
A PRIMER OF FIELD THEORY

These pages contain some useful facts and results about fields and most of them
have proofs. The reader is assumed to be familiar with the definitions of rings
and fields, ideals, homomorphims and so on. The identity element in a ring or a
field will always be denoted by 1. All rings below are assumed to be commutative
and with 1. Let R be a ring and I an ideal. Recall the following facts:

• I is a prime ideal if and only if R/I is an integral domain.

• I is a maximal ideal if and only if R/I is a field.

• In a principal ideal domain all prime ideals are maximal.

Also recall the ring morphism theorem:

Theorem 1 Let f : R → S be a ring homomorphism. Then f is injective if and
only if ker f = 0. The map x+ker f �→ f(x) is an isomorphism R/ker f → im f.

The kernel of f : R → S is defined as the ideal ker f in R consisting of all
elements that are mapped to 0, i.e. such that f(x) = 0. The image im f is
the subset of S of all f(x) as x ranges over R (the image is usually not an
ideal). The ideal generated by a set of elements x1, x2, . . . , xn is denoted by
(x1, x2, . . . , xn), i.e.

(x1, x2, . . . , xn) = Rx1 + Rx2 + . . . + Rxn = {
n∑

i=1

aixi; ai ∈ R}.

1. The characteristic. Let k be a field. When n > 0 is an integer, we let n · 1
(here 1 is the identity element of k) denote the sum of n 1’s in k. We also put
(−n) · 1 = −(n · 1) and 0 · 1 = 0. Then the map f : Z → k, f(n) = n · 1, is a
ring homomorphism. The kernel is an ideal in Z and since this is a Euclidean
domain, ker f = mZ for some integer m ≥ 0. There are two possibilities, either
m = 0 or m > 0. In the former case, ker f = 0 and f is injective. Then k
contains an isomorphic copy of Z, which we identify with Z. Since k is a field,
it contains the inverses of all its non-zero elements, and it follows that Q ⊆ k.

Now assume that m > 0. If m = 1, the kernel of f is the whole ring Z, so
1 = f(1) = 0 and k consists of one element only. So assume that m ≥ 2. The
image of f is a subring of k, and since k is a field, im f is an integral domain.
But then ker f must be a prime ideal, ker f = pZ for some prime p. Hence we
have im f ∼= Z/ker f = Z/pZ = Zp and k contains the field with p elements.
Notice that in this case

p · a = (p · 1) · a = 0 · a = 0

for all a ∈ k.
IfQ ⊆ k, we say that k has characteristic 0 and ifZp ⊆ k, k has characteristic

p. All subfields of the complex numbers have characteristic 0, for instance. The
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characteristic is denoted by char k. The fields Q and Zp are called the prime
fields.

2. Field extensions. If k is a subfield of another field F , we also say that
F is an extension of k. Then F is a vector space over k and we denote the
dimension of F over k by [F : k], which is often called the degree of F over k.
The degree might be infinite. If k ⊆ F , one often talks about the extension
F/k. If [F : k] < ∞, then F/k is said to be a finite extension.

We have for instance [C : R] = 2 since {1, i} is a basis. The real numbers is
an extension of the rationals, but of infinite dimension. Let Q(

√
2) denote the

set of all real numbers of the form a+ b
√

2 with a, b ∈ Q. This is a field (why?)
and its degree over Q is 2 (for what is a basis?).

Theorem 2 Suppose that E/k and F/E are two extensions. Then F is an
extension of k and [F : k] = [F : E] · [E : k].

Remark: This should be interpreted as follows. If either side is finite, then so is
the other and the equality holds. If either side is infinite, then so is the other.

Proof. First assume that F/E and F/k are finite and let y1, . . . , ym and
x1, . . . , xn be bases, respectively. Let a ∈ F . We can write a =

∑m
i=1 aiyi

for some ai ∈ E. We can also write ai =
∑n

j=1 bijxj for some bij ∈ k, so

a =
m∑

i=1

(
n∑

j=1

bijxj)yi =
∑
i,j

bijxjyi.

It follows that the products xjyi generate F as a vector space over k. We now
prove that they are linearly independent. Assume that

∑
i,j bijxjyi = 0 for some

bij ∈ k. If we rewrite this as
∑

i(
∑

j bijxj)yi = 0, we see that
∑

j bijxj = 0
for all i, since the yi are linearly independent over E. But the xj are linearly
independent over k, so finally bij = 0 for all i, j. Hence

[F : k] = mn = [F : E][E : k].

Now suppose that F/k is a finite extension. Then F/E must also be finite, since
E is a bigger field than k. Since E is a subspace of F , E/k must also be finite,
and we have equality by the first part of the proof.

Let F/k be an extension. When a1, . . . , an are elements of F , we denote by
k(a1, . . . , an) the smallest subfield of F containing k and the ai. Such a field is
said to be a finitely generated extension of k. Its elements are all quotients

p(a1, . . . , an)
q(a1, . . . , an)

where p and q are polynomials in n variables and q(a1, . . . , an) �= 0. One
should notice that finitely generated extensions do not have to be finite. For
instance, Q(π) is finitely generated, but not finite (but this is difficult to prove!).
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The smallest subring of F containing a1, . . . , an is denoted by k[a1, . . . , an] and
consists of all polynomials in a1, . . . , an. Under certain conditions which we will
discuss later k(a1, . . . , an) = k[a1, . . . , an].

3. Polynomials and splitting fields. The ring of polynomials in a variable
x with coefficients in a ring R is denoted by R[x]. Let φ : R → S be a ring
homomorphism. Then we get a homomorphism of the rings of polynomials, also
denoted by φ, by

φ(a0 + a1x + . . .+ anx
n) = φ(a0) + φ(a1)x + . . .+ φ(an)xn.

If k is a field, then k[x] is a Euclidean domain and so also a principal ideal
domain and a unique factorization domain. If f(x) ∈ k[x] is an irreducible
polynomial, then the ideal (f(x)) = f(x)k[x] in k[x] is prime, and also maximal.
Hence the quotient F = k[x]/(f(x)) is a field. The composition of the map inclu-
sion map k → k[x] and the quotient map k[x] → k[x]/(f(x)) is injective, which
means that k is a subfield of F . Denote the quotient map k[x] → k[x]/(f(x)) by
g(x) �→ g(x). Notice that ā = a if a ∈ k. Hence, if g(x) = a0 +a1x+ . . .+anx

n,
then

g(x) = a0 + a1x + . . .+ anxn

= ā0 + ā1x̄ + . . .+ ānx̄
n

= a0 + a1x̄ + . . .+ anx̄
n = g(x̄).

Since f(x) = 0, this means that f(x̄) = 0, i.e. f(x) has a zero in F . We can
construct an extension in which f has a zero even if it is not irreducible; we just
work with an irreducible factor of f .

If we repeat this process we sooner or later get a field E over which f(x)
splits into linear factors, i.e.

f(x) = a(x − α1) . . . (x− αn)

where a is the coefficient of xn and αi ∈ E. The extension k(α1, . . . , αn)
generated by the zeros of f is called a splitting field for f(x) over k. We have
proved the first part of

Theorem 3 Splitting fields exist. All splitting fields of a polynomial f over a
field k are isomorphic.

We need a lemma:

Lemma 1 Let φ : k → k′ be a field isomorphism and f(x) ∈ k[x] an irreducible
polynomial. Let α and α′ be zeros of f and φf, respectively, in some extensions
of k and k′. Then φ can be extended to an isomorphism k(α) → k′(α′) such
that φ(α) = α′.

Remark: The claim means that there is an isomorphism between k(α) and k′(α′)
whose restriction to k is φ.
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Proof. Define ψ : k[x] → k′(α′) by ψ(g(x)) = φg(α′). ψ is clearly surjective.
What is the kernel? Well, g(x) is in the kernel if and only if φg(α′) = 0. Let
h(x) be the greatest common divisor of φf and φg. There are polynomials f1, g1

such that h = f1 · φf + g1 · φg, from which follows that h(α′) = 0. Now φf is
irreducible, so either h is constant or h = φf . But we just saw that h has a zero,
and then it cannot be a constant polynomial. Hence h = φf and φf |φg, which
implies f |g and it follows that ker ψ = (f(x)). The homomorphism theorem
gives k[x]/(f(x)) ∼= k′(α′), the isomorphism being given by x̄ �→ α′. In the same
way we get k[x]/(f(x)) ∼= k(α) and the claim follows.

Proof of the theorem We will prove a somewhat stronger statement, namely the
following: Let φ : k → k′ be an isomorphism and let f be a polynomial over
k. Let E and E′ be splitting fields for f and φf, respectively. Then φ can be
extended to an isomorphism E → E′.

We will use induction on the degree of f , the case deg f = 1 being trivial
(then φ itself is the required morphism). Assume then that the statement is true
for polynomials of degree less than deg f . Take an irreducible factor f1 of f and
let α and α′ be zeros of f1 and φf1 in E and E′, respectively. By the lemma, φ
can be extended to an isomorphism k(α) → k′(α′) such that φ(α) = α′. Write

f(x) = (x− α)g(x), φf(x) = (x− α′)φg(x)

over k(α) and k′(α′). The fields E and E′ are splitting fields for g and φg,
respectively, and by the induction hypothesis, φ extends to an isomorphism of
these. The claim is proved and the theorem follows if we take φ : k → k to be
the identity map.

Remark: If k is a subfield of the complex numbers and we assume that we know
the fundamental theorem of algebra, the proof of the existence of a splitting field
is much simpler. For if the zeros of f in C are α1, . . . , αn, then k(α1, . . . , αn)
is a splitting field.

Example. One way to define C is as the quotient R[x]/(x2 + 1).

Example. The splitting field for x2 − 2 over Q is clearly Q(
√

2).

Example. The roots of the equation x3 − 2 = 0 are α, ωα, ω2α, where α = 2
√

2
and ω = e2πi/3 = −1

2 + i
√

3
2 . Hence the splitting field of x3 − 2 is

k = Q(α, ωα, ω2α).

Clearly k ⊆ Q(α, ω). On the other hand, ω = ω2α/ωα ∈ k, so

k =Q(α, ω).

Example. Consider the polynomial p(x) = xn − 1. Put ζn = e2πi/n; then the
zeros of p are ζk

n , k = 0, 1, . . . , n − 1. Hence the splitting field of p over Q is
Q(ζn). Fields of this form are called cyclotomic fields. Cyclotomic derives from
Greek and means “to divide a circle”.
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Example. The roots of the equation x4 − 10x2 + 1 = 0 are ±
√

2 ±
√

3 with all
combinations of signs. Hence the splitting field of x4 − 10x2 + 1 over Q is

k = Q(
√

2 +
√

3,
√

2 −
√

3,−
√

2 +
√

3,−
√

2 −
√

3).

Obviously k ⊆ Q(
√

2,
√

3). But since
√

2 = ((
√

2 +
√

3) + (
√

2 −
√

3))/2 and
analogously for

√
3, we actually have k = Q(

√
2,
√

3).

4. Algebraic elements and extensions. Let F/k be a field extension. An
element α ∈ F is said to be algebraic over k if there is a (non-zero) polynomial
f(x) ∈ k[x] such that f(α) = 0. If f(x) = a0 + a1x + . . . + anx

n, this means
that

a0 + a1α + . . .+ anα
n = 0,

in other words that the powers of α are linearly dependent over k.
If α is algebraic over k, there is an irreducible polynomial f such that f(α) =

0. For if α is a zero of a polynomial, it must be a zero of some irreducible factor
of this polynomial. Assume that f and g are irreducible polynomials such that
f(α) = g(α) = 0. Let h be their greatest common divisor. Since h = f1f + g1g
for some f1, g1, h(α) = 0. Hence h is not a constant, and since h|f , we must
have h = cf for some c ∈ k. But then f |g and finally g = c′f . If we require that
the coefficient of the highest degree term should be 1, the irreducible polynomial
such that f(α) = 0 is uniquely determined. It is called the minimal polynomial
of α over k.

Example. The minimal polynomials of
√

2 and i over Q are x2 − 2 and x2 + 1,
respectively. Put α =

√
3+

√
5. Then α2 = 8+2

√
15, so (α2−8)2 = 4 ·15 = 60,

which simplifies to α4 − 32α2 − 124 = 0. One can show that x4 − 32x2 − 124 is
irreducible over Q (try!), so it is the minimal polynomial of

√
3 +

√
5 over Q.

Theorem 4 Let F/k be an extension and α ∈ F .
a) α is algebraic over k if and only if k[α] = k(α).
b) α is algebraic over k if and only if k(α)/k is a finite extension.
c) If α is algebraic, then [k(α) : k] = deg f, where f is the minimal polyno-

mial.

Proof. a) Assume that α is algebraic. We always have the inclusion ⊆. To
prove the converse, it is enough to prove that 1/q(α) ∈ k[α] for all q with
q(α) �= 0. Let f be the minimal polynomial. Since q(α) �= 0, f does not divide
q and then their greatest common divisor is 1. There are polynomials such
that f1(x)f(x) + q1(x)q(x) = 1. It we put x = α we get q1(α)q(α) = 1, since
f(α) = 0. Hence 1/q(α) = q1(α). Notice that this also gives a method to find
the inverse!

If k[α] = k(α), then 1/α = p(α) for some polynomial p, so αp(α) − 1 = 0,
which means that α is algebraic.

b and c) If α is algebraic, the elements of k(α) are polynomials in α by
a). Let p(α) be such an element. Divide p by the minimal polynomial f :
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p(x) = q(x)f(x) + r(x), where r = 0 or deg r < deg f . This gives p(α) = r(α),
which means that the elements of k(α) can be written

a0 + a1α + . . . + an−1α
n−1,

where n = deg f . Hence [k(α) : k] ≤ n. On the other hand, there can be no
relation of the form b0 + b1α + . . . + bmαm = 0, not all bi = 0, for any m < n,
since f is the polynomial of least degree that has the zero α. It follows that the
powers 1, α, α2, . . . , αn−1 are linearly independent, so [k(α) : k] = n = deg f .

Finally assume that k(α)/k is finite and has degree n. Then the powers
1, α, . . . , αn are linearly dependent over k, so there are ai ∈ k, not all 0, such
that a0 + a1α+ . . .+ anα

n = 0. Hence α is algebraic (and of degree at most n).

An extension F/k is said to be algebraic if every element of F is algebraic
over k.

Corollary 1 If α1, . . . , αn are algebraic over k, then k(α1, . . . , αn)/k is a finite
algebraic extension.

Remark: It is not true that all algebraic extensions are finite.

Proof. Each step in the chain

k ⊂ k(α1) ⊂ k(α1, α2) ⊂ k(α1, α2, . . . , αn) = F

is finite, so by the multiplicativity of the degree, F is finite over k and hence
also algebraic.

Corollary 2 The sum and product of algebraic elements are algebraic. If α �= 0
is algebraic, then so is 1/α. Hence in an extension F/k the elements of F that
are algebraic over k form a field.

Proof. Let α, β be algebraic. By Corollary 1, k(α, β)/k is algebraic. The claim
follows since α + β, αβ, 1/α ∈ k(α, β).

Let α be algebraic over k and f(x) its minimal polynomial. The other
roots of f(x) = 0 are called the algebraic conjugates of α over k. Assume that
α = α1, . . . , αn are the conjugates of α and β = β1, . . . , βm are those of β. One
can show that

h(x) =
∏
i,j

(x− (αi + βj)) ∈ k[x],

so that the minimal polynomial of α+β is a factor of h(x). It may happen that
h is the minimal polynomial, but it is not necessarily so.

“Algebraic” satisfies the transitive property:

Corollary 3 If E/F and F/k are algebraic extensions, then so is E/k.
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Proof. Let α ∈ E and let f(x) = a0+a1x+ . . .+anx
n be its minimal polynomial

over F . The coefficients ai are algebraic over k, so we have a chain of finite
algebraic extensions:

k ⊂ k(a1, . . . , an) ⊂ k(a1, . . . , an, α).

Hence α is algebraic over k.

Example. Let k be the splitting field of x3 − 2 over Q. In the chain

Q ⊂ Q(α) ⊂ k,

the first step has degree 3. The degree of the second step is at most 2, since ω
has degree 2 over Q. But Q(α) is real, which ω isn’t, so the degree must be 2.
Hence [k : Q] = 3 · 2 = 6.

Example. Now let k = Q(
√

2,
√

3) be the splitting field of x4 − 10x2 + 1. The
first step in the chain

Q ⊂ Q(
√

2) ⊂ k

has degree 2 and the second has degree 1 or 2. If the degree were 1, we would
have

√
3 ∈ Q(

√
2), i.e.

√
3 = a + b

√
2 for some rational numbers a, b. Squaring

gives 3 = a2+2b2+2ab
√

2, implying that
√

2 is rational. This is a contradiction,
and so the degree is 2. Hence [k : Q] = 4.

5. Algebraically closed fields. The field of complex numbers has the prop-
erty that all irreducible polynomials have degree 1, or, in other words, that
all polynomials with complex coefficients split into linear factors over C. This
can also be expressed by saying that C has no non-trivial algebraic extensions.
Fields with this property are said to be algebraically closed. The fact that C is
algebraically closed is commonly known as the fundamental theorem of algebra.
No purely algebraic proofs of this fact are known. R is not algebraically closed.

Let A be the field of all complex numbers that are algebraic over Q (instead
of “algebraic over Q” one usually says just “algebraic”). A is called the field of
algebraic numbers and by Corollary 3 it is algebraically closed. It can be shown
that A/Q is an extension of infinite degree (the polynomial xn−2 is irreducible,
so n

√
2 has degree n over Q).

It can be shown that for each field k there is an algebraic extension k̄/k such
that k̄ is algebraically closed. The field k̄ is called the algebraic closure of k̄. All
algebraic closures of k are isomorphic.

6. The derivative and multiple zeros The derivative of f(x) = a0 + a1x +
. . .+anx

n ∈ k[x] is defined to be f ′(x) = a1+2a2x+. . .+iaix
i−1+. . .+nanx

n−1.
By direct computation one easily proves the well-known rules for differentiation:

(f(x) + g(x))′ = f ′(x) + g′(x), (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x).

Theorem 5 Let α be a zero of f in some extension of k. If f ′(α) �= 0, then α
is a simple zero. If char k = 0, the converse is true too.
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Proof. Write f(x) = (x− α)mg(x), where g(α) �= 0. Then

f ′(x) = (x− α)m−1(mg(x) + (x− α)g′(x)).

If f ′(α) �= 0, then we must have m = 1. If the characteristic is 0 and m = 1,
then f ′(α) = mg(α) �= 0.

If the characteristic is 0, we see that the multiplicity of α as a zero of f ′(x)
is m− 1. If k has prime characteristic one can construct examples in which the
multiplicity increases, for instance f(x) = (x− 1)p(x2 − 2x) ∈ Zp[x] for p ≥ 3.

Corollary 4 If char k = 0 and f(x) ∈ k[x] is irreducible, then f has only
simple zeros. In other words f has deg f distinct roots.

Proof. Assume that f has a zero α of multiplicity ≥ 2. Then f ′(α) = 0 and α
is a zero of the greatest common divisor (f, f ′). Hence (f, f ′) �= 1 and f cannot
be irreducible.

The corollary is not true in characteristic p > 0. For instance, let k = Zp(t),
the field of rational functions over Zp. Its elements are “fractions” f(t)/g(t),
where f and g �= 0 are polynomials with coefficients in Zp. The polynomial
xp − t is irreducible over k by e.g. a generalization of Eisenstein’s criterion. Let
u be a zero in an extension. We have xp − t = xp − up = (x − u)p, so the
irreducible polynomial xp − t has just one root, which has multiplicity p.

7. Finite fields. A finite field k must have prime characteristic and so be an
extension of Zp for some prime p. Let [k : Zp] = n and let x1, . . . , xn be a basis.
The elements of k can be written a1x1 + . . . + anxn, where ai ∈ Zp. Hence
|k| = pn. This shows that there is no field with 6 elements, for instance. We are
going to show that for every prime p and exponent n there is exactly one field
with pn elements (i.e. all fields with pn elements are isomorphic). This unique
field is denoted by Fpn .

Lemma 2 Let k be a field of characteristic p. Then (a + b)pn

= apn

+ bpn

for
all a, b ∈ k.

Proof. It is enough to prove the formula for n = 1. By the binomial theorem

(a + b)p = ap +
p−1∑
j=1

(
p

j

)
ap−jbj + bp.

In j!(p− j)!
(
p
j

)
= p! the right-hand side is divisible by p. But p is a prime, so p

does not divide j! or (p− j)!. Hence p|
(
p
j

)
and (a + b)p = ap + bp.

Let f(x) = xpn − x considered as a polynomial over Zp and let k be its
splitting field. Let α and β be two zeros of f in k. Then

f(α + β) = (α + β)pn − (α + β) = αpn

+ βpn − α− β = f(α) + f(β) = 0
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and

f(αβ) = (αβ)pn

− αβ = αpn

βpn

− αβ = αβ − αβ = 0.

Also

f(α−1) = (α−1)pn − α−1 = (αpn

)−1 − α−1 = α−1 − α−1 = 0

and it follows that the zeros of f form a subfield of k. But k is generated by
the zeros of f , so in fact k consists exactly of the zeros of f . Since f ′(x) =
pnxpn−1 − 1 = −1 �= 0, f has pn zeros, so k is a field with pn elements.

Now let F be any field with pn elements. The group F ∗ = F \{0} has pn−1
elements, so by Lagrange’s theorem, αpn−1 = 1 for all α ∈ F ∗. It follows that F
is a splitting field for f , and since splitting fields are unique up to isomorphism,
we have finally proved that there is exactly one field with pn elements.

Let α be a generator of the multiplicative group F∗
pn . The minimal polyno-

mial of α over Zp has degree n, which proves that there are irreducible polyno-
mial of all degrees over Zp. It is not difficult to find a formula for the number
of irreducibles of a certain degree, see below.

Theorem 6 Fpd is a subfield of Fpn if and only if d|n.

Proof. Assume that Fpd is a subfield of Fpn . Then F∗
pd is a subgroup of F∗

pn ,
so by Lagrange’s theorem pd − 1|pn − 1. Divide n by d: n = qd + r, where
0 ≤ r < d. Then

pn − 1
pd − 1

=
pqd+r − 1
pd − 1

=
pr(pqd − 1) + pr − 1

pd − 1
= pr · p

qd − 1
pd − 1

+
pr − 1
pd − 1

.

Here the first term is an integer, since (pqd − 1)/(pd − 1) = pq(d−1) + pq(d−2) +
. . . + pq + 1 and so r = 0.

If d|n, then pd − 1|pn − 1. Let k be the subset of Fpn consisting of 0 and
the elements that have orders dividing pd − 1. Then |k| = pd, for F∗

pn is a cyclic
group of order pn − 1 which is divisible by pd − 1. The same calculations as
above show that k is a field, so k = Fpd .

We will finally briefly discuss the factorization of f(x) = xpn − x into ir-
reducibles over Zp. Let g(x) be an irreducible factor and α a zero of g. The
extension Zp(α) ⊆ Fpn has degree deg g, so deg g = d for some divisor d of n.
On the other hand, let g(x) ∈ Zp[x] be irreducible and of degree d, where d|n.
Also let α be a zero of g. Then Zp(α) has degree d and so is isomorphic to the
subfield Fpd of Fpn . Let g1(x) be the irreducible factor of f that has the zero
α. Then the greatest common divisor (g, g1) also has the zero α, so g = g1 is a
divisor of f . We saw above that f has only simple zeros and it follows that

f(x) = xpn − x =
∏
d|n

Fd(x),
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where Fd(x) is the product of all irreducible polynomials over Zp of degree d.
(Multiplicative) Möbius inversion gives

Fn(x) =
∏
d|n

(xpd − x)µ(n/d).

If the number of irreducibles of degree n is Nn, then computing the degree on
both sides gives

Nn =
1
n

∑
d|n

µ(n/d)pd.
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