ + e (20— 2),  teC.
Then we get h(0) = 2o and
S(h(t)) > 8(z + t€) — 8(z) e+t
> 6(z) [etH] (A2 1) > 5(2) clt]?/3

when |¢| is sufficiently small. Since §(h(0)) = d(z9) = 0, we obtain at t =0 :
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o) 00 /
57 0((1)) = > a—zj(z()) h;(0) =0,

0? 025 —
h,/ 0)h7.(0 0
o 52,07, 70 15 (O, (0) > 0,
hence h/(O) € hTBQ,zo and Lag,ZO (h/(O)) < 0. O

(7.13) Definition. The boundary 02 is said to be weakly (resp. strongly)
pseudoconver if Lag is semipositive (resp. positive definite) on 0f2. The
boundary is said to be Levi flat if Lo = 0.

(7.14) Remark. Lemma 7.11 shows that 02 is Levi flat if and only if the
subbundle "Tyo C Tho is integrable (i.e. stable under the Lie bracket). As-
sume that 042 is of class C¥, k > 2. Then " Ty, is of class C¥~1. By Frobenius’
theorem, the integrability condition implies that *Ty, is the tangent bundle
to a C* foliation of 92 whose leaves have real dimension 2n — 2. But the
leaves themselves must be complex analytic since "Typ, is a complex vector
space (cf. Lemma 7.15 below). Therefore 042 is Levi flat if and only if it is
foliated by complex analytic hypersurfaces.

(7.15) Lemma. Let Y be a Cl-submanifold of a complex analytic manifold
X. If the tangent space Ty, is a complex subspace of Tx , at every point
x €Y, then'Y is complex analytic.

Proof. Let zg € Y. Select holomorphic coordinates (z1, ..., 2,) on X centered
at zo such that Ty 4, is spanned by 0/0z1,...,0/0%,. Then there exists a
neighborhood U = U’ x U" of x( such that Y N U is a graph

1

"=hn(z"), Z=(2,..-.,2) €U, 2" =(2ps1,- -1 7n)

with h € C1(U’) and dh(0) = 0. The differential of h at 2’ is the composite
of the projection of C” x {0} on Ty, (. p(,)) along {0} x C*7P and of the
second projection C* — C"~P. Hence dh(z') is C-linear at every point and h
is holomorphic. O

§8. Exercises

8.1. Let £2 C C* be an open set such that
ze 2, XeC, N<1= Aze .

Show that (2 is a union of polydisks of center 0 (with arbitrary linear changes of
coordinates) and infer that the space of polynomials Clz1, ..., 2,] is dense in O(£2)
for the topology of uniform convergence on compact subsets and in O(£2) N C°(£2)



0o Lnapter 1. Lomplex Vlllerentlial LalCulus and rrseudoconvexivy

for the topology of uniform convergence on 2.
Hint: consider the Taylor expansion of a function f € O(£2) at the origin, writing

it as a series of homogeneous polynomials. To deal with the case of {2, first apply
a dilation to f.

8.2. Let B C C" be the unit euclidean ball, S = dB and f € O(B) N C°(B). Our
goal is to check the following Cauchy formula:

1 f(2)
w) = do(z).
)= s /s (1= (w,z))" %)
a) By means of a unitary transformation and Exercise 8.1, reduce the question to
the case when w = (w1,0,...,0) and f(z) is a monomial 2.

b) Show that the integral [, 227 dA(z) vanishes unless a = (k,0,...,0). Compute
the value of the remaining integral by the Fubini theorem, as well as the integrals
[ 2°%1 do ().

c) Prove the formula by a suitable power series expansion.

8.3. A current 7' € D;,(M) is said to be normal if both T' and dT" are of order zero,
i.e. have measure coefficients.

a) IfT is normal and has support contained in a C* submanifold Y C M, show that

there exists a normal current ® on Y such that 7" = 5,0, where j : Y — M is
the inclusion.
Hint: if z1 = ... = 4 = 0 are equations of Y in a coordinate system
(z1,...,2n), observe that ;T = z;dT = 0 for 1 < j < ¢ and infer that
dzi A ... A dxg can be factorized in all terms of 7.

b) What happens if p > dimY ?

c) Are a) and b) valid when the normality assumption is dropped ?

8.4. Let T = 3, _,,, T;dz; be a closed current of bidegree (0,1) with compact

support in C" such that d"T = 0.

a) Show that the partial convolution S = (1/mz1) *1 71 is a solution of the
equation d’S =T.

b) Let K = SuppT. If n > 2, show that S has support in the compact set K equal
to the union of K and of all bounded components of C"* \ K.
Hint: observe that S is holomorphic on C* ~ K and that S vanishes for
|z2] + ... + |zn]| large.

8.5. Alternative proof of the Dolbeault-Grothendieck lemma. Let v = ZllequdZ],

g > 1, be a smooth form of bidegree (0, ¢) on a polydisk 2 = D(0,R) C C", such
that d"v = 0, and let w = D(0,r) CC w. Let k be the smallest integer such that the

monomials dz; appearing in v only involve dzi, ..., dZx. Prove by induction on &
that the equation d"’u = v can be solved on w.
Hint: set v = f A dZx + g where f, g only involve dZzi, ..., dZx—1. Then consider
v — d"'F where
1
F = Frdz F = *k | —
X s B = W ().
=q—

where x; denotes the partial convolution with respect to zy, 1¥(zx) is a cut-off
function equal to 1 on D(0,r, +¢) and f = Z|J|:q—1 fsdz;.
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8.6. Construct locally bounded non continuous subharmonic functions on C.

Hint: consider e where u(z) = 3,5, 27 log|z — 1/j].

8.7. Let w be an open subset of R*, n > 2, and u a subharmonic function which

is not locally —oc.

a) For every open set w CC (2, show that there is a positive measure p with support
in w and a harmonic function A on w such that w = N xu + h on w.

b) Use this representation to prove the following properties: w € L{ _ for all p <
n/(n —2) and du/dx; € LY for allp < n/(n —1).

8.8. Show that a connected open set 2 C R" is convex if and ounly if {2 has a

locally convex exhaustion function ¢.

Hint: to show the sufficiency, take a path v : [0,1] — {2 joining two arbitrary points

a,b € 2 and consider the restriction of ¢ to [a,y(to)] N {2 where o is the supremum

of all ¢ such that [a,y(u)] C 2 for u € [0,1].

8.9. Let r1,72 € |1, 400[. Consider the compact set

K ={|z1] <71, |22 <1} U{[z] <1, |22] <2} C C.
Show that the holomorphic hull of K in C? is

K ={lm] <ri,lzaf <o, o197 o]/ 1E72 < e}

Hint: to show that K is contained in this set, consider all holomorphic monomials
f(z1,22) = 27" 232, To show the converse inclusion, apply the maximum principle
to the domain |z1| < 71, |22] < r2 on suitably chosen Riemann surfaces 27! 252 = A.

8.10. Compute the rank of the Levi form of the ellipsoid |z1]* + |z3|* + |23]® < 1
at every point of the boundary.

8.11. Let X be a complex manifold and let u(z) = 3=,y |£51?, fi € O(X), be a
series converging uniformly on every compact subset of X. Prove that the limit is
real analytic and that the series remains uniformly convergent by taking derivatives
term by term.

Hint: since the problem is local, take X = B(0,r), a ball in C". Let g;(2) = g;(Z) be
the conjugate function of f; and let U(z,w) = >_;x fi(2)gj(w) on X x X. Using
the Cauchy-Schwarz inequality, show that this series of holomorphic functions is
uniformly convergent on every compact subset of X x X.

8.12. Let 2 C C" be a bounded open set with C? boundary.

a) Let a € 0f2 be a given point. Let e, be the outward normal vector to
To02,4, (€1,...,€n—1) an orthonormal basis of hTa(&Q) in which the Levi form
is diagonal and (z1,...,2zn) the associated linear coordinates centered at a.
Show that there is a neighborhood V of a such that 02 NV is the graph
Rez, = —p(21,...,2n—1,Im 2,) of a function ¢ such that ¢(z) = O(|z|*) and
the matrix 0%p/0z;0%x(0), 1 < j,k < n — 1 is diagonal.

b) Show that there exist local analytic coordinates w1 = z1,...,Wpn—1 = 2Zn—_1,
Wn = Zn + Y CjrZjZzr on a neighborhood V' of @ = 0 such that

2NV =V ' n{Rew, + Z Ajlwi® +o(lwl*) <0}, A eR
1<j<n
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and that A, can be assigned to any given value by a suitable choice of the
coordinates.

Hint: Consider the Taylor expansion of order 2 of the defining function p(z) =
(Rezn + ¢(2))(1 +Re ) cjz;) where ¢; € C are chosen in a suitable way.

c) Prove that 0(2 is strongly pseudoconvex at a if and only if there is a neighbor-
hood U of a and a biholomorphism @ of U onto some open set of C* such that
&(2NU) is strongly convex.

d) Assume that the Levi form of 042 is not semipositive. Show that all holomorphic
functions f € O(£2) extend to some (fixed) neighborhood of a.
Hint: assume for example A1 < 0. For ¢ > 0 small, show that (2 contains the
Hartogs figure

{e/2 < |w1] < €} x {Jw;| < ®h<jcn X {Jwn] < ¥/ Rewn, < €°} U
{Jw1| < e} x {Jw;| < 62}1<j<n X {|wn| < 53/2, Rew, < —52}.
8.13. Let 2 C C" be a bounded open set with C? boundary and p € C?(£2,R)

such that p < 0 on £, p =0 and dp # 0 on 952. Let f € C*(042,C) be a function
satisfying the tangential Cauchy-Riemann equations

€ f=0, VEE€ Ton, € = (£+iJ0).

a) Let fo be a C* extension of f to £2. Show that d” fo A d”’p =0 on 92 and infer
that v = llpd” fo is a d”-closed current on C™.

b) Show that the solution u of d”"u = v provided by Cor. 3.27 is continuous and
that f admits an extension f € O(£2) N C°(£2) if 92 is connected.

8.14. Let 2 C C" be a bounded pseudoconvex domain with C? boundary and let
§(z) = d(z,0£2) be the euclidean distance to the boundary.

a) Use the plurisubharmonicity of —logd to prove the following fact: for every
€ > 0 there is a constant C. > 0 such that

HO.() | |58
56 TP

for £ € C" and z near 0.
b) Set (z) = —logd(z) + K|z|?. Show that for K large and o small the function

p(x) = —exp (- () = — (71 5(2))"

is plurisubharmonic.

+ +CE? >0

c) Prove the existence of a plurisubharmonic exhaustion function w : 2 — [—1,0]
of class C? such that |u(z)| has the same order of magnitude as §(z)® when z
tends to 0f2.

Hint: consult (Diederich-Fornaess 1976).
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8.15. Let 2 = w + iR™ be a connected tube in C* of base w.

a) Assume first that n = 2. Let T' C R? be the triangle 1 > 0, z2 > 0, z1+z2 < 1,
and assume that the two edges [0,1] x {0} and {0} x [0,1] are contained in w.
Show t2hat every holomorphic function f € O(£2) extends to a neighborhood of
T + iR”.

Hint: let m : C2 — R? be the projection on the real part and M. the intersec-
tion of 77" ((1 4 €)T') with the Riemann surface z1 + 22 — $(27 +23) = 1 (a non
degenerate affine conic). Show that M. is compact and that

m(OM:) C ([0,1+¢] x {0}) U ({0} x [0,1 +¢]) Cw,

©([0,1]- M) DT
for e small. Use the Cauchy formula along OM. (in some parametrization of the
conic) to obtain an extension of f to [0,1] - M. +iR".

b) In general, show that every f € O(£2) extends to the convex hull 2.
Hint: given a,b € w, consider a polygonal line joining a and b and apply a)
inductively to obtain an extension along [a,b] + iR".

8.16. For each integer v > 1, consider the algebraic variety

X, ={zweCivt=p} pnE= ] -1k,

1<k<v

and the map 7, : X, = X, 41 such that

Ju(zw,t) = (za w, t(z‘ ui 1))

a) Show that X, is a Stein manifold, and that j, is an embedding of X, onto an
open subset of X, 1.

b) Define X = lim(X,,j,), and let 7, : X, — C* be the projection to the first two
coordinates. Since m,4+1 0 j, = 7., there exists a holomorphic map = : X — (Cz,
7 = lim 7,. Show that

C \r(X) = {(z,O) €eC®;2#1/v, WweEN, v> 1},

and especially, that (0,0) ¢ 7(X).
c) Consider the compact set

K= W_l({(z,w) cC; 2| <1, |w|= 1}).

By looking at points of the forms (1/v,w,0), |w| = 1, show that 7~*(1/v,1/v) €
Ko (x)- Conclude from this that X is not holomorphically convex (this example
is due to Fornaess 1977).

8.17. Let X be a complex manifold, and let 7 : X > Xbea holomorphic unram-

ified covering of X (X and X are assumed to be connected).

a) Let g be a complete riemannian metric on X, and let d be the geodesic distance
on X associated to § = m*g (see VIII-2.3 for definitions). Show that g is complete

and that do(z) := d(x,z0) is a continuous exhaustion function on X, for any
given point zo € X.
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Let (Ux) be a locally finite covering of X by open balls contained in coordinate
open sets, such that all intersections U, N Uy are diffeomorphic to convex open
sets (see Lemma IV-6.9). Let 6, be a partition of unity subordinate to the
covering (Uy), and let 0., be the convolution of dy with a regularizing kernel
pe, on each piece of 77" (Uy) which is mapped biholomorphically onto Us.
Finally, set 0 = > (0o o m)d.,. Show that if (e4) is a collection of sufficiently

small positive numbers, then ¢ is a smooth exhaustion function on X.
Using the fact that ¢ is 1-Lipschitz with respect to d, show that derivatives

dIY16(x)/0z" of a given order with respect to coordinates in U, are uniformly
bounded in all components of 7~ *(U,), at least when x lies in the compact
subset Supp 0,. Conclude from this that there exists a positive hermitian form
with continuous coefficients on X such that Hé > —7*y on X.

If X is strongly pseudoconvex, show that X is also strongly pseudoconvex.
Hint: let ¢ be a smooth strictly plurisubharmonic exhaustion function on X.
Show that there exists a smooth convex increasing function x : R — R such
that 6 4+ x o %) is strictly plurisubharmonic.



Chapter II.
Coherent Sheaves and Analytic Spaces

The chapter starts with rather general and abstract concepts concerning sheaves
and ringed spaces. Introduced in the decade 1950-1960 by Leray, Cartan, Serre and
Grothendieck, sheaves and ringed spaces have since been recognized as the adequate
tools to handle algebraic varieties and analytic spaces in a unified framework. We
then concentrate ourselves on the theory of complex analytic functions. The sec-
ond section is devoted to a proof of the Weierstrass preparation theorem, which
is nothing but a division algorithm for holomorphic functions. It is used to derive
algebraic properties of the ring O,, of germs of holomorphic functions in C". Coher-
ent analytic sheaves are then introduced and the fundamental coherence theorem
of Oka is proved. Basic properties of analytic sets are investigated in detail: local
parametrization theorem, Hilbert’s Nullstellensatz, coherence of the ideal sheaf of
an analytic set, analyticity of the singular set. The formalism of complex spaces is
then developed and gives a natural setting for the proof of more global properties
(decomposition into global irreducible components, maximum principle). After a
few definitions concerning cycles, divisors and meromorphic functions, we investi-
gate the important notion of normal space and establish the Oka normalization
theorem. Next, the Remmert-Stein extension theorem and the Remmert proper
mapping theorem on images of analytic sets are proved by means of semi-continuity
results on the rank of morphisms. As an application, we give a proof of Chow’s the-
orem asserting that every analytic subset of P™ is algebraic. Finally, the concept of
analytic scheme with nilpotent elements is introduced as a generalization of com-
plex spaces, and we discuss the concepts of bimeromorphic maps, modifications and
blowing-up.

§1. Presheaves and Sheaves

§1.A. Main Definitions

Sheaves have become a very important tool in analytic or algebraic geometry
as well as in algebraic topology. They are especially useful when one wants to
relate global properties of an object to its local properties (the latter being
usually easier to establish). We first introduce the axioms of presheaves and
sheaves in full generality and give some basic examples.

(1.1) Definition. Let X be a topological space. A presheaf A on X consists
of the following data:
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a) a collection of non empty sets A(U) associated with every open setU C X,

b) a collection of maps pyy : A(V) — A(U) defined whenever U C V and
satisfying the transitivity property

c) puvopvw =puw Jfor UCV CW, puu =Idy  for every U.
The set A(U) is called the set of sections of the presheaf A over U.

Most often, the presheaf A is supposed to carry an additional algebraic
structure. For instance:

(1.2) Definition. A presheaf A is said to be a presheaf of abelian groups
(resp. rings, R-modules, algebras) if all sets A(U) are abelian groups (resp.
rings, R-modules, algebras) and if the maps pyyv are morphisms of these
algebraic structures. In this case, we always assume that A(0) = {0}.

(1.3) Example. If we assign to each open set U C X the set C(U) of all
real valued continuous functions on U and let py v be the obvious restriction
morphism C(V) — C(U), then C is a presheaf of rings on X. Similarly if X
is a differentiable (resp. complex analytic) manifold, there are well defined
presheaves of rings C* of functions of class C* (resp. O) of holomorphic func-
tions) on X. Because of these examples, the maps py v in Def. 1.1 are often
viewed intuitively as “restriction homomorphisms”, although the sets A(U)
are not necessarily sets of functions defined over U. For the simplicity of no-
tation we often just write py v (f) = fiv whenever f € A(V), V D U. O

For the above presheaves C, C* O, the properties of functions under con-
sideration are purely local. As a consequence, these presheaves satisfy the
following additional gluing axioms, where (U,) and U = |JU, are arbitrary
open subsets of X :

(1.4") If F, € A(Uy) are such that py, v, v, (Fa) = pu.nus,us(Fp)
for all o, 3, there exists F' € A(U) such that py, v(F) = Fy;

(1.4") If F,G e A(U) and py, v(F) = pv, v(G) for all a, then F =G ;

in other words, local sections over the sets U, can be glued together if they
coincide in the intersections and the resulting section on U is uniquely defined.
Not all presheaves satisfy (1.4") and (1.4"):

(1.5) Example. Let E be an arbitrary set with a distinguished element 0
(e.g. an abelian group, a R-module, ...). The constant presheaf Ex on X
is defined to be Ex(U) = E for all ) # U C X and Ex(0) = {0}, with
restriction maps pyy = Idg if 0 # U C V and pyy = 0 if U = 0. Then
axiom (1.4") is not satisfied if U is the union of two disjoint open sets Uy, Us
and E contains a non zero element.
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(1.6) Definition. A presheaf A is said to be a sheaf if it satisfies the gluing
azioms (1.4") and (1.4").

If A, B are presheaves of abelian groups (or of some other algebraic struc-
ture) on the same space X, a presheaf morphism ¢ : A — B is a collection of
morphisms ¢ : A(U) — B(U) commuting with the restriction morphisms,
i.e. such that for each pair U C V there is a commutative diagram

AWV) &Y% v
Pg,vi LO{JL,V
AU 2% B(U).

We say that A is a subpresheaf of B in the case where py : A(U) C B(U)
is the inclusion morphism; the commutation property then means that
ptv(A(V)) CAU) for all U, V, and that p{t, coincides with p&, on A(V).
IfAisa subpresheaf of a presheaf B of abelian groups, there is a pl,resheaf quo-
tient € = B/A defined by C(U) = B(U)/A(U). In a similar way, one defines
the presheaf kernel (resp. presheaf image, presheaf cokernel) of a presheaf
morphism ¢ : A — B to be the presheaves

U — Ker ¢y, U— Imoey, U — Coker ¢y

The direct sum A @ B of presheaves of abelian groups A, B is the presheaf
Uw— AU) ® B(U), the tensor product A ® B of presheaves of R-modules is
U— A(U)®gr B(U), etc ...

(1.7) Remark. The reader should take care of the fact that the presheaf
quotient of a sheaf by a subsheaf is not necessarily a sheaf. To give a specific
example, let X = S! be the unit circle in R2, let € be the sheaf of continuous
complex valued functions and Z the subsheaf of integral valued continuous
functions (i.e. locally constant functions to Z). The exponential map

@ = exp(2mie) : € — C*

is a morphism from C to the sheaf C* of invertible continuous functions, and
the kernel of ¢ is precisely Z. However ¢ is surjective for all U # X but
maps C(X) onto the multiplicative subgroup of continuous functions of €*(X)
of degree 0. Therefore the quotient presheaf ©/Z is not isomorphic with C*,
although their groups of sections are the same for all U # X. Since C* is a
sheaf, we see that €/Z does not satisfy property (1.4"). O

In order to overcome the difficulty appearing in Example 1.7, it is neces-
sary to introduce a suitable process by which we can produce a sheaf from a
presheaf. For this, it is convenient to introduce a slightly modified viewpoint
for sheaves.
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(1.8) Definition. If A is a presheaf, we define the set ;lm of germs of A at
a point © € X to be the abstract inductive limit

.Aq; = 11_1’I1> (‘A(U),[)U,V).
Uszx

More explicitely, A, is the set of equivalence classes of elements in the
disjoint union [[;5, A(U) taken over all open neighborhoods U of x, with
two elements Fy € A(Uy), Fo € A(Us) being equivalent, Fy ~ F5, if and
only if there is a neighborhood V. C Uy, Uy such that Fiyv = Fyv, t.e.,
pvu, (F1) = pvu, (F2). The germ of an element F € A(U) at a point x € U
will be denoted by F,.

Let A be an arbitrary presheaf. The disjoint union A= .ex le can be
equipped with a natural topology as follows: for every F' € A(U), we set

QRU:{Fm;JSEU}

and choose the 2r 7 to be a basis of the topology of ;l; note that this family
is stable by intersection: 2 N 2¢ v = 2pw where W is the (open) set of
points z € UNV at which Fy, = G, and H = pw,u(F). The obvious projection
map 7 : A — X which sends A, to {z} is then a local homeomorphism (it is
actually a homeomorphism from (2p onto U). This leads in a natural way
to the following definition:

(1.9) Definition. Let X and § be topological spaces (not necessarily Haus-
dorff), and let m : § — X be a mapping such that

a) m maps $ onto X ;

b) 7 is a local homeomorphism, that is, every point in 8 has an open neigh-
borhood which is mapped homeomorphically by ™ onto an open subset of X .

Then S s called a sheaf-space on X and w is called the projection of & on X.
If v € X, then 8, = 7~ 1(z) is called the stalk of § at x.

If Y is a subset of X, we denote by I'(Y,8) the set of sections of § on
Y, i.e. the set of continuous functions F' : Y — 8 such that mo F' = Idy. It
is clear that the presheaf defined by the collection of sets 8'(U) := I'(U, 8)
for all open sets U C X together with the restriction maps py,y satisfies
axioms (1.4") and (1.4”), hence § is a sheaf. The set of germs of &' at x
is in one-to-one correspondence with the stalk 8§, = 7~1(x), thanks to the
local homeomorphism assumption 1.9 b). This shows that one can associate
in a natural way a sheaf 8’ to every sheaf-space 8, and that the sheaf-space
(8’)~ can be considered to be identical to the original sheaf-space S. Since
the assignment 8§ — 8’ from sheaf-spaces to sheaves is an equivalence of
categories, we will usually omit the prime sign in the notation of 8’ and thus
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use the same symbols for a sheaf-space and its associated sheaf of sections;
in a corresponding way, we write I'(U, 8) = 8§(U) when U is an open set.

_ Conversely, given a presheaf A on X, we have an associated sheaf-space
A and an obvious presheaf morphism

(1.10) A(U) — A'(U)=T(U,A), F+——F=UD>3uxz— F,).

This morphism is clearly injective if and only if A satisfies axiom (1.4”), and
it is not difficult to see that (1.4") and (1.4”) together imply surjectivity.
Therefore A — A’ is an isomorphism if and only if A is a sheaf. According
to the equivalence of categories between sheaves and sheaf-spaces mentioned
above, we will use from now on the same symbol A for the sheaf- space and its
associated sheaf A’ one says that Aisthe sheaf associated with the presheaf A.
If A itself is a sheaf we will again identify A and A, but we will of course
keep the notational difference for a presheaf A which is not a sheaf.

(1.11) Example. The sheaf associated to the constant presheaf of stalk E
over X is the sheaf of locally constant functions X — FE. This sheaf will
be denoted merely by Ex or E if there is no risk of confusion with the
corresponding presheaf. In Example 1.7, we have Z = Zx and the sheaf
(C/Zx)~ associated with the quotient presheaf €/Zx is isomorphic to C* via
the exponential map. O

In the sequel, we usually work in the category of sheaves rather than in the
category of presheaves themselves. For instance, the quotient B/A of a sheaf
B by a subsheaf A generally refers to the sheaf associated with the quotient
presheaf: its stalks are equal to B, /A, but a section G of B/A over an open
set U need not necessarily come from a global section of B(U) ; what can be
only said is that there is a covering (U,) of U and local sections F,, € B(Uy)
representing Gy, such that (Fg—Fy)v.nu, belongs to A(UyNUg). A sheaf
morphism ¢ : A — B is said to be injective (resp. surjective) if the germ
morphism ¢, : A, — B, is injective (resp. surjective) for every x € X. Let
us note again that a surjective sheaf morphism ¢ does not necessarily give
rise to surjective morphisms ¢y : A(U) — B(U).

§1.B. Direct and Inverse Images of Sheaves

Let X, Y be topological spaces and let f : X — Y be a continuous map. If
A is a presheaf on X, the direct image f,A is the presheaf on Y defined by

(1.12) £ AU) = A(f7HU))

for all open sets U C Y. When A is a sheaf, it is clear that f,.A also satisfies
axioms (1.4") and (1.4"), thus f,A is a sheaf. Its stalks are given by

(1'13) (f*-A)y = h_nl> ‘A(f_l(v))

Voy
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where V' runs over all open neighborhoods of y € Y.
Now, let. B be a sheaf on Y, viewed as a sheaf-space with projection map
7 : B — Y. We define the inverse image f~'B by

(1.14) f'B=Bxy X ={(s,2) € Bx X; n(s) = f(z)}

with the topology induced by the product topology on B x X. It is then easy
to see that the projection 7’ = pr, : f~1B — X is a local homeomorphism,
therefore f~1B is a sheaf on X. By construction, the stalks of f~1B are

(1.15) (f7'B)s = By,

and the sections o € f~!B(U) can be considered as continuous mappings
s: U — B such that m oo = f. In particular, any section s € B(V) on an
open set V' C Y has a pull-back

(1.16) f*s=sof € [T B(f~H(V)).
There are always natural sheaf morphisms
(1.17) f'fA— A, B— f B

defined as follows. A germ in (f~'fuA)e = (feA) () is defined by a local
section s € (f,. A)(V) = A(f~1(V)) for some neighborhood V' of f(z); this
section can be mapped to the germ s, € A,. In the opposite direction, the
pull-back f*s of a section s € B(V) can be seen by (1.16) as a section of
ff7YB(V). Tt is not difficult to see that these natural morphisms are not
isomorphisms in general. For instance, if f is a finite covering map with
q sheets and if we take A = Fx, B = Ey to be constant sheaves, then
f«Ex ~ FEl and f~'Ey = Ex, thus f~'f,Ex ~ E% and f,f~'Ey ~ E}.

§1.C. Ringed Spaces

Many natural geometric structures considered in analytic or algebraic geome-
try can be described in a convenient way as topological spaces equipped with
a suitable “structure sheaf” which, most often, is a sheaf of commutative
rings. For instance, a lot of properties of C* differentiable (resp. real ana-
lytic, complex analytic) manifolds can be described in terms of their sheaf of
rings C% of differentiable functions (resp. €% of real analytic functions, Ox of
holomorphic functions). We first recall a few standard definitions concerning
rings, referring to textbooks on algebra for more details (see e.g. Lang 1965).

(1.18) Some definitions and conventions about rings. All our rings R
are supposed implicitly to have a unit element 1g (if R = {0}, we agree that
1g =0g), and a ring morphism R — R’ is supposed to map 1 to 1g/. In
the subsequent definitions, we assume that all rings under consideration are
commutative.
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a) An ideal I C R is said to be prime if xy € I impliesx € I ory € 1, i.e.,
if the quotient ring R/I is entire.

b) An ideal I C R is said to be maximal if I # R and there are no ideals J
such that I C J C R (equivalently, if the quotient ring R/I is a field).

¢) The ring R is said to be a local ring if R has a unique mazimal ideal m
(equivalently, if R has an ideal m such that all elements of R ~ m are
invertible). Its residual field is defined to be the quotient field R/m.

d) The ring R is said to be Noetherian if every ideal I C R is finitely gene-
rated (equivalently, if every increasing sequence of ideals Iy C Iy C ...
is stationary).

e) The radical VT of an ideal I is the set of all elements © € R such that
some power ™, m € N*, lies in in I. Then /T is again an ideal of R.

f) The nilradical N(R) = /{0} is the ideal of nilpotent elements of R. The
ring R is said to be reduced if N(R) = {0}. Otherwise, its reduction is
defined to be the reduced ring R/N(R).

We now introduce the general notion of a ringed space.

(1.19) Definition. A ringed space is a pair (X,Rx) consisting of a topolo-
gical space X and of a sheaf of rings Rx on X, called the structure sheaf.
A morphism

F . (X, fRX) — (Y, iRy)
of ringed spaces is a pair (f, F*) where f : X =Y is a continuous map and

F* o f_lfRy—>fo, F* . fRyyf(w)—)fRX,m

T

a homomorphism of sheaves of rings on X, called the comorphism of F'.

IfF:(X,Rx) = (Y,Ry) and G : (Y,Ry) — (Z,Rz) are morphisms of
ringed spaces, the composite G o F' is the pair consisting of the map go f :
X — Z and of the comorphism (G o F)* = F* o f~1G*:

(20) FrofiGr [ g 5wy £ Ry,
F; 9] G’}(m) . fRZ,gof(:z;) EE— fRy,f(m) — fRwa.

We say of course that F'is an isomorphism of ringed spaces if there exists G
such that Go FF =1Idx and F o G = Idy.

If (X, Rx) is a ringed space, the nilradical of Rx defines an ideal subsheaf
Nx of Rx, and the identity map Idx : X — X together with the ring
homomorphism Rx — Rx/Nx defines a ringed space morphism

(1.21) (X,fRX/N)() — (X,fRX)
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called the reduction morphism. Quite often, the letter X by itself is used to
denote the ringed space (X,Rx); we then denote by X,eq = (X, Rx/Nx)
its reduction. The ringed space X is said to be reduced if Nx = 0, in which
case the reduction morphism X,eq — X is an isomorphism. In all examples
considered later on in this book, the structure sheaf Rx will be a sheaf of
local rings over some field k. The relevant definition is as follows.

(1.22) Definition.

a) A locally ringed space is a ringed space (X, Rx) such that all stalks Rx
are local rings. The mazimal ideal of Rx , will be denoted by mx .. A
morphism F = (f, F*) : (X,Rx) — (Y,Ry) of locally ringed spaces is
a morphism of ringed spaces such that F;(my,f(m)) C mx, at any point
x € X (i.e., Fy is a “local” homomorphism of rings).

b) A locally ringed space over a field k is a locally ringed space (X, Rx) such
that all rings Rx 4 are local k-algebras with residual field Rx 5 /mx o ~ k.
A morphism F between such spaces is supposed to have its comorphism
defined by local k-homomorphisms Fy : Ry, fz) — Rx z-

If (X, Rx) is a locally ringed space over k, we can associate to each section
s € Rx(U) a function

5:U — k, xHE(m)EkzﬂQx,m/mx,m,

and we get a sheaf morphism Ry — Rx onto a subsheaf of rings Rx of the
sheaf of functions from X to k. We clearly have a factorization

fRX — fo/NX %ix,

and thus a corresponding factorization of ringed space morphisms (with Id x
as the underlying set theoretic map)

Xst-red — Xred — X

where Xgirea = (X, Rx) is called the strong reduction of (X, Rx). It is easy
to see that Xgireq is actually a reduced locally ringed space over k. We say
that X is strongly reduced if Rx — Rx is an isomorphism, that is, if Rx
can be identified with a subsheaf of the sheaf of functions X — k (in our
applications to the theory of algebraic or analytic schemes, the concepts of
reduction and strong reduction will actually be the same; in general, these
notions differ, see Exercise 77.77). It is important to observe that reduction
(resp. strong reduction) is a fonctorial process:

it = (f,F*): (X,Rx) — (Y,Ry) is a morphism of ringed spaces (resp. of
locally ringed spaces over k), there are natural reductions

Frea = (f, Fea) * Xred = Yreds  Frea : Ry f(e)/Ny, 1) = Rx 2 /NX 2,
Fytorea = (fv f*) ¢ Xst-red _>szt-reda f* :iY,f(:v) _>§X,m7 §r—>§of



gl. I'resheaves and sneaves ol

where f* is the usual pull-back comorphism associated with f. Therefore,
if (X,Rx) and (Y, Ry) are strongly reduced, the morphism F' is completely
determined by the underlying set-theoretic map f. Our first basic examples
of (strongly reduced) ringed spaces are the various types of manifolds already
defined in Chapter I. The language of ringed spaces provides an equivalent
but more elegant and more intrinsic definition.

(1.23) Definition. Let X be a Hausdorff separable topological space. One
can define the category of C*, k € NU{oo,w}, differentiable manifolds (resp.
complez analytic manifolds) to be the category of reduced locally ringed spaces
(X, Rx) over R (resp. over C), such that every point x € X has a neighbor-
hood U on which the restriction (U, Rxu) is isomorphic to a ringed space
(£2,CK)) where 2 C R™ is an open set and C¥, is the sheaf of C* differentiable
functions (resp. (£2,0g), where 2 C C" is an open subset, and Og is the
sheaf of holomorphic functions on §2).

We say that the ringed spaces (£2,C%) and (£2,0g) are the models of
the category of differentiable (resp. complex analytic) manifolds, and that a
general object (X, Rx) in the category is locally isomorphic to one of the given
model spaces. It is easy to see that the corresponding ringed spaces morphisms
are nothing but the usual concepts of differentiable and holomorphic maps.

61.D. Algebraic Varieties over a Field

As a second illustration of the notion of ringed space, we present here a brief
introduction to the formalism of algebraic varieties, referring to (Hartshorne
1977) or (EGA 1967) for a much more detailed exposition. Our hope is that
the reader who already has some background of analytic or algebraic geome-
try will find some hints of the strong interconnections between both theories.
Beginners are invited to skip this section and proceed directly to the theory
of complex analytic sheaves in §,2. All rings or algebras occurring in this
section are supposed to be commutative rings with unit.

61.D.1. Affine Algebraic Sets. Let k£ be an algebraically closed field of
any characteristic. An affine algebraic set is a subset X C kY of the affine
space k% defined by an arbitrary collection S C k[T, ..., Tx] of polynomials,
that is,

X =V(S)={(21,...,2n5) € kN ; P(z1,...,25) =0, VP € S}.

Of course, if J C k[Ty,...,Tn] is the ideal generated by S, then V(S) = V(J).
As k[Th,...,Tn] is Noetherian, J is generated by finitely many elements
(Py,...,Pp), thus X = V({Py,...,P,}) is always defined by finitely many
equations. Conversely, for any subset Y C k%, we consider the ideal I(Y") of
k[Ty,...,Tn], defined by
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I(Y)={Pek[T,...,Ty]; P(z) =0, V2 € Y}

Of course, if Y C k% is an algebraic set, we have V(I(Y)) = Y. In the
opposite direction, we have the following fundamental result.

(1.24) Hilbert’s Nullstellensatz (see Lang 1965). If J C k[Ty,...,Tn] is
an ideal, then I(V(J)) = /J.

If X =V (J) C kY is an affine algebraic set, we define the (reduced) ring
O(X) of algebraic functions on X to be the set of all functions X — & which
are restrictions of polynomials, i.e.,

(1.25) O(X) =k[T,...,TN]/I(X) = k[T4,...,TN]/VJ.

This is clearly a reduced k-algebra. An (algebraic) morphism of affine alge-
braic sets X = V(J) c kN, Y = V(J') € kN is amap f : Y — X which
is the restriction of a polynomial map kv "tokN. We then get a k-algebra
homomomorphism

[ :0(X) = 0(Y), s+ 50 f,

called the comorphism of f. In this way, we have defined a contravariant
fonctor

(1.26) X = O(X),  fsf*

from the category of affine algebraic sets to the category of finitely generated
reduced k-algebras.

We are going to show the existence of a natural fonctor going in the
opposite direction. In fact, let us start with an arbitrary finitely generated
algebra A (not necessarily reduced at this moment). For any choice of gene-
rators (gi,...,9n) of A we get a surjective morphism of the polynomial ring
k[Ty,...,Tn] onto A,

k[Tl,...,TN]%A, le—)gj,

and thus A ~ k[T, ...,Tn]/J with the ideal J being the kernel of this mor-
phism. It is well-known that every maximal ideal m of A has codimension 1
in A (see Lang 1965), so that m gives rise to a k-algebra homomorphism
A — A/m = k. We thus get a bijection

Homyig (A, k) — Spm(A), u— Keru

between the set of k-algebra homomorphisms and the set Spm(A) of maximal
ideals of A. In fact, if A = k[T4,...,Tn]/J, an element ¢ € Hom,s(A, k) is
completely determined by the values z; = ¢(T; mod J), and the correspond-
ing algebra homomorphism k[Ty,...,Tn] — k, P — P(z1,...,2zN) can be
factorized mod J if and only if z = (z1,...,2n) € k¥ satisfies the equations



gl. I'resheaves and sneaves (o8]

P(z1,...,25y) =0, VPe€.J.
We infer from this that
Spm(A) ~ V(J) = {(21,...,25) € kY ; P(21,...,25) =0, VP € J}

can be identified with the affine algebraic set V(J) C kN. If we are given an
algebra homomorphism @ : A — B of finitely generated k-algebras we get a
corresponding map Spm(®) : Spm(B) — Spm(A) described either as
Spm(B) — Spm(A4), m~ d H(m) or
Homyje (B, k) — Homgig (A, k), v vod.

If B =k[T},...,Tk/]/J" and Spm(B) = V(J') C kN, it is easy to see that
Spm(®) : Spm(B) — Spm(A) is the restriction of the polynomial map

FoEN S BN wes fw) = (P(w),. .., Py(w)),

where P; € k[T7,...,Ty.] are polynomials such that P; = @¢(7;) mod J’ in B.
We have in this way defined a contravariant fonctor

(1.27) A+~ Spm(A), @ — Spm(P)

from the category of finitely generated k-algebras to the category of affine
algebraic sets.

Since A = k[T, ..., Tn]/J and its reduction A/N(A) = k[Ty, ..., Tn]/VJ
give rise to the same algebraic set

V(J) = Spwm(A) = Spm(4/N(4)) = V(V]),
we see that the category of affine algebraic sets is actually equivalent to the
subcategory of reduced finitely generated k-algebras.
(1.28) Example. The simplest example of an affine algebraic set is the affine
space

kN = Spm(k[Tb R TN])7
in particular Spm(k) = k° is just one point. We agree that Spm({0}) = 0
(observe that V(J) = () when J is the unit ideal in k[T7,...,TN]).

§1.D.2. Zariski Topology and Affine Algebraic Schemes. Let A be a
finitely generated algebra and X = Spm(A). To each ideal a C A we associate
the zero variety V' (a) C X which consists of all elements m € X = Spm(A)
such that m D a; if

A~E[Ty,...,Ty]/J and X ~V(J)cCk",

then V' (a) can be identified with the zero variety V(J;) C X of the inverse
image J, of ain k[T4,...,Tx]. For any family (a,) of ideals in A we have
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VOO aa)=(1V(a),  V(a1)UV(az) = V(aias),

hence there exists a unique topology on X such that the closed sets consist
precisely of all algebraic subsets (V(a))qca of X. This topology is called
the Zariski topology. The Zariski topology is almost never Hausdorff (for
example, if X = k is the affine line, the open sets are () and complements of
finite sets, thus any two nonempty open sets have nonempty intersection).
However, X is a Noetherian space, that is, a topological space in which every
decreasing sequence of closed sets is stationary; an equivalent definition is to
require that every open set is quasi-compact (from any open covering of an
open set, one can extract a finite covering).

We now come to the concept of affine open subsets. For s € A, the

open set D(s) = X N\ V(s) can be given the structure of an affine al-
gebraic variety. In fact, if A = k[Ty,...,Tn]/J and s is represented by
a polynomial in k[Ty,...,Tx], the localized ring A[l/s| can be written as

All/s| =k[Ty,...,Tn,Tn+1]/Js where Jg = J[Tn41] + (sTn41 — 1), thus
V(J,) ={(z,w) € V(J) x k; s(z)w =1} ~ V(I) ~ s71(0)

and D(s) can be identified with Spm(A[1/s]). We have D(s1) N D(s2) =
D(s152), and the sets (D(s))sca are easily seen to be a basis of the Zariski
topology on X. The open sets D(s) are called affine open sets. Since the open
sets D(s) containing a given point € X form a basis of neighborhoods, one
can define a sheaf space Ox such that the ring of germs Ox , is the inductive
limit

Ox, = lim A[l/s] = {fractions p/q; p,q € A, q(z) # 0}.

—
D(s)>z

This is a local ring with maximal ideal

mx. = {p/q; p,q € A, p(z) =0, q(z) # 0},

and residual field Ox ,/mx , = k. In this way, we get a ringed space (X, Ox)
over k. It is easy to see that I'(X,Ox) coincides with the finitely gener-
ated k-algebra A. In fact, from the definition of Ox, a global section is ob-
tained by gluing together local sections p;/s; on affine open sets D(s;) with
UD(sj) =X, 1 <j < m. This means that the ideal a = (s1,...,5,) C 4
has an empty zero variety V'(a), thus a = A and there are elements u; € A
with ) ujs; = 1. The compatibility condition p;/s; = pg/si implies that
these elements are induced by

Y ouipi/ Y ujsi =) ujp; € A,

as desired. More generally, since the open sets D(s) are affine, we get

I'(D(s),0x) = A[1/s].
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It is easy to see that the ringed space (X, Ox) is reduced if and only if A itself
is reduced; in this case, X is even strongly reduced as Hilbert’s Nullstellensatz
shows. Otherwise, the reduction X,.q can obtained from the reduced algebra
Areda = A/N(A).

Ringed spaces (X, Ox) as above are called affine algebraic schemes over k
(although substantially different from the usual definition, our definition can
be shown to be equivalent in this special situation; compare with (Hartshorne
1977); see also Exercise 77.77). The category of affine algebraic schemes is
equivalent to the category of finitely generated k-algebras (with the arrows
reversed).

1.D.3. Algebraic Schemes. Algebraic schemes over k are defined to be
ringed spaces over k which are locally isomorphic to affine algebraic schemes,
modulo an ad hoc separation condition.

(1.29) Definition. An algebraic scheme over k is a locally ringed space
(X,0x) over k such that

a) X has a finite covering by open sets U, such that (Uy, Ox v, ) is isomor-
phic as a ringed space to an affine algebraic scheme (Spm(As), Ospm(a.,))-

b) X satisfies the algebraic separation axiom, namely the diagonal Ax of
X x X 1s closed for the Zariski topology.

A morphism of algebraic schemes is just a morphism of the underlying lo-
cally ringed spaces. An (abstract) algebraic variety is the same as a reduced
algebraic scheme.

In the above definition, some words of explanation are needed for b), since
the product X x Y of algebraic schemes over k is not the ringed space theo-
retic product, i.e., the product topological space equipped with the structure
sheaf prjOx ® pr30y. Instead, we define the product of two affine algebraic
schemes X = Spm(A) and Y = Spm(B) to be X x Y = Spm(A ®; B),
equipped with the Zariski topology and the structural sheaf associated
with A ®; B. Notice that the Zariski topology on X x Y is not the product
topology of the Zariski topologies on X, Y, as the example k? = k x k shows;
also, the rational function 1/(1 — 21 — 22) € Og2 (0,0) is not in O o ®x O, 0.
In general, if X, Y are written as X =|JU, and Y = |J V3 with affine open
sets Uy, V3, we define X xY to be the union of all open affine charts U, x V3
with their associated structure sheaves of affine algebraic varieties, the open
sets of X x Y being all unions of open sets in the various charts U, x V.
The separation axiom b) is introduced for the sake of excluding pathological
examples such as an affine line kI1{0'} with the origin changed into a double
point.

1.D.4. Subschemes. If (X,0x) is an affine algebraic scheme and A =
I'(X,0x) is the associated algebra, we say that (Y,0y) is a subscheme
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of (X,0x) if there is an ideal a of A such that ¥ — X is the mor-
phism defined by the algebra morphism A — A/a as its comorphism. As
Spm(A/a) — Spm(A) has for image the set V(a) of maximal ideals m of
A containing a, we see that Y = V(a) as a set; let us introduce the ideal
subsheaf J = aOx C Ox. Since the structural sheaf Oy is obtained by taken
localizations A/a[l/s], it is easy to see that Oy coincides with the quotient
sheaf Ox /J restricted to Y. Since a has finitely many generators, the ideal
sheaf J is locally finitely generated (see § 2 below). This leads to the following
definition.

(1.30) Definition. If (X, Ox) is an algebraic scheme, a (closed) subscheme
is an algebraic scheme (Y, Oy) such thatY is a Zariski closed subset of X, and
there is a locally finitely generated ideal subsheafd C Ox such thatY = V(J)

and Oy = (Ox/g)ry.

If (Y,0y), (Z,0z) are subschemes of (X, Ox) defined by ideal subsheaves
J, 8" C Ox, there are corresponding subschemes Y N Z and Y U Z defined as
ringed spaces

(YNZ0x/(@+3)), (Y UZ,0x/39).

§1.D.5. Projective Algebraic Varieties. A very important subcategory
of the category of algebraic varieties is provided by projective algebraic va-
rieties. Let PYY be the projective N-space, that is, the set kN +1 < {0}/k* of

equivalence classes of (N + 1)-tuples (zo,...,2nx) € kNt < {0} under the

equivalence relation given by (zo,...,2n) ~ A(z0,...,2n), A € k*. The cor-

responding element of PY will be denoted [z : 21 : ... : zn]. It is clear that

P%; can be covered by the (N + 1) affine charts U,, 0 < a < N, such that
Ua:{[zozzlz...:zN] GIP’kN ZQ#O}.

The set U, can be identified with the affine N-space £~ by the map

U, — kY, [z0:21:...:2N] — (Z—O, z—l,..., Za_l, Za+1,...,z—N).
With this identification, O(U,,) is the algebra of homogeneous rational func-
tions of degree 0 in zy, ..., zy which have just a power of z, in their denom-
inator. It is easy to see that the structure sheaves Oy, and Oy, coincide in
the intersections U, N Ug; they can be glued together to define an algebraic
variety structure (IP’kN , Opn~), such that Opn [, consists of all homogeneous
rational functions p/q of degree 0 (i.e., degp = degq), such that ¢(z) # 0.

(1.30) Definition. An algebraic scheme or variety (X,Ox) is said to be

projective if it is isomorphic to a closed subscheme of some projective space
(PN, Opn).
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We now indicate a standard way of constructing projective schemes. Let
S be a collection of homogeneous polynomials P; € k[z,...,zn], of degree
d; € N. We define an associated projective algebraic set

V(S)={[z0:...:2n] €PY; P(2) =0, VP € S}.

Let J be the homogeneous ideal of k|z, ..., zn]| generated by S (recall that
an ideal J is said to be homogeneous if J = € J,,, is the direct sum of its
homogeneous components, or equivalently, if J is generated by homogeneous
elements). We have an associated graded algebra

B=kz0,...,2n]/T =@ Bm:  Bm=k[20,.-,2N]m/Tm

such that B is generated by B; and B, is a finite dimensional vector space
over k for each k. This is enough to construct the desired scheme structure
on V(J): =V (Jn), as we see in the next subsection.

1.D.6. Projective Scheme Associated with a Graded Algebra. Let
us start with a reduced graded k-algebra

B:@Bm

meN

such that B is generated by By and B; as an algebra, and By, B; are finite
dimensional vector spaces over k (it then follows that B is finitely generated
and that all B,, are finite dimensional vector spaces). Given s € By,, m > 0,
we define a k-algebra Ag to be the ring of all fractions of homogeneous degree 0
with a power of s as their denominator, i.e.,

(1.31) Ay = {p/s*; p € Bym, d € N}.

Since A; is generated by %Bin over By, Ay is a finitely generated algebra.
We define U; = Spm(A4;) to be the associated affine algebraic variety. For
s € By, and ' € B,,/, we clearly have algebra homomorphisms

As — Ass’v As’ — Ass’v

since Agy is the algebra of all 0-homogeneous fractions with powers of s and
s’ in the denominator. As A, is the same as the localized ring A,[s™ /s'™],
we see that Uy can be identified with an affine open set in Uy, and we thus
get canonical injections

Uss’ — Us, Uss’ — Us/.

(1.832) Definition. If B = @,,c B is a reduced graded algebra gener-
ated by its finite dimensional vector subspaces By and B, we associate an
algebraic scheme (X, Ox) = Proj(B) as follows. To each finitely generated al-
gebra Ag = {p/sd i p € Bgm, d € N} we associate an affine algebraic variety
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Us = Spm(As). We let X be the union of all open charts Uy with the identi-
fications Us MUy = Usy ; then the collection (Us) is a basis of the topology of
X, and Ox is the unique sheaf of local k-algebras such that I'(Us, Ox) = As
for each Us.

The following proposition shows that only finitely many open charts are
actually needed to describe X (as required in Def. 1.29 a)).

(1.33) Lemma. If so,...,sy is a basis of By, then Proj(B) = |J Us,.
0<j<N

Proof. In fact, if + € X is contained in a chart Uy for some s € B,,, then
U, = Spm(A;) # 0, and therefore A, # {0}. As A, is generated by 1 BT, we
can find a fraction f =s;, ...s;, /s representing an element f € O(Uy) such
that f(z) # 0. Then z € Us \ f~1(0), and Us \ f~1(0) = Spm(4;[1/f]) =
Us N Usj1 N...NUs, . In particular = € Usjl. O

(1.34) Example. One can consider the projective space ]P’fcv to be the alge-
braic scheme

Py = Proj(k[Ty, . .., Tn]).

The Proj construction is fonctorial in the following sense: if we have a
graded homomorphism @ : B — B’ (i.e. an algebra homomorphism such
that @(B,,) C B, then there are corresponding morphisms A4, — A’Q(S),

Uq’ﬁ(s) — U,, and we thus find a scheme morphism
F : Proj(B’) — Proj(B).

Also, since p/s? = ps'/s?t! the algebras A, depend only on components
B, of large degree, and we have A; = Ay. It follows easily that there is a
canonical isomorphism

Proj(B) =~ Proj ( D B,m) .

Similarly, we may if we wish change a finite number of components B,,, with-
out affecting Proj(B). In particular, we may alway assume that By = k 1p.
By selecting finitely many generators gg,...,gn in Bi, we then find a sur-
jective graded homomorphism &[Ty, . ..,Tn]| — B, thus B ~ k[Ty,...,Tn]/J
for some graded ideal J C B. The algebra homomorphism &[Ty, ..., Tn] — B
therefore yields a scheme embedding Proj(B) — PV onto V(.J).

We will not pursue further the study of algebraic varieties from this point
of view; in fact we are mostly interested in the case £k = C, and algebraic
varieties over C are a special case of the more general concept of complex
analytic space.
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§2. The Local Ring of Germs of Analytic Functions

62.A. The Weierstrass Preparation Theorem

Our first goal is to establish a basic factorization and division theorem for
analytic functions of several variables, which is essentially due to Weierstrass.
We follow here a simple proof given by C.L. Siegel, based on a clever use of the
Cauchy formula. Let g be a holomorphic function defined on a neighborhood
of 0 in C*, g # 0. There exists a dense set of vectors v € C* ~ {0} such that
the function C 5 ¢t — g(tv) is not identically zero. In fact the Taylor series
of g at the origin can be written

400
1
gltv) = yt’“g"“)(v)
k=0

where ¢(®) is a homogeneous polynomial of degree k on C* and g®*o) % 0
for some index ko. Thus it suffices to select v such that g(¥o)(v) # 0. After
a change of coordinates, we may assume that v = (0,...,0,1). Let s be the
vanishing order of z, — g¢(0,...,0,2,) at z, = 0. There exists r,, > 0
such that ¢(0,...,0,2,) # 0 when 0 < |z,| < r,. By continuity of g and
compactness of the circle |z,| = 7, there exists ’ > 0 and € > 0 such that

g(z', ) #0  for 2 € C*7H, <!, rp—e<|z| <yt

For every integer k € N, let us consider the integral

1 1 dg
Sp(7) = — — = (Y 2 2 dzy.
k(z) 27Ti |Zn|:rn g(Z’,Zn) 8Zn (Z ,Zn) zn Zn

Then Sy is holomorphic in a neighborhood of |2'| < 7. Rouché’s theorem
shows that Sp(z') is the number of roots z, of g(2’,z,) = 0 in the disk
|zn| < 7y, thus by continuity Sp(z’) must be a constant s. Let us denote
by wy(2'),...,ws(z") these roots, counted with multiplicity. By definition
of r,, we have wy(0) = ... = w,(0) = 0, and by the choice of ', € we have
lw;(2")| < rp —€ for |2'| < r'. The Cauchy residue formula yields

Sk(2') = ij(z')k.

Newton’s formula shows that the elementary symmetric function cg(2") of
degree k in wq(2'),...,ws(2') is a polynomial in Si(2),..., Sk(z'). Hence
¢k (Z") is holomorphic in a neighborhood of |2/| < r'. Let us set

S

P('20) = 2 —er(2)25 44 (m1)°eo(2) = [ (2 = ws(2).

j=1
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For |2'| <7/, the quotient f = g/P (resp. f = P/g) is holomorphic in z, on
the disk |z,| < r,, + ¢, because g and P have the same zeros with the same
multiplicities, and f(z', z,) is holomorphic in 2’ for r,, —e < |z,| < r, + €.
Therefore

(2 2n) = L/ 1, wn) duwn
27 |wp |=rn+e  Wn — Zn

is holomorphic in z on a neighborhood of the closed polydisk A(r’,r,) =
{IZ'] < 7'} x{|zn| < 7n}. Thus g/P is invertible and we obtain:

(2.1) Weierstrass preparation theorem. Let g be holomorphic on a
neighborhood of 0 in C™, such that g(0, z,,)/z5 has a not zero finite limit at
zn, = 0. With the above choice of ' and r,,, one can write g(z) = u(z)P (7, z,)
where u is an invertible holomorphic function in a neighborhood of the poly-
disk A(r',ry,), and P is a Weierstrass polynomial in z,, that is, a polynomial
of the form

P(Z,2) =25 +a1(2)25 - +as(2), ar(0)=0,

with holomorphic coefficients ax(2') on a neighborhood of |2'| < v’ in C*~1.

(2.2) Remark. If g vanishes at order m at 0 and v € C* \ {0} is selected
such that g™ (v) # 0, then s = m and P must also vanish at order m at 0. In
that case, the coefficients a(2’) are such that ax(2") = O(]2'|F), 1 < k < s.

(2.3) Weierstrass division theorem. Every bounded holomorphic function
f on A= A(r',r,) can be represented in the form

(2.4) f(2) =9(2)a(2) + R(#', zn),

where ¢ and R are analytic in A, R(Z,z,) is a polynomial of degree < s — 1
N Zn, and

(2.5) sup|q| < Csupl|f|, sup|R|< Csuplf]
A A A A

for some constant C' > 0 independent of f. The representation (2.4) is unique.

Proof (Siegel) It is sufficient to prove the result when g(z) = P(%,z,) is a
Weierstrass polynomial.
Let us first prove the uniqueness. If f = Pq; + Ry = Pgy + Ro, then

P(g2 — q1) + (R2 — R1) = 0.

It follows that the s roots z, of P(z',e) = 0 are zeros of Ry — R;. Since
deg, (R2 — R1) < s—1, we must have Ry — R; =0, thus g2 —¢1 = 0.
In order to prove the existence of (g, R), we set
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1 ', wp
q(?',2,) = lim —/ B f(&,wn) dw,, z€A;
|wy, |=r,—¢

e—0+ 27i 2! wy) (Wy — 2p)

observe that the integral does not depend on € when ¢ < 1, — |2, is small
enough. Then ¢ is holomorphic on A. The function R = f — Pq is also
holomorphic on A and

. 1 f(Z wy) P2, w,) — P(2, 2y,)
R(z) =1 — d
(2) 0% 27 /|wn|:,nn_‘E Pz, wy) [ (wp, — 2n)

n-

The expression in brackets has the form
[(wp, = 2z0) + Y a; () (w0 = 237)] [ (wn — 2n)
j=1

hence is a polynomial in 2z, of degree < s — 1 with coefficients that
are holomorphic functions of z’. Thus we have the asserted decomposition
f=Pqg+ R and

sup |R| < Cysup |f]
A A

where C; depends on bounds for the a;(%’) and on p = min |[P(%, z,)| on the
compact set {|z'| < r'} x {|z,| = r,}. By the maximum principle applied to
q = (f — R)/P on each disk {2’} x {|z,| < r, — €}, we easily get

sup |q| < p~ (1 + Cy)sup|f]. O
A A

§2.B. Algebraic Properties of the Ring O

We give here important applications of the Weierstrass preparation theorem
to the study of the ring of germs of holomorphic functions in C”.

(2.6) Notation. We let O,, be the ring of germs of holomorphic functions
on C" at 0. Alternatively, Q,, can be identified with the ring C{z1,...,z,} of
convergent power Series in zi, ..., Zn-

(2.7) Theorem. The ring O,, is Noetherian, i.e. every ideal J of O, is finitely
generated.

Proof. By induction on n. For n = 1, O,, is principal: every ideal J # {0} is
generated by z°, where s is the minimum of the vanishing orders at 0 of the
non zero elements of J. Let n > 2 and J C O,,, J # {0}. After a change of
variables, we may assume that J contains a Weierstrass polynomial P(2/, z,,).
For every f € J, the Weierstrass division theorem yields
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s—1
f(z) = P(Z,2,)q(2) + R(Z',z), R(Z,z,) = Z cr(2) 2%,
k=0
and we have R € J. Let us consider the set M of coefficients (co,...,cs—1) in

O9# | corresponding to the polynomials R(2’, z,) which belong to J. Then M
is a O,,_1-submodule of ngl. By the induction hypothesis O,,_; is Noethe-
rian; furthermore, every submodule of a finitely generated module over a
Noetherian ring is finitely generated (Lang 1965, Chapter VI). Therefore M
is finitely generated, and J is generated by P and by polynomials Ry, ..., Ry
associated with a finite set of generators of M. O

Before going further, we need two lemmas which relate the algebraic prop-
erties of O,, to those of the polynomial ring O,,_1[z,]-

(2.8) Lemma. Let P, F € O,,_1[z,] where P is a Weierstrass polynomial. If
P divides F in O,,, then P divides F in Oy _1]z,].

Proof. Assume that F(2',z,) = P(%', z,)h(z), h € O,,. The standard division
algorithm of F' by P in O,,_1|z,] yields

F=PQ+R, Q,Re0, 1]z, deg R < deg P.

The uniqueness part of Th. 2.3 implies h(z) = Q(#, z,) and R = 0. O

(2.9) Lemma. Let P(Z,z,) be a Weierstrass polynomial.

a) If P = P...Py with P; € O,,_1]zy,], then, up to invertible elements of
On—1, all P; are Weierstrass polynomials.

b) P(2', zy,) is irreducible in O, if and only if it is irreducible in Oy, _1[z,].

Proof. a) Assume that P = P; ... Py with polynomials P; € O,_1[2,] of
respective degrees s;, Zl<j<N sj = 5. The product of the leading coefficients
of Py,..., Py in O,_1 is equal to 1; after normalizing these polynomials, we
may assume that Pp,..., Py are unitary and s; > 0 for all 5. Then

P(0,2,) =2, = P1(0,2,)...Pn(0, 2,),

hence P;(0, z,) = 2’ and therefore P; is a Weierstrass polynomial.

b) Set s = deg P and P(0, z,,) = 2. Assume that P is reducible in O,,, with
P(Z, z,) = g1(2)g2(z) for non invertible elements g1, g2 € O,,. Then g¢1(0, z,)
and g2(0, z,,) have vanishing orders s1, o > 0 with s; + s2 = s, and

g; = u;P; deg P; =s;, 7 =12,

where P; is a Weierstrass polynomial and u; € O, is invertible. Therefore
P, P, = uP for an invertible germ u € O,,. Lemma 2.8 shows that P divides
PP, in O,,_1[2,]; since Py, P; are unitary and s = 51+ $2, we get P = P P,
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hence P is reducible in O,,_1[2y]. The converse implication is obvious from a).
]

(2.10) Theorem. O,, is a factorial ring, i.e. O, is entire and:

a) every non zero germ f € O, admits a factorization f = fi1...fn in
1rreducible elements;

b) the factorization is unique up to invertible elements.

Proof. The existence part a) follows from Lemma 2.9 if we take f to be
a Weierstrass polynomial and f = f1... fny be a decomposition of maximal
length /N into polynomials of positive degree. In order to prove the uniqueness,
it is sufficient to verify the following statement:

b’) If g is an irreducible element that divides a product fifs, then g divides
either f1 or fs.

By Th. 2.1, we may assume that fi, f2, g are Weierstrass polynomials in
Zn. Then g is irreducible and divides fi fo in O,,—1[2,] thanks to Lemmas 2.8
and 2.9 b). By induction on n, we may assume that O,_; is factorial. The
standard Gauss lemma (Lang 1965, Chapter V) says that the polynomial
ring A[T] is factorial if the ring A is factorial. Hence O,,_1[z,] is factorial by
induction and thus g must divide f; or fy in Op,_1[2,]. O

(2.11) Theorem. If f,g € O,, are relatively prime, then the germs f,, g, at
every point z € C* near 0 are again relatively prime.

Proof. One may assume that f = P, g = () are Weierstrass polynomials. Let
us recall that unitary polynomials P, € A[X] (A = a factorial ring) are
relatively prime if and only if their resultant R € A is non zero. Then the
resultant R(2') € 0,1 of P(?/, z,) and Q(7/, z,) has a non zero germ at 0.
Therefore the germ R, at points 2/ € C*~! near 0 is also non zero. ([l

§3. Coherent Sheaves

63.1. Locally Free Sheaves and Vector Bundles

Section 9 will greatly develope this philosophy. Before introducing the more
general notion of a coherent sheaf, we discuss the notion of locally free sheaves
over a sheaf a ring. All rings occurring in the sequel are supposed to be
commutative with unit (the non commutative case is also of considerable
interest, e.g. in view of the theory of D-modules, but this subject is beyond
the scope of the present book).

(3.1) Definition. Let A be a sheaf of rings on a topological space X and let &
a sheaf of modules over A (or briefly a A-module). Then § is said to be locally
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free of rank r over A, if § is locally isomorphic to A®" on a neighborhood of
every point, i.e. for every xog € X one can find a neighborhood {2 and sections
Fi,...,F. € 8(2) such that the sheaf homomorphism

F:A% — 810, A3 (wi,...,w,) z:wﬂyxe&
1<5<r

1s an isomorphism.

By definition, if 8 is locally free, there is a covering (U, )acr by open sets
on which 8§ admits free generators F1, ..., F' € §(U,). Because the genera-
tors can be uniquely expressed in terms of any other system of independent
generators, there is for each pair (o, 3) a r x r matrix

" .
Gaﬂ = (Giﬁ)lﬁj,kgra Gig € A(Ua N Ug),
such that

Fy= Y FIG2,  on U,NUs.
1<j<r

In other words, we have a commutative diagram

F,
@
ArJanUB — 3 UaNUg

ol |

o
Arr};nUﬁ ﬁ S1UNU,

It follows easily from the equality Gog = F, 1o Fg that the transition matrices
G are invertible matrices satisfying the transition relation

(3.2) Ga7 = GagGg,y on U,nN Ug N U,y

for all indices «, 3,7 € I. In particular G, = Id on U, and G;l = Gga ON
Us NUB.

Conversely, if we are given a system of invertible r x r matrices G,z
with coefficients in A(U, NUg) satisfying the transition relation (3.2), we can
define a locally free sheaf § of rank r over A by taking 8§ ~ A®" over each
Uy, the identification over U, N Ug being given by the isomorphism G.g.
A section H of 8§ over an open set {2 C X can just be seen as a collection of
sections H, = (H},..., H") of A®"(02NU,) satisfying the transition relations
H, = GagHﬂ over 2NU,N Ug.

The notion of locally free sheaf is closely related to another essential
notion of differential geometry, namely the notion of vector bundle (resp.
topological, differentiable, holomorphic ..., vector bundle). To describe the
relation between these notions, we assume that the sheaf of rings A is a



3o. Lonerent sneaves JOo

subsheaf of the sheaf Cx of continous functions on X with values in the field
K =R or K = C, containing the sheaf of locally constant functions X — K.
Then, for each x € X, there is an evaluation map

A =2 K w — w(x)

whose kernel is a maximal ideal m, of A,, and A,/m, = K. Let 8 be a locally
free sheaf of rank r over A. To each x € X, we can associate a K-vector space
E, = 8;/m;8,: since 8, ~ AP" we have E, ~ (A;/m;)®" = K". The set

E =[],cx Ex is equipped with a natural projection
m: E— X, e Ey—m():=u,

and the fibers E, = 7~ !(z) have a structure of r-dimensional K-vector space:
such a structure F is called a K-vector bundle of rank r over X . Every section
s € 8(U) gives rise to a section of E over U by setting s(x) = s, mod m,.
We obtain a function (still denoted by the same symbol) s : U — E such
that s(z) € E, for every x € U, i.e. mos = Idy. It is clear that S(U) can be
considered as a A(U)-submodule of the K-vector space of functions U — F
mapping a point x € U to an element in the fiber E,. Thus we get a subsheaf
of the sheaf of E-valued sections, which is in a natural way a A-module
isomorphic to 8. This subsheaf will be denoted by A(F) and will be called
the sheaf of A-sections of E. If we are given a K-vector bundle £ over X and
a subsheaf § = A(F) of the sheaf of all sections of E which is in a natural
way a locally free A-module of rank r, we say that E (or more precisely the
pair (E, A(F))) is a A-vector bundle of rank r over X.

(3.3) Example. In case A = Cx x is the sheaf of all K-valued continuous
functions on X, we say that E is a topological vector bundle over X. When
X is a manifold and A = C% ., we say that E is a CP-differentiable vector
bundle; finally, when X is corﬁplex analytic and A = Ox, we say that E is a
holomorphic vector bundle.

Let us introduce still a little more notation. Since A(FE) is a locally
free sheaf of rank r over any open set U, in a suitable covering of X, a

choice of generators (Fy,...,F") for A(E)y, yields corresponding genera-
tors (el(x),...,e"(z)) of the fibers E, over K. Such a system of generators

is called a A-admissible frame of E over U,. There is a corresponding iso-
morphism

(3.4) 0 : By, =1 (Uy) — Uy x K"

which to each £ € E, associates the pair (z, (€1,...,£%)) € Uy x K" composed
of z and of the components (£/)1<;j<, of £ in the basis (e}(z),...,e"(z))
of E,. The bundle E is said to be trivial if it is of the form X x K", which

is the same as saying that A(FE) = A®". For this reason, the isomorphisms
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0, are called trivializations of E over U,. The corresponding transition au-
tomorphisms are

Oap = 0o 005" : (Us NUp) x K — (Us NUp) x K,
9(15(3376) = (ﬁ,gaﬁ(ﬂf) f)? (ﬁ,f) S (Ua N Uﬁ) x K",

where (go3) € GL,(A)(UyNUpg) are the transition matrices already described
(except that they are just seen as matrices with coefficients in K rather than
with coefficients in a sheaf). Conversely, if we are given a collection of matrices

Jap = (gikﬁ) € GL, (A)(Uy N Ug) satistying the transition relation

oy = 9aBY9B~y on U,NUgNU,,

we can define a A-vector bundle

E=([]UaxK)/~

a€el

by gluing the charts U, x K" via the identification (z4,&a) ~ (23, &s) if and
only if 2o =23 =2 € Uy NUp and &, = gap(r) - &5.

(3.5) Example. When X is a real differentiable manifold, an interesting
example of real vector bundle is the tangent bundle Tx ;if 7, : Uy, — R" is a
collection of coordinate charts on X, then 0, =7 x d7, : T'x 1y, — Uy x R™
define trivializations of T'x and the transition matrices are given by gop(r) =
dTap(zP) where 1,5 = 74 0 Tﬂ_l and ° = 75(z). The dual T% of Tx is
called the cotangent bundle of X. If X is complex analytic, then Tx has the
structure of a holomorphic vector bundle.

We now briefly discuss the concept of sheaf and bundle morphisms. If
8§ and 8’ are sheaves of A-modules over a topological space X, then by a
morphism ¢ : § — 8 we just mean a A-linear sheaf morphism. If § = A(F)
and 8’ = A(FE') are locally free sheaves, this is the same as a A-linear bundle
morphism, that is, a fiber preserving K-linear morphism ¢(x) : E, — E/
such that the matrix representing ¢ in any local A-admissible frames of F
and E’ has coefficients in A.

(3.6) Proposition. Suppose that A is a sheaf of local rings, i.e. that a section
of A is invertible in A if and only if it never takes the zero value in K. Let
¢ : 8 — 8 be a A-morphism of locally free A-modules of rank r, v'. If the rank
of the ' xr matriz p(z) € M, (K) is constant for all x € X, then Ker ¢ and
Im ¢ are locally free subsheaves of 8, 8" respectively, and Coker ¢ = §'/Im ¢
s locally free.

Proof. This is just a consequence of elementary linear algebra, once we know
that non zero determinants with coefficients in A can be inverted. 0
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Note that all three sheaves Cx k, C% ., Ox are sheaves of local rings, so
Prop. 3.6 applies to these cases. However,, even if we work in the holomorphic
category (A = Ox), a difficulty immediately appears that the kernel or cok-
ernel of an arbitrary morphism of locally free sheaves is in general not locally
free.

(3.7) Examples.

a) Take X = C, let 8 = & = O be the trivial sheaf, and let ¢ : O — O
be the morphism u(z) — zu(z). It is immediately seen that ¢ is in-
jective as a sheaf morphism (O being an entire ring), and that Coker ¢
is the skyscraper sheaf Cy of stalk C at z = 0, having zero stalks at
all other points z # 0. Thus Coker ¢ is not a locally free sheaf, al-
though ¢ is everywhere injective (note however that the corresponding
morphism ¢ : E — E') (2,€) — (z,2£) of trivial rank 1 vector bundles
E = E' = C x C is not injective on the zero fiber Fp).

b) Take X = C3, § = 993, 8’ = O and

@: 0% 50, (w1, uz,u3) — Z zjuj(21, 22, 23).
1<5<3

Since ¢ yields a surjective bundle morphism on C3 \ {0}, one easily sees
that Ker ¢ is locally free of rank 2 over C* \ {0}. However, by looking at
the Taylor expansion of the u;’s at 0, it is not difficult to check that Ker ¢
is the O-submodule of O®3 generated by the three sections (—z2,21,0),
(—23,0,21) and (0, z3, —22), and that any two of these three sections can-
not generate the 0-stalk (Ker ¢)q. Hence Ker ¢ is not locally free.

Since the category of locally free O-modules is not stable by taking kernels
or cokernels, one is led to introduce a more general category which will be
stable under these operations. This leads to the notion of coherent sheaves.

63.2. Notion of Coherence

The notion of coherence again deals with sheaves of modules over a sheaf
of rings. It is a semi-local property which says roughly that the sheaf of
modules locally has a finite presentation in terms of generators and relations.
We describe here some general properties of this notion, before concentrating
ourselves on the case of coherent Ox-modules.

(3.8) Definition. Let A be a sheaf of rings on a topological space X and 8 a
sheaf of modules over A (or briefly a A-module). Then § is said to be locally
finitely generated if for every point xy € X one can find a neighborhood (2
and sections Fy,...,F, € §(42) such that for every x € 2 the stalk 8, is
generated by the germs Fy 4, ..., Fy 4, as an Az-module.
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(3.9) Lemma. Let 8 be a locally finitely generated sheaf of A-modules on X
and G1,...,Gn sections in S(U) such that G1 4, ...,GN g, generate 8z, at
xo € U. Then G4, ...,GNg generate 8, for x near xg.

Proof. Take Fy,...,Fy as in Def. 3.8. As G1,...,G N generate 8., one can
find a neighborhood 2" C 2 of zy and Hj;, € A(f2’) such that F; = > H;;,Gy,
on 2. Thus G1 4,...,Gn, generate 8, for all z € (2'. d

§3.2.1. Definition of Coherent Sheaves. If U is an open subset of X, we denote
by 8 the restriction of 8 to U, i.e. the union of all stalks 8, for z € U. If
Fi,...,F, € $§(U), the kernel of the sheaf homomorphism F : A?Uq — S
defined by

(3.10) A®1> (g,...,99) — Z ¢'F; €8, z€U
1<j<gq

is a subsheaf R(Fy,...,Fy) of A?Uq, called the sheaf of relations between
Fr,..., F,.

(3.11) Definition. A sheaf § of A-modules on X is said to be coherent if:
a) 8 is locally finitely generated ;

b) for any open subset U of X and any Fi,...,F; € 8(U), the sheaf of
relations R(F1y, ..., Fy) is locally finitely generated.

Assumption a) means that every point x € X has a neighborhood 2 such
that there is a surjective sheaf morphism F' : A% — 802, and assumption b)
implies that the kernel of F'is locally finitely generated. Thus, after shrinking
(2, we see that § admits over {2 a finite presentation under the form of an
exact sequence

(3.12) A% A% T80 —0,

where G is given by a ¢ X p matrix (Gi) of sections of A(f2) whose columns
(Gj1),...,(Gjp) are generators of R(Fi,..., Fy).

It is clear that every locally finitely generated subsheaf of a coherent sheaf
is coherent. From this we easily infer:

(3.13) Theorem. Let ¢ : F — G be a A-morphism of coherent sheaves.
Then Im ¢ and ker ¢ are coherent.

Proof. Clearly Im ¢ is a locally finitely generated subsheaf of G, so it is coher-
ent. Let zo € X, let Fi,..., F, € F(§2) be generators of F on a neighborhood
2 of zg, and G1,...,G, € A(£2')®? be generators of R(p(F1),...,¢(F,)) on
a neighborhood 2’ C 2 of xy. Then ker ¢ is generated over {2’ by the sections
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q
H;j=) GiF,eF(2), 1<j<r O
k=1

(3.14) Theorem. Let 0 — F — 8§ — § — 0 be an exact sequence
of A-modules. If two of the sheaves F,8,G are coherent, then all three are
coherent.

Proof. If § and § are coherent, then F = ker(8 — §) is coherent by Th. 3.13.
If 8§ and F are coherent, then G is locally finitely generated; to prove the
coherence, let G1,...,G4 € §(U) and zy € U. Then there is a neighborhood
2 of zo and sections Gy, . ..,éq € 8(42) which are mapped to G1,...,Gy
on §2. After shrinking {2, we may assume also that Jq, is generated by sec-
tions Fy,...,F, € F(£2). Then R(G4,...,G,) is the projection on the last
g-components of R(Fy,...,F,,G1,...,G,) C AP which is finitely gener-
ated near xo by the coherence of 8. Hence R(G1,...,Gy) is finitely generated
near xo and G is coherent.

Finally, assume that F and G are coherent. Let xy € X be any point, let
Fi,...,F, € F(2) and G1,...,G, € G(£2) be generators of F, G on a neigh-
borhood 2 of zy. There is a neighborhood 2’ of z such that G4, ...,G, ad-
mit liftings G4, .. ., éq € 8(£2'). Then (F4,..., Fy, Gi,..., Gq) generate Sy,
so 8 is locally finitely generated. Now, let Si,...,S, be arbitrary sections in
8(U) and Sy,...,S, their images in G(U). For any xq € U, the sheaf of rela-
tions R(Sy,...,S,) is generated by sections Pi,..., Ps € A(£2)®7 on a small
neighborhood §2 of o. Set P; = (Pf)i1<r<q. Then H; = P}S1 + ...+ P}S,,
1 <35 < s, are mapped to 0 in G so they can be seen as sections of F. The
coherence of F shows that R(Hy, ..., Hs) has generators Q1, ..., Q¢ € A(2')*
on a small neighborhood (2" C §2 of zy. Then R(S1,...,S,) is generated over
2" by R; = EDQ;?P,c € A(£2"),1 < j<t, and 8 is coherent. O

(3.15) Corollary. If F and G are coherent subsheaves of a coherent analytic
sheaf S, the intersection F NG is a coherent sheaf.

Proof. Indeed, the intersection sheaf ¥ N G is the kernel of the composite
morphism F —— 8§ — §/9, and §/G is coherent. O

§3.2.2. Coherent Sheaf of Rings. A sheaf of rings A is said to be coherent
if it is coherent as a module over itself. By Def. 3.11, this means that for
any open set U C X and any sections F; € A(U), the sheaf of relations
R(F1, ..., Fy) is finitely generated. The above results then imply that all free
modules A®P are coherent. As a consequence:

(3.16) Theorem. If A is a coherent sheaf of rings, any locally finitely gene-
rated subsheaf of A®P is coherent. In particular, if § is a coherent A-module
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and Fy,...,F, € 8(U), the sheaf of relations R(F1,...,F;) C A®? is also
coherent.

Let 8 be a coherent sheaf of modules over a coherent sheaf of ring A. By
an iteration of construction (3.12), we see that for every integer m > 0 and
every point z € X there is a neighborhood (2 of z on which there is an exact
sequence of sheaves

(3.17) AZpm T ATEr s ASE T A% T80 0,

where F} is given by a p;_1 X p; matrix of sections in A(f2).

63.3. Analytic Sheaves and the Oka Theorem

Many properties of holomorphic functions which will be considered in this
book can be expressed in terms of sheaves. Among them, analytic sheaves
play a central role. The Oka theorem (Oka 1950) asserting the coherence of
the sheaf of holomorphic functions can be seen as a far-reaching deepening of
the noetherian property seen in Sect. 1. The theory of analytic sheaves could
not be presented without it.

(3.18) Definition. Let M be a n-dimensional complex analytic manifold and
let Opr be the sheaf of germs of analytic functions on M. An analytic sheaf
over M s by definition a sheaf & of modules over Q.

(3.19) Coherence theorem of Oka. The sheaf of rings Oy is coherent for
any complex manifold M .

Let Fy,...,F, € O(U). Since Opr 5 is Noetherian, we already know that
every stalk R(Fy,...,Fy)s C Oﬁqm is finitely generated, but the important
new fact expressed by the theorem is that the sheaf of relations is locally
finitely generated, namely that the “same” generators can be chosen to gen-
erate each stalk in a neighborhood of a given point.

Proof. By induction on n = dim¢ M. For n = 0, the stalks Ops, are equal
to C and the result is trivial. Assume now that n > 1 and that the result
has already been proved in dimension n — 1. Let U be an open set of M and
Fi,...,F, € Opm(U). To show that R(F1,. .., F,) is locally finitely generated,
we may assume that U = A = A’ x A,, is a polydisk in C" centered at g = 0 ;
after a change of coordinates and multiplication of Fi,..., F, by invertible
functions, we may also suppose that Fi, ..., F, are Weierstrass polynomials
in z, with coefficients in O(A’). We need a lemma.

(3.20) Lemma. If z = (2',2,) € A, the Opz-module R(Fy,...,Fy)y is
generated by those of its elements whose components are germs of analytic
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polynomials in O ar 5|2, with a degree in z, at most equal to p, the maximum
of the degrees of Fi,...,F,.

Proof. Assume for example that Fj is of the maximum degree p. By the
Weierstrass preparation Th. 1.1 and Lemma 1.9 applied at =, we can write
Fyn = f'f" where f', f"" € Oarqa(2n], f' is a Weierstrass polynomial in
Zn — xn and f’(z) # 0. Let g/ and p”” denote the degrees of f’ and f” with
respect to zy,, so ' + p” = p. Now, take (¢',...,99) € R(F1,...,F,)z. The
Weierstrass division theorem gives

gj:Fq,mtj+Tj7 jzla"'7q_17
where t/ € O, and rl e O’ g[2n] is a polynomial of degree < p'. For
j=gq, define r¥=g%+ %7, . t'F;,. We can write
(3.21) (g'... g9 = D> (0, Fypoo,0,=Fj)p + (r',...,19)
1<j<gq

where Fj is in the j-th position in the g-tuples of the summation. Since these
g-tuples are in R(Fy,. .., Fy)z, we have (r',...,r?%) € R(FY,..., F,);, thus

S Ejurd 4 ff =0,

1<j<qg-1

As the sum is a polynomial in z, of degree < u+p’, it follows from Lemma 1.9
that f”r? is a polynomial in z, of degree < p. Now we have

(rt, . Dy = 1/f"(f"r L )

where f"r7 is of degree < p/ + p’" = p. In combination with (3.21) this proves
the lemma. ]

Proof of Theorem 3.19 (end) If g = (g%, ..., g9) is one of the polynomials of

R(F1,...,Fy)y described in Lemma 3.20, we can write
g' = Z uk 2k uIt e Oar g
0<k<p

The condition for (g%,...,g%) to belong to R(F1, ..., F,), therefore consists
of 2u + 1 linear conditions for the germ u = (u/*) with coefficients in O(A’).
By the induction hypothesis, O+ is coherent and Th. 3.16 shows that the
corresponding modules of relations are generated over Oas 4, for 2’ in a
neighborhood 2’ of 0, by finitely many (g x p)-tuples Uy, ...,Un € O(£2")".
By Lemma 3.20, R(F1y, ..., Fy), is generated at every point x € 2 = 2’ x A,
by the germs of the corresponding polynomials

i) = (Y Ui

0<k<p

) . ze0, 1<I<N. 0
1<5<q
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(3.22) Strong Noetherian property. Let F be a coherent analytic sheaf
on a compler manifold M and let F1 C Fo C ... be an increasing sequence
of coherent subsheaves of F. Then the sequence (Fy) is stationary on every
compact subset of M.

Proof. Since JF is locally a quotient of a free module Oﬁq, we can pull back
the sequence to O%q and thus suppose F = Oy, (by easy reductions similar to
those in the proof of Th. 3.14). Suppose M connected and Fy, # {0} for some
index ko (otherwise, there is nothing to prove). By the analytic continuation
theorem, we easily see that Fy, , # {0} for every x € M. We can thus find
a non zero Weierstrass polynomial P € JF,(V), deg, P(2',2,) = p, in a
coordinate neighborhood V' = A’ x A,, of any point 2z € M. A division by
P shows that for k > ko and x € V, all stalks J}, , are generated by P, and
by polynomials of degree < 1 in 2, with coefficients in O+ 5. Therefore, we
can apply induction on n to the coherent O /-module

?':?H{QE Oar[zn]; deg@Q gp,}

and its increasing sequence of coherent subsheaves &) = F, N F'. O

§4. Complex Analytic Sets. Local Properties

64.1. Definition. Irreducible Components

A complex analytic set is a set which can be defined locally by finitely many
holomorphic equations; such a set has in general singular points, because no
assumption is made on the differentials of the equations. We are interested
both in the description of the singularities and in the study of algebraic
properties of holomorphic functions on analytic sets. For a more detailed
study than ours, we refer to H. Cartan’s seminar (Cartan 1950), to the books
of (Gunning-Rossi 1965), (Narasimhan 1966) or the recent book by (Grauert-
Remmert 1984).

(4.1) Definition. Let M be a complex analytic manifold. A subset A C M is
said to be an analytic subset of M if A is closed and if for every point o € A
there exist a neighborhood U of xy and holomorphic functions g1, ...,g, in

O(U) such that
ANU={z€U; gi(z2) =...=gn(z) = 0}.

Then g1,...,gn are said to be (local) equations of A in U.

It is easy to see that a finite union or intersection of analytic sets is
analytic: if (g;), (g5) are equations of A’, A” in the open set U, then the
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family of all products (gjgy) and the family (g;) U (gy) define equations of
A"UA"” and A’ N A” respectively.

(4.2) Remark. Assume that M is connected. The analytic continuation
theorem shows that either A = M or A has no interior point. In the latter
case, each piece ANU = ¢g~1(0) is the set of points where the function
log|g|? = log(|g1|®> + - -+ + |gn|?) € Psh(U) takes the value —co, hence A is
pluripolar. In particular M \ A is connected and every function f € O(M\ A)
that is locally bounded near A can be extended to a function f € O(M). O

We focus now our attention on local properties of analytic sets. By defi-
nition, a germ of set at a point x € M is an equivalence class of elements in
the power set P(M), with A ~ B if there is an open neighborhood V of z
such that ANV = BNV. The germ of a subset A C M at x will be denoted
by (A, z). We most often consider the case when A C M is a analytic set
in a neighborhood U of z, and in this case we denote by J4 , the ideal of
germs f € Opr, which vanish on (A, z). Conversely, if § = (g1,...,9n) is
an ideal of Ops 4, we denote by (V(H), :1:) the germ at x of the zero variety
V(@) ={2€U; gi(z) = ... = gn(z) = 0}, where U is a neighborhood of z
such that g; € O(U). It is easy to check that the germ (V' (cJ),z) does not
depend on the choice of generators. Moreover, it is clear that

(4.3")  for every ideal J in the ring Ops 4, Ivg),= 23,
(4.3") for every germ of analytic set (A, x), (V(Jae) ) = (A, 2).

(4.4) Definition. A germ (A, x) is said to be irreducible if it has no decom-
position (A, x) = (A1, x)U(As, x) with analytic sets (A;,x) # (A,z), j =1,2.

(4.5) Proposition. A germ (A, z) is irreducible if and only if J4 o is a prime
ideal of the ring O .

Proof. Let us recall that an ideal J is said to be prime if fg € J implies f € J
or g € J. Assume that (A, ) is irreducible and that fg € J4 .. As we can
write (A,7) = (A1, 2) U (A2, x) with A; = AN f~1(0) and Ay = AN g~1(0),
we must have for example (A1, z) = (A,z) ; thus f € J4 , and J4 , is prime.
Conversely, if (A,z) = (A1,2) U (As,z) with (A;,z) # (A, ), there exist
f€J4a,4,9 €Ja,q such that f,g ¢ Ja .. However fg € J4 4, thus J4 , is
not prime. 0

(4.6) Theorem. Every decreasing sequence of germs of analytic sets (A, x)
15 stationary.

Proof. In fact, the corresponding sequence of ideals Jp = Ja, , is increa-
sing, thus Jy = Jg, for & > ko large enough by the Noetherian property
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of Opr . Hence (Ag,z) = (V(Hk),m) is constant for £ > ky. This result has
the following straightforward consequence: ([l

(4.7) Theorem. Every analytic germ (A, x) has a finite decomposition

@4?x):: LJ @4k7x)

1<k<N

where the germs (Aj,z) are irreducible and (Aj,x) ¢ (Ag,x) for j # k. The

decomposition is unique apart from the ordering.

Proof. If (A,x) can be split in several components, we split repeatedly
each component as long as one of them is reducible. The process must
stop by Th. 4.6, whence the existence. For the uniqueness, assume that
(A, z) = U(4],z), 1 <1 < N', is another decomposition. Since (Ag,z) =
U, (Ax N A}, z), we must have (Ag,z) = (Ar N A}, z) for some | = I(k), i.e.
(Ag, z) C (Aj gy, ), and likewise (A; ;). ) C (A;, z) for some j. Hence j =k
and (A;;), ) = (A, ). O

64.2. Local Structure of a Germ of Analytic Set

We are going to describe the local structure of a germ, both from the holo-
morphic and topological points of view. By the above decomposition theo-
rem, we may restrict ourselves to the case of irreducible germs Let J be a
prime ideal of O,, = Ocn o and let A = V(J) be its zero variety. We set
Ik =9NC{z,..., 2} for each k =0,1,...,n.

(4.8) Proposition. There exist an integer d, a basis (e1,...,e,) of C* and
associated coordinates (z1,. . ., z,) with the following properties: §4 = {0} and
for every integer k = d+1,...,n there is a Weierstrass polynomial Py € Jy,
of the form
(4.9) Pu(eze) =24+ > ajn() 2 aje(2) € Opy,

1<j<sk
where a;(z") = O(|Z'|7). Moreover, the basis (e1,...,en) can be chosen ar-
bitrarily close to any preassigned basis (e, ...,e2).

Proof. By induction on n. If § = J,, = {0}, then d = n and there is nothing
to prove. Otherwise, select a non zero element g,, € J and a vector e,, such
that C > w — g, (we,) has minimum vanishing order s,,. This choice ex-

cludes at most the algebraic set gy(f”)(v) = 0, so e, can be taken arbitrarily

close to eV. Let (Z1,...,2n_1,2n) be the coordinates associated to the ba-
sis (e9,...,e2 1, e,). After multiplication by an invertible element, we may

assume that g, is a Weierstrass polynomial
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s _ s § : 2\ L Sn—J
Pn(Z,Zn) - Znn + a’j;n(’z) Znn J? Gj,n = O"—17
1<j<sn

and a;,(Z) = O(|Z]) by Remark 2.2. If J,,_1 = JNC{z} = {0} then d =
n — 1 and the construction is finished. Otherwise we apply the induction

hypothesis to the ideal J,,—1 C O, _1 in order to find a new basis (eq, ..., €,-1)
of Vect(e?,...,e2 ), associated coordinates (z1,...,2,_1) and Weierstrass
polynomials Py € Jx, d+ 1 < k <n — 1, as stated in the lemma. O

(4.10) Lemma. If w € C is a root of wt + awit+---+ay=0, a; €C,
then |w| < 2max |a;|*/7.

Proof. Otherwise |w| > 2|a;|*/7 for all j = 1,...,d and the given equation
—1=ay/w+ -+ ag/w? implies 1 <271 + ... 4279 4 contradiction. [

(4.11) Corollary. Set 2’ = (z1,...,24), 2" = (Za41,---+2n), and let A" in
C4, A" in C*=% be polydisks of center 0 and radii r',r"" > 0. Then the germ
(A,0) is contained in a cone |2"| < C|2'|, C = constant, and the restriction
of the projection map C* — C¢, (#/,2") — 2’ :

m: AN (A x A"y — A’

is proper if " is small enough and v’ < r"/C.

Proof. The polynomials Py(z1, ..., 2k—1; 2x) vanish on (4, 0). By Lemma 4.10
and (4.9), every point z € A sufficiently close to 0 satisfies

2| < Cr(|ze] + -+ |2w_1]), d+1<k<n,

thus |2”| < C|2'| and the Corollary follows. O

Since J4 = {0}, we have an injective ring morphism

(4.12) 04 = (C{Zl, ceey Zd} — On/g
(4.13) Proposition. O,,/d is a finite integral extension of Og.

Proof. Let f € O,. A division by P, yields f = P,q,, + R,, with a remainder
R, € Op_1[2n], deg, R, < s,. Further divisions of the coefficients of R,, by
Pn—ly Pn—Z etc ... yleld

Rk+1 :Pka+Rka Rk € Ok[Zk_|_1,...,Zn],

where degzj Ry, < sj for j > k. Hence

(414) f=Rq+ Y  Pugp=Rg mod (Pyyr,....,P,)C4
d+1<k<n
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and O,, /3 is finitely generated as an Oz-module by the family of monomials

QXd+1 an : . .
Zgh1 -e- 2t With aj <'sj. O

As § is prime, O, /d is an entire ring. We denote by f the class of any
germ f € O, in O,/d, by M4 and My the quotient fields of O, /d and
Oq4 respectively. Then M4 = My[Z441,- .-, 25 is a finite algebraic extension
of My. Let ¢ = [M4:My4] be its degree and let oy,...,0, be the embeddings
of M 4 over My in an algebraic closure M 4. Let us recall that a factorial ring
is integrally closed in its quotient field (Lang 1965, Chapter IX). Hence every
element of My which is integral over Q4 lies in fact in O4. By the primitive
element theorem, there exists a linear form u(z") = cgy12q441+- - +cnzn, cx €
C, such that M4 = Mg[a] ; in fact, u is of degree ¢ if and only if 014, ..., 040
are all distinct, and this excludes at most a finite number of vector subspaces
in the space C"~¢ of coefficients (cgy1,...,¢n). As @ € O, /d is integral over
the integrally closed ring Og4, the unitary irreducible polynomial W,, of u over
M, has coefficients in Oy :

Wu(2';T) =T+ Z aj(zl,...,zd)Tq_j, a; € Oq.
1<j<q

W, must be a Weierstrass polynomial, otherwise there would exist a facto-
rization W,, = W'Q in O4[T] with a Weierstrass polynomial W’ of degree
degW' < g = deg 4 and Q(0) # 0, hence W' (i) = 0, a contradiction. In the
same way, we see that Z411, ..., Z, have irreducible equations Wy (z"; Zx) = 0
where Wy, € O4[T] is a Weierstrass polynomial of degree = deg z; < g,
d+1<k<n.

(4.15) Lemma. Let 0(2') € Oq4 be the discriminant of W, (2';T). For every
element g of M4 which is integral over Oq4 (or equivalently over O, /J) we
have §g € O4[a].

Proof. We have §(2") = [[,_,(oxa—oja)? £ 0, and g € Mg = Mgy[a] can be

¢ j<k
written
g= Y bjil, bjeMg
0<j<qg-1
where by, . ..,bg_1 are the solutions of the linear system org = > b;(oxi)’ ;

the determinant (of Van der Monde type) is §1/2. It follows that §b; € M, are
polynomials in 019 and ou, thus 6b; is integral over O4. As Oy is integrally
closed, we must have 6b; € Oq4, hence dg € O4[u. a

In particular, there exist unique polynomials Bgy1, ..., B, € Og4[T] with
deg By, < g — 1, such that

(4.16) (2")zr = Bg(2' ;u(2"))  (mod J).
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Then we have
(4.17)  0(2" )Wy (2" Bi(2'; T)/6(2")) € ideal Wy (z"; T)Oq4[T] ;

indeed, the left-hand side is a polynomial in O4[T] and admits T = @ as a
root in O,,/d since By(2'; @)/6(2") = Z and Wy (2'; Zx) = 0.

(4.18) Lemma. Consider the ideal

G = (Wu(2';u(z")), (") 2k — Bi(2' ;u(2"))) C 4

and set m = max{q, (n — d)(q — 1)}. For every germ f € O, there exists a
unique polynomial R € O4[T|, degy R < q¢ — 1, such that

0(2)"f(2) = R(2";u(2"))  (mod ).
Moreover f € J implies R =0, hence §™J C G.

Proof. By (4.17) and a substitution of zj, we find §(2")TWy (2" ;2;) € G. The
analogue of formula (4.14) with Wy, in place of Py yields

f - Rd + Z Wkaa Rd € Od[zd+17 .. '7Zn]7
d+1<k<n

with deg, R4 < deg Wy < ¢, thus 6™ f = 0™ R4 mod §. We may therefore
replace f by R4 and assume that f € Og4[2441,- . -, 2n] is a polynomial of total
degree < (n—d)(g—1) < m. A substitution of z; by B (2" ;u(z"))/d(2’) yields
G € O4[T] such that

0(z")"f(2) = G(z su(z"))  mod (0(z")zk — Bi(z';u(z"))).

Finally, a division G = W,,Q + R gives the required polynomial R € O4[T].
The last statement is clear: if f € J satisfies §™(2") f(2z) = R(z;u(2")) mod
G for deg R < ¢, then R(2';4) =0, and as @ € O,,/J is of degree ¢, we must
have R = 0. The uniqueness of R is proved similarly. O

(4.19) Local parametrization theorem. Let J be a prime ideal of O,, and
let A=V (J). Assume that the coordinates

(2":2") = (21, -y 2d; 2dat1s - - Zn)

are chosen as above. Then the ring O, /J is a finite integral extension of Qg ;
let q be the degree of the extension and let §(2') € O4 be the discriminant
of the irreducible polynomial of a primitive element u(z") = >, 4ckzk- If
A" A" are polydisks of sufficiently small radii r', " and if v’ < "' /C with C
large, the projection map w : AN(A' x A") — A’ is a ramified covering with
q sheets, whose ramification locus is contained in S = {2’ € A’;6(2') = 0}.
This means that:
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a) the open subset Ag = AN ((A" \ S) x A") is a smooth d-dimensional
manifold, dense in AN (A" x A") ;

b) m: Ag — A’ S is a covering ;
c) the fibers m=1(2') have exactly q elements if 2’ ¢ S and at most q if 2’ € S.

Moreover, Ag is a connected covering of A'\.S, and AN(A'x A") is contained
in a cone |2"| < C|Z'| (see Fig. 1).

Fig. 1 Ramified covering from A to A" ¢ CP.

Proof. After a linear change in the coordinates z441, ..., 2,, We may assume
u(2") = zg41, s0 Wy, = Wyy1 and By (2 ;T) = 0(2')T. By Lemma 4.18, we
have

G = (Wd+1(z',zd+1) , 6(z’)zk — Bk(z’, zd+1))k2d~|—2 C 3, 5m3 C G.

We can thus find a polydisk A = A’ x A” of sufficiently small radii 7/, 7" such
that V(J) C V(9) C V(6™F) in A. As V(J) = Aand V()N A =8 x A",
this implies

ANACV(HHNAC(ANA)U(S xA").

In particular, the set Ag = AN ((A’\ S) x A”) lying above A’ \ S coincides
with V(§) N ((4” \ S) x A”), which is the set of points z € A parametrized
by the equations

(4.20) 6(2") #0, Way1(2',za41) =0,
' 2k = Bi(7', 2a41)/0(2'), d+2<k<n.

As 0(2') is the resultant of W41, and 0Wy41 /0T, we have

8Wd+1/8T(z’, Zd—i—l) 7é 0 on AS.
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The implicit function theorem shows that z441 is locally a holomorphic func-
tion of z’ on Ag, and the same is true for z = By(2, z411)/0(2'), k > d + 2.
Hence Ag is a smooth manifold, and for ' < r”/C' small, the projection
map 7 : Ag — A’ S is a proper local diffeomorphism; by (4.20) the fibers
7~1(2') have at most ¢ points corresponding to some of the ¢ roots w of
Wys1(2';w) = 0. Since A’ N S is connected (Remark 4.2), either Ag = ()
or the map 7 is a covering of constant sheet number ¢’ < ¢. However, if
w is a root of Wyi1(2/,w) = 0 with 2’ € A’ S and if we set z441 = w,
2z = Br(2',w)/d(%'), k > d+ 2, relation (4.17) shows that Wy (%', z;) = 0, in
particular |z;| = O(|2'|*/9) by Lemma 4.10. For 2’ small enough, the ¢ points
z = (Z/,2") defined in this way lie in A, thus ¢’ = ¢. Property b) and the
first parts of a) and c) follow. Now, we need the following lemma.

(4.21) Lemma. If § C O, is prime and A =V (J), then J40 = J.

Proof It is obvious that J4 o D J. Now, for any f € J4 0, Prop. 4.13 implies
that f satisfies in O,,/J an irreducible equation

fr4b(Z)f 4+ +b.(2)=0 (mod 7).

Then b,.(2") vanishes on (A, 0) and the first part of c) gives b, =0 on A’ S.
Hence b, = 0 and the irreducibility of the equation of f implies r = 1, so
f € 4, as desired. O

Proof of Theorem 4.19 (end). It only remains to prove that Ag is connected
and dense in A N A and that the fibers 7=1(2/), 2/ € S, have at most ¢
elements. Let Ag1,...,As n be the connected components of Ag. Then 7 :
Agj — A'\.S is a covering with ¢; sheets, g1 +- - -+gn = ¢. For every point
(" € A’ S, there exists a neighborhood U of ¢’ such that Ag; N 7=*(U)
is a disjoint union of graphs z" = g, x(2’) of analytic functions g, € O(U),

1 <k <g;.If \(2") is an arbitrary linear form in zg41, ..., 2, and 2’ € A'\S,
we set
Py ;(Z'T) = 11 (T-AE")= 11 (T—rogn(z)).
{z'"; (2",2"")EAS,; } 1<k<k;

This defines a polynomial in 7" with bounded analytic coefficients on A’ \ S.
These coefficients have analytic extensions to A’ (Remark 4.2), thus Py ; €
O(A")[T]. By construction, Py ;(2';A(z"”)) vanishes identically on Ag ;. Set

Pv= 1] Py f2) =6 Pz AE") 5

1<j<N

f vanishes on Ag; U...UAsn U (S x A”) D AN A. Lemma 4.21 shows
that J4 0 is prime; as § ¢ Ja,, we get P j (z’;)\(z”)) € Jy, for some j.
This is a contradiction if N > 2 and if A\ is chosen in such a way that A
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separates the g points 2!/ in each fiber 771(2)), for a sequence 2/, — 0 in
A’ S. Hence N = 1, Ag is connected, and for every A € (C"~4)* we
have Py (2/, A(2") € J(4,0)- By construction Py (2',A(2")) vanishes on Ag, so
it vanishes on Ag ; hence, for every 2’ € S, the fiber As N7~ 1(2') has at
most ¢ elements, otherwise selecting A which separates ¢ + 1 of these points
would yield g + 1 roots A(z”) of P\(2';T), a contradiction. Assume now
that Ag is not dense in AN A for arbitrarily small polydisks A. Then there
exists a sequence A 3 z, = (z,,,%)) — 0 such that 2/, € S and 2z, is not
in F,, := pr” (Zs N 7r_1(z,’/)). The continuity of the roots of the polynomial
Py\(2';T) as A"\ S 3 2/ — 2/, implies that the set of roots of P\(z),;T) is
A(F,). Select A such that A(z2))) ¢ A(F,) for all v. Then Px(z];A(2))) # 0
for every v and Py (z'; A(2")) ¢ J4,0, a contradiction. O

At this point, it should be observed that many of the above statements
completely fail in the case of real analytic sets. In R?, for example, the prime
ideal J = (2° + y*) defines an irreducible germ of curve (4,0) and there
is an injective integral extension of rings R{x} — R{x,y}/d of degree 4;
however, the projection of (A,0) on the first factor, (z,y) — x, has not a
constant sheet number near 0, and this number is not related to the degree
of the extension. Also, the prime ideal J = (22 +y?) has an associated variety
V(J) reduced to {0}, hence J4 0 = (z,y) is strictly larger than J, in contrast
with Lemma 4.21.

Let us return to the complex situation, which is much better behaved.
The result obtained in Lemma 4.21 can then be extended to non prime ideals
and we get the following important result:

(4.22) Hilbert’s Nullstellensatz. For every ideal J C O,

Jvgy,0= Va,

where \/J is the radical of J, i.e. the set of germs f € O,, such that some
power ¥ lies in §.

Proof. Set B = V (J). If f¥ € §, then f* vanishes on (B,0) and f € Igp.
Thus VJ C JB,0. Conversely, it is well known that V3 is the intersection of
all prime ideals P D J (Lang 1965, Chapter VI). For such an ideal (B,0) =
(V(H),O) D (V(fP),O), thus Jpo C Jy(p)o = P in view of Lemma 4.21.
Therefore Jp o C [p5g P = V/J and the Theorem is proved. dJ

In other words, if a germ (B,0) is defined by an arbitrary ideal § C O,
and if f € O,, vanishes on (B, 0), then some power f* lies in J.
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64.3. Regular and Singular Points. Dimension

The above powerful results enable us to investigate the structure of singular-
ities of an analytic set. We first give a few definitions.

(4.23) Definition. Let A C M be an analytic set and x € A. We say
that x € A is a regular point of A if AN §2 is a C-analytic submanifold of
2 for some neighborhood {2 of x. Otherwise x is said to be singular. The
corresponding subsets of A will be denoted respectively Areg and Aging.

It is clear from the definition that A, is an open subset of A (thus
Aging is closed), and that the connected components of A,., are C-analytic
submanifolds of M (non necessarily closed).

(4.24) Proposition. If (A, z) is irreducible, there exist arbitrarily small
neighborhoods 2 of x such that A.eg N {2 is dense and connected in AN (2.

Proof. Take £2 = A as in Th. 4.19. Then Ag C Aeg N2 C ANS2, where Ag is
connected and dense in AN {2 ; hence Aeg N {2 has the same properties. [

(4.25) Definition. The dimension of an irreducible germ of analytic set
(A, z) is defined by dim(A, z) = dim(Ayeg, ). If (A, ) has several irreducible
components (A, x), we set

dim(A, z) = max{dim(4;,x)}, codim(A,z)=n —dim(4,x).

(4.26) Proposition. Let (B,z) C (A, z) be germs of analytic sets. If (A, x)
is trreducible and (B, x) # (A, x), then dim(B, z) < dim(A, ) and BN {2 has
empty interior in AN 2 for all sufficiently small neighborhoods §2 of x.

Proof. We may assume z = 0, (4,0) C (C*,0) and (B, 0) irreducible. Then
Ja,o C Jp,o are prime ideals. When we choose suitable coordinates for the
ramified coverings, we may at each step select vectors e, e,_1, ... that work
simultaneously for A and B. If dim B = dim A, the process stops for both at
the same time, i.e. we get ramified coverings

m:AN(A"' x A"y — A", 7m:Bn(A"xA") — A

with ramification loci S4, Sp. Then BN ((A’ \ (SaUSg)) x A”) is an open
subset of the manifold Ag = AN ((A’ N S4) X A”), therefore BN Ag is an
analytic subset of Ag with non empty interior. The same conclusion would
hold if BN A had non empty interior in A N A. As Ag is connected, we get
BN Ag = Ag, and as BN A is closed in A we infer BN A D Ag = AN A,
hence (B,0) = (A,0), in contradiction with the hypothesis. O
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(4.27) Example: parametrization of curves. Suppose that (A,0) is an
irreducible germ of curve (dim(A4,0) = 1). If the disk A’ C C is chosen so
small that S = {0}, then Ag is a connected covering of A’ {0} with ¢ sheets.
Hence, there exists a covering isomorphism between 7 and the standard cov-
ering

CD A(r)~ {0} — A(r9) ~ {0}, t+—19, 9 =radius of A,

i.e. amap v: A(r) \ {0} — Ag such that 7 oy(t) = 2. This map extends
into a bijective holomorphic map v : A(r) — AN A with v(0) = 0. This
means that every irreducible germ of curve can be parametrized by a bijective
holomorphic map defined on a disk in C (see also Exercise 10.8).

64.4. Coherence of Ideal Sheaves

Let A be an analytic set in a complex manifold M. The sheaf of ideals J 4
is the subsheaf of Ops consisting of germs of holomorphic functions on M
which vanish on A. Its stalks are the ideals J4 , already considered; note
that Ja o = Opg if o ¢ A If x € A, we let O4, be the ring of germs of
functions on (A, z) which can be extended as germs of holomorphic functions
on (M, z). By definition, there is a surjective morphism Ops , — 04, whose
kernel is J 4 ,, thus

(4.28) OA,;E = OM,:E/jA,:Ey Vo € A,

i.e. 04 = (Op/J4)1a. Since J4, = Op o for © ¢ A, the quotient sheaf
Onrr/Jd4 is zero on M ~ A.

(4.29) Theorem (Cartan 1950). For any analytic set A C M, the sheaf of
tdeals J4 is a coherent analytic sheaf.

Proof. 1t is sufficient to prove the result when A is an analytic subset in a
neighborhood of 0 in C™. If (A4,0) is not irreducible, there exists a neigh-
borhood (2 such that AN = A; U...U Ay where A are analytic sets
in (2 and (Ag,0) is irreducible. We have J4no = (1J4,, so by Cor. 3.15 we
may assume that (A, 0) is irreducible. Then we can choose coordinates 2/, 2",
polydisks A’; A" and a primitive element u(z") = cqgi12441 + -+ -+ ¢pzy, such
that Th. 4.19 is valid. Since §(2") = [[;,(ont — 0j0)?, we see that §(2')
is in fact a polynomial in the ¢;’s with coefficients in O4. The same is true
for the coefficients of the polynomials W, (2" ; T) and Bg(z';T) which can be
expressed in terms of the elementary symmetric functions of the oxu’s. We
suppose that A’ is chosen small enough in order that all coefficients of these
Oalcds1s- - -5 cn) polynomials are in O(A’). Let d, € O(A’) be some non zero
coefficient appearing in 6™ = ) d0,c*. Also, let G1,...,Gy € O(A")[Z"] be
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the coefficients of all monomials ¢* appearing in the expansion of the func-
tions W, (2" ;u(z")) or 6(2")z, — Br (2" ;u(z")). Clearly, G1, ..., Gn vanish on
AN A. We contend that

(430) jA,w = {f S OM,&: ; 6O¢f € (Gl,xv .. 'aGN,m)}-

This implies that the sheaf J4 is the projection on the first factor of the
sheaf of relations R(d4,G1,...,GN) C OIX“, which is coherent by the Oka
theorem; Theorem 4.29 then follows.

We first prove that the inclusion J4 , D {...} holds in (4.30). In fact, if
dof € (G1,z,--.,GN,z), then f vanishes on A \ {d, = 0} in some neighbor-
hood of z. Since (AN A) \ {d, = 0} is dense in AN A, we conclude that
f S jA,m-

To prove the other inclusion J4, C {...}, we repeat the proof of
Lemma 4.18 with a few modifications. Let x € A be a fixed point. At z, the
irreducible polynomials W, (2" ;T) and Wy (%' ;T) of @ and Z; in Opr0/J40
split into

Wu(Z'5T) = Wy (23T — u(2") Que (73T — u(2")),
Wi (25 T) = Wi o (25T — ) Qo (25 T — 1),

where W, ,(2';T) and Wy ,(2";T) are Weierstrass polynomials in 7' and
Qu.z(2',0) # 0, Q z(2',0) # 0. For all 2 € A’, the roots of W, (2";T) are
the values u(z”) at all points 2 € AN 7~ 1(2'). As A is closed, any point
z € ANn~1(2') with 2’ near 2/ has to be in a small neighborhood of one
of the points y € AN 7~1(2’). Choose cgy1,- .., c, such that the linear form
u(z2'") separates all points in the fiber A N 7~!(z'). Then, for a root u(z")
of Wy » (z’ T — u(x”)), the point z must be in a neighborhood of y = =,
otherwise u(z") would be near u(y”) # u(z") and the Weierstrass polynomial
Wy (2" ;T) would have a root away from 0, in contradiction with (4.10).
Conversely, if z € AN n~1(2') is near z, then Q, (2" ;u(z") — u(z")) # 0
and u(2") is a root of Wy 5 (2’ ;T — u(z")). From this, we infer that every
polynomial P(z';T) € Oas 4 [T] such that P(z";u(z")) = 0 on (A4,z) is a
multiple of W, ; (z’ T — u(w”)), because the roots of the latter polynomial
are simple for 2’ in the dense set (A’ \ S, z). In particular deg P < deg W, »
implies P = 0 and

52V Wi (25 By s u(2")) /8() — )

is a multiple of W, (z’ T — u(w”)). If we replace Wy, Wi by Wy, Wi 4
respectively, the proof of Lemma 4.18 shows that for every f € Opr, there is
a polynomial R € Oas /[T of degree deg R < deg W, , such that
6(2")™f(z) = R(2";u(2")) modulo the ideal
(Wao (2 5u(z") —u(z")), 6(")z — Bi(2';u(z")) ),
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and f € J4 , implies R = 0. Since W, , differs from W,, only by an invertible
element in O, we conclude that

(Zaaca)u,x = "I 40 C (G1gr.- ., Gra)
This is true for a dense open set of coefficients c441, ..., ¢y, therefore

60dae C (Grg...,Gng) forall o 0

(4.31) Theorem. A, is an analytic subset of A.

Proof. The statement is local. Assume first that (A, 0) is an irreducible germ
in C"*. Let g1,...,g9n be generators of the sheaf J4 on a neighborhood (2 of
0. Set d = dim A. In a neighborhood of every point z € A, N §2, A can

be defined by holomorphic equations u1(z) = ... = u,_q(z) = 0 such that
duy,...,du,_gq are linearly independant. As wui,...,u,_q are generated by
gi,---,9n, one can extract a subfamily g;,,...,g;,_, that has at least one

non zero Jacobian determinant of rank n — d at x. Therefore Ag,e N 2 is
defined by the equations

99;

det ( Do

) ey =0, JC{LiN}, K {Luwonh [T =|K|=n—d.
keK

Assume now that (A,0) = (J(A;,0) with (A;,0) irreducible. The germ of an
analytic set at a regular point is irreducible, thus every point which belongs
simultaneously to at least two components is singular. Hence

(Asinga 0) - U(Al,sing7 0) U U (Ak N Ala 0)7
k£l

and Agng is analytic. O

Now, we give a characterization of regular points in terms of a simple
algebraic property of the ring 04 .

(4.32) Proposition. Let (A,z) be a germ of analytic set of dimension d
and let my 5 C O 4 be the maximal ideal of functions that vanish at x. Then
my , cannot have less than d generators and ma , has d generators if and
only if © is a reqular point.

Proof. If A C C” is a d-dimensional submanifold in a neighborhood of z, there
are local coordinates centered at x such that A is given by the equations
Zdg+1 = ... = zp near z = 0. Then 04, ~ O4 and my , is generated by
Z1,...,24. Conversely, assume that my4 , has s generators g1(z),...,gs(2) in
Oaz = Ocn 5/J4 4. Letting 2 = 0 for simplicity, we can write
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zj = Z ujk(2)g(2) + fi(2),  ujk € On, fj €Ta0, 1 <7 <.
1<k<s

Then we find dz; =) ¢jx(0)dgx(0) + df;(0), so that the rank of the system
of differentials (dfj(()))1 <j<n is at least equal to n — s. Assume for example
that df1(0),...,dfn_s(0) are linearly independent. By the implicit function

theorem, the equations fi(z) = ... = fh—s(2) = 0 define a germ of sub-
manifold of dimension s containing (A4, 0), thus s > d and (A, 0) equals this
submanifold if s = d. O

(4.33) Corollary. Let A C M be an analytic set of pure dimension d and
let B C A be an analytic subset of codimension > p in A. Then, as an O4 ;-
module, the ideal g, cannot be generated by less than p generators at any
point © € B, and by less than p+ 1 generators at any point * € Breg N Aging.-

Proof. Suppose that Ip , admits s-generators (g1, ...,gs) at . By coherence
of Jp these germs also generate Jp in a neighborhood of z, so we may assume
that = is a regular point of B. Then there are local coordinates (z1,. .., 2y)
on M centered at x such that (B, z) is defined by 241 = ... = 2z, = 0, where
k = dim(B, z). Then the maximal ideal mp , = my ,/Ip . is generated by
Z1,..., 2k, 80 that m4 , is generated by (z1,..., 2k, 91,...,9s). By Prop. 4.32,
we get K+ s > d, thus s > d — k > p, and we have strict inequalities when
17€<Aﬁng. ]

§5. Complex Spaces

Much in the same way a manifold is constructed by piecing together open
patches isomorphic to open sets in a vector space, a complex space is obtained
by gluing together open patches isomorphic to analytic subsets. The general
concept of analytic morphism (or holomorphic map between analytic sets) is
first needed.

65.1. Morphisms and Comorphisms

Let A C 2 Cc C" and B C ' C CP be analytic sets. A morphism from
A to B is by definition a map F' : A — B such that for every z € A
there is a neighborhood U of x and a holomorphic map F :U — C? such
that F tanu = Franu- Equivalently, such a morphism can be defined as a
continuous map F': A — B such that for all € A and g € Op p(,) we
have go F' € O4 ;. The induced ring morphism

(5.1) Fy : Oppad29+-—gol €04,

T

is called the comorphism of F' at point x.
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§5.1. Definition of Complex Spaces

(5.2) Definition. A complex space X is a locally compact Hausdorff space,
countable at infinity, together with a sheaf Ox of continuous functions on X,
such that there exists an open covering (Uyx) of X and for each A a homeo-
morphism Fy : Uy — Ay onto an analytic set Ay C 2y C C™ such that
the comorphism FY : Oa, — Ox v, @s an isomorphism of sheaves of rings.
Ox s called the structure sheaf of X.

By definition a complex space X is locally isomorphic to an analytic set,
so the concepts of holomorphic function on X, of analytic subset, of analytic
morphism, etc ... are meaningful. If X is a complex space, Th. 4.31 implies
that Xing is an analytic subset of X.

(5.3) Theorem and definition. For every complex space X, the set Xieg
1s a dense open subset of X, and consists of a disjoint union of connected
complex manifolds X/,. Let X, be the closure of X/, in X. Then (X4) is a
locally finite family of analytic subsets of X, and X = |JX,. The sets X,
are called the global irreducible components of X .

Observe that the germ at a given point of a global irreducible component
can be reducible, as shows the example of the cubic curve I' : y? = z?(1+x) ;
the germ (I',0) has two analytic branches y = £z /1 + x, however I" \ {0}
is easily seen to be a connected smooth Riemann surface (the real points of
v corresponding to —1 < x < 0 form a path connecting the two branches).
This example shows that the notion of global irreducible component is quite
different from the notion of local irreducible component introduced in (4.4).

Fig. 2 The irreducible curve y> = z*(1 + z) in C?.
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Proof. By definition of X.g, the connected components X/, are (disjoint)

complex manifolds. Let us show that the germ of X, = 7; at any point
x € X is analytic. We may assume that (X, z) is a germ of analytic set A in
an open subset of C". Let (A;,z), 1 <1 < N, be the irreducible components
of this germ and U a neighborhood of x such that X N U = (JA; NU.
Let £2; C U be a neighborhood of x such that A; e N 2 is connected and
dense in A; N £2; (Prop. 4.24). Then Aj := X;ee N A; N 2 equals (A reg N
)~ Uk# Ajreg N 21N Ay, However, A g M 27N Ay, is an analytic subset of
Aj regNI2y, distinet from Aj e N2, otherwise A; eq M2 would be contained in
Ay, thus (A;, z) C (Ag, z) by density. Remark 4.2 implies that A] is connected
and dense in Ajeq N £2;, hence in A; N £2;. Set 2 = () (2 and let (X4)aes be
the family of global components which meet {2 (i.e. such that X/ N2 #0).
As Xieg N2 =JA; N2, each X, & € J, meets at least one set A;, and as
A} C X,eg is connected, we have in fact A; C X/,. It follows that there exists
a partition (La)acs of {1,..., N} such that X, N2 =J,c, AN, ae .
Hence J is finite, card J < N, and

XenR=X,n0=JA4ne=JA4nn
leL, leL,
is analytic for all « € J. ([l
(5.4) Corollary. If A, B are analytic subsets in a complex space X, then

the closure A~ B is an analytic subset, consisting of the union of all global
irreducible components Ay of A which are not contained in B.

Proof. Let C = |J Ay be the union of these components. Since (A)) is locally
finite, C' is analytic. Clearly AN\ B = C ~ B = J A \ B. The regular part
A’ of each A} is a connected manifold and A} N B is a proper analytic subset
(otherwise A} C B would imply Ay C B). Thus A} \ (4} N B) is dense in
A', which is dense in Ay, s0o ANB=JA\=C. O

(5.5) Theorem. For any family (Ay) of analytic sets in a complex space X,
the intersection A = [ Ax is an analytic subset of X. Moreover, the inter-
section s stationary on every compact subset of X.

Proof. 1t is sufficient to prove the last statement, namely that every point
x € X has a neighborhood (2 such that AN (2 is already obtained as a finite
intersection. However, since Ox , is Noetherian, the family of germs of finite
intersections has a minimum element (B, z), B = []A);, 1 <j < N. Let B
be the union of the global irreducible components B, of B which contain the
point z ; clearly (B, z) = (B ,x). For any set Ay in the family, the minimality
of B implies (B,z) C (Ax, ). Let B/, be the regular part of any global

irreducible component B, of B. Then B/ N Ay is a closed analytic subset of
B!, containing a non empty open subset (the intersection of B!, with some
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neighborhood of z), so we must have B}, N A\ = B,,. Hence B, = Fla C Ay
for all B, C B and all Ay, thus B C A = () Ax. We infer

(B,z) = (B,z) C (A,z) C (B, x),

and the proof is complete. O

As a consequence of these general results, it is not difficult to show that
a complex space always admits a (locally finite) stratification such that the
strata are smooth manifolds.

(5.6) Proposition. Let X be a complex space. Then there is a locally sta-
tionary increasing sequence of analytic subsets Y, C X, k € N, such that Y
15 a discrete set and such that Yy \ Yi_1 is a smooth k-dimensional complex
manifold for k > 1. Such a sequence is called a stratification of X, and the
sets Yy \ Yi_1 are called the strata (the strata may of course be empty for
some indices k < dim X).

Proof. Let F be the family of irreducible analytic subsets Z C X which can
be obtained through a finite sequence of steps of the following types:

a) Z is an irreducible component of X ;

/

b) Z is an irreducible component of the singular set Z,, of some member

7' e F;
¢) Z is an irreducible component of some finite intersection of sets Z; € F.

Since X has locally finite dimension and since steps b) or ¢) decrease the
dimension of our sets Z, it is clear that J is a locally finite family of analytic
sets in X. Let Y be the union of all sets Z € F of dimension < k. It is easily
seen that JY, = X and that the irreducible components of (Yj)ing are
contained in Y;_; (these components are either intersections of components
Zj C Yy, or parts of the singular set of some component Z C Y%, so there are
in either case obtained by step b) or ¢) above). Hence Yj \ Yj;_1 is a smooth
manifold and it is of course k-dimensional, because the components of Y} of
dimension < k are also contained in Yj_; by definition.

(5.7) Theorem. Let X be an irreducible complex space. Then every non
constant holomorphic function f on X defines an open map f: X — C.

Proof. We show that the image f({2) of any neighborhood (2 of z € X con-
tains a neighborhood of f(x). Let (X, z) be an irreducible component of the
germ (X, z) (embedded in C") and A = A" x A” C {2 a polydisk such that
the projection 7 : X;N A — A’ is a ramified covering. The function f is non
constant on the dense open manifold X,es, so we may select a complex line
L c A’ through 0, not contained in the ramification locus of m, such that f
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is non constant on the one dimensional germ 7~ !(L). Therefore we can find
a germ of curve

(C,0) 5t 7(t) € (X, z)

such that f o+ is non constant. This implies that the image of every neigh-
borhood of 0 € C by f o~ already contains a neighborhood of f(x). O

(5.8) Corollary. If X is a compact irreducible analytic space, then every
holomorphic function f € O(X) is constant.

In fact, if f € O(X) was non constant, f(X) would be compact and also
open in C by Th. 5.7, a contradiction. This result implies immediately the
following consequence.

(5.9) Theorem. Let X be a complex space such that the global holomorphic
functions in O(X) separate the points of X. Then every compact analytic
subset A of X is finite.

Proof. A has a finite number of irreducible components A, which are also
compact. Every function f € O(X) is constant on Ay, so Ay must be reduced
to a single point. ([l

§5.2. Coherent Sheaves over Complex Spaces

Let X be a complex space and Ox its structure sheaf. Locally, X can be
identified to an analytic set A in an open set 2 C C", and we have Ox =
Og/J4. Thus Ox is coherent over the sheaf of rings Og,. It follows immediately
that Ox is coherent over itself. Let 8 be a Ox-module. If 8 denotes the
extension of 8;4 to {2 obtained by setting §; = 0 for x € 2\ A, then 8 is a
Ogn-module, and it is easily seen that 8;4 is coherent over Ox;4 if and only
if 8 is coherent over Og. If Y is an analytic subset of X, then Y is locally
given by an analytic subset B of A and the sheaf of ideals of Y in Ox is the
quotient Jy = Jp/J4 ; hence Jy is coherent. Let us mention the following
important property of supports.

(5.10) Theorem. If § is a coherent Ox-module, the support of S, defined
as Supp 8 = {z € X ; 8; # 0} is an analytic subset of X.

Proof. The result is local, thus after extending 8 by 0, we may as well assume
that X is an open subset 2 C C". By (3.12), there is an exact sequence of
sheaves

ng gogq L)S[U — 0
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in a neighborhood U of any point. If G : O%? — 0% is surjective it is
clear that the linear map G(z) : C? — C? must be surjective; conversely, if
G(x) is surjective, there is a g-dimensional subspace E C CP on which the
restriction of G(z) is a bijection onto C? ; then Gg : Oy ®c E — qu is
bijective near x and G is surjective. The support of 8 is thus equal to the
set of points x € U such that all minors of G(z) of order ¢ vanish. O

§6. Analytic Cycles and Meromorphic Functions

§6.1. Complete Intersections

Our goal is to study in more details the dimension of a subspace given by a
set of equations. The following proposition is our starting point.

(6.1) Proposition. Let X be a complex space of pure dimension p and A an
analytic subset of X with codimx A > 2. Then every function f € O(X \ A)
is locally bounded near A.

Proof. The statement is local on X, so we may assume that X is an irreducible
germ of analytic set in (C",0). Let (Ag,0) be the irreducible components
of (A,0). By a reasoning analogous to that of Prop. 4.26, we can choose

coordinates (z1,...,2,) on C" such that all projections
iz (21,...,2p), p=dimX,
T2+ (21,...,2p, ), Pr=dimAyg,

define ramified coverings 7 : X N A — A, 1, : Az, N A — A}, By con-
struction m(Ag) C A’ is contained in the set By defined by some Weierstrass
polynomials in the variables z,, 1,...,2, and codimar By, = p — py, > 2. Let
S be the ramification locus of 7 and B = | J By. We have 7(AN A) C B. For
ze A" (SUB), we let

o (2') = elementary symmetric function of degree k in f(2’, 2]),

where (2, /) are the ¢ points of X projecting on z’. Then oy, is holomorphic
on A’ (S U B) and locally bounded near every point of S \ B, thus oy,
extends holomorphically to A’ . B by Remark 4.2. Since codim B > 2, o
extends to A’ by Cor. 1.4.5. Now, f satisfies f¢—o1 7" +...+(=1)%0, = 0,
thus f is locally bounded on X N A. O

(6.2) Theorem. Let X be an irreducible complex space and f € O(X), f # 0.
Then f=1(0) is empty or of pure dimension dim X — 1.

Proof. Let A = f=1(0). By Prop. 4.26, we know that dim A < dim X — 1.
If A had an irreducible branch A; of dimension < dim X — 2, then in virtue
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of Prop. 6.1 the function 1/f would be bounded in a neighborhood of A; \

Ukz; Ak, a contradiction. O
(6.3) Corollary. If fi,..., fp are holomorphic functions on an irreducible
complex space X, then all irreducible components of f{*(0)N...N fp_l(O)
have codimension > p. O

(6.4) Definition. Let X be a complex space of pure dimension n and A an
analytic subset of X of pure dimension. Then A is said to be a local (set

theoretic) complete intersection in X if every point of A has a neighborhood
{2 such that

AN ={zx e 2; filz)=...= fp(x) =0}

with exactly p = codim A functions f; € O(§2).

(6.5) Remark. As a converse to Th. 6.2, one may ask whether every hy-
persurface A in X is locally defined by a single equation f = 0. In gen-
eral the answer is negative. A simple counterexample for dim X = 3 is ob-
tained with the singular quadric X = {2120 + 2324 = 0} C C* and the plane
A ={z = 23 =0} C X. Then A cannot be defined by a single equation
f = 0 near the origin, otherwise the plane B = {z2 = z4 = 0} would be such
that

f~1(0)NnB=AnB = {0},

in contradiction with Th. 6.2 (also, by Exercise 10.11, we would get the
inequality codimy A N B < 2). However, the answer is positive when X is a
manifold:

(6.6) Theorem. Let M be a complex manifold with dimc M = n, let (A, x)
be an analytic germ of pure dimension n — 1 and let A;, 1 < 5 < N, be its
wrreducible components.

a) The ideal of (A, x) is a principal ideal 4 , = (g) where g is a product of
irreducible germs g; such that J4; » = (g;).

b) For every f € Opry such that f~1(0) C (A, x), there is a unique decompo-
sition f =wugy™ ... gy~ where u is an invertible germ and m; is the order
of vanishing of f at any point z € Aj reg \ Uk# Ag.

Proof. a) In a suitable local coordinate system centered at x, the projection
m: C" — C"~ ! realizes all A; as ramified coverings

T:A;NA— A C C"~1,  ramification locus = S; c A

The function
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gi(Z', zn) = H (2, —wyp), 2 €A'NS;

weA;NT—1(2")

extends into a holomorphic function in Oa/[z,] and is irreducible at x. Set
g =1[9j € J44. For any f € J4 ., the Weierstrass division theorem yields
f =9Q+ R with R € O,,_1[2,] and deg R < deg g. As R(%, z,) vanishes
when z, is equal to w,, for each point w € AN 7~1(2), R has exactly deg g
roots when 2’ € A’ (US;UUn(A4;NAg)), so R =0. Hence J4,, = (g) and
similarly J4; » = (g;). Since J4; is coherent, g; is also a generator of Ju; .
for z near x and we infer that g; has order 1 at any regular point z € A req.

b) As Onp, is factorial, any f € O, can be written f = wgi™ ... g~
where w is either invertible or a product of irreducible elements distinct from
the g;’s. In the latter case the hypersurface u~1(0) cannot be contained in
(A, x), otherwise it would be a union of some of the components A; and u
would be divisible by some g;. This proves b). O

(6.7) Definition. Let X be an complex space of pure dimension n.

a) An analytic q-cycle Z on X is a formal linear combination ) \; A; where
(A;) is a locally finite family of irreducible analytic sets of dimension q
in X and \j € Z. The support of Z is |Z| = UAJ_#O Aj. The group of all
q-cycles on X is denoted Cycl?(X). Effective q-cycles are elements of the
subset Cycli(X) of cycles such that all coefficients A\; are > 0 ; rational,
real cycles are cycles with coefficients A; € Q, R.

b) An analytic (n — 1)-cycle is called a (Weil) divisor, and we set
Div(X) = Cycl® !(X).

c) Assume that dim Xgng < n — 2. If f € O(X) does not vanish identically
on any irreducible component of X, we associate to f a divisor

div(f) => m;A; € Divy(X)

in the following way: the components A; are the irreducible components of
f71(0) and the coefficient m; is the vanishing order of f at every regular
point in Xpeg N Ajreg Uk# Ap. It 1s clear that we have

div(fg) = div(f) + div(g).

d) A Cartier divisor is a divisor D = Y X\;jA; that is equal locally to a Z-
linear combination of divisors of the form div(f).

It is easy to check that the collection of abelian groups Cycl?(U) over all
open sets U C X, together with the obvious restriction morphisms, satisfies
axioms (1.4) of sheaves; observe however that the restriction of an irreducible
component A; to a smaller open set may subdivide in several components.
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Hence we obtain sheaves of abelian groups Cycl? and Div = Cycl® ™! on X.
The stalk Cycl? is the free abelian group generated by the set of irreducible
germs of g-dimensional analytic sets at the point x. These sheaves carry
a natural partial ordering determined by the subsheaf of positive elements
Cycl?. We define the sup and inf of two analytic cycles Z = Y  A\jA;, Z' =

2 pjA;j by
(68) Sup{Za Z/} = Z Sup{)‘ja /l’j} Ajv lnf{Zv Z/} = Z inf{)‘ja /l’j} Aj ;

it is clear that these operations are compatible with restrictions, i.e. they are
defined as sheaf operations.

(6.9) Remark. When X is a manifold, Th. 6.6 shows that every effective
Z-~divisor is locally the divisor of a holomorphic function; thus, for manifolds,
the concepts of Weil and Cartier divisors coincide. This is not always the
case in general: in Example 6.5, one can show that A is not a Cartier divisor
(exercise 10.7).

§6.2. Divisors and Meromorphic Functions

Let X be a complex space. For z € X, let Mx , be the ring of quotients of
Ox gz, i.e. the set of formal quotients g/h, g,h € Ox ,, where h is not a zero
divisor in Ox 5, with the identification g/h = ¢'/h’ if gh’ = g’h. We consider
the disjoint union

(6.10) Mx = [] Mx.

rzeX

with the topology in which the open sets open sets are unions of sets of the
type {Gz/Hy; x € V} C Mx where V is open in X and G, H € Ox(V).
Then Mx is a sheaf over X, and the sections of Mx over an open set U
are called meromorphic functions on U. By definition, these sections can be
represented locally as quotients of holomorphic functions, but there need not
exist such a global representation on U.

A point x € X is called a pole of a meromorphic function f on X if
fz & Oxg. Clearly, the set Py of poles of f is a closed subset of X with
empty interior: if f = g/h on U, then h # 0 on any irreducible component and
PsnU C h=1(0). For = ¢ Py, one can speak of the value f(z). If the restriction
of f to Xieg \ Py does not vanish identically on any irreducible component of
(X, z), then 1/f is a meromorphic function in a neighborhood of x ; the set
of poles of 1/f will be denoted Z¢ and called the zero set of f. If f vanishes
on some connected open subset of X,e; \ Py, then f vanishes identically
(outside Py) on the global irreducible component X, containing this set; we
agree that these components X, are contained in Zy. For every point z in
the complement of Z; N Py, we have either f, € Ox , or (1/f), € Ox 4, thus



144 Lnapter 11. vonerent sneaves and AnalytlC spaces

f defines a holomorphic map X \ (Zy N P) — CU{oc} = P! with values in
the projective line. In general, no value (finite or infinite) can be assigned to
f at a point z € Z; N Py, as shows the example of the function f(z) = 22/
in C%. The set Z; N Py is called the indeterminacy set of f.

(6.11) Theorem. For every meromorphic function f on X, the sets Py, Zy
and the indeterminacy set Zy N Py are analytic subsets.

Proof. Let J, be the ideal of germs u € Ox , such that uf, € Ox ;. Let us
write f = g/h on a small open set U. Then J; appears as the projection on
the first factor of the sheaf of relations R(g,h) C Oy x Oy, so J is a coherent
sheaf of ideals. Now

Pr={z € X;Jy=0xs} = Supp Ox/J,

thus Py is analytic by Th. 5.10. Similarly, the projection of R(g,h) on the
second factor defines a sheaf of ideals J’ such that Z; = Supp Ox /' O

When X has pure dimension n and dim Xgne < n — 2, Def. 6.7 c) can be
extended to meromorphic functions: if f = g/h locally, we set

(6.12) div(f) = div(g) — div(h).

By 6.7 ¢), we immediately see that this definition does not depend on the
choice of the local representant g/h. Furthermore, Cartier divisors are pre-
cisely those divisors which are associated locally to meromorphic functions.

Assume from now on that M is a connected n-dimensional complex man-
ifold. Then, for every point x € M, the ring O, ~ O, is factorial. This
property makes the study of meromorphic functions much easier.

(6.13) Theorem. Let f be a non zero meromorphic function on a manifold
M, dim¢ M = n. Then the sets Zg, Py are purely (n — 1)-dimensional, and
the indeterminacy set Zy N Py is purely (n — 2)-dimensional.

Proof. For every point a € M, the germ f, can be written g,/h, where
9a>ha € Opr,e are relatively prime holomorphic germs. By Th. 1.12, the
germs g,, h, are still relatively prime for z in a neighborhood U of a. Thus
the ideal J associated to f coincides with (h) on U, and we have

PynU =Supp Oy/(h) =h~1(0), Z;nU =g7}(0).

Th. 6.2 implies our contentions: if g and h, are the irreducible components
of g, h, then Zy N Py = Jgy '(0) N h;*(0) is (n — 2)-dimensional. As we
will see in the next section, Th. 6.13 does not hold on an arbitrary complex
space. [
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Let (A;), resp. (B;), be the global irreducible components of Z¢, resp.
Py. In a neighborhood Vj of the (n — 1)-dimensional analytic set

Af=A;~ (Pru ] A
Kt
f is holomorphic and V"N f~1(0) = A}. As A’ . is connected, we must have
div(fiv;) = m A} for some constant multiplicity m; equal to the vanishing

order of f along A;',reg' Similarly, 1/ f is holomorphic in a neighborhood W;
of

Bj=B;~ (Z;u | Br)
ki
and we have div(fy) = —p; B} where p; is the vanishing order of 1/f along
B 1eg- At apoint x € M the germs A; , and B; ; may subdivide in irreducible

local components A; \ , and Bj x . If g; » and h; \ are local generators of
the corresponding ideals, we may a priori write

fz =ug/h where g:Hg;tLj\"x, h:Hhi)y

and where v is invertible. Then necessarily m; x = m; and p; x = p; for all
A, and we see that the global divisor of f on M is

(614) le(f) = ijAj — ijBj.

Let us denote by M* the multiplicative sheaf of germs of non zero mero-
morphic functions, and by O* the sheaf of germs of invertible holomorphic
functions. Then we have an exact sequence of sheaves

(6.15) 1 — 0* — M* % Div — 0.

Indeed, the surjectivity of div is a consequence of Th. 6.6. Moreover, any
meromorphic function that has a positive divisor must be holomorphic by the
fact that O, is factorial. Hence a meromorphic function f with div(f) =0 is
an invertible holomorphic function.

§7. Normal Spaces and Normalization

67.1. Weakly Holomorphic Functions

The goal of this section is to show that the singularities of X can be studied
by enlarging the structure sheaf Ox into a sheaf Ox of so-called weakly
holomorphic functions.
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(7.1) Definition. Let X be a complex space. A weakly holomorphic function
J on X s a holomorphic function on X,ee such that every point of Xging has
a neighborhood V' for which f is bounded on X,ee NV. We denote by éX,m
the ring of germs of weakly holomorphic functions over neighborhoods of x
and Ox the associated sheaf.

Clearly, @X@ is a ring containing Ox ;. If (X;,z) are the irreducible
components of (X, x), there is a fundamental system of neighborhoods V' of
x such that X, NV is a disjoint union of connected open sets

Xjreg NV N U XN Xjreg NV
ki#j

which are dense in X ¢ N V. Therefore any bounded holomorphic function
on Xpee NV extends to each component X .o NV and we see that

éX,:v - @ G)Xj,:v-

The first important fact is that weakly holomorphic functions are always
meromorphic and possess “universal denominators”.

(7.2) Theorem. For every point v € X, there is a neighborhood V' of x and
h € Ox(V) such that h=*(0) is nowhere dense in V and hyOx, C Ox,, for
ally € V ; such a function h is called a universal denominator on V. In
particular Ox is contained in the ring Mx of meromorphic functions.

Proof. First assume that (X, ) is irreducible and that we have a ramified
covering m : X N A — A’ with ramification locus S. We claim that the
discriminant 0(z") of a primitive element u(z"”) = cgr12441 + -+ + Cnzn 18
a universal denominator on X N A. To see this, we imitate the proof of
Lemma 4.15. Let f € Ox 4, y € X N A. Then we solve the equation

F)= ) b2 u(z"y

0<j<gq

in a neighborhood of y. For 2/ € A’ S, let us denote by (2, 2]), 1 < a <q,
the points in the fiber X N 7~1(2'). Among these, only ¢’ are close to y,
where ¢’ is the sum of the sheet numbers of the irreducible components of
(X,y) by the projection 7. The other points (2, 2)), say ¢’ < a < ¢, are
in neighborhoods of the points of 7=*(y’) \ {y}. We take (b;(2")) to be the
solution of the linear system

Z bj(z/)'u,(zg)j — {f(zlvzg) for 1 <a< q’,

. 0 for ¢ < a <n.
0<j<q

The solutions b;(2’) are holomorphic on A’\.S near y'. Since the determinant
is 6(2')1/2, we see that 6b; is bounded, thus §b; € Oar s and 6, f € Ox,,,.
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Now, assume that (X,z) C (C",0) has irreducible components (X;,x).
We can find for each j a neighborhood §2; of 0 in C" and a function §; €
O, (£2;) which is a universal denominator on X; N §2;. After adding to §; a
function which is identically zero on (X;,x) and non zero on (X, ), k # 7j,
we may assume that 63-_1(0) N X N 2 is nowhere dense in Xj N {2 for all j
and k and some small £2 C () §2;. Then § =[], is a universal denominator
on each component X; N §2. For some possibly smaller {2, select a function
vj € 0,(£2) such that v; vanishes identically on [J;; Xk N {2 and vj_l(O)
is nowhere dense in X; N {2, and set h = 0 ) vg. For any germ f € Ox,,
y € X N {2, there is a germ g; € Op, with f = g; on (X;,y). We have
h = dv; on X; N2, so h=1(0) is nowhere dense in X N 2 and

hf =vidf =vjg; = kagk on each (Xj,y).
Since Y vipgr € On,y, We get h(F)ny C Ox,y. O

(7.3) Theorem. If (X, x) is irreducible, @X@ is the integral closure of Ox ,
in its quotient field Mx . Moreover, every germ f € Ox , admits a limit

lim  f(2).

Xiegdz—1

Observe that Ox , is an entire ring, so the ring of quotients Mx , is
actually a field. A simple illustration of the theorem is obtained with the
irreducible germ of curve X : 22 = 22 in (C?,0). Then X can be parametrized
by z1 = t?, 22 = t3,¢t € C, and Ox o = C{21, 22} /(23 —23) = C{t?, 3} consists
of all convergent series Y a,t"™ with a; = 0. The function z9/2z; = t is weakly
holomorphic on X and satisfies the integral equation t2 — 21 = 0. Here we
have Ox o = C{t}.

Proof. a) Let f = g/h be an element in Mx , satisfying an integral equation
fm+af™ '+ +an=0, ar€O0x,.

Set A = h~1(0). Then f is holomorphic on X \ A near x, and Lemma 4.10
shows that f is bounded on a neighborhood of z. By Remark 4.2, f can be
extended as a holomorphic function on X, in a neighborhood of z, thus

f € OX,:E'

b) Let f € @X,m and let 7 : X N A — A’ be a ramified covering in a
neighborhood of x, with ramification locus S. As in the proof of Th. 6.1, f
satisfies an equation

Jr=ouf T e (10, =0, oy € O(4)
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indeed the elementary symmetric functions oy (2’) are holomorphic on A’ S
and bounded, so they extend holomorphically to A’. Hence Ox , is integral

over Ox , and we already know that @X@ C Mx z.

c¢) Finally, the cluster set [y 5, f(Xreg N'V) is connected, because there is a
fundamental system of neighborhoods V' of  such that X,.; NV is connected,
and any intersection of a decreasing sequence of compact connected sets is
connected. However the limit set is contained in the finite set of roots of
equation b) at point 2’ € A’, so it must be reduced to one element. O

§7.2. Normal Spaces

Normal spaces are spaces for which all weakly holomorphic functions are
actually holomorphic. These spaces will be seen later to have “simpler” sin-
gularities than general analytic spaces.

(7.4) Definition. A complex space X is said to be normal at a point v if
(X, x) is irreducible and Ox 5 = Ox 5, that is, Ox , is integrally closed in its
field of quotients. The set of normal (resp. non-normal) points will be denoted
Xnorm (resp. Xnn). The space X itself is said to be normal if X is normal
at every point.

Observe that any regular point = is normal: in fact Ox , ~ O, is then
factorial, hence integrally closed. Therefore X, , C Xging.

(7.5) Theorem. The non-normal set Xy, is an analytic subset of X. In
particular, X,orm S open in X.

Proof. We give here a beautifully simple proof due to (Grauert and Remmert
1984). Let h be a universal denominator on a neighborhood V' of a given point
and let J = \/hOx be the sheaf of ideals of h=1(0) by Hilbert’s Nullstellensatz.
Finally, let ¥ = homg(J,J) be the sheaf of Ox-endomorphisms of J. Since J
is coherent, so is F (cf. Exercise 10.7). Clearly, the homotheties of J give an
injection Ox C F over V. We claim that there is a natural injection & C
Ox. In fact, any endomorphism of J yields by restriction a homomorphism
hOx — Ox, and by Ox-linearity such a homomorphism is obtained by
multiplication by an element in h~'Ox. Thus F € A~ 'Ox C Mx. Since
each stalk J, is a finite Ox ,-module containing non-zero divisors, it follows
that that any meromorphic germ f such that fJ, C J; is integral over Ox ,
(Lang 1965, Chapter IX, §1), hence F, C éx,m. Thus we have inclusions

Ox C F C Ox. Now, we assert that
Xon NV ={zeV;F,#0x,} =F/0x.

This will imply the theorem by 5.10. To prove the equality, we first observe
that I, # Ox , implies Ox ; # Ox 4, thus z € X,,,,. Conversely, assume that
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x is non normal, that is, @X@ # Ox 5. Let k be the smallest integer such
that jﬁéx,m C Ox ; such an integer exists since lem(?)X’m - h(?)X’m C Ox
for [ large. Then there is an element w € J’;_léx,m such that w ¢ Ox 5. We
have wJ, C Ox, ; moreover, as w is locally bounded near X, any germ
wg in wl, satisfies limw(z)g(z) = 0 when z € X, tends to a point of the

zero variety h=1(0) of J,. Hence wd, C Jg, ie. w € Fy, but w ¢ Ox 4, so
Fr # Ox 4. O

(7.6) Theorem. Ifz € X is a normal point, then (Xging, ) has codimension
at least 2 in (X, x).

Proof. We suppose that X' = X;,¢ has codimension 1 in a neighborhood of
x and try to get a contradiction. By restriction to a smaller neighborhood,
we may assume that X itself is normal and irreducible (since X o is open),
dim X = n, that X' has pure dimension n — 1 and that the ideal sheaf Jyx
has global generators (g1, ...,9x). Then X C Ugj_l(()) ; both sets have pure
dimension n — 1 and thus singular sets of dimension < n — 2. Hence there is
a point ¢ € X' that is regular on X and on Ugj_l(O), in particular there is a

neighborhood V of a such that g7 ' (0)NV =... =g ' (0)NV=XNVisa
smooth (n —1)-dimensional manifold. Since codimx X' = 1 and a is a singular
point of X, Jx , cannot have less than 2 generators in Ox , by Cor. 4.33. Take
(91,---,91), I > 2, to be a minimal subset of generators. Then f = g2/g;
cannot belong to Ox ,, but f is holomorphic on V \ Y. We may assume that
there is a sequence a, € V \ X converging to a such that f(a,) remains
bounded (otherwise reverse g; and g2 and pass to a subsequence). Since
g7 (0) NV = XNV, Hilbert’s Nullstellensatz gives an integer m such that
ga C 910x,q, hence fafJ’g,a C Ox,q- We take m to be the smallest integer
such that the latter inclusion holds. Then there is a product g% = g7 ... g;"
with |a| = m—1 such that fg* ¢ Ox , but fg®g; € Ox q for each j. Since the
sequence f(a,) is bounded we conclude that fg®g; vanishes at a. The zero set
of this function has dimension n—1 and is contained in | J g, ' (0)NV = XNV
so it must contain the germ (X, a). Hence fg%g; € Ix , and fg%)s o CIxq.
As Jy , is a finitely generated Ox ,-module, this implies fg € éx,a = 0x,q,
a contradiction. 0

(7.7) Corollary. A complex curve is normal if and only if it is reqular.

(7.8) Corollary. Let X be a normal complex space and 'Y an analytic subset
of X such that dim(Y, z) < dim(X, z) —2 for any x € X. Then any holomor-
phic function on X \Y can be extended to a holomorphic function on X.

Proof. By Cor. 1.4.5, every holomorphic function f on X, \ Y extends
to Xieg. Since codim Xgpne > 2, Th. 6.1 shows that f is locally bounded
near Xgine. Therefore f extends to X by definition of a normal space. ([l
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§7.3. The Oka Normalization Theorem

The important normalization theorem of (Oka 1950) shows that Ox can be
used to define the structure sheaf of a new analytic space X which is normal
and is obtained by “simplifying” the singular set of X. More precisely:

(7.9) Definition. Let X be a complex space. A normalization (Y, ) of X
15 a normal complex space Y together with a holomorphic map 7 : Y — X
such that the following conditions are satisfied.

a) m:Y — X is proper and has finite fibers;

b) if X is the set of singular points of X and A = n=1(X), then Y \ A is
dense inY andm:Y N A — X N X = X, 5 an analytic isomorphism.

It follows from b) that ¥\ A C Y,e. Thus Y is obtained from X by a
suitable “modification” of its singular points. Observe that Y;¢, may be larger
than Y \ A, as is the case in the following two examples.

(7.10) Examples.

a) Let X = Cx {0} U{0} x C be the complex curve z;z2 = 0 in C2. Then the
normalization of X is the disjoint union ¥ = C x {1, 2} of two copies of C,
with the map 7(t;) = (¢1,0), 7(t2) = (0,t2). The set A = 7—1(0,0) consists
of exactly two points.

b) The cubic curve X : 23 = 22 is normalized by the map 7 : C — X,

t — (t2,1%). Here 7 is a homeomorphism but 7! is not analytic at (0,0).
0

We first show that the normalization is essentially unique up to isomor-
phism and postpone the proof of its existence for a while.

(7.11) Lemma. If (Y1,m) and (Y, m2) are normalizations of X, there is a
unique analytic isomorphism ¢ : Y1 — Yy such that my = ma 0 .

Proof. Let X' be the set of singular points of X and A; = 7rj_1(2), j=1,2.

Let ¢ : Y7 N Ay — Y5 . A, be the analytic isomorphism 7r2_1 om. We
assert that ¢’ can be extended into a map ¢ : Y7 — Y5. In fact, let a € Ay
and s = m1(a) € X. Then 7, '(s) consists of a finite set of points y; € Ya.
Take disjoint neighborhoods Uj of y; such that U; is an analytic subset in
an open set 2; CC CN . Since 7y is proper, there is a neighborhood V of s
in X such that 73 '(V) C |JU; and by continuity of m; a neighborhood W
of a such that 7;(W) C V. Then ¢’ = 7y ' o7y maps W \ A; into |JU; and
can be seen as a bounded holomorphic map into CV through the embeddings
U; C §2; CC CN. Since Y; is normal, ¢’ extends to W, and the extension
takes values in |JU; which is contained in Yy (shrink U; if necessary). Thus
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¢' extends into a map ¢ : Y7 — Y5 and similarly ¢'~! extends into a map
1 : Yy — Y1. By density of Y; N\ A, we have 1o = Idy,, potp = Idy,. O

(7.12) Oka normalization theorem. Let X be any complex space. Then
X has a normalization (Y, ).

Proof. Because of the previous lemma, it suffices to prove that any point
x € X has a neighborhood U such that U admits a normalization; all these
local normalizations will then glue together. Hence we may suppose that X is
an analytic set in an open set of C". Moreover, if (X, x) splits into irreducible
components (X;,z) and if (Y;, ;) is a normalization of X; N U, then the
disjoint union Y = [[Y; with 7 = [[7; is easily seen to be a normalization
of X NU. We may therefore assume that (X,z) is irreducible. Let h be
a universal denominator in a neighborhood of z. Then Ox , is isomorphic
to its image h(?)X’m C Ox s, so it is a finitely generated Ox ,-module. Let
(f1,..., fm) be a finite set of generators of Ox ,. After shrinking X again,
we may assume the following two points:

e X is an analytic set in an open set 2 C C", (X, z) is irreducible and X,q
is connected;

e f; is holomorphic in X,c, can be written f; = g;/h on X with g;,h in
O, (£2) and satisfies an integral equation Pj(z; f;(2)) = 0 where Pj(z; T)
is a unitary polynomial with holomorphic coefficients on X.

Set X' = X ~ h~1(0). Consider the holomorphic map
F:Xieg —02xC", 2+ (z,fl(z),...,fm(z))

and the image Y’ = F(X’). We claim that the closure Y of Y/ in 2 x C™ is
an analytic set. In fact, the set

Z={(z,w) e 2xC"; ze€ X, h(z)w; = g;(2)}

is analytic and Y’ = Z ~ {h(z) = 0}, so we may apply Cor. 5.4. Observe that
Y’ is contained in the set defined by P;(z;w;) = 0, thus so is its closure Y.
The first projection 2 x C™ — (2 gives a holomorphic map 7 : ¥ — X
such that moF = Id on X', hence also on X,ep. If ¥ = Xgine and 4 = 7~ 1Y),
the restriction 7 : Y N A — X N\ XY = X, is thus an analytic isomorphism
and F is its inverse. Since (X,x) is irreducible, each f; has a limit ¢; at «
by Th. 7.3 and the fiber 7=1(z) is reduced to the single point y = (x,£). The
other fibers 77 1(2) are finite because they are contained in the finite set of
roots of the equations Pj(z; w;) = 0. The same argument easily shows that
7 is proper (use Lemma 4.10).

Next, we show that Y is normal at the point y = 7—!(z). In fact, for any
bounded holomorphic function % on (Yieg,y) the function w o F' is bounded
and holomorphic on (X,eg, ). Hence u o F' € @X,m = Oxz[f1,-.-, fm] and
we can write uo F'(z) = Q(z; f1(2),..., fm(2)) = Qo F(z) where Q(z; w) =
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Y. aq(z)w® is a polynomial in w with coefficients in Ox ;. Thus u coincides
with @ on (Yieg,y), and as @ is holomorphic on (X,z) x C™ D (Y,y), we
conclude that u € Oy,,. Therefore @yﬂ = Oy,y.

Finally, by Th. 7.5, there is a neighborhood V C Y of y such that every
point of V' is normal. As 7 is proper, we can find a neighborhood U of z
with 7=1(U) C V. Then 7 : #=1(U) — U is the required normalization in a
neighborhood of . ([l

The proof of Th. 7.12 shows that the fiber 7=1(z) has exactly one point
y; for each irreducible component (X;,z) of (X, z). As a one-to-one proper
map is a homeomorphism, we get in particular:

(7.13) Corollary. If X is a locally irreducible complex space, the normali-
zation w: Y — X s a homeomorphism. 0

(7.14) Remark. In general, for any open set U C X, we have an isomor-
phism

(7.15) = : @X(U) =5 OY(W_I(U))a

whose inverse is given by the comorphism of 77! : X,ee — Y ; note that

@y(U ) = Oy (U) since Y is normal. Taking the direct limit over all neigh-
borhoods U of a given point z € X, we get an isomorphism

(7.15/) T (‘)wa — @ Oy,yj.
yj€m ()

In other words, O is isomorphic to the direct image sheaf 7,0y, see (1.12).
We will prove later on the deep fact that the direct image of a coherent sheaf
by a proper holomorphic map is always coherent (Grauert 1960, see 9.7.1).
Hence Ox = 7,0y is a coherent sheaf over Ox.

8. Holomorphic Mappings and Extension Theorems

§8.1. Rank of a Holomorphic Mapping

Our goal here is to introduce the general concept of the rank of a holomorphic
map and to relate the rank to the dimension of the fibers. As in the smooth
case, the rank is shown to satisfy semi-continuity properties.

(8.1) Lemma. Let ' : X — Y be a holomorphic map from a complex space
X to a complex space Y.

a) If F is finite, i.e. proper with finite fibers, then dim X < dimY'.
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b) If F is finite and surjective, then dim X = dimY'.

Proof. a) Let = € X, (X;, ) an irreducible component and m = dim(X}, z).
If (Yx,y) are the irreducible components of Y at y = F(x), then (Xj;,z) is
contained in | J F~!(Y%), hence (X, z) is contained in one of the sets F~*(Y%).
If p = dim(Y%, y), there is a ramified covering 7 from some neighborhood of y
in Yy onto a polydisk in A" € CP. Replacing X by some neighborhood of z in
X and F by the finite map moF}x; : X; — A’, we may suppose that Y = A’
and that X is irreducible, dim X = m. Let r = rank dF,, be the maximum
of the rank of the differential of F' on X,;¢. Then 7 < min{m,p} and the
rank of dF' is constant equal to r on a neighborhood U of zy. The constant
rank theorem implies that the fibers F~1(y) N U are (m — r)-dimensional
submanifolds, hence m —r =0 and m =r < p.

b) We only have to show that dim X > dimY. Fix a regular point y € Y
of maximal dimension. By taking the restriction F' : F~YU) — U to a
small neighborhood U of y, we may assume that Y is an open subset of CP.
If dimX < dimY, then X is a union of analytic manifolds of dimension
< dimY and Sard’s theorem implies that F'(X) has zero Lebesgue measure
in Y, a contradiction. O

(8.2) Proposition. For any holomorphic map F : X — Y, the fiber di-
mension dim (F~Y(F(z)),x) is an upper semi-continuous function of x.

Proof. Without loss of generality, we may suppose that X is an analytic set
in 2 C C*, that F(X) is contained in a small neighborhood of F(z) in Y
which is embedded in CV¥, and that z = 0, F(z) = 0. Set A = F~1(0)
and s = dim(A,0). We can find a linear form & on C™ such that dim(A N
¢,71(0),0) = s — 1 ; in fact we need only select a point z; # 0 on each
irreducible component (A;,0) of (A,0) and take &;(x;) # 0. By induction,
we can find linearly independent forms &1, ...,&s on C" such that

dim (AN&H(0)N...NEH(0),0) = s —

for all y = 1,...,s ; in particular 0 is an isolated point in the intersection
when j = s. After a change of coordinates, we may suppose that &;(z) = z;.

Fix 7 so small that the ball B' C C"~* of center 0 and radius 7" satisfies
AN ({0} x B") = {0}. Then A is disjoint from the compact set {0} x 9B”, so
there exists a small ball B’ C C* of center 0 such that AN (Fl x0B") =10, i.e.
F' does not vanish on the compact set K = XN (Fl x 0B"). Set ¢ = ming |F|.

Then for |y| < € the fiber F~1(y) does not intersect B’ x OB". This implies
that the projection map 7= : F~1(y) N (B’ x B”) — B’ is proper. The
fibers of 7 are then compact analytic subsets of B”, so they are finite by 5.9.
Lemma 8.1 a) implies

dim F~'(y) N (B’ x B") < dim B" = s = dim(4, 0) = dim(F~%(0),0). O
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Let X be a pure dimensional complex space and F': X — Y a holomor-
phic map. For any point x € X, we define the rank of F' at x by

(8.3) pr(z)=dim(X,z) — dim (F'(F(z)),z).

By the above proposition, pg is a lower semi-continuous function on X. In
particular, if pp is maximum at some point z, it must be constant in a
neighborhood of zg. The maximum 7p(F) = maxy pr is thus attained on
Xreg or on any dense open subset X’ C X,eg. If X is not pure dimensional,
we define p(F') = max, p(F)x,) where (X,) are the irreducible components
of X. For amap F : X — CV, the constant rank theorem implies that p(F')
is equal to the maximum of the rank of the jacobian matrix dF' at points of
Xyeg (or of X').

(8.4) Proposition. If F': X — Y is a holomorphic map and Z an analytic
subset of X, then p(Fiz) < p(F).

Proof. Since each irreducible component of Z is contained in an irreducible
component of X, we may assume X irreducible. Let « : X — X be the
normalization of X and Z = 7~Y(Z). Since 7 is finite and surjective, the
fiber of F'om at point x has the same dimension than the fiber of F' at m(x)
by Lemma 8.1 b). Therefore p(F o) =p(F) and p(Fom ;) = p(Fz), so we
may assume X normal. By induction on dim X, we may also suppose that Z
has pure codimension 1 in X (every point of Z has a neighborhood V C X
such that Z NV is contained in a pure one codimensional analytic subset of
V). But then Zreg N Xieg 1s dense in Z,ep because codim Xging > 2. Thus we
are reduced to the case when X is a manifold and Z a submanifold, and this
case is clear if we consider the rank of the jacobian matrix. OJ

(8.5) Theorem. Let F : X — Y be a holomorphic map. If Y is pure
dimensional and p(F) < dimY, then F(X) has empty interior in Y .

Proof. Taking the restriction of F' to F~1(Y;eg), we may assume that Y is
a manifold. Since X is a countable union of compact sets, so is F'(X), and
Baire’s theorem shows that the result is local for X. By Prop. 8.4 and an
induction on dim X, F(Xgne) has empty interior in Y. The set Z C Xyeq
of points where the jacobian matrix of F' has rank < p(F) is an analytic
subset hence, by induction again, F'(Z) has empty interior. The constant
rank theorem finally shows that every point € X, \ Z has a neighborhood
V such that F/(V) is a submanifold of dimension p(F') in Y, thus F(V') has
empty interior and Baire’s theorem completes the proof. O

(8.6) Corollary. Let F: X — Y be a surjective holomorphic map. Then
dimY = p(F).
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Proof. By the remark before Prop. 8.4, there is a regular point xy € X such
that the jacobian matrix of F' has rank p(F’). Hence, by the constant rank
theorem dimY > p(F'). Conversely, let Y;, be an irreducible component of ¥
of dimension equal to dimY, and Z = F~}(Y,) C X. Then F(Z) =Y, and
Th. 8.5 implies p(F) > B(F}z) > dimY,,. O

68.2. Remmert and Remmert-Stein Theorems

We are now ready to prove two important results: the extension theorem
for analytic subsets due to (Remmert and Stein 1953) and the theorem of
(Remmert 1956,1957) which asserts that the image of a complex space under
a proper holomorphic map is an analytic set. These will be obtained by a
simultaneous induction on the dimension.

(8.7) Remmert-Stein theorem. Let X be a complex space, A an analytic
subset of X and Z an analytic subset of X ~~ A. Suppose that there is an
integer p > 0 such that dim A < p, while dim(Z,x) > p for all x € Z. Then
the closure Z of Z in X is an analytic subset.

(8.8) Remmert’s proper mapping theorem. Let FF : X — Y be a
proper holomorphic map. Then F(X) is an analytic subset of Y.

Proof. We let (8.7,,) denote statement (8.7) for dim Z < m and (8.8,,) denote
statement (8.8) for dim X < m. We proceed by induction on m in two steps:

Step 1. (8.7,) and (8.8,,—1) imply (8.8,,).
Step 2. (8.8,,—1) implies (8.7,,).

As (8.8,,) is obvious for m = 0, our statements will then be valid for all m,
i.e. for all complex spaces of bounded dimension. However, Th. 8.7 is local
on X and Th. 8.8 is local on Y, so the general case is immediately reduced
to the finite dimensional case.

Proof of step 1. The analyticity of F(X) is a local question in Y. Since
F : F7Y(U) — U is proper for any open set U C Y and F~}(U) cC X
if U CC Y, we may suppose that Y is embedded in an open set 2 C C"
and that X only has finitely many irreducible components X,. Then we have
F(X) = UF(X,) and we are reduced to the case when X is irreducible,
dimX =m and Y = (2.

First assume that X is a manifold and that the rank of dF' is constant.
The constant rank theorem implies that every point in X has a neighborhood
V such that F(V) is a closed submanifold in a neighborhood W of F(x)
in Y. For any point y € Y, the fiber F~1(y) can be covered by finitely
many neighborhoods V; of points z; € F~!(y) such that F(V}) is a closed
submanifold in a neighborhood W; of y. Then there is a neighborhood of y
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W c (W, such that F~Y(W) c UVj,so F(X)NW = JF(V;) "W is a
finite union of closed submanifolds in W and F(X) is analytic in Y.

Now suppose that X is a manifold, set » = p(F') and let Z C X be the
analytic subset of points z where the rank of dF, is < r. Since dim Z <
m = dim X, the hypothesis (8.8,,—1) shows that F'(Z) is analytic. We have
dim F(Z) =p(Fz) <r. If F(Z) = F(X), then F(X) is analytic. Otherwise
A= F_l(F(Z)) is a proper analytic subset of X, dF has constant rank on
X NA C X\ 7 and the morphism F' : X N\ A — Y \ F(Z) is proper. Hence
the image F'(X \ A) is analytic in Y \ F(Z). Since dm F(X N A)=7r<m
and dim F(Z) < r, hypothesis (8.7,,) implies that FI(X) = F(X N A) is
analytic in Y. When X is not a manifold, we apply the same reasoning with
Z = Xging in order to be reduced to the case of F': X N A — Y \ F(Z)
where X \ A is a manifold. O

Proof of step 2. Since Th. 8.7 is local on X, we may suppose that X is an
open set 2 C C". Then we use induction on p to reduce the situation to the
case when A is a p-dimensional submanifold (if this case is taken for granted,
the closure of Z in {2 \ Agpng is analytic and we conclude by the induction
hypothesis). By a local analytic change of coordinates, we may assume that
0 € A and that A = 2N L where L is a vector subspace of C" of dimension
p. By writing Z = Up<s<m Zs where Z; is an analytic subset of 2 \Y of
pure dimension s, we may suppose that Z has pure dimension s, p < s < m.
We are going to show that Z is analytic in a neighborhood of 0.

Let &1 be a linear form on C" which is not identically zero on L nor on
any irreducible component of Z (just pick a point z,, on each component and
take & (x,) # 0 for all v). Then dim L N ¢71(0) = p — 1 and the analytic
set Z M &7 (0) has pure dimension s — 1. By induction, there exist linearly
independent forms &1, ...,&, such that

dim LNt 0)n...ngH0)=p—j, 1<j<p,
(89) dimZN&t0)N...n&H0)=s—4, 1<j<s.

By adding a suitable linear combination of &;,...,&, to each §;, p < j < s,
we may take ;. = 0 for p < j <s. After a linear change of coordinates, we
may suppose that &;(z) = z;, L = C” x {0} and A = 2N (C? x {0}). Let
&= (&,...,&) : C* — C° be the projection onto the first s variables. As
Z is closed in 2\ A, Z U A is closed in {2. Moreover, our construction gives
(ZUA)NETH0) = (ZN€~1(0)) U{0} and the case j = s of (8.9) shows that
ZNE~Y(0) is a locally finite sequence in 2N ({0} x C*=%)~{0}. Therefore, we
can find a small ball B" of center 0 in C*~* such that Z N ({0} x 9B") = 0.
As {0} x 0B" is compact and disjoint from the closed set Z U A, there is a
small ball B’ of center 0 in C* such that (Z U A) N (El x 0B") = (). This
implies that the projection & : (Z U A) N (B’ x B") — B’ is proper. Set
A" = B'N(CP x {0}). Then the restriction
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Fig. 3 Projection 7 : Z N ((B'\~ A") x B") — B' \ A'.

n=¢6:ZN(B"'xB")N (A" x B") — B'\ A

is proper, and Z N (B’ x B") is analytic in (B’ x B”) \ A, so 7 has finite
fibers by Th. 5.9. By definition of the rank we have p(m) = s. Let S; =
Zsing N7 1B’ A’) and S| = ©(S1) ; further, let Sy be the set of points
x € ZNm~ (B'\(A'US})) C Z,eg such that dm, has rank < s and S§ = 7(95).
We have dimS; < s —1 < m — 1. Hypothesis (8.8),,—; implies that S is
analytic in B’ \ A’ and that S}, is analytic in B’ \ (A"U S7). By Remark 4.2,
B’ (A’US1US)) is connected and every bounded holomorphic function on
this set extends to B’. As 7 is a (non ramified) covering over B'\ (A'US|US}),
the sheet number is a constant q.

Let A(z) = le>s Ajz; be a linear form on C" in the coordinates of index
j>s.Forz' € B'\\(A"US1US)), we let (') be the elementary symmetric
functions in the ¢ complex numbers A(z) corresponding to z € w~1(z’). Then
these functions can be extended as bounded holomorphic functions on B’ and
we get a polynomial Py(z"; T') such that Py (z’ s A(2” )) vanishes identically
on Z~m 1(A'US;US,). Since 7 is finite, ZN7w~1(A’US;USS) is a union of
three (non necessarily closed) analytic subsets of dimension < s — 1, thus has
empty interior in Z. It follows that the closure Z N (B’ x B") is contained in
the analytic set W C B’ x B” equal to the common zero set of all functions



190 Lnapter 11. vonerent sneaves and AnalytlC spaces

Py (2'; A(2")). Moreover, by construction,
Z~a HAUS{USH) =W ~a N A US;USY).

As in the proof of Cor. 5.4, we easily conclude that Z N (B’ x B") is equal
to the union of all irreducible components of W that are not contained in
7 H(A"U S U Sh). Hence Z is analytic. O

Finally, we give two interesting applications of the Remmert-Stein theo-
rem. We assume here that the reader knows what is the complex projective
space P™. For more details, see Sect. 5.15.

(8.10) Chow’s theorem (Chow 1949). Let A be an analytic subset of the
complex projective space P™. Then A is algebraic, i.e. A is the common zero
set of finitely many homogeneous polynomials Pj(zo,...,2n), 1 < j < N.

Proof. Let m: C**1 {0} — P™ be the natural projection and Z = 7~ 1(A).
Then Z is an analytic subset of C"*' \ {0} which is invariant by homotheties
and dimZ = dim A + 1 > 1. The Remmert-Stein theorem implies that Z =

ZU{0} is an analytic subset of C"*1. Let fq,..., fy be holomorphic functions
on a small polydisk A C C"*! of center 0 such that Z N A = ﬂfj_l(O).
The Taylor series at 0 gives an expansion f; = ,LOE_Pj,k where P is a

homogeneous polynomial of degree k. We claim that Z coincides with the
common zero W set of the polynomials Pjj. In fact, we clearly have W N
A C ﬂfj_l(()) = Z N A. Conversely, for z € Z N A, the invariance of Z
by homotheties shows that f;(tz) = Y P;x(2)t" vanishes for every complex
number ¢ of modulus < 1, so all coefficients P;j (%) vanish and z € W N A.
By homogeneity Z = W ; since C[z, . . ., 2,] is Noetherian, W can be defined
by finitely many polynomial equations. ([l

(8.11) E.E. Levi’s continuation theorem. Let X be a normal complex
space and A an analytic subset such that dim(A,z) < dim(X,z) — 2 for all
x € A. Then every meromorphic function on X ~~ A has a meromorphic
extension to X.

Proof. We may suppose X irreducible, dim X = n. Let f be a meromor-
phic function on X ~ A. By Th. 6.13, the pole set Py has pure dimension
(n — 1), so the Remmert-Stein theorem implies that P; is analytic in X.
Fix a point x € A. There is a connected neighborhood V of x and a non
zero holomorphic function h € Ox (V) such that PNV has finitely many
irreducible components P ; and Py NV C h71(0). Select a point z; in
Py~ (Xsing U (Py)sing U A). As x; is a regular point on X and on Py,
there is a local coordinate z1 ; at x; defining an equation of Py ;, such that
zTJJ f € Oxg,; for some integer m;. Since h vanishes along Py, we have
h™if € Oxg. Thus, for m = max{m;}, the pole set P, of ¢ = h™f in
V'~ A does not contain z;. As P, is (n — 1)-dimensional and contained in
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Py NV, it is a union of irreducible components Ff,j N A. Hence P; must
be empty and g is holomorphic on V' ~ A. By Cor. 7.8, g has an extension
to a holomorphic function § on V. Then §/h™ is the required meromorphic
extension of f on V. O

§9. Complex Analytic Schemes

Our goal is to introduce a generalization of the notion of complex space given
in Def. 5.2. A complex space is a space locally isomorphic to an analytic
set A in an open subset {2 C C", together with the sheaf of rings 04 =
(0/34)1a. Our desire is to enrich the structure sheaf O4 by replacing J4
with a possibly smaller ideal J defining the same zero variety V(J) = A. In
this way holomorphic functions are described not merely by their values on
A, but also possibly by some “transversal derivatives” along A.

§9.1. Ringed Spaces

We start by an abstract notion of ringed space on an arbitrary topological
space.

(9.1) Definition. A ringed space is a pair (X,Rx) consisting of a topolo-
gical space X and of a sheaf of rings Rx on X, called the structure sheaf.
A morphism

F:(X,Rx) — (Y, Ry)
of ringed spaces is a pair (f, F*) where f : X — Y is a continuous map and
F* f_lfRy — fo, F; : (fRy)f(m) — (fRX)m

a homomorphism of sheaves of rings on X, called the comorphism of F'.
IfF:(X,Rx) — (Y,Ry) and G : (Y,Ry) — (Z,Rz) are morphisms

of ringed spaces, the composite G o F' is the pair consisting of the map go f :
X — Z and of the comorphism (G o F)* = F*o f~1G*:

(02) Frof G gy 5 iRy I py
F; OG}(m) . (fRZ)gof(m) —_— (fRy)f(m) — (RX)x
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§9.2. Definition of Complex Analytic Schemes

We begin by a description of what will be the local model of an analytic
scheme. Let 2 C C" be an open subset, J C Op a coherent sheaf of ideals
and A = V(J) the analytic set in 2 defined locally as the zero set of a system
of generators of J. By Hilbert’s Nullstellensatz 4.22 we have J4 = /g, but
J4 differs in general from J. The sheaf of rings O,/ is supported on A, i.e.
(00/8). = 0 if x ¢ A. Ringed spaces of the type (A, Ogp/d) will be used as
the local models of analytic schemes.

(9.3) Definition. A morphism
F=(f,F*): (A 0q/d1a) — (A", 00 /314

is said to be analytic if for every point x € A there exists a neighborhood W,
of x in £2 and a holomorphic function @ : W, — (2" such that fianw, =
P anw, and such that the comorphism

Fy:(00//7) fw) — (02/3)a

is induced by @* : Qg f(z) D u— uo P € Og, with &*J' C J.

(9.4) Example. Take 2 = C"* and J = (22). Then A is the hyperplane
C"~1 x {0}, and the sheaf Ocn /J can be identified with the sheaf of rings
of functions u + z,u’, u,u’ € Ocn-1, with the relation 22 = 0. In particular,
Zn, is a nilpotent element of Ocn /J. A morphism F' of (A, Oc» /J) into itself
is induced (at least locally) by a holomorphic map & = (5, &,,) defined on
a neighborhood of A in C"* with values in C”, such that #(A) C A, i.e.
D14 = 0. We see that F' is completely determined by the data

f(zl7"-7zn—1): 5(21,...,2’”_1,0), f : (Cn_l _)(Cn—l7
0P
f/(zla' . '7zn—1): 5(21, .. 'azn—170)7 f/ . -l (Cn7

which can be chosen arbitrarily.

(9.5) Definition. A complex analytic scheme is a ringed space (X, Ox) over
a separable Hausdorff topological space X, satisfying the following property:
there exist an open covering (Uy) of X and isomorphisms of ringed spaces

G : (Ux,Ox10,) — (Ax, 00, /dx14,)

where Ay is the zero set of a coherent sheaf of ideals Jx on an open subset
2y C CN | such that every transition morphism Gy o G;l s a holomorphic
isomorphism from g,,(Ux NU,) C A, onto g\(UxNU,) C Ay, equipped with
the respective structure sheaves Oq, /3,14, , Oa, /x4, -
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We shall often consider the maps G as identifications and write simply
Ux = Ax. A morphism F': (X, 0x) — (Y, Oy) of analytic schemes obtained
by gluing patches (Ax, Op,/dxr1a,) and (AL,OQL/HLAL), respectively, is a
morphism F' of ringed spaces such that for each pair (A, ), the restriction of
F from AxNf~'(A],) C X to A}, CY is holomorphic in the sense of Def. 9.3.

69.3. Nilpotent Elements and Reduced Schemes

Let (X, Ox) be an analytic scheme. The set of nilpotent elements is the sheaf
of ideals of Ox defined by

(9.6) Nx ={u€Ox;u* =0 for some k € N}.

Locally, we have Ox4, = (00, /dx)4,, thus

(9.7)  Nxta, = (V3r/33) 145
(9'8) (OX/NX)TAA = (OQA/\/K) FAx — (OQA/jAA)fAA = 0Oa,.

The scheme (X, Ox) is said to be reduced if Nx = 0. The associated ringed
space (X, Ox/Nx) is reduced by construction; it is called the reduced scheme
of (X, Ox). We shall often denote the original scheme by the letter X merely,
the associated reduced scheme by X,eq, and let Ox yeqa = Ox/Nx. There is a
canonical morphism X,.q — X whose comorphism is the reduction morphism

(9.9) Ox(U) — Oxrea(U) = (Ox /Nx)(U), VU open set in X.

By (9.8), the notion of reduced scheme is equivalent to the notion of complex
space introduced in Def. 5.2. It is easy to see that a morphism F' of reduced
schemes X, Y is completely determined by the set-theoretic map f: X — Y.

69.4. Coherent Sheaves on Analytic Schemes

If (X,0x) is an analytic scheme, a sheaf § of Ox-modules is said to be
coherent if it satisfies the same properties as those already stated when X is
a manifold:

(9.10) 8 is locally finitely generated over Ox ;
(9.10") for any open set U C X and any sections Gi,...,G4 € 8(U), the
relation sheaf R(G1,...,G,) C Og’?qu is locally finitely generated.

Locally, we have Ox4, = Oqn, /dx, so if iy : Ax — 2, is the injection, the
direct image 8y = (ix)«(84,) is a module over Og, such that 5.8y = 0.
It is clear that 8;p, is coherent if and only if 8y is coherent as a module
over Og, . It follows immediately that the Oka theorem and its consequences
3.16-20 are still valid over analytic schemes.
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§9.5. Subschemes

Let X be an analytic scheme and G a coherent sheaf of ideals in Ox. The
image of G in Ox req is a coherent sheaf of ideals, and its zero set Y is clearly
an analytic subset of X,eq. We can make Y into a scheme by introducing the
structure sheaf

(9.11) Oy = (Ox/9)1v»

and we have a scheme morphism F' : (Y,0y) — (X,Ox) such that f is
the inclusion and F* : f~'Ox — Oy the obvious map of Oxy onto its
quotient Oy . The scheme (Y, Oy ) will be denoted V(§). When the analytic
set Y is given, the structure sheaf of V' (§G) depends of course on the choice of
the equations of Y in the ideal G; in general Oy has nilpotent elements.

§9.6. Inverse Images of Coherent Sheaves

Let F : (X,0x) — (Y,0y) be a morphism of analytic schemes and § a
coherent sheaf over Y. The sheaf theoretic inverse image f~'8, whose stalks
are (f718), = 84(z), is a sheaf of modules over f~!Oy. We define the analytic
inverse image F*8 by

(9.12) F*8=0x ®p-10, '8, (F*8)z =O0x2 ®0y. 0, Sf(a)-

Here the tensor product is taken with respect to the comorphism F* :
710y — Ox, which yields a ring morphism Oy ;) — Ox . If 8 is given
over U C Y by a local presentation

A
Oi‘??U — O??U — S[U — 0

where A is a (¢ X p)-matrix with coefficients in Oy (U), our definition shows
that F*8 is a coherent sheaf over Oy, given over f~1(U) by the local presen-
tation

D F*A ®
(9-13) Ot vy — Oxlpos oy — F*Sp-1y — 0.

69.7. Products of Analytic Schemes

Let (X,0x) and (Y,Oy) be analytic schemes, and let (Ax,Ogn,/dr),
(BM,OQL/H;L) be local models of X, Y, respectively. The product scheme
(X xY,0xxy) is obtained by gluing the open patches

(9.14) (A)\ X By, Og,xa, /(pr7 dx —f—Prz_lHL)OQkaL).

In other words, if Ay, B, are the subschemes of 2y, 2, defined by the
equations gy j(z) = 0, gl’%k(y) = 0, where (g ;) and (gllm) are generators of
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da and 3; respectively, then Ay x B, is equipped with the structure sheaf

O.QAX.QL/(QA,J'(’T"))g;L,k(y))'
Now, let 8§ be a coherent sheaf over Ox and let 8’ be a coherent sheaf

over Oy. The (analytic) external tensor product S®8' is defined to be
(9.15) 8®8 =pri8®oy ., Prys’.

If we go back to the definition of the inverse image, we see that the stalks of
Sm 8’ are given by

(9.15")  (8®8")(2,) = Oxxy,(w,y) ROx. 00y, (8 BCS,) ,

in particular (8®8')(, ) does not coincide with the sheaf theoretic tensor
product 8, ® 8, which is merely a module over Ox , ® Oy,,. If § and §' are
given by local presentations

A ’ B ’

then S® 8’ is the coherent sheaf given by

pq' Bgp’ (A(2)®1d,Jd®B(Y)) . nqd’ )
Oxxyuxur » OXwyvioxor — 8B ) uxur — 0.

69.8. Zariski Embedding Dimension

If x is a point of an analytic scheme (X, Ox), the Zariski embedding dimension
of the germ (X, z) is the smallest integer IV such that (X, z) can be embedded
in CV, i.e. such that there exists a patch of X near x isomorphic to (A4, 9g/d)
where {2 is an open subset of CV. This dimension is denoted

(9.16) embdim(X,z) = smallest such N.

Consider the maximal ideal mx , C Ox , of functions which vanish at point z.
If (X,z) is embedded in (2,z) = (CV,0), then mx ,/m% , is generated by
21y ZN, SO d = dimmx,m/m?x’w < N. Let s1,...,584 be germs in mg ,
which yield a basis of mx,m/m%(,nE ~ mg,m/(m%m +J.). We can write

2 .
Zj = Z CieSk +uj + fj, cir €C, ujemp,, fj€ds, 1<j<n.
1<k<d

Then we find dz; = ) cjidsg(z) + dfj(z), so that the rank of the sys-
tem of differentials (dfj(z)) is at least N — d. Assume for example that
df1(x),...,df n_q(x) are linearly independant . By the implicit function the-
orem, the equations f; = ... = fy_q = 0 define a germ of smooth sub-
variety (Z,z) C (£2,z) of dimension d which contains (X, z). We have
Oz =00/(f1,..., [N_q) in a neighborhood of z, thus

OX:OQ/HZOZ/g/ where 3/23/(f1,...,fN_d).
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This shows that (X, ) can be imbedded in C%, and we get

(9.17)  embdim(X,z) = dimmy 5 /m% .

(9.18) Remark. For a given dimension n = dim(X, z), the embedding di-
mension d can be arbitrarily large. Consider for example the curve I' C C¥
parametrized by C > t — (¢tV, ¢N+1 . 2N=1) Then Or, is the ring of
convergent series in C{t} which have no terms ¢,¢2,... t¥~! and mp,o/m%’o
admits precisely z; = t&,..., 2y = 27! as a basis. Therefore n = 1 but
d = N can be as large as we want.

§10. Bimeromorphic maps, Modifications and Blow-ups

It is a very frequent situation in analytic or algebraic geometry that two com-
plex spaces have isomorphic dense open subsets but are nevertheless different
along some analytic subset. These ideas are made precise by the notions of
modification and bimeromorphic map. This will also lead us to generalize
the notion of meromorphic function to maps between analytic schemes. If
(X, 0Ox) is an analytic scheme, Mx denotes the sheaf of meromorphic func-
tions on X, defined at the beginning of § 6.2.

(10.1) Definition. Let (X,0x), (Y,0y) be analytic schemes. An analytic
morphism F' : X — Y is said to be a modification if F' is proper and if there

exists a nowhere dense closed analytic subset B C'Y such that the restriction
F: X\ FY(B) =Y \ B is an isomorphism.

(10.2) Definition. If F' : X — Y is a modification, then the comorphism
F*: f*Oy — Ox induces an isomorphism F* : f*My — Mx for the sheaves
of meromorphic functions on X and Y.

Proof. Let v = g/h be a section of My on a small open set {2 where u is
actually given as a quotient of functions g,h € Oy (£2). Then F*u = (g o
F)/(hoF) is a section of Mx on F~1(§2), for ho F cannot vanish identically
on any open subset W of F~1(£2) (otherwise h would vanish on the open
subset F(W ~ F~1(B)) of 2\ B). Thus the extension of the comorphism
to sheaves of meromorphic functions is well defined. Our claim is that this is
an isomorphism. The injectivity of F'* is clear: F*u = 0 implies g o F' = 0,
which implies ¢ = 0 on 2 \ B and thus g = 0 on {2 because B is nowhere
dense. In order to prove surjectivity, we need only show that every section
u € Ox(F~1(£2)) is in the image of My (£2) by F*. For this, we may shrink (2
into a relatively compact subset 2’ CC 2 and thus assume that u is bounded
(here we use the properness of F' through the fact that F~1(£') is relatively
compact in F~1(£2)). Then v = u o F~! defines a bounded holomorphic



gll. KEXErcises 140

function on (2 ~\ B. By Th. 7.2, it follows that v is weakly holomorphic for
the reduced structure of Y. Our claim now follows from the following Lemma.
OJ

(10.3) Lemma. If (X,0x) is an analytic scheme, then every holomorphic
function v in the complement of a nowhere dense analytic subset B C Y
which is weakly holomorphic on Xieq s meromorphic on X.

Proof. 1t is enough to argue with the germ of v at any point x € Y, and
thus we may suppose that (Y, Oy) = (4, On/J) is embedded in CV. Because
v is weakly holomorphic, we can write v = g/h in Y;eq, for some germs of
holomorphic functions g, h. Let g and h be extensions of g, h to Og . Then

there is a neighborhood U of = such that g — vh is a nilpotent section of
cOq(U \ B) which is in J on

(10.4) Definition. A meromorphic map F : X --— Y is a scheme mor-
phism F : X N\ A — Y defined in the complement of a nowhere dense analytic
subset A C X, such that the closure of the graph of F' in X XY is an analytic
subset (for the reduced complex space structure of X xY').

§11. Exercises

11.1. Let A be a sheaf on a topological space X. If the sheaf space A is Hausdorff,
show that A satisfies the following unique continuation principle: any two sections
s,s" € A(U) on a connected open set U which coincide on some non empty open
subset V' C U must coincide identically on U. Show that the converse holds if X is
Hausdorff and locally connected.

11.2. Let A be a sheaf of abelian groups on X and let s € A(X). The support
of s, denoted Supp s, is defined to be {z € X ; s(z) # 0}. Show that Supp s is a
closed subset of X. The support of A is defined to be Supp A = {z € X ; A, # 0}.
Show that Supp A is not necessarily closed: if {2 is an open set in X, consider the
sheaf A such that A(U) is the set of continuous functions f € C(U) which vanish
on a neighborhood of U N (X \ 2).

11.3. Let A be a sheaf of rings on a topological space X and let F, § be sheaves of

A-modules. We define a presheaf H = Hom 4 (F,G) such that H(U) is the module

of all sheaf-homomorphisms Fy — G which are A-linear.

a) Show that Hom 4(JF,G) is a sheaf and that there is a canonical homomorphism
et Hom g4 (F,G)e — homy  (Fz, Ge) for every z € X.

b) If F is locally finitely generated, then ¢, is injective, and if F has local finite
presentations as in (3.12), then ¢, is bijective.

c) Suppose that A is a coherent sheaf of rings and that F, G are coherent modules
over A. Then Hom 4(F,9) is a coherent A-module.
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Hint: observe that the result is true if F = A®P and use a local presentation of
F to get the conclusion.

11.4. Let f: X — Y be a continuous map of topological spaces. Given sheaves of
abelian groups A on X and B on Y, show that there is a natural isomorphism

homX (f_lg,.A) = hOmy(B, f*.A)

Hint: use the natural morphisms (2.17).

11.5. Show that the sheaf of polynomials over C" is a coherent sheaf of rings (with
either the ordinary topology or the Zariski topology on C"). Extend this result to
the case of regular algebraic functions on an algebraic variety.

Hint: check that the proof of the Oka theorem still applies.

11.6. Let P be a non zero polynomial on C". If P is irreducible in Clz1,..., z»],
show that the hypersurface H = P~'(0) is globally irreducible as an analytic set.
In general, show that the irreducible components of H are in a one-to-one corre-
spondence with the irreducible factors of P.

Hint: for the first part, take coordinates such that P(0,...,0, z,) has degree equal
to P; if H splits in two components Hy, Ho, then P can be written as a product
P1 P> where the roots of P;(2', z,) correspond to points in Hj.

11.7. Prove the following facts:

a) For every algebraic variety A of pure dimension p in C", there are coordinates
z' = (z1,...,2p), 2" = (2p+1,---,2n) such that 7 : A — CP, z — 2" is proper
with finite fibers, and such that A is entirely contained in a cone

2" < C(l2'] + 1)

Hint: imitate the proof of Cor. 4.11.

b) Conversely if an analytic set A of pure dimension p in C" is contained in a cone
|z""| < C(]Z'| + 1), then A is algebraic.
Hint: first apply (5.9) to conclude that the projection 7 : A — CP is finite.
Then repeat the arguments used in the final part of the proof of Th. 4.19.

c) Deduce from a), b) that an algebraic set in C" is irreducible if and only if it is
irreducible as an analytic set.

11.8. Let I' : f(z,y) = 0 be a germ of analytic curve in C* through (0,0) and let
(I'j,0) be the irreducible components of (I',0). Suppose that f(0,y) Z 0. Show that
the roots y of f(z,y) = 0 corresponding to points of I" near 0 are given by Puiseuz
expansions of the form y = g;(z'/%), where g; € Oco and where ¢; is the sheet
number of the projection I'; — C, (z,y) — z.

Hint: special case of the parametrization obtained in (4.27).

11.9. The goal of this exercise is to prove the existence and the analyticity of the
tangent cone to an arbitrary analytic germ (A, 0) in C". Suppose that A is defined
by holomorphic equations fi = ... = fx = 0 in a ball 2 = B(0,7). Then the (set
theoretic) tangent cone to A at 0 is the set C(A4,0) of all limits of sequences t; 'z,
with z, € A and C* > t, converging to 0.

a) Let E be the set of points (z,t) € £2 x C* such that z € t "' A. Show that the
closure E in {2 x C is analytic.
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Hint: observe that £ = A~ (2 x {0}) where A = {f;(tz) = 0} and apply
Cor. 5.4.

b) Show that C(A,0) is a conic set and that E N (2 x {0}) = C(A,0) x {0} and
conclude. Infer from this that C(A,0) is an algebraic subset of C".

11.10. Give a new proof of Theorem 5.5 based on the coherence of ideal sheaves
and on the strong noetherian property.

11.11. Let X be an analytic space and let A, B be analytic subsets of pure di-
mensions. Show that codimx (A N B) < codimx A + codimx B if A or B is a local
complete intersection, but that the equality does not necessarily hold in general.
Hint: see Remark (6.5).

11.12. Let I" be the curve in C* parametrized by C 3 t — (x,y,zg = (£*,t4,1°).
Show that the ideal sheaf J is generated by the polynomials zz — y?, &3 — yz and
1%y — 2%, and that the germ (I,0) is not a (sheaf theoretic) complete intersection.
Hint: I' is smooth except at the origin. Let f(z,y,2) =Y aag,2“y” 27 be a conver-
gent power series near 0. Show that f € Jr if and only if all weighted homogeneous
components fr = Z3a+4ﬂ+57:k ao‘gyavayﬁz7 are in Jro. By means of suitable sub-
stitutions, reduce the proof to the case when f = f is homogeneous with all non
zero monomials satisfying a < 2, 8 < 1, v < 1; then check that there is at most
one such monomial in each weighted degree < 15 the product of a power of x by a
homogeneous polynomial of weighted degree < 8.






Chapter II1I
Positive Currents and Lelong Numbers

In 1957, P. Lelong introduced natural positivity concepts for currents of pure bidi-
mension (p,p) on complex manifolds. With every analytic subset is associated a
current of integration over its set of regular points and all such currents are posi-
tive and closed. The important closedness property is proved here via the Skoda-El
Mir extension theorem. Positive currents have become an important tool for the
study of global geometric problems as well as for questions related to local alge-
bra and intersection theory. We develope here a differential geometric approach to
intersection theory through a detailed study of wedge products of closed positive
currents (Monge-Ampere operators). The Lelong-Poincaré equation and the Jensen-
Lelong formula are basic in this context, providing a useful tool for studying the
location and multiplicities of zeroes of entire functions on C™ or on a manifold, in
relation with the growth at infinity. Lelong numbers of closed positive currents are
then introduced; these numbers can be seen as a generalization to currents of the
notion of multiplicity of a germ of analytic set at a singular point. We prove various
properties of Lelong numbers (e.g. comparison theorems, semi-continuity theorem
of Siu, transformation under holomorphic maps). As an application to Number
Theory, we prove a general Schwarz lemma in C" and derive from it Bombieri’s
theorem on algebraic values of meromorphic maps and the famous theorems of
Gelfond-Schneider and Baker on the transcendence of exponentials and logarithms
of algebraic numbers.

1. Basic Concepts of Positivity

1.A. Positive and Strongly Positive Forms

Let V be a complex vector space of dimension n and (z1, ..., z,) coordinates
on V. We denote by (0/0z1,...,0/0z,) the corresponding basis of V, by
(dz1,...,dz,) its dual basis in V* and consider the exterior algebra

AVE = APV, APV = APV @ ATV,

We are of course especially interested in the case where V = T, X is the
tangent space to a complex manifold X, but we want to emphasize here that
our considerations only involve linear algebra. Let us first observe that V' has
a canonical orientation, given by the (n,n)-form

T(2) =idzy ANdZy A ... ANidzy NdZ, = 2" dey Ndyy A .. AN dxy, A dyy,
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where z; = x; + iy;. In fact, if (wq, ..., wy) are other coordinates, we find

dwy A ... A dwy, =det(Ow;/0z,) dz1 A ... A dzy,
T(w) = | det(dw;/9z)|" 7(2).

In particular, a complex manifold always has a canonical orientation. More
generally, natural positivity concepts for (p, p)-forms can be defined.

(1.1) Definition. A (p,p)-form u € APPV* is said to be positive if for all
aj €V, 1<j53<qg=mn—p, then

uNiog ANag A ..o ANlag AN

is a positive (n,n)-form. A (q,q)-form v € ATIV* is said to be strongly
positive if v is a convex combination

v = E Vs g1 N1 Ao Nag g N Qg g

where o j € V* and v, > 0.

(1.2) Example. Since i?(—1)P®=1/2 = i#° we have the commutation rules

ial/\aﬂ\---/\iap/\ap:ipza/\a, Va=aiA...ANa, € APOV*
szﬂ/\B/\Zm2’Y/\7: Z(p+m)2ﬂ/\’}//\—ﬂ/\’y, \V/ﬂ c AP’OV*, V’Y c Am’OV*.

Take m = q to be the complementary degree of p. Then Ay = Adz1A. .. Adz,
for some A € C and i BAYAB Ay = IA?7(2). If we set v = a1 A... Ay, we
find that ipzﬁ/\B is a positive (p, p)-form for every 8 € AP°V*; in particular,
strongly positive forms are positive. 0

The sets of positive and strongly positive forms are closed convex cones,
i.e. closed and stable under convex combinations. By definition, the positive
cone is dual to the strongly positive cone via the pairing

APPV* X NIV * 5 C

(1.3) (u,v) — uAv/T,

that is, u € APPV™* is positive if and only if u Av > 0 for all strongly positive
forms v € A?9V*. Since the bidual of an arbitrary convex cone I is equal
to its closure I', we also obtain that v is strongly positive if and only if
vAu=uAwvis > 0 for all positive forms u. Later on, we will need the
following elementary lemma.

(1.4) Lemma. Let (z1,...,2,) be arbitrary coordinates on V. Then APPV*
admits a basis consisting of strongly positive forms
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2
. - . - n
Bs =1Bs 1 ABs1 N Nifsp ABsp, 1< 5< <p>

where each B is of the type dz; = dzy, or dz; £idz, 1 < j,k < n.

Proof. Since one can always extract a basis from a set of generators, it is
sufficient to see that the family of forms of the above type generates APPV*.
This follows from the identities

4d2j ANdzy, = (de + dzk) /\(de + dzk) - (de - dzk) /\(de — dzk)
+i(dzj + idz)AN(dzj + idzy)—i(dzj — idzg)AN(dz; — idzy),

dzjy A Ndzj, NdZg, Ao ANdZg, =+ [\ dzj, A dZ,. O
1<s<p

(1.5) Corollary. All positive forms u are real, i.e. satisfy @ = u. In terms of
coordinates, if u = s Z|I|=|J|=p ur,y dzr A dzy, then the coefficients satisfy
the hermitian symmetry relation ur j = uy,r.

Proof. Clearly, every strongly positive (g, ¢)-form is real. By Lemma 1.4, these
forms generate over R the real elements of A29V*, so we conclude by duality
that positive (p, p)-forms are also real. O

1.6) Criterion. A form u € APPV™* is positive if and only if its restriction
Y
urs to every p-dimensional subspace S C V' is a positive volume form on S.

Proof. If S is an arbitrary p-dimensional subspace of V' we can find coordi-
nates (21,...,2,) on V such that S = {zp,41 = ... =2, = 0}. Then

uUps = Asidzy Ndzi AN ... A ide A dfp
where Ag is given by
uNidzpp1 NdZpi1 Ao  ANidzy A dZ, = As T(2).

If u is positive then Ag > 0 so u}g is positive for every S. The converse is
true because the (n — p,n — p)-forms /\; idz; A dz; generate all strongly
positive forms when S runs over all p-dimensional subspaces. 0

(1.7) Corollary. A formu=1}_,, uj, dz; Ndzj, of bidegree (1,1) is positive

if and only if & — > ujné;€y, is a semi-positive hermitian form on C*.

Proof. If S is the complex line generated by { and ¢ — ¢ the parametrization
of S, then u;g = (Zujkfjfk) idt A dt. U

Observe that there is a canonical one-to-one correspondence between her-
mitian forms and real (1,1)-forms on V. The correspondence is given by
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(1.8) h= Y hpla)dz @dZp—u=1 Y hj(z)dz; AdZ
1<5,k<n 1<j,k<n

and does not depend on the choice of coordinates: indeed, as Ejk = hyj, one
finds immediately

u(€m) =1 hik(2) (M, — n;&,) = —2Tmh(&,n), V& n e TX.

Moreover, h is > 0 as a hermitian form if and only if v > 0 as a (1, 1)-form.
A diagonalization of h shows that every positive (1,1)-form u € A»1V* can
be written

u= Z iy Ay, v €V, r=rankof u,
1<G<r

in particular, every positive (1, 1)-form is strongly positive. By duality, this
is also true for (n — 1,n — 1)-forms.

(1.9) Corollary. The notions of positive and strongly positive (p,p)-forms
coincide forp=0,1,n—1,n. U

(1.10) Remark. It is not difficult to see, however, that positivity and strong
positivity differ in all bidegrees (p,p) such that 2 < p < n — 2. Indeed, a
positive form ip2ﬂ A B with 8 € AP°V* is strongly positive if and only if 3 is
decomposable as a product 8; A ... A ,. To see this, suppose that

2 — .p? —
PAANB= ) iy AT,

1<j<N

where all v; € APOV* are decomposable. Take N minimal. The equality
can be also written as an equality of hermitian forms |8]* = 3" |v,|? if 8,7;
are seen as linear forms on APV. The hermitian form |3|? has rank one, so
we must have N = 1 and 8 = MAv;, as desired. Note that there are many
non decomposable p-forms in all degrees p such that 2 < p < n — 2, e.g.
(dzy Ndzg +dzz Ndzg) A\ ... ANdzpqo: if a p-form is decomposable, the vector
space of its contractions by elements of A? Visa p-dimensional subspace
of V*; in the above example the dimension is p + 2.

(1.11) Proposition. If uy,...,us are positive forms, all of them strongly
positive (resp. all except perhaps one), then uy A ... A us is strongly positive
(resp. positive).

Proof. Immediate consequence of Def. 1.1. Observe however that the wedge
product of two positive forms is not positive in general (otherwise we would
infer that positivity coincides with strong positivity). ([l
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(1.12) Proposition. If® : W — V is a complex linear map and u € APPV*
is (strongly) positive, then @*u € APPW™ is (strongly) positive.

Proof. This is clear for strong positivity, since
P*(lar Ao AL Alay Aap) =11 AB AL AiB A B,

with 8; = ®*a; € W*, for all a; € V*. For u positive, we may ap-
ply Criterion 1.6: if S is a p-dimensional subspace of W, then w;¢s) and
(P*u)1s = (15)*up(s) are positive when @ : S — @(S) is an isomor-
phism; otherwise we get (?*u);s = 0. O

1.B. Positive Currents

The duality between the positive and strongly positive cones of forms can be
used to define corresponding positivity notions for currents.

(1.13) Definition. A current T € D;, (X) is said to be positive (resp.
strongly positive) if (T, u) > 0 for all test forms u € Dy (X) that are strongly
positive (resp. positive) at each point. The set of positive (resp. strongly
positive) currents of bidimension (p,p) will be denoted

Dt (X),  resp. DE(X).

It is clear that (strong) positivity is a local property and that the sets
D5 (X) € Dy (X) are closed convex cones with respect to the weak topol-
ogy. Another way of stating Def. 1.13 is:

T is positive (strongly positive) if and only if T ANu € D o(X) is a positive
measure for all strongly positive (positive) forms u € Coo (X).

This is so because a distribution S € D'(X) such that S(f) > 0 for every
non-negative function f € D(X) is a positive measure.

(1.14) Proposition. Every positive current T = j(n=p)* Y T7 ydzr NdZy in
DE(X) is real and of order 0, i.c. its coefficients Tt j are complex measures
and satisfy Ty j = Ty, 1 for all multi-indices |I| = |J| = n—p. Moreover Ty 1 >
0, and the absolute values Ty 5| of the measures Ty j satisfy the inequality

ArAs [Trg| <200 Ay Tum, INJCMCIUJ
M

where A\ > 0 are arbitrary coefficients and A\p = [[,c; A

Proof. Since positive forms are real, positive currents have to be real by du-
ality. Let us denote by K = CI and L = [J the ordered complementary
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multi-indices of I, J in {1,2,...,n}. The distribution 77 ; is a positive mea-
sure because

T[’[ T = TA’ipdeK NdzZg > 0.
On the other hand, the proof of Lemma 1.4 yields

TIJT::I:T/\ipzde/\dEL: Z e T Nyq, where
a€(Z/4Z)P

Yo = /\ i(dzks +i%dz, ) A (dzg, +1%dz,), e, = %1, +i.
1<s<p

Now, each T' A v, is a positive measure, hence 77y is a complex measure and

TrslT <Y TAY%=TAY 7

SN ( 3 i(dzks+z'“sdzls)/\(dzks+z'“sdz,s))
1<s<p a,€Z/4Z

=TA /\ (1dzks VAN dfks + ileS A dfls).

1<s<p

The las2t wedge product is a sum of at most 2P terms, each of \zzvhich is of the
type i? dzp ANdZp with |M| =pand M C KUL. Since T NP dzp NdZpy =
Tearon 7 and CM D CKNCL =1nJ, we find

T, < 2P Z AYSYE

M>INJ
Now, consider a change of coordinates (z1,...,2,) = Aw = (Awy, ..., Apywy)
with A1,..., A, > 0. In the new coordinates, the current 7" becomes A*T and

its coefficients become ArA; T7 j(Aw). Hence, the above inequality implies

AAs | Trsl <20 Y0 Ay T
M>INJ

This inequality is still true for Ay, > 0 by passing to the limit. The inequality
of Prop. 1.14 follows when all coefficients Ag, k ¢ I U J, are replaced by 0, so
that A\py =0 for M ¢ TU J. O

(1.15) Remark. If T is of order 0, we define the mass measure of T by
|T|| = >_|T7,5| (of course ||T'|| depends on the choice of coordinates). By the
Radon-Nikodym theorem, we can write 77 ;y = fr ;||T’|| with a Borel function

fI’J such that Z |fI’J| = 1. Hence

T = ||T||f7 where f:i(n_p)2ZfI,J dZ[/\de.
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Then T is (strongly) positive if and only if the form f(z) € A" P PTX
is (strongly) positive at ||T'||-almost all points € X . Indeed, this condition
is clearly sufficient. On the other hand, if T' is (strongly) positive and u;
is a sequence of forms with constant coefficients in AP"PT*X which is dense
in the set of strongly positive (positive) forms, then T'A u; = ||T|| f A uj,
so f(x) A u; has to be a positive (n,n)-form except perhaps for z in a set
N(u;) of ||T'||-measure 0. By a simple density argument, we see that f(z) is
(strongly) positive outside the ||T'||-negligible set N = [J N (u;).

As a consequence of this proof, T is positive (strongly positive) if and only
if T'A u is a positive measure for all strongly positive (positive) forms u of
bidegree (p, p) with constant coefficients in the given coordinates (z1, ..., zy,).
It follows that if T is (strongly) positive in a coordinate patch (2, then the
convolution T x p. is (strongly) positive in 2, = {z € 2; d(x,002) >e}. O

(1.16) Corollary. If T € D, (X) and v € CJ (X) are positive, one of
them (resp. both of them) strongly positive, then the wedge product T A v is a
positive (resp. strongly positive) current.

This follows immediately from Remark 1.15 and Prop. 1.11 for forms.
Similarly, Prop. 1.12 on pull-backs of positive forms easily shows that posi-
tivity properties of currents are preserved under direct or inverse images by
holomorphic maps.

(1.17) Proposition. Let @ : X — Y be a holomorphic map between com-
plex analytic manifolds.

a) If T € Df (X) and Psupp 1 is proper, then &, T € D (V).

b) If T € D;TP(Y) and if @ is a submersion with m-dimensional fibers, then
T € Dt o (X).

Simalar properties hold for strongly positive currents. O

1.C. Basic Examples of Positive Currents

We present here two fundamental examples which will be of interest in many
circumstances.

(1.18) Current Associated to a Plurisubharmonic Function Let X be
a complex manifold and v € Psh(X)N L _(X) a plurisubharmonic function.
Then

0%u

T =idd"u =i g
' w=t 8zj82k

1<j,k<n

de N dzy

is a positive current of bidegree (1,1). Moreover T is closed (we always mean
here d-closed, that is, dT" = 0). Assume conversely that @ is a closed real
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(1,1)-current on X. Poincaré’s lemma implies that every point o € X has
a neighborhood {2y such that ©® = dS with S € D}(£2,R). Write S =
S10 4 501 where S = S1.0. Then d”S = ©%2 = 0, and the Dolbeault-
Grothendieck lemma shows that S%! = d”v on some neighborhood £2 C 2,
with v € D'(£2,C). Thus

S=dv+d'v=dv+d"v,
O =dS =dd" (v-7)=idd"u,

where u = 2Rev € D'(2,R). If © € C79(X), the hypoellipticity of d” in
bidegree (p,0) shows that d'u is of class C*°, so u € C*°(£2). When O is
positive, the distribution v is a plurisubharmonic function (Th. 1.3.31). We
have thus proved:

(1.19) Proposition. If © € D;;L_l,n_l(X) is a closed positive current of

bidegree (1,1), then for every point xo € X there exists a neighborhood §2 of
xo and u € Psh(£2) such that © = id'd"u. O

(1.20) Current of Integration on a Complex Submanifold Let Z C X
be a closed p-dimensional complex submanifold with its canonical orientation
and T' = [Z]. Then T € D;® (X). Indeed, every (r, s)-form of total degree
r 4+ s = 2p has zero restriction to Z unless (r,s) = (p,p), therefore we have
[Z] € Dy, ,(X). Now, if u € Dy ,(X) is a positive test form, then u;z is a
positive volume form on Z by Criterion 1.6, therefore

(210) = [ wz =0

In this example the current [Z] is also closed, because d[Z] = £[0Z] = 0 by
Stokes’ theorem. O

1.D. Trace Measure and Wirtinger’s Inequality

We discuss now some questions related to the concept of area on complex
submanifolds. Assume that X is equipped with a hermitian metric h, i.e. a
positive definite hermitian form h = ) hjpdz; ® dZj, of class C* ; we denote
by w =1} hjrdz; A dzy € C75(X) the associated positive (1, 1)-form.

(1.21) Definition. For every T € Dt (X), the trace measure of T with
respect to w s the positive measure

1
— 4
aT_—zp !T/\w.

If (¢1,...,¢n) is an orthonormal frame of T*X with respect to h on an
open subset U C X, we may write
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w=i Y GAG, W=p Y Ak,

1<j<n |K|=p

T = i(n=p)’ Z Tr,1¢ NGy, Tr5 € D'(U),
IT|=IJ]=n—p

where (7 = (i, A... A G,_,. An easy computation yields

(1.22) aT:2—p( y TI,,)iglAzl/\.../\ign/\Zn.

|I|=n—p

For X = C" with the standard hermitian metric h =) dz; ® dz;, we get in
particular

(1.22)) op = 2—p( > TI,I) idzy AdZi A ... Nidz, A dZ,.
[|=n—p

Proposition 1.14 shows that the mass measure ||T'|| = > |17 ;| of a positive
current 7' is always dominated by Cor where C' > 0 is a constant. It follows
easily that the weak topology of DJ,(X) and of D)’(X) coincide on D (X),
which is moreover a metrizable subspace: its weak topology is in fact defined
by the collection of semi-norms 7' —— |(T, f,,)| where (f,) is an arbitrary
dense sequence in D, (X). By the Banach-Alaoglu theorem, the unit ball in
the dual of a Banach space is weakly compact, thus:

(1.23) Proposition. Let 0 be a positive continuous function on X . Then the
set of currents T € D;‘ (X)) such that fX 0T ANwP <1 is weakly compact.

Proof. Note that our set is weakly closed, since a weak limit of positive cur-
rents is positive and [y 6 T Aw? = sup(T, #dw?) when 6 runs over all elements
of D(X) such that 0 <0 < 1. O

Now, let Z be a p-dimensional complex analytic submanifold of X. We
claim that

1
(1.24) o1z = W[Z] A w? = Riemannian volume measure on Z.
P!

This result is in fact a special case of the following important inequality.
(1.25) Wirtinger’s inequality. Let Y be an oriented real submanifold of

class C' and dimension 2p in X, and let dVy be the Riemannian volume
form on'Y associated with the metric hyy . Set

1
2p—p!CU€Y = OédVY, o€ CO(Y)
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Then |a] < 1 and the equality holds if and only if Y is a complex analytic
submanifold of X . In that case o = 1 if the orientation of Y is the canonical
one, a = —1 otherwise.

Proof. The restriction w;y is a real antisymmetric 2-form on TY". At any point
z € Y, we can thus find an oriented orthonormal R-basis (e1,es,...,ezp) of
T,Y such that
1
—w = Z ap ey Ney, on T,Y,  where
1<k<p
1
g = §W(€2k—1a€2k) = —Imh(eax—1, €21).
We have dVy = ej A ... Aej, by definition of the Riemannian volume form.
By taking the p-th power of w, we get

1
2p—p'wzr’TzY:al...ape’{/\.../\e’gp:al...apdVy.

Since (eg) is an orthonormal R-basis, we have Reh(eax—1,€2r) = 0, thus
h(eak—1,e2r) = —iag. As |eak—1| = |ear| = 1, we get

0 < lear & Jeag_1]> = 2(L £ Re h(Jea,_1,e2x)) = 2(1 £ o).
Therefore
lag| <1, Jo|=|ar...0p] <1,

with equality if and only if ap = +1 for all k, i.e. eg, = +Jeog_1. In this
case T,Y C T,X is a complex vector subspace at every point z € Y, thus
Y is complex analytic by Lemma 1.4.23. Conversely, assume that Y is a C-
analytic submanifold and that (e, es,...,e2,_1) is an orthonormal complex
basis of T,Y. If eg), := Jeagk—1, then (eq,...,eg,) is an orthonormal R-basis
corresponding to the canonical orientation and

1 1
—wyy = Z es_1 N\ e, 2p—p'w7r’y :ef/\.../\egp:dVy. O

2
1<k<p

Note that in the case of the standard hermitian metric w on X = C",
the form w = 1Y dz; A dz; = d(i} z;dz;) is globally exact. Under this
hypothesis, we are going to see that C-analytic submanifolds are always
minimal surfaces for the Plateau problem, which consists in finding a com-
pact subvariety Y of minimal area with prescribed boundary 0Y.

(1.26) Theorem. Assume that the (1,1)-form w is exact, say w = dy with
v € C°(X,R), and let Y, Z C X be (2p)-dimensional oriented compact real
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submanifolds of class C* with boundary. If 0Y = 0Z and Z is complex ana-
lytic, then

Vol(Y) > Vol(Z).

Proof. Write w = dvy. Wirtinger’s inequality and Stokes’ theorem imply

p—1 p—1
Vol(y 2pp"/ 2?19"/ “ /\7 2pp"/ay

Vol(Z) =

wp ANy =+—"— wpl/\fy O

2pp| (.(.) 2pp’ 2pp'

2. Closed Positive Currents

2.A. The Skoda-El Mir Extension Theorem

We first prove the Skoda-El Mir extension theorem (Skoda 1982, El Mir
1984), which shows in particular that a closed positive current defined in the
complement of an analytic set E can be extended through E if (and only if)
the mass of the current is locally finite near E. El Mir simplified Skoda’s
argument and showed that it is enough to assume E complete pluripolar. We
follow here the exposition of Sibony’s survey article (Sibony 1985).

(2.1) Definition. A subset E C X is said to be complete pluripolar in X
if for every point xo € X there exist a neighborhood (2 of xy and a function
u € Psh(2) N LY (£2) such that EN 2 ={z € 2; u(z) = —o0}.

Note that any closed analytic subset A C X is complete pluripolar: if
g1 = ... = gn = 0 are holomorphic equations of A on an open set 2 C X,
we can take u = log(|g1|®> + ... + [gn|?).

(2.2) Lemma. Let E C X be a closed complete pluripolar set. If xg € X
and §2 s a sufficiently small neighborhood of xo, there exists:

a) a function v € Psh(£2) N C*°(2 \ E) such that v = —oco on EN 2 ;

b) an increasing sequence v, € Psh(£2) N C>(£2), 0 < v, < 1, converging
uniformly to 1 on every compact subset of 2 \ E, such that vy =0 on a

neighborhood of E N (2.

Proof. Assume that 2y CC X is a coordinate patch of X containing xy and
that EN 2y = {z € 2y ; u(z) = —o0}, u € Psh((2). In addition, we can
achieve v < 0 by shrinking (29 and subtracting a constant to u. Select a
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convex increasing function x € C*°([0,1],R) such that x(¢) = 0 on [0,1/2]
and x(1) = 1. We set

up = x(exp(u/k)).

Then 0 < ug < 1, ug is plurisubharmonic on {2y, ux = 0 in a neighborhood
wr of EN 2y and limug =1 on 29 ~ E. Let {2 CC (29 be a neigli)oihood of
1o, let 09 = d(£2,062) and ¢;, € 0, o[ be such that g, < d(E N 2,2\ wy).
Then

wy, := max{u; x pe,} € Psh(£2) N C°(£2),
J<k

0 < wg <1, wy =0 on a neighborhood of E'N (2 and wy, is an increasing
sequence converging to 1 on 2 \ E (note that wg > wug). Hence, the con-
vergence is uniform on every compact subset of {2\ E by Dini’s lemma. We
may therefore choose a subsequence wy, such that wy, (z) > 1 —27% on an
increasing sequence of open sets 2. with |J 2, = £ \ E. Then

+o0
w(z) = |2+ ) (w, (2) = 1)

is a strictly plurisubharmonic function on 2 that is continuous on 2 \ FE,
and w = —oo on KN (2. Richberg’s theorem 1.3.40 applied on {2~ E produces
v € Psh(2\ E)NC>®(2~\ FE) such that w < v < w+ 1. If we set v = —o0
on £ N (2, then v is plurisubharmonic on (2 and has the properties required
in a). After subtraction of a constant, we may assume v < 0 on {2. Then the
sequence (vy,) of statement b) is obtained by letting vy = x(exp(v/k)). O

(2.3) Theorem (El Mir). Let E C X be a closed complete pluripolar set and
T € Dt (X N E) a closed positive current. Assume that T' has finite mass in

a neighborhood of every point of E. Then the trivial extension T € D;TP(X)
obtained by extending the measures Tt y by 0 on E is closed on X.

Proof. The statement is local on X, so we may work on a small open set 2
such that there exists a sequence v € Psh(£2) N C*°(£2) as in 2.2 b). Let
0 € C*([0,1]) be a function such that # =0 on [0,1/3],0 =1 on [2/3,1] and
0 <0 <1 Then fovy =0 near EN (2 and § o, =1 for k large on every
fixed compact subset of 2\ E. Therefore T' = limy_, 1 o, (0 0 vg)T and

dT = lim TAd(6ouv)

k——+oo

in the weak topology of currents. It is therefore sufficient to check that T'A
d’(~9 o vg) converges weakly to 0 in D;,_; ,(£2) (note that d"T is conjugate to
d'T, thus d"T will also vanish).

Assume first that p = 1. Then T' A d'(0 o vx) € Dy 1(£2), and we have to
show that
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(T Nd'(0owvg),a) =(T,0 (vi)d'vp N@) — 0, Va € Dy ().

As v — (T',iyA%) is a non-negative hermitian form on Dq ((2), the Cauchy-
Schwarz inequality yields

(T, iB A" < (T,iB AB) (T,iy AT),  YB,7 € Dio(9).

Let ¢ € D(£2), 0 < ¢ < 1, be equal to 1 in a neighborhood of Supp . We
find

(T, 0 (o) d'o, A@)|* < (T, pid v, A d"vy) (T, 0 (vp) i A @).

By hypothesis [, T AiaA@ < 400 and ¢’ (v) converges everywhere to 0 on
2, thus (T, 0’ (vi)*iaA@) converges to 0 by Lebesgue’s dominated convergence
theorem. On the other hand

id'd"v: = 2uy,id'd" vy, + 2id"vg A d"vg > 2id" vy, A d vy,

2T, id v A d"vy,) < (T, pid'd"v}).

As ¢ € D(£2), v, = 0 near E and d'T = d"T =0 on 2 \ E, an integration
by parts yields

(T, pid' d"v}) = (T, vid d") < C’/ 1T < +o0
2NE

where C' is a bound for the coefficients of ¢. Thus (T, ¢id'vi A d"vi) is
bounded, and the proof is complete when p = 1. B

In the general case, let s =105 1 A B 1 A ... ANifsp—1 A By, be a basis
of forms of bidegree (p — 1,p — 1) with constant coefficients (Lemma 1.4).
Then T'A 35 € D/1T1(Q . F) has finite mass near FE and is closed on 2 \ F.
Therefore d(T A Bs) = (dT) A Bs = 0 on 2 for all s, and we conclude that
dIl' = 0. UJ

(2.4) Corollary. If T € D (X) is closed, if E C X is a closed complete
pluripolar set and g is its characteristic function, then NgT and lx gT
are closed (and, of course, positive).

Proof. If we set © = Ty)x_ g, then © has finite mass near £ and we have
]lX\ET:@and ﬂET:T—@ [

2.B. Current of Integration over an Analytic Set

Let A be a pure p-dimensional analytic subset of a complex manifold X. We
would like to generalize Example 1.20 and to define a current of integration
[A] by letting

(2.5) <[A],U>Z/A o, veD,,(X).

reg
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One difficulty is of course to verify that the integral converges near Agpg.
This follows from the following lemma, due to (Lelong 1957).

(2.6) Lemma. The current [Areg] € Dt (X N Aging) has finite mass in a
neighborhood of every point zyp € Asing-

Proof. Set T' = [Ayeg] and let 2 5 zy be a coordinate open set. If we write the
monomials dzg A dZy, in terms of an arbitrary basis of AP"PT*(2 consisting of
decomposable forms (8, = i3, 1 /\3571 N NBsp /\Bs,p (cf. Lemma 1.4), we see
that the measures T7 ;.7 are linear combinations of the positive measures
T A Bs. It is thus sufficient to prove that all T'A B, have finite mass near Agiyg.
Without loss of generality, we may assume that (A4, zp) is irreducible. Take
new coordinates w = (wi, ..., wy) such that w; = B ;(z — 20), 1 < j < p.
After a slight perturbation of the 3 ;, we may assume that each projection

st AN (A" x A"), wr—w = (wy,...,wp)

defines a ramified covering of A (cf. Prop. I1.3.8 and Th. I1.3.19), and that
(Bs) remains a basis of APPT*(2. Let S be the ramification locus of 7, and
Asg = AN ((A’ N S) x A”) C Ayeg. The restriction of 73 Ag — A’ S is
then a covering with finite sheet number ¢, and we find

/ [Areg]) A Bs = / idwy Adwy A ... Nidw, A dwy,
AT A ApegN(A'XA™)
:/ idwl/\dml.../\dmp:qs/ idw; Adwy ... N\ dw, < +00.
As

A'NS

The second equality holds because Ag is the complement in A,ee N (A’ x A”)
of an analytic subset (such a set is of zero Lebesgue measure in A,eg). O

(2.7) Theorem (Lelong, 1957). For every pure p-dimensional analytic subset
A C X, the current of integration [A] € Dyt (X) is a closed positive current
on X.

Proof. Indeed, [A,eg| has finite mass near Agng and [A] is the trivial extension
of [Aseg] to X through the complete pluripolar set E' = Aging. Theorem 2.7
is then a consequence of El Mir’s theorem. 0

2.C. Support Theorems and Lelong-Poincaré Equation

Let M C X be a closed C! real submanifold of X. The holomorphic tangent
space at a point © € M is

(2.8) "M =T, M N JT, M,

that is, the largest complex subspace of T, X contained in T, M. We define
the Cauchy-Riemann dimension of M at 2 by CRdim,M = dim¢ "T, M and
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say that M is a CR submanifold of X if CRdim, M is a constant. In general,
we set

(2.9) CRdim M = max CRdim,M = max dim¢ "T, M.

rzeM zeM
A current © is said to be normal if © and d© are currents of order 0. For
instance, every closed positive current is normal. We are going to prove two

important theorems describing the structure of normal currents with support
in C'R submanifolds.

(2.10) First theorem of support. Let © € D (X) be a normal current.

If Supp © is contained in a real submanifold M of CR dimension < p, then
e =0.

Proof. Let ©9 € M and let gy,..., g, be real C' functions in a neighbor-
hood (2 of zp such that M = {z € 2 ; ¢gi1(z) = ... = gm(z) = 0} and
dgi A ... Ndgn, # 0 on §2. Then

"TM =TMNJTM = ﬂ ker dgi, N ker(dgy o J) = ﬂ ker d’ gy,
1<k<m 1<k<m

because d'g, = %(dgk — i(dgy) o J). As dimc "M < p, the rank of the
system of (1,0)-forms (d’gyx) must be > n — p at every point of M N (2.
After a change of the ordering, we may assume for example that (; = d'g1,

G =dga, ..., (n—pt1 = d'gn_pt1 are linearly independent on (2 (shrink 2
if necessary). Complete ({1, ..., (n—p+1) into a continuous frame (¢1,...,¢n)
of T" X and set
O = Z @I,JCI/\ZJ on {2.
|1|=1J|=n—p

As © and d’'© have measure coefficients supported on M and g = 0 on M,
we get gr© = grd’'© = 0, thus

dgy \NO = d'(gk@) —grd'® =0, 1<k<m,

in particular (g A© =0 forall1 <k <n—p+ 1. When |I| = n — p, the
multi-index CI contains at least one of the elements 1,...,n — p + 1, hence
@/\CGI/\CCJ:Oand@I,J:(). [

(2.11) Corollary. Let © € Dy, (X) be a normal current. If Supp © is con-
tained in an analytic subset A of dimension < p, then © = 0.

Proof. As A;eg is a submanifold of CRdim < p in X \ Agjng, Theorem 2.9
shows that Supp © C Aging and we conclude by induction on dim A. O
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Now, assume that M C X is a CR submanifold of class C!' with
CRdim M = p and that "T'M is an integrable subbundle of T'M ; this means
that the Lie bracket of two vector fields in *T'M is in *T'M. The Frobenius in-
tegrability theorem then shows that M is locally fibered by complex analytic
p-dimensional submanifolds. More precisely, in a neighborhood of every point
of M, there is a submersion o : M — Y onto a real C! manifold Y such that
the tangent space to each fiber F; = 0~1(t), t € Y, is the holomorphic tan-
gent space "T'M ; moreover, the fibers F} are necessarily complex analytic in
view of Lemma 1.7.18. Under these assumptions, with any complex measure
it on 'Y we associate a current © with support in M by

212) ©= [ [Fldu®), ie (©,u)= / ( / u) dyu()

tey tey \JF,
for all u € D, ,(X). Then clearly @ € D;, (X) is a closed current of order 0,
for all fibers [F;| have the same properties. When the fibers F; are connected,
the following converse statement holds:

(2.13) Second theorem of support. Let M C X be a CR submanifold of
CR dimension p such that there is a submersion o : M — Y of class C*
whose fibers Fy = o~ 1(t) are connected and are the integral manifolds of the
holomorphic tangent space "TM. Then any closed current © € D, »(X) of
order 0 with support in M can be written @ = [ [F}]du(t) with a unique
complex measure i on'Y . Moreover © is (strongly) positive if and only if the
measure (L 18 positive.

Proof. Fix a compact set K C Y and a C! retraction p from a neighborhood
V of M onto M. By means of a partition of unity, it is easy to construct a
positive form o € D) (V) such that th a = 1 for each fiber F; with ¢t € K.
Then the uniqueness and positivity statements for p follow from the obvious
formula

/Y F(t)du(t) = (O, (fop)a), Ve COY), SuppfCK.

Now, let us prove the existence of p. Let zg € M. There is a small neigh-
borhood §2 of x( and real coordinates (z1,y1,- .., Zp, Yp, t1,---5tq, 91, -, Im)
such that

e z; = xj +1iy;, 1 < j < p, are holomorphic functions on {2 that define
complex coordinates on all fibers F; N (2.

o ty,...,t, restricted to M N §2 are pull-backs by o0 : M — Y of local coor-
dinates on an open set U C Y such that oo : M N §2 — U is proper and
surjective.

® g1 =...= g, =0 are equations of M in (2.

Then TF; = {dt; = dgi, = 0} equals "T'M = {d'gy = 0} and the rank of
(d'g1,...,d' gn) is equal to n — p at every point of M N (2. After a change
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of the ordering we may suppose that (1 = d'g1, ..., (u—p = d'gn_p are
linearly independent on (2. As in Prop. 2.10, we get (t AO = (,, ANO =0
for 1 <k <n —p and infer that © A (g7 A gy = 0 unless I = J = L where
L=1{1,2,...,n— p}. Hence
O=0LL A ApACA..ACy, oOn £

Now (1 A ... A Zn_p is proportional to dt; A...dt, Adgi A ... A dg,, because
both induce a volume form on the quotient space T'Xas/ hT M. Therefore,
there is a complex measure v supported on M N {2 such that

O@=vdtyN\...dtg Ndgi N... Ndg,, on (2.

As O is supposed to be closed, we have 0v/0z; = Ov/0y; = 0. Hence v is
a measure depending only on (¢, g), with support in ¢ = 0. We may write
v = duy(t) ® 6o(g) where puy is a measure on U = o(M N §2) and 6y is the
Dirac measure at 0. If j : M — X is the injection, this means precisely that
O = j,o*uy on 2, ie.

O = [Fi]dpy(t) on 2.
teu
The uniqueness statement shows that for two open sets (21, {2 as above,
the associated measures py, and py, coincide on o(M N 21 N £2;). Since the
fibers F} are connected, there is a unique measure p which coincides with all
measures Uy . U

(2.14) Corollary. Let A be an analytic subset of X with global irreducible
components A; of pure dimension p. Then any closed current © € Dj, ,(X)
of order 0 with support in A is of the form © = 3" \;[A;] where A; € C.
Moreover, © is (strongly) positive if and only if all coefficients A; are > 0.

Proof. The regular part M = A, is a complex submanifold of X \ Agg
and its connected components are A; N Aree. Thus, we may apply Th. 2.13
in the case where Y is discrete to see that © =) A;[A4;] on X \ Aging. Now
dim Aging < p and the difference © — 3 A;[A;] € Dy, ,(X) is a closed current
of order 0 with support in Agg, so this current must vanish by Cor. 2.11. [

(2.15) Lelong-Poincaré equation. Let f € M(X) be a meromorphic func-
tion which does not vanish identically on any connected component of X and
let > m;Z; be the divisor of f. Then the function log|f| is locally integrable
on X and satisfies the equation

i
—d'd"1 = E 7
p og | f] my[ ]]

in the space Dy, 1, _1(X) of currents of bidimension (n —1,n —1).
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We refer to Sect. 2.6 for the definition of divisors, and especially to
(2.6.14). Observe that if f is holomorphic, then log|f| € Psh(X), the coeffi-
cients m; are positive integers and the right hand side is a positive current
in D:;I——l,n—l(X)'

Proof. Let Z = |J Z; be the support of div(f). Observe that the sum in the
right hand side is locally finite and that d’'d” log|f| is supported on Z, since
—  fd d
d'log |f|? = d'log(ff) = fdf _df on X\ Z.
frf
In a neighborhood 2 of a point a € Z; N Z,¢g, we can find local coordinates
(w1, ..., wy,) such that Z; N2 is given by the equation wy; = 0. Then Th. 2.6.6
shows that f can be written f(w) = u(w)w]" with an invertible holomorphic
function u on a smaller neighborhood 2’ C 2. Then we have

id'd" log | f| = id'd" (log |u| + m; log |w1]) = m; id'd" log |w: .

For z € C, Cor. 1.3.4 implies
TRl 2 < g1 dz . —
id'd" log |z = —id (—) = —indp dZ N dz = 2m [0].
z

If . C* — C is the projection z — z; and H C C" the hyperplane
{z1 = 0}, formula (1.2.19) shows that

id'd" log |z1| = id'd" log |®(z)| = &*(id'd" log |z|) = n®*([0]) = = [H],

because @ is a submersion. We get therefore 1d’'d”log|f| = m;[Z;] in £2'.
This implies that the Lelong-Poincaré equation is valid at least on X \ Zgip,.
As dim Zgne < n — 1, Cor. 2.11 shows that the equation holds everywhere
on X. 0

3. Definition of Monge-Ampere Operators

Let X be a n-dimensional complex manifold. We denote by d = d’ + d” the
usual decomposition of the exterior derivative in terms of its (1,0) and (0, 1)
parts, and we set

Cc __ 1 !/ U
d°c = ﬂ(d —d").
It follows in particular that d¢ is a real operator, i.e. du = d°@, and that
dd® = %d’ d"”. Although not quite standard, the 1/2ir normalization is very
convenient for many purposes, since we may then forget the factor 27 almost
everywhere (e.g. in the Lelong-Poincaré equation (2.15)). In this context, we
have the following integration by part formula.
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(3.1) Formula. Let 2 CC X be a smoothly bounded open set in X
and let f,g be forms of class C? on 2 of pure bidegrees (p,p) and (q,q)
with p+q =n —1. Then

/f/\ddcg—ddcf/\g:/ fAdg—d°f Ng.
2 o0

Proof. By Stokes’ theorem the right hand side is the integral over {2 of
d(f Nd°g—d°f Ng) = fAdd°g—dd°f Ng+ (df ANd°g+ d°f A dyg).

As all forms of total degree 2n and bidegree # (n,n) are zero, we get

df Ndg = (d"frndg—dfnd'g)=—dfndg. O

1
21w

Let u be a plurisubharmonic function on X and let 7" be a closed posi-
tive current of bidimension (p,p), i.e. of bidegree (n — p,n — p). Our desire
is to define the wedge product dd“u A T even when neither u nor T are
smooth. A priori, this product does not make sense because dd°u and T have
measure coefficients and measures cannot be multiplied; see (Kiselman 1983)
for interesting counterexamples. Assume however that w is a locally bounded
plurisubharmonic function. Then the current w1 is well defined since u is a
locally bounded Borel function and 7" has measure coefficients. According to
(Bedford-Taylor 1982) we define

ddu AT = dd°(uT)

where dd®( ) is taken in the sense of distribution (or current) theory.

(3.2) Proposition. The wedge product dd°u AT is again a closed positive
current.

Proof. The result is local. In an open set {2 C C", we can use convolution
with a family of regularizing kernels to find a decreasing sequence of smooth
plurisubharmonic functions ux = u x p1/ converging pointwise to u. Then
u < ug < up and Lebesgue’s dominated convergence theorem shows that w7
converges weakly to T ; thus dd®(uiT) converges weakly to dd®(uT’) by the
weak continuity of differentiations. However, since uy is smooth, dd®(u;T)
coincides with the product dd®u; A T in its usual sense. As T > 0 and as
dduy, is a positive (1, 1)-form, we have dd“ui AT > 0, hence the weak limit
dd“u AT is > 0 (and obviously closed). O

Given locally bounded plurisubharmonic functions uq, ..., us, we define
inductively
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dd“uy Addug A ... ANdduqg AT = dd(urddus A ... A ddug NT).

By (3.2) the product is a closed positive current. In particular, when w is a lo-
cally bounded plurisubharmonic function, the bidegree (n,n) current (dd°u)™
is well defined and is a positive measure. If u is of class C?, a computation
in local coordinates gives

0%u n! . .
3 8_)-—n1dz1/\dEl/\.../\1dzn/\cl2n.
Z2j0z ™

(dd°u)™ = det (

The expression “Monge-Ampere operator” classically refers to the non-linear
partial differential operator u — det(9%u/0z;0zy). By extension, all opera-
tors (dd©)? defined above are also called Monge-Ampeére operators.

Now, let @ be a current of order 0. When K CC X is an arbitrary compact
subset, we define a mass semi-norm

el =3[ Slews
i YKo g

by taking a partition K = |J K, where each Fj is contained in a coordinate
patch and where Oy ; are the corresponding measure coefficients. Up to con-
stants, the semi-norm ||©||x does not depend on the choice of the coordinate
systems involved. When K itself is contained in a coordinate patch, we set
B = dd¢|z|* over K ; then, if © > 0, there are constants Cy,Cy > 0 such that

WWWS/@AWSQWM.
K

We denote by L'(K), resp. by L>°(K), the space of integrable (resp. bounded
measurable) functions on K with respect to any smooth positive density
on X.

(3.3) Chern-Levine-Nirenberg inequalities (1969). For all compact sub-
sets K, L of X with L C K°, there exists a constant Ck 1 > 0 such that

||ddcu1 VAN .../\ddcuq/\THL < CK,L ||u1||Loo(K) ...||uq||Loo(K) ||T||K

Proof. By induction, it is sufficient to prove the result for ¢ = 1 and u; = .
There is a covering of L by a family of balls B;- CC B; S,K contained in
coordinate patches of X. Let x € D(B;) be equal to 1 on B;. Then

dduNT||, = <C | ddunTABP~1<C | xdduANTApBPL.
LNB,
i B B,

J J

As T and [ are closed, an integration by parts yields

[ddeu AT, o < 0/ WT A ddox A B~ < Cllull o 1Tl
J Bj
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where C’ is equal to C multiplied by a bound for the coefficients of the smooth
form dd®y A BP~L. U

(3.4) Remark. With the same notations as above, any plurisubharmonic
function V on X satisfies inequalities of the type

a)  ||dd°V||L < CrpIIVI|Lrx)-
b) s%p Vi <Ckrl|VI]lLix)-

In fact the inequality
/ _ddV AT < / xddV A B = / Vddex A Bt
LﬂB; B; B;

implies a), and b) follows from the mean value inequality.

(3.5) Remark. Products of the form © = y; A... Ay, AT with mixed (1, 1)-
forms y; = ddu; or v; = dvjAd“w;+dw; Adv; are also well defined whenever
uj, vj, w;j are locally bounded plurisubharmonic functions. Moreover, for
L C K°, we have

19|l < Ck L.

Tk | ] il ey [T 1osllooe ey [ il ey

To check this, we may suppose vj,w; > 0 and ||v;|| = ||w;|| =1 in L>®(K).
Then the inequality follows from (3.3) by the polarization identity

2(dv; A dw; + dw; A d®vj) = dd®(v; + w;)? — dd°v} — dd“w} — v;dd°w; — w;ddv;

in which all dd® operators act on plurisubharmonic functions.

(3.6) Corollary. Let uy, ..., uq be continuous (finite) plurisubharmonic func-
tions and let u¥, ..., u’; be sequences of plurisubharmonic functions converg-
ing locally uniformly to ui,...,uq. If T} is a sequence of closed positive cur-

rents converging weakly to T', then
a) ufddeuf A .. Adduk ATy — urddug A .. A ddug AT weakly.
b) dduf A ... Addul ATy, — dd®uy A... Addug AT weakly.

Proof. We observe that b) is an immediate consequence of a) by the weak
continuity of dd°. By using induction on g, it is enough to prove result a)
when g = 1. If (u*) converges locally uniformly to a finite continuous plurisub-
harmonic function u, we introduce local regularizations u. = ux p. and write

Ty — ul = (uP — w) Ty + (v — )T + ue (T — T).

As the sequence Ty is weakly convergent, it is locally uniformly bounded
in mass, thus |[(u* — u)Ti|lx < |[u* — ul|pe ) [|Tk|[x converges to 0 on
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every compact set K. The same argument shows that ||(u — uc)Tk||x can be
made arbitrarily small by choosing € small enough. Finally u. is smooth, so
ue (T, — T') converges weakly to 0. O

Now, we prove a deeper monotone continuity theorem due to (Bedford-
Taylor 1982) according to which the continuity and uniform convergence
assumptions can be dropped if each sequence (u¥) is decreasing and T}, is

J
a constant sequence.

(3.7) Theorem. Let uy,...,uq be locally bounded plurisubharmonic func-
tions and let u¥, . . ., u’; be decreasing sequences of plurisubharmonic functions
converging pointwise to u1,...,uq. Then

a) ufdduf A ... Adduf NT — urddus A ... Addug AT weakly.
b) ddeuf A .. Adduk AT — dd®uy Ao A ddug AT weakly.

Proof. Again by induction, observing that a) = b) and that a) is obvious
for ¢ = 1 thanks to Lebesgue’s bounded convergence theorem. To proceed
with the induction step, we first have to make some slight modifications of
our functions u; and u?

As the sequence (u;“) is decreasing and as u; is locally bounded, the family
(u5)ken is locally uniformly bounded. The results are local, so we can work
on a Stein open set {2 CC X with strongly pseudoconvex boundary. We use
the following notations:

(3.8) let 1) be a strongly plurisubharmonic function of class C* near 2 with
¥ <0on 2 and )y =0, dy #0 on 0§2;

(3.8") weset 25 ={z€ 2;¢Y(z) <=0} for all § > 0.

After addition of a constant we can assume that —M < uf < —1 near 2.
Let us denote by (u; k, ©), € € ]0,g0], an increasing family of regularizations
converging to u;“ as e — 0 and such that —M < u®* < —1 on !2 Set
A= M/o with 6 > 0 small and replace u¥ by v} = max{Ay,u}} and u “ by

k = = max.{ A, u; hey where max, — max * p6 is a regularlzed max functlon
Then v;“ coincides Wlth uJ on {25 since Ay < —Ad = —M on (25, and v
is equal to Ay on the corona 2\ 25/n1- Wlthout loss of generality, we can
therefore assume that all uj (and similarly all u ) coincide with At on a
fixed neighborhood of 0f2. We need a lemma.

(3.9) Lemma. Let fi, be a decreasing sequence of upper semi-continuous
functions converging to f on some separable locally compact space X and puy,
a sequence of positive measures converging weakly to p on X. Then every
weak limit v of frur satisfies v < fpu.

Indeed if (gp) is a decreasing sequence of continuous functions converging
to fi, for some ko, then frur < fropun < gpur for k > ko, thus v < g,u
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Fig. 1 Construction of vf

as k — 4o00. The monotone convergence theorem then gives v < fi p as
p— 400 and v < fu as kg — +o0. ([l

Proof of Theorem 3.7 (end). Assume that a) has been proved for ¢ — 1. Then
S*¥ = ddu§ A ... Adduf AT — S = dduy A ... Addug AT.

By 3.3 the sequence (u}S*) has locally bounded mass, hence is relatively
compact for the weak topology. In order to prove a), we only have to show that
every weak limit © of u¥S* is equal to uyS. Let (m,m) be the bidimension
of § and let v be an arbitrary smooth and strongly positive form of bidegree
(m,m). Then the positive measures S¥ A v converge weakly to S A v and
Lemma 3.9 shows that © Ay < u3 S A+, hence © < u1.S. To get the equality,
we set 3 = dd°) > 0 and show that [, u1SA L™ < [,O A L™, ie.

/ulddcuz/\.../\ddcuq/\T/\Bm ghminf/ ufddul A .. A ddul AT AB™.
2 £2

k—+o00

Asup <ub < u’f’el for every e; > 0, we get
/ urdd®us A ... ANdd“ug NT N B™
2
< / ub S ddCug A ... A ddCug NT A B™
2
= / dd°ub " A ugdd®us A ... A ddug AT A ™
2

after an integration by parts (there is no boundary term because u’f’el and

ug both vanish on 042). Repeating this argument with us, ..., uy, we obtain
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/ urdd“ug A ... AN ddug NT N B™
2
k.eq—
< / ddeuy®t A A ddug T AugT A B
2

< / u Tt ddeus T AL A ddeuk s AT A BT
2

Now let e, — 0,...,e1 — 0 in this order. We have weak convergence at each
step and u’f’el = 0 on the boundary; therefore the integral in the last line

converges and we get the desired inequality

/ulddch/\.../\ddcuq/\T/\ﬁmg/ ufddul A ... Addui AT AB™.0
2 2

(3.10) Corollary. The product dd“uy A ... A dd°uqg AT is symmetric with
respect 1o Uy, ..., Uq-

Proof. Observe that the definition was unsymmetric. The result is true when
U1,...,uqy are smooth and follows in general from Th. 3.7 applied to the
sequences uf =uj*p1/k, 1 <5 < gq. [
(3.11) Proposition. Let K, L be compact subsets of X such that L C K°.
For any plurisubharmonic functions V,uq,...,us on X such that uy, ..., uq4
are locally bounded, there is an inequality

||Vddcu1 VAN ddcuq||L < CK,L ||V||L1(K)||U1||L00(K) . ||uq||Loo(K).

Proof. We may assume that L is contained in a strongly pseudoconvex open
set £2 = {1y <0} C K (otherwise we cover L by small balls contained in K).
A suitable normalization gives —2 < u; < —1 on K ; then we can modify
uj on £2\ L so that u; = Ay on 2\ £25; with a fixed constant A and 6 > 0
such that L C (25. Let x > 0 be a smooth function equal to — on (25 with
compact support in £2. If we take ||V||p1(x) = 1, we see that V, is uniformly
bounded on {25 by 3.4 b); after subtraction of a fixed constant we can assume
V <0 on §25. First suppose ¢ <n — 1. As uj = At on §2\ 25, we find

—Vdd®uy A .. AN ddug A\ BT
25

- / Vdd®uy A ... Addug AB"E Addy — Aq/ VA" Addey
0 2\ Q25

= / x dd°V Adduy A ... Addug A BPTITE — Aq/ VB A ddey.
0 2\ 25

The first integral of the last line is uniformly bounded thanks to 3.3 and
3.4 a), and the second one is bounded by ||V|[z1() < constant. Inequality
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3.11 follows for ¢ < n—1. If ¢ = n, we can work instead on X x C and consider
V,u1,...,uq as functions on X x C independent of the extra variable

4. Case of Unbounded Plurisubharmonic Functions

We would like to define ddu; A ... A dd“uqy AT also in some cases when
ui,...,Uqg are not bounded below everywhere, especially when the u; have
logarithmic poles. Consider first the case ¢ = 1 and let u be a plurisubhar-
monic function on X. The pole set of u is by definition P(u) = u=(—00).
We define the unbounded locus L(u) to be the set of points z € X such
that u is unbounded in every neighborhood of z. Clearly L(u) is closed

and we have L(u) D P(u) but in general these sets are different: in fact,
w(z) = Y k™2log(|z — 1/k| + e=") is everywhere finite in C but L(u) = {0}.

(4.1) Proposition. We make two additional assumptions:
a) T has non zero bidimension (p,p) (i.e. degree of T < 2n).

b) X is covered by a family of Stein open sets 2 CC X whose boundaries
012 do not intersect L(u) N Supp T.

Then the current uT has locally finite mass in X.

For any current T, hypothesis 4.1 b) is clearly satisfied when v has a
discrete unbounded locus L(u); an interesting example is u = log |F'| where
F = (F,..., Fy) are holomorphic functions having a discrete set of common
zeros. Observe that the current w7 need not have locally finite mass when
T has degree 2n (i.e. T is a measure); example: T = §p and u(z) = log |z|
in C". The result also fails when the sets {2 are not assumed to be Stein;
example: X = blow-up of C* at 0, T = [E] = current of integration on
the exceptional divisor and u(z) = log|z| (see § 7.12 for the definition of
blow-ups).

Proof. By shrinking (2 slightly, we may assume that {2 has a smooth strongly
pseudoconvex boundary. Let ¢ be a defining function of {2 as in (3.8). By
subtracting a constant to u, we may assume u < —e on £2. We fix § so small
that 2\ 25 does not intersect L(u) N Supp T and we select a neighborhood
w of (2~ £25) N Supp T such that @N L(u) = (). Then we define

wg(2) = {max{u(z), AY(2)} onw,
s max{u(z), S} on 95 — {1/) < _5}.

By construction v > —M on w for some constant M > 0. We fix A > M/6
and take s < —M, so

max{u(z), AY(z)} = max{u(z),s} =u(z) on wn s
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and our definition of u, is coherent. Observe that us is defined on w U (2,

which is a neighborhood of 2 N Supp T. Now, u, = A on w N (£2 2c/a),
hence Stokes’ theorem implies

/ dd®ug AT A (ddp)P~! — / Addsp AT A (dd4p)P~1
2 2
_ / dd®[(us — A)T A (ddegp)P=1] = 0
02

because the current [...] has a compact support contained in {2, /A- Since ug
and 1 both vanish on 0f2, an integration by parts gives

/ usT A (dd®)P = / Yddus AT A (ddyp)P~1
2 2
> Aoy [ T A ddou, A ()
2

= —llillz@A [ T @y

Finally, take A = M/§, let s tend to —oo and use the inequality v > —M
on w. We obtain

/ wT A (dde)? > —M / TA(ddp) + Tim | u,T A (dde)?
2

w S——00 25
>~ (M + @ M/3) [ 7 A (o).
The last integral is finite. This concludes the proof. ([l

(4.2) Remark. If (2 is smooth and strongly pseudoconvex, the above proof
shows in fact that

Tl < Sl e g ysupe 1) Tl

when L(u) N Supp T' C £25. In fact, if u is continuous and if w is cho-
sen sufficiently small, the constant M can be taken arbitrarily close to
|| ul| Loo((B~025)nSupp T)- Moreover, the maximum principle implies

||u’+||L°°(§r']Supp T) = ||u+||L°°(8QﬂSupp T))

so we can achieve © < —e on a neighborhood of 2 N Supp T by subtracting
||u||Loo((§\95)msupp ) + 2€ [Proof of maximum principle: if u(zg) > 0 at
zo € 2N Supp T and u < 0 near 0£2 N Supp T, then

/ uy T A (ddy)P = / YddCuy AT A (ddy)P~ <0,
2 2
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a contradiction]. O

(4.3) Corollary. Let uy,...,uq be plurisubharmonic functions on X such
that X is covered by Stein open sets £2 with 2N L(u;) N Supp T' = 0. We
use again induction to define

dd®ui Addug A ... ANddug AT = dd°(urddusy ... A dduqg NT).

Then, if u¥,.. .,u'; are decreasing sequences of plurisubharmonic functions
converging pointwise to uq1,...,uq, ¢ < p, properties (3.7a,b) hold.

Fig. 2 Modified construction of v}“

Proof. Same proof as for Th. 3.7, with the following minor modification:

the max procedure v;-“ = max{u;?,Aw} is applied only on a neighborhood

w of Supp T N (2 \ 25) with § > 0 small, and u? is left unchanged near
Supp T N £25. Observe that the integration by part process requires the func-
tions u? and u;?’s to be defined only near 2 N Supp 7. O
(4.4) Proposition. Let 2 CC X be a Stein open subset. If V is a plurisub-
harmonic function on X and uq,...,uq, 1 < q < n—1, are plurisubharmonic
functions such that 02 N L(u;) = 0, then Vdd®us A ... A dd®uq has locally
finite mass in (2.

Proof. Same proof as for 3.11, when § > 0 is taken so small that 25 D L(u,)
forall 1 <j<gq. O



1/0 Lnapter 111 1"OS1tlve Lurrents ana L.elong INuimbers

Finally, we show that Monge-Ampeére operators can also be defined in the
case of plurisubharmonic functions with non compact pole sets, provided that
the mutual intersections of the pole sets are of sufficiently small Hausdorff
dimension with respect to the dimension p of T

(4.5) Theorem. Let uy,...,u, be plurisubharmonic functions on X. The
currents urdd®us A .. .ANdd°ug AT and dd®ui A.. . ANddug AT are well defined
and have locally finite mass in X as soon as ¢ < p and

:]—C2p—2m—|—1(L(uj1) N...N L(Ujm) N Supp T) =0

for all choices of indices j1 < ... < jm in {1,...,q}.

The proof is an easy induction on ¢, thanks to the following improved
version of the Chern-Levine-Nirenberg inequalities.

(4.6) Proposition. Let A;,...,A; C X be closed sets such that
:H:2p—2m~|—1(Aj1 N...N Ajm N Supp T) =0

for all choices of j1 < ... < jm in {1,...,q}. Then for all compact sets K,
L of X with L C K°, there ewist neighborhoods V; of KN A; and a constant
C =C(K,L,Aj) such that the conditions u; < 0 on K and L(u;) C A; imply

a) ||u1ddcu2 VAR /\ddcuq /\T||L S C||u1||L°°(K\V1) NN ||U'q||L°°(K\Vq)||T||K
b) ||ddcu1 VAN /\ddcuq /\T||L S C||u1||L°°(K\V1) NN ||uq||L°°(K\Vq)||T||K-

Proof. We need only show that every point xy € K° has a neighborhood L
such that a), b) hold. Hence it is enough to work in a coordinate open set.
We may thus assume that X C C" is open, and after a regularization process
uj = limwu;xpe for j = q, q—1,...,1in this order, that uy, ..., u, are smooth.
We proceed by induction on ¢ in two steps:

Step 1. (bg—1) = (by),

Step 2. (ag—1) and (bg) = (ay),

where (bg) is the trivial statement ||T'||, < ||T||x and (ag) is void. Observe
that we have (a;) = (a¢) and (by) = (by) for £ < ¢ < p by taking
upr1(2) = ... = ug(z) = |2|?. We need the following elementary fact.

(4.7) Lemma. Let FF C C" be a closed set such that Hosy1(F) = 0 for
some integer 0 < s < n. Then for almost all choices of unitary coordinates
(21,.-y2n) = (#,2") with 2" = (z1,...,2s5), 2" = (2s41,--.,2n) and almost
all radii of balls B" = B(0,r") C C*=*, the set {0} x dB" does not inter-
sect F'.

Proof. The unitary group U(n) has real dimension n?. There is a proper
submersion
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@:U(n) x (C** ~{0}) — C*" ~ {0}, (g,2") — g(0,2"),

whose fibers have real dimension N = n? — 2s. It follows that the inverse
image ®~1(F) has zero Hausdorff measure Hy o511 = Hy241. The set of
pairs (g,7") € U(n) x R such that g({0} x 0B") intersects F' is precisely
the image of @~!(F) in U(n) x R% by the Lipschitz map (g,2") — (g, [2"]).
Hence this set has zero J,,2-measure. 0

Proof of step 1. Take o = 0 € K°. Suppose first 0 € A; N...N A, and set
F=ANn...NnA;NSupp T. Since Hsp_24+1(F) = 0, Lemma 4.7 implies that
there are coordinates z' = (z1,...,2s), 2" = (2541, .., 2,) With s = p—q and
aball B such that Fn ({0} x8B") = 0 and {0} x B" C K°. By compactness
of K, we can find neighborhoods W; of KN A; and a ball B’ = B(0,r') C C*

such that B x B C K° and
(4.8) Win...nW,NSupp T'N (F’ x (B" < (1- 5)3//)) —

for § > 0 small. If 0 ¢ A; for some j, we choose instead W; to be a small
neighborhood of 0 such that W C (El X (1 —0)B") \ Aj; property (4.8) is
then automatically satisfied. Let x; > 0 be a function with compact support
in Wj, equal to 1 near K N A; if A; 5 0 (resp. equal to 1 near 0 if A; # 0)
and let x(z’) > 0 be a function equal to 1 on 1/2 B’ with compact support
in B’. Then

/ dd(x1ur) A ... Add®(xqug) AT A x(2') (dd°|2'|?)® =
B/ XB//
because the integrand is dd® exact and has compact support in B’ x B”
thanks to (4.8). If we expand all factors dd®(x;u;), we find a term
X1 - XgX(Z)dduys Ao Addug AT >0

which coincides with dduy A ... A dd°uy AT on a small neighborhood of 0
where x; = x = 1. The other terms involve

dx; N dc’LLj + duj A dCXj + UjddCXj

for at least one index j. However dx; and dd®x; v vamsh on some neighborhood
Vi of KN Aj and therefore u; is bounded on B x B~ V;. We then apply
the 1nduct1on hypothesis (by_1) to the current

6 = dduy A ... Addeu; A ... Addug AT

and the usual Chern-Levine-Nirenberg inequality to the product of @ with
the mixed term dx; A d°u; + du; A d®x;. Remark 3.5 can be applied because

X; is smooth and is therefore a difference x( ) §-2) of locally bounded
plurisubharmonic functions in C*. Let K’ be a compact neighborhood of
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B' x B" with K' C K°, and let V; be a neighborhood of K NA; with V; C V.
Then with L' := (B x B") \ V] C (K' \ V;)° we obtain
||(de/\dc’U,j + duj/\dcxj) A @HE’XE” = ||(de/\dc’U,j + de/\dCXj) VAN @HL’
< Chllugl| Lo (v 1@~ v; 5
1@ <v; <@k < Calluallpeeeava) - - llugll - [lugll Lo e 1T | k-

Now, we may slightly move the unitary basis in C"* and get coordinate systems

2™ = (27", ..., 2") with the same properties as above, such that the forms

|
(dd°|2™)2)* = Zide™ AdZP A . AN LdZm AdE™, 1<m < N
7-‘-5
define a basis of A\”°(C™)*. It follows that all measures
dduy A ... ANddug NT Nidz" NdZT" A ..o ANidzgt A dzy
satisfy estimate (b,) on a small neighborhood L of 0.

Proof of Step 2. We argue in a similar way with the integrals

/ Nt dd(xaus) A« . dd®(xgig) AT A X(2)(dd°|2'|?)* A dd®|zes |
/><B//

= / |Zsq1|2ddC (x1uL) A .. dd(xqug) NT N x(2')(dd¢|Z'|?)*.
B'xB"

We already know by (b;) and Remark 3.5 that all terms in the right hand
integral admit the desired bound. For ¢ = 1, this shows that (b;) = (a1).
Except for x1...xqx(2") urddug A ... A dd°uy, AT, all terms in the left hand
integral involve derivatives of x;. By construction, the support of these deriva-
tives is disjoint from A;, thus we only have to obtain a bound for

/ulddcuz/\.../\ddcuq/\T/\a
L

when L = B(=o,r) is disjoint from A; for some j > 2, say LN A2 = (), and «
is a constant positive form of type (p—q,p—q). Then B(zg,r+¢) C K°\V,
for some € > 0 and some neighborhood V5 of KN A,. By the max construction
used e.g. in Prop. 4.1, we can replace us by a plurisubharmonic function us
equal to uz in L and to A(|z —x|2 —7r2) — M in B(xg,r+¢)~\ B(zo, 7 +¢/2),
with M = [|uz||p~(xv,) and A = M/er. Let x > 0 be a smooth function
equal to 1 on B(zo,r + €/2) with support in B(xg,r). Then

/ urdd®(xuz) Addug A ... ANddug NT N
B(zo,r+¢)

= / Xuodd“us A dd“uz A ... ANddug AT A
B(zo,r+¢)

< O() |[urllpes(xvi) - - - lugll Lo (e v 1T &
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where the last estimate is obtained by the induction hypothesis (b,—1) applied
to dd°uy Add®uz A ... A\ dd°uqy AT. By construction

dd‘(xuz) = x dd°uz + (smooth terms involving dy)

coincides with dd®ug in L, and (a;—1) implies the required estimate for the
other terms in the left hand integral. UJ

(4.9) Proposition. With the assumptions of Th. 4.5, the analogue of the
monotone convergence Theorem 3.7 (a,b) holds.

Proof. By the arguments already used in the proof of Th. 3.7 (e.g. by
Lemma 3.9), it is enough to show that

/ X1+ Xqui Addus Ao A ddug NT N o
B'xB'"

< lim inf/ X1--+Xq ulddeu A ddcu’g AT N«
B'xB"

k— 400

where a = x(2')(dd¢|2'|?)* is closed. Here the functions x;, x are chosen as
in the proof of Step 1 in 4.7, especially their product has compact support in
B’ x B" and x; = x = 1 in a neighborhood of the given point z,. We argue
by induction on ¢ and also on the number m of functions (u;);>1 which are
unbounded near xg. If u; is bounded near zg, we take W} cC W[ CC W;
to be small balls of center xy on which u; is bounded and we modify the
sequence u;“ on the corona W; \ W” so as to make it constant and equal to a
smooth function A|z —zo|* + B on the smaller corona W; \ W/. In that case,
we take x; equal to 1 near W and Supp x; C Wj. For every t=1,...,q,
we are going to check that

k— 400

lim inf/ xrubdde (xoub) A .
! B//
dd®(xo—1up_1) A dd®(xoue) A dd(Xes1terr) - - -dd(xqug) AT A

< lim inf/ X1ufdd® (x2us) A
B'xB'"

k——+oo

ddc(xg_lulg_l) A ddc(xgué’) Add®(Xes1Uet1) - .- dd(xqug) NT A a.

In order to do this, we integrate by parts xu¥dd®(xeus) into yeuedd®(x1u¥)
for £ > 2, and we use the inequality u, < uf. Of course, the derivatives dy;,
d®x;, dd°x; produce terms which are no longer positive and we have to take
care of these. However, Supp dy; is disjoint from the unbounded locus of
u; when wu; is unbounded, and contained in Wj \ W when wu; is bounded.
The number m of unbounded functions is therefore replaced by m — 1 in
the first case, whereas in the second case u;“ = u; 1s constant and smooth

on Supp dx;, so ¢ can be replaced by ¢ — 1. By induction on ¢ +m (and
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thanks to the polarization technique 3.5), the limit of the terms involving
derivatives of x; is equal on both sides to the corresponding terms obtained
by suppressing all indices k. Hence these terms do not give any contribution
in the inequalities. U

We finally quote the following simple consequences of Th. 4.5 when T is
arbitrary and ¢ = 1, resp. when 7' = 1 has bidegree (0,0) and q is arbitrary.

(4.10) Corollary. Let T be a closed positive current of bidimension (p,p)
and let u be a plurisubharmonic function on X such that L(u) N Supp T is
contained in an analytic set of dimension at most p—1. Then uT' and dd°uNT
are well defined and have locally finite mass in X. ([l

(4.11) Corollary. Let uy,...,uq be plurisubharmonic functions on X such
that L(u;) is contained in an analytic set A; C X for every j. Then dd®uy A
... Ndd®ug is well defined as soon as A; N...NA; has codimension at least
m for all choices of indices j; < ... < jm n {1,...,q}. O

In the particular case when u; = log|f;| for some non zero holomorphic
function f; on X, we see that the intersection product of the associated zero
divisors [Z;] = dd°u; is well defined as soon as the supports |Z;| satisfy
codim|Z; |N...N|Z;, | = m for every m. Similarly, when 7' = [A] is an
analytic p-cycle, Cor. 4.10 shows that [Z]A[A] is well defined for every divisor
Z such that dim |Z|N|A| = p—1. These observations easily imply the following

(4.12) Proposition. Suppose that the divisors Z; satisfy the above codimen-
sion condition and let (Cy)r>1 be the irreducible components of the point set
intersection |Z1| N ... N |Zy|. Then there exist integers my, > 0 such that

[Z0) AN [Zg) =) mu[Chl.

The integer my, s called the multiplicity of intersection of Z1,...,Z, along
the component Cl,.

Proof. The wedge product has bidegree (g, ¢) and support in C' = | J Cy where
codimC' = ¢, so it must be a sum as above with m; € R;. We check by
induction on ¢ that my is a positive integer. If we denote by A some irreducible
component of |Z;| N ... N |Zy;_1|, we need only check that [A] A [Z,] is an
integral analytic cycle of codimension ¢ with positive coefficients on each
component Cj, of the intersection. However [A] A [Z,] = dd°(log |f,| [A]).
First suppose that no component of AN f° 1(0) is contained in the singular
part Agng. Then the Lelong-Poincaré equation applied on A,e; shows that
dd®(log | fq| [A]) = >_mi[Ck] on X N Aging, where my, is the vanishing order
of fq along Cf in A;ee. Since C'N Aging has codimension ¢ + 1 at least, the
equality must hold on X. In general, we replace f; by f,—e¢ so that the divisor
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of f,—¢e has no component contained in Agng. Then dd®(log |f; —e| [A]) is an
integral codimension ¢ cycle with positive multiplicities on each component
of AN f;'(e) and we conclude by letting e tend to zero. O

5. Generalized Lelong Numbers

The concepts we are going to study mostly concern the behaviour of currents
or plurisubharmonic functions in a neighborhood of a point at which we
have for instance a logarithmic pole. Since the interesting applications are
local, we assume from now on (unless otherwise stated) that X is a Stein
manifold, i.e. that X has a strictly plurisubharmonic exhaustion function.
Let ¢ : X — [—00,400] be a continuous plurisubharmonic function (in
general ¢ may have —oo poles, our continuity assumption means that e? is
continuous). The sets

6.1 S(r)={recX; plz)=r},
(5.1) B(r) ={z € X; o(z) <r},
(5.1") B(r)={z€ X; p(z) <r}

will be called pseudo-spheres and pseudo-balls associated with ¢. Note that
B(r) is not necessarily equal to the closure of B(r), but this is often true in
concrete situations. The most simple example we have in mind is the case of
the function ¢(z) = log|z — a| on an open subset X C C"; in this case B(r)
is the euclidean ball of center a¢ and radius e” ; moreover, the forms

1 i i
5.2) —dde® = —d'd"|z|?, dd°p= —d'd"] —
( ) 2 € 27_[_ |Z| 7 ()0 T Og|z a|

can be interpreted respectively as the flat hermitian metric on C* and as the
pull-back over C* of the Fubini-Study metric of P*~!, translated by a.

(5.3) Definition. We say that ¢ is semi-exhaustive if there erists a real
number R such that B(R) CC X. Similarly, ¢ is said to be semi-exhaustive
on a closed subset A C X if there exists R such that AN B(R) CC X.

We are interested especially in the set of poles S(—o0) = {¢p = —oc0} and
in the behaviour of ¢ near S(—o0). Let T' be a closed positive current of
bidimension (p,p) on X. Assume that ¢ is semi-exhaustive on Supp 7" and
that B(R) N Supp T' CC X. Then P = S(—o0) N SuppT is compact and the
results of §2 show that the measure T' A (dd°p)?P is well defined. Following
(Demailly 1982b, 1987a), we introduce:

(5.4) Definition. If ¢ is semi-exhaustive on Supp T and if R is such that
B(R)NSupp T CC X, we set for all r € | — oo, R|
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o(T, p,7) = / T A (dd°p)?,
B(r)

v(T, p) :/ T A (dd°p)P = lim v(T,p,r).
S(—OO) rT——00
The number v(T, @) will be called the (generalized) Lelong number of T with
respect to the weight .

If we had not required T' A (dd°p)P to be defined pointwise on p~!(—o0),
the assumption that X is Stein could have been dropped: in fact, the integral
over B(r) always makes sense if we define

v(T,p,r) = /B( )T A (dd® max{ep, s})p with s < r.

Stokes’ formula shows that the right hand integral is actually independent
of s. The example given after (4.1) shows however that T' A (dd°p)P need
not exist on p~1(—o0) if ¢~} (—00) contains an exceptional compact analytic
subset. We leave the reader consider by himself this more general situation
and extend our statements by the max{¢p, s} technique. Observe that r —
v(T, p,r) is always an increasing function of r. Before giving examples, we
need a formula.

(5.5) Formula. For any convex increasing function x : R — R we have
/ T A (dd®x o )P = x'(r — 0)P v(T, ¢, 1)
B(r)
where x'(r — 0) denotes the left derivative of x at r.
Proof. Let x. be the convex function equal to x on [r — e, 400 and to a

linear function of slope x'(r —e — 0) on | — 0o, r — €]. We get dd®(xe o ) =
X' (r —e —0)dd°p on B(r — ) and Stokes’ theorem implies

/ T A (ddx o p)P = / T A (dd®xe o @)?
B(r) B(r)

> / T A (ddxe o )P
B(r—e)

=xX'(r—e—=0)Pv(T,p,r —¢).

Similarly, taking y. equal to x on | — co,r — ¢] and linear on [r — ¢, r|, we
obtain
/ T A(ddx o @) < / T A (dd°Xe 0 p)? = X'(r —e = 0)Pu (T, p,7).
B(r—e¢) B(r)

The expected formula follows when ¢ tends to 0. U
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We get in particular fB(r) T A (dd°e??)P = (2e*")Pu(T, p,r), whence the
formula

1
(5.6) v(T,p,r)= e_QW/ TA (—ddcez‘p>p.
B(r) 2

Now, assume that X is an open subset of C* and that ¢(z) = log|z — a
for some a € X. Formula (5.6) gives

i P
v(T, p,logr) = r_2p/ T A (Ld'd”|z|2> :
|z—a|<r 2m

The positive measure o = I%!T/\ (Ad'd"|z|?)P =27P Y Ty .i"dz1 A. .. AdZ,
is called the trace measure of T. We get

or (B(a, 1"))

(67) VT logr) = =5

and v(T, ) is the limit of this ratio as r — 0. This limit is called the (ordi-
nary) Lelong number of T at point a and is denoted v(T', a). This was precisely
the original definition of Lelong, see (Lelong 1968). Let us mention a simple
but important consequence.

(5.8) Consequence. The ratio op(B(a,r))/r? is an increasing function
of r. Moreover, for every compact subset K C X and every ro < d(K,0X)
we have

or(B(a,r)) <Cr* for a€ K and r < ro,

where C = o (K + B(0,10)) /2’

All these results are particularly interesting when T' = [A] is the current
of integration over an analytic subset A C X of pure dimension p. Then
or(B(a,r)) is the euclidean area of AN B(a,r), while 7Pr? /p! is the area
of a ball of radius r in a p-dimensional subspace of C*. Thus v (T, ¢, logr) is
the ratio of these areas and the Lelong number v(T, a) is the limit ratio.

(5.9) Remark. It is immediate to check that

0 for = ¢ A,
1 when x € A is a regular point.

v(14)0) = {

We will see later that v([A], ) is always an integer (Thie’s theorem 8.7).

(5.10) Remark. When X = C", ¢(z) =log|z —a| and A = X (ie. T =1),
we obtain in particular fB(a r)(ddc log |z — a])™ =1 for all r. This implies

(dd°log|z — a|)" = 04.
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This fundamental formula can be viewed as a higher dimensional analogue
of the usual formula Alog|z — a| = 274, in C. O

We next prove a result which shows in particular that the Lelong numbers
of a closed positive current are zero except on a very small set.

(5.11) Proposition. If T is a closed positive current of bidimension (p,p),
then for each ¢ > 0 the set E. = {x € X ; v(T,x) > c is a closed set of locally
finite Hop, Hausdorff measure in X.

Proof. By (5.7), we infer v(T, a) = lim, o o7 (B(a, r))p!/nPr?. The function
a+— or (E(a, 1")) is clearly upper semicontinuous. Hence the decreasing limit
v(T,a) as r decreases to 0 is also upper semicontinuous in a. This implies
that E. is closed. Now, let K be a compact subset in X and let {a;}1<j<n,
N = N(e), be a maximal collection of points in E.NK such that |a; —ar| > 2¢
for j # k. The balls B(a;,2¢) cover E. N K, whereas the balls B(a;,¢) are
disjoint. If K. . is the set of points which are at distance < e of E. N K, we
get

or(Kee) > Y or(Blaj,e)) > N(e) en?e™ [p),
since v(T',a;) > c. By the definition of Hausdorff measure, we infer

.. . 2p
Hop(E.NK) < hIEIiggle (diam B(a;, 2¢))

pl42p
< liminf N(g)(4¢)* < —or(E.NK). O
CTr

e—0

Finally, we conclude this section by proving two simple semi-continuity
results for Lelong numbers.

(5.12) Proposition. Let Ty be a sequence of closed positive currents of
bidimension (p,p) converging weakly to a limit T. Suppose that there is a
closed set A such that Supp Ty, C A for all k and such that ¢ is semi-
erhaustive on A with AN B(R) CC X. Then for all r < R we have

/ T A (dd°p)P < lim inf/ Ty A (ddCp)?
B(r) B(r)

k— 400

< lim sup /_ Ty A (ddp)? < / T A (dd°p)P.

k—+oo JB(r) B(r)

When r tends to —oo, we find in particular

limsup v(Ty, ) < v(T, ¢).

k— 400
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Proof. Let us prove for instance the third inequality. Let ¢, be a sequence
of smooth plurisubharmonic approximations of ¢ with ¢ < ¢, < ¢ + 1/£ on
{r—e<p<r+e}. Weset

— % on E(T)7
Yo =
max{p, (1 +¢)(pe—1/¢) —re} on X \ B(r).
This definition is coherent since ¢, = ¢ near S(r), and we have
o= (14¢€)(pg—1/L) —re near S(r+¢e/2)

as soon as £ is large enough, i.e. (1+¢)/¢ < €2/2. Let x. be a cut-off function
equal to 1 in B(r + ¢/2) with support in B(r + €). Then

/; T N (ddc(p)p < / T N (ddc’gbg)p

B(r) B(r+e/2)

— (14 / Ty A (ddpp)P
B(r+e/2)

<(1te) / T A (ddpy)P.
B(r+e)

As xe(dd®pg)P is smooth with compact support and as T converges weakly
to T', we infer

lim sup/_ Ty A (ddp)? < (1 + s)p/ XeT A (ddCpe)?.
k—+oo JB(r) B(r+e)

We then let £ tend to 400 and € tend to 0 to get the desired inequality. The

first inequality is obtained in a similar way, we define ¢, so that ¢, = ¢ on

X\ B(r) and ¢, = max{(1—¢)(ps —1/£) +re} on B(r), and we take y. = 1

on B(r —¢) with Supp xe C B(r —¢/2). Then for ¢ large

/ Ty A (ddp)? > / Ty A (dd°y,)P
B(r) B(r—e/2)
> (1— e / T A (ddop)P. O
B(r—e/2)

(5.13) Proposition. Let ¢ be a (non necessarily monotone) sequence of
continuous plurisubharmonic functions such that e®* converges uniformly to
e¥ on every compact subset of X. Suppose that {p < R} NSupp T CC X.
Then for r < R we have

lim sup

/ T A (ddogr)P < / T A (dd°p)?.
koo J{pesrinto<n)

{p<r}

In particular limsupy,_, | o v(T, ¢r) < v(T, ).
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When we take ¢ (z) = log |z — ag| with ax — a, Prop. 5.13 implies the
upper semicontinuity of a — v(T, a) which was already noticed in the proof
of Prop. 5.11.

Proof. Our assumption is equivalent to saying that max{¢g,t} converges
locally uniformly to max{p,t} for every ¢t. Then Cor. 3.6 shows that 7" A
(dd® max{pg,t})? converges weakly to T'A (dd® max{p,t})P. If x. is a cut-off
function equal to 1 on {p < r +¢/2} with support in {¢ < r+ €}, we get

lim XeT A (dd° max{p,t})? = / XeT A (dd® max{¢p,t})P.
For k large, we have {¢, < r}N{p < R} C {¢ < r+¢/2}, thus when ¢ tends
to 0 we infer

lim sup

/ T A (dd° max{pr, £})P < / T A (dd° max{e, t})P.
koo J oy <rin{p<R)

{p<r}

When we choose t < r, this is equivalent to the first inequality in statement
(5.13). O

6. The Jensen-Lelong Formula

We assume in this section that X is Stein, that ¢ is semi-erhaustive on X
and that B(R) cC X. We set for simplicity ¢, = max{p,r}. For every
r € | — oo, R[, the measures dd°(¢-,)" are well defined. By Cor. 3.6, the
map 7 — (ddps,)™ is continuous on | — oo, R[ with respect to the weak
topology. As (dd®ps, )" = (dd°p)™ on X\ B(r) and as ¢, = r, (dd°ps,)™ =0
on B(r), the left continuity implies (dd“ps,)" > lx\p()(ddp)™. Here 14
denotes the characteristic function of any subset A C X. According to the
definition introduced in (Demailly 1985a), the collection of Monge-Ampére
measures associated with ¢ is the family of positive measures p,. such that

(6.1) Wy = (ddc(pzr)n - ]lX\B(r) (ddc(p)n, (S ] - OO,R[

The measure p, is supported on S(r) and r —— p, is weakly contin-
uous on the left by the bounded convergence theorem. Stokes’ formula
shows that fB(S)(ddctpzr)" — (dd®p)™ = 0 for s > r, hence the total mass

pr(S(r)) = pr-(B(s)) is equal to the difference between the masses of (dd“p)™
and lix\ g(r) (dd°p)™ over B(s), i.e.
©2) m(S0) = [ @

B(r)

(6.3) Example. When (ddp)™ =0 on X \ ¢~ !(—00), formula (6.1) can be
simplified into p, = (dd®ps,)™. This is so for ¢(z) = log|z|. In this case,
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the invariance of ¢ under unitary transformations implies that p, is also
invariant. As the total mass of y, is equal to 1 by 5.10 and (6.2), we see that
i 18 the invariant measure of mass 1 on the euclidean sphere of radius e”.

(6.4) Proposition. Assume that ¢ is smooth near S(r) and that dp # 0 on
S(r), i.e. T is a non critical value. Then S(r) = 0B(r) is a smooth oriented
real hypersurface and the measure p, is given by the (2n — 1)-volume form

(ddp)" =1 Adprs(ry-

Proof. Write max{t,r} = limg_, 1 oo x%(t) where x is a decreasing sequence of
smooth convex functions with xx(t) = r for t < r — 1/k, xx(t) =t for t >
r+1/k. Theorem 3.6 shows that (dd®xj o)™ converges weakly to (dd®ps,)".
Let h be a smooth function h with compact support near S(r). Let us apply
Stokes’ theorem with S(r) considered as the boundary of X \ B(r):

/ h(dd®p>p)™ = lim [ h(dd®x 0 )"
X

k— 400 X

= lim [ —dhA (dd°x% 0 @)™t A d(xk 0 @)
k—+oco [ x

= lim [ —x}(t)"dh A (dd°p)" "1 A dp
k—)+00 X

= / —dh A (dd®p)" "t A dCp
X\B(r)

= / h (ddp)" ™t A dp + / h(ddp)" " A dCp.
S(r) X\B(r)

Near S(r) we thus have an equality of measures

(dd®psr)™ = (dd°)" ' ANd°ps(r) + Ix\B(r) (dd )™ O

(6.5) Jensen-Lelong formula. Let V be any plurisubharmonic function
on X. Then V is p,-integrable for every r € | — oo, R and

(V) — [ V(ddep) = / V(dd°V, o, 1) dt.
B(r) —00

Proof. Proposition 3.11 shows that V' is integrable with respect to the mea-
sure (dd®ps,)"™, hence V' is p,-integrable. By definition

v(dd°V, p,t) = / dd°V A (ddcp)"!
p(z)<t

and the Fubini theorem gives
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v(dd°V, @, t) dt = dd°V (2) A (dd€o(2))" 1 dt
(dd°V, @, t) (2) A (ddp(2))
p(2)<t<r

— 00

(6.6) = /B( )(r — ©)dd°V A (ddp)" ",

We first show that Formula 6.5 is true when ¢ and V' are smooth. As both
members of the formula are left continuous with respect to » and as almost
all values of ¢ are non critical by Sard’s theorem, we may assume r non
critical. Formula 3.1 applied with f = (r — ¢)(dd°p)"~! and g = V shows
that integral (6.6) is equal to

| vaertade- [ v —mw) - [ v,
S(r) B(r) B(r)

Formula 6.5 is thus proved when ¢ and V' are smooth. If V' is smooth and
¢ merely continuous and finite, one can write ¢ = lim ¢} where @y is a de-
creasing sequence of smooth plurisubharmonic functions (because X is Stein).
Then dd°V A(dd°py)" ! converges weakly to dd°V A(ddp)™~! and (6.6) con-
verges, since lg(,)(r —¢) is continuous with compact support on X. The left
hand side of Formula 6.5 also converges because the definition of y, implies

i (V) — / Vi) = /X V((ddspg )" — (dd°pr)")

and we can apply again weak convergence on a neighborhood of B(r). If
¢ takes —oo values, replace ¢ by ¢._j where k& — +o0o. Then p,.(V) is
unchanged, fB(T) V(ddps_1)™ converges to fB(r) V(dd®p)"™ and the right
hand side of Formula 6.5 is replaced by ffk v(dd°V, ¢, t) dt. Finally, for V
arbitrary, write V = lim | V}, with a sequence of smooth functions V. Then
ddVy, A (dd°@)"~1 converges weakly to ddV A (ddp)"~! by Prop. 4.4, so
the integral (6.6) converges to the expected limit and the same is true for the
left hand side of 6.5 by the monotone convergence theorem. ([l

For r < r¢g < R, the Jensen-Lelong formula implies

6.7) (V) = o (V) + / V(ddep)" = / V(dd°V, o, 1) d.
B(ro)\B(r) 70

(6.8) Corollary. Assume that (dd°p)™ =0 on X \ S(—o00). Then r +— u, (V)
is a convex increasing function of r and the lelong number v(dd°V, ) is given

by

V(ddV, o) = tim M)

T—r—00 T

Proof. By (6.7) we have
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V) = sy (V) + [ oV, .

To

As v(dd°V, p,t) is increasing and nonnegative, it follows that r — p,. (V) is
convex and increasing. The formula for v(dd°V, ¢) = limy, o v(dd°V, @, t)
is then obvious. O

(6.9) Example. Let X be an open subset of C* equipped with the semi-
exhaustive function ¢(z) = log|z — a|, a € X. Then (ddp)™ = 6, and the
Jensen-Lelong formula becomes

pr-(V)=V(a)+ /_7" v(ddV, o, t) dt.

As p, is the mean value measure on the sphere S(a, "), we make the change
of variables r — logr, t — logt and obtain the more familiar formula

(6.9 a) ’u(‘/7 S(a7 'r)) = V(a) —+ /OT y(ddCV, a, t) %

where v(dd®V,a,t) = v(dd°V, ¢, logt) is given by (5.7):

1 1
6.9b) v(dd°V,a,t) = / 1y
( ) ( ) 7.[.n—1t2n—2/(n _ 1)' Bla.t) o
In this setting, Cor. 6.8 implies
V,S(a, SUPg (g V'
(6.9¢) v(dd°V,a) = lim M — lim L
r—0 logr r—0 log r

To prove the last equality, we may assume V < 0 after subtraction of a
constant. Inequality > follows from the obvious estimate u(V,S(a,r)) <
SUPg(q,r) V', While inequality < follows from the standard Harnack estimate

1—
(6.9d) sup V< c

S(a,er) W 'u’(Va S(a, T‘))

when € is small (this estimate follows easily from the Green-Riesz repre-
sentation formula 1.4.6 and 1.4.7). As supg(, )V = supp,,)V, Formula
(6.9¢) can also be rewritten v(dd°V,a) = liminf, ,, V(z)/log|z — a|. Since
SUPg(q,ry V' 18 a convex (increasing) function of logr, we infer that

(6.9e) V(z) <~vlogl|z —a|+ O(1)

with v = v(dd°V, a), and v(dd°V, a) is the largest constant v which satisfies
this inequality. Thus v(ddV,a) = 7 is equivalent to V' having a logarithmic
pole of coefficient ~.

(6.10) Special case Take in particular V' = log | f| where f is a holomorphic
function on X. The Lelong-Poincaré formula shows that dd®log |f| is equal to
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the zero divisor [Z¢] = ) m;[H;], where H; are the irreducible components
of f~(0) and my; is the multiplicity of f on H,. The trace %Af is then
the euclidean area measure of Zy (with corresponding multiplicities m;).
By Formula (6.9c), we see that the Lelong number v([Z¢],a) is equal to the
vanishing order ord,(f), that is, the smallest integer m such that D f(a) # 0
for some multiindex o with || = m. In dimension n = 1, we have 5-Af =
>_m;dg;. Then (6.9a) is the usual Jensen formula

r

u(log|fl,S(0,7)) — log|f(0)] :/0 l/(t)% = ij log|;7

where v(t) is the number of zeros a; in the disk D(0,t), counted with multi-
plicities m;.

(6.11) Example. Take ¢(z) = logmax|z;|* where A\; > 0. Then B(r) is
the polydisk of radii (e’/*1, ... e"/*»). If some coordinate z; is non zero, say
z1, we can write ¢(z) as A1 log|z1| plus some function depending only on the
(n — 1) variables zj/zi‘lp‘j. Hence (dd°p)™ =0 on C* \ {0}. It will be shown
later that

(611 a) (ddcgo)n = )\1---)\n 50.

We now determine the measures p,.. At any point z where not all terms
|zj|* are equal, the smallest one can be omitted without changing ¢ in a
neighborhood of z. Thus ¢ depends only on (n—1)-variables and (dd“¢>,)" =
0, 1 = O near z. It follows that u,. is supported by the distinguished boundary
|z;| = e/ of the polydisk B(r). As ¢ is invariant by all rotations z;
el zj, the measure p, is also invariant and we see that p, is a constant
multiple of df; ...d#,. By formula (6.2) and (6.11a) we get

(611b) Moy :/\1---/\n (27T)_nd91d9n

In particular, the Lelong number v(dd®V, ¢) is given by

Al A ; o\ dbi...do,

v(dd°V,p) = lim 17/ V(er/MHoer/Antifny 21 T
ro—oo T 6,€[0,2x] (2m)m
These numbers have been introduced and studied by (Kiselman 1986). We
call them directional Lelong numbers with coefficients (Aq,...,A,). For an

arbitrary current 7', we define
(6.11¢) v(T,z,A) =v(T,logmax|z; — z;").

The above formula for v(dd°V, ¢) combined with the analogue of Harnack’s
inequality (6.9d) for polydisks gives
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Al A : . déy...do,,
AV, 3) = T A2 [ o Bt
r—0 logr (27T)"

M

A : -
(6.11d) = lim ——™ sup V(rlp‘le‘gl, e rl/A"eIG").
r—0 logr g, .0,

7. Comparison Theorems for Lelong Numbers

Let T be a closed positive current of bidimension (p, p) on a Stein manifold X
equipped with a semi-exhaustive plurisubharmonic weight . We first show
that the Lelong numbers v(T, ¢) only depend on the asymptotic behaviour
of ¢ near the polar set S(—o00). In a precise way:

(7.1) First comparison theorem. Let p,1) : X — [—o0, +00[ be contin-
uwous plurisubharmonic functions. We assume that o, are semi-exhaustive
on Supp T and that

£ := lim sup M <400 as z€Supp T and ¢(x) — —o0.

()
Then v(T, ) < LPu(T, @), and the equality holds if £ = lim/p.

Proof. Definition 6.4 shows immediately that v(T, Ap) = NPv(T, @) for every
scalar A > 0. It is thus sufficient to verify the inequality v (T, ) < v(T, )
under the hypothesis limsup /¢ < 1. For all ¢ > 0, consider the plurisub-
harmonic function

u. = max(y) — ¢, ).

Let R, and R, be such that B,(R,) N Supp T' and By (Ry) N Supp T be
relatively compact in X. Let » < R, and a < r be fixed. For ¢ > 0 large
enough, we have u. = ¢ on p~!([a,r]) and Stokes’ formula gives

v(T,p,r) =v(T,ue,r) > v(T, u.).

The hypothesis limsup /¢ < 1 implies on the other hand that there exists
to < 0 such that u. = ¢ — c on {u. < tp} N Supp T. We infer

v(T,u.) =v(T,¢ —c) =v(T,v),

hence v(T, 1) < v(T, ¢). The equality case is obtained by reversing the roles
of ¢ and 1 and observing that lim /¢ = 1/1. O

Assume in particular that z¥ = (2F,...,2%), k = 1,2, are coordinate
systems centered at a point x € X and let

1/2
or(2) = log| ] = log (41> + ... + |25)"”.
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We have lim,_,, p2(2)/¢1(2) = 1, hence v(T', p1) = v(T, ¢2) by Th. 7.1.

(7.2) Corollary. The usual Lelong numbers v(T, x) are independent of the
choice of local coordinates. 0

This result had been originally proved by (Siu 1974) with a much more
delicate proof. Another interesting consequence is:

(7.3) Corollary. On an open subset of C*, the Lelong numbers and Kiselman
numbers are related by

v(T,x) = I/(T,.’L’, (1,...,1)).

Proof. By definition, the Lelong number v(T, ) is associated with the weight
©(z) = log |z — x| and the Kiselman number l/(T, z,(1,...,1 ) to the weight
Y(z) = logmax|z; — z;|. It is clear that lim,_,, ¢(2)/¢(z) = 1, whence the
conclusion. O

Another consequence of Th. 7.1 is that v(T, z, \) is an increasing function
of each variable A\;. Moreover, if A; <... < \,, we get the inequalities

Nv(T,x) <v(T,z,\) < Xy(T, z).

These inequalities will be improved in section 7 (see Cor. 9.16). For the
moment, we just prove the following special case.

(7.4) Corollary. For all Ay, ..., A, > 0 we have
c ARVAN . c BRY: " —
(dd° log max |;|*) (dd logqu;n|zJ| ) AL A 0o

Proof. In fact, our measures vanish on C* \ {0} by the arguments explained
in example 6.11. Hence they are equal to ¢ for some constant ¢ > 0 which
is simply the Lelong number of the bidimension (n,n)-current 7' = [X] =1
with the corresponding weight. The comparison theorem shows that the first
equality holds and that

(ddclog Z |zj|>‘j) zﬁ_"<ddclog Z |zj|0‘j>
1<j<n 1<j<n

for all £ > 0. By taking ¢ large and approximating £); with 2[/)\;/2], we may
assume that A\; = 2s; is an even integer. Then formula (5.6) gives
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/Z |2; 2% <r2 <ddc logz |zj|28j)n = /Z 1225 <2 (ddcz |Zj|28j)n

1 n
:sl...snr_zn/ 2"<Ld'd”|w|2) =A...\p
Z|wj|2<7"2 2T

by using the s;...s,-sheeted change of variables w; = z;j. 0

Now, we assume that T' = [A] is the current of integration over an analytic
set A C X of pure dimension p. The above comparison theorem will enable
us to give a simple proof of P. Thie’s main result (Thie 1967): the Lelong
number v([A],x) can be interpreted as the multiplicity of the analytic set
A at point z. Our starting point is the following consequence of Th. 11.3.19
applied simultaneously to all irreducible components of (A, ).

(7.5) Lemma. For a generic choice of local coordinates 2" = (z1,...,%p)
and 2" = (Zp41,...,2n) on (X, x), the germ (A, x) is contained in a cone
|2 < C|Z|. If B" C CP is a ball of center 0 and radius ' small, and
B" C C"P js the ball of center 0 and radius " = Cr’, then the projection

pr: An(B' x B") — B’
1s a ramified covering with finite sheet number m. O

We use these properties to compute the Lelong number of [A] at point x.
When z € A tends to z, the functions

p(2) = log|z| = log(|[* + |2"]*)'/%,  ¢(2) = log|<'|.
are equivalent. As ¢, 1 are semi-exhaustive on A, Th. 7.1 implies
v([A], z) = v([A],¢) = v([A], ¥).

Let us apply formula (5.6) to ¢ : for every ¢t < r’ we get

V(Pﬂvdnlogt)=:t_2pj[ [A] A (%ddCezw)p

{yp<logt}

1 P

:t_zp/ (—pr*ddc|z'|2)
An{|2'|<t} ‘2

1 P
_ mt_ZP/ (yadl='1?)" = m.
crn{|z'|<t} ‘2

hence v([A], 1) = m. Here, we have used the fact that pr is an étale covering
with m sheets over the complement of the ramification locus S C B’, and
the fact that S is of zero Lebesgue measure in B’. We have thus obtained
simultaneously the following two results:
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(7.6) Theorem and Definition. Let A be an analytic set of dimension
p in a complex manifold X of dimension n. For a generic choice of local
coordinates 2" = (z1,...,%p), 2" = (Zp41,...,2n) near a point x € A such
that the germ (A, z) is contained in a cone |2"| < C|Z/|, the sheet number m
of the projection (A,z) — (CP,0) onto the first p coordinates is independent
of the choice of 2', z". This number m is called the multiplicity of A at x.

(7.7) Theorem (Thie 1967). One has v([A], x) = m. O
There is another interesting version of the comparison theorem which

compares the Lelong numbers of two currents obtained as intersection pro-
ducts (in that case, we take the same weight for both).

(7.8) Second comparison theorem. Let ui,...,uq and vi,...,vq, be
plurisubharmonic functions such that each q-tuple satisfies the hypotheses of
Th. 4.5 with respect to T'. Suppose moreover that u; = —oo on Supp T'N
¢~ 1(—o0) and that
£; = limsu v;(2) h S T (= —
j= puj(z)<+oo when z € Supp T'\ u; " (—00), ¢(2) = —o0.

Then

v(ddvi A ... ANddvg AT, @) < y.. . Lgv(dd®ur A... Addug AT, ).

Proof. By homogeneity in each factor vy, it is enough to prove the inequality
with constants £; = 1 under the hypothesis limsup v;/u; < 1. We set

wj. = max{v; — ¢, u;}.

Our assumption implies that w; . coincides with v; — ¢ on a neighborhood
Supp T'N{p < ro} of Supp T N {p < —oo}, thus

v(ddvi A ... ANddvg AT, @) = v(dd°wic A ... ANdd°wg e AT, @)

for every c. Now, fix » < R,. Proposition 4.9 shows that the current
dd‘wi N ... Ndd°wg . ANT converges weakly to dd®uq A ... Add°uy AT when
c tends to +o0o. By Prop. 5.12 we get

limsup v(dd“wy cA...ANddwg AT, p) < v(ddu A...Nddug AT, ).0]

c——+o00

(7.9) Corollary. If dd®ui A...Adduq AT is well defined, then at every point
x € X we have

v(dd®uy A ... Addug AT, z) > v(dd®uy, ) .. .v(ddug, z) v(T, z).
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Proof. Apply (7.8) with ¢(2) = v1(2) = ... = v4(2) = log |z — z| and ob-
serve that ¢; := limsupv;/u; = 1/v(dd°u;,z) (there is nothing to prove if
v(dduj,xz) = 0). O

Finally, we present an interesting stability property of Lelong numbers
due to (Siu 1974): almost all slices of a closed positive current 7' along linear
subspaces passing through a given point have the same Lelong number as T'.
Before giving a proof of this, we need a useful formula known as Crofton’s
formula.

(7.10) Lemma. Let o be a closed positive (p, p)-form on C* ~\ {0} which is
invariant under the unitary group U(n). Then « has the form

o= (ddcx(log |z|))p

where x is a conver increasing function. Moreover a is invariant by homoth-
eties if and only if x is an affine function, i.e. « = X (dd€log |z|)P.

Proof. A radial convolution ag(z) = [ p(t/e) a(e’z) dt produces a smooth
form with the same properties as a and lim._,y a. = . Hence we can suppose
that a is smooth on C* \ {0}. At a point z = (0,...,0,2,), the (p,p)-
form a(z) € APP(C*)* must be invariant by U(n — 1) acting on the first
(n — 1) coordinates. We claim that the subspace of U(n — 1)-invariants in
APP(Cm)* is generated by (dd€|z|?)P and (dd€|z|?)P~1 Aidz, A dZ,. In fact, a
form 8 =" B; ydzr A dz; is invariant by U(1)"~! C U(n — 1) if and only if
Br,; = 0 for I # J, and invariant by the permutation group S,_1 C U(n—1)
if and only if all coefficients fr 1 (vesp. Byn,gn) with I,J C {1,...,n—1} are
equal. Hence

B=A Z dZIAdEI+;J,< Z dzJ/\dzJ)/\dzn/\dzn.

|I|=p |J|=p—1

This proves our claim. As d|z|> A d°|z|*> = 1|z, |?dz, A dzZ,, at (0,...,0,2,),
we conclude that

o(2) = f(2)(dd]2]*)? + g(2)(dd°[2|*)P =" Adlz|* A d°laf?

for some smooth functions f,g on C* \ {0}. The U(n)-invariance of o shows
that f and g are radial functions. We may rewrite the last formula as

a(z) = u(log|z|)(dd®log |2|)? + v(log |z|) (dd° log |2|)P~t A dlog |z| A d°log |z|.

Here (dd®log|z|)? is a positive (p,p)-form coming from P"~!, hence it has
zero contraction in the radial direction, while the contraction of the form
(ddlog |z|)P~t Adlog |z| Ad€ log |z| by the radial vector field is (dd€ log |z|)P~1.
This shows easily that a(z) > 0 if and only if u,v > 0. Next, the closedness
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condition da = 0 gives u' —v = 0. Thus w is increasing and we define a convex
increasing function x by x’ = u'/?P. Then v = v/ = px?~'x” and

a(z) = (ddcx(log |z|))p

If « is invariant by homotheties, the functions u and v must be constant,
thus v = 0 and a = A(dd®log |z|)P. O

(7.11) Corollary (Crofton’s formula). Let dv be the unique U(n)-invariant
measure of mass 1 on the Grassmannian G(p,n) of p-dimensional subspaces
in C". Then

/ [S]dv(S) = (dd® log |2))"?.
SeG(p,n)

Proof. The left hand integral is a closed positive bidegree (n—p, n—p) current
which is invariant by U(n) and by homotheties. By Lemma 7.10, this current
must coincide with the form A(dd®log|z|)™ P for some A > 0. The coefficient
A is the Lelong number at 0. As v([S],0) = 1 for every S, we get A =

Jony d0(S) = 1. O

We now recall a few basic facts of slicing theory; see (Federer 1969) for
details. Let o : M — M’ be a submersion of smooth differentiable manifolds
and let @ be a locally flat current on M, that is a current which can be written
locally as ©® = U + dV where U, V have locally integrable coefficients. It can
be shown that every current @ such that both ©® and d©@ have measure
coefficients is locally flat; in particular, closed positive currents are locally
flats. Then, for almost every =’ € M’, there is a well defined slice @, which
is the current on the fiber o=!(z') defined by

Op = U[‘o—fl(ml) + dVrgfl(m/).

The restrictions of U, V to the fibers exist for almost all 2’ by the Fubini
theorem. It is easy to show by a regularization &, = © % p. that the slices of
a closed positive current are again closed and positive: in fact U, ,» and V, .
converge to U, and V. in Llloc, thus O, ;,» converges weakly to @, for almost
every z’. This kind of slicing can be referred to as parallel slicing (if we think
of o as being a projection map). The kind of slicing we need (where the slices
are taken over linear subspaces passing through a given point) is of a slightly
different nature and is called concurrent slicing.

The possibility of concurrent slicing is proved as follows. Let T" be a closed

positive current of bidimension (p,p) in the ball B(0, R) C C". Let
Y ={(z,5) € C" xG(¢,n);x €S}

be the total space of the tautological rank ¢ vector bundle over the Grass-
mannian G(q,n), equipped with the obvious projections
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o:Y —G(¢gn), w:Y—C".

We set Yp = 7= 1(B(0, R)) and Y3 = 7~ *(B(0, R) \ {0}). The restriction g
of m to Y} is a submersion onto B(0, R) \. {0}, so we have a well defined pull-
back w31 over Y7. We would like to extend it as a pull-back 7*T" over Yg,
so as to define slices Tg = (7*T');,-1(g) ; of course, these slices can be non
zero only if the dimension of S is at least equal to the degree of T, i.e. if
g > n — p. We first claim that 77T has locally finite mass near the zero
section 771(0) of o. In fact let wg be a unitary invariant Kahler metric over
G(q,n) and let 8 = dd°|z|? in C". Then we get a Kihler metric on Y defined
by wy = c*wg + 6. If N = (¢ — 1)(n — q) is the dimension of the fibers
of 7, the projection formula 7, (u A 7*v) = (mu) A v gives

N _
7r*w¢+p: Z ( ;p>ﬂk/\7r*(a*wg+p k)
1<k<p

Here W*(a*wgﬂ’ ~%) is a unitary and homothety invariant (p — k,p — k)
closed positive form on C* ~ {0}, so W*(a*wgﬂ’_k) is proportional to

(dd®log |z|)"~F. With some constants Ay > 0, we thus get

/ T Awy 7= )" )\k/ T A B% A (dd®log |z])FP
Y B(0,r)~{0}

0<k<p
= Z )\k2_(p_k)r_2(p_k)/ T A [P < +oo.
0<k<p B(0,r)~{0}

The Skoda-El Mir theorem 2.3 shows that the trivial extension 731" of 73T
is a closed positive current on Yg. Of course, the zero section w=1(0) might
also carry some extra mass of the desired current 7*T. Since 7~1(0) has
codimension ¢, this extra mass cannot exist when ¢ > n — p = codim7*T
and we simply set 7*T" = w3T. On the other hand, if ¢ = n — p, we set

(7.12) 7T = 7T + v(T,0) [x~1(0)].

We can now apply parallel slicing with respect to o : Yg — G(q,n), which
is a submersion: for almost all S € G(g,n), there is a well defined slice
Tis = (7*T)s-1(s)- These slices coincide with the usual restrictions of T" to
S if T' is smooth.

(7.13) Theorem (Siu 1974). For almost all S € G(q,n) with ¢ > n — p, the
slice Tys satisfies v(T}s,0) = v(T,0).

Proof. If ¢ = n — p, the slice T}s consists of some positive measure with
support in S \ {0} plus a Dirac measure v(T,0)dy coming from the slice
of v(T,0)[r~1(0)]. The equality v(T}s,0) = v(T,0) thus follows directly
from (7.12).
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In the general case ¢ > n — p, it is clearly sufficient to prove the following
two properties:

a) v(T,0,r)= / v(Tys,0,7)dv(S) for all r € ]0, R[;
SeG(q,n)

b) v(T}s,0) > v(T,0) for almost all S.

In fact, a) implies that v(7T’,0) is the average of all Lelong numbers v(T's,0)
and the conjunction with b) implies that these numbers must be equal to
v(T,0) for almost all S. In order to prove a) and b), we can suppose without
loss of generality that T' is smooth on B(0, R) \ {0}. Otherwise, we perform
a small convolution with respect to the action of Gl,,(C) on C":

T. = / pe(9) 9°T dv(g)
geGl, (C)

where (pe) is a regularizing family with support in an e-neighborhood of
the unit element of Gl,,(C). Then T is smooth in B(0, (1 —¢)R) \ {0} and
converges weakly to 7. Moreover, we have v(T.,0) = v(T,0) by (7.2) and
v(T}s,0) > limsup,_,ov(T:s,0) by (5.12), thus a), b) are preserved in the
limit. If 7" is smooth on B(0, R) \ {0}, the slice T}g is defined for all S and
is simply the restriction of 7" to S \ {0} (carrying no mass at the origin).

a) Here we may even assume that 7' is smooth at 0 by performing an ordinary
convolution. As T}s has bidegree (n — p,n — p), we have

U(Tis,0,r) = /

T AL P = / T A[S] A akFa
SNB(0,r) B(0,r)

where ag = dd°log|w| and w = (w1,...,w,) are orthonormal coordinates
on S. We simply have to check that

/ [S]A a2 T7™ du(8S) = (dd°log |z|)P.
S€eEG(gq,n)

However, both sides are unitary and homothety invariant (p,p)-forms with
Lelong number 1 at the origin, so they must coincide by Lemma 7.11.

b) We prove the inequality when S = C? x {0}. By the comparison theo-
rem 7.1, for every 7 > 0 and € > 0 we have

(7.14) / T A~? >v(T,0) where
B(0,r)

1
Ye = 5dd°log(elz1* + ...+ elzy + 2P 4 faul?).

We claim that the current y? converges weakly to

—n 1 . p+g—n
[S] A aZH™ = [S] A <§dd log(|z1|? + ... + |zq|2))
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as € tends to 0. In fact, the Lelong number of 42 at 0 is 1, hence by homo-
geneity

/ 7P A (dd9)z|2) P = (202
B(0,r)

for all ,7 > 0. Therefore the family (v?) is relatively compact in the weak
topology. Since vy = lim~, is smooth on C" \ S and depends only on n — ¢
variables (n — ¢ < p), we have lim~y? = 4§ = 0 on C* . S. This shows that
every weak limit of (y?) has support in S. Each of these is the direct image
by inclusion of a unitary and homothety invariant (p +q — n,p+ g — n)-form
on S with Lelong number equal to 1 at 0. Therefore we must have

lin 42 = (i), (05"17") = [S] A @51,

and our claim is proved (of course, this can also be checked by direct elemen-
tary calculations). By taking the limsup in (7.14) we obtain

T A[S] At > u(T,0)

B(0,r)

I/(Trs, O,T‘ + 0) = /

(the singularity of T" at 0 does not create any difficulty because we can modify
T by a dd®-exact form near 0 to make it smooth everywhere). Property b)
follows when 7 tends to 0. U

8. Siu’s Semicontinuity Theorem

Let X, Y be complex manifolds of dimension n, m such that X is Stein. Let
p: X xY — [—00,+00[ be a continuous plurisubharmonic function. We
assume that ¢ is semi-exhaustive with respect to Supp 7', i.e. that for every
compact subset L C Y there exists R = R(L) < 0 such that

(8.1) {(xz,y) € Supp T X L; o(x,y) < R} CC X x Y.

Let T be a closed positive current of bidimension (p,p) on X. For every
point y € Y, the function ¢, (z) := ¢(x,y) is semi-exhaustive on Supp T';
one can therefore associate with y a generalized Lelong number v (T, ¢,).
Proposition 5.13 implies that the map y — v(T, ¢, ) is upper semi-continuous,
hence the upperlevel sets

82) E.=E.(T,¢)={ycY;v(T,oy) >c}, c>0

are closed. Under mild additional hypotheses, we are going to show that the
sets F. are in fact analytic subsets of Y (Demailly 1987a).
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(8.3) Definition. We say that a function f(z,y) is locally Hélder continuous
with respect to y on X XY if every point of X XY has a neighborhood {2 on
which

|f(z,y1) — f(2,y2)| < Mlyr — y2|”

for all (x,y1) € 2, (z,y2) € 2, with some constants M > 0, v € ]0,1], and
suttable coordinates on 'Y .

(8.4) Theorem (Demailly 1987a). Let T be a closed positive current on X
and let

p: X XY — [—o0,+00]

be a continuous plurisubharmonic function. Assume that ¢ is semi-exhaustive
on Supp T and that e?®Y) s locally Hélder continuous with respect to y
on X xXY. Then the upperlevel sets

E.(T,p) ={y € Y;v(T,p,) >c}

are analytic subsets of Y.

This theorem can be rephrased by saying that y — v(T, ¢,) is upper
semi-continuous with respect to the analytic Zariski topology. As a special
case, we get the following important result of (Siu 1974):

(8.5) Corollary. If T is a closed positive current of bidimension (p,p) on a
complex manifold X, the upperlevel sets E.(T) = {x € X; v(T,z) > ¢} of
the usual Lelong numbers are analytic subsets of dimension < p.

Proof. The result is local, so we may assume that X C C” is an open subset.
Theorem 8.4 with ¥ = X and ¢(z,y) = log|z — y| shows that E.(T) is
analytic. Moreover, Prop. 5.11 implies dim E.(T) < p. O

(8.6) Generalization. Theorem 8.4 can be applied more generally to weight
functions of the type

p(r,y) = max log (Z | Fj i (, y)l“‘")
k

where F} j, are holomorphic functions on X xY" and where v, 5, are positive real
constants; in this case e is Holder continuous of exponent v = min{\; x, 1}
and ¢ is semi-exhaustive with respect to the whole space X as soon as the
projection pr, : ﬂFJ_kl (0) — Y is proper and finite.

For example, when ¢(z,y) = logmax |z; — yj|;‘ on an open subset X of
C™ , we see that the upperlevel sets for Kiselman’s numbers v(T,z, \) are
analytic in X (a result first proved in (Kiselman 1986). More generally, set
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Ya(z) = logmax|z;|Y and ¢(z,y,9) = 7,b>\(g($ - y)) where z,y € C" and
g € GI(C"). Then v(T, ¢y,4) is the Kiselman number of T at y when the
coordinates have been rotated by g. It is clear that ¢ is plurisubharmonic in
(x,y, g) and semi-exhaustive with respect to x, and that e? is locally Holder
continuous with respect to (y, g). Thus the upperlevel sets

E.={(y,9) € X x GL(C"); v(T, ¢y ) = c}

are analytic in X x G1(C™). However this result is not meaningful on a mani-
fold, because it is not invariant under coordinate changes. One can obtain an
invariant version as follows. Let X be a manifold and let J*Ox be the bundle
of k-jets of holomorphic functions on X. We consider the bundle S; over X
whose fiber Sy, is the set of n-tuples of k-jets u = (ug,...,u,) € (J¥Ox )"
such that u;(y) = 0 and dui A ... Aduy(y) # 0. Let (2;) be local coordinates
on an open set 2 C X. Modulo O(]z — y|**!), we can write

uj(z) = Z aja(z —y)*

1<|a|<k

with det(a; (o,...,1,,...,0)) 7 0. The numbers ((y;), (a;)) define a coordinate
system on the total space of Sy 1. For (z, (y,u)) € X x Sk, we introduce the
function
>\,
o(z,y,u) = logmax |uj(z)|Y = log max‘ Z ajalx—y)* ’
1<|a|<k

which has all properties required by Th. 8.4 on a neighborhood of the diagonal
x =y, i.e. a neighborhood of X x x Sy in X x Si. For k large, we claim that
Kiselman’s directional Lelong numbers

v(T,y,u, A) == v(T, oy u)

with respect to the coordinate system (u;) at y do not depend on the selection
of the jet representives and are therefore canonically defined on Sj. In fact, a
change of u; by O(|]z —y[¥+1) adds O(|z —y|*+DA7) to e®, and we have e? >
O(]z — y|™@4i). Hence by (7.1) it is enough to take k + 1 > max A;/ min A;.
Theorem 8.4 then shows that the upperlevel sets E (T, ¢) are analytic in Sk.

OJ

Proof of the Semicontinuity Theorem 8.4 As the result is localon Y, we
may assume without loss of generality that Y is a ball in C™. After addition

of a constant to ¢, we may also assume that there exists a compact subset
K C X such that

{(z,y) e X xY;p(z,y) <0} C K xY.

By Th. 7.1, the Lelong numbers depend only on the asymptotic behaviour of
¢ near the (compact) polar set ¢~ (—00)N(SuppT xY'). We can add a smooth
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strictly plurisubharmonic function on X x Y to make ¢ strictly plurisuhar-
monic. Then Richberg’s approximation theorem for continuous plurisubhar-
monic functions shows that there exists a smooth plurisubharmonic function
¢ such that ¢ < ¢ < ¢ + 1. We may therefore assume that ¢ is smooth on
(X x ¥)\ o~} (~0).

e First step: construction of a local plurisubharmonic potential.

Our goal is to generalize the usual construction of plurisubharmonic po-
tentials associated with a closed positive current (Lelong 1967, Skoda 1972a).
We replace here the usual kernel |z — ¢|7%” arising from the hermitian met-
ric of C™ by a kernel depending on the weight . Let x € C*°(R,R) be an
increasing function such that x(¢) =t for t < —1 and x(¢) = 0 for t > 0. We
consider the half-plane H = {z € C; Rez < —1} and associate with T the
potential function V on Y x H defined by

0

87) Vi) == [ vl ox @

For every t > Re z, Stokes’ formula gives

Tty = [ T(@) A (@)
p(z,y)<t

with ¢(z,y,z) := max{¢(x,y),Rez}. The Fubini theorem applied to (8.7)

gives

V(y,z) = — T(x) A (ddg@(x,y,2))P x'(t)dt

z€X,p(z,y)<t
Re z<t<0

_ / _ T@ Ax(B(,y.2) (@55, )"

For all (n —1,n — 1)-form h of class C°° with compact support in Y x H, we
get

(ddeV, h) = (V, dd°h)
- /X L T(@) APy 2) A ) A . 2),

Observe that the replacement of ddg by the total differentiation dd® = ddg , ,
does not modify the integrand, because the terms in dz, dr must have total
bidegree (n,n). The current T'(z) A x(¢(z,y, z))h(y, z) has compact support

in X xY x H. An integration by parts can thus be performed to obtain

@V = [ T(e) Nl (o Bl 2) A (A0 F(o,2) bl )
XXYxH

On the corona {—1 < p(z,y) < 0} we have p(x,y,2) = p(z,y), whereas for

e(x,y) < —1 we get ¢ < —1 and x o » = @. As ¢ is plurisubharmonic, we

see that ddV (y, z) is the sum of the positive (1, 1)-form
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(y,2) — T(z) A (ddg , .¢(z,y, 2))"
{zeXsp(z,y)<—1}
and of the (1, 1)-form independent of z
Y — JAUN ddg’y(x op) A (ddg,ygo)p.
{zeX;-1<p(z,y)<0}

As ¢ is smooth outside p~1(—00), this last form has locally bounded coeffi-
cients. Hence dd“V (y, z) is > 0 except perhaps for locally bounded terms. In
addition, V' is continuous on Y x H because T' A (dd°p, )P is weakly con-
tinuous in the variables (y, z) by Th. 3.5. We therefore obtain the following
result.

(8.8) Proposition. There exists a positive plurisubharmonic function p in
C>®(Y) such that p(y) + V (y, z) is plurisubharmonic on'Y x H.

If we let Re z tend to —oo, we see that the function

Uo(y) = p(y) + Vi, —00) = ply) — / V(T gy )X (£)dt

— 00

is locally plurisubharmonic or = —oo on Y. Furthermore, it is clear that
Up(y) = —oo at every point y such that v(T, ¢,) > 0. If Y is connected and
Uy # —o0, we already conclude that the density set |J,., Ec is pluripolar
inY.

e Second step: application of Kiselman’s minimum principle.
Let a > 0 be arbitrary. The function

Y xH> (yv Z) — p(y) + V(yv Z) — aRez

is plurisubharmonic and independent of Im z. By Kiselman’s theorem 1.7.8,
the Legendre transform

Ualy) = inf {p(y) +V(y,7) - ar}
is locally plurisubharmonic or = —oo on Y.

(8.9) Lemma. Let yg € Y be a given point.
a) If a > v(T,py,), then U, is bounded below on a neighborhood of yo.
b) If a < v(T, @y,), then Ug(yo) = —o0.

Proof. By definition of V' (cf. (8.7)) we have

(8.10) V(y,r) < —v(T, wy,r)/ X ()dt = rv(T, @y, ) < v (T, @y).
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Then clearly U, (yo) = —o0 if a < v(T, ¢y, ). On the other hand, if v(T', ¢, ) <
a, there exists tg < 0 such that v(T,¢y,,t0) < a. Fix 19 < ty. The semi-
continuity property (5.13) shows that there exists a neighborhood w of yq
such that sup, ¢, v(T, py,10) < a. For all y € w, we get

0
Viy,r) 2 -C~ a/ X' (t)dt = —C + a(r — o),
and this implies U, (y) > —C — aryp. O

(8.11) Theorem. IfY is connected and if E. # Y, then E. is a closed com-
plete pluripolar subset of Y, i.e. there exists a continuous plurisubharmonic

function w : Y — [—o0, +o0o| such that E, = w™!(—00).

Proof. We first observe that the family (U,) is increasing in a, that U, = —o0
on F, for all a < c and that sup,..U,(y) > —oo if y € Y \ E. (apply
Lemma 8.9). For any integer k > 1, let w, € C*°(Y') be a plurisubharmonic
regularization of U._y/; such that wy > U._1/p on Y and wy < —2% on
E.NY; where Y, = {y € Y;d(y,0Y) > 1/k}. Then Lemma 8.9 a) shows
that the family (wg) is uniformly bounded below on every compact subset of
Y \ E.. We can also choose wy, uniformly bounded above on every compact
subset of Y because U._1/, < U.. The function

400
_ —k
w—g 27wy,
k=1

satifies our requirements. O
e Third step: estimation of the singularities of the potentials U,.

(8.12) Lemma. Let yo € Y be a given point, L a compact neighborhood of
Yo, K C X a compact subset and ry a real number < —1 such that

{(z,y) € X x Lyp(z,y) <ro} C K x L.
Assume that e?@Y) s locally Holder continuous in y and that
\f(z,y1) — f(x,y2)| < Mlyr — y2|”

for all (x,y1,y2) € K x L X L. Then, for all € € |0, 1], there exists a real
number n(e) > 0 such that all y € Y with |y — yo| < n(e) satisfy

Ua(y) < p(y) + (1 = &)Pv(T, ¢y,) — a) (7 log [y — yol + log 26M)-

Proof. First, we try to estimate v (T, ¢,,r) when y € L is near yo. Set
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U() = (1 - )y (0) + &7 — /2 i g <1
P(z) = max(py (z), (1 —€)py, (x) +er —e/2) if r — 1 <y (z) <7
h(x) = py() it 7 <y, (r) <70

and verify that this definition is coherent when |y — yo| is small enough. By
hypothesis

|etpy(fv) — ePvo (w)| < Mly — yo|.
This inequality implies
oy (1) < @y, () +1og (1 + My — yo[Te™ ¥ ()
py (1) > @y, () +1og(1 — My — yo[ e #r ).
In particular, for ¢, (z) = 7, we have (1 —¢)p,, (z) +er—e/2 =r—g/2, thus
oy(z) > 1 +log(l — My —yo|7e™").

Similarly, for ¢, (z) = 7 — 1, we have (1 —€)py, (z) +er—e/2 =r—14+¢/2,
thus

py(x) <7 —1+log(l+ Mly —yo|7e!™").
The definition of 1 is thus coherent as soon as M|y — yo|Tel™ < ¢/2 , i.e.

2eM

vlog |y — yo| + log <r.

€

In this case 1 coincides with ¢, on a neighborhood of {1 =r} , and with
(1 =€)y, () +er—e/2

on a neighborhood of the polar set 1 ~1(—00). By Stokes’ formula applied to
v(T,v,r), we infer

V(T7 (;OZNT) = V(T7¢7T) > V(va) = (1 o g)py(T7 (;Oyo)'
From (8.10) we get V (y,r) < rv(T, ¢y, 1), hence

Uda(y)
(8.13) U,(y)

p(y) +V(y,r) —ar < p(y) +r(v(T, ¢y, 1) — a),
p(y) + 71 ((1 = Pu(T, py,) — a).
Suppose y1log |y — yo| + log(2eM/e) < 1y , ie. |y — yo| < (e/2eM)Y/Vero/7

one can then choose r = ylog |y — yo| +log(2eM /e), and by (8.13) this yields
the inequality asserted in Th. 8.12. O

<
<

e Fourth step: application of the Hormander-Bombieri-Skoda theorem.
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The end of the proof relies on the following crucial result, which is
a consequence of the Hérmander-Bombieri-Skoda theorem (Bombieri 1970,

(8.14) Proposition. Let u be a plurisubharmonic function on a complex
manifold Y . The set of points in a neighborhood of which e=" is not integrable
1s an analytic subset of Y. ([l

Proof of Theorem 8.4 (end). The main idea in what follows is due to (Kisel-
man 1979). For a,b > 0, we let Z, 3 be the set of points in a neighborhood of
which exp(—U,/b) is not integrable. Then Z, ; is analytic, and as the family
(U,) is increasing in a, we have Zy pr D Zgn pr if o' < a”, b < b".

Let yo € Y be a given point. If yy ¢ E., then v(T, ¢,,) < c by definition
of E.. Choose a such that v(T, ¢,,) < a < c¢. Lemma 8.9 a) implies that U,
is bounded below in a neighborhood of yo, thus exp(—U,/b) is integrable and
Yo & Zap for all b > 0.

On the other hand, if yo € E. and if a < ¢, then Lemma 8.12 implies for
all e > 0 that

Ua(y) < (1 —€)(c—a)ylogly — yo| + C(e)

on a neighborhood of yo. Hence exp(—U,/b) is non integrable at yo as soon
as b < (¢ —a)y/2m, where m = dimY. We obtain therefore

E.= ()] Zap

a<c
b<(c—a)vy/2m

This proves that F. is an analytic subset of Y. ([l

Finally, we use Cor. 8.5 to derive an important decomposition formula
for currents, which is again due to (Siu 1974). We first begin by two simple
observations.

(8.15) Lemma. If T is a closed positive current of bidimension (p,p) and
A 1s an irreducible analytic set in X, we set

ma = inf{v(T,z); z € A}.

Then v(T,x) = my for all x € ANJ A}, where (A}) is a countable family of

proper analytic subsets of A. We say that m4 is the generic Lelong number

of T along A.

Proof. By definition of my and E.(T), we have v(T,z) > m4 for every z € A
and

v(T,z) =mg on AN U ANET).
CEQ; c>MmA
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However, for ¢ > m 4, the intersection A N E.(T) is a proper analytic subset
of A. O

(8.16) Proposition. Let T be a closed positive current of bidimension
(p,p) and let A be an irreducible p-dimensional analytic subset of X. Then
LAT = malA], in particular T — m[A] is positive.

Proof. As the question is local and as a closed positive current of bidimension
(p,p) cannot carry any mass on a (p — 1)-dimensional analytic subset, it is
enough to work in a neighborhood of a regular point o € A. Hence, by
choosing suitable coordinates, we can suppose that X is an open set in C"
and that A is the intersection of X with a p-dimensional linear subspace.
Then, for every point a € A, the inequality v(T,a) > m4 implies

or(B(a,r)) > mamr® /pl = maoa(B(a,r))

for all  such that B(a,r) C X. Now, set © = T — my[A] and 8 = dd°|z|%.
Our inequality says that [ 1g(q,@ALP > 0. If we integrate this with respect
to some positive continuous function f with compact support in A, we get
[x 9-© A B? > 0 where

o(z) = /A s (2) f(a) dA(a) = / £(a) dA(a).

a€ANB(z,r)

Here g, is continuous on C", and as r tends to 0 the function g, (z)/(wPr??/p!)
converges to f on A and to 0 on X \ A, with a global uniform bound. Hence
we obtain [14f© A B > 0. Since this inequality is true for all continuous
functions f > 0 with compact support in A, we conclude that the measure
1460 A (P is positive. By a linear change of coordinates, we see that

140 A (dd° 37 jlug?)” > 0
1<5%n

for every basis (u1,...,u,) of linear forms and for all coefficients A; > 0.
Take Ay = ... = A, = 1 and let the other A; tend to 0. Then we get
140 Aiduy ANduy A ... Aduy, Adua, > 0. This implies 1460 > 0, or equiva-
lently 147 > ma[A]. By Cor. 2.4 we know that 147 is a closed positive
current, thus 47 = A[A] with A > 0. We have just seen that A > my4. On
the other hand, T' > 14T = A[A] clearly implies m 4 > A. O

(8.16) Siu’s decomposition formula. If T' is a closed positive current of
bidimension (p,p), there is a unique decomposition of T as a (possibly finite)
weakly convergent series

T=> NlA]+R, A >0,
j>1
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where [A;] is the current of integration over an irreducible p-dimensional ana-
lytic set A; C X and where R is a closed positive current with the property
that dim E.(R) < p for every ¢ > 0.

Proof of uniqueness. If T has such a decomposition, the p-dimensional com-
ponents of E.(T') are (A;)x;>c, for v(T,x) =3 A\jv([A;], ) + v(R, ) is non
zero only on |JA; U|JE.(R), and is equal to \; generically on A; (more
precisely, v(T,x) = A; at every regular point of A; which does not belong to
any intersection A; U Ay, k # j or to |J Ec(R)). In particular A; and A; are
unique.

Proof of existence. Let (A;);>1 be the countable collection of p-dimensional
components occurring in one of the sets E.(T'), c € Q% , and let A; > 0 be the
generic Lelong number of T" along A;. Then Prop. 8.16 shows by induction on
N that Ry = T_21§j§N Aj[A;] is positive. As Ry is a decreasing sequence,
there must be a limit R = limy_, 1 Ry in the weak topology. Thus we
have the asserted decomposition. By construction, R has zero generic Lelong
number along A;, so dim FE.(R) < p for every ¢ > 0. O

It is very important to note that some components of lower dimension
can actually occur in E.(R), but they cannot be subtracted because R has
bidimension (p,p). A typical case is the case of a bidimension (n —1,n — 1)
current T' = dd“u with v = log(|F;|" +...|Fn|"™) and F; € O(X). In general
UEAT) = ﬂFj_l(O) has dimension < n — 1. In that case, an important
formula due to King plays the role of (8.17). We state it in a somewhat more
general form than its original version (King 1970).

(8.18) King’s formula. Let Fy,..., Fy be holomorphic functions on a com-
plex manifold X, such that the zero variety Z = ﬂFj_l(O) has codimen-
sion > p, and set uw = logy_ |F}|"7 with arbitrary coefficients v; > 0. Let
(Zk)k>1 be the irreducible components of Z of codimension p exactly. Then
there exist multiplicities A\, > 0 such that

(ddu)? =" Xe[Zi] + R,
E>1

where R is a closed positive current such that 1z R = 0 and codim E.(R) > p
for every ¢ > 0. Moreover the multiplicities Ay, are integers if y1,...,YN are
integers, and A\, = vi...7%p if 1 < ... < yn and some partial Jacobian
determinant of (F,...,Fp) of order p does not vanish identically along Zj,.

Proof. Observe that (dd°u)? is well defined thanks to Cor. 4.11. The com-
parison theorem 7.8 applied with ¢(z) = log|z —z|, v1 = ... = v, = v,
up = ... =up = ¢ and T = 1 shows that the Lelong number of (dd®u)?
is equal to 0 at every point of X \ Z. Hence E.((dd°u)?) is contained in
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Z and its (n — p)-dimensional components are members of the family (Zy).
The asserted decomposition follows from Siu’s formula 8.16. We must have
1z, R = 0 for all irreducible components of Z: when codim Z3 > p this is
automatically true, and when codim Z; = p this follows from (8.16) and
the fact that codim E.(R) > p. If det(0F;/0zk)1<jk<p # 0 at some point
xo € Zy, then (Z,x0) = (Zk, xo) is a smooth germ defined by the equations
Fy =...=F, = 0. If we denote v = logzj<p|Fj|7i with 1 < ... < 9w,
then u ~ v near Zy and Th. 7.8 implies v((dd“u)?, z) = v((dd“v)P, z) for all
x € Zy, near xp. On the other hand, if G := (F,...,Fp,) : X — CP, Cor. 7.4
gives

p
(dd*v)y” = G*(ddlog D" |5]) =71 9 G oo =77 [Z4]
1<j<p

near xo. This implies that the generic Lelong number of (dd“u)P along Zj
is Ay = 71...7p. The integrality of Ay when ~;,...,yn are integers will be
proved in the next section. O

9. Transformation of Lelong Numbers by Direct
Images

Let F' : X — Y be a holomorphic map between complex manifolds of re-
spective dimensions dim X = n, dimY = m, and let T" be a closed positive
current of bidimension (p,p) on X. If Fisupp 7 is proper, the direct image
F,T is defined by

9.1) (F.T,a) = (T, F*a)

for every test form « of bidegree (p,p) on Y. This makes sense because
Supp T N F~1(Supp «) is compact. It is easily seen that F,T is a closed
positive current of bidimension (p,p) on Y.

(9.2) Example. Let T' = [A] where A is a p-dimensional irreducible analytic
set in X such that F}4 is proper. We know by Remmert’s theorem 2.7.8 that
F(A) is an analytic set in Y. Two cases may occur. Either F4 is generically
finite and F induces an étale covering A \ F~1(Z) — F(A) \ Z for some
nowhere dense analytic subset Z C F(A), or F}4 has generic fibers of positive
dimension and dim F'(A) < dim A. In the first case, let s < +oo be the
covering degree. Then for every test form « of bidegree (p,p) on Y we get

(FL[A],a) = /AF*a: /A\Fl(z) F*a:sL(A)\Za:s<[F(A)],a>

because Z and F~1(Z) are negligible sets. Hence F,[A] = s[F(A)]. On the
other hand, if dim F'(A) < dim A = p, the restriction of o to F'(A),eq is zero,
and therefore so is this the restriction of F*a to Ayeq. Hence F [A] =0. O
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Now, let ¥ be a continuous plurisubharmonic function on Y which is
semi-exhaustive on F'(Supp T') (this set certainly contains Supp F,T'). Since
Fisupp T 1s proper, it follows that 1) o F' is semi-exhaustive on Supp 7', for

Supp TN{ypoF < R} = F~*(F(Supp T) N {¢ < R}).

(9.3) Proposition. If F(Supp T) N{y < R} cC Y, we have
v(F,T,,r)=v(T,vpo F,r) forallr <R,

in particular v(F,T,v) =v(T,1 o F).

Here, we do not necessarily assume that X or Y are Stein; we thus replace
¢ with 9.5 = max{, s}, s < r, in the definition of v(F,T,,r) and v(T, o
F,r).

Proof. The first equality can be written

/ mTAnW<ﬂwf¢§V:i/zvqmwayuaufwﬁopy.
Y X

This follows almost immediately from the adjunction formula (9.1) when v is
smooth and when we write gy, <y = lim 1 gi for some sequence of smooth
functions gy. In general, we write 1) s as a decreasing limit of smooth plurisub-
harmonic functions and we apply our monotone continuity theorems (if Y is
not Stein, Richberg’s theorem shows that we can obtain a decreasing sequence
of almost plurisubharmonic approximations such that the negative part of dd®
converges uniformly to 0; this is good enough to apply the monotone conti-
nuity theorem; note that the integration is made on compact subsets, thanks
to the semi-exhaustivity assumption on ). 0

It follows from this that understanding the transformation of Lelong num-
bers under direct images is equivalent to understanding the effect of F' on
the weight. We are mostly interested in computing the ordinary Lelong num-
bers v(F,T,y) associated with the weight ¢¥(w) = log |w — y| in some local

coordinates (wi,...,w,,) on Y near y. Then Prop. 9.3 gives
(9.4) v(F,T,y) = v(T,log|F —y|) with
1
log|F(z)—y|:ilogZ|Fj(z)—yj|2, F; =wjoF.

We are going to show that v(7,log|F — y|) is bounded below by a linear
combination of the Lelong numbers of T at points z in the fiber F~!(y), with
suitable multiplicities attached to F' at these points. These multiplicities can

be seen as generalizations of the notion of multiplicity of an analytic map
introduced by (Stoll 1966).
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(9.5) Definition. Let z € X and y = F(z). Suppose that the codimension
of the fiber F~1(y) at x is > p. Then we set

1p(F, ) = v((dd°log |F — y|)?, z).

Observe that (dd®log|F — y|)P is well defined thanks to Cor. 4.10. The
second comparison theorem 7.8 immediately shows that p,(F, ) is indepen-
dent of the choice of local coordinates on Y (and also on X, since Lelong
nombers do not depend on coordinates). By definition, yu,(F,z) is the mass
carried by {z} of the measure

(dd°log |F(2) — y|)P A (dd°log |z — x|)" 7.

We are going to give a more geometric interpretation of this multiplicity, from
which it will follow that p,(F,z) is always a positive integer (in particular,
the proof of (8.18) will be complete).

(9.6) Example. For p = n = dim X, the assumption codim, F~!(y) > p
means that the germ of map F : (X,z) — (Y,y) is finite. Let U, be a
neighborhood of z such that U, N F~!(y) = {z}, let W, be a neighborhood
of y disjoint from F(0U,) and let V,, = U, N F~Y(W,). Then F : V, — W,
is proper and finite, and we have F,[V,] = s[F(V,)] where s is the local
covering degree of F' : V, — F(V,) at x. Therefore

i (F ) = /{ (@ g [ —y)" = (V2] lox | ) = v(E V] )

= SV(F(Vm),y).

In the particular case when dimY = dim X, we have (F(V;),y) = (Y,y), so
pn(F,x) = s. In general, it is a well known fact that the ideal generated by
(F1 —y1,..., F, — ym) in Ox , has the same integral closure as the ideal
generated by n generic linear combinations of the generators, that is, for
a generic choice of coordinates w' = (wy,...,wyp), W’ = (Wpt1,-.., W)
on (Y,y), we have |F(z) —y| < Clw’ o F(z)] (this is a simple consequence
of Lemma 7.5 applied to A = F(V,)). Hence for p = n, the comparison
theorem 7.1 gives

pin,(Fyz) = pn(w' o F, ) = local covering degree of w' o F' at z,

for a generic choice of coordinates (w’,w”) on (Y, y). O

(9.7) Geometric interpretation of ,(F,z). An application of Crofton’s
formula 7.11 shows, after a translation, that there is a small ball B(x, () on
which
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(dd®log |F(2) — y|)? A (dd®log |z — z|)" 7P =

(9.72) / (dd®log |[F(2) — y|)P A [z + S] du(S).
SeG(p,n)

For a rigorous proof of (9.7 a), we replace log | F'(z) —y| by the smooth function
2log(|F(2) — y|*> + €?) and let € tend to 0 on both sides. By (4.3) (resp. by
(4.10)), the wedge product (dd®log|F(z) — y|)? A [x + S| is well defined on
a small ball B(z,rg) as soon as x + S does not intersect F~1(y) N 0B (z,ro)
(resp. intersects F~l(y) N B(x,7) at finitely many points); thanks to the
assumption codim(F~1(y),z) > p, Sard’s theorem shows that this is the case
for all S outside a negligible closed subset E in G(p,n) (resp. by Bertini, an
analytic subset A in G(p,n) with A C F). Fatou’s lemma then implies that
the inequality > holds in (9.7a). To get equality, we observe that we have
bounded convergence on all complements G(p,n) \ V(E) of neighborhoods
V(E) of E. However the mass of fV(E) [x+S]dv(S) in B(z,rp) is proportional
to v(V(F)) and therefore tends to 0 when V(F) is small; this is sufficient to
complete the proof, since Prop. 4.6 b) gives

/ (dd°og(1F () — |? + €2))" A / w + S]dv(S) < Co(V(E))
2€B(z,r0) SeEV(E)
with a constant C' independent of €. By evaluating (9.7a) on {z}, we get

O.70) p(Fo) = [ v ((dd°log | Fiar s — 2|)7, 3) do(S).
SeG(pn)NA

Let us choose a linear parametrization gs : C? — S depending analytically
on local coordinates of S in G(p,n). Then Theorem 8.4 with 7" = [CP] and
©(z,S) =log |F o gs(z) — y| shows that

V((ddclog |F[:1:+S - z|)p7$) = V([Cp]7log |FOgS(Z) - y|)

is Zariski upper semicontinuous in S on G(p,n) \ A. However, (9.6) shows
that these numbers are integers, so S — v/((ddlog|Fjs+s — 2|)P, z) must be
constant on a Zariski open subset in G(p,n). By (9.7b), we obtain

(9.7¢)  pp(F,x) = pp(Fizys,x) = local degree of w' o F,15 at x

for generic subspaces S € G(p,n) and generic coordinates w' = (w1, ..., wp),

w" = (wp+1,-..,wn) on (Y,y). O

(9.8) Example. Let F': C* — C" be defined by

F(z1,...,2n) = (21, ..., 200), s1<.

o< sy,

We claim that p,(F,0) = s1...sp. In fact, for a generic p-dimensional sub-
space S C C" such that z,...,2, are coordinates on S and zpy1,...,2n
are linear forms in z1,..., 2y, and for generic coordinates w’ = (w1, ..., wp),
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w" = (Wpt1,...,w,) on C", we can rearrange w’ by linear combinations so
that wj o Fg is a linear combination of (zjs] ,.+.,2z5n) and has non zero coeffi-
cient in z;j as a polynomial in (zj, ..., 2p). It is then an exercise to show that
w' o F}s has covering degree sy ...s, at 0 [ compute inductively the roots zy,
Zn—1,---,%; of wj o F1g(%) = a; and use Lemma II.3.10 to show that the s;
values of z; lie near 0 when (a1, ...,ap) are small]. O

We are now ready to prove the main result of this section, which describes
the behaviour of Lelong numbers under proper morphisms. A similar weaker
result was already proved in (Demailly 1982b) with some other non optimal
multiplicities p,(F, x).

(9.9) Theorem. Let T be a closed positive current of bidimension (p,p) on X
and let F': X —'Y be an analytic map such that the restriction Fisupp T 18
proper. Let 1(y) be the set of points x € Supp TNF~1(y) such that x is equal
to its connected component in Supp T N F~'(y) and codim(F~'(y),z) > p.
Then we have

v(F,T,y) > Z pp(F, z) v(T, x).
z€l(y)

In particular, we have v(F.T,y) > >, cr(,) v(T, ). This inequality no
longer holds if the summation is extended to all points z € Supp TNF~1(Y)
and if this set contains positive dimensional connected components: for ex-
ample, if /' : X — Y contracts some exceptional subspace E in X to a
point yo (e.g. if F' is a blow-up map, see § 7.12), then 7" = [E] has direct
image F,[E] = 0 thanks to (9.2).

Proof. We proceed in three steps.

Step 1. Reduction to the case of a single point x in the fiber. It is sufficient
to prove the inequality when the summation is taken over an arbitrary finite
subset {z1,...,zn} of I(y). As z; is equal to its connected component in
Supp T N F~1(y), it has a fondamental system of relative open-closed neigh-
borhoods, hence there are disjoint neighborhoods U; of x; such that OU; does
not intersect Supp 7'N F~1(y). Then the image F(0U; N Supp T') is a closed
set which does not contain y. Let W be a neighborhood of y disjoint from
all sets F(OU; N Supp T), and let V; = U; N F~H(W). It is clear that V; is
a neighborhood of z; and that Fyy, : V; — W has a proper restriction to
Supp T'NVj;. Moreover, we obviously have F,T > Zj (Fiv;)«T on W. There-
fore, it is enough to check the inequality v(F\T,y) > p,(F,z) v(T,x) for a
single point z € I(y), in the case when X C C*, Y C C™ are open subsets
and z =y = 0.

Step 2. Reduction to the case when F' is finite. By (9.4), we have
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- Cc p
V(F.T,0) _‘%fO/VT/\(dd log |F')

= inf Ii T “log(|F )P
inf Ty | T A (dd”log(|F| +el2|™))",
and the integrals are well defined as soon as 0V does not intersect the set
Supp T'N F~1(0) (may be after replacing log |F| by max{log|F|,s} with
s < 0). For every V and ¢, the last integral is larger than v(G,T,0) where
G is the finite morphism defined by
G: X —YxC" (21,...,2n) — (F1(2), ..., Fn(2), 2, ..., 2N).

’n

We claim that for N large enough we have p,(F,0) = p,(G,0). In fact,
r € I(y) implies by definition codim(F~1(0),0) > p. Hence, if S =

{ur = ... = up—p = 0} is a generic p-dimensional subspace of C", the
germ of variety F~1(0) N S defined by (Fi,...,Fn,u1,...,u,_p) is {0}.
Hilbert’s Nullstellensatz implies that some powers of z1,...,2, are in the

ideal (Fj,ug). Therefore |F(2)| + |u(z)] > C|z|* near 0 for some inte-
ger a independent of S (to see this, take coefficients of the ug’s as ad-
ditional variables); in particular |F(z)| > C|z|* for z € S near 0. The
comparison theorem 7.1 then shows that pu,(F,0) = u,(G,0) for N > a.
If we are able to prove that v(G,T,0) > p,(G,0)v(T,0) in case G is finite,
the obvious inequality v(F,T,0) > v(G,T,0) concludes the proof.

Step 3. Proof of the inequality v(F.\T,y) > pp(F,z) v(T,x) when F is finite
and F~1(y) = z. Then ¢(z) = log|F(z) — y| has a single isolated pole at z
and we have p,(F,z) = v((dd°p)?,z). It is therefore sufficient to apply to
following Proposition.

(9.10) Proposition. Let ¢ be a semi-ezhaustive continuous plurisubhar-
monic function on X with a single isolated pole at x. Then

v(T, ) 2 v(T, ) v((dd°p)?, x).

Proof. Since the question is local, we can suppose that X is the ball B(0, )
in C* and z = 0. Set X’ = B(0,7r1) with r; < ro and @(z,9) = ¢ o g(2)
for g € G1,,(C). Then there is a small neighborhood {2 of the unitary group
U(n) C Gl,(C) such that & is plurisubharmonic on X' x (2 and semi-
exhaustive with respect to X’. Theorem 8.4 implies that the map g +—
v(T, ¢ o g) is Zariski upper semi-continuous on (2. In particular, we must
have v(T,pog) <v(T,p) for all g € 2 A in the complement of a complex
analytic set A. Since Gl,,(C) is the complexification of U(n), the intersection
U(n) N A must be a nowhere dense real analytic subset of U(n). Therefore,
if dv is the Haar measure of mass 1 on U(n), we have
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v(T,p) > / v(T,pog)du(g)
geU(n)

r—0

(9.11) — lim dv(g) / T A (dd°g o g)P.
geu(n) B0

Since fgeU(n)(ddcgo og)Pdv(g) is a unitary invariant (p, p)-form on B, Lemma
7.10 implies

/ (dd°p o g)Pdu(g) = (dd°x(log z]))”
geU(n)

where x is a convex increasing function. The Lelong number at 0 of the
left hand side is equal to v((dd®p)?,0), and must be equal to the Lelong
number of the right hand side, which is lim;, o, /()P (to see this, use
either Formula (5.5) or Th. 7.8). Thanks to the last equality, Formulas (9.11)
and (5.5) imply

v(T, ) > lim T A (dd°x(log |z|))p
r—0 B(O,T)
= liII(l) X (logr — 0)Pv(T,0,r) > v((ddp)?,0) v(T,0). O
r—

Another interesting question is to know whether it is possible to get in-
equalities in the opposite direction, i.e. to find upper bounds for v(F,T,y) in
terms of the Lelong numbers v (T, x). The example T' = [I'] with the curve
It (%t t) in C and F : C — C?, (21, 22, 23) = (21, 22), for which
v(T,0) =1 and v(F,T,0) = a, shows that this may be possible only when F'
is finite. In this case, we have:

(9.12) Theorem. Let F': X — Y be a proper and finite analytic map and
let T be a closed positive current of bidimension (p,p) on X. Then

(a) v(F.T,y) < Z iy, (P z) v(T, x)
x€Supp TNF—1(y)

where i, (F, x) is the multiplicity defined as follows: if H : (X, z) — (C",0)
15 a germ of finite map, we set

(b) o(H,z) =inf {a >0;3C >0, |H(z)| > C|z — z|* near z},

_ . ,0(GoF,x)P
(C) MP(F,Qf)—IIéfW,

where G runs over all germs of maps (Y,y) — (C*,0) such that G o F is
finite.

Proof. If F~1(y) = {x1,...,xN}, there is a neighborhood W of y and disjoint
neighborhoods V; of z; such that F~'(W) = JVj. Then F,.T = Y (Fv, ). T
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on W, so it is enough to consider the case when F~1(y) consists of a sin-
gle point x. Therefore, we assume that F' : V — W is proper and fi-
nite, where V, W are neighborhoods of 0 in C*, C™ and F~1(0) = {0}.
Let G : (C™,0) — (C™,0) be a germ of map such that G o F' is finite.
Hilbert’s Nullstellensatz shows that there exists o > 0 and C' > 0 such
that |G o F(z)| > C|z|* near 0. Then the comparison theorem 7.1 implies

v(GFT,0) = v(T,log |G o F|) < o”v(T,log |z]) = o"v(T,0).
On the other hand, Th. 9.9 applied to ©® = F,T on W gives
V(G F.T,0) > pu,(G,0)v(F.T,0).

Therefore

P
v(F,T,0) < ——v(T,0).
( * ) /Lp(G, 0) ( )
The infimum of all possible values of « is by definition (G o F,0), thus by
taking the infimum over G we obtain

v(F.T,0) < i, (F,0) v(T,0). O

(9.13) Example. Let F(z1,...,2,) = (27", ...,25"), 51 < ... < s, asin 9.8.
Then we have

pp(F,0) =s1...5p, P, (F,0) = Sp_py1---Sn.

To see this, let s be the lowest common multiple of s1,...,s, and let
G(z1s. . 2m) = (250,28, Clearly 11,(G,0) = (8/$n—ps1) - - (5/5n)
and o(G o F,0) = s, so we get by definition 7z,,(F,0) < sp_py1...5n. Fi-
nally, if 7" = [A] is the current of integration over the p-dimensional subspace
A={zn =... = z,_p = 0}, then F,[A] = $p_pyt1...5,[A] because Fj4
has covering degree s,,_,y1...5,. Theorem 9.12 shows that we must have
Sp—pt1-.-8np < ﬁp(F, 0), QED. If A; < ... < )\, are positive real numbers
and s; is taken to be the integer part of kA; as k tends to +oo, Theorems 9.9
and 9.12 imply in the limit the following:

(9.14) Corollary. For 0 < A\; < ... < \,, Kiselman’s directional Lelong
numbers satisfy the inequalities

A (T o) Sv(T,z,A) < Ap—pt1--- A v(T, ). O

(9.15) Remark. It would be interesting to have a direct geometric interpre-
tation of 7,(F, z). In fact, we do not even know whether 7z, (F, r) is always
an integer.
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10. A Schwarz Lemma. Application to Number Theory

In this section, we show how Jensen’s formula and Lelong numbers can be
used to prove a fairly general Schwarz lemma relating growth and zeros of
entire functions in C™. In order to simplify notations, we denote by |F|, the
supremum of the modulus of a function F' on the ball of center 0 and radius .
Then, following (Demailly 1982a), we present some applications with a more
arithmetical flavour.

(10.1) Schwarz lemma. Let Py,..., Py € Clz1,...,2,] be polynomials of
degree 9, such that their homogeneous parts of degree 6 do not vanish simul-
taneously except at 0. Then there is a constant C' > 2 such that for all entire
functions F' € O(C™) and all R > r > 1 we have

n R
log |F|, < log |F|r — 8" ~"v([Zr], log| P]) log -

where Zg is the zero divisor of F and P = (Py,...,Py) : C* — CV.
Moreover

(2 logP) > Y ord(F.w) s (Pw)
weP—1(0)
where ord(F,w) denotes the vanishing order of F at w and pi,_1 (P, w) is the
(n — 1)-multiplicity of P at w, as defined in (9.5) and (9.7).

Proof. Our assumptions imply that P is a proper and finite map. The last
inequality is then just a formal consequence of formula (9.4) and Th. 9.9
applied to T' = [ZF]. Let ); be the homogeneous part of degree ¢ in P;.
For zy € B(0,r), we introduce the weight functions

p(z) =log|P(z)],  ¥(z) =log|Q(z — 20)|-

Since Q71(0) = {0} by hypothesis, the homogeneity of @@ shows that there
are constants C'{, Cy > 0 such that

(10.2) C1]7)° < |Q(2)] < Cy|z|° on C".

The homogeneity also implies (dd“y)™ = 0™ 6,,. We apply the Lelong Jensen
formula 6.5 to the measures j,, s associated with ¢ and to V' = log|F|. This
gives

(103) iy (og|F]) — " log [P = [ dt [ (ze)n(diw
—00 {y<t}

By (6.2), py,s has total mass 6" and has support in

{(2) =s} ={Q(z — 20) = e’} C B(O,T + (65/C1)1/‘5).
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Note that the inequality in the Schwarz lemma is obvious if R < C'r, so we
can assume R > Cr > 2r. We take s = §log(R/2) + log C1 ; then

{¢(z) =s} Cc B(0,r+ R/2) C B(0,R).
In particular, we get pu, s(log|F|) < 6™ log|F|gr and formula (10.3) gives
(10.4) log|F|r —log|F(z0)| > 5_"/ dt/ [Zp] A (ddC)™ 1
50 {y<t}

for any real number sy < s. The proof will be complete if we are able to
compare the integral in (10.4) to the corresponding integral with ¢ in place
of ¢. The argument for this is quite similar to the proof of the comparison
theorem, if we observe that ¢ ~ ¢ at infinity. We introduce the auxiliary
function

_ [ max{y, (1—e)p+et—c} on {p>i—2},
A —-e)p+et—c¢ on {¢p <t —2},

with a constant € to be determined later, such that (1 —¢)p+¢et —e > 1) near
{p =t —2} and (1 —¢e)p + et —e < ¢ near {1 = t}. Then Stokes’ theorem
implies

/ (Ze] A (ddep) =) = / Ze] A (ddew)™!

{yp<t} {p<t}

(10.5) > (1— €)n_1/ [ZF] A (dd°p)" ! > (1 —&)"'v([ZF), log | P|).
{p<t—2}

By (10.2) and our hypothesis |zy| < r, the condition 1 (z) = ¢ implies

Q(z — 20)| = et = €/9)Ci° < |z — 2| < €t/?)C3°,
|P(2) — Q(z — 20)| < C3(1 + |20]) (1 + |2] + |20])° ™" < Cur(r + /%)=L,

Plz) 1‘ < Cyre=t3(ret% 1 1)0-1 < 2910, pe—t/9,
Q(Z - Zo)

provided that t > 6 logr. Hence for 1(z) =t > so > §log(2°Cyr), we get
|1P(2)] 1/
z) =Y (2)] = |log ————| < Csre .
lo() = ()| = | og (5=, < G
Now, we have
[(L-e)p+et—c] —p=(1-e)p—9)+elt—1-v),

so this difference is < Csre™® — ¢ on {3 = t} and > —C5re(2~9/% 4 ¢ on
{¢ =t — 2}. Hence it is sufficient to take ¢ = C5re(2~4/9 This number has
to be < 1, so we take t > sg > 249 log(Csr). Moreover, (10.5) actually holds
only if P71(0) C {¢» < t — 2}, so by (10.2) it is enough to take t > sq >
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2 + log(Co(r + Cs)%) where Cg is such that P~1(0) C B(0,Cs). Finally, we
see that we can choose

s =90dlog R — CY, so = 0 logr + C,

and inequalities (10.4), (10.5) together imply

log |F|r — log |F(zp)| > 0" (/ (1 — Cgre2—t)/o)n—1 dt)y([ZF], log |P|).

S0

The integral is bounded below by

dlog(R/r)—Cr
/ (1= Coe™t%) dt > log(R/Crr).
Cs

This concludes the proof, by taking the infimum when zy runs over B(0,r).
[

(10.6) Corollary. Let S be a finite subset of C* and let 6 be the minimal
degree of algebraic hypersurfaces containing S. Then there is a constant C' > 2
such that for all F € O(C") and all R > r > 1 we have

d+n(n—1) R

/2
1
n! o8 Cr

log |F|, < log|F|g — ord(F,S)

where ord(F, S) = min,eg ord(F, w).

Proof. In view of Th. 10.1, we only have to select suitable polynomials
Py, ..., Py. The vector space C[zy,...,2,|<s of polynomials of degree < o
in C" has dimension

() = <5+n—1> 5(6+1)...(6+n—1)

By definition of ¢, the linear forms

n n!

(C[Zla"'7zn]<5—>(ca P'_>P(w)7 wE S

vanish simultaneously only when P = 0. Hence we can find m = m(d)
points wi,...,wy, € S such that the linear forms P +— P(w;) define
a basis of Clz1,...,2,]%s. This means that there is a unique polynomial
P € Clz,...,2%n]<s which takes given values P(w;) for 1 < j < m.
In particular, for every multiindex «, |a| = ¢, there is a unique polyno-
mial R, € C[z1,...,2n]<s such that R,(w;) = w$. Then the polynomials
P,(z) = 2% — Ry (z) have degree 0, vanish at all points w; and their homo-
geneous parts of maximum degree Q,(z) = z® do not vanish simultaneously
except at 0. We simply use the fact that ju,,—1 (P, w;) > 1 to get

v([ZF],log|P|) > Z ord(F,w) > m(d) ord(F, S).
weP~1(0)
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Theorem 10.1 then gives the desired inequality, because m(0) is a polynomial
with positive coefficients and with leading terms

%(5”+n(n—1)/25"_1+...). 0

Let S be a finite subset of C”. According to (Waldschmidt 1976), we
introduce for every integer t > 0 a number w;(S) equal to the minimal degree
of polynomials P € Clzy,..., 2,] which vanish at order > ¢ at every point
of S. The obvious subadditivity property

Wi+, () < wi,y (S) + wi, (5)

easily shows that

2(8) = inf 1) gy @elS)
t>0 ¢ t—+oco I

We call wi(S) the degree of S (minimal degree of algebraic hypersurfaces
containing S) and £2(S) the singular degree of S. If we apply Cor. 10.6 to a
polynomial F' vanishing at order ¢ on S and fix r = 1, we get

d+n(n—1)/2

log |[F|p >t
n!

1 log | F
0g0+ og |Fy

with 0 = wy(S), in particular
w1(S)+n(n—1)/2

deg F' >t
n!

The minimum of deg F' over all such F' is by definition w(.S). If we divide by
t and take the infimum over ¢, we get the interesting inequality

wt(S) (S)+n(n—1)/2
t

n!

(10.7) > 2(S) >

(10.8) Remark. The constant wl(sH"(" D/2 i1 (10.6) and (10.7) is optimal
for n = 1,2 but not for n > 3. It can be shown by means of Hormander’s
L? estimates (Waldschmidt 1978) that for every € > 0 the Schwarz lemma
(10.6) holds with coefficient 2(S) — e

R
log |F|, < log |F|g — ord(F, S)(£2(S) —¢) log o
T
and that 2(S) > (wu(S)+1)/(u+n—1) for every u > 1; this last inequality
is due to (Esnault-Viehweg 1983), who used deep tools of algebraic geometry;
(Azhari 1990) reproved it recently by means of Hormander’s L? estimates.
Rather simple examples (Demailly 1982a) lead to the conjecture
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wu(S)+n—1

9 >
(8) =2 — 51

for every wu > 1.

The special case u = 1 of the conjecture was first stated by (Chudnovsky
1979).

Finally, let us mention that Cor. 10.6 contains Bombieri’s theorem on
algebraic values of meromorphic maps satisfying algebraic differential equa-
tions (Bombieri 1970). Recall that an entire function F € O(C"™) is said
to be of order < p if for every € > 0 there is a constant C. such that

|F(2)] < Ceexp(]z]P*€). A meromorphic function is said to be of order < p
if it can be written G/H where G, H are entire functions of order < p.

(10.9) Theorem (Bombieri 1970). Let Fy,...,Fn be meromorphic func-
tions on C", such that Fy,...,Fg, n < d < N, are algebraically indepen-
dent over Q and have finite orders p1,...,pq. Let K be a number field of
degree [K : Q]. Suppose that the ring K|f1,..., fn] is stable under all deriva-
tions d/dz1,...,d/dz,. Then the set S of points z € C", distinct from the
poles of the Fy’s, such that (F1(2),...,Fn(2)) € K~ is contained in an al-
gebraic hypersurface whose degree ¢ satisfies

d+n(n—1)/2 Pt pa
n! - d—n

K : Q.

Proof. If the set S is not contained in any algebraic hypersurface of degree
< 0, the linear algebra argument used in the proof of Cor. 10.6 shows that
we can find m = m(d) points wy, ..., w,, € S which are not located on any
algebraic hypersurface of degree < §. Let Hy,..., H; be the denominators
of Fy,..., Fy. The standard arithmetical methods of transcendental number
theory allow us to construct a sequence of entire functions in the following
way: we set

G:P(F]_,...,Fd)(Hl---Hd)s

where P is a polynomial of degree < s in each variable with integer coeffi-
cients. The polynomials P are chosen so that G vanishes at a very high order
at each point w;. This amounts to solving a linear system whose unknowns
are the coefficients of P and whose coefficients are polynomials in the deriva-
tives of the F}’s (hence lying in the number field K). Careful estimates of
size and denominators and a use of the Dirichlet-Siegel box principle lead to
the following lemma, see e.g. (Waldschmidt 1978).

(10.10) Lemma. For every ¢ > 0, there exist constants C1,Cy > 0, 7 > 1
and an infinite sequence Gy of entire functions, t € T C N (depending on m
and on the choice of the points wj), such that

a) Gy vanishes at order >t at all points wy, ..., Wy, ;
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b) |Gylr > (Cyt)~ K
¢) |Gelre) < Ct  where R(t) = (t%="/logt)Y/(prt-Fpate)

An application of Cor. 10.6 to F' = G; and R = R(t) gives the desired
bound for the degree d as t tends to +00 and € tends to 0. If §y is the largest
integer which satisfies the inequality of Th. 10.9, we get a contradiction if
we take § = dp + 1. This shows that S must be contained in an algebraic
hypersurface of degree § < dy. O



Chapter IV
Sheaf Cohomology and Spectral Sequences

One of the main topics of this book is the computation of various cohomology
groups arising in algebraic geometry. The theory of sheaves provides a general
framework in which many cohomology theories can be treated in a unified way.
The cohomology theory of sheaves will be constructed here by means of Gode-
ment’s simplicial flabby resolution. However, we have emphasized the analogy with
Alexander-Spanier cochains in order to give a simple definition of the cup product.
In this way, all the basic properties of cohomology groups (long exact sequences,
Mayer Vietoris exact sequence, Leray’s theorem, relations with Cech cohomology,
De Rham-Weil isomorphism theorem) can be derived in a very elementary way
from the definitions. Spectral sequences and hypercohomology groups are then in-
troduced, with two principal examples in view: the Leray spectral sequence and the
Hodge-Frolicher spectral sequence. The basic results concerning cohomology groups
with constant or locally constant coefficients (invariance by homotopy, Poincaré du-
ality, Leray-Hirsch theorem) are also included, in order to present a self-contained
approach of algebraic topology.

1. Basic Results of Homological Algebra

Let us first recall briefly some standard notations and results of homological
algebra that will be used systematically in the sequel. Let R be a commutative
ring with unit. A differential module (K,d) is a R-module K together with
an endomorphism d : K — K, called the differential, such that dod = 0. The
modules of cycles and of boundaries of K are defined respectively by

(1.1) Z(K)=kerd, B(K)=Imd.

Our hypothesis dod = 0 implies B(K) C Z(K). The homology group of K is
by definition the quotient module

(1.2) H(K)=Z(K)/B(K).

A morphism of differential modules ¢ : K — L is a R-homomorphism
¢ : K — L such that d o ¢ = ¢ od; here we denote by the same symbol
d the differentials of K and L. It is then clear that ¢(Z(K)) C Z(L) and
¢(B(K)) C B(L). Therefore, we get an induced morphism on homology
groups, denoted
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(1.3) H(p) : H(K) — H(L).

It is easily seen that H is a functor, i.e. H(¢ o ) = H(¢) o H(p). We say
that two morphisms ¢, : K — L are homotopic if there exists a R-linear
map h : K — L such that

(1.4) doh+hod=1— .

Then A is said to be a homotopy between ¢ and 1. For every cocycle z €
Z(K), we infer 1)(z)—¢(z) = dh(z), hence the maps H () and H (1)) coincide.
The module K itself is said to be homotopic to 0 if Idx is homotopic to 0;
then H(K) = 0.

(1.5) Snake lemma. Let

0—K 5L Y5 M—0

be a short exact sequence of morphisms of differential modules. Then there
exists a homomorphism 0 : H(M) — H(K), called the connecting homo-
morphism, and a homology exact sequence

HEK) 9% gy 29 g

N 0 v

Moreover, to any commutative diagram of short exact sequences

0 —K —L—M —0

0—K —L—M —0
s associated a commutative diagram of homology exact sequences

H(K) —H(L) —HM) 25H(K) — -

l l l l

H(K) —H(L) —H(M) 25H(K) — ---.
Proof. We first define the connecting homomorphism 0 : let m € Z(M) rep-
resent a given cohomology class {m} in H(M). Then

0{m} = {k} € H(K)

is the class of any element k € p~tdy~1(m), as obtained through the follow-
ing construction:

ek o2 aien s 0em
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The element [ is chosen to be a preimage of m by the surjective map v ; as
(dl) = d(m) = 0, there exists a unique element k € K such that p(k) = dl.
The element k is actually a cocycle in Z(K) because ¢ is injective and

o(dk) = dp(k) = d(dl) =0 = dk=0.

The map 0 will be well defined if we show that the cohomology class {k}
depends only on {m} and not on the choices made for the representatives m
and [. Consider another representative m’ = m + dmy. Let [; € L such that
¥ (l1) = my. Then [ has to be replaced by an element [’ € L such that

D(I') = m + dmy = p(l + diy).
It follows that I’ =1+ dl; + ¢(k;) for some k; € K, hence
dl" = dl + dp(k1) = (k) + @(dk1) = ¢(K),

therefore k' = k + dk, and k' has the same cohomology class as k.

Now, let us show that ker d = Im H(¢). If {m} is in the image of H (%)),
we can take m = () with dl = 0, thus 9{m} = 0. Conversely, if 0{m} =
{k} = 0, we have k = dk; for some ky € K, hence dl = (k) = dp(k1),
z:=1—@(k1) € Z(L) and m = ¢(l) = ¢(z) is in Im H(¢p). We leave the
verification of the other equalities Im H(¢) = ker H (), Im 0 = ker H () and
of the commutation statement to the reader. U

In most applications, the differential modules come with a natural Z-
grading. A homological complex is a graded differential module K, =
@D,z Kq together with a differential d of degree —1, i.e. d = P d, with
dy : K4 — Ky_1 and dy—1 o dy = 0. Similarly, a cohomological com-
plex is a graded differential module K*® = @qez K% with differentials
d?: K7 — K% such that d9t! o d? = 0 (superscripts are always used in-
stead of subscripts in that case). The corresponding (co)cycle, (co)boundary
and (co)homology modules inherit a natural Z-grading. In the case of coho-
mology, say, these modules will be denoted

Z°(K*) =@ zYK"), B*(K*)=EPBUK"), H*(K*) =P HIK").
Unless otherwise stated, morphisms of complexes are assumed to be of degree
0, i.e. of the form ¢* = @ p? with ¢? : K7 — L7. Any short exact sequence

0—K* £ Ym0

gives rise to a corresponding long exact sequence of cohomology groups

q ° q ] q q+1 3
(16) me(k®) T garey PO pagypey 2 ety G

and there is a similar homology long exact sequence with a connecting ho-
momorphism J, of degree —1. When dealing with commutative diagrams of
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such sequences, the following simple lemma is often useful; the proof consists
in a straightforward diagram chasing.

(1.7) Five lemma. Consider a commutative diagram of R-modules

A1 —>A2 —>A3 —>A4 —>A5

l(ﬂl lst l‘PS 1904 1905

B, —By; — B3 —B, —Bs

where the rows are exact sequences. If oo and @4 are injective and oy surjec-
tive, then g is injective. If oo and p4 1s surjective and g5 injective, then @3
15 surjective. In particular, s s an isomorphism as soon as p1, P2, P4, Ps
are isomorphisms.

2. The Simplicial Flabby Resolution of a Sheaf

Let X be a topological space and let A be a sheaf of abelian groups on X (see
§ II-2 for the definition). All the sheaves appearing in the sequel are assumed
implicitly to be sheaves of abelian groups, unless otherwise stated. The first
useful notion is that of resolution.

(2.1) Definition. A (cohomological) resolution of A is a differential complex
of sheaves (L°®,d) with L9 =0, d? =0 for ¢ < 0, such that there is an exact
sequence

j d° d?
0—A L0 gt — o pe Sgett

If o : A — B is a morphism of sheaves and (M®,d) a resolution of B, a
morphism of resolutions ¢® : L® — M® is a commutative diagram

0 A 2500 Lopr o pe Pogant
Lo le® e Ll prt?

j d° d?
0 —B LM oM — -0 — M Somet —.

(2.2) Example. Let X be a differentiable manifold and £7 the sheaf of germs
of C'*° differential forms of degree ¢ with real values. The exterior derivative
d defines a resolution (€°, d) of the sheaf R of locally constant functions with
real values. In fact Poincaré’s lemma asserts that d is locally exact in degree
g > 1, and it is clear that the sections of kerd” on connected open sets are
constants. U

In the sequel, we will be interested by special resolutions in which the
sheaves L7 have no local “rigidity”. For that purpose, we introduce flabby
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sheaves, which have become a standard tool in sheaf theory since the publi-
cation of Godement’s book (Godement 1957).

(2.3) Definition. A sheaf F is called flabby if for every open subset U of X,
the restriction map F(X) — F(U) is onto, i.e. if every section of F on U
can be extended to X .

Let 7 : A — X be a sheaf on X. We denote by Al the sheaf of germs
of sections X — A which are not necessarily continuous. In other words,
ALN(T) is the set of all maps f : U — A such that f(z) € A, for all z € U,
or equivalently ANU) = [],cp Ax- It is clear that A% is flabby and there
is a canonical injection

j:A— Al

defined as follows: to any s € A, we associate the germ s € AE;O] equal to
the continuous section y — §(y) near x such that s(z) = s. In the sequel
we merely denote 5 : y — s(y) for simplicity. The sheaf Al is called the

canonical flabby sheaf associated to A. We define inductively
Aldl — (A[q—l])[o]_

The stalk A&q] can be considered as the set of equivalence classes of maps
[ X9t — A such that f(zo,...,z4) € Az, , with two such maps identified
if they coincide on a set of the form

(2.4) ro €V, x1€ V(l‘o), see ., Tg € V(JSQ, ce ,I‘q_l),
where V' is an open neighborhood of x and V (o, ...,z;) an open neighbor-
hood of z;, depending on zy,...,z;. This is easily seen by induction on g, if

we identify a map f : X9t — A to the map X — Al 24— f,. such that
foo (@1, ..., 2q) = f(zo, 21, ..., 24). Similarly, Al(U) is the set of equivalence
classes of functions X9! 5 (zg,...,24) — f(w0,...,%q) € Ay, , with two
such functions identified if they coincide on a set of the form

(2.4/) zo €U, z1¢€ V(l‘o), e, Ig € V(JSQ, ce ,I‘q_l).

Here, we may of course suppose V(zo,...,xq-1) C ... C V(xg,z1) C
V(z0) C U. We define a differential d9 : Ald) — Ala+ilp

(2.5)  (dif)(xo,...,xq41) =
Z (=1 f(w0y .oy Tgy -y Tgrr) + (1) f (w0, . ooy 1) (Tg41)-

0<j<q

The meaning of the last term is to be understood as follows: the element
s = f(xo,...,7q) is a germ in A, , therefore s defines a continuous section
Zg41 — $(Tq+1) of A in a neighborhood V (x, ..., xz4) of z4. In low degrees,
we have the formulas
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(]S)(xO) = S(xO)v s € -Aaca
(2.6) (d°f)(zo, 21) = f(z1) — f(wo)(21), fe€ AL,
(d" f)(zo, 21, 72) = f(z1,22) — (w0, T2) + f(z0,71)(22), f € AL

(2.7) Theorem (Godement 1957). The complex (Al*l d) is a resolution of
the sheaf A, called the simplicial flabby resolution of A.

Proof. For s € A,, the associated continuous germ obviously satisfies
s(xo)(x1) = s(x1) for zg € V, 21 € V(xp) small enough. The reader will
easily infer from this that d° oj = 0 and d9t! o d? = 0. In order to verify that
(Al*l @) is a resolution of A, we show that the complex

0 A, Al P gla L plen]

is homotopic to zero for every point z € X. Set A1 = A, d=1 = j and

W AY — A, B(f) = () € Ay,

ht o A s AT R () (e, wgm) = f(@, @0, Tg1)-
A straightforward computation shows that (k9! od?+ d9=1 o h?)(f) = f for
allg € Z and f € A9, 0

If p : A — B is a sheaf morphism, it is clear that ¢ induces a morphism
of resolutions

(2.8) @l*l: Al Blol,

For every short exact sequence A — B — € of sheaves, we get a corresponding
short exact sequence of sheaf complexes

(2.9) Al — Blel _, elol,

3. Cohomology Groups with Values in a Sheaf

3.A. Definition and Functorial Properties

If # : A — X is a sheaf of abelian groups, the cohomology groups of A
on X are (in a vague sense) algebraic invariants which describe the rigidity
properties of the global sections of A.

(3.1) Definition. For every q € Z, the q-th cohomology group of X with
values in A is

H(X,A) = HI(A)(X))
— ker (dq . A[q](X) N A[q+1](X))/Im(dq_1 ;A[q_l](X) N A[q](X))
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with the convention A4 =0, d?7 =0, H1(X,A) =0 when q < 0.

For any subset S C X, we denote by A,s the restriction of A to S, i.e. the
sheaf A;s = m~1(S) equipped with the projection s onto S. Then we write
H1(S,As) = HI(S, A) for simplicity. When U is open, we see that (ALl)
coincides with (A;)4, thus we have H1(U, A) = H?(AFI(U)). 1t is easy to
show that every exact sequence of sheaves 0 — A — LY — L! induces an
exact sequence

(3.2) 0 — A(X) — LX) — LY(X).
If we apply this to £7 = Al g =0, 1, we conclude that
(3.3) H°(X,A) = A(X).

Let ¢ : A — B be a sheaf morphism; (2.8) shows that there is an induced
morphism

(3.4) H(p): HY(X,A) — HI(X,B)

on cohomology groups. Let 0 - A — B — € — 0 be an exact sequence of
sheaves. Then we have an exact sequence of groups

0 — A(X) — BO(X) — el’l(X) — 0

because AL(X) = [I,cx Az Similarly, (2.9) yields for every ¢ an exact
sequence of groups

0 — AY(X) — Bld(X) — eld(x) —o.
If we take (3.3) into account, the snake lemma implies:
(3.5) Theorem. To any exact sequence of sheaves 0 - A — B — C — 0 is
associated a long exact sequence of cohomology groups

0— AX) — B(X) — €X) — HY(X,A) —---
coo— HY(X,A)— HY(X,B)— HY(X,C)— HITY X, A)— ---.

(3.6) Corollary. Let B — C be a surjective sheaf morphism and let A be its
kernel. If HY (X, A) = 0, then B(X) — C(X) is surjective. O
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3.B. Exact Sequence Associated to a Closed Subset

Let S be a closed subset of X and U = X \ S. For any sheaf A on X, the
presheaf

2+— A(SN), £2CX open

with the obvious restriction maps satisfies axioms (II-2.4") and (II-2.4"), so
it defines a sheaf on X which we denote by AS. This sheaf should not be
confused with the restriction sheaf Ag, which is a sheaf on S. We easily find

(3.7) (A%, =A, if z€8, (A%),=0 if zeU.

Observe that these relations would completely fail if S were not closed. The
restriction morphism f — f;s induces a surjective sheaf morphism A — AS,
We let Ay be its kernel, so that we have the relations

(3.8) (Ay).=0 if z €S, (Ay).=A, if ze€U.
From the definition, we obtain in particular
(3.9) A%(X)=A(S), Ay(X)= {sections of A(X) vanishing on S}.

Theorem 3.5 applied to the exact sequence 0 - Ay — A — A% = 0on X
gives a long exact sequence

0— Ap(X) — AX) — AS) — HYX, Ay) -

39 ~_, HIY(X,Ay)— HY(X,A)— HI(X,A%)— H(X, Ap)- -

3.C. Mayer-Vietoris Exact Sequence

Let Uy, Uy be open subsets of X and U = Uy UU,, V = U; N Us. For any
sheaf A on X and any g we have an exact sequence

0 — Al©U) — Ald(y) @ AU,) — A(V) — 0

where the injection is given by f +— (fiu,, fiv,) and the surjection by
(91,92) — g21v — g1jv ; the surjectivity of this map follows immediately
from the fact that Al is flabby. An application of the snake lemma yields:

(3.11) Theorem. For any sheaf A on X and any open sets Uy,Us C X, set
U=U,UU,, V=U,NU,. Then there is an eract sequence

HY(U,A) — HY(Uy, A)® HY(Us, A) — HY(V,A) — HITHU,A)---O
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4. Acyclic Sheaves

Given a sheaf A on X, it is usually very important to decide whether the
cohomology groups H?(U, A) vanish for ¢ > 1, and if this is the case, for which
type of open sets U. Note that one cannot expect to have H°(U, A) = 0 in
general, since a sheaf always has local sections.

(4.1) Definition. A sheaf A is said to be acyclic on an open subset U if
HY(U,A)=0 forq>1.

4.A. Case of Flabby Sheaves

We are going to show that flabby sheaves are acyclic. First we need the
following simple result.

(4.2) Proposition. Let A be a sheaf with the following property: for every
section f of A on an open subset U C X and every point x € X, there exists
a neighborhood (2 of x and a section h € A(£2) such that h = f on U N (2.
Then A s flabby.

A consequence of this proposition is that flabbiness is a local property: a
sheaf A is flabby on X if and only if it is flabby on a neighborhood of every
point of X.

Proof. Let f € A(U) be given. Consider the set of pairs (v, V) where v in
B(V) is an extension of f on an open subset V' O U. This set is inductively
ordered, so there exists a maximal extension (v, V) by Zorn’s lemma. The
assumption shows that V must be equal to X. U

(4.3) Proposition. Let 0 — A JyB 5@ —50 be an ezact sequence
of sheaves. If A is flabby, the sequence of groups

0— A(U) L5 BU) L eU) — 0

is exact for every open set U. If A and B are flabby, then C is flabby.

Proof. Let g € C(U) be given. Consider the set E of pairs (v, V) where V is
an open subset of U and v € B(V) is such that p(v) = g on V. It is clear that
E is inductively ordered, so F has a maximal element (v,V’), and we will
prove that V = U. Otherwise, let x € U \ V and let h be a section of B in a
neighborhood of z such that p(h;) = ¢g,. Then p(h) = g on a neighborhood
Q2 of z, thus p(lv —h) =0on VN and v —h = j(u) with u € A(V N N2).
If A is flabby, u has an extension u € A(X) and we can define a section
w € B(V U £2) such that p(w) = g by
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w=wv on V, w=h+j(u) on £,

contradicting the maximality of (v, V). Therefore V.= U, v € B(U) and
p(v) = g on U. The first statement is proved. If B is also flabby, v has an
extension v € B(X) and g = p(v) € C(X) is an extension of g. Hence € is
flabby. O

(4.4) Theorem. A flabby sheaf A is acyclic on all open sets U C X.

Proof. Let 29 = ker (d9 : A4 — Ala+11) Then 2° = A and we have an exact
sequence of sheaves

0 — 29 — Ald L, g9+l g

because Imd? = ker d9t! = 29+, Proposition 4.3 implies by induction on g
that all sheaves 29 are flabby, and yields exact sequences

0 — 29(U) — Al L 291Uy — 0.
For ¢ > 1, we find therefore

ker (dq . A[q](U) N A[q+1](U)) = 29(U)
— Im (dq—l . A[q—l](U) — A[q](U)),

that is, HY(U, A) = H1(Al*)(U)) = 0. O

4.B. Soft Sheaves over Paracompact Spaces

We now discuss another general situation which produces acyclic sheaves.
Recall that a topological space X is said to be paracompact if X is Hausdorff
and if every open covering of X has a locally finite refinement. For instance, it
is well known that every metric space is paracompact. A paracompact space
X is always normal; in particular, for any locally finite open covering (U,) of
X there exists an open covering (V) such that V. C U,. We will also need
another closely related concept.

(4.5) Definition. We say that a subspace S is strongly paracompact in X
if S is Hausdorff and if the following property is satisfied: for every covering
(Uy) of S by open sets in X, there exists another such covering (Vg) and a
neighborhood W of S such that each set W NV is contained in some U,,
and such that every point of S has a neighborhood intersecting only finitely
many sets Vg.

It is clear that a strongly paracompact subspace S is itself paracompact.
Conversely, the following result is easy to check:
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(4.6) Lemma. A subspace S is strongly paracompact in X as soon as one
of the following situations occurs:

a) X is paracompact and S is closed;
b) S has a fundamental family of paracompact neighborhoods in X ;

c) S is paracompact and has a neighborhood homeomorphic to some product
S x T, in which S is embedded as a slice S x {to}. O

(4.7) Theorem. Let A be a sheaf on X and S a strongly paracompact sub-
space of X. Then every section f of A on S can be extended to a section of
A on some open neighborhood (2 of A.

Proof. Let f € A(S). For every point z € S there exists an open neighborhood
U, and a section f, € A(U,) such that f,(z) = f(z). After shrinking U,,
we may assume that f, and f coincide on S N U,. Let (V,) be an open
covering of S that is locally finite near S and W a neighborhood of S such
that W NV4 C Uy (Def. 4.5). We let

(2= {.T eWwn UVa; fz(a)(I) = fz(ﬁ)(-’ﬂ); Ya, 3 with z € Va ﬂVﬂ}.

Then (£2NV,,) is an open covering of {2 and all pairs of sections fz(a) coincide
in pairwise intersections. Thus there exists a section F' of A on {2 which is
equal to f,(q) on £2NV,. It remains only to show that {2 is a neighborhood of
S. Let zg € S. There exists a neighborhood U’ of z; which meets only finitely
many sets Vi, ,..., V. After Nshrinking U’, we may keep only those V,, such
that zg € Val. The sections f,(4,) coincide at zp, so they coincide on some
neighborhood U" of this point. Hence W N U" C 2, so {2 is a neighborhood
of S. O

(4.8) Corollary. If X is paracompact, every section f € A(S) defined on a
closed set S extends to a neighborhood {2 of S. O

(4.9) Definition. A sheaf A on X is said to be soft if every section f of A on
a closed set S can be extended to X, i.e. if the restriction map A(X) — A(S)
1s onto for every closed set S.

(4.10) Example. On a paracompact space, every flabby sheaf A is soft: this
is a consequence of Cor. 4.8.

(4.11) Example. On a paracompact space, the Tietze-Urysohn extension
theorem shows that the sheaf Cx of germs of continuous functions on X is
a soft sheaf of rings. However, observe that Cx is not flabby as soon as X is
not discrete.

(4.12) Example. If X is a paracompact differentiable manifold, the sheaf
Ex of germs of C*° functions on X is a soft sheaf of rings. ([l
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Until the end of this section, we assume that X is a paracompact topolo-
gical space. We first show that softness is a local property.

(4.13) Proposition. A sheaf A is soft on X if and only if it is soft in a
neighborhood of every point r € X.

Proof. If A is soft on X, it is soft on any closed neighborhood of a given
point. Conversely, let (U,)qcr be a locally finite open covering of X which
refine some covering by neighborhoods on which A is soft. Let (V) be a
finer covering such that V, C U,, and f € A(S) be a section of A on a
closed subset S of X. We consider the set E of pairs (g, .J), where J C I and
where g is a section over Fy := S U UQEJVQ, such that ¢ = f on S. As the
family (V) is locally finite, a section of A over F is continuous as soon it
is continuous on S and on each V,. Then (f,0) € E and E is inductively

ordered by the relation
(g",J") — (¢",J") it J'CJ" and ¢'=g¢" on Fy

No element (g,J), J # I, can be maximal: the assumption shows that
917,07V, has an extension to V, thus such a g has an extension to Fjfq}
for any o ¢ J. Hence E has a maximal element (g, I) defined on F; = X. O

(4.14) Proposition. Let 0 - A — B — € — 0 be an eract sequence of
sheaves. If A is soft, the map B(S) — C(S) is onto for any closed subset S
of X. If A and B are soft, then C is soft.

By the above inductive method, this result can be proved in a way similar
to its analogue for flabby sheaves. We therefore obtain:

(4.15) Theorem. On a paracompact space, a soft sheaf is acyclic on all
closed subsets. O

(4.16) Definition. The support of a section f € A(X) is defined by
Supp f = {z € X; f(x) #0}.

Supp f is always a closed set: as A — X is a local homeomorphism, the
equality f(z) = 0 implies f = 0 in a neighborhood of x.

(4.17) Theorem. Let (U, )aer be an open covering of X. If A is soft and
[ € A(X), there exists a partition of f subordinate to (Uy), i.e. a family of
sections fo € A(X) such that (Supp fo) is locally finite, Supp fo C Uy and

Y. fa=f onX.

Proof. Assume first that (Uy) is locally finite. There exists an open covering
(V) such that Vi, C Uy. Let (fa)acs, J C I, be a maximal family of sections
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fo € A(X) such that Supp fo C Uy and ) c;fa = fon S = UaEJ CIf
J # 1 and B € I\ J, there exists a section fz € A(X) such that

fs=0 on X\ Ug and fg:f—Zfa on SUVg
acJ

because (X \Ug)USUVg is closed and f — Y fo = 0 on (X \U,)NS. This
is a contradiction unless J = I.

In general, let (V;) be a locally finite refinement of (U,), such that
Vi C Uy, and let (f}) be a partition of f subordinate to (Vj). Then
fa = Z €p—1(a) f; is the required partition of f. O

Finally, we discuss a special situation which occurs very often in practice.
Let R be a sheaf of commutative rings on X ; the rings R, are supposed to
have a unit element. Assume that A is a sheaf of modules over R. It is clear
that A% is a R%-module, and thus also a R-module. Therefore all sheaves
Aldl are R-modules and the cohomology groups H9(U, A) have a natural
structure of R(U)-module.

(4.18) Lemma. If R is soft, every sheaf A of R-modules is soft.

Proof. Every section f € A(S) defined on a closed set S has an extension
to some open neighborhood (2. Let 1) € R(X) be such that ¢» =1 on S and
¥ = 0 on X ~\ (2. Then ¢ f, defined as 0 on X \ {2, is an extension of f
to X. OJ

(4.19) Corollary. Let A be a sheaf of € x-modules on a paracompact differ-
entiable manifold X. Then H1(X,A) =0 for all ¢ > 1.

5. Cech Cohomology

5.A. Definitions

In many important circumstances, cohomology groups with values in a sheaf
A can be computed by means of the complex of Cech cochains, which is
directly related to the spaces of sections of A on sufficiently fine coverings of
X. This more concrete approach was historically the first one used to define
sheaf cohomology (Leray 1950, Cartan 1950); however Cech cohomology does
not always coincide with the “good” cohomology on non paracompact spaces.
Let U = (Uy)aecr be an open covering of X. For the sake of simplicity, we
denote

Uaoal...aq - Uao N Ua1 N...N an

The group C4(U, A) of Cech q-cochains is the set of families
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C= (Caoal...aq) S H -A(Uaoal...aq)-

(ao,...,aq)ET1T1

The group structure on C4(U, A) is the obvious one deduced from the addition
law on sections of A. The Cech differential 67 : C1(U, A) — CITL(U,A) is
defined by the formula

(5.1) (09C)ap...agss = Z (—1)3%0...0@...%“ Wag. .y

)
+1
0<5<q+1

and we set C?7(U, A) = 0, 69 = 0 for ¢ < 0. In degrees 0 and 1, we get for
example

(5.2) ¢=0, c=/(ca), (500)aﬁ =Cg — Ca [Uaps
(5.2") q=1, c=(cap); (0'Capy = Cay — Cay + Cap [Uns, -

Easy verifications left to the reader show that §9+* 049 = 0. We get therefore
a cochain complex (C" u, A, 6), called the complex of Cech cochains relative
to the covering U.

(5.3) Definition. The Cech cohomology group of A relative to U is

HY(U, A) = HI(C*(U, A)).

Formula (5.2) shows that the set of Cech 0-cocycles is the set of families
(ca) € [IA(Uy) such that cg = cq on Uy N Ug. Such a family defines in a
unique way a global section f € A(X) with f;y, = c,. Hence

(5.4) H°(U,A) = A(X).

Now, let V = (Vj)ges be another open covering of X that is finer than U ;
this means that there exists a map p: J — I such that Vg C U,(g) for every
g € J. Then we can define a morphism p® : C*(U, A) — C*(V, A) by

(5.5)  (p7C)By...8, = Cp(Bo)...0(Ba) Vg0,

the commutation property dp® = p®¢ is immediate. If p’ : J — I is another
refinement map such that Vg C U, (g for all 3, the morphisms p®, p’® are
homotopic. To see this, we define a map h? : C1(U, A) — C1=Y(V, A) by

(W90 g s = D (1Y Co(0).p(8)0(B).? (Bar) Vg5, 1
0<j<qg-1

The homotopy identity d9=1 o h? 4+ hitl 0§ = p'? — p9 is easy to verify. Hence
p® and p'® induce a map depending only on U, V :

(5.6) HY(p*) = HI(p'"*) : HUU,A) — HIV, A).
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Now, we want to define a direct limit H1(X,A) of the groups H(U,A)
by means of the refinement mappings (5.6). In order to avoid set theoretic
difficulties, the coverings used in this definition will be considered as subsets
of the power set P(X), so that the collection of all coverings becomes actually
a set.

(5.7) Definition. The Cech cohomology group HI(X,A) is the direct limit

HY(X,A) = 1%} HY(U,A)

when W runs over the collection of all open coverings of X. Fxplicitly, this
means that the elements of H1(X, A) are the equivalence classes in the dis-
joint union of the groups H1(U, A), with an element in H1(U, A) and another
in H1(V, A) identified if their images in HI(W, A) coincide for some refine-
ment W of the coverings U and V.

If o : A — B is a sheaf morphism, we have an obvious induced morphism
e*: C*(U,A) — C*(U, B), and therefore we find a morphism

H(¢®) : HY(U,A) — HY(U, B).

Let 0 > A — B — € — 0 be an exact sequence of sheaves. We have an exact
sequence of groups

(5.8) 0 — CUU,A) — CIU,B) —s CI(U, €),

but in general the last map is not surjective, because every section in
C(Uay,...,a,) need not have a lifting in B(Uq,,...,a, ). The image of C'*(U, B) in
C*(U, €) will be denoted C (U, C) and called the complex of liftable cochains
of € in B. By construction, the sequence

(56.9) 0 — CYU,A) — CY(U,B) — CL(U,C) — 0

is exact, thus we get a corresponding long exact sequence of cohomology
(5.10) HY(U,A) — HY(U,B) — HL(U,C) — HITH(U,A) — ---.

If A is flabby, Prop. 4.3 shows that we have Ci(U,€) = C1(U,C), hence
Hi(U, €)= HYU,¢e).

(5.11) Proposition. Let A be a sheaf on X. Assume that either
a) A is flabby, or :

b) X is paracompact and A is a sheaf of modules over a soft sheaf of rings

R on X.

Then HI(U, A) = 0 for every ¢ > 1 and every open covering U = (Uy)aer
of X.
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Proof. b) Let (1)4)acr be a partition of unity in R subordinate to U (Prop.
4.17). We define a map h?: C4(U, A) — C1 (U, A) by

(5'12) (h’q Qp...0g—1 Z/l/)l/ CVOLO Qg —1
vel
where ¥y, cpay...a,_, 18 extended by 0 on Uy, .a,_, N CU,. Tt is clear that
(5q_1hq ao th Z/l/)l/ Cao Qg (6qc)lja0...0¢q)7
vel
i.e. 097 1he 4+ h9t1§9 = Id. Hence §%¢ = 0 implies d9 1 hic = c if ¢ > 1.

a) First we show that the result is true for the sheaf A°l. One can find a family
of sets L,, C U, such that (L,) is a partition of X. If ¢, is the characteristic
function of L,, Formula (5.12) makes sense for any cochain ¢ € C4(U,.Al")
because A" is a module over the ring Z[® of germs of arbitrary functions
X — 7. Hence H9(U, A°l) = 0 for ¢ > 1. We shall prove this property for all
flabby sheaves by induction on ¢q. Consider the exact sequence

0—A—Al e —o

where € = A% /A. By the remark after (5.10), we have exact sequences
APN(X) — e(X) — HY(U,A) — HY(U, AP =
HY(U, C) — HT (U, A) — HITH(U, AP = 0.

Then A)(X) — C(X) is surjective by Prop. 4.3, thus H'(U,A) = 0. By
4.3 again, € is flabby; the induction hypothesis H9(U,€) = 0 implies that
HI (U, A) = 0. O

5.B. Leray’s Theorem for Acyclic Coverings

We first show the existence of a natural morphism from Cech cohomology
to ordinary cohomology. Let U = (Uy)aer be a covering of X. Select a map
A : X — I'such that x € Uy(,) for every x € X. To every cochain ¢ € C?(U, A)

we associate the section M\ = f € Al(X) such that

(5.13)  f(®0s-++»%q) = Cr(z0).. A(xy) (Tq) € Az, ;

note that the right hand side is well defined as soon as
ro € X, 21 € Uxo)s -+ Tq € Uxwo).. A(wq 1)

A comparison of (2.5) and (5.13) immediately shows that the section of
Alet1](X) associated to §9¢ is

> (-1 cx(m)m@)mk(%l)(%H) = (dUf)(zo, ..., Tqy1)-
0<j<q+1
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In this way we get a morphism of complexes A* : C*(U,A) — AlI(X).
There is a corresponding morphism

(5.14) HI()\®*): HY(U,A) — HY(X,A).

If V = (Vg)ges is a refinement of U such that Vg C U,y and = € V(4 for
all z, 3, we get a commutative diagram

o, .a) 0 gy, )

HI(®) N\ v HI(u®)
HY(X,A)

with A = p o p. In particular, (5.6) shows that the map H?(\®) in (5.14)
does not depend on the choice of A : if X is another choice, then H7(\*)
and H9(X\'*) can be both factorized through the group H4(V,A) with V, =
Ux(z) NUx/(z) and p = Idx. By the universal property of direct limits, we get
an induced morphism

(5.15) HY(X,A) — HY(X,A).

Let 0 > A - B — € — 0 be an exact sequence of sheaves. There is a
commutative diagram
0— C*(U,A)— C*(U,B)— CH(U,C)— 0

| | l

0— AlN(X) — BlEI(X) — cell(X) —0

where the vertical arrows are given by the morphisms A®*. We obtain therefore
a commutative diagram

HY(U,A) — HI(U, B) — HL (U, C)— HIT(U,A) — HT(U,B)
(10 Hq()%, A)— Hq()l(,B)—> HY(X,C)— HTY(X,A)— HI™(X,B).
(5.17) Theorem (Leray). Assume that

H°Uyy...a0yA) =0

for all indices «g,...,ap and s > 1. Then (5.14) gives an isomorphism

HY(U,A) ~ HI(X,A).

We say that the covering U is acyclic (with respect to A) if the hypothesis
of Th. 5.17 is satisfied. Leray’s theorem asserts that the cohomology groups
of A on X can be computed by means of an arbitrary acyclic covering (if
such a covering exists), without using the direct limit procedure.

Proof. By induction on ¢, the result being obvious for ¢ = 0. Consider the
exact sequence 0 — A — B — € — 0 with B = Al and € = ALl/A. As B
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is acyclic, the hypothesis on A and the long exact sequence of cohomology
imply H*(Uq,...a,,€) = 0 for s > 1, t > 0. Moreover C%(U,€) = C*(U, C)
thanks to Cor. 3.6. The induction hypothesis in degree ¢ and diagram (5.16)
give

HY(U,B)— HY(U,C) — HI* (U, A)— 0

HY(X,B)— HY(X,C)— HI (X, A)— 0,
hence HI1 (U, A) — HIt1(X, A) is also an isomorphism. O

(5.18) Remark. The morphism H*(\*) : H' (U, A) — H (X, A) is always
injective. Indeed, we have a commutative diagram

H°(U, B) — HY (U, C)— H (U, A)— 0
H°(X,B)— H°(X,C)— HY(X,A)— 0,

where H% (U, @) is the subspace of €(X) = H°(X,€) consisting of sections
which can be lifted in B over each U,. As a consequence, the refinement
mappings

H(p*) : H* (U, A) — H'(V,A)

are also injective. ([l

5.C. Cech Cohomology on Paracompact Spaces

We will prove here that Cech cohomology theory coincides with the ordinary
one on paracompact spaces.

(5.19) Proposition. Assume that X is paracompact. If
0 —A—B—C—0
is an exact sequence of sheaves, there is an exact sequence
HY(X,A) — HYX,B) — HY(X,C) — HIY(X, A) — --.
which is the direct limit of the exact sequences (5.10) over all coverings U.
Proof. We have to show that the natural map
lim HL(U,C) — limy HY(U,C)

is an isomorphism. This follows easily from the following lemma, which says
essentially that every cochain in € becomes liftable in B after a refinement
of the covering.
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(5.20) Lifting lemma. Let U = (Uy)aer be an open covering of X and
ce C1U,QC). If X is paracompact, there exists a finer covering V = (Vg)pes
and a refinement map p : J — I such that plc € CL(V,C).

Proof. Since U admits a locally finite refinement, we may assume that U itself
is locally finite. There exists an open covering W = (W, )qer of X such that
W C U,. For every point z € X, we can select an open neighborhood V,, of
x with the following properties:

a) if x € Wy, then V, C W, ;
b) if z € U, or if V, N W, # 0, then V, C U, ;
c) if x € Uyg...ap» then cqy..a, € C1(Uq...a> C) admits a lifting in B(V;).

Indeed, a) (resp. ¢)) can be achieved because x belongs to only finitely many
sets W, (resp. U, ), and so only finitely many sections of € have to be lifted
in B. b) can be achieved because x has a neighborhood V; that meets only
finitely many sets U, ; then we take

Vo cVin () Uan () (Vi Wa).
Usdz Uy Zx

Choose p : X — I such that x € W, for every x. Then a) implies V; C
W), 80 V = (Vz)zex is finer than U, and p defines a refinement map. If

Vio..w, 7 0, we have
Vo " Wp(a) D Vg N Vi, #0 for 0<j<gq,

thus Viy C Upao)...p(x,) DY b). Now, c) implies that the section c,(zy)...0(z,)
admits a lifting in B(Vy,), and in particular in B(V;,..z,). Therefore pc is
liftable in B. O

(§.21) Theorem. If X is a paracompact space, the canonical morphism
HY(X,A)~ H1(X,A) is an isomorphism.

Proof. Argue by induction on ¢ as in Leray’s theorem, with the Cech coho-
mology exact sequence over U replaced by its direct limit in (5.16). 0

In the next chapters, we will be concerned only by paracompact spaces,
and most often in fact by manifolds that are either compact or countable at
infinity. In these cases, we will not distinguish H7(X, A) and H?(X, A).

5.D. Alternate Cech Cochains

For explicit calculations, it is sometimes useful to consider a slightly modified
Cech complex which has the advantage of producing much smaller cochain
groups. If A is a sheaf and U = (U,)aer an open covering of X, we let
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AC1(U, A) C CU(U, A) be the subgroup of alternate Cech cochains, consisting
of Cech cochains ¢ = (cqq...a,) such that

Can o =0 if aj =a;, ©#7,

(5.22) 0---Qg 7 % ]
Caa(o)...aa(q> - 6(0) Cag...aq,

for any permutation ¢ of {1,...,q} of signature (). Then the Cech dif-

ferential (5.1) of an alternate cochain is still alternate, so AC*(U,A) is a

subcomplex of C*(U, A). We are going to show that the inclusion induces an
isomorphism in cohomology:

(5.23) HY(AC*(U,A)) ~ H1(C*(U,A)) = HI(U, A).
Select a total ordering on the index set I. For each such ordering, we can
define a projection 7?: C1(U,A) — ACI(U, A) C C1(U, A) by

¢ — alternate ¢ such that cqy.. .0, = Cap...c, Whenever ag <... < ay.

As 7*® is a morphism of complexes, it is enough to verify that 7*® is homotopic
to the identity on C*(U, A). For a given multi-index o = (ap, . . ., ), which
may contain repeated indices, there is a unique permutation (m(O), e, m(q))
of (0,...,q) such that

Um) <o S g and m(l) <m(l+1) whenever au,q) = Qmt1)-

For p < q, we let e(a, p) be the sign of the permutation

—

0,...,q) — (m(0),...,m(p—1),0,1,...,m(0),....m(p—1),...,q)

if the elements cuy (o), . - ., Qm(p) are all distinct, and e(a,p) = 0 otherwise.
Finally, we set h? = 0 for ¢ < 0 and

(hqc)ao...aq,l = Z (—l)ps(a,p) C — —

Am(0) - Cm(p) ¥0AL--- Ay (0)--Em(p—1)---Q&g—1
0<p<qg-1

for ¢ > 1 ; observe that the index a,,(,) is repeated twice in the right hand
side. A rather tedious calculation left to the reader shows that

(5q—1hqc + hq+16qc)a0...aq — Cao...aq - 5(“7 Q) Cam(o)...am(q) - (C - ch)ao...aq-
An interesting consequence of the isomorphism (5.23) is the following:
(5.24) Proposition. Let A be a sheaf on a paracompact space X. If X has
arbitrarily fine open coverings or at least one acyclic open covering U = (Uy,)

such that more than n+1 distinct sets Uy, ..., U,, have empty intersection,
then H1(X,A) =0 for ¢ > n.

Proof. In fact, we have AC?(U,A) = 0 for ¢ > n. O
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6. The De Rham-Weil Isomorphism Theorem

In § 3 we defined cohomology groups by means of the simplicial flabby reso-
lution. We show here that any resolution by acyclic sheaves could have been
used instead. Let (L£°,d) be a resolution of a sheaf A. We assume in addition
that all L9 are acyclic on X, i.e. H*(X,L%) =0 for all ¢ > 0 and s > 1. Set
29 = ker d4. Then Z° = A and for every g > 1 we get a short exact sequence

020t gt ¥ g0 g,
Theorem 3.5 yields an exact sequence

(6.1) H5(X, £ Y g (x, 205 o (X, 297 Y S HP L (X, £97 1) =0,
If s > 1, the first group is also zero and we get an isomorphism

0%9: H%(X,29) = H*T1(X,2971).

For s = 0 we have H°(X,L97!) = L971(X) and H°(X,2%) = 29(X) is the
g-cocycle group of £°(X), so the connecting map 9%¢ gives an isomorphism
90

H(L*(X)) = 29(X)/d= 097 (@) &5 HY(X, 297Y).

The composite map 09 1lo--.00197 109" therefore defines an isomorphism

(6.2) a9 (X)) T HY (X, 2 )2 O (X, 20 =HY(X, A).

This isomorphism behaves functorially with respect to morphisms of reso-
lutions. Our assertion means that for every sheaf morphism ¢ : A — B
and every morphism of resolutions ¢® : L®* — M?®, there is a commutative
diagram

HS(L°(X)) — H3(X, A)
(6.3) LH?*(#*) LH? ()

HS(M'(X)) — H*(X,B).

If W? = ker (dq : M? — Mq+1), the functoriality comes from the fact that
we have commutative diagrams
05201 5pa-l 529 0, HY(X,29) L5 Hsti(x, 29
Lot L™t [t LH* (%) [HHH ()
0 Wit ML W -0, HY(X, W) L5 He+i(x, wal),

(6.4) De Rham-Weil isomorphism theorem. If (L®,d) is a resolution of
A by sheaves L1 which are acyclic on X, there is a functorial isomorphism

HI(L*(X)) — HY(X,A). 0
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(6.5) Example: De Rham cohomology. Let X be a n-dimensional para-
compact differential manifold. Consider the resolution

0-R—& Hel .o yer begatl . ,en 4y

given by the exterior derivative d acting on germs of C*° differential g-forms
(c.f. Example 2.2). The De Rham cohomology groups of X are precisely

(6.6) Hpp(X,R) = HI(E*(X)).

All sheaves €7 are €x-modules, so €7 is acyclic by Cor. 4.19. Therefore, we
get an isomorphism

(6.7) HEg(X,R) = HY(X,R)

from the De Rham cohomology onto the cohomology with values in the con-
stant sheaf R. Instead of using C'*° differential forms, one can consider the
resolution of R given by the exterior derivative d acting on currents:

0—>]R—>2);7,i>2);1_1—>---—>1)’ i>2);1_q_1—>---%2)g—>0.

n—q

The sheaves Dy are also €x-modules, hence acyclic. Thanks to (6.3), the

inclusion €4 C D;,_ induces an isomorphism

(6.8) HY(E*(X)) ~ HY(D),_(X)),

both groups being isomorphic to H?(X,R). The isomorphism between co-
homology of differential forms and singular cohomology (another topological
invariant) was first established by (De Rham 1931). The above proof follows
essentially the method given by (Weil 1952), in a more abstract setting. As
we will see, the isomorphism (6.7) can be put under a very explicit form in
terms of Cech cohomology. We need a simple lemma.

(6.9) Lemma. Let X be a paracompact differentiable manifold. There are
arbitrarily fine open coverings U = (Uy) such that all intersections Uy, ...q,
are diffeomorphic to conver sets.

Proof. Select locally finite coverings Q; CC §2; of X by open sets diffeomor-
phic to concentric euclidean balls in R™. Let us denote by 7 the transition
diffeomorphism from the coordinates in {2, to those in (2;. For any point
a € §2}, the function = — |z —a|? computed in terms of the coordinates of (2;
becomes |7jx(z) —Tjx(a)|? on any patch 25 3 a. It is clear that these functions
are strictly convex at a, thus there is a euclidean ball B(a,e) C {2} such that
all functions are strictly convex on B(a,e)N{2;, C {2 (only a finite number of
indices k is involved). Now, choose U to be a (locally finite) covering of X by
such balls U, = B(aq,&q) with U, C 'Q;/)(a)' Then the intersection Uy, ...q, 18
defined in 2, k = p(«p), by the equations
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7k (2) = Tjk(aa, )| < €5,

where j = p(ap), 0 < m < ¢. Hence the intersection is convex in the open
coordinate chart £2,(4)- O
Let {2 be an open subset of R" which is starshaped with respect to the
origin. Then the De Rham complex R — £°(£2) is acyclic: indeed, Poincaré’s
lemma yields a homotopy operator k9 : £9(£2) — €9-1(£2) such that

1
kt]fx(flv .. '76(1—1) :/ tq_l ftx(xaélv .. '7§q—1) dta T e 'Qv 6] € Rna
0
KOf = f(0) eR for fe&).

Hence H{(2,R) = 0 for ¢ > 1. Now, consider the resolution €° of the
constant sheaf R on X, and apply the proof of the De Rham-Weil isomor-
phism theorem to Cech cohomology groups over a covering U chosen as in
Lemma 6.9. Since the intersections Uy, o, are convex, all Cech cochains in
C*(U, 22) are liftable in €77! by means of k%. Hence for all s = 1,...,q we
have isomorphisms 9%9~° : H*(U, 297%) — H*+t1 (U, 297°~1) for s > 1 and
we get a resulting isomorphism

8q_1,1o.081’q_1050’q . H]%R(X7 R) i)ﬁq(u7R)

We are going to compute the connecting homomorphisms 0%97° and their
inverses explicitly.

Let ¢ in C*(U,Z297%) such that §°c = 0. AS cq,...«, is d-closed, we can
write ¢ = d(k?"%c) where the cochain k9=°c € C*(U, E97°"1) is defined as
the family of sections k9 %cqy. .0, € €175 HUyy...a,)- Then d(5°k7%¢) =
0%(dk9=%c) = 6°c = 0 and

917 (e} = (5K e} € HP P (U, 297071,

The isomorphism H{g (X, R) = HI(U,R) is thus defined as follows: to the
cohomology class {f} of a closed ¢g-form f € £9(X), we associate the cocycle
(%) = (fiv,) € C°(U, 27), then the cocycle

cop = kicy — ke, € CH(U, 2971),

and by induction cocycles (c2 ) € C%(U, Z297%) given by

@p...Qg

(6.10) ¢St = > (-1 ETC on Uy,

Qo-. Q541 Qo...Q .. .51 Qs 1t
0<j<s+1
The image of {f} in HI(U,R) is the class of the g-cocycle (cdy...ay) 1D
C1(U,R).
Conversely, let (1,) be a C°° partition of unity subordinate to U.
Any Cech cocycle ¢ € C*t1(U,2975~1) can be written ¢ = §°y with
v € C*(U, E27571) given by
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Yag...as = E wucuao...asa

vel

(c.f. Prop. 5.11 b)), thus {¢'} = (8%77*)~'{c} can be represented by the
cochain ¢/ = dy € C*(U, Z97%) such that

Croors = Dy A Coag.an = (1T " Cpag.an Adihy.
vel vel

For a reason that will become apparent later, we shall in fact modify the sign
of our isomorphism 9%97% by the factor (_1)(1_5_1' Starting from a class
{c} € H1(U,R), we obtain inductively {b} € H°(U, Z?) such that

(6.11) bag = D> Cupowyrao @y Aeo o Aty o Uy,
Vg,.. 3 Vg—1

corresponding to {f} € H{(X,R) given by the explicit formula

(6.12) f = thy,by, = Cutg..rg Yrrg@Wvy A - Adthy, .

Vo, wWq

The choice of sign corresponds to (6.2) multiplied by (—1)9@=1)/2,

(6.13) Example: Dolbeault cohomology groups. Let X be a C-analytic
manifold of dimension n, and let €P>? be the sheaf of germs of C°° differen-
tial forms of type (p,q) with complex values. For every p = 0,1,...,n, the
Dolbeault-Grothendieck Lemma I-2.9 shows that (€7>*,d") is a resolution of
the sheaf 2% of germs of holomorphic forms of degree p on X. The Dolbeault
cohomology groups of X already considered in chapter 1 can be defined by

(6.14) HP(X,C) = HI(EM*(X)).

The sheaves EP'9 are acyclic, so we get the Dolbeault isomorphism theorem,
originally proved in (Dolbeault 1953), which relates d’-cohomology and sheaf
cohomology:

(6.15) HPY(X,C) — HY(X,2%).
The case p = 0 is especially interesting:
(6.16) H"(X,C) ~ HY(X,0x).

As in the case of De Rham cohomology, there is an inclusion €77 C D/

n—p,n—q
and the complex of currents (D;,_,, ,_,,d") defines also a resolution of £2%.
Hence there is an isomorphism:

(6.17) HPY(X,C) = HI(EM*(X)) ~ HI(D;,_,, n_o(X)).
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7. Cohomology with Supports

As its name indicates, cohomology with supports deals with sections of
sheaves having supports in prescribed closed sets. We first introduce what
is an admissible family of supports.

(7.1) Definition. A family of supports on a topological space X is a collec-
tion @ of closed subsets of X with the following two properties:

a) If F, F' € @, then FUF' € &

b) If F € ® and F' C F is closed, then F' € &.

(7.2) Example. Let S be an arbitrary subset of X. Then the family of all
closed subsets of X contained in S is a family of supports.

(7.3) Example. The collection of all compact (non necessarily Hausdorff)
subsets of X is a family of supports, which will be denoted simply ¢ in the
sequel. O

(7.4) Definition. For any sheaf A and any family of supports ® on X,
As(X) will denote the set of all sections f € A(X) such that Supp f € ®.

It is clear that Ag(X) is a subgroup of A(X). We can now introduce
cohomology groups with arbitrary supports.

(7.5) Definition. The cohomology groups of A with supports in @ are
H(X,A) = HI(AS(X)).

The cohomology groups with compact supports will be denoted HY(X,A) and
the cohomology groups with supports in a subset S will be denoted H (X, A).

In particular H3(X,A) = Ag(X). If 0 - A — B — € — 0 is an exact
sequence, there are corresponding exact sequences

0 — Ax) — BdXx)— eldix)—

(7.6) HEY(X, A)— HL(X,B)—» HY(X, €)— HE™ (X, A) —

When A is flabby, there is an exact sequence
(7.7) 0 — Ap(X) — Bg(X) — Cp(X) — 0

and every g € Cs(X) can be lifted to v € Bg(X) without enlarging the
support: apply the proof of Prop. 4.3 to a maximal lifting which extends
w =0 on W = [(Supp g). It follows that a flabby sheaf A is P-acyclic, i.e.
HI(X,A) =0 for all ¢ > 1. Similarly, assume that X is paracompact and
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that A is soft, and suppose that @ has the following additional property:
every set F' € @ has a neighborhood G € @. An adaptation of the proofs of
Prop. 4.3 and 4.13 shows that (7.7) is again exact. Therefore every soft sheaf
is also @-acyclic in that case.

As a consequence of (7.6), any resolution L® of A by ®P-acyclic sheaves
provides a canonical De Rham-Weil isomorphism

(7.8) HI(Ly(X)) — HE(X,A).

(7.9) Example: De Rham cohomology with compact support. In the
special case of the De Rham resolution R — £°® on a paracompact manifold,
we get an isomorphism

(7.10) H]q)R,c(X?R) = Hq((Q.(X)) = H!(X,R),

where DI(X) is the space of smooth differential g-forms with compact support
in X. These groups are called the De Rham cohomology groups of X with
compact support. When X is oriented, dim X = n, we can also consider the
complex of compactly supported currents:

0— & (X) Lel (X)) —--— & _(X) Lel (X) —> -+

n—1 n—g—1

Note that D*(X) and &/ _,(X) are respectively the subgroups of compactly
supported sections in €® and D’ both of which are acyclic resolutions of R.

Therefore the inclusion D*(X) céel (X) induces an isomorphism

(7.11) HY(D*(X)) = H(€),_,(X)),
both groups being isomorphic to H(X, R). O
Now, we concentrate our attention on cohomology groups with compact

support. We assume until the end of this section that X is a locally compact
space.

(7.12) Proposition. There is an isomorphism

HI(X,A)= lim HYU,Ay)
vccx

where Ay is the sheaf of sections of A vanishing on X \U (c.f. §3).

Proof. By definition

HI(X,A) = HI(AP(X)) = lim  H((A)o (D))
vccX

since sections of (Al*])¢;(U) can be extended by 0 on X \ U. However, (_AM)U
is a resolution of Ay and (Al)y is a Zl9-module, so it is acyclic on U. The
De Rham-Weil isomorphism theorem implies
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H((A®)y(U)) = H'(U, Av)

and the proposition follows. The reader should take care of the fact that
(Ald)y does not coincide in general with (Agy)ll. O

The cohomology groups with compact support can also be defined by
means of Cech cohomology.

(7.13) Definition. Assume that X is a separable locally compact space. If
U = (Uy) is a locally finite covering of X by relatively compact open subsets,
we let CI(U, A) be the subgroups of cochains such that only finitely many
coefficients cqy..a, are non zero. The Cech cohomology groups with compact
support are defined by

(U, A) = HI(C2 (U, A))
HA(X, A) = lim H1(C2(U,A))
u

For such coverings U, Formula (5.13) yields canonical morphisms
(7.14) HI()\®) : HY(U,A) — HI(X,A).

Now, the lifting Lemma 5.20 is valid for cochains with compact supports, and
the same proof as the one given in §5 gives an isomorphism

(7.15) HI(X,A) ~ HI(X,A).

8. Cup Product

Let R be a sheaf of commutative rings and A, B sheaves of R-modules on a
space X. We denote by A ®x B the sheaf on X defined by

(8.1) (A®x B), = A ®x, By,

with the weakest topology such that the range of any section given by
AU) @xwy B(U) is open in A ®@x B for any open set U C X. Given f € Al
and g € B the cup product f < g € (A ®@x B)[fﬂ] is defined by

(82) [ g(@o,. s Tptq) = [(Tos- - 3p)(Tprq) ® (Tps - s Tpig)-

A simple computation shows that

(8:3) dPHI(f — g)=(d'f)~ g+ (~1)F f — (d%).

In particular, f « g is a cocycle if f, g are cocycles, and we have
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(f+d" T ) (g+d ™) =f o g+d™ (v g+ (1) f < g'+ [~ dyg').
Consequently, there is a well defined R(X)-bilinear morphism
(8.4) HP(X,A)x HY(X,B) — HPT1(X, A ®x B)

which maps a pair ({f},{g}) to {f « ¢}
Let 0 — B — B’ — B” — 0 be an exact sequence of sheaves. Assume

that the sequence obtained after taking the tensor product by A is also exact:
0— AR B — ARx B — Az B" — 0.

Then we obtain connecting homomorphisms
0?7 . HYX,B") — HIT'(X,B),
07 : HYX,A®x B") — H (X, A®x B).

For every a € HP(X,A), " € H1(X,B") we have

(8.5)  FTa— ") = (—1)f o~ (978"),

(8.5") TP < a) = (016") v «a,

where the second line corresponds to the tensor product of the exact sequence
by A on the right side. These formulas are deduced from (8.3) applied to a
representant f € API(X) of o and to a lifting g’ € B'19(X) of a representative
g" of " (note that dP f = 0).

(8.6) Associativity and anticommutativity. Let i : AQxB — BRxA be
the canonical isomorphism s®t — t®s. For allo € HP (X, A), B € H1(X,B)
we have

B~ a= (=i~ ).
If € is another sheaf of R-modules and v € H" (X, €), then

Proof. The associativity property is easily seen to hold already for all cochains
(feg)vh=f<(g—h), fecAl geBld peell

The commutation property is obvious for p = ¢ = 0, and can be proved in
general by induction on p+ ¢. Assume for example ¢ > 1. Consider the exact
sequence

0—B—B —B"—0

where B’ = Bl and B” = BIO/B. This exact sequence splits on each stalk
(but not globally, nor even locally): a left inverse BT 5 B, of the inclusion
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is given by g — g¢(x). Hence the sequence remains exact after taking the
tensor product with A. Now, as B’ is acyclic, the connecting homomorphism
HYX,B") — HI(X,B) is onto, so there is 3’ € HI~}(X,B") such that
B =09"13". Using (8.5"), (8.5) and the induction hypothesis, we find
Bea= 3p+q—1( ") = 3p+q—1((_1)p(q—1) i~ 3//))
= ()P o B = (P i e ). O

Theorem 8.6 shows in particular that H®(X,R) is a graded associative
and supercommutative algebra, i.e. § « a = (=1)P7«a « (3 for all classes
a€ HP(X,R), f € HI(X,R). If A is a R-module, then H*(X, A) is a graded
H*(X,R)-module.

(8.7) Remark. The cup product can also be defined for Cech cochains. Given
c € C?(U,A) and ¢ € C?(U,B), the cochain ¢ « ¢ € CPTI(U, A ®@x B) is
defined by

(C ~ c/)ao...ap+q — Cao...ap ® c’“p---ap+q on Uao...ap+q-
Straightforward calculations show that

PTi(c— ) = (6Pc) « ¢ + (=1)P ¢~ (§9¢)
and that there is a commutative diagram

HP (U, A)xHI(U, B) — HPH(U, AR5 B)

H?(X, A)xH1(X,B)— HP (X, A ®x B),

where the vertical arrows are the canonical morphisms H*(A®) of (5.14). Note
that the commutativity already holds in fact on cochains.

(8.8) Remark. Let ¢ and ¥ be families of supports on X. Then NV is
again a family of supports, and Formula (8.2) defines a bilinear map

(8.9) HH(X,A) x HL(X,B) — HLAL(X, A@x B)

on cohomology groups with supports. This follows immediately from the fact
that Supp(f -« ¢) C Supp f N Supp g.

(8.10) Remark. Assume that X is a differentiable manifold. Then the co-
homology complex HP, (X, R) has a natural structure of supercommutative
algebra given by the wedge product of differential forms. We shall prove the
following compatibility statement:

Let H1(X,R) — HPRr(X,R) be the De Rham-Weil isomorphism given by

Formula (6.12). Then the cup product ¢ — ¢ is mapped on the wedge product
f"N f" of the corresponding De Rham cohomology classes.
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By remark 8.7, we may suppose that ¢, ¢’ are Cech cohomology classes of
respective degrees p,q. Formulas (6.11) and (6.12) give

fFUV = Z c:/o...l/pfll/p dwvo /\ et /\ dwljp_17

= A A, A Ay,

Vp,y.oyVp+tq

We get therefore

! 124 / /!
PN = Y e Cuea by A Ay,

Vg,.--sVptgq

which is precisely the image of ¢ « ¢’ in the De Rham cohomology. 0

9. Inverse Images and Cartesian Products

9.A. Inverse Image of a Sheaf

Let FF: X — Y be a continuous map between topological spaces X,Y, and
let 7 : A — Y be a sheaf of abelian groups. Recall that inverse image F~1A
is defined as the sheaf-space

FT'A=Axy X ={(s,z); n(s) = F(z)}
with projection 7’ = pry : F~1A — X. The stalks of F~1A are given by
(9.1) (F7'A)s = Ap(a),

and the sections ¢ € F7LA(U) can be considered as continuous mappings
0 :U — A such that m o 0 = F. In particular, any section s € A(U) has a
pull-back

(9.2) F*s=soF e F'A(F~(U)).
For any v € AW, we define F*v € (F~1A)4 by
(9.3) F*v(xo,...,xq) = v(F(x0),...,F(zq) € (F'A)z, = Ap(s,)

for xy € V(z), 21 € V(xo),...,24 € V(xo,...,24-1). We get in this way
a morphism of complexes F™* : Al*l(Y) — (F~LA)[(X). On cohomology
groups, we thus have an induced morphism

(9.4) F* : HYY,A) — HYX,F'A).

Let 0 = A — B — € — 0 be an exact sequence of sheaves on X. Thanks to
property (9.1), there is an exact sequence
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0— F'A—F'B—F'Cc—o0.

It is clear on the definitions that the morphism F™* in (9.4) commutes with the
associated cohomology exact sequences. Also, F'* preserves the cup product,
ie. F*(a ~ 3) = F*a — F*[3 whenever «, 3 are cohomology classes with
values in sheaves A, B on X. Furthermore, if G : Y — Z is a continuous
map, we have

(9.5) (GoF)*=F*oG*

(9.6) Remark. Similar definitions can be given for Cech cohomology. If
U = (Uy)aer is an open covering of Y, then F~1U = (F‘l(Ua))aeI is an
open covering of X. For ¢ € C1(U, A), we set

(F*C)a...ay = Cap...an © F € CUF U, FTA).

This definition is obviously compatible with the morphism from Cech coho-
mology to ordinary cohomology.

(9.7) Remark. Let @ be a family of supports on Y. We define F~'¥ to be
the family of closed sets K C X such that F/(K) is contained in some set
L € ¥. Then (9.4) can be generalized in the form

(9.8) F* : HL(Y,A) — H}L ,,(X,F7'A).

(9.9) Remark. Assume that X and Y are paracompact differentiable man-
ifolds and that F' : X — Y is a C*™ map. If (1) )aecrs is a partition of unity
subordinate to U, then (¢, o F)4er is a partition of unity on X subordinate

to F~'U. Let ¢ € C?(U,R). The differential form associated to F*c in the
De Rham cohomology is

9= o, Wu, 0 F)d(Whyy 0 F) A ... Nd(thy,_, o F)

VQ,...,Vq

= F (Y oy Yoy By A A, ).

Hence we have a commutative diagram

HEL(Y,R) —HYY,R) —HY,R)
L™ L™ L

HiR (X, R) —>H(X,R) —HI(X,R).
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9.B. Cohomology Groups of a Subspace

Let A be a sheaf on a topological space X, let S be a subspace of X and
ts : S — X the inclusion. Then iglj{ is the restriction of A to S, so that
Hi1(S,A) = HI(S, iglfl) by definition. For any two subspaces S’ C S, the
inclusion of S’ in S induces a restriction morphism

HY(S, A) — HI(S', A).

(9.10) Theorem. Let A be a sheaf on X and S a strongly paracompact
subspace in X. When {2 ranges over open neighborhoods of S, we have

HY(S,A) = lim HI(2,A).

J\E

Proof. When q = 0, the property is equivalent to Prop. 4.7. The general case
follows by induction on ¢ if we use the long cohomology exact sequences
associated to the short exact sequence

0—A— A0 — A0l 4 0

on S and on its neighborhoods (2 (note that the restriction of a flabby sheaf
to S is soft by Prop. 4.7 and the fact that every closed subspace of a strongly
paracompact subspace is strongly paracompact). 0

9.C. Cartesian Product

We use here the formalism of inverse images to deduce the cartesian product
from the cup product. Let R be a fixed commutative ringand A - X, B - Y
sheaves of R-modules. We define the external tensor product by

(9.11) AxXrB =pr;'A®gpr; ' B

where pry, pr, are the projections of X XY onto X, Y respectively. The sheaf
AXpg B is thus the sheaf on X x Y whose stalks are

(9.12) (AxzB) Ay @R By,

(zy) —

For all cohomology classes « € HP (X, A), f € H1(Y,B) the cartesian product
ax e HPT(X x Y, AxXg B) is defined by

(9.13) ax = (pria) < (pr3f).

More generally, let @ and ¥ be families of supports in X and Y respectively. If
@ x ¥ denotes the family of all closed subsets of X xY contained in products
K x L of elements K € @, L € ¥, the cartesian product defines a R-bilinear
map
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(9.14) HL(X,A) x HL(Y,B) — HLTL(X x Y, Axgr B).

If A" — X, B’ — Y are sheaves of abelian groups and if o/, ' are cohomology
classes of degree p’, ¢" with values in A’, B’, one gets easily

(9.15) (ax f) v (@ xf) = ()7 (ava)x (5~ ).
Furthermore, if F: X’ — X and G : Y’ — Y are continuous maps, then

(9.16) (F x G)*(a x B) = (F*a) x (G*B).

10. Spectral Sequence of a Filtered Complex

10.A. Construction of the Spectral Sequence

The theory of spectral sequences consists essentially in computing the homo-
logy groups of a differential module (K,d) by “successive approximations”,
once a filtration F},(K) is given in K and the cohomology groups of the graded
modules G, (K) are known. Let us first recall some standard definitions and
notations concerning filtrations.

(10.1) Definition. Let R be a commutative ring. A filtration of a R-module
M is a sequence of submodules M, C M, p € Z, also denoted M, = F,(M),
such that Mpy1 C M, for all p € Z, |JM, = M and (\M, = {0}. The
associated graded module is

G(M) = @GP(M)? Gp(M) = My /Mp1.

Let (K,d) be a differential module equipped with a filtration (K)
by differential submodules (i.e. dK,, C K, for every p). For any number
r € NU {oo}, we define Z?, B? C G(K) = K,/ K11 by

(10.2) ZP = K,Nd 'Kpy, mod Kpy1, Z% =K,Nd {0} mod K1,
(10.2") BY = K,NdK,_,y1 mod K,y;, B =K,NdK mod K.
(10.3) Lemma. For every p and r, there are inclusions

...CBYCBE ,C...CBY, CcZ, C...CZl  CZlC...
and the differential d induces an isomorphism

d: Z2/70., — BUI/BET.
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Proof. 1t is clear that (ZF) decreases with r, that (B?) increases with r, and
that BY, C Z% . By definition

7 = (Kp n d_le+r)/(Kp+1 A d_le+r)7

BY = (KpNdKp_ry1)/(Kpy1 NdEKp_ry1).
The differential d induces a morphism

Zy — (dKp N Kpyr) [ (dKp1 0 Kpir)

r

whose kernel is (K, Nd=*{0})/(K,+1Nd~1{0}) = Z2 , whence isomorphisms

d : 20)78, — (Kpir NdK,) /(Kpir NdK 1),
d : ZY |2y — (Kpgr NdKp) [ (Kpyr NdKpi1 + Kpip1 NdE).

The right hand side of the last arrow can be identified to BY]/BP*", for

Bf—w = (Kp+r NdKpi1) [ (Kptr41 N dKpi1),
Bf:t; = (Kpyr NdKp)/(Kpiri1 NdKy). O

Now, for each r € N, we define a complex E? = P, EL with a dif-

ferential d,. : E¥ — EP*" of degree r as follows: we set E? = ZP/BP and
take

(10.4) d, : ZP/BY —» Z¥/ZF 4, BT/ BETT s ZPFT | pRtT

where the first arrow is the obvious projection and the third arrow the obvious
inclusion. Since d,. is induced by d, we actually have d,. o d. = 0 ; this can
also be seen directly by the fact that B} c ZP77.

(10.5) Theorem and definition. There is a canonical isomorphism Ep | ~
H*(E?). The sequence of differential complexes (E?,d?) is called the spectral

ryr

sequence of the filtered differential module (K,d).

Proof. Since d is an isomorphism in (10.4), we have
ker d, = ZF,,/B?, Imd, = BFI/Brt.
Hence the image of d,. : E¥~" — E? is BY_ | /B? and

HY(EY) = (Zf+1/Bf)/(Bf+1/Bf) = Zf+1/Bf+1 = Ef+1- O

(10.6) Theorem. Consider the filtration of the homology module H(K) de-
fined by

Fy (H(K)) = I (H(K,) — H(K)).
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Then there is a canonical isomorphism

EL, = GP(H(K))'

Proof. Clearly F,(H(K)) = (K, nd=*{0})/(K, N dK), whereas

78, = (K, Nd={0})/(Kppr 0 d7H0}), BE, = (K, N dK)/ (K1 N dE),
B, = 22, /BY, = (K, (d~{0})/(Kps1 N d~ {0} + K, N dK).

It follows that EZ, ~ F,(H(K))/Fps,(H(K)). 0

In most applications, the differential module K has a natural grading
compatible with the filtration. Let us consider for example the case of a co-
homology complex K*® = P,;, K. The filtration K = F,(K*) is said to be
compatible with the differential complex structure if each K} is a subcomplex
of K*, i.e.

Ky = DK,

leZ

where (K!) is a filtration of K'. Then we define Z2¢, B2, EP? to be the
sets of elements of ZZ, BY EP of total degree p + ¢q. Therefore

(10.7) zpi= Kk*and *KEE*Y mod KPHY, ZP =@ zZP9,

p+r p+1
-1
(10.7) Br9= KptandKP* T mod KIIT, BP = @ Br+4,
(10.7") Ep9= Z9/B4 EY = @ EP,

and the differential d, has bidegree (r, —r + 1), i.e.
(10.8) d, : EP? — pptroa-rtl

For an element of pure bidegree (p,q), p is called the filtering degree, q the
complementary degree and p + q the total degree.

(10.9) Definition. A filtration (K) of a complex K* is said to be regular if
for each degree | there are indices v(l) < N(I) such that K, = K" for p < v(l)
and KL =0 forp > N(l).

If the filtration is regular, then (10.7) and (10.7") show that

Zpt =200 = =25 for r>N(p+q+1)—p,
Brt=pBrd = . =B for r>p+1—v(p+q—1),

therefore EP9 = ED:9 for r > ro(p,q). We say that the spectral sequence
converges to its limit term, and we write symbolically

(10.10) EP? = HPTI(K®)
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to express the following facts: there is a spectral sequence whose terms of
the r-th generation are EP'9, the sequence converges to a limit term EZ»,
and EZ~P is the term G, (H'(K*®)) in the graded module associated to some
filtration of H!(K*).

(10.11) Definition. The spectral sequence is said to collapse in E? if all
terms Zp%, B2, EPT are constant for k > r, or equivalently if di, = 0 in all
bidegrees for k > r.

(10.12) Special case. Assume that there exists an integer r > 2 and an
index go such that EP'? = 0 for ¢ # go. Then this property remains true
for larger values of r, and we must have d,, = 0. It follows that the spectral
sequence collapses in £ and that

HI(KO) - E’f'_QO#ZO.
Similarly, if EP*? = 0 for p # po and some 7 > 1 then

HY(K®) = EPol=po, O

10.B. Computation of the First Terms

Consider an arbitrary spectral sequence. For r = 0, we have Z} = K,/ K1,
BY = {0}, thus

(10.13) Ef = K,/K,+1 = Gp(K).
The differential dy is induced by d on the quotients, and
(10.14) EY = H(Gp(K)).
Now, there is a short exact sequence of differential modules
0 — Gpt1(K) — K, /Kppo — Gp(K) — 0.
We get therefore a connecting homomorphism
d
(10.15) E? = H(G,(K)) — H(Gp1(K)) = EVT.

We claim that 0 coincides with the differential d; : indeed, both are induced
by d. When K* is a filtered cohomology complex, d; is the connecting homo-
morphism

(1016) B = BP9 (Gy(K) T HPH09 (G (K)) = Y70
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11. Spectral Sequence of a Double Complex

A double complex is a bigraded module K** = @ K9 together with a
differential d = d’ + d”’ such that

(11_1) d - Kp1 Kp+1,q, d’ . Kpratl Kp,q+1,
and d o d = 0. In particular, d’ and d” satisfy the relations
(11.2) d?=d"™ =0, dd'+d'd =0.
The simple complex associated to K*® is defined by
K! = @ KP4
p+q=l

together with the differential d. We will suppose here that both graduations
of K** are positive, i.e. KP4 =0 for p < 0 or ¢ < 0. The first filtration of
K* is defined by

(11.3) K} = @ Kid — @ Kid—i
i+j=l, i>p p<i<l

The graded module associated to this filtration is of course Gp,(K') = KP!=P,
and the differential induced by d on the quotient coincides with d” because

d’ takes Kzl) to K Il)j_ll Thus we have a spectral sequence beginning by

(11.4) EPY= KP4, dy=d", EP=HI, (KP*).

By (10.16), d; is the connecting homomorphism associated to the short exact
sequence

0 — KPThe — KP* @ KPTH® — KP* — 0

where the differential is given by (d mod K?%2*) for the central term and
by d” for the two others. The definition of the connecting homomorphism in
the proof of Th. 1.5 shows that

dy=0: H% (K"*) — HI (KPtH*)
is induced by d’. Consequently, we find
(11.5) EY? = HY (EYY) = HY (HL, (K**®)).

For such a spectral sequence, several interesting additional features can
be pointed out. For all » and [, there is an injective homomorphism

0,1 0,0
Er~|—1 — Er
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whose image can be identified with the set of d,-cocycles in E®! ; the cobound-
ary group is zero because EP'? = () for ¢ < 0. Similarly, EL? is equal to its
cocycle submodule, and there is a surjective homomorphism

1,0 1,0
L —» E

~ 0 I—r,r—1
r+1 — ET’ /dTEr .

Furthermore, the filtration on H'(K*®) begins at p = 0 and stops at p = [, i.e.
(11.6) Fo(HY(K*®)) = HY(K®), F,(H'(K®))=0 for p>1L.
Therefore, there are canonical maps

HYK®) —» Go(HY(K*®)) = E%} — EX,

(11.7) E',l,’o . E!)’oo _ Gl(Hl(K°)) s HI(K°).

These maps are called the edge homomorphisms of the spectral sequence.

(11.8) Theorem. There is an exact sequence
0 — B’ — HY(K®) — EY' 2 E2° — H2(K®)
where the non indicated arrows are edge homomorphisms.

Proof. By 11.6, the graded module associated to H'(K*®) has only two com-
ponents, and we have an exact sequence

0— ELY — HYK*) — E% — 0.

However EL0 = E'21 ¥ because all differentials d, starting from EL0 or abuting
to EHY must be zero for r > 2. Similarly, EQ! = Ey'* and E2° = E2°| thus
there is an exact sequence

0— E& — gL &y g20 L, g20 g,
A combination of the two above exact sequences yields
0 — E3° — HY(K®) — EOY 25 E20 — B20 5.

Taking into account the injection F2? «—— H?(K*®) in (11.7), we get the
required exact sequence. 0

(11.9) Example. Let X be a complex manifold of dimension n. Consider
the double complex K74 = 3¢ (X, C) together with the exterior derivative
d = d'+d". Then there is a spectral sequence which starts from the Dolbeault
cohomology groups

EP? = HP(X, C)
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and which converges to the graded module associated to a filtration of the
De Rham cohomology groups:

EPY = HELI(X, C).

This spectral sequence is called the Hodge-Frolicher spectral sequence (Fro-
licher 1955). We will study it in much more detail in chapter 6 when X is
compact. [

Frequently, the spectral sequence under consideration can be obtained
from two distinct double complexes and one needs to compare the final co-
homology groups. The following lemma can often be applied.

(11.10) Lemma. Let K79 — LP? be a morphism of double complezxes (i.e.
a double sequence of maps commuting with d' and d"). Then there are induced
morphisms

KE;’. — LE;’., r Z 0

of the associated spectral sequences. If one of these morphisms is an isomor-
phism for some r, then H'(K®) — H'(L®) is an isomorphism.

Proof. If the r-terms are isomorphic, they have the same cohomology groups,
thus g% ~ B} and gES* ~ pE3:* in the limit. The lemma follows

T+
from the fact that if a morphism of graded modules ¢ : M — M’ induces
an isomorphism Go(M) — G4(M'), then ¢ is an isomorphism. O

12. Hypercohomology Groups

Let (L°®,0) be a complex of sheaves

000 gt o e O
on a topological space X. We denote by H? = H?(L®) the ¢-th sheaf of
cohomology of this complex; thus H? is a sheaf of abelian groups over X.
Our goal is to define “generalized cohomology groups” attached to £L® on X,
in such a way that these groups only depend on the cohomology sheaves J9.
For this, we associate to L® the double complex of groups

(12.1) KP*=(LH)P(X)

with differential d’ = dP given by (2.5), and with d”’ = (—=1)P(67)1. As (69)l*]
(L)l — (Lat1)[*] is a morphism of complexes, we get the expected relation
d/d// _'_ d//d/ — 0'
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(12.2) Definition. The groups HY(K?) are called the hypercohomology
groups of L* and are denoted H?(X,L*).

Clearly H° (X, L®) = H°(X) where H°? = ker 6° is the first cohomology
sheaf of L®. If ¢* : L* — M?* is a morphism of sheaf complexes, there is
an associated morphism of double complexes ¢**® : K'* — K3:°, hence a
natural morphism

(12.3) HI(p®) : HI(X,L%) — HI(X,M®).

We first list a few immediate properties of hypercohomology groups, whose
proofs are left to the reader.

(12.4) Proposition. The following properties hold:
a) If L9=0 for q# 0, then HI(X,L®) = HI(X, L?).

b) If L®[s| denotes the complex L® shifted of s indices to the right, i.e.
Lo[s]9 = LI7%, then H?(X, L®[s]) = HI™5(X, L®).

c) If0 — L®* — M* — N* — 0 is an exact sequence of sheaf complexes,
there is a long exact sequence

O HE (X, L%) — HY(X, M®) — HY(X,N®) -2 Het (X, L%)---. O

If £° is a sheaf complex, the spectral sequence associated to the first
filtration of K} is given by

BT = HY,(K2*) = HI((£*)P(X)).

However by (2.9) the functor A — API(X) preserves exact sequences. There-
fore, we get

(12.5) BP? = (37(£) " (x),
(12.5") EP? = HP(X,HI(L*)),

since EY? = HY (ET?). If ¢* : L* — M*® is a morphism, an application
of Lemma 11.10 to the Es-term of the associated first spectral sequences of
K?* and K3;° yields:

(12.6) Corollary. If ¢* : L* — M°® is a quasi-isomorphism (this means
that ¢* induces an isomorphism H*(L®) — H*(M®) ), then

H (¢°) : H(X,L®) — H' (X, M)

1S an isomorphism.
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Now, we may reverse the roles of the indices p,q and of the differentials
d',d". The second filtration Fy(KL) = Dy, K77 is associated to a spectral
sequence such that E7? = H (K3P) = HY ((LP)*)(X)), hence
(12.7) EP = HI(X,LP),

(12.7) EY? = HY(HY(X,L*)).

These two spectral sequences converge to limit terms which are the graded
modules associated to filtrations of H® (X, £°) ; these filtrations are in general
different. Let us mention two interesting special cases.

e Assume first that the complex L® is a resolution of a sheaf A, so that
H® = A and H? = 0 for ¢ > 1. Then we find

EPY = HP(X,A), EP1=0 for ¢>1.
It follows that the first spectral sequence collapses in E3, and 10.12 implies
(12.8) H'(X,L°) ~ H'(X,A).

e Now, assume that the sheaves L? are acyclic. The second spectral sequence
gives

E’g’ozﬂp(L}'(X)), E’g’q:() for ¢ > 1,
(12.9) H (X, L°%) ~ H'(L*(X)).

If both conditions hold, i.e. if £® is a resolution of a sheaf A by acyclic
sheaves, then (12.8) and (12.9) can be combined to obtain a new proof of the
De Rham-Weil isomorphism H'(X,A) ~ H'(L°(X)).

13. Direct Images and the Leray Spectral Sequence

13.A. Direct Images of a Sheaf

Let X,Y be topological spaces, F': X — Y a continuous map and A a sheaf
of abelian groups on X. Recall that the direct image F A is the presheaf on
Y defined for any open set U C Y by

(13.1) (FLA)U) = AF(U)).

Axioms (II-2.4" and (II-2.4") are clearly satisfied, thus F,A is in fact a sheaf.
The following result is obvious:

(13.2) A isflabby = F,A is flabby.

Every sheaf morphism ¢ : A — B induces a corresponding morphism



404 vnapter 1v oneal Luonomology anad spectral sequences

F.p : F.A— FB,

so F, is a functor on the category of sheaves on X to the category of sheaves
on Y. This functor is exact on the left: indeed, to every exact sequence
0 — A — B — € is associated an exact sequence

0— FA— F,B— F.C,

but F,B — F,C need not be onto if B — € is. All this follows immediately
from the considerations of §3. In particular, the simplicial flabby resolution
(Al*l @) yields a complex of sheaves

(13.3) 0 — FAD 5 p Al ... pAld BN poglet]

(13.4) Definition. The q-th direct image of A by F is the q-th cohomology
sheaf of the sheaf complex (13.3). It is denoted

RIF, A = HI(F,.Al).

As F, is exact on the left, the sequence 0 — F,A — F, A0 — F, ANl is
exact, thus

(13.5) R°F.A = F,A.

We now compute the stalks of R1F,A. As the kernel or cokernel of a sheaf
morphism is obtained stalk by stalk, we have

(RIFA)y = Hq((F*A[.])y) - hﬂ ot (F*A[.](U))'
Usy

The very definition of F, and of sheaf cohomology groups implies
HI(FAR(U)) = HI(ALNFY(U))) = HI(F~H(U), A),

hence we find

=

(13.6) (RFA), = lim HY(F'(U),A),

|

g
<

B

i.e. RIF,A is the sheaf associated to the presheaf U — H(F~1(U),A).
We must stress here that the stronger relation R1F, A(U) = H1(F~(U), A)
need not be true in general. If the fiber F~1(y) is strongly paracompact in
X and if the family of open sets F~1(U) is a fundamental family of neigh-
borhoods of F~1(y) (this situation occurs for example if X and Y are locally
compact spaces and F' a proper map, or if ' =pr; : X =Y xS — Y where
S is compact), Th. 9.10 implies the more natural relation

(13.6") (RIF.A), = HI(F~'(y), A).
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Let 0 = A — B — € — 0 be an exact sequence of sheaves on X. Apply
the long exact sequence of cohomology on every open set F~1(U) and take
the direct limit over U. We get an exact sequence of sheaves:

0o— FA — FB — FC — RFA-—--

(3.7 Rep,A—s RUF,B—s RIF,C—s RIFFA—s ...,

13.B. Leray Spectral Sequence

For any continuous map F' : X — Y, the Leray spectral sequence relates
the cohomology groups of a sheaf A on X and those of its direct images
RIF,A on Y. Consider the two spectral sequences E?, E? associated with
the complex of sheaves £® = F,Al*) on Y, as in § 12. By definition we have
HI(L®) = RIF,A. By (12.5') the second term of the first spectral sequence
is

EPY = HP(Y, RIF,A),

and this spectral sequence converges to the graded module associated to a
filtration of H (Y, F,Al*l). On the other hand, (13.2) implies that F, Al is
flabby. Hence, the second special case (12.9) can be applied:

H (Y, FL AR ~ HY (FAR(Y)) = B (AM(X)) = HY (X, A).

We may conclude this discussion by the following

(13.8) Theorem. For any continuous map F : X — Y and any sheaf A of
abelian groups on X, there exists a spectral sequence whose E35 term is

EPY = HP(Y, RIF,A),

which converges to a limit term EP!~P equal to the graded module associated
with a filtration of H (X, A). The edge homomorphism

HYY,F,A) —» EY? — H' (X, A)
coincides with the composite morphism

F*. H(Y,FA) 2 HY(X, FURA) T, gl x )
where pp : F~1F, A — A is the canonical sheaf morphism.

Proof. Only the last statement remains to be proved. The morphism pg is
defined as follows: every element s € (F~'F,A), = (F.A)p(y) is the germ
of a section 5 € FLA(V) = A(F~(V)) on a neighborhood V of F(z). Then
F~1(V) is a neighborhood of z and we let urs be the germ of 5 at .
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Now, we observe that to any commutative diagram of topological spaces
and continuous maps is associated a commutative diagram involving the di-
rect image sheaves and their cohomology groups:

F [ F# [
x Dy HI(X,A) <& HU(Y, F.A)
¢l |H a* Ta#
’ 19t
x Dy H(X' G, A) £ H(Y' F'G,A).

There is a similar commutative diagram in which F# and F'# are replaced
by the edge homomorphisms of the spectral sequences of F' and F’ : indeed
there is a natural morphism H'F!B — F,G71B for any sheaf B on X',
so we get a morphism of sheaf complexes

H'F(G A0 — B (G, AMN — F (G a, AN — F Al

hence also a morphism of the spectral sequences associated to both ends.
The special case X' =Y’ =Y ,G = F, F' = H = Idy then shows that our
statement is true for F' if it is true for F’. Hence we may assume that F' is the
identity map; in this case, we need only show that the edge homomorphism
of the spectral sequence of F,Al*) = Al* is the identity map. This is an
immediate consequence of the fact that we have a quasi-isomorphism

(=02 A—=0—--) — Al O
(13.9) Corollary. If RIF,A = 0 for ¢ > 1, there is an isomorphism
HY Y, F.A) ~ H'(X,A) induced by F*.

Proof. We are in the special case 10.12 with E5? =0 for ¢ # 0, so

H'(Y,F,A) = E* ~ H'(X, A). O
(13.10) Corollary. Let F : X — Y be a proper finite-to-one map. For any
sheaf A on X, we have RIF,A = 0 for ¢ > 1 and there is an isomorphism

HU(Y,F.A) ~ H(X, A).

Proof. By definition of higher direct images, we have
(RIFA), = lim HI(AM(FH(U))).

bl

If F~'(y) = {z1,...,%n}, the assumptions imply that (F~(U)) is a funda-
mental system of neighborhoods of {z1, ..., z,,}. Therefore

q — q [o]y _ @‘Am for q= 0’
(R F*‘A)y — li.é H (‘Amj) - {0 ! for q Z 17
sjsm
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and we conclude by Cor. 13.9. O

Corollary 13.10 can be applied in particular to the inclusion 5 : § — X
of a closed subspace S. Then j, A coincides with the sheaf A° defined in §3
and we get H1(S,A) = H4(X,A®). It is very important to observe that the
property R?j,A =0 for ¢ > 1 need not be true if S is not closed.

13.C. Topological Dimension

As a first application of the Leray spectral sequence, we are going to derive
some properties related to the concept of topological dimension.

(13.11) Definition. A non empty space X is said to be of topological di-
mension < n if H1(X,A) =0 for any ¢ > n and any sheaf A on X. We let
topdim X be the smallest such integer n if it exists, and +oo otherwise.

(13.12) Criterion. For a paracompact space X, the following conditions are
equivalent:

a) topdim X <n ;

b) the sheaf 2" = ker(AM — Al is soft for every sheaf A ;

c¢) every sheaf A admits a resolution 0 — L% — -~ — L™ — 0 of length n
by soft sheaves.

Proof. b) = ¢). Take £ = Al9l for ¢ < n and L™ = 2",

¢) = a). For every sheaf A, the De Rham-Weil isomorphism implies
H(X,A)=H?(L*(X)) =0 when ¢ > n.

a) => b). Let S be a closed set and U = X ~ S. As in Prop. 7.12, (Al*))y
is an acyclic resolution of Ay. Clearly ker ((AM)y — (AP+H)) = 28 so
the isomorphisms (6.2) obtained in the proof of the De Rham-Weil theorem
imply

HY(X,2%) ~ H" (X, Ay) = 0.

By (3.10), the restriction map Z"(X) — Z™(S) is onto, so 2™ is soft. [

(13.13) Theorem. The following properties hold:

a) If X is paracompact and if every point of X has a neighborhood of topo-
logical dimension < n, then topdim X < n.

b) If S C X, then topdimS < topdim X provided that S is closed or X
metrizable.

c) If X,Y are metrizable spaces, one of them locally compact, then
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topdim (X x Y) < topdim X + topdim Y.

d) If X is metrizable and locally homeomorphic to a subspace of R™, then
topdim X < n.

Proof. a) Apply criterion 13.12 b) and the fact that softness is a local property
(Prop. 4.12).

b) When S is closed in X, the property follows from Cor. 13.10. When X is
metrizable, any subset S is strongly paracompact. Let 7 : S — X be the
injection and A a sheaf on S. As A = (j, . A)s, we have

HY(S, A)=HIY(S, j.A) = lim HI(,j.A)

—
258

by Th. 9.10. We may therefore assume that S is open in X. Then every point
of S has a neighborhood which is closed in X, so we conclude by a) and the
first case of b).

c¢) Thanks to a) and b), we may assume for example that X is compact. Let
A be a sheaf on X x Y and 7 : X x Y — Y the second projection. Set
nx = topdim X, ny = topdimY. In virtue of (13.6"), we have RIm, A = 0
for ¢ > nx. In the Leray spectral sequence, we obtain therefore

EyT=HP(Y,RimA) =0 for p>mny or ¢>nx,

thus E2!~P = 0 when | > nx + ny and we infer H/(X x Y, A) = 0.

d) The unit interval [0,1] C R is of topological dimension < 1, because [0, 1]
admits arbitrarily fine coverings

(13.14) Uy = ([0,1] N J(e = 1)/k, (0 + 1)/ ) ey

for which only consecutive open sets U,, Uy4+1 intersect; we may therefore
apply Prop. 5.24. Hence R™ ~ ]0, 1["C [0, 1]™ is of topological dimension < n
by b) and ¢). Property d) follows

14. Alexander-Spanier Cohomology

14.A. Invariance by Homotopy

Alexander-Spanier’s theory can be viewed as the special case of sheaf coho-
mology theory with constant coefficients, i.e. with values in constant sheaves.

(14.1) Definition. Let X be a topological space, R a commutative ring and
M a R-module. The constant sheaf X x M is denoted M for simplicity.
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The Alexander-Spanier q-th cohomology group with values in M 1is the sheaf
cohomology group H1(X, M).

In particular H°(X, M) is the set of locally constant functions X — M,
so HO(X, M) ~ M¥ where E is the set of connected components of X. We
will not repeat here the properties of Alexander-Spanier cohomology groups
that are formal consequences of those of general sheaf theory, but we focus
our attention instead on new features, such as invariance by homotopy.

(14.2) Lemma. Let I denote the interval [0,1] of real numbers. Then
H°(I,M)=M and Hi(I,M) =0 for q# 0.

Proof. Let us employ alternate Cech cochains for the coverings U,, defined in
(13.14). As [ is paracompact, we have

H*(I, M) = lim HY(U,, M).

However, the alternate Cech complex has only two non zero components and
one non zero differential:
AC® (U, M) = {(ca)ogazn} = M,
ACl (un7 M) - {(Ca a—i—l)OSaSn—l} - Mn)
/

d’ (Ca) — (Caa+1) = (Ca—H - ca)-

We see that d° is surjective, and that ker d® = {(m, m,..., m)} =M. O

For any continuous map f : X — Y, the inverse image of the constant
sheaf M on Y is f~1M = M. We get therefore a morphism

(14.3) f*:HYY,M)— HY(X,M),
which, as already mentioned in §9, is compatible with cup product.

(14.4) Proposition. For any space X, the projection m : X X I — X and
the injections iy : X — X x I,  — (z,t) induce inverse isomorphisms

*

HY(X,M) — HYX xI,M).

i
In particular, iy does not depend on t.

Proof. As m o4, = Id, we have i} o 7* = Id, so it is sufficient to check that
7* is an isomorphism. However (RIm, M), = H9(I, M) in virtue of (13.6),
so we get

R'7,M =M, Rin,M=0 for q#0
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and conclude by Cor. 13.9. O

(14.4) Theorem. If f,g: X — Y are homotopic maps, then

f*=g*: HY(Y,M) — HY(X, M).

Proof. Let H : X x I — Y be a homotopy between f and g, with f = H o1
and g = H o 4. Proposition 14.3 implies

[f=igoH  =ijoH" =g~ O

We denote f ~ g the homotopy equivalence relation. Two spaces X,Y
are said to be homotopically equivalent (X ~ Y) if there exist continuous
mapsu: X — Y, v:Y — X such that vou ~ Idx and uowv ~ Idy. Then
HY(X,M)~ HY(Y, M) and u*,v* are inverse isomorphisms.

(14.5) Example. A subspace S C X is said to be a (strong) deformation
retract of X if there exists a retraction of X onto S, i.e.amapr: X — §
such that 7 o j = Idg (j = inclusion of S in X), which is a deformation of
Idx, i.e. there exists a homotopy H : X x I — X relative to S between Id x
and jor:

H(z,0) =2z, H(z,1)=r(z) on X, H(z,t)=x on S xI.

Then X and S are homotopically equivalent. In particular X is said to be
contractible if X has a deformation retraction onto a point xy. In this case

M forqg=0

(14.6) Corollary. If X is a compact differentiable manifold, the cohomology
groups H1(X, R) are finitely generated over R.

Proof. Lemma 6.9 shows that X has a finite covering U such that the intersec-
tions Us,...a, are contractible. Hence U is acyclic, H1(X, R) = H4(C*(U, R))
and each Cech cochain space is a finitely generated (free) module. U

(14.7) Example: Cohomology Groups of Spheres. Set
St={reR" g+l +. ... +xi=1}, n>1
We will prove by induction on n that

(14.8) Hq(Sn,M): {M fOI‘q:.O orq=mn
0  otherwise.
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As S™ is connected, we have HY(S™, M) = M. In order to compute the higher
cohomology groups, we apply the Mayer-Vietoris exact sequence 3.11 to the
covering (Uy, Us) with

U1:S”\{(—1,0,...,0)}, U2:S"\{(1,0,...,0)}.

Then Uy,Us =~ R™ are contractible, and U; N Uy can be retracted by defor-
mation on the equator S™ N {xg = 0} ~ S"~1. Omitting M in the notations
of cohomology groups, we get exact sequences

(14.9") H°(Uy) @ H°(Us) — H°(Uy NUy) — HY(S™) — 0,
(14.9") 0 — HTY U NUy) — HY(S™) — 0, ¢ >2.

For n =1, Uy N Us consists of two open arcs, so we have
H(U) @ H(Uy) = H(UyNUs) = M x M,

and the first arrow in (14.9") is (mq, ma2) — (m2 — my, mg — my). We infer
easily that H(S!) = M and that

HY(SY)Y = H™YU;NUy) =0 for q> 2.

For n > 2, Uy N Uz is connected, so the first arrow in (14.9") is onto and
H'(S8™) = 0. The second sequence (14.9") yields H4(S™) ~ HI9~1(S"~1). An
induction concludes the proof. O

14.B. Relative Cohomology Groups and Excision Theorem

Let X be a topological space and S a subspace. We denote by M!4(X, S) the
subgroup of sections u € M9(X) such that u(zo, ..., z,) = 0 when

(o, ..., xq) €89, x € V(xg), ..., g € V(zo,...,Tq-1).

Then M*1(X,S) is a subcomplex of M*(X) and we define the relative co-
homology group of the pair (X, S) with values in M as

(14.10) HY(X,S; M) = H1(M"(X,9)).
By definition of M9(X,S), there is an exact sequence
(14.11) 0 — MY(X,S) — M(X) — (M5)9(S) — 0.

The reader should take care of the fact that (M;s)!9(S) does not coincide
with the module of sections M[9(S) of the sheaf M9 on X, except if S is
open. The snake lemma shows that there is an “exact sequence of the pair”:

(14.12) HY(X,S; M) — HYX,M) — HY(S,M) — H*Y(X,S; M)---.
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We have in particular H°(X,S; M) = M¥ where E is the set of connected
components of X which do not meet S. More generally, for a triple (X, S,T)
with X D § D T, there is an “exact sequence of the triple”:

(14.12") 0 — Ml(X,8) — MU(X,T) — MS,T) — 0,
HYX,S;M) — HYX,T; M) — HYS,T; M) — H (X, S; M).

The definition of the cup product in (8.2) shows that o« [ vanishes on SUS’
if o, @ vanish on S, S’ respectively. Therefore, we obtain a bilinear map

(14.13) HP(X,S; M) x HY(X,S'; M') — HPT9(X,SUS"; M@ M').

If f:(X,S) — (Y,T) is a morphism of pairs, i.e. a continuous map X — Y
such that f(S) C T, there is an induced pull-back morphism

(14.14) f*: HYY,T; M) —s HY(X,S; M)

which is compatible with the cup product. Two morphisms of pairs f, g are
said to be homotopic when there is a pair homotopy H : (X x I, S x I) —
(Y, T). An application of the exact sequence of the pair shows that

™ HY(X,S; M) — HYX xI,Sx1; M)

is an isomorphism. It follows as above that f* = g¢g* as soon as f,g are
homotopic.

(14.15) Excision theorem. For subspaces T C S° of X, the restriction
morphism H1(X,S; M) — HY(X \T,S\T; M) is an isomorphism.

Proof. Under our assumption, it is not difficult to check that the surjective
restriction map MU(X,S) — MII(X < T, S\ T) is also injective, because

the kernel consists of sections u € M!4(X) such that u(zg,...,r,) = 0 on
(X \T)9T1 U §9tL, and this set is a neighborhood of the diagonal of X971
0

(14.16) Proposition. If S is open or strongly paracompact in X, the relative
cohomology groups can be written in terms of cohomology groups with supports
in X \NS:

HY(X,S; M)~ H} o(X,M).
In particular, if X S s relatively compact in X, we have

HY(X,S; M)~ HI(X ~ S, M).

Proof. We have an exact sequence

(14.17) 0 — ME! (X)) — MII(X) — MI)(S) — 0
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where M )[;]\ 5(X) denotes sections with support in X ~.S. If S is open, then

MUI(S) = (M;s)[*](S), hence M)[;]\S(X) = MI*)(X, S) and the result follows.

If S is strongly paracompact, Prop. 4.7 and Th. 9.10 show that
HY(MP)(S)) = HY( lim M"(2)) = lim HY(2, M) = H(S, M;s).

—
2o8 2258

If we consider the diagram

0—ME (X)) —MEI(X)—MPEI(S) —0

l | 1d L1s

0—MEI(X, ) —MI*(X)—(Ms)*(S)— 0

we see that the last two vertical arrows induce isomorphisms in cohomology.
Therefore, the first one also does. O

(14.18) Corollary. Let X,Y be locally compact spaces and f,g: X —Y
proper maps. We say that f,qg are properly homotopic if they are homotopic
through a proper homotopy H : X x I — Y. Then

ff=9°: HY{Y,M)— HI(X,M).

Proof. Let X = X U{oo}, ¥ = Y U{oo} be the Alexandrov compactifications
of X, Y. Then f, g, H can be extended as continuous maps

f,/g\:)?—>§/>, H: XxI—Y
with f(co0) (00) = H(oo,t) = oo, so that f,§ are homotopic as maps

=9
(X,00) — (Y, 00). Proposition 14.16 implies H(X, M) = H4(X,00; M)
and the result follows. O

15. Kunneth Formula

15.A. Flat Modules and Tor Functors

The goal of this section is to investigate homological properties related to
tensor products. We work in the category of modules over a commutative
ring R with unit. All tensor products appearing here are tensor products
over R. The starting point is the observation that tensor product with a
given module is a right exact functor: if 0 - A - B — C' — 0 is an exact
sequence and M a R-module, then

AQM —BM —CQM — 0
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is exact, but the map A® M — B ® M need not be injective. A counterex-
ample is given by the sequence

0—27 252 -—7/2L—0 over R=17

tensorized by M = 7Z/2Z. However, the injectivity holds if M is a free
R-module. More generally, one says that M is a flat R-module if the ten-
sor product by M preserves injectivity, or equivalently, if @ M is a left exact
functor.

A flat resolution Co of a R-module A is a homology exact sequence

e — Oy —Cyy —r - — C1 — Cy — A —0

where C; are flat R-modules and C; = 0 for ¢ < 0. Such a resolution always
exists because every module A is a quotient of a free module Cy. Inductively,
we take Cyy1 to be a free module such that ker(Cy — Cy_1) is a quotient of
Cq+1- In terms of homology groups, we have Hy(C,) = A and Hy(C,) = 0
for ¢ # 0. Given R-modules A, B and free resolutions d’' : Cy — A, d" :
D, — B, we consider the double homology complex

Kpq=Co®Dq, d=d @Id+(-1)?Id@d"

and the associated first and second spectral sequences. Since C,, is free, we
have

Cp,®B for ¢g=0,

1 _ —
Ep,q_HQ(CP®D°)_{O for q%o

Similarly, the second spectral sequence also collapses and we have
H|(K,) = H(Coe ® B) = Hi(A® D,).

This implies in particular that the homology groups H;(K,) do not depend
on the choice of the resolutions Ce or D,.

(15.1) Definition. The q-th torsion module of A and B is

Tory(A, B) = Hy(K4) = Hy(Cu ® B) = Hy(A® D,).

Since the definition of K is symmetric with respect to A and B, we have
Tory(A, B) ~ Tory(B, A). By the right-exactness of ® B, we find in particular
Torg(A,B) = A ® B. Moreover, if B is flat, ® B is also left exact, thus
Tory(A, B) = 0 for all ¢ > 1 and all modules A. If 0 - A - A" - A" =0
is an exact sequence, there is a corresponding exact sequence of homology
complexes

0 —ARDy — A @Dy — A" @ Dy — 0,
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thus a long exact sequence

— Tory(A, B)—> Tory (A, B)—s Tory(A”, B)— Tor,_1(A, B)

(15.2) A®B — A®B — A"®B —s 0.

It follows that B is flat if and only if Tor; (A, B) = 0 for every R-module A.

Suppose now that R is a principal ring. Then every module A has a free
resolution 0 — Cy — Cy — A — 0 because the kernel of any surjective map
Cp — A is free (every submodule of a free module is free). It follows that one
always has Tor,(A, B) = 0 for ¢ > 2. In this case, we denote Tory (A, B) =
A x B and call it the torsion product of A and B. The above exact sequence
(15.2) reduces to

(153) 052 AxB—-A'xB—-A"*xB—-A®B—-A'®9B—A"®B —0.

In order to compute A x B, we may restrict ourselves to finitely generated
modules, because every module is a direct limit of such modules and the x
product commutes with direct limits. Over a principal ring R, every finitely
generated module is a direct sum of a free module and of cyclic modules
R/aR. 1t is thus sufficient to compute R/aR * R/bR. The obvious free reso-
lution R **s R of R/aR shows that R/aR x R/bR is the kernel of the map
R/bR “%s R/bR. Hence

(15.4) R/aRxR/bR~ R/(a Nb)R

where a A b denotes the greatest common divisor of a and b. It follows that a
module B is flat if and only if it is torsion free. If R is a field, every R-module
is free, thus A x B =0 for all A and B.

15.B. Kunneth and Universal Coefficient Formulas

The algebraic Kiinneth formula describes the cohomology groups of the tensor
product of two differential complexes.

(15.5) Algebraic Kiinneth formula. Let (K*®,d’), (L*®,d") be complexes of
R-modules and (K ® L)® the simple complex associated to the double complex
(K® L)1 = KP @ L1. If K® or L*® is torsion free, there is a split exact
sequence

0— @ H(K*)@HI(L") B H ((K®L)®) —» € HP(K®*)*xHI(L®)
p+q=l pFq=I+1 -0

where the map p is defined by pu({kP} x {19}) = {kP? ® 11} for all cocycles
{kP} € HP(K®), {11} € HI(L®).

(15.6) Corollary. If R is a field, or if one of the graded modules H®*(K?*),
H*®(L®) is torsion free, then
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H'((K®L)*) ~ @ H(K*)® HI(L®).
p+q=l

Proof. Assume for example that K*® is torsion free. There is a short exact
sequence of complexes

0 2° 5 K* 5B+l 0

where Z°® B®* C K*® are respectively the graded modules of cocycles and
coboundaries in K*°®, considered as subcomplexes with zero differential. As
B**t! is torsion free, the tensor product of the above sequence with L® is
still exact. The corresponding long exact sequence for the associated simple
complexes yields:

H((B®L)®) — H((ZeL)*) — H' (Ko L)*) 5 H* ((Be L))
(15.7) — H*((ZoL)*)---

The first and last arrows are connecting homomorphisms; in this situation,
they are easily seen to be induced by the inclusion B® C Z°. Since the
differential of Z*® is zero, the simple complex (Z ® L)*® is isomorphic to the
direct sum @p ZP @ L*7P, where Z? is torsion free. Similar properties hold
for (B ® L)*, hence

H((Z®L)®)= @ 2°eHYL*), H(BeL)*) = P B’ ®HYL").
p+a=l p+q=l

The exact sequence
0 — BY — ZP — HP(K®) — 0
tensorized by HY(L®) yields an exact sequence of the type (15.3):

0 — HP(K®*)x H(L*) — BP@HI(L*) — 2 @ H(L®)
— HP(K*)® HY(L®) — 0.

By the above equalities, we get

0— P HP(K®)xHY(L*) — H'((B® L)*) — H'((Z® L))
pt+g=l
N @ HP(K®*)® HY(L®*) — 0.
p+q=l

In our initial long exact sequence (15.7), the cokernel of the first arrow is thus
D, = HP(K*)® HI(L®) and the kernel of the last arrow is the torsion sum

piqeis1 HP(K®) % HY(L®). This gives the exact sequence of the lemma.
We leave the computation of the map p as an exercise for the reader. The
splitting assertion can be obtained by observing that there always exists a
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torsion free complex K*® that splits (i.e. Z* C K* splits), and a morphism
K*®* — K* inducing an isomorphism in cohomology; then the projection
K* — Z* yields a projection

H(K®L)®*) — H((ZeL)*)~ @ 2" HI(L")
p+q=l
— P HY(K®)® HY(L®).

p+q=l

To construct IN(', let Z' — Z* be a surjective map with A free, E' the
inverse image of B® in 2* and K* = Z* @B:H, where the differential K* —
K*t! is given by Z* — 0 and B**' C Z**1 @ 0 ; as B® is free, the map
B*t! — B**! can be lifted to a map B*t! — K*, and this lifting combined
with the composite Z* — Z°* C K*® yields the required complex morphism
K®=7°*® B*tt — K*. O

(15.8) Universal coefficient formula. Let K* be a complex of R-modules
and M a R-module such that either K® or M is torsion free. Then there is
a split exact sequence

0 — H?(K*)® M — HP(K*® M) — HP*'(K®)x M — 0.

Indeed, this is a special case of Formula 15.5 when the complex L® is
reduced to one term L° = M. In general, it is interesting to observe that the
spectral sequence of K*®L* collapses in E if K*® is torsion free: H* ((K®L)')
is in fact the direct sum of the terms E5'? = HP(K*® @ H?(L®)) thanks to
(15.8).

15.C. Kiinneth Formula for Sheaf Cohomology H

ere we apply the general algebraic machinery to compute cohomology groups
over a product space X XY . The main argument is a combination of the Leray
spectral sequence with the universal coefficient formula for sheaf cohomology.

(15.9) Theorem. Let A be a sheaf of R-modules over a topological space
X and M a R-module. Assume that either A or M 1is torsion free and that
either X is compact or M 1s finitely generated. Then there is a split exact
sequence

0 — HY(X,A)® M — HP(X,A® M) — H"'(X,A)x M — 0.

Proof. If M is finitely generated, we get (A® M)l(X) = Al*)(X)® M easily,
so the above exact sequence is a consequence of Formula 15.8. If X is compact,



PARe) vnapter 1v oneal Luonomology anad spectral sequences

we may consider Cech cochains C9(U, A ® M) over finite coverings. There is
an obvious morphism

Cl(U,A) @ M — CH U, AR M)
but this morphism need not be surjective nor injective. However, since
(A@M), =A; @ M = lim A(V)® M,
Vo
the following properties are easy to verify:

a) If ce C1(U,A® M), there is a refinement V of U and p : V — U such
that p*c € C1(V,A® M) is in the image of C4(V, A) ® M.

b) If a tensor t € C?(U,A) ® M is mapped to 0 in C?4(U, A® M), there is a
refinement V of U such that p*t € C1(V, A) ® M equals 0.

From a) and b) it follows that

IZTq(X,A@JM):li_) HY(C*(U,A® M)) = lim H(C*(U,A) @ M)
u u

and the desired exact sequence is the direct limit of the exact sequences of
Formula 15.8 obtained for K* = C*(U, A). O

(15.10) Theorem (Kiinneth). Let A and B be sheaves of R-modules over
topological spaces X andY . Assume that A is torsion free, that'Y is compact
and that either X is compact or the cohomology groups HI(Y,B) are finitely
generated R-modules. There is a split exact sequence

0— P H(X,A)@ HI(Y,B) > H'(X x Y,AxB)
p+q=l
— @ H(X,A)xHI(Y,B) — 0
pt+q=l+1
where i is the map given by the cartesian product @ ap @ By — > ap X By
Proof. We compute H'(X, AxB) by means of the Leray spectral sequence

of the projection 7 : X x Y — X. This means that we are considering the
differential sheaf L9 = 7, (A= B)l4 and the double complex

KP4 — (LQ)[P](X)_

By (12.5") we have g EY'? = HP (X, H9(L®)). As Y is compact, the cohomol-
ogy sheaves H?(L®) = RIm, (A X B) are given by

Rm, (AmB)y=HI({z} x Y, AR B (4)xy) =HI(Y, A, ® B)=A, ® HI(Y, B)

thanks to the compact case of Th. 15.9 where M = A, is torsion free. We
obtain therefore
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Rim,(AxB)=A® HYY,B),
xkEYY = Hp(X,A ® HI(Y, ‘B))
Theorem 15.9 shows that the Fs-term is actually given by the desired exact

sequence, but it is not a priori clear that the spectral sequence collapses in
FEs. In order to check this, we consider the double complex

CcPq — A[p](X) ® B[q](Y)
and construct a natural morphism C'** — K**. We may consider K79 =
(e (A B)[Q])[p] (X) as the set of equivalence classes of functions

h(Gos- - &) € m(ARB) = lim (AmB) (7 (V(§)))

P

or more precisely
h(os-- - &5 (@0,90)s - -+, (TgyYg)) € Az, ® By,  with
o€ X, &€V(,---,8-1), 1<7<p,
(z0,90) € V(&o,---,&p) X Y,
(z5,95) € V(€os-- - &s (m0,90), -+ -5 (Tj—1,95-1)), 1<j<q
Then f ® g € CP9 is mapped to h € KP9 by the formula
h(fo, o €ps (T0,90)s -, (Tgs yq)) = f(&,.--,&p)(xq) ® 9(Yo,---,yq)-
As API(X) is torsion free, we find
cEP? = APN(X) @ HI(Y,B).
Since either X is compact or H?(Y, B) finitely generated, Th. 15.9 yields
cEY? = HP(X,A® HY(Y,B)) ~ g B!

hence H'(K®) ~ H'(C*) and the algebraic Kiinneth formula 15.5 concludes
the proof. O

(15.11) Remark. The exact sequences of Th. 15.9 and of Kiinneth’s theorem
also hold for cohomology groups with compact support, provided that X and
Y are locally compact and A (or B) is torsion free. This is an immediate
consequence of Prop. 7.12 on direct limits of cohomology groups over compact
subsets.

(15.12) Corollary. When A and B are torsion free constant sheaves, e.qg.
A =B =7 or R, the Kunneth formula holds as soon as X or Y has the
same homotopy type as a finite cell complex.

Proof. If Y satisfies the assumption, we may suppose in fact that Y is a finite
cell complex by the homotopy invariance. Then Y is compact and H*(Y, B)
is finitely generated, so Th. 15.10 can be applied. U
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16. Poincaré duality

16.A. Injective Modules and Ext Functors

The study of duality requires some algebraic preliminaries on the Hom func-
tor and its derived functors Ext?. Let R be a commutative ring with unit, M
a R-module and

0—A—B—C—0

an exact sequence of R-modules. Then we have exact sequences

0 —>H0mR(M, A) — HOIIlR(M, B) — HOIIIR(M, C),
Homp (A, M) <— Hompg(B, M) <— Hompg(C, M) <— 0,

i.e. Hom(M, e) is a covariant left exact functor and Hom(e, M) a contravari-
ant right exact functor. The module M is said to be projective if Hom (M, e)
is also right exact, and injective if Hom(e, M) is also left exact. Every free
R-module is projective. Conversely, if M is projective, any surjective mor-
phism /' — M from a free module F' onto M must split (Id M has a preimage
in Hom(M, F )), if R is a principal ring, “projective” is therefore equivalent
to “free”.

(16.1) Proposition. Over a principal ring R, a module M is injective if and
only if it is divisible, i.e. if for every x € M and X\ € R~ {0}, there exists
y € M such that \y = x.

Proof. If M is injective, the exact sequence 0 — R MR R/AR — 0
shows that

M = Hom(R, M) 2% Hom(R, M) = M

must be surjective, thus M is divisible.

Conversely, assume that R is divisible. Let f : A — M be a morphism
and B D A. Zorn’s lemma implies that there is a maximal extension f : A —
M of f where A C AC B.If A# B, select x € B~ A and consider the ideal
I of elements A € R such that Az € A. As R is principal we have I = AR for
some Ag. If A\g # 0, select y € M such that Aoy = f(Aoz) and if Ay = 0 take
y arbitrary. Then fcan be extended to A+ Rz by letting f(x) = y. This is
a contradiction, so we must have A = B. O

(16.2) Proposition. Every module M can be embedded in an injective
module M .

Proof. Assume first R = Z. Then set
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M’ = Homy(M,Q/Z), M" =Homy(M',Q/Z) c Q/ZM .

Since Q/Z is divisible, Q/Z and Q/ZM " are injective. It is therefore sufficient
to show that the canonical morphism M — M" is injective. In fact, for
any x € M ~ {0}, the subgroup Zz is cyclic (finite or infinite), so there is
a non trivial morphism Zz — Q/Z, and we can extend this morphism into
a morphism u : M — Q/Z. Then v € M’ and u(z) # 0, s0 M — M" is
injective. .

Now, for an arbitrary ring R, we set M = Homy (R, Q/ZM,). There are
R-linear embeddings

M = HomR(R,M) — HomZ(R, M) — Homyg, (RaQ/ZM,) = M

and since HomR(o,M) ~ Homy (o,Q/ZM'), it is clear that M is injective
over the ring R. O

As a consequence, any module has a (cohomological) resolution by injec-
tive modules. Let A, B be given R-modules, let d’ : B — D® be an injective
resolution of B and let d” : Cy — A be a free (or projective) resolution of A.
We consider the cohomology double complex

KP? =Hom(Cy, D?), d=d + (-1)?(d")T

(t means transposition) and the associated first and second spectral se-
quences. Since Hom(e, D?) and Hom(C|, ) are exact, we get

EP® = Hom(A, D?), E™ = Hom(C,, B),
EPT = E’f’q =0 for ¢#0.

Therefore, both spectral sequences collapse in E; and we get
H'(K*) = H'(Hom(A, D*)) = H'(Hom(C,, B)) ;

in particular, the cohomology groups H'(K*) do not depend on the choice of
the resolutions C, or D°.

(16.3) Definition. The g-th extension module of A, B is
Ext%(A, B) = HY(K*) = H( Hom(A, D*)) = H?( Hom(C,, B)).

By the left exactness of Hom(A,e), we get in particular Ext’(4, B) =
Hom(A, B). If A is projective or B injective, then clearly Ext?(A, B) = 0 for
all ¢ > 1. Any exact sequence 0 -+ A —+ A" — A” — 0 is converted into an
exact sequence by Hom(e, D®), thus we get a long exact sequence

0 — Hom(A”, B) — Hom(A', B) — Hom(A, B) — Ext' (A", B) - --
— Ext?(A”, B) — Ext?(A’, B) — Ext9(A, B) — Ext?"(A”,B)---
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Similarly, any exact sequence 0 — B — B’ — B” — 0 yields

0 — Hom(A, B) — Hom(A, B') — Hom(A, B") — Ext'(A,B) - -
— BExt9(A, B) — Ext?(A, B') — ExtY(A, B") — Ext?t' (A4, B) - --
Suppose now that R is a principal ring. Then the resolutions Cq or D*® can
be taken of length 1 (any quotient of a divisible module is divisible), thus
Ext?(A, B) is always 0 for ¢ > 2. In this case, we simply denote Ext'(4, B) =
Ext(A, B). When A is finitely generated, the computation of Ext(A, B) can be

reduced to the cyclic case, since Ext(A, B) = 0 when A is free. For A = R/aR,
the obvious free resolution R %R gives

(16.4) Extr(R/aR,B)= B/aB.

(16.5) Lemma. Let K, be a homology complex and let M — M?® be an
injective resolution of a R-module M. Let L® be the simple complex associated
to LPY = Homp (K4, MP). There is a split exact sequence

0 — Ext(Hy—1(Ko),M) — HY(L*) — Hom (Hy(K,),M) — 0.

Proof. As the functor Hompg (e, MP) is exact, we get

LEY? = Hom (Hq(K.),Mp),

Hom (Hy(K.),M) for p=0,
tEy? = ¢ Bxt(Hy(K,),M) for p=1,
0 for p > 2.

The spectral sequence collapses in E5, therefore we get
Go(H(L*)) = Hom (H,(K.), M),
G1 (Hq(L')) = Ext (Hq_l(K.), M)

and the expected exact sequence follows. By the same arguments as at the
end of the proof of Formula 15.5, we may assume that K, is split, so that
there is a projection K, — Z,. Then the composite morphism

Hom (Hy(K.), M) = Hom(Z, /By, M) — Hom(K,/By, M)
C Z9(L*) — HY(L®)

defines a splitting of the exact sequence. O
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16.B. Poincaré Duality for Sheaves

Let A be a sheaf of abelian groups on a locally compact topological space X
of finite topological dimension n = topdim X. By 13.12 ¢), A admits a soft
resolution £° of length n. If M — M° — M! — 0 is an injective resolution of
a R-module M, we introduce the double complex of presheaves ?%?M defined
by

(16.6) 3%%,(U) = Homp (L7~4(U), MP),

where the restriction map F5%,(U) — F4% (V) is the adjoint of the inclu-
sion L~U(V) — L72~9(U) when V C U. As L™~ 17 is soft, any f € L?~9(U)
can be written as f = ) f, with (f,) subordinate to any open covering (U,)
of U ; it follows easily that F7%, satisfy axioms (II-2.4) of sheaves. The in-
jectivity of MP implies that ;% is a flabby sheaf. By Lemma 16.5, we get
a split exact sequence

0 — Ext(H}" (X, A), M) — HY(F (X))
(16.7) — Hom (H?~9(X,A),M) — 0.

This can be seen as an abstract Poincaré duality formula, relating the co-
homology groups of a differential sheaf F% ,, “dual” of A to the dual of
the cohomology with compact support of A. Tn concrete applications, it still
remains to compute H? (?;LM(X)). This can be done easily when X is a
manifold and A is a constant or locally constant sheaf.

16.C. Poincaré Duality on Topological Manifolds

Here, X denotes a paracompact topological manifold of dimension n.

(16.8) Definition. Let L be a R-module. A locally constant sheaf of stalk L
on X is a sheaf A such that every point has a neighborhood 2 on which A,
1s R-isomorphic to the constant sheaf L.

Thus, a locally constant sheaf A can be seen as a discrete fiber bundle
over X whose fibers are R-modules and whose transition automorphisms are
R-linear. If X is locally contractible, a locally constant sheaf of stalk L is
given, up to isomorphism, by a representation p : m(X) — Autgr(L) of
the fundamental group of X, up to conjugation; denoting by X the universal
covering of X, the sheaf A associated to p can be viewed as the quotient of
X x L by the diagonal action of 71(X). We leave the reader check himself
the details of these assertions: in fact similar arguments will be explained in
full details in §V-6 when properties of flat vector bundles are discussed.

Let A be a locally constant sheaf of stalk L, let £® be a soft resolution of
A and ?Z’?M the associated flabby sheaves. For an arbitrary open set U C X,
Formula (16.7) gives a (non canonical) isomorphism
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HY(F% 3 (U)) =~ Hom (H} (U, A), M) @ Ext(H} (U, A), M)

and in the special case ¢ = 0 a canonical isomorphism

(16.9) H°(F% (U)) = Hom (HZ (U, A),M).

For an open subset {2 homeomorphic to R", we have A, ~ L. Proposition
14.16 and the exact sequence of the pair yield

L for q=n,

If 2 ~R", we find
H°(F% p(92)) ~ Hom(L, M), H"(F% 3,(£2)) ~ Ext(L, M)

and Hq(?:q,M(Q)) = 0 for ¢ # 0,1. Consider open sets V C {2 where V
is a deformation retract of (2. Then the restriction map HY (?:Q’M(Q)) —
H1 (9’;l (V) is an isomorphism. Taking the direct limit over all such neigh-

borhoods V' of a given point = € §2, we see that H°(F$ ) and 1}61(?:4 )
are locally constant sheaves of stalks Hom(L, M) and Ext(L, M), and that
HYTF % ) = 0 for ¢ #0,1. When Ext(L, M) = 0, the complex FJ ,/ is thus

a flabby resolution of H° = H°(FY ,,) and we get isomorphisms
(16.10) HI(F% 1 (X)) = HY(X, H"),
(16.11) H°(U) = H*(F% 5 (U)) = Hom (HZ (U, A), M).

(16.12) Definition. The locally constant sheaf Tx = H°(F3 ;) of stalk Z
defined by

7x(U) = Homy, (H2(U,Z),Z)

is called the orientation sheaf (or dualizing sheaf) of X .

This sheaf is given by a homomorphism m;(X) — {1,—1} ; it is not
difficult to check that 7x coincides with the trivial sheaf Z if and only if X is
orientable (cf. exercice 18.7). In general, H*(U, A) = H}(U,Z) ®z A(U) for
any small open set U on which A is trivial, thus

H(F% p) = 7x ®z Hom(A, M).
A combination of (16.7) and (16.10) then gives:
(16.13) Poincaré duality theorem. Let X be a topological manifold, let A

be a locally constant sheaf over X of stalk L and let M be a R-module such
that Ext(L, M) = 0. There is a split exact sequence
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0 — Ext(H! 7YX, A),M) — HY(X,7x ® Hom(A, M))
— Hom (H}~9(X,A), M) — 0.
In particular, if either X is orientable or R has characteristic 2, then

0 — Ext(H? 7YX, R), R) — HY(X,R) — Hom (H} (X, R), R)
— 0. 0

(16.14) Corollary. Let X be a connected topological manifold, n = dim X.
Then for any R-module L

a) H'(X,7x ® L) ~ L ;
b) H*(X,L)~ L/2L if X is not orientable.

Proof. First assume that L is free. For ¢ = 0 and A = 7x ® L, the Poincaré
duality formula gives an isomorphism

Hom (H}(X,7x ® L), M) ~ Hom(L, M)

and the isomorphism is functorial with respect to morphisms M — M.
Taking M = L or M = H»(X,7x ® L), we easily obtain the existence of
inverse morphisms H*(X,7x ® L) — L and L — H}'(X,7x ® L), hence
equality a). Similarly, for A = L we get

Hom (H(X,L),M) ~ H°(X, 7x ® Hom(L, M)).

If X is non orientable, then 7x is non trivial and the global sections of the
sheaf 7x ® Hom(L, M) consist of 2-torsion elements of Hom(L, M), that is

Hom (H} (X, L), M) ~ Hom(L/2L, M).

Formula b) follows. If L is not free, the result can be extended by using a free
resolution 0 — L; — Ly — L — 0 and the associated long exact sequence.
O

(16.15) Remark. If X is a connected non compact n-dimensional manifold,
it can be proved (exercise 18.7) that H™(X, A) = 0 for every locally constant
sheaf A on X. O

Assume from now on that X is oriented. Replacing M by L ® M and
using the obvious morphism M — Hom(L,L ® M), the Poincaré duality
theorem yields a morphism

(16.16) HY(X,M) — Hom (H? %(X,L),L® M),

in other words, a bilinear pairing
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(16.16') H"9(X, L) x H(X, M) — L ® M.

(16.17) Proposition. Up to the sign, the above pairing is given by the cup
product, modulo the identification H*( X, L@ M)~ L ® M.

Proof. By functoriality in L, we may assume L = R. Then we make the
following special choices of resolutions:

£L9=R4 for g<n, L"=ker(RY — Rlat1),
M?° = an injective module containing MM™(X)/d"~*MI—1(X).

We embed M in M° by A — u ®z A where u € Z[M(X) is a representative
of a generator of H?(X,Z), and we set M! = MY/M. The projection map
M? — M can be seen as an extension of

dt s MP(X)/dr T M (X)