Complex Numbers and Complex
Arithmetic

Complex Numbers

As a set of mathematical objects, the complex numbers can be considered
to coincide exactly with the points in the standard two dimensional real
vector space R?. What is new in designating the points of R? as complex
numbers is the arithmetic and algebraic structure thereby imposed on that

set of points. Complex numbers, therefore, consist of pairs :
x
z = (y)’ x, y real numbers.

So written, x is called the real part of the complex number z and y is called

the imaginary part of z; we write
r = Rez, y=1Imz.

We single out particular pairs for special emphasis. Any pair of the form
(r,0) is considered to be essentially the same as the real number r and will
henceforth be denoted simply as . In particular the pairs (0,0) and (1,0)
will simply be referred to as 0 and 1, respectively. The pair (0,1) is denoted

by i and any pair (0, s) is written as si or i s; thus we can write

z(m>x+iy
y )

which is the standard representation of complex numbers. In engineering
and some of the natural sciences it is not uncommon to find the 7 notation
replaced by 7, simply reflecting the fact that in R? as a vector space we often
find the vector (z,y) written as zi + yj. It is immaterial which choice is

made but here we will use the symbol i for (0, 1).
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An important alternative representation of the complex numbers is ob-
tained by going to polar coordinates. Cartesian coordinates (x,y) for points
in the plane are related to polar coordinates r, # for those same points by the

relationships
x =rcosf, y =rsinf, if r # 0,
x=0 y=0, i r = 0;

r = /22 + y2, 0 = tan '(y/x), z,y not both 0.

Correspondingly we have the polar representation of the complex number
z =x + iy = r(cosf + isinb).

This is sometimes written as z = rcisf - but not here; later, after we
introduce the complex exponential function, we will use the notation z =
re®. The angle 6, normally given in radian measure, is called the argument
of the complex number z as shown, while r = /22 + 4?2 is the absolute value,

or modulus of z.
Complex Arithmetic

Additive Operations on Complex Numbers Addition and subtrac-
tion of complex numbers agrees exactly with addition and subtraction of

vectors in RR?; it is performed componentwise. Thus
(ut+iv) £ (z+iy) = (utz) + (vEy)i

As a result of this we can see immediately that the real numbers, r = (r,0)
and the (purely) imaginary numbers si = (0,s) are closed under addition
or subtraction and that 0 = (0,0) continues to play the role of the additive
identity for complex numbers just as it does for real numbers, i.e., z + 0 = 2

for all complex numbers z. Thus all complex numbers with a given modulus



7 lie on the circle of radius 7 in R? with center at the origin and all complex
numbers with a given argument # lie on the ray emanating from the origin
which forms the angle 6 with the positive real axis. The angle 6 is not unique;
two angles 6 and ¢ differing by an integer multiple of 27 are equivalent (but
sometimes have to be distinguished as in, for example, computation of roots,

discussed subsequently).

Complex Multiplication It is fair to say that in addition to the in-
troduction of the symbol i = (0,1), the “essence” of the complex number
system lies in the definition of complex multiplication. Historically, com-
plex numbers were not originally introduced as two dimensional vectors, but
rather as “ideal”, “imaginary”, or “impossible” numbers to provide solutions
for equations like > + 1 = 0. The symbol i was first introduced as that
“ideal”, “imaginary” or “impossible” quantity such that i = —1, which
then clearly solves y?> + 1 = 0. What is remarkable is that, as it later
turned out, by introducing this one number and its extensions to z + 7y, a
system was created in which all polynomial equations, of any degree n, would
have n solutions, admitting multiplicity. Starting with > = —1 and assum-
ing we want a system in which multiplication is distributive, we necessarily

have (using juxtaposition to indicate the product)
zw = (r 4+ iy)(u+iv) = zu +izv + iyu + ityv

= (xu — yv) + i(zv + yu).

As we readily check, this is the same as (u + iv)(z + iy), so complex
multiplication turns out to be commutative in the sense that for any two
complex numbers z and w we have zw = wz. It is also true that this

product is associative; if we have three complex numbers w,z and (, we have



(wz)¢ = w(z(). We can also check that
Ow =0, 1w =w
for any complex number w. If two complex numbers are given in polar form
z = r(cosf +isinf), w = p(costy+1isiny),
then we have, using standard trigonometric identities,
zw = (r cosf + ir sinf)(p cosy) + ip siny)

= rp(cosfcosy) — sinfsine) + i(sinfcosyp + cosfsiny)
= 7p (cos(f + 1) + i sin(6 + ).

Thus we see that in complex multiplication the modulus of the product is
the product of the moduli of the factors while the argument of the product

argument is the sum of the arguments of the factors (modulo 27).

The Complex Conjugate If z = x + iy is a complex number, the
conjugate of z is Z = = — iy; one simply changes the sign of the imaginary

part. One of the more important relationships is expressed by
2Z = (x+iy)(e—iy) = (v —y(—y) +iley +2(-y) = 2* +4* = |2]*.
Since

cosf) = cos(—0), —sinf = sin(—0),

it is easy to see that, if z = r(cosf + sinf), the polar representation of z
is z = 7r(cos(—0) + sin(—0)), so the argument of Z is the negative of the

argument of z.

Complex Division  Assuming that division and multiplication for com-

plex numbers should be related in much the same sense as they are for real
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numbers, the complex number ¢ represented by the quotient z/w, for z and
w complex numbers such that w # 0, should have the property qw = z.

From the earlier definition of multiplication, if ¢ = r 4+ ¢ s, we have
(ru— sv) +i(rv+ su) =z + iy,

so that
TU — SU = T

rv 4 su =1y’
This is a system of two linear algebraic equations in two unknowns, r and
s. The determinant of the system is u? + v? = |w|*, so there is a unique
solution if, as we have already stipulated, w # 0. We can solve this system
for r and w, hence for ¢, but it is easier to make the following observation:

qw@-q(uQJrUZ)—|w|2q—zw—>q—%
w

and therefore
z (zu 4+ yv) +i(yu — zv)

q:E: u? + v?

Using the appropriate trigonometric identities again we can readily see that
if z = r(cosf +sinf) and w = p(cost + sinep), then

z

= (cos(0 — ) + i sin(0 — 1)),

so the modulus of the quotient is the quotient of the moduli while the argu-

ment of the quotient is the difference of the moduli.
Powers and Roots

Powers of Complex Numbers These are defined much as they are

for real numbers. Thus if z is complex, 2" = z-2z-2z...- 2z, n factors



altogether. The main innovation lies in the polar representation. Thus if

z = r(cosf +1i sinf), application of the product rule above gives
22 = 12 (cos @ + i sinf)® = 7% (cos(26) + i sin(26)).

Then we proceed inductively. Assuming that z"~! = 7" (cos((n — 1)6) +
i sin((n — 1)0)), a further multiplication by z gives

2" = 2"z = " (cos((n — 1)) + i sin((n —1)0)) - (cos§ + i sind)

= 7" (cosnf + i sinnb)

and the principle of mathematical induction then leads us to conclude that

the formula

2" = r" (cosnf + i sinnf)
holds for all positive integer values of the power n.
Example 1 ~ We compute (1 + 7)”. Changing to polar form we have

14+i= V12 + 12 (Cos(tanfl(l/l)) +1 sin(tanfl(l/l))>
=2 (cos(m/4) + i sin(w/4)) .

Then, since in general cos(f + 27) + i sin(@ + 27) = cos @ + i sinf, we have
(144)" = (v2)7 (cos(7m/4) + i sin(7m/4)) = 82 (cos(—n/4) + i sin(—m/4))

= 8v/2(cos(—m/4) + i sin(—7/4)) = 8(1 — ).

Roots and Rational Powers of Complex Numbers The property

(cosf +i sinf)" = cos(nh)+i sin(nf), cos(6+2m)+i sin(6+27) = cosf+i sin6



become particularly important in finding integer roots of non-zero complex
numbers. Suppose z = 7 (cosf + i sinf) and we want to find z'/", i.e., the
n-th root of z. We seek, then, one or more complex numbers w such that

w" = z. lfw = p(cosy + i sin), we must have
p" (cos(ny) + i sin(ny)) = r(cosf + i sinf).

This immediately gives p = /™, the standard n-th root of the positive
number r. The condition cos(ny) + ¢ sin(ny) = cos@ + ¢ sinf needs to be
treated a little more carefully. Since for any integer k we have cos(0 4 2km) +

i sin(0 + 2km) = cos @ + i sind, that requirement implies that

which gives us

W( (9 2/<57r>>
w=r cos| —+——1]].
n n

Because of the condition cos(6 + 27) + ¢ sin(d 4+ 27) = cosf + i sinf it is
only necessary to consider the cases &k = 0,1,2,...,n — 1; proceeding further

simply leads to repetition.
Example 2  Compute the fifth roots of 1 +4. Here r = /2 = 22 50
p = (2/2)1/5 = 21/10 To obtain the possible values of ¢ we use

T 2k

= — + —, £=0,1,23,4
¢ 45+ 57 )y Sy

So the collection of all 5-th roots of 1 + 17 is

2k T 2k
91/10 KR o k= 0.1,234.
(cos (20 + 5 + 7 cos 20 + 5 , 0,1,2,3,



QuickCheck Exercises

1.  Compute the product (2 + 34)(1 — 2¢) and verify that the modulus of
the product is the product of the moduli of the factors.

2. Convert 3 —i3+/3 to polar form and then compute its square.
3. Compute (2 + 24)".
4. Find all values of:

(a) V1+iv3; (b) Vi



