
Design and Analysis of Algorithms: Course Notes

Prepared by

Samir Khuller

Dept. of Computer Science

University of Maryland

College Park, MD 20742

samir@cs.umd.edu

(301) 405 6765

April 19, 1996



Preface

These are my lecture notes from CMSC 651: Design and Analysis of Algorithms, a one semester

course that I taught at University of Maryland in the Spring of 1995. The course covers core material in

algorithm design, and also helps students prepare for research in the �eld of algorithms. The reader will

�nd an unusual emphasis on graph theoretic algorithms, and for that I am to blame. The choice of topics

was mine, and is biased by my personal taste. The material for the �rst few weeks was taken primarily

from the textbook on Algorithms by Cormen, Leiserson and Rivest. A few papers were also covered, that

I personally feel give some very important and useful techniques that should be in the toolbox of every

algorithms researcher.

The course was a 15 week course, with 2 lectures per week. These notes consist of 27 lectures. There

was one midterm in-class examination and one �nal examination. There was no lecture on the day of the

midterm. No scribe was done for the guest lecture by Dr. R. Ravi.
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CMSC 651 Advanced Algorithms
Lecturer: Samir Khuller

Lecture 1
Th. Jan. 19, 1995

Original notes by Hsiwei Yu.

1 Overview of Course

Read [5] Chapter 18.1{18.3 for general amortization stu�.

The course will cover many di�erent topics. We will start out by studying various data structures together

with techniques for analyzing their performance. We will then study the applications of these data structures

to various graph algorithms, such as minimum spanning trees, max-
ow, matching etc. We will then go on to

the study of NP-completeness and NP-hard problems, along with polynomial time approximation algorithms

for these hard problems.

1.1 Amortized Analysis

Typically, most data structures provide absolute guarantees on the worst case time for performing a single

operation. We will study data structures that are unable to guarantee a good bound on the worst case time

per operation, but will guarantee a good bound on the average time it takes to perform an operation. (For

example, a sequence of m operations will be guaranteed to take m�T time, giving an average, or amortized

time of T per operation. A single operation could take time more than T .)

Example 1: Consider a STACK with the following two operations: Push(x) pushes item x onto the stack,

and M-POP(k) pop's the top-most k items from the stack (if they exist). Clearly, a single M-POP operation

can take more than O(1) time to execute, in fact the time is min(k; s) where s is the stack-size at that

instant.

It should be evident, that a sequence of n operations however runs only in O(n) time, yielding an

\average" time of O(1) per operation. (Each item that is pushed into the stack can be popped at most

once.)

There are fairly simple formal schemes that formalize this very argument. The �rst one is called the

accounting method. We shall now assume that our computer is like a vending machine. We can put in $

1 into the machine, and make it run for a constant number of steps (we can pick the constant). Each time

we push an item onto the stack we use $ 2 in doing this operation. We spend $ 1 in performing the push

operation, and the other $ 1 is stored with the item on the stack. (This is only for analyzing the algorithm,

the actual algorithm does not have to keep track of this money.) When we execute a multiple pop operation,

the work done for each pop is paid for by the money stored with the item itself.

The second scheme is the potential method. We de�ne the potential � for a data structure D. The

potential maps the current \state" of the data structure to a real number, based on its current con�guration.

In a sequence of operations, the data structure transforms itself from state Di�1 to Di (starting at D0).

The real cost of this transition is ci (for changing the data structure). The potential function satis�es the

following properties:

� �(Di) � 0.

� �(D0) = 0

We de�ne the amortized cost to be c
0
i = ci + �(Di) � �(Di�1), where ci is the true cost for the i

th

operation.

Clearly,
nX
i=1

c
0
i =

nX
i=1

ci +�(Dn) ��(D0):

Thus, if the potential function is always positive and �(D0) = 0, then the amortized cost is an upper

bound on the real cost. Notice that even though the cost of each individual operation may not be constant,

we may be able to show that the cost over any sequence of length n is O(n). (In most applications, where
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data structures are used as a part of an algorithm; we need to use the data structure for over a sequence

of operations and hence analyzing the data structure's performance over a sequence of operations is a very

reasonable thing to do.)

In the stack example, we can de�ne the potential to be the number of items on the stack. (Exercise:

work out the amortized costs for each operation to see that Push has an amortized cost of 2, and M-Pop has

an amortized cost of 1.)

Example 2: The second example we consider is a k-bit counter. We simply do INCREMENT operations on

the k-bit counter, and wish to count the total number of bit operations that were performed over a sequence

of n operations. Let the counter be = < bkbk�1 : : : b1 >. Observe that the least signi�cant bit b1, changes in

every step. Bit b2 however, changes in every alternate step. Bit b3 changes every 4th step, and so on. Thus

the total number of bit operations done are:

n+
n

2
+
n

4
+
n

8
: : : � 2n:

A potential function that lets us prove an amortized cost of 2 per operation, is simply the number of 1's

in the counter. Each time we have a cascading carry, notice that the number of 1's decrease. So the potential

of the data structure falls and thus pays for the operation. (Exercise: Show that the amortized cost of an

INCREMENT operation is 2.)
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CMSC 651 Advanced Algorithms
Lecturer: William Gasarch

Lecture 2
Tu. Jan. 24, 1995

Original notes by Mark Carson.

2 Splay Trees

Read [21] Chapter 4.3 for Splay trees stu�.

Splay trees are a powerful data structure developed by Sleator and Tarjan [20], that function as search

trees without any explicit balancing conditions. They serve as an excellent tool to demonstrate the power

of amortized analysis.

Our basic operation is: splay(k), given a key k. This involves two steps:

1. Search through out the tree to �nd node with key k.

2. Do a series of rotations (a splay) to bring it to the top.

The �rst of these needs a slight clari�cation:

If k is not found, grab the largest node with key less than k instead (then splay this to the top.)

2.1 Use of Splay Operations

All tree operations can be simpli�ed through the use of splay:

1. Access(x) - Simply splay to bring it to the top, so it becomes the root.

2. Insert(x) - Run splay(x) on the tree to bring y, the largest element less than x, to the top. The insert

is then trivial:

A B

y

�!

A

y
B

x

3. Delete(x) - Run splay(x) on the tree to bring x to the top. Then run splay(x) again in x's left subtree

A to bring y, the largest element less than x, to the top of A. y will have an empty right subtree in A

since it is the largest element there. Then it is trivial to join the pieces together again without x:

A B

x

�!
A B

.

A �!
A'

y

�!
A' B

y
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4. Split(x) - Run splay(x) to bring x to the top and split.

A B

x

�! x;A;B

Thus with at most 2 splay operations and constant additional work we can accomplish any desired

operation.

2.2 Time for a Splay Operation

How much work does a splay operation require? We must:

1. Find the item (time dependent on depth of item).

2. Splay it to the top (time again dependent on depth)

Hence, the total time is O(2� depth of item).

How much time do k splay operations require? The answer will turn out to be O(k logn), where n is the

size of the tree. Hence, the amortized time for one splay operation is O(logn).

The basic step in a splay operation is a rotation:

A B

x C

y

�!rotate(y)

A

B C

y

x

Clearly a rotation can be done in O(1) time. (Note there are both left and right rotations, which are in

fact inverses of each other. The sketch above depicts a right rotation going forward and a left rotation going

backward. Hence to bring up a node, we do a right rotation if it is a left child, and a left rotation if it is a

right child.)

A splay is then done with a (carefully-selected) series of rotations. Let p(x) be the parent of a node x.

Here is the splay algorithm:

Splay Algorithm:

while x 6= root do

if p(x) = root then rotate(p(x))

A B

x C

root

�!rotate(p(x))

A

B C

root

x

else if both x and p(x) are left (resp. right) children, do right (resp. left) rotations:

begin

rotate(p2(x))

rotate(p(x))

end
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A B

x C

y = p(x) D

z = p
2(x)

�!rotate(p2(x))

A B

x

C D

z

y

�!rotate(p(x))

A

B

C D

z

y

x

else /* x and p(x) are left/right or right/left children */ begin

rotate(p(x))

rotate(p(x)) /* note this is a new p(x) */

end

A

B C

x

y D

z

�!rotate(p(x))

A B

y C

x D

z

�!rotate(p(x))

A B

y

C D

z

x

�

od

When will accesses take a long time? When the tree is long and skinny.

What produces long skinny trees?

� a series of inserts in ascending order 1, 3, 5, 7, : : :

� each insert will take O(1) steps { the splay will be a no-op.

� then an operation like access(1) will take O(n) steps.

� HOWEVER this will then result in the tree being balanced.

� Also note that the �rst few operations were very fast.

Therefore, we have this general idea { splay operations tend to balance the tree. Thus any long access

times are \balanced" (so to speak) by the fact the tree ends up better balanced, speeding subsequent accesses.

In potential terms, the idea is that as a tree is built high, its \potential energy" increases. Accessing a

deep item releases the potential as the tree sinks down, paying for the extra work required.
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CMSC 651 Advanced Algorithms
Lecturer: Samir Khuller

Lecture 3
Th. Jan. 26, 1995

Original notes by Mark Carson.

3 Amortized Time for Splay Trees

Read [21] Chapter 4.3 for Splay trees stu�.

Theorem 3.1 The amortized time of a splay operation is O(logn).

To prove this, we need to de�ne an appropriate potential function.

De�nition 3.2 Let s be the splay tree. Let d(x) = the number of descendants of x (including x). De�ne

the rank of x; r(x) = log d(x) and the potential function

�(s) =
X
x�s

r(x):

Thus we have:

� d(leaf node) = 1, d(root) = n

� r(leaf node) = 0, r(root) = logn

Clearly, the better balanced the tree is, the lower the potential � is. (You may want to work out the

potential of various trees to convince yourself of this.)

We will need the following lemmas to bound changes in �.

Lemma 3.3 Let c be a node in a tree, with a and b its children. Then r(c) > 1 +min(r(a); r(b)).

Proof:

Looking at the tree, we see d(c) = d(a) + d(b) + 1. Thus we have r(c) > 1 +min(r(a); r(b)).

. .

a

. .

b

c

2

We apply this to

Lemma 3.4 (Main Lemma) Let r(x) be the rank of x before a rotation (a single splay step) bringing x

up, and r
0(x) be its rank afterward. Similarly, let s denote the tree before the rotation and s

0
afterward.

Then we have:

1. r
0(x) � r(x)

2. If p(x) is the root then �(s0) ��(s) < r
0(x)� r(x)

3. if p(x) 6= root then �(s0)� �(s) < 3(r0(x)� r(x))� 1

Proof:
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1. Obvious as x gains descendants.

2. Note in this case we have

A B

x
C

y

�!rotate(p(x))

A

B C

y

x

so that clearly r0(x) = r(y). But then since only x and y change rank in s0,

�(s0)� �(s)
= (r0(x) � r(x)) + (r0(y) � r(y))
= r

0(y) � r(x) < r

0(x)� r(x)

since clearly r0(y) < r
0(x).

3. Consider just the following case (the others are similar):

A B

x C

y = p(x) D

z = p
2(x)

�!rotate(p2(x))

A B

x

C D

z

y

�!rotate(p(x))

A

B

C D

z

y

x

Let r represent the ranks in the initial tree s, r00 ranks in the middle tree s00 and r
0 ranks in the �nal

tree s0. Note that, looking at the initial and �nal trees, we have

r(x) < r(y)

and

r
0(y) < r

0(x)

so

r
0(y) � r(y) < r

0(x)� r(x)

Hence, since only x; y and z change rank,

�(s0)��(s) = (r0(x)� r(x)) + (r0(y) � r(y)) + (r0(z)� r(z))

< 2(r0(x)� r(x)) + (r0(z)� r(z))(�)

Next from Lemma 1, we have r00(y) > 1 +min(r00(x); r00(z)). But looking at the middle tree, we have

r
00(x) = r(x)

r
00(y) = r

0(x)(= r(z))

r
00(z) = r

0(z)
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so that

r(z) = r
0(x) > 1 +min(r(x); r0(z))

Hence, either we have

r
0(x) > 1 + r(x); so r

0(x)� r(x) > 1

or

r(z)) > 1 + r
0(z); so r

0(z) � r(z) < �1

In the �rst case, since

r
0(z) < r(z) => r

0(z) � r(z) < 0 < r
0(x) � r(x)� 1

clearly

�(s0) � �(s) < 3(r0(x)� r(x)) � 1

In the second case, since we always have r0(x) � r(x) > 0, we again get

�(s0) � �(s) < 2(r0(x)� r(x)) � 1

< 3(r0(x)� r(x)) � 1

2

We will apply this lemma now to determine the amortized cost of a splay operation. The splay operation

consists of a series of splay steps (rotations). For each splay step, if s is the tree before the splay, and s0 the

tree afterwards, we have

at = rt +�(s0) ��(s)

where at is the amortized time, rt the real time. In this case, rt = 1, since a splay step can be done in

constant time.

Note: Here we have scaled the time factor to say a splay step takes one time unit. If instead we say a splay

takes c time units for some constant c, we change the potential function � to be

�(s) = c

X
x�s

r(x):

Consider now the two cases in Lemma 2. For the �rst case (x a child of the root), we have

at = 1 + �(s0)��(s) < 1 + (r0(x)� r(x))
< 3�r+ 1

For the second case, we have

at = 1 + �(s0) � �(s) < 1 + 3(r0(x) � r(x))� 1

= 3(r0(x)� r(x))

= 3�r

Then for the whole splay operation, let s = s0; s1; s2; : : : ; sk be the series of trees produced by the sequence

of splay steps, and r = r0; r1; r2; : : : ; rk the corresponding rank functions. Then the total amortized cost is

at =

kX
i=0

ati < 1 +

kX
i=0

3�ri

But the latter series telescopes, so

at < 1 + 3( final rank of x� initial rank of x)

Since the �nal rank of x is logn, we then have

at < 3 logn+ 1

as desired.
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3.1 Additional notes

1. (Exercise) The accounting view is that each node x stores r(x) dollars [or some constant multiple

thereof]. When rotates occur, money is taken from those nodes which lose rank to pay for the operation.

2. The total time for k operations is actually O(k logm), where m is the largest size the tree ever attains

(assuming it grows and shrinks through a series of inserts and deletes).

3. As mentioned above, if we say the real time for a rotation is c, the potential function � is

�(s) =
X
x�s

cr(x)

11



CMSC 651 Advanced Algorithms
Lecturer: Samir Khuller

Lecture 4
Tu. Jan 31, 1995

Original notes by Matos Gilberto and Patchanee Ittarat.

4 Maintaining Disjoint Set's

Read [5] Chapter 22 for Disjoint Sets Data Structure and Chapter 24 for Kruskal's Minimum Spanning Tree

Algorithm.

I assume everyone is familiar with Kruskal's MST algorithm. This algorithm is the nicest one to motivate

the study of the disjoint set data structure. There are other applications for the data structure as well. We

will not go into the details behind the implementation of the data structure, since [5] gives a very nice

description of the UNION, MAKESET and FIND operations.

4.1 Disjoint set operations:

� Makeset(x) : A Makeset(x) � A = fxg.

� Find(y) : given y, �nd to which set y belongs.

� Union(A;B) : C  Union(A;B) � C = A [B.
Observe that the Union operation can be speci�ed either by two sets or by two elements (in the latter

case, we simply perform a union of the sets the elements belong to).

The name of a set is given by the element stored at the root of the set (one can use some other naming

convention too). This scheme works since the sets are disjoint.

4.2 Data structure:

name

Figure 1: Data Structure

Find - worst case cost is O(n).

Union - worst case cost is O(1).

To improve total time we always hook the shallower tree to the deeper tree (this will be done by keeping

track of ranks and not the exact depth of the tree).

Ques: Why will these improve the running time?

Ans:Since the amount of work depends on the height of a tree.

We use the concept of the \rank" of a node. The rank of a vertex denotes an upper bound on the depth

of the sub-tree rooted at that node.

rank(x) = 0 for fxg
Union(A,B) - see Fig. 2.

If rank(a) < rank(b), rank(c) = rank(b).

If rank(a) = rank(b), rank(c) = rank(b) + 1.

12



A B

rank(a) rank(b)

C = Union(A,B)

A
B

Figure 2: Union

x

Figure 3: Rank 0 node

4.3 Union by rank

Union by rank guarantees \at most O(logn) of depth".

Lemma 4.1 A node with rank k has at least 2k descendants.

Proof:

[By induction]

rank(x) = 0) x has no descendants.

The rank and the number of descendants of any node are changed only by the Union operation, so let's

consider a Union operation in Fig. 2.

Case 1 rank(a) < rank(b):

rank(c) = rank(b)

node(c) � node(b)

� 2rank(b)

Case 2 rank(a) = rank(b):

rank(c) = rank(b) + 1

node(a) � 2rank(a) and

node(b) � 2rank(b)

node(c) = node(a) + node(b)

� 2rank(a) + 2rank(b)

� 2rank(b)+1

2

In the Find operation, we can make a tree shallower by path compression. During path compression,

we take all the nodes on the path to the root and make them all point to the root (to speed up future �nd

operations).

13



The UNION operation is done by hooking the smaller rank vertex to the higher rank vertex, and the

FIND operation performs the path compression while the root is being searched for.

Path compression takes two passes { �rst to �nd the root, and second time to change the pointers of all

nodes on the path to the root so that they point directly to the root. So after the �nd operation all the

nodes point directly to the root of the tree.

4.4 Upper Bounds on the Disjoint-Set Union Operations

Simply recall that each vertex has a rank (initially the rank of each vertex is 0) and this rank is incremented

by 1 one whenever we perform a union of two sets that have the same rank. We only worry about the time

for the FIND operation (since the UNION operation takes constant time). The parent of a vertex always has

a higher rank than the vertex itself. This is true for all nodes except for the root (which is its own parent).

The following theorem gives two bounds for the total time taken to perform m �nd operations. (A union

takes constant time.)

Theorem 4.2 m operations (including makeset, �nd and union) take total time O(m log� n) or O(m +

n logn), where log� n = fmin(i)j log(i) n � 1g.

log� 16 = 3; and

log� 216 = 4

To prove this, we need some observations:

1. Rank of a node starts at 0 and goes up as long as the node is a root. Once a node becomes a non-root

the rank does not change.

2. Rank(p(x)) is non-decreasing. In fact, each time the parent changes the rank of the parent must

increase.

3. Rank(p(x)) > rank(x).

The rank of any vertex is lesser than or equal log2 n, where n is the number of elements.

First lets see the O(m + n logn) bound (its easier to prove). This bound is clearly not great when

m = O(n).

The cost of a single �nd is charged to 2 accounts

1. The �nd pays for the cost of the root and its child.

2. A bill is given to every node whose parent changes (in other words, all other nodes on the �nd path).

Note that every node that has been issued a bill in this operation becomes the child of the root, and

won't be issued any more bills until its parent becomes a child of some other root in a union operation. Note

also that one node can be issued a bill at most log2 n times, because every time a node gets a bill its parent's

rank goes up, and rank is bounded by log2 n. The sum of bills issued to all nodes will be upper bounded by

n log2 n

We will re�ne this billing policy shortly (due to the change of government!).

Lemma 4.3 There are at most
n
2r

nodes of rank r.

Proof:

When the node gets rank r it has � 2r descendants, and it is the root of some tree. After some union

operations this node may no longer be root, and may start to loose some descendants, but its rank will not

change. Assume that every descendant of a root node gets a timestamp of r when the root �rst increases

its rank to r. Once a vertex gets stamped, it will never be stamped again since its new roots will have rank

strictly more than r. Thus for every node of rank r there are at least 2r nodes with a timestamp of r. Since

there are n nodes in all, we can never create more than n
2r

vertices with rank r. 2

We introduce the fast growing function F which is de�ned as (in class I de�ned F (1) = 1 but the proof

is essentially the same).
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1. F (0) = 1

2. F (i) = 2F (i�1)

4.5 Concept of Blocks

If a node has rank r, it belongs to block B(log� r).

� B(0) contains nodes of rank 0 and 1.

� B(1) contains nodes of rank 2.

� B(2) contains nodes of rank 3 and 4.

� B(3) contains nodes of rank 5 through 16.

� B(4) contains nodes of rank 17 through 65536.

Since the rank of a node is at most log2 n where n is the number of elements in the set, the number of

blocks necessary to put all the elements of the sets is bounded by log�(logn) which is log� n� 1. So blocks

from B(0) to B(log� n� 1) will be used.

The �nd operation goes the same way as before, but the billing policy is di�erent. Now the �nd operation

pays for the work done for the root and its immediate child, and it also pays for all the nodes which are not

in the same block as their parents. All of these nodes are children of some other nodes, so their ranks will

not change and they are bound to stay in the same block until the end of computation. If a node is in the

same block as its parent it will be billed for the work done in the �nd operation. As before �nd operation

pays for the work done on the root and its child. Number of nodes whose parents are in di�erent blocks is

limited to log� n� 1, so the cost of the �nd operation is upper bounded by log� n� 1 + 2.

After the �rst time a node is in the di�erent block from its parent, it is always going to be the case

because the rank of the parent only goes up. This means that the �nd operation is going to pay for the work

on that node every time. So any node will �rst be billed for the �nd operations a certain number of times,

and after that all subsequent �nds will pay for their work on the element. We need to �nd an upper bound

for the number of times a node is going to be billed for the �nd operation.

Consider the block with index i; it contains nodes with the rank in the interval from F (i�1)+1 to F (i).

The number of nodes in this block is upper bounded by the possible number of nodes in each of the ranks.

There are at most n=(2r) nodes of rank r, so this is a sum of a geometric series, whose value is

F (i)X
r=F (i�1)+1

n

2r
=

n

2F (i�1)
=

n

F (i)

Notice that this is the only place where we make use of the exact de�nition of function F .

After every �nd operation a node changes to a parent with a higher rank, and since there are only

F (i) � F (i � 1) di�erent ranks in the block, this bounds the number of bills a node can ever get. Since

the block B(i) contains at most n=F (i) nodes, all the nodes in B(i) can be billed at most n times (its the

product of the number of nodes in B(i) and the upper bound on the bills a single node may get). Since there

are at most log� n blocks the total cost for these �nd operations is bounded by n log� n.

This is still not the tight bound on the number of operations, because Tarjan has proved that there is an

even tighter bound which is proportional to the O(m�(m;n)) for m union, makeset and and �nd operations,

where alpha is the inverse ackerman function whose value is lower than 4 for all practical applications.

This is quite di�cult to prove (see Tarjan's book). There is also a corresponding tight lower bound on any

implementation of disjoint set data structures on the pointer machine model.
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5 Minimum Spanning Trees

Read Chapter 6 from [21]. Yao's algorithm is from [23].

Given a graph G = (V;E) and a weight function w : E ! R
+ we wish to �nd a spanning tree T � E such

that its total weight
P

e2T w(e) is minimized. We call the problem of determining the tree T the minimum-

spanning tree problem and the tree itself an MST. We can assume that all edge weights are distinct (this

just makes the proofs easier). To enforce the assumption, we can number all the edges and use the edge

numbers to break ties between edges of the same weight.

We will present now two approaches for �nding an MST. The �rst is Prim's method and the second is

Yao's method (actually a re�nement of Boruvka's algorithm). To understand why all these algorithms work,

one should read Tarjan's red-blue rules. A red edge is essentially an edge that is not in an MST, a blue edge

is an edge that is in an MST. A cut (X;Y ) for X;Y � V is simply the set of edges between vertices in the

sets X and Y .

Red rule: consider any cycle that has no red edges on it. Take the highest weight uncolored edge and

color it red.

Blue rule: consider any cut (S; V � S) where S � V that has no blue edges. Pick the lowest weight edge

and color it blue.

All the MST algorithms can be viewed as algorithms that apply the red-blue rules in some order.

5.1 Prim's algorithm

Prim's algorithm operates much like Dijkstra's algorithm. The tree starts from an arbitrary vertex v and

grows until the tree spans all vertices in V . At each step our currently connected set is S. Initially S = fvg.
A lightest edge connecting a vertex in S with a vertex in V � S is added to the tree. Correctness of this

algorithm follows from the observation that a partition of vertices into S and V � S de�nes a cut, and the

algorithm always chooses the lightest edge crossing the cut. The key to implementing Prim's algorithm

e�ciently is to make it easy to select a new edge to be added to the tree formed by edges in MST. Using a

Fibonacci heap we can perform EXTRACT-MIN and DELETE-MIN operation in O(logn) amortized time

and DECREASE-KEY in O(1) amortized time. Thus, the running time is O(m + n logn).

It turns out that for sparse graphs we can do even better! We will study Yao's algorithm (based on

Boruvka's method). There is another method by Fredman and Tarjan that uses F-heaps. However, this

is not the best algorithm. Using an idea known as \packeting" this The FT algorithm was improved by

Gabow-Galil-Spencer-Tarjan (also uses F-heaps). More recently (in Fall 1993), Klein and Tarjan announced

a linear time randomized MST algorithm based on a linear time veri�cation method (i.e., given a tree T and

a graph G can we verify that T is an MST of G?).

5.2 Yao/Boruvka's algorithm

We �rst outline Boruvka's method. Boruvka's algorithm starts with a collection of singleton vertex sets. We

put all the singleton sets in a queue. We pick the �rst vertex v, from the head of the queue and this vertex

selects a lowest weight edge incident to it and marks this edge as an edge to be added to the MST. We

continue doing this until all the vertices in the queue, are processed. At the end of this round we contract

the marked edges (essentially merge all the connected components of the marked edges into single nodes

{ you should think about how this is done). Notice that no cycles are created by the marked edges if we

assume that all edge weights are distinct.

Each connected component has size at least two (perhaps more). (If v merges with u, and then w merges

with v, we get a component of size three.) The entire processing of a queue is called a phase. So at the end

of phase i, we know that each component has at least 2i vertices. This lets us bound the number of phases
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by logn. (Can be proved by induction.) This gives a running time of O(m logn) since there are at most logn

phases. Each phase can be implemented in O(m) time if each node marks the cheapest edge incident to it,

and then we contract all these edges and reconstruct an adjacency list representation for the new \shrunken"

graph where a connected component of marked edges is viewed as a vertex. Edges in this graph are edges

that connect vertices in two di�erent components. Edges between nodes in the same component become

self-loops and are discarded.

We now describe Yao's algorithm. This algorithm will maintain connected components and will not

explicitly contract edges. We can use the UNION-FIND structure for keeping track of the connected com-

ponents.

The main bottleneck in Boruvka's algorithm is that in a subsequent phase we have to recompute (from

scratch) the lowest weight edge incident to a vertex. This forces us to spend time proportional to
P

v2Ti d(v)

for each tree Ti. Yao's idea was to \somehow order" the adjacency list of a vertex to save this computational

overhead. This is achieved by partitioning the adjacency list of each vertex v into k groups E1
v; E

2
v; : : : ; E

k
v

with the property that if e 2 Ei
v and e

0 2 Ej
v and i < j, then w(e) � w(e0). For a vertex with degree d(v),

this takes O(d(v) log k) time. (We run the median �nding algorithm, and use the median to partition the

set into two. Recurse on each portion to break the sets, and obtain four sets by a second application of the

median algorithm, each of size
d(v)

4
. We continue this process until we obtain k sets.) To perform this for

all the adjacency lists takes O(m log k) time.

Let T be a set of edges in the MST. V S is a collection of vertex sets that form connected components. We

may assume that V S is implemented as a doubly linked list, where each item is a set of vertices. Moreover,

the root of each set contains a pointer to the position of the set in the queue. (This enables the following

operation: given a vertex u do a FIND operation to determine the set it belongs to, and then yank the set

out of the queue.)

The root of a set also contains a list of all items in the set (it is easy to modify the UNION operation

to maintain this invariant.) E(v) is the set of edges incident on vertex v. `[v] denotes the current group of

edges being scanned for vertex v. small[v] computes the weight of the lowest weight edge incident on v that

leaves the set W . If after scanning group E
`[v]
v we do not �nd an edge leaving W , we scan the next group.

proc Yao-MST(G);

T; V S  ;;
8v : `[v] 1;

while jV Sj > 1 do

Let W be the �rst set in the queue VS;

For each v 2W do;

small[v] 1;

while small[v] = 1 and `[v] � k do

For each edge e = (v; v0) in E
`[v]
v do

If find(v0) = find(v) then delete e from E

`[v]
v

else small[v] min (small[v], w(e))

If small[v] =1 then `[v] `[v] + 1

end-while

end-for

Let the lowest weight edge out of W be (w;w0) where w 2 W and w
0 2W 0;

Delete W and W
0 from V S and add union(W;W

0) to V S;

Add (w;w0) to T

end-while

end proc;

Each time we scan an edge to a vertex in the same set W , we delete the edge and charge the edge the

cost for the �nd operation. The �rst group that we �nd containing edges going out of W , are the edges

we pay for (at most
d(v)

k
log� n). In the next phase we start scanning at the point that we stopped last

time. The overall cost of scanning in one phase is O(m
k
log� n). But we have logn phases in all, so the total

running time amounts to O(m
k
log� n logn) +O(m logk) (for the preprocessing). If we pick k = logn we get

O(m log� n) + O(m log logn), which is O(m log logn).
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6 Fredman-Tarjan MST Algorithm

Fredman and Tarjan's algorithm appeared in [6].

We maintain a forest de�ned by the edges that have so far been selected to be in the MST. Initially, the

forest contains each of the n vertices of G, as a one-vertex tree. We then repeat the following step until there

is only one tree.

High Level

start with n trees each of one vertex

repeat

procedure GROWTREES

procedure CLEANUP

until only one tree is left

Informally, the algorithm is given at the start of each round a forest of trees. The procedure GROWTREES

grows each tree for a few steps (this will be made more precise later) and terminates with a forest having

fewer trees. The procedure CLEANUP essentially \shrinks" the trees to single vertices. This is done by

simply discarding all edges that have both the endpoints in the same tree. From the set of edges between

two di�erent trees we simply retain the lowest weight edge and discard all other edges. A linear time im-

plementation of CLEANUP will be done by you in the homework (very similar to one phase of Boruvka's

algorithm).

The idea is to grow a single tree only until its heap of neighboring vertices exceeds a certain critical size.

We then start from a new vertex and grow another tree, stopping only when the heap gets too large, or if we

encounter a previously stopped tree. We continue this way until every tree has grown, and stopped because

it had too many neighbours, or it collided with a stopped tree. We distinguish these two cases. In the former

case refer to the tree has having stopped, and in the latter case we refer to it as having halted. We now

condense each tree into a single supervertex and begin a new iteration of the same kind in the condensed

graph. After a su�cient number of passes, only one vertex will remain.

We �x a parameter k, at the start of every phase { each tree is grown until it has more than k \neighbours"

in the heap. In a single call to Growtrees we start with a collection of old trees. Growtrees connects these

trees to form new larger trees that become the old trees for the next phase. To begin, we unmark all the

trees, create an empty heap, pick an unmarked tree and grow it by Prim's algorithm, until either its heap

contains more than k vertices or it gets connected to a marked old tree. To �nish the growth step we mark

the tree. The F-heap maintains the set of all trees that are adjacent to the current tree (tree to grow).

Running Time of GROWTREES

Cost of one phase: Pick a node, and mark it for growth until the F-heap has k neighbors or it collides

with another tree. Assume there exist t trees at the start and m is the number of edges at the start of an

iteration.

Let k = 22m=t:

Notice that k increases as the number of trees decreases. (Observe that k is essentially 2d, where d is the

average degree of a vertex in the super-graph.) Time for one call to Growtrees is upperbounded by

O(t log k +m) = O(t log(22m=t) +m)

= O(t2m=t+m)

= O(m)

This is the case because we perform at most t deletemin operations (each one reduces the number of trees),

and logk is the upperbound on the cost of a single heap operation. The time for CLEANUP is O(m).
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Data Structures
Q = F-heap of trees (heap of neighbors of the current tree)

e = array[trees] of edge (e[T ] = cheapest edge joining T to current tree)

mark = array[trees] of (true, false), (true for trees already grown in this step)

tree = array[vertex] of trees (tree[v] = tree containing vertex v)

edge-list = array[trees] of list of edges (edges incident on T )

root = array[trees] of trees (�rst tree that grew, for an active tree)

proc GROWTREES(G);

MST  ;;
8T : mark[T ] false;

while there exists a tree T0 with mark[T0]= false do

mark[T0] true; (* grow T0 by Prim's algorithm *)

Q ;; root[T0] T0

For edges (v; w) on edge-list[T0] do;

T  tree[w]; (* assume v 2 T0 *)
insert T into Q with key = w(v; w);

e[T ] (v; w);

end-for

done  (Q = ;) _ (jQj > k);

while not done do

T  deletemin(Q);

add edge e[T ] to MST; root[T ] T0;

If not mark[T ] then for edges (v; w) on edge-list[T ] do

T
0  tree[w]; (* assume v 2 T *)

If root[T 0] 6= T0 then (* edge goes out of my tree *)

If T 0 =2 Q then insert T
0 into Q with key = w(v; w) and e[T 0] (v; w);

else if T 0 2 Q and w(v; w) < w(e[T 0]) then dec-key T
0 to w(v; w) and e[T 0] (v; w);

end-if

done  (Q = ;) _ (jQj > k) _mark[T ];

mark[T ] true;

end-while

end-while

end proc;

Comment: It is assumed that insert will check to see if the heap size exceeds k, and if it does, no items

will be inserted into the heap.

We now try to obtain a bound on the number of iterations. The following simple argument is due to

Randeep Bhatia. Consider the e�ect of a pass that begins with t trees and m
0 � m edges (some edges may

have been discarded). Each tree that stopped due to its heap's size having exceeded k, has at least k edges

incident on it leaving the tree. Let us \charge" each such edge (hence we charge at least k edges).

If a tree halted after colliding with an initially grown tree, then the merged tree has the property that it

has charged at least k edges (due to the initially stopped tree). If a tree T has stopped growing because it

has too many neighbors, it may happen that due to a merge that occurs later in time, some of its neighbors

are in the same tree (we will see in a second this does not cause a problem). In any case, it is true that

each �nal tree has charged at least k edges. (A tree that halted after merging with a stopped tree does not

need to charge any edges.) Each edge may get charged twice; hence t
0 � 2m0

k
. Clearly, t0 � 2m

k
. Hence

k
0 = 2

2m

t
0 � 2k. In the �rst round, k = 22m=n. When k � n, the algorithm runs to completion. How many

rounds does this take? Observe that k is increasing exponentially in each iteration.

Let �(m;n) = minfij log(i) n � 2m
n
g. It turns out that the number of iterations is at most �(m;n).

This gives us an algorithm with total running time O(m�(m;n)). Observe that when m > n logn then

�(m;n) = 1. For graphs that are not too sparse, our algorithm terminates in one iteration! For very sprase

graphs (m = O(n)) we actually run for log� n iterations. Since each iteration takes O(m) time, we get an

upper bound of O(m log� n).

CLEANUP will have to do the work of updating the root and tree data structures for the next iteration.
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7 Heaps

This material is from [5] Chapter 20 and 21. Please read the book for a comprehensive description.

We will use heaps to implement MST and Shortest Path algorithms since they provide a quick way of

computing the minimum element in a set.

De�nition 7.1 (d-Heaps) A d-heap is a tree which the following properties hold:

1. Each node have a key attached to it

2. Every internal node (except parents of leaves) have exactly d children

3. [Heap-order property] For any node x, key(parent(x)) � key(x)

Basic operations on heaps

Insert Attach the new item to the rightmost un�lled parent of leaves and restore the heap-order-property

by pushing the new key upwards.

Delete Swap element to be deleted to the rightmost child. Remove the rightmost child and restore the

heap-order property of the swapped node.

Search Except for the minimum (at the top of the tree), not well supported

Time for insert and delete = height of tree = logn. Please see Tarjan's book for more details on heaps.

7.1 Binomial heaps

These are heaps that also provide the power to merge two heaps into one.

De�nition 7.2 (Binomial tree) A binomial tree of height k (denoted as Bk) is de�ned recursively as

follows:

1. B0 is a single node

2. Bi+1 is formed by joining two Bi heaps, making one's root the child of the other

Basic properties of Bk

� Number of nodes : 2k

� Height : k

� Number of child of root (degree of root) : k

In order to store n nodes in binomial tress when n 6= 2k, �rst write n in binary notation, then for every

1 bit in the notation, create a corresponding Bk tree, treating the rightmost bit as 0.

Example : n = 13 = 11012 �! use B3; B2; B0

De�nition 7.3 (Binomial heap) A binomial heap is a (set of) binomial tree(s) where each node has a

key and the heap-order property is preserved. We also have the requirement that for any given i there is at

most one Bi.

Algorithms for the binomial heap :
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Find minimum Given n, there will be logn binomial trees and each tree's minimumwill be its root. Thus

only need to �nd the minimum among the roots.

T ime = logn

Insertion Invariant to be maintained : only 1 Bi tree for each i

Step 1: create a new B0 tree for the new element

Step 2: i 0

Step 3: while there is still 2 Bi tree do

join the two Bi tree to form a Bi+1 tree

i i + 1

Clearly this takes at most O(logn) time.

Deletion

Delete min Key observation: Removing the root from a Bi tree will formed i binomial trees, from B0

to Bi�1

Step 1: Find the minimum root (Assume its in Bk)

Step 2: Break Bk, forming k smaller trees

Step 3: while there is still at least 2 Bi tree do

join the two Bi tree to form a Bi+1 tree

i i + 1

Note that at each stage there will be at most 3 Bi trees, thus for each i only 1 join is required.

Delete

Step 1: Find the element

Step 2: Change the element key to �1

Step 3: Push the key up the tree to maintain the heap-order property

Step 4: Call Delete min

2 and 3 is to be grouped and called DECREASE KEY(x)

Time for insertion and deletion : O(logn)

7.2 Fibonacci Heaps(F-Heaps)

Amortized running time :

� Insert, Findmin, Union, Decrease-key : O(1)

� Delete-min, Delete : O(logn)

Added features (compared to the binomial heaps)

� Individual trees are not necessary binomial (denote trees by B0
i)

� Always maintain a pointer to the smallest root

� permit many copies of B0
i

Algorithms for the F-heap :
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Insert

Step 1: Create a new B
0
0

Step 2: Compare with the current minimum and update pointer if necessary

Step 3: Store $1 at the new root

(Notice that the $ is only for accounting purposes, and the implementation of the data structure does

not need to keep track of the $'s.)

Delete-min

Step 1: Remove the minimum, breaking that tree into smaller tree again

Step 2: �nd the new minimum, merge trees in the process, resulting in 1 B0
i tree for each i

Decrease-key

Step 1: Decrease the key

Step 2: if heap-order is violated

break the link between the node and its parent (note: results may not be a true binomial tree)

Step 3: Compare the new root with the current minimum and update pointer if necessary

Step 4: Put $1 to the new root

Step 5: Pay $1 for the cut

Problem with the above algorithm: Can result in trees where the root have disportionly large number of

child (i.e. not enough internal nodes).

Solution:

� whenever a node is being cut

{ mark the parent of the cut node in the original tree

{ put $2 on that node

� when a second child of that node is lost (by that time that node will have $4), recursively cut that

node from its parent, use the $4 to pay for it:

{ $1 for the cut

{ $1 for new root

{ $2 to its original parent

� repeat the recursion upward if necessary

Thus each cut requires only $4.

Thus decrease-key takes amortized time O(1)

De�ne rank of the tree = Number of children of the root of the tree.

Consider the minimum number of nodes of a tree with a given rank:
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B1 1 2 2

.

.

.

Rank Worst case size Size of binomial tree

B0 0 1 1

B2 2 3 4

B3 3 5 8

B4 4 8 16

Marked node from previous deletion

Figure 4: Minimum size B0
i trees
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8 F-heap

8.1 Properties

F-heaps have the following properties:

� maintain the minimum key in the heap all the time,

� relax the condition that we have at most one Bk for any k, i.e., we can have any number of Bk at one

time,

� trees are not true binomial trees.

For example,

2 1 5

4 3

10

13 20

26

min pointer

Figure 5: Example of F-heap

Property: size of a tree, rooted at x, is in exponential in the degree of x.

In Binomial trees we have the property that size(x) � 2k, here we will not have as strong a property,

but we will have the following:

size(x) � �
k

where k is degree of x and � = 1+
p
5

2
.

Note that since � > 1 this is su�cient to guarantee a O(logn) bound on the depth and the number of

children of a node.

8.2 Decrease-Key operation

Mark strategy:

� when a node is cut o� from its parent, tick one mark to its parent,

� when a node gets 2 marks, cut the edge to its parent and tick its parent as well,

� when a node becomes a root, erase all marks attached to that node,

� every time a node is cut, give $1 to that node as a new root and $2 to its parent.
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cut o� x

cut o� z

y

x z$1 $1

$1

*$2

y

x z

y

x z$1

*$2

y

x z$1 $1

**$4

... ...

......

Figure 6: Marking Strategy
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Example: How does mark strategy work?

The cost of Decrease-Key operation = cost of cutting link + $3. We can see that no extra dollars needed

when the parent is cut o� recursively since when the cut o� is needed, that parent must have $4 in hand

($2 from each cut child and there must be 2 children have been cut), then we use those $4 dollars to pay for

cutting link cost ($1), giving to its parent ($2), and for itself as a new root ($1).

Example: How does Decrease-Key work (see CLR also)?
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Figure 7: Example

The property we need when two trees are merged, is the degree of the roots of both trees should be the

same.

We want to prove that yi has some subtrees.

Let y1 be the oldest child and yk be the youngest child. Consider yi at the point yi was made a child of

the root x, x had degree at least i� 1 and so yi.

And since yi has lost at most 1 child, so now yi has at least degree i � 2.

Let's de�ne
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y2

x

yi . . . yky1 . . .

Figure 8: Example

Fk =

8<
:

0 if k = 0

1 if k = 1

Fk�1 + Fk�2 if k � 2

These numbers are called Fibonacci numbers.

Property 8.1 Fk+2 = 1 +
Pk

i=1 Fi

Proof:

[By induction]

k = 1 : F3 = 1 + F1

= 1 + 1

= F1 + F2 (where F2 = F1 + F0 = 1 + 0)

Assume Fk+2 = 1 +
Pk

i=1Fi for all k � n

k = n+ 1 : Fn+3 = 1 +

n+1X
i=1

Fi

= 1 +

nX
i=1

Fi + Fn+1

= Fn+2 + Fn+1

2

Property 8.2 Fk+2 � �
k

Proof:

[By induction]

k = 0 : F2 = 1

� �
0

k = 1 : F3 = 2

� � =
1 +
p
5

2
= 1:618::

Assume Fk+2 � �
k for all k < n

27



k = n : Fn+2 = Fn+1 + Fn

� �
n�1 + �

n�2

� 1 + �

�
2
� �n

� �
n

2

Theorem 8.1 x is a root of any subtree. size(x) � Fk+2 � �
k
where k is a degree of x

Proof:

[By induction]

k = 0:

x

size(x) = 1 � 1 � 1

k = 1:

x

size(x) = 2 � 2 � 1+
p
5

2

Assume size(x) � Fk+2 � �
k for any k � n

k = n+ 1:

y2

x

yi . . . yky1 . . .

size(x) = 1 + size(y1) + :::+ size(yi) + :::+ size(yk )

� 1 + 1 + 1 + F3 + :::+ Fk (from assumption)

� 1 + F1 + F2 + :::+ Fk

� Fk+2 (from property1)

� �

k (from property2)

log� size(x) � k

So the number of children of node x is bounded by log� size(x). 2
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9 Light Approximate Shortest Path Trees

See the algorithm described in [14]. Also directly relevant is work by Awerbuch, Baratz and Peleg referenced

in [14]. The basic idea is due to [1], further improvements are due to [4, 14].

Does a graph contain a tree that is a \light" tree (at most a constant times heavier than the minimum

spanning tree), such that the distance from the root to any vertex is no more than a constant times the true

distance (the distance in the graph between the two nodes). We answer this question in the a�rmative and

also give an e�cient algorithm to compute such a tree (also called a Light Approximate Shortest Path Tree

(LAST)). We show that w(T ) < (1 + 2
�
)w(TM ) and 8v distT (r; v) � (1 + �)dist(r; v). Here TM refers to the

MST of G. distT refers to distances in the tree T , and dist(r; v) refers to the distance from r to v in the

original graph G. TS refers to the shortest path tree rooted at r (if you do not know what a shortest path

tree is, please look up [CLR]).

The main idea is the following: �rst compute the tree TM (use any of the standard algorithms). Now do

a DFS traversal of TM , adding certain paths to TM . These paths are chosen from the shortest path tree TS
and added to bring \certain" nodes closer to the root. This yields a subgraph H, that is guaranteed (we will

prove this) to be only a little heavier than TM . In this subgraph, we do a shortest path computation from r

obtaining the LAST T (rooted at r). The LAST tree is not much heavier than TM (because H was light),

and all the nodes are close to the root.

The algorithm is now outlined in more detail. Fix � to be a constant (� > 0). This version is more

e�cient than what was described in class (why?).

Algorithm to compute a LAST

Step 1. Construct a MST TM , and a shortest path tree TS (with r as the root) in G.

Step 2. Traverse TM in a DFS order starting from the root. Mark nodes B0; : : : ; Bk as follows. Let B0 be r.

As we traverse the tree we measure the distance between the previous marked node to the current vertex.

Let Pi be the shortest path from the root to marked node Bi. (Clearly, w(P0) is 0.) Let P [j] be the shortest

path from r to vertex j.

Step 3. If the DFS traversal is currently at vertex j, and the last marked node is Bi, then compare

(w(Pi)+ distTM (Bi; j)) with (1+ �)w(P [j]). If (w(Pi) + distTM (Bi; j)) > (1 + �)w(P [j]) then set vertex j to

be the next marked node Bi+1.

Step 4. Add paths Pi to TM , for each marked node Bi, to obtain subgraph H.

Step 5. Do a shortest path computation in H (from r) to �nd the LAST tree T .

9.1 Analysis of the Algorithm

We now prove that the tree achieves the desired properties. We �rst show that the entire weight of the

subgraph H, is no more than (1 + 2
�
)w(TM ). We then show that distances from r to any vertex v is not

blown up by a factor more than (1 + �).

Theorem 9.1 The w(H) < (1 + 2
�
)w(TM )

Proof:

Assume that Bk is the last marked node. Consider any marked node Bi (0 < i � k), we know that

(w(Pi�1) + distTM (Bi�1; Bi)) > (1 + �)w(Pi). Adding up the equations for all values of i, we get

kX
i=1

[w(Pi�1) + distTM (Bi�1; Bi)] > (1 + �)

kX
i=1

w(Pi):
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Clearly,
kX
i=1

distTM (Bi�1; Bi) > �

kX
i=1

w(Pi):

Hence the total weight of the paths added to TM is < 2
�
w(TM ). (The DFS traversal traverses each edge

exactly twice, hence the weight of the paths between consecutive marked nodes is at most twice w(TM ).)

Hence w(H) < (1 + 2
�
)w(TM ). 2

Theorem 9.2

8v distT (r; v) � (1 + �)dist(r; v)

Proof:

If v is a marked node, then the proof is trivial (since we actually added the shortest path from r

to v, distH (r; v) = dist(r; v). If v is a vertex between marked nodes Bi and Bi+1, then we know that

(w(Pi) + distTM (Bi; v)) � (�w(P [v])). This concludes the proof (since this path is in H). 2

10 Spanners

This part of the lecture is taken from the paper \On Sparse Spanners of Weighted Graphs" by Althofer,

Das, Dobkin, Joseph and Soares in [2].

For any graph H, we de�ne distH(u; v) as the distance between u and v in the graph H. Given a graph

G = (V;E) a t-spanner is a spanning subgraph G
0 = (V;E0) of G with the property that for all pairs of

vertices u and v,

distG0 (u; v) � t � distG(u; v):
In other words, we wish to compute a subgraph that provides approximate shortest paths between each pair

of vertices. Clearly, our goal is to minimize the size and weight of G0, given a �xed value of t (also called the

stretch factor). The size of G0 refers to the number of edges in G
0, and the weight of G0 refers to the total

weight of the edges in G
0.

There is a very simple (and elegant) algorithm to compute a t-spanner.

proc SPANNER(G);

G
0  (V; ;);

Sort all edges in increasing weight; w(e1) � w(e2) � : : : � w(em);

for i = 1 to m do;

let ei = (u; v);

Let P (u; v) be the shortest path in G0 from u to v;

If w(P (u; v)) > t �w(ei) then;
G
0  G

0 [ ei;
end-for

end proc;

Lemma 10.1 The graph G
0
is a t-spanner of G.

Proof:

Let P (x; y) be the shortest path in G between x and y. For each edge e on this path, either it was added

to the spanner or there was a path of length t �w(e) connecting the endpoints of this edge. Taking a union of

all the paths gives us a path of length at most t �P (x; y). (Hint: draw a little picture if you are still puzzled.)

2

Lemma 10.2 Let C be a cycle in G
0
; then size(C) > t+ 1.
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Proof:

Let C be a cycle with at most t + 1 edges. Let emax = (u; v) be the heaviest weight edge on the cycle

C. When the algorithm considers emax all the other edges on C have already been added. This implies that

there is a path of length at most t �w(emax) from u to v. (The path contains t edges each of weight at most

w(emax).) Thus the edge emax is not added to G0. 2

Lemma 10.3 Let C be a cycle in G
0
and e an arbitrary edge on the cycle. We claim that w(C�e) > t �w(e).

Proof:

Suppose there is a cycle C such that w(C � e) � t �w(e). Assume that emax is the heaviest weight edge

on the cycle. Then w(C) � (t + 1) � w(e) � (t + 1) � w(emax). This implies that when we were adding the

last edge emax there was a path of length at most t �w(emax) connecting the endpoints of emax. Thus this

edge would not be added to the spanner. 2

Lemma 10.4 The MST is contained in G
0
.

The proof of the above lemma is left to the reader.

De�nition: Let E(v) be the edges of G0 incident to vertex v that do not belong to the MST.

We will prove that w(E(v)) � 2w(MST )

(t�1)
.

From this we can conclude the following (since each edge of G0 is counted twice in the summation, and

we simply plug in the upper bound for E(v)).

w(G0) � w(MST ) +
1

2

X
v

w(E(v)) � w(MST )(1 +
n

t� 1
):

v

Edges in E(v)

Edges in MST

Poly

e1

e2

e5

e3 e4

Figure 9: Figure to illustrate polygon, MST and E(v).

Theorem 10.5

w(E(v)) � 2w(MST )

t� 1
:
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Proof:

This proof is a little di�erent from the proof we did in class. Let the edges in E(v) be numbered

e1; e2; : : : ; ek. By the previous lemma we know that for any edge e in G0 and path P in G0 that connects the

endpoints of e, we have t �w(e) < w(P ).

Let Poly be a polygon de�ned by \doubling" the MST. Let Wi be the perimeter of the polygon after i

edges have been added to the polygon (see Fig. 9). (Initially,W0 = 2w(MST ).)

Let Ti =
Pi

j=1w(ej).

How does the polygon change after edge ei = (u; v) has been added?

Wi+1 = Wi + w(ei)� w(P (u; v)) < Wi � w(ei)(t� 1):

Ti+1 = Ti + w(ei):

A moment's re
ection on the above process will reveal that as T increases, the perimeter W drops. The

perimeter clearly is non-zero at all times and cannot drop below zero. Thus the �nal value of Tk is upper

bounded by
2w(MST )

t�1
. But this is the sum total of the weights of all edges in E(v). 2

The proof I gave in class was a more \pictorial" argument. You could write out all the relevant equations

by choosing appropriate paths to charge at each step. It gives the same bound.

Much better bounds are known if the underlying graph G is planar.
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11 Matchings

Read: Chapter 9 [21]. Papadimitriou and Steiglitz [19] also has a nice description of matching.

In this lecture we will examine the problem of �nding a maximummatching in bipartite graphs.

Given a graph G = (V;E), amatchingM is a subset of the edges such that no two edges in M share an

endpoint. The problem is similar to �nding an independent set of edges. In the maximummatching problem

we wish to maximize jM j.
With respect to a given matching, a matched edge is an edge included in the matching. A free edge

is an edge which does not appear in the matching. Likewise, a matched vertex is a vertex which is an

endpoint of a matched edge. A free vertex is a vertex that is not the endpoint of any matched edge.

A bipartite graph G = (U; V;E) has E � U � V . For bipartite graphs, we can think of the matching

problem in the following terms. Given a list of boys and girls, and a list of all marriage compatible pairs (a

pair is a boy and a girl), a matching is some subset of the compatibility list in which each boy or girl gets at

most one partner. In these terms, E = f all marriage compatible pairs g, U = f the boysg, V = f the girlsg,
and M = f some potential pairing preventing polygamyg.

A perfect matching is one in which all vertices are matched. In bipartite graphs, we must have jV j = jU j
in order for a perfect matching to possibly exist. When a bipartite graph has a perfect matching in it, the

following theorem holds:

11.1 Hall's Theorem

Theorem 11.1 (Hall's Theorem) Given a bipartite graph G = (U; V;E) where jU j = jV j, 8S � U; jN (S)j �
jSj (where N(S) is the set of vertices which are neighbors of S) i� G has a perfect matching.

Proof:

( ) In a perfect matching, all elements of S will have at least a total of jSj neighbors since every element

will have a partner. (!) We give this proof after the presentation of the algorithm, for the sake of clarity.

2

For non-bipartite graphs, this theorem does not work. Tutte proved the following (you can read the Graph

Theory book by Bondy and Murty for a proof) theorem for establishing the conditions for the existence of

a perfect matching in a non-bipartite graph.

Theorem 11.2 (Tutte's Theorem) A graph G has a perfect matching if and only if 8S � V; o(G� S) �
jSj. (o(G � S) is the number of connected components in the graph G � S that have an odd number of

vertices.)

Before proceeding with the algorithm, we need to de�ne more terms.

An alternating path is a path (edges) which begins at a free vertex and whose edges alternate between

matched and unmatched edges.

An augmenting path is an alternating path which starts and ends with unmatched edges (and thus

starts and ends with free vertices).

The matching algorithm will attempt to increase the size of a matching by �nding an augmenting path.

By inverting the edges of the path (matched becomes unmatched and vice versa), we increase the size of a

matching by exactly one.

If we have a matchingM and an augmenting path P (with respect toM ), thenM�P = (M[P )�(M\P )
is a matching of size jM j + 1.
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11.2 Berge's Theorem

Theorem 11.3 (Berge's Theorem) M is a maximum matching i� there are no augmenting paths with

respect to M .

Proof:

(!) Trivial. ( ) Let us prove the contrapositive. Assume M is not a maximum matching. Then there

exists some maximummatching M 0 and jM 0j > jM j. Consider M �M
0. All of the following will be true of

the graph M �M
0:

1. The highest degree of any node is two.

2. The graph is a collection of cycles and paths.

3. The cycles must be of even length, half of which are fromM and half of which are fromM
0.

4. Given these �rst three facts (and since jM 0j > jM j), there must be some path with more M 0 edges

than M edges.

This fourth fact describes an augmenting path (with respect to M ). This path begins and ends with M 0

edges, which implies that the path begins and ends with free nodes (i.e., free in M ). 2

Armed with this theorem, we can outline a primitive algorithm to solve the maximummatching problem.

It should be noted that Edmonds (1965) was the �rst one to show how to �nd an augmenting path in an

arbitrary graph (with respect to the current matching) in polynomial time. This is a landmark paper that

also de�ned the notion of polynomial time computability.

Simple Matching Algorithm [Edmonds]:

Step 1: Start with M = ;.

Step 2: Search for an augmenting path.

Step 3: Increase M by 1 (using the augmenting path).

Step 4: Go to 2.

We will discuss the search for an augmenting path in bipartite graphs via a simple example (see Fig. 10).

The upper bound on the number of iterations is O(jV j) (the size of a matching). The time to �nd an

augmenting path is O(jEj) (use BFS). This gives us a total time of O(jV jjEj).
In the next lecture, we will learn the Hopcroft-Karp O(

p
jV jjEj) algorithm for maximum matching on

a bipartite graph. This algorithm was discovered in the early seventies. In 1981, Micali-Vazirani extended

this algorithm to general graphs. This algorithm is quite complicated, but has the same running time as the

Hopcroft-Karp method. It is also worth pointing out that both Micali and Vazirani were �rst year graduate

students at the time.
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v1

v2

v3

u1

u2

u3

v4
v5

v6

u4

u5

u6

v2

v3

v5

v4

v6

v1

u2

u6

u3

u5

u4
u1

Initial graph (some vertices already matched)

BFS tree used to �nd an augmenting path from v2 to u1

free edge

matched edge

Figure 10: Sample execution of Simple Matching Algorithm.
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12 Hopcroft-Karp Matching Algorithm

The original paper is by Hopcroft and Karp [11].

We present the Hopcroft-Karp matching algorithm along with a proof of Hall's theorem (I didnt get

around to doing this during the lecture, but we'll �nish this in the next lecture).

Theorem 12.1 (Hall's Theorem) A bipartite graph G = (U; V;E) has a perfect matching if and only if

8S � V; jSj � jN (S)j.

Proof:

To prove this theorem in one direction is trivial. If G has a perfect matchingM , then for any subset S,

N (S) will always contain all the mates (in M ) of vertices in S. Thus jN (S)j � jSj. The proof in the other

direction can be done as follows. Assume that M is a maximum matching and is not perfect. Let u be a

free vertex in U . Let Z be the set of vertices connected to u by alternating paths w.r.t M . Clearly u is the

only free vertex in Z (else we would have an augmenting path). Let S = Z \ U and T = Z \ V . Clearly

the vertices in S � fug are matched with the vertices in T . Hence jT j = jSj � 1. In fact, we have N (S) = T

since every vertex in N (S) is connected to u by an alternating path. This implies that jN (S)j < jSj. 2

The main idea behind the Hopcroft-Karp algorithm is to augment along a set of shortest augmenting

paths simultaneously. (In particular, if the shortest augmenting path has length k then in a single phase we

obtain a maximal set S of vertex disjoint augmenting paths all of length k.) By the maximality property,

we have that any augmenting path of length k will intersect a path in S. In the next phase, we will have

the property that the augmenting paths found will be strictly longer (we will prove this formally later). We

will implement each phase in linear time.

We �rst prove the following lemma.

Lemma 12.2 Let M be a matching and P a shortest augmenting path w.r.t M . Let P
0
be a shortest

augmenting path w.r.t M � P (symmetric di�erence of M and P ). We have

jP 0j � jP j+ 2jP \ P 0j:

jP \ P 0j refers to the edges that are common to both the paths.

Proof:

Let N = (M � P ) � P
0. Thus N �M = P � P

0. Consider P � P
0. This is a collection of cycles and

paths (since it is the same as M � N ). The cycles are all of even length. The paths may be of odd or even

length. The odd length paths are augmenting paths w.r.t M . Since the two matchings di�er in cardinality

by 2, there must be two odd length augmenting paths P1 and P2 w.r.t M . Both of these must be longer

than P (since P was the shortest augmenting path w.r.t M ).

jM �N j = jP � P
0j = jP j+ jP 0j � 2jP \P 0j � jP1j+ jP2j � 2jP j:

Simplifying we get

jP 0j � jP j+ 2jP \ P 0j:
2

We still need to argue that after each phase, the shortest augmenting path is strictly longer than the

shortest augmenting paths of the previous phase. (Since the augmenting paths always have an odd length,

they must actually increase in length by two.)
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Suppose that in some phase we augmented the current matching by a maximal set of vertex disjoint paths

of length k (and k was the length of the shortest possible augmenting path). This yields a new matching

M
0. Let P 0 be an augmenting path with respect to the new matching. If P 0 is vertex disjoint from each

path in the previous set of paths it must have length strictly more than k. If it shares a vertex with some

path P in our chosen set of paths, then P \ P 0 contains at least one edge in M
0 since every vertex in P is

matched in M
0. (Hence P 0 cannot intersect P on a vertex and not share an edge with P .) By the previous

lemma, P 0 exceeds the length of P by at least two.

Lemma 12.3 A maximal set S of disjoint, minimum length augmenting paths can be found in O(m) time.

Proof:

Let G = (U; V;E) be a bipartite graph and let M be a matching in G. We will grow a \Hungarian Tree"

in G. (The tree really is not a tree but we will call it a tree all the same.) The procedure is similar to BFS

and very similar to the search for an augmenting path that was done in the previous lecture. We start by

putting the free vertices in U in level 0. Starting from even level 2k, the vertices at level 2k+1 are obtained

by following free edges from vertices at level 2k that have not been put in any level as yet. Since the graph

is bipartite the odd(even) levels contain only vertices from V (U ). From each odd level 2k + 1, we simple

add the matched neighbours of the vertices to level 2k+ 2. We repeat this process until we encounter a free

vertex in an odd level (say t). We continue the search only to discover all free vertices in level t, and stop

when we have found all such vertices. In this procedure clearly each edge is traversed at most once, and the

time is O(m).

We now have a second phase in which the maximal set of disjoint augmenting paths of length k is found.

We use a technique called topological erase, called so because it is a little like topological sort. With each

vertex x (except the ones at level 0), we associate an integer counter initially containing the number of edges

entering x from the previous level (we also call this the indegree of the vertex). Starting at a free vertex v

at the last level t, we trace a path back until arriving at a free vertex in level 0. The path is an augmenting

path, and we include it in S.

At all points of time we maintain the invariant that there is a path from each free node (in V ) in the

last level to some free node in level 0. This is clearly true initially, since each free node in the last level was

discovered by doing a BFS from free nodes in level 0. When we �nd an augmenting path we place all vertices

along this path on a deletion queue. As long as the deletion queue is non-empty, we remove a vertex from

the queue, delete it together with its adjacent vertices in the Hungarian tree. Whenever an edge is deleted,

the counter associated with its right endpoint is decremented if the right endpoint is not on the current path

(since this node is losing an edge entering it from the left). If the counter becomes 0, the vertex is placed

on the deletion queue (there can be no augmenting path in the Hungarian tree through this vertex, since

all its incoming edges have been deleted). This maintains the invariant that when we grab paths coming

backwards from the �nal level to level 0, then we automatically delete nodes that have no paths backwards

to free nodes.

After the queue becomes empty, if there is still a free vertex v at level t, then there must be a path from

v backwards through the Hungarian tree to a free vertex on the �rst level; so we can repeat this process. We

continue as long as there exist free vertices at level t. The entire process takes linear time, since the amount

of work is proportional to the number of edges deleted. 2

Let's go through the following example (see Fig. 11) to make sure we understand what's going on. Start

with the �rst free vertex v6. We walk back to u6 then to v5 and to u1 (at this point we had a choice of u5 or

u1). We place all these nodes on the deletion queue, and start removing them and their incident edges. v6
is the �rst to go, then u6 then v5 and then u1. When we delete u1 we delete the edge (u1; v1) and decrease

the indegree of v1 from 2 to 1. We also delete the edges (v6; u3) and (v5; u5) but these do not decrease the

indegree of any node, since the right endpoint is already on the current path.

Start with the next free vertex v3. We walk back to u3 then to v1 and to u2. We place all these nodes

on the deletion queue, and start removing them and their incident edges. v3 is the �rst to go, then u3 (this

deletes edge (u3; v4) and decreases the indegree of v4 from 2 to 1). Next we delete v1 and u2. When we

delete u2 we remove the edge (u2; v2) and this decreases the indegree of v2 which goes to 0. Hence v2 gets

added to the deletion queue. Doing this makes the edge (v2; u4) get deleted, and drops the indegree of u4
to 0. We then delete u4 and the edge (u4; v4) is deleted and v4 is removed. There are no more free nodes

in the last level, so we stop. The key point is that it is not essential to �nd the maximum set of disjoint

augmenting paths of length k, but only a maximal set.
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v1 v3

u2 u4 v4v2

unmatched edge

matched edge

u1 u3

u5 u6v5 v6

Figure 11: Sample execution of Topological Erase.

Theorem 12.4 The total running time of the above described algorithm is O(
p
nm).

Proof:

Each phase runs in O(m) time. We now show that there are O(
p
n) phases. Consider running the

algorithm for exactly
p
n phases. Let the obtained matching be M . Each augmenting path from now on is

of length at least 2
p
n + 1. (The paths are always odd in length and always increase by at least two after

each phase.) Let M� be the max matching. Consider the symmetric di�erence of M and M
�. This is a

collection of cycles and paths, that contain the augmenting paths w.r.tM . Let k = jM�j � jM j. Thus there
are k augmenting paths w.r.t M that yield the matching M�. Each path has length at least 2

p
n + 1, and

they are disjoint. The total length of the paths is at most n (due to the disjointness). If li is the length of

each augmenting path we have:

k(2
p
n+ 1) �

kX
i=1

li � n:

Thus k is upper bounded by n
2
p
n+1
� n

2
p
n
�

p
n

2
. In each phase we increase the size of the matching by at

least one, so there are at most k more phases. This proves the required bound of O(
p
n). 2
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13 Two Processor Scheduling

Most of this lecture was spent in wrapping up odds and ends from the previous lecture. We will also talk

about an application of matching, namely the problem of scheduling on two processors. The original paper

is by Fujii, Kasami and Ninomiya [7].

There are two identical processors, and a collection of n jobs that need to be scheduled. Each job requires

unit time. There is a precedence graph associated with the jobs (also called the DAG). If there is an edge

from i to j then i must be �nished before j is started by either processor. How should the jobs be scheduled

on the two processors so that all the jobs are completed as quickly as possible. The jobs could represent

courses that need to be taken (courses have prerequisites) and if we are taking at most two courses in each

semester, the question really is: how quickly can we graduate?

This is a good time to note that even though the two processor scheduling problem can be solved in

polynomial time, the three processor scheduling problem is not known to be solvable in polynomial time, or

known to be NP-complete. In fact, the complexity of the k processor scheduling problem when k is �xed is

not known.

From the acyclic graph G we can construct a compatibility graph G
� as follows. G� has the same nodes

as G, and there is an (undirected) edge (i; j) if there is no directed path from i to j, or from j to i in G. In

other words, i and j are jobs that can be done together.

A maximummatching in G� is the indicates the maximumnumber of pairs of jobs that can be processed

simultaneously. Clearly, a solution to the scheduling problem can be used to obtain a matching in G�. More

interestingly, a solution to the matching problem can be used to obtain a solution to the scheduling problem!

Suppose we �nd a maximummatching inM in G�. An unmatched vertex is executed on a single processor

while the other processor is idle. If the maximummatching has size m�, then 2m� vertices are matched, and

n� 2m� vertices are left unmatched. The time to �nish all the jobs will be m� + n� 2m� = n�m�. Hence

a maximummatching will minimize the time required to schedule all the jobs.

We now argue that given a maximummatching M�, we can extract a schedule of size n�m
�. The key

idea is that each matched job is scheduled in a slot together with another job (which may be di�erent from

the job it was matched to). This ensures that we do not use more than n�m
� slots.

Let S be the subset of vertices that have indegree 0. The following cases show how a schedule can be

constructed from G and M�. Basically, we have to make sure that for all jobs that are paired up in M�, we

pair them up in the schedule. The following rules can be applied repeatedly.

1. If there is an unmatched vertex in S, schedule it and remove it from G.

2. If there is a pair of jobs in S that are matched in M
�, then we schedule the pair and delete both the

jobs from G.

If none of the above rules are applicable, then all jobs in S are matched; moreover each job in S is

matched with a job not in S.

Let J1 2 S be matched to J
0
1 =2 S. Let J2 be a job in S that has a path to J 01. Let J 02 be the mate of

J2. If there is path from J
0
1 to J

0
2, then J2 and J

0
2 could not be matched to each other in G� (this cannot be

an edge in the compatibility graph). If there is no path from J
0
2 to J

0
1 then we can change the matching to

match (J1; J2) and (J 01; J
0
2) since (J

0
1; J

0
2) is an edge in G� (see Fig. 12).

The only remaining case is when J
0
2 has a path to J 01. Recall that J2 also has a path to J 01. We repeat

the above argument considering J 02 in place of J 01. This will yield a new pair (J3; J
0
3) etc (see Fig. 13). Since

the graph G has no cycles at each step we will generate a distinct pair of jobs; at some point of time this

process will stop (since the graph is �nite). At that time we will �nd a pair of jobs in S we can schedule

together.
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Figure 12: Changing the schedule.
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Figure 13: Continuing the proof.
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14 Assignment Problem

See [3] for a nice description of the Hungarian Method.

Consider a complete bipartite graph, G(X;Y;X � Y ), with weights w(ei) assigned to every edge. (One

could think of this problem as modeling a situation where the set X represents workers, and the set Y

represents jobs. The weight of an edge represents the \compatability" factor for a (worker,job) pair. We

need to assign workers to jobs such that each worker is assigned to exactly one job.) The Assignment

Problem is to �nd a matching with the greatest total weight, i.e., the maximum-weighted perfect matching

(which is not necessarily unique). Since G is a complete bipartite graph we know that it has a perfect

matching.

An algorithm which solves the Assignment Problem is due to Kuhn and Munkres. We assume that all

the edge weights are non-negative,

w(xi; yj) � 0:

where

xi 2 X; yj 2 Y:
We de�ne a feasible vertex labeling l as a mapping from the set of vertices in G to the real numbers, where

l(xi) + l(yj) � w(xi; yj):

(The real number l(v) is called the label of the vertex v.) It is easy to compute a feasible vertex labeling as

follows:

(8yj 2 Y ) [l(yj) = 0]:

and

l(xi) = max
j

w(xi; yj):

We de�ne the Equality Subgraph, Gl, to be the spanning subgraph of G which includes all vertices of

G but only those edges (xi; yj) which have weights such that

w(xi; yj) = l(xi) + l(yj):

The connection between equality subgraphs and maximum-weighted matchings is provided by the fol-

lowing theorem:

Theorem 14.1 If the Equality Subgraph, Gl, has a perfect matching, M
�
, then M

�
is a maximum-weighted

matching in G.

Proof:

Let M� be a perfect matching in Gl. We have, by de�nition,

w(M�) =
X
e2M�

w(e) =
X

v2X[Y

l(v):

Let M be any perfect matching in G. Then

w(M ) =
X
e2M

w(e) �
X

v2X[Y

l(v) = w(M�):
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Hence,

w(M ) � w(M�):

2

High-level Description:

The above theorem is the basis of an algorithm, due to Kuhn and Munkres, for �nding a maximum-

weighted matching in a complete bipartite graph. Starting with a feasible labeling, we compute the equality

subgraph and then �nd a maximummatching in this subgraph (now we can ignore weights on edges). If the

matching found is perfect, we are done. If the matching is not perfect, we add more edges to the equality

subgraph by revising the vertex labels. We also ensure that edges from our current matching do not leave

the equality subgraph. After adding edges to the equality subgraph, either the size of the matching goes up

(we �nd an augmenting path), or we continue to grow the hungarian tree. In the former case, the phase

terminates and we start a new phase (since the matching size has gone up). In the latter case, we grow the

hungarian tree by adding new nodes to it, and clearly this cannot happen more than n times.

Some More Details:

We note the following about this algorithm:

S = X � S:

T = Y � T:
jSj > jT j:

There are no edges from S to T , since this would imply that we did not grow the hungarian trees

completely. As we grow the Hungarian Trees in Gl, we place alternate nodes in the search into S and T . To

revise the labels we take the labels in S and start decreasing them uniformly (say by �), and at the same

time we increase the labels in T by �. This ensures that the edges from S to T do not leave the equality

subgraph (see Fig. 14).

T

Only edges in Gl are shown

+���

S T

S

Figure 14: Sets S and T as maintained by the algorithm.

As the labels in S are decreased, edges (in G) from S to T will potentially enter the Equality Subgraph,

Gl. As we increase �, at some point of time, an edge enters the equality subgraph. This is when we stop
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and update the hungarian tree. If the node from T added to Gl is matched to a node in S, we move both

these nodes to S and T , which yields a larger Hungarian Tree. If the node from T is free, we have found an

augmenting path and the phase is complete. One phase consists of those steps taken between increases in

the size of the matching. There are at most n phases, where n is the number of vertices in G (since in each

phase the size of the matching increases by 1). Within each phase we increase the size of the hungarian tree

at most n times. It is clear that in O(n2) time we can �gure out which edge from S to T is the �rst one to

enter the equality subgraph (we simply scan all the edges). This yields an O(n4) bound on the total running

time. Let us �rst review the algorithm and then we will see how to implement it in O(n3) time.

The Kuhn-Munkres Algorithm (also called the Hungarian Method):

Step 1: Build an Equality Subgraph, Gl by initializing labels in any manner (this was discussed earlier).

Step 2: Find a maximummatching in Gl (not necessarily a perfect matching).

Step 3: If it is a perfect matching, according to the theorem above, we are done.

Step 4: Let S = the set of free nodes in X. Grow hungarian trees from each node in S. Let T = all nodes in

Y encountered in the search for an augmenting path from nodes in S. Add all nodes from X that

are encountered in the search to S.

Step 5: Revise the labeling, l, adding edges to Gl until an augmenting path is found, adding vertices to S

and T as they are encountered in the search, as described above. Augment along this path and

increase the size of the matching. Return to step 4.

More E�cient Implementation:

We de�ne the slack of an edge as follows:

slack(x; y) = l(x) + l(y) �w(x; y):

Then

� = min
x2S;y2T

slack(x; y)

Naively, the calculation of � requires O(n2) time. For every vertex in T , we keep track of the edge with

the smallest slack, i.e.,

slack[yj ] = min
xi2S

slack(xi; yj)

The computation of slack[yj ] requires O(n
2) time at the start of a phase. As the phase progresses, it is

easy to update all the slack values in O(n) time since all of them change by the same amount (the labels of

the vertices in S are going down uniformly). Whenever a node u is moved from S to S we must recompute

the slacks of the nodes in T , requiring O(n) time. But a node can be moved from S to S at most n times.

Thus each phase can be implemented in O(n2) time. Since there are n phases, this gives us a running

time of O(n3).
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15 Network Flow - Maximum Flow Problem

Read [21, 5, 19].

The problem is de�ned as follows: Given a directed graph G
d = (V;E; s; t; c) where s and t are special

vertices called the source and the sink, and c is a capacity function c : E ! <+, �nd the maximum 
ow

from s to t.

Flow is a function f : E ! < that has the following properties:

1. (Skew Symmetry) f(u; v) = �f(v; u)

2. (Flow Conservation) �v2V f(u; v) = 0 for all u 2 V � fs; tg.
(Incoming 
ow) �v2V f(v; u) = (Outgoing 
ow) �v2V f(u; v)

-
:

qR *

q

-

R

>

Carry 
ow into
the vertex

Carry 
ow out
of the vertex

Flow Conservation

3. (Capacity Constraint) f(u; v) � c(u; v)

Maximum 
ow is the maximum value jf j given by

jf j = �v2V f(s; v) = �v2V f(v; t):

De�nition 15.1 (ResidualGraph)GD
f is de�ned with respect to some 
ow function f , Gf = (V;Ef ; s; t; c

0)

where c
0(u; v) = c(u; v) � f(u; v). Delete edges for which c0(u; v) = 0.

As an example, if there is an edge in G from u to v with capacity 15 and 
ow 6, then in Gf there is an edge

from u to v with capacity 9 (which means, I can still push 9 more units of liquid) and an edge from v to u

with capacity 6 (which means, I can cancel all or part of the 6 units of liquid I'm currently pushing) 1. Ef

contains all the edges e such that c0(e) > 0.

Lemma 15.2 Here are some easy to prove facts:

1. f
0

is a 
ow in Gf i� f + f

0

is a 
ow in G.

2. f
0

is a maximum 
ow in Gf i� f + f

0

is a maximum 
ow in G.

3. jf + f

0 j = jf j+ jf 0 j.
1Since there was no edge from v to u in G, then its capacity was 0 and the 
ow on it was -6. Then, the capacity of this edge

in Gf is 0� (�6) = 6.
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Figure 15: An example

4. If f is a 
ow in G, and f
�
is the maximum 
ow in G, then f

� � f is the maximum 
ow in Gf .

De�nition 15.3 (Augmenting Path) A path P from s to t in the residual graph Gf is called augmenting

if for all edges (u; v) on P , c
0(u; v) > 0. The residual capacity of an augmenting path P is mine2P c

0(e).

The idea behind this de�nition is that we can send a positive amount of 
ow along the augmenting path

from s to t and "augment" the 
ow in G. (This 
ow increases the real 
ow on some edges and cancels 
ow

on other edges, by reversing 
ow.)

De�nition 15.4 (Cut) An (s; t) cut is a partitioning of V into two sets A and B such that A \ B = ;,
A [B = V and s 2 A; t 2 B.

z

.......
.......
.......
.

�

9
� �

-

j

:

-

�

?
U

BA

t

s

Figure 16: An (s; t) Cut

De�nition 15.5 (Capacity Of A Cut) The capacity C(A;B) is given by

C(A;B) = �a2A;b2B c(a; b):

45



By the capacity constraint we have that jf j = �v2V f(s; v) � C(A;B) for any (s; t) cut (A;B). Thus the

capacity of the minimum capacity s; t cut is an upper bound on the value of the maximum 
ow.

Theorem 15.6 (Max 
ow - Min cut Theorem) The following three statements are equivalent:

1. f is a maximum 
ow.

2. There exists an (s; t) cut (A;B) with C(A;B) = jf j.

3. There are no augmenting paths in Gf .

An augmenting path is a directed path from s to t.

Proof:

We will prove that (2)) (1)) (3)) (2).

((2) ) (1)) Since no 
ow can exceed the capacity of an (s; t) cut (i.e. f(A;B) � C(A;B)), the 
ow

that satis�es the equality condition of (2) must be the maximum 
ow.

((1)) (3)) If there was an augmenting path, then I could augment the 
ow and �nd a larger 
ow, hence f

wouldn't be maximum.

((3)) (2)) Consider the residual graph Gf . There is no directed path from s to t in Gf , since if there was

this would be an augmenting path. Let A = fvjv is reachable from s in Gfg. A and A form an (s; t) cut,

where all the edges go from A to A. The 
ow f

0

must be equal to the capacity of the edge, since for all

u 2 A and v 2 A, the capacity of (u; v) is 0 in Gf and 0 = c(u; v) � f

0

(u; v), therefore c(u; v) = f

0

(u; v).

Then, the capacity of the cut in the original graph is the total capacity of the edges from A to A, and the


ow is exactly equal to this amount. 2

A "Naive" Max Flow Algorithm:

Initially let f be the 0 
ow

while (there is an augmenting path P in Gf ) do

c(P ) mine2P c
0(e);

send 
ow amount c(P ) along P ;

update 
ow value jf j  jf j+ c(P );

compute the new residual 
ow network Gf

Analysis: The algorithm starts with the zero 
ow, and stops when there are no augmenting paths from

s to t. If all edge capacities are integral, the algorithm will send at least one unit of 
ow in each iteration

(since we only retain those edges for which c0(e) > 0). Hence the running time will be O(mjf�j) in the worst

case (jf�j is the value of the max-
ow).

A worst case example. Consider a 
ow graph as shown on the Fig. 17. Using augmenting paths

(s; a; b; t) and (s; b; a; t) alternatively at odd and even iterations respectively (�g.1(b-c)), it requires total jf�j
iterations to construct the max 
ow.

If all capacities are rational, there are examples for which the 
ow algorithm might never terminate. The

example itself is intricate, but this is a fact worth knowing.

Example. Consider the graph on Fig. 18 where all edges except (a; d), (b; e) and (c; f) are unbounded

(have comparatively large capacities) and c(a; d) = 1, c(b; e) = R and c(c; f) = R
2. Value R is chosen such

that R =
p
5�1
2

and, clearly (for any n � 0, Rn+2 = R
n � R

n+1. If augmenting paths are selected as shown

on Fig. 18 by dotted lines, residual capacities of the edges (a; d), (b; e) and (c; f) will remain 0, R3k+1 and

R
3k+2 after every (3k + 1)st iteration (k = 0; 1; 2; : : :). Thus, the algorithm will never terminate.
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16 The Max Flow Problem

Today we will study the Edmonds-Karp algorithm that works when the capacities are integral, and has a

much better running time than the Ford-Fulkerson method. (Edmonds and Karp gave a second heurisitc

that we will study later.)

Assumption: Capacities are integers.

1st Edmonds-Karp Algorithm:

while (there is an augmenting path s� t in Gf ) do

pick up an augmenting path (in Gf ) with the highest residual capacity;

use this path to augment the 
ow;

Analysis: We �rst prove that if there is a 
ow in G of value jf j, the highest capacity of an augmenting

path in Gf is � jfj
m
.

Lemma 16.1 Any 
ow in G can be expressed as a sum of at most m path 
ows in G and a 
ow in G of

value 0, where m is the number of edges in G.

Proof:

Let f be a 
ow in G. If jf j = 0, we are done. (We can assume that the 
ow on each edge is the same

as the capacity of the edge, since the capacities can be arti�cally reduced without a�ecting the 
ow. As

a result, edges that carry no 
ow have their capacities reduced to zero, and such edges can be discarded.

The importance of this will become clear shortly.) Otherwise, let p be a path from s to t in the graph. Let

c(p) > 0 be the bottleneck capacity of this path (edge with minimum 
ow/capacity). We can reduce the


ow on this path by c(p) and we output this 
ow path. The bottleneck edge now has zero capacity and can

be deleted from the network, the capacities of all other edges on the path is lowered to re
ect the new 
ow

on the edge. We continue doing this until we are left with a zero 
ow (jf j = 0). Clearly, at most m paths

are output during this procedure. 2

Since the entire 
ow has been decomposed into at most m 
ow paths, there is at least one augmenting

path with a capacity at least
jfj
m
.

Let the max 
ow value be jf�j. In the �rst iteration we push at least
jf�j
m

amount of 
ow. The value of

the max-
ow in the residual network (after one iteration) is at most

jf�j(1� 1=m):

The amount of 
ow pushed on the second iteration is at least

(jf�jm� 1

m

)
1

m

:

The value of the max-
ow in the residual network (after two iteations) is at most

jf�j(1� 1=m)� (jf�jm� 1

m

)
1

m

= jf�j(m� 1

m

)2:

Finally, the max 
ow in the residual graph after the kth iteration is

� jf�j(m� 1

m

)k:
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What is the smallest value of k that will reduce the max 
ow in the residual graph to 1?

jf�j(m� 1

m

)k = 1 ;

Using the approximation logm� log(m � 1) = �( 1
m
) we can obtain a bound on k.

k � m log jf�j:

This gives a bound on the number of iterations of the algorithm. Taking into a consideration that a

path with the highest residual capacity can be picked up in time O(m + n logn) (HW 4), the overall time

complexity of the algorithm is O((m + n logn)m log jf�j).
Tarjan's book gives a slightly di�erent proof and obtains the same bound on the number of augmenting

paths that are found by the algorithm.

History

Ford-Fulkerson (1956)

Edmonds-Karp (1969) O(nm2)

Dinic (1970) O(n2m)

Karzanov (1974) O(n3)

Malhotra-Kumar-Maheshwari (1977) O(n3)

Sleator-Tarjan (1980) O(nm logn)

Goldberg-Tarjan (1986) O(nm logn2=m)
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17 The Max Flow Problem

Lecture 16

We reviewed the mid-term exam.

Lecture 17

We covered the O(n3) max 
ow algorithm. The speci�c implementation that we studied is due to

Malhotra, Kumar and Maheshwari [17]. The main idea is to build the layered network from the residual

graph and to �nd a blocking 
ow in each iteration. We showed how a blocking 
ow can be found in O(n2)

time. [See handout from the book by Papadimitriou and Steiglitz \Combinatorial Optimization: Algorithms

and Complexity".]

Lecture 18

We studied the pre
ow-push method. This is described in detail in Chapter 27 [5].

Lecture 19

We will study the \lift-to-front" heuristic that can be used to implement the pre
ow push method in

O(n3) time. This is also described in Chapter 27 in [5].
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18 Planar Graphs

The planar 
ow stu� is by Hassin [10]. If you want to read more about planar 
ow, see the paper by Khuller

and Naor [13].

A planar embedding of a graph, is a mapping of the vertices and edges to the plane such that no two edges

cross (the edges can intersect only at their ends). A graph is said to be planar, if it has a planar embedding.

One can also view planar graphs as those graphs that have a planar embedding on a sphere. Planar graphs

are useful since they arise in the context of VLSI design. There are many interesting properties of planar

graphs that can provide many hours of entertainment (there is a book by Nishizeki and Chiba on planar

graphs [18]).

18.1 Euler's Formula

There is a simple formula relating the numbers of vertices (n), edges (m) and faces (f) in a connected planar

graph.

n �m + f = 2:

One can prove this formula by induction on the number of vertices. From this formula, we can prove that a

simple planar graph with n � 3 has a linear number of edges (m � 3n� 6).

Let fi be the number of edges on face i. Consider
P

i fi. Since each edge is counted exactly twice in this

summation,
P

i fi = 2m. Also note that if the graph is simple then each fi � 3. Thus 3f �
P

i fi = 2m.

Since f = 2 +m � n, we get 3(2 +m � n) � 2m. Simplifying, yields m � 3n� 6.

There is a linear time algorithm due to Hopcroft and Karp (based on DFS) to obtain a planar embedding

of a graph (the algorithm also tests if the graph is planar). There is an older algorithm due to Tutte that

�nds a straight line embedding of a triconnected planar graph (if one exists) by reducing the problem to a

system of linear equations.

18.2 Kuratowski's characterization

De�nition: A subdivision of a graph H is obtained by adding nodes of degree two on edges ofH. G contains

H as a homeomorph if G contains a subdivision of H as a subgraph.

The following theorem very precisely characterizes the class of planar graphs. Note that K5 is the

complete graph on �ve vertices. K3;3 is a complete bipartite graph with 3 nodes in each partition.

Theorem 18.1 (Kuratowski's Theorem) G is planar if and only if G does not contain a subdivision of

either K5 or K3;3.

We will prove this theorem in the next lecture. Today, we will study 
ow in planar graphs.

18.3 Flow in Planar Networks

Suppose we are given a (planar) undirected 
ow network, such that s and t are on the same face (we can

assume, without loss of generality, that s and t are both on the in�nite face). How do we �nd max-
ow in

such a network (also called an st-planar graph)?

In the algorithms described in this section, the notion of a planar dual will be used: Given a graph

G = (V;E) we construct a corresponding planar dual GD = (V D
; E

D) as follows (see Fig. 19). For each face

in G put a vertex in GD; if two faces fi; fj share an edge in G, put an edge between vertices corresponding

to fi; fj in G
D (if two faces share two edges, add two edges to GD).

Note that GDD = G; jVDj = f; jEDj = m, where f is the number of faces in G.
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Figure 19: Graph with corresponding dual

18.4 Two algorithms

Uppermost Path Algorithm (Ford and Fulkerson)

1. Take the uppermost path (see Fig. 20).

2. Push as much 
ow as possible along this path (until the minimum residual capacity edge on

the path is saturated).

3. Delete saturated edges.

4. If there exists some path from s to t in the resulting graph, pick new uppermost path and go

to step 2; otherwise stop.

s

t

Uppermost path

Figure 20: Uppermost path

For a graph with n vertices and m edges, we repeat the loop m times, so for planar graphs this is a

O(nm) = O(n2) algorithm. We can improve this bound to O(n logn) by using heaps for min-capacity edge

�nding. (This takes a little bit of work and is left as an exercise for the reader.) It is also interesting to

note that one can reduce sorting to 
ow in st-planar graphs. More precisely, any implementation of the

uppermost path algorithm can be made to output the sorted order of n numbers. So implementing the

uppermost path algorithm is at least as hard as sorting n numbers (which takes 
(n logn) time on a decision

tree computation model).

We now study a di�erent way of �nding a max 
ow in an st-planar graph. This algorithm gets more

complicated when the source and sink are not on the same face, but one can still solve the problem in

O(n logn) time.

Hassin's algorithm

Given a graph G, construct a dual graph G
D and split the vertex corresponding to the in�nte face into

two nodes s? and t
?.
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Figure 21: GD?

Node s? is added at the top of GD, and every node in G
D corresponding to a face that has an edge on

the top of G, is connected to s?. Node t? is similarly placed and every node in G
D, corresponding to a face

that has an edge on the bottom of G, is connected to t?. The resulting graph is denoted G
D?.

If some edges form an s � t cut in G, the corresponding edges in G
D?

form a path from s
?
to t

?
. In

G
D?, the weight of each edge is equal to the capacity of the corresponding edge in G, so the min-cut in G

corresponds to a shortest path between s
? and t

? in G
D?. There exists a number of algorithms for �nding

shortest paths in planar graphs. Frederickson's algorithm, for example, has running time O(n
p
logn). More

recently, this was improved to O(n), but the algorithm is quite complicated.

Once we have found the value of max
ow, the problem to �nd the exact 
ow through each individual

edge still remains. To do that, label each node vi in G
D? with di, vi's distance from s

? in G
D? (as usual,

measured along the shortest path from s
? to vi). For every edge e in G, we choose the direction of 
ow in a

way such that the larger label, of the two nodes in GD? \adjacent" to e is on the right (see Fig. 22).

If di and dj are labels for a pair of faces adjacent to e, the value of the 
ow through e is de�ned to be

the di�erence between the larger and the smaller of di and dj. We prove that the de�ned function satis�es

the 
ow properties, namely that for every edge in G the 
ow through it does not exeed its capacity and for

every node in G the amount of 
ow entering it is equal to the amount of 
ow leaving it (except for source

and sink).

Suppose there is an edge in G having capacity C(e) (as on Fig. 23), such that the amount of 
ow f(e)

through it is greater than C(e): di � dj > C(e) (assuming, without loss of generality, that di > dj).

By following the shortest path to vj and then going from dj to di across e, we obtain a path from s
? to

vi. This path has length dj +C(e) < di. This contradicts the assumption that di was the shortest path.

To show that for every node in G the amount of 
ow entering it is equal to the amount of 
ow leaving

it (except for source and sink), we do the following. We go around in some (say, counterclockwise) direction

and add together 
ows through all the edges adjacent to the vertex (see Figure 24). Note that, for edge ei,

di � di+1 gives us negative value if ei is incoming (i.e. di < di+1) and positive value if ei is outgoing. By

adding together all such pairs di � di+1, we get (d1 � d2) + (d2 � d3) + : : :+ (dk � d1) = 0, from which it

follows that 
ow entering the node is equal to the amount of 
ow leaving it.
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di
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C(e)

Figure 23:

: : :

dk � d1

d1 � d2

d2

d2 � d3
d3

e
k�1

dk

d
k�1

e2

e3

ekd1

e1

Figure 24:
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19 Planar Graphs

In this lecture we will prove Kuratowksi's theorem (1930). For more details, one is referred to the excellent

Graph Theory book by Bondy and Murty [3]. The proof of Kuratowski's theorem was done for fun, and will

not be in the �nal exam. (However, the rest of the stu� on planar graphs is part of the exam syllabus.)

The following theorem is stated without proof.

Theorem 19.1 The smallest non-planar graphs are K5 and K3;3.

Note: Both K5 and K3;3 are embeddable on a surface with genus 1 (a doughnut).

De�nition: Subdivision of a graph G is obtained by adding nodes of degree two on edges of G.

G contains H as a homeomorph if we can obtain a subdivision of H by deleting vertices and edges from G.

19.1 Bridges

De�nition: Consider a cycle C in G. Edges e and e
0 are said to be on the same bridge if there is a path

joining them such that no internal vertex on the path shares a node with C.

By this de�nition, edges form equivalence classes that are called bridges. A trivial bridge is a singleton

edge.

De�nition: A common vertex between the cycle C and one of the bridges with respect to C, is called a

vertex of attachment.

B

B

B

B

1

4
3

2

Figure 25: Bridges relative to the cycle C.

De�nition: Two bridges avoid each other with respect to the cycle if all vertices of attachment are on

the same segment. In Fig. 25, B2 avoids B1 and B3 does not avoid B1. Bridges that avoid each other

can be embedded on the same side of the cycle. Obviously, bridges with two identical attachment points

are embeddable within each other, so they avoid each other. Bridges with three attachment points which

coincide (3-equivalent), do not avoid each other (like bridges B2 and B4 in Fig. 25). Therefore, two bridges

either

1. Avoid each other

2. Overlap (don't avoid each other).

� Skew: Each bridge has two attachment vertices and these are placed alternately on C (see Fig. 26).
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Skew Bridges

Two bridges with 4 attachment vertices

Figure 26:

� 3-equivalent (like B2 and B4 in Fig. 25)

It can be shown that other cases reduce to the above cases. For example, a 4-equivalent graph (see

Fig.26) can be classi�ed as a skew, with vertices u and v belonging to one bridge, and vertices u0 and v
0

belonging to the other.

19.2 Kuratowski's Theorem

Consider all non-planar graphs that do not contain K5 or K3;3 as a homeomorph. (Kuratowski's theorem

claims that no such graphs exist.) Of all such graphs, pick the one with the least number of edges. We now

prove that such a graph must always contain a Kuratowksi homeomorph (i.e., a K5 or K3;3). Note that such

a graph is minimally non-planar (otherwise we can throw some edge away and get a smaller graph).

The following theorem is claimed without proof.

Theorem 19.2 A minimal non-planar graph that does not contain a homeomorph of K5 or K3;3 is 3-

connected.

Theorem 19.3 (Kuratowski's Theorem) G is planar i� G does not contain a subdivision of either K5

or K3;3.

Proof:

If G has a subdivision of K5 or K3;3, then G is not planar. If G is not planar, we will show that it must

contain K5 or K3;3. Pick a minimal non-planar graph G. Let (u; v) be the edge, such that H = G � (u; v)

is planar. Take a planar embedding of H, and take a cycle C passing through u and v such that H has the

largest number of edges in the interior of C. (Such a cycle must exist due to the 3-connectivity of G.)

Claims:

1. Every external bridge with respect to C has exactly two attachment points. Otherwise, a path in this

bridge going between two attachment points, could be added to C to obtain more edges inside C.
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2. Every external bridge contains exactly one edge. This result is from the 3-connectivity property.

Otherwise, removal of attachment vertices will make the graph disconnected.

3. At least one external bridge must exist, because otherwise the edge from u to v can be added keeping

the graph planar.

4. There is at least one internal bridge, to prevent the edge between u and v from being added.

5. There is at least one internal and one external bridge that prevents the addition of (u; v) and these

two bridges do not avoid each other (otherwise, the inner bridge could be moved outside).

x

y

uu

y xA

BA

u

A

B

v

z

B

w

v

b) This graph contains K3;3 homeomorpha) This graph contains K5 homeomorph

Figure 27: Possible vertex-edge layouts.

Now, let's add (u; v) to H. The following cases is happen:

1. See Fig. 27(a). This graph contains a homeomorph of K5. Notice that every vertices are connected

with an edge.

2. See Fig. 27(b). This graph contains a homeomorph of K3;3. To see that, let A = fu; x; wg and
B = fv; y; zg. Then, there is an edge between every v1 2 A and v2 2 B.

The other cases are similar and will not be considered here. 2
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20 NP-Completeness

Please read Chapter 36 [5] for de�nitions of P, NP, NP-hard, NP-complete, polynomial time reductions, SAT

etc. You need to understand the concept of \decision problems", non-deterministic Turing Machines, and

the general idea behind how COOK's Theorem works.
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21 NP-Completeness

In the last lecture we showed every non-deterministic Turing Machine computation can be encoded as a

SATISFIABILITY instance. In this lecture we will assume that every formula can be written in a restricted

form (3-CNF). In fact, the form is C1 \ C2 \ : : : \ Cm where each Ci is a \clause" that is the disjunction

of exactly three \literals". (A literal is either a variable or its negation.) The proof of the conversion of an

arbitrary boolean formula to one in this form is given in [5].

The reductions we will study today are:

1. SAT to CLIQUE.

2. CLIQUE to INDEPENDENT SET.

3. INDEPENDENT SET to VERTEX COVER.

4. VERTEX COVER to DOMINATING SET.

5. SAT to DISJOINT CONNECTING PATHS.

The �rst three reductions are taken from Chapter 36.5 [5] pp. 946{949.

Vertex Cover Problem: Given a graph G = (V;E) and an integer K, does G contain a vertex cover of

size at most K? A vertex cover is a subset S � V such that for each edge (u; v) either u 2 S or v 2 S (or

both).

Dominating Set Problem: Given a graph G0 = (V 0
; E

0) and an integer K0, does G0 contain a dominating

set of size at most K0? A dominating set is a subset S � V such that each vertex is either in S or has a

neighbor in S.

DOMINATING SET PROBLEM:

We prove that the dominating set problem is NP-complete by reducing vertex cover to it. To prove that

dominating set is in NP, we need to prove that given a set S, we can verify that it is a dominating set in

polynomial time. This is easy to do, since we can check membership of each vertex in S, or of one of its

neighbors in S easily.

Reduction: Given a graph G (assume that G is connected), we replace each edge of G by a triangle to

create graph G
0. We set K0 = K. More formally, G0 = (V 0

; E
0) where V 0 = V [ Ve where Ve = fvei jei 2 Eg

and E0 = E[Ee where Ee = f(vei ; vk); (vei ; v`)jei = (vk; v`) 2 Eg. (Another way to view the transformation

is to subdivide each edge (u; v) by the addition of a vertex, and to also add an edge directly from u to v.)

If G has a vertex cover S of size K then the same set of vertices forms a dominating set in G
0; since

each vertex v has at least one edge (v; u) incident on it, and u must be in the cover if v isnt. Since v is still

adjacent to u, it has a neighbor in S.

For the reverse direction, assume that G0 has a dominating set of size K0. Without loss of generality

we may assume that the dominating set only picks vertices from the set V . To see this, observe that if vei
is ever picked in the dominating set, then we can replace it by either vk or v`, without increasing its size.

We now claim that this set of K 0 vertices form a vertex cover. For each edge ei, vei) must have a neighbor

(either vk or v`) in the dominating set. This vertex will cover the edge ei, and thus the dominating set in

G
0 is a vertex cover in G.

DISJOINT CONNECTING PATHS:

Given a graph G and k pairs of vertices (si; ti), are there k vertex disjoint paths P1; P2; : : : ; Pk such that

Pi connects si with ti ?

This problem is NP-complete as can be seen by a reduction from 3SAT.

Corresponding to each variable xi, we have a pair of vertices si; ti with two internally vertex disjoint

paths of length m connecting them (where m is the number of clauses). One path is called the true path
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and the other is the false path. We can go from si to ti on either path, and that corresponds to setting xi
to true or false respectively.

For clause Cj = (xi ^ x` ^ xk) we have a pair of vertices sn+j ; tn+j. This pair of vertices is connected as

follows: we add an edge from sn+j to a node on the false path of xi, and an edge from this node to tn+j.

Since if xi is true, the si; ti path will use the true path, leaving the false path free that will let sn+j reach

tn+j. We add an edge from sn+j to a node on the true path of x`, and an edge from this node to tn+j. Since

if x` is false, the s`; t` path will use the false path, leaving the true path free that will let sn+j reach tn+j.

If xi is true, and x` is false then we can connect sn+j to tn+j through either node. If clause Cj and clause

Cj0 both use xi then care is taken to connect the sn+j vertex to a distinct node from the vertex sn+j0 is

connected to, on the false path of xi. So if xi is indeed true then the true path from si to ti is used, and

that enables both the clauses Cj and Cj0 to be true, also enabling both sn+j and sn+j0 to be connected to

their respective partners.

Proofs of this construction are left to the reader.

x1 = T path

x1 = F path

All upper paths corresp to setting the

variable to True

pairs corresp to clauses

C1 = (x1 or x2 or x3)

s1

s2

s3

sn+1

sn+2

(si; ti) pairs corresp to each variable

t1

t2

t3

tn+1

tn+2

Figure 28: Graph corresponding to formula
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22 Approximation Algorithms

Reading Homework: Please read Chapter 37.1 and 37.2 from [5] for the Vertex Cover algorithm and the

Traveling Salesman Problem.

Please read Chapter 37 (pp. 974{978) from [5] for Set Cover algorithm that was covered in class.

It is easy to show that the Set Cover problem is NP-hard, by a reduction from the Vertex Cover problem,

which we know is NP-complete. (In fact, Set Cover is a generalization of Vertex Cover. In other words,

Vertex Cover can be viewed as a special case of Set Cover with the restriction that each element (edge)

occurs in exactly two sets.)
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23 Unweighted Vertex Cover

GOAL: Given a graph G = (V;E), �nd a minimum cardinality vertex cover C, where C � V such that for

each edge, at least one endpoint is in C.

For the unweighted case, it is very easy to get an approximation factor of 2 for the vertex cover problem.

We �rst observe that a maximum matching jM�j gives us a lower bound on the size of any vertex cover.

Next observe that if we �nd a maximum matching, and pick all the matched vertices in the cover, then the

size of the cover is exactly 2jM�j and this is at most 2 OPT-VC, since OPT-VC � jM�j. The set of matched

vertices forms a vertex cover, since if there was an edge between two unmatched vertices it would imply that

the matching was not a maximummatching. In fact, it is worth pointing out that all we need is a maximal

matching for the upper bound and not a maximummatching. (The matched vertices in a maximal matching

also form a vertex cover.) If we can �nd a maximal matching that is signi�cantly smaller than a maximum

matching then we may obtain a smaller vertex cover!

When the graph is bipartite, one can convert the matching into a vertex cover by picking exactly one

vertex from each matched edge (this was done in the midterm solutions). This produces an optimal solution

in bipartite graphs.

24 Weighted Vertex Cover

GOAL: Given a graph G = (V;E), �nd a minimum weight vertex cover

w(C) =
X
v2C

w(v);

where C � V is a vertex cover, and w : V ! R
+

We �rst introduce the concept of a packing function and then see why it is useful.

Packing Functions:
A packing p : E ! < is a non-negative function de�ned as follows:

8v;
X

u2N(v)

p(u; v) � w(v):

We will refer to this as the packing condition for vertex v.

For an example of a packing function see Fig. 29.

Lemma 24.1 Let C
�
be the minimum weight vertex cover.

w(C�) =
X
v2C�

w(v) �
X
e2E

p(e):

Proof:

w(C�) =
X
v2C�

w(v) �
X
v2C�

(
X

u2N(v)

p(u; v)) �
X
e2E

p(e):

This is true because some edges may be counted twice in the third expression, but each edge is counted at

least once since C� is a vertex cover. 2

Maximal packing: is a packing for which we cannot increase p(e) for any e without violating the packing

condition for some vertex. In other words, for each edge at least one end point has its packing condition met

with equality.
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Figure 29:

We now have to somehow(?) cough up a vertex cover. We will use a maximal packing for this (ofcourse,

we still need to address the issue of �nding a maximal packing). One thing at a time....

Pick those nodes to be in the vertex cover that have their packing condition met with equality. In a

maximal packing each edge will have at least one end point in the cover, and thus this set of nodes will form

a valid vertex cover. Vertex v is in the VC if
P

u2N(v) p(u; v) = w(v).,

Let C be the cover induced by the maximal packing.

Lemma 24.2

w(C) � 2
X
e2E

p(e)

Proof:

w(C) =
X
v2C

w(v) =
X
v2C

X
u2N(v)

p(u; v):

Since each edge in E is counted at most twice in the last expression, we have

w(C) � 2
X
e2E

p(e):

Another way to view the proof, is to have each vertex chosen in the cover distribute its weight as bills to

the edges that are incident on it (each bill is the packing value of the edge). Since each edge gets at most

two bills, we obtain an upper bound on the weight of the cover as twice the total sum of the packing values.

2

Combining with the �rst lemma, we conclude

w(C) � 2w(C�):

There are many di�erent algorithms for �nding a maximal packing. (Just greedily increasing the packing

values for the edges also works. The algorithm presented here was obtained before it was realised that any

maximal packing will work.) We review a method that can be viewed as a modi�cation to the simple greedy

algorithm.

IDEA : At each stage, select the vertex that minimizes the ratio between the current weight W (v) and the

current degree D(v) of the vertex v.
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proc Modi�ed-Greedy;

8v 2 V do W (v)  w(v)

8v 2 V do D(v)  d(v)

8e 2 E do p(e) 0

C  ;
while E 6= ; do

Pick a vertex v 2 V for which
W (v)

D(v)
is minimized

C  C + v

For all e = (v; u) 2 E do

p(e) W (v)

D(v)

E  E � e; update D(u)
W (u) W (u)� p(e)
Delete v from G

end-for

end-while

return C

end proc;

In this algorithm, each time a vertex is placed in the cover, each of its neighbors has its weight reduced

by an amount equal to the ratio of the selected vertex's current weight and degree. The packing values of

all edges incident to vertex v, that was chosen, are de�ned as
W (v)

D(v)
.

Observe that at all times during the execution of the algorithm, the following invariant holds:

8e 2 E p(e) � 0:

The current weight of a vertex is reduced only when its neighbor is selected. Since the selected vertex

has a smaller weight to degree ratio, then the result of subtraction must be non-negative (make sure that

you understand why this is the case).

8v 2 V w(v) = W (v) +
X

u2N(v)

p(u; v):

The algorithm terminates with a maximal packing because each time we delete v (together with its

incident egdes), its packing condition is met with equality and no further increase can be done on the

packing value of any edge incident to v.

8v 2 C;w(v) =
X

u2N(v)

p(u; v) (1)

8v 62 C;w(v) �
X

u2N(v)

p(u; v) (2)

In fact, we can use the above method to get an r-approximation algorithm for the set cover problem

whenever we have the property that each element occurs in at most r sets. For certain situations this may

be better than the Greedy Set Cover algorithm.
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25 Traveling Salesperson Problem

Chapter 37.2 [5] discusses the traveling salesperson problem in detail, and describes an approximation algo-

rithm that guarantees a factor 2 approximation. Read that subsection before continuing with these notes.

We will discuss Christo�des heuristic that guarantees an approximation factor of 1.5 for TSP. The main

idea is to \convert" the MST to an Eulerian graph without \doubling" all the edges. Let S be the subset of

vertices that have odd degree (observe that jSj is even). Now �nd a perfect matching M among the nodes

of S and add these edges to the MST. The union of the MST and the matching yields an Eulerian graph.

Find an Euler tour and \shortcut" it as in the \doubling" the MST method.

We now prove that

weight(MST ) + weight(M ) � 1:5 OPT-TSP :

The weight of the MST is clearly at most the weight of the optimal TSP tour. We now argue that the

matchingM has weight at most 1
2
OPT-TSP. Consider an optimal TSP tour. Mark the vertices of S on the

tour. The tour induces two distinct perfect matchings: match the odd nodes of S to the right, or match the

odd nodes of S to the left. These two matchings add up in weight to at most the length of the optimal tour.

Clearly, one of them must have length at most half the optimal tour length. Since we found a minimum

perfect matching on the nodes in S, the length of our matching is no longer. This �nishes the proof.

26 Steiner Tree Problem

We are given an undirected graph G = (V;E), with edge weights w : E ! R+ and a special subset S � V .

A Steiner tree is a tree that spans all vertices in S, and is allowed to use the vertices in V �S (called steiner

vertices) at will. The problem of �nding a minimumweight Steiner tree has been shown to be NP -complete.

We will present a fast algorithm for �nding a Steiner tree in an undirected graph that has an approximation

factor of 2(1� 1
jSj ), where jSj is the cardinality of of S. This algorithm was developed by Kou, Markowsky

and Berman [16].

26.1 Approximation Algorithm

Algorithm :

1. Construct a new graph H = (S;ES), which is a complete graph. The edges of H have weight w(i; j)

= minimal weight path from i to j in the original graph G.

2. Find a minimum spanning tree MSTH in H.

3. Construct a subgraph GS of G by replacing each edge in MSTH by its corresponding shortest path in

G.

4. Find a minimal spanning tree MSTS of GS .

5. Construct a Steiner tree TH from MSTS by deleting edges in MSTS if necessary so that all leaves are

in S (these are redundant edges, and can be created in the previous step).

The worst case time complexity is clearly polynomial.

Will will show that this algorithm produces a solution that is at most twice the optimal. More formally:

weight(our solution) � weight(MSTH ) � 2� weight(optimal solution)

To prove this, consider the optimal solution, i.e., the minimal Steiner tree Topt.

Do a DFS on Topt and number the points in S in order of the DFS. (Give each vertex in S a number

the �rst time it is encountered.) Traverse the tree in same order of the DFS then return to starting vertex.
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Figure 30: Optimal Steiner Tree

Each edge will be traversed exactly twice, so weight of all edges traversed is 2�weight(Topt). Let d(i; i+ 1)

be the length of the edges traversed during the DFS in going from vertex i to i + 1. (Thus there is a path

P (i; i + 1) from i to i + 1 of length d(i; i + 1).) Also notice that the sum of the lengths of all such pathsPjSj
i=1 d(i; i+ 1) = 2� weight(Topt). (Assume that vertex jSj+ 1 is vertex 1.)

We will show that H contains a spanning tree of weight � 2�w(Topt). This shows that the weight of a
mininal spanning tree in H is no more than 2 �w(Topt). Our steiner tree solution is upperbounded in cost

by the weight of this tree. If we follow the points in S, in graph H, in the same order of their above DFS

numbering, we see that the weight of an edge between points i and i + 1, in H, cannot be more than the

length of the path between the points inMSTS during the DFS traversal (i.e., d(i; i+1)). So using this path

we can obtain a spanning tree in H (which is actually a Hamilton Path in H) with weight � 2 �w(Topt).
Figure 31 shows that the worst case performance of 2 is achievable by this algorithm.

26.2 Steiner Tree is NP-complete

We now prove that the Steiner Tree problem is NP-complete, by a reduction from 3-SAT to Steiner Tree

problem

Construct a graph from an instance of 3-SAT as follows:

Build a gadget for each variable consisting of 4 vertices and 4 edges, each edge has weight 1, and every

clause is represented by a node.

If a literal in a clause is negated then attach clause gadget to F of corresponding variable in graph, else

attach to T . Do this for all literals in all clauses and give weight M (where M � 3n) to each edge. Finally

add a root vertex on top that is connected to every variable gadget's upper vertex. The points in S are

de�ned as: the root vertex, the top and bottom vertices of each variable, and all clause vertices.

We will show that the graph above contains a Steiner tree of weight mM + 3n if and only if the 3-SAT

problem is satis�ed.

If 3-SAT is satis�able then there exists a Steiner tree of weight mM + 3n We obtain the Steiner tree as

follows:

� Take all edges connecting to the topmost root vertex, n edges of weight 1.

� Choose the T or F node of a variable that makes that variable "1" (e.g. if x = 1 then take T , else

take F ). Now take the path via that node to connect top and bottom nodes of a variable, this gives

2n edges of weight 1.

� If 3-SAT is satis�ed then each clause has (at least) 1 literal that is "1", and thus connects to the T or

F node chosen in (2) of the corresponding variable. Take this connecting edge in each clause; we thus

have m edges of weight M , giving a total weight of mM . So, altogether weight of the Steiner tree is

mM + 3n.

67



1

1
1

1

11

1

Vertices in S

.

.

.

.

.

.

.

2 2

2

2

22

1
1

1

1

1
1

1

Optimal Steiner tree

.

.

Graph H

Each edge has weight 2

.

.

.

MST in H

2 2

2

2

22

Figure 31: Worst Case ratio is achieved here

T F
X1

C1X1 _X2 _X3

Figure 32: Gadget for a variable

68



. .

M

M

M

M
M

M

1

1 1

1
1 1 1 1

1 1 1 1

C1 C2

1 1 1

T F T F T F

. .

X1 _X2 _X3X1 _X2 _ X3

Figure 33: Reduction from 3-SAT.

If there exists a Steiner tree of weight mM + 3n then 3-SAT is satis�able. To prove this we note that

the Steiner tree must have the following properties:

� It must contain the n edges connecting to the root vertex. There are no other edges connecting nodes

corresponding to di�erent variables.

� It must contain exactly one edge from each clause node, giving a weight of mM . Since M is big, we

cannot a�ord to pick two edges of weight M from a single clause node. If it contains more than one

edge from a clause (e.g. 2 edges from one clause) the weight would be mM +M > mM + 3n. Thus

we must have exactly one edge from each clause in the Steiner tree.

� For each variable must have 2 more edges via the T or the F node.

Now say we set the variables to true according to whether their T or F node is in the Steiner tree (if T

then x = 1, if F then x = 1.) We see that in order to have a Steiner tree of size mM + 3n, all clause nodes

must have an edge connected to one of the variables (i.e. to the T or F node of that variable that is in the

Steiner tree), and thus a literal that is assigned a "1", making 3-SAT satis�ed.
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27 Bin Packing

Problem Statement: Given n items s1; s2; :::; sn, where each si is a rational number, 0 < si � 1, our goal

is to minimize the number of bins of size 1 such that all the items can be packed into them.

Remarks:

1. It is known that the problem is NP-Hard.

2. A Simple Greedy Approach (First-Fit) can yield an approximation algorithm with a performance ratio

of 2.

27.1 First-Fit

The strategy for First-Fit is that when packing an item, we shall put it into the lowest number bin that it

will �t in. We start a new bin only when the item cannot �t into any existing non-empty bins. We shall give

a simple analysis that shows that First � Fit(I) � 2OPT (I). The folllowing more general result is known:

Theorem 27.1 First � Fit(I) � 1:7OPT (I) + C and the ratio is best possible (by First-Fit).

The proof is complicated and therefore omitted here. Instead we shall prove that First � Fit(I) �
2OPT (I).

Proof:

The main observation is that at most 1 bin is less than half of its capacity. In fact, the contents of this

bin and any other bin add up to at least 1 (else we would have packed them together). The remaining k� 2

bins are all at least half full. Therefore, if ci denotes the contents in bin i and k is the no of bins used, we

have
kX
i=1

ci �
1

2
(k � 2) + 1 � k=2:

Hence,

OPT (I) �
kX
i=1

ci � k=2:

Therefore 2OPT (I) � First � Fit(I). 2

27.2 First-Fit Decreasing

A variant of First-�t is the First-Fit Decreasing heristics. Here, we �rst sort all the items in decreasing order

of size and then apply the First-Fit algorithm.

Theorem 27.2 (1973) FFD(I) � 11/9 OPT(I).

Remarks:

1. The known proof is very long and therefore is omitted.

2. The following instance shows that �rst �t decreasing is better than �rst �t. Consider the case where

we have

� 6m pieces of A, each of size 1=7 + �:
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� 6m pieces of B, each of size 1=3 + �:

� 6m pieces of C, each of size 1=2 + �:

First Fit will require 10m bins while First �t Decreasing requires 6m bins only. Note that the ratio

is 5=3. This also shows that First-Fit does as badly as a factor of 5=3. (There are other examples to

show that actually it does as badly as 1.7.)

27.3 Approximate Schemes for bin-packing problems

In the 1980's, two approximate schemes were proposed [22, 12]. They are

1. (Vega and Lueker) 8� > 0, there exists an Algorithm A� such that

A�(I) � (1 + �)OPT (I) + 1

where A� runs in time polynomial in n, but exponential in 1=� (n=total no. of items).

2. (Karmarkar and Karp) 8� > 0, there exists an Algorithm A� such that

A�(I) � OPT (I) +O(lg2(OPT (I))

where A� runs in time polynomial in n and 1=� (n=total no. of items). They also guarantee that

A�(I) � (1 + �)OPT (I) +O( 1
�2
).

We shall now discuss the proof of the �rst result. Roughly speaking, it relies on two ideas:

� Small items does not create a problem.

� Grouping together items of similar sizes can simplify the problem.

27.3.1 Restricted Bin Packing

We consider the following restricted version of bin packing problem (RBP). We require that

1. Each item has size � �.

2. The size of the items takes only one of the m distinct values v1; v2; :::; vm. That is we have ni items of

size vi (1 � i � m), with
Pm

i=1 ni = n.

For constant � and m, the above can be solved in polynomial time (actually in O(n+ f(m; �))). Our overall

strategy is therefore to reduce BP to RBP (by throwing away items of size < � and grouping items carefully),

solve it optimally and use RBP (�;m) to compute a soluton to the original BP.

Theorem 27.3 Let J be the instance of RBP obtained from throwing away the items of size less than �

from instance I. If J requires � bins then I needs only max(�; (1 + 2�)OPT (I) + 1) bins.

Proof:

We observe that from the solution of J , we can add the items of size less than � to the bins until the

empty space is less than �. Let S be the total size of the items, then we may assume the no. of items with

size < � is large enough (otherwise I needs only � bins) so that we use �0 bins.

S � (1� �)(�0 � 1)

�
0 � 1 +

S

1� �

�
0 � 1 +

OPT (I)

1� �

�
0 � 1 + (1 + 2�)OPT (I)
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as (1� �)�1 � 1 + 2� for small �. 2

Next, we shall introduce the grouping scheme for RBP. Assume that the items are sorted in descending

order. Let n0 be the total number of items. De�ne G1=the group of the largest k items, G2=the group that

contains the next k items, and so on. We choose

k = b�
2
n
0

2
c:

Then, we have m+1 groups G1; ::; Gm+1, where

m = bn
0

k

c:

Further, we consider groups Hi = group obtained from Gi by setting all items sizes in Gi equal to the

largest one in Gi. Note that

� size of any item in Hi � size of any items in Gi.

� size of any item in Gi � size of any items in Hi+1.

The following diagram illustrates the ideas:

Grouping Scheme for RBP

G1

G2

k k

H1

H2

Gm
Hm

Gm+1

Hm+1

Figure 34: Grouping scheme

We then de�ne Jlow be the instance consisting of items in H2; ::;Hm+1. Our goal is to show

OPT(Jlow) � OPT(J) � OPT(Jlow) + k;

The �rst inequality is trivial, since from OPT(J) we can always get a solution for Jlow.

Using OPT(Jlow) we can pack all the items in G2; : : : ; Gm+1 (since we over allocated space for these by

converting them to Hi). In particular, group G1, the group left out in Jlow, contains k items, so that no

more than k extra bins are needed to accommodate those items.

Since (Jlow) is an instance of a Restricted Bin Packing Problem we can solve it optimally, and then add

the items in G1 in at most k extra bins. Directly from this inequality, and using the de�nition of k, we have

Soln(J) � OPT(Jlow) + k � OPT(J) + k � OPT(J) +
�
2
n
0

2
:
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Choosing � = �=2, we get that

OPT(J) �
n0X
i=1

si � n
0 �

2
;

so we have

OPT(J) +
�
2
n
0

2
� OPT(J) + �OPT(J) = (1 + �)OPT(J):

By applying Theorem 27.3, using � � (1 + �)OPT(J) and the fact that 2� = �, we know that the number of

bins needed for the items of I is at most

maxf(1 + �)OPT(J); (1 + �)OPT(I) + 1g � (1 + �)OPT(I) + 1:

We will turn to the problem of �nding an optimal solution to RBP. Recall that an instance of RBP(�;m)

has items of sizes v1; v2; : : : ; vm, with 1 � v1 � v2 � � � � � vm � �, where ni items have size vi, 1 � i �
m. Summing up the ni's gives the total number of items, n. A bin is completely described by a vector

(T1; T2; : : : ; Tm), where Ti is the number of items of size vi in the bin. How many di�erent di�erent bin types

are there? From the bin size restriction of 1 and the fact that vi � � we get

1 �
X
i

Tivi �
X
i

Ti� = �

X
i

Ti )
X
i

Ti �
1

�

:

As 1
�
is a constant, we see that the number of bin types is constant, say p.

Let T (1)
; T

(2)
; : : : ; T

(p) be an enumeration of the p di�erent bin types. A solution to the RBP can now

be stated as having xi bins of type T
(i). The problem of �nding the optimal solution can be posed as an

integer linear programming problem:

min

pX
i=1

xi;

such that
pX
i=1

xiT
(i)
j = nj 8j = 1; : : : ;m:

xi � 0; xi integer 8i = 1; : : : ; p:

This is a constant size problem, since both p and m are constants, independent of n, so it can be solved

in time independent of n. This result is captured in the following theorem, where f(�;m) is a constant that

depends only on � and m.

Theorem 27.4 An instance of RBP(�;m) can be solved in time O(n; f(�;m)).

An approximation scheme for BP may be based on this method. An algorithmA� for solving an instance

I of BP would proceed as follows:

Step 1: Get an instance J of RBP(�; n0) by getting rid of all elements in I smaller than � = �=2.

Step 2: Obtain Jlow from J , using the parameters k and m established earlier.

Step 3: Find an optimal packing for Jlow by solving the corresponding integer linear programming problem.

Step 4: Pack the k items in G1 using at most k bins.

Step 5: Pack the remaining items of J as the corresponding (larger) items of Jlow were packed in step 3.

Step 6: Pack the small items in I n J using First-Fit.

This algorithm �nds a packing for I using at most (1 + �)OPT(I) + 1 bins. All steps are at most linear in

n, except step 2, which is O(n logn), as it basically amounts to sorting J . The fact that step 3 is linear in n

was established in the previous algorithm, but note that while f(�;m) is independent of n, it is exponential

in 1
�
and m and thus 1

�
. Therefore, this approximation scheme is polynomial but not fully polynomial. (An

approximation scheme is fully polynomial if the running time is a polynomial in n and 1
�
.
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